
Message Authentication and

Recognition Protocols Using

Two-Channel Cryptography

by

Atefeh Mashatan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2008

c© Atefeh Mashatan 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We propose a formal model for non-interactive message authentication protocols

(NIMAPs) using two channels and analyze all the attacks that can occur in this

model. Further, we introduce the notion of hybrid-collision resistant (HCR) hash

functions. This leads to a new proposal for a NIMAP based on HCR hash functions.

This protocol is as efficient as the best previous NIMAP while having a very simple

structure and not requiring any long strings to be authenticated ahead of time.

We investigate interactive message authentication protocols (IMAPs) and pro-

pose a new IMAP, based on the existence of interactive-collision resistant (ICR)

hash functions, a new notion of hash function security. The efficient and easy-to-

use structure of our IMAP makes it very practical in real world ad hoc network

scenarios.

We also look at message recognition protocols (MRPs) and prove that there is

a one-to-one correspondence between non-interactive MRPs and digital signature

schemes with message recovery. Further, we look at an existing recognition proto-

col and point out its inability to recover in case of a specific adversarial disruption.

We improve this protocol by suggesting a variant which is equipped with a resyn-

chronization process. Moreover, another variant of the protocol is proposed which

self-recovers in case of an intrusion. Finally, we propose a new design for message

recognition in ad hoc networks which does not make use of hash chains. This new

design uses random passwords that are being refreshed in each session, as opposed

to precomputed elements of a hash chain.

iii

Acknowledgments

I accomplish nothing without the grace of the Creator, the devotion from my teach-

ers, and the support of my family and friends.

I would like to offer my deepest appreciations to Professor Douglas Stinson who

gave me the honour of being his PhD student. Words cannot explain the extent of

my gratitude for his invaluable support. I was very fortunate that he opened his

office to me and gave me the chance to work with him when other doors were closed.

The positive flow of energy present in his office transforms all the frustrations to

hope, optimism, and determination; all of which was definitely vital for this thesis.

I gratefully acknowledge Professor Edlyn Teske for her advice and guidelines. I

would like to especially thank her for her supervision during the first two years of my

PhD. I also benefited much from her constructive comments and encouragements

while I was writing my thesis.

It is a great pleasure to thank Professor Alfred Menezes for his help and support.

I made several visits to his office while I was a PhD student and discussed research

problems or asked his opinion about a decision I had to make. His advice has

nourished my intellectual maturity which I will continue to benefit from.

I would like to express my profound gratitude to Dr. Ian Goldberg for his con-

structive criticism that improved this thesis to a great extent. I had the pleasure

of writing a joint paper with him in the course of writing this thesis. I am grate-

ful in every possible way for his contribution to this thesis and hope for future

collaboration with him.

My light during the dark nights, my guide through the difficult journeys, and my

first teachers in life, maman and baba, Fereshteh Izadian and Hossein Mashatan, how

would I ever accomplish anything without your unconditional love and indefinite

support? I am as ever, highly indebted to you pillars of my being. I would like

to acknowledge my younger brothers, Vahid and Farid, for their love and support,

and of course their little distractions which are cute and charming!

iv

Table of Contents

1 Introduction 1

1.1 Two-channel Cryptography and Applications 2

1.2 Message Authentication in Ad hoc Networks 4

1.3 Message Recognition in Ad Hoc Networks 5

1.4 Interactive versus Non-interactive Protocols 7

1.5 Computational versus Unconditional Security 8

1.6 Contributions of this Thesis . 8

2 Non-interactive Message Authentication Protocols 11

2.1 General Framework: GNIMAP . 12

2.1.1 Attack Model . 15

2.1.2 Security Analysis . 19

2.2 Previous NIMAPs . 21

2.3 A New Computationally Secure NIMAP 24

2.3.1 Hybrid-Collision Resistant Hash Function 24

2.3.2 On the Difficulty of the HCR Game 25

2.3.3 A new NIMAP based on HCR hash functions. 27

2.3.4 Parameter sizes . 29

2.3.5 Advantages of the proposed NIMAP 29

2.4 On Unconditionally Secure NIMAPs 30

2.4.1 Wang and Safavi-Naini’s Proof 30

2.4.2 A Counting Argument . 31

v

3 Interactive Message Authentication Protocols 34

3.1 Previous IMAPs . 36

3.2 The Attack Model . 37

3.3 A New Computationally Secure IMAP 40

3.3.1 Interactive-Collision Resistance 40

3.3.2 A New IMAP Using ICR Hash Functions 47

3.3.3 Security Analysis . 48

3.3.4 The Choice of Parameters and Hash Function 55

3.4 An Unconditionally Secure IMAP 56

4 Message Recognition Protocols 59

4.1 Non-interactive MRPs . 60

4.1.1 A General Non-Interactive MRP 61

4.1.2 Digital Signature Schemes with Message Recovery 61

4.1.3 Equivalence of Non-interactive MRPs and DSSMRs 62

4.2 Previous MRPs . 63

4.2.1 The Lucks Protocol . 64

4.3 An Improved MRP with Resynchronization Process 69

4.3.1 Resynchronization Process 72

4.4 An Improved MRP with Self-Recoverability 74

4.4.1 Security of Our New Message Recognition Protocol 78

4.5 A New MRP Suitable for Ad Hoc Pervasive Networks 87

4.5.1 Security Assumptions . 91

4.5.2 Security of the Proposed Recognition Protocol 93

5 Conclusion and Future Work 102

5.1 A Summary of the Thesis . 102

5.2 Future Work and Outlook . 104

References 106

vi

Chapter 1

Introduction

Contents

1.1 Two-channel Cryptography and Applications 2

1.2 Message Authentication in Ad hoc Networks 4

1.3 Message Recognition in Ad Hoc Networks 5

1.4 Interactive versus Non-interactive Protocols 7

1.5 Computational versus Unconditional Security 8

1.6 Contributions of this Thesis 8

In this thesis, we focus on using two-channel cryptography to design message

authentication protocols and message recognition protocols suitable for networks

consisting of devices with limited resources. In particular, we look at non-interactive

message authentication protocols (NIMAPs), interactive message authentication

protocols (IMAPs), and message recognition protocols (MRPs). Previous protocols

are reviewed and some are improved; new protocols are proposed; security proofs

are provided; and advantages of the new protocols are highlighted.

Standard models of public-key cryptography and secret-key cryptography have

addressed the problem of message authentication and message recognition by means

of assuming availability of public-key infrastructures or secure channels. In some

scenarios, however, assuming the traditional settings of public-key and secret-key

cryptography might not be practical and, indeed, using these techniques may be

very costly. Mobile ad hoc networks (MANET), wireless sensor networks (WSN),

and pervasive networks in general are examples of scenarios in which traditional

cryptographic protocols may not be suitable, or not even possible, to implement.

1

Chapter 1. Introduction

§1.1. Two-channel Cryptography and Applications

In search of a solution to this problem, researchers realized that when the devices

come in close geographic proximity of each other, it is possible to make use of a

manual channel, as well as the usual wireless channel. Instances of the manual

channel are typically more expensive to operate compared to the wireless channel.

However, they provide some level of security. For example, the channel may provide

authenticity of short messages, but may not be confidential. The aim is to employ

a (broadband and insecure) wireless channel and a (somewhat secure and narrow-

band) manual channel at the same time and attain a security objective, message

authentication for instance. This motivated the term two-channel cryptography.

In 1984, Rivest and Shamir [RS84] first proposed incorporating human par-

ticipation in authentication protocols. However, this idea did not receive serious

attention from researchers until very recently. Rivest and Shamir proposed using

the human voice in authentication protocols and they designed a protocol for two

parties who want to authenticate a key under the assumption that no trusted third

parties exist, but where the two parties can recognize each other’s voices. They

motivate the setting by the following scenario. Two company executives who can

recognize each other’s voices but who do not have each other’s public keys want

to exchange keys via a scrambled telephone line. They begin by exchanging their

public keys. Then, each user chooses a message and uses the other party’s public

key to encrypt the message. The first half of the bits of the resulting ciphertexts

are exchanged. The parties acknowledge receiving the first half of the ciphertexts

on the phone. Then, the second half of the bits are sent. While all the steps of the

protocol are handled automatically, the two executives are aware of each other’s

unscrambled voice and use this knowledge to verify the authenticity of the strings.

1.1 Two-channel Cryptography and Applications

We first describe the communication model of two-channel cryptography, where it is

assumed that two channels are accessible for communication: an insecure broadband

channel, denoted by “→”, and an authenticated narrow-band channel, denoted by

“⇒”. Communication over the authenticated channel is usually more expensive and

less convenient. Hence, the messages sent over the authenticated channel are usually

much shorter than those sent over the insecure channel. The goal of two-channel

cryptography is, then, to achieve a certain cryptographic objective by means of the

two channels, while optimizing the cost.

In some scenarios, the narrow-band authenticated channel may be accessible all

2

Chapter 1. Introduction

§1.1. Two-channel Cryptography and Applications

the time, whereas in other scenarios, it may accessible only during the initialization

phase. An insecure wireless channel is an example of the broadband channel. The

narrow-band channel is usually used to send a short string. Instances of the narrow-

band channel include voice-over-internet-protocol (VoIP), data imprinting or data

comparison by a user, near field communication (NFC), infrared (IR), laser, or

visible light between two devices.

The assumed adversarial capabilities may vary depending on the particular sce-

nario. However, the following are common assumptions on what an adversary can

and cannot do in two-channel cryptography.

• The adversary has full control over the broadband channel. That is, the

adversary can listen to any messages sent over the broadband channel, modify

the messages sent via this channel, stall a message from being delivered, and

insert a new message into this channel at any time.

• On the other hand, we assume that the adversary’s control over the authen-

ticated channel is limited. In particular, the adversary cannot modify the

information transmitted over the authenticated channel, i.e., data integrity is

ensured in this channel. However, it may be possible to read, delay or remove

a message from this channel.

Moreover, the authenticated channel is equipped with user authenticating fea-

tures such that the recipient of the information can be sure about who sent it. In

other words, an adversary cannot initiate a flow over this channel. On the other

hand, the adversary, for instance in case of human VoIP, may be able to replay a

previous flow sent through this channel. However, replaying a previous flow sent

by Alice to Bob is not going to help Eve, when she wants to deceive another party,

Charlie. That is, when Bob receives an authenticated flow, he can check if he was

the intended recipient or not. In other realizations of the narrow-band channel,

however, replaying an authenticated flow may not be possible.

Two-channel cryptography techniques have several applications, especially in

constrained environments where secure channels or trusted infrastructures do not

exist or are very costly to provide. Moreover, these techniques are useful in networks

that are composed of constrained devices which cannot handle heavy computations

such as public-key computations.

With new technological advancements in miniaturizing devices and the emerging

smart homes and buildings projects [CEEC08], the problem of designing light-

weight cryptographic protocols for low-end devices has attracted a lot of attention

3

Chapter 1. Introduction

§1.2. Message Authentication in Ad hoc Networks

both in the academic community and in industry. In scenarios such as personal

area networks (PAN) [GN04] and telemedicine (remote health care where medical

personnel can monitor the patients from a distance) [Dem04], where the devices

are naturally attended by users, the idea of employing the manual channel is even

more appealing. This approach is especially attractive when it enables researchers

to design more cost-efficient and easy-to-implement protocols.

Another important application is disaster recovery, when a trusted infrastruc-

ture is compromised. The use of two-channel cryptography allows for temporary,

yet speedy, relief before the infrastructure is fully recovered. Full recovery usually

takes a lot longer and security providers need to be vigilant in the meantime.

1.2 Message Authentication in Ad hoc Networks

The problem of authentication is an important aspect of secure communication.

Typically, communicating parties would like to be assured of the authenticity of

information they obtain via potentially insecure channels.

An ad hoc network is a network where some of the users are part of the network

only for a short period of time. For practical reasons, it should be possible to quickly

add new users to an ad hoc network. In this network, like any other network, it is

desirable to have message authentication. However, assuming traditional settings

might not be practical. For example, a public-key infrastructure may not exist;

secure channels might not be present; communication bandwidth may be severely

limited. Consider the following scenario presented in the literature [BSSW02] which

motives this setting: a traveller in an airport lounge would like to print a sensitive

document from his or her laptop to one of the many printers set up in the airport

lounge. The lounge does not have a secure universal naming infrastructure for

the printers. The traveller wants to choose a particular printer and make sure the

document gets printed by that particular printer (and no other printer), using the

insecure wireless channel. The traveller’s laptop and a printer need to be securely

introduced while there is no public-key infrastructure or secure channel available.

In order to overcome these difficulties in an ad hoc network and still be able to

provide message authentication, one can employ two-channel cryptographic tech-

niques when designing protocols [BSSW02, GN04, GMN04, Hoe04, LN06, LAN05,

NSS06, PV06, RWSN07, SA99, Vau05, WSN08].

We focus on message authentication protocols which deploy both narrow-band

and broadband channels between a claimant Alice and a verifier Bob. Alice chooses

4

Chapter 1. Introduction

§1.3. Message Recognition in Ad Hoc Networks

a message M ∈ M, where M denotes the space of all acceptable messages, and

sends it to Bob using a NIMAP or an IMAP. At the end of the protocol, Bob either

outputs (Alice, M ′), where M ′ ∈ M, or he rejects. In the absence of an active

adversary, denoted as Eve, the message M sent from Alice should be recovered by

Bob, making him accept and output (Alice, M). This message M could be a key

that is going to be used for further communication. Eve’s goal is to make Bob

accept a message M ′ along with the identity of Alice, when Alice has never sent

M ′.

The attack model assumed in this context is the adaptive chosen plaintext attack

(ACPA) model [GMR88]. The ACPA model consists of two phases: an information

gathering stage and a deception stage. In the information gathering stage, Eve

adaptively makes Alice send M1,M2, . . . ,Mq to Bob, where q is an integer termed

the querying complexity. In the deception stage, Eve sends a single message M ′,

along with the identity of Alice, to Bob, where M ′ /∈ {M1,M2, . . . ,Mq}. Eve

is successful if Bob accepts M ′ along with Alice’s identity. The computational

complexity of the adversary before the deception starts, i.e. during the information

gathering stage, is referred to as offline computational complexity, whereas online

computational complexity refers to the computational complexity of the adversary

during the deception stage.

1.3 Message Recognition in Ad Hoc Networks

Message recognition in ad hoc networks has been motivated in the literature by the

following example [LZWW05]. Consider Alice and Bob, two strangers who meet

at a party for the first time. They make a bet before they leave the party. Later,

the outcome turns out to be in favour of Alice, and a few days later, Bob receives

a message claiming to be sent from Alice. The message includes a bank account

number and asks Bob to deposit Alice’s prize to that bank account. How can Bob

be assured that this message was indeed sent from the entity who introduced herself

as “Alice” in the party? That is, Bob wants to recognize “Alice”, whoever she was,

or a message that was sent from her. This problem has a solution if Alice and Bob

exchange some information, which is not necessarily secret, at the party.

Alternatively, let Alice and Bob be two small devices in a hostile environment.

They have previously “met” in an environment that allowed them to send authen-

ticated messages, but the messages were not confidential. Later, Alice wants Bob

to recognize her or recognize the messages sent from her to Bob. There is an ad-

5

Chapter 1. Introduction

§1.3. Message Recognition in Ad Hoc Networks

versary, Eve, who is trying to make Bob recognize Eve as Alice, or accept messages

from Eve as sent from Alice, where Alice has never sent those messages. Note that

we do not consider replay attacks as threats. A message recognition protocol is

considered to be secure if Eve’s attempts are detected by Alice or Bob.

Recall the following widely used definitions of entity authentication and message

authentication from the Handbook of Applied Cryptography [MvOV96]. Entity

authentication is a security notion which assures the identity of a participating

party to a second party. Message authentication, on the other hand, provides data

origin authentication with respect to the original message source and does not have

to provide uniqueness and timeliness.

We now define entity recognition, a security notion related to the entity authen-

tication. Entity recognition is a weaker security notion than entity authentication;

entity recognition refers to the process where two parties meet initially and one

party can be assured in future conversations that it is communicating with the

same second party. It should also provide uniqueness, that is, the corroborative

evidence obtained in this process should uniquely correspond to the identity of the

claimant. It should also assure timeliness, that is, to provide verifiable evidence

that the claimant is active at the time of, or immediately before, the evidence was

obtained.

Message recognition is a weaker security notion than message authentication

and it provides data integrity with respect to the data origin. It ensures that the

entity who sent the message is the same in future conversations. However, it does

not have to provide uniqueness or timeliness.

Public-key techniques such as digital signature schemes solve the problem of

recognition easily. However, using these techniques in some scenarios may be very

costly. For instance, there may be no pre-deployed authentic information accessible.

Also, we may not be able to assume trusted third parties are available to form a

trusted infrastructure. Further, we may be dealing with devices with very low

computational power where public-key computations are too heavy to be carried

out. On the other hand, secret-key techniques require the existence of a secure

channel where the secret keys can be transmitted confidentially. In a dynamic

environment with no infrastructure, this assumption may not be easily realized.

The question is which security objectives can be achieved among devices with

low-computational power in an environment where no pre-established authentic

information exists and without the presence of a trusted third party. Weimerskirch

and Westhoff [WW03] argued that in such an environment, achieving authentication

6

Chapter 1. Introduction

§1.4. Interactive versus Non-interactive Protocols

is not possible and that all one can achieve is recognition security. Further, it

is noted [WW03] that recognition is often all that is required in most dynamic

environments. Hence, the weaker security goals of entity and message recognition

are often pursued [ABC+98, HWGW05, LZWW07, LZWW08, Mit03, WW03].

There are two communication channels considered in the setting of recognition

protocols: an insecure broadband channel which is available all the time, and an

authenticated non-confidential narrow-band channel, which is only accessible once,

at the very beginning of the protocol. That is, the narrow-band channel is used

for the initial session between two users and later sessions occur over the insecure

channel.

1.4 Interactive versus Non-interactive Protocols

A message authentication protocol may or may not require online interaction with

Bob. There are non-interactive and interactive message authentication protocols

that have been considered in the literature [BSSW02, GN04, GMN04, Hoe04, LN06,

LAN05, NSS06, PV06, RWSN07, SA99, Vau05, WSN08].

In a NIMAP, all flows are initiated by Alice. She sends some information over

the broadband channel and some information over the narrow-band channel. Since

there is no flow being initiated by Bob, the order in which Alice’s flows are sent is

irrelevant. As a result, we can combine all flows sent over the broadband channel

into one single flow and, similarly, we can combine all flows sent over the narrow-

band channel into one single flow. Hence, without loss of generality, we obtain a

typical flow structure of a NIMAP as depicted in Fig. 1.1.

Alice Bob

Input (M , Bob)
...−−−−→
...

===⇒

Output (Alice, M ′) or reject.

Figure 1.1: A Schematic NIMAP

On the other hand, the flow structure of an IMAP can be more complicated.

There is at least one flow initiated by Bob and, hence, the order in which flows are

initiated matters. There may be more than one narrow-band flow. The authenti-

cated channel may be bidirectional which means Bob can initiate a flow over the

7

Chapter 1. Introduction

§1.5. Computational versus Unconditional Security

narrow-band channel as well. Illustrated in Fig. 1.2 is a possible flow structure of

an IMAP. In this particular flow structure, the first flow is initiated by Alice on the

broadband channel which is followed by a response from Bob on the same channel.

Then, Alice sends one more flow over the broadband channel and her authenticated

flow over the narrow-band channel.

Alice Bob

Input (M , Bob)
...−−−−→
...←−−−−
...−−−−→
...

===⇒ Output (Alice, M ′) or reject.

Figure 1.2: A Sample Schematic IMAP

NIMAPs are particularly interesting because they do not require the verifier to

be online. On the other hand, interaction sometimes allows for more efficient pro-

tocols. Furthermore, some objectives may not be achievable in the non-interactive

setting, but can be realized in an interactive setting.

1.5 Computational versus Unconditional Security

In the unconditional security setting, the adversary is assumed to have unlimited

computational resources. In the computational security setting, on the other hand,

the computational power of the adversary is bounded (typically, it is assumed to

be polynomial-time, as a function of a certain security parameter). Moreover,

the querying complexity of the adversary is also bounded in the computational

security settings. In order for a protocol to be considered secure, the best currently-

known methods to defeat a system or protocol should exceed the computational

resources of the adversary by a comfortable margin. In case of computationally

secure NIMAPs, IMAPs, or MRPs, a successful adversary is reduced (in the sense

of a Turing reduction) to an attacker against a well-known system or problem which

is proven, or widely believed, to be secure.

1.6 Contributions of this Thesis

There have been many recent papers written on the topic of authentication [BSSW02,

GN04, GMN04, Hoe04, LN06, LAN05, NSS06, PV06, RWSN07, SA99, Vau05,

8

Chapter 1. Introduction

§1.6. Contributions of this Thesis

WSN08] or recognition [ABC+98, HWGW05, LZWW05, LZWW07, LZWW08,

Mit03, WW03] for low-end devices in constrained environments where a low-bandwidth

authenticated channel is accessible. We analyze all the existing protocols in this

context and point out some of their shortcomings. We also improve some existing

protocols, for example by proposing new and more efficient protocols which are

based on fewer security assumptions, and by providing a general framework, where

possible, to enable a more unified approach to analyzing such protocols.

In the first part of this dissertation, we examine the topic of message authen-

tication protocols in ad hoc networks. Previous interactive and non-interactive

protocols from the literature are fully analyzed. In Chapter 2, we describe a formal

model for NIMAPs using two channels, and analyze the attacks that can occur in

this model. The attack model considered is strong and a scheme that is proved

secure in this model does not require authenticated channels that have any unusual

properties. Further, the idea of hybrid-collision resistant (HCR) hash functions

is introduced and analyzed. This leads to a new proposal [MS07] for a NIMAP

based on HCR hash functions. This protocol is considered in the computational

security setting and it is as efficient as the best previous computationally secure

NIMAP while having a very simple structure and not requiring any long strings to

be authenticated ahead of time. Finally, we provide a new proof of non-existence of

nontrivial unconditionally secure NIMAPs. This proof consists of a combinatorial

counting argument and is much shorter than the previous proof [WSN08].

In Chapter 3, we investigate IMAPs and present a new computationally secure

IMAP [MS08a], based on the existence of interactive-collision resistant (ICR) hash

functions, a new notion of hash function security. The security of this IMAP is

based on the computational assumption that ICR hash functions exist. It performs

better than other message authentication protocols that are based on computational

assumptions. That is, while achieving the same level of security, the amount of

information sent over the authenticated channel in our IMAP is smaller. The

efficient and easy-to-use structure of our IMAP makes it very practical in real world

ad hoc network scenarios. Finally, we propose a generalization of an unconditionally

secure IMAP. We give sufficient conditions for such an IMAP to be secure.

The second part of the dissertation is devoted to examining the problem of

message recognition. In Chapter 4, we prove that there is a one-to-one correspon-

dence between non-interactive MRPs and digital signature schemes with message

recovery. Further, we improve the best existing recognition protocol due to Lucks

et al. [LZWW05] by suggesting a variant [MS08c] to overcome a certain shortcom-

ing. In particular, in case of communication failure or adversarial disruption, the

9

Chapter 1. Introduction

§1.6. Contributions of this Thesis

Lucks et al. protocol was not equipped with a practical resynchronization process

and therefore it could fail to resume. We propose a new variant of this protocol

[MS08c] that is equipped with a separate resynchronization technique that allows

users to resynchronize whenever they wish or when they suspect an intrusion has

taken place. Further, we present another variant of the protocol [GMS08], which

“self-recovers” in case of an intrusion; it does not need a separate resynchronization

process.

Previous recognition proposals in the literature were based on the idea of ex-

changing values of a hash chain [HWGW05, LZWW05, WW03]. In particular,

each pair of users wishing to communicate required a separate pair of hash chains,

which puts a relatively heavy memory requirement on low-end devices such as sensor

motes, (nodes in a wireless sensor network). Furthermore, the security assumptions

for this protocol depend on the number of sessions the protocol has been executed,

which gives rise to some undesirable security constraints.

We propose a new design for message recognition [MS08b] in ad hoc networks

and explain the advantages of using this new design as compared to previous al-

ternatives. Our proposed recognition protocol does not make use of hash chains.

Instead, the keys used in this protocol are chosen at random in each session. As

a result, we no longer require the low-end devices to save values of a hash chain

in their memories, thus relaxing the memory requirements. Moreover, the keys are

independent of one another and are refreshed in each session. This can be done

an arbitrary number of times, so we do not need to fix the total number of times

the protocol can be executed. As the passwords corresponding to each session are

chosen at random and are independent of one another, we do not need to consider

assumptions that depend on the number of sessions the protocol is executed. Con-

sequently, the security does not weaken as the protocol is executed repeatedly over

time. Last but not least, we provide a practical procedure for resynchronization in

case of any possible adversarial disruption or communication failure.

10

Chapter 2

Non-interactive Message

Authentication Protocols

Contents

2.1 General Framework: GNIMAP 12

2.1.1 Attack Model . 15

2.1.2 Security Analysis . 19

2.2 Previous NIMAPs . 21

2.3 A New Computationally Secure NIMAP 24

2.3.1 Hybrid-Collision Resistant Hash Function 24

2.3.2 On the Difficulty of the HCR Game 25

2.3.3 A new NIMAP based on HCR hash functions. 27

2.3.4 Parameter sizes . 29

2.3.5 Advantages of the proposed NIMAP 29

2.4 On Unconditionally Secure NIMAPs 30

2.4.1 Wang and Safavi-Naini’s Proof 30

2.4.2 A Counting Argument . 31

In this chapter, we consider the problem of non-interactive message authen-

tication using two-channel cryptography: an insecure broadband channel and an

authenticated narrow-band channel. This problem has been considered in the con-

text of ad hoc networks, where it is assumed that there is neither a secret key

shared among the two parties, nor a public-key infrastructure in place. The model

we consider is described in detail in the literature [GN04, GMN04]. Two small

11

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

devices wish to establish a secure key in an environment where no public-key in-

frastructure exists. The two devices can communicate over an insecure broadband

network. Also available is an authenticated narrow-band channel. This channel

might be based on information transmitted by human beings, e.g., a short string

that is read from one device and copied to the other device. The short string is

used to help to authenticate the information sent over the wide-band channel.

In Section 2.1, we present a formal framework [MS07] for protocols of this type,

termed as General Non-Interactive Message Authentication Protocol (GNIMAP).

