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Abstract

The massive volumes and the huge variety of large knowledge bases make infor-

mation exploration and analysis difficult. An important activity is data filtering and

selection, in which both querying and visualization play important roles. Interfaces for

data exploration environments normally include both, integrating them as tightly as

possible.

But many features of information exploration environments, such as visual rep-

resentation of queries, visualization of query results, interactive data selection from

visualizations, have only been studied separately. The intrinsic connections between

them have not been described formally. The lack of formal descriptions inhibits the

development of techniques that produce new representations for queries, and natural

integration of visual query specification with query result visualization.

This thesis describes a formalism that describes the basic components of informa-

tion exploration and and their relationships in information exploration environments.

The key aspect of the formalism is that it unifies querying and visualization within a

single framework, which provides a foundation for designing and analysing visual query

interfaces.

Various innovative designs of visual query representations can be derived from the

formalism. Simply comparing them with existing ones is not enough, it is more im-

portant to discover why one visual representation is better or worse than another. To

do this it is necessary to understand users’ cognitive activities, and to know how these

cognitive activities are enhanced or inhibited by different presentations of a query so

that novel interfaces can be created and improved based on user testing.

This thesis presents a new experimental methodology for evaluating query repre-

sentations, which uses stimulus onset asynchrony to separate different aspects of query

comprehension. This methodology was used to evaluate a new visual query represen-

tation based on Karnaugh maps, and showing that there are two qualitatively different

approaches to comprehension: deductive and inductive. The Karnaugh map represen-

tation scales extremely well with query complexity, and the experiment shows that its

good scaling properties occur because it strongly facilitates inductive comprehension.
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Chapter 1

Introduction

Extracting information from data is interactive: a user inspects the data, forms a hy-

pothesis, and tests it, which leads to further inspection, and so on, until the desired

information is obtained. Visualization plays an important role, supporting both inspec-

tion and testing. Querying is also important, allowing the user to isolate promising

portions of the data. As a result, interfaces for data exploration environments normally

include both, integrating them as tightly as possible [40, 68].

Most data queries are Boolean expressions, which are hard for users to manipulate

successfully. Many query interfaces try to alleviate this difficulty by expressing queries

using a visual query language. But there is at present no formal method for producing

new representations of queries.

Furthermore, the intrinsic connections between querying and visualization are sel-

dom described formally. The lack of formal description inhibits the development of

techniques that produce new representations for queries. It also makes difficult inte-

gration of visual query specification with query result visualization.

This thesis describes and explores a formalism for visual query interfaces. It cap-

tures querying and visualizing in a single framework, which describes information ex-

ploration at a level below the interface presentation and above the implementation.

The formalism can be used as a high-level framework for visual query interface analy-

sis. It provides concepts for designing new visual query interfaces, and opportunities

for extending existing ones.

To illustrate how the formalism is used in a practical visual query interface design,

a new query/visualization interface is implemented, a Karnaugh map based visual

1



query language (KMVQL). KMVQL uses Karnaugh maps as its visual representation

of Boolean queries. My implementation of KMVQL shows that the formalism is a

practical mathematical abstraction of visual query interfaces.

Based on the formalism, a variety of innovative designs for query visualization can

be created by defining multi-dimensional visualization techniques on a query space. But

are these new representations for queries easy to understand? Are they easy to use?

To answer such questions, it is necessary to evaluate the new query representations,

and to compare them with existing ones. Experiments must be conducted.

Previous studies on visual query languages seldom examined why one visual repre-

sentation performs better than another. To find the answer it is necessary to under-

stand users’ cognitive activities while they are using a query interface. Furthermore, it

is more important to discover which cognitive activities are enhanced or inhibited by

different presentations of a query. Knowing this is helpful for creating and analysing

novel query interfaces.

This thesis presents a new method of experimental design and data analysis for

query representation studies. The novelty of the method is that it isolates subjects’

cognitive operations, and thus allows researchers understand subjects’ behaviours in

detail.

To illustrate its use, I designed and conducted an experiment comparing two query

representations: Karnaugh maps and textual representations of Boolean expressions.

A detailed description of the experiment, and the results I obtained are also reported

in this thesis.

1.1 Contributions

The goal of this thesis is to apply visualization to designing and improving user inter-

faces for exploring and analysing data. The main contributions of this thesis are:

• a novel mathematical formalism which describes the basic components and their

intrinsic connections in visual query interfaces for information exploration sys-

tems;

• a new visual query interface, KMVQL;

• a new experiment methodology for evaluating query languages; and
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• an empirical user study for comparing the comprehensibility of Karnaugh map

representations with textual representations of Boolean expressions.

1.2 User Interface Issues in Information Exploration

“We do not always know precisely what we are looking for and, many times, we do

not know even what its name is. In these conditions exploratory search is a strategy

that allows us, with the help of visualization, to refine our search and reach the goal of

our exploration by means of successive iterations.”

———– by Juan C. Dursteler [30]

Searching for information, whether for purchasing a car, reserving a hotel room,

or finding a book in the library, is an activity we do throughout our daily lives. But

the massive volume and huge variety of available knowledge bases makes it difficult.

Appendix A tells a typical story of information exploration. It describes the following

difficulties a user meets when searching a database of second-hand cars:

• query specification, refinement and modification;

• query result analysis; and

• reuse of previous query results.

When searching for data in large data sets, it is not realistic to examine every avail-

able data item one by one, selecting interesting items. Data filtering, which breaks

up the data set into meaningful subsets, is essential to decrease the amount of infor-

mation users must perceive, remember, and recognize. Queries are used to filter data

and return subsets of the data. Most commonly, they are built from simple terms,

combined using Boolean operators, which have convenient formal properties. Boolean

logic, which George Boole called “the Laws of Thought” [10], is the basis of most query

models, yet is notoriously difficult to use with speed and accuracy [39, 55].

As a result, there are many query interfaces that attempt to put an easy to un-

derstand gloss on Boolean logic. Some are linguistic; others rely on visual presen-

tations [41, 106], which might be described as visualizations of queries. Visual

interfaces use visualization a second time, when the query results are provided to the
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user. Visual display of query results is important because the user’s goals evolve dur-

ing information exploration. Thus, the display of query results should help her to

make sense of the data, providing information that facilitates query refinement and

modification, so that she can decide what to do next.

Visualization is a powerful method for communicating the salient features of infor-

mation, making them easy to perceive and understand. It is especially helpful when

little is known about the data or when the user’s goals are poorly defined. Furthermore,

many visualization implementations allow direct manipulation, so that users can filter

data interactively.

But when I examined existing interfaces for information exploration, I found these

complementary topics have usually been studied separately. Although a few systems,

such as Tableau [40] and Spotfire [68], integrate visualization and query specification,

their intrinsic connections are not described formally. The absence of a common for-

malization inhibits innovation.

In addition, there are few formal descriptions of the relationship between queries

and query results, which emphasizes the existing conceptual gap between visual query

specification and query result visualization.

In fact, having formal models of query interfaces for information exploration is

beneficial. Because common formalizations are general. Thus they can be applied

to a wide variety of design problems to help researchers understanding, designing, or

analysing visual information exploration systems.

1.3 A Formalism for Visual Query Interface

This thesis presents a mathematical formalism that captures both visualization and

query formulation within a single structure. It treats data presentation, query pre-

sentation, and query result presentation as instances of visual representations, which

reveals the inherent connections between them.

The formalism uses the mapping model of visualization [15], in which a visualization

is defined as a mapping of data attributes onto visual dimensions such as colour and

position. A mapping is formalized as a two-column table, the first column listing every

possible combination of attributes and the second column listing the corresponding

visual presentation.
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The formalism starts by defining a generic table model, in terms of which all entities

in the query/visualization environment are defined: data, queries, query results, and

visual representations of them. Mappings from table to table, including visualizing and

querying, are also defined as tables.

Thus, the fundamental operation of the formalism is applying one table to another

table to get a result table. As a result, the formalism supports querying a visual

representation or visualizing a query, which enhances the versatility of visual query

interfaces.

Based on the formalism, visualizing Boolean queries is identical to visualizing multi-

dimensional data sets, which makes it possible to apply existing visualization techniques

to query visualization. The formalism also describes an approach to query result vi-

sualization that tightly integrates query specification and the display of query results.

It helps users make sense of the data and facilitates query refinement and modifica-

tion. Furthermore, it also introduces recursive applications of both querying, querying

a query, and visualizing, visualizing a visual representation. Recursion allows users

to ask questions that help them understand complex queries or visualizations, which

provides systematic reduction of complexity.

The formalism is an abstraction of visual query interfaces. There are many benefits

of such an abstraction. For example, it helps to identify areas of the design space for

future research and to clarify the similarities or differences between known techniques.

Based on the formalism I implemented an interactive system, KMVQL, which pro-

vides a visual interface based on Karnaugh maps. It allows users to specify arbitrary

Boolean queries by direct manipulation, which is useful when the complexity of queries

is high.

1.4 Issues in Evaluating Query Languages

Boolean logic is notoriously difficult for people to use with speed and accuracy [39, 55].

Many query interfaces alleviate this difficulty by expressing queries in a visual query

language, It is important to evaluate the performance of query languages, comparing

them to one another, in order to see how well they facilitate query understanding and

use.

When analysing existing empirical studies of visual query interfaces, I found that

5



few of them showed why one query interface performs better than another. Users’

cognitive activities were seldomly analysed. In fact, understanding users’ cognitive

activities and how they are affected by query presentations will help researchers create

and improve novel query interfaces.

The time taken to finish a query task is often the response measure for query lan-

guage evaluation. Tasks for query language evaluation are normally complex, requiring

combinations of cognitive activities such as learning, understanding, remembering, and

decision making. The required set of cognitive activities varies from task to task. Yet

the raw time measured in empirical studies is a combination of many time compo-

nents, so that it is hard to associate qualitative features of user performance with one

or another aspect of the task. This complication is a block to analysing the utility of

an interface based on user testing. Therefore, to analyse user behaviour and cognition

based on the experimental data, it is important to isolate as many components as

possible.

Besides, when analysing existing visual query representations, I found that most

representations are suited to specific types of queries. It is quite possible that when

comparing the time taken by two query representations using different queries, their

relative performance may differ. To accomplish in limited time, empirical studies must

limit the number of queries that are used, which makes it harder to measure perfor-

mance on more complex queries. What happens when queries have twenty or more

query terms? Is it possible for researchers to predict users’ performance for more

complex queries based on limited experimental data?

Isolating components of query tasks, and providing a data analysis method are two

important issues in experiment design and analysis. But unfortunately, they have been

neglected in previous empirical studies.

1.5 The Experiment Methodology

This thesis introduces a methodology for experiment design and analysis. It evalu-

ates the quality of query languages, using an experimental task that requires users to

perceive, understand, and respond to visual queries. It assumes a query task to be

composed of three parts: query comprehension, stimulus comprehension, and response

generation.

6



The central idea of the methodology is to present parts of the stimulus at differ-

ent times, a technique known in perceptual psychology as stimulus onset asynchrony

(SOA). When gradually changing the SOA value, a set of response times are measured,

which form piece-wise linear curve. A data fitting algorithm computes the break points,

from which the time for different query task components can be isolated. This method

allows researchers to discover which cognitive activities are enhanced or inhibited by

different presentations of a query.

Based on this methodology, I designed and conducted an experiment comparing the

comprehensibility of two query representations: Karnaugh map and textual represen-

tations of Boolean expressions. From the study, I found that users understand queries

in two qualitatively different ways: inductive and deductive. Karnaugh maps enhance

inductive understanding, which is relatively independent of query complexity. This

explains why Karnaugh maps increasingly outperform textual Boolean expressions as

query complexity increases.

1.6 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 reviews previous research on visual query interfaces for information ex-

ploration, focusing on information visualization techniques, representations of Boolean

queries, visualization of query results, and interaction techniques for data selection

from visualizations.

Chapter 3 presents a mathematical formalism that relates the important compo-

nents of visual query interfaces. The formalism includes a transformation model of

queries on data, a model of query result visualization, and a set of recursive models.

Formal definitions of the components and the transformation mappings between them

are presented there.

Chapters 4 derives a software model of visual query interfaces from the formalism.

The software model can be used as a reference model for designing practical visual

query interfaces. Based on it, a new prototype system has been implemented.

Chapter 5 reviews previous research on query language evaluation. Chapter 6

presents the new experimental methodology on which the experiment design is based.

Measurements of user performance for understanding Boolean expressions using textual
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and Karnaugh map representations are then described in Chapter 7.

Chapter 8 presents conclusions, including a summary of the contributions of the

thesis. Chapter 9 presents a discussion of directions for future work.
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Chapter 2

Related Work on Visual

Information Exploration

The research reported in this thesis lies within several sub-areas of graphical interac-

tion: information exploration, information visualization, and visual query interfaces.

Research relevant to my work in these areas is reviewed in this chapter.

2.1 Information Exploration

“Information exploration is taken to mean the information seeking behaviours that

can occur in primary databases and Internet resources in which end users interact

with information, making relevance judgments and re-formulating the queries during a

sequence of examinations and assessments of information”

———– by Wilson [102]

By its nature, information exploration is an interactive process, with the user at its

centre [50]. To better understand user interface issues in information exploration, it is

necessary to have a model of the behaviour of users exploring information.

2.1.1 Information Exploration Process

Models of the information exploration process have been described in similar ways by

different researchers. Most of them assume an iteration cycle, like the ones outlined in

Table 2.1.
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Step Norman (1988) Marchionini (1995) Hearst (1999)

1 Forming the goal Recognize, accept prob-
lem

Start with an informa-
tion need

Define, understand
problem

2 Choose a search system Select a system and col-
lections to search on

3 Specifying an action Formulate a query Formulate a query
4 Execute the action Execute search Send the query to the

system
5 Perceiving the state of

the world
Examine results Receive results in the

form of information
items

6 Interpreting the state of
the world

Extract information Scan, evaluate, and in-
terpret the results

7 Evaluating the outcome Reflect/iterate/stop Stop or reformulate the
query and go to step 4

Table 2.1: Information Exploration Process Models.

These high-level, theoretical models of the information exploration process are gen-

eralizations; each of their authors points out that in practice they contain variations.

The general model of information exploration they represent, however, remains the

basis of most information exploration systems currently in use.

Many studies have examined user behaviour during information exploration, which

led to several more detailed models of information seeking. These models take informa-

tion seeking to be an evolving problem-solving activity in which users integrate results

from the system with information they otherwise possess.

A representative model is the “berry-picking” model proposed by Bates [6]. In

describing how users’ information needs are affected by the exploration process, the

“berry-picking” model makes two important points.

1. As users internalise information encountered in the search process, their infor-

mation needs, and consequently their queries, continually change. Information

encountered at one point in a search often leads the search in a new, unanticipated

direction.

2. Users’ information needs are not satisfied by a single final retrieved set of docu-
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ments, but by a series of selections combined with fragments of information found

along the way.

The berry-picking model is supported by several observational studies, including

that of O’Day and Jeffries [75]. They found that information seeking consists of a series

of diverse interconnected searches on a problem-based theme, and that satisfying one

goal creates new goals, which push search in new directions.

2.1.2 Visual Information Exploration

Occasionally users know exactly what they are looking for and where it is, but of-

ten they have only a faint idea of what they are trying to find. How can they find

information when they lack the specific knowledge needed to form a query?

Traditional search requires users to retrieve information by providing precise queries

with meaningful keywords, which does not work. More elaborate systems are needed

to provide exploratory search, which can function even when users do not know what

they are looking for until they see and recognize it.

In exploratory search, users perceive and interact with the data. Researchers have

found that visualizations communicates the salient features of the information, using

methods that are natural for the human mind to perceive and understand [50]. Ap-

plying visualization techniques to help users exploring information is called visual

information exploration.

Visual information exploration systems usually use visual query interfaces, which

are essentially based on the use of visual representations to depict the domain of interest

and express the related requests. They present data in a visual form, allowing users to

see and interact directly with the data, which is a powerful way of perceiving patterns.

The process of visual information exploration is illustrated in Figure 2.1.

Visual query interfaces include both a query language in a visual form and a variety

of interaction mechanisms to facilitate data exploration. Visual query interfaces must

provide two interaction modalities.

• A visual query language. Visual query languages represent queries as a set of

visual features. Users can then reason visually to understand and specify queries.

A successful visual query interface must facilitate query specification, refinement

and modification, which are all important in information exploration.
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Figure 2.1: The Process of Visual Information Exploration.

• Visualizations of the result data. The result of a query must be easily

perceived and understood by users so that they can analyse it and make decisions.

When working with visualizations, selecting, browsing, navigating and scanning

data are all important to users. A successful interface should allow users to do

those operations easily and naturally.

Visual query interfaces are oriented to a wide spectrum of users who may have

limited technical skills and who generally ignore the inner structure of the accessed

database. Many visual query interfaces have been proposed in the past, adopting

a range of different visual representations and interaction strategies. Some typical

techniques are reviewed later in Section 2.3. In a visual query interface, visualization

techniques play important roles, so that the next section reviews the basic concepts of

information visualization.
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2.2 Information Visualization

According to Card, Mackinlay, and Shneiderman [15], information visualization is de-

fined as:

The use of computer-supported, interactive, visual representations of abstract data

to amplify cognition.

——Readings in Information Visualization: Using Vision to Think [15]

Since the late 1980s, information visualization has developed as researchers seek

ways to support understanding and analysis of abstract data (data that is not inherently

geometric) by using interactive computer graphics and visualization.

2.2.1 The Process of Visualization

Visualization can be conceived as applying a mapping from data values to visual rep-

resentations. A few attempts have been made to formalize the visualizing process.

Card, Mackinlay, and Shneiderman developed a reference model [15] for visualization

to describe the mapping process, which is shown in Figure 2.2.

Figure 2.2: The Process of Information Visualization.

The reference model includes three steps of the visualization process:

• data transformations from raw data input to data tables;

• visual mappings from data tables to visual structures, and

• view transformations from visual structures to the final views.

The transformations and mappings are conditioned on the user’s task and manip-

ulated by the user through an interface.
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The first step in the model is to transform the raw data into the data table, which

sometimes can lead to a loss of information, usually from a reduction of variables or

cases through statistical computations. Missing data values can also be constructed to

fill out the structure of the table.

The second step in the model, the visual mapping from data tables to visual struc-

tures, is the most critical step in the visualization process.

The third step in the reference model is the view transformation from a visual

structure to a view of it. Interactive view transformations allow the user to get more

information from a visual view than would be possible from a static presentation.

Human interaction, which is part of the model, can alter all the transformations

and mappings described above. Users can adjust their views of the data, change visual

structures, or even affect data transformations.

2.2.2 Data Model

The raw data that is the input of a visualization comes in many forms, from spread-

sheets to the text of novels. Usually this data is transformed into a format that is more

structured and thus easier to map onto visual structures [15].

The usual data model is the relational data model introduced by Codd [24]. It is

a formal mathematical model based on a single tabular data structure, the relation.

The labels of the rows and columns in the data table are meta-data. The columns

represent variables, sets that represent the range of the possible values in the tuples.

Each row, called a tuple or data item, is an aggregation of related data values, one for

each variable.

Variable 1 Variable 2 . . . Variable n
Item 1 V alue11 V alue12 . . . V alue1n

Item 2 V alue21 V alue22 . . . V alue2n

. . . . . . . . . . . . . . .
Item m V aluem1 V aluem2 . . . V aluemn

Table 2.2: Data Table Model.

The table model has several advantages.

• It provides an easy to understand conceptual model for users;
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• it clearly depicts the variables associated with a collection of data, which is

important when selecting visualizations;

• it provides access to many existing datasets, from computer systems logs to

biological data to corporate data warehouses, many of which are already stored

in relational databases, without needing any additional translation; and

• it provides a general abstraction layer so that all data sources look equivalent;

Data transformations can be composed regardless of their actual implementation.

Conversely, some types of data, such as graphs or trees, are difficult to represent

using the table model. Furthermore, even given such a representation, some data

operations, such as a prefix tree traversal, are non-trivial. For these data structures,

having a custom data model may be a solution that is both easier to design and likely

to yield better performance than the more general table model.

Even given these disadvantages, the data table model is prevalent. In existing

general-purpose visualization tools, the most common data model is the relational

data model, which is used in Rivet [13], Snap-Together Visualizations [73], DEVise [63],

VQE [28], DataSplash [103], Sage/Visage [80, 79], and VisDB [57].

2.2.3 Visual Mapping

The second step in the reference model(Figure 2.2) is the most critical step in the

visualization process. It is the actual visualization step that maps data tables to

visual structures constituted by of a set of visual properties. The visual mapping

encodes dimensions and measures of the data into visual properties such as colour,

size, orientation, and shape.

A data table can be visualized in many different ways by choosing different visual

properties for each data attribute and by specifying different visual items for each data

item. Since the purpose of visualization is to amplify cognition [15], when defining

visual mappings, it is important to follow principles derived from theoretical and em-

pirical studies of human visual perception so that the visualizations can harness the

perceptual capabilities of the human visual system to the task of data exploration.

There exists abundant research on the use of visual properties to effectively encode

abstract data. For example, Ware [97] and Healey’s research [43, 44] connect psycho-

logical studies on human visual processing with information visualization techniques.

15



Such research helps visualization designers to understand the human visual system and

helps improve both the quality and the quantity of information that can be displayed.

In order to determining which visual encodings are effective, or possible, it is im-

portant to understand the different measurement scales for data. Measurement scales

for variables are commonly classified into four basic types [26, 97]:

• Nominal (only equal or not equal to other values),

• Ordinal (possess a total order),

• Interval (support addition and subtraction).

• Ratio (can do multiplication and division on them).

In some references [89, 90, 91], to simplify analysis, Quantitative data is used to

denote both Interval data and Ratio data.

There are many visual properties that designers can work with in visually encoding

data. Considerable research has taken place in finding guiding principles for encoding

data visually. Examples include Bertins Semiology of Graphics [9], Wilkinsons gram-

mar of graphics [99, 98], the Polaris formalism [89], and other similar work [44, 64, 71,

97]. Table 2.3 is a list summarized by Stolte [89] on the encoding relationship between

visual properties and data types. These Research is the foundation of information

visualization.

