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Abstract

The focus of this thesis is on modeling and optimal resource management in wireless
multimedia wideband code-division multiple access (WCDMA) systems. Resource
management in CDMA systems has two major roles: to increase spectral efficiency
by controlling cochannel interference, and to accommodate multimedia services by
proper adjustment of the allocated resources. In this thesis, the system model sup-
ports a new class of services with limited delay tolerance in addition to real time and
delay insensitive services which have been already considered in the literature. The
basic control variables in CDMA resource management are transmit powers, data
rates, and base station assignments (handoff decision). Previous works have in-
cluded a subset of these variables in their resource management algorithms. In this
thesis, these control variables are combined in a mathematical programming prob-
lem which maximizes the profit gained by a wireless multimedia service provider
subject to satisfying the service and quality of service (QoS) requirement for each
user. The profit is obtained as the difference between the network revenue and
cost. A pricing scheme has been developed to map the network throughput onto
the network revenue and the handoff switching overhead onto a certain cost. In
this pricing scheme, every user pays proportionally to its instantaneous data rate
and quality of service. The mathematical programming problem is analyzed, re-
structured, and solved for single- and multi-cell systems. The single-cell solution
has the advantage of low complexity and global convergence in comparison with
the previous work. Maximum achievable throughput (capacity) of a single cell is
mathematically evaluated and has been used as the benchmark for performance
measure of single- and multi-cell systems. For multi-cell systems, different solution
approaches lead to different results. The best result is generated by the improved
mixed-integer nonlinear programming (I-MINLP) algorithm which achieves up to
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94% of the capacity in a network with 9 base stations, equivalent to a reuse effi-
ciency of 0.94. The sensitivity of the resource management solution to erroneous
input data (path gains) is examined. It has been shown that the higher the ca-
pacity utilization, the higher the vulnerability to estimation error. As a practical
issue, resource management at different operation levels (centralized, partially de-
centralized, decentralized, and fully decentralized) is discussed. To facilitate the
centralized implementation, a more practical version for the I-MINLP algorithm
has been developed. The centralized and partially decentralized schemes are pre-
ferred for their high performance and flexibility. The contribution of this thesis is
confined to the reverse link of WCDMA systems. We have assumed that neces-
sary mechanisms to perform handoff procedures, when a user is assigned to a new
base station, exist and have not addressed soft handoff. A resource management
algorithm that combines the result of this research with the well known closed-loop
power control is suggested to enhance reverse-link FDD-mode resource management
in IMT-2000, the global standard for third-generation wireless systems. A part of
this research has been reported in [1, 2].
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Chapter 1

Introduction

Wireless personal communications is the fastest growing segment of telecommunica-
tions [3]. This is driven by the desire for the change from wired fixed place-to-place
commuunications to wireless mobile person-to-person communications, and to be free
from physical connections to communication networks. On the other hand, increas-
ing demand for new wireless services, such as internet connections, is pushing the
technological barriers towards implementation of wireless multimedia’ communica-
tions. Typical multimedia applications include teleconferencing, medical imaging,

entertainment and educational video, and advertizing [4].

1.1 Motivation

A typical wireless multimedia system supports different services with a wide range of

transmission rates and various error and delay performances. The network structure

1The term multimedia refets to the representation, storage, retrieval, and distribution of in-
formation expressed in multiple media such as: text, audio, video, graphics, and image (4].
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consists of mobile handsets and terminals (for voice, data, image, and low-rate
video), base stations, and a broadband network connecting base stations and control
entities in the system. Figure 1.1 illustrates a general view of a broadband network

with wired and wireless access points. In the wireless subnet, each communication

Wired
Access
Wired Pons
Access
Ports
..... Radio
= 5
----- / X MMW
Wireless X
Access
|

SO

X .
..... X Wired
Access
Ports
Wired o
Access o :g Cells
Ports 233 and 1§=is
:wm‘u:hband E g Base Sutions m

Figure 1.1: A typical wired/wireless multimedia network.

link is initiated by, or terminated at, a mobile/fixed user through base stations and
the broadband network. Transmissions from mobiles to base stations (uplinks) and
from base stations to mobiles (downlinks) take place in different radio channels
(frequency division duplex, FDD) or the same radio channels but different time
slots (time division duplex, TDD). Table 1.1 [5] illustrates the required transmission
rates (bandwidth) for typical multimedia services in the uplink and downlink of a

wireless network.

A signal transmitted over a mobile channel undergoes attenuation due to path
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Table 1.1: Multimedia services and the uplink and downlink transmission rates [5].

Multimedia Services Downlink Bandwidth | Uplink Bandwidth

Broadcast Video 1.5 - 6 Mbps/channel | None
Broadcast TV
Enhanced Pay per View

Interactive Video 64 kbps - 6 Mbps 9.6 - 64 kbps
Video-on-Demand
Interactive TV

Interactive Games

Information Retrieval Services

Internet (www, ftp, telnet) 14.4 kbps - >10 Mbps | 14.4 - 128 kbps

Voice

Symmetric Data 9.6 kbps - 2 Mbps 9.6 kbps - 2 Mbps
Desktop Multimedia
Work-at-Home
Video Conferencing
Video Telephony

Fax

Small Business/Home 9.6 - 384 kbps 64 kbps - 1.5 Mbps
Internet Homepage

Internet Information Server
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loss, shadowing due to uneven terrain, buildings, and other obstacles much larger
than the wavelength of the radio channel frequency, and fading as a result of mul-
tiple paths and a time-variant channel. Thus, the received signal power varies and
fluctuates randomly. If all mobiles transmit at the same power level, the signal from
a near mobile usually will be received at a strong level, whereas that of the farthest
one will be received at a very weak level; this is known as the near-far effect. The
difference between these two received signal power levels can be in the range of 80
~ 100 dB [6, 7] which will cause an excessive amount of cochannel interference?

and saturation of the weaker signal’s receiver.

The frequency spectrum utilization of current mobile systems is very low. Op-
timistic estimates, as reported in (8], show that the highest achievable capacity
among the second generation mobile systems falls under 20 percent of the Shan-
non channel capacity. This low utilization is due to the fact that the capacity of
a Rayleigh fading channel, on the average, approaches that of a Gaussian channel
only if the channel bandwidth or the number of diversity branches approaches infin-
ity [9]. The implication is that in a real system, the capacity of a wideband mobile
system using many diversity paths can be close to the channel capacity. Thus, a
wireless CDMA?® system is a potential candidate for high-capacity mobile commu-
nications due to the common wideband radio channel being shared among all the
users. Further advantages, as will be discussed in Chapter 2, add to the CDMA

capability in accommodating multimedia services and reliable communications over

2Cochannel interference refers to the interfering signals from the same radio channel. In conven-
tional narrowband systems, cochannel interference implies inter-cell interference since a channel
can be used once in a cell. In CDMA, however, it includes both inter- and intra-cell interferences

since the same radio chanrel is used for users in every cell.
3CDMA (code division multiple access) technique versus other multiple access techniques is

explained in Chapter 2. It refers to direct-sequence CDMA throughout this thesis.
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fading channels. Hence, wireless communication standard bodies in Asia, Europe,
and North America have proposed CDMA as the major multiple access technique
for the third generation of wireless systems [10, 11, 12].

Power control algorithms have been developed to alleviate the near-far problem
by compensating for the variations and fluctuations of the mobile signal power
at the base station receiver. This power adjustment results in an increase in the
system capacity [6, 13, 14] in terms of the number of simultaneous calls. In CDMA
systems, where the radio channels are neither separated in frequency nor separated
in time, the total interference level is a limiting factor for the system capacity [15].
Thus, excessive use of power by a single user could inhibit the communication of
other users and reduce the capacity significantly. Therefore, power control and
resource management are more important and essential in CDMA systems. CDMA
uplink power control has been the center of focus in many investigations, because
each user’s signal in a cell follows a different propagation path and experiences
different channel characteristics. On the other hand, the intra-cell interference and
the desired signals on a downlink path undergo the same channel impairments and
the relative power levels are preserved. In fact, on a single-cell basis, there is no
need for downlink power control if the background noise is negligible. In a multi-cell
environment, downlink power control should be employed but uplink power control

is more complicated.

Besides combating the near-far problem, it has been shown, e.g. in [16], that
power control can be engaged to accommodate different qualities of service (QoS’s)
in terms of bit ercor rate (BER). In the context of multimedia CDMA, the variable
processing gain, as defined on page 13, can be employed as another means to control
the BER. Thus, in a poor channel condition, where even the maximum available

power fails to maintain the target BER, an increase in the processing gain, or
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equivalently a decrease in the transmission rate, can further improve the average
signal-to-interference ratio (SIR) and the BER. On the other hand, as proposed in
this research, the data rate can be regulated such that the delay requirement of each
user is met. Thus, the error and delay performance of a multimedia CDMA system
can be controlled as a function of the resource (power and rate) budgets. It is highly
desirable to manage the network resources efficiently so that the QoS requirement

for each user is satisfied and the network resources are utilized maximally .

An important factor in allocating power and data rate to a mobile is the base
station assignment, i.e., determination of the access point of the mobile to the
wireless network. In other words, the amount of the allocated resources may vary
significantly with different assignments. Conventionally, a mobile user is connected
to the closest base station or to the one whose broadcast pilot signal is sensed as
the strongest, implying that the path gain from the mobile to that base station is
the highest with respect to all other base stations. We call the former assignment
the nearest base station (NBS) assignment and the latter one the least signal at-
tenuation (LSA) assignment. NBS assignment is valid in the absence of shadowing
and fading. If the traffic is evenly distributed over the whole network and, conse-
quently, each base station sees the same total interference at its receiving antenna,
LSA assignment provides maximum SIR, thus the best performance. In unevenly-
distributed traffic, however, a base station with high local traffic, despite being the
choice of LSA, may receive a mobile signal with a lower SIR level than a nearby
base station with a lighter local traffic. Therefore, an assignment decision based on
the global traffic, at least in a cluster of nearby base stations, outperforms the LSA.
We are interested in examining the performance of a globally-decided assignment
as compared to the LSA, in other words, combining the base station assignment

with the resource allocation process.
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Optimization techniques are commonly employed in the literature for power
control and resource management of cellular systems, as reviewed in the next chap-
ter. Many power control algorithms are proposed for narrowband mobile systems
to minimize the total transmitted power and increase the system capacity. Most
of these algorithms are designed for conventional voice communications and do not
address the problems involved in a multi-service environment such as the accom-
modation of different rates and service qualities for different users. As for CDMA
systems, related literature has focused on variable-rate transmission and variable
BER requirements for real-time services. However, many non-real-time services
with various delay requirements have not been addressed. Moreover, the proposed
models are limited to single-cell environments where roaming problems and associ-

ated challenges such as base station assignments are disregarded.

1.2 Objective

The objective of this thesis is to develop algorithms for optimal resource manage-
ment of the reverse link of a wireless multimedia wideband CDMA (WCDMA)
system in order to maximize utilization of network resources and capacity while

guaranteeing service qualities.

The following network resources and related control variables are considered:
the mobile transmitted powers, transmission rates, number of handoffs, and base
station assignments?. The role of power control is to accommodate different BER

requirements as well as to solve the near-far problem. Transmission rate control

‘Base station assignment is equivalent to handoff decision. In this thesis only hard handoff
decisions are considered and it has been assumed that necessary mechanisms to perform handoff

procedures, when a user is assigned to a new base station, exist in the network.
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is employed to satisfy both BER and delay performance requirements. The delay
performance for non-real-time services is controlled by adjusting their service time
within the range of their tolerable delays. The number of handoffs is controlled
to reduce the signaling overhead due to handoff switchings. Among all feasible
assigninents, an assignment which yields the best value of an objective function is
selected. The objective function is expressed in terms of a weighted sum of the
network transmission rates and the number of handoffs. It reflects the network

efficiency and is formulated in Chapter 4.

The development of the algorithms involves the following steps:

o Introducing a model to support wireless multimedia services and accommodate

different QoS’s based on the CDMA technique.

o Translating the objective into an optimization problem based on the presented

model.

o Developing efficient algorithms to solve and perform optimal resource man-

agement in single- and multi-cell environments.

o Investigating implementation issues including sensitivity analysis to measure-
ment errors, centralized and decentralized implementations, and compatibility

with the proposals for the third generation wireless systems.

By fulfilling the above steps, the following contributions to the resource man-
agement problem in multimedia WCDMA have been achieved. The system model
supports a new class of services with limited delay tolerance as well as real time
and delay insensitive services which have been already considered in the literature.
All major control variables are included in the resource management problem and

are optimally obtained and allocated. Previous work has considered a subset of the
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variables. A novel pricing strategy and a new throughput measure for multimedia
services are developed. The single-cell solution has the advantage of low complexity
and global convergence in comparison with the previous work. Resource manage-
ment in a multi-cell system, despite its very high complexity, has achieved a high
throughput performance within a reasonable and practicable time. The results of
multi-cell solution for multimedia applications are new and can be used to enhance

the reverse-link FDD-mode resource management in IMT-2000.

1.3 Overview of the Thesis

Chapter 2 includes a brief background on CDMA principles and characteristics
followed by a discussion of the performance of CDMA systems in a mobile envi-
ronment. A literature review of optimal power control and resource management
in different systems (narrowband and wideband), applications (single and multi-
ple service), and network environments (single and multiple cells) in addition to
a detailed description of previous work relevant to this thesis is presented in this
chapter. Chapter 3 is devoted to laying out the physical and mathematical de-
scription of our system model including service classes and QoS’s. In Chapter 4,
a mathematical programming problem is built to model optimal resource manage-
ment in the multimedia CDMA system. Mathematical expressions for the objective
function and constraints including a pricing scheme for multimedia services are de-
veloped and presented in this chapter. Moreover, the structure of the problem is
analyzed in terms of the type and complexity. Resource management algorithms as
the solutions to the problem are developed in Chapter 5 and validated by numerical
results and simulations. Chapter 6 includes discussions related to implementation

issues. Semsitivity of the resource management algorithms to the estimation errors
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in path gain measurements, centralized versus decentralized schemes, and compat-
ibility with the recent proposals for the third generation of wireless systems are
discussed in this chapter. The conclusion and suggested future work are presented
in Chapter 7. Some relevant theories and techniques in optimization theory are

provided in the Appendix.



Chapter 2

Background and Literature

Review

The focus of this thesis is on the problem of optimal power control and resource
management in a CDMA context and multimedia application. This chapter pro-
vides a brief background on wireless CDMA systems and their characteristics, and
a review of the relevant previous work. More details of the literature closely re-
lated to this work are included as well. Background information on optimization
theory and techniques including relevant definitions, theorems, and algorithms are
provided in Appendix A.

2.1 Mobile CDMA Systems

The introduction of the spread spectrum technique for mobile communications goes
back to 1978 when a frequency-hopping system for high-capacity mobile communi-
cations was proposed in [17]. This proposal, which was the first spread-spectrum

11
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approach to mobile communications, stimulated considerable interest and contro-
versy. In particular, the application of direct-sequence code-division multiple access
(DS-CDMA) in cellular systems was introduced at the beginning of the 1990s [6, 18],
years after its application in military and satellite communications. For simplicity,

throughout this proposal the term CDMA stands for DS-CDMA.

Unlike FDMA (frequency division multiple access) and TDMA (time division
multiple access), which divide the available frequency spectrum into narrowband
channels and assign each radio channel to one or more calls, CDMA is a wideband
spread-spectrum scheme that spreads multiple calls across a wide segment of the
allocated spectrum. Each individual call is assigned a unique code that permits it
to be distinguished from the multitude of calls transmitted simultaneously over the
same band. As long as the receiving end has the right code, it can pick its own

signal out from all the others.

The principle of direct-sequence spread spectrum is as follows. Consider the
transmitted signal As(t)c(t) cos(w.t + ¢) in Figure 2.1, where s(t) is the encoded
and interleaved signal, c(t) is the pseudo-random spreading signal comprising a
bipolar signal (+1) and A cos(w.t + ¢) is the carrier. Coding techniques are em-
ployed in error-prone mobile channels to enhance the BER performance or reduce
the required power. Interleaving techniques randomize bursts of error that occur in
a fading environment to increase coding gain for codes designed designed for mem-
oryless channels. The band-pass filter (BPF) is assumed to be ideal and to pass
the modulated and spread signal without distortion. The signal is impaired by the
channel noise, interference, shadowing, and multipath propagation. The received
signal is coherently multiplied by the spreading sequence ¢(t) and detected at the
receiver. It is a common method to use a particular spreading signal with different
time shifts for multiple access signals. Thus, if the antocorrelation of c(t) satisfies
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the condition Efc(t)c(t + )] = 0 for all 7| > Tenip, where Tepip is the chip duration
of ¢(t), then only received signals with the same time-shifted code are detected and
all other signals with any time shift |7| > Tcxp act as wideband interferences at the

receiver.

