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Abstract 

Image compression is a means to perform transmission or storage of visual data in the 

most economical way. Though many algorithms have been reported, research is still 

needed to cope with the continuous demand for more efficient transmission or storage. 

This research work explores and implements polynomial fitting techniques as means to 

perform block-based lossy image compression. 

In an attempt to investigate nonpolynomial models, a region-based scheme is 

implemented to fit the whole image using bell-shaped functions. The idea is simply to 

view an image as a 3D geographical map consisting of hills and valleys. However, the 

scheme suffers from high computational demands and inferiority to many available 

image compression schemes. Hence, only polynomial models get further considerations. 

A first order polynomial (plane) model is designed to work in a multiplication- 

and division-free (MDF) environment. The intensity values of each image block are 

fitted to a plane and the parameters are then quantized and coded. Blocking artefacts, a 

common drawback of block-based image compression techniques, are reduced using an 

MDF line-fitting scheme at blocks’ boundaries. It is shown that a compression ratio of 

62:1 at 28.8dB is attainable for the standard image PEPPER, outperforming JPEG, both 

objectively and subjectively for this part of the rate-distortion characteristics. 

Inter-block prediction can substantially improve the compression performance of 

the plane model to reach a compression ratio of 112:1 at 27.9dB. This improvement, 

 
 
 
 

iii



 

however, slightly increases computational complexity and reduces pipelining capability. 

Although JPEG2000 is not a block-based scheme, it is encouraging that the proposed 

prediction scheme performs better in comparison to JPEG 2000, computationally and 

qualitatively. However, more experiments are needed to have a more concrete 

comparison. 

To reduce blocking artefacts, a new postprocessing scheme, based on Weber’s 

law, is employed. It is reported that images postprocessed using this scheme are 

subjectively more pleasing with a marginal increase in PSNR (<0.3 dB). The Weber’s 

law is modified to perform edge detection and quality assessment tasks. 

These results motivate the exploration of higher order polynomials, using three 

parameters to maintain comparable compression performance. To investigate the impact 

of higher order polynomials, through an approximate asymptotic behaviour, a novel 

linear mapping scheme is designed. Though computationally demanding, the 

performances of higher order polynomial approximation schemes are comparable to that 

of the plane model. This clearly demonstrates the powerful approximation capability of 

the plane model. As such, the proposed linear mapping scheme constitutes a new 

approach in image modeling, and hence worth future consideration. 
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Chapter 1 

Introduction 

 

The increasing demands for high volume data transfer and/or storage necessitate the 

need for a mechanism to perform such operations in a more compact form. This 

mechanism is called compression where appropriate data model is selected for 

implementation together with some coding scheme. As an example, the transmission of 

a coloured video signal composed of 30 frames/sec may require a bandwidth of 188.7 

Mbit/sec for a frame size of 512x512 pixels. This amount is highly beyond the standard 

6Mbit/sec allocated to commercial channels. 

Compression is some times termed as redundancy reduction. Hence, many data 

redundancies should be exploited to attain the highest possible compression rate. 

Redundancies can be between adjacent pixels or within a certain region of the image 

whether it is regularly shaped like blocks or irregular to represent actual objects (or 

subobjects) in the image. Redundancies can be due to some geometrical relations 

between the positions or gray values of some pixels. A more important form of 
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redundancies is that corresponding to psychovisual aspects of the human visual system 

(HVS) where some degradations cannot be perceived by the eye. 

In general, compression falls in two categories lossless and lossy. The former 

produces an exact replica of the original data and may be termed as exact reconstruction 

or reversible transformation) [Berg and Mikhael 1994]. The latter, on the contrary, 

introduces errors and the reconstructed data is not the original any more. 

In both compression schemes, the procedure consists of three major steps as 

illustrated in Fig 1.1. These three steps are typically implemented in the following 

order: decorrelation, quantization, and coding. In the decorrelation step, a certain 

transformation is performed to produce uncorrelated coefficients. The coefficients in the 

transform domain are then quantized, ranging from simple thresholding to the optimum 

or Max quantizer, to reduce the number of allocated bits. In fact, the error is mainly due 

to this step and hence, it bears the distinction between lossy and lossless compression. 

In fact, almost negligible errors can be produced due to transformation roundoff errors. 

After performing quantization, the resulting quantized coefficients are of different 

probabilities and an efficient coding scheme (step 3) can further reduce the number of 

required bits. 

 

Entropy CodingQuantization Decorrelation  

Fig 1.1 Data compression steps 

 

In some applications, like computer file transfer and medical image archiving, 

errors are prohibited (lossless compression) and hence low (around 2:1) compression 
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ratios (CR), size of original data to that of the reconstructed data, are common in 

practice. In others, speech and image lossy compression for example, some error margin 

is tolerated on the expense of quality degradation at the decoder. Fortunately, sometimes 

not, human visual system is nonlinear and eyes can tolerate certain errors. Hence, for 

image compression applications, high compression ratio can be obtained with 

perceptually no difference between the original and reconstructed images. 

Revisiting Fig 1.1, decorrelation in an image or a video is typically performed 

using spatial and/or temporal pixel prediction or block, typically of 8x8 pixels, 

transformation (typically linear). Traditionally, prediction can be performed between 

adjacent pixels in the same frame and/or between adjacent pixels in consecutive video 

frames to produce uncorrelated prediction errors. On the other hand, block-based coding 

transforms the intensities and/or chromatic information of each block, usually 

nonoverlapped with its neighbours, into uncorrelated coefficients in the transform 

domain. A more compact form, though more complex, is to consider the whole image as 

consisting of regions (overlapped or not) representing the various objects (or 

subobjects) in the scene. Many features, e.g. colour, edginess, texture and motion, can 

be incorporated for further improvements. 

In all lossy compression schemes, performance is judged according to an 

objective quality called peak signal to noise ratio PSNR, given CR is the same between 

the competing schemes. Unfortunately, PSNR correlation with human visual system is 

widely criticized throughout the image processing community. This criticism is due to 

two facts. First, difference in PSNR does not necessarily means a comparable difference 

in quality. Second, in some situations, a PSNR value can give preference to a certain 
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image that is the worst due to perceptual comparison. Hence, some subjective quality 

measure, depending on some viewers, may be performed to support the PSNR value. 

Many compression schemes are available in the literature; the next chapter tries to 

describe some of these algorithms. However, theoretically speaking, region-based 

compression schemes have high potential [Sikora, 2005] in exceeding the current barrier 

on the value of compression ratio. Unfortunately, current implementations of region-

based schemes are computationally intensive. In a somewhat contrary characteristic, 

block-based schemes are typically fast but are saturated at least from compression-wise 

performance. Pixel-based or predictive coding cannot compete as a stand-alone scheme 

but rather as a supporting tool. 

As mentioned in the previous paragraph, block-based schemes are saturated. To 

jump over this barrier, polynomial fitting schemes are investigated on a regularly 

shaped region, a fixed size block, in the least-square sense. The author is not aware of 

any previous image compression work on plane or polynomial fitting for fixed size 

blocks. There are, however, some work on implementing plane models for variable 

sized blocks, quadtrees to be more specific. To reduce computational cost and to allow 

future merging with more complex algorithms, like region-based for example, the 

ultimate objective is to design a multiplication- and division-free implementation. The 

multiplication-free characteristic should prevail in the postprocessing stages also. 

Two computationally efficient plane (first-order surfaces) models are proposed, 

implemented, and compared to existing algorithms. Typical block size is 8x8 pixels. 

Multiplication-free feature is maintained in both schemes. The first model (basic 

scheme) is implemented on nonoverlapping blocks of the image. A plane, ax + by + c, is 
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independently describing each block. The performance is superior (objectively and 

subjectively) to that of JPEG at a compression ratio of ~60:1. In addition, the 

computational cost is significantly lower. 

To further improve the compression performance, with tolerated degradation in 

quality, the second (prediction scheme) is proposed. It uses the basic scheme 

formulation with a constraint to evaluate two parameters of each block, except for the 

top-left one, are dependent on a pixel value from the boundary of a neighbouring block. 

The two parameters are c and a(b) depending on the location of the neighbouring block. 

The previous discussion on the support of predictive coding is used here. In fact, the 

proposed prediction is better than using that of JPEG where c is predicted from the c’s 

of neighbouring blocks. It should be emphasized that the proposed form of prediction 

has not been reported previously. Despite the low computational cost, the prediction 

scheme performed better than JPEG2000 both objectively and subjectively. In both 

plane models, quantization is performed using empirically optimized parameters. 

Huffman coding is used. However, to further increase compression ratio, coding is 

performed on the combined symbol (a , b). 

Higher order polynomial fitting schemes (no prediction) are also investigated. The 

performance, restricting to the three-parameter case, is at most comparable to that of the 

plane. In fact, an asymptotic behaviour is approximated, using a linear mapping scheme, 

and implemented showing negligible improvements over the basic plane fitting model. 

This clearly shows the power of the plane model despite its simplicity. Nevertheless, the 

proposed linear mapping scheme is a new form of describing or modelling image 

blocks. 
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In addition, new post-processing algorithms are presented with some details due 

to their high influence on the reconstruction quality. Of special importance is the 

postprocessing due to the incorporation of a proposed edge detection scheme using 

Weber fraction. The proposed edge detection scheme has a better impact on the 

subjective quality compared to Sobel operator for example. Interestingly, Weber law 

can be modified further to act as a quality assessment scheme. 

The organization of this work is as follows; chapter 2 presents a literature survey 

on the general subject of image compression. Chapter 3 illustrates some work on using 

nonpolynomial functions to describe images. The proposed plane models are described 

in chapters 4 and 6. Chapter 5 describes some higher order models and schemes that can 

be used independently or as supplementary tools to those described in chapters 4 and 6. 

Postprocessing, using modified Weber law, is presented in chapter 7. In addition chapter 

7 contains some results on applying Weber law in edge detection, and quality 

assessment. Results and comparisons are illustrated after the theoretical description of 

each scheme. Finally, conclusions and future work are presented in chapter 8. 
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Chapter 2 

Background and Literature Survey 

 

Image compression has been widely investigated and many algorithms have been 

proposed [Sikora 2005] and [Egger et al 1999]. Comparison between algorithms is often 

based on two aspects: compression ratio and reconstruction quality. Compression ratio 

CR is defined as 

 

 fileompressed its  in  cNo.  of  b
ileriginal  fits  in  oNo.  of  bCR =    (2.1) 

 

Quality, can also be measured subjectively based on some scoring procedure (obtained 

by employing a group of viewers) or objectively as Peak Signal to Noise Ratio (PSNR): 
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where g and ĝ are the original and reconstructed images respectively, x = 1, … X, y = 1, 

… Y, and X and Y are image dimensions. 
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The essential difference between image compression algorithms is the 

implementation of the decorrelation step, see Fig 1.1; hence it is more convenient to 

consider the other two steps first, namely, quantization and coding. 

 

 

2.1 Quantization 

In reference to Fig 1.1, the output of the decorrelation step, could be a scalar or a vector, 

should be quantized. The desired compression ratio can be attained through an 

appropriate selection of quantization steps. In other words, the output can only belong to 

a predefined set. These steps can be uniform or not, depending on the statistical 

characteristics of the quantity to be quantized. If the probability density function (PDF), 

p(x), of the parameter under consideration is known, the optimum least square (Lloyd-

Max) quantizer can be described by [Max 1960]: 
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where rk is the reconstruction level of the interval (tk , tk+1) and tk is a threshold. 

Nevertheless, when the PDF follows a uniform distribution, the above quantizer reduces 

to the linear or uniform quantization given by: 
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where L is the number of quantization levels. 

 

 

2.2 Encoding 

The easiest way to encode a set of symbols is to assume that they occur with equal 

repetitions, resulting in an equal code length. A more efficient way is to use variable 

length coding, i.e., the code length is inversely proportional to the frequency of 

occurrence of the encoded symbol. 

The simplest variable-length coding scheme is the comma code. The most 

frequent symbol gets the code 0(1), the next most frequent 10(01), and so on until the 

least frequent symbol, which gets 1…10(0…01). A more compact and efficient form is 

through entropy coding namely: Huffman or arithmetic coding [Shi and Sun 2000]. In 

the former, a coding table is built starting from the least frequent symbol upwards till all 

symbols get their codes. High probability symbols get short codes while low probability 

ones get longer codes. In arithmetic coding, however, a fixed code is sent that represents 

a variable number of symbols. Each code combines the symbols in proportion to their 

probabilities. Header bits (in entropy coding) are required to define the coding table or 

the symbol probabilities to the decoder. This requirement can be relaxed if symbols’ 

probabilities are slightly fluctuating with time and a fixed encoding table can be used. 

Going back to Fig 1.1, the decorrelation step can be considered as the 

distinguishing step between different image compression schemes. The description will 

be specific to most of the algorithms in image compression literature as presented in the 

following sections. 
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2.3 Image Compression Schemes 

This section gives a general description of the main image compression schemes 

available in the literature. The schemes can be categorized into four subgroups 

according to the processing element. These subgroups are: pixel-based, block-based, 

subband-based, and region-based. The following subsections present these subgroups.  

 

 

2.3.1 Predictive Coding 

In differential pulse code modulation (DPCM) [Habibi 1977], a pixel is predicted from a 

subset (a, b and c) of its causal neighbourhood (see Fig 2.1) and prediction error is 

quantized and coded. The prediction is simply a weighted sum of all elements in a 

selected neighbourhood. 

 
 .   .   .   .   .   .   .   .   .   .   .   .   . 

.   .   .   .   .  c  b  d   .   .   .   .   . 

.   .   .   .   .  a  x   .   .   .   .   .   . 

.   .   .   .   .   .   .   .   .   .   .   .   . 

 
 
 
 
 
 
 

Fig 2.1 Causal neighbourhood of pixel x 

 

Predictive coding is preferred for its simplicity in video coding since consecutive 

frames are highly correlated. It was found [Habibi 1971] that improvements are 

marginal for a correlation distance of more than 3 pixels. In practice (lossless JPEG 

compression), one of the 7 predictors, listed in Table 2.1, or a combination of them is 
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used. High compression (more than 8:1) is difficult to attain due to accumulated errors 

and the need for multi-model prediction. 

 

Table 2.1 Predictors used in lossless JPEG scheme (see Fig 2.1). 

N Predictor  x̂
1 a 

2 b 

3 c 

4 a + b – c 

5 a + (b – c)/2 

6 b + (a – c)/2 

7 (a + b)/2 
 

Although lossless image compression is beyond the scope of this work, there are 

rather advanced prediction schemes to perform such a task, see [Zhang and Adjeroh, 

2008], [Solé and Salembier, 2007], and [Kingston and Autrusseau, 2008]. 

 

 

2.3.2 Block-Based Coding 

To overcome the limitations of predictive coding, block based (dividing the image into 

nonoverlapping blocks) compression techniques were suggested [Jain 1981]. However, 

at higher compression rates, these techniques suffer from visually annoying artefacts at 

block boundaries and some post-processing is therefore needed. 