2.2.4 Data Selection and Visualization

During information exploration, which is an extended process in which users exam-

ine large scale collections of data with a view to understanding them, information

selection and visualization go hand in hand. Data to be presented is determined by

user-controlled selection; understanding resulting visualizations provides the criteria

for further selection. Visualization systems always include data selection mechanisms;

systems that primarily offer data selection, such as database management systems,

often provide visualization capabilities. A tighter integration between visualization

and selection will lead to more effective visualization systems for data exploration and

analysis.

Data selection can occur at any stages of the visualization process. For example,

raw data can be filtered before transforming into data table. Only selected data items
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Table 2.3: Data Type and Their Visual Encodings: Knowing the data type of the
attributes (whether they are ordinal or quantitative) helps in determining which visual
encodings are most effective [89]. This table gives some examples of how the visual
encoding might be used given specific data types.

from the data table are encoded with visual mappings. Or, only selected items in the

visual structure are displayed on the screen. Practically, how and where data selection

is performed is determined by the implementation of a specific visualization system. No

matter where it occurs, data selection is an integral part of information visualization

and exploration.

There are many techniques for data selection, usually use Boolean query, sometimes

explicitly, sometimes implicitly. Thus the following sections review existing Boolean

query specification mechanisms and show how they are integrated with visualization

techniques.

2.3 Boolean Query Specification

When exploring large data sets, it is necessary to partition the data set in order to

focus on comprehensible subsets. User-specified queries select those subsets the user

requires. Most such queries are based on Boolean algebra. Boolean queries have been
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employed in information exploration systems for decades. With the recent proliferation

of search engines, Boolean queries have become ubiquitous [86].

Many different interfaces have been introduced to support query specification.

When analysing existing approaches to Boolean query specification, I found two under-

lying query models: the Boolean expression model and the truth-table model. The two

query models lead to different representations of queries and interaction mechanisms

for query creation.

Based on their human-computer interaction styles and their underlying query mod-

els, query approaches can be classified into the following categories:

• textual approaches based on command languages or natural languages;

• form-based and dynamic query interfaces;

• graphical approaches to query specification based on Boolean expressions, and

• graphical approaches to query specification based on truth-tables.

These techniques are discussed in the following sections.

2.3.1 Boolean Expressions and Truth-Tables

A Boolean query normally consists of two parts: (1) query terms that specify matching

conditions of the data subsets, and (2) Boolean operators that join them into combi-

nations.

A Boolean expression is composed of atomic query terms, which are either true

or false, connected by Boolean operators into sub-expressions, which can be further

connected into higher order sub expressions. Query terms, denoted T1, T2, . . . , TN , are

combined using Boolean operators: AND, denoted by T1T2, OR, denoted by T1 + T2,

and NOT, denoted by T1.

A truth-table is a mathematical table used to compute the values of Boolean expres-

sions. It is based on a canonical form of Boolean expressions: any Boolean expression

using N terms can be written as the disjunction of 2N query fragments in which all

terms are written either negated or not. These query fragments are known as minimal

polynomials, and it is elementary to show that any Boolean expression can be written

as a disjunction of them. Thus, for example:

T1T2 + T1T3 + T2T3 = T1T2T3 + T1T2T3 + T1T2T3 + T1T2T3
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Only a subset of the 8 = 23 fragments occur in this expression, and formally each

expression can be uniquely defined by listing the minimal polynomials that appear in

it. Figure 2.3 shows the truth-table representation for this Boolean expression.

Figure 2.3: Example of a Truth-Table

Each unique query term creates a column in the truth-table. All the attributes are

Boolean values, each of which is “true” or “false” (here I use 1 to represent the “true”

value, use 0 for “false”) depending on whether the corresponding term is negated or

not.

Each possible minimal polynomial forms a row in it. There is an extra column

used for indicating whether the Boolean expression is true for the minimal polynomial.

“true” if the minimal polynomial is included in the expression, “false” otherwise. Any

Boolean logical combination of the query terms can be represented using a truth-table.

2.3.2 Command Languages and Natural Language for Data

Querying

Traditional query systems require users to express their queries in a textual command

language based on Boolean expressions, which are powerful and precise. For example,

SQL, is the most commonly used command language in database querying. When

formulating a Boolean query in SQL, the query is created by conjoining query terms

with Boolean operators AND, OR and NOT, and sometimes parenthesis. The following

example is a typical SQL query.
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SELECT Department, Name, Salary, Age

WHERE Department = ’Accounts’

AND ( Salary > 15000 OR Age < 30 )

Unfortunately, many users find that Boolean logic is difficult, both slow to formulate

and error-prone. For example, users have difficulty using parentheses to express the

precedence of Boolean operators when building complex queries. The meaning of AND

and OR in Boolean logic also conflicts with the meaning in English: AND tends to

be inclusive in English but is exclusive in Boolean logic; OR tends to be exclusive in

English but is inclusive in Boolean logic.

Table 2.4 shows the results of a survey [18] on the frequency of SQL syntax errors

on a scale of 1 (never) to 7 (very often). In the table, “Misplaced brackets” ranks

highest among all errors. “Improper nesting of AND/OR” and “use of AND for OR

or vice versa” are also frequent.

Table 2.4: The SQL Syntax Error Rate. The errors are scored on a scale of 1 to 7. 1
means user never made the error, 7 means user made the error very often.

Because of the difficulty that users have with Boolean operators, researchers have

suggested that designers should avoid using logical operators and parenthesis [39].

Thus, various techniques have been developed as alternatives.

Natural language interfaces for query formulation have been recognized as an en-

hancement for end-users in some fields such as World Wide Web search engines. They

allow users to choose from a selection of common simple ways of combining query terms,

including ‘all the words’ (place all terms in a conjunction) and ‘any of the words’ (place
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all terms in a disjunction). But sometimes AND and OR are still explicitly used in nat-

ural language interfaces, despite being ambiguous. It is also hard to express complex

Boolean queries using such interfaces.

2.3.3 Form-Based Query and Dynamic Query Technique

Form-based query interfaces and dynamic query environments [1, 28, 84] allow users to

construct queries by simply specifying query terms. Users do not need to worry about

their logical combinations, because the structure is predetermined by the interface.

Dynamic query systems also provide users with an immediate visual presentation of

query results, giving the user guidance for completing partial queries.

But these interfaces accept only conjunctions among query terms, so that the query

structure and the number of query terms is predetermined. The strong restriction on

query structure makes them easy to use, but at the cost of power, because many queries

are not supported.

2.3.4 Graphical Approaches to Query Specification Based on

Boolean Expressions

Query-by-Example (QBE) [107] uses a tabular representation to create queries for re-

lational databases. It uses visual tables where the user enters commands, example

elements and conditions. Many of today’s graphical front-ends for databases use ideas

from QBE. But when represented in QBE, complex Boolean queries are not straight-

forward and thus they are difficult to form and understand.

Network(or graph) representations have emerged as popular graphical representa-

tions for database queries, with nodes and links representing components and their

relationships. For example, in the Gql interface [76], entities are represented as circles

and their associated attributes as ovals, with the attribute name appearing inside the

oval, and with functions represented by labelled directed arcs. Such a representation

eliminates the difficulty of dealing with the precedence of logical operators, and thus is

more understandable than an textual expression that uses parenthesis, There are many

examples of this type, such as LabView [38], GLOO [33], and GQL [5].

Magic Lens [36] uses windows to represent query terms, and uses windows that

overlap other windows to represent logical combinations of terms. Each overlapping
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window is associated with a Boolean operator that describes how it logically combines

the windows that are underneath it. One advantage of Magic Lens is tight integration

of the display of query results: data subsets are visualized in the window they satisfy,

which helps users to analyse the results. To formulate Boolean queries, users must

correctly arrange the windows, which is hard when queries are complex.

Both network representations and Magic Lens display the logic operators explicitly,

and users must understand the meaning of operators.

Figure 2.4: Query Represented with Filter/Flow

The Filter/flow representation [41, 72, 106] for Boolean queries solves the problem

by visually representing the logical relationships. It uses the metaphor of water flow-

ing through filters: sequential flow for conjunction, parallel flows for disjunction. A

similar representation is the grid of tiles designed by Anick [4]. Each query term is

represented within a block. The blocks are arranged into rows and columns. The posi-

tional relationship of blocks represents the Boolean relationship between query terms:

Blocks in the same row denote conjunction; blocks in different rows denote disjunction.

Thus Boolean relationships are visualized with visual features, which is intuitive. But

visualizing complex queries requires much screen space, which limits its effectiveness.

When using Boolean expression based approaches for query specification, users

need to have explicit logical structures in mind. They must be able to predict from the
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query what records will be in the final listing, a difficult task that puts a heavy load

on working memory when queries are complex.

2.3.5 Graphical Approaches to Query Specification Based on

Truth-Table

TEBI [39], the Truth-table Exemplar-Based Interface, provides a user with a set of

example data when she specifies a list of query terms. Example data items are organized

in a truth-table, each row being a concrete example of a Boolean combination of the

query terms. The user selects rows from the table to create a query, which is the

disjunction of the selected rows. A similar system to TEBI is Query-by-Browsing

(QbB) [29], which works by allowing the user to browse a database and select examples

of records. The system then uses machine learning techniques to generate a query from

the user’s examples.

Figure 2.5: The TEBI Interface for Query Specification.

When creating queries using such interfaces, users only need to read, recognize, and

select. They do not need to worry about Boolean combinations of query terms. Thus

the task of specifying queries is easier. But the linear arrangement of the items in a

truth-table is not efficient: users can only browse the items sequentially. When the

number of query terms grows large, sequential browsing is time-consuming.

Truth-table based representations can be improved by visualizing elements with a

set of visual features. Venn diagrams have been proposed as a more understandable way
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of representing Boolean queries. Each query term is drawn as a circle, and intersections

of circles denote conjunctions of terms. Each area in a Venn diagram represents a row

in the truth-table. Venn diagram based query interfaces include GQL [70], VQuery [55],

Cougar [45], and Link Crystal [81].

Figure 2.6: Venn Diagrams.

Experiments have proved that a simple Venn diagram can produce faster and more

accurate queries than command language based syntax [49, 55]. However, a problem

with Venn diagram is the limitation on the number of variables: it is not easy to expand

the Venn diagram beyond 3 query terms.

InfoCrystal [88] was designed to improve the poor extensibility of Venn diagrams.

It visualizes each row (query fragment) in a truth-table as a graphical icon Multiple

visual coding principles such as shape, size, colour and orientation, are used to enhance

the representation, showing the connection between icons and query terms. Thus

InfoCrystal can visualize queries with any number of query terms. When a user wants

to specify a query, she needs to find the graphical icons that meet her information need

and select them. The query is the union of the selected query fragments.

The problem with InfoCrystal is that even simple disjunctive queries can be com-

plex. When the number of query terms grows, the InfoCrystal becomes difficult to

use.

Compared to Boolean expression based approaches for query specification, truth-

table based approaches eliminate the need to specify logical operators, and rely more

on recognition than generation [39]. When creating queries, users only need to read,

recognize, and select. They do not require users to have explicit logical structures in

mind, which reduces the load on working memory and makes query specification much

easier. This indicates that truth-table based query interfaces are promising.
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Figure 2.7: InfoCrystal Interface.

Unfortunately, existing query interfaces based on truth-tables have several limita-

tions. How to design new visual representations for truth-tables that are more intuitive

and extensible? The formalism reported in this thesis provides possible solutions. It

allows designers to apply visualization techniques for visualizing truth-tables, so that

more intuitive and extensible visual query interfaces can be designed, making query

creation easier and less error-prone, and integrating the query with the visualization

of its results.

In the literatures, the definitions of “graphical query language” and “visual query

language” are not distinct. I would like to clarify the difference between them here.

Graphical query languages include all the graphical approaches for query representa-

tion and creation, including those that use Boolean operators explicitly. Visual query

languages visualize Boolean relationship with visual features, allowing users use their

visual reasoning skills to understand and specify Boolean queries. Thus visual query

languages are a subset of graphical query languages. This thesis focus on designing

and analysing visual query languages.

2.4 Query Result Display

In many database systems and query interfaces, users can issue only one query at a

time, and is not easy to change a query slightly or to express vague queries. Most

importantly, only data items that exactly meet the query are returned and displayed,
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which may contain either no data items, and thus no hint for continuing the search, or

too many data items for efficient browsing.

When exploring large and unfamiliar data sets, it is often difficult to find desired

data with such interfaces, especially when users have only a fuzzy understanding of

their goals. Thus, better user interfaces would aid the understanding and expression

of information needs by helping users to understand their query results and keep track

of the progress of their exploration.

Researchers have developed various approaches to improve query interfaces so that

better feedback is provided for users’ queries. Information seekers often express a desire

for a user interface that organizes search results into meaningful groups, in order to

help them make sense of the data, and decide what to do next [46]. Some techniques

have been developed for this purpose, such as providing immediate updates to query

results, visualizing context information, ordering the display of results, and revealing

their relationship with query terms. These techniques are reviewed in this section.

2.4.1 Query Preview and Immediate Updates of Query Re-

sults

Combining query preview with dynamic query interfaces provides immediate update

of query results. When users manipulate selectors, they get immediate feedback from

their actions. Such feedback gives them better understanding of data distributions.

The HomeFinder application [3], for example, provides an overview visualization

of how houses are distributed geographically by representing each house as a dot on a

map. The interface provides sliders that are mapped to individual data attributes. As

the user adjusts the sliders, the results of the query are dynamically updated on the

displayed map.

But dynamic query systems disclose only data that satisfies the current query limits,

neglecting the possibility that contextual information provided by objects not matching

the current limits might be useful.
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2.4.2 Context Information of Data Distribution along Each

Attribute

Dynamic query histograms [27], Data Visualization Sliders [31] and Attribute Ex-

plorer [94] are extensions of dynamic query techniques, which aim to provide context

information about the data distribution. They display the data distribution along each

attribute.

For example, in Attribute Explorer, the distribution of all data items on all at-

tributes is represented by a set of histograms. Limits can be placed on an attribute

to select a range and, consequently, the objects for which the attribute lies within the

chosen range. When more than one attribute is explored, the histograms are linked so

that a selection based on one attribute is “brushed” into the other histograms. It uses

colour-encoded sensitivity to guide the user and reveal the data distributions along the

attributes.

2.4.3 Rank of Query Results

Some systems choose to display the query data items in a ranked list. Ranked output

has been used very commonly in information retrieval systems. In some digital library

systems, for example, the ordering within the set of retrieved documents is based on

well understood formal characteristics of the documents, such as date of publication,

title, or author. In best-match systems [25], on the other hand, neither the matching

rule nor the ranking rule is easily understandable.

One relevant database visualization system is VisDB [57], which focuses on display-

ing as many data items as possible to provide feedback as users refine their queries.

This system even displays tuples that do not satisfy the query, indicating their “dis-

tance” from the query terms using spatial encoding and colour. This approach helps

users avoid missing important data points that fall just outside of the selected query

parameters.

2.4.4 The Relationship of Query Results with Query Terms

To help users understand query results and to support query reformulation, some

visualization techniques make explicit the connection between the query terms and
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result data items, with the goal of showing the contribution of each query term to the

query result items. Several examples are described below.

The first method shows the relationship between each data item and the query

terms. Examples include TileBars [45] and SeeSoft [32]. In TileBars, for example, a

graphical bar beside the title of each retrieved document shows the degree of match

for each term.

The second method shows how many data items satisfy each query term. Examples

include InfoCrystal [88], VQuery [55], Cougar [45], Flow diagrams [41, 106], and Mosaic

plot [53]. For example, InfoCrystal displays in each icon the number of data items that

satisfy the corresponding query. Flow diagrams show quantity information of possible

results flowing through the filters.

The third method visualizes data subsets in the context of the query terms they

satisfy. Examples are Polaris [90], Magic Lens Filters [36] and the Envision system [37].

Some systems use spatial distance to show the relationship of query results to query

terms. Examples are Bubbleworld [8], InfoCrystal [88], BEAD [17], VIBE [58], and

LyberWorld [48]. For example, BEAD shows a landscape view of an entire document

collection. Articles in a bibliography are represented by particles in 3D space. The

spatial position of articles indicates their similarity to each other.

In summary, query result displays aim to provide immediate and explicit feed back

for users’ queries. The feed back should reveal the relationship of query results with

query terms so that users can better understand the query and thus refine it more

efficiently. Tight coupling of queries with results is especially important in exploratory

search [66, 87].

As been reviewed in this section, there exist various approaches for query result

display that help information seekers make sense of the data and the queries. But it is

rare to find formal descriptions that are useful for designing new techniques of coupling

queries with their results. Without formal models, visualization techniques cannot be

fully utilized for query result representation.

2.5 Interactive Data Selection on Visual View

In data visualization, users often focus on interesting subsets of the visual view for

further analysis. This is accomplished by selection tools, which allow users to select
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data intuitively.

Existing selection tools accomplish data selection by allowing the user to differen-

tiate an area of a visual view, thereby selecting data items displayed within that area.

Wills [101] comprehensively describes different possible combinations for the selectors

in his selection calculus.

Though there are many different selection tools, they can be classified into two

types: lassos and brushes. A lasso (often a “rubber-band” rectangle, or free hand

drawing region) is defined by drawing it onto the plot. When the shape is complete,

the selection operation is performed. A brush is a pre-defined region, typically a

rectangle. With a brushing tool, user moves the brush to different positions on the

display, which selects elements touched by the brush.

Brushing is a widely used mechanism for interactively selecting a subset of data in a

visual view. The principles of brushing were first explored by Becker and Cleveland [7,

23] who used 2D rectangular brushes to highlight, label, and delete data points in

matrices of linked scatter plots. Since then, a variety of brushing techniques and

theories have been developed.

Various brushing techniques have been introduced, such as the N-dimensional, mul-

tiple, and composite brushes in XmdvTool [67, 96]; angular brushing for parallel coordi-

nates [42], and similar techniques [51, 78, 95, 104]. Chen [20] also provides “compound

brushing”, where multiple brushes can be joined via various logical operations and

expressions (e.g. AND, OR, XOR, NOT etc) in a graphical data-flow language.

However, direct data selection on visual view is limited to spatial position. Lassos

and brushes merely specify a region. Direct selection by other visual features such

as colour, size and shape are not common. Some visualization applications [90, 93],

Polaris [90], for example, use legends to explain the meaning of visual features used in

a visual view. By brushing on the legends, the items displayed using the chosen visual

properties are selected. To make data selection more general and efficient, Heer [47]

uses a “query relaxation” technique, allowing users to expand their selections based

on an initial selection. For example, a user may point to a blue square in the visual

view and refer to “select all items sharing the same visual property like this one”. This

approach enables generalized selections based on the properties of the item.

Most existing selection tools are direct manipulation mechanisms, because it is

easier to indicate sets of objects by direct manipulation than by writing Boolean ex-
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pressions. Moreover, in existing systems, specifying complex Boolean combinations of

multiple selections is not easy. Although some work, such as Chen’s compound brush-

ing [20], allows logical combinations of multiple selections, explicit logical operators

are required. The visual displays of logical combinations are restricted to very sim-

ple expressions. With these systems, users face the same difficulty as with Boolean

query specification. At the same time, only exact results of logical combinations are

highlighted. Therefore, users face the problems they encounter when analysing query

results.

When the user indicates interest in a subset, the degree of interest is a binary vari-

able - either interested or uninterested. The user’s indication of interest is a mapping

from the visual domain to {0, l}. Based on the analysis, data selection in a visual view

is no more than querying a visual view.

For instance, selecting a set of data by dragging out a bounding box on a scatter

plot is a simple query on features mapped to spatial position. All existing lasso and

brush tools are query mechanisms on position features. Therefore, two basic problems

need to be solved for querying on visual views. First, how can users specify logical

combinations of selections easily and efficiently? And second, what visual feedback

should be provided for multiple selection? Answers to these questions will result in

new interactive data selection techniques.

2.6 Formal Models of Visual Information Explo-

ration

The state-of-the-art of visual query interface design consists of many successful visu-

alization techniques. But the many aspects of visual information exploration, visual

representation of queries, visualization of query results, interactive data selection in

visual views, have been studied separately. The intrinsic connections between them

have not been described formally.

The lack of formal description inhibits the development of new representations

for queries, and natural integration of visual query specification with query result

visualization.

This section describes and analyses portions of the design space so as to understand

the differences and similarities among designs and suggest new possibilities. After
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reviewing the many existing solutions, I found that most visual query languages and

interfaces have intrinsic similarities, which can be described within a single model.

This thesis presents a formalism that captures the entities in query/visualization

environment in a single conceptual framework. The formalism fills the gap between the

research work in different areas, describing most existing methods of visual querying,

and allowing the designer to reason about them more rigorously.

Prior to my work several formal models of visual information exploration existed.

The Polaris formalism [89] designed by Stolte describes table-based graphical represen-

tations of relational databases. It is capable of compiling visual specifications automat-

ically into SQL queries and drawing commands that generate the display. This ability

enables designers to design systems that closely integrate analysis and visualization.

The Polaris formalism focuses on the generation of visualizations.

Lee’s visual database exploration (VDE) model [59] uses a directed graph struc-

ture to model the visual data exploration process. Vertices in the graph represent the

state of the visualization while edges are relationships between states. The evolution

of the states can be easily traced back to the database. The P-Set model of visualiza-

tion exploration [54], designed by Jankun-Kelly, describes the process of visualization

exploration and provides a framework to encapsulate, share, and analyse visual ex-

plorations. Both the VDE model and the P-Set model concentrate on describing the

process of visual data exploration.

All these formal models emphasize on data visualization but overlook query visu-

alization, which is equally important in visual information exploration environment.

Critical issues in information exploration such as Boolean query specification and rep-

resentation mechanisms are not addressed.