This condition prescribes that ¢(¢) must have the properties of white noise. It
is a common practice to compromise between a long pseudo-random code with
low autocorrelation and a shorter sequence with a faster acquisition and tracking

time [19]. An important parameter of a CDMA system is the spreading factor

Spread Spectrum
Daw Waveform  + Interference Data + Interference

A A

Deinterieaving
& Decoding

f]

Carrier
Acoi( @ 1+ §)

Figure 2.1: A view of the direct sequence spread spectrum concept.

or processing gain which is defined as the ratio of the data bit duration (T}) to
the spreading signal chip duration (T.pp), or the ratio of the spread spectrum
bandwidth (W) to the data rate for user z (r;), that is

L _W (2.1)

Td.,'p T

Processing gain =

The processing gain is an indication of the excessive use of the frequency band for

spreading signals and most of the CDMA advantages, as explained below, are direct
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results of this excessive use of the spectrum. In general, it is desirable to have a
high processing gain to take advantage of CDMA characteristics. However, since
the radio channel bandwidth is limited, increasing the processing gain imposes a
certain restriction on the data rate. We recognize this inherent limit in CDMA and

will set an upper bound on the transmission rate to preserve a high processing gain.

The performance of a CDMA system in terms of the spectral efficiency and BER
is highly affected by the amount of the multiple access (cochannel) interference.
Therefore, it is essential to use a number of techniques for interference reduction
such as power control, sectorization and voice activity monitoring to achieve a
high performance [6]. Interference from the adjacent channel is another degrading
factor. In CDMA, interference from the adjacent channel refers to two different
type of interference interchangeably. One is from the adjacent wideband radio
channel which can be alleviated by a guard band. The other one is the interference
caused as a result of non-zero cross-correlation between CDMA codes. The latter is
also referred to as the multiple-access interference in some literature. Some of the

important characteristics and advantages of CDMA are explained in the following.

Frequency Reuse - In multi-cell narrowband systems such as FDMA and
TDMA, a radio channel can be used so that the cochannel interference for mobiles
sharing this channel is less than a certain level. In practice, only a fraction of the
frequency band can be used in a sector or cell. For example, in a hexagonal cell
structure, FDMA systems normally use one-seventh of the available radio channels,
a frequency reuse factor of 1/7. To increase the reuse efficiency, narrowband systems
have to employ sophisticated frequency planning schemes and dynamic channel
allocation. CDMA shares the same spectrum in all cells (universal frequency reuse)
and achieves a frequency reuse factor of approximately 1, thus gaining several times

higher spectrum efficiency and getting rid of the frequency-planning complexity.
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Power Control - Due to an inherently high cochannel interference in CDMA
systems, power control is an absolute requirement which affects the overall system
performance. Extensive research, e.g. [20, 75, 22|, has shown that power control
error has a significant effect on both reverse- and forward-link capacity. Therefore,

power control has to be dealt with carefully in the design of CDMA cellular systems.

Soft Handoff - Handoff or handover is the mechanism for the transition of a
mobile station from one cell or sector to another cell or sector. If this transition
is done abruptly, i.e., connecting to the new cell after disconnecting from the old
cell, it is called hard handoff. If the tramsition is gradual, i.e., establishing the
connection to the new cell before disconnecting from the old cell, it is called soft
handoff. Hard handoff can fail if there is no radio link in the new cell, or the mobile
is switched to a wrong cell, or the mobile fails to hear the command to switch
the channel. By simultaneous communications via two or more base stations, soft
handoff greatly reduces link drops during transitions and enhances the capacity by
exploiting the link diversity. Obviously, CDMA is able to perform soft handoff very
easily because the same radio channel is used in the adjacent cells. However, each
handoff is subject to a signaling overhead to establish the new connection and to

update the corresponding user information.

Diversity - In addition to common diversity techniques used in narrowband
and wideband systems, e.g., time diversity by interleaving, there are certain types
of diversity which inherently exist or are easily employed in CDMA systems such

as:

- link diversity during soft handoff, and

- inherent frequency diversity due to the wide bandwidth which resolves the multi-

path components of the received signal and provides the receiver with several
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To combine the received signals from different diversity paths, a simple and
common method is selection combining [23]. In this method, received signals from
diversity paths are compared and, usually, the one with the highest carrier-to-noise
ratio is selected. A popular and optimum method of combining is maximal ratio
combining in which diversity branches are co-phased and then weighted propor-
tionally to their signal level before summing [23]. However, due to its need for
accurate channel estimates, maximal ratio combining is more appropriate for slow
fading channels. This technique can be implemented by RAKE receivers in CDMA
systems. Because CDMA uses a large bandwidth, the time resolution for resolving
the signals from diversity branches is high, therefore, maximal ratio combining can

be implemented efficiently in CDMA systems.

Error Performance of CDMA in Mobile Channels

In a Gaussian channel, the probability of error for a single direct-sequence spread-
spectrum signal is shown to be uniquely identified by the signal-to-noise ratio (SNR)
per bit [24]. If the number of users and the processing gain is high enough, it is quite
common to approximate the sum of ambient noise and multiple-access interference
in a CDMA system by an uncorrelated Gaussian signal with a flat spectrum. Thus,
a one-to-one relation between the BER and signal-to-interference plus noise ratio
(SIR) per bit does still exist. The SIR. per bit for user ¢ is calculated as

(f—:) = TE"T 2.2)
where E, is the energy per bit, Iy is the interference plus noise density, W is the
channel bandwidth, r; is the data rate, ¢; is the received power, and I is the total

noise plus interference seen by user i. For example, for an uncoded signal using
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QPSK (quadrature phase shift keying) modulation, an SIR per bit of 9 dB will
guarantee a BER of less than 10=° [23]. In [25], however, it has been argued that
the Gaussian approximation will over-estimate the error performance if the mobile
system is low-populated or there are dominant multiple access components (no

power control).

In a flat (frequency non-selective) fading channel, whose coherence bandwidth®
B is larger than the signal bandwidth, the signal spectrum remains flat but the
received power fluctuates randomly. In this case, the average SIR per bit, Ey/Io,
represents an average BER performance [23]. A flat fading condition can be applied
f W < By = 1/T, or Ty < 1/W where T, is the delay spread.

In a frequency selective fading channel, T, > 1/W, multipath signals are re-
solvable and can be exploited by a RAKE receiver for higher spectrum efficiency.
This channel is modeled by a tapped delay line (transversal filter) with T,,W taps
(23]. Typical values for T, range from .1 to 3 and 3 to 10 usec in an indoor and
outdoor environment, respectively [7]. Thus, indoor and outdoor CDMA channels
with bandwidths of greater than 1 MHz fall in the category of frequency selective
fading and the multipath effect can be mitigated at a cost of higher receiver com-
plexity. The error performance of this channel is also characterized by the average
SIR per bit.

2.2 Optimal Power Control

Since the introduction of cellular mobile systems, power control has been an im-

portant part of the resource management. This problem has been among many

1Coherence bandwidth is a part of the spectrum which is faded simultaneously.
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problems in numerous applications which have been approached by optimization
techniques. Many power-control algorithms are proposed in the literature for nar-
rowband systems to minimize the mobiles’ transmitted powers and increase the
system capacity. Despite most of these algorithms being designed for single-service
communications, the ideas can be applied to multi-service applications, as well.
Optimal resource management for CDMA systems in multi-service communica-
tions has been considered in the literature. Researchers have focused on variable-
rate transmission and variable BER requirements for real-time services. However,
non-real-time services with various delay requirements have not been addressed.
Moreover, the previously proposed models are limited to single-cell systems and

the problems associated with the multi-cell environment have not been considered.

Many power-control algorithms have been proposed to combat cochannel in-
terference and the near-far problem by regunlating the mobiles’ transmitted powers
such that each user communicates with a certain target SIR while spending the
minimum required power. This objective has been formulated as an optimiza-
tion problem in the literature. Power control for cochannel interference reduction
in satellite systems has been investigated in [30] where the concept of carrier-to-
interference ratio (CIR) balancing is introduced for voice communications with the
same BER requirements. CIR balancing is intended to balance interference such
that each user experiences the same CIR level. In [31], this concept is extended
to spread-spectrum systems. In this case, the effect of cochannel interference has
been taken into account and shown to be dominant (compared to the background
noise). It is also shown that CIR balancing improves the system capacity signif-
icantly. Another trend in power control algorithms is to keep the received signal
power at a constant level [6]. Although this is very efficient in controlling intra-cell
interference in CDMA systems, it has been shown in [32] that it has a limited ef-
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fect on inter-cell interference. A good mathematical model and a centralized power
control algorithm are presented in [13]. In this algorithm, the transmitted power
vector is optimized in a centralized and synchronous fashion to balance CIR. By
a synchronous algorithm, it is meant that all the mobiles’ transmitted powers are

updated synchronously, otherwise, the algorithm is asynchronous.

In the above algorithms, the problem of optimizing the transmitted power vec-
tor is identified as an eigenvalue problem and the optimum power vector is found by
inversion of a nonnegative matrix which is composed of channel gains for each indi-
vidual user. The main problem with these centralized algorithms is computational
complexity and knowledge of path gains at the control center. Hence, for practical
purposes, iterative and distributed versions of these algorithms have been devel-
oped. These algorithms use locally-measured path gains [14],(33]-[36]. The other
problem is that they require knowledge of one or more of the parameters such as
path gains (in general path gains from each user to a number of base stations),
CIR, received interference power, or bit error rate (BER). Stochastic power control
for CDMA systems in [37] employs an iterative and distributed algorithm to find
the optimal power vector. The advantage of this algorithm is that a mobile only
needs to know the matched filter output at its corresponding base station and its

path gain.

2.3 Combined Power and Base Station Assign-

ment

An important fact in optimizing power control is that the previously proposed
algorithms often find the optimal power vector assuming that the assignment of a
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mobile to a base station is determined and controlled by other criteria.

However, it is likely that there exists a better solution under another assign-
ment. This has been the motivation for developing optimal solutions for combined
power control and base station assignment. In [38], an iterative algorithm, namely
minimum power assignment (MPA), for both synchronous and asynchronous cases,
is proposed, and convergence problems are discussed. In each iteration, every mo-
bile finds a base station to which the required power is minimum, then, based on

the updated assignments, the new power vector is derived.

A very similar MPA algorithm is developed independently by Hanly in {39].
In this work, assuming a deterministic log-linear propagation model, the set of
potential base stations to be connected to a particular user is confined to nearby
base stations. The combined optimum power and base station assignment, as a
result, expands or contracts cell-site radii with respect to their traffic load. The
proposed algorithm increases the system capacity and is implemented decentrally.
Each mobile must have knowledge of its path gains to all base stations (or at least a
subset of nearby base stations) and their corresponding interference levels to select
the one which requires the least amount of power. The higher capacity, however, is
achieved at the cost of higher complexity of mobile terminals and communication
overhead. In [40], a dynamic load-sharing algorithm is proposed to eliminate the
communication overhead in Hanly’s algorithm. The idea is to push the mobiles in
the boundary regions to an early handoff when a cell is overloaded and the target
SIR per bit cannot be maintained. This is done by a stepwise decrease in the
pilot signal power of the overloaded base station. A low pilot strength results in
cell size reduction as well as an overall increase in the transmitted power in the
reverse link inversely proportional to the pilot signal power. It can be argued that,

first, the extra power has an adverse effect on the system capacity, and second, a
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higher power for all mobiles has almost no effect on the SIR because the interference
would also increase proportionally (background noise is very small compared to the
cochannel interference). Furthermore, when a mobile is pushed to an early handoff
to another base station, the highest path gain is still to the crowded base. This
means that under similar interference levels at both base stations, the user needs
more power to communicate with the new base station. If the interference level is
lower at the new base station, then the required power would be less. How much
less depends on the difference in the path gains and the interference levels. So there
is no guarantee of less power in the new cell and, consequently, no guarantee for

improvement in the old cell.

A combined channel allocation, base station assignment, and power control
algorithm is also proposed in [41]. This algorithm considers the combined problem
for a system of 2 base stations and computes a maximum matching in a graph
that captures the topological characteristics of the mobile locations. A very similar
work is reported in [42]. The solution approach is different in the sense that a
Lagrangian relaxation method is employed and a multi-cell model is considered.
This work does not provide a real-time solution because of the high computational

complexity. The details of the MPA algorithm are described below.

Minimum Power Assignment Algorithm

We are interested in the MPA algorithm [38] for its formulation of the optimal
power control and base station assignment in one model. Although this algorithm
is designed primarily for narrowband systems, where dynamic channel allocation
is a challenging part of the network operation (to reduce cochannel interference
and increase capacity), the idea can be applied to CDMA systems to manage the
handoff process very efficiently and to distribute the traffic load in order to mitigate
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local network congestion.

The network consists of M base stations and N users. All time-dependent pa-
rameters are defined at discrete-time n, when the algorithm updates power and
base station assignment vectors. Each user is connected, or assigned, to one (hard
handoff) base station. If user 7 is assigned to base station &, we denote this assign-
ment, following (38], as a; = k where: € {1,---,N} and k € {1,-.-,M}. Witha
combination of M base stations and N users, there are in total MY distinct assign-
ments. All possible assignments are numbered from 1 to MY and each particular
assignment is specified by a superscript. Thus, the {** assignment is represented by
vector a' with length N.

The path gain gf.(n) denotes the attenuation of the signal transmitted from
user ¢ to the base station k under the specific assignment vector @' = [a!, .-+, a}].
If user i transmits at a power level p;(n) (assumed to be unlimited), the received
signal from user i at the base station k is equal to p;(n)gl(n) at time n. The path
gain as a function of a particular assignment d/, is also useful and is represented as
gfa’. (n). If the assignment a§- = k, then, gh(n) = géaj (r). The optimization problem

is modeled as

. b . N
Y n(n)

a,p(n) =1 (2.3)
subject to
9.. — gl"c‘.(n)p‘-(n) .
( I (n))i B Eﬁ-‘lﬁﬁggaa(n)ljj(n) + r],‘,‘. zZ % (2.4)
pi(n) 2 0 (2.5)

where @l € {1,---,M},i€{1,---,N},and l € {1,---, M¥}, p(n) is the transmit

power vector, and 77}, is the receiver noise at the assigned base station. The CIR
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constraint in (2.4) guarantees the error performance for user ¢ specified by +; and

can be written as
pi(n) 2 Gi(n)p(n) + o{(n) (2.6)

where o}(n) = vinl./gl,,(n) and Gi(n) is the i** row of the N x N path gain matrix
G'(n) defined as

. z' l f » .
G{k(n) = 739;0.‘("’)/gfa; (n) or t # J (27)
0 for i =7.
The set of feasible solutions under assignment [ is defined as
P!(n) = {p(r) > Olp(n) > G'(n)p(r) + o'(n)} (2.8)

where o!(n) is an N x 1 vector whose element 7 is o}(n). The set P!(n) describes
a cone of feasible power vectors in which, if p(n) € P!(n) then ap(n) € P'(n) for

a > 1. Figure 2.2 depicts the set of feasible power vectors for a system of 2 users

Figure 2.2: The feasible region and optimal solution for a system of 2 base stations and

2 mobiles [38].

and 2 base stations. In this figure the line p;(n) = Gi(n)p(r) + o}(n) describes

the minimum power that user ¢ needs to communicate with the assigned base (1
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or 2) as a function of the transmitted power of the other user. There are four
possible assignments. For each assignment, the feasible region is the area of the
upper triangle formed by the intersection of the lines py(n) = Gj(n)p(n) + oi(n)
and p2(n) = Gi(n)p(n) + oi(n) where j = 1,2. The minimum power required for
each assignment is the intersection point or the vertex v'. In Figure 2.2 the optimal
solution is v®* = v* and MPA algorithm should search for this global minimum.
The union of all feasible regions is a nonconvex set |, P!, the shaded region in
Figure 2.2. Given a power vector p(n) and an assignment vector a‘(n), the MPA

algorithm iteratively searches for the optimal point v* using the iteration
p(n +1) = G'(n)p(n) + o(n) (2.9)

where 7 is the current iteration number and G'(n) is the path gain matrix for the
assignment o' at iteration n. In this algorithm, each user evaluates the minimum
power required to transmit to all base stations at iteration » + 1 based on the
transmitted power of other users at iteration n. Then it switches to the base
station corresponding to the lowest minimum required power, and sets its output
power to the lowest required power level. Thus, a new assignment vector and a new
power vector are obtained. In the iteration equation (2.9), if G'(n) is a nonnegative
matrix and p(n) is a feasible solution, from the Perron-Frobenius theorem [43], the
above iteration converges to a unique fixed point if and only if the largest eigenvalue

of G'(n) is less than unity.