Block based techniques can be categorized into training type and non-training 

type techniques. Training type techniques include: vector quantization VQ [Li and 

 
 
 
 

11



 

Zhang 1995], and neural networks NN [Jiang 1999] and [Kim and Lee 2002]. Iterated 

functions or fractals [Wohlberg and DeJager 1999] can be considered as a category of 

VQ with a virtual codebook composed of blocks surrounding the current block. Non-

training type techniques include: block truncation coding BTC [Delp and Mitchell 

1979], transform coding TC (e.g., Discrete Cosine Transform DCT [Furht 1995]), and 

surface fitting [Eden et al 1986]. 

 

 

2.3.2.1 Training Type Techniques 

In these techniques, some offline learning or training is required before applying these 

techniques. In VQ and NN, compression performance is dependent on how similar is 

the image to the training set. 

The general idea behind VQ is to use some set of images (or blocks of one image) 

as representatives for other images preferably of some sort of similarity with the 

training set. These images are divided into smaller blocks, typically of size 4x4 or 8x8 

pixels, to be used in building the codebook through training or clustering process. More 

complex schemes, like the genetic algorithm GA, can be used to design an optimum 

codebook. The codebook contains few vectors (blocks) that should be available for both 

the encoder and decoder. Compression is achieved by sending few bits (per block) 

representing the index of the best matching block to the current one. The matching 

process is computationally demanding even when nonexhaustive search is performed. 

Many training methods were implemented to enhance the representation of the 

codebook to the data set [Feng et al. 2007] and [Tsekouras et al. 2008]. The decoding 
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time is much less than that of the encoding, since no comparison is needed [Laha et al. 

2008]. 

In a somewhat similar fashion to VQ, NN use these building blocks to train a 

multilayer neural network. After completing the training phase and convergence is 

reached, the final NN structure is divided such that input-hidden weights are at the 

encoder side, while the decoder contains hidden-output weights. The standard way in 

performing compression [Jiang 1999] is by using a smaller number of hidden nodes. In 

my opinion, however, a better way to achieve compression is by quantizing (typically 

uniform) the outputs of the hidden neurons. The output of each node is a nonlinear 

function of the weighted sum of outputs from the previous layer. Another form is 

through unsupervised clustering using self-organizing Kohonen model [Soliman and 

Omari, 2006], [Abbas 2007], and [Dokur 2008]. Other forms can be obtained by 

modifying the node type in a layer, e.g., a multiplicative instead of an additive one, as in 

[Iyoda et al. 2007]. 

Fractal compression, on the other hand, uses the image’s self-similarity to 

construct a “virtual codebook”. Each block (called range block) has its codebook 

defined by some surrounding larger domain blocks that may be overlapped and/or not. 

Iterative affine (scaling, rotation, shifting and down sampling) transformations are 

applied on any initial conditions, other image or even randomly generated pixel values, 

to obtain an approximate version of the original image. The information is hence 

captured by the affine parameters that are quantized to reach the desired compression. 

The computational burden is often high, especially at the encoding stage. Several 
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attempts were made to improve the speed of the fractal image compression scheme 

[Distasi et al. 2006], [Jackson et al. 2007], [Zhou et al. 2008], and [Tseng et al. 2008]. 

 

 

2.3.2.2 Non-Training Type Techniques 

One of the simplest approaches is the block truncation coding BTC [Dasarathy 1995]. 

Each block, typically of size 4x4 pixels, is considered to come from some random 

distribution of pixel values. The idea is to divide the block pixels into two groups each 

has its own reconstruction level. The first and second moments, or the two 

reconstruction levels, are sent together with the block map (1 bit per pixel indicating its 

group). The mathematical derivation is simply to preserve the first 3 moments of a 

vector X resulting in [Delp and Mitchell 1979] 
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where { } { } { } { }3323 XEXE2XEX3E −=Aσ , σ is the standard deviation, m is the total 

number of points, p is a threshold (number of pixels having level a), and a and b are the 

reconstruction levels. Unfortunately, CR cannot go beyond 8:1 without hybridizing with 

other schemes like VQ [Mohamed and Fahmy 1995], fuzzy edge detection 

[Amarunnishad et al. 2008], and pattern fitting [Dhara and Chanda 2004] and [Dhara 

and Chanda 2007]. 
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In transform coding, on the other hand, a linear transformation is used to map the 

current block into the transform domain producing uncorrelated coefficients. The 

energy is concentrated in few transform coefficients, typically the lowest in frequency, 

which are quantized and efficiently coded to perform compression. The transformation 

can be generally described by 

 

FTFTf
TfF

t==

=
−1     (2.6) 

 

where T is the transformation matrix and f and F are the original and transformed blocks 

respectively. T is a unitary transformation and hence, the transpose is the inverse. The 

previous equation governs all transform coding techniques; the special case of discrete 

cosine transform DCT is given (for 8x8 blocks) by 
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where δ(n) is the Dirac delta or impulse function. The transformed coefficients F(u, v) 

are quantized, depending on the quantization table used, and sent in a zigzag order. In 

fact, the performance of any block-based transformation is upper-bounded by the 

optimum or KL transform. However, due to the computational complexity of KL 

transform and its data dependency, DCT is preferred [Jain 1981], [Alkholidia et al. 

2007], and [Ponomarenko et al. 2007]. There is a wealth of literature on applying 

transform coding in image compression, like Hartley transform [Sunder et al. 2006], 

fuzzy transforms [Di Martino and Sessa 2007], Łukasiewicz transform [Di Nola and 

Russo 2007], and 3D matrix transform [Zhang et al. 2008]. 

 
 
 
 

15



 

At high compression rates, however, transform coding techniques suffer from 

blocking artefacts at blocks’ boundaries and a post-processing step is necessary at the 

decoder to enhance the reconstruction quality. 

 

 

2.3.3 Wavelet (Subband) Compression 

Subband coding (wavelets) [Lin and Vaidyanathan 1996] differs from block-based 

techniques in performing the transformation on the whole image rather than part of it. 

However, some techniques operate on large blocks. Hence, it has less blocking 

artefacts; however, the reconstructed image tends to be blurry. Nevertheless, its 

performance is much better than traditional block-based techniques [Kaur et al. 2006] 

and [Bruni and Vitulano 2007]. 

The subbands are constructed through successive filtering-downsampling 

(upsampling at the decoder) [Lin and Smith 2008]. This technique can be viewed as 

performing block processing in the frequency domain. In wavelet image compression 

[Shapiro 1993], the image is decomposed into four bands, namely: LL, LH, HL, and 

HH. L and H correspond to a low and a high pass filter respectively. The high pass filter 

can be obtained by subtracting the low pass filtered output from the original image. The 

sequence of filter application is arbitrary, i.e., we can apply filtering to the horizontal 

and then to the vertical direction and vice versa. This is why we describe the filter using 

two letters. A downsampling by a factor of two then follows. The process can be 

applied for several times on the resulting LL (LL1 to be more accurate) band to obtain 

LL2, LH2, HL2, HH2 and so on. The coefficients at each band are then quantized to 
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reach the desired compression. Since the energy is concentrated in the LL band, larger 

quantization steps are used in other bands and hence a small portion of the bit budget is 

allocated to high frequency subbands [Chang and Girod 2007], [Yang et al. 2008]. 

Many filter models have been proposed in the literature [Lin and Vaidyanathan 

1996] for wavelet image compression. The JPEG2000 standard uses the Daubechies 

(9,7) filter due to its superior empirical performance on a wide range of images. To 

reduce computational burden, the filter is broken to four 2x2 matrix multiplications 

using the lifting scheme [Acharya and Tsai 2005]. 

 

 

2.3.4 Region-Based Compression 

Traditional transform coding techniques are saturated as far as compression ratio is 

concerned [Gilge 1990] and [Kaup and Aach 1994]. Region- or segmentation-based 

techniques were suggested to exceed this barrier [Kaup and Aach 1998] and to support 

new multimedia services [Salembier and Marqués 1999]. The term “second generation” 

is often used to indicate their superior performance over the previously mentioned 

schemes [Cermelli et al 1994], [Salembier and Pardas 1994] and [Sikora 2005]. It has 

been shown [Biggar et al 1988] and [Ran and Farvardin 1995] that at higher rates, 

reconstruction quality of region-based techniques exceeds that of DCT. 

The general idea of region- or segmentation-based compression is to divide the 

image into regions that are not necessarily of regular shape. These regions are 

commonly constructed using some clustering or segmentation procedure that depends 

on the pixel gray (colour) value and/or motion [Salembier and Marqués 1999] 
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parameters. Each region is represented by two codes. The first (preferably a chain code) 

describes the location of boundary pixels. The second represents the best approximation 

of the region enclosed by this boundary. In addition, coding gains can be obtained by 

avoiding repetition of the common boundary points between adjacent regions. The usual 

compromise between quality and CR is dependent to a certain extent on the number of 

regions. 

Watershed algorithm, morphological operators [Bosworth and Acton 2000], 

[Salembier et al 1996] and [Salembier and Pardas 1994], region growing [Yemez et al 

2005], genetic algorithms GA [Aravind et al 2002] combined with gradient information, 

and many other algorithms [Muñoz et al 2003] can be used to segment the image into 

different regions. A preprocessing can be used to better describe the texture regions 

[Hussain and Reed 1994] through some statistical test to separate edges from uniform or 

texture regions.  

After segmentation, each region can now be approximated in one of many 

different ways. [Biggar et al 1988], for example, implemented up to second order 

surfaces to describe each region. A similar procedure is to use some basis functions 

[Gilge 1990] followed by an orthogonalization routine. Coloured regions [Roterman and 

Porat 2003] can be described according to HVS sensitivity by describing G component 

using a 2nd order polynomial, while R and B components are constructed using a linear 

function of G. Successive approximation (from an orthonormal set) was implemented in 

[Kaup and Aach 1994] independently on each region. A linear system is then solved to 

find the weights corresponding to the selected orthogonal functions. In [Salembier et al 

1996] a suggestion was made to implement successive approximation between frames 
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and/or resolution layers. VQ can also be combined with polynomials [DeNatale et al 

1995] to reach a better compromise between quality and performance. [Kaup and Aach 

1998] implemented a DCT scheme defined on the smallest MxN circumscribing 

rectangle. 

 

 

2.4 Surface Fitting 

This technique can be fused in some of the techniques described in the previous section. 

In the general field of image processing, surface (or polynomial) fitting has been used in 

image segmentation [Lim and Park 1988], image noise reduction [Sinha and Schunck 

1992] and quality improvement of block-based compression [Kieu and Nguyen 2001] 

and [Laha et al 2004]. Lost subband coefficients [Hemami and Gray 1997] can be 

reconstructed by fitting the known samples to some surface. Splines can be used [Baseri 

and Modestino 1994] to encode the lowest frequency band in subband coding. RBF 

networks [Kim and Lee 2002] can be combined with surface fitting to perform 

compression using a predefined set of patterns for the centres. The term surface fitting 

was also used by [Chen et al 1994] to describe successive mean approximation. 

Polynomial fitting was implemented [Cabrelli and Molter 1990] in contour coding 

of black and white images. Splines were used in block-based compression [Watanabe 

1997] to preserve continuity between the pixels inside the block. Image representation 

by verge (high curvature) points [Wang et al 2005] is an elegant suggestion to 

emphasize the importance of boundary pixels (edges) in producing perceptually pleasant 

pictures. Zigzag scan was used in [Nguyen and Oommen 1997] to convert the block into 
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1D. Following that, where moment preserving is used as the objective criterion, 

piecewise linear fitting is performed between knots. Another implementation of 

polynomial fitting is in predicting motion compensation vectors in video coding 

[Karczewics et al 1997]. 

Segmentation-based [Biswas 2003] image compression also uses 1D and 2D 

polynomial fitting. The former is used to encode boundary points while the latter to 

approximate slowly varying areas enclosed by these points. To reduce complexity, 

slowly varying regions are usually approximated by a constant intensity depending on 

the split and merge technique. A flexible way of constructing variable size triangular 

blocks through split and merge was implemented in [Lu et al 2000] and [Demaret et al 

2006]. 

 

 

2.4.1 Compression Via Surface Fitting (Quadtree) 

In [Eden et al 1986], a mathematical framework for using polynomial interpolation in 

image processing was presented. To achieve compression, least square approximation 

was presented as an optimization algorithm when the number of coefficients is required 

to be less than the number of pixels in a block. Mathematically, we have 

 

( )∑∑ −
x y

g(x,y)z(x,y)Minimize  2     (2.8) 

 

where g(x, y) is the original intensity (or any colour component) value and z(x, y) is the 

suggested (polynomial) function. However, only separable cases were considered in 
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[Eden et al 1986]. Also, computations could be further reduced if the origin of the 

coordinate system is the block centre as will be emphasized later. 

A simplified derivation for first order (plane) fitting was proposed by [Strobach 

1991] in the form 

 

( )  2

,, ∑∑ −++
x ycba

g(x,y)cbyax Minimize    (2.9) 

 

The coefficients a, b and c of a 2Nx2N block are computed from their NxN counter 

parts and are assumed uniformly distributed. The resulting values of the above 

minimization procedure, on the largest possible blocks usually 32x32 or 64x64, are 

retained if the resulting error is less than a predescribed threshold. Otherwise, the block 

is split into four blocks and the minimization process is repeated again. A PSNR of 32 

dB was reported for 16:1 compression (0.5 bits per pixel bpp) with high complexity in 

building the quadtree describing sizes of the compressed blocks. To reduce the error 

energy imposed by quantizing a and b, the block centre was selected as the origin of the 

coordinate system. In fact, the selection of the origin can also affect the range of c as 

will be shown later in the experiments. 

The computation of 2Nx2N parameters from their NxN counter parts can be 

generalized for higher order polynomials [Philips 1991]. A related quadtree approach 

was proposed by [Hasegawa and Yamasaki 2002] to predict block corners from the 

upper left one. These four corners are used in the decoder to find the coefficients of 

(dxy + ax + by + c). 

Strobach technique was independently generalized to video compression by using 

a zero order term for the time axis [Wellimen et al 1991]. Another attempt, called 
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incomplete polynomial transform, is proposed by [Aydinoglu and Hayes 1996] to 

quantize the coefficients, resulting from fitting a 4x4 block, through subband coding. A 

first order model was suggested by [Lan et al 1998] to compress videos; however, the 

parameters were uniformly quantized. 

 

 

2.5 Video Compression 

Video is simply a sequence of images. Therefore, all the previously described schemes 

can be implemented on each frame (motion JPEG [Westwater and Furht 1997]) or 

generalized to 3D (3D JPEG [Westwater and Furht 1997]). A more common approach, 

called motion compensation, is to encode the displacement vectors describing the 

movements of objects from frame to frame. Vector components need not be integers, 

requiring interpolation (usually linear), and ½ or ¼ pixels are common in practice for 

motion prediction. 

Block matching [Jain and Jain 1981] is widely accepted due to its reduced 

computational burden and increased coding efficiency. In this approach, the current 

frame is partitioned into nonoverlapping blocks (usually of size 16x16 and to less extent 

8x8 pixels) that are matched (within some predefined neighbourhood) to blocks in the 

reference frame, typically the previous one. Full or exhaustive search, in the matching 

process, has some benefits (global optimum can be found), however, other searches like 

logarithmic search [Bhaskaran and Konstantinides 1997] may be preferred due to its 

reduced computational complexity. An efficient search strategy in the form of quadtrees 

(multiresolution or gaussian pyramid) is usually preferred. After finding an acceptable 
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match and assuming uniform motion throughout the block, prediction error and 

translation (difference in centre coordinates) parameters are encoded (usually after a 

DCT routine). 