When discussing the security of GNIMAP, we prove that given that a Binding Game

is hard to win for an adversary with certain properties, GNIMAP is computationally

secure. One can use this framework to analyze and compare particular instances

of a Non-Interactive Message Authentication Protocol (NIMAP) in a more unified

and consistent approach.

We continue in Section 2.2 by briefly examining the previous NIMAPs available

in the literature. We look at the performance and security of these protocols with

respect to our general framework.

This chapter is continued by presenting a new NIMAP [MS07] which is as ef-

ficient as the best previous NIMAPs, while it benefits from a simpler and easier

to implement structure. The security of our protocol is based on a new property

of hash functions that we introduce, which we name Hybrid-Collision Resistance

(HCR). We analyze the HCR notion in the random oracle model to compare it with

more standard notions of hash function security.

This chapter is concluded by proving that nontrivial unconditionally secure

NIMAPs do not exist. Wang and Safavi-Naini [WSN08] first proved this nonex-

istence result using probability distribution arguments. We prove the same result

using a simple counting argument which is much shorter.

2.1 General Framework: GNIMAP

We consider a non-interactive Message Authentication Protocol that employs both

the authenticated and the insecure channel between a claimant Alice and a verifier

Bob. All flows are initiated from Alice and there are a total of two flows, one over

the insecure channel and the other over the authenticated channel. We note that

there is no flow being initiated from Bob and as a result, the order in which these

two flows are being sent over the channels does not matter. Moreover, all other

12

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

scenarios of a non-interactive Message Authentication Protocol involving more than

two flows can be reduced to this scenario. That is, we can simply combine the

flows sent over each type of channel in a single flow. This is not the case in the

interactive setting since the data sent by Alice may depend on some data sent by

Bob in a previous flow, which makes both the order and number of flows important

in analysis.

Let M be the space of messages. In a Message Authentication Protocol, the

claimant Alice chooses a message M ∈ M and sends it to Bob using the protocol.

At the end, Bob either outputs (Alice, M ′), where M ′ ∈M, or he rejects.

Consider a randomized algorithm split : M → M1 × M2 which takes any

message M as input and maps it into a pair (m1,m2), where m1 is shorter than

m2. The reverse procedure is carried out by a deterministic algorithm reconstruct :

M1 ×M2 → M∪ {⊥} which takes a pair (m1,m2) and maps it into a message

M ∈M or a “reject” sign ⊥.

In order to employ the split and reconstruct algorithms in a Message Authen-

tication Protocol, we need them to satisfy the following requirements:

(i) Correctness property: Any message can be uniquely recovered. That is, for

any M ∈M,

reconstruct(split(M)) = M.

(ii) Binding property: The Binding game of Fig. 2.1 is hard. In other words, it

is computationally infeasible to find a message M such that given (m1,m2),

where split(M) = (m1,m2), one can efficiently find an m′2 ∈ M2 \ {m2} so

that

reconstruct(m1,m
′
2) 6= M and reconstruct(m1,m

′
2) ∈M

with non-negligible probability.

Oscar challenger

Choose M ∈M M−−−−−−−−−→ Compute split(M) = (m1, m2)

m1, m2←−−−−−−−−−

Send m′2.
m′2−−−−−−−−−→ Compute M ′ = reconstruct(m1, m′2).

Oscar wins if M ′ ∈M and M 6= M ′

Figure 2.1: The Binding Game

13

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

Given a pair (m1,m2) corresponding to a message M , it is desirable that for

all m′2 either reconstruct(m1,m
′
2) = M or reconstruct(m1,m

′
2) =⊥ with high

probability. The Binding property ensures that the values m1 and m2 are bound in

such a way that for almost all values of m′2, the pair (m1,m
′
2) corresponds to the

same message M or it is going to be rejected.

We define a pair of algorithms (split, reconstruct) to be (T, ε)-binding if any ad-

versary bounded by a time complexity T wins the Binding game with a probability

of success at most ε.

Now consider the following general non-interactive Message Authentication Pro-

tocol, where the split and reconstruct algorithms satisfy the correctness property

and are (T, ε)-binding. This protocol, abbreviated as GNIMAP, is also depicted in

Fig. 2.2.

Alice Bob

Input (M , Bob)

Compute split(M) = (m1, m2)
m2−−−−→ Receive m′2
m1===⇒ Receive m1 and compute

reconstruct(m′1, m′2) = M ′

Output (Alice, M ′) if M ′ ∈M,
and reject otherwise.

Figure 2.2: General Non-Interactive Message Authentication Protocol

General Non-Interactive Message Authentication Protocol (GNIMAP):

1. On input (M , Bob), Alice computes split(M) = (m1,m2).

2. Alice sends m2 to Bob over the broadband channel.

3. Bob receives m′2.1

4. Alice sends m1 to Bob over the authenticated channel.

5. Bob receives m1 from Alice.

6. Bob computes reconstruct(m′1,m
′
2) = M ′.

7. Bob outputs (Alice, M ′) if M ′ ∈M, and rejects otherwise.

1Note that the values that Bob receives on the broadband channel might have been altered by
an adversary. Hence, we use the notation D′ in the receiving end where the data D is transmitted.

14

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

2.1.1 Attack Model

The correctness of the aforementioned GNIMAP is ensured by property (i). In

other words, Bob can successfully recover M from the protocol if all the participants

have been honest and no attack has occurred. In order to analyze the security of

GNIMAP, we need to define an attack model. The adversarial goal and capabilities

are described in the following section.

In the setting of message authentication protocols, the adversarial goal is to

make Bob accept a message M along with the identity of Alice, when he was sup-

posed to reject (that is, when the message M was never sent by Alice to Bob). There

are two main types of attacks to consider: impersonation attacks and substitution

attacks.

In an impersonation attack, the attacker tries to convince Bob that a message

M is sent from Alice, while in fact M was never sent from Alice and the session

has been initiated by the adversary. Figure 2.3 depicts the impersonation attack in

the setting of GNIMAP.

Note that according to our model, the adversary cannot modify the data sent

over the authenticated channel, but he or she can replay them. Hence, the au-

thenticated flow in an impersonation attack is a replay of a previous flow sent by

Alice.

Eve Bob

Choose m′2
m′2−−−→

Let m′1 = m1, where Alice
m′1===⇒ Compute M ′ = reconstruct(m′1, m′2).

has sent m1 in a previous flow If M ′ ∈M, then output (Alice, M ′),
reject otherwise.

Figure 2.3: An Impersonation Attack Against GNIMAP

In a substitution attack, on the other hand, Alice initiates a session with Bob

trying to send him a message M . The adversary then substitutes M ′ instead of

M . So, Bob receives M ′ and not M . The adversary may have changed part or all

of M to get M ′. In case of our protocol, the adversary replaces m2 with m′2, after

Alice splits M into (m1,m2). The authenticated value m1 cannot be substituted

according to the model.

Note that the message M might have been chosen by the adversary. In other

words, the adversary can make Alice send a message that the adversary has chosen.

15

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

This ability of the adversary may not be considered in all models. We do consider it

in our model since it makes the adversary stronger and results in a stronger model.

Figure 2.4 illustrates a substitution attack against GNIMAP.

Alice Eve Bob

Input (M , Bob)
Compute split(M) = (m1, m2)

m2−−−−−−→ Substitute
m′2−−−−−−→

m1============================⇒

Let M ′ = reconstruct(m1, m′2).
If M ′ ∈M, output (Alice, M ′),
reject otherwise.

Figure 2.4: A Substitution Attack Against GNIMAP

One could argue that since an attacker has to use a previous flow in an imper-

sonation attack, the attack should not be called an “impersonation”, and should be

called a substitution; see for instance [GN04]. However, we believe that allowing

the adversary to replay previous authenticated flows in an impersonation attack re-

sults in a stronger adversary and, ultimately, a stronger model. Moreover, despite

the fact that the two attack scenarios are equivalent in the non-interactive setting,

they result in two very different attack scenarios in the interactive setting, see for

instance [MS08a].

We consider an adaptive chosen plain-text attack (ACPA) model in our general

setting. Note that the ACPA model is very strong and desirable compared to other

models. An adaptive chosen plaintext attack consists of two stages: an information

gathering stage and a deception stage.

The model presumes that in the information gathering stage, the attacker has

the capability to adaptively choose a number of arbitrary messages Mi, and have

Alice send them to Bob. The attacker then records the communication for further

use. He or she can choose the subsequent messages to be sent by Alice using

the results of the messages already sent. Note that the description of the split

function is known to the adversary. Hence, the adversarial goal is to gather as

many authenticated flows as possible in this stage. In addition, we assume that

the attacker has precomputing capabilities and is able to mount “dictionary”-type

attacks. The information gathering stage of an attack against GNIMAP is depicted

in Fig. 2.5.

Let N denote the set of all messages M sent by Alice to Bob before the start

of deception stage, and the set N denote the set of ordered pairs (m1,m2) sent by

16

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

Alice to Bob over the two channels before the start of deception stage. Note that

the set N includes all messages previously sent by Alice to Bob with or without

the request of the attacker.

Alice Eve Bob

Choose M1 or get it from Eve
Compute split(M1) = (n11, n12)

n12−−−−−−−−−−−−−−−−−−−−−→
n11=====================⇒

...
...

Choose Mq or get it from Eve
Compute split(Mq) = (nq1, nq2)

nq2−−−−−−−−−−−−−−−−−−−−−→
nq1

=====================⇒

Figure 2.5: Information Gathering Phase of an Attack

We use the term querying complexity of an adversary to refer to the number

q of messages sent by Alice to Bob during the information gathering stage. On

the other hand, the term offline complexity is used to refer to the computational

complexity T of an adversary.

The deception stage is where the attack occurs. That is, the adversary tries to

achieve his or her goal by making Bob accept a message M along with the identity

of Alice, when he was supposed to reject. The attack is either a substitution or an

impersonation attack.

In case of a substitution attack, Alice is sending a pair (m1,m2) to Bob. The

adversary substitutes m2 with m′2 and leaves m1 untouched. Now let M be one

of the messages sent by Alice in the information gathering stage. On the other

hand, consider an impersonation attack where the adversary sends m′2 and replays

m1. Given that M ∈ N , this impersonation attack is equivalent to the substitution

attack that we started with. This fact is illustrated in Fig. 2.6. Hence, without

loss of generality, we only consider impersonation attacks in the deception phase.

In the deception stage, the attacker tries to impersonate Alice by sending a single

message M ′ /∈ N . The attack succeeds if Bob accepts, and it fails otherwise. In

choosing M ′ the attacker can use all the information obtained from the information

gathering stage, which includes the messages sent previously by Alice without the

attacker’s request. The deception stage is illustrated in Fig. 2.7.

17

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

Alice Eve Bob

Input (M , Bob)
Compute split(M) = (m1, m2)

m2−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
m1============================⇒

Let M ′ = reconstruct(m1, m′2).
If M ′ ∈M, output (Alice, M ′),
reject otherwise.

Choose m′2
Let m′1 = m1

m′2−−−−−−→

m′1======⇒

Let M ′ = reconstruct(m′1, m′2).
If M ′ ∈M, output (Alice, M ′),
reject otherwise.

The dashed box is taking place during the information gathering stage.

Figure 2.6: Equivalence of Impersonation and Substitution Attacks in GNIMAP.

Eve Bob

Choose m′2
m′2−−−−−−→

Replay m′1 = ni1 for
m′1======⇒ Accept if reconstruct(m′1, m′2) ∈M

some i ∈ {1, . . . , q} and reconstruct(m′1, m′2) /∈ N ,
reject otherwise.

Figure 2.7: Deception Phase of an Attack

Note that anyone can replay both flows of a previous conversation between Alice

and Bob. In this case, Bob accepts a message that was previously sent by Alice.

However, this replay impersonation does not constitute an attack. In a successful

attack, the adversary is required to replay the authenticated flow and change the

information sent over the insecure channel. The first flow could be a replay of a

previously transmitted first flow. However, the two flows of the attack should not

be identical to a previous conversation of Alice and Bob, otherwise the “attack” is

considered a replay.

18

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

2.1.2 Security Analysis

In this section, we prove that GNIMAP is secure given the properties enumerated

in Section 2.1 and under the attack model described in Section 2.1.1. The proof is

based on a reduction.

Associated to each attack, there are sets N and N , resulting from the informa-

tion gathering stage, and a pair (m′1,m
′
2), from the deception stage, according to

our attack model. Let N = {M1,M2, . . . ,Mq}. Then, for each 1 ≤ i ≤ q

N = {(ni1, ni2) : 1 ≤ i ≤ q} ⊂ M1 ×M2, where reconstruct(ni1, ni2) = Mi.

The pair (m′1,m
′
2) corresponds to the deception stage, where the adversary replays

m′1 over the authenticated channel, and sends m′2 over the insecure channel.

Let us assume that an attack has occurred and Bob has accepted. That is, the

adversary has impersonated Alice by sending the pair (m′1,m
′
2) to Bob. Moreover,

Bob has accepted and has output (M ′, Alice), where M ′ = reconstruct(m′1,m
′
2).

In any successful attack, the adversary needs to replay the authenticated flow.

As a result, m′1 ∈ {n11, n21, . . . , nq1}. That is m′1 = ni1, for some 1 ≤ i ≤ q. Let i

be the smallest index for which m′1 = ni1. Moreover, M ′ /∈ {M1,M2, . . . ,Mq}, since

otherwise the attack is only a replay and not a real attack.

We now formally prove that the GNIMAP is secure given that (split, reconstruct)

is (T, ε)-binding. That is, we reduce an adversary who can attack the GNIMAP

with non-negligible probability to an adversary who wins the Binding game with

non-negligible probability.

Eve challenger

Choose M1
M1−−−−−−−−−→ Compute split(M1) = (n11, n12)

(n11, n12)
←−−−−−−−−−

...
...

...

Choose Mq
Mq−−−−−−−−−→ Compute split(Mq) = (nq1, nq2)

(nq1, nq2)
←−−−−−−−−−

Replay m′1 = ni1

(m′1, m′2)
−−−−−−−−−→ Eve wins if reconstruct(m′1, m′2) = M ′

for some i ∈ {1, . . . , q} and M /∈ {M1, . . . , Mq}.

Figure 2.8: GNIMAP Game

19

Chapter 2. Non-interactive Message Authentication Protocols

§2.1. General Framework: GNIMAP

Consider the game depicted in Fig. 2.8. We call this game the “GNIMAP game”.

This is because, if Eve wins this game with probability ε, then the game translates

into an attack against GNIMAP with success probability ε. Here, Eve is facing a

challenger who is simulating both Alice and Bob. The game consists of q rounds

of Eve sending messages Mi and the challenger responding with (ni1, ni2), where

split(Mi) = (ni1, ni2). These q rounds correspond to the information gathering

phase of the attack. The last round is analogous to the deception phase where Eve

sends her pair (m′1,m
′
2). Eve wins the game if m′1 = ni1, for some i ∈ {1, . . . , q},

while reconstruct(m′1,m
′
2) = M ′ 6= Mi.

Assuming that Eve wins this game with non-negligible probability, we can em-

ploy her in the Binding game of Fig. 2.1.

Eve Oscar Binding GNIMAP
challenger challenger

Choose j

Choose M1
M1−→ −−−−−−−−−−−−−−−−−−−−−−−−→ split(M1) =

(n11, n12)
(n11,n12)←− ←−−−−−−−−−−−−−−−−−−−−−−−−

...
...

...
...

Choose Mj
Mj−→ M = Mj

M−→ split(M) =
(m1, m2)

(nj1,nj2)
←− nj1 = m1

nj2 = m2

(m1,m2)←−

...
...

...
...

Choose Mq
Mq−→ −−−−−−−−−−−−−−−−−−−−−−−−→ split(Mq) =

(nq1, nq2)
(nq1,nq2)
←− ←−−−−−−−−−−−−−−−−−−−−−−−−

m′1 = ni1

for some i
1 ≤ i ≤ q

(m′
1,m′

2)
−→

m′
2−→

Figure 2.9: Reducing the GNIMAP Game to the Binding Game

Depicted in Fig. 2.9, Eve is playing against her GNIMAP game challenger (which

is simulated by Oscar), while Oscar is playing against his Binding game challenger.

Oscar will use the results of the GNIMAP game to win his Binding game. He first

chooses a random value j ∈R {1, . . . , q}. Then, Eve will carry out her own attack

against the GNIMAP challenger. That is, Eve sends messages Mt and receives nt1

and nt2.

The responses, nt1 and nt2, come from computing split(Mt), except when t =

j. In the jth round, Oscar forwards M = Mj to his challenger. The challenger

responds with a pair (m1,m2). Then, Oscar forwards nj1 = m1 and nj2 = m2 to

Eve.

20

Chapter 2. Non-interactive Message Authentication Protocols

§2.2. Previous NIMAPs

After q rounds, Eve chooses a message M ′ and sends m′1 and m′2. Note that

for Eve to win, m′1 = ni1 for some i ∈ {1, . . . , q}. Oscar simply forwards m′2 to his

challenger if j = i, and quits otherwise.

Note that from Eve’s point of view, this game is no different than the game of

Fig. 2.8.

Assuming that Eve wins her game with probability p, Oscar clearly wins his

game with probability p/q. Hence, we have proved the following Theorem.

Theorem 1. Assume that there is a GNIMAP where the pair (split, reconstruct)

is (T, ε)-binding. In the ACPA model, any adversary against this GNIMAP with

querying complexity q and offline complexity T has a probability of success p at most

qε.

We note that our reduction is not tight. However, it is normal to assume that

q ≤ 210 in manual authentication scenarios.2

2.2 Previous NIMAPs

In this section, we first define the kind of hash functions that are going to come

up in our discussion. Secondly, we briefly introduce the previous NIMAPs found

in the literature. Then, the security of these protocols is analyzed with respect to

our general model.

We use the following definitions of different types of hash functions in the rest

of the chapter.

A Collision Resistant (CR) Hash Function H, is a hash function where it

is hard to find distinct elements x and y such that H(x) = H(y). The pair (x, y) is

called a collision pair. For security purposes, the length of the hash value is required

to be more than 2k bits, where output size of H is k. Otherwise, an adversary has

a good chance of finding a collision pair using an offline birthday attack.

A Second-Preimage Resistant (SPR) Hash FunctionH, is a hash function

where given a value x, it is hard to find a value y, x 6= y, such that H(x) = H(y).

In this case, the best generic attack is exhaustive search. Hence, the length of the

hash value is required to be at least k bits.

2The reduction proposed by Pasini and Vaudenay [PV06] is also not tight and they get the
same probability of success, p/q. They also assume that q ≤ 210.

21

Chapter 2. Non-interactive Message Authentication Protocols

§2.2. Previous NIMAPs

An ε-Universal Hash Function Family, (ε-UHFF) H is a collection of

functions HK depending on a random key K, where Pr[HK(x) = HK(y)] ≤ ε for

any two distinct values x and y, where the probability is taken over the choices of

K.

We now briefly summarize three NIMAPs found in the literature.

Balfanz-Smetters-Stewart-Wong NIMAP Balfanz et al. [BSSW02] intro-

duced the idea of hashing the data to be authenticated and delivering the hash

value in an authenticated way to the verifier. Their protocol is based on a collision

resistant hash function. It is depicted in Fig. 2.10.

Alice Bob

Input M
M−−−−−−→ Receive M ′

Compute h = H(M)
h

======⇒ Receive h and accept if

h = H(M ′). Reject otherwise.

Figure 2.10: Balfanz et al. NIMAP

The adversary can work offline and find a collision M1 and M2 yielding the

same hash value. Then, M1 is given to Alice in the information gathering stage and

she sends Bob the value of H(M1) over the authenticated channel. The adversary

replays this authenticated flow along with M2 and makes Bob accept. This attack

is depicted in Fig. 2.11. If the adversary can mount the above attack efficiently,

then this protocol fails to satisfy property (ii) of Section 2.1.

Alice Eve Bob
M1←−−−−−− Find M1, M2,

H(M1) = H(M2)

Input(M1, Bob)
M1−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

H(M1)
============================⇒

M2−−−−−−→

Replay H(M1)
H(M1)

======⇒

Figure 2.11: Attack against the Balfanz et al. NIMAP

The collision pair, M1 and M2, could be found using a “birthday attack”. Birth-

day attacks have square root complexity. If we consider algorithms of complexity

22

Chapter 2. Non-interactive Message Authentication Protocols

§2.2. Previous NIMAPs

280 inefficient, then in order to make this attack not efficient we need to increase

the size of the authenticated bits, that is, h, to 160 bits.

Gehrmann-Mitchell-Nyberg MAP: MANA I Gehrmann et al. [GMN04] in-

troduced MANA I, for manual authentication, based on an ε-universal hash func-

tion family H. The original form of this protocol is not a NIMAP. Later, Vaudenay

[Vau05] proposed a non-interactive version of MANA I. This protocol is depicted

in Fig. 2.12. In the original proposal, confidentiality of the authenticated channel

is required. This requirement is very restrictive in general. Vaudenay [Vau05] has

proved that a “stall-free” authenticated channel is enough to ensure the security

of MANA I. In a stall-free channel, once a message is sent, it is either received by

the recipient right away or it is never received. In other words, it is not possible

to delay a flow under this assumption. However, the stall-free requirement is still

quite strong and may not be realistic in an arbitrary authenticated channel.

Alice Bob

Input M
M−−−−−−→

Choose K ∈R {0, 1}k

Compute h = HK(M)
h, K

======⇒

Accept if h = HK(M ′) and
reject otherwise.

Figure 2.12: MANA I

According to our model, the adversary can record a pair (HK(M), K) from

the information gathering stage and find M ′ such that HK(M) = HK(M ′). The

adversary then sends M ′ over the insecure channel and replays (HK(M), K) over

the authenticated channel. (Note that this attack will not work in a stall-free

channel.) Having recorded K, finding M ′ such that HK(M) = HK(M ′) is usually

an easy computation. This is because the function HK is a member of a universal

hash family and typically it has a simple structure3.

Pasini-Vaudenay NIMAP Pasini and Vaudenay [PV06] proposed a NIMAP,

illustrated in Fig. 2.13, based on Second-Preimage Resistant hash functions. The

protocol is in the Common Reference String (CRS) model, which assumes a random

string Kp has been previously distributed to everyone. The commit function has

3For example, here is one commonly used universal hash family. Let p be a large prime and let
n < p. For all pairs K = (a, b) ∈ Zp

∗×Zp, define a hash function hK(x) = (ax+ b mod p) mod n.
The family {hK} is a universal hash family.

23

Chapter 2. Non-interactive Message Authentication Protocols

§2.3. A New Computationally Secure NIMAP

two inputs: the message M and the CRS Kp. It outputs a commit value c and

a decommit value d. This function is non-deterministic and is playing the role of

the split algorithm. The open algorithm, on the other hand, is a deterministic

algorithm. It uniquely outputs M on input (Kp, c, d).

Alice Bob

input M

(c, d)← commit(Kp, M)
(c‖d)
−−−−−−→ M ′ ← open(Kp, c′, d′)

Compute h = H(c)
h

======⇒ Accept if h = H(c′) and

reject otherwise.

Figure 2.13: Pasini-Vaudenay NIMAP

An adversary attacking the NIMAP is reduced to an adversary who finds second-

preimages or breaks the trapdoor of the commitments, details can be found in

[PV06]. To achieve security against an adversary with complexity 280 and q = 210,

they need to authenticate 100 bits. More details can be found in [PV06].

There is always the issue of authenticity attached to public parameters such as

Kp. Hence, it possibly restricts the application of this NIMAP. Moreover, we are

trying to replace the use of any PKI by using NIMAPs. As a result, this protocol

does not seem to be the optimal solution.

On the other hand, this NIMAP is based on the assumption that trapdoor

commitment schemes exist, as well as SPR hash functions. This protocol satisfies

the properties of Section 2.1.

2.3 A New Computationally Secure NIMAP

In this section, we first define Hybrid-Collision Resistance for hash functions. Sec-

ondly, we discuss the difficulty of finding hybrid-collisions. Moreover, a new NIMAP

based on Hybrid-Collision Resistant hash functions is introduced. The security of

this NIMAP is ensured by showing that it satisfies the properties we listed in Section

2.1 when using Hybrid-Collision Resistant hash functions.

2.3.1 Hybrid-Collision Resistant Hash Function

We define a Hybrid-Collision Resistant (HCR) Hash Function H, to be a

hash function in which the game of Fig. 2.14 is hard, for fixed values l1 and l2.

24

Chapter 2. Non-interactive Message Authentication Protocols

§2.3. A New Computationally Secure NIMAP

Moreover, we say H is a (T, ε)-HCRHF if an adversary with complexity T wins the

game of Fig. 2.14 with probability at most ε.

Oscar challenger

Choose M , |M | = l1.
M−−−−−−→ Choose K ∈R {0, 1}l2 .

K←−−−−−−

Choose L, |L| = l1 + l2.
L−−−−−−→ Oscar wins if L 6= M‖K

and H(M‖K) = H(L).

Figure 2.14: HCR Game

Furthermore, we call the pair (L,M‖K) a hybrid-collision. Note that if l2 = 0,

then HCR is equivalent to CR. On the other hand, HCR is very close to SPR when

l1 = 0. (The lengths are fixed in the HCR game.) In fact, HCR is interpolating

between CR and SPR. This suggests that finding hybrid-collisions is at least as

hard as collisions, but at most as hard as second-preimages. We will investigate

this matter in more detail in the next section.

2.3.2 On the Difficulty of the HCR Game

As far as we know, the problem of finding hybrid-collisions has not been previously

addressed in the literature. Here, we investigate this problem in the random oracle

model. This gives us an intuition about the difficulty of the problem compared to

finding collisions or second-preimages.

Let H be a hash function randomly chosen from FX ,Y (the set of all functions

from X to Y), where X = {0, 1}l1+l2 is the set of all possible binary strings of

length l1 + l2 and |Y| = 2k. Assume that we are only permitted oracle access to H,

i.e., the only way to compute H(x) is to query the value x to the oracle. Further,

assume that the adversary, Oscar, is able to access the random oracle T times,

where T = 2t.

In order to analyze the difficulty of the HCR game, we find an upper bound on

the probability ε of Oscar winning the HCR game.

Let distinct random values X1, X2, . . . , XT be Oscar’s inputs to the random

oracle. Moreover, let the hybrid-collision be (L,M‖K). We write Xi = Mi‖Ki,

where |Ki| = l2 and |Mi| = l1, for all i = 1, . . . , T .