The formalism presented in this thesis describes all the essential components, to-

gether with their formal similarities and how they interact in a visual information

exploration environment. All the entities in the formalism are defined as tables. Thus

the querying and visualizing operations can be recursively applied on any component

in the environment. It explains how visualization and interaction techniques can be

used in designing user interface tools that help users to explore and analyse data. For

example, a query can be visualized as a multi-dimensional data set using existing vi-

sualization techniques, which results in many interesting visual query representations.

Having formal models for visual information exploration is beneficial. Because
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the formal models are general, they can be applied to a wide variety of visualization

problems. They can be used to help researchers understanding, designing, or analysing

visual information exploration systems.
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Chapter 3

A Formalism for Visual Query

Interfaces

This chapter presents a formalism of the basic components and behaviour of visual

query interfaces. The components include data, queries, query results, and visual

representations of them. Each component is defined as a table. The formalism is

augmented by mappings between components, visualizations and queries, which are

also defined as tables. The formalism is novel in that all entities may be either visualized

or queried. In these terms a visual query interface is the application of visualization

to queries, and selecting data from a visual view is the application of a visual query

on a visual representation of data. The formalism supports recursive visualization,

visualizing a visualization, and recursive querying, querying a query. It also provides a

natural visual representation of the information exploration process. Most important, it

unifies querying and visualization within a single framework that supports the analysis

and design of visual query interfaces.

3.1 The Table Model

As illustrated in Figure 2.2, high-level descriptions of data visualization define it as a

pipeline, through which a set of mappings transform raw data onto one or more visual

displays. The raw data, which is to be explored, comes in many forms. It is usual to

structure the data prior to visualization, normally as a table [15].
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3.1.1 Definition of the Table Model

A data set is tabularly defined by listing the attribute values of each data item in the

set. That is, each data item is a tuple of attribute values, as shown in Table 3.1, the

collection of tuples being a relation.

Variable 1 Variable 2 . . . Variable n
Item 1 V alue11 V alue12 . . . V alue1n

Item 2 V alue21 V alue22 . . . V alue2n

. . . . . . . . . . . . . . .
Item m V aluem1 V aluem2 . . . V aluemn

Table 3.1: The Table Model.

The formal model of a table has the following features.

• An item set, or table, is a set of Items, {item1, item2, . . . , itemm}, with each

item itemi a tuple of attribute values. Each item in a table has the same set of

attributes, which differ in value from item to item.

• Attribute values are elements of value sets Aj. The value of attribute j of item i

is written valueij = itemi.Attributej. valueij ∈ Aj.

• The item space IS is the set of all possible items that can appear in an item set.

The item space is the Cartesian product of the value sets of all attributes in an

item set: IS = A1 × A2 × . . .× An.

• The set space is the power set of the item space, set of all item sets.

• The relationships between an item set, its item space, and its set space are: the

item set is a subset of the item space; the item set is an element of the set space;

and the item space is an element of the set space.

One representation of an item set, a very useful one, is a join of the item space with

a Boolean attribute that indicates whether or not a particular item is in the item set.

In a pure relational model, duplicate tuples are not allowed. But in information

exploration, there might be multiple tuples with identical values of the attributes. In

order to accommodate duplicate tuples, the formalism defines them as instances of

the same item. When it is important to know the number of instances of an item in
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the item set, the Boolean-valued attribute can be replaced with a cardinal-valued one

indicating how many copies of that item exist.

Many visualization systems utilize similar relational data models. The key aspect of

the table model presented here, distinguishing it from existing ones, is that it explicitly

introduces the concepts of item space and set space, which are central concepts of the

formalism. The item space has been introduced as a property of a single item set.

But data exploration environments are designed for a universe of data sets, any one

of which may be visualized and queried. It makes sense to define the set space as a

property of a set of item sets, all of which have the same attribute structure. Therefore,

the set space is a natural domain for query and visualization mappings.

Tables also provide a basis for defining queries and visualizations. I also show

how tables can be used to calculate the basic operations of information exploration,

visualizing and querying.

3.1.2 Applying Tables to Tables

To describe data visualization using tables it is necessary to define visual structures as

tables, and to describe how tables are applied to tables.

Figure 3.1 depicts the basic process of applying tables to tables. A discrete mapping

is a table composed of two parts: keys and values. When applying the mapping table

on an item set, the items are used as keys in the mapping table, the resulting item set

is retrieved by looking up the associated values of the input items.

Figure 3.1: Applying a Table to a Table

Assume a mapping m is defined as a table. The keys in the table define an item set
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I. The table can be applied to any subset of I, therefore the domain of the mapping

m is P (I), the power set of I. Similarly, extracting the values from the mapping table

will get an item set O. When applying the mapping on an input item set, the result

item set is always a subset of O. therefore the codomain of the mapping m is P (O),

the power set of O. Then the mapping is denoted m : P (I) → P (O).

3.1.3 Data Visualization by Tables

In the formalism, a visualization is defined by a mapping table, and this definition

subsumes most formal definitions that have been used in previous visualization models.

That is, a visualization is a mapping from data items to visual presentations, which

associates each item in the data set with a tuple of visual qualities. These visual

features, combined in a single entity, are called an “icon”. The visualization mapping

is formally defined as mvd : DS → V S, with domain DS, the data set space, all

possible data sets; and codomain V S, the visual representations space, which includes

all possible combinations of icons.

Similar data visualization mappings have been explored formally in many visu-

alization models and systems, such as Lee’s GDE model [60], the APT system [65],

Rivet [13] and DEVise [63]. Compared with existing ones, the visualization mapping

in this formalism has a more rigorous mathematical foundation because it is a mapping

from set space to set space, instead of using simple item sets as domain and codomain.

It allows researchers to analyse the data visualization environments on a higher level.

Furthermore, in the formalism, a visualization mapping itself is defined as a table

too, with elements of the item space as keys and the associated visual presentations (the

icons) as data. (As described, the table is normally a poor implementation strategy,

but any implementation is formally equivalent to the table.)

Each icon is a combination of visual features. The concept “visualization term”

is used to denote a mapping that maps a data attribute to a single visual feature.

A visualization mapping that uses multiple visual features to encode information is

defined as the Cartesian product of its visualization terms. A visualization table is

applied to a data set with the data items as keys for retrieving icons. Figure 3.2 shows

an example of a visualization mapping.

The above analysis shows that all entities in a data visualization: the data, vi-

sual representation of the data, and the visualization mapping, can be described as
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Figure 3.2: Example of the Data Visualization Mapping

tables. Treating data visualizations as applying visualization tables to data tables is

the essential principle of the formalism.

3.1.4 Table Model for Queries

Many techniques exist for visualizing elements of data spaces. These techniques can be

used to visualize queries so that query visualizations are tightly integrated with data

visualizations. Section 2.2 showed how to visualize tabularly defined data. It is now

necessary to define queries tabularly.

Tabular definition of Boolean queries is based on truth tables, which, as described

in Section 2.4.3, are a canonical form of Boolean expressions: any Boolean expression

using N unique terms can be written as the disjunction of no more than 2N query

fragments. For example,

T1T2 + T1T3 + T2T3 = T1T2T3 + T1T2T3 + T1T2T3 + T1T2T3

Any Boolean expression can be defined using a truth-table. Each row in a truth-

table is related with a query fragment. In a truth-table, the last column indicates

the value of the Boolean expression. “true” if the query fragment is included in the

expression, “false” otherwise. Here I use “isTrue” to be the title of the last column,

use 1 to represent the“true” value, and use 0 for “false”. The truth-table shown in

Figure 3.3 represents the Boolean expression T1T2 + T1T3 + T2T3.

This construction gives queries the same formal structure as data sets and visual

presentations. Based on the table model, Q is defined as the set of all the query

fragments included in a truth table. A particular truth-table defines a specific Boolean

query function. The query space QS is defined as the set of all the possible queries
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Figure 3.3: Example of a Truth-Table

that can be formed.

3.1.5 Visualizing Queries

A query visualization is a mapping from queries to visual presentations where each

query fragment associated with a set of visual qualities. This is described as the

mapping mvq : QS → V QS, with domain QS, the query space, and codomain V QS,

the query visualization space.

Figure 3.4 presents a novel visualization of a 3-dimensional query table. Each query

fragment is represented as an icon with coloured petals. A unique colour, orientation

and position is assigned to each petal. The presence of a petal is determined by the

value of the related attribute. If the isTrue value of a query fragment equals to 1,

then the icon is surrounded by a blue circle. For example, if a query fragment is

< 1, 1, 0, 1 >, then its associated icon has a red petal, a green petal, and is surrounded

by a blue circle. In this example, the query is T1T2 +T1T3 +T2T3. It is a disjunction of

four query fragments: T1T2T3, T1T2T3, T1T2T3, and T1T2T3. Therefore, only the icons

associated with the four query fragments are surrounded by blue circles.

Such visual representations can be used for specifying Boolean queries: a set of

query fragments is presented and a user needs only to find the fragments that meet

her information requirement and select them. Thus, specifying Boolean queries is

transformed into visual search, which eliminates the explicit specification of logical

operators. TEBI [39], InfoCrystal [88] are examples of such interfaces.
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Figure 3.4: Iconic Representation for Queries

Since queries are defined tabularly, techniques for visualizing multi-dimensional

data can be applied to visualize them. Figure 3.5(a) shows an example of nested coor-

dinate representation for a 4-dimensional query fragment space. A t-dimensional query

fragment space is represented as a binary tree, the height of which is t. Each query

fragment is a leaf node. Therefore, techniques for visualizing trees suffice to visualize

queries. For example, Figure 3.5(b) uses a treeMap to visualize a 3-dimensional query

fragment space.

Furthermore, two query fragments that differ in only one attribute can be combined

to form a simplified expression. For example, T1T2T3 + T1T2T3 = T1T2. Gray code

visualization techniques use this property: fragments differing in a single attribute are

always adjacent, which aids query simplification.

Figure 3.5(c) shows a Karnaugh map [56], a 2-dimensional tabular representation

of a truth-table that facilitates management of Boolean algebraic expressions. Each

cell stands for a single query fragment. The rows and columns of the map are ordered

according to the principles of Gray codes: a single variable changes value between

neighbouring cells. This tabular representation is familiar and intuitive to use. The

regular tabular layout of the cells makes the Karnaugh map easy to view, navigate,

and interact with. Figure 3.5(d) shows a circular representation based on Gray codes.

In Figure 3.5(b) and 3.5(d), the cells differ in size, which encodes extra information,

such as the number of data items associated with each query fragment.
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Figure 3.5: Examples of Query Visualization

3.2 The Transformation Model

So far, four objects have been introduced:

• DS: the space of data sets, on which visualizations, or queries can be created,

• V S: the space of visual representations for data sets,

• QS: the space of Boolean queries on the data sets, and

• V QS: the space of visual representations for queries.

Each element of these spaces can be represented as a table.

Two visualization mappings have also been introduced: mvd defines visualizations

on the data space, and mvq defines visualizations on the query space, both of which

can be represented as tables.
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To model formally the connections between the concepts, I use the transformation

model shown in Figure 3.6, which uses diagrams like those that appear in category

theory. It depicts the mappings between data, queries and visual representations. Two

new mappings are introduced into the model: mqd, which defines queries on the data

space, and mqv, which defines queries on the visual representation space.

DS
mqd //

mvd

��

QS

mvq

��
V S mqv

// V QS

Figure 3.6: Transformation Model of Visual Query.

3.2.1 Query on Data Space

Query specification consists of two steps: (1) specifying the query terms, and (2)

specifying the query structure. In the formalism, a query term is a table indexed by

item attribute values, with a single Boolean-valued attribute. The query structure is

a truth-table. If a query is composed of several independent query terms, then the

query mapping table is the Cartesian product of the query term tables joined with a

truth-table.

Therefore, the query mapping table for mqd is a table indexed by data items, each

item associated with a query fragment. The isTrue value of a query fragment indicates

whether or not the items associated with it are selected by the query.

Figure 3.8 presents an example of a query which is composed from 3 query terms:

T1 = (Make = BMW), T2 = (Size = small), T3 = (colour = black).

The logical combination of the terms is “meet at least two of the three query

terms”. If a data item is <BMW, full, black>, then its associated query fragment is

< 1, 0, 1, 1 >. The isTrue value is 1, indicating the item meets the query.
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Figure 3.7: Example of Data Query Mapping Table

Applying the query mapping table to a data item set results in a query fragment set.

Sometimes it is important to know how many data items are associated with a query

fragment. Then the query fragment set is represented as a join of the truth-table with

a cardinal-valued attribute indicating how many copies of that fragment exist. Figure

3.5(b) and 3.5(d) are examples of visualizing the query fragment set in this form.

3.2.2 Visual Query on Visual Representations

The mapping mqv defines visual queries on visual representation spaces: it specifies

both queries on visual features and visualizations for the queries.

In the transformation model, from the data space DS, there are two ways of defining

V QS by composition.
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Figure 3.8: Example of Applying Query Mapping on a Data Set

(1) DS
mqd // QS

mvq // V QS

(2) DS
mvd // V S

mqv // V QS

It is reasonable to restrict the table so that each element of DS maps to only one

element of V QS, which means the four mappings in the model obey the following

identity.

mqv ·mvd = mvq ·mqd =⇒ mqv = mvq ·mqd ·m−1
vd

In the above expression, the composite function mqd ·m−1
vd is a Boolean query that

maps visual presentations to Boolean values, while mvq maps Boolean queries to visual

presentations. Therefore mqv defines visual queries on the visual representation space.

It specifies not only queries on visual features but also visualizations of the queries.

Of course, the visualization function mvd may not be one-to-one, in which case it

induces equivalence classes on DS, which must be respected if the visual query is to

be well-defined.

The above analysis describes an approach for interacting with visual representa-

tions: first specify constraints on visual attributes, then map the visual items to another

set of icons based on the query visualization function.

In Figure 3.9, data items are visualized as dots of differing size. The user has

dragged out a rectangular box in the dot size list, which specifies a query term on

the size attribute. Then the selected dots are assigned a colour to differentiate them

from the others. The colour-coding is the visual mapping of the query. This is an
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Figure 3.9: Example of Visual Query on Visual Features - Brushing

example of brushing, a widely used technique for interactively selecting a subset of

data in visualization applications [67, 78].

This formal definition of mqv shows that the essence of making a data selection

within a visual view is making a query on visual attributes. Each individual selection

(or brushing operation) is a visual query term. Logical combinations of multiple selec-

tions are specified using the query specification method derived from the formalism.

An example of compound selection is shown in Figure 3.15.

3.3 Query Result Visualization

Tight coupling of queries with results is important in exploratory search [66, 87]. But

how should the coupling be implemented? Are there formal descriptions that are useful

for designing new techniques of query result visualization? The formalism provides an

answer.

3.3.1 Traditional Method of Query Result Visualization

In the formalism, the term “exact query result” Rd is used to denote the set of data

items that exactly meet a query. Rd is composed of only the data items associated

with the query fragments having isTrue equal to 1.

In most existing query interfaces, when a user specifies a query, only exact query

results, Rd, are returned and presented. With large and unfamiliar data sets, users

find it difficult to find the desired data with such interfaces.

In the example presented in Figure 3.10, the Boolean query is (Make = BMW)

OR (Mileage < 50000), which is composed of two query terms. The data items that

meet either query term are displayed. But the display provides no insight into which
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Figure 3.10: Visualizing Query Results

data item meets which query term or how many data items meet both the two query

terms.

Sometimes the user wants the relationship between data items and query terms. In

such cases the above display provides little support for further data analysis.

3.3.2 Example: Enhanced Visualization of Query Result

However, the visualization in Figure 3.10 can be enhanced, as shown in Figure 3.11.

Icons are coloured by query fragment, an addition to the original data visualization.

In this example, the icons have two sets of attributes: the original visual attributes

(x-axis and y-axis positions), and the visual coding by query fragment. Thus, the

visual representation shows how the data is distributed by query term so that users

can better understand the result.

3.3.3 The Transformation Model of Query Result Visualiza-

tion

The formalism provides a foundation that is useful for designing new techniques of

query result visualizations. To define query result visualization formally, the query

result item set R is defined as the join of a data item set D and the query Q

associated with it. Suppose ri is an item in R, then ri =< di, qj >, di ∈ D, qi ∈ Q, qj

is the associated query fragment of di based on the query mapping mqd.
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Figure 3.11: Visualizing Query Results

Compared with the “exact query results” Rd, R shows explicitly the relationship

between the data and the query. Therefore, visualizing R provides good feedback to

the user.

The visual representation of R is denoted as V R, which is a set of icons, one

for each query result item. R consists of two parts: a data item set, and a query.

When visualizing R, the visualization mappings mvd and mvq are applied. Therefore,

V R is the join of two visual sets: mvd(D) and mvq(mqd(D)). That is, V R is the

join of the visual representation of data and the visual representation of the query

specified on the data. Since mvd(D) = V , and mvq(mqd(D)) = mqv(V ), V R can also

be obtained by joining the visual representation of data and the visual query on the

visual representation.

Here DS
mqd +3 RS is used to denote the mapping from DS to RS. RS is the query

result space, the set of all possible query result item sets. The model in Figure 3.12

describes the mapping relationships between the data set space DS, the data visual

representation space V S, the query result space RS, and V RS, the visual representa-

tion space of query results.
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DS
mqd +3

mvd

��

RS

mvr

��
V S mqv

+3 V RS

Figure 3.12: The Model of Query Result Visualization.

Figure 3.13: Visualizing Query Results

3.3.4 Examples of Query Result Visualization

Based on the model, query results can be visualized, showing simultaneously both

data set and query structure. In Figure 3.11, icon codings for query fragments are

appended to the data visualization. Figure 3.13 uses a Karnaugh map to visualize

the query space. Items associated with a specific query fragment are displayed in the

corresponding cell. Each cell is a small visual view showing the icons of the data items.

In Figure 3.14, data items are visualized as dots differing in size. The user is

interested in a specific range of size, and selects the range by brushing on the dot list.

Then the selected dots are assigned a colour different from the others. Such a colour-

coding mechanism defines a visual mapping for the query based on the visual attribute

(dot size). Then all the items within the size range are displayed in that colour in the
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Figure 3.14: Visualizing Query Results

visual representation of query results.

In multiple view visualizations with linking, brushing in one view colours objects

in other views. Brushing in a view is a visual query, while the linked views are vi-

sual representations of the query results. Integrated with query structure specification

mechanisms, Boolean combinations of multiple brushing operations, compound brush-

ing [20], are easily supported. For example, in Figure 3.15, selections on the small

x-y-plots are query terms. Logical combinations of selections are specified by operat-

ing on the Karnaugh map at the bottom right, which is also a legend for the visual

coding of the query fragments. Visualizing compound selection is an instance of query

result visualization.

3.4 Visualizing the Mappings

In the formalism, all the mappings in the query/visualization environment are defined

as tables. Therefore, the mappings themselves can be visualized.

3.4.1 Visualizing the Visualization Mappings

From maps to modern visualization systems, there are many examples of visualizing

the visualization mappings. They are commonly called “legends”.

Map legends are traditionally provided to explain the content of a map. According

to the Kansas Association of Mappers (2005), the legend is defined as “An explanation

of the symbols, codes, names given to variables and other information appearing on

a map drawing or chart. It includes a sample of each symbol, line pattern, shading,
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Figure 3.15: Visualizing Query Results

or hatching appearing on the map along with annotations describing the meaning of

each.” In other words, it is an important map feature - the symbol used to interpret a

map that lists and explains the map elements.

Figure 3.16 presents a temperature map where colours are used for visualizing

temperatures. In the map legend, all the possible temperature values from the data

space and their associated colour values are ranked and presented, even though only a

few colours appear in the map.

In Figure 3.17, each icon comprises two visual features: colour and shape. Two

legends are provided explaining the meaning the visual features.

In the formalism, a legend is itself a graphical representation of the visualization

mapping. It depicts the mapping relationship between the data attributes and the the

visual features that constitute the visual representation space.

Legends can be interactive [85, 93]. Generally, an interactive legend has two roles:

presentation and interaction. Presentation depicts the current mapping from data

attributes to visual features, thereby supporting user interpretation of the visualization.

Interaction allows users to alter the visualization mappings dynamically, improving the

presentation of information features that interest the user.

Interactive legends exist in some modern visualization systems [85, 93], but they
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Figure 3.16: Example: Map and Map Legend

are not treated as the results of visualizing the visualization mappings. The formalism

makes explicit the formal identity, which helps users and designers to understand and

enhance them more effectively, and with less implementation effort.

3.4.2 Visualizing the Query Mappings

Similarly, query mappings can be visualized. Such visualization includes two parts:

truth-table visualization and and query term visualization. The first part was described

in section 2.4; this section focuses on the second.

Query term visualization examples include UI widgets used to control visual rep-

resentations of Boolean queries, including sliders, brushing histograms and toggle but-

tons. They are sometimes called “query devices” [2], especially when they are combined

with graphical data representations such as dynamic query interfaces. Like interactive

legends, query devices have two roles: presentation and interaction. For example,

a rangeslider visualizes 1-dimensional attribute values and uses draggable buttons to

specify range limits. Selected values are visualized in place, using, for example, different

colours than unselected ones.

Rangeslider-like widgets can be created to answer questions such as: what informa-

tion is to be visualized? how should the attribute values be arranged? or what interac-

tion mechanisms are provided? Figure 3.18 shows a few examples. The attribute values
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Figure 3.17: Example: Legends for Visualization

can be mapped on a semicircle, on a spiral curve, or on a straight line. Data visualiza-

tion sliders visualize data distribution along the attribute values. Scented widgets [100]

add visual cues to common user interface widgets such as radio buttons, sliders, and

combo boxes. They enhanced the widgets with embedded visualizations that facilitate

navigation in information spaces. For example, in Influence Explorer [81], the rela-

tionship between different query devices is encoded with colours. Brushing Histograms

also support brushing operations for multiple value range selection.

Because query devices are graphical representations, using them for query specifi-

cation is no more than making a visual query on a visual representation. In Influence

Explorer [81], each slider is a visual view showing one aspect of the data set. Op-

erating on one slider updates the others, an example of brushing and linking. Thus,

the commonalities identified by the formalism make any visualization and interaction

technique an idea for a new query device or for extending an existing query device.