The MPA algorithm has several problems:

- In the framework of the optimization problem, the new assignment vector should
be obtained based on the current value of the power vector, whereas in MPA,
each user’s assignment is obtained based on the previous values of other users’

output power. This may not be a major problem only if the channel condition



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

and users’ locations do not change during two consecutive time intervals for

updating transmitted powers.

- The initial power vector in (2.9) must be a feasible power vector. It is not clear

how the algorithm finds this initial feasible value.

2.4 Handoff Trade-offs

A major problem with the combined power control and base station assignment
optimization is that the number of new assignments (handoffs) can be untolerably
high, as each handoff requires additional signalings for establishing the new con-
nection as well as updating users’ information in the network. There is also a high
probability of “ping-pong” effect (constant switching between base stations). The
trade-off between the best connection quality and handoff switching cost has been
investigated independently from power control optimization. An approach based
on statistical control theory is taken to obtain an optimal strategy for the handoff
problem in {44]. Using a Markov decision process formulation and dynamic pro-
gramming, the optimum decision is characterized by a threshold on the difference
between the measured powers that the mobile receives from the base stations. A
similar approach is taken in [45] where the cost and reward functions for deciding
on a mobile-assisted handoff are formulated in a more general form. It includes the

model in [44] as a special case.
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2.5 Resource Management for Multimedia

Most power control algorithms mentioned so far are intended to optimize certain
variables for conventional mobile systems designed for voice communications. In
recent research publications, interest has been shown in the CDMA technique,
particularly for multimedia applications. High flexibility and multipath resistance
are some of the desirable characteristics of CDMA for future mobile systems [46].
Power control algorithms for multimedia CDMA have been proposed as a means to
control the communication quality in terms of BER as well as solving the near-far

problem.

To accommodate mixed traffic with different rates and QoS requirements, the
concept of variable spreading gain (VSG) is proposed for CDMA systems in [47]. In
this method, users with different transmission rates and the same BER requirements
are allocated power levels proportional to their rates and, for users with the same
rates, power levels are proportional to their Ey/ I, requirements. In [16], multimedia
sources are separated into multiple substreams with each substream’s delay and
loss characteristics individually negotiated between the source and metwork. In
this work, only delay-sensitive substreams with different E},/l, requirements are
considered. It is suggested that power control be employed to achieve different
QoS’s for different substreams. The proposed power control algorithm is similar to
MPA [14] and is intended to minimize total transmitted power for the downlink in
a single-cell network. Moreover, the feasibility condition is analytically derived and
used for the call admission purposes.

Single-Cell Multimedia CDMA System

In the following, we present a detailed review of [48] as it is considered relevant

to our research. In this paper, a multimedia CDMA system is considered for a
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single cell. It is intended to minimize total transmitted power in the cell to reduce
total interference to other cells, and maximize total data rates in two separate
optimization problems for the uplink transmissions. The first optimization is not
directly related to our proposed research as we will consider a multi-cell system
and control the system resources on a network-based configuration. Thus, we are
not concerned about the effect of the interference outside of the network. In the
following, we will describe the details of the second optimization problem, that is,

maximizing the total transmission rate.

The objective is that the system wishes to give each user the best throughput
under specified constraints. For example, if all constant bit-rate (CBR) services are
taken care of, the system assigns the remaining rate such that the cell throughput
is maximized. In the proposed model, there are N users in a single cell. The
received powers at the base station and mobile transmission rates, represented by
the vectors g(r) = [qi(n),-~~,qn(n)] and r(n) = [ry(n),---,rn(n))], respectively,
constitute the system variables and are assumed to be subject to fixed maximum
received power vector Qmax = [@1max,-~*, @N.max] and constant minimum rate

vector Repin = [Ri min) ==+, RN min), respectively. The inequality

& = W qi(n) : 3 coe
Io (n)),' . ri(n) pIFERE gi(n) +1n 2%, t€{,---,N} (2.10)

where W is the channel bandwidth and 7 is the background noise at the base station
receiver, guarantees the error performance if +; is the target SIR per bit for user 3.
It is stated that, at the optimal solution, the constraint (2.10) is met with equality.
In other words, it is not desirable to allocate extra power to achieve better quality
than what is expected from ~;.

The problem is formulated as

Maximize <~ .
atn), 7(n) Z;r.(n) (2.11)
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subject to
w q(n)
= 7% 2.12
Ti(n) Ljzrjz:i G(n) + 7 7 (2.12)
0< q:'(n) S. Qi.mnx (213)
ri(n) > Rt'.min- . (214)

This problem is reformulated by using the value of r;(n) evaluated from (2.12) and
substituting in (2.11) and (2.14), thus, the rate vector is omitted and the problem

changes to
Maximize <~ W a(n) (2.15)
g(n) I % Timn i(n) +1
subject to
0<ag(n) < Qima (2.16)
w a(n) 2 Rimin. (2.17)

% Yi=15# 3i(n) +1
The above substitution reduces the number of variables and transfers the nonlin-
earity in the constraints to the objective function. The new formulation has the
advantage of having a convex search space restricted to the surface of a polyhedron
defined by the set of linear constraints. The gradient projection method [49)] is used
for solving the problem. Any initial vector is first checked for feasibility, i.e., satis-
fying all constraints, then is used as the first iteration for the gradient projection
method. It is found that the method converges quickly to the solution. However,
for larger values of R;min, the algorithm converges to local minima, implying non-
convexity of the objective function. To avoid the local minima, different initial

guesses have been used. The work in [48] has several problems and limitations:

- In a multimedia environment, the sum ¥V, r;(n) does not represent the network

throughput, or spectral efficiency, as each user may transmit data with a
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different quality. Thus, the value of the sum may be increased by reducing

the transmission quality without affecting the network performance.

- The multi-cell environment and related problems are not addressed. For example,
in a single-cell system, the set of linear constraints has a very simple form
and analytical expressions for the feasibility condition can be derived easily.
This follows because (2.17) has the algebraic form

Ag(n) 21 (2.18)
where A; is the i** row of the symmetric matrix A defined as
W, f i=j
A= (2.19)
-1 ifi#j
with W; = W/(7iR:;min). Matrix A has a simple form and an analytical
solution for (2.17) with equality exists. Solving for ¢;(n), we get [48]

N
1
W +1 1- =1. 2.20
( 1+)q1(n)[ §w+1] " (220)
Positivity of the bracketed term implies
LA |
1 2.21
,._gw,- =1 < (2.21)

which provides the condition for not having an empty feasible set. This result
is also reported in [16] using a different approach. The structure of matrix A
does not change if we consider the transmitted power instead of the received
power and the condition (2.21) remains valid. When dealing with multi-
cell systems while working with the transmitted power p;, the matrix A is no
longer symmetric and derivation of an analytical solution is more challenging.

Moreover, the mobility of users is restricted to a limited area and there is no
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handoff problem and corresponding complexities. In general, the analysis of
a multi-cell system is much more challenging in all analytical, numerical, and

operational aspects.

- The proposed multimedia model does not include a wide range of multimedia
services such as non-real-time delay-sensitive and delay-tolerant services, as
categorized in class II and III in our system model in Chapter 3. The model in
[48] considers only real-time services and, in fact, is very similar to the current
voice-communication mobile systems except capturing variable rates and BER
requirements. Consequently, the QoS is limited to error performance, and
other important quality measures such as delay bounds have not been taken

into account.

2.6 Summary

Although extensive academic efforts have been devoted to optimal resource man-
agement, the ground for further research and significant contributions potentially
exists in this area. As far as a true wireless multimedia system is considered, there
is no proposed model that comprehensively supports a wide range of multimedia
applications with corresponding QoS requirements. Development of such a model
is of great importance. For practical indoor and outdoor applications, the resource
management problem should be defined based on a multi-cell system, thus, related
challenging problems such as base station assignments should be contained in the
resource management process. Algorithms should be developed to solve for the op-
timal values of the system resources to achieve certain objectives such as maximum
throughput subject to satisfactory QoS’s. The results of these developments would

be of great interest to wireless service providers.



Chapter 3

WCDMA System Model

A wireless network including N users and M base stations is considered with no
pre-specified cell borders. The task of assigning a user to a base station is combined
with resource management. In this chapter, a detailed physical and mathematical
description of the proposed wireless multimedia CDMA system model, including

service classes and QoS’s, is presented.

3.1 Supported Services

3.1.1 Service Classes

We accommodate three classes of wireless services similar to those in [50]. Class I
consists of highly delay-sensitive real-time connections with zero delay-tolerance
such as voice and low-rate video. This class has the highest service priority over

the other classes.

Class II includes non-real-time delay-sensitive services with a small delay bound
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(in the range of seconds) such as remote log-in, FTP (file transfer protocol) and
similar applications associated with transport control protocols (TCP). If a channel
is unavailable or impaired by deep fading, this type of connection can be queued

for a short time. This class has service priority over class III.

Class III includes delay-tolerant services such as paging, electronic mail, voice

mail, fax and data file transfer, and can be conveyed at the earliest possible time.

Both CBR and VBR (variable bit rate) services are supported in each class. A
user priority can also be defined to satisfy urgent needs of mobiles. This priority

shall be negotiated at the call initiation phase and dominates service priority.

In recent IMT-2000 proposals, e.g. [10]-[12], similarly, three classes of data
services are considered: low delay data bearer services (LDD), long constrained
delay data bearer services (LCD), and unconstrained delay data bearer services
(UDD). In contrast to LCD, our Class II services include the whole range of short

and long delay tolerant services.

3.1.2 Quality of Service

The model supports a class-based QoS. In the scope of this research, BER and
delay bound identify the QoS.

Bit Error Rate

Bit error rate is a major indicator of the quality of service and, as described in 2.1.1,
related to the average E}/ I at the receiver. The relation between BER and average
SIR per bit is one-to-one and is specified by the type of channel coding, modulation,

and structure of the receiver. For any communication system, it is highly desirable
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to employ different techniques such as forward error correction (FEC), bandwidth-
efficient modulation, and diversity schemes to reduce the required SIR per bit and
use the available resources more efficiently. The target BER for voice and data are
typically 10™° and 1078, respectively [10])-[12]. Lower BER’s are achievable by using
ARQ for delay-tolerant services. For example, it is shown in [51] that ARQ lowers
the required SIR per bit by more than 3 dB for error-sensitive data requiring a
BER of 107, using a BCH code with a rate 6/7 and 4 independent diversity paths.
Under the assumption of the availability of accurate path gain estimates, allocated
resources satisfy QoS requirements and a transmission does not take place unless
the performance is guaranteed. Therefore, ARQ is not applicable in this case. In
practice, however, a perfect path gain estimate is not available and the number
of erroneous received data bits may be higher than that could be corrected by
FEC. In this case, we assume that error-sensitive data of classes II and III can be

retransmitted.

Delay Bound

Each mobile data terminal of class II and class III services is assumed to have a
sufficiently large data buffer for queueing purposes. These storage elements are
necessary to buffer outputs of the traffic sources during their off-periods or when
the allocated rates! are less than the source rates. Off-periods happen during situ-
ations such as degraded channel conditions, handoff blocking, and local or network
congestion, and are controlled by the resource management algorithm. These ser-

vices are queued in favor of allocating more resources to the higher-priority services.

1n this thesis, the allocated rate refers to the symbol rate in physical layer. Given a coding
and modulation scheme, and the amount of overhead data, there is a one-to-one mapping between
symbol rate and data rate.
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We assume that the queueing delay at a mobile terminal is the only type of delay
in the network and is controlled to not exceed a target delay bound for each user.
There are, however, other types of delay such as processing, propagation, transmis-
sion and retransmission delays that are assumed to be relatively low and negligible.
Blocking delay is not considered withing the scope of this work. Delay bound is the
maximum tolerable delay for a particular service and varies with the type and class
of that service. We define the residual deloy bound 7.(n) at time n as the difference
between the delay bound (7) and the total accumulated queueing delay and service
time. For example, if user 7 starts data transmission at time ng with a delay bound
7:, at time n the residual delay bound will be 7, ;(n) = 7; — (n —ny). We map 7, ;(n)
into a minimum-rate limit, R; nin, which guarantees the delay performance for each
user : and is an important parameter of the proposed model. The minimum-rate

limit is evaluated for different applications in Section 3.5.2.

3.2 Medium Access

A synchronized reverse-link WCDMA model is considered. Synchronization is as-
sumed at the frame level. The chip rate is fixed and the total bandwidth W is
used by all users. Information is collected from each traffic source in the form of
fixed-length packets that are transmitted in synchronized, fixed-length time frames
or transmission cycles (TC) with a period of Ty. In each packet, the number of
information symbols is determined by the allocated data rate to user ¢ times the
packet time duration, r;Ty. For example, if Ty = 10 ms, the number of symbols per
packet will be 1280 and 80 for allocated rates of 128 ksps and 8 ksps, respectively.
In practice, a number of symbols are reserved for labeling, synchronization, and
packet-quality-check for retransmission purposes.
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Packet Configurations

The packets can be configured in different ways as follows.

Variable Symbol Duration

In this configuration, the symbol duration is adapted to the optimum allocated rate,
given the packet length is constant. Thus, the existing traffic sources are multi-
plexed perfectly by the optimal resource management algorithm (Figure 3.1-a). The

cost, however, is a higher receiver complexity due to the need for a variable-impulse-
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Figure 3.1: Packet configurations: (a) variable symbol duration, b) fixed symbol du-
ration, (c) repetition code. Rectangular pulses represent 1's and zero levels represent
0's.

response matched filter for optimum detection of the data in each time-frame. Fur-
therm.ore, data-rate information must be provided at the receivers through separate

control channels.
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Fixed symbol duration

The specified number of symbols in a packet are transmitted at the maximum rate,
thus, the duty cycle of transmission varies in consecutive frames, as suggested in
[52]. This scheme allows a less complex receiver but multiplexing of the data will not
be perfect. The best statistical multiplexing can be achieved by randomly locating
the bursts of data within the frames (time-hopping) as shown in Figure 3.1-b.

Repetition code

To preserve a perfect multiplexing while using a fixed symbol duration, repetition
codes can be employed, as proposed in [53]. In this method, each symbol is transmit-
ted at the channel peak rate and repeated such that a 100% duty cycle is acquired.
For example, if the allocated rate is Ryax/7, each symbol will be repeated 7 times
consecutively. Thus, the advantages of the first and second methods are achieved
at the same time. This method requires the data rates to be allocated in discrete
values (integer multiples) which introduces integer programming complexities to
the optimization problem (see Figure 3.1-c).

Our system model supports all three packet structures, however, the third con-

figuration with 100% duty cycle, perfect multiplexing and extra coding gain is our

preference.

3.3 Physical Channel

We assume that channel variations with respect to Ty are small and effectively
constant during one frame. For medium speed mobiles in an urban area (v < 50

km/hr) and a carrier frequency of 1.8 GHz, the maximum Doppler frequency is
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famax = 90 Hz. This requires a transmission cycle less than the coherence time
of the channel, i.e., Ty < 1/90 s. In an indoor wireless network, however, real-
time implementation of the algorithm is more feasible because fjya, is smaller (in
the range of 10-20 Hz) and T can be increased so that a larger time is available
for the algorithm to compute and update new optimal resource values. With a
bandwidth of W = 5 MHz and a typical delay spread of T,, = 3 us in an outdoor
microcellular environment {7], the channel is a frequency-selective fading channel
because W > 1/T,.. It can be modeled by a tapped delay line with T,, ¥ = 15 taps.
Furthermore, since the data bit duration T3(> 1/128) ms, assuming a maximum
data rate of 128 ksps, is much larger than T, the effect of intersymbol interference
in this channel is negligible.