Another approach in performing motion compensation is through pixel recursive 

methods [Musmann et al 1985]. Displacement vectors are found on pixel basis through 

nonlinear optimization. The goal is to minimize the prediction error given by 

 

( )∑ ∈
−−−−

Ωx,y yx g(x,y,n)),nd,ydg(xW(x,y) 21    (2.10) 

 

where d = (dx, dy) is the displacement vector, g(x, y, n) is the intensity value at pixel (x, 

y) in frame n, W(x, y) is some weighting function, and Ω is a predefined neighbourhood 

(could be as small as 1 pixel). 

 

 

2.6 Objective versus Subjective Image Quality 

Assessment 

Quality assessment (QA) in image processing has been an active area of research 

in the past two decades. Several survey and comparative papers have been published on 

QA schemes, e.g., [Eskicioglu and Fisher, 1993], [Eskicioglu and Fisher, 1995], [Eudu 

and Mayache, 1998], [Al-Otum, 2003], [Eckert and Bradley, 1998], [Winkler, 1999], 

and [Meesters et al, 2004]. In fact, [Avcibas et al, 2002] and [Sheikh et al, 2006] 

introduce a statistical measure to assess QA schemes. 
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The subjective quality of a compressed image is a viewer-centred criterion that is 

tedious, time consuming and mathematically intractable. In fact, as pointed by Ridder, 

some of the procedures implemented to find the mean opinion score (MOS) are biased 

[Ridder, 1996]. The former can be further subdivided in accordance with the value of 

correlation the scheme has with the human visual system (HVS). 

It is widely accepted that the traditional mean square error (MSE) and peak signal 

to noise ratio (PSNR) are of poor correlation with the eye perception in the sense that a 

difference in the measure do not necessarily contribute to a similar difference in quality. 

What can make the situation worse is that the two schemes (MSE and PSNR) can 

produce a value favouring an image that is more annoying to the observer perception. 

Hence, a quest for a measure having a better correlation with the human eye is certainly 

beneficial. One of the early ideas is to compensate for the discrepancy between the 

conventional MSE and the HVS by considering a weighted difference between original 

and distorted images [Marmolin, 1986] and [Fuhrmann et al, 1995]. A general formula 

can be stated as 
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where N is the number of pixels, w is a weighing function, and g and ĝ are the original 

and distorted images respectively. 

Due to the complexity of HVS, Equation (2.11) can give good performance and 

sometimes outperforms other complex schemes for certain image types, as 

demonstrated by many researchers, e.g., [Choy et al, 1996], [Elbadawy et al, 1998], and 

[Zampolo and Seara, 2005]. Interestingly, despite the inferiority (on average) to other 
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schemes, a scheme described by (2.11) can easily lend itself to a rate distortion 

optimization in the compression domain. 

In a similar fashion, a weighted difference can be calculated in the frequency 

domain, e.g., cosine domain [Eskicioglu and Fisher, 1995], [Giusto and Perra, 1997], 

and [Sendashonga and Labeau, 2006], Fourier domain [Mittal et al, 1999] and [Ong et 

al, 2004], subbands or wavelets [Lai and Kuo, 2000], [Sendashonga and Labeau, 2006] 

and [Zhai et al, 2005], and Gabor domain [Zhai et al, 2006], [Zhai et al, 2007], and [Liu 

and Laganiere, 2007]. These schemes are of moderate complexity and (typically) of 

slightly improved performance compared to schemes described by (2.11). 

Many other QA schemes are reported in the literature, e.g., HVS-based [Daly, 

1992], [Miyahara et al, 1998], [Algazi et al, 1998], and [Ginesu et al, 2006], neural 

networks trained on statistical features the opinion of an expert [Zhou et al, 2003], 

[Brankov et al, 2003], [Bouzerdoum et al, 2004], information-theoretic (information 

loss due to some degradation is measured) [Sheikh et al, 2005] and [Zhu and Wu, 

2005], fuzzy (or fuzzy-II) similarity measures [Weken et al, 2002], [Yu and Xie, 2004], 

[Li et al, 2004], and [Weken et al, 2007], and finally block-based comparison (using 

correlation and various statistical moments) [Franti, 1998], [Wang and Bovic, 2002], 

[Wang et al, 2004], [Fernandez et al, 2004], and [Wee et al, 2007]. 

Each category has its own advantages and disadvantages as well as its range of 

application. It should be pointed out that HVS-based objective quality measures are 

often criticized due to their complexity and the fact that most psychovisual models are 

based on sinusoidal stimuli. 
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The above review on QA schemes is to highlight the fact the topic is still in its 

early stages and more research is needed. Therefore, PSNR, as described by (2.2), will 

be adopted in this work for comparison purposes. This choice was made since this 

measure is still widely used in the compression community despite its drawbacks, 

waiting for a new measure that is simple enough and has better correlation with eye 

perception. 

 

 

2.7 Summary 

A summary of the most popular compression techniques is given in Table 2.2 below. A 

general description is only given and the references can be consulted for various 

variations. Many algorithms were suggested in the literature to combine the benefits (or 

overcome drawbacks) of two techniques. The author is not aware of an algorithm 

combining more than two techniques. These algorithms are not stated in Table 2.2. 

 

Table 2.2 Summary of compression techniques. 
Technique Domain Criterion Performance 

Predictive 
Coding 

pixel-
based 

Each pixel is predicted from
its neighbours, see Fig 2.1,
prediction error is quantized
and coded 

CR~2-4:1. 
At higher rates, accumulating errors are 
very annoying 

Binary 
Truncation 

Coding 

block-
based 

Pixels in the block are divided
into 2 groups in a k-means 
fashion. Two means plus one
bit per pixel (indicating group)
are sent. 

CR cannot exceed 8:1. 

Logic 
Minimization 

block-
based 

Pixel values are treated as
binary bits rather than integers. 
The Boolean function is then
minimized and resulting
expression is coded. 

 

The only successful implementation was to 
improve BTC. 
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Transform 
Coding 

block-
based 

Each block is considered as a
2D array that is then linearly
transformed. The transformed 
coefficients are quantized and
coded. 

CR<32:1. 
DCT is preferred for its energy compaction 
and simplicity. 
At higher rates blocking effects are 
unacceptable. 

Quadtrees block-
based 

Blocks are split and/or merged
according to some similarity
measure. Tree information is 
sent together with a 2D
polynomial function
describing the block. 

Slightly inferior to transform coding. 
However, can be of simpler 
implementation. 

Triangular 
meshes 

block-
based 

Similar to the quadtrees
technique, however, the blocks 
are of triangular shape. 

Comparable to quadtrees and transform 
coding in general. 

Vector 
Quantization 

block-
based 

A codebook is generated from
a predefined set of images. An
index is sent to indicate the
block that best match the
current block. 

Can have higher CR than TC. However, 
performance is dependant on how similar is 
the image to the training set. 

Wavelet or 
Subband Coding 

whole 
image 

The image is divided into
several (usually 4) bands
according to frequency
contents. 4 filters (2 for each
direction) are used to perform
this task. The procedure can be
applied to the lowest band to
obtain a pyramid-like 
structure. 

Performance is superior to that of TC. 
Complexity is higher though. The resultant 
image is blurry and is quite annoying for 
high CR. 

Fractal 
Compression 

block-
based 

Each block is compared to 4
times larger (neighbouring)
blocks. Affine transformation
parameters are computed for
these blocks and applied to a
randomly generated image.
These parameters are then
coded together with distance 
parameters. 

Inferior to wavelet in general but can be 
better than TC. Its main drawback is the 
high computational demand since the 
parameters should be applied for many 
iterations to reach a good quality. 

Region- or 
segmentation- 

based 
Compression 

whole 
image 

The image is segmented to
several regions depending on
some similarity measure or
through edge detection. The
region is then coded using a
2D polynomial. Boundary
pixels should be coded to
identify the region from its
neighbours. 

 

Performance is expected to be better than 
other techniques. However, computational 
demand is still an issue. 
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Chapter 3 

Region Fitting Formulation 

 

This technique shares some aspects with region or segmentation-based compression. 

Region-based technique is promising for obtaining high compression rates [Sikora 

2005]. It has the benefit of decomposing the image into its main objects or subobjects. 

These objects should be efficiently described. Since the number of objects is quite few 

in any scene, increased compression ratio is theoretically feasible. 

The main drawback (other than the computational complexity), however, is the 

fact that each region is described by two codes; one represents the contour (due to 

segmentation) and the second describes the internal colour information of the region 

enclosed by the contour. This requires two optimization procedures that may be in 

conflict. In addition, the description of the region may be erroneous depending on the 

method and information used in the approximation process since segmentation 

procedures are neither unique nor optimum. 
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3.1 Region Fitting using Bell-Shaped Functions 

A model is proposed to probe further into region-based schemes using a single objective 

function during optimization. This is a new research trend to overcome the somewhat 

conflicting demands of combining the coding of the region and its boundary. The 

traditional way [Muñoz et al 2003] is to combine region and boundary information in 

such a way as to find a better description of one of them with the help of the other. 

Another goal for the proposed region-fitting framework is that the scheme should lend 

itself to progressive transmission, i.e., the encoding can continue until a satisfactory 

quality (lossless can be the ultimate goal) is reached. Partial solution to this problem 

was proposed [Kaup and Aach 1998] by refining the region content (through DCT) but 

not its contour. To the author knowledge, no work has been done on any nonpolynomial 

functions in the region-based image compression context. 

In the proposed model, no processing is needed to isolate between high (edges 

and/or texture) and low (uniform regions) frequency components of the image. Instead, 

each region is described by a bell-shaped function. Perceptual sensitivity is incorporated 

for our benefit by avoiding edge extraction and defining the edge as the place of high 

gradient imposed by the bell function transition region. However, edge strength or 

sharpness is dependent on how fast the bell function decays. Each region (function) is 

not restricted to a specific spot in the image but can influence the whole image (with 

various levels of course). In fact, each function describes the main part of the current 

region and its boundary and influences the surrounding regions. Mean square error is 

used, due to its simplicity, as the objective function in the optimization process. This 

technique requires a huge amount of computation time, however, the theory behind it is 
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quite interesting and requires further investigations. Unfortunately, the author is unable 

to improve the performance to be competitive in any term to that of most available 

schemes. Fig 3.1 presents a general description of the model. 

 

 
Fig 3.1 Flow diagram of the region fitting scheme 

 

 

3.1.1 Mathematical Formulation 

The optimization function is similar to that of (2.8). Since each region can be 

approximated by a slowly varying intensity surrounded by some boundary to separate it 

from neighbouring regions, it is more economical to consider bell-shaped functions like 

2D gaussian-shaped functions for example. Characteristic functions from filter theory 

like Butterworth and Chebychev share the same definition. 
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As a first step, a tractable implementation of a bell-shaped function is the first 

order Butterworth characteristic function, generalized to 2D, resulting in the following 

optimization problem 
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where i runs over the number of regions, x runs over the horizontal direction, y runs 

over the vertical direction, x0i and y0i are the coordinates of the peak of function i, g is 

the original image, and a, b, and c are real values characterizing each region. The above 

equation can be generalized to include regions with different orientation. In this case, 

the generalized (3.1) can be modified to 
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Numerical methods are required to solve (3.1) or (3.2). The common derivative-

based approaches are Newton-methods (NM) and steepest descent algorithms. The 

method of Hooke and Jeeves (HJ) [Hooke and Jeeves 1961] is also helpful for 

derivative free optimization. Genetic algorithms can be incorporated to alleviate 

trapping in a local minimum. Nevertheless, a more significant problem is that the 

number of regions is not known apriori. 
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3.1.2 Iterative Solution 

The optimization of (3.2) is computation and memory intensive. As a remedy, 

successive approximation is used, i.e., (3.2) is solved for one region at a time. The 

resulting error (difference between the original image and the obtained region) is 

considered as a new image and (3.2) is applied for the second time. This process 

continues until meeting the specifications. Though impractical, an exhaustive search 

mode results are encouraging. Another approach is to obtain seed points, as initial 

conditions for the parameters in (3.2), through morphological filtering. Some low pass 

filtering and downsampling may be required before morphological filtering to reduce 

computational complexity. 

The selection of this function, (3.2) with one region, can be helpful in obtaining a 

direct solution (can be easily reduced to solving a linear system) by taking the reciprocal 

of both the function and the gray value at each pixel. Similarly, log can be performed 

when using gaussian functions. Error minimization is then performed on these 

reciprocals (logs). Other functions can be considered in a similar way. Unfortunately, 

the solution is not optimum or even appropriate due to the fact that the error at the tail of 

the bell function effectively receives higher weight than the central part. The last 

sentence is a clear indication that the solution of (3.2) should be numerical. Newton and 

quasi-Newton methods are easily trapped in a local minimum. More important is that, 

for the current optimization problem at least; the Hessian ∇2f(xk) matrix is ill 

conditioned for Newton methods. Hence, a steepest descent method like Normalized 

Least Mean Square [Ameer and Shahrrava 2005] from filter theory may be engaged to 

avoid such drawbacks on the expense of speed of course. 
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Genetic algorithm can also be used in the successive optimization of (3.2); 

however, time consumption is prohibitive. Better results (both in time and quality) are 

obtained with HJ method (derivative-free direct search algorithm [Hooke and Jeeves 

1961]) possibly due to the relatively small number of individuals and generations used 

in GA. Despite the fact that neither a global minimum (compared to GA) nor improved 

time performance (compared to Newton methods) is guaranteed, HJ performance and 

simple implementation makes the model worth exploring. 

 

 

3.1.3 Experimental Results 

   
Fig 3.2 Successively approximated image using 256 (left), 512 (middle), 1024 (right) 

regions at 22.69, 24.61, and 26.52dB respectively. 
 

Fig 3.2 shows three successive approximations of the standard image PEPPER 

(512x512 with 8 bits per pixel). Region-fitting model is implemented through (3.2) with 

successive approximation using HJ algorithm. Fifty random initial conditions are used 

to initiate the optimization routine for each region. The best final result (in term of 

PSNR) is then selected. 
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The algorithm is in its early phases and needs improvement, especially with 

respect to its time complexity. On average, 167 seconds are required (using MatLab 6.5 

on a 1.73 GHz centrino processor) to find the 6 parameters of each region. For the 1024 

regions, compression ratio is 42.7:1 using 8 bits per parameter. Several runs are needed 

on different images to get a closer look at the statistics of each parameter and hence 

implementing an optimum coding scheme at a later stage. 

 

 
Fig 3.3 Successively approximated image with GA using 1024 regions at 24.18dB. 

 

Fig 3.3 shows the reconstructed image with binary GA using 1024 

approximations. The performance is inferior, given parameters and time restrictions, to 

that of HJ algorithm both in PSNR and time consumption. Each GA approximation (for 

one region) starts with a random population of 90 individuals that genetically interact 

for 40 generations. Partial replacement is implemented by selecting the best 90 

individuals from the resulting 180 individuals representing all parents and children. 

Sorting is performed at the end of each generation. Parents’ indices are selected 

according to 
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( ) mberrandom  numes  ChromosoNumber  ofdexParent  in 1+=   (3.3) 

The rank dependent selection of (3.3), the random number that is generated in the 

interval (0,1), roughly implements a geometric probability distribution with a geometric 

ratio of 0.5. Multi-point crossover is used. The crossover positions are randomly 

selected using a binary random number. Mutation probability is selected as 0.1. 