Furthermore, integrating legends with query devices may provide more informative

and powerful user interface widgets for visual queries. For example, if data items are

visualized as dots differing in size, the list of dots associated with attribute values is

a legend. On the other hand, the dot list also functions as a query device: brushing

it accounts for specifying a query term. This mechanism allows users select items by

non-spatial visual features such as colour, size and shape. Another example is using
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Figure 3.18: Example: Query Devices

coloured pie-chart as a legend which also provides information of the proportion of

attribute values. Clicking a pie slice to select the related data items amounts to a

query.

3.5 The Recursive Models

According to the formalism, all entities in the query/visualization environment are

tables:

• Data, queries, and visual representations, and

• mappings, including visualizing and querying.

Data sets are cardinal-valued; queries are Boolean-valued; and visual representa-

tions are icon-valued. Applying one table to another, as occurs when a data set is

queried or visualized, amounts to a join between the two tables.

The formalism opens up the new world of recursive mappings: a query can be

queried; a visual representation can be visualized. The mappings themselves can be

queried and visualized. The application of queries and visualizations to themselves and

each other occurs frequently and informally within the brain of the user: the formalism

makes it explicit, so it can be put into the computational environment.
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3.5.1 Visualizing Visual Representations

Figure 3.19 illustrates the application of the transformation model to the space of

visual representations. It shows how visualization and query mappings can be defined

as easily on visual representations as on data.

V S
mqv //

mvv

��

V QS

mvvq

��
V V S mqvv

// V V QS

Figure 3.19: The Model of Visualizing Visualizations

Figure 3.20: Example: Visual Encoding for Visual Attribute

Figure 3.20 shows a concrete example. Suppose the visual representation includes

thousands of icons. A user is interested in some of them, such as those that are purple

or blue. She wants to detect and compare their distributions as well as comparing

them with the other items, which is hard in the given colour rich representation.

However, she can define a new visual mapping mvv: if the original colour is purple

then the new colour is still purple, if the original colour is blue then the new colour is

still blue, otherwise the new colour is grey. As desired, the purple dots and the blue dots
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stand out in the new visualization. At the same time, the other icons are still displayed

to provide context. This method allows reduction of the visual complexity. Figure 3.20

shows the result of visualizing a visual representation, and gives a visualization of the

visual mapping itself.

3.5.2 Querying on Queries

Similarly, the query space is also defined based on the table model, so that querying

the query space is identical to querying the data space.

QS
mqq //

mvq

��

QQS

mvqq

��
V QS mqvq

// V QQS

Figure 3.21: The Model of Query on Queries

Figure 3.22 presents an example of querying a query by specifying query terms on

the query space. Suppose there are 6 query terms: T1, T2, . . . , T6. The query specified

based on these 6 query terms looks a little complex. Suppose two new query terms

are defined on the query space as: T ′
1 = T1(T2 + T3), T ′

2 = T4T5T6, then the new query

representation is based on only two query terms, which is easier to understand.

Querying a query appears little in information exploration systems: the importance

of supporting it explicitly is a contribution of my research. In the information explo-

ration cycle queries evolve as users refine them, often to the point of unintelligibility.

Then querying the query is a means of asking questions about it and understanding it.

3.5.3 The Iterative Model

Once recursion is established it can be repeated as often as desired, visualizing a query

about a visualization mapping, for example. With today’s information exploration

tools, which support only simple query and visualization mappings, these possibilities
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Figure 3.22: Example: Specifying Query on Query Space

Figure 3.23: The Iterative Model

are surely overkill. But, more complex interactions between users and data are the

future of information exploration, and complexity requires tools that support it. Thus,

the extensibility of the formalism is sure to be important in the future.

Recursion is also possible in another dimension. Query results are also tables,

and can be visualized or queried. By querying previous query results, complex data

searching tasks can be decomposed into stages. It is a natural approach that most

information exploration systems use. But many of them only support querying within

the exact query results Rd. Thus only pure conjunctions of the queries are possible.

However, the query result item set R defined in the formalism contains both data and
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query. As described by the recursive model, R carries over the information of all queries

that have been specified. Therefore, specifying queries on R enables arbitrary Boolean

combinations of them.

In fact, the information exploration process is no more than a sequence of queries

and visualizations on visualized data. A particular sequence is itself easily visualized

using the mapping diagrams of the formalism. This capability is important: users often

wonder how they got to a particular result. Furthermore, this is an aesthetically satis-

fying result of the formalism, which was created by a months-long sequence of queries

and visualizations, albeit informal ones. Closure, in which the process of discovery is

described using its result, is typical of computer science.

3.6 Summary

Prior to the formalism, complementary topics in information exploration such as data

visualizations, query result visualizations, query structure visualizations, query devices,

and interactive legends were studied separately.

The formalism, which is based on the table model, brings them together. All entities

in the query/visualization environment are tables: data sets are cardinal-valued; queries

are Boolean-valued; and visual representations are icon-valued. Applying one table to

another, as occurs when a data set is queried or visualized, amounts to a join between

the two tables. This is the source of the formalism’s power. It makes it possible that

visualization and interaction techniques in one field can be used in the others. More

specifically,

• a query is visualized as a multi-dimensional data set, which results in many

interesting visual query representations. Visual representations can be queried.

Complex logical combinations of multiple visual selections can be implemented

in the same way as querying a data set.

• query specification can be integrated with the display of query results to help

users understand the distribution of data.

• the formalism defines all the mappings as tables, which makes it possible to apply

existing visualization techniques to designing more informative and powerful user
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interface control widgets for visual querying, such as interactive legends, and new

query devices.

• the formalism supports querying a query or visualizing a visual representation,

both of which exist sparingly at present, but will increase in importance as queries

and visualization mappings become more complex.

Many examples are presented in this chapter. They demonstrate that the formal-

ism is capable of providing a common description of different aspects of visual query

interfaces.
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Chapter 4

The Application System KMVQL

The formalism presented in Chapter 3 provides a general framework for visual query

interface design. It clearly states the most important elements, phases and issues in

the design process, which, I believe, makes the task of designing visual query interfaces

much easier.

The formalism is a theoretical framework at a level more abstract than the imple-

mentation. To fill the gap between the formalism and implementing practical systems,

I designed a software domain model. The software modules defined in it are correspon-

dences to the elements in the formalism. Thus, their responsibilities and interactions

are easily defined.

The software model can be used as a reference for designing visual query interfaces.

Based on it, a prototype software program KMVQL (Karnaugh Map based Visual

Query Language) was implemented as an application.

4.1 Software Design based on the Formalism

The software model mainly answers the following questions:

• What are the user actions that should be handled by a visual query interface for

information exploration?

• What software modules should be included in the visual query interface architec-

ture?

• What are the responsibilities of the software modules?
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4.1.1 User Actions

In the process of visual information exploration, users normally perform the following

basic actions:

• select the data source, specifying which collections of data to search on,

• query data, specifying queries that express their information needs, which nor-

mally requires specification of query terms and specification of the query struc-

ture,

• interact with the visualizations, browsing, navigating, scanning and zooming the

view to understand and analyse the data ,and

• select data from the view.

In the work reported in this thesis, selecting data from the visual view is considered

to be querying it. Therefore, selecting is studied separately from other operations

such as browsing, navigating and scanning. A successful visual query interface should

provide interaction control mechanisms allowing users to conduct those operations

easily and naturally. It allows the user to specify queries visually, eliminating the need

to understand Boolean logic. Furthermore, it should also provide control mechanisms

allowing users to customize their visualizations. For example, it should

• provide a variety of visualizations, allowing the user to select which one to use,

• provide a flexible visualization mapping mechanism, allowing the user to choose

how to visualize the data, and

• provide a flexible query visualization mapping mechanism, allowing the user to

specify how to visualize the queries.

Therefore, the software model accommodates the following user actions: selecting

data source, specifying query terms, specifying query structure, interacting with the

visualization, selecting data from the visual view, and specifying visualization methods

for the data set and query.
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Figure 4.1: User Actions Diagram

4.1.2 Software Domain Model

The software domain model describes the basic software modules in a visual query

interface and their interrelationship. The modules manage data, queries, query results,

visualizations of them, and the mechanisms for defining the visualization and query

mappings. To be general, the granularity of the modules is coarse, as shown in Figure

4.2.

Some of the modules respond to user actions. The user actions and their processing

modules are listed in Table 4.1.
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Figure 4.2: Software Domain Model

4.1.3 Module Responsibilities

Defining the responsibilities of the modules is a critical step in the design process.

In this section, the functionality and responsibilities of the modules are described in

detail.

The Data Set Module provides functions for data access, data transformation, data

manipulation, and meta-data management.

(1) Data access is the mechanism for importing data from data sources. The

system should accommodate different types of data and different types of data

sources.

(2) Data transformation transforms raw data from the data source into a data

table. It is important for the module to provide data manipulations that are

commonly used in the analysis process, such as count and aggregate, sort, join,

project, extract, insert, delete, and update.

(3) Meta-data management is needed for two main reasons: to expose semanti-

cally meaningful data transformations to the user and to drive design decisions

when generating visual representations. Meta-data typically consists of the at-
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User Actions Modules

Select data source Data set module
Specify query terms on data attributes Query device
Specify query structure Visual view of query module
Interact with the visual view Visual view of data module and Visual

view of query results module
Specify visualization methods on data set Data visualization control module
Specify visualization methods on query Query visualization control module

Table 4.1: User Actions and Their Processing Modules

tribute name, the attribute type, the storage type, the attribute domain and

possible hierarchical relationships.

The Visual View of the Data Module carries out data visualization, which trans-

forms data tables into visual structures. The module then displays the visual

structure on the screen. It provides interaction mechanisms, responding to user

input (keyboard, mouse, and other input devices), to provide view transforma-

tions, such as zooming and panning, and updates the display. It also allows users

do direct data selection within the view.

The Query Module manages query terms and query structure. It keeps a record

of query terms that have been specified. It supports manipulations of the query

terms list such as add, delete, update, select and unselect.

The Visual View of the Query Module carries out query visualization. Users

interact with it to specify query structures. It transforms truth tables into visual

structures and displays them on the screen. It also provides interaction mech-

anisms, responding to user input. When operations are applied to visual query

fragments, the query structure is updated.

The Query Result Item Set Module computes a Boolean representation of query

fragments for data items in the data set. Similar to the data set module, it pro-

vides manipulation of the query result item set, such as count and aggregate,

sort, project, extract, insert, delete, and update.

The Visual View of Query Results Module provides visualizations of the query
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result item set. It transforms the item table into a visual structure and displays

it on the screen. It provides interaction mechanisms, responds to user input, and

updates the display. It also allows direct data selection within the visual view.

The Data Visualization Control Module provides definitions for data visualiza-

tion mappings, which map data attributes and values to visual features. It may

also provide interfaces allowing users to specify visual mappings. There is a

spectrum of choices, with a tradeoff between simplicity and expressibility.

(1) Use scripting (a procedural approach) to create the visualization. Scripting

requires the most expertise and takes the most time, but has the most expres-

siveness and flexibility.

(2) Based on visualization structures, write a specification (a declarative ap-

proach), which is like filling out a form with the specific fields the user wants to

visualize.

(3) Based on visualization structures, fill in GUI forms specifying which data

attribute maps to which visual feature.

(4) Use a direct manipulation interface to drag-and-drop field names to create a

visualization.

The Query Visualization Control Module provides definitions for query visual-

ization mapping. Like the Data Visualization Control module, it defines visual

mappings that map query fragments to visual features. It may also provide in-

terfaces allowing the user to specify visual mappings.

The Query Device is a user interface widget that allows users to specify a query

term. It provides interaction mechanisms for responding to user input (keyboard,

mouse, or other input devices), updating its display, and creating a query term.

The Query Term is a Boolean query expression that specifies constrains on item

attributes, which may be either data attributes or visual attributes.

4.1.4 Summary of the Software Model

The software model defines software modules corresponding to the elements of the

formalism. The model uses the object design technique which can improve the exten-
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sibility and ease of maintenance of the software. Such a modularised architecture has

the following benefits.

• Clarity and ease of comprehension of the design is increased.

• Maintenance and enhancements are simplified.

• Reuse of modules is increased.

In order to further validate the formalism and the software model, and to provide

concrete examples of how the techniques are used in a practical system, I implemented

a new visual query interface - KMVQL.

4.2 Overview of KMVQL

KMVQL has been designed to support interactive exploration of multidimensional

datasets. It uses the Karnaugh map [56] as the visual representation of query space.

KMVQL incorporates dynamic query techniques and provides a visual query interface

to help users formulate arbitrarily complex Boolean queries by direct manipulation.

Its interface has three parts: a view that provides a graphical presentation of the

data, a Karnaugh map, and a set of query device widgets for data value selection. This

section introduces the components and how they work together when users formulate

Boolean queries and explore the data.

4.2.1 Visualization of Query and Query Results

Two visual query representations are supported in KMVQL: a Karnaugh map and

an iconic representation. Chapter 3 described how to use them for Boolean query

specification and query result visualization.

A Karnaugh map arranges the cells in a regular grid, making them easy to un-

derstand and navigate. As a table-based representation it is familiar and intuitive.

In data analysis, table-based visualizations predominate [91]. Using a Karnaugh map

to visualize query results makes it possible to incorporate a variety of data visualiza-

tion mechanisms. Therefore, it works as a visualization spreadsheet [21], which allows
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users make comparisons between cells. Users can specify query structures by directly

selecting cells of interest, which is easy and intuitive.

On the other hand, a Karnaugh map splits the visualization into discrete cells, with

the context of each cell not explicit. Therefore, iconic representations are used so that

query results can be visualized in a single visual view. Corresponding to the two visual

representation types, the visual view of query results can be in two modes: a Karnaugh

map mode, and an iconic mode, as shown in Figures 4.3 and 4.4.

Figure 4.3: KMVQL User Interface in Karnaugh Map Mode

In iconic mode, the representation is not convenient for query specification. There-

fore, a separate Karnaugh map is provided for specifying the Boolean query structure.

The Karnaugh map also provides a legend for the visual codings of the query fragments,

which can be modified by users.

The icons with coloured petals introduced in Figure 3.4 is a typical example of

iconic coding for query fragments. Such visual codings are complex, which can result

in clutter when the number of query terms or data items is large. Simpler coding
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methods are also supported in KMVQL. For example, visual query fragments can

simply differ in colour or size. Such visual codings have been adopted by systems such

as Attribute explorer [81]. On the other hand, it is hard to compare different query

fragments with the simple encodings. KMVQL provides the flexibility to allow users

to define visual encodings based on their needs.

Figure 4.4: KMVQL User Interface in Iconic Mode

4.2.2 Visualization of Data Space

KMVQL provides several pre-defined visualization structures: x-y-plots, bar-charts,

pie-charts, and parallel-coordinates plots. Each visualization structure corresponds to

a visualization space constituted by a set of visual features.

For example, the x-y-plot space is constituted by X-axis(horizontal position fea-

ture), Y-axis(vertical position feature), icon colour, icon size, and icon shape. In

the bar-chart space, the icons can only be vertical bars. X-axis(horizontal position

feature), Y-axis(vertical position feature), and icon colour are constitutive features,

visual features like icon size, and icon shape are not needed. A parallel-coordinates

plot comprises a set of axis and colour of icons.
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For each visualization structure, the user can describe the mapping relationship

between data attributes and visual features with a tool provided in KMVQL. Figure

4.5 shows an example of the tool for editing visual encodings for X-Y-Plot.

Figure 4.5: Modify Visual Encodings For X-Y-Plot

4.2.3 Query Device

In KMVQL, each query device is composed of two parts: a data value selector and an

associated button displayed in front of it (see Figure 4.3 and 4.4). Simple data value

selectors are dynamic query widgets, such as rangesliders, checkboxes, radiobuttons,

comboboxes, and pie-charts.

Normally, rangesliders are used for ordinal and quantitative values. Checkboxes,

radiobuttons, comboboxes and pie-charts are used for discrete values. Query devices in

KMVQL are adjustable. Users can specify what type of widget is to be used for a data

attribute. KMVQL also allows users to dynamically remove unnecessary query devices

from the interface, or add new ones when needed. This feature saves the display from

being occupied by a lot of useless widgets, which is a common problem in many query

interfaces. The tool provided in KMVQL for query device settings is shown in Figure

4.6.

Interacting with a data value selector generates a Boolean function which is used

as a query term. If the associated button of a query device is selected, the query term

generated by the query device is added into the Karnaugh map and used for query

definition. Releasing an already selected button removes the associated query term

from the Karnaugh map.
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Figure 4.6: Settings of Query Devices

4.2.4 Information Seeking Nodes

The information seeking process consists of a series of interconnected but diverse

searches. The search process might involve sophisticated queries Therefore, a successful

interface for information exploration should allow users to save important intermediate

results and reuse them later.

In KMVQL the concept of an “information seeking node” is introduced to de-

scribe a checkpoint in the information exploration process. As explained in the for-

malism, the information exploration process is a sequence of queries and visualiza-

tions of data. Therefore, each information seeking node N is defined as a tuple

N =< D,mqd, mvd, mvq >, which contains the following components: the data set

being analysed D, the query being specified mqd, and the visualizations of the data

and query.

At any point in the information seeking process, the user can save the current state

as an information seeking node for later review, modification, or for new query creation.

When a user loads an information seeking node, the working data set and the inter-

face components (including the query devices displayed on the screen, the Karnaugh

map, and the visual view of query results) are deployed based on information stored

in the node. This feature allows users to reuse previous query results.

4.2.5 Formulate Boolean Queries in KMVQL

A typical scenario of formulating a query in KMVQL is described below:

1. Load data from a data source. Visualize and display the data. KMVQL creates
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query devices based on the properties of data attributes.

2. Specify the query terms by interacting with the query devices. The associated

button of the active data value selector is automatically selected. Selecting a

button adds a new query term to the Karnaugh map; releasing a button removes

the related query term.

3. Specify the query structure by selecting or unselecting cells in the Karnaugh map.

The default setting of the Karnaugh map is to automatically select the cell that

represents the conjunction of the query terms. If a user wants to specify pure

conjunction queries, she does not need to operate on the Karnaugh map.

4. Double click the view of the query results. The set of data items that exactly

fulfil the query is the new working data set, on which users can make further

queries by repeating steps 2 and 3. Users can also save the query results for later

use, or open a previous information seeking node for analysis.

Upon any of the above operations, the view of query results updates its display

immediately to give feedback. The number of query terms in the Karnaugh map

equals the number of selected query devices. In Figure 4.4, there are four selected

query devices; thus the query is composed of four query terms.

Each query device is assigned a colour, in which its associated button is displayed.

The same colour coding is used for the Karnaugh map tabs, to show which tab is

associated with which query device. In this way, the connection between the query

devices and the query visualization is explicitly revealed to users.

Of necessity, the query devices, the Karnaugh map, and the visual view of query

results are tightly coupled. The Karnaugh map acts as middle-ware joining the other

components. In traditional dynamic query systems, no such middle-ware exists, the

resulting query is limited to the conjunction of predetermined query devices. But using

Karnaugh maps, arbitrary Boolean queries can be easily formulated.

4.2.6 Compound Query based on Intermediate Results

With KMVQL, users are allowed to formulate compound queries by using previous

query results to specify data constraints for a new query. KMVQL supports three

types of query devices:
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1. widgets for simple value selection, such as rangesliders, radio buttons, checkboxes,

and so on.

2. small views of a data set, and

3. small Karnaugh maps.

Query devices can be created based on previous information seeking nodes. With

the query device settings tool, users can specify the type of the query device to be

either a small Karnaugh map or a small view, which is created based on the information

stored in the node. Figure 4.7 shows an example of using small Karnaugh maps as

query devices.

Figure 4.7: Karnaugh Map Query Devices

KMVQL also allows a user to directly select data from the visualization. For

example, dragging out a rubber-band in an x-y-plot, or brushing an axis in a parallel-

coordinates plot are common direct data selection mechanisms.

In response to a selection operation, the selected items are highlighted. If the user

drag-and-drops the selection into the frame of query devices, a new query device is

created and added to the interface. The new query device is a small view of the data

set, with the selection highlighted, as shown in Figure 4.8.
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Query devices are used in the same way for query structure specification. Therefore,

users can reuse intermediate query results and specify Boolean combinations of them.

Figure 4.8: Create Query Devices Based on Direct Visual Item Selections in KMVQL

4.3 Example of Exploring Data with KMVQL

This section uses an example to describe the capabilities of KMVQL as an information

exploration interface. Suppose the user, Iris, is interested in buying a second-hand car.

But she is not familiar with the car market, and she has no particular preference of

the car. This example shows how KMVQL helps her in seeking what she wants.

At the beginning, Iris loads into KMVQL a second-hand car database. When the

data is loaded, KMVQL creates a set of query devices based on the data types of the

attributes. For example, the Makes of the cars are strings, which are nominal. KMVQL

uses a combobox to list all the string values, allowing the user to select the preferred

Makes. But Iris is not satisfied with the automatically generated query device for this

attribute. She notices that the list is short, so she chooses a pie-chart as the data

value selector, which provides easier data selection, and reveals the proportions of each

Make.
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Figure 4.9: Screen Shot of the Query “Meet at Least 3 Query Criteria”

Then Iris chooses to visualize the data with a x-y-plot, mapping the Mileage at-

tribute to the x-axis, and the Price attribute to the y-axis. The data visualization is

displayed on the screen. Operating on the query devices, Iris specifies query terms. In

the Karnaugh map the cell representing the conjunction of the query terms is auto-

matically selected. The data items associated with the selected cell are displayed in

coloured icons, while other items are displayed in grey scale. This makes the selected

items stand out as well as providing context information.

When Iris analyses the visual view she finds that few items meet the pure conjunc-

tion. So she clicks other cells in the Karnaugh map to broaden the query, adding more

data items to the results, helping her to see other promising candidates. Iris continues

interacting with the query devices to modify her query. After each operation, the view

is updated immediately to to give her visual feedback to help her understand the data

more efficiently.