Let D denote the event that M‖K is equal to one of X1, ..., XT , and let E

denote the event that M‖K collides with some Xi (i.e. H(M‖K) = H(Xi) where

25

Chapter 2. Non-interactive Message Authentication Protocols

§2.3. A New Computationally Secure NIMAP

M‖K 6= Xi). We are interested in computing an upper bound on Pr[E]. We will

do this by conditioning on the event D:

Pr[E] = Pr[¬D]× Pr[E|¬D] + Pr[D]× Pr[E|D]

≤ Pr[E|¬D] + Pr[D]× Pr[E|D]

= Pr[E|¬D] + Pr[D andE].

Denote ε1 = Pr[E|¬D] and ε2 = Pr[D andE]. We will compute upper bounds

on ε1 and ε2.

Given ¬D, the probability that H(M‖K) = H(Xj) for any given j is 2−k.

Hence, the probability of occurrence of at least one collision is ε1 = 1− (1− 2−k)T .

If T = 2t is small compared to 2k, then ε1 is approximately 2t−k.

We bound ε2 as follows. Construct a graph G with V (G) and E(G), denoting the

set of vertices and edges respectively, where V (G) = {X1, X2, . . . , XT}. Moreover,

for any m and n, m 6= n, XmXn ∈ E(G) if and only if H(Xm) = H(Xn). Now

define V ′ = {Xi ∈ V (G) : deg(Xi) ≥ 1}. It is clear that ε2 = Pr[M‖K ∈ V ′].

Let Exp[|V ′|] denote the expectation of |V ′|. Now, since K is a random bitstring

of length l2, Pr[M‖K ∈ V ′] ≤ Exp[|V ′|]× 2−l2 , where the expectation is taken over

the choices of K and H.

Note that the maximum number of edges of G is T 2/2. Furthermore, for any

randomly chosen Xm and Xn, the probability that XmXn is an edge is 2−k. Hence,

the expected number of edges of G is 2−kT 2/2 = 22t−k−1. In addition, the expected

number of vertices of positive degree is at most 22t−k. As a result, Exp[|V ′|] ≤ 22t−k.

Therefore, ε2 ≤ 22t−k−l2 .

Let C denote the event that Oscar wins the HCR game. Now, we compute

Pr[C] = Pr[¬E]× Pr[C|¬E] + Pr[E]× Pr[C|E]

≤ Pr[C|¬E] + Pr[E]

= 2−k + ε1 + ε2

≤ (2t + 1)2−k + 22t−k−l2

≈ 2t−k + 22t−k−l2 .

Note that the length of the original message, l1, has no influence in the analysis

in the random oracle model. However, once a concrete hash function is chosen, the

amount of time it takes to compute a hash function is in proportion to the size of

26

Chapter 2. Non-interactive Message Authentication Protocols

§2.3. A New Computationally Secure NIMAP

the input, and as a result, the size of the message will be a factor to consider. The

shorter the messages are, the more hash function computations can be handled in

a fixed amount of time.

In Section 2.3.4 we examine p, the overall success probability of the adversary,

given particular values for parameters k, t and l2.

2.3.3 A new NIMAP based on HCR hash functions.

Let H be an HCR hash function and fix k, l1, and l2. Now, consider the following

proposed NIMAP.

1. On input (M , Bob), |M | = l1, Alice chooses K ∈R {0, 1}l2 uniformly at

random.

2. Alice sends (M,K) to Bob over the broadband channel.

3. Bob receives (M ′, K ′), where |M ′| = l1 and |K ′| = l2.

4. Alice computes h = H(M‖K) and sends h to Bob over the authenticated

channel.

5. Bob receives h from Alice.

6. Bob outputs (Alice, M ′) if h = H(M ′‖K ′), and rejects otherwise.

The above NIMAP is also depicted in Fig. 2.15.

Alice Bob

Input (M , Bob), |M | = l1,

Choose K ∈R {0, 1}l2 .
M, K

−−−−−−−−−→ Receive M ′, K′.

Compute h = H(M‖K).
h

=========⇒ Receive h′, accept if h = H(M ′‖K′),

reject otherwise.

Figure 2.15: The New NIMAP

In this NIMAP, m1 = H(M‖K) = h and m2 = (M,K) for a random key K.

Moreover, for any M ′, K ′ and h, reconstruct(h, (M ′, K ′)) = M ′ if h = H(M ′‖K ′),
and reconstruct(h, (M ′, K ′)) =⊥ otherwise.

27

Chapter 2. Non-interactive Message Authentication Protocols

§2.3. A New Computationally Secure NIMAP

Clearly, this (split, reconstruct) satisfies the Property (i) of Section 2.1. That

is, any message M can be uniquely recovered:

reconstruct(split(M)) = reconstruct(H(M‖K), (M,K)) = M.

Next we need to show that our (split, reconstruct) satisfies the Property (ii)

of Section 2.1 which says: It is computationally infeasible to find a message M

such that given (m1,m2), where split(M) = (m1,m2), one can efficiently find an

m′2 ∈M2 \{m2} so that reconstruct(m1,m
′
2) ∈M with non-negligible probability.

We substitute for the split and reconstruct algorithms and restate the Binding

Property for our NIMAP as follows:

It is computationally infeasible to find a message M , |M | = l1, such that given

H(M‖K) and K, K ∈R {0, 1}l2 , one can efficiently find an L of size l1 + l2, L 6=
M‖K, so that H(L) = H(M‖K) with non-negligible probability.

This is implied from the assumption that the HCR game is hard. Note that

the binding property for our NIMAP translates to HCR game being hard, but the

opposite is not true and does not need to hold for our application. In other words,

Oscar may win the HCR game by finding a collision of the form (M‖K ′,M‖K),

with K 6= K ′. However, this collision does not constitute an attack against our

NIMAP since the messages are the same. On the other hand, all instances of a

successful attack against our NIMAP translate into a winning strategy against the

HCR game.

Assuming that H is a (T, ε)-HCRHF, we conclude that (split, reconstruct) of

this NIMAP is (T, ε)-binding. Hence, we get the following Corollary of Theorem 1.

Corollary 1. Let H be a (T, ε)-HCRHF. Any adversary against the NIMAP of

Fig. 2.15, with querying complexity q and offline complexity T , has a probability of

success p at most qε.

Note that we do not require any public parameters to be distributed ahead of

time. One could argue that the description of the HCR hash function needs to

be distributed in an authentic manner ahead of time. In practice, however, these

protocols are going to use standard built-in hash functions which do not require

any authentication of public parameters, which would be required for commitment

schemes.

Our new protocol looks similar to the protocol of Fig. 2.12 with the differ-

ence that K is moved from the authenticated channel to the broadband channel.

28

Chapter 2. Non-interactive Message Authentication Protocols

§2.3. A New Computationally Secure NIMAP

However, there are several differences. The underlying hash function security re-

quirement is different, properties of the channels are different, and the resulting

overall security of our protocol is different from those of MANA I and its NIMAP

version depicted in Fig. 2.12. We do not assume that our channels provide con-

fidentiality or are stall-free. The notion of hybrid-collision resistance is different

from the security notion of ε-universal hash function families.

In our protocol, `1, which is the length of the messages being authenticated, is a

fixed parameter. That is, our protocol only authenticates messages of fixed length.

However, note that M is being sent over the broadband channel and sending long

messages over this channel is very cheap. As a result, we can set `1 large enough

for the desired application, and pad short messages with a one followed by enough

zeros, if necessary.

2.3.4 Parameter sizes

Let T = 2t and q be the offline and querying complexities respectively. That is, the

adversary is allowed to use T hash computations and make Alice send q messages

to Bob. Moreover, let H be a (T, ε)-HCRHF and let k be the size of H.

According to Corollary 1, an adversary attacking our proposed NIMAP, using

T hash computations and q messages, has probability of success p ≤ qε.

Pasini and Vaudenay [PV06] assume that q ≤ 210 and t ≤ 70. They also require

the probability of success of the adversary against the protocol of Fig. 2.13 be less

that 2−20. For this to happen, one needs to authenticate 100 bits. That is k = 100.

Using the same parameters, q ≤ 210, t ≤ 70, and k = 100 we obtain that

ε ≈ 2−30 + 240−l2 . In order to achieve the same level of security obtained by Pasini

and Vaudenay [PV06], i.e., p ≤ 2−20, we should have ε ≈ 2−30. Thus, if we let l2

large enough, e.g., l2 ≥ 80, in our protocol of Fig. 2.15, then we obtain the same

level of security of the protocol of Fig. 2.13. That is, the amount of information

sent over the authenticated channel is the same as in the Pasini-Vaudenay protocol.

2.3.5 Advantages of the proposed NIMAP

Our proposed NIMAP of Fig. 2.15 benefits from a simple and easy to implement

structure. It is based on a single assumption that HCR hash functions exist. Note

that any CR hash function satisfies the HCR notion.

29

Chapter 2. Non-interactive Message Authentication Protocols

§2.4. On Unconditionally Secure NIMAPs

We do not use any commitment scheme or require any public parameters avail-

able to users such as the CRS. The amount of information sent over the authenti-

cated channel is as low as the most secure NIMAP proposed so far, while achieving

the same level of security.

2.4 On Unconditionally Secure NIMAPs

We have so far focused on design and analysis of NIMAPs that are secure against

a computationally bound adversary. The alternative is to consider adversaries who

have access to unbounded amounts of time and resources. In this section, we

show that the only NIMAPs which are secure in the presence of such unbounded

adversaries are trivial protocols. In other words, the entire message has to be sent

over the authenticated channel in order for a NIMAP to be unconditionally secure.

In other words, non-trivial NIMAPs that are unconditionally secure do not exist.

This result was first proved by Wang and Safavi-Naini [WSN08] using probability

distribution arguments. We provide a new proof in the form of a simple counting

argument.

2.4.1 Wang and Safavi-Naini’s Proof

Wang and Safavi-Naini [WSN08] first showed the impossibility of designing non-

trivial unconditionally secure NIMAPs. They used the following model to describe

the unconditionally secure NIMAP:

The information theoretic NIMAP model: The sender S sends the message m

and some x over the insecure public channel, and a tag t over the manual channel.

The receiver R decides whether or not to accept m as authentic from S.

Wang and Safavi-Naini showed that unconditionally secure NIMAPs do not

exist without secrets between sender and receiver, and without requirements such as

stall-free on the narrow-band channel, unless the whole message is transmitted over

the narrow-band channel. This results in a trivial protocol where the authenticated

channel has enough bandwidth to transmit the whole message.

They suppose |m| > |t| and propose an attack. First, they show that there

definitely exists some other message m′ such that m′ can be authenticated under

some x′, possibly different from x, and the same tag t. Now, the adversary, on

observing the authentication transcripts (m,x, t), replaces m and x with m′ and x′.

30

Chapter 2. Non-interactive Message Authentication Protocols

§2.4. On Unconditionally Secure NIMAPs

They further note that the adversary can mount this attack online by removing

m and x from the broadband channel and delaying t on the narrow-band channel

until she finds an appropriate m′ and x′. Then, she sends m′ and x′ over the

broadband channel and let t be transmitted over the narrow-band channel right

after.

In order to formally prove the effectiveness of their attack, for example when

proving the existence of appropriate m′ and x′, they use probability distribution

arguments involving Shannon entropies.

2.4.2 A Counting Argument

We now present a much shorter and simpler proof of non-existence of nontrivial

NIMAPs. Our proof is based on a counting argument.

We use the same model used by Wang and Safavi-Naini [WSN08] and define

M to be the set of all possible messages to be authenticated and R to be the set

of all possible strings that could be sent on the first flow along with a possible

message. Moreover, we let S be the set of all authenticating tags that are sent over

the authenticated channel. An instance of an NIMAP in this model is as follows. A

message M ∈ M is to be authenticated and it is sent over the broadband channel

along with some information r ∈ R. Later, an authenticating tag s ∈ S is sent over

the narrow-band channel. Figure 2.16 depicts this NIMAP.

Alice Bob
Input (M , Bob)

M, r−−−→
s==⇒

Output (Alice, M ′) or reject.

Figure 2.16: A General NIMAP

Let V be set of all transcripts which result in Bob accepting a message, that is

V = {(M, r, s) : Bob accepts the triple (M, r, s)}.

Note that, V is public knowledge and a computationally unbounded adversary can

find or store V ahead of time.

31

Chapter 2. Non-interactive Message Authentication Protocols

§2.4. On Unconditionally Secure NIMAPs

If |M| ≤ |S|, then there exists a trivial NIMAP where the whole message is

transmitted over the authenticated channel. We assume that |M| > |S| to consider

non-trivial NIMAPs. For every tag s ∈ S, we let Ms be the set of all messages

such that there exists some r in which (M, r, s) results in an acceptance by Bob.

In other words,

Ms := {M : (M, r, s) ∈ V for some r}.

Moreover, we let U be the set of all tags that can authenticate only one message,

that is

U := {s : |Ms| = 1}.

Note, |U| ≤ |S|. Next, suppose |U| = |S|. Then
∑
|Ms| = |S|, which implies∑

|Ms| < |M| which is a contradiction. Hence, |U| < |S|.

Furthermore, we let MU be the union of all Ms such that s ∈ U . In other

words,

MU =
⋃
s∈U

Ms.

Since |U| < |S|, we obtain that |MU | < |S|, which implies |MU | < |M|.
Hence, there exists an M in M\MU such that, for any (M, r, s) ∈ V , there exists

(M ′, r′, s) ∈ V with M 6= M ′.

The attack is comprised of Eve choosing any M ∈ M \ MU and giving it

to Alice. Later, when she receives (M, r, s) from Alice, she replaces it with the

appropriate (M ′, r′, s), that we know exists. Note that Eve is computationally

unbounded and can find such an M . Moreover, after receiving (M, r, s) from Alice,

Eve finds (M ′, r′). The attack is depicted in Fig. 2.17.

Alice Eve Bob
M←−−−

M, r−−−→
s==⇒

M ′, r′−−−→
s==⇒ Verify (M ′, r′, s) ∈ V.

Figure 2.17: An Attack Against the General NIMAP

To conclude, we have shown that non-trivial NIMAPs that are unconditionally

32

Chapter 2. Non-interactive Message Authentication Protocols

§2.4. On Unconditionally Secure NIMAPs

secure do not exist.

33

Chapter 3

Interactive Message

Authentication Protocols

Contents

3.1 Previous IMAPs . 36

3.2 The Attack Model . 37

3.3 A New Computationally Secure IMAP 40

3.3.1 Interactive-Collision Resistance 40

3.3.2 A New IMAP Using ICR Hash Functions 47

3.3.3 Security Analysis . 48

3.3.4 The Choice of Parameters and Hash Function 55

3.4 An Unconditionally Secure IMAP 56

In this chapter, we propose an Interactive Message Authentication Protocol

(IMAP) using two channels: an insecure broadband channel and an authenticated

narrow-band channel [MS08a]. We consider the problem in the context of ad hoc

networks, where it is assumed that there is neither a secret key shared between the

two parties, nor a public-key infrastructure in place. The security of our IMAP is

based on the existence of Interactive-Collision Resistant (ICR) hash functions, a

new notion of hash function security introduced in Section 3.3.1.

In Section 3.1, we summarize the results on existing IMAPs in the literature.

In Section 3.2, the attack model is described. Section 3.3 is devoted to introducing

our IMAP which is based on the computational assumption that ICR hash func-

tions exist. It performs better than any other message authentication protocols

34

Chapter 3. Interactive Message Authentication Protocols

§

that are based on computational assumptions. That is, while achieving the same

level of security, the amount of information sent over the authenticated channel

in our IMAP is smaller than the most secure IMAP and Non-interactive Message

Authentication Protocol (NIMAP) in the literature. Alternatively, if we send the

same amount of information over the authenticated channel, we can allow much

stronger adversaries compared to the existing protocols in the literature.

Our protocol has a very simple structure and does not require any long strings

to be distributed ahead of time. The security of our protocol is investigated in

Section 3.3.3. We allow offline attacks by an adversary. As before, the attack

model is the adaptive chosen plain-text attack (ACPA) model. Both substitution

and impersonation attacks are analyzed in this model. The ACPA model is a

strong model, and as a result, a scheme that is proven secure in this model does

not require authenticated channels that have any unusual properties. In the ACPA

model, the adversary has offline computational power and can induce the users to

send messages of the adversary’s choice. In this chapter, we give further power

to the adversaries by allowing them to have online computational power. That is,

they are allowed to do hash function computations, or make oracle queries, while

they are in the middle of an attack.

Furthermore, our IMAP benefits from a simple structure and works under fewer

security assumptions compared to other IMAPs in the literature. The simplicity

and the easy-to-use structure of the protocol makes it applicable in a wide variety

of real-world settings where ad hoc networks have no trusted infrastructure. For

instance, it can be used in pairings of wireless devices such as Wireless USB and

Bluetooth, in Personal Area Networks (PANs), or in a disaster case where a trusted

infrastructure has been compromised.

We analyze the security and efficiency of our IMAP and show that the perfor-

mance of our IMAP is better than that of other IMAPs and NIMAPs proposed so

far. In other words, our IMAP achieves a better level of security, while benefiting

from an efficient structure and having to send fewer bits over the authenticated

channel. To reiterate, if we want to send the same amount of information, then we

can assume much stronger adversaries in terms of online computational complexity.

This chapter is concluded in Section 3.4 by proposing a generalization of an

unconditionally secure IMAP [NSS06]. Sufficient conditions for our IMAP to be

secure are found.

35

Chapter 3. Interactive Message Authentication Protocols

§3.1. Previous IMAPs

3.1 Previous IMAPs

A non-interactive protocol is, in general, preferred to an interactive protocol if they

are achieving the exact same goals. In other words, interactive protocols are sup-

posed to either achieve better security or be more efficient than their non-interactive

competitors, otherwise, one would choose to implement non-interactive protocols

and obtain the same results. For instance, having a bidirectional channel may cost

more than a unidirectional channel, or devices may have different computational

capabilities, allowing one device to be the master and the other be the slave in the

communication. However, we note that NIMAPs achieve a strictly weaker notion of

security when compared to IMAPs. This is because NIMAPs, on their own, prov-

ably cannot protect against replay attacks of the authenticated flow, while IMAPs

can. (One could use a time-stamping technique to solve this problem for NIMAPs,

however.)

The IMAP presented in this chapter is based on a computational assumption.

As a result, we can only compare its security and efficiency to similar IMAPs that

are based on computational assumptions.

Hoepman [Hoe04] proposed an authenticated key agreement protocol that uses

both a bidirectional narrow-band channel and a bidirectional broadband channel.

This interactive protocol consists of a commitment exchange, an authentication

exchange, and finally a decisional Diffie-Hellman problem in a group G. The secu-

rity is based on the hardness of the decisional Diffie-Hellman problem in G and on

two hash functions H1 and H2 having a very specific structure. Vaudenay [Vau05]

observed that instances of such hash functions may not exist at all.

Vaudenay [Vau05] proposed an IMAP based on equivocable or extractable com-

mitment schemes. The protocol is designed in the Common Reference String model

where a random string is authentically predistributed among all users. The random

string is then used to compute commitment values. This protocol is depicted in

Fig. 3.1.

By targeting typical parameters, such as offline complexity of 270 and q = 210,

Vaudenay’s protocol requires authenticating 50 bits to get the probability of suc-

cess of the adversary to be at most 2−20. This protocol achieves a good level of

security when compared to other proposals in the literature. However, the only

efficient commitment schemes, with the specific properties required here, are in the

Random Oracle Model. There are other instances of such commitment schemes in

the standard model, but the number of rounds is logarithmic in terms of the secu-

36

Chapter 3. Interactive Message Authentication Protocols

§3.2. The Attack Model

Alice Bob
Input (Bob, M), Choose RA ∈ {0, 1}k Choose RB ∈ {0, 1}k
uniformly at random uniformly at random

(c, d)← commit(M, RA)
(M‖c)
−−−−−−→ Receive (M ′, c′)

Receive R′B
RB←−−−−−−

d−−−−−−→ Receive d′ and compute

R′A ← open(M ′, c′, d′)

Compute R = RA
⊕

R′B
R

======⇒ If R = R′A
⊕

RB , then output

(Alice, M ′) and reject otherwise.

Figure 3.1: Vaudenay’s IMAP

rity parameters and their analyses involve zero-knowledge proofs. Also, there are

some efficient commitment schemes with the appropriate properties in the Common

Random String (CRS) model. However, the CRS model might not be suitable in

an ad hoc setting where it is not practical to authentically distribute a random

string to every user. We note that the possibility that the adversary does online

computations has not been considered in Vaudenay’s protocol.

Another recent paper, by Naor, Segev and Smith [NSS06], investigates two-

channel authentication in the interactive setting. They achieve unconditional se-

curity using evaluation of polynomials over finite fields. For every integer k, their

IMAP allows the sender to authenticate an n-bit message in k rounds, such that the

length of the authenticated string is about 2 log(1/ε)+2 log(k−1) n+O(1). By setting

k = log(n) +O(1), the manually authenticated string is of length 2 log(1/ε). They

conclude that the advantage of assuming computational security is to reduce the

amount of information that needs to be authenticated from 2 log(1/ε) to log(1/ε),

and not to reduce the number of flows of the protocol.

3.2 The Attack Model

The adversary is trying to make Bob accept a message M ′ along with the identity

of Alice, when in fact the message M ′ was never sent by Alice to Bob. That is, the

adversarial goal is to make Bob output (Alice, M ′) when he was supposed to reject

(Alice, M ′) or accept (Alice, M) for some sM 6= M ′. There are two main types of

attacks to consider: impersonation attacks and substitution attacks.

In an impersonation attack, the adversary initiates a session and tries to con-

vince Bob that a message M ′ is sent from Alice, while in fact M ′ was never sent

37

Chapter 3. Interactive Message Authentication Protocols

§3.2. The Attack Model

from Alice. In our model, the attacker cannot initiate a new authenticated flow.

She can only replay a previous authenticated flow. Hence, the authenticated flow

in an impersonation attack constitutes of a replay of a previous authenticated flow

sent by Alice to Bob.

On the other hand, a substitution attack occurs when Alice initiates a session

with Bob, and tries to send him a message M . Then, the attacker substitutes M ′ for

M , so, Bob receives M ′ and not M . The authenticated flow cannot be substituted

according to the model, and hence any potential changes occur in the broadband

channel. There are two types of substitution attacks; see Section 3.3.3.

Moreover, we assume that the adversary can make Alice send a message that

the adversary has chosen. This ability of the adversary may not be considered in all

models. We do consider it in our model since it makes the adversary more powerful

and results in a stronger level of security. The adaptive chosen plaintext attack

(ACPA) model is very strong and desirable compared to other models. It consists

of two stages: an information gathering stage and a deception stage. In addition,

we assume that the attacker has precomputing capabilities and is able to mount

“dictionary-type” attacks.

The term offline complexity is used to refer to the computational complexity

Toff = 2toff of an adversary up to and including the information gathering stage.

The term online complexity refers to the computational complexity Ton = 2ton of

an adversary during the deception stage of a substitution attack. Furthermore, the

number of messages sent by Alice to Bob during the information gathering stage is

denoted by q. The parameter toff is chosen in agreement with the usual capabilities

of a computationally bounded adversary assuming today’s computational power of

computers. For instance, toff ≤ 80 or toff ≤ 70 are commonly used bounds in the

literature as of December of 2008. The choice for the parameter ton depends on the

structure and application scenario of the particular protocol under discussion.

In the information gathering stage, the adversary is allowed to adaptively choose

q messages and make Alice send them to Bob. The communication is then recorded

for further use. The adversary hopes that this stage of an attack gradually reveals

information about the unknown aspects of the protocol.

The deception stage happens after the information gathering phase. The at-

tacker tries to make Bob accept a message M ′ along with the identity of Alice,

when he was supposed to reject. We note that the message M ′ should be different

from all the messages previously sent by Alice, otherwise we consider the “attack”

only a “replay”.

38

Chapter 3. Interactive Message Authentication Protocols

§3.2. The Attack Model

Let M be the set of all messages, and let x ∈ X , y ∈ Y , and s ∈ S, for some

sets X ,Y , and S. Figure 3.2 depicts a 3-round generic IMAP (3GIMAP).

Alice Bob

Input (M , Bob)
M, x
−−−−→ Receive M ′, x′

y
←−−−−

Receive y′ and
s

===⇒ Output (Alice, M ′) or reject.

Figure 3.2: 3GIMAP

Gehrman [Geh98] looked at different possible attacks against a generic k-round

protocol and proved that there are in total
(

k+1
k+1

2

)
distinct attacks. He used the

following notation to label these attacks. A flow initiated by the adversary is

labelled as A if it sent to Alice, and, similarly, a flow sent by the adversary is

labelled as B if the recipient is Bob. According to his result, there are
(

4
2

)
= 6

possible attacks against a three round protocol, namely AABB, ABBA, BABA,

ABAB, BBAA, and BAAB attacks.

The last flow of 3GIMAP is an authenticated flow sent by Alice to Bob. Accord-

ing to the communication model of two-channel cryptography, the adversary can

only replay this last flow. As a result, the only possible attacks against 3GIMAP

are the ones that end with a flow sent to Bob, namely AABB, ABAB, and BAAB.

These attacks are depicted in Figures 3.4, 3.5, and 3.3.

Alice Eve Bob
M←−−−−

M, x
−−−−→

y
←−−−−

s
===⇒

M ′, x′
−−−−→

y′
←−−−−

s
===⇒ Output (Alice, M ′) or reject.

Figure 3.3: Attack of Type AABB

The attack of type AABB is an impersonation attack whereas the attacks of

type BAAB and type ABAB are substitution attacks. Details are explained in

39

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Section 3.3.3.

Alice Eve Bob

M←−−−−

M, x
−−−−→

M ′, x′
−−−−→

y
←−−−−

y′
←−−−−

s
===⇒ s

===⇒ Output (Alice, M ′) or reject.

Figure 3.4: Attack of Type ABAB

Alice Eve Bob

M ′, x′
−−−−→

y′
←−−−−

M←−−−−

M, x
−−−−→

y
←−−−−

s
===⇒ s

===⇒ Output (Alice, M ′) or reject.

Figure 3.5: Attack of Type BAAB

3.3 A New Computationally Secure IMAP

We begin by defining new notion of hash function security which we call Interactive-

Collision Resistance (ICR). We continue by introducing a new IMAP based on ICR

hash functions. The security of this IMAP is based on the hardness of the ICR

problems.

3.3.1 Interactive-Collision Resistance

In this section, we begin by defining Interactive-Collision Resistance I, II and III

(ICRI, ICRII, and ICRIII respectively) for hash functions. Then, we state and

prove three lemmas about the security of ICRI, ICRII, and ICRIII hash functions.