To reduce the computational burden, the initial number of regions and hence their 

centres is obtained from a plane fitting routine described in chapter 4. After 

thresholding, the resulting low resolution image has clusters of different sizes. 

Morphological filtering is then applied to merge and/or split adjacent clusters. Another 

morphological step is then required to thin or shrink each cluster (region) to a single 

point. The resulting points represent regions’ centres. Although this initialization 

scheme reduces time consumption but unfortunately decreases the quality. The author 

relates the failure to the complex surface describing the problem or in other words, the 

influence of local minima. 

 

 

3.1.4 Summary and Discussion 

A large number of erroneous lines is visible in Figures 3.2 and 3.3. These lines are 

caused by functions with sharp transitions (possibly due to trapping in a local minimum 

resulting in a very thin “oval shape”), and to some extent the inadequate representation 

of negative values. Another observation is that the improvements in PSNR decrease 

with increased number of regions, and hence, increased computational time. 
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Unfortunately, Newton and quasi-Newton methods gave inferior results. For 

Newton methods the reason is mainly due to ill-conditioned Hessian matrix. In many 

cases, the improvement in PSNR is less than 10–5dB for an added region. Hence, a 

different approach is needed to overcome this drawback and benefit the fast 

performance of these methods. 

The main advantage of this model is that perceptual quality is inherent by the fact 

that edges are not explicitly represented but rather treated as an intrinsic component of 

each region (function). Hence, strong and relevant edges are easily distinguished, even 

under a low quality implementation as can be seen from Fig 3.2. 

The MSE optimization, as its name indicated, aims to fit the largest possible 

number of points. This can include inhomogeneous pixels in the region and/or may 

exclude other nearby pixels to fit the required shape. Hence, additional “virtual” regions 

may be created requiring additional bits and computational time. This, in my opinion, is 

the main reason behind the failure of this scheme. To our disadvantage, quantization can 

make the situation even worse. The computational burden; however, is far from being 

practical due to the high number of iterations required. In addition, one region is found 

at a time to make the optimization procedure simpler. A preliminary investigation to 

solve (3.2) successively, using a direct solution, through some mathematical 

manipulations of (3.2), is proven inadequate. 

As previously outlined, the proposed model (unlike region-based techniques) 

requires a single code to describe the interior and the boundary of a region. Preliminary 

results indicate that 48 bits are quite enough to describe each region. If compared to the 

classical way of describing a region with constant intensity (quantized to 5 bits) and an 
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average of 1.5 bits per boundary pixels then 48 bits can only describe a region bounded 

by about 58 pixels (assuming ~50% of each region boundary is extracted from 

neighbouring regions). This limitation favours the proposed scheme keeping in mind 

that with a more efficient coding less than 48 bits can be easily achieved. 

 

 

3.2 Boolean Regions 

A somewhat related approach (to the region fitting scheme) is through Boolean function 

minimization, i.e., gray values are dealt with as a sequence of ones and zeros not as 

integers or real values like the previous cases. Implementing Boolean minimization in 

image compression is generally of limited success. For example, the improvement of 

BTC using the tabular (Quine-McCluskey) method was suggested in [Augustine et al 

1999]. Other examples are the lossless compression of binary images and bit maps of 

gray level images as suggested by [Sarkar 1996] and [Agaian et al 2003] respectively. 

Attempts have been made to implement different binary transformations and 

Boolean simplifications on the whole image, as well as blocks of images. Unfortunately, 

the proposed implementation failed to produce improvement in performance (for both 

lossy and lossless compression), and at times it even led to expansion rather than 

compression of the image. The reason could be the lack of an efficient transformation 

between the binary image and a compact Boolean term. More important is the fact that a 

Boolean term is generally of rectangular shape (or a group of such shapes) making it 

difficult to describe arbitrary shapes generally expected in natural images. 
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Chapter 4 

Plane Fitting Formulation 

 

The main objective of this work is to find a more efficient image representation(s) using 

polynomial fitting. In particular, the first order, i.e. plane, is of special interest due to its 

computational simplicity. These aspects are pursued in an optimization framework, 

through a mean square error MSE minimization, to find (or fine tune) the model 

parameters of these representations. A successful multiplication- and division-free 

design is implemented to further emphasize on the simplicity issue. 

The author is also interested in exploring the deterministic behaviour of image 

blocks rather than the traditional approach of statistical processes. For example, DCT is 

considered as having a high compact representation for first order Markov process. In 

the author’s opinion, this is the main reason behind the poor performance of JPEG at 

high compression rates. A fitting scheme may be more suitable to such a domain as will 

be demonstrated in the results of this chapter. 

The proposed plane fitting scheme is applied to fixed block size image 

partitioning, however, extension to variable-size blocks may give more freedom in 
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compromising between quality and compression performance. It should be emphasized 

that implementing variable-size blocks increases the computational complexity 

substantially. Previous work [Strobach 1991], [Philips 1991], and [Lan et al 1998], 

however, have dealt with quadtree structure of the blocks where a large block is 

successively divided into 4 subblocks if the fitting error is higher than a threshold. 

 

 

4.1 General Description 

 

 

 

 

 

 

 

 

 

 

 

Image 

a, b, and c 

Quantization: 
Laplacian for a and b. 

Uniform for c

Entropy coding for a and b. 
Binary (Uniform) coding for c 

Plane Fitting Routine 

Dividing to non-overlapping 8x8 blocks 

Compressed Image 

Fig 4.1 General description of the basic plane fitting scheme. 

 

A plane fitting model is designed to obtain a fast implementation that does not need 

multiplication or division or, in the worst-case scenario, requires few shifts (see Fig 4.1 

 
 
 
 

39



 

for a general description). Although plane fitting is not new to image compression, 

however, to the author’s best knowledge, its application to block-based image 

compression, using fixed block size, has not been reported. 

Simple first order polynomial (plane) fitting [Ameer and Basir 2006] on blocks of 

size 8x8 pixels demonstrated more than 60:1 compression ratio with acceptable image 

quality degradation. The results are superior, both in PSNR and visual quality, to that of 

JPEG at comparable compression ratios. In addition, no multiplications or divisions are 

required making the implementation suitable for online or progressive compression. 

Embedded coding is inherent by sending the parameters sequentially. 

Despite the simplicity of the model, some features, like the presence of an edge 

and to some level of accuracy its orientation, can be extracted from the model. This 

feature could be of great help in enhancing the quality and/or increasing compression 

ratio. It should be clear that to obtain a better quality, one has to increase polynomial 

order or decrease the block size and pay the price by decreasing compression ratio. In 

fact, using a smaller quantization step is of marginal impact on improving quality and 

will reach saturation after some limit. Blocking effects in the plane model, a 

shortcoming of block-based compression scheme, are reduced (up to 0.6dB in PSNR 

improvement) [Ameer and Basir 2006] using simple line fitting at block boundaries. 

Some manipulations can be performed to reduce the number of computations to about 

1.5 additions and 1 shift per boundary pixel. 
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4.2 Mathematical Formulation 

The image is divided into nonoverlapping blocks each is considered as a 3D surface. 

The z-axis is the pixel value (i.e. the intensity or any colour component). The simplest 

surface is the plane, i.e., z = ax + by + c. To reduce computations, the block centre is 

selected as the origin. Formulating as a mean square error MSE problem, we have, 

using (2.9) 
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where N is the block dimension; f(t) can take one of the following two forms: 
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The first form of f(t) was suggested by [Ameer and Basir 2006], however, the 

second form (N should be even) requires less computations and can lead to slightly 

better performance. In both forms, a scalable version of each block, and hence of the 

image, can be easily obtained by normalizing f(t). Setting the derivatives of (4.1) with 

respect to a, b, and c to zero results in, 
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where, 

( ) ( ) ( )

( ) ( )
 

1 1

22

1 1

∑ ∑

∑ ∑

= =

= == N

x

N

y

ji

N

x

N

y

ji

ij

yfxf 

x,ygyfxf 
 Z     (4.4) 

 
 
 
 

41



 

It should be noted that the denominator of (4.4) is independent of the intensity 

throughout the block and hence can be calculated offline and stored. In fact, some 

simplification can be done to get, using summation of power series 

 

( ) ( )
( )! 1

! 2
12
1

1

2

−
+

==∑
= N

NDxf
N

x
    (4.5) 

 
To reduce the number of additions, we can sum row-wise (or column-wise) and 

use the partial sums in finding more than one parameter. Simple manipulations can be 

performed to convert each multiplication, due to f(t), to 2 shifts or less, e.g., x =3 can be 

written as x = 2+1 and so on. The number of shifts can be drastically decreased at the 

decoder by adopting a similar procedure to that of [Hasegawa and Yamasaki 2002] 

where the intensity of the current pixel is obtained by adding a(b) to the horizontally 

(vertically) preceding pixel. 

 

 

4.3 Quantization 

In previous work on plane fitting [Strobach 1991] and [Lan et al 1998], uniform 

quantization was adopted for the three plane parameters a , b and c. However, extensive 

experiments on several natural images have revealed that the distribution of c is 

uniform, while, the distributions of a and b are similar and each can be approximated by 

a zero mean random variable having a nonuniform probability distribution of the form 

xke −  approximately. Leading to the fact that quantization should be nonuniform for a 

and b but uniform for c. It has also been found that if the upper left corner of the block 
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was selected as the origin, the range of c would increase by more than 20%, and hence 

more bits are required (or lower quality for the same bit budget), compared to the case 

of selecting the block centre as the origin. In fact, the density function is approximate 

and hence the results of (2.3) may not be accurate. Therefore, a direct search 

optimization routine is implemented, on some test images, to find quantization levels 

(apart from the zero value) given by 
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where q=0, 1, …, Q–1; Q is the number of quantization levels, and n=0,1 represents 

right and left tails of the distribution respectively. Each value of a and b is quantized to 

the nearest quantization level in the above equation. The values 26.5 and 2.2 were found 

empirically to give a good compromise between CR and PSNR. Changing these two 

values over a reasonably wide range produces different compromise between CR and 

PSNR. However, these differences in performance are marginal on average for less than 

15% range (image dependent). The pre-computed levels in (4.6) are of great help in 

eliminating the division required by (4.4). 

 

 

4.4 Encoding 

To eliminate the need for a second processing pass and/or sending coding tables, a 

Huffman table is constructed from measurements on several images. By adopting this 

scheme, suboptimal performance is traded for simplicity. The table has (2Q+1)2 
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elements, each representing a code for the block compound symbol (a,b). The 

(measured) probabilities are forced to be symmetric, through simple averaging, with 

respect to the (0,0) element. 

It is noted that the probability of occurrence is inversely proportional to the 

absolute value of the parameter. As expected, the code is smaller for smaller values. A 

binary coding of 5 bits long is used to encode c. This encoding scheme results in a 

slightly better CR performance compared to that proposed by [Ameer and Basir 2006] 

where comma coding was implemented. 

 

 

4.5 Postprocessing 

At the decoder, block boundaries (both horizontally and vertically) are linearly 

interpolated to reduce blocking effects. [Ameer and Basir 2006] implemented a 

procedure that ignores pixel values at the blocks’ boundaries and replaces them with 

those obtained from interpolating the two neighbouring pixels, exactly one pixel to the 

right (top) and left (down) for horizontal (vertical) smoothing. 

A more efficient procedure is implemented that uses first order curve fitting on 

four pixels, two from each block, to find better estimates of the boundary pixels. 

Mathematically, 
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where, 

 
 
 
 

44



 

.4/
and  ],4   1   1     4[

)],,2(ˆ  ),1(ˆ  ),(ˆ  ),1(ˆ[
),'*/('*

∑=

−−=
++−=

=

kr
  v

yNxgyNxgyNxgyNxgk
vvkvm

 

 

A similar procedure is applied to the vertical direction, i.e., 
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where )]2,(ˆ  )1,(ˆ  ),(ˆ  )1,(ˆ[ ++−= NyxgNyxgNyxgNyxgk  and the rest of the parameters are the 

same as those in (4.7). Simple additions and shifts are required in (4.7) and (4.8), except 

for the division (to find m) that can be eliminated (for 8x8 blocks) with the following 

modification 

32/'*kvm =       (4.9) 

 

and hence, a division is replaced by a simple shift right operation. 

 

 

4.6 Multiplication- and Division-Free 

Implementation 

Due to the simplicity of the computation of the parameters in (4.3), the multiplication- 

and division-free implementation is straightforward by first rounding the values of (4.6) 

to the nearest integer. However, a more elaborate description is required when the 

prediction scheme is incorporated as will be described in the next chapter. 
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For Q=4, we have, ±14, ±6, ±2, and 0. These values together with those of f(t) in 

(4.2) are easily manipulated to a multiplication- and division-free version. The division 

in (4.4) can be easily overcome by merging it with the calculation of the quantization 

levels. Extending the procedure to other values of Q or a different block size is almost 

trivial. 

The number of encoder calculations required per block, for blocks of size 8x8, to 

find all row- and column-wise partial sums is 112 additions. Seven more additions are 

required to find c. Finding a and b, on the other hand, requires 10 additions and 8 shifts. 

In the decoder, however, 63 additions are required at most. The actual number of 

additions is less than 63, since the zero value is the most probable one. In any case, the 

higher complexity is in the encoder where 129 additions and 8 shifts are required per 

block. This is much less than the multiplierless implementation of JPEG proposed by 

[Tran 2000] where 480 additions and 240 shifts are required per block. Keeping in mind 

that the multiplierless implementation of [Tran 2000] is less efficient than the original 

JPEG version. In [Chan and Lee 2006], an algorithm is proposed to overcome the 

quality degradation resulting from [Tran 2000]. However, the number of computations 

is larger by around 25%. 

 

 

4.7 Experimental Results 

Results are demonstrated on the standard image PEPPER (512x512 with 8 bits per 

pixel) shown in Fig 4.2. Fig 4.3 illustrates the reconstructed image before and after 

linear interpolation, described by (4.7), using 8x8 blocks, Q=4 and 5 bits to encode c. It 
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is clear that uniform regions are well described with tolerable edge degradations. For a 

closer look at the reconstruction error, Fig 4.4 shows zooming of the images shown in 

Fig 4.2 and Fig 4.3. 

 
Fig 4.2 Original image PEPPER 

 

  
Fig 4.3 Reconstructed images at 62:1 compression using 8x8 blocks (left) with 

boundary interpolation at 28.8dB and (right) no interpolation at 28.2dB. 
 

In comparison, JPEG image, obtained from the MatLab command imwrite, is 

shown in Fig 4.5. The proposed scheme is better in CR by about 35% compared to 

JPEG. Although PSNRs are comparable (around 28.8dB), visual quality of the 

reconstructed image using the plane fitting scheme is more pleasing than that of JPEG. 
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In fact, the proposed scheme is visually more pleasing than JPEG even without 

interpolation at blocks’ boundary. 

 
Fig 4.4 Zooming of  (left) original and (right) reconstructed (with linear interpolation) 

images. 
 

 
Fig 4.5 JPEG image at 46.01:1 compression and 28.76dB. 