A mobile transmitted signal is impaired by this fading channel and received at
the base station with a certain path gain. The path gains are stochastic in nature
and have time-varying values (stochastic processes). The statistical properties of
the path gains depend on the channel characteristics. We assume that path gains
from the users to the base stations are given at any time. In practice, estimates of
the path gains are provided by certain measurements in the network, for example,
by measuring the level of a reference pilot signal from a base station in the forward
link and using it as the estimate of the reverse-link gain [53]. For our analytical
and simulation purposes, we will consider path loss and shadowing effects which

are modeled as an attenuation of fourth-order and a log-normal distribution [54].

3.4 Control Variables

Having knowledge of each user’s type and QoS requirement, and path gains, the re-

source management algorithm controls the transmitted powers, p(n) = [p1(n), -- -, pn(R)],
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and transmission rates, r(n) = [ri(n), -, 7x(n)], over the best base station assign-
ment, a'(n) = [a}(n),---,aly(n)], such that each user meets its required error and
delay performance, while the network throughput is maximized, and the number of

handoffs is controlled at a desired level.

We define a time-dependent variable h(n) as the number of handoffs. A handoff
process is initiated only when the new assignment for a user ¢ is different from the
previous assignment, that is, a}(n) # ai(n — 1). Therefore, the number of handoffs
at time n can be evaluated as

N
h(n) = ; fri(n) (3.1)

where fi;(n) is defined as

1 if ai(n) #ai(n—1)

3.2
0 if ai(n)=adl(n-1), o

fhi(n) = {

with / and j € {1, ~, M¥}. Using a binary assignment variable b, defined as

1 if user ¢ is assigned to base station k (3.3)
0 otherwise, .
the handoff variable A can be denoted as
N M
A(n) = 3 3 [ba(n) © bau(n — 1)]. (3.4)
i=1 k=1

The algorithm updates these control variables at the beginning of each frame.
The rate vector r(n) represents the data rate of the signals after coding and mod-
ulation. If channel coding with rate r.q is employed with a modulation scheme
with spectral efficiency of 1 bit/s/Hz, the actual data rate for user i is r.od X r(R).
We assume that enough data is available at the mobile terminal queue to load a

complete time frame based on the allocated rate. Otherwise, a small proportion
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of the network resources will be wasted. As described in Chapter 4, this prob-
lem is addressed from a wireless service provider perspective and formulated as an

optimization problem.

3.5 Control Strategy

A major task of the resource management algorithm is to satisfy QoS requirements
for all users by optimal allocation of the available resources. QoS’s are controlled

as follows.

3.5.1 BER control

The VSG concept, as described in Section 2.5, is applicable in our model because
the chip rate is constant and packet loads vary according to the allocated data
rate. Thus, increasing power and/or decreasing data rate reduces the BER. The
BER requirement is reflected in the target SIR per bit and given by the vector
v = [1n,--+,9n]. To attain the target SIR per bit, different streams of data can
use various coding schemes. A convolutional code with rate 1/3 and constraint
length 9 is well known for voice services requiring a BER of 10~2 and used in IS-
95 and proposed for the next generation wireless systems. For data applications,
however, more interest is shown in turbo codes with a typical rate of 1/3 [10, 12].
Our resource management algorithms use v as the target SIR per bit. The coding

schemes and receiver structure are transparent to the algorithms.

Another means to control BER in variable-rate transmission is the use of differ-
ent coding rates at each frame. A lower coding rate reduces the required average
SIR per bit for a specific BER but, at the same time, adds more redundancy into
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the data and increases the service time which may affect the delay performance. We
will control the BER by varying the power and data rate for each user. Employing

variable coding rate needs further investigations and can be part of the future work.

As explained previously in this chapter, with accurate knowledge of path gains,
BER. performance is guaranteed with the allocated power and rate. In a practical
situation, where path gains are not accurate, a received time-frame may have a
BER bhigher than the target value. In this case, the packet will be retransmitted
(ARQ) for class II and III services with very low BER requirements.

3.5.2 Delay control

Delay performance requirements are controlled by setting specific limits on the
minimum rate, Rpin(n) = [R1min(R), -+, RN mia(n)], allocated to each user. This
minimum-rate limit is time-varying for class I and II services and captures the delay
requirement of the service. In the following, we derive a mathematical expression

for the minimum-rate limit in certain applications.

Minimum-Rate Limits

One of the main features of our multimedia system model is to accommodate dif-
ferent delay performance requirements by appropriate control of the transmission
rates. The control policy is to set a dynamic lower bound on the data rate and map
the delay bound onto this lower limit. The advantage is that the network is able to

span the service time of a user and exploit the unused resources more efficiently.

The delay bound varies from zero to infinity. All class I services have zero delay

tolerance. In this case the minimum rate cannot be less than the source rate r,,
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otherwise, the call must be dropped. Therefore,
T =Tai = Rimin = Rimax, for user z € class L. (3.5)

For class III services, the delay tolerance is unlimited. That is, the network can
postpone any class III services until there are enough resources available and all

class I and II are taken care of. Therefore, for this category
Rimin =0, for user: € class III. (3.6)

The problem of calculating R; i, rises when 0 < 7; < 00, i.e., for class II services.
We discuss this problem for two different cases. The first case covers the situa-
tions where a user intends to transfer a specific amount of data, as in FTP and
transmission of stored images or video files and can tolerate a certain amount of
delay. The second case includes applications such as electronic talk, remote login,
and other on-line services where the total amount of data to be transmitted is not
readily known. Thus, the network should set a limit on the average delay to main-
tain a certain delay performance. In what follows, mathematical expressions for

the minimum-rate limit are derived for the above applications.

File transfer applications - Assuming that user : wants to transmit a total
amount of data D; with a maximum tolerable delay 7;, the data rate at time n

should satisfy
R min(n) < 7i(n) < Bimax (3.7)

where R; . is the maximum channel rate. Assuming the service to user 1 started
at time 0, the minimum required time to transmit D; amount of data is T;(0) =
D;/R; max- With a delay bound 7;, the transmission time can be spanned from T;(0)
to 7;, where we have assumed 7; > T;(0). At time n + 1, the residual delay bound
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is given as
’r,,,-(n -+ 1) =7 - (n + I)Tf (38)

The minimum required time to transmit the residual amount of data is equal to
D; = T30 mi(5)Ty
R; max
D; — T35 ri()Ty = ri(n) Ty
Ri max ’

The necessary condition for the delay performance to be met is

Ti{n+1) =

for n > 0. (3.9)

Tin+1) < 7i(n +1). (3.10)

Substituting (3.8) and (3.9) in (3.10) and solving for r;(n), we get

D, & T
rin) 2 =~ ) 1)) — (= —-—n—-1)Rimax, for n>0. 3.11
()2 7 ,; ) =7, ) (3.11)

Comparing (3.7) and (3.11), the desired lower bound is derived as

D, & . s
Rimin(n) = 7 = ;::,r"(’) - (% —n = 1)Rimax, for n>0. (3.12)

a

The delay bound for this category of applications can also be maintained by

setting a constant minimum-rate limit as

D;
Ri min = —. (3.13)

By this approach, the service is practically restated as a Class I CBR services. If -
the network has sufficient available capacity, the constant minimum-rate limit will
guarantee the delay bound. Otherwise, it will be more likely to have an infeasible
solution and a higher dropping rate.



CHAPTER 3. WCDMA SYSTEM MODEL 43

On-line applications - Let r,;, 75, 7, and 7; be the source rate, delay incurred
in a frame, average delay, and average delay bound, respectively. During the nt»

time-slot, the lower bound on the delay in a frame is

Tei(n) 2 railn) = ri(n) Ty. (3.14)
Rt'.max
By definition we have
- 1 & .
iln) = = 3 mrali) (3.15)
j=1
Using (3.14) and the objective that 7;(n) < 7;, we can conclude
n . n~1 . n X
ri(n) 2 3 ri(d) — Domii) — ﬁﬂi.mfi- (3.16)
j=1 =1

The right hand side of (3.16) gives the minimum-rate limit for on-line applications.
a

In both cases, the initial value of R;min should be set depending on the delay
bound from 0 to R;max- For example, if 7; or 7; is very low, R;min(0) must be set

at a large value, otherwise, it can be set at 0 or a small value.

The right hand sides of (3.12) and (3.16) can be a negative value which implies
that the residual delay is sufficiently large and the service can be delayed at time
n. To avoid a negative rate, we set the minimum-rate limit at max[0, R; min(n)] in

our mathematical programming problem.

Hence, the required lower bound on the data rate can be updated regularly in
terms of the known parameters D;, 7;, 7;, Ty, and R;max- It is also required to store

the sum of previous allocated rates for this purpose which is quite practical.
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3.6 Physical Constraints

3.6.1 Maximum Rate

The transmission rates are subject to an upper limit, Rpax = [Ri,max; " * *» RN.max],
to preserve an acceptable processing gain. In our model, a typical value of the radio
channel bandwidth is 5 MHz and typical values of the maximum rate are 128 and
256 ksps per PN code. The latter rate is the equivalent physical rate for the LCD

service in [10] and can be used for comparison purposes.

High data-rate requirements are supported by using additional PN codes, as
suggested by the multi-code technique (55, 56], and accomplished by employing
parallel channels (codes). Thus, total capacity of the network can be allocated to
one user if there are no other service requests and the user has sufficient data to
transmit. These parallel channels undergo exactly the same physical paths and
experience the same channel impairments. As a result, the received signals can be
detected by a uniform receiver structure, e.g., a RAKE receiver with exactly the
same number of taps and equal coefficients. The synchronization and sequence of
data in parallel channels are not distorted because the network resource controller

allocates equal resources to each channel due to the same channel characteristics.

3.6.2 Maximum Power

In a real system, mobile transmitted power is subject to a certain maximum level
due to its physical characteristics. For example, a vehicular mobile terminal is able
to boost more power than a mobile handset with strictly limited size and weight. To
simplify the analysis and avoid the complexity of integer programming, we assume

that the mobile transmitter output can vary continuously and provide any power
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level prescribed by the power control algorithm within a specified limit. In practice,
however, the mobile transmitter power output is set to a number of discrete levels.
In the next chapter, we will study the effect of this assumption on the resource
allocation performance. The minimum power is set to zero for all users. This
assumption is necessary for non-real-time services because they might be delayed
at a particular time without any transmission. This requires that their powers and
rates to be set to zero at certain times. But for a real-time service, zero power is
equivalent to dropping the call. In Chapter 4, we shall see that the rate constraints

do not allow a zero power for a real-time user.

3.7 Wireless System Throughput and Capacity

As pointed out in Chapter 2.5 on page 28, the sum 3N, r; does not properly rep-
resent the network throughput and spectral efficiency in multimedia applications.
For further elaboration, consider two bit rates r, and r, with E,/I, requirements
7 and 72, respectively. Assuming r, < r; and v, > 7., it is obvious that more
network resources are required to accommodate r, than r, while r, has less con-
tribution in the sum SN r;. A quantity such as the transmission rate weighted
by the SIR per bit requirement is capable of removing such an ambiguity in the
sum N r; and representing the throughput more precisely. Thus, 7,7, and ¥ors
are measures of both data rates and transmission qualities. In comparison with
the conventional measure ", r; for single service applications, the sum ¥, 7
quantitatively includes a scaling factor and is not compatible with the conventional
sum. A suitable measure of the throughput for multimedia must be equivalent to
TN, r; when applied to single-medium. One way to account for the scaling factor
in the product is dividing the product-sum by the average SIR per bit of the users
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in the network. Thus, the network throughput will be equal to 3%, r; if SIR per

bit requirements of all users are the same.

Definition 1 The network throughput R, in symbol per second, is defined as the
sum of the transmission rates weighted by the E,/ [y requirements normalized over

the average target E,/ly’s as

ZiN=1 YiTi
R = =="— 3.17
% Zilil Y ( )
1 N
= ; Zl ")','1‘" (3.18)

where 7 = & T, 7. The cell throughput R, is defined as R/M and the normalized
throughput refers to the throughput per unit of bandwidth per cell (R/W/M or
R./W). Consequently, the network capacity C, cell capacity C., and normelized
capacity Cp refer to the maximum achievable network throughput, cell throughput,
and normalized throughput, respectively.

3.8 Summary

In this chapter, the physical and mathematical description of our model is laid
out in as much detail as required within the scope of our research. The resource
management algorithms are developed based on this model. Further elaborations
on the system model will be provided as necessary.



Chapter 4

Optimal Resource Management

In this chapter, a mathematical programming model based on our research objective
and the proposed system model is developed. A service-provider perspective is
selected to formulate the objective function. It relates the network revenue and
cost to the system resources and control variables. The QoS requirements and
physical limitations constitute the set of constraints. The structure of the problem is
analyzed and, to some extent, simplified. This analysis is followed by a discussion of
the type of variables as continuous or integer. This is essential in the mathematical

programming problem and its computational complexity.

4.1 Mathematical Programming Model

A wireless multimedia network has limited resources which must be shared among
a large number of users with different sorts of demands. This resource sharing
is to be managed efficiently so that the network resources are utilized maximally

and every user’s need is satisfied. This goal may be translated into mathemati-

47
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cal programming problems with different formulations. For example, an objective
function derived for a non-profitable wireless computing network in a campus may
be different from that of a commercial public wireless service provider, although
both providers seek maximum efficiency. Thus, the definition of an objective func-
tion is commonly considered a subjective issue and depends on the application
and the nature of the problem. A brief background on optimization is provided in

Appendix A.

4.1.1 Objective Function

We are interested in a network which provides multimedia services such as voice,
data, low-rate video, internet connections, and on-line services to the public. Our
research is an attempt to formulate the problem of resource management in a
CDMA-based system from a public-service-provider perspective. It only includes
the wireless link and does not capture the related issues in an end-to-end basis. In
this perspective, the overall wireless network efficiency should somehow be related
to the profit made. Therefore, we identify the main sources of revenue and different
costs involved in service provisioning, and express our objective in the form of

maximizing the profit, that is, the difference between the revenue and costs.

Revenue - Without going into details of commercial issues, we consider that
the network revenue is directly proportional to the total data rate weighted by the
QoS’s provided in the network. In practice, however, there are different pricing
policies under different plans which are negotiated at the time of subscription of
each mobile user. These plans usually consider a combination of the air-time, fixed
monthly fees, and other parameters which are beyond the scope of this research.

Our pricing scheme is based on the following propositions:
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1. The network revenue from each user is directly proportional to its transmission

rate.

2. Lower BER services utilize more resources (power) and are proportionally

more expensive.

3. Services with higher delay tolerances are less expensive because of their flex-
ibility in time which helps the resource management center (RMC) to span
their service times and exploit the unused resources more efficiently. We re-
alize that the tolerable delay for each service may vary with time, therefore,

the revenue is a function of time in general.

The above propositions imply that the cost for a user to transmit a bit of data
over the wireless network is a function of the required BER quality, transmission
speed, and its delay-tolerance level. Selection of a function to relate these factors is
a subjective issue and can be decided by different service providers differently. This
issue has not been addressed in the literature so far. In what follows, we derive
a typical pricing function to formulate the resource management problem. The
second proposition should be captured by a monotonically-increasing function of
the required SIR per bit or a monotonically-decreasing function of the target BER.
Such a function in linear form can be equal to «;, thus, transmission of a bit with SIR
requirement of 10 will cost twice that of one requiring an SIR of 5. The function
to capture delay tolerances in the range of 0 to oo should be a monotonically-
decreasing function of the residual delay bound and cover the whole range of non-
negative numbers. An exponential function satisfies these requirements. It also has
the flexibility to be shaped as desired by the service provider. This function can be
expressed as [A + B exp(—7,(n)/D)] and varies from A + B for zero delay tolerant
services to A for unlimited delay tolerant services. A, B and D are positive real
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constants. A is used to prevent the function from being 0, and B and D can be
used to shape the function as desired. The value of these parameters are set equally
to 1 in our simulations in Chapter 5. Thus, a real-time service is more expensive
than a delay-insensitive service by a factor of (A + B)/A for the same BER. The
rate of change in price is controlled by D. For small values of D, the price of
delay-insensitive services drops faster and vice versa. The above functions can be
combined in many ways. We incorporate these functions in the pricing function in
the form of coefficients \; for the allocated rates. These coefficients represent the
price of a transmitted bit as a function of its QoS. Thus,
N
Total Revenue =) Ai(n)ri(n) (4.1)
i=1

where
e = [+ (242 a

Costs - Many expenses are incurred in a wireless network operation. Within the
scope of this work, only resource-related costs which are affected by and expressed as
a function of the existing variables in our problem are taken into account. A major
cost for the network operation is the number of handoffs. Each handoff is associated
with additional signalings for establishing a new connection and transferring the
user’s information (such as the new base station assignment) to the network data
base. We map the network signaling overhead to a certain cost and define A, as
the cost per handoff, therefore, the handoff cost at time n is A,h(n), where h(n)
is defined in (3.1) and (3.4). A is a constant and is assumed to be the same for
all services and equal to 1 in our simulations in the next chapter. It is adjustable
and affected by many factors in the network. We assume ), is pre-determined and
known.
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Profit - The overall profit is

N
Total profit = Y_ Ai(n)ri(n) — Anh(n) (4.3)

=1

and our objective is to maximize this profit subject to satisfying the service require-

ments for all users.