ICRI, ICRII, and ICRIII properties are going to guard our protocol against attack

of type ABAB, BAAB, and AABB, respectively.

40

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

To our knowledge, this is the first time that the problem of finding interactive-

collisions of type I, II, and III are being investigated. We analyze the ICRI, ICRII,

and ICRIII Games in the Random Oracle Model. This analysis yields some insight

into the hardness of these games compared to Collision Resistance (CR) or Second-

Preimage Resistance (SPR). Note that we do not have any concrete constructions

for designing such hash functions in the standard model. We pose this as an open

problem.

Definition 1. A hash function H is Interactive-Collision Resistant I (ICRI) if

the game of Fig. 3.6 is hard to win, for fixed values of `1, `2, and `3. In addition, the

pair (M‖K‖R′,M ′‖K ′‖R) is called an interactive-collision of type I. Furthermore,

we call H a (Toff , ε1)-ICRI hash function if an adversary, who can make up to Toff

hash function computations, wins the ICRI game with probability at most ε1.

Oscar challenger

Choose M , |M | = `1
M−−−−−−→

K←−−−−−− Choose K ∈ {0, 1}`2 uniformly at random

Choose R′, |R′| = `3
R′−−−−−−→

Choose M ′, |M ′| = `1
M ′−−−−−−→

Choose K′, |K′| = `2
K′−−−−−−→

R←−−−−−− Choose R ∈ {0, 1}`3 uniformly at random

Oscar wins if H(M‖K‖R′) = H(M ′‖K′‖R)
and M‖K‖R′ 6= M ′‖K′‖R.

Figure 3.6: ICRI Game

Note that if `2 = `3 = 0, then ICRI is equivalent to Collision Resistance (CR).

Further, if `1 = `3 = 0, then ICRI is equivalent to Second-Preimage Resistance

(SPR). In fact, ICRI is interpolating between CR and SPR. This suggests that

solving ICRI game is at least as hard as finding collisions, but no harder than

finding second-preimages.

We can analyze the security of ICRI hash functions, or in other words the

hardness of the ICRI game, in the Random Oracle Model. This will give us an

intuition on how difficult this game is, as compared to former notions of hash

function security. Let FX ,Y denote the set of all functions from a domain X to a

range Y .

41

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Lemma 1. Let X = {0, 1}`1+`2+`3 be the set of all possible binary strings of length

`1 + `2 + `3. Consider a hash function H chosen randomly from FX ,Y , where |Y| =
2k. Then, H is a (2toff , ε1)-ICRI hash function in the Random Oracle model, where

ε1 = 2−k(1 + 22toff−`2−`3 + 2toff−`3). In other words, any player with computational

complexity Toff = 2toff against the challenger of the ICRI game has a probability of

success at most ε1 = 2−k(1 + 22toff−`2−`3 + 2toff−`3).

Proof. We consider X = {0, 1}`1+`2+`3 , the set of all possible binary strings of size

`1 + `2 + `3, and let a hash function H be chosen randomly from FX ,Y , where

|Y| = 2k.

Assume that we are only permitted oracle access to H, that is we are working in

the Random Oracle Model. We let the adversary have access to the Random Oracle

for Toff = 2toff times. Given these conditions, we are looking for the probability ε1

of Oscar winning the ICRI game.

Let A = {X1, X2, . . . , XToff
} be the queries of Oscar to the Random Oracle,

where |Xi| = `1 + `2 + `3 for 1 ≤ i ≤ Toff . Without loss of generality, we assume

that Xis are distinct, for 1 ≤ i ≤ Toff = 2toff .

Consider the pair (Y, Y ′) = (M‖K‖R′,M ′‖K ′‖R) and write Xis in the form of

Xi = Mi‖Ki‖Ri, where |Mi| = `1, |Ki| = `2 and |Ri| = `3.

We want to find an upper bound on the probability of Oscar winning the ICRI

game by finding Y and Y ′ such that H(Y) = H(Y ′). We will do this by considering

the following cases:

Case 1. Y ′ /∈ A, that is, Y ′ is not a precomputed value;

Case 2. Y ′ ∈ A and Y /∈ A, that is, Y ′ is precomputed, but Y is not;

Case 3. Y ′ ∈ A and Y ∈ A, that is, Y and Y ′ are both precomputed.

Note that these three cases are mutually exclusive and they cover all possibilities.

We will discuss each case separately.

Case 1. Notice that Y is determined after the third flow. Moreover, Y ′ is not a

precomputed value and yet it collides with Y . Furthermore, Y was determined

before Y ′ was chosen. In this case, the probability that H(Y) = H(Y ′) is 2−k

due to the properties of Random Oracles.

42

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Case 2. In this case, Y ′ is precomputed and Y is not. After the third flow, when Y is

determined, the probability that H(Y) = H(Xj), for some j, is 2toff−k. Now,

Oscar wants Y ′ = Xj. Therefore, he sends M ′ = Mj and K ′ = Kj. Then,

the challenger responds with a random R′. As a result,

Pr[Y ′ = Xj] = Pr[R′ = Rj] = 2−`3 .

Hence, the probability that H(Y) = H(Y ′) and Y ′ = Xj, when Y is not a

precomputed value, is 2toff−k−`3 .

Case 3. When both Y and Y ′ are precomputed values, it means that Oscar had found

a collision among the precomputed values. Let the colliding values be Xi =

Mi‖Ki‖Ri and Xj = Mj‖Kj‖Rj, 1 ≤ i, j ≤ 2toff with i 6= j. We know that

the probability of finding a collision among Toff random values is
(

Toff

2

)
/2k.

This is approximately equal to 22toff−k−1 when Toff = 2toff .

After finding a collision in A, Oscar wants Y = Xi and Y ′ = Xj. Therefore,

he lets M = Mi, R
′ = Ri,M

′ = Mj, and K ′ = Kj. Note that K and R are

being chosen by the challenger. The probability of a random K being equal

to a precomputed Ki is 2−`2 . Similarly, the probability of a random R being

equal to a precomputed Rj is 2−`3 . We obtain

Pr[(Y, Y ′) = (Xi, Xj)] = Pr[K = Ki]× Pr[R = Rj] = 2−`2−`3 .

As a result, we get

Pr[H(Xi) = H(Xj) and {Y, Y ′} = {Xi, Xj}] = 22toff−k−`2−`3 .

Considering all three cases, we conclude that

Pr[H(Y) = H(Y ′)] = 2−k(1 + 22toff−`2−`3 + 2toff−`3).

The above discussion concludes the proof of Lemma 1. To reiterate the Lemma,

one can say that any player with computational complexity Toff = 2toff against the

challenger of the ICRI game has a probability of success at most ε1 = 2−k(1 +

22toff−`2−`3 + 2toff−`3).

We now define Interactive-Collision Resistance II.

43

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Definition 2. A hash function H is Interactive-Collision Resistant II (ICRII)

if the game of Fig. 3.7 is hard to win, for fixed values of `1, `2, and `3. The pair

(M‖K‖R′,M ′‖K ′‖R) is called an interactive-collision of type II. Furthermore, we

call H a (Toff , Ton, ε2)-ICRII hash function if an adversary with offline complexity

Toff and online complexity Ton wins the ICRII game with probability at most ε2.

Oscar challenger

Choose M , |M | = `1
M−−−−−−→

K←−−−−−− Choose K ∈ {0, 1}`2 uniformly at random

Choose M ′, |M ′| = `1
M ′−−−−−−→

Choose K′, |K′| = `2
K′−−−−−−→

R←−−−−−− Choose R ∈ {0, 1}`3 uniformly at random

Choose R′, |R′| = `3
R′−−−−−−→

Oscar wins if H(M‖K‖R′) = H(M ′‖K′‖R)
and M‖K‖R′ 6= M ′‖K′‖R.

Figure 3.7: ICRII Game

As in ICRI, if `2 = `3 = 0, then ICRII is equivalent to Collision Resistance. As

a result, we conclude that finding collisions is no harder than finding interactive-

collisions of type II. On the other hand, if `1 = `2 = 0, then ICRII is very close to

Second-Preimage Resistance (the lengths are fixed in the ICRII notion).

Similar to ICRI, we analyze the security of ICRII hash functions in the Random

Oracle Model to have an intuition on how difficult it is to win the ICRII game.

Lemma 2. Let X = {0, 1}`1+`2+`3 be the set of all possible binary strings of size

`1 + `2 + `3. Consider a hash function H chosen randomly from FX ,Y , where

|Y| = 2k. Then, H is a (2toff , 2ton , ε2)-ICRII hash function in the Random Oracle

Model, where ε2 = 2−k(1 + 22toff−`2−`3 + 2toff−`3 + 2ton). In other words, any player

with offline computational complexity Toff = 2toff and online complexity Ton = 2ton

against the challenger of the ICRII game has a probability of success at most ε2 =

2−k(1 + 22toff−`2−`3 + 2toff−`2 + 2ton).

Proof of Lemma 2. Let H again be a Random Oracle and assume that the adver-

sary can access the Random Oracle for up to Toff = 2toff times before he receives

the last flow from the challenger, i.e. the value of R in the ICRII. Furthermore, he

can access the Random Oracle for up to Ton = 2ton times after he receives the last

44

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

flow from the challenger and before he sends the value of R′. We now find an upper

bound on the probability ε2 of Oscar winning the ICRII game.

Let the pair (Y, Y ′) = (M‖K‖R′,M ′‖K ′‖R) be the interactive-collision of type

II found by Oscar. Further, let A = {X1, . . . , XToff
} be Oscar’s inputs to the

Random Oracle before he receives the value of R from the challenger, and B =

{XToff+1, . . . , XToff+Ton} be his inputs to the Random Oracle after he received the

value of R. Without loss of generality, we assume that X1, . . . , XToff+Ton
are all

distinct. We write each Xi in the form of Mi‖Ki‖Ri, where |Mi| = `1, |Ki| = `2

and |Ri| = `3.

We would like to find an upper bound on the probability of Oscar winning the

ICRII game. We will do this by considering the following mutually exclusive cases:

Case 1. Y ∈ B, that is, Y is one of the Ton values computed after the fifth flow;

Case 2. Y /∈ B and Y /∈ A, that is, Y is not among the Toff precomputed values or

the Ton values computed after the fifth flow;

Case 3. Y ∈ A, and Y ′ /∈ A, that is, Y is among the Toff precomputed values and Y ′

is not.

Case 4. Y ∈ A, and Y ′ ∈ A, that is, Y and Y ′ are both among the Toff precomputed

values.

Note that these mutually exclusive cases cover all possibilities. We now treat

each case separately.

Case 1. Once the challenger sends R, Y ′ is determined. Hence, the probability that

Y ′ collides with one of the Ton values that Oscar computes after receiving R

is 2ton−k. Oscar chooses Ton values that all begin with M‖K (from the first

two flows). Then, if a collision is found with Y ′, Oscar can choose R′ so that

Y collides with Y ′.

Case 2. In this case, Y is neither precomputed among the offline computations and nor

is it computed during the online computations. Note that Y ′ is determined

once the challenger sends R. The probability that Y , a value which is not

precomputed, collides with a determined value Y ′ is 2−k.

Case 3. This case refers to the situation where Y is computed among the offline com-

putations and Y ′ is not. Note that Y ′ is determined after the fifth flow. The

45

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

probability that H(Y ′) = H(Xj), for some j ≤ Toff , is 2toff−k. Now, Oscar

wants Y = Xj. Therefore, he sends M = Mj and R′ = Rj. We note that K

is chosen by the challenger. As a result,

Pr[Y = Xj] = Pr[K = Kj] = 2−`2 .

Hence, the probability that H(Xj) = H(Y ′) and Y = Xj, when Y ′ is not a

precomputed value, is 2toff−k−`2 .

Case 4. If Y and Y ′ are both precomputed during the offline computations, then

Oscar has found a collision before starting the game. Let the colliding values

be denoted by Xi = Mi‖Ki‖Ri and Xj = Mj‖Kj‖Rj, 1 ≤ i, j ≤ 2toff with

i 6= j. The probability of finding a collision among Toff random values is(
Toff

2

)
/2k. This is approximately equal to 22toff−k−1 for Toff = 2toff .

After finding a collision in A, Oscar wants Y = Xi and Y ′ = Xj. Hence, he

lets M = Mi, R
′ = Ri,M

′ = Mj, and K ′ = Kj. Note that K and R are being

chosen by the challenger. The probability of a random K being equal to a

precomputed Ki is 2−`2 . Similarly, the probability of a random R being equal

to a precomputed Rj is 2−`3 . As a result, we obtain

Pr[(Y, Y ′) = (Xi, Xj)] = Pr[K = Ki]× Pr[R = Rj] = 2−`2−`3 .

As a result, we get

Pr[H(Xi) = H(Xj) and {Y, Y ′} = {Xi, Xj}] = 22toff−k−`2−`3 .

Summing up the above cases, we obtain that

Pr[H(Y) = H(Y ′)] = 2−k(1 + 22toff−`2−`3 + 2toff−`2 + 2ton)

Next, we define Interactive-Collision Resistant III (ICRIII).

Definition 3. A hash function H is Interactive-Collision Resistant III (ICRIII)

if the game of Fig. 3.8 is hard to win, for fixed values of `1, `2, and `3. The pair

(M‖K‖R′,M ′‖K ′‖R) is called an interactive-collision of type III. Furthermore, we

call H a (Toff , Ton, ε3)-ICRIII hash function if an adversary with offline complexity

Toff and online complexity Ton wins the ICRIII game with probability at most ε3.

46

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Oscar challenger

Choose M ′, |M ′| = `1
M ′−−−−−−→

Choose K′, |K′| = `2
K′−−−−−−→

R←−−−−−− Choose R ∈ {0, 1}`3 uniformly at random

Choose M , |M | = `1
M−−−−−−→

K←−−−−−− Choose K ∈ {0, 1}`2 uniformly at random

Choose R′, |R′| = `3
R′−−−−−−→

Oscar wins if H(M‖K‖R′) = H(M ′‖K′‖R)
and M‖K‖R′ 6= M ′‖K′‖R.

Figure 3.8: ICRIII Game

Lemma 3. Let X = {0, 1}`1+`2+`3 be the set of all possible binary strings of size

`1 + `2 + `3. Consider a hash function H chosen randomly from FX ,Y , where

|Y| = 2k. Then, H is a (2toff , 2ton , ε3)-ICRIII hash function in the Random Oracle

Model, where ε3 = 2−k(1 + 22toff−`2−`3 + 2toff−`3 + 2ton). In other words, any player

with offline computational complexity Toff = 2toff and online complexity Ton = 2ton

against the challenger of the ICRIII game has a probability of success at most ε3 =

2−k(1 + 22toff−`2−`3 + 2toff−`2 + 2ton).

The proof of Lemma 3 is similar to the proof of Lemma 2.

Finally, we define the notion of an Interactive-Collision Resistant hash function.

Definition 4. A hash function H is Interactive-Collision Resistant (ICR) if

the ICRI, ICRII, and ICRIII games are all hard to win.

Furthermore, H is said to be a (Toff , Ton, ε1, ε2)-ICR hash function if it is a

(Toff , ε1)-ICRI hash function, a (Toff , Ton, ε2)-ICRII hash function, and a (Toff , Ton, ε2)-

ICRIII hash function.

3.3.2 A New IMAP Using ICR Hash Functions

Let H be a (Toff , Ton, ε1, ε2)-ICR hash function with fixed parameters `1, `2, and `3.

We propose the following IMAP:

1. On input (M , Bob), Alice chooses K ∈ {0, 1}`2 uniformly at random and

sends M‖K to Bob over the insecure channel.

47

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

2. Bob receives M ′‖K ′.

3. Bob chooses R ∈ {0, 1}`3 uniformly at random and he sends it to Alice.

4. Alice receives R′.

5. Alice computes h = H(M‖K‖R′) and sends it over the authenticated channel.

5. Bob receives h′.

6. Bob computes H(M ′‖K ′‖R).

7. Bob outputs (Alice, M ′) if h′ = H(M ′‖K ′‖R), and he rejects otherwise.

This IMAP is illustrated in Fig. 3.9. Next, we prove that this IMAP is secure

under the assumption that the three games in Figures 3.6, 3.7, and 3.8 are hard to

win. In other words, if H is a (Toff , Ton, ε1, ε2)-ICR hash function, then the IMAP

is secure.

Alice Bob

Input (M , Bob)

Choose K ∈R {0, 1}`2
M‖K
−−−−→ Receive M ′‖K′

R←−−−− Choose R ∈R {0, 1}`3

Receive R′ and

Compute h = H(M‖K‖R′) h
===⇒ Output (Alice, M ′) if h = H(M ′‖K′‖R),

and reject otherwise.

Figure 3.9: Interactive Message Authentication Protocol

3.3.3 Security Analysis

In this section, we analyze the security of the IMAP presented in Fig. 3.9. We

consider substitution and impersonation attacks separately. Associated with each

attack scenario, an IMAP game is introduced. Winning this game is equivalent

to attacking our proposed IMAP. Finally, the reduction of the ICRI, and similarly

ICRII and ICRIII, to the IMAP game is shown.

As was mentioned earlier, the ACPA model consists of an information gathering

stage and the deception stage.

48

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

3.3.3.1 The Information Gathering Stage

During the information gathering stage, the adversary can change the information

sent over the broadband channel. For instance, the adversary may change R to R′,

or K to K ′. The other value that is being sent over the broadband channel is the

message M . However, our model allows the adversary to choose the message M to

start with. Hence, there is no need for the adversary to intervene and change it to

M ′. Since we are working in the ACPA model, the adversary can make Alice send

q messages in the information gathering stage. This stage is depicted in Fig. 3.10.

Alice Eve Bob

Choose M1 or get it from Eve

M1‖K1−−−−−→ Substitute
M1‖K′1−−−−−→

R′1←−−−−− Substitute
R1←−−−−−

Compute h1 = H(M1‖K1‖R′1)
h1=======================⇒

Choose M2 or get it from Eve

M2‖K2−−−−−→ Substitute
M2‖K′2−−−−−→

R′2←−−−−− Substitute
R2←−−−−−

Compute h2 = H(M2‖K2‖R′2)
h2========================⇒

...
...

Choose Mq or get it from Eve

Mq‖Kq−−−−−→ Substitute
Mq‖K′q−−−−−→

R′q←−−−−− Substitute
Rq←−−−−−

Compute hq = H(Mq‖Kq‖R′q)
hq

========================⇒

Figure 3.10: Information Gathering Phase of an Attack

As mentioned previously, the goal of the adversary in attacking a MAP is to

make the verifier, Bob, accept a message M ′ along with the identity of the claimant,

Alice, when he was supposed to reject and, indeed, the message M ′ was never sent

by Alice to Bob. There are two main ways of achieving this goal: by mounting

impersonation attacks or substitution attacks. We will prove that a successful

impersonation attack translates into winning the ICRI game and a successful sub-

stitution attack is equivalent to winning either the ICRII game or the ICRIII game.

49

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

3.3.3.2 Impersonation Attack

Figure 3.11 depicts the impersonation attack against our IMAP. Here, the attacker

initiates a session herself and tries to convince Bob that a message M ′ is sent from

Alice, while in fact M ′ was generated by the attacker and Alice never sent M ′ to

Bob. This attack is analogous to an attack of type AABB depicted in Fig. 3.3.

Eve Bob

Input (M ′, Bob)
M ′‖K′
−−−−→ Receive M ′‖K′

R′←−−−− Choose R′ ∈ {0, 1}`2

Receive R′ uniformly at random

Send h = hi = H(Mi‖Ki‖R′i) for
h

===⇒ Output (Alice, M ′) if h = H(M ′‖K′‖R′), for

some i, 1 ≤ i ≤ q. and reject otherwise.

Figure 3.11: An Impersonation Attack Against IMAP

According to our model, the data sent over the authenticated channel, although

public, cannot be modified by the adversary. Hence, Eve can only replay a previous

flow sent by Alice, as shown in Fig. 3.11. The attacker replays one of h1, . . . , hq.

Given that Alice has never sent M ′, the adversarial goal is achieved if Bob accepts.

IMAP Game Against Impersonation Attacks. We now prove that our IMAP

is secure against impersonation attacks mounted by an adversary who has offline

computational power Toff given that H is a (Toff , ε1)-ICRI hash function. In other

words, an adversary who can attack the IMAP by mounting an impersonation at-

tack with non-negligible probability can also win the ICRI game with non-negligible

probability.

Consider the game illustrated in Fig. 3.12. If Eve wins this game with proba-

bility ε, then obviously we can translate the game into an attack against our IMAP

with success probability ε. As a result, this game is named the “IMAP game”.

Here, Eve is simulating the adversary of the IMAP and is facing a challenger who

is simulating Alice and Bob at the same time.

The first q rounds, analogous to the information gathering stage of an attack,

consist of Eve sending messages Mi and the challenger responding with Ki. This

part is simulating the first flow sent by Alice.

Eve is allowed to change the values sent by Alice and Bob sent over the insecure

channel, that is Ki and Ri. Note that hi = H(Mi‖Ki‖R′i). Hence, the values of K ′i

50

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Eve challenger

Choose M1
M1−−−−−−−−−→

K1←−−−−−−−−− Choose K1

Choose R′1
R′1−−−−−−−−−→

...
...

...

Choose Mq
Mq−−−−−−−−−→

Kq←−−−−−−−−− Choose Kq

Choose R′q
R′q−−−−−−−−−→

Choose M ′ and K′
M ′‖K′

−−−−−−−−−→

R←−−−−−−−−− Choose R

Define hi = H(Mi‖Ki‖R′i)
hi−−−−−−−−−→ Eve wins if M ′ /∈ {M1, . . . , Mq}

for some i ∈ {1, . . . , q} and hi = H(M ′‖K′‖R).

Figure 3.12: IMAP Game Against Impersonation Attacks

and Ri are redundant in the analysis of the impersonation attack.

In the last round of the game, corresponding to the deception phase, Eve sends

M ′‖K ′, M ′ 6= Mi for every i ∈ {1, . . . , q}. After receiving a random value R from

the challenger, she sends hi = H(Mi‖Ki‖R′i), for some i ∈ {1, . . . , q}. Eve wins the

game if hi = H(M ′‖K ′‖R) for M ′ /∈ {M1, . . . ,Mq}.

The following theorem reduces the ICRI game to the IMAP game against im-

personation attacks.

Theorem 2. Let H be a (Toff , ε1)-ICRI hash function. Then, any adversary against

the IMAP of Fig. 3.9 with offline complexity Toff who makes q message queries and

mounts an impersonation attack, has a probability of success at most qε1.

Proof. Assuming that Eve wins the IMAP game of Fig. 3.12 with non-negligible

probability, we can employ her in the ICRI game depicted in Fig. 3.6. In this

reduction, Eve is playing against her IMAP game challenger and Oscar is playing

against his ICRI game challenger. The result of the IMAP game, played by Eve, is

going to be used in the ICRI game, played by Oscar. Oscar begins by choosing a

random value j ∈ {1, . . . , q}. Then, he lets Eve continue playing against the IMAP

challenger, which is simulated by Oscar. Oscar does not interrupt the flows between

Eve and her challenger except when t = j. For t = j, Oscar forwards Mj to the

51

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

ICRI challenger. Then, the challenger responds with K. Oscar sends K = Kj to

Eve. Oscar gets R′ from Eve and sends it to the ICRI challenger.

At the deception stage, Eve sends M ′ and K ′. Oscar sends M ′ to his challenger

and receives R. He then sends R to Eve. Eve responds with a value hi, i ∈
{1, . . . , q}. Eve wins if hi = H(M ′‖K ′‖R). If i = j and Eve wins, then Oscar wins

the ICRI game, and Oscar loses otherwise.

If we assume that Eve can win the IMAP game with probability ε, then Oscar

wins the ICRI game with probability ε/q.

When q = 1, adversaries with probability of success 2−k clearly exist, and hence,

the reduction is tight. For q 6= 1, the probability of success is q2−k. This factor

q appears as a consequence of considering strong adversaries who can request q

messages to be sent by Alice. Some papers only consider q = 1 resulting in a

weaker notion of security.1 However, the approach of many other papers is similar

to this thesis. For instance, Vaudenay [Vau05] assumed that q ≤ 210 and the

reduction is not tight. They also get the same probability of success, p/q.

Putting Lemma 1 and Theorem 2 together, we obtain the following corollary.

Corollary 2. Let X = {0, 1}`1+`2+`3 be the set of all possible binary strings of

size `1 + `2 + `3 and H be a hash function chosen randomly from FX ,Y , where

|Y| = 2k. Then, any adversary against the IMAP of Fig. 3.9, with offline complexity

Toff = 2toff who makes up to q message queries and mounts an impersonation attack,

has a probability of success p ≤ q2−k(1 + 22toff−`2−`3 + 2toff−`2).

3.3.3.3 Substitution Attack

In the substitution attack, unlike the case of impersonation attack, Alice is actively

involved and she would like to authenticate M to Bob. The adversary, on the other

hand, wishes to authenticate M ′ to Bob along with the identity of Alice. There are

two possible cases.

The first case is when Alice initiates a session and tries to authenticate M to

Bob. Then, Eve substitutes M ′ for M . As a result, Bob receives M ′ and not M .

The value of M ′ may be the result of a partial or total modification of M by Eve.

After receiving R from Bob, Eve tries to find a suitable value R′ which will make

Bob accept after receiving h. Figure 3.13 is illustrating this scenario against our

IMAP. This substitution attack is an attack of type ABAB, depicted in Figure 3.3.

1See [NSS06] for instance.

52

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

Alice Eve Bob

Input (M , Bob)

M‖K
−−−−−−→ Substitute

M ′‖K′
−−−−−−→

R′←−−−−−− Substitute
R←−−−−−−

Compute h = H(M‖K‖R′) h
==================⇒ If H(M ′‖K′‖R) = h, output

(Alice, M ′), reject otherwise.

Figure 3.13: Substitution Attack of Type ABAB Against Our IMAP

The second case is when Eve initiates a flow with Bob while pretending to

be Alice. Eve tries to authenticate M ′ to Bob. After receiving R, she does her

computations to find a suitable M . Then, she will make Alice initiate a session

with Bob with input M . Eve will use the authenticated flow of this session in her

original session with Bob. This substitution attack is an attack of type BAAB,

illustrated in Fig. 3.5.