 

Additional 2 bits are needed per image to send the value of Q (2 – 5) and another 

2 bits to indicate the number of quantization bits for c (3 – 6). Using the proposed 

uniform quantization of [Strobach 1991] and [Lan et al 1998] was inferior as was 

expected since the data collected by the author clearly indicates the nonuniform 

distribution of a and b. It is worth mentioning that the proposed quantization, for the 

parameters a and b, reduces PSNR by less than 0.3dB compared to the no quantization 
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case. The proposed scheme is implemented with different block sizes and the results are 

presented in Fig 4.6. The results are comparable (superior in some cases) to those listed 

in [Biswas 2003]. It is interesting to note that even values of N have higher CR than N – 

1 with slight reduction in PSNR. This is mainly related to the presence of zero in f(t) for 

odd N values, see (4.2). Hence, one row and one column will not contribute to the 

evaluation of the parameters. 

 
Fig 4.6 Performance for different block sizes (Q = max(2, N/2)) 

 

For completeness, Fig 4.7 illustrates the performance results of implementing 

overlapped blocks by one pixel from each side. In a similar fashion, Table 4.1 shows 

results for different block sizes overlapped by N – 8 pixels. These results demonstrate 

the marginal PSNR gain obtained at the expense of substantial CR reduction when using 

overlapped blocks. Performance of the proposed plane fitting scheme, before and after 

the postprocessing of (4.7), on other standard images is listed in Table 4.2 together with 

some results implementing the JPEG standard. It is noted that the proposed scheme is 
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superior and in some cases JPEG cannot reach the proposed CR. It is worth mentioning 

that in all cases of Table 4.2, though comparable PSNR is obtained, the visual quality of 

JPEG is inferior. 

 
Fig 4.7 Performance for different overlapped block sizes 

 

Table 4.1 Performance for different sizes overlapped by N – 8 pixels 
N PSNR (dB) CR 
9 25.79 54.29 
10 25.79 53.63 
11 25.40 51.08 

 

Table 4.2 Performance on different images using 8x8 blocks. 
Proposed JPEG with a 

similar proposed 
PSNR 

JPEG with a 
similar 

proposed CR PSNR (dB) 

PSNR/CR PSNR/CR 

Image 

No Processing With Processing
CR 

23.87/50.80 --- Balloon 23.66 23.97 61.13
26.03/49.21 23.96/59.76 Boat 25.86 26.45 60.91
26.21/46.43 24.00/58.37 Chimp 26.05 26.42 58.80
28.48/50.28 --- Fern 28.43 29.28 67.61
20.79/37.89 --- Mandrill 20.58 20.67 54.95
23.78/43.45 --- Temple 23.19 23.56 56.95
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An image dependent compensation of around 0.5dB is obtained with linear 

interpolation at block boundaries; however, the visual quality is not improved that much 

for N>8. No significant differences were noticed between the implementations of (4.7) 

and (4.9). Interpolation gains are higher for odd N than for even N. Diagonal 

interpolation, after horizontal and vertical interpolation, produces an insignificant 

degradation of 0.03dB. A negligible improvement of 0.02dB is obtained with a one step 

extrapolation in the four directions of each block. In fact, ignoring the boundary pixels 

in the fitting process can increase compression ratio to 63.99:1 at the same PSNR. 

However, subjective quality is marginally degraded. A better reduction of blocking 

effects (around 0.7dB) was obtained with 10-point cubic fitting. This slight increase did 

not improve visual quality and is not favoured against the linear interpolation due to the 

excessive computation required. 

 

 
Fig 4.8 Performance for different quantization of c on image PEPPER after processing 

(Q=4). 
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PSNR improvement of 0.1dB (at 55.78:1 compression) can be obtained when 

quantizing c to 6 bits as demonstrated in Fig 4.8. This slight increase is visually more 

pleasing especially in homogeneous regions. In fact, the reconstruction quality is 

sensitive to the quantization of c more than to that of a and b. Fig 4.9 shows some 

results for different values of Q when c is quantized to 5 bits. As for subjective quality, 

reconstructed images are visually acceptable; however, the cases Q = 2 and Q = 3 are 

slightly bothersome because of blockiness. No significant differences are noticed 

between other values of Q. Around 10% increase in CR is obtained (PSNR decreases by 

0.2dB) when sending a quantized (a + b)/2 and (a – b)/2 instead of a and b. However, 

the visual quality is similar to that of Q = 3 (see Fig 4.9). 

 

 
Fig 4.9 Performance for different Q on image PEPPER using 8x8 blocks (after 

postprocessing and quantizing c to 5 bits). 
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4.8 Summary and Discussion 

A simple block-based compression scheme is proposed using plane fitting. The 

proposed scheme is novel in its application to fixed size blocks. In addition, 

multiplierless implementation has slight influence on the overall performance. An MSE 

formulation is optimized to obtain the three plane parameters. These parameters are then 

quantized and coded. The quantized values have different probabilities and hence, a 

Huffman code is constructed to improve coding efficiency. However, uniform 

distributions were assumed in previous models [Strobach, 1991]. To further improve 

compression rate, the table is constructed such that each code represents a symbol 

representing the two values (a, b) rather than sending a code for a and another one for b. 

The proposed scheme is computationally attractive since it is working in a 

multiplication- and division-free mode. To maintain simplicity, postprocessing is also 

performed in a multiplication- and division-free environment. 

Superiority to JPEG, both objectively and subjectively, has been demonstrated for 

compression ratios >50:1. The proposed scheme, however, needs to be improved to 

maintain its superiority for low compression ratio applications. The author believes that 

the improvement should be in the form of increasing the order, reducing block size, or a 

combination of that. Stated differently, three parameters are not enough to describe fine 

details of image blocks. 

It should be emphasized that high values of a (b) clearly indicate the presence of 

horizontal (vertical) edges. This observation is justified by the fact that for small blocks 

the intensity is almost constant unless there is an edge. The orientation of the edge can 

be inferred from the magnitude of the ratio between a and b. However, these indicators 
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fail to estimate the location of the edge. In fact, ax+by+k, k is to be determined, is a line 

fairly approximate the edge contour. A more serious problem, although rare in practice, 

occurs when there are multiple edges in the same block. These edges can either went 

unpredicted or erroneously predicted as a single edge. Fuzzy set theory may be of great 

help in this regard to reach an improved solution. In addition, the inherent information 

inside a and/or b can be useful in postprocessing or in finding a more efficient coding 

by sharing the same information with neighbouring blocks. Since errors are usually 

larger at edges than inside uniform regions, the previous discussion is worthy to be 

further investigated. 
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Chapter 5 

Higher Order Polynomial Fitting 

Formulations 

 

The promising results achieved in the plane model motivate the author to investigate the 

implementation of higher order polynomials in block-based image compression. 

Obviously, increasing the polynomial order improves the quality of the resultant image. 

The price paid is the reduction in compression ratio. The objective of this chapter is to 

investigate some higher order polynomials in block-based image compression. The 

investigation is constrained with the requirement that compression ratios should be 

comparable to that of the plane model in its basic form. The higher order polynomial 

schemes have higher computational burden and inferior performance compared to that 

of the plane fitting scheme. 

It is difficult to implement polynomial schemes with orders greater than two. 

Hence, some insight in an approximate asymptotic behaviour is performed using a new 

linear mapping scheme. The results of this chapter clearly indicate the power inherent in 
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the plane model. Nevertheless, the proposed new trends in higher order polynomial may 

open the way for future improvements when used alone or mixed with other schemes. 

 

 

 

5.1 Separable Monotonics 

In this case, in a similar fashion to the plane fitting setting in chapter 4, 

 

z = a sign(x) |x|m + b sign(y) |y|n + c    (5.1) 

 

Minimizing MSE, we have 
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where Z00 is as defined in (4.4), ∑= m
x xS 2  and ∑= n

y yS 2 . The best MSE 

performance is for the plane case, i.e., m = n =1. 
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5.2 Adding the xy Term 

Here we have z=(ax + c) (by + c). Minimizing MSE we get [Ameer and Basir 2006] 
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The solution of (5.3) is obtained through a two-stage optimization. First, the 

solution for z=d’xy + a’x + b’y + c’ is found. Following that, a comparison is made 

between the primed and unprimed parameters to find the unprimed ones. a and b follow 

their plane counter parts in (4.6) but with different quantization parameters. The above 

solution is suboptimal. A better solution can be obtained using the form z = c (a 

f(x)+1)(b f(y)+1) in (2.8) and minimizing MSE, through a single optimization step, we 

get 
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where 
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The above equations are valid for r≠0 and ar+N(Z01

2–Z10
2)>0. If NOT then we have 
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In a similar fashion to (4.6), due to fact that the density function is approximate, a direct 

search optimization routine is implemented to find quantization levels of a and b given 

by 
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q and n are as defined in (4.6). A better quality is obtained when quantizing a and b 

after being multiplied by c and the quantization levels are modified to 
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The four-parameter case, i.e., z=dxy + ax + by + c has better PSNR than the plane 

case. However, it will not be considered further due to the increased complexity (by 

~33%) and the great reduction in CR. 
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5.2.1 Experimental Results 

Fig 5.1 shows the reconstructed image for the xy case. The performance is almost the 

same as that of the plane case. However, the complexity is much higher and hence the 

plane case is favoured. 

Similar to the plane case, the quantization of c has more influence on the 

subjective quality of the reconstructed image. This is not surprising since c represents 

the average gray level of the block. 

 
Fig 5.1 Reconstructed image (xy case) at CR=62.17and 28.82dB with c quantized to 5 

bits and Q=4. 
 

 

5.3 Quadratic Surface 

Different combinations of three unknowns are tried, e.g., z=(ax + by + c)2 and z=(ax + 

c)2 + (by + c)2. The solutions should be obtained through nonlinear equations requiring 

numerical methods. Even though the performance is poor and hence was not pursued 
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further. The discussion in the previous section also applies here for the six-parameter 

case, i.e., z=dx2 + ey2 + fxy + ax + by + c and also for the influence of c. 

 

 

5.4 Higher Orders 

Many surfaces can be fitted, using three unknowns, by gray scale transformations of the 

form f[g(x, y)], i.e. 
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Different forms of f(x) were tested. However, quality is inferior to that of the 

plane case for many functions like exponentials, logarithms, trigonometric, and powers 

of order different than one. When f(x) = xr in (5.10) the performance reaches its 

optimum at r = 1. 

 

 

5.5 Linear Mapping of Parametrically 

Generated Features 

In this section a new linear mapping scheme for image compression is proposed. It can 

be considered as an approximate asymptotic behaviour to higher order polynomials. 

Each block of the image is independently reconstructed from a set of “features” through 
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a linear mapping. Fig 5.2 shows a block diagram of the proposed structure [Ameer and 

Basir 2008a]. 

 

 

 

 

 

 
 

Features 

M:N 
Linear Mapping 

Reconstructed 
Block – Original 

Block 

Fig 5.2 Block diagram of the proposed linear mapping structure. 
 

Inspired by the fact that independent (or at least uncorrelated) features result in an 

efficient and compact description of the patterns, a random sequence generator is 

employed, using a sine function with two parameters, to generate a set of “uncorrelated” 

features. These two parameters and the set of weights between the features, generated 

by the sine function, are obtained through a training process. The outputs are the 

reconstructed values of the image block. A simple description of the system is presented 

in Fig 5.3. 
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Fig 5.3 The proposed structure using 4 features. 
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The first pass of the optimization process [Ameer and Basir 2008a] is performed 

off-line by iteratively solving a set of linear systems together with a steepest descent 

scheme to find the weights and the sine function parameters respectively. Only the 

weights are then made available for both transmission ends. To perform compression on 

any image not necessarily in the training set, the sine function parameters should be 

found on-line for the compressed image and then quantized. The computation time is 

excessive due to the nonlinear optimization (steepest descent) procedure required. 

However, thanks to quantization, a look-up table (a parallel implementation is even 

better) can be a good alternative to overcome this disadvantage. 

The main idea is inspired by the fact that optimal performance in the feature 

subspace is obtained when features are maximally independent. Fortunately, 

independency and uncorrelation are equivalent for Gaussian processes. For non-

Gaussian processes, however, the performance is sub-optimal. The proposed structure is 

fairly independent of the random sequence length as experimentally demonstrated. The 

easiest and most primitive way to generate a set of “uncorrelated” values is through a 

random number generator. Since all trigonometric functions are modulo 2π, a 

parameterized sine function is used to replace modulo operation. Hence, the “features” 

in the proposed model are sin(aj+b) where j runs from 1 to m, the number of features. 

The proposed structure, shown in Fig 5.3 using four such features, has some similarity 

with neural networks’ structure; however, the underlying theory is different as will be 

described in the following sub-sections. 
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5.5.1 Off-Line Phase 

In this phase, the training image is divided into non-overlapping blocks that are 

sequentially used by the proposed structure as its optimum or desired response. The 

objective function to be minimized can be set accordingly as [Ameer and Basir 2008a] 
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where P is the number of training patterns (number of nonoverlapping image blocks in 

this case), N is the number of pixels in the block, m is the number of “uncorrelated” 

features, to be described later, wim is the weight connecting output node i to the bias unit 

m, wij is the weight connecting output node i to feature j, and dik is the ith pixel value in 

block k after suppressing the block mean. 

The first step in finding the optimum parameters of (5.11) is by setting all 

derivatives to zero, hence 
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The problem is obviously non-linear in a and b and linear in w. Therefore, each 

optimization pass has two steps. In the first step a and b are updated using a steepest 

descent algorithm with a learning rate of 10–6. In the second step, the N linear systems 

of (5.14) are solved for w to find the updated weights. The learning process continues 
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until some convergence criterion is met. Finally, the weights are made available for both 

communication ends. The off-line phase of the proposed structure is not fast. However, 

the time-wise cost is negligible since it is done only once. It should be emphasised that 

the values of a and b found in this phase are irrelevant and are only updated to get an 

optimum solution for w. 

 

 

5.5.2 On-Line Phase 

In this phase, to compress an image not necessarily from the training set, the same setup 

of Fig 5.3 is used except that w is now known from the off-line phase. a and b for each 

block are found by iteratively solving (5.12) and (5.13). Following that, a and b are 

quantized and sent to the receiver which then reconstruct an approximation of each 

block of the original image using the same model of Fig 5.3. 

An approximate distribution of a (b) is built using the values obtained from 9 

different images. A direct search scheme is then implemented to find the optimum 

quantization levels of a and was found as (apart from level 1) [Ameer and Basir 2008a] 
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Similarly, the levels of b are (apart from level 0) 
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In both (5.15) and (5.16), changing the parameters on a fairly wide range has marginal 

effects on the performance. The above quantization schemes are of great help in 

reducing the computation time and hence, solving (5.12) and (5.13) can be replaced by 

choosing the best performance, in satisfying (5.11), obtained from all of 35 possible 

combinations of a and b. Computation time can be further reduced by performing the 35 

computations in parallel. A Huffman coding table can now be built. However, to further 

increase CR, a Huffman coding table is built using the occurrence of the compound 

symbol (a,b) taken from a large set of images. 

It should be kept in mind that PSNR could be increased (<1dB depending on the 

image) using some post-processing scheme like the ones proposed in chapter 4 or later 

in chapter 6 of this dissertation for example. 