4.1.2 Constraints

The set of constraints includes the lower and upper bounds for the power and
rate vectors, upper bounds for the number of handoffs, and the SIR requirements.
Among these bounds, only Rpin(n) is time-variant and must be updated per time

frame.

As described in Chapter 2, E; /[, in a CDMA system must satisfy the condition

B\ _ W ___ du(n)nln) e
(Z ’);‘r.-(n)z,’-;wgé-a.-(n)p,-(n)+n27" €{t- Ny (44)

Similar to [48], we are interested in avoiding over-spending network resources be-
yond the required level for each mobile; thus, the equality in (4.4) would provide
sufficient conditions to achieve the target BER. Rearranging (4.4) around the equal-

ity sign and omitting the time indices to simplify the notations, we get

w N )
—Giali— Y G pimi—mri=0, i€{l,---,N}. (4.5)
L i=li#i

Equation (4.5) forms a system of N non-linear quadratic equations with 2N vari-
ables. In the following, we re-arrange this equation in the algebraic quadratic form.
Let
w = W/ Y (4.6)
N
G = WiGoPi— X G PiTi— T (4.7)

j=1J#4

= qg.ln + q:.qu (4'8)
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where
w
G = —Gg.pi— (4.9)
Y
! y i
Qt',qu = - Z gja.'pjri (410)
J=1,j#1

are linear and quadratic terms of ¢}, respectively. Thus, ¢} can be written in an

algebraic form as

qf = (cﬁ)'a: + %z'C’fz, (4.11)
where
zT = [Ph"'aPNale"'er]I (4.12)
¢ = Vg (4.13)
= [0,...’10‘-9.{“‘,..., L 1...,OII (4.14)
] t | N+

Ci = Vg (4.15)

¢!
= 0 : (4.16)

(Cly o

and / is the transpose sign. In (4.16), the partitions @ and C! are N x N matrices.
The @ partition is an all-zero matrix. In C!, the only nonzero column is column ¢

with elements
Column i of €} = [—glais---s -gf,-_l)a.., 0, —gf,-_,,l)a..,. ey =) (4.17)

We notice that ¢; and C; are functions of the path gains and are specified by the
type of assignments and propagation conditions.

Now we can summarize the defined optimization problem as in Figure 4.1 where

h and A; are defined in (3.1,3.4) and (4.2), respectively. The objective function
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Figure 4.1: The original mathematical programming problem

maximizes the total profit at time n in terms of the variables p, r, and h over
all assignment vectors a' € S where S is the set of all feasible assignments. In
other words, for every assignment vector a nonlinear subproblem should be solved.
It should be noted that in an exhaustive solution process, h is constant because
at any time the current and previous assignment vectors are known. Having this
knowledge, h is known and does not enter into the optimization process. The
cardinality of S satisfies |S| < MY and can be astronomically large. In other
words, the problem has a max-max structure consisting of a nonlinear programming
(NLP) subproblem and an assignment problem. Therefore, our problem should be

categorized as an NLP large scale optimization problem.

The NLP subproblem has a linear objective function and a set of quadratic
constraints and can be categorized as a quadratic problem. Theorems 2 and 3 in

Appendix A.l state that if the quadratic form is positive semidefinite, it is convex
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and converges to a global optimum. That is, if C} in Figure 4.1 is positive semidef-
inite, a global optimum is guaranteed and the problem can be solved efficiently,
that is, with a fast convergence to the global optimum. The following corollary,

however, proves that C! is indefinite.

Corollary 1 The quadratic constraint
1 1 (Pal
[Ci] z+ '2‘3 C,-z =0 (4.18)
is indefinite.

Proof : Using Definition 3 in Appendix A.l, it is enough to show that C is indefi-

nite. For any non-zero vector y € R*¥ we have

N
YCly = —2Yn+i 3 Gha;¥is (4.19)
Py ¥

where yy4+i and y; are the (N + i)** and j** element of vector y, respectively.
The value of (4.19) can be either positive or negative. For example, it is positive
if yn+: and y; have different signs and negative if both have equal signs for all
j’s. Therefore, y'Cly is neither positive semidefinite nor negative semidefinite, but
indefinite. 0

An indefinite quadratic problem is non-convex, and global optimization of a lin-
ear objective function subject to indefinite quadratic constraints is an NP-complete
problem [58]. Problems with this type of structure are difficult to solve both for
global and local optima [77, 58)]. Using the concept of equivalent mathematical pro-
gramming, as defined in Appendix A.1 Definition 5, we attempt to find equivalent

problems with certain preferences in their structures. These preferences are: (1)
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linearity, (2) convexity or quasi-convexity (see Definition 3), (3) convexity in feasi-
ble space, (4) diagonality and/or sparsity of the Hessian matrix (see Definition 2) of
the nonlinear functions, respectively [28, 77, 58]. The first two types of structures
guarantee that a local optimum is the global optimum and are the most desirable
structures for our problem. The third type is preferred due to the possibility of
checking for the existence of a feasible solution, and availability of many algorithms
which efficiently find at least a local optimum over a convex feasible search space.
One important feature of the third type is that we can readily check for the ex-
istence of a feasible solution (not optimal), e.g. by running the first phase of the
stmplez method . This property is very useful especially when dealing with a large
scale problem such as ours. The fourth type of structure can be solved with less
computational complexity by many algorithms that use the second-order partial

derivatives to find the optimum solution.

As an alternative mathematical programming problem, similar to [48], we sub-
stitute the value of r; from (4.5) to the objective function and rate constraint in
Figure 4.1 which results in another mathematical model as shown in Figure 4.2,
where z € {1,---, N}. In the mathematical programming of Figure 4.2, the number
of variables is reduced and the constraints are linearized. On the other hand, the
objective function alters from a linear form to a complex nonlinear fractional struc-
ture. In the next chapter, we will take necessary steps to reach the most efficient
solution for the problem in Figure 4.2 for single- and multi-cell systems.

1The simplex method is a practical way to solve linear optimization problems. The first phase
of this method checks for the feasibility condition [29] and is able to find out whether the feasible
set is an empty set (see Appendix A.2).
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Maximize { & Wigia,Pi }
max ) X\ * = Anh
al ph ; 'Eﬁ’:hj#i gfia-‘p-‘f +n
subject to
0 S Di S Pi.mu
{
W;iGia, Di
Rimin S sp—m—— < Rimax
T 1igi TiaiPi + 1
h < hnax

Figure 4.2: An equivalent mathematical programming with linear feasible space

4.2 Model Variables: Integer or Continuous?

In order to solve the developed mathematical programming problem in Figure 4.2,
a fundamental question to be addressed is whether the model variables are integral
or continuous. Technologically and practically, the allocated power and data rate
have a discrete nature and, in principle, they should be regarded as integer variables
and solved accordingly. But it is well known that integer problems are inherently
much harder to solve than the corresponding continuous problems. Mathematically,
integer models involve many times more calculation in their solution. While, for
example, a linear problem with thousands of constraints and variables can almost
certainly be solved in a reasonable amount of time, a similar situation does not
hold for an integer linear problem. A great deal of effort is exerted to avoid integer
programming in model building [59]. An immediate suggestion to solve an integer

or mixed-integer problem, therefore, is to solve the relaxed problem and round off



CHAPTER 4. OPTIMAL RESOURCE MANAGEMENT 57

any non-integer variable to the nearest integer. Obviously, this approach may result
in other problems such as infeasibility of the rounded values and being quite far
from the optimal integer solution. In this section, we will examine the effect of
relaxing power and rate variables in our problem. If we are able to show or develop

some condition so that the rounded solution is

1. feasible, and

2. close enough to the optimum,

then, we can deal with the power and rate variables as being continuous and, thus,
reduce the computational complexity in a large scale. We conduct this investigation
for power and rate variables independently using available data from the solution

for a single-cell, as derived in the next chapter.
4.2.1 Data Rate Variables
For the feasibility of the rounded solution, the following corollary defines the direc-

tion of rounding to guarantee the feasibility condition.

Corollary 2 Any allocated rate r is feasible if
Tmin < T < Topt, (4.20)
where r; is the optimal rate.

Proof: The SIR constraint in Equation (4.4) implies that

Wigh,, Pi
r; < L . (4.21)
T il Gapi + 0
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Topt is the closest value of 7 to the hard limit rp, that satisfies the SIR constraint.
Any r < rope that does not violate the SIR constraint, that is r > rpig, is feasible.

O

Therefore, taking the floor of any calculated continuous r gives a set of feasible
discrete rates that can be allocated to users. The floor can be taken with respect

to a set of defined rate levels.

The next step is to find out how the rounding procedure affects the network
throughput and how many rate levels are needed to not lose too much throughput.
For this purpose, we use the results of a large number of runs for a single cell with
40 users requiring a target E,/I; of 3.3 dB, under the condition as specified in
Table 5.2 on page 91. The throughput versus the number of rate levels is depicted
in Figure 4.3. This figure shows that the throughput loss decreases as the number
of rate levels increases. It can be seen that with more than 2° levels, the loss is
fairly close to zero and for 27 levels, it is less than 3 percent. Thus, a larger number

of rate levels favors higher spectral utilization as well offering high flexibility.

4.2.2 Power Variables

Unlike the rate variables, there is no guarantee that the rounded power levels satisfy
the feasibility condition. On the one hand, any increase in the power level of a
user increases the interference level in the network, thus degrading the SIR per
bit for some other users and increasing the probability of not maintaining the
target SIR per bit (infeasible solution). On the other hand, decreasing power for a
user, while mitigating the communication quality for other users, degrades its own
communication condition. Therefore, statistical methods should be employed to

express the effect of the rounding off process. One way is to round off continuous
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Figure 4.3: Throughput versus discretized rate.

solutions in a large number of runs with respect to different sets of discrete power
levels and find the percentile of infeasible cases. Such results are derived using the
same data as in the case of data rates and sketched in Figure 4.4. According to
this figure, if the number of power levels exceeds 2%, the corresponding discretized
power levels will be valid with a probability close to one. Regarding the required
number of power levels in CDMA mobile terminals, the current American standard

IS-95 prescribes 128 levels, which lies within the desirable range.
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Figure 4.4: Feasibility versus discretized power.

4.3 Summary

In this chapter, a mathematical programming problem is developed to maximize
the network profit while satisfying the service qualities and physical constraints. A
proposed pricing scheme is used to map the weighted throughput onto the network
revenue. We also observed that if the number of rate levels is more than 128, at a
cost of less than 3 percent of the throughput, we can treat rate variables as contin-
uous and free our mathematical programming problem from integer programming
complexities. Similarly, the same approach can be taken with respect to power
variables if the number of discretized power levels is more than 64. Different ap-
proaches to solving the mathematical programming problem will be discussed and

examined in the next chapter.



Chapter 5

Resource Allocation Algorithms

In this chapter, our attempt is to efficiently solve the mathematical programming
problem, as derived in the previous chapter and presented in Figure 4.2, in single-
and multi-cell systems. A desirable solution must be efficient in the sense that it
is globally optimum or very close to it and, needs low computational complexity.
We have tried different approaches to achieve such a solution. In the following, a

description of the solution process is presented in detail.

5.1 Single-Cell Solution

Optimal resource management for a single-cell system, supporting only Class 1
services, is addressed in [48] as reported in Chapter 2. Their formulation of the
problem is a special case of our mathematical model described in Figure 4.2. This
special case is solved in [48] employing the gradient projection method for nonlinear
problems. It is reported that the algorithm converges to local minima in certain

cases. These local minima imply that the problem is non-convex. No specific solu-

61
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tion is proposed in the literature to overcome this problem except trying different

initial values.

5.1.1 Mathematical Model for a Single Cell

In the following lemma and theorem, we prove the existence of an efficient and
convex solution for the mathematical programming problem in Figure 4.2 for a
single cell (M = 1) if the number of users is large enough (N > 1). In other words,
our optimization problem can be translated into a linear programming problem for

a single-cell environment.

Lemma 1 For N > 1 and M = 1, there exists an equivalent linear program (LP)
for the optimization problem in Figure 4.2.

Proof : When M = 1, all users are assigned to a single cell and the large set of MY
assignments reduces to one. Thus, there is only one path gain for user ¢ which can
be expressed as g;. In addition, the value of h is zero because no handoff takes place.
Thus, the mathematical program in Figure 4.2 reduces to its single-cell version as

in Figure 5.1. For a large N, the approximation

N N
> gipi = 9ips (5.1)
F=1,j%i i=1

is valid. By this approximation, the summation in the objective function becomes

N

Nw;igipi o T hwigips
Yo ——  S—— (5.2)
o1 Lj=1.#i 90 T 1 Yi=190i + 1
m'p
gp+n

(5.3)
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subject to

Maximize {i \wigip; }
p =1 z;'\J:l.j;éi gip; + 1

0 < m
Rimin < - W;igiPi
Li=1j#i GiPi + 1

IA

Pimex

< Rimsx

A

Figure 5.1: Mathematical programming for single-cell systems

where

m = [Ahwg, -, ANwngn] (5.4)
g = [gla v 1gN], (5.5)

Thus, the problem in Figure 5.1 can be written in a new structure as shown in

Figure 5.2. According to Definition 6 in Appendix A.l, the new structure is a

linear fractional programming (LFP) problem.

Theorem 4 in Appendix A proves that for any LFP problem, there exists an

equivalent LP problem. Using this theorem, the LFP problem in Figure 5.2 is

equivalent to the LP problem in Figure 5.3, where u and y are defined as

1
gp+n (56)
y = up. (5.7)

u =

Therefore, resource management in a single cell is modeled as an LP problem which

can be solved efficiently by LP methods. ]
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Maximize {L’P__}
gp+n
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-Pi.mu

< Rimax
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Figure 5.2: Linear fractional programming for single-cell systems

Maximize 5. s
v.u {m'y}

subject to

IA

Pi.max u
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0 < wu
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I
|

Figure 5.3: Linear programming model for single-cell systems
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5.1.2 Single-Cell Capacity

The following corollary gives a mathematical expression for the cell capacity.
Corollary 3 The capacity of a single cell is W/5.

Proof : The throughput of a single cell, as defined in Definition 1 on page 46, is

) 1 W gipi
R.= - it < = ; — 5.8
gl i=zl7 7 ; 7 Vi Lj=1,j#i 9iPi + N (58)

1 ZhWan W

<
T Al=mgipitn ¥

(5.9)

In writing (5.8), the SIR constraint (4.4) on page 51 has been used. Equation
(5.9) is derived using the approximation (5.2) on page 62 for a large N and the
assumption that n is negligible with respect to the interference term. Therefore,

the cell capacity is
7
O

Thus, in a populated and interference-limited cell the capacity is independent of
the system parameters such as Ppax, Rimax, IV and g. It is affected by the bandwidth
and error performance requirement. In a single service case, where %; is unique for
all users, the above capacity is equivalent to what has been given in [6] in terms of

the number of users in the cell.

5.1.3 Numerical Results

The optimal resource management algorithm for a single-cell system has been im-

plemented as a linear program in MATLAB. A preliminary assumption is that call
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admission control independently takes care of the number of users in the system.
It is required that at any time the inequality

N
Z‘Yi&.min S Cc (511)

i=1
be valid. The call admission control should keep controlling this requirement when
admitting new users. When there is no feasible solution, part of the network re-
sources should be released to serve current users. One way is to remove a user
and rerun the algorithm to seek for a feasible solution. A priority management can
be applied for this purpose. The priority level of each user can be negotiated at
call initiation. Another way is to remove the user who is using a relatively high
amount of resources in the network, e.g., a user who is in a deep fading condition.
The removal process can be delayed for a short time if the call can tolerate small

interruptions equal to a few frame intervals.