When she feels satisfied with the query and the results, she saves the state as an

information seeking node N1 so that she can analyse or use it later. The specified

query is Q1: “satisfy at least 3 query criteria among the four”. Thus she names the

node “Meet at least 3 criteria”.

Then Iris drags out a rectangular box on the x-y-plot, forming the second query,

Q2. She drag-and-drops the rectangular box into the frame of query devices. A new
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Figure 4.10: Direct Data Selection on the Visual Views

query device is created and added to the window, showing a small view of the selection.

Iris names the new query device as “Price-Mileage Selection”.

Iris thinks that the last two queries might filter out some important candidates.

She wants to get more information about the data set. So she resets the interface and

views the data set with a parallel-coordinates plot. She brushes the axis to indicate

the interested value ranges, forming the third query Q3. She saves the current state as

a second information seeking node N2, named “FullSize-After 2003”. As we can see,

although the user-defined names are not precise, they allow users to remember and

recognize intermediate results.

Then Iris resets the interface again using an x-y-plot to visualize the data set. This

time the Year attribute is mapped to the x-axis so that she can analyse the data from

a different perspective. She adds two new query devices into the interface. One shows

a small parallel-coordinates plot from information seeking node N2, another is a small

Karnaugh map from node N1. To make the interface look clean and simple, she removes

unused widgets from it. She chooses the Karnaugh map mode for the interface and

selectes four cells in the Karnaugh map to form a query. As shown in Figure 4.11, the

query means “satisfy at least two queries among Q1, Q2, and Q3”.

Then Iris double clicks the view of query results to analyse the data items that

fulfil the query. The other items are filtered out so that she can focus her analysis on

a relatively small data set. Iris saves the current interface status to a file so that when

she explores the same data in the future, the interface will be automatically configured
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Figure 4.11: Screen Shot of the Compound Query in KMVQL

based on it and the intermediate results will be restored. She can start from this point

to continue her search until she found the desired car to purchase.

The above example shows that with KMVQL, complex queries can be formulated

easily by direct manipulations. KMVQL is promising in several aspects:

• With Karnaugh map, arbitrary Boolean queries can be specified by direct ma-

nipulation. Users do not need to worry about Boolean logic. User queries are no

longer restricted to conjunctions of predetermined query devices.

• The tight coupling of query and query result visualization makes it easier for

users to analyse the results and refine their queries.

• Important search status can be saved and reloaded for review, for modification,

or for new query creation. Intermediate query results can be reused.

• Users can directly select data by interacting with the views. Boolean combina-

tions of multiple selections can be specified easily by operating on the Karnaugh

map.
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• Query devices are adjustable. Users can remove unnecessary query devices from

the interface, or add new ones. This feature saves the screen from being occupied

by useless widgets, which is a common problem in many query interfaces.

4.4 Summary

This chapter presents a software model and a new visual query interface based on it.

The software model defines the software domain model of visual query interfaces.

In the domain model, software modules and their functions are defined, in addition

to the common user actions in information exploration. All these actions are handled

by software modules defined in the domain model. The software model functions as a

reference which makes the task of designing a practical visual query interface easier.

Based on the software model, a new visual query interface, KMVQL, was de-

signed and implemented. It uses a Karnaugh map as the visual representation for

Boolean queries. It incorporates dynamic query techniques that allow users to formu-

late Boolean queries of arbitrary complexity by direct manipulation. With KMVQL,

users do not have to concern themselves with explicit logic operators, which makes

Boolean query specification much easier. It also provides seamless integration of queries

with their results, which helps users to understand the data set and refine their queries

efficiently.

The implementation of KMVQL shows that the formalism is a practical abstraction

of visual query interfaces for information exploration. There are many advantages in

developing interactive visual query interfaces using the formalism: the task of designing

new interfaces is easier. The innovative features implemented in KMVQL are inspired

by the formalism. With them, users are able to complete complex tasks in short periods

of time.
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Chapter 5

Related Work on Query Language

Evaluation

A Visual query interface includes a query language in a visual form and a variety

of interaction mechanisms to facilitate data exploration. Empirical study of query

languages is important for improving the quality of visual query interface design. For

example, when designing a visual query interface using a new query language, it is

necessary to evaluate the new query language by comparing it with existing ones.

There exist many user studies that evaluate query languages. This chapter reviews

previous research on query language evaluation. Several typical examples of evaluating

visual query languages are also discussed.

5.1 Introduction to Query Language Evaluation

The purpose of empirical studies on query languages that have been undertaken can

be classified into the following five categories:

• measuring ease-of-use,

• comparing two or more languages for ease-of-use,

• studying controversial issues in query language design,

• providing feedback to aid design of a query language, and

• understanding and modeling human behaviour when writing and understanding

queries.
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The general approach of an experiment is to

1. define precisely what is to be measured,

2. develop a task that human subjects perform, and

3. measure the relevant parameters of subject performance.

At the core of the query language studies is measuring ease-of-use. It is hard to

develop a definition for the ease-of-use that corresponds to intuitive notions of ease-of-

use and permits measurement with scientific rigor. Several categories of variables are

predicted to have an effect on query performance. They are included in a framework

of variables for query evaluation.

5.1.1 Framework of Variables for Query Language Evaluation

In an experiment, many factors affect the experimental data. Without controlling

or considering these factors, the validity of experimental data is questionable. Prior

research on query language evaluation [19, 52, 92] provides a set of variables related

to performance, which is shown in Figure 5.1. This set is a good basis for choosing the

variables for an experiment.

In the experiments, user performance, which is a dependent variable, is normally

measured by the time to complete a task, the accuracy of results, and/or a subjective

response. The time taken to complete a task has been used in many studies as an

efficiency measure of user performance. Many empirical studies have also used accuracy

of results. Time and accuracy are quantitative proxy measurements for the vague

notion of “ease-of-use”. They are measured under controlled conditions.

Sometimes, subjective measurements, such as subjects’ confidence in their results,

the perceived ease-of-use of the language, their satisfaction with the language, or their

performance expectations, are also used for query language evaluation. These subjec-

tive data are normally collected through a questionnaire.

Based on the results of previous experiments, the four groups of factors that di-

rectly affect user performance are characteristics of the subject, characteristics of the

query language, nature of the task, and set-up of the laboratory. They are normally

controlled either by keeping them constant, by random assignment, or by treating them

as covariants in the statistical analysis.
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Figure 5.1: Framework of Variables Used in Prior Query Performance Research

• Subject characteristics. Subject characteristics refer to dimensions on which

subjects differ, such as intelligence, computer programming experience, or the

ability to concentrate during the experiment. Subject characteristics are nor-

mally indirectly controlled by randomising the subject placement in the exper-

imental groups. In most experiments, training programs are included to lessen

the relevant individual differences.

• Query language characteristics. Query language characteristics include the

data model and the language interface. When investigating a query language,

such variables are constant. When comparing different query languages, these

characteristics are effectively covarying independent variables.

• Task nature. The task nature includes task complexity and task type, which

are very important factors in experiment design. Task complexity is used as

independent variable for data analysis in almost all experiments.
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• Laboratory facilities. Laboratory facilities refer to details such as whether the

experiment is manual or computer based. If the experiment is computer based,

relevant system characteristics include the physical aspects of the system, such

as its response lag and its variability, the physical input/output devices being

used, and the dialogue style. Which variables are held constant, and which are

used as independent variables is determined by the purpose of the experiment.

There is a tradeoff between holding variables constant and treating them as inde-

pendent variables. If more variables are held constant, the experiment is simpler and

cheaper, but less can be learned about the direct effects of and the interactions among

the variables.

5.1.2 Tasks for Query Language Evaluation

Among task variables, query task complexity and task type are core factors in experi-

ment design. Query languages are complex and require rich combinations of cognitive

activities, such as learning, understanding, and remembering. To capture ease-of-use,

experimenters have developed a number of different tasks, which are used in experi-

ments to capture different aspects of ease-of-use.

Reisner summarized the commonly used tasks for measuring ease of use for query

languages in “Human Factors Studies of Database Query Languages: A Survey and

Assessment” [77]. These tasks are listed in Table 5.1.

5.1.3 Boolean Concept Complexity

Despite much attention to task complexity in data querying, no widely accepted defi-

nition of task complexity exists [92]. Psychology research on human concept learning

recognizes Boolean logic as an essential component of concepts [74]. Thus, the near-

universal presence of Boolean logic in query interfaces is not surprising. But experi-

mental studies show that logical concepts vary widely in ease of comprehension and

production in humans [83] and much research in visualization has focussed on building

representations of Boolean concepts that are more easily understandable. Conceptual

complexity is currently regarded as the key variable affecting the difficulty of com-

prehension, so this section describes the state of the art in psychological research on

Boolean concept complexity.

79



Task Description

Query writing Users are given a question stated in natural language and
required to write a query in the given query language.

Query reading Users are given a query written in the query language and
asked to write a translation into natural language.

Query interpretation Users are given a query in the query language and a printed
database with the data filled in. They are asked to find the
data asked for by the query.

Question comprehen-
sion

Users are given a natural language question and a printed
database and are asked to find the data asked for.

Memorization Users are asked to memorize and reproduce a database.
Problem solving Users are given a problem and a database and are asked

to generate questions in natural language that would solve
the problem. The questions should be answerable from the
database.

Table 5.1: Tasks Used to Measure Ease of Use in Query Language Evaluation

Rough Classification of Boolean Concepts

In most psychological studies, Boolean concepts are classified into the following 5 types,

according to the Boolean logic present in them:

• Type 1: Pure conjunction, contains AND operators only.

• Type 2: Pure disjunction, contains OR operators only.

• Type 3: Predominately NEGATION queries.

• Type 4: Contains AND as well as OR operators.

• Type 5: Contains all the operators: AND, OR, NOT.

Based on these studies, Boolean complexity is determined by the number of terms

and the Boolean concept type. The smaller the number of terms, the lower the Boolean

concept complexity, and vice versa. When the number of terms is equal, a Boolean

concept with pure conjunction operators is normally considered less complex than

other types. The NEGATION concepts, type 3, are generally more complex than the

“AND alone” or “OR alone” concepts. Finally, concepts in type 4 and type 5 are more

complex than the others [34, 39].
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This classification is very rough. It does not provide a quantitative basis for data

analysis: for example, how might one compare the complexity of a pure conjunction

concept with 3 terms and a pure disjunction concept with 2 terms? Furthermore,

concepts in the same category might have different complexity. For example, here are

two concepts,

(1) (NOT A) AND (B OR C)

(2) (NOT A) AND B AND C OR A AND (NOT B) AND (NOT C)

They both belong to type 5. Do they have the same complexity? Common sense

tells us that the second expression is more complex than the first one, but the rough

classification does not support this assert.

Feldman’s Catalog of Boolean Concepts

There is a long but sporadic history of measuring Boolean complexity, of which Shep-

ard’s [83] contribution is seminal. Recently, Feldman [34, 35] introduced and sub-

stantiated a quantitative measure of Boolean complexity. The measure identifies the

subjective difficulty of a concept with its Boolean complexity, that is, to its logical

incompressibility. He defines Boolean complexity as the length of the shortest logically

equivalent Boolean formula, calculated as the number of literals (positive or negative

variables). For example, the concept AB + AB is equivalent to A(B + B) and thus to

A, and hence has Boolean complexity 1; whereas AB + AB has no shorter equivalent,

and hence has Boolean complexity 4.

Based on Feldman’s algorithm, the complexities for the two Boolean expressions

(1) and (2) can be computed and compared: the complexity for (NOT A) AND (B

OR C) is 3, while the complexity for (NOT A) AND B AND C OR A AND (NOT B)

AND (NOT C) is 6. Therefore, by Feldman’s measure, expression (2) is more complex

than expression (1).

Analysing experimental data based on a quantitative definition of Boolean com-

plexity makes it possible for researchers to reason about subjects’ performance more

rigorously.
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5.2 Review of Related Experiments

Many different query languages and interfaces have been built. There have also been

many user studies conducted for evaluating them.

The many evaluations of query languages are broadly similar. The evaluation of the

Truth-table Exemplar-Based Interface (TEBI) [39] is a typical example. Young and

Shneiderman’s evaluation study for Filter/Flow [106], and Chui’s evaluation of com-

paring four query languages: Boolean expressions, an if-then-else procedural language,

Filter/Flow, and Venn diagrams [22], are also worth mentioning. This section reviews

the following aspects of these experiments,

• query languages studied in the experiment,

• laboratory facilities and subject characteristics,

• query tasks being used for query language evaluation,

• training,

• dependent variables, and

• how the experiment was conducted.

5.2.1 Example Analysis: TEBI

TEBI [39] is the Truth-table Exemplar-Based Interface. There are two types of TEBI

interface, TEBI concrete, and TEBI abstract. The only difference them is that in

TEBI concrete, all values that appear in a truth-table are concrete, while in TEBI

abstract, the irrelevant values are replaced with “Don’t Care”. Figure 5.2 shows a

query represented by TEBI concrete and TEBI abstract. In their experiment, Greene

studied the difference between queries produced using SQL and queries produced using

TEBI.

In their study, the performance of subjects and the types of errors were analysed.

The authors found a significant improvement in the speed and accuracy of query pro-

duction using TEBI, especially with TEBI concrete. They also found that the fewer

the formal logic language features the better the performance. The authors conclude

that for query specification, it is easier to recognize than to generate.
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Query TEBI and SQL
Languages
Lab Facilities Paper and pen based test.
Subject 1) 80 female subjects, age from 20 to 60 (mean age of 45)
Characteristics 2) with at least a high-school education

3) no previous experience in information retrieval
4) subjects are assigned randomly into four groups

Description of Four subject groups performing different tasks:
the Tasks 1) TEBI Concrete: Given an exemplar table printed on a paper, user

need to select the rows that represent a query.
2) TEBI Abstract: same as in TEBI Concrete group.
3) SQL Choice: One correct and three incorrect sets of SQL code
(ordered randomly) printed on a paper, select the correct one.
4) SQL Generation: Given the first part in a query: “ SELECT
CodeNumber FROM Shape ” , subjects are asked to finish the
query expression on the paper.

Training The training was finished within 3 hours:
1) Teach the basic concepts of databases and Boolean operators
2) Provide manuals, introducing the query languages they will use.
3) Provide examples, ask them take exercises.

Experimental 1) The answer for the query
Data 2) The time taken to finish the task related with the query

3) The subjects’ confidence in their answer
Experiment
Process

1) The test is composed of 24 query tasks, contains all the 6 query
types in rough classification
2) Each subject is given a booklet of queries written in English
3) Based on the English description of the queries, subjects need to
finish the required tasks:
a) subjects in TEBI groups need to specify the query by selecting
the related rows in the given truth-table;
b) subjects in SQL choice group need to select the correct query from
a list of choices;
c) subjects in SQL generation group need to write down the query
expression on the paper.

Table 5.2: Review of the User Study for TEBI [39]
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Figure 5.2: Query Represented with TEBI Concrete and TEBI Abstract

5.2.2 Example Analysis: Filter/Flow

Filter/Flow [106] is a procedural, graphical representation for Boolean queries designed

by Young and Shneiderman. It gives Boolean queries a visual form that uses the

metaphor of water flowing through filters. Sequential flow represents the AND oper-

ator; parallel flows represent the OR operator. Young and Shneiderman’s evaluation

study is briefly described in Table 5.3.

The statistical analysis of their results indicate that for query comprehension tasks,

fewer Boolean errors were made in Filter/Flow than were made in SQL; for query

composition tasks, there was a significant difference between the number of correct

queries in SQL and Filter/Flow, favouring Filter/Flow.

5.2.3 Example Analysis: Chui’s User Study on Query Lan-

guages

Chui [22] conducted an empirical study examining the query formulation performance

of naive users on four query languages: Boolean expressions, If-then-else procedural

languages, Filter/Flow diagrams, and Venn diagrams. Among them, If-then-else pro-

cedural languages and Boolean expressions are textual query languages; Filter/Flow

diagrams and Venn diagrams are graphical query languages. The experiment is briefly
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Query Filter/Flow and SQL
Languages
Lab Facilities 1) Paper and pen, and

2) Computer based test:
An AT&T computer with a 80386 processor running at 25 Megahertz
with a 17 inch VGA monitor
Both the SQL and Filter/Flow interfaces were created using Tool-
Book on the same computer

Subject 1) 20 subjects (10 male and 10 female)
Characteristics 2) some experience using a computer and mouse

3) little or no programming language experience
4) no Boolean logic experience

Description of
the Tasks

Two types of tasks: query comprehension (query reading) and query
composition (query writing)
1) query comprehension tasks: given a database printed on a page of
paper, and a query displayed on the computer screen, subjects were
required to indicate on a sheet of paper the results of the query.
2) query composition tasks: given a query description in English
sentence, subjects were required to form a query using either the
SQL or Filter/Flow interface on the computer:
a) in SQL mode, subjects were asked to type in statements
b) in Filter/Flow mode, subjects were asked to use the mouse to
select and drag boxes on the screen to formulate a query

Training A fifteen to twenty minute training period for each interface:
1) Exercising with the given interface (SQL or Filter/Flow)
2) Learning and exercising with Boolean logic

Experimental 1) The number of correct queries in each task and
Data 2) The number of errors made in each task
Experiment
Process

1) subjects performed the comprehension task (consisting of five
queries), followed by the composition task using one of the desig-
nated interfaces (SQL or Filter/Flow)
2) a five minute break
3) subjects repeated the two tasks using the alternate interface and
another set of queries
4) subjects were asked for their opinion of the two interfaces and the
reasons for their preferences

Table 5.3: Review of the User Study for Filter/Flow [106]
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described in Table 5.4.

Query Boolean expressions, If-then-else procedural languages,
Languages Filter/Flows, Venn Diagrams
Lab Facilities Paper and pen
Subject 1) 24 undergraduate students (17 female and 7 male)
Characteristics 2) no experience for computer programming, Boolean logic, set the-

ory, or Venn diagram
Description of
the Tasks

query writing: given a query description in English sentence, sub-
jects were required to write/draw the query using one of the query
language on a piece of paper.

Training 1) teaching subjects Boolean logic, and how to form queries with a
particular query language.
2) a pre-test was conducted.

Experimental 1) The answer for each query
Data 2) The time take for completing each query
Experiment
Process

1) subjects are assigned randomly into 2 groups: text and graphics.
In text group, subjects formulated queries using Boolean expression
and If-then-else procedural language. In graphics group, subjects
used Filter-Flow diagram and Venn diagram.
2) each subject were required to formulate 16 queries using each
query language.

Table 5.4: Review of Chui’s User Study [22] for Four Boolean Query Languages

Statistical analysis of the results indicates that user performance in accuracy and

speed was highest using Boolean expressions, followed by Venn diagrams, Filter-Flow

diagrams, and then If-Then-Else procedural languages. In summary, Chui claimed that

textual Boolean expressions outperform the graphical query languages in both speed

and accuracy. It is not hard to notice that the conclusion from this user study conflicts

with Young and Shneiderman’s study.

5.2.4 Summary of Previous Experiments

After analysing previous studies on query languages, I found that there are three

most commonly used query tasks on Reisner’s list: query writing, query reading and

translation, and query result data selection. Detailed descriptions for them are listed

in Table 5.5, it also summarizes the main factors that affect performance.
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Table 5.5: Commonly Used Query Tasks and the Factors Affecting the Performance

The essence of query writing tasks and query reading and translation tasks is trans-

lating a query from one form to another. Performance on such tasks is strongly af-

fected by individual differences between subjects, such as familiarity with the natural

language, writing speed, and so on. For the task of query result data selection, the per-

formance of finding query answers from the data list is closely related to such factors as

the length of the list, the number of qualified data items, etc. These nuisance variables

are confounded with query task complexity and query language characteristics which

also affect performance. Without careful analysis, the nuisance variables can easily

cause inferential errors.

Furthermore, many query languages are better suited to one type of query than

another. It is quite possible that when comparing two query languages that the result

would be quite different for a different set of queries.

In addition, most studies used only rough classifications of query complexity for

data analysis. Quantitative analyse were not performed. Since in any empirical study,

only limited number of queries are used, this restriction makes it harder to measure or

predict performance on more complex queries.

In summary, most previous experiments on visual query languages suffer from one

or more of the following deficiencies.
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• The response time measured in the study was used directly for evaluation. But

sometimes, the overall response time is affected by more than one factor;

• Only simple queries were studied in the experiments, or an insufficiently precise

classification of query complexity was used for data;

• Users’ cognitive activities when using the query interface were not separated from

one another.

• The reasons why one query language performs better than another were not

investigated.

Thus it is no surprise that these experiments sometimes lead to superficially con-

flicting results. Other evaluations, not discussed here have similar problems. The ones

described are not chosen to be typical, but to be representative of the better evalu-

ations I found, which indicates that further research into possible methodologies for

experiment design and analysis is needed.
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Chapter 6

A Methodology for Evaluating

Visual Query Languages

This chapter introduces a new methodology of experimental design and data analysis

for query language studies.

6.1 Introduction

When analysing a novel query language, it is both necessary to know how it compares

to other query languages, and to know why it performs better or worse. The latter

requires us to know what users are thinking when using a query language, and specially,

which cognitive activities are enhanced or inhibited by the language. Doing so we can

better predict user performance with a proposed language early in its design.

Query tasks are normally complex, requiring a combination of cognitive activities,

such as learning, understanding, remembering, and decision making. These activities

are differently affected by query languages. The response times measured in an ex-

perimental study are a mixture of many time components. Each related to a different

combination of activities. To understand users’ cognitive activities and how they are

affected by query languages, it is important to isolate as many of these time components

as possible.

This chapter presents a methodology of experimental design and data analysis for

query language studies. It isolates several time components by making a rough model

of query processing, so that cognitive activities of users can be analysed in more detail.
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6.2 Method

To evaluate a new visual query language, a comparison standard is needed. Normally

the standard is the most commonly used query language. The new visual query lan-

guage is then compared with the standard using several criteria. (In most user studies,

a textual representation of Boolean expressions is used as the standard.)