 

 

5.5.3 Experimental Results 

The image is divided into non-overlapped blocks of size 8x8 pixels. Training (off-line) 

stops when the total error of the current epoch, one sequential pass through all blocks, is 

not less than 0.999 of the error in the previous one. Several trials are then performed 

with different initial conditions to choose the weights with best quality performance. 

The proposed structure is implemented with m=4 and marginal differences were 

noticed for 3≤m≤6. Performance began to fluctuate afterwards within 0–3 dB from that 

obtained with m=4. The block mean is quantized to five bits and sent as overhead 

information. Results for some images are demonstrated in Table 5.1. As expected, 

quality is better for the training image. No post-processing is used in this simulation. 
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Table 5.1 Performance of 512x512 images using 8x8 blocks (trained on PEPPER) using 
the proposed model (m=4). 

Image SNR PSNR CR 
Barbara 12.9769 24.2209 67.1411 

Boat 20.8609 25.7389 63.7878 
Cameraman 17.6673 25.8839 68.9082 

Chimp 21.2812 25.9126 62.6520 
Fern 17.2120 28.3090 69.6150 
Lena 21.4130 27.0169 65.0582 

Mandrill 15.3467 20.5376 58.5388 
Pepper 19.5146 27.9436 65.1310 
Temple 15.9994 23.1138 60.0507 

 

  
Fig 5.4 (left) Reconstructed Mandrill at CR=58.5 and PSNR=20.5dB and (right) JPEG 

version at CR=46.6 and PSNR=20.1dB. 
 

Mandrill and its JPEG version are presented in Fig 5.4 for comparison. The same 

comparison is done for PEPPER (training image) in Fig 5.5. Clearly the proposed 

algorithm outperforms JPEG both objectively and subjectively. On the other hand, 

although the comparison is “unfair’, the objective performance of JPEG2000 (being not 

a block-based scheme) is less by 2–5dB compared to the proposed model but 

subjectively “more pleasing”. 
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Fig 5.5 (left) Reconstructed PEPPER at CR=65.1 and PSNR=27.9dB and (right) JPEG 

version at CR=49.5 and PSNR=27.9dB. 
 

As a comparison with neural network schemes, the performance reported by 

[Costa and Fiori 2001], CR=64 and SNR=18.09dB for Lena (training image), is less by 

more than 3.3dB from that given in Table 4.1. The proposed structure also outperforms 

that of [Ma and Khorasani 2002], Fig(11) therein, even though Lena is the training 

image there. 

 

 

5.6 Summary and Discussion 

Higher order polynomial models (upto second order) are investigated and compared 

with the plane model proposed in chapter 4. To maintain the compression performance 

gained in the plane model, all other models are restricted to three parameters. With this 

setup, the plane model is superior in terms of quality and simple implementation. 

In order to get a better insight on the ultimate behaviour of higher order models, a 

linear mapping scheme is proposed. Parametrically generated features are linearly 
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mapped to approximate the current block. Again, only three free parameters are used. 

This framework has some similarity with neural networks and hence has similar 

universal approximation power of neural networks. The plane model is highly 

comparable to the linear mapping scheme, emphasizing the power inherit in the plane 

model despite its simplicity. 
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Chapter 6 

Plane Fitting with Inter-Block 

Prediction 

 

As can be anticipated from Chapter 4, a great portion of the bit budget is used to code c 

in the basic plane fitting scheme. Hence, it would be beneficial to find a better 

representation of c to increase CR. It is noticed that the range of c decreases with 

increasing |a|+|b|. Nevertheless, performance differences of such implementation were 

not substantial (<5% increase in CR with 0.5dB decrease in PSNR). 

One idea that has been explored by other researchers (JPEG standard for example) 

is to predict c from the c’s of neighbouring blocks  [Furht 1995]. The author, however; 

has found that this scheme results in poor performance when combined with the basic 

plane fitting scheme. As a remedy to this situation, the author proposed a novel 

approach to predict c using the intensity value of a certain pixel on the boundary of one 

of the neighbouring blocks. This specific pixel (or its modified value) is optimally 
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selected through a simple comparison step as will be described in the following 

sections. 

It is assumed throughout this chapter that a post-processing step given by (4.9) or 

the modification in (4.10) is always performed to improve the quality of the 

reconstructed image. A second postprocessing stage is then implemented to further 

improve the quality. As will be experimentally demonstrated, the second postprocessing 

stage is of subjective rather than objective characteristics mainly due to the 

incorporation of Weber law. To the author’s knowledge, no work has been reported on 

such an implementation of Weber law. As a by-product, an edge detection scheme is 

proposed using a simple modification to Weber law. The proposed edge detection 

scheme is a new trend in combining perceptual laws in the detection process. 

Interestingly, the same law can be easily modified to act as a quality assessment scheme 

emphasising the universality of Weber law application in image processing. 

 

 

6.1   Unoptimized Prediction of c 

A pixel in a neighbouring block is used to predict c according to [Ameer and Basir, 

2009] 

)()(),(ˆ iiiiii ybfxafvugc −−=     (6.1) 
 

where a and b are as in (4.3), ci is the predicted value of c according to neighbouring 

block i, i is the index of the causal neighbouring block as illustrated in Fig 6.1, ĝi is the 
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matrix representing the intensities in reconstructed neighbouring block i, and xi, yi, ui, 

and vi are as shown in Table 6.1. 
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6.1 Parameters’ definition for (6.1). 
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 in (4.2) and (4.4). CR will increase substantially since an 

 average) is used to replace the five-bit code used for c in 

, quantization and encoding schemes are the same as those 

d b) with the addition of the coding of the index of the 

approximate the value of c. The probability of occurrence 
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of these indices is not the same. It is experimentally found that the probabilities are such 

that P0 ≥ P2 > P1 ≥ P3 (see Fig 6.1). Hence, an image-independent Huffman table is 

constructed to code these indices. 

Higher CR (but lower PSNR) can be obtained by restricting the neighbourhood to 

blocks 0 and 2. 

 

 

6.2   Prediction Constrained Optimization 

The performance reported in the previous section can be further improved by 

substituting (6.1) in (4.1) and performing an optimization step with respect to the 

remaining two variables, namely a and b, resulting in [Ameer and Basir, 2009] 
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where Table 6.1 is used, D is as defined in (4.5), and the rest are defined in (4.2) and 

(4.4). The four solutions given by (6.3) are then compared to select the one with the 

lowest error given by (6.2). Again, higher CR (but lower PSNR) can be obtained by 

restricting the neighbourhood to blocks 0 and 2 as in Fig 6.1. 

Index encoding is the same as in the previous section. Quantization levels follow a 

similar pattern to that of (4.6). Again since the density function is approximate, a direct 

search optimization routine is implemented to find quantization levels of a and b given 

by 
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where q=0, 1, …, Q–1; Q is the number of quantization levels, and n=0,1 represents 

right and left tails of the distribution respectively. Each value of a and b is quantized to 

the nearest quantization level in the above equation. The values 30 and 3 were found 

empirically to give a good compromise between CR and PSNR. Changing these two 

values over a wide range does not produce significant changes in the performance on 

average. The pre-computed levels in (6.4) are of great help in eliminating the division 

required by (6.3). 

 

 

6.3   Comments on Fine-tuning 

The pixel position used to predict c from neighbouring blocks 1 and 3 is the right and 

left lower corner respectively. For neighbouring blocks 0 and 2, however, the optimum 

pixel position to predict c is the (N/2+1)st pixel counted from the top-left corner. In fact, 

a slightly better performance can be obtained using the average of (N/2+1)st and (N/2)th. 

An attempt was made to predict c from other combinations but no significant 

improvements were noticed. 

Marginal improvements can be obtained using higher order prediction models on 

the expense of complex computation and more important lower compression ratio. 

Predicting any two parameters, from the four neighbouring blocks, was of poor quality. 

Marginal degradations were noticed when the prediction is performed using an 

extrapolated version of each neighbouring block. 
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The compression ratio can be further increased by ignoring the index bit if the 

predicted value of c is the same from all neighbouring blocks using the quantized values 

of a and b. A more aggressive increase can be obtained by considering the fuzzy 

meaning of the word “same”, however, the quality degradation may be objectionable. 

It is worth mentioning that a second processing step can be performed, if time and 

complexity are not critical, to design a specific coding table for each image, and 

perhaps, an adaptive quantization scheme, with a slight increase in overhead bits. 

 

 

6.4   Encoder Multiplierless Implementation 

In this section, a multiplierless implementation of (6.2) and (6.3) is presented for the 

case of two neighbours. We have 
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Hence, the a, b, and c parameters are given by 
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The error of (6.2) can now be rewritten as 
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For prediction from the left neighbour, (6.11) reduces to 
 

( ){ }
22

2
000

2
01

2
10

000
2
0

2
0 2

pnnr
ZhnpZ

nr
ZhZhnS

+
−+

−−−=   (6.12) 

 

Multiplying by (nr+n2p2) and adding the term , we have 2
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Multiplying by n/r and adding , we get 2
00Z

 

( ) ( )
r

ZhnnpZ
r

pnZZhnS 000
2

01
2

222
102

000
2

0
2 −

−−−=   (6.14) 
 

Ignoring constants and rearranging, we get 
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The power of 2 in (6.15) can be dropped to simplify comparison. Following the same 

steps for prediction from the top neighbour we get 
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If p=–n/2 and using discrete integration we have 
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Restricting ourselves to n=2m, we have, 
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For n=8, Equations (6.19) and (6.20) can be approximated by 
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Let Oa, Om, and Os are the costs of addition, multiplication, and one-bit shifting 

operations respectively, the number of operations per block required in the encoder is: 

1. Row- and column-wise sums require 2n(n-1) Oa. 

2. Computing Z00 requires (n-1) Oa. 

3. Computing Z10 and Z01 requires 

• 2{(Oa+2 Os)+(2 Oa+Os)+(Oa+Os)+(Oa)+(3 Oa)}, for n=8. 

• 2{(Oa+Os)+(Oa)+(Oa)}, for n=4. 

• 2(Oa), for n=2. 

4. Computing Z10 and Z01 terms in S0 and S2 requires 
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• 2(Oa+5 Os), for n=8. 

• 2(Oa+2 Os), for n=4. 

• No operation, for n=2. 

5. Computing h0 and h2 requires 2(Oa+Os). 

6. The rest of S0 and S2 require 

• 2(2 Oa+6 Os), for n=8. 

• 2(2 Oa+4 Os), for n=4. 

• 2(2 Oa+2 Os), for n=2. 

7. 1 comparison is required to choose S0 or S2. 

8. The parameters a and b are then found using (6.6) and (6.9) or (6.7) and (6.8) 

depending on the outcome of (6.2). Assuming we have two quantization tables, 

one for each variable, we can avoid division. However, (Oa+ Os) are required for 

implementing (6.8) or (6.9). 

9. Finding the c’s require 

• 2(Oa+2 Os), for n=8. 

• 2(Oa+Os), for n=4. 

• 2 Oa, for n=2. 

10. 1comparison for the index bit. 

In total, 

• for n=8, ~N2{2.31 Oa+0.57 Os} are required per image. 

• for n=4, ~N2{2.88 Oa+1.19 Os} are required per image. 

• for n=2, ~N2{4.5 Oa+1.75 Os} are required per image. 
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For JPEG2000, however, assuming lossy Daubechies (9,7) filter on 5 levels and 

one scaling factor, the number of computations required is {4(2 Oa+2 Om)+2 Om} 2 

{N2+ (N/2)2+ (N/4)2+ (N/8)2+ (N/16)2}/2 ~ N2{10.66 Oa+13.33 Om}. This is far more 

than the proposed scheme even for multiplierless implementations replacing the filter 

coefficients with its nearest power of two. In fact, a multiplierless implementation 

(assuming 5 levels) of lossy Daubechies (5,3) filter, inferior by 1 dB to floating point 

arithmetic [Abbas and Tran 2006], requires (8 Oa+13 Os)2N2Σ
2

i=0
(1/4)

i
/2 ~ N2{10.66 

Oa+17.33 Os} which is more than five times the complexity of the proposed scheme. 

Interestingly, the proposed scheme, as will be shown in the results section, is 

superior to the JPEG. However, a multiplierless implementation of the DCT suggested 

by [Tran 2000] requires N2{7.5 Oa +3.25 Os} operations that are also higher than that of 

the proposed. 

 

 

6.5   Decoder Multiplierless Implementation 

At the decoder, computation complexity is mainly due to postprocessing. Two stages of 

postprocessing are implemented. The linear fitting scheme of (4.7) is applied first 

followed by a Weber-based postprocessing scheme. Weber law has been shown to have 

a good correlation with the human visual system [Pratt, 2001]. A detailed description of 

the modified Weber law is proposed in Chapter 7. The number of operations required by 

the decoder is shown below for the case n=8. Generalizing to other values of n is 

straightforward. The computational requirements are as follows: 
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1. Computing c, 2(2 Oa+2 Os) operations are required plus 1 comparison. The proper c 

is then uploaded in all cells of the block. 

2. Starting from the pixel (1,1) we need to perform n(n-1)Oa of the smallest absolute 

and (n-1)Oa of the largest. Due to the fact that most of the added values are zeros, 

the number of additions may be a small portion of n2–1. This can be further reduced 

if we have enough memory to store all the possibilities. 

3. For the block boundary enhancement, Equation (4.7), 2(N/n-1)N{(3 Oa+2 Os)+(3 

Oa+2 Os)+(5 Os)+(2 Oa)} operations are required. 

4. For Weber-based postprocessing (Chapter 7), the difference is found between the 

points next to the end points of all horizontal, vertical, and oblique directions (e.g., 

points a and b or c and d or a and e or b and d or d and e in Fig 7.1) and multiplied 

by 

o [1/2] for 1 pixel, 

o [1/4+1/16, 1–(1/4+1/16)] for 2 pixels, 

o [1/4, 1/2, 1–1/4] for 3 pixels, 

o [1/8+1/16, 1/2–1/8, 1/2+1/8, 1–(1/8+1/16)] for 4 pixels, 

o [1/8+1/16, 1/4+1/16, 1/2, 1–(1/4+1/16), 1–(1/8+1/16)] for 5 pixels, 

o [1/8, 1/4+1/16, 1/2–1/16, 1/2+1/16, 1–(1/4+1/16), 1–1/8] for 6 pixels, 

o [1/8, 1/4, 1/2–1/8, 1/2, 1/2+1/8, 1–1/4, 1–1/8] for 7 pixels, and 

o [1/8, 1/4, 1/4+1/16, 1/2–1/16, 1/2+1/16, 1/2+1/8, 1–1/4, 1–1/8] for 8 pixels. 

 

In all 8 cases, except for the case of 1 point, line end points, e.g. points α and β in 

Fig 7.1, are averaged and the average is then subtracted from points a and b. The 

 
 
 
 

79



 

same calculations are repeated for each direction (46 in total). Mathematically, we 

find max(|(α+β)/2–a|, |(α+β)/2–b|) and compare to max{(α+β)/2, 255–(α+β)/2}/16. 

The only way to perform postprocessing is when comparison indicates a less than 

or equal status. Hence, the required number of operations is (Oa+Os)(42)+2 

Oa(46)+Oa(46)+46(2 Oa+4 Os)+Oa(46) just to do the required comparisons. In 

addition, interpolation requires (assuming 50% true comparisons) 222 Oa+80 Os. In 

fact, it is 97% of that due to boundary blocks. 