The algorithm works as shown in Figure 5.4. The numerical results for two

different scenarios including Class III services are presented in this section.

First Simulation Scenario

In the first scenario, 50 users are admitted into the cell and no new user will
be added during their service times. The users are randomly located in a 4-km-
wide square cell with uniform distribution. The base station is located at the
center of the cell. All users are assumed to be in the standstill state during their
communications, thus, the time frame can be set at a relatively larger period such
as Ty = 1 sec. The system parameters are set at: W = 5 MHz, % = 10 dB,
R; ax = 128 kbps, and P;pmax = 1. Transmissions are assumed to follow a fourth-
order log-linear propagation law (no shadowing). Each user has a stored data or

image file to transmit. The size of these files, after encoding and using a modulation
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Figure 5.4: Single-cell solution flow chart.

with the spectral efficiency of 1 bit/sec/Hz, are uniformly distributed with mean-
500 kbits and standard deviation 96 kbits. The transmission starts at time n = 0
and continues until every user in the network has sent its file. Figure 5.5 illustrates
the allocated resources (power and rate), the residual amount of data, and the
interference seen at each frame by three selected users with path gains g, = .11,
g1a = .03, and gz9 = 90.3. Users number 13 and 29 have the lowest and highest path
gains, respectively. It is found that the required time to complete the transmission
for all users is 57 frames. User 29 is serviced in a short time (3 frames) due to a

high allocated rate. User 13 is the last user being serviced in the network. It can
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also be observed that:

- if a mobile is able to transmit at the maximum rate, it is allocated the minimum

power that satisfies the target BER;

- if a mobile is not able to transmit at the maximum rate, it is allocated maximum

power to achieve the highest rate that satisfies the target BER,;

- all users have a share in the network resources and communicate reliably although
their throughput may be very small. For example, in Figure 5.5-a, the allo-
cated rates to users #2 and #13 at the time of starting their services (n=8

and 15) are in the range of a few kbps.

To illustrate the behavior of the algorithm when Class I and II services exist,
we change the service status of users 2 and 3 to Class II and I, respectively. Under
the very same conditions, we assume that user 2 has a delay bound of 20 sec. That
is, user 2 must be serviced within 20 time frames rather than 46 as in the previous
case. Figures 5.6-a and -b depict the allocated rates and residual data for this user
in the new condition. It can be seen that by the end of the 20t* time frame, the
data is transferred successfully. The effect of this change on user 13 is a slight delay
equal to one frame. User 29 has not been affected. In the other test, user 13 is
assumed to be served as a Class I CBR service with a rate of 64 kbps. Figures 5.6-c
and -d show the same data in this case. While satisfactory service has been offered
to user 13, i.e., a constant 64 kbps rate during the service time, user 29 is not
affected but the service time for user 2 has increased slightly. In both cases, when
additional resources are allocated to specific users, other users in the network will

experience more service delay due to the decrease in the available system resources.
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Figure 5.5: Allocated resources, residual data, and the total interference seen by three

selected users out of 50 Class III users.
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Second Simulation Scenario

In the second scenario, the number of admitted calls increases from a single call
to 50 calls. The network throughput and sum of the allocated powers versus the
number of users, with and without discretization, are sketched in Figure 5.7. For
discrete allocation, since the throughput and power sum are case dependent, the
aggregate results for 50 independent runs are illustrated. Each dotted line presents
the sum of the allocated rates and powers for 50 uniformly-distributed users in the
cell.

The observations can be summarized as:

1. The network throughput saturates at a certain level. This level for continuous

resource allocation is equal to the capacity since

W 5MHz
—_—=— = b 5.12

5 10 500 kbps (5.12)
For discrete resource allocation with 128 rate levels, the cell throughput is
less than the capacity. This reduction on average is 3.4 percent for 50 users

in the cell.
2. There are no dropped calls.

3. The number of admitted Class III users can be fairly large, assuming that the
cross correlations between each user’s PN code and other users’ are negligible.
However, admitting too many calls into the network has several drawbacks.
One is the increase in the computation time which grows with N in polynomial
time. Another drawback is that the allocated rates become very small due to
the limited system capacity.



CHAPTER 5. RESOURCE ALLOCATION ALGORITHMS

72

(@
Ll T T T ¥ Ll T T 1
500 Sl vy
a
2
5 400r .
Q
)
3 300} Continuous Rates -
£
g, 200+ Discretized Rates 4
1W L 1 1 1 1 L 1 1 1
0 5 10 15 20 5 30 35 40 45 50
(b)
50 1 L R L L 1 ) )
§ 40+ Continuous Powers
&
Bf s Discretized Powers
gzo- T 0, PR
< RTINS A3 EAir kbt
s eI e s
® o R
=)
a
ot 1 1 L I . L L A L n
0 5 10 15 20 25 30 KL) 40 45 50
Number of Users

Figure 5.7: Throughput and power sum variations with the number of users for contin-

uous and discrete resource allocation.

4. A lower maximum rate results in a lower capacity utilization because for very

low traffic, despite availability of resources and capacity, users are unable to

take on as many resources as they need. This problem will not show up if

multi-code transmission is used and the number of PN codes is replaced by

the number of users in Figure 5.7. The issue of different bounds on the cell

throughput will be elaborated more in the next section.

5. Regarding the solution when power and rate variables are continuous, as N
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increases, the interference seen by each user increases. To keep a target SIR
per bit for a single call, the remedy is to increase the power and/or decrease
the rate. Since our resource management algorithm tends to maximize the
network throughput, it tries to compensate for the additional interference
with extra power. Once the output power has reached the maximum level,
the algorithm starts to decrease the rate. When the network throughput
saturates, i.e., the capacity is reached, all active users are allocated the max-
imum power; thus, the total allocated power grows linearly with the number

of users. In this case, the SIR per bit can be written as

(Eb) - 14 giPmax ~W gi =, N>1 (5.13)

Iy LK Z§"=1 95 Proax + 1 ~ L 2?:1 9;
W &
" 2?’:1 g;

(5.14)

r =

where it is assumed that the maximum power is equal for all users. It is in-
teresting to note that in a populated single-cell system, a user’s throughput is
almost independent of the output powers implying that the same throughput
can be achieved by lower power levels as well if n is negligible.

6. When the rate and power values are discretized, a slight decrease in the cell
throughput is observed. This is the outcome of the rounding procedure which
grows with the number of users. Overall, the reduction has not exceeded
4% of the throughput for less than 50 users in the cell. The effect on the
power sum, however, is favorable and results in a lower transmitted power
in the cell. It happens due to avoiding resource allocation to those users
which have very small share in the cell throughput (small rates below the
first discretization level) but transmit at their maximum power. Therefore,

discretization results in a more power-efficient algorithm. In other words,
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continuous resource allocation is less power-efficient as many users transmit

at maximum rate while transmitting small data rates.

Comparison with Previous Work

We described the previous related work (48] in Chapter 2. For further performance
evaluation, it is helpful to compare our results from the LP algorithm with what has
been reported in [48]. We adapt our system parameters to the simulation condition
of [48] to maximize 3*; ;. In their simulation, a bandwidth of 1.25 MHz, a number
of voice users with a minimum rate of 8 kbps and SIR per bit of 5 and data users
requiring a minimum rate of 4 kbps with 4 = 8 are considered. The maximum
received powers at the receivers are 1 and 0.5 watts, respectively. Indices v and d
are used to refer to the resource values for voice and data users, For example, N,
g4, Ty represent number of voice users, received power of data users, and data rate
of voice users, respectively. Table 5.1 presents the results given in [48] together with
ours. The unit of data rate is kbps. Our single-cell solution (the LP algorithm) can

Table 5.1: Comparison results.

No. of Users I Results from [48] Our—R:sults "
N.| Na Qv | Qa | Tv | Ta | Zum “ Qv | G | Tv | Ta | Xim: ”
10 1 1 103 (221 4 225 1103(216| 4 220 |
25 1 07105 9 4 229 10.7{05] 9.1 4 |231.5
1 ) 1 (01102 4 122 1 |05]526 164 |134.6
1 201L 1 105/208]6.25|1458 | 1 |0.5}{20.4| 6.3 | 146.4

be compared with that in [48] as follows:
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Supported services: The LP algorithm supports Class II services and covers a

wider range of multimedia applications.

Global convergence: In [48], a nonlinear programming problem is solved by
the gradient projection method which finds a local optimum and there is
no guarantee to find the global optimum without additional precautions and
complexity. Qur single-cell solution is unique and globally optimum as a result

of solving an LP problem.

Computational complexity: An exact comparison in terms of computational
complexity is not feasible without knowledge of the method and implemen-
tation details. In general, it is well known that an NLP problem is more
complex than an LP problem of the same size. In particular, gradient pro-
jection method is a feasible direction method to project the gradient into the
feasible space. In [48], it is said that 40 to 100 iterations are needed for their
NLP algorithm to converge to a local maximum. To project the gradient
onto the feasible space, a number of matrix multiplications and inversions are
required. If the linear feasible space is defined by Az = b, (AA’)"! is one
of the necessary computations in each iteration [77]. Using MATLAB, this
operation for N, = 25 and Ny = 1 needs at least 83 kflop (floating point op-
erations). Regarding the number of iterations, 3.3 to 8.3 Mflop computation
is needed in total. The same problem is solved by our LP algorithm with
766.1 kflop in MATLAB. When we consider other necessary operations for
the gradient projection method, the advantage of our single-cell solution in

terms of low computational complexity will be clearer.

Performance: In general, the global solution of our LP algorithm must provide
a higher performance in terms of the sum of allocated rates (3_;r;). This has
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been validated in Table 5.1, except for the first result. The exception can
be explained based on the approximation made in linearizing the problem
in Figure 5.1. The approximation (N > 1) affects the results for smaller

numbers of users in the cell.

5.2 Multi-Cell Solution

In a multi-cell environment (general case}, the mathematical programming prob-
lem in Figure 4.2 must be solved for any feasible assignment. That is, solving an
NLP subproblem a very large number of times. The complexity of this problem is
extremely high, and derivation of an efficient and accurate solution is very challeng-
ing and looks far from realistic. In what follows, we examine different approaches
to the problem. In the first approach, we try to solve the problem as is, that is
with a max-max structure. In the second approach, a reformulation to change the

max-max form into a single problem is examined.

5.2.1 Solution of Max-Max Problem

A straightforward approach to solve the max-max problem in Figure 4.2 requires

1. an efficient and accurate solution for the NLP subproblem, and

2. some criteria to reduce the feasible assignment set dramatically.

NLP subproblem

We have already shown in the previous chapter on page 54 that the NLP subproblem

is nonconvex. It is well-known that in nonconvex programming, there does not
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exist a universally best method for all kinds of problems; thus different approaches
may prove to be best fitted to different problems. Even methods considered to be

ineffective may some day become viable as a result of successful research [60].

One way to solve the NLP subproblem is to use available solvers directly. One of
the most popular NLP solvers is MINOS (modular in-core nonlinear optimization
system) [61]. It has been developed at the Systems Optimization Laboratory at
Stanford University and its development is still continuing. Linearly constrained
models are solved with a very efficient and reliable reduced gradient technique
utilizing the sparsity of the model. Models with nonlinear constraints are solved
with a method that iteratively solves subproblems with linearized constraints and
an augmented Lagrangian objective function. CONOPT (62, 63, 64], developed by
ARKI Consulting and Development, Denmark, is another option that is well suited
for models with very nonlinear comstraints. It has a fast method for finding a
primary feasible solution that particularly fits models with few degrees of freedom,
i.e., the number of model variables is approximately the same as the number of
constraints. The optimization toolbox in MATLAB provides another NLP solver
that is based on the sequential quadratic programming (SQP) method [77]. Since
our problem has linear constraints, the MINOS solver should give a better result
than other solvers. It is noteworthy that MINOS and CONOPT are used as solvers
in the General Algebraic Modeling System (GAMS), a high-level modeling language
(code) for mathematical programming problems consisting of a language compiler

and a set of integrated high-performance solvers [65).

Many optimization algorithms, including those in the above packages, have been
developed to find at least one local optimum for nonlinear problems and are avail-
able. None of the existing algorithms, however, guarantees a global optimal solution

unless the problem is convex or quasi-convex. Since we are interested in a global
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solution and our problem is a nonlinear non-convex problem, we have the following
two options to approach the problem. The first approach is problem-oriented and
attempts to linearize or convexify the problem, at least in an approximate sense
[78]. The second approach is methodology-oriented and has been developed mostly
in the last decade. This approach involves methods such as: globalization of local
optima with grid and random search, sequential improvement of local optima, enu-
meration of all optima, and branch and bound [58]. We will go into the details of
the latter methods only if the first approach fails. The first approach has effectively
solved the problem for a single-cell system. For the general case, one possible way
is to exploit the fractional structure of the objective functions in the alternative

models using a similar approach as in Theorem 4 in Appendix A.l on page 142.

As an alternative to using NLP solvers, we have generalized Theorem 4 to
linearize the NLP subproblem and use LP methods to solve it. This approach is
favorable since the solution is unique and globally optimum. Given an assignment
vector a, the optimization problem converts to the form shown in Figure 5.8. Here,
without loss of generality, we have assumed )\, = 0 for simplicity of the analysis.
As explained at the end of this section, using certain criteria, the assignment set
can be significantly reduced and the assignments that violate the constraint on k
in Figure 4.2 can be removed. The generalized version of Theorem 4 is developed

as follows.

Theorem 1 The linear multi-fractional programming problem in Figure 5.8 has
an equivalent LP problem.

Proof: Define
1

(5.15)
24,-_-1,5;&‘ Gia:Pj + 1
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Maximize AWiGia, Pi
P i=1 ZN:!..J'#{ 9ia;Pj + 1
subject to
0 < m < Pi.mu
W;Gia; Pi
Rimin < . < R,
™ ;‘v=1.j¢i Gja;P5 + 1 -
Figure 5.8: NLP subproblem for a typical assignment

Ys; = P Ug; (5.16)

where the variable u,, is positive and the vector y,, is non-negative. Accordingly,

Yia; = PilUa;
WiGia;Yia; = WiGig,Pilia;

N

Z Gia;Yja; + Nla;
=1

where i € {1,---,N} and a; € {1,-

< Pimax U (5.17)
WiGia; Pi
= : 5.18
T jwi GiaiPi + 1 (5.18)
N
= U Y Gia+n) =1 (5.19)
i=lg#i

-+,M}. Thus, the point (y,,,u,;) is feasi-

ble. Conversely, if (ya;,%,;) is feasible, and the point (y,,,0) is infeasible, then,
Us; > 0, and p = y,;/u,, satisfies the constraints. Therefore, (5.15) and (5.16)

map the optimization problem one-by-one onto the equivalent problem as presented

in Figure 5.9. The first constraint in this figure is a combination of the following

constraints.

0 <

<

Yia; Pi.maxun.- (5-20)
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R«'.min S. yia; 5 Ri.max ] (521)
Wi Gia; W;iGia;
The result is an LP problem. o

Maximize <
Y Awigia,Yia:

y,u i=1
subject to
&’ﬂiﬂ < Y < min [Pi.mu"a.-: R"m]
WiGia, iJia;
N
Z Gia;¥iai + Nug, =1
J=13#i

Figure 5.9: Equivalent LP problem for the NLP subproblem

Using the equivalent LP problem, a simulation is carried out for a small scale
network with 2 base stations and 3 users in (2]. To find the optimal throughput, the
LP problem is solved for all 8 possible assignments and the maximum throughput
over all assignments is selected in every time frame. The results are plotted for more
than 50 frames and compared with the case of nearest base station assignment. On

average, optimal assignments result in 11 percent higher throughput.

Assignment Problem

The NLP subproblem or its equivalent LP problem in Figures 5.8 and 5.9 should
be solved for different base station assignments a' where [ € S and S, the set of
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feasible assignments, is a subset of MV possible assignments. In this case, the
cardinality of S, |S|, has a significant impact on the complexity of the solution.
Thus, it is very important to eliminate infeasible and invalid assignments and avoid

unnecessary computations.

The SIR and handoff constraints can have a significant role in reducing |S|. In

what follows, the effects of these constraints are studied.