Alice Eve Bob

Input (M , Bob)

M ′‖K′
−−−−−−→

R←−−−−−−

M←−−−−−−

M‖K
−−−−−−→

R′←−−−−−−

Compute h = H(M‖K‖R′) h
==================⇒ If H(M ′‖K′‖R) = h, output

(Alice, M ′), reject otherwise.

Figure 3.14: Substitution Attack of Type BAAB Against Our IMAP

The IMAP Game Against Substitution Attacks. Examining the substitu-

tion attack of type ABAB, illustrated in Fig. 3.13, we can write down the following

as the order of the flows:

(1) Alice chooses M or gets it from Eve. Eve gets K from Alice.

(2) Eve sends M ′ and K ′ to Bob.

(3) Bob chooses a random value R and sends it to Eve.

53

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

(4) Eve chooses a random value R′ and sends it to Alice.

(5) Alice computes h = H(M‖K‖R′), which is sent to Bob.

Note that a successful substitution attack of type ABAB directly translates

into a successful player against the ICRII game. As a result, we get the following

theorem.

Theorem 3. Let H be a (Toff , Ton, ε2)-ICRII hash function. Then, any adversary

against our IMAP with offline complexity Toff and online complexity Ton, who is

mounting a substitution attack of type A has a probability of success p = ε2.

Now we examine the substitution attack of type BAAB, illustrated in Fig. 3.14.

The following is the order of the flows as they happen in this attack scenario:

(1) Eve sends M ′ and K ′ to Bob.

(2) Bob chooses a random value R and sends it to Eve.

(3) Eve provides Alice with M .

(4) Alice sends M and K to Eve.

(5) Eve chooses a random value R′ and sends it to Alice.

(6) Alice computes h = H(M‖K‖R′), which is sent to Bob.

A successful substitution attack of type BAAB yields a successful player against

the ICRIII game. Hence, the following theorem follows.

Theorem 4. Let H be a (Toff , Ton, ε2)-ICRIII hash function. Then, any adversary

against our IMAP with offline complexity Toff and online complexity Ton, who is

mounting a substitution attack of type BAAB has a probability of success p = ε2.

Now combining Lemmas 2 and 3 with Theorems 3 and 4, we obtain the following

corollary.

Corollary 3. Let X = {0, 1}`1+`2+`3 be the set of all possible binary strings of size

`1 + `2 + `3 and H be a hash function chosen randomly from FX ,Y , where |Y| = 2k.

Then, any adversary against our IMAP, with offline complexity Toff = 2toff and

online complexity Ton = 2ton, who is mounting a substitution attack, has a probability

of success p = 2−k(1 + 22toff−`2−`3 + 2toff−`3 + 2ton).

54

Chapter 3. Interactive Message Authentication Protocols

§3.3. A New Computationally Secure IMAP

3.3.3.4 Security of our IMAP

The adversary against our IMAP will either mount a substitution attack or an

impersonation attack. Hence, the following theorem is a consequence of Corollary

2 and Corollary 3.

Theorem 5. Let X = {0, 1}`1+`2+`3 and H be a hash function chosen randomly

from FX ,Y , where |Y| = 2k. Then, any adversary against our IMAP, with offline

complexity Toff = 2toff and online complexity Ton = 2ton who can make q message

queries, has a probability of success

p ≤ 2−k max(q(1 + 22toff−`2−`3 + 2toff−`2), 1 + 22toff−`2−`3 + 2toff−`3 + 2ton).

3.3.4 The Choice of Parameters and Hash Function

Theorem 5 says that an adversary attacking our proposed IMAP, using 2toff hash

computations before the deception stage, 2ton hash computations during the decep-

tion stage, and q message queries, has a probability of success at most 2−k max(q(1+

22toff−`2−`3 + 2toff−`2), 1 + 22toff−`2−`3 + 2toff−`3 + 2ton).

Let us first target typical2 values for q ≤ 210, toff ≤ 70, and p ≤ 2−20.

If we take `2, `3 ≥ 80, then we can basically ignore the factors (1 + 22toff−`2−`3)

and 2toff−`3 . We note that, since R and K are being sent over the insecure channel,

this assumption does not have any impact on the analysis or usefulness of our

protocol. We now can simplify the result of Theorem 5 to p ≤ 2−k max(q, 2ton).

Since we want the overall success probability of the adversary to be less than

or equal to 2−20, we require that max(q, 2ton) ≤ 2k−20.

Hence, letting ton = 10 along with typical parameters q ≤ 210, toff ≤ 70, and

p ≤ 2−20, we get that k ≥ 30. This is a distinct improvement over the previous

works.

Vaudenay [Vau05] requires k ≥ 50 while the same typical parameters are tar-

geted. If we let k = 50, then we can tolerate much stronger adversaries, compared

to other results [Vau05, MS07, PV06], having ton = 30 and q ≤ 230 and still get

the same overall success probability of p ≤ 2−20. Note that, we can allow toff to get

bigger as well by just choosing `2 + `3 according to the size of toff .

2See for instance [Vau05] and [PV06].

55

Chapter 3. Interactive Message Authentication Protocols

§3.4. An Unconditionally Secure IMAP

As a concrete suggestion, we would propose to use a standard hash function

such as SHA-256, with the output truncated to k bits. This would certainly be

practical. The issue remains as to whether it would be secure. We have proved that

the protocol is secure in the Random Oracle Model, which is a standard approach in

the design of cryptographic protocols. Furthermore, we also determined the exact

properties of a hash function that are required for the security proof to hold. Of

course we are not able to prove that these properties hold for any specific hash

function. On the other hand, no one is able to prove at the present time that any

specific hash function satisfies any desirable property (e.g., preimage-resistance).

However, assuming a CR hash function is enough for ICRI, ICRII, and ICRIII

properties to hold. As a result, if we are comfortable with using a concrete hash

function in practice in place of a CR hash function, then we can also be comfortable

with using that hash function when ICR hash functions are needed.

In practice, there needs to be a relation between the size of the messages M ,

`1, and the choice of ton. Note that, in a substitution attack the adversary is

making 2ton hash computations while Alice is waiting to get a value R from Bob.

Generating a random value R does not take long. For our application, in particular,

these devices are in close proximity and as a results the delay in the system should

be low as well. This means that when Alice does not hear back from Bob, she

suspects that some active adversary is trying to intervene.

3.4 An Unconditionally Secure IMAP

Naor, Segev and Smith [NSS06] proposed an unconditionally secure IMAP, with k

rounds, using evaluation of polynomials over finite fields, for every integer k. To

authenticate an n-bit message in k rounds, they require the length of the authenti-

cated string to be about 2 log(1/ε) + 2 log(k−1) n+O(1), where ε is the probability

of success of the adversary. The length of the authenticated string over the narrow-

band channel is 2 log(1/ε) + O(1) when k = log(n). Moreover, they proved that

their protocol is essentially optimal by proving a lower bound of 2 log(1/ε)−6 on the

required length of the authenticated string. This result implies that the advantage

of assuming computational security versus unconditional security is to reduce the

amount of information that needs to be manually authenticated and not to reduce

the number of rounds.

As with other protocols introduced in this chapter, we focus on unconditionally

secure IMAPs with k = 3. We find sufficient conditions for an IMAP with three

56

Chapter 3. Interactive Message Authentication Protocols

§3.4. An Unconditionally Secure IMAP

rounds to be unconditionally secure. On the one hand, our work is a special case

of the work done by Naor et al. since we are only looking at protocols with three

rounds. On the other hand, it is a generalization of their work because we do not

limit ourselves to a particular polynomial construction over finite fields.

Let M be the set of all messages, let K be the set of all possible keys, and let

H be a set of keyed hash functions of the form hy :M→ Fq for y ∈ K. Figure 3.15

illustrates a generalization of the protocol proposed by Naor et al.

Alice Bob

Input (M , Bob)

Choose x ∈ Fq uniformly at random
M, x
−−−−→ Receive M ′, x′

y
←−−−− Choose y ∈ K uniformly at random

Receive y′ and

Compute t = hy′ (M) + x
y′, t

===⇒ Output (Alice, M ′) if y = y′ and

t = hy(M ′) + x′, reject otherwise.

Figure 3.15: A Generalization of Naor-Segev-Smith IMAP

In order to analyze these attacks, we need the following standard definition for

ε−∆U hash families.

Definition 5. A hash family H is an ε − ∆U hash family if for all choices of

M,M ′ ∈M and x ∈ Fq,

Pr[hy(M)− hy(M ′) = x] ≤ ε,

where the probability is over all random choices of y.

For the protocol presented in Fig. 3.15, y is chosen uniformly at random from

K. Next, we examine each possible attack in more detail.

In a BAAB attack, Eve is required to set y = y′, otherwise she will be detected.

She is successful if and only if

hy′(M) + x = hy′(M
′) + x′.

In other words, Eve succeeds if and only if x = hy′(M
′) + x′ − hy′(M). Since x is

randomly chosen by Alice after y′ is chosen by Bob, Eve succeeds with probability

2−q.

57

Chapter 3. Interactive Message Authentication Protocols

§3.4. An Unconditionally Secure IMAP

In an AABB attack, on the other hand, Eve first receives M,x and has to guess

the key y′ ahead of time in order to set y = y′. Later, she can choose M ′ and x

such that hy(M) +x = hy(M ′) +x′. The probability that Eve guesses the right key

y′ is 1/|K|.

Finally, in an ABAB attack, Eve receives M,x and fixes M ′, x′ before y′ is

chosen by Bob. She is successful if and only if hy′(M) + x = hy′(M
′) + x′, or

hy′(M) − hy′(M
′) = x′ − x. Note that, x′ − x is fixed. Hence, if H is an ε − ∆U

hash family, then Eve succeeds with probability at most ε.

If we summarize the above three attacks, we see that Eve succeeds with proba-

bility max{ε, 2−q, |K|−1}, and the size of the authenticator is log2 |K|+ q bits. Note

that there are 2−q different possibilities for the value of x. Hence, we have ε ≥ 2−q

and we can conclude that Eve’s success probability is

max{ε, |K|−1}.

The protocol proposed by Naor et al. [NSS06] is a special case of our construc-

tion, where the ε − ∆U hash family is constructed from a Reed-Solomon code.

We now briefly describe their construction for a k-round protocol. For a message

m = m1 . . .mk ∈ (Fq)
k and x ∈ Fq, they define the polynomial Cx(m) =

∑k
i=1mix

i.

For distinct messages m,m′ ∈ (Fq)
k and for any constants c, c′ ∈ Fq, we obtain

Pr
x∈RFq

[Cx(m) + c = Cx(m′) + c′] ≤ k

q
.

The polynomial C(.) is used as a hash function k times, once in each round. Each

application of the hash function results in a shorter message. After k applications,

the output message is manually authenticated.

58

Chapter 4

Message Recognition Protocols

Contents

4.1 Non-interactive MRPs 60

4.1.1 A General Non-Interactive MRP 61

4.1.2 Digital Signature Schemes with Message Recovery 61

4.1.3 Equivalence of Non-interactive MRPs and DSSMRs . . . 62

4.2 Previous MRPs . 63

4.2.1 The Lucks Protocol . 64

4.3 An Improved MRP with Resynchronization Process . 69

4.3.1 Resynchronization Process 72

4.4 An Improved MRP with Self-Recoverability 74

4.4.1 Security of Our New Message Recognition Protocol 78

4.5 A New MRP Suitable for Ad Hoc Pervasive Networks 87

4.5.1 Security Assumptions . 91

4.5.2 Security of the Proposed Recognition Protocol 93

We look at the problem of message and entity recognition by reviewing the

definitions and the security model described in the literature. In Section 4.1, we

prove that there is a one-to-one correspondence between non-interactive message

recognition protocols and digital signature schemes with message recovery. Further,

in Section 4.2, we examine previous recognition protocols proposed in the literature

[ABC+98, HWGW05, LZWW05, Mit03, WW03], and conclude that the protocol

of Lucks et al. [LZWW05] is more suitable compared to other proposals in the

59

Chapter 4. Message Recognition Protocols

§4.1. Non-interactive MRPs

literature. Hence, we look at this protocol in more detail and we will refer to it as the

Lucks protocol for short. In Section 4.3, we suggest a variant to overcome a certain

shortcoming. In particular, the Lucks protocol is not equipped with a practical

resynchronization process and can fail to resume in case of communication failure

or adversarial disruption. We propose [MS08c] a variant of this protocol which

is equipped with a resynchronization technique that allows users to resynchronize

whenever they wish or when they suspect an intrusion.

On the other hand, it is also of interest to remedy this shortcoming without

requiring a separate synchronization procedure. In Section 4.4, we propose a new

message recognition protocol [GMS08], which is based on the original protocol by

Lucks et al., and incorporates the resynchronization technique within the protocol

itself. That is, without having to provide a separate resynchronization procedure,

we overcome the recoverability problem of the protocol. Moreover, we analyze all

possible attacks against our protocol and prove that they can succeed with negligible

probability. We further prove the security of the protocol in the model described

in Section 1.3, and its ability to self-recover once the disruption has stopped.

Finally, in Section 4.5, we propose a message recognition protocol without the

use of hash chains [MS08b] which is suitable for ad hoc pervasive networks. Hence,

we no longer require the devices to save values of a hash chain in their memories.

This relaxes the memory requirements. Moreover, we do not need to upperbound

the total number of times the protocol can be executed which implies a desired

flexibility in this regard. Furthermore, our protocol is secure without having to

consider families of assumptions that depend on the number of times the protocol

is executed. Hence, the security does not weaken as the protocol is executed over

time. Last but not least, we provide a practical procedure for resynchronization in

case of any adversarial disruption or communication failure.

4.1 Non-interactive MRPs

In this section, we prove that there is a one-to-one correspondence between non-

interactive message recognition protocols and digital signature schemes with mes-

sage recovery.

60

Chapter 4. Message Recognition Protocols

§4.1. Non-interactive MRPs

4.1.1 A General Non-Interactive MRP

A general non-interactive message recognition protocol, where all flows are going

from Alice to Bob, consists of two flows. The first flow is the initialization step

which happens only once. The second flow, occurring over the insecure channel,

is sent once for each message to be authenticated. As a result, the message and

its commitment (and possibly some other information) are all being transmitted

in one flow. Hence, one should not reveal keys, such as ai in the hash chain, in

these protocols (otherwise, the adversary having seen the revealed key will stop this

single flow and commit to a message of her own using this key). This implies that

there is no point in using hash chains or any form of chains in the non-interactive

setting since the chains can only be useful when you actually reveal them.

Figure 4.1 depicts a general non-interactive message recognition protocol. On

input (1k), where k is a security parameter, the function f outputs a pair of keys

(a,A). In order to make impersonation impossible, it should be hard to find a given

the value of A. The protocol is described in terms of two functions, denoted by

compose and decompose. The function compose can be a randomized algorithm.

Note that any non-interactive protocol can be put in this form. It is required that

decompose(c′, A) =⊥ with high probability if c′ 6= compose(M,a) for some message

M and a valid pair of keys (a,A). Moreover, it is required that decompose(c, A) =

M when c = compose(M,a).

Alice Eve Bob

compute f(1k) = (a, A)
A

===⇒ Receive A.

Alice Eve Bob

Input (M , Bob)

compose(M, a) = c
c−−−−→ Receive c′

Compute d = decompose(c′, A)
If d = M ′, a valid message,
output (M ′, Alice), otherwise, reject.

Figure 4.1: A Non-interactive Message Recognition Protocol

4.1.2 Digital Signature Schemes with Message Recovery

Digital signature schemes with message recovery (DSSMR), Fig 4.2, are often for-

mulated by three algorithms: key generation, sign and verify. The key generation

algorithm G randomly produces a pair of public and private keys (PK, SK) for each

61

Chapter 4. Message Recognition Protocols

§4.1. Non-interactive MRPs

signer. The signer uses SK to sign and PK is used by others to verify signatures.

On input message M and a secret key SK, the signing algorithm S, which may be

randomized, outputs a signature s. On input public key PK and a signature s, the

signature verifying algorithm, V , either outputs M ′, a valid message, or it rejects

s.

Alice Eve Bob

compute G(1k) = (SK, PK)
PK

===⇒ Receive PK.

Alice Eve Bob

Input (M , Bob)

S(M, SK) = s
s−−−−→ Receive s′

Compute M̃ = V(s′, PK)

If M̃ = M ′ is a valid message,
output (M ′, Alice), otherwise, reject.

Figure 4.2: A Digital Signature Scheme with Message Recovery

A signature s of M that is honestly computed, using the secret key SK, should

be accepted by the verifying algorithm using the associated public key PK. In

other words, for all M,PK, and SK, it holds that V(PK,S(M,SK)) = M. Fur-

ther, it should be difficult for any polynomially bounded adversary, to forge valid

signature(s) knowing only the public key PK, and the three algorithms.

4.1.3 Equivalence of Non-interactive MRPs and DSSMRs

Given the aforementioned definitions and properties, we obtain the following ob-

vious result on the equivalence of digital signature schemes with message recovery

and non-interactive message recognition protocols.

Theorem 6. Given functions f , compose, and decompose, any non-interactive

message recognition protocol can be transformed to a digital signature scheme with

message recovery. Conversely, any digital signature scheme with message recov-

ery, with functions G,S, and V, can be transformed to a non-interactive message

recognition protocol.

By letting SK := a, G := f , S := compose, and V := decompose, the forward

statement clearly follows. Similarly, the converse statement follows by letting a :=

SK, f := G, compose := S, and decompose := V .

62

Chapter 4. Message Recognition Protocols

§4.2. Previous MRPs

Note that it was previously known that any signature scheme could be used to

construct a non-interactive recognition protocol, which is a more general case of

the converse statement of the theorem. However, the forward result is new.

4.2 Previous MRPs

In this section, we review the existing protocols in the literature which provide entity

or message recognition. The usability of each protocol is discussed in the context

of networks with devices having low computation power and low communication

bandwidth.

The ‘Guy Fawkes protocol’ was proposed by Anderson et al. [ABC+98]. There

are two variants of this protocol suggested and a one-way hash function is deployed

in both variants. In the first variant, random codewords, Xi, are chosen in each

session and are refreshed each time a message, Mi, is authenticated. Alice commits

to the message and the codewords and then publishes the commitment in a public

directory which provides time-stamping services. Later, she reveals the committed

values to prove that she is the same party who was involved in previous sessions.

However, assuming the existence of a trusted party which provides time-stamping

services is not realistic in most ad hoc network scenarios. The second variant does

not require any interaction with a time-stamping provider and instead requires in-

teraction of the authenticating party with the verifying party. The initialization

phase of this protocol does not assume any authenticated channel; however, it re-

quires digital signatures for authenticating the first blocks and codewords. This

may not be suitable in ad hoc networks and, in particular, in low-power environ-

ments. Moreover, for a message to be authenticated in session i, users need to

commit to it in the previous session. In the context of message recognition, this

means that users are engaged in two sessions of this protocol to authenticate a

single message, which may not be desirable.

An entity recognition protocol, known as ‘Remote User Authentication Proto-

col’, was introduced by Mitchell [Mit03]. In this protocol, a message authentication

code (MAC) is used to prove that a user is the same entity involved in previous

sessions. The protocol can be adapted to perform message recognition as well; how-

ever, this is not discussed in the paper. The setup phase of this protocol requires

that t MAC values be sent over the authenticated channel. This may be costly

since authenticated channels are usually of low bandwidth. Further, the “cut-and-

choose” procedure in each round involves in sending 2t MAC values and r secret

63

Chapter 4. Message Recognition Protocols

§4.2. Previous MRPs

keys. In order for the protocol to be secure, it is suggested that t ≥ 35 and r ≈ t/2.

Hence, the amount of computation and communication here is large compared to

other protocols that are providing entity or message recognition and it may not be

suitable for settings with low power devices.

Weimerskirch et al. introduced a protocol called ‘Zero Common-Knowledge’

(ZCK) protocol [WW03]. They use MACs and hash chains of the form ai = h(ai−1)

and bi = h(bi−1), i = 1, . . . , n, as keys for the MACs computed by Alice and Bob,

respectively. Here, n is fixed at the beginning and h is a one-way hash function.

Hammell et al. implemented the ZCK protocol [HWGW05]. The provided mea-

surements and observations from this implementation gave a proof-of-concept. Low

computational power, low code space, low communication bandwidth, low energy

resources, are among the main requirements of a recognition protocol designed for

an ad hoc pervasive network setting. The measurements resulted from this imple-

mentation proved that the ZCK protocol exhibits the aforementioned requirements.

Note that Hammell et al. [HWGW05] investigate the practicality of the ZCK

protocol but do not investigate its security properties. That is, Hammell et al. rely

on the security proof presented by Weimerskirch et al. [WW03]. However, Lucks

et al. found a flaw in the security proof of this protocol and presented an attack

against the ZCK protocol. Furthermore, they proposed a modification to fix the

flaw.

4.2.1 The Lucks Protocol

As noted above, Lucks et al. [LZWW05] found an attack against the ZCK protocol

and pointed out the flaw in the security proof of this protocol. Further, using

the same idea of using values in a hash chain as keys for MACs, they proposed a

message recognition protocol which is a modification of the original ZCK protocol.

They consider a cryptographic hash function h : {0, 1}s → {0, 1}s as a one-way

hash function, and a message authentication code MAC : {0, 1}s×{0, 1}∗ → {0, 1}c.
Typical values are suggested to be s ≥ 80 and c ≥ 30. Further, n is fixed to

be the maximum number of messages to be authenticated. In other words, the

maximum number of sessions is fixed to be n. Alice and Bob randomly choose a0

and b0, respectively. Then, they respectively form ai = h(ai−1) and bi = h(bi−1),

i = 1, . . . , n. In the initialization phase, Eve is assumed to be passive. Hence, we

can denote this channel, in accordance with our notation, by ⇒. Alice and Bob

will exchange an and bn over the authenticated channel during this phase.

64

Chapter 4. Message Recognition Protocols

§4.2. Previous MRPs

Alice Bob

Choose a random a0 and Choose a random b0 and

compute ai = H(ai−1) for i = 1, . . . , n
an===⇒ compute bi = H(bi−1) for i = 1, . . . , n.

bn⇐===

Figure 4.3: Initialization Phase of the Lucks Recognition Protocol

After the initialization phase, there are n sessions denoted by n − 1, . . . , 0,

starting from session n − 1 and moving down to lower values one at a time. In

session i, Alice authenticates the message mi using ai as the key for the MAC. Once

Bob authenticates himself to Alice by revealing bi, Alice reveals ai and allows Bob

to verify and accept this new key and the authenticity of the message mi. When a

key k is accepted, it is denoted by accept-key(k). Moreover, commit-message(m, i)

indicates that Alice commits to a message m in session i, and accept-message(m, i)

indicates that Bob accepts m as authentic and fresh in session i. After a successful

session of the protocol, Alice and Bob will “move down” in the hash chain, using

ai−1 and bi−1 for session i− 1.

Alice’s internal state in the Lucks protocol is as follows:

• i, the session counter

• bi+1, the most recently accepted value of Bob’s hash chain (hence accept-

key(bi+1) has occurred already)

• a one-bit flag, to distinguish the program states A0 and A1.

Similarly, Bob’s internal state is:

• i, the session counter

• ai+1, the most recently accepted value of Alice’s hash chain (hence accept-

key(ai+1) has occurred already)

• a one-bit flag, to distinguish the program states B0 and B1.

Session i of the Lucks protocol:

A0 (Alice’s initial program state) Obtain mi (possibly from Eve), then

65

Chapter 4. Message Recognition Protocols

§4.2. Previous MRPs

Commit-message(mi, i).

Compute di = MACai
(mi).

Send (di,mi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then

If H(b′) = bi+1 then

Let bi := b′, accept-key(bi) and send ai. Let i := i− 1 and goto A0

else goto A1.

B0 (Bob’s initial program state) Wait for a message (di,mi), then send bi and

goto B1.

B1 Wait for a message a′ (supposedly from Alice), then

If H(a′) = ai+1 then

Let ai := a′ and accept-key(ai).

If MACa′(mi) = di then

Accept mi as authentic in session i

(else do not accept any message for session i).

Let i := i− 1 and goto B0

else goto B1.

Figure 4.4 depicts the Lucks protocol. We analyze this protocol in more detail

and point out its shortcomings in case of adversarial disruption or communication

failure. Further, we propose a new variant of the recognition protocol of Lucks et

al. which incorporates a resynchronization technique allowing a full recoverability

of the protocol.

Lucks et al. present their protocol in an extended abstract [LZWW05], and prove

its security in the full version of the paper [LZWW07]. An updated version of this

proof is also published in [LZWW08]. The protocol is proved to be secure given

that the the following properties hold for the hash function H and the message

authentication code MAC.

Definition 6. Let secret y0, y1, . . . , yi and known yi+1 be chosen such that yi+1 =

H(yi), yi = H(yi−1), . . . , y1 = H(y0). A hash function H is referred to as a depth-

i preimage resistant (i-PR) hash function when it is infeasible to find y′ such

that yi+1 = H(y′).

66

Chapter 4. Message Recognition Protocols

§4.2. Previous MRPs

Alice Bob

Input (mi, Bob)
commit-message(mi, i)

di = MACai (mi)
mi, di−−−−→ Receive m′i, d

′
i

bi←−−−−

Receive b′i and
If bi+1 = H(b′i)
then accept-key(b′i)

else wait for a new bi
ai−−−−→ Receive a′i

If ai+1 = H(a′i)
then accept-key(a′i)
else wait for a new ai.
For an accepted a′i check if d′i = MACa′

i
(m′i).

If so, accept-message(m′i, i).

Figure 4.4: The Lucks Entity and Message Recognition Protocol

Definition 7. Let secret y0, y1, . . . , yi−1 and known yi, yi+1 be chosen such that

yi+1 = H(yi), yi = H(yi−1), . . . , y1 = H(y0). A hash function H is depth-i

second preimage resistant (i-SPR) when it is infeasible to find y′, y′ 6= yi,

such that yi+1 = H(y′).

Definition 8. Let secret y0, y1, . . . , yi and known yi+1 be chosen such that yi+1 =

H(yi), yi = H(yi−1), . . . , y1 = H(y0). A message authentication code MAC is

depth-i existentially unforgeable if it is infeasible to mount an existential

forgery against MACyi
in an adaptive chosen message attack scenario.