When languages are compared, subjects are asked to accomplish a set of tasks with

either query language. For each subject, task, and query language combination, the

correctness of the task result and the time taken to complete the task are measured.

6.2.1 Query Task

Most evaluations of query languages try to mimic real conditions of interface use as

closely as possible, and therefore measure tasks with many intermixed perceptual and

cognitive components. Such tasks may require users to perceive, understand, respond

to, or create visual queries. Thus, users’ performance is affected by many factors,

which are hard to disentangle. In order to identify individual cognitive components,

and to reduce the effects of nuisance variables, it is important to abide by the following

principles for experiment design:

• keep the query task as simple as possible;

• keep the user actions as simple as possible; and

• keep the experimental environment as simple as possible.

The simplest query task is matching: users are given a query and a single data item,

and are asked only whether or not the data item is selected by the query. Simple as

this task is, it is important to understand, because the components of query matching

are certainly components of query creation and other tasks required for data selection.

In the experiment described in this thesis the data item is a simple coloured shape,

which is called an icon. In the matching task the stimulus consists of an icon plus a

query that defines a set of properties the icon might have, such as colour, shape and

size. The user determines whether or not the query selects the icon.

90



6.2.2 Components of Query Task

In the experiment, a matching task is assumed to be comprised of three parts.

• Query comprehension. The subject reads the query represented in a query lan-

guage and forms a mental model of the query. The time taken for query compre-

hension is denoted as Tq.

• Stimulus comprehension. The subject identifies the relevant qualities of the icon.

The time taken for stimulus comprehension is denoted as Ts.

• Response generation. Based on the mental model of the query and the qualities

of the stimulus, the subject decides which response is correct and executes it.

The time taken for response generation is denoted as Tg.

Different query languages can affect the components differently. Thus, it is good to

measure the time components individually, so that we can discover how each cognitive

activity is affected.

The response time measured in most experiments is a combination of the three time

components mentioned above, and of others. It is hard to measure directly the time

taken for any individual subtask. The methodology described in this chapter partially

isolates different components.

6.3 Isolating the Time Components

The essence of the experimental methodology is to measure the response time when

different parts of the stimulus are presented at different times, thus encouraging the

subject to decompose the task into component stages. The time differences are called

stimulus onset asynchronies (SOAs).

This type of stimulus manipulation is common in psychology, in studies of priming

and masking [12, 69], for example, and recently in studies of the psychological refractory

period [62]. There is an abundant literature on SOA manipulation in experimental

psychology, but in user interface studies it is rare and introducing it into perceptual

studies of visualization is an important contribution of this thesis.
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6.3.1 Manipulating Stimulus Onset Asynchrony

SOA is used two ways in the experimental task. Presenting the query before the icon

gives the user has the opportunity to start forming a mental model of the query in the

absence of the icon. Contrarily, when the icon is presented early the user can begin

analysing it. In either case, response time, T , is calculated from the time when the

stimulus is complete. The length of time when only part of the stimulus is presented

is called the delay time, t.

6.3.2 A Possible Experimental Hypothesis

A hypothetical model of the matching task shows how SOA can disentangle different

parts of the matching task. Assume that the components are deployed sequentially.

Then the relationship between response time T and delay time is illustrated in Figure

6.1.

Consider the matching task when SOA is zero, and assume that the user first

comprehends the query, Tq, then analyses the stimulus in terms of the query, T ′
s, then

generates the response, Tg. The response time is

T = Tq + T ′
s + Tg

Alternatively, assume that the user starts with the stimulus, Ts, then analyses the

query in terms of the stimulus, T ′
q, producing the response time

T = T ′
q + Ts + Tg

Whichever strategy is faster will be chosen within a few trials, even by an inexpe-

rienced subject.

Now, if the query is presented t seconds before the remainder of the stimulus, the

user can start comprehending the query before the trial starts. This condition is called

query-first. The response time T in this condition is then

T = Tq −min(Tq, t) + T ′
s + Tg

The response time, graphed as a function of delay time, would be the curve shown

in Figure 6.2.
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Figure 6.1: Response Time: (a) no delay time; (b) delay time less than query compre-
hension time (c) delay time greater than query comprehension time
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Figure 6.2: The Plot of Response Time vs. Delay Time

And, if the icon is presented before the remainder of the stimulus, which is called

icon-first, then the response time is

T = Ts −min(Ts, t) + T ′
q + Tg

In both cases the response time is linear with a slope of -1 until the early part of the

stimulus has been completely processed, Tq or Ts, then remains constant for greater

delay times. This model of the matching task is intuitively appealing, but unquestion-

ably naive. Among other things, it ignores the possibility of activities proceeding in

parallel, and of interactions between activities, which undoubtedly exist. However, it

fits the data qualitatively, though not quantitatively, and provides a very useful way

of conceptualising the results.

6.3.3 Data Fitting

When the delay time is varied, the measured set of response times, plotted against the

delay time, approximate an elbow curve. Elbow curves are fit to sets of data points

that differ only in delay time, estimating the height of the constant part of the curve,

β, the slope of the descending part of the curve, µ, and the delay time at which the

two curves intersect, τ .

The fitting algorithm minimizes the least squares error with respect to the three

variables. A detailed description of the elbow data fitting algorithm is given in Ap-
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Figure 6.3: Elbow Data Fitting

pendix B. Based on the algorithm, a program has been developed to estimate the

parameters of an elbow curve from a set of experimental data.

Analysis of the fitting procedure shows that the estimates for β and µ are normally

distributed random variables, so ordinary statistical analysis of them can be performed.

However, the estimate for τ is distributed by a Cauchy distribution, so the results must

be handled carefully. The analysis of them is confined to graphing.

In terms of the above hypothesis the fitting parameters have simple interpretations.

In the query-first condition β = T ′
s + Tg, and in the icon-first condition β = T ′

q + Tg.

In the query-first condition τ = Tq, and in the icon-first condition τ = Ts.

Using the methodology described above, I conducted an experiment comparing

the relative performance of Karnaugh maps and textual Boolean expressions. It is

described in the following chapter.
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Chapter 7

The Experiment

This chapter describes an experiment that studies the difference between two differ-

ent representations of Boolean queries: Karnaugh map and textual. It investigates a

user’s ability to comprehend Boolean queries, which is important in its own right and

necessary, though not sufficient, for creating queries successfully. It makes three main

contributions.

• The first is the use of stimulus onset asynchrony as an experimental technique

for separating different aspects of query comprehension.

• The second is the discovery that there are two ways in which users comprehend

Boolean expressions, inductive and deductive, which are operationally very dif-

ferent.

• The third contribution is the demonstration that the Karnaugh map represen-

tation scales extremely well with query complexity, and the experiments show

that its good scaling properties occur because it strongly facilitates inductive

comprehension.

7.1 Introduction

Boolean queries are usually expressed textually, as query terms connected by the

Boolean operators. Textual representations have convenient formal properties, but

users have difficulty understanding them [39, 55].
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A Karnaugh map represents logical combinations of query terms in a form totally

different from textual expressions. It is a two-dimensional table, which uses a Gray code

pattern to represent truth tables in easy to understand diagrams. Chapter 4 describes

the Karnaugh map based visual query language (KMVQL), in which Karnaugh maps

play important roles in query specification and query result visualization. Thus it is

natural to ask “Is the Karnaugh map truly easy to understand and to use?”

Furthermore, as reviewed in Section 2.3, there are two underlying query models:

the Boolean logical expression model and the truth-table model. Many existing query

languages are based on the logical expression model. Karnaugh maps and many novel

visual query representations presented in Chapter 3 use truth-tables as their underlying

model for representing Boolean queries.

Therefore, it is important to find out how the different query models affect users’

cognitive activities, and how different query representations behave. To answer the

questions, I conducted an experiment comparing the relative performance of Karnaugh

maps and textual Boolean expressions.

To understand users’ cognitive activities and how they are affected by query rep-

resentations, the experiment is designed based on the experimental methodology de-

scribed in Chapter 6: by manipulating SOAs, different cognitive components can be

partially isolated and analysed.

7.2 Method

In order to identify individual cognitive components, and to reduce the effects of nui-

sance variables, it is important to keep the query task, the user actions, and the

experimental environment as simple as possible. Thus the experiment uses a matching

task.

7.2.1 Query Task

In the matching task, the match items are icons. In each experimental trial, a graphical

icon with a set of visual features (colour, shape, and size) is shown on a display beside

a query represented either textually or using a Karnaugh map, as illustrated in Figure

7.1. Subjects respond according to whether or not the icon is selected by the query.
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To respond subjects press one of two keys, ENTER for a positive answer, SPACE for

a negative one. In this way, the query task is simple; perceiving the graphic icon is

easy; the method for giving answers is straight forward. There is little opportunity for

variations that interact with the experimental variables.

Figure 7.1: Stimuli Used in the Experiment. The upper panel shows the Karnaugh
map, the lower panel shows the textual expression

7.2.2 Experiment Trials

The experiment comprises a series of trials. In each trial, the stimulus has two parts:

a graphical icon, and a query. The query is represented in either textual form or using

a Karnaugh map. Since this experiment was designed based on the methodology of

manipulating SOA, different parts of the stimulus are presented at different times.

Each trial is an instance of the tuple <Query, Icon, Representation, Display Se-

quence, Delay Time>. Among the variables, Representation has two fixed values:

textual, or Karnaugh map. Potentially, other variables can take on many values. To

limit the number of trials values for the variables must be carefully chosen. The re-

mainder of this section describes what values were chosen for the variables and why

they were chosen.
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7.2.3 Queries

This experiment included 1-dimensional, 2-dimensional, and 3- dimensional queries

with different query structures and Boolean complexities, including several queries

with the same Boolean complexity but different logical operators. The queries being

used in the study are listed in Table 7.1.

Query Number Boolean Boolean
ID of

Terms
ComplexityExpressions

1 1 1 A
2 1 1 not A
3 2 2 A AND B
4 2 2 (not A) AND (not B)
5 2 2 (not A) OR (not B)
6 2 4 A AND (not B) OR (not A) AND B
7 3 3 (not A) AND (not B) AND (not C)
8 3 5 C AND (A AND B OR (not A) AND (not B))
9 3 5 A AND (B OR C) OR (not A) AND (not B)
10 3 6 A AND ((not B) OR (not C)) OR (not A) AND

(B OR C)
11 3 8 A AND ((not B) AND C OR B AND (not C))

OR (not A) AND B AND C
12 3 10 A AND ((not B) AND (not C) OR B AND C)

OR (not A) AND ((not B) AND C OR B AND
(not C))

Table 7.1: Queries Used in the Experiment

The table provides a rank of the queries, which is primarily based on the num-

ber of query terms. For the queries with the same number of query terms, they are

ranked based on Boolean concept complexity. There are several queries having the

same Boolean complexity but using different logical operators. For example, based on

Feldman’s algorithm, the Boolean concept complexity of both query 1 (A) and query

2 (not A) is 1. But query 2 uses the negation operator which, based on Shephard’s

classification of queries, is harder than query 1. Therefore, query 2 is ranked after

query 1. Another example of queries with the same complexity but different logical

operators is query 4 ((not A) AND (not B)) and query 5 ((not A) OR (not B)). Since
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query 5 uses the OR operator, which is supposed to be harder than the AND operator,

query 5 ranked after query 4.

This ranking method, using the rough classification rule to break ties in Feldman’s

definition of Boolean concept complexity provides the ranking in query complexity

that is used for data analysis. Note there is an exception to the ranking by Boolean

complexity: query 6 (A AND (not B) OR (not A) AND B) is more complex than

query 7 ((not A) AND (not B) AND (not C)). Query 7 ranks after query 6 is because

it involves more query terms than query 6.

As shown in the table, several queries (query 9, 10, 11, and 12) are very complex.

Such complex queries are rare in previous query language studies, where a small number

of low complexity queries is normally used. In my experiment, such high complexity is

necessary, since an important aspect of the experiment is to examine how the difficulty

of understanding a query representation scales with query complexity. Thus queries

with a wide range of complexities are needed.

7.2.4 Graphical Icon

Since the experiment uses a matching task, query complexity is not the only factor that

affects the complexity of the task. The same subject, seeing the same representation

of the same query but a different graphical icon, sees a different level of complexity.

When the set of visual features relevant to a match changes, the resulting response

time may vary, because, to correctly categorize an icon, the set of relevant features

must be tested. In different conditions, the number of features to be tested is different.

For example, if the query is Red AND (Small OR Triangle), and a green small

triangle is presented, subjects can answer “No” perceiving only the icon colour. They

need not check other features. But if a red big circle is presented, subjects must test

all of colour, size and shape, slowing the response.

Therefore the complexity of a matching task is determined by the Boolean query

and the graphical icon taken together. But the icon factor is easy to overlook. It is

explicitly described here because considering the number of features to be tested is an

important principle that I used for choosing graphical icons in the experiment.

For each query, I used multiple graphical icons which differ in the number of features

that require testing. Six icons were chosen per query, three positive and three negative.

The mean of their response times reflects the overall complexity of a query.
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In the experiment, graphical icons were compound stimuli composed of shape,

colour and size attributes. Five colours were used: red, green, blue, yellow, and purple;

two sizes were used: big and small; and three shapes were used: triangle, circle, and

square.

To reduce boredom and carry-over effects, the visual stimuli used for each query

were varied. For example, if the Boolean concept is A AND B, queries having different

terms can be used for the same concept: Red AND Small, Green AND Circle, Square

AND Big. All are treated as the same query. For the query “Square AND Big”, various

icons were used. For instance, big red square is a positive example of the query which

requires two features to be tested. Small red circle is a negative example with one

feature to be tested. Both of them are used for testing the query.

7.2.5 Display Sequence and Delay Time

As described in Section 7.2.2, the display sequence of the stimulus and the delay time

between their onset are important variables in the experiment. Which part of the

stimulus should be displayed first? What delay time values should be used so that the

elbow point can be captured? To answer the questions, a pilot study was done.

In the pilot study, two display sequences were initially tested: query-first (display-

ing the query first, as shown in Figure 7.2), and icon first (displaying the icon first).

Displaying the icon first gave uninteresting results because the time for icon com-

prehension is small and relatively constant. Furthermore, the subject does not know

which icon features require attention. Thus, a representation of the relevant features

was added to the icon first condition, omitting how they were conjoined in the query.

That is, presenting both the icon and the query terms first. This modification is used

in the experiment, and is called icon-first, as shown in Figure 7.3.

Elbow point positions were estimated for each combination of Boolean query, rep-

resentation type, and display sequence based on the results of the pilot study. Delay

time values were thus chosen so that the elbow point is well with their range, with

different sets of delay times for different conditions. For simple Boolean queries, the

delay time values are less than those for complex queries.

Once the values of the trial variables were chosen, they were used to set up the

trials used in the experiment.

For the purpose of easy reference, the term presentation condition is taken to
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Figure 7.2: Query-first Example Trials: Display Query First

mean the combination of query representation type and display sequence type. The

term query condition refers to the combination of query and presentation condition.

In the experiment, there are 4 presentation conditions: Karnaugh map icon-first,

Karnaugh map query-first, textual expression icon-first, and textual expression query-

first. All twelve queries were tested in each presentation condition, giving 48 query

conditions.

7.3 Conduction of the Experiment

7.3.1 Trial Setup

In the experiment, there were twelve Boolean queries, six icons per query, three positive

and three negative, two query representation types, two display sequences, and eight

delay times, resulting in 2304 trials, too many for a single session. Thus the trials were

distributed over six sessions, each containing all combinations of query condition and

delay time. Each session had 384 trials, plus ten warm-up trials, the only difference
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Figure 7.3: Icon-first Example Trials: Display Icon and Query Terms First

between the corresponding trials in different sessions being the icons.

Each subject did six sessions, one per week for six consecutive weeks. The order of

trials in each session was randomised. The trials were randomly assigned to blocks of

64 trials, which normally took 10 to 15 minutes to finish. Subjects took three to ten

minute breaks between blocks.

7.3.2 Lab Facilities

The experiment was run on a PC with an Intel Pentium 4 CPU running at 2.53GHz,

with 512 MB of RAM and a 17 inch monitor. The experiment software was developed

using the DJGPP and Allegro graphics package running on MS-DOS. Because MS-

DOS is a single-process operating system there are no system processes to increase

timing variability, which was less than one millisecond.
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7.3.3 Subject Characteristics

This experiment studies subject behaviours in different conditions. Since different

subjects may behave differently, it is necessary to analyse the experiment data for

each individual subject. In order to detect patterns, each subject is required to take

many trials: as explained earlier, each subject needs to finish 6 sessions, each of which

contains 394 trials. This makes it hard to conduct experiment using many subjects.

Therefore, 7 subjects participated in the experiment.

When choosing subjects, it is important to consider whether novice or expert users

should be involved. Users who were as familiar to Boolean logic as possible were chosen,

because they are likely to show minimal learning effects, and because real users will

become more familiar to Boolean logic within a few hundred hours of use. Although

expert users are not good representatives for the whole user class, their behaviour is

more consistent, and many nuisance factors can be avoided. Thus, all seven subjects

were familiar to Boolean logic at the level of computer science graduate students.

7.3.4 Process of the Experiment

Because the subjects were expected to have little familiarity with Karnaugh maps, they

were given some instruction before the experiment. They were shown an online presen-

tation that contained examples of textual Boolean expressions and Karnaugh maps.

The presentation also gave the subjects general information on how the experiment

would proceed. After the online presentation, subjects took an exercise which contains

192 trials with the computer. The exercise allowed subjects get more familiar with

textual expressions and Karnaugh maps, and let them exercise using the functional

keys and become familiar with the experimental environment.

On the day after their training and exercise, subjects did their first session. To

give answers, subjects need to press ENTER key for answering “YES”, SPACE key for

“NO”. When one of the keys was pressed, the corresponding button was highlighted

to give visual feedback, indicating which choice the subject made. No feedback was

provided indicating whether the response was right or wrong.

When all the trials in a session were finished, the total score of the session was

presented on the screen, showing the number of correct answers in the session. In the

tests, the following data were recorded for each of the trials: the response time, and
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whether subject’s answer is correct or not.

7.4 Experiment Results

The experimental results were analysed using statistical analysis software. The results

are shown in graphical form, which shows the trends more intuitively.

7.4.1 Error Rate

All subjects had error rates well below 10% for each session (the mean error rate

was 3.29% with standard deviation 4.38%), indicating that they followed the experi-

ment instructions, to do the task as quickly as possible without sacrificing correctness.

ANOVA was performed on the scores, as shown in Table 7.2.

Source DF F Ratio Prob > F
Query Complexity 7 1.038 0.4326
Representation Type 1 0.897 0.3532
Display Sequence 1 0.138 0.7136
Representation Type × Display Sequence 1 0.057 0.8127
Query Complexity × Representation Type 7 0.241 0.9701
Query Complexity × Display Sequence 7 0.106 0.9974

Table 7.2: ANOVA of Error Rate

The ANOVA indicates that error rate was not significantly affected by the query

complexity, query representation type, display sequence, or any interactions between

them. Thus, I expected to find the most interesting results in the response time data.

7.4.2 Response Time at Zero SOA

When the error rate is low the usual proxy for ease-of-use is response time at zero SOA,

for which there are 2016 data points, one-eighth of the total. Plotted against query

and grouped by type of representation, the results are shown in Figure 7.4.

The response time rises roughly linearly with query complexity for both represen-

tations, agreeing with Feldman’s experiments. However, while the two representations

105



Query ID
0 1 2 3 4 5 6 7 8 9 10 11 12

R
es

po
ns

e 
T

im
e

0

1500

3000

4500

6000

Textual expression

Karnaugh map

Figure 7.4: Average Response Time at Zero SOA: plotted against query, and grouped
by representation.

have roughly the same response time for simple queries, they diverge substantially

when queries are more complex, with the response time for the textual expression in-

creasing faster. For the most complex queries in the experiment the response time for

the textual expression is about four times the response time for the Karnaugh map.

Karnaugh map clearly scales much better with complexity than the textual expres-

sion. Why might that be so? To investigate further it is necessary to examine the

results when the SOA is not zero.

7.4.3 Plots of Response Time Sequence

For each subject, for each query condition, there is a set of 48 (response time, delay

time) pairs. Each set is called a response time sequence. There are 336 response

time sequences in the experiment (7 subjects and 48 query conditions). They show

how the subjects perform as the delay time changes. Each of them was fit to the best

elbow pattern, and the parameters retained for further analysis. A typical response

time sequence is shown in Figure 7.5.

Before conducting elbow data fitting, outlier removal was done. For each response
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Figure 7.5: Typical Data Set: the data set is plotted with the fitted curve drawn on.

time sequence, for each delay time value, data points lying outside three standard

deviations from the mean were removed as outliers.

For each response time sequence, the elbow data fitting program computes the µ,

τ , and β values. The τ value is the time at which the two curves intersect, indicating

the time spent on comprehending the first part of the stimulus; the β value is assumed

to be sum of the time spent on comprehending the second part of the stimulus and

response generation, and the µ value is the slope of the descending part of the curve,

which indicates how much the subject benefits from the delay time.

A few curves have no elbow, and the estimate of their slope, µ, is zero. When this

occurs τ is undefined. These instances occur for interesting sets of parameters and

confirm an important aspect of the result interpretation, so they are further discussed

below. For the purpose of consistent data analysis, undefined τ is valued as zero.

Figure 7.6 shows the data for all parameters of all subjects. The data is shown in

detail because some of the most interesting conclusions are drawn by observing where

a group of subjects deviates from the other subjects.

7.4.4 Analysis of the µ Values

The most obvious feature of the data is that the Karnaugh map in the icon-first mode is

qualitatively different from all the other conditions, and that the qualitative difference

exists in the data of every subject.
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Figure 7.6: The Fitting Parameters for all Twelve of the Presentation Conditions Shown
Subject by Subject. β, the amount of processing time, in milliseconds, when the early
part of the stimulus has been completely processed, is shown in the left column. τ ,
the amount of time that the early part of the stimulus continues to be processed, in
milliseconds, is in the centre column. µ, the effectiveness of early processing at reducing
the amount of processing afterwards, is shown in the right column.
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The key to understanding the difference lies in µ, which is the slope of the early part

of the curve. The hypothesis has µ = −1, which occurs when time spent processing the

partial stimulus subtracts an equal amount of time from processing the full stimulus.