Using SIR Constraint - The SIR constraint limits |{S| due to the fact that
reliable communications can usually take place only within a certain range and

through a number of nearby base stations.

Corollary 4 There exists a lower bound on the path gain g beyond which reliable

communications from user ¢ to base station & is not possible.

Proof: The SIR constraint for user ¢ connected to base station k is given in Fig-
ure 5.8. The lower bound on the path gain can be evaluated based on the best
possible traffic condition in the network. This condition occurs when there are no
interfering users in the network and user ¢ transmits at its maximum power and
minimum rate. Substituting these values in the constraint and evaluating g;x, we

get

17 Rimin
L o> LT .

which gives the desired lower bound. When the path gain is smaller than this
bound, under no circumstance can the SIR per bit at the receiver satisfy the target

BER. o

It is also desirable to develop an analytical expression for the feasibility condition

when the nonlinear problem has linear constraints. Having such an expression
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derived, it is possible to find out whether an assignment is feasible by performing

the first phase of the simplex method.

The following corollary provides an analytical feasibility condition for a system

of two base stations and two users.

Corollary 5 Let M = 2 and N = 2. The assignment a!, where I = 1,..-,4, is
feasible if

914,924, > ’71‘72R1‘m.:R2,mu (5.23)
91a392a, w

Proof : See Appendix A.3.

This condition relates the locations and propagation media of the users to their
service qualities and is in agreement with the condition (2.21) on page 29. For

N =2, (2.21) is a special case of (5.23).

Having the lower bound in Corollary 4, all assignments to base stations with
a path gain below the lower bound or invalid in the feasibility condition can be
removed. Similarly, extending condition (5.23) to other values of N and M, we can
perform a feasibility test for each assignment before going through the optimization

process.

Using Handoff Constraint - The other factor in reducing |S| is the limited
number of handoffs, Apsx. With this constraint, as in (4.2) on page 56, the cardi-
nality of S drops significantly. If we let at most h,;,; users switch to a new base

station, we have

1S| < hf ( v ) (M -1). (5.24)

=0 \ J

J
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This value is derived based on the fact that there are (M — 1)’ different assignment
vectors with j different elements. Obviously, for Amax = N, (S| is equal to MY,
As an example, let N = 20 and M = 5. If hpae = 4, the number of assignments
reduces from 5%° = 9.54 x 10'® to 425 x 10°. This number will further be reduced
to less than 6.2 x 10® if each mobile finds its best assignment from the 2 nearby

base stations.

The solution of the max-max problem suffers from the limit on the number of
users and base stations as the computational complexity increases exponentially
with N and M, no matter how efficiently the NLP subproblem is solved. A com-
pletely different approach in solving our problem is to reformulate it to a less
complex problem, preferably changing the structure from a max-max form to a
single problem. In the next section, we examine a reformulation process and look
into different possible solutions and their complexity and closeness to the optimal

solution.

5.2.2 Reformulation

The main problem with our mathematical programming model in Figure 4.2 arises
from the size of the assignment set and the fact that we have to solve an NLP
or its equivalent LP problem for a large number of times. The reformulation will
help only if it deals with this problem effectively. Let by be a binary variable as
defined in Section 3.3. At any time, user assignments in a certain configuration
can be represented by a matrix whose rows include one nonzero element equal to
one. Using binary assignment variables b;:’s, we can reformulate the problem as in

Figure 5.10.

The new formulation maximizes the network profit while satisfying the necessary
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Maximize i M. Nwigabap; MR
b N s h
P i=1 k=1 2uj=1,j#i 9ikP; T 7
subject to
0 S Di S. Pi.max
WiGikPi
Rt'.min < N JikP < i,max
Lj=1,jgi 95kPi + 1
M
E bie = 1
k=1
N M
h = ZZ[bika,-—k]
i=1 k=1
h < hmes

Figure 5.10: Reformulated problem for multi-cell systems

conditions in the same way as the original problem. The characteristics of the new

formulation follow

1. Reformulation leads to a mixed integer nonlinear programming problem (MINLP).
2. Assignments and the NLP subproblem are combined in one problem.

3. The handoff decision variable is defined as a function of the binary assignment

variables.

As discussed on page 56, the MINLP problem is much harder to solve than the
previous NLP subproblem, however, instead of solving a less complex problem for a

large number times, only a single complex problem needs to be solved. A detailed
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description and latest developments in solving MINLP problems are provided in

Appendix A.5.

We have adopted different methods and algorithms to solve our MINLP problem,
namely, relaxed MINLP (RMINLP), LSA, MINLP, and improved MINLP.

RMINLP Algorithm

An immediate solution to any integer programming problem, as explained in Chap-
ter 4, is to relax the integer variables and solve as an NLP problem. We define a

continuous version of the variable b;. as c;z where
0<cu <1 (5.25)

The relaxed solution will provide values between 0 and 1 for the assignment vari-
ables. Since a user is connected to only one base station, it is reasonable to assign
the mobile to the base station k where c;; > ¢;; for all j # k. It should be noted
that the programming problem in Figure 5.10 has been formulated such that the
data rate ri is feasible for all 1 and k. Besides, rounding c;:’s off to the closest inte-
ger does not always work because it is possible that all assignment values lie under
0.5 where rounded values all become zero. With the new continuous assignment

variable, the variable 4 is represented in terms of c;z. Due to the fact that

N M
ho= 33 (b o b3 (5.26)
i=1 k=1
N M
= Y3 |tw-tal, (5.27)
=1 k=1

we consider

N M
ho= 33 |ea—ba (5.28)
=1 k=1

1
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in the RMINLP problem. Figure 5.11 shows the RMINLP mathematical program-
ming problem. Thus, user 7 is assigned to base station k and allocated r; and p;.

The RMINLP algorithm can be summarized as in Figure 5.12.

LSA Algorithm

An important case to study is the conventional assignment method where the as-
signments are decided independently based on the least signal attenuation (LSA).
When the assignment is fixed and known, the linear algorithm in Figure 5.9 finds
a unique optimum solution. Thus, the LSA algorithm solves the resource man-
agement problem for the fixed LSA assignment. This solution will be useful in
comparison with the results of the optimal assignment.

MINLP Algorithm

MINLP problems include the complexities of both NLP and integer programming
(IP) problems and have proved to be very expensive and difficult to solve. A
number of developments, since the mid 1980’s, have paved the way to solve MINLP
problems. Advances in NLP and MILP (mixed integer linear programming) solvers,
in particular, the development of the outer approximation (OA) algorithm [66] and
its extension with the equality relaxation (OA/ER) strategy [67] have played a
significant role in this process. An implementation of the OA/ER algorithm in a
program called DICOPT (DIscrete Continuous OPTimizer) [68, 69] has provided
a tool to solve a family of MINLP problems. DICOPT is now available as a solver
with the GAMS modeling language. An interesting feature of GAMS/DICOPT is
the use of existing optimizers to solve its subproblems (NLP subproblem and MILP

master-problems). Thus, any new development and enhancements in the NLP and
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Maximize i A Wi Gik Cik Pi Mk
N — AR
¢p ol k=t Lj=1j4i 9ikPi + 1
subject to
0 < P < Pi.max

WiGikDi

Rimin < <R,
e Zﬂx,j#gjkpj +n Rimax
M
Yo =1
k=1
N M
ho= 303 o — bl
i=1 k=1
h < hmax

Figure 5.11: RMINLP problem

Solve Figure 5.11 problem as RMINLP using NLP solvers,
For every user i

Find k such that cx > c;; Vi #k

Assign user i to base station &

Allocate floor(r;;) and floor(p;)
End

Figure 5.12: RMINLP algorithm
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MILP solvers become automatically available to DICOPT. The DICOPT algorithm
and its employed techniques are explained in Appendix A.5.

The class of MINLP problems that can be solved by DICOPT has a certain
structure. First, integer variables must be binary. Second, binary variables should
appear linearly so nonlinearities are involved in only the continuous variables. In
our MINLP problem, however, the second requirement is not valid as the binary

variables are involved in nonlinearities in the objective function.

Using an intuitive method, we adapt the structure of our problem such that the
DICOPT solver can be applied to solve it. For this purpose, we use the continuous
version of the assignment variable as an auxiliary variable and replz:\ce bix by cix in
the objective function. We add a new constraint to equate c;; with b;;, as well. This
new version of our MINLP problem is compatible to the acceptable structure for
DICOPT, as shown in Figure 5.13. The resulting assignments are binary integers,
if the problem has an integer solution. Otherwise, DICOPT outputs the relaxed
solution which can be dealt with in the same way as in the RMINLP algorithm. In
this case, also, we use h as defined in (5.28). If the integer solution exists, c; will
be equivalent to (5.27). Figure 5.14 illustrates the algorithm for the solution of the
MINLP problem.

Improved MINLP

While any initial point in convex problems eventually converges to a unique opti-
mum solution, the starting points in nonconvex problems result in different local
optima. A local optimum can vary from very close to far from the global optimum.
Therefore, a “good” starting point can lead to a local optimum sufficiently close
to the global solution. Such a point in regard to the assignment variables is the
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N
Maximize

f: AwigiCikPs Ak
b,c,p el h

S i i gikpi + 1

subject to

o
VAN

bi S Pi.ma.x
Wi GikPi
N
Lj=1,i#i GikPi + 1

R:',min

M
2 cik

=1
Cik

IN

S Ri.mu

1

b;

iilm—b;‘kl

i=1 k=1

h < hmax

:-
]

Figure 5.13: MINLP problem

well known LSA. It is expected, and will be validated in our simulations, that LSA
initial points outperform random initializations, thus the term improved MINLP
(I-MINLP) algorithm.

The standard DICOPT software starts its algorithm by solving the problem as
an RMINLP problem. Then, the relaxed values of the binary variables are input to
the MILP master problem. It is, therefore, insensitive to any initial assignment for
the binary variables and lacks the flexibility of examining initial assignments such
as LSA. One way to remove this limitation is to modify the DICOPT code and
change the sequence of solving the NLP and MILP subproblems. This medification
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Solve Figure 5.13 problem as MINLP using DICOPT solver
If integer solution exists, for every user i

Assign user i to base station k if b =1,

Allocate floor(r;:) and floor(p;)
Else

Assign user i to base station &

when ¢ 2 ¢;;Vji#k

Allocate floor(r;:) and floor(p;)

End

Figure 5.14: MINLP algorithm

requires further research beyond the scope of this work. However, the particular
structure of our problem can be exploited to compensate for this inflexibility in
DICOPT. That is, the initialization can be effectively performed by applying the
desired initial assignment to the auxiliary variable c;;.

5.2.3 Numerical Results

First Simulation

We conduct a Monte Carlo simulation to study the comparative performance of
the resource management algorithms. This experiment is intended to simulate a
uniform traffic in the network in a statistical average sense. Table 5.2 summarizes

the simulation parameters and assumptions. The target SIR per bit for the first




CHAPTER 5. RESOURCE ALLOCATION ALGORITHMS 91

Table 5.2: Simulation parameters and assumptions.

No of users 1to 70 | Max power | 1 watt
No of BS’s 9 Max rate 256 ksps
Network coverage | 6 x 6 km? Min rate 0
User distribution | Uniform Handoff cost | 0
Propagation law | 10¢/1® =4 Bandwidth | 5 MHz

pec =0, oo = 8 dB || Chip rate 4.096 Mcps
Path gains Known Ey/ Iy 8.2 dB
Background noise | .001 watt

simulation is 8.2 dB which can achieve a BER performance of 10~ using a (23,12)
Golay code and soft decision decoding [23].

For any ¢ users in the network, ¢ € {1,:--,70}, 100 random configurations are
generated. The location of each user is a two-dimensional uniform random variable
in a rectangular area of 6 x 6 km?. The 9 base stations are located on a 2km
grid centered in this area. The path gain for a user is calculated based on a path-
loss exponent of 4 and a standard deviation of 8 dB for shadowing. Thus, each
configuration is characterized by a path gain matrix whose elements are gy with
the size 70 x 9. We solve the resource management problem using the RMINLP,
LSA, MINLP and I-MINLP algorithms, as developed in Section 5.2.2. Figure 5.15
illustrates the resulting network throughputs versus the number of users for each
simulation run and in comparison with the network capacity (see Definition 1 on
page 46). The cell capacity C. is calculated according to Corollary 3 on page 65 as
(5 MHz/8.2 dB)=T757 ksps, thus resulting in a network capacity of C = 9C. = 6813
ksps. The mean and standard deviation of the network throughput over 100 results
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Figure 5.15: Network throughput for different algorithms.

are sketched in Figures 5.16 and 5.17 on page 93. The observations and results are

as follows.

1. The largest average network throughput with the lowest standard deviation
is achieved by the I-MINLP algorithm. When 70 users are in the network,
the average network throughput for each algorithm is given in Table 5.3.

2. The achievable throughput is bounded by two factors: the number of users,

and the network capacity. That is, up to a certain number of users n, the
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Table 5.3: Capacity utilization (N'=70, uniform user distribution).

Algorithm Network Throughput | Utilized Capacity
(ksps) (%)

Network Capacity 6813

I-MINLP 6424 94.3

LSA 6422 94.3

MINLP 5475 80.4

RMINLP 1 4802 70.5 |

capacity increases linearly and beyond that limit, it stays constant. This
number can be found as

_ | Network Capacity
"= | Maximum Rate

(5.29)

or n = [6822/256] = 27. The result of this observation is that spectrum
efficiency must be evaluated with a sufficiently high number of users in the

network unless there is no maximum rate limit.

3. The role of the initialization of the algorithms is significant. The MINLP
algorithm with a random initial assignment utilizes 14% less capacity than
the case when initialized by the LSA (see Table 5.3).

4. The mean network throughputs for the I-MINLP and LSA algorithms are very
close. This is expected since users are located uniformly in the network and
throughputs are averaged over the 100 runs. In other words, the aggregate
result tends to remove nonuniformities in the interference seen by each base
station and the LSA solution gets closer to the optimal solution. A comparison
between the performance of the I-MINLP and LSA algorithms should be
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made based on individual results of each run. Let A be the difference in the
network throughputs in a specific configuration. An important observation is
that A > 0 is always true, meaning that the I-MINLP outperforms the LSA
algorithm. The average distribution of A is shown in Figure 5.18 for the 100
random configurations. It shows that A varies from 0 to 967 ksps but is less
than 100 ksps 70% of time.

L
48
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i Deita = Difference between average
= network throughput of =MINLP
and LSA aigorithms
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[+5-1 4 -
° P
] 500 1000 1500
Detta

Figure 5.18: Average distribution of the difference in the network throughputs.

Second Simulation

The objective of the second simulation is to examine the effect of uneven traffic on
the performance of LSA and I-MINLP algorithms. For this purpose, 100 Class III

users are located based on a 2-dimensional Gaussian distribution in a network with
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9 base stations. The concentration of users is around the center of the network.
Starting with such a configuration, mobile users move with random speeds in an
outward direction. This simulation is performed for 200 frames under the condition

as summarized in Table 5.4. The loglinear propagation law is selected for illustration

Table 5.4: Second simulation parameters and assumptions.

No of users 70 Max power 1 watt
No of BS’s 9 Max rate 256 ksps
Network coverage | 8 x 8 km? | Min rate 0

User distribution | Gaussian Max no. handoffs | 10

Propagation law | r—* Bandwidth 5 MHz
Path gains Known Chip rate 4.096 Mcps
Background noise | .001 watt || Ey/]p 3.3dB

purposes. The target SIR per bit is similar to the LCD service requirement in
[10] which can maintain a BER of 10~% by using a turbo code with constraint
length of 3, QPSK modulation, 2-antenna diversity, rake receiver and soft decision
decoding. The symbol rate in the physical layer for a 64-kbps LCD service is 256
ksps. Figures 5.19-5.21 illustrate 3 snapshots of the network for I'MINLP and LSA
algorithms under the same condition. An explanation of these figures is given as

follows:

- Each mobile user is represented by a rectangle, colored based on its allocated
rate. The colorbar is shown vertically on the right hand side of the network and
scales allocated rates from 0 (dark blue) to 256 (dark red) ksps.

- Assignment of each user is shown by a dotted line originating from the user to
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the assigned base station. No connection line implies that at the particular frame

the user has not been allocated any resources.

- The network throughput is shown with respect to the capacity by another
bar graph on the left hand side of the figures. The capacity and fraction of the
utilized capacity are printed beside the bar. The following observations and results

are noteworthy.