 

Totally, the number of operations is ~ N2{11.22 Oa+6.92 Os}. The complexity 

could be less than this since, for horizontal or vertical lines, we skip comparison if the 

index bit indicates a prediction from top or left neighbour respectively. Nevertheless 

this is less complex than JPEG2000, using Daubechies (9,7) with each multiplication 

replaced by a single addition and shifting, see the last two paragraphs in the previous 

section. 

 

 

6.6   Experimental Results 

The results of Sections 6.1 and 6.2 are implemented using MatLab 6.5 and are given in 

Table 6.2. The table clearly indicates the increase in quality at the expense of minor 

reduction in compression ratio. In addition, the result of CR for two neighbours with 

optimization can be increased by 7% if we do not send the index bit when the c’s are the 

“same”, see (6.1). 
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Table 6.2 Performance of the proposed inter-block prediction scheme for image 
PEPPER (see text for computational aspects). 

4 Neighbours 2 Neighbours Performance
Method PSNR CR PSNR CR 

Without Optimization 27.45 103.01 26.68 121.43 

With Optimization 28.38 90.32 27.92 105.49 
 

It is noticed that the degradation due to the multiplierless implementation does not 

exceed 0.2dB for the images reported in Table 4.2. In the software implementation, 

using MatLab, no significant difference in speed was noticed between the direct and the 

multiplierless implementations. However, theoretically at least, the difference in cost is 

approximately equal to the ratio between the costs of addition and multiplication in the 

platform used for implementation. 

As a visual comparison for two cases from Table 6.2, Fig 6.2 illustrates two 

reconstructed versions of the standard image PEPPER. Interestingly, the performance is 

much better than sending the block average (c) only where CR=102.4 and PSNR=24.1 

dB. A multiplier- and division-free implementation incorporating the Weber-based 

postprocessing, described later in Chapter 7, is shown in Fig 6.3. More details are given 

in the next chapter on the implementations of Weber-based postprocessing with other 

image compression schemes. 

An objective comparison between the proposed scheme and JPEG2000 reveals the 

superiority of the proposed scheme in terms of CR, PSNR, and computational 

complexity. Stated differently, more than 5dB in PSNR (1.3 times in CR) with 

complexity cost described in sections 6.4 and 6.5 for the encoder and decoder 

respectively. 
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Fig 6.2 Reconstructed images, (left) 4-point prediction without optimization at 

CR=103.0 and 27.45dB, and (right) 2-point prediction with optimization at CR=105.5 
and 27.9dB. 

 

    
Fig 6.3 Reconstructed images (multiplierless version with optimized 2-point prediction) 

at CR=114.51, (left) before postprocessing PSNR=27.73dB, and (right) after 
postprocessing PSNR=27.75dB. 

 

To perform subjective quality comparison, the opinions of 22 viewers on 4 quality 

aspects were recorded. Four images were presented to the viewers each image is 

accompanied by its two compressed versions using the proposed scheme and JPEG2000 

as shown in Fig 6.4. Method (M1) is the proposed scheme and (M2) is JPEG2000 using 
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similar CR slightly greater than 100:1. The viewers do not know which is which and 

were asked to indicate which of the reconstructed images is closer to the original in 

terms of edges, objects’ interior uniformity, illumination, and information preserving. It 

can be inferred from the viewers’ statistics in Table 6.3, that the proposed scheme is 

subjectively more pleasing than JPEG2000 for compression ratios >100:1 especially for 

edge preserving aspect. However, as can be deduced from Table 6.3, the comparison is 

image dependant. 

 

    

    

    

Fig 6.4 Images (original top row) used in a subjective comparison between the proposed 
method (middle row) and JPEG2000 (bottom row). Left to right are: Balloon, 

Cameraman, Chimpanzee, and Pepper. 
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Table 6.3 Percentage of viewers favouring the proposed method over JPEG2000 on 4 
quality aspects. 

Aspect 
Image Edges Interior 

Uniformity Illumination Information 
Preserving 

Balloon 91 80 86 87 

Cameraman 64 57 62 62 

Chimpanzee 65 61 55 54 

Pepper 74 57 57 54 
 

  
Fig 6.5 Reconstructed Images, (left) proposed at 35:1 and 31.1dB and (right) JPEG2000 

at 33:1 and 22.7dB. 
 

For objectivity, a comparison on image PEPPER using a different compression 

ratio is demonstrated in Fig 6.5. Again, JPEG2000 looks better for smooth regions but 

seems darker. However, for such low CR, JPEG2000 looks more pleasing while the 

proposed one seems noisier. The obvious reason is that only three parameters are used 

to describe each block. Hence, fine details will be lost and the available bit budget is 

spent on increasing the resolution of the three parameters that has negligible 

significance beyond a certain level. 
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Chapter 7 

Postprocessing and Other 

Applications 

 

The main objective is to find a subjectively correlated postprocessing scheme to 

enhance the reconstructed image (after decompression) by modifying Weber law 

[Ameer and Basir, 2008b]. The successful performance of the law is due to its 

correlation with the human visual system. Hence, it was also applied to image quality 

assessment. Interestingly, Weber law has some universality of implementing other 

image processing schemes, namely, edge detection [Ameer and Basir, 2008b]. The 

following sections give a detailed description of these three implementations. 
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7.1 Postprocessing Application 

After applying the postprocessing scheme described in (4.9) or (4.10), a second 

enhancement stage is implemented using information from neighbouring blocks and 

incorporating a Weber-based postprocessing to obtain a better subjective quality of the 

reconstructed image. The proposed postprocessing scheme starts by finding Weber 

fraction between an object pixel Io and a neighbouring background pixel Ib as given 

below: 

o

bo

I
IIW −

=       (7.1) 

 

Without loss of generality, the image is normalized to occupy the interval [0,1]. 

In fact, Weber fraction curve is symmetric as can be seen in Fig 2.3-1(a) of [Pratt, 

2001]. This means that the eye response to dark and bright intensities is almost the 

same. This observation motivates the author to modify (7.1) to 

 

{ }oo

bo

II
IIW
−

−
=

1,max      (7.2) 

 

W is then normalized to unity and thresholded. Equation (7.2) means that changes near 

0.5 intensity have twice the effect of similar changes near 0 and 1 intensities on human 

perception. This comes in agreement with our eyes since we become more and more 

insensitive to changes as we approach white or black. 

Before applying the previously described scheme, the image is divided into 

nonoverlapping blocks exactly as was done during compression. Pixels in the current 
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block are grouped to form lines having slope angles of 0, ±π/4, and π/2, e.g., lines 

connecting (α, β) and (γ, δ) as shown in Fig 7.1. 

 

 
a

  α γ

  

β  δ

  

  

  

  

c

ε  

 

 

 

b d 

 

 

 

 e

Fig 7.1 A sample demonstration for implementing inter-block enhancement 
 

 

The mean of each line is found and subtracted from the two neighbouring points 

residing on the boundary of adjacent blocks. Mathematically, Equation (7.2) is modified 

to, for the case of the line connecting (α, β), 

 

{ }
{ })αβmean(),  αβmean(

b)αβmean(,a)αβmean(
W

−

−−
=

1max

   max
,βα   (7.3) 

 

If Wαβ is greater than 0.05, no postprocessing is performed. Otherwise, a line 

interpolating a and b is used to replace the segment αβ. A general description of the 

second postprocessing stage is presented in Fig 7.2. It should be noted that the lines 

described in Fig 7.2 are not of equal length. The factor 0.05 (approximating 1/16) was 
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experimentally chosen. In addition, for horizontal and vertical lines, the postprocessing 

is implemented when prediction is not performed from the top and left neighbouring 

blocks respectively. 

For each line, described in Fig 7.2, the average is obtained. However, since the 

reconstructed block values came from a plane model, each pixel differs from its two 

adjacent pixels by the same amount. The previous statement is essential to reduce the 

computation required for averaging to a single addition and one right shifting performed 

on the two ends of each line. The line is now represented by the average value obtained. 

Two pixels are then selected that are adjacent to the line end points, one for each end, 

from the neighbouring blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

w<1/16Next line or 
block 

No Yes Update line points by 
interpolating the two 

boundary points 

Apply (7.3) to these three points. 

For each line, find 
• average gray value, and 
• gray values of 2 points from the boundary of

the neighbouring blocks adjacent to line end
points (one point for each end). 

For each block, consider all pixels forming lines that 
make an angle of 0°, ±45°, or 90° with the x-axis 

Subdivide image to blocks 

 

Fig 7.2 Flow diagram of the proposed Weber-based postprocessing technique. 
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The three values, the average and the value of the two adjacent pixels, are plugged 

into (7.3) and the obtained parameter is compared to a threshold (1/16). If the threshold 

is exceeded, indicating the presence of edge, no enhancement is performed. Otherwise, 

the region is almost uniform and the postprocessing is performed. If the postprocessing 

is performed, the values of the two adjacent pixels of the neighbouring blocks are 

considered as belonging to a line of the same slope as the originally selected. 

Interpolation is then performed using these two points to find the new values of the in-

between pixels. 

 

 

7.1.1 Experimental Results 

  

Fig 7.3 Reconstructed JPEG images (left) before postprocessing PSNR=32.2dB and 
(right) after postprocessing PSNR=32.4dB 

 

Fig 7.3 illustrates the application of the proposed postprocessing scheme as in (7.3) on a 

JPEG version of the standard image PEPPER. Although the difference in PSNR is 

marginal ~0.2dB, the subjective improvement is remarkable especially on the large 
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peppers. The same postprocessing is applied on the basic plane model of chapter 4. 

Again, as demonstrated in Fig 7.4, the difference in PSNR is < 0.1dB. 

 

  
Fig 7.4 Reconstructed plane fitting images (left) before postprocessing PSNR=28.15dB 

and (right) after postprocessing PSNR=28.24dB 
 

 

7.2 Quality Assessment Application 

This section introduces three simple image quality measures based on Weber law. After 

normalizing the original and distorted images, the absolute error between them is found. 

The final index is a pixel-by-pixel weighted sum of errors. The maximum between the 

pixel value in the original image and its corresponding value in the negative image is 

the inverse of the weighting factor. 

No claim is made concerning the superiority of the proposed scheme over any of 

the mentioned schemes below. However, when simplicity and good performance are 

both required; the proposed scheme could be of preference. Results indicate a better 

correlation with human perception compared to conventional mean square error MSE. 

Despite the simplicity of the proposed model, it compares well with other complex 
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schemes in the literature and its complementary outcome is promising in improving 

those schemes especially with those having a data dependent parameter in the 

denominator. 

 

 

7.2.1 The Proposed Scheme 

Weber fraction can be easily modified to act as a QA scheme for images. The original 

image is considered as the background of the degraded image. The law is modified to 

overcome the biasedness toward dark intensities by an intuitive consideration of the 

experimental contrast sensitivity curve. 

The proposed scheme starts by finding Weber fraction between all corresponding 

pixels in the original and degraded images as given below 

 

i

ii
i I

IIW
~−

=      (7.4) 

 

where I is the original image, and Ĩ is the degraded image. The images are normalized to 

occupy the interval [0,1]. 

In fact, the Weber fraction (contrast sensitivity) curve is symmetric, as can be seen 

in Fig 2.3-1(a) [Pratt, 2001]. This means that the eye response to differences in dark and 

bright intensities is almost the same. This observation motivates the author to modify 

(7.4) to obtain a Weber-based error (WE), given by 

 

)1,max(

~

ii

ii
i II

IIWE
−

−
=      (7.5) 
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Equation (7.5) means that changes near 0.5 intensity have twice the effect of similar 

changes near 0 or 1 intensity on human perception. This comes in agreement with our 

perception since we are more and more sensitive to changes occurring as we move away 

from either black or white. 

The proposed Weber-based mean absolute error (WMAE) can be formulated as 

 

∑ −

−
=

i
ii

ii

II

II

N
WMAE

)1,max(

~
1     (7.6) 

 

where N is the number of pixels in the image. The range of WMAE is from 0 to 1. A 

perfect match between the original and a degraded image results in WMAE=0. A 

decibel measure WPSNR (Weber-based peak signal to noise ratio) can be defined as, 

 

∑ −

−
=

i
ii

ii

II

II
NWPSNR

)1,max(

~log20 10
    (7.7) 

 

Equation (7.7) can be simplified to obtain, 

 

∑
∑

−

−
=

i ii

i ii

II

II
WSNR ~

)1,max(
log20 10    (7.8) 

 

The three proposed schemes, Equations (7.6–7.8), are simple and can easily be 

applied in a rate distortion optimization. 
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7.2.2 Experimental Results 

 
Fig 7.5 (left to right – top to bottom) Original, gaussian noisy, speckle noisy, salt and 
pepper (impulsive) noisy, and JPEG images used in QA testing. All degraded images 

have MSE=86.5. 
 

Fig 7.5 shows the original image PEPPER (512x512) and four degraded images. 

Degradation comes in the form of gaussian noise, speckle noise, salt and pepper 

(impulse) noise, and JPEG compression. All degradations are chosen to result in an 

MSE of 86.5 before applying normalization to images. 

Twenty-two viewers, most with image processing background, were asked to rank 

the 4 degraded images in descending quality. Table 7.1 shows viewers’ statistics. Since 

the original image is always in rank 1 it is not shown in the table. Ranking is performed 

in this study due to a previous study [Ridder 1996] indicating that comparative testing is 

unbiased. 
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Table 7.1 Viewers’ statistics for the Gaussian noisy, Impulse noisy, Speckle noisy, and 
JPEG images. 

Images G I J S 

Average Ranking 2.73 3.91 4.77 2.59 

Count having rank 2 9 3 0 10 

Count having rank 3 10 1 0 11 

Count having rank 4 3 13 5 1 

Count having rank 5 0 5 17 0 
 

Table 7.2 QA for the Gaussian noisy, Impulse noisy, Speckle noisy, and JPEG images. 

Images G I J S 

WMAE 0.073 0.118 0.113 0.077 

WSNR 23.19 19.17 19.51 22.84 

WPSNR 22.80 18.57 18.98 22.24 

PSNR 24.33 68.59 68.93 71.25 

UIQI 50.98 82.05 37.66 60.63 
 

The viewers were not told what type of degradation is applied to each image. The 

five images were seen together on the same screen. Equations (7.6–7.8) together with 

the universal image quality index (UIQI) of [Wang and Bovic, 2002] (using their own 

MatLab code) are calculated for the four images as shown in Table 7.2. For a fair 

comparison, the value of PSNR is calculated after performing image normalization. 

The following two observations can be extracted from Table 7.1: 1) gaussian and 

speckle noisy images are of marginal difference and are both better than the rest, and 2) 

viewers are in favour of salt and pepper noise compared to JPEG compression. 

However, Table 7.2 shows that the proposed measures are in accordance with the first 

observation but not with the second. Interestingly, UIQI follows a complementary path 
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where impulsive noisy image is second to none but the original image. As expected, 

PSNR is not in accordance with both observations. 

 

 

7.2.3 Summary and Discussion 

Simple image QA schemes were proposed based on weighting the mean absolute error 

according to Weber law. A rough agreement is noticed between the outcome of the 

proposed schemes and a subjective testing of 22 viewers. 