4.2.1.1 Unrecoverability Problem of the Luck Protocol

There is a “small time-frame” associated with each session i. In particular, a

message mi is fresh if it is sent within the associated time-frame of session i. It

is assumed that during each time-frame, Alice commits to only one message and

Bob accepts at most one message. As a result, the time-frame should be known to

both Alice and Bob. However, the value i, which could indicate the appropriate

time-frame, is contained in the internal states of Alice and Bob. Note that i is

not being transmitted during the protocol execution and it is implicit that Alice’s

and Bob’s internal states agree on this value. This may be problematic in different

ways. First, how will Alice and Bob remain synchronized during the different

time-frames? Assuming a secure synchronized clock is a quick fix to this problem.

However, assuming availability of such a service may not be practical for most

ad hoc network scenarios. In particular, Lucks et al. assume that no securely

synchronized clock is available. Hence, the process of synchronization is highly

67

Chapter 4. Message Recognition Protocols

§4.2. Previous MRPs

dependent on the schedule of received and sent messages, that is, on the dynamics

of the communication in the network. This gives rise to the second problem: in case

of communication failure or adversarial disruption, this protocol is not equipped

with a practical resynchronization process.

We observe that although the Lucks protocol is provably secure, it nonetheless

falls short in case of the following adversarial disruption. Eve can easily manipulate

one party to move forward to the next session, while the other party is still in the

previous session. In such a case, a party could get trapped in a state and never be

able to finish execution of a session; as a result, he or she remains stuck in that

state forever. It is also mentioned in [LZWW08] that Eve is able to stretch a session

at her will.

Figure 4.5 illustrates a situation where Bob is trapped by Eve in program state

B1. The condition in program state B1 fails since ai+1 6= H(a′i). This will cause

Bob to stay in B1 waiting for a new ai. Now even if Alice sends him a legitimate

message mi, he will ignore it. Although this looks like a denial of service attack,

it is much stronger than that. Eve can go away and yet Alice and Bob are still

unable to communicate because Bob is trapped. The details of the disruption are

as follows.

Eve sends m′i and d′i to Bob and he will automatically decrement his index to i

while Alice does not. Eve chooses a′i such that ai+1 6= H(a′i), which will make Bob

wait for a new ai. While he is waiting for a new ai, he will not accept a message of

the form (mj, dj), for any j. Hence, even if Alice sends him a legitimate message,

he will ignore it. As a result, he is “trapped” in state B1.

Lucks et al. [LZWW05] suggest that Bob sends bi again after he has waited for

too long to receive the correct ai. However, when Alice has not initiated the session

and is not anticipating bi, it is not clear what she is supposed to do. Hence, this

will not help the protocol recover in case of this particular disruption.

Eve Bob

Choose random m′i and d′i.
m′i, d

′
i−−−−→ Move to the next time-frame upon reception of

the new message.
bi←−−−−

Choose a′i such that ai+1 6= H(a′i).
a′i−−−−→ Since ai+1 6= H(a′i), wait for a new ai.

Figure 4.5: Eve “trapping” Bob in state B1

Eve can play the same trick with Alice and trap her in program state A1 for

an indeterminate period of time; Figure 4.6 illustrates this situation.

68

Chapter 4. Message Recognition Protocols

§4.3. An Improved MRP with Resynchronization Process

Alice Eve

Input (mi, Bob).
commit-message(mi, i).

Compute di = MACai (mi).
mi, di−−−−→

Since bi+1 6= H(b′i), wait for a new bi.
b′i←−−−− Choose b′i such that bi+1 6= H(b′i).

Figure 4.6: Eve “trapping” Alice in state A1

Once again, we note that this inability to recover is a problem since the adversary

does not need to continue her active involvement. She can leave the network and

yet Alice and Bob will no longer be able to have successful communication.

There should be a mechanism to help Alice and Bob resynchronize after having

waited for a sufficiently long period of time for a new ai or bi. Otherwise, the

protocol cannot be resumed and recoverability is lost. One way to perform this

resynchronization is to utilize the authenticated channel occasionally. The advan-

tage of this solution is that it is very simple. However, the authenticated channel

is expensive and it may not be practical to assume that it is accessible after the

initialization phase. For instance, the devices may be widely dispersed, and it may

not be possible to collect them again to perform this kind of resynchronization.

Furthermore, periodic employment of the resynchronization process, according to a

predefined schedule, will not be based on the dynamics of the network. For instance,

some devices may be more active than others or there may be more noise present

in some parts of the network compared to other parts of the network. Indeed, there

is more disruption caused by noise or communication failure in busier parts of the

network. Hence, resynchronization among some users may be necessary more often

than others. As a result, it is desirable to execute the resynchronization process

when it is needed according to the state of the network. We propose the following

protocol to overcome these shortcomings. We use the same hash function, H, used

by Lucks et al. and write Hj, j ≥ 1, to denote the case when the hash function H

is applied j times iteratively.

4.3 An Improved MRP with Resynchronization

Process

The internal state of Alice and Bob includes:

• iA and iB, counters pointing to the position of Alice and Bob in their respec-

69

Chapter 4. Message Recognition Protocols

§4.3. An Improved MRP with Resynchronization Process

tive hash chains,

• iacceptA, a counter kept by Alice which is the smallest index such that Alice

has accepted the key biacceptA
in session iacceptA. Similarly, iacceptB, a counter

kept by Bob which is the smallest index such that Bob has accepted the key

aiacceptB
in session iacceptB.

Alice executes the protocol as follows:

• Let i := iA and jA := iacceptA − iA;

• Wait for mi (possibly from Eve), then

• commit-message(mi, i);

• compute di = MACai
(i‖mi);

• send (i‖mi, di);

• wait for a message b′i (supposedly from Bob), then

if HjA(b′i) = biacceptA
, (key verification step)

then bi := b′i; accept-key(bi); send ai; set iacceptA := i and iA = i− 1;

else initiate the resynchronization process.

Bob executes the protocol as follows:

• Let jB := iacceptB − iB;

• Wait for a message (i′‖m′i′ , di′).

• If i′ = iB, then send bi′ , else initiate the resynchronization process.

• Wait for a message a′i′ (supposedly from Alice), then

if HjB(a′i′) = aiacceptB
, (key verification step)

then ai′ := a′i′ ; accept-key(ai′); set iacceptB := i′ and iB := i′ − 1

if MACai′
(i′‖m′i′) = di′

then accept m′i′ as authentic in session i′;

else initiate the resynchronization process.

70

Chapter 4. Message Recognition Protocols

§4.3. An Improved MRP with Resynchronization Process

Figure 4.7 illustrates this protocol. Let us first highlight the differences between

this protocol and the protocol of Lucks et al. In the internal states of Alice and Bob,

the session counter i is replaced by iA and iB to incorporate adversarial ability to

manipulate a party to decrement the session counter, as was discussed previously,

and consequently change its position in the hash chain. For the same reason,

i + 1 is changed to iacceptA and iacceptB as the smallest index such that a key has

been accepted by Alice or Bob, respectively. Moreover, ai+1 and bi+1 are replaced

by aiacceptB
and biacceptA

as the accepted keys. Further, parameters jA and jB are

introduced to deal with the case where iacceptA > iA + 1 or iacceptB > iB + 1,

respectively, due to an adversary’s intrusions. A related modification refers to

the key verification step, where the users may need to apply the hash function

H more than once. In the protocol of Lucks et al., the session counter is not

being transmitted or committed to by either party. However, we require that Alice

commits to iA and transmits it in the first flow. This allows Bob to easily detect any

possible manipulations of the session counter by Eve. Furthermore, we provide a

resynchronization process, allowing Alice and Bob to initiate the resynchronization

process when they do not receive the correct keys. Hence, the adversary can no

longer “trap” them in states A1 or B1, as was explained previously.

Surely, it holds that iA = iB when the adversary has been passive since the

initialization. Moreover, in the case where all flows are safely relayed from the

initialization, Alice and Bob will accept every single key from the other party and

move forward in the hash chain together. Hence, in the ith session, iA = iB = i

and iacceptA = iacceptB = i + 1. In particular, jA = iacceptA − iA = 1 and jB =

iacceptB − iB = 1. However, once the adversary begins sending messages to Alice

and Bob, she is capable of manipulating either party to decrement their session

counter in a bogus session. Hence, Alice and Bob will need to resynchronize to

agree on a mutual position in their respective hash chains, which may result in

jA 6= 1 or jB 6= 1.

Note that this variant is instructing Alice and Bob to initiate resynchronization

whenever a mismatch occurs. Hence, once the adversary initiates a bogus session,

she can no longer continue another bogus session undetected. That is, she can

make Alice and Bob decrement their session counters at most once. Hence, we

have |iA− iB| ≤ 1. In case of an active intrusion, the participants are not supposed

to accept the key Eve sends them and, as a result, the values of iacceptA and iacceptB

are not going to be updated. Consequently, we obtain jA = iacceptA − iA = 2 or

jB = iacceptB − iB = 2.

71

Chapter 4. Message Recognition Protocols

§4.3. An Improved MRP with Resynchronization Process

Alice Bob
Internal-state= iA and iacceptA Internal-state= iB and iacceptB

Let i := iA and jA := iacceptA − iA Let jB := iacceptB − iB ;
Receive input (mi, Bob) and
commit-message(mi, i)

di = MACai (i‖mi)
i, mi, di−−−−−→ Receive i′, m′

i′ , d
′
i′

If i′ = iB , then send bi′ ,
bi′←−−−−− else initiate resynchronization.

Receive b′i and
If biacceptA

= HjA (b′i), then

accept-key(b′i),

send ai, and
ai−−−−−→ Receive a′

i′

let iacceptA := i and iA = i− 1; If HjB (a′
i′) = aiacceptB

, then

else initiate resynchronization accept-key(a′
i′) and,

let iacceptB := i′ and iB := i′ − 1
else initiate resynchronization.
For an accepted a′

i′
check if d′

i′ = MACa′
i′

(i′‖m′
i′).

If so, accept-message(m′
i′ , i
′).

Figure 4.7: Our Proposed Variant of the Lucks Protocol

In this protocol, the session counter is being transmitted in the first flow. More-

over, Alice commits to this value as part of the message, so the adversary cannot

arbitrarily change it without being detected. This implies that the security proof of

the Lucks et al. protocol will apply to this new variant as well. Furthermore, once

either user realizes that Eve could have manipulated the values, they can initiate a

resynchronization process. This process allows them to agree on a session counter

iA = iB, which indicates the corresponding position of each user in their respective

hash chains.

4.3.1 Resynchronization Process

At some point during the execution of the protocol, either Alice or Bob realizes

the need for resynchronizing with the other party. This may be due to a mismatch

caused by adversarial efforts or just due to some communication failure or noise.

In the resynchronization process, Alice computes

IA := min{i : Alice has revealed ai} − 1

and, similarly,

IB := min{i : Bob has revealed bi} − 1

is computed by Bob. Then, they exchange IA and IB over the insecure channel.

Note that, Eve can change these values, say to I ′A and I ′B, since they are being sent

72

Chapter 4. Message Recognition Protocols

§4.3. An Improved MRP with Resynchronization Process

over the insecure channel.

Recall that we are instructing Alice and Bob to resynchronize whenever they

notice a mismatch. This implies that the adversary, or some noise in the channel,

can make them increment their session counters at most once before they try to

resynchronize again. Hence, we have |IA− IB| ≤ 1. This fact alone does not enable

Alice and Bob to detect Eve’s manipulation with IA and IB. However, it makes it

impossible for Eve to choose values for I ′A and I ′B which are smaller than IA − 1

and IB − 1, respectively. We emphasize that this feature is important here. In the

absence of such a feature, Eve can choose I ′A and I ′B to be very small and exhaust

the hash chains too quickly. That would constitute a strong denial of service attack

that can be prevented as follows.

Alice checks to make sure |IA − I ′B| ≤ 1 and Bob checks to see if |I ′A − IB| ≤ 1

holds. If either of these do not hold, it means that the adversary is attempting to

intrude while they are trying to resynchronize. If |IA − I ′B| ≤ 1 and |I ′A − IB| ≤
1 hold, then Alice and Bob will let iA := min(IA, I

′
B) and iB := min(I ′A, IB),

respectively. Figure 4.8 depicts the resynchronization process.

Alice Bob

Find Find
IA := min{i : Alice has revealed ai} − 1 IB := min{i : Bob has revealed bi} − 1

IA−−−−−→ Receive I′A

Receive I′B
IB←−−−−−

If |IA − I′B | ≤ 1, If |I′A − IB | ≤ 1,
then let iA := min(IA, I′B) then let iB := min(I′A, IB)
else initiate resynchronization. else initiate resynchronization.

Figure 4.8: Resynchronization Process for the Proposed Protocol

Note that an active adversary can always disrupt the synchronization. When

one party realizes this, he or she will call for a resynchronization again. If the

adversary is passive in the resynchronization stage, then IA = I ′A and IB = I ′B. As

a result, iA = iB and synchronization is achieved.

However, we will show that intrusions of an active adversary during the resyn-

chronization stage, resulting in iA 6= iB, is going to be detected by either Alice or

Bob. In case of intrusions where |IA − I ′B| > 1 or |I ′A − IB| > 1, the adversary is

detected right away as discussed above. The rest of the intrusions are detected in

the first session of the protocol immediately after the resynchronization, depicted

in Fig 4.9. We show that the adversary is detected unless she has found unrevealed

preimages of particular values in the hash chain. Note that iA and iB cannot differ

73

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

very much, due to the conditions |IA− I ′B| ≤ 1 and |I ′A− IB| ≤ 1. However, we can

prove the same statement even if the difference between iA and iB is not bounded.

Alice Eve Bob

Internal-state= iA Internal-state= iB
commit-message(miA

, iA)
iA, miA

, diA−−−−−→
iB , miB

, diB−−−−−→

Key verification step
biA←−−−−−

biB←−−−−− Send biB

Send aiA

aiA−−−−−→
aiB−−−−−→ Key verification step

Figure 4.9: The First Execution after the Resynchronization

In order for Eve not to be detected by Bob in the key verification step, she must

replace aiA with aiB . Otherwise, Bob will not accept the key and he will initiate

resynchronization regardless of the values of miB and diB . Similarly, she has to

replace biB with biA , otherwise, she will be detected by Alice. Now, assume that

iA < iB after the resynchronization. Finding a correct value for biA means that

Eve has found a nonempty chain of preimages (biB , biB−1, . . . , biA+1). Similarly, if

iA > iB and the adversary goes undetected, she has found a chain of preimages

(aiA , aiA−1, . . . , aiB+1). Hence, as long as finding preimages of H is a hard task,

the adversary will be detected with high probability. As a result, we obtain the

following theorem.

Theorem 7. Let H be a depth-i second preimage resistant and depth-i preimage

resistant hash function in the protocol of Fig 4.7. Consider a polynomially bounded

adversary who changes the values of IA or IB in the resynchronization process of

Fig 4.8, resulting in iA 6= iB. An undetected such intrusion can only occur with a

negligible probability.

4.4 An Improved MRP with Self-Recoverability

We describe the details of our proposed recognition protocol [GMS08] in this sec-

tion, while the security and recoverability analyses are postponed to Section 4.4.1.

Although this protocol is based on the original protocol proposed by Lucks et al.,

the logic of the instructions of Alice and Bob has changed considerably. Moreover,

the information exchanged between Alice and Bob has changed as well.

Note that each pair of users can execute this protocol. However, there must be

a different pair of hash chains for each pair of communicating users. It is implicitly

assumed that Alice and Bob are the communicating parties in the rest of the paper.

74

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

The initialization phase and the setup of the hash chains are exactly as in the

Lucks protocol. The internal state of Alice includes (along with each variable’s

initial value):

• iA := n− 1: the position of Alice in her chain.

• iacceptA := n: the last index of Bob’s chain that was accepted by Alice.

• bA := bn: the last value of Bob’s chain that was accepted by Alice.

• M := Null: the input message to be authenticated in the current session.

• a one-bit flag, to distinguish the program states A0 and A1.

Similarly, Bob’s internal state is as follows:

• iB := n− 1: the position of Bob in his chain.

• iacceptB := n: the last index of Alice’s chain that was accepted by Bob.

• aB := an: the last value of Alice’s chain that was accepted by Bob.

• e′ := Null: the MAC value received in the current session, supposedly from

Alice.

• M ′ := Null: the message received in the current session, supposedly from

Alice.

• a one-trit flag, to distinguish the program states B0, B1, and B2.

Alice and Bob start in program states A0 and B0. We write commit-message(M, iA)

to indicate that Alice is committing herself to sending the message M to Bob in

session iA. We let T be the maximum amount of time Alice waits to receive a

response from Bob, and vice versa.

A0 is executed as follows:

If iA ≤ 0 then Abort.

Receive input (M) and commit-message(M, iA).

Compute eiA := MACaiA
(iA‖M).

75

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Send [eiA ,M] to Bob and goto A1.

B0 is executed as follows:

If iB ≤ 0 then Abort.

Wait to receive [e′,M ′], then goto B1.

B1 has the following description:

Send [iB, biB] to Alice and goto B2.

A1 is performed in the following manner:

Wait at most time T to receive [i′B, b
′].

If [i′B, b
′] is received, then

If i′B = iacceptA and bA = b′ (Bob has not received the last flow of the

previous session) then

Let N := Null.

Send [iacceptA, aiacceptA
, N] and goto A0.

If i′B = iA and bA = H(b′) then (Alice and Bob seem to be synchronized.)

Let N := M .

Send [iA, aiA , N] to Bob.

Let iacceptA := i′B, bA := b′ and iA := iA − 1. (Alice updates her

state.)

goto A0.

else Resend [eiA ,M] to Bob and goto A1.

If timeout then

Resend [eiA ,M] to Bob and goto A1.

B2 is performed as follows:

Wait at most time T to receive [i′A, a
′, N ′].

If [i′A, a
′, N ′] is received, then

76

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

If i′A = iB and aB = H(a′) then (Alice and Bob seem to be synchronized.)

If N ′ = M ′ and e′ = MACa′(i
′
A‖M ′) then

Accept(M ′, iB).

else Accept(Null).

Let iacceptB := i′A, aB := a′ and iB := iB − 1. (Bob updates his

state.)

goto B0.

else goto B1.

If timeout, then goto B1.

Figure 4.10 illustrates the main steps of this protocol. For simplicity, the in-

structions on what to do in case one party does not receive any response from the

other party are not included in the figure.

If either Alice or Bob receives a message that they did not expect, they are

going to ignore it. For instance, while Alice is in state A1 and is waiting to receive

a message of the form (iB, b), she is going to ignore messages of the form (M ′) that

request for a new session and correspond to state A0. Analogously, when Bob is in

state B2, he is waiting for a message of type iA, a,N . He is going to ignore messages

of the form e′iA ,M
′ since they correspond to state B0. In general, each party only

acts on received messages that have the expected structure in accordance to their

current program state.

When Alice is waiting in state A1 for Bob to respond, she is set to wait for time

T . If she receives a message i′B, b
′ in time T , then she process it in state A1, and

otherwise, she resends eiA ,M to Bob. Similarly, Bob waits to receive a message

i′A, a
′, N ′, supposedly from Alice, for time T . If he does not receive such a message,

he resends iB, b to Alice.

Note that Eve can block the last flow of Alice, iA, a,N . In this case, Alice has

decremented her state, while Bob is waiting to receive iA, a,N , and possibly resend-

ing iB, biB to remind Alice to send him iA, a,N . However, since Alice has moved her

state to A0, she will ignore Bob’s messages. This may appear to be problematic

since Bob is waiting for Alice. However, once Alice is ready to authenticate a new

message to Bob, she will be in program state A1 again, and communication will

resume.

77

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Alice Bob
Internal state: iA, iacceptA, bA, M Internal state: iB , iacceptB , aB , e′, M′

A0: B0:
If iA ≤ 0 then Abort. If iB ≤ 0 then Abort.
Receive (M) and commit-message(M, iA).
Compute eiA

:= MACaiA
(iA‖M).

Send [eiA
, M].

eiA
, M

−−−−−−−→ Receive [e′, M′].

A1: B1:

Receive [i′B , b′].
iB , biB←−−−−−−− Send [iB , biB

].

If i′B = iacceptA and bA = b′ then
Let N := Null.
Send [iacceptA, aiacceptA

, N] and

goto A0.
If i′B = iA and bA = H(b′) then

Let N := M . B2:

Send [iA, aiA
, N].

iA, aiA
, N

−−−−−−−→ Receive [i′A, a′, N′].

Let iacceptA := i′B , bA := b′

and iA := iA − 1. If i′A = iB and aB = H(a′) then
goto A0. If N′ = M′ and e′ = MACa′ (i′A‖M

′) then
else Resend [eiA

, M] and goto A1. Accept(M′, iB).

else Accept(Null).
Let iacceptB := i′A, aB := a′

and iB := iB − 1.
goto B0.

else goto B1.

Figure 4.10: Our Proposed Message Recognition Protocol (Common Case)

4.4.1 Security of Our New Message Recognition Protocol

In this section, we consider different types of possible attacks against our protocol.

Then, we conclude with a theorem which ensures the security of our protocol.

4.4.1.1 Single-session Attacks

In this section, we consider attacks that are started and completed in a single

session. We assume that Eve has stayed passive all along and she becomes active in

the current session for the first time. In case of a successful attack, Bob will accept

some message M ′ in the same session, where M ′ is not Null and not the message

sent by Alice in that session. Since Eve has been passive before this session, we will

have iA = iB at the start of the session; we let i := iA = iB for ease of reference.

For the same reason, we have iacceptA = iacceptB = i+1. Furthermore, Alice and Bob

will have accepted all the intended keys so far. That is, aB = ai+1 and bA = bi+1.

We now want to exhaustively list all possible single-session attacks. As in Sec-

tion 3.2, we follow the notation of [Geh98] in referring to different orderings of the

flows. In each attack, the adversary sends a flow to either Alice or Bob and receives

a flow in response. This notation labels a flow by A if the recipient is Alice, or by B

when the recipient is Bob. For instance, the following attack scenario corresponds

to the attack type of ABAB:

78

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

• A: Eve sends M to Alice and she responds with eiA ,M .

• B: Eve sends e′,M ′ to Bob and he replies with iB, biB .

• A: Eve sends i′B, b
′ to Alice and receives iA, aiA , N from her.

• B: Eve sends i′A, a
′, N ′ to Bob.

Recall from Section 3.3.3 that the number of distinct attacks against a three

flow protocol is proved to be
(

4
2

)
= 6 in [Geh98]. These attacks are denoted AABB,

ABBA, BABA, ABAB, BBAA, and BAAB. We will look at these different attacks

separately.

One can show that the BABA attack scenario can be reduced to the ABBA

attack. That is, if an adversary Oscar can mount a successful attack of type BABA,

then Eve can use Oscar and succeed in the ABBA attack scenario. Similarly, we

can show that the BAAB and ABBA attack scenarios are reduced to the ABAB

case. It remains to analyze the other three attack scenarios, namely AABB, BBAA,

and ABAB. We will reduce a successful adversary in these attacks to a player who

can mount a depth-i existential forgery or can find depth-i preimages or depth-i

second preimages.

Attack of Type AABB Figure 4.11 depicts an attack of type AABB.

Alice Eve Bob

M←−−−−−−−−−− A

eiA
, M

−−−−−−−−−−→

i′B , b′
←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−→

Figure 4.11: Attack of Type AABB

If i′A 6= iB, Bob will not accept any messages. Since iA = iB = i, Eve has to set

i′A := iA in order to succeed. Moreover, Alice reveals iA and aiA only if b′ is verified;

that is, if bA = H(b′) (note that bA = bi+1, as discussed before).

79

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Eve first interacts with Alice and has to find b′ before seeing biB = bi. This

implies that she has found a preimage of bA = bi+1. This exactly translates to the

notion of i-PR defined in Def. 6.

Attack of Type BBAA Figure 4.12 illustrates the attack of type BBAA.

Alice Eve Bob

B
e′, M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−→

M←−−−−−−−−−− A

eiA
, M

−−−−−−−−−−→

i′B , b′
←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

Figure 4.12: Attack of Type BBAA

Alice tries to deceive Bob before she starts interacting with Alice. In order to

succeed, Eve needs to present Bob with an a′ such that aB = H(a′), without having

seen aiA = ai (note that aB = ai+1, as discussed before). In other words, she is

trying to find a preimage of aB = ai+1. If Eve can successfully find such a preimage,

the she translates to a successful player who finds depth-i preimages, as defined in

Def. 6.

Attack of Type ABAB Depicted in Fig. 4.13 is the ABAB attack.

In this scenario, Eve receives biB = bi before she has to send b′ to Alice. We

analyze the two cases b′ = bi and b′ 6= bi separately.

If b′ 6= bi, then it implies that Eve has found a depth-i second preimage of

bA = bi+1.

Otherwise, b′ = bi. Alice will verify b′ = bi and reveal aiA = ai. Eve now has

two choices. She chooses a′ such that either a′ = aiA or a′ 6= aiA . If a′ 6= aiA ,

then she has found a depth-i second preimage of ai+1 = aB. On other hand, if

a′ = aiA , then for Eve to succeed, she must set N ′ := M ′ and she must have set

e′ := MACa′(i
′
A‖M ′) before learning a′. That is, Eve has successfully forged a MAC.

This reduces to the notion of depth-i existential forgery defined in Def. 8.

80

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Alice Eve Bob

M←−−−−−−−−−− A

eiA
, M

−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

i′B , b′
←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−→

Figure 4.13: Attack of Type ABAB

As was described in Section 3.2 and, also, earlier in this section, Gehrmann [Geh98]

formally proves that there are only six possible types of single-session attack against

the protocol of Figure 4.10. Here we examine the remaining three attacks: BABA,

BAAB, and ABBA. The BABA attack is reduced to the ABBA attack. Then, the

ABBA attack is reduced to the ABAB attack. Finally, the BAAB attack is also

reduced to the ABAB attack. This concludes the analysis of the six different attack

scenarios.

Reducing the BABA attack to an ABBA attack The ABBA attack sce-

nario, depicted in Fig. 4.14, is as follows:

• A: Oscar sends M to Alice and receives eiA ,M from her.

• B: Oscar sends e′,M ′ to Bob and he sends iB, biB .

• B: Oscar sends i′A, a
′, N ′ to Bob.

• A: Oscar sends i′B, b
′ to Alice and she replies with iA, aiA , N .

On the other hand, the BABA attack scenario, illustrated in Fig. 4.15, is as

follows:

• B: Oscar sends e′,M ′ to Bob and he sends iB, biB .

• A: Oscar sends M to Alice and receives eiA ,M from her.

• B: Oscar sends i′A, a
′, N ′ to Bob.