That is, if subjects can process the partial stimulus as effectively as they can process

the full stimulus then µ = −1. Contrarily, if subjects cannot usefully process the

partial stimulus then µ = 0.

The mean values of µ in the four presentation conditions were computed, as shown

in Table 7.3.

Presentation Condition Count Mean Standard Deviation
Textual,icon-first 84 -0.325 0.237
Textual,query-first 84 -0.343 0.251
Karnaugh map,icon-first 84 -0.626 0.195
Karnaugh map,query-first 84 -0.293 0.184

Table 7.3: Summary of µ in the Four Presentation Conditions

In three cases, both textual cases and Karnaugh map query-first, µ varies between

zero and -0.8, with substantial between subject consistency. There is no significant

difference between the means of µ in the three conditions. This means that in these

three cases some subjects found the partial stimulus quite useful, while others found

it to be no help at all.

On the most complex queries (9, 10, 11 & 12), some subjects appear to have

ignored the partial display completely, producing slopes (µ) exactly equal to zero.

Three subjects did so on Karnaugh map query- first, and four in the textual conditions.

In each condition it was the same subjects. When questioned afterwards, they said

that some queries were so complex that it was simply not worth trying to understand

them. Interestingly, two of the subjects (2 & 3) who exhibited many zero slopes have

some slopes close to -1, indicating that they process partial displays well when they

can.

The anomalous condition, Karnaugh map icon-first, has values of µ between -0.4

and -1.0, indicating that the subjects found the partial display very useful. (The

average value is -0.626, which is significantly more negative than the values of the

other three presentation conditions.) This indicates that subjects process the partial

stimulus more efficiently in this presentation condition. This result seems to show that
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subjects are processing the query in a qualitatively different way.

7.4.5 Analysis of the β Values

Then β, the time taken to complete the task after the stimulus was complete, was

analysed. The slope of β with query complexity was analysed using a t-test, with the

hypothesis that the slope is not zero, as shown in table 7.4.

Presentation condition slope t-Statistic Prob
Textual, icon-first 597 17.2 ≤ 0.001
Textual, query-first 495 13.6 ≤ 0.001
Karnaugh map, icon-first 22 2.57 0.012
Karnaugh map, query-first 211 7.44 ≤ 0.001

Table 7.4: Slope of β with Query Complexity

Once again Karnaugh map icon-first is very different from the other conditions. Its

times are small and do not change with complexity. (The slope is 22 milliseconds, which

is only marginally different from zero: t-Statistic = 2.57, p = 0.012.) The ANOVA

analysis of β in this condition showed that β was not significantly affected by query

complexity (F = 1.02, p = 0.44).

In the other three conditions β increases substantially with complexity, (For Kar-

naugh map query-first the slope is 211 milliseconds: t-Statistic = 7.44, p < 0.001. For

the textual representations the slopes are 597 and 495 milliseconds: t-Statistics 17.2

and 13.6, p < 0.001.) The results show that Karnaugh map handles complexity better

than textual representations, which is interesting from a usability point of view. But,

what is most important is the immunity from complexity of Karnaugh map icon-first.

It seems to be a clue to something novel.

7.4.6 Analysis of the τ Values

Finally, τ , the amount of time for which a subject continues to benefit from processing

the partial stimulus, was considered.

In the query-first conditions τ rises rapidly with query complexity and subjects

continue to get information from a query for as long as eight seconds. This is not
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surprising since all experiments find long response times for comprehending Boolean

queries. For the textual icon-first condition, τ rises equally fast. What is a subject

doing, for example, during the sixth and seventh seconds that is giving them further

information? Note, however, that the values of µ are close to zero in all three conditions,

so it is possible that subjects continue to benefit for so long because the benefit is

generated very slowly. To be sure, the rapidity with which β rises when complexity

increases indicates that the benefit was small.

The τ value for the Karnaugh map icon-first condition is higher than the other

three conditions for low complexity queries. It increases only when the number of

query terms grows. But for queries with the same number of query terms, there is no

significant difference between the τ values.

An ANOVA was performed on τ in this presentation condition, using query term

number and query complexity as the variables. The result further proved that in

this presentation condition, τ is significantly affected by query term number, but not

significantly affected by query complexity.

Analysis of Variance Source DF F Ratio Prob > F
τ Query term number 2 61.97 ≤ 0.0001
τ of 1-term queries Query Complexity 1 0.02 0.89
τ of 2-terms queries Query Complexity 3 0.72 0.55
τ of 3-terms queries Query Complexity 5 0.28 0.91

Table 7.5: ANOVA of τ in the Presentation Condition of Karnaugh Map Icon-first

This observation is interesting because this condition also has µ values that are

closest to -1, which means that the time is being used most effectively. Thus it is

natural to ask what the subjects are learning, that seems to use time so effectively,

that is independent of complexity, and that leaves so little processing to be done after

the complete stimulus is available.

7.4.7 Consistency Check

At this point, both the zero SOA and non-zero SOA results have been analysed. As

shown, they are qualitatively consistent: the Karnaugh map is faster overall than the

textual expression, and its response times grow more slowly with complexity. It is
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necessary to check whether the two analyses are quantitatively consistent.

There are two ways for a subject to do the zero SOA trials: by focussing first on the

query or by focussing first on the icon. Is the result of zero SOA a mixture of the two

strategies? Or does one strategy dominate? The consistency check of the zero SOA

and non-zero SOA results provides a way of answering the question: If the non-zero

SOA results of one strategies is quantitatively consistent with the zero SOA results,

then the subject does the zero SOA trials using this strategy.

There are two types of non-zero SOA results: the results having zero-valued µs,

and the results having non-zero µs.

For the most complex queries (9, 10, 11 & 12), some subjects produced values of µ

exactly equal to zero. In these conditions, the β value was compared with the mean

response time T0 at zero SOA. They were essentially the same, with differences varying

between zero and 700 milliseconds. This result further demonstrates that when µ equals

zero, the subject is waiting for the second part of the stimulus to appear, without

trying to process the first part. When the second part was presented, the stimulus was

processed as in the zero SOA trials. Zero-valued µs appeared in three presentation

conditions: textual icon-first, textual query-first, and Karnaugh map query-first. In

these three conditions, subjects appear to have difficulty processing the partial stimulus

when queries are complex. But this result did not obtain in the Karnaugh map icon-

first condition.

When µ is non-zero, the product µτ measures the amount of useful work done when

the partial stimulus was present, then β−µτ is the expected response time to perform

the task at zero SOA. For each subject and query condition, with non-zero µ, β − µτ

was computed and compared with the mean response time T0 at zero SOA. To measure

their difference, I use the variable Tdiff , defined as

Tdiff = β − µτ − T0.

The value of Tdiff indicates the difference between the expected response time with

the practical response time at zero SOA. If one strategy was used at zero SOA, the

expected response time using that strategy should be close to the measured response

time T0. Then the value of Tdiff should be close to zero. If Tdiff is significantly different

from zero, that means at zero SOA, that strategy was not used.

The values of Tdiff of each query condition were plotted against query id in Figure
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7.7, and grouped by presentation condition.

As shown in the graph, the values of Tdiff in the three presentation conditions,

textual query-first (E(Tdiff ) = −33), textual icon-first (E(Tdiff ) = 122), and Karnaugh

map icon-first (E(Tdiff ) = 203), are close to zero. The slope of the curves in these

three conditions are approximately flat (the slope coefficient of textual query-first is

-14, textual icon-first is 18, Karnaugh map icon-first is 29). Tdiff does not significantly

grow with query complexity in these three conditions.

This indicates that the zero SOA and non-zero SOA results were quantitatively

consistent in these three conditions. It is impossible to choose between icon-first and

query-first when using textual expressions, and the behaviour of doing zero SOA trials

using Karnaugh maps is consistent with icon-first strategy.

The values of Tdiff of low complexity queries in the Karnaugh map query-first

condition are also close to zero. This fact indicates that it is impossible to choose

between icon-first and query first when using Karnaugh maps at low complexity.

But the Tdiff curve of the Karnaugh map query-first condition is obviously different

from the other three conditions. It grows substantially with query complexity (the slope

coefficient is 173). For high complexity queries, the values of Tdiff are substantially

different to zero in this presentation condition. For example, the value of Tdiff for

query 12 in the Karnaugh map query-first condition is approximately 2000 ms. But

for the same query, the value of Tdiff in the Karnaugh map icon-first condition is only

410 ms.

This fact indicates that the query-first strategy is not consistent with the behaviour

of doing zero SOA trials using Karnaugh maps for complex queries. When using Kar-

naugh maps at high complexity, icon-first must be the strategy in use. This observation

confirms the general rule of thumb, which is not without exceptions, that when there

are several ways of doing a tasks humans quickly learn the best one.

7.4.8 Subjective Evaluation

After the tests, subjects were asked to subjectively evaluate Karnaugh maps and the

textual expressions. All agree that Karnaugh maps are easier to use when the queries

are complex. Several subjects mentioned that when comprehending complex textual

expressions, they have difficulty remembering what they had already read, and have

to reread it, which takes time. Some subjects also mentioned that finding matching
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Figure 7.7: The Values of Tdiff of Each Query Condition: they are plotted against
query, and grouped by representation. The values indicate the differences between
expected response time with the practical response time at zero SOA

parenthesis in textual expressions is hard.

7.5 Discussion

The most remarkable result in the experiment is the performance of subjects in the

Karnaugh map icon-first condition. However, the benefit of this condition is apparent

only because the evaluation encompassed queries of complexity higher than usual.

After finishing all the test sessions, subjects were asked how they performed so well

in this condition, and the response was both obvious and insightful: seeing the icon

they located its position in the Karnaugh map, and when the query appeared they

inspected only that position, checking whether the cell was selected or not, which was

very fast. Other subjects, given their comparable performance, must have followed the

same strategy, but without being able to enunciate it. Is this result a feature special to

Karnaugh map or a more general property which has been missed because evaluations

failed to examine a wide enough range of complexities?

I believe the latter. Consider the two ways of doing the matching task: focussing
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first on the icon, the user substitutes the icon into a query and checks whether it is

consistent with the query being presented on screen, or focussing first on the query,

the user solves the query to find the selected icon set, then asks if the icon is present

in the set.

The first strategy works well with a simple icon and a complex query, the second

with a complex icon and a simple query. To explain the latter: a complex icon has

many features and the user does not know which ones are relevant, so can do little

with the icon to prepare for the query. The display of relevant features with the icon

ensured that it was always simple.

Beyond these simple observations, the distinction between the two styles of solution

runs deeper. The icon-first mode is similar to inductive science: while the icon is

displayed the user accumulates hypotheses, then searches the query to see if they are

consistent. As soon as an inconsistency is discovered a negative answer is given. In the

absence of inconsistency a positive answer is given. If a rich enough set of consistency

checks can be created this method will operate at a high level of correctness, like

experimental science. I call this the inductive method of query comprehension, which

produces a large number of consistency conditions, each of which can be checked very

quickly. It has both the strengths and weaknesses of inductive science: the ability to

find a usually true response on the basis of a small amount of evidence is its strength;

the likelihood of being wrong because of an overlooked or misunderstood aspect is its

weakness. In the experiment the subjects were able to keep the error rate well below

10% using this method.

On this basis it is easy to see why Karnaugh maps perform so well. Because the icon

occupies a unique location in the visual query there is a small number of consistency

checks to examine, and because the site of information about consistency is localized in

space the ability of visual attention to focus on a specific location makes the response

easy. There is a logarithmic dependence on query complexity for operations that

analyse the icon, and no dependence on query complexity for inspecting the appropriate

location once the query appears, provided only that there is enough SOA for the icon

to be analysed completely.

The query-first mode is similar to deductive science: while the query is displayed

the user accumulates possible solutions against which the icon will later be checked.

This works very well when the query is simple enough, but fails as the query gets
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more complex. As shown in the experiment, when the query gets complex enough

some subjects even stop trying to process the query at all, presumably falling back on

another strategy that is possible only when icon and query are simultaneously present.

To most of us it seems strange that we automatically assume that the brain always

will deal most easily with logic using deductive methods. Presumably we are so likely

to expect deduction because logic occurs in science and engineering as a branch of

mathematics, and not, as Aristotle saw it, a mode of human thought.

The deductive and inductive methods are not limited to analysing Karnaugh maps

and textual expressions. In fact, they can be used to analyse other visual query rep-

resentations such as Venn diagrams, InfoCrystal, TEBI, Filter/Flow, expression trees

or LabView. By analysing which query comprehension method is enabled and how it

is enabled by a query representation, subjects’ performance can be predicted so that

various query representations can be analysed and compared at a theoretical level.

Different query representations support different methods of comprehending queries

because they are based on different query models. Textual representation, expression

trees, and flow diagrams are all based on logical expressions. When using them, subjects

have to predict from the query what the results will be. Logical structures of the queries

have to be understood. Therefore, these query representations are expected to have

qualitatively similar performance: in particular, vulnerability to query complexity. For

queries having complex logical structures, using such representations is hard.

On the other hand, Karnaugh maps, Venn diagrams, InfoCrystal, TEBI, and all

the visual query representations derived from my formalism are based on truth-table.

Thus they all should have similar properties.

As a practical matter, several features of Karnaugh maps that make them effective

in the icon first condition can be identified: a simple rule mapping icon characteristics

to a particular location on the display, a clear indication of the relevant attributes of

the icon, and minimal processing to test consistency. Furthermore, Figure 7.7 also

shows that the inductive method is effective when all parts of the stimulus occur

simultaneously: SOA is a tool for understanding what is hidden in Figure 7.5, not a

precondition for the processes it allowed us to observe.

Other visual query representations can be evaluated in terms of these features to

determine whether or not they are likely to share the complexity resistance of Karnaugh

map. InfoCrystal [88], for example, has rules mapping icon characteristics to display
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locations and a clear indication of attribute relevance. But the mapping rules are

not simple, and the consistency tests are perceptually difficult. The limitations of

Infocrystal are, it seems, perceptual, and not cognitive. Thus, the concepts been

introduced identify the weaknesses of query representations, and also show how they

can be improved.

7.6 Summary

Compared with previous experiments on visual query languages, the experiment pre-

sented in this Chapter has the following features.

• By manipulating SOA, users’ cognitive activities when using the query represen-

tations are separated from one another. The time components are isolated, so

that users’ cognitive activities are analysed in more detail.

• The reasons why one query representation performs better than another are in-

vestigated.

• Queries with a wide range of complexities are studied in the experiment. Query

complexities are computed using Feldman’s algorithm, which is more precise

than the classification method being used in previous experiments. This allows

us examine how the difficulty of understanding a query representation scales with

query complexity.

As shown by the experimental results, the methodology of manipulating SOA for

isolating cognitive activities is efficient, allowing us find user behaviour that was over-

looked in previous studies. From the experimental results, the following conclusions

are derived.

• The overall performance using Karnaugh map is better than using textual rep-

resentations. This benefit increases when the query complexity grows.

• Users understand queries in two qualitatively different ways: inductive and de-

ductive.

• Performance using the deductive method is significantly affected by query com-

plexity.
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• Karnaugh maps facilitate inductive understanding, which is relatively indepen-

dent of query complexity.

• For Karnaugh maps, the inductive method is easier to use than the deductive

method.

Although in the experiment only query matching tasks were used, the inductive

and deductive methods found in the experiment can be used for analysing other query

tasks. The inductive method reveals a process of formulating queries: with a set of

items, users summarize the Boolean concept that describes them. As shown by the

experiment results, Karnaugh map facilitates induction, which eliminates the necessity

of formal specification of relations between the query terms.

Furthermore, the inductive and deductive concepts can be used to identify the

weaknesses of query representations, and show how they can be improved.
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Chapter 8

Conclusions

The goal of this thesis is to apply visualization techniques to design and improve user

interface tools for exploring and analysing data. This goal was accomplished by for-

malizing selection and presentation in information visualization, and by a new exper-

imental paradigm for examining cognitive processes in Boolean information selection.

The main contributions of this thesis are:

• a new mathematical formalism which describes the basic components and their

relationships in visual query interfaces for information exploration systems;

• a new visual query interface, KMVQL;

• a new experiment methodology for evaluating query languages; and

• an empirical user study comparing the comprehensibility of Karnaugh map rep-

resentations with textual representations of Boolean expressions.

This chapter reviews these contributions in detail.

8.1 The Formalism for Visual Query Interfaces

Most topics in visual information exploration environment have been studied in iso-

lation. The intrinsic connections between data visualization, query specification, and

query result visualization have been little studied.

What is the relationship between multi-dimensional data visualization and visual

query representations? Are there any relationships between widget-based query devices
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and selection technique like brushing and linking? How should compound brushing be

supported? How might new representations for Boolean queries be designed? Such

questions, and many others, seem unrelated with one other, but the formalism shows

them to be specific instances of more general underlying questions. Noticing the sim-

ilarities gives ideas for designing more intuitive visual query interfaces and extending

existing ones.

The formalism presented in the thesis shows the relationships among the basic

components of information exploration. The formalism was summarized in Chapter 3

under the following aspects, which are restated here.

1. All entities in the query/visualization environment are represented as tables.

Data sets are cardinal-valued; queries are Boolean-valued; and visual represen-

tations are icon-valued. The visualizing and querying operations are defined as

mappings in the formalism, which are also tables. The fundamental operation of

the formalism is applying one table to another.

2. The transformation model describes the relationship between the components.

Innovative visualizations for Boolean querying can be derived by applying multi-

dimensional visualization techniques to visualizing query space. Direct manipula-

tion data selection operations are visual queries applied to visual representations.

Complex logical combinations comprising multiple selections can be implemented

exactly as simple queries of data sets.

3. The formalism shows how to integrate query specification with displaying query

results, which helps users make sense of the data which facilitating query refine-

ment and modification.

4. All mappings in the query/visualization environment can be visualized. Legends

are examples of visualizing visualization mappings; query devices are examples

of visualizing query mappings. Seeing them as results of visualizations makes it

possible to apply existing visualization techniques when designing user interface

widgets for visualization and querying. The formalism also provides guidelines

for improving or adding visual cues to existing user interface widgets such as

radio buttons, sliders, and combo boxes. Thus, more informative and powerful

user interface widgets can be designed for visual querying.

120



5. The formalism also introduces the recursive application of querying, which sup-

ports querying a query, or visualizing, which supports visualizing a visual rep-

resentation. The recursive applications allow users to ask questions that help

them understand complex queries or visualizations, which provides systematic

reduction of complexity.

Some results claimed in this thesis have been presented as examples. They demon-

strate that the formalism is capable of providing a common description of different

interfaces for creating visual queries.

A formalism is a tool to assist thinking. The formalism for information exploration

captures querying and visualizing in a single conceptual framework. Thus is an impor-

tant contribution to the theory of visual information exploration. The formalism has

the following benefits.

• It provides a systematic integration of querying and visualization,

• It is a foundation for analysing and comparing information exploration environ-

ments.

• It provides a well-defined set of capabilities required by implementations.

• It provides concepts for designing new querying and visualizing interfaces.

• It reveals opportunities for extending existing visual query interfaces.

8.2 The Software Design Model and the Applica-

tion

The formalism is a model that is more general than any specific implementation. To fill

the gap between the formalism and implementing practical systems, a software design

model is presented in Chapter 4. The software design model consists of two parts.

• User actions. The model describes the basic user actions that must be handled

by a visual query interface for information exploration.

• Software domain model. The domain model describes the software modules that

must be included in a visual query interface architecture as well as the responsi-

bilities of the modules, which define clearly what modules should do what.
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The software design model is an explicit instance of the formalism. It provides

detailed guidelines for designers implementing new visual query interfaces.

A new interactive visual query interface, KMVQL, was implemented using the

formalism and the software design model. It provides a concrete example of a practical

software application based on the formalism. It shows how the elements are realized

and how they interact with each other. There are many advantages to developing

interactive visual query interfaces using formalisms as guidess. In building the KMVQL

interface, I observed the following benefits.

• Innovative visual representations for Boolean queries. In KMVQL two types

of visual representations are used: Karnaugh maps and iconic representations,

which are seamlessly integrated with the visualization of query results to help

users comprehend the data and accomplish query refinement or modification.

• Innovative methods for specifying Boolean queries. To specify a Boolean com-

bination of query terms, users select the corresponding cells in the Karnaugh

map, without considering explicit logic operators, which makes Boolean query

specification much easier.

• New query device types. KMVQL not only supports traditional interface widgets

such as checkboxes and sliders, but also provides several new types of query

widgets: pie-charts, x-y-plots, parallel-coordinates, and Karnaugh maps.

• Flexible management of query devices. New query devices can be added to the

interface as needed; users can remove unused query devices from the interface to

make the display less crowded.

• Intermediate exploration states can be saved and reloaded. Previous search re-

sults can be reused as components of new queries.

Most of these features are not supported in existing systems for visual information

exploration. As shown in Chapter 4, they are important for facilitating the information

exploration process. With KMVQL, users are able to complete complex tasks in shorter

periods of time.
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8.3 The Experiment Methodology

When designing a novel query interface, it is important to evaluate it, to find out how

it compares to other query interfaces, and why it performs better or worse.

Chapter 6 introduces an experimental methodology for evaluating query languages.

The methodology solves a specific problem of query language evaluation experiments:

how to isolate the cognitive components of user responses? Isolating the cognitive

components allows us to understand users’ behaviours and thoughts in more detail.

Thus, questions like why one query representation performs better than another can

be answered.

The innovation in this methodology is the manipulation of the stimulus-onset asyn-

chrony (SOA) of different parts of the stimulus. Manipulating SOA encourages subjects

do a specific subtask first, with the effect that as the delay time(SOA) is increased, the

measured response time decreases to a point of inflection, after which it stays constant,

which means the relationship between response time and delay time follows an elbow

curve. Using an elbow data fitting algorithm, the time taken for completing each task

components is isolated.