It is observed that a complementary behaviour exists between the proposed 

schemes and that proposed by [Wang and Bovic, 2002]. Future work should concentrate 

on searching for a suitable fusing criterion to reach a better agreement with HVS. 

Further investigations are also required to relax the requirement for normalization. More 

experiments are needed on additional types of degradations to validate the reported 

results. 

 

 

7.3 Edge Detection Application 

This section introduces the design of an edge detection scheme the performance of 

which is pertinent to the properties of human visual system. The proposed scheme 

implements Weber fraction (also called contrast sensitivity) to detect edges in grey level 

images. 
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The expression ∆I/I is found between the current pixel and all its 8-neighbours 

and the maximum value is selected. To avoid biasing toward low intensity values and to 

preserve the symmetry of the sensitivity curve, I is replaced by the maximum of the 

actual pixel value and the corresponding value in the negative image. A thresholding 

procedure is then employed to eliminate weak edges. Experimental results indicate a 

superior capability of the proposed scheme to detect edges of objects that are close in 

intensity to their background. Some comparisons with Sobel operators are also 

demonstrated. 

 

 

7.3.1 Introduction 

Edge detection plays an important role in many computer vision applications. Several 

operators were designed in an ad hoc fashion to approximate the derivative for digitized 

images. The Sobel operator is an example of such commonly used difference operators. 

A good review of these operators can be found in [Ziou and Tabbone 1998]. 

Canny [Canny 1986] was the first to suggest an optimization criterion for finding 

edges using variational analysis. Although it opened a new trend in edge detection 

[Basu 2002], no considerations were given to the important player: human eye. 

Motivated by proven facts on human visual system, many authors, e.g. [Pinoli 

1997] and the references therein, introduced new definitions using logarithmic image 

processing. The most reliable theory, in my opinion, behind the success of logarithmic 

image processing is Weber fraction. The law [Pratt 2001] simply tells us that the ratio 

∆I/I (keeping in mind that this ratio is the approximate derivative of the log function) 
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governs the sensitivity of the eye such that no distinction between an object and its 

background can be made if this ratio is less than 0.02. This value is higher for darker 

and brighter intensity levels. ∆I=(I–I0) is the intensity difference between the object and 

its background and I is the background (or foreground) intensity. 

As a modification to overcome speckle noise in SAR images, the ratio between 

the intensity of neighbouring pixels (or regions inside a window) was used [Park et al 

1995], [Bai and He 2003], and [Kang et al 2006]. However, these schemes are biased 

toward dark intensities due to division operation involved. 

Another trend in modifying Weber fraction, though not explicitly stated, tackling 

the denominator rather than the numerator, was first proposed by [Yu 1994]. The same 

values in the numerator are used in the denominator but added not subtracted, in other 

words, (I – I0) / (I + I0) was proposed by [Yu 1994]. On the other hand, [Beghdadi et al 

1999] proposed to use the average of a bank of Gabor filters to replace the denominator. 

In both schemes, the issue of biasedness is partially resolved. 

In this work a new implementation of Weber fraction in edge detection to 

overcome the biasedness toward dark intensities (similarly unfairness toward bright 

intensities) is proposed through an intuitive consideration of the experimental contrast 

sensitivity curve. 
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7.3.2 The Proposed Scheme 

The first phase of the proposed edge detection algorithm is finding the value of Weber 

fraction between the current pixel and all its eight neighbours. The equation for the left 

neighbour is given below as an example 

 

( ) ( )
( )jiI

jiIjiIW ji ,
1,,

1,0,,
−−

=     (7.9) 

 

where I is the original image. Without loss of generality, the image intensity is 

normalized to the interval [0,1] by dividing by 255. In a similar fashion to (7.1), we can 

modify (7.9) to 

( ) ( )
( ) ( ){ }jiIjiI

jiIjiIW ji ,1  ,,max
1,,

1,0,, −
−−

=   (7.10) 

 

Combining the fractions from all 8-neighbours we have 

 

( ) ( )
( ) ( ){ }jiIjiI

njmiIjiIW
nmji ,1  ,,max

,,max
,, −

−−−
=   (7.11) 

 

W is then normalized to the interval [0,1] and thresholded. Any thresholding scheme 

can be used, however, the following simple scheme outperforms Otsu [Otsu 1979] for a 

wide range of images. The proposed thresholding scheme for edge detection purposes is 

simply to find the histogram of W first. The histogram is then smoothed with an average 

filter. The position where the mean (on the smoothed histogram) occurs is taken as the 

threshold value. Usually, there is more than one position and the mean value is taken. 
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7.3.3 Experimental Results 

   
(a)     (b)         (c) 

   
(d)     (e)           (f) 

Fig 7.6 Test images: (a) Balloon, (b) Goose, (c) Huda, (d) Shapes, (e) Text, and (h) 
Zebra. 

 

Fig 7.6 shows the set of images used to demonstrate the effectiveness of the proposed 

edge detection scheme using Weber fraction. Fig 7.7 shows the implementation of 

(7.11) on the set of images in Fig 7.6 after the thresholding scheme described in the last 

paragraph of the previous subsection. For comparison purposes, the same images are 

processed with the Sobel operator and presented in Fig 7.8. The images in Fig 7.7 and 

Fig 7.8 are after morphological thinning and cleaning operations. 
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(a)     (b)         (c) 

   
(d)     (e)           (f) 

Fig 7.7 Proposed edges for the images in Fig 7.6. 
 

   
(a)     (b)         (c) 

   
(d)     (e)           (f) 

Fig 7.8 Sobel edges for the images in Fig 7.6. 
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The superiority of the proposed scheme is obvious through simple comparison of 

Fig 7.7 and Fig 7.8d where dark shapes and lines are considered as a background with 

Sobel that is not true by looking at Fig 7.6d. In general, the proposed scheme has a 

better capability than that of Sobel in closing object’s boundaries as demonstrated by 

the examples in Fig 7.7 and Fig 7.8. Superiority is also clear for text images, obviously 

Fig 7.7e is more readable than Fig 7.8e. 

 

 

7.3.4 Summary and Discussion 

A simple edge detection scheme is proposed using Weber fraction. The model is 

designed to remove biasedness and unfairness towards dark and bright intensities 

respectively. More important, the author modifies the edge detection model to be more 

compatible with the actual curve of Weber fraction (contrast sensitivity). 

The proposed operator shows better performance than that of Sobel for several 

images. However, the proposed model is in its early stages and there is still a room for 

improvement in various aspects. A better (especially local) thresholding scheme may be 

more appropriate to detect faint edges and exclude noisy ones. The scheme can also be 

applied on different resolution and then fused to obtain a better edge representation. In 

fact, finding the numerator of (7.5) on a filtered image (e.g., using a 5x5 average filter) 

and the denominator on another filtered version (e.g., using a 3x3 filter) can reduce the 

sensitivity to noise. This observation is helpful in designing the optimum filter in a 

similar fashion to the scheme of [Canny 1986]. 
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Chapter 8 

Conclusions and Future Work 

 

Surface fitting schemes have been explored in this work for image compression 

purposes. The performance, using basic plane fitting model, is superior (both 

perceptually and in PSNR value) to that of JPEG at compression ratios >32:1. In the 

proposed scheme, each block is represented by three parameters, namely a, b, and c. 

Compression is performed by sending codes representing the quantized values of these 

parameters. The quantization is uniform for c and nonuniform for a, and b. To reduce 

quantization error [Strobach 1991] and the number of bits allocated to the constant 

parameter c, the block centre is chosen as the origin of the coordinate system. Simple 

quantization, in the form of a lookup table, and coding scheme (comma or Huffman 

coding) are used to reduce cost. The quantization table is designed off-line, using some 

set of images, through a direct search method compromising CR and PSNR. A further 

research is needed to study the effects on other image sets and whether different tables 

are needed for each set of images. 
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Plane fitting is a multiplication- and division-free block-based image compression 

implementation. The number of shifts can be drastically decreased at the decoder by 

adopting similar calculations to that of [Hasegawa and Yamasaki 2002]. This low 

computational cost makes the proposed algorithm suitable for real time applications. 

Embedded coding can be achieved by sending c on bit bases followed by a(b) and b(a). 

In fact, sending functions of a and b can slightly increase CR keeping PSNR almost 

unaffected. This observation needs further investigations together with a more 

perceptually correlated error measure to optimize the compression performance. 

To enhance the reconstructed image, a simple 2-point 1D linear interpolation is 

proposed to reduce blocking artefacts. The obtained reduction compares well to that 

obtained using 10-point cubic fitting. In addition, the proposed interpolation scheme can 

be is modified to maintain the multiplication- and division-free characteristic. The 

proposed postprocessing scheme can increase PSNR of the reconstructed image by 

<1dB depending on the image under consideration. 

Another contribution of this work is the incorporation of a perceptually related 

law; namely the Weber fraction, in postprocessing of reconstructed images. Its 

implementation is not restricted to the plane fitting scheme but can be applied to other 

schemes, like JPEG for example. The performance is rather subjective and further 

research is required to better formulate and understand this phenomenon. In addition, 

Weber law has some universality in image processing in the sense that it can be 

modified to produce two more schemes, namely, edge detection, and quality 

assessment. The Weber-based postprocessing scheme has marginal effect on PSNR 

value but remarkably improves the subjective quality. In this scheme, neighbouring 
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blocks contribute to the enhancement of part of the current block depending on 

satisfying a condition that is mainly a revised version of the edge detection scheme 

using Weber law. It should be stressed that the amount of remarkable improvements 

gained from the two proposed postprocessing schemes indicates a possibility of strong 

correlation, and hence a possibility of a more compact form, between blocks. This 

correlation is worth to be further investigated. 

It is observed that the profile of a(b) in the plane model has a strong similarity 

with horizontal (vertical) edge profile. This interesting observation is important to find 

better edge and/or texture descriptions to improve visual quality and to a less extent 

compression ratio. In fact, an edge of any direction can be inferred (to some acceptable 

error) from the absolute ratio of a and b. It should be emphasised that the previous 

statement is not about edge strength only but more importantly its orientation. However, 

further information is needed to find a good approximation of edge location. The main 

challenge in transforming such observation to a useful implementation is the appropriate 

function combining a and b to describe oblique edges. A more challenging aspect, 

though low in practice, is the possibility that more than one edge can occur in the same 

block. Similar argument also applies to nonlinear edges. These multiedges can pass 

undetected or erroneously detected as a single edge. Neural networks and/or fuzzy 

systems can be useful to overcome this problem. 

The current implementation of the plane model is concerned with gray scale 

images. The extension to coloured images is straightforward. However, colour 

transformations should be avoided (or manipulated) to preserve the multiplication-free 

characteristic. Extension to video coding is also possible by implementing the plane 
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model as the intra-frame mode and motion compensation for inter-frame prediction. A 

comparison should be performed between different motion compensation schemes, 

especially the linear model, and the 3D extension of the proposed model. 

As is clearly seen in the results of chapter 4, most of the allocated bits (in the 

basic plane model) are spent on coding the quantized value of c. Hence, it may be useful 

to predict c from neighbouring blocks to increase CR. Unlike the prediction of the DC 

component in JPEG, prediction is performed with the help of the boundary pixels of the 

neighbouring blocks. To the author’s knowledge, this form of prediction has not been 

reported. The predicted value is also dependent on the values of a and b of the current 

block. The constrained optimization problem is solved for a and b. Compression ratio is 

further increased by eliminating the need for sending the index bit, indicating the 

position of the neighbouring block to predict from, if the predicted value of c is the 

“same” for all possibilities. The condition “same” can be relaxed to further increase CR, 

however, quality may degrade noticeably. Interestingly, the plane fitting scheme with 

inter-block prediction favours (in some cases) JPEG2000 at high compression ratios 

despite the fact that JPEG2000 is not a block-based compression scheme. The quality is 

slightly better both in terms of PSNR and subjectively through the statistics of 22 

viewers. The proposed plane model, in its two forms, is a highly parallel structure. This 

aspect can be of great importance when a fast implementation is required for low bit 

rate moderate quality applications like sending head and shoulder images using mobile 

phones for example. 

Unfortunately, the plane model cannot describe fine structures in the image and 

more parameters are needed and hence, higher order polynomials are investigated. 

 
 
 
 

105



 

These higher order models can be useful, through some aggregation process, in 

improving the plane model performance for low compression rate applications. 

However, these high order schemes are restricted (in the present study) to three 

parameters only to maintain the improved compression performance obtained with the 

plane model. Among all 2D nonlinear polynomials presented in this work, the xy model 

is the only scheme that has comparable (except for complexity) performance to that of 

the plane model. Combining this model with the plane model can be fruitful if the 

fusion is dynamic with as small header bits as possible. 

Going beyond second order, keeping in mind the 3-parameter restriction, is not 

mathematically tractable and the performance is not expected to substantially improve 

as can be deduced from sections 5.1 – 5.4 of this work. Therefore, a linear mapping 

scheme is implemented to get some insight of an approximate asymptotic behaviour. 

Interestingly, the results of this mapping scheme (section 5.5) are comparable to that of 

the plane model. This evidence reveals the power inherent in the plane model despite its 

simplicity. Nevertheless, the proposed linear mapping scheme can provide a new 

framework for image modeling. 

Though polynomial fitting is promising, however, it is constrained by the block 

size. In general, performance can be increased, at least theoretically, by increasing the 

polynomial order and to a less extent the block size. By relaxing these two constraints, 

i.e. using polynomials and dividing the image into blocks, it may be possible to 

overcome the current barrier in the amount of compression attained. Hence, an 

investigation of nonpolynomial models is required. The objective is to increase 

compression ratio through a better description of the objects or subjects in the image 
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and relaxing the constraint of dividing the image into blocks. In other words, the 

concern is rather on image context through the efficient description of the composing 

objects. A simple criterion is probably to view an image as a 3D geographical map 

consisting of hills and valleys. It should be kept in mind, however, that such modelling 

is of high computational complexity and a deeper insight is required to overcome this 

drawback. Another suggestion is design a new formulation that can overcome the 

disadvantage of having a separate optimization and coding schemes to describe a region 

and its boundary. Stated differently, the formulation should somehow combine a region 

and its contour, and perhaps portions or nearby regions, in a single coding paradigm 

without the need for a segmentation process. 

Region fitting approach, as the least successful proposal, needs further and deeper 

insight. The proposed approach is a new research trend in combining a region and its 

contour in a single coding paradigm. The MSE optimization, in general, tries to fit the 

largest possible number of points to any specific region. This will create “virtual” 

regions that require additional bits and computational time. A simple optimization 

scheme using Hooke and Jeeve’s (HJ) scheme is implemented to validate the approach. 

The results are encouraging in terms of PSNR; however, the computational burden is far 

from being practical. The performance is inferior to state of the art image compression; 

however, the potential in implementing region-based scheme with a single optimization 

pass is promising. The reason for these drawbacks may be related to the fact that 

iterative (not direct) solutions were found. Highly complex mathematical manipulations 

of the problem may be needed to benefit from the speed of Newton and quasi-Newton 

implementations. In addition, Hessian matrix ill conditioning and trapping in a local 
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minimum need some compensation. Finding more than one function at a time may be 

part of the solution by incorporating steepest descent methods. Taking benefit of a and b 

in the plane model together with some morphological operations to seed the region 

fitting scheme is of marginal effect in reducing computational complexity. 
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