81

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Alice Oscar Bob

M←−−−−−−−−−− A

eiA
, M

−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−→

i′B , b′
←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

Figure 4.14: Attack of Type ABBA

Alice Oscar Bob

B
e′, M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

M←−−−−−−−−−− A

eiA
, M

−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−→

i′B , b′
←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

Figure 4.15: Attack of Type BABA

• A: Oscar sends i′B, b
′ to Alice and she replies with iA, aiA , N .

These two attack scenarios differ in the order of the first two steps and are

identical otherwise. In the BABA attack scenario, Oscar commits to e′ and M ′

before receiving eiA . Note that knowing eiA could possibly help him in choosing e′.

On the other hand, Oscar receives iB and biB before sending M . The adversary

knows the value of iB. Moreover, the choice of M is independent of the value of

biB . In other words, knowing biB is not going to help the adversary in choosing M .

Hence, if Oscar can win in the BABA attack scenario by first committing to e′ and

M ′ and then receiving eiA , then he can win the ABBA attack scenario with the

same values M,M ′, and e.

82

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Reducing the ABBA attack to an ABAB attack Recall the ABAB attack

scenario from Section 4.4.1:

• A: Oscar sends M to Alice and receives eiA ,M from her.

• B: Oscar sends e′,M ′ to Bob and he sends iB, biB .

• A: Oscar sends i′B, b
′ to Alice and she replies with iA, aiA , N .

• B: Oscar sends i′A, a
′, N ′ to Bob.

The ABBA attack differs from the ABAB attack in the order of the last two

steps. In the ABAB attack, Oscar receives iA, aiA , N from Alice, and then he has to

send i′A, a
′, N ′ to Bob. Knowing iA, aiA , N can help him choose a winning i′A, a

′, N ′,

whereas in the ABBA attack scenario, Oscar sends i′A, a
′, N ′ before seeing iA, aiA , N .

If Oscar has a winning strategy in the ABBA attack scenario, then using the same

values of i′A, a
′, N ′, he will win the ABAB attack scenario.

Reducing the BAAB attack to an ABAB attack The BAAB attack scenario

is as follows:

• B: Oscar sends e′,M ′ to Bob and he sends iB, biB .

• A: Oscar sends M to Alice and receives eiA ,M from her.

• A: Oscar sends i′B, b
′ to Alice and she replies with iA, aiA , N .

• B: Oscar sends i′A, a
′, N ′ to Bob.

Figure 4.16 depicts this attack.

The analysis of this case is analogous to that of Section 4.4.1.1. The BAAB

attack scenario differs from the ABAB attack scenario in the order of the first two

steps. In the BAAB attack scenario, Oscar has to commit to e′ and M ′ before

seeing eiA . Although Oscar receives iB and biB before sending M , these values

are independent of the choice of M . That is, seeing biB is not going to help the

adversary in choosing M . Hence, a winning strategy in the BAAB attack scenario

reduces to a winning strategy in the ABAB attack scenario.

83

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Alice Oscar Bob

B
e′, M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

M←−−−−−−−−−− A

eiA
, M

−−−−−−−−−−→

i′B , b′
←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−→

Figure 4.16: Attack of Type BAAB

4.4.1.2 Multi-session Attacks

Having ruled out the possibility of single-session attacks, we now turn our attention

to multi-session attacks. Consider attack scenarios which occur over two or more

sessions. In such a case, the adversary becomes active in one session and concludes

her attack in one of the following sessions. In case of a successful attack, Bob

will accept M ′ in the last session of the attack, where M ′ is not Null and not the

message sent by Alice in that session.

Just before Eve becomes active, similar to the single-session attack scenario

discussed above, we must have iA = iB and iacceptA = iacceptB = iA + 1. We again

let i := iA = iB for ease of reference. Moreover, all of the intended keys will have

been accepted to this point, so as a result, aB = ai+1 and bA = bi+1.

We now assume that during session i, Eve becomes active by initiating a flow

with either Alice or Bob, or changing the information sent by them. Since we are

considering multi-session attacks, the attack should not entirely take place in one

session. As a result, Eve is not making Bob accept her message M ′ immediately

after she becomes active. The following three cases can happen once Eve becomes

active:

Case 1. Bob is not engaged right away. That is, Eve first interacts with Alice.

Case 2. Bob is engaged right away and he outputs the message M , sent by Alice.

Case 3. Bob is engaged right away and he outputs Null.

We discuss each case separately.

84

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

Case 1. Let us assume that Eve first interacts with Alice and does not engage Bob. In

order for Alice to conclude her session, she must receive i′B, b
′ such that i′B = i

and bi+1 = H(b′). Otherwise, Alice will detect that something is going on,

hence, she will not reveal i, ai and, instead, will resend ei,M . If Eve wants

to remain undetected and be able to continue with her attack, she needs to

send i′B, b
′ such that i′B = i and bi+1 = H(b′). This means that Eve has found

a depth-i preimage of bi+1.

Case 2. Now assume that Bob is engaged and he outputs the message M , sent by

Alice. That is, on input (M), Alice has sent ei,M to Bob. Since Bob accepts

M at the end, it means that he, indeed, has received M in the first flow.

Moreover, for Bob to accept M , he must receive i′A, a
′, N ′ such that i′A = i,

ai+1 = H(a′), and N ′ = M . There are three different cases to consider here.

– Not having received i, ai,M from Alice, Eve finds i′A, a
′, N ′ such that

i′A = i and ai+1 = H(a′). That is, she finds a depth-i preimage of ai+1.

– Having received i, ai,M from Alice, Eve finds i′A, a
′, N ′ such that i′A = i,

ai+1 = H(a′), and ai 6= a′. That is, she finds a depth-i second preimage

of ai+1.

– Eve sets i′A, a
′, N ′ = i, ai,M . That is, Eve relays Alice’s last flow. Note

that Alice reveals her last flow only if she receives i′B, b
′ such that i′B = i

and bi+1 = H(b′). There are again three cases to consider here. Either

Eve has found a depth-i preimage of bi+1, she has found a depth-i second

preimage of bi+1, or she has relayed i, b faithfully. In the latter case, Eve

has faithfully relayed all messages, and this does not constitute an attack

by an active adversary. This contradicts our assumption that Eve first

becomes active in session i.

Case 3. Bob is engaged right away and he outputs Null. This means that he has

received and verified i′A and a′. There are again three cases to consider.

Either Eve has found a depth-i preimage of ai+1, or she has found a depth-i

second preimage of ai+1, or i′A and a′ are the correct i, ai as revealed by Alice.

In this last case, Alice and Bob have successfully remained synchronized, but

were unable to authenticate the messages they intended to authenticate.

The above discussion concludes that in the session immediately after Eve be-

comes active, she can only stop Alice and Bob from authenticating the intended

message, but she cannot bring them out of their synchronized states unless she is

85

Chapter 4. Message Recognition Protocols

§4.4. An Improved MRP with Self-Recoverability

able to solve the depth-i PR or depth-i SPR problems defined in Definitions 6 and

7. Moreover, if Alice and Bob are synchronized at the beginning of a session, then

they will end the session in a synchronized state, unless Eve is able to find depth-i

preimages or depth-i second preimages.

At the beginning of a multi-session attack, Alice and Bob are synchronized. The

above discussion implies that they remain synchronized until the very last session

of the attack. We can look at this last session of the attack separately and think

of it as a single-session attack. As a result, any multi-session attack translates to a

single-session attack, which were already ruled out in Section 4.4.1.1.

Note that the adversary can only exhaust Alice’s and Bob’s values of the hash

chain one at a time. That is, she can not make them jump more than one step

down the hash chain values.

4.4.1.3 Self-recoverability

In this section, we show that once Eve stops interfering with their message flows,

Alice and Bob will be able to resume successful communication of recognized mes-

sages. Because we have already shown that Alice and Bob remain synchronized in

their i values throughout an active attack by Eve (under the security assumptions

on H and MAC), we need only show that they do not get “trapped” in a program

state, as was the case in the Lucks protocol, for example.

We consider the possible combinations of program states which Alice and Bob

are in when Eve becomes passive. We first consider the case where Alice is in state

A1.

• If Alice is in A1 and Bob is in B0, then after time T , Alice will resend [eiA ,M]

to Bob, which will cause him to leave state B0, and the protocol will continue.

• If Alice is in A1 and Bob is in B1, then Bob will send [iB, biB] to Alice and

advance to B2, which will cause her to send an appropriate message to Bob,

and herself return to A0. Bob will return to B0, though he may Accept(Null)

if Eve forged the M ′ which caused Bob to enter the B1 state. This can of

course only affect the first Accept after Eve’s interference, however.

• If Alice is in A1 and Bob is in B2, then Alice will be resending useless

messages to Bob, and staying in A1, but after time T , Bob will return to B1,

and we proceed as above.

86

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

If Alice is in A0, then no progress will be made until the next time she tries to

send a message to Bob. At that point, Alice will enter state A1, and the analysis

continues as above.

4.4.1.4 Main Theorem

The above discussion concludes the discussion of the security and self-recoverability

of the proposed message recognition protocol, and forms the proof of the following

theorem.

Security and Self-recoverability Theorem. A successful adversary against

the protocol of Section 4.4 who efficiently deceives Bob into accepting (M ′,i), where

M ′ is not Null and Alice did not send M ′ in session i, implies an efficient algo-

rithm that finds depth-i preimages or depth-i second preimages, or creates depth-i

existential forgeries. Moreover, the adversary cannot stop Alice and Bob from suc-

cessfully executing the protocol unless she is actively disrupting the communication

for the lifetime of Alice and Bob.

4.5 A New MRP Suitable for Ad Hoc Pervasive

Networks

In this section, we describe the details of a protocol which does not employ any hash

chain technique. The results presented in this section are drawn from the paper

[MS08b]. The initialization phase, execution of the protocol, and the resynchro-

nization process are separately described. The section is concluded by examining

the advantages of using this protocol in comparison to previous designs.

We begin by describing the internal states of Alice and Bob. The internal state

of Alice includes:

• x0 and x1: the passwords for this session and the next session, respectively.

• X0 = H(x0) and X1 = H(x1): the committing hash values of the passwords.

• X0 = H(x0, X1) = H(x0, H(x1)): the binding hash value of the passwords.

• y∗−1, Y ∗0 , Y∗0 : Bob’s most recent password, committing hash value, and binding

hash value accepted by Alice.

87

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Similarly, the internal state of Bob includes:

• y0 and y1: the passwords for this session and the next session, respectively.

• Y0 = H(y0) and Y1 = H(y1): the committing hash values of the passwords.

• Y0 = H(y0, Y1) = H(y0, H(y1)): the binding hash value of the passwords.

• x∗−1, X∗0 , X ∗0 : Alice’s most recent password, committing hash value, and bind-

ing hash value accepted by Bob.

In this protocol, x0 and y0 are considered to be passwords of the current session.

Similarly, x1 and y1 are the passwords of the next session. We commit to a password

by sending its hash value, so that Eve cannot change it. Further, we bind two

consecutive passwords, in order to detect adversarial intrusions and to be able to

resynchronize in such a case.

Alice performs the initialization phase as follows:

Choose random x0 and x1.

Compute X0 := H(x0), X1 := H(x1), and X0 := H(x0, X1).

Send X0,X0 to Bob over the authenticated channel.

Receive Y0,Y0 from Bob over the authenticated channel.

Let y∗−1 :=⊥, Y ∗0 = Y0, and Y∗0 = Y0.

Similarly, Bob executes the initialization phase according to the following steps:

Choose random y0 and y1.

Compute Y0 := H(y0), Y1 := H(y1), and Y0 := H(y0, Y1).

Receive X0,X0 from Alice over the authenticated channel.

Send Y0,Y0 to Alice over the authenticated channel.

Let x∗−1 :=⊥, X∗0 = X0, and X ∗0 = X0.

The initialization phase of the protocol is depicted in Fig. 4.17. Next, we move

on to the description of the proposed message recognition protocol illustrated in

Fig. 4.18.

On input (m, Bob), Alice’s execution can be described as follows:

88

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Alice Bob

Choose random x0 and x1 and Choose random y0 and y1 and form
form X0 := H(x0), X1 := H(x1), Y0 := H(y0), Y1 := H(y1),

and X0 := H(x0, X1)
X0,X0
====⇒ and Y0 := H(y0, Y1)

Y0,Y0⇐====

Let y∗−1 :=⊥, Y ∗0 = Y0, Y∗0 = Y0. Let x∗−1 :=⊥, X∗0 = X0, X ∗0 = X0.

Figure 4.17: Initialization Phase of the New Message Recognition Protocol

Choose a random x2.

Compute X2 := H(x2),X1 := H(x1, X2), and d = MACx0 [m].

Send m, d to Bob and wait to receive y′0, Y
′

1 ,Y ′1 from Bob. Resend m, d if Bob

did not respond.

If H(y′0) = Y ∗0 and H(y′0, Y
′

1) = Y∗0 , then send (x0, X1,X1) to Bob and update

internal state: y∗−1 := y′0, Y ∗0 := Y ′1 , Y∗0 := Y ′1, x0 := x1, x1 := x2, X0 := X1,

X1 := X2, and X0 := X1. Otherwise, initiate resynchronization with Bob.

Bob, on the other hand executes the protocol in the following manner:

After receiving m′, d′, choose a random y2.

Compute Y2 := H(y2) and Y1 := H(y1, Y2).

Send y0, Y1,Y1 to Alice and wait to receive x′0, X
′
1,X ′1. Resend y0, Y1,Y1 to

Alice if Alice did not respond.

If H(x′0) = X∗0 and H(x′0, X
′
1) = X ∗0 , and d′ = MACx′0

[m′], then update

internal state: x∗−1 := x′0, X∗0 := X ′1, X ∗0 := X ′1, y0 := y1, y1 := y2, Y0 :=

Y1, Y1 := Y2, and Y0 := Y1, and output (Alice, m′). Otherwise, initiate

resynchronization with Alice.

In case of no adversarial intrusion or communication failure, all the conditions

verify and Alice and Bob will not initiate a resynchronization process. When they

realize that one of the conditions does not hold, they suspect a communication

failure or a possible adversarial intrusion. Hence, they need to resynchronize in

order to make sure they have the correct commitment and binding hash values.

The synchronization process is illustrated in Fig. 4.19. Bob sends y0, Y1,Y1 to Alice

89

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Internal-state of Alice: Internal-state of Bob:
x0, x1, X0, X1, X0, y∗−1, Y ∗0 ,Y∗0 . y0, y1, Y0, Y1, Y0, x∗−1, X∗0 ,X ∗0 .

Alice Bob

Receive input (m, Bob)
Choose a random x2 and form
X2 := H(x2),X1 := H(x1, X2).

Compute d = MACx0 [m].
m, d

−−−−−−−→ Receive m′, d′.

Choose a random y2 and form

Receive y′0, Y ′1 ,Y ′1.
y0, Y1,Y1←−−−−−−− Y2 := H(y2),Y1 := H(y1, Y2).

If H(y′0) = Y ∗0 and H(y′0, Y ′1) = Y∗0 ,

then send (x0, X1,X1) and
x0, X1,X1−−−−−−−→ Receive x′0, X′1,X ′1.

update your internal state: If H(x′0) = X∗0 , H(x′0, X′1) = X ∗0 ,
y∗−1 := y′0, Y ∗0 := Y ′1 , Y∗0 := Y ′1, and d′ = MACx′

0
[m′],

x0 := x1, x1 := x2, then update your internal state:
X0 := X1, X1 := X2, X0 := X1. x∗−1 := x′0, X∗0 := X′1, X ∗0 := X ′1,

else initiate resynchronization. y0 := y1, y1 := y2,
Y0 := Y1, Y1 := Y2, Y0 := Y1,
and output (Alice, m′).

else initiate resynchronization.

Figure 4.18: New Message Recognition Protocol

and Alice sends x0, X1,X1 to Bob. Note that Alice should already have y0, Y1 and

she is verifying if they match with what she has. Similarly, Bob is verifying if

x0, X1 match with what he has. However, the values of X1 and Y1 are new. It

is possible for the adversary to make either Alice or Bob compute a binding hash

value in a bogus session. In that case, the binding hash value is refreshed. Note

that the resynchronization process is not symmetrical. This is due to the fact that

Bob may detect an intrusion after Alice has updated her state. In this case, the

values x0, X1,X1 that Alice sends during the resynchronization process need to be

verified differently.

Since we are not using a hash chain, the memory requirement on the devices

is relaxed. The octuple (x0, x1, X0, X1,X0, y
∗
−1, Y

∗
0 ,Y∗0) is all Alice needs to com-

municate with Bob (she will need another octuple for each different user). In the

previous protocols, the devices had to deal with a hash chain for every single de-

vice they wanted to communicate with. Storing all the values of a hash chain, for

example a0, a1, . . ., an, is too demanding for low-end devices. On the other hand,

storing only the root value of the hash chain, for instance a0, requires too many

computations at each session. The alternative is to employ a time-storage trade-off

and store some of the hash values, see, for example, [CJ03]. Still, there are some

storage and computational requirements associated with this implementation. Our

proposal for not having to deal with a hash chaining technique avoids any memory

90

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Internal-state of Alice: Internal-state of Bob:
x0, x1, X0, X1, X0, y∗−1, Y ∗0 ,Y∗0 . y0, y1, Y0, Y1, Y, x∗−1, X∗0 ,X ∗0 .

Alice Bob

Choose a random x2 and form Choose a random y2 and form
X2 := H(x2),X1 := H(x1, X2). Y2 := H(y2),Y1 := H(y1, Y2).

Receive y′0, Y ′1 ,Y ′1.
y0, Y1,Y1←−−−−−−−

x0, X1,X1−−−−−−−→ Receive x′0, X′1,X ′1.

If y∗−1 = y′0 and Y ∗0 = Y ′1 , If x∗−1 = x′0 and X∗0 = X′1,
then Y∗0 := Y ′1, then X ∗0 := X ′1,
else initiate resynchronization. else if H(x′0) = X∗0 and H(x′0, X′1) = X ∗0 ,

then x∗−1 := x′0, X∗0 := X′1, X ∗0 := X ′1.
else initiate resynchronization.

Figure 4.19: The Resynchronization Process

or computational requirement of this nature for every session.

Moreover, the passwords are set to be chosen at random in each session. Hence,

they are independent of one another and are refreshed in each session. As a result,

we do not need to consider assumptions that depend on the number of sessions the

protocol is executed. Consequently, the security does not weaken as the protocol

is executed over time.

Furthermore, the devices can run this protocol as many times as they want and

the total number of sessions is not fixed. This provides extra flexibility compared

to the protocols based on the hash chain technique. Next, we look at the security

assumptions relevant for this new protocol.

4.5.1 Security Assumptions

In this section, we define new notions of hash function security, namely Paired

Preimage Resistance (PPR), Paired Second Preimage Resistance (PSPR),

Binding Unforgeability (BU), and Binding Preimage Resistance (BPR).

Each notion is presented as a game between a player Oscar and a Challenger. Note

that these assumptions are independent of the number of times the protocol has

been executed. In other words, in contrast to the approach taken by Lucks et al.

[LZWW05], where they have to assume “depth-i non-invertibility”, “depth-i second

preimage resistance”, “depth-i unforgeability”, and “depth-i combined security” for

every i, 1 ≤ i ≤ n, we only require four assumptions.

The PPR notion is depicted in Fig. 4.20. We note that the PPR property

is analogous to the notion of “depth-2 non-invertibility” defined by Lucks et al.

91

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Oscar Challenger

Choose random y0 and y1 and form
Y0 := H(y0) and Y0 := H(y0, Y1).

Y0,Y0←−−−−−

Find y′0 and Y ′1 .
y′0, Y ′1−−−−−→

Eve wins if Y0 = H(y′0) and Y0 = H(y′0, Y ′1).

Figure 4.20: Paired Preimage Resistance

[LZWW05]. Furthermore, this one assumption is replacing a whole family of as-

sumptions, termed “depth-i non-invertibility”, for 1 ≤ i ≤ n.

Oscar Challenger

Choose random x0 and x1 and form
X1 := H(x1).

x0, X1←−−−−−

Find x′0 and X′1, such that

(x0, X1) 6= (x′0, X′1)
x′0, X′1−−−−−→

Eve wins if H(x0) = H(x′0) and
H(x0, X1) = H(x′0, X′1).

Figure 4.21: Paired Second-preimage Resistance

Figure 4.21 illustrates the PSPR notion. This notion is analogous to “depth-2

second preimage resistance” defined by Lucks et al. [LZWW05]. It is replacing the

family of assumptions termed “depth-i second preimage resistance”, for i, 1 ≤ i ≤
n.

Oscar Challenger

Choose random x0, x1, x2 and and form
X0 := H(x0), X1 := H(x1), X2 := H(x2),
X0 := H(x0, X1) and X1 := H(x1, X2) .

X0,X0←−−−−−−
m−−−−−−→ Compute d = MACx0 [m].

d←−−−−−−

Choose m such that m 6= m′.
m′, d′
−−−−−−→ Eve wins if d′ = MACx0 [m′].

Figure 4.22: Binding Unforgeability

The notion of BU is depicted in Fig. 4.22. Analogous to this notion, Lucks et al.

92

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

[LZWW05] define “depth-2 unforgeability”. Note that the BU notion is replacing

a family of assumptions termed “depth-i unforgeability”, for i, 1 ≤ i ≤ n.

In Section 4.5.2, we will see that the BU, PPR, and PSPR notions prevent at-

tacks that start and finish during one session. Moreover, attack scenarios spanning

over two sessions are also analyzed, and the BPR notion illustrated in Fig. 4.23 is

associated with these attacks.

Oscar Challenger

Choose random y0, y1, y2 and and form
Y ∗0 := H(y0), Y1 := H(y1),Y2 := H(y2),

Y ∗0 ,Y∗0←−−−−−− Y∗0 := H(y0, Y1), and Y1 := H(y1, Y2).

Y∗0 6= (Y∗0)′
(Y∗0)′
−−−−−−→

y0, Y1,Y1←−−−−−−

Y ′1−−−−−−→ Eve wins if H(y0, Y ′1) = (Y∗0)′.

Figure 4.23: Binding Preimage Resistance

Next, we prove the security of our protocol, based on the assumption that the

PPR, PSPR, BU, and BPR games are hard to win.

4.5.2 Security of the Proposed Recognition Protocol

Recall that the goal of the adversary is to make Bob accept a message m′ that was

never sent from Alice. A successful attack is where that Bob is deceived and he

outputs (Alice, m′).

Let (x0, x1, X0, X1,X0, y
∗
−1.Y

∗
0 ,Y∗0) and (y0, y1, Y0, Y1,Y0, x

∗
−1, X

∗
0 ,X ∗0) be the in-

ternal states of Alice and Bob, respectively. Now, assume that Eve, having been

passive all along, mounts a successful attack for the first time and Bob actually

outputs (Alice, m′), where m 6= m′. Since, Eve had been passive before this at-

tack, we can assume that y∗−1 = y0, Y
∗

0 = H(y0) = Y0,Y∗0 = Y0 = H(y0, H(y1)),

x∗−1 = x0, X
∗
0 = X0 = H(x0), and X ∗0 = X0 = H(x0, H(x1)). Eve may complete

her attack in one session, or she may mount an attack that spans more than one

session. First, we examine one-round attacks.

93

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

4.5.2.1 One-session Attacks

In order to exhaustively list all possible one-round attacks against our protocol,

similar to Sections 3.4 and 4.4.1.1, we use the notation of Gehrmann [Geh98] in

labelling different orderings of the flows. Recall, we label each flow sent by the

adversary by A, if the recipient is Alice, and by B, when the recipient is Bob. For

example, an ordering of ABAB corresponds to the following attack scenario:

• A: Eve sends m to Alice and Alice responds with m, d.

• B: Eve sends m′, d′ to Bob and Bob replies with y0, Y1,Y1.

• A: Eve sends y′0, Y
′

1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

• B: Eve sends x′0, X
′
1,X ′1.

As it was mentioned before, there are
(

4
2

)
= 6 possible attacks, namely AABB,

ABBA, BABA, ABAB, BBAA, and BAAB. Next, we will analyze each of these

attack scenarios.

We prove that the BABA attack scenario can be reduced to the ABBA attack.

In other words, if the adversary can mount a successful attack of type BABA, then

she also succeeds in the ABBA attack scenario. Similarly, one can show that the

BAAB and ABBA attack scenarios can be reduced to the ABAB case. Hence, it

remains to investigate the AABB, BBAA, and ABAB attack scenarios. We prove

that the AABB, BBAA, and ABAB attacks are not possible by reducing them to

the PPR, PSPR, or PCR games. Then, we show the aforementioned reductions.

Attack of Type AABB. The attack of type AABB is illustrated in Fig. 4.24. In

this attack scenario, Eve finishes her interactions with with Alice before she starts

her interactions with Bob. In other words, Eve has to first deceive Alice in order

to get her to reveal the information she needs to then deceive Bob.

If Eve successfully deceives Alice, then she receives (x0, X1,X1). Now, Eve com-

putes d′ = MACx0 [m′], for m′ of her choice. She then sends m′, d′ to Bob. Finally,

she completes her attack with setting (x′0, X
′
1,X ′1) = (x0, X1,X1) and sending it to

Bob.

In order to deceive Alice, Eve has to find y′0 and Y ′1 such that Y0 = H(y′0)

and Y0 = H(y′0, Y
′

1), where Y0 and Y0 were transmitted in the session immediately

before the attack. Note that Eve, not having seen (y0, Y1), has sent (y′0, Y
′

1), which

94

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Alice Eve Bob

m←−−−−−−−−−− A

m, d
−−−−−−−−−−→

y′0, Y ′1 ,Y ′1←−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−→

B
m′, d′

−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−

B
x′0, X′1,X ′1−−−−−−−−−−→

Figure 4.24: Attack of Type AABB

has been accepted by Alice. This is exactly the problem of PPR, depicted in Fig.

4.20.

Attack of Type BBAA. The attack of type BBAA is illustrated in Fig. 4.25. In

this scenario, Eve interacts with Alice after she has finished interacting with Bob.

That is, she receives (y0, Y1,Y1) from Bob before she has to choose (y′0, Y
′

1 ,Y ′1). If

she chooses (y′0, Y
′

1 ,Y ′1) such that (y0, Y1) 6= (y′0, Y
′

1) and remains undetected by

Alice, then, Eve can be reduced to a successful player against the PSPR game of

Fig. 4.21. We deal with the case where (y0, Y1) = (y′0, Y
′

1) and Y1 6= Y ′1 in Section

4.5.2.2. The only remaining case is that, having received (y0, Y1,Y1) from Bob, Eve

lets (y′0, Y
′

1 ,Y ′1) = (y0, Y1,Y1) to avoid being detected by Alice.