Although the methodology was presented in the context of visual query language

evaluation, it is a general method. When there are many stimulus parts that affect a

subject’s performance, the methodology can be applied to measure how each stimulus

part affects performance. Therefore, it can be readily used in other HCI experiments,

such as evaluating a new interface, evaluating a graphical representation, etc.

8.4 The Experiment

An experiment was conducted comparing the comprehensibility of Karnaugh map rep-

resentations with textual Boolean expressions. The results show that Karnaugh maps

scale very well with complexity.

The most important contribution of the experiment is the two qualitatively different

methods by which humans understand queries: inductive and deductive. The inductive

method provides users with efficient solutions to logical problems. Karnaugh maps

facilitate inductive understanding, which is relatively independent of query complexity.

This explains why Karnaugh maps increasingly outperform textual Boolean expressions
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as query complexity increases.

The deductive and inductive methods can also be used to analyse other visual query

representations. By analysing which query comprehension method is enabled and how

it is enabled by a query representation, subjects’ performance can be predicted, allowing

query representations to be analysed and compared theoretically.
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Chapter 9

Future Work

This thesis consists of four parts: the formalism, applications of the formalism, the

experimental methodology for evaluating Boolean query representations, and the em-

pirical study. The directions for future work are discussed from these four aspects.

9.1 Extensions of the Formalism

The formalism is based on tabular definitions for queries that use Boolean logic. But

Boolean models are limited in their scope. For instance, the models assume the fol-

lowing.

• All terms in a query are equally weighted, so that there is no need or provision

for assigning a degree of importance to terms in a query.

• For OR (ANY) searches, data items meeting only one query term are as relevant

as data items meeting all the query terms.

• For AND (FINDALL) searches, data items containing one or more query terms

are as irrelevant as data items containing no query terms.

Conventional Boolean models support binary assortment: data records are either

relevant (“1”) or irrelevant (“0”). This approach to scoring relevance is shortsighted

because for users the notion of relevance is not static but dynamic. That is, for a given

user, what is irrelevant today may be relevant tomorrow. In addition, the degree of

relevance varies with synonymity associations between terms.
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The fuzzy set model [11, 14], the vector space model [105] and the extended Boolean

model [61, 82] have been proposed answers to these limitations. They are extensions

of the Boolean model because they reduce to the Boolean model when query term

weights are restricted to zero or one. They have been applied in information-retrieval

for combining Boolean retrieval systems with document ranking.

These extended query models may be useful for information exploration. Therefore,

it is an important future research direction for my formalism to extend it beyond

Boolean logic. For example, how can my formalism support queries based on fuzzy

logic? Is it possible to describe weighted queries with the table model?

In addition, different data models produce different visualizations. Many existing

query interfaces are based on Boolean expressions. Currently queries in the formalism

are defined based on truth-tables. It is possible to formalize other models for queries

that go beyond Boolean expressions and truth-tables.

Furthermore, formal descriptions of a user interface reveal its basic components and

behaviours, which improves the design of new interfaces, and generates opportunities

for extending existing ones. Although the formalism presented here focuses on visual

query interfaces for information exploration, I believe that the principle of finding a

generic model for components and their relationships can be extended to other types

of graphical user interfaces.

9.2 Applications of the Formalism

Another area of future work related with to formalism is exploring other applications of

it. The table model permits the application of queries and visualizations to all entities

in the query/visualization environment. The techniques and examples presented in

this thesis constitute only a small part of the possible applications. Other designs for

querying and visualizing can be found by applying the formalism, which will enrich

visual information exploration.

Applying visualization techniques to visualizing queries will provide interesting new

designs for visual query interfaces. In a visual query interface, it is helpful to provide

users with a choice of query formulation methods. In the future, more visual represen-

tations for Boolean queries will be implemented and integrated into KMVQL. There is

also much interesting work to be done in developing new query devices and interactive
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legends simply by applying existing visualization and interaction techniques.

Today’s information exploration tools support only simple query and visualization

mappings. The formalism supports recursive models, which provide a theoretical basis

for more complex interactions between users and data, such as visualizing a visualiza-

tion, querying a query, or visualizing a query about a visualization mapping, etc. These

possibilities are the future of information exploration and require tools that support

them. Developing tools to support these complex interactions is another good direction

for future work.

9.3 The Experiment Methodology

The methodology presented in Chapter 6 focuses on evaluating the comprehensibil-

ity of query representations. The methodology uses query matching tasks, and the

independent variable is response time.

In addition to response time, there are many other dimensions to the performance

of a user-computer system, such as learning, recall, concentration, fatigue, and accept-

ability. These dimensions, as summarized by Card [16], are also important in query

language evaluation experiments.

• Time. How long does it take a user to accomplish a given set of tasks using the

query language?

• Errors. How many errors does a user make using the query language and how

serious are they?

• Understandability. How easy is it for a user to understand a query represented

in the query language?

• Usability. How easy is it for a user to formulate a query with the query language?

• Learning. How long does it take a novice user to learn how to use the query

language?

• Functionality. What range of tasks can a user do with the query language?

• Recall. How easy is it for a user to recall how to use the query language on a

task that she has not done for some time?
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• Concentration. How many things does a user have to keep in mind while using

the query language?

• Fatigue. How tired do users get when they use the query language for extended

periods?

• Acceptability. How do users subjectively evaluate the query language?

Since manipulating SOA to isolate task components is a general principle, it can

be readily used for other dependent variables to evaluate other aspects of a query

language.

The methods of manipulating SOA are very powerful for determining how and

why perceptual and cognitive efficiencies do, or do not, occur. Thus, applying the

methods to other issues in applied perception is an important direction for future

work. Examining the time course of pattern perception in visualization is an attractive

example.

9.4 Empirical User Studies

Chapter 7 describes an empirical user study. There are several directions for extending

the current study and conducting future experiments:

• The subjects who participated in the study are familiar to Boolean logic. In the

future, it is necessary to conduct the study could be conducted with novice users

to see how the results vary with learning;

• The experiment introduced in Chapter 7 studies the comprehensibility of textual

Boolean expressions and Karnaugh maps. Other representations for Boolean

queries can be studied and analysed based on the same methods;

• The current experiment tests queries with 1, 2, and 3 query terms. More complex

queries in higher dimensions can be studied to see if the patterns found for lower

dimensional queries exist for higher dimensional queries.
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9.5 Future Work Summary

The mathematical formalism paves the way for future research in visual query tech-

niques. More research can be done in extending the formalism beyond Boolean logic,

and exploring more applications of the formalism. The experiment methodology and

empirical study can also be extended to study other aspects of a query language.
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Appendix A

A story about information

exploration

In order to explain the problems with information exploration systems, we use a ficti-

tious user, Iris, and describe the problems she met in her information seeking process.

Iris just graduated from university, the location of her working place is far from

where she lives. So she wants to buy a used car because she doesn’t have much money.

But Iris wasn’t familiar with the car market, and she has no particular preference of

what kind of cars she wants. Then she seek for advice from her friend Mary.

Mary recommended Iris to use the software “AutoExplorer” to search for a desired

car. “Because”, Mary said, “AutoExplorer connects to a most up-to-date database of

cars for-sale and it provides various commonly used interface mechanisms for informa-

tion seeking.”

Iris was very glad at the suggestion. She thought, “Since AutoExplorer provides

various mechanisms for information seeking, there must be one that suits me.” So she

installed AutoExplorer on her computer and begin to use it.

When the program starts up, Iris found that in the user interface, there are several

different methods that can be used to specify information needs, they are: Natural

Language, SQL Commands, Form-Filling for Features, and Dynamic Query. Iris was

not familiar with the meaning of “SQL Commands, Form-Filling for Features, Dynamic

Query”. She just thought that “Natural Language” sounds to be a very natural and

easy way. So she choose “Natural Language” as the input mechanism.
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A.1 Specify queries with Natural Language

Iris had no particular preference of what kind of cars she wants, She thought “probably

I need to try some general features.”. Her first thought is to search for some cars with

price less than 8,000 dollars, the cars could be in Make Acura or Ford. So she input

“I am interested in the cars with the Make Acura and Ford and the price

less than 8,000 dollars.”

To her surprise, the return of the search is “No Cars Found”. “How come? There

should be a lot of cars meet this query!”, Iris thought, “Probably I should use OR

instead of AND?” Then She modified her input as

“I am interested in the cars with the Make Acura or Ford and the price less

than 8,000 dollars.”

This time, 12,000 results returned. But Iris soon found that some cars in Make

“Acura” are with very high price. For example, there’s a car item with the following

features: Make = Acura, Price = 25,000. “This kind of data should not be returned

because I have restricted the price limit as 8,000 dollars. The result number is so huge,

it even contains those void data, how can I find my desired car from such huge amount

of data? I really don’t want to waste my time to go through each data one by one!”

Iris was very unsatisfied at the results. So she gave Mary a telephone call telling

her the problems she met with “Natural Language” specifications. Mary said: “Yes,

natural language is not accurate, the meaning of ‘and’ is ambiguous and sometimes

confusing. The range of limiting factors could be different in different context.” After

saying this, Mary give Iris another suggestion:“Why not try using SQL Commands?

SQL is accurate and powerful.” Then she gave Iris a brief introduction of Boolean logic

and how to formulate SQL Commands.

A.2 Specify queries with SQL commands

“Although I don’t want to learn a command language, in order to find my desired car,

I have to try to learn it.” Iris read online help information for SQL commands provided

by AutoExplorer, placed a SQL manual at hand, and input a command:
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Select All from Cars where Make=Acura or Make=Ford and Price ≤ 8000

Iris was depressed to see that the result returned was the same as she was using

natural language, still with 12,000 items. When she checked the manual, she found that

“There’re rules of precedence for the Boolean operators and I need to use parentheses

here.” So she modified her query into:

Select All from Cars where (Make=Acura or Make=Ford) and Price ≤ 8000

This time, 7500 items returned. But for Iris, this number is still too huge. She

only browsed the first five records, find none that meets her expectation. So She add

another constraint into the query:

Select All from Cars where (Make=Acura or Make=Ford) and Price ≤ 8000

and Year ≥ 2000

The result of this search is “No Cars Found”. “Probably the constraint is too strict.

If a car is made after the year 2000, the acceptable price could be higher”, thought

Iris. She decided to modify the query to express the constraint that “if a car is made

before 2000, the price for it should be less than 8000, otherwise, the price should be less

than 12000.” She felt it’s not easy for her to express this clearly with the mathematical

formula. Her first attempt is:

Select All from Cars where (Make=Acura or Make=Ford) and (Price ≤
8000 and Year ≤ 2000) and not Year ≤ 2000 and Price ≤ 12000

The result of this search is “No Cars Found”. The second attempt:

Select All from Cars where (Make=Acura or Make=Ford) and (Price ≤
8000) and (Year ≤ 2000) or (not (Year ≤ 2000) and (Price ≤ 12000)

The result of this search is “Syntax Error, the parentheses don’t match”. The third

try:

Select All from Cars where (Make=Acura or Make=Ford) and (Price ≤
8000) and (Year ≤ 2000) or (not (Year ≤ 2000) and (Price ≤ 12000))

This time, 8900 items returned. “The number is even greater!”. The fourth try:
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Select All from Cars where (Make=Acura or Make=Ford) and ((Price ≤
8000) and (Year ≤ 2000) or (not (Year ≤ 2000) and (Price ≤ 12000)))

500 items returned. But Iris was so tired at the multiple tries and she was not sure

whether the mathematical expression is correct or not. She had no confidence about

it. “I only used the Make, price and year as query constraints, it’s already cost me too

much time, how can I add more features as constraints? SQL is too hard for me!”

Iris called Mary again: “SQL is too hard for me, I have difficulty in using the

logical operators and I don’t like parentheses. Are there any easier ways of speci-

fying my queries?” Mary said: “You can try using form-filling interface or dynamic

query method. With them, you don’t have to worry about the logical operators any

more. The dynamic query interface even provides graphical representation for the cars

database which can give you an overview of the price distribution and help you get

some information about the car market.”

A.3 Exploring Data With Form-Filling Interface

When Iris choose “Form-Filling for Features” in AutoExplorer, an electronic form is

displayed, as illustrated in Figure A.1.

In the interface, a set of list widgets are provided. Iris was glad to find that she

can specify her desired features by selecting the items provided in the widgets. “Yes,

it’s much easier.” So she restrict the car features as:

Make: Acura

Model: Legend

Colour: Pink

Mileage: Under 15,000

Doors: 4 doors

Year: 2000 to 2005

Price: 10,000 to 20,000

When she submitted the query, the result returned from the system was: “No Cars

Found: We’re sorry, but no results were found that matched your search options.”
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Figure A.1: AutoExplorer: Form-Filling Query Interface

“Now, what shall I do?” Iris had to modify her query criteria so that some car

information can be returned. But how? She guess that “probably the colour should be

changed since it’s so rare to find a car in pink colour”. Then she changed the colour

option to “All colours” and submitted the new query, but the message returned still

was “No Cars Found”. It’s really frustrating because Iris had to try her luck to decide

which query criteria to modify, since from the system feedback she got no information

concerning how to modify her query.

But after several steps, there still no cars found for the Iris’s queries. At last, in

order to obtain some car information, Iris modified her options as:

Make: Acura

Price: 5,000 to 18,000

This time, the system returned 10885 items in a long list. It’s easy to be over-

whelmed by such large amount of information. So Iris had to refine her query grad-

ually, still try her luck. “It’s really hard for me to specify proper features since I’m

not familiar with the car market.” Also she found a big problem of the form-filling

interface: she can’t formulate some queries involved with disjunction, such as “if a car
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is made before 2000, the price for it should be less than 8000, otherwise, the price

should be less than 12000.”

“The exploration process is really time consuming and not efficient.” After an hour

exploration, Iris still hadn’t found any car satisfied her. She remembered that Mary

told her the dynamic query interface provides graphical representation for the cars data

set which can help her get some information about the car market. So Iris decided to

give up exploring with the Form-filling interface to try the dynamic query method.

A.4 Exploring Data With Dynamic Query Inter-

face

When Iris choose “Dynamic Query” in AutoExplorer, an interface is displayed as illus-

trated in Figure A.2.

Figure A.2: AutoExplorer Dynamic Query Interface

In the dynamic query interfaces, the window is split into two parts: the left part is

the visualization of data, and the right part is the control widgets window.

In the data visualization view, the cars database is visualized with X-Y-Plot: the

Year attribute is mapped to X-axis and Price value is mapped to Y-axis. Each car

Make is assigned a unique colour. Each car in the database is displayed as a coloured

dot in the X-Y-Plot. For example, all the Acura cars are represented as red dots,
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Toyota cars are pink dots, Honda cars are blue dots, and Ford cars are orange dots in

the plot.

“Now I can see a trend of increasing prices when the year value grows.” Iris was

glad that she obtained information from the visualization.

Unfortunately, in the Cars database, there are 9 different car Makes, the total

number of cars is more than 50,000. The visual representation is filled with coloured

pixels which is so cluttered that Iris can hardly get more information than just the

price increasing trend. From the visualization, she can’t distinguish all the “Acura”

car from other Makes such as “Toyota” cars and “Ford” cars.

Iris selected “Acura” from the “Make” list, she found that the visualization is

updated immediately, only those red dots left in the plot. “Now it looks much better,

I can focus on the Acura cars. But how can I make comparison the price difference

of Acura car with other Makes?” Then she wanted to compare the price difference

between Acura cars and Ford cars. So she selected both “Acura” and “Ford” from the

“Make” list, then orange dots appeared in the plot. But the two colours are so close

to each other that it’s hard to distinguish all the red dots from the orange dots.

Then Iris wanted to compare the price difference between the cars with Mileage less

than 50,000 and those with Mileage value greater than 50,000. But when she operate

the slider that controls the Mileage value, only those items with Mileage value less than

50,000 displayed in the plot.

Iris became a little disappointed. But she had to keep exploring with dynamic query

interface, since, for Iris, it was the best so far. During the exploration process, Iris had

used some query constraints such as: Y ear ≥ 2000, Mileage ≤ 60000, Price ≤ 15000,

etc. After reading the visualization for a while, Iris obtained some information about

the price distribution and felt that if an Acura car’s price is less than 15000, then

it might be acceptable if it meets any one of the two query criteria: Y ear ≥ 2000

or Mileage ≤ 60000. She wanted to retrieve those data items and read them in

more detail. But with the dynamic query interface, all the query constraints are only

conjunct together. She couldn’t specify such queries with it.

“Probably I can first save the Acura car items that meet both the query criteria

Price ≤ 15000 and Y ear ≥ 2000, then save the items that meet both the query criteria

Price ≤ 15000 and Mileage ≤ 60000. Then put the two saved results together.”

thought Iris. She searched the menu items provided in AutoExplorer, couldn’t find the
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functions that can support her actions.

“Natural Language causes ambiguity, not accurate. Boolean Logic is difficult for

me to use. Form-Filling Interface and dynamic query interface are so simple, can

support only the conjunctions of the query constraints, and they provide little context

information. None of them suits my situation!” Iris was upset, she finally decided to

give up the exploration.
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Appendix B

Elbow Data Fitting Algorithm

B.1 Introduction

The elbow data fitting is to fit a piecewise linear function to the data. The linear

function, sometimes called an elbow or knee curve, takes the form:

f(t) =

{
β − µ(τ − t) if 0 ≤ t ≤ τ ;

β if t ≥ τ.

The point at which the function changes slope is the elbow or knee of the curve,

providing the justification for its name. There are three parameters to fit: (µ, β, τ).

• µ - the slope of the line before the elbow point;

• τ - the x-axis position of the elbow point;

• β - the y position of the line after the elbow point. The two segments intersect

at (τ , β).

B.2 Minimization of the Objective Function

The objective function, which is to be minimized with respect to µ, τ , and β, is the

squared error, E2, defined by

E2 =
n∑

i=1

(ri − f(ti))
2
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Replace f(ti) with the equation defined earlier, we get:

E2 =
m∑

i=1

(ri − (β − µ(τ − ti)))
2 +

n∑
i=m+1

(ri − β)2

where m is defined by tm ≤ τ ≤ tm+1. Choosing a value m and minimizing the

squared error. In order to find the minima of this function we need to calculate the

partial derivatives.

(1) ∂E2

∂τ
= −2

∑
i

(ri − f(µ, τ, β, ti))
∂

∂τ
f(µ, τ, β, ti)

= 2µ
m∑

i=1

(ri − β + µτ − µti)

= 0

(2) ∂E2

∂β
= −2

∑
i

(ri − f(µ, τ, β, ti))
∂

∂β
f(µ, τ, β, ti)

= −2
m∑

i=1

(ri − β + µτ − µti) +
n∑

i=m+1

(ri − β)

= 0

(3) ∂E2

∂µ
= −2

∑
i

(ri − f(µ, τ, β, ti))
∂

∂µ
f(µ, τ, β, ti)

= 2
m∑

i=1

(ri − β + µτ − µti)(τ − ti)

= 0

B.3 Formalism

We can simplify the computation of equations a little by making a few definitions.

Define m, um and sm by

tm < τ < tm+1, um =
m∑

i=1

ti, sm =
m∑

i=1

ri, vtt
m =

m∑
i=1

t2i , vrt
m =

m∑
i=1

tiri,

Based on the partial derivatives, the equations (1), (2), and (3) can be written as:
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sm −mβ + µ(mτ − um) = 0 or µ = 0,

(sm −mβ + µ(mτ − um)) + sn − sm − (n−m)β = 0,

vrt
m − µvtt

m = (β − µτ)um.

Note that the solution µ = 0 requires m=0 and leaves τ otherwise undefined. Then

β = sn/n, as expected, because we are fitting the data points to a constant.

Then we must solve three linear equations having coefficients depending only on m

and the data:  vtt
m −um um

um −m m

0 0 (n−m)


 µ

µτ

β

 =

 vrt
m

sm

sn − sm


Therefore, the parameters are estimated as:

β = (sn − sm)/(n−m),

µ = (mvrt
m − umsm)/(mvtt

m − u2
m),

µτ = ((nsm −msn)/(n−m) + µum)/m.

B.4 The elbow fitting program

An elbow data fitting program was created to compute the µ, τ , and β values of a

response time sequence. The program displays a plot of the response time sequence,

the best fitting elbow-curve, values of the parameters, and a plot of µ and τ showing

the values of the squared errors, as shown in Figure B.1.

The plot uses colours for encoding the value of the squared errors. The region

coloured in black means the squared error has minimal values when µ and τ reside in

it. Thus by detecting the position of the black region we can find out the approximate

values for µ and τ . It allows us to validate the parameter values.
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Figure B.1: The Elbow Data Fitting Program
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Appendix C

Subject Evaluation

The following comments were collected from subjects when they finished all the ses-

sions. The subjects were asked if they had any comments about the experiment. They

were asked to subjectively evaluate Karnaugh map and textual representation. When

subjects refer to the ’table’ or ’map’, they mean Karnaugh map.

Subject 1: Reading textual expression is tired, especially when it is long. I had

to search for the matching paranthesis and remember what I’ve read, which is hard.

Using Karnaugh map is much easier.

Subject 2: When there are only one or two cells being selected, I can understand

the meaning of the Karnaugh map. It is harder when there are more selected cells.

But there is an easier method. That is, I can look up the map and check the selection

of the cell. The most difficult part of textual expression is paranthesis. Sometimes I

have to go back to find where the matching paranthesis starts.

Subject 3: I prefer using the maps than the expressions. The embedded parathe-

sis in expressions makes me dazzling.

Subject 4: The tricky thing about the map is that you can find out where the

icon should be located. You can answer the questions without understanding what the

map means.

Subject 5: Karnaugh map is definitely faster. When the expression is long,

sometimes I forgot the previous contents and had to read it again. This slows down

my response. Using Karnaugh map I can quickly find out what icons are not answers

of the query. But textual expressions don’t have such property.

Subject 6: It is easier using the table. I only need to look up the table and see
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if the cell is selected.

Subject 7: The map form is easier. With a map, each feature only needs to be

checked once. But with an expression, you have to check a feature whenever you read

a keyword.
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