Alice Eve Bob

B
m′, d′

−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−

B
x′0, X′1,X ′1−−−−−−−−−−→

m←−−−−−−−−−− A

m, d
−−−−−−−−−−→

y′0, Y ′1 ,Y ′1←−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−→

Figure 4.25: Attack of Type BBAA

A successful attack of this type implies that Bob has accepted m′. That is, not

95

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

having seen (x0, X1), Eve has found x′0, X
′
1. Once Eve finds the appropriate x′0 and

X ′1, she can compute d′ = MACx′0
[m′], for an m′ of her choice. Note that Eve has

received X0 and X0 from the previous session. Now, she has to find x′0, X
′
1 such

that X0 = H(x′0) and X0 = H(x′0, X
′
1). This translates to the notion of PPR if we

replaces each x value by its corresponding y value.

Attack of Type ABAB. Figure 4.26 illustrates the attack of type ABAB. In

this attack, Eve receives the correct (y0, Y1,Y1) from Bob before she has to send

(y′0, Y
′

1 ,Y ′1) to Alice. As it was discussed in the case of the BBAA attack, Eve will

be detected by Alice unless she sets (y′0, Y
′

1 ,Y ′1) = (y0, Y1,Y1). This way Alice will

not detect Eve and she will reveal (x0, X1,X1). The adversary has two choices now.

She either sets (x′0, X
′
1) = (x0, X1) and send it to Bob, or she sends (x′0, X

′
1) to Bob

where (x′0, X
′
1) 6= (x0, X1). We will analyze each of these two cases separately.

Alice Eve Bob

m←−−−−−−−−−− A

m, d
−−−−−−−−−−→ B

m′, d′
−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−

y′0, Y ′1 ,Y ′1←−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−→

B
x′0, X′1,X ′1−−−−−−−−−−→

Figure 4.26: Attack of Type ABAB

Let us first consider the case where (x′0, X
′
1) = (x0, X1). In this case, the ad-

versary has collected (X0,X0) from previous session. She then sends m to Alice

and Alice replies with (m, d). She will then send (m′, d′) to Bob. At this point the

rest of the flows are determined to be the following: She receives (y0, Y1,Y1) from

Bob, sets (y′0, Y
′

1 ,Y ′1) = (y0, Y1,Y1), and sends it to Alice. Further, she receives

(x0, X1,X1) from Alice, lets (x′0, X
′
1,X ′1) = (x0, X1,X1), and sends it Bob. Hence,

this case is exactly the notion of BU depicted in Fig. 4.22.

The second case is when (x′0, X
′
1) 6= (x0, X1). Assume that Eve can mount

a successful attack of type ABAB with (x′0, X
′
1) 6= (x0, X1). That is, she has

collected X0,X0 from previous session. She chooses m and receives d such that

d = MACx0 [m]. Then, she submits m′, d′. Finally, she receives x0, X1 and she is

supposed to send x′0, X
′
1 such that (x′0, X

′
1) 6= (x0, X1), H(x0) = H(x′0), H(x0, X1) =

96

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

H(x′0, X
′
1), and d′ = MACx′0

[m′]. We reduce Eve to a successful player against the

Challenger of PSPR game, depicted in Fig. 4.21. The reduction is illustrated in

Fig. 4.27.

Eve Oscar Challenger

Choose random x0 and x1

Let X0 := H(x0)
x0, X1←−−−−−− and form X1 := H(x1).

and X0 := H(x0, X1).
X0,X0←−−−−−−

m−−−−−−→ Compute d = MACx0 [m].

d←−−−−−−

m′, d′
−−−−−−→

x0, X1←−−−−−−

x′0, X′1−−−−−−→ Check if (x′0, X′1) 6= (x0, X1)
x′0, X′1−−−−−−→

Oscar wins if H(x0) = H(x′0)
and H(x0, X1) = H(x′0, X′1).

Figure 4.27: Reducing Eve to a Player Against the Challenger of PSPR

Note that, Oscar is playing against the Challenger of PSPR and at the same

time he is playing the role of both Alice and Bob against Eve.

We continue by reducing the BABA attack to the ABBA attack. Further, we

reduce the ABBA attack to the ABAB attack that was analyzed in Section 4.5.2.

Finally, the only remaining attack scenario, BAAB, is also reduced to the ABAB

attack. This concludes the analysis of the six different attack scenarios.

Reducing BABA attack to ABBA attack. The attack of type ABBA is

depicted in Fig. 4.28, and Fig. 4.29 illustrates the attack of Type BABA.

These two attacks differ only in the order of the first two steps. The ABBA

attack is as follows:

• A: Oscar sends m to Alice and she responds with m, d.

• B: Oscar sends m′, d′ to Bob and he replies with y0, Y1,Y1.

• B: Oscar sends x′0, X
′
1,X ′1.

• A: Oscar sends y′0, Y
′

1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

97

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Alice Oscar Bob

m←−−−−−−−−−− A

m, d
−−−−−−−−−−→ B

m′, d′
−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−

B
x′0, X′1,X ′1−−−−−−−−−−→

y′0, Y ′1 ,Y ′1←−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−→

Figure 4.28: Attack of Type ABBA

Alice Oscar Bob

B
m′, d′

−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−
m←−−−−−−−−−− A

m, d
−−−−−−−−−−→

B
x′0, X′1,X ′1−−−−−−−−−−→

y′0, Y ′1 ,Y ′1←−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−→

Figure 4.29: Attack of Type BABA

The BABA attack has the following order:

• B: Oscar sends m′, d′ to Bob and he replies with y0, Y1,Y1.

• A: Oscar sends m to Alice and she responds with m, d.

• B: Oscar sends x′0, X
′
1,X ′1.

• A: Oscar sends y′0, Y
′

1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

Note that in the BABA attack scenario, the choice of m is independent of what

the values of y0, Y1 and Y1 are. That is, knowing y0, Y1,Y1 before choosing m is not

going to help Oscar. On the other hand, he is committing himself to m′, d′ before

receiving any values, such as d, that could possibly help him. If Oscar wins by first

choosing m′, d′ and then receiving d in the BABA attack scenario, then he can also

win the ABBA attack by using the same values m,m′, and d′.

98

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

Reducing ABBA attack to ABAB. Recall the ABAB attack described in

Section 4.5.2:

• A: Eve sends m to Alice and she responds with m, d.

• B: Eve sends m′, d′ to Bob and he replies with y0, Y1,Y1.

• A: Eve sends y′0, Y
′

1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

• B: Eve sends x′0, X
′
1,X ′1.

This attack differers from the ABBA attack in the order of the last two steps.

In the ABAB attack, Eve first receives x0, X1,X1 from Alice, then she has to send

x′0, X
′
1,X ′1 to Bob. Whereas in the case of the ABBA attack, Oscar has to send

x′0, X
′
1,X ′1 to Bob before he receives x0, X1,X1 from Alice. If Oscar has a winning

strategy in the ABBA attack, the Eve can use him in her ABAB attack by sending

the same values of x′0, X
′
1,X ′1 that Oscar sends to Bob.

Reducing BAAB attack to ABAB. Depicted in Fig. 4.30 is the attack Type

of BAAB.

Alice Oscar Bob

B
m′, d′

−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−
m←−−−−−−−−−− A

m, d
−−−−−−−−−−→

y′0, Y ′1 ,Y ′1←−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−→

B
x′0, X′1,X ′1−−−−−−−−−−→

Figure 4.30: Attack of Type BAAB

Recall that knowing y0, Y1,Y1 before choosing m is not going to help Oscar.

Moreover, in the BAAB attack, Oscar is first committing himself to m′, d′. If Oscar

wins the BAAB attack by first choosing m′, d′ and then receiving d, then so will

Eve in the ABAB attack, by just using the same values m,m′, and d′.

99

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

4.5.2.2 Multi-session Attacks

Now consider attack scenarios which span two or more sessions. The adversary

is active but remains undetected in all sessions of the attack. She then submits

her message in the last session of the attack. If she tampers with y0, Y1, x0, or X1

and remains undetected, then we go back to the cases described above. Hence, it

remains to examine the cases when she changes the binding hash values. We look

at the case where Eve changes the value of Y1 to Y ′1. The case where Eve alters X1

to X ′1 is analogous due to the symmetry of the protocol structure.

Assume that Eve changes Y1 to Y ′1 and does not touch y0 or Y1. She goes

undetected in this session because Alice verifies y0 and Y1, but only records Y ′1
without verification. She then updates her state as follows y∗−1 := y0, Y ∗0 := Y1,

(Y∗0)′ := Y ′1.

In the next session, Alice sends (y0, Y1,Y1) and Eve has to change it to an

appropriate (y′0, Y
′

1 ,Y ′1) to remain undetected. Otherwise, Alice will call for resyn-

chronization. Alice checks to see if H(y′0) = Y ∗0 and H(y′0, Y
′

1) = (Y∗0)′. We treat

the two cases y0 = y′0 and y0 6= y′0 separately.

If H(y′0) = Y ∗0 and y0 6= y′0, then Eve, having seen y0, has found y′0 such that

H(y′0) = H(y0). This means that Eve has found a second preimage of y0.

On the other hand, when y0 = y′0, the condition H(y′0) = Y ∗0 holds. Then, Alice

verifies to see if H(y0, Y
′

1) = (Y∗0)′. If it holds, then Eve is a successful player in the

BPR game of Fig. 4.23.

If the adversary were to mount an attack that spans over more than two rounds,

she would have to successfully pass the second round. However, the above discussion

shows that the adversary can only pass the second session without being detected

if she can win the BPR game or SPR game.

4.5.2.3 The Security Theorem

We investigated all possible attacks against the message recognition protocol of Fig.

4.18 by considering two different cases, namely if the attack is taking place over

one session, or if it spans more than one session. We examined these two cases

separately.

In the first case, there are six possible attack scenarios: BABA, BAAB, ABBA,

AABB, BBAA, and ABAB. Attacks of type BABA, BAAB, and ABBA can be

reduced to the ABAB case. Further, we showed that a successful adversary (Eve)

100

Chapter 4. Message Recognition Protocols

§4.5. A New MRP Suitable for Ad Hoc Pervasive Networks

in attacks of type AABB, BBAA, and ABAB attacks can be reduced to a successful

player (Oscar) in the PPR, PSPR, or BU games.

In the case of attacks that occur over more than one session, we showed that

the successful adversary can be reduced to a successful player against the BPR or

SPR games.

This concludes the analysis of different attack scenarios and proves the following

theorem.

Theorem 8. A successful adversary, who can efficiently deceive Bob in outputting

(Alice, m′), where Alice never sent m′, implies an efficient algorithm in winning

PPR, PSPR, BU, or BPR hash function games.

This theorem precisely identifies the required properties for a hash function to

be used in the message recognition protocol of Fig. 4.18. There is no concrete

construction of such a hash function. However, no one knows how to prove that

a concrete construction of a hash function has any non-trivial property. It is a

standard approach taken in the literature to assume some properties for an idealized

hash function and to prove security of a given protocol assuming these assumptions.

Note that the same approach was taken by Lucks et al. [LZWW05]. One can

analyze these games in the random oracle model and compare their hardness to

more standard hash function security notions, see for example Sections 2.3.2.

101

Chapter 5

Conclusion and Future Work

Contents

5.1 A Summary of the Thesis 102

5.2 Future Work and Outlook 104

5.1 A Summary of the Thesis

We assumed that there are two channels available for communication, one insecure

broadband channel and one authenticated narrow-band channel. We produced

the required formalism needed in a general model of non-interactive Message Au-

thentication Protocols using these two channels. GNIMAP depicts a general non-

interactive Message Authentication Protocol. We proved that GNIMAP is secure

given that a Binding Game is hard to win for an adversary with certain properties.

Further, we examined the NIMAPs found in the literature. We discussed their

security in our general model. We proposed a particular NIMAP based on HCR

hash functions. We proved that our proposed NIMAP is secure in the general model

given that the HCR Game is hard to win.

Our proposed NIMAP, sends the same amount of information over the authen-

ticated channel as the most secure NIMAP proposed so far, while achieving the

same level of security. In comparison with this latter protocol, our NIMAP reduces

the amount of information sent over the insecure channel significantly.

Next, having examined the most secure and efficient IMAP found in the liter-

ature, we proposed a new IMAP based on ICR hash functions, a new notion that

102

Chapter 5. Conclusion and Future Work

§5.1. A Summary of the Thesis

we have defined. Given a secure ICR hash function, we proved that our IMAP is

secure.

Our security assumptions are reasonable and are based on the existence of an

ICR hash function. We do not require any previously distributed public parameters,

which are needed for commitment schemes.

The amount of information sent over the authenticated channel is smaller than

the most secure IMAP proposed so far, while achieving the same level of security.

Allowing the same amount of information to be sent over the authenticated channel,

we can tolerate much stronger adversaries.

Finally, we examined the problem of message recognition. Previous recognition

protocols were revisited and their shortcomings were pointed out. We looked at the

Lucks protocol in more detail and described a situation where the protocol fails to

recover after the adversary’s intrusion. We suggested a variant of this protocol to

overcome this problem. In particular, in case of communication failure or adver-

sarial disruption, this protocol is not equipped with a practical resynchronization

process and can fail to resume. Our proposed variant is equipped with a resynchro-

nization technique that allows users to resynchronize whenever they wish or when

they suspect an intrusion. We have also noted the equivalence of digital signature

schemes with message recovery and non-interactive message recognition protocols.

We further proposed a new message recognition protocol, which is based on

the original protocol by Lucks et al., and which incorporates a resynchronization

technique within itself to provide self-recoverability. That is, the proposed protocol

overcomes the recoverability problem of the Lucks et al. protocol without having

to provide a separate resynchronization procedure. Finally, we formally proved the

security of our protocol.

Last but not least, we proposed a new design for message recognition protocols

suitable for ad hoc pervasive networks. This proposal does not make use of hash

chains. Hash chaining techniques have been used in recent designs of message

recognition protocols. In this approach, the small devices are required to save values

of a hash chain in their memories for every single user they want to communicate

with. Since we do not use this technique, we no longer require the small devices to

save values of a hash chain in their memories. This relaxes the memory requirements

and makes the protocol more suitable for ad hoc networks.

103

Chapter 5. Conclusion and Future Work

§5.2. Future Work and Outlook

5.2 Future Work and Outlook

The security of some message authentication protocols is based on computational

assumptions, the hardness of ICR and HCR hash function games, for instance.

The existence of particular instances of secure ICR and HCR hash functions is an

open problem. It is also interesting to propose protocols that are based on other

assumptions that are well-studied, such as collision resistance or second-preimage

resistance. On another note, we have provided a general framework for NIMAPs,

and it would be interesting to see a general model for IMAPs as well. Proposing

a model that encapsulates all the possibilities in the interactive setting of IMAPs

is going to be a harder task when compared to the case of NIMAPs. There are

more possible flow structures in an interactive setting which results in more possible

attack scenarios.

A related direction is to investigate other cryptographic goals, for example mu-

tual key generation in the context of ad hoc networks using two-channel cryptogra-

phy. Mutual key generation happens when both parties contribute random inputs

of their choice to a protocol that generates a key. This allows both parties to en-

sure that the generated key is sufficiently random and hard to predict. It would

be interesting to provide some Diffie-Hellman type protocols achieving mutual key

generation that take advantage of the narrow-band channel. It is important that

these protocols be light-weight in terms of communication bandwidth and memory

requirements.

There are also some interesting problems involving the alternate usages of the

narrow-band channel, the implementation of this channel, and assuming weaker

properties for this channel. In the literature, all applications of the narrow-band

channel happen simultaneously with the use of the broadband channel. However,

one can think of scenarios where using the authenticated flow beforehand is an

advantage. For instance, there are password based schemes for key agreement

protocols. A bidirectional authenticated channel can be used to transmit the short

password to Alice and Bob. In general, one can see if incorporating the manual

channel into any existing protocol will result in some security advantage.

Implementing the narrow-band channel is a significant step in the development

of two-channel cryptography. The early suggestions involved incorporating human

abilities in designing authentication protocols. However, human beings are prone

to error and it is desirable to eliminate the human error factor. Infrared (IR), laser,

near field communication (NFC) developed by Sony and Phillips, or visible light

between the two devices can be used to send a short string. One can also require

104

Chapter 5. Conclusion and Future Work

§5.2. Future Work and Outlook

the two devices to physically touch each other. Although using these signals has

the advantage of essentially eliminating the human error factor, there is a cost

associated to equipping the devices with the appropriate signal transmitter and

receiver. Many manufacturing companies may be reluctant to equip their devices

with such transmitters as a result. An alternative to the latter two proposals is

to use hash function chains in implementing the second channel. This approach

eliminates the human error and it is very cost efficient since almost all devices are

equipped with built-in hash functions anyway.

One other point in realization of the narrow-band channel is that, for most

proposals, it is not possible to replay flows over this authenticated channel. The

only exception seems to be voice over IP in which the voice can be recorded by

the adversary and replayed later on to authenticate a different message. For all

other instances, it seems that the adversary cannot replay the flows and hence is

bound to change the communication over the wireless channel in realtime. This will

pose a weakening of adversarial capabilities and will enable researchers to design

protocols which achieve the same level of security and, yet, be more efficient and

based on simpler and weaker security assumptions. That is, they have to transmit

less information and have lower computational complexity for a comparable level

of security.

105

References

[ABC+98] Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Char-
alampos Manifavas, and Roger Needham. A new family of authentication
protocols. In ACMOSR: ACM Operating Systems Review, volume 32, pp.
9–20, 1998. 7, 9, 59, 63

[BSSW02] Dirk Balfanz, Diana K. Smetters, Paul Stewart, and H. Chi Wong. Talk-
ing to strangers: authentication in ad-hoc wireless networks. In Network
and Distributed System Security Symposium, San Diego, California, U.S.A.,
February 2002. 4, 7, 9, 22

[CEEC08] Marie Chan, Daniel Estève, Christophe Escriba, and Eric Campo. A review
of smart homes-present state and future challenges. Computer Methods and
Programs in Biomedicine, 91(1):55–81, July 2008. 3

[CJ03] Don Coppersmith and Markus Jakobsson. Almost optimal hash sequence
traversal. In Financial Cryptography, Lecture Notes in Computer Science,
volume 2357, pp. 102–119. Springer, 2003. 90

[Dem04] George Demiris. Electronic home healthcare: concepts and challenges. In-
ternational Journal of Electronic Healthcare, 1(1):4–16, 2004. 4

[Geh98] Christian Gehrmann. Multiround unconditionally secure authentication. De-
signs, Codes, and Cryptography, 15(1):67–86, 1998. 39, 78, 79, 81, 94

[GMN04] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual authen-
tication for wireless devices. RSA Cryptobytes, 7(1):29–37, January 2004. 4,
7, 9, 11, 23

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988. 5

[GMS08] Ian Goldberg, Atefeh Mashatan, and Douglas R. Stinson. A new mes-
sage recognition protocol with self-recoverability for ad hoc pervasive net-
works. Technical Report 2008-22, Centre for Applied Cryptographic Re-
search (CACR), University of Waterloo, Canada, 2008. 10, 60, 74

[GN04] Christian Gehrmann and Kaisa Nyberg. Security in personal area networks.
Security for Mobility, IEE, London, pp. 191–230, 2004. 4, 7, 9, 11, 16

106

§References

[Hoe04] Jaap-Henk Hoepman. The ephemeral pairing problem. In Financial Cryp-
tography, Lecture Notes in Computer Science, volume 3110, pp. 212–226.
Springer, 2004. 4, 7, 9, 36

[HWGW05] Jonathan Hammell, André Weimerskirch, Joao Girao, and Dirk Westhoff.
Recognition in a low-power environment. In ICDCSW ’05: Proceedings of the
Second International Workshop on Wireless Ad Hoc Networking (WWAN)
ICDCSW’05), pp. 933–938, Washington, DC, USA, 2005. IEEE Computer
Society. 7, 9, 10, 59, 64

[LAN05] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient mutual data authentica-
tion using manually authenticated strings: Preliminary version. Cryptology
ePrint Archive, Report 2005/424, 2005. A shorter version was published at
CANS 2006. 4, 7, 9

[LN06] Sven Laur and Kaisa Nyberg. Efficient mutual data authentication using
manually authenticated strings. In The 5th International Conference on
Cryptology and Network Security, CANS 2006, Suzhou, Dec. 8 - 10, 2006,
Lecture Notes in Computer Science, volume 4301. Springer, 2006. To appear.
It is a shortened version of ePrint Report 2005/424. 4, 7, 9

[LZWW05] Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Entity
recognition for sensor network motes. In GI Jahrestagung (2), pp. 145–149,
2005. 5, 9, 10, 59, 64, 66, 68, 91, 92, 93, 101

[LZWW07] Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Is this
Message From Alice? Efficient and Secure Entity Recognition for Low-End
Devices, 2007. Manuscript. 7, 9, 66

[LZWW08] Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Con-
crete security for entity recognition: The Jane Doe protocol. In Progress in
Cryptology - INDOCRYPT 2008, 9th International Conference on Cryptol-
ogy in India, Kharagpur, India, December 14-17, 2008. Proceedings, Lecture
Notes in Computer Science, volume 5365, pp. 158–171. Springer, 2008. 7, 9,
66, 68

[Mit03] Chris J. Mitchell. Remote user authentication using public information.
In IMA Int. Conf., Lecture Notes in Computer Science, volume 2898, pp.
360–369. Springer, 2003. 7, 9, 59, 63

[MS07] Atefeh Mashatan and Douglas R. Stinson. Noninteractive two-channel mes-
sage authentication based on hybrid-collision resistant hash functions. IET
Information Security, 1(3):111–118, September 2007. 9, 12, 55

[MS08a] Atefeh Mashatan and Douglas R. Stinson. Interactive two-channel message
authentication based on interactive-collision resistant hash functions. To
appear in International Journal of Information Security, 2008. 9, 16, 34

[MS08b] Atefeh Mashatan and Douglas R. Stinson. A new message recognition proto-
col for ad hoc pervasive networks. 2008. To appear in The 7th International
Conference on Cryptology and Network Security (CANS 2008). 10, 60, 87

107

§References

[MS08c] Atefeh Mashatan and Douglas R. Stinson. Recognition in ad hoc perva-
sive networks. Technical Report 2008-12, Centre for Applied Cryptographic
Research (CACR), University of Waterloo, Canada, 2008. 9, 10, 60

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. 6

[NSS06] Moni Naor, Gil Segev, and Adam Smith. Tight bounds for unconditional
authentication protocols in the manual channel and shared key models.,
Lecture Notes in Computer Science. volume 4117, pp. 214–231. Springer,
2006. 4, 7, 9, 35, 37, 52, 56, 58

[PV06] Sylvain Pasini and Serge Vaudenay. An optimal non-interactive message au-
thentication protocol. In David Pointcheval, editor, Topics in Cryptography,
Lecture Notes in Computer Science, volume 3860, pp. 280–294, San Jose,
California, U.S.A., February 2006. Springer. 4, 7, 9, 21, 23, 24, 29, 55

[RS84] Ronald L. Rivest and Adi Shamir. How to expose an eavesdropper. Com-
munications of the ACM, 27(4):393–394, 1984. 2

[RWSN07] Mohammad Reza Reyhanitabar, Shuhong Wang, and Reihaneh Safavi-
Naini. Non-interactive manual channel message authentication based on
etcr hash functions. In Information Security and Privacy, 12th Australasian
Conference, ACISP 2007, Townsville, Australia, July 2-4, 2007, Proceedings,
Lecture Notes in Computer Science, volume 4586, pp. 385–399. Springer,
2007. 4, 7, 9

[SA99] Frank Stajano and Ross Anderson. The resurrecting duckling: security issues
for ad-hoc wireless networks. In Security Protocols, Seventh International
Workshop Proceedings, Lecture Notes in Computer Science, volume 1796.
Springer, 1999. 4, 7, 9

[Vau05] Serge Vaudenay. Secure communications over insecure channels based on
short authenticated strings. In Advances in Cryptography, CRYPTO 05:
The 25th Annual International Cryptology Conference, Lecture Notes in
Computer Science, volume 3621, pp. 309–326, Santa Barbara, California,
U.S.A., August 2005. Springer. 4, 7, 9, 23, 36, 52, 55

[WSN08] Shuhong Wang and Reihaneh Safavi-Naini. New results on uncondition-
ally secure multireceiver manual authentication. Cryptology ePrint Archive,
Report 2008/039, 2008. 4, 7, 9, 12, 30, 31

[WW03] André Weimerskirch and Dirk Westhoff. Zero common-knowledge authen-
tication for pervasive networks. In Selected Areas in Cryptography, Lecture
Notes in Computer Science, volume 3006, pp. 73–87. Springer, 2003. 6, 7,
9, 10, 59, 64

108

	Introduction
	Two-channel Cryptography and Applications
	Message Authentication in Ad hoc Networks
	Message Recognition in Ad Hoc Networks
	Interactive versus Non-interactive Protocols
	Computational versus Unconditional Security
	Contributions of this Thesis

	Non-interactive Message Authentication Protocols
	General Framework: GNIMAP
	Attack Model
	Security Analysis

	Previous NIMAPs
	A New Computationally Secure NIMAP
	Hybrid-Collision Resistant Hash Function
	On the Difficulty of the HCR Game
	 A new NIMAP based on HCR hash functions.
	Parameter sizes
	Advantages of the proposed NIMAP

	On Unconditionally Secure NIMAPs
	Wang and Safavi-Naini's Proof
	A Counting Argument

	Interactive Message Authentication Protocols
	Previous IMAPs
	The Attack Model
	A New Computationally Secure IMAP
	Interactive-Collision Resistance
	 A New IMAP Using ICR Hash Functions
	Security Analysis
	The Choice of Parameters and Hash Function

	An Unconditionally Secure IMAP

	Message Recognition Protocols
	Non-interactive MRPs
	A General Non-Interactive MRP
	Digital Signature Schemes with Message Recovery
	Equivalence of Non-interactive MRPs and DSSMRs

	Previous MRPs
	The Lucks Protocol

	An Improved MRP with Resynchronization Process
	Resynchronization Process

	An Improved MRP with Self-Recoverability
	Security of Our New Message Recognition Protocol

	A New MRP Suitable for Ad Hoc Pervasive Networks
	Security Assumptions
	Security of the Proposed Recognition Protocol

	Conclusion and Future Work
	A Summary of the Thesis
	Future Work and Outlook

	References