1. LSA assignment is not the best assignment when traffic is non-uniform. The
I-MINLP algorithm achieves a higher throughput by sharing the traffic load

among all base stations.

2. Network throughput of both algorithms vary with time as the traffic pattern
varies; the higher concentration of users in the network, the less total network

throughput.

3. On average, 10 percent improvement is gained by optimal base station as-
signments. Figure 5.22 illustrates the network throughputs in 200 successive

time frames.

4. In Figure 5.22, infeasible solutions appear in the form of small gaps in the
results, as throughput is zero when there is no feasible solution. It can be

seen that [-MINLP experiences much less infeasibility than LSA.

Third Simulation

Another simulation is performed to study the reuse efficiency and the effect of the
number of base stations in a fixed area using the I-MINLP algorithm with a fixed
number of users (100) and a target SIR per bit of 3.3 dB as in the LCD service.
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Figure 5.22: Network throughputs (unevenly distributed traffic).

The cell capacity in this case is 2338 ksps. Figure 5.23 illustrates the network and
cell throughputs for 1 to 25 base stations in the 6 x 6 km? area. Two limits on
the achievable capacity are shown in the upper figure: the capacity limit (M x C.)
which linearly increases with the number of cells, and the population limit which
limits the achievable throughput to N X Rpa. These limits are almost equal for
M = 11. As real indications of the performance, the results for M < 9 can be used
as an indication of the capacity utilization and related to the reuse efficiency or
reuse factor of the network. Table 5.5 presents the reuse factor using I-MINLP
resource allocation algorithm. A reuse efficiency of greater than 0.94 compared
to the theoretical reuse factor of 1 in CDMA systems is quite satisfactory and
sufficiently high.
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base stations.

5.3 Summary

In this chapter, we have developed techniques and algorithms to solve the resource
management problem for single- and multi-cell environments. The single-cell al-
gorithm finds an exact global optimum and determines the maximum achievable
throughput per cell for a given maximum power and a specific SIR per bit require-
ment. This value represents a new capacity bound and can be used as a benchmark
for evaluation purposes. The multi-cell solution for fixed assignments such as LSA
assignment is globally optimal. When assignment decisions are included in the
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Table 5.5: Network reuse factor with 'MINLP algorithm.

M | Capacity | Network Throughput | Reuse Factor
(ksps) (ksps)

1 2338 2327 ksps 0.995

4 9352 9175 ksps 0.981

9 21042 19798 ksps 0.941

mathematical programming problem, an I-MINLP algorithm has been developed
which utilizes the network capacity almost completely, i.e., more than 94% in a

network with less than 9 base stations.



Chapter 6

Implementation Issues

Resource allocation algorithms face a number of problems in their implementation
in practice. This chapter is devoted to several related issues. One is in conjunction
with the input path gain estimations and their inaccuracies. We are interested in
performing a sensitivity analysis to investigate the effect of estimation error on the
performance of the algorithms. The other issue is related to the control strategy
in implementing the resource management algorithms. We study a centralized
implementation as a primary choice when the algorithm performs based on network-
wide information. Some simplification has been made in the centralized method to
reduce the computational complexity and information flow in the network at a cost
of lower throughput. This is followed by a discussion of decentralization methods
where decentralizations at three different levels are studied. This chapter concludes
with a compatibility analysis of our algorithms with respect to the recent major
proposals for IMT-2000 as the third generation of wireless systems for the near
fature.

104
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6.1 Sensitivity Analysis

The knowledge of path gains is required in all algorithms that have been developed
and described so far. These path gains in the links between users and base stations
should be estimated and input to the resource management center. These estima-
tions are presumably prone to errors and could result in invalid resource values.
The purpose of this section is to study the sensitivity of our resource management
algorithms to the errors in the path gain estimations. In other words, we intend
to investigate how path gain estimates instead of the accurate values affect the

performance of the algorithms.

A well-known method to measure the path gain from a mobile to a base station
is to use the knowledge of transmitted and received power of a reference pilot
signal [53] in the forward link. Using the path gain of the forward link in the
reverse link, however, is erroneous due to the carrier frequency difference, resulting
in different path loss [72] and different fading rates! in the two links. Another
method to estimate the path gains in our model is a direct use of the mobile
transmitted power, already known by the base station, and the received signal power
at its receiver. This method does not suffer from the problem in previous method,
however, constant channel variation will affect the accuracy in both methods. An
important factor in fast channel variation is high mobile speed which increases path

gain estimation error.

Let i be the estimate of the actual path gain g;; that is experienced by the
transmitted signal from user ¢ to base station k. While the signal undergoes the path

!The normalized fading rate is defined as the product of the doppler frequency and data symbol
duration. Since forward and reverse links use different carrier frequencies, the doppler frequency
in each link will be different for a given mobile speed, resulting in different fading rates.
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with gain g, the resource management algorithm uses g;; in the computations and
allocates the resources accordingly. The question is whether the allocated resources
under the actual channel state are feasible. Obviously, the answer to this question is
related to the error level. We are interested to find a mapping between the standard

deviation of the error and the probability of an infeasible solution.

Assuming independent fading in each path, gix can be modeled as an indepen-

dent random variable. It is related to the path gain estimate by the relation
Gik = Gik + €ik : (6.1)

where e;. is the error estimation with zero mean and variance aﬁ. Experimen-
tal data, e.g. in (73, 74], and theoretical studies on the short term average of a
radio signal in fading channels [54] suggest that the received signal power at the
base station has a lognormal distribution. Given p; as the allocated power to user
i, the path gain distribution is lognormal with mean y,,, and variance o?. The
distribution of g;; is given as

= 1 10log(gix — p)?
flgie) = Vrogad =P {— 57 }, (6.2)

where 8 = 1n 10/10, and o and u are in dB and related to the mean and variance

of the lognormal distribution as

oo = Gu = BN (6.3)

o} = e2Bu+3pe® _ 2Butfa (6.4)

For user 1 assigned to base station k and allocated power p; and data rate r;, the

probability Pi,;; that the allocated resources are infeasible is

Wi GikDi
IJl'n i = Pr{ry > ) 6.5
d ( ® 7 s gipi +1 (6.5)
= Pr (Ig, > "—’iﬁ"‘—p‘) (6.6)
Tik
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where
Iy = Egjkpj"rfl- (6.7)
J#
Sum of lognormal random variables is often approximated by another lognormal
random variable {21]. A Gaussian approximation is also valid when lognormal
random variables are independent and their number is large enough. The latter
conditions hold in our problem, therefore, applying the central limit theorem, the

distribution of I;x is approximated as Gaussian with the following statistics.

pr. = E[l] (6.8)
= B[ gipi +n] (6.9)
i
= ) gup; (6.10)
7
0%, = Var[)_ gip; + ) (6.11)
i
= Y opl. (6.12)
Y

Therefore, Piny; will be equal to

Prsi= [ @ (w.-g;kp;/r.'k _&) F(ga)dgir. (6.13)

Qin Ol

In the derivation of g7, , the variance of 7 is assumed to be negligible.

We are interested in the probability that no user in the network encounters
infeasibility. Based on the above definition, 1 — Pyy; is the probability that user
i is in a feasible state. Thus, the probability that all users are in feasible states is
IL;(1 = Ping:) due to the independence of gii’s and Ping;’s. The desired probability,
therefore, becomes 1 — II;(1 — Piqs;). Figure 6.1 presents the average probability
of infeasible state versus the standard deviation of etrror g, for various numbers of

discretization levels. Each subplot presents the result for a particular number of
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Figure 6.1: Sensitivity of the resource allocation algorithms to the path gain estimation

error.
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users. It can be observed that the probability of infeasible solution increases as the
error increases. When the number of rate levels is large, the estimation error has
a more adverse effect. This is justifiable due to the fact that a larger number of
rate levels yields a higher capacity utilization and is closer to the optimal solution,
thus, there is a small margin for error tolerance. Furthermore, the error tolerance
for a lower number of rate levels increases with N while it remains unaffected or

gets slightly worse for higher numbers of rate levels.

6.2 Centralized Implementation

Centralized implementation is applicable when an algorithm manages and performs
resource allocation in a network-wide scale. That is, all necessary information is
made available to an RMC for processing and decisions are broadcast to base sta-
tions and users. Figure 6.2 illustrates a centralized implementation. Base station
k measures the path gain g;; for all  and reports them to the RMC. User informa-
tion including service types and qualities are stored at a user data base upon the
admission of each user. Fixed user parameters including A, Ay, Pmax, Rmax, and
E,/Iy’s are made available to the RMC by the data base. Using channel and user
information, the RMC runs the resource management algorithm and outputs the
new resource allocation values including p, r, and b and passes these to the base
stations and users. In such a centralized implementation, the following information

must be available at each base station:

1. Transmitted powers of all users: this information together with the received
signal powers is required for measuring the path gains. This method is the
preference against using the pilot signal in the forward link because measure-

ments are more accurate and no relevant control information is needed over
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Figure 6.2: A centralized implementation.



CHAPTER 6. IMPLEMENTATION ISSUES 111

the wireless link, as the knowledge of the transmitted powers already exists
at the base station. Hence, in a network with N users and M base stations,

NM measurements must be performed and reported to the RMC.

2. Transmission rates of the users being served by the base station: The cell-site
receivers need the data symbol duration (7,) of the users in their integrators
and samplers, as depicted in Figure 6.3.

Ts

BPF | | llztfrg;‘i;lor A Decision [~ paa

c(t) PN
| Source

Carrier

Figure 6.3: A simplified CDMA receiver.

Centralized algorithms, in general, are difficult to implement due to their need
for global information and control and, consequently, high amount of computations
and communications in the network. For example, in dynamic channel allocation
algorithms in narrowband' wireless systems, a centralized scheme requires global
rearrangement of all radio channels assigned to the users whenever a new user is
admitted or a handoff takes place. This shows the algorithm to be impractical
(21]. In CDMA, however, centralized resource management is less complex because
the channel (PN code) assignment is fixed during a call and all users share the
same radio channels. A centralized implementation of our resource management

algorithms has the following advantages:
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1. Resource allocation is based on global information and optimization, thus a

higher throughput is achievable.

2. Local congestion due to uneven traffic conditions is avoided by optimal base

station assignments.

3. Despite increasing the information flow among base stations and the RMC in
the high speed wired network, there is no additional corresponding informa-

tion flow on the wireless section.

Any step to reduce the amount of information flow in the network and lessen the
complexity of the mathematical programming problem would eventually facilitate
the implementation of our algorithms. Under certain reasonable assumptions, a

more realizable centralized algorithm can be developed as follows.

Let I; be the total received signal at base station k£ which can be expressed as

N N
L= gupi+n= Y. gwpi+tn (6.14)
j=1 J=1,7#1

where k € {1,..., M}. At any time, I is known to the base station by measuring
the radio signal at the receiver input. Assuming that the variation of I, between

two consecutive time frames is sufficiently small, the following approximation holds:
Ii(n) = Ii(n — 1) (6.15)

Thus, using the measured received signal at base station k, the mathematical pro-
gramming problem in Figure 5.13 on page 89 can be written as in Figure 6.4. The

first constraint in this figure results from combining the following constraints:

0 < Di < Pz.mnx (6-16)
Rimn < "’—i':ﬂ < Rimax (6.17)

This algorithm has the following advantages over the algorithm in Figure 5.13:
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Maximize i f: AiWigix

cikPi — Anh
p i=1 k=1 Ik
subject to
I . I
min S Pi < min (Pn max» —-Ri.mu)
W;Gik W;iGik
M
Do =1
k=1

I
&
.

Cik

]
™
)

Figure 6.4: Simplified MINLP algorithm

1. The required number of measurements (path gains and interference levels) by
the base stations reduces from NM to N + M. Each base station measures

the path gain of the users that it serves plus total interference at its receiver.
2. The information required at the RMC will be reduced by the same portion.
3. The number of active constraints is reduced by 2N.

4. The objective function is converted from a sum of linear fractions to a simple

quadratic form.

The performance of the simplified MINLP (S-MINLP) problem in Figure 6.4 in
comparison with the I-MINLP is highly affected by the variation of I; over time.
One effective factor in this variation is the standard deviation ¢ of the shadowing.
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When o is low, [ is closer to its previous value Iy with a higher probability
and vise versa. When o = 0 (no shadowing), the distance from a base station
is the only effective factor in determining the path gain. Variation in the path
gain due to the distance is very limited and negligible during a time frame and so
the same is true for I;. Therefore, a high performance is expected. Conversely,
with a high o, the difference between [ and I is larger with a higher probability.
Figure 6.5 presents comparative throughputs and the relative throughput loss for
S-MINLP with respect to I'lMINLP. Regarding the numerical results and the fact
that in an outdoor mobile environment shadow standard deviation is near 8 dB,
S-MINLP can be employed only if it outperforms other algorithms, in particular,
LSA. It is noteworthy that we have assumed independent propagation conditions
in successive time frames. In practice, however, the existing correlation between
the propagation medium for a single user in 2 successive time frames will affect the
result favorably. To illustrate this fact in a more practical condition, we repeat the
second simulation in Section 5.2.3 on page 95 to compare S-MINLP and I-MINLP
algorithms. Figures 6.6-6.8 similarly illustrate 3 snapshots of the network. It can
be observed that:

1. With S-MINLP, the number of users that are serviced in a time frame is

larger.

2. S-MINLP has a lower performance with respect to I-MINLP (6% on average)
but it outperforms LSA. Figure 6.9 compares network throughputs for the
three algorithms in a plot similar to Figure 5.22.

3. There is no infeasible solution for S-MINLP throughout the simulation (200

frames).
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Figure 6.9: Network throughputs (unevenly distributed traffic).

Computational Complexity

Computation time is essential for implementation of the resource management al-
gorithms. For both I-MINLP and S-MINLP, a large portion of the computations is
performed by DICOPT which is called from within a GAMS program. Our main
simulation program is written in MATLAB. To solve the mathematical program-
ming problem, the GAMS program is called from within the MATLAB environment.
For this purpose, we have used an interface program developed by Ferris in [71].
This structure adds the power of MATLAB to GAMS, thus providing a powerful
tool for our simulation purposes. This combination, however, is subject to compu-
tation and time overhead due to exchange of data between the programs. In order

to get an estimate of the computation time, one way is to add up the cpu-times in
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different stages. This summation is not accurate enough as it excludes the over-
head. As an over-estimate, we measure the elapsed computation time for different
numbers of users in a network with 9 base stations. The simulation condition is
similar to Table 5.4 except for the propagation condition and hansoff constraint
which are the same as the condition in Table 5.2. The program runs on a SUN
Ultra-10 workstation. Figure 6.10 illustrates the elapsed computation time to run

90 T L T

dok A I-MINLP
v S-MINLP

bbb b DD D A

85 90 95 100 105 110 115
Number of Users

Figure 6.10: Elapsed computation time for the I-MINLP and S-MINLP algorithms.

I-MINLP and S-MINLP algorithms for populations of 90 to 110 users in the net-
work. It can be seen that the time increases almost linearly with respect to N. The
elapsed computation time is measured while running the program on a multi-user
workstation with shared resources in a local area network. Obviously, the computa-

tion time on a dedicated powerful machine at the resource management center will
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save time considerably. Moreover, if the program code is optimized, the overhead

time to transfer data between subprograms will be reduced significantly.

6.3 Decentralization

Resource management for the uplink of a wireless system can be performed in the
network level (centralized), sub-network level (partially decentralized), base-station
level (decentralized ), and user level (fully decentralized). Figure 6.11 visualizes the
decentralization at different levels.

6.3.1 Centralized Resource Management

The outcome of our research provides detailed models and algorithmic solutions
for network-level resource management. Our centralized algorithms do not put a
burden of overhead information on the wireless part except allocation of the rate,
power, and base station assignment to each user. Besides, with today’s high speed
broadband networks, the overhead information flow between base stations and the
RMC can easily be taken care of. The solutions not only provide ideal performance
limits, benchmarks and capacity bounds for evaluation purposes but also can be
considered as viable candidates for resource management in future systems. Ways
of implementing these algorithms in the framework of the IMT-2000 proposals are
discussed at the end of this chapter.

6.3.2 Partially Decentralized Resource Management

The partially decentralized implementation is very similar to the centralized algo-
rithm except for receiving additional interference from other sub-networks in the
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Figure 6.11: Decentralization Levels.

area. We use the terms intra-network and inter-network interference to refer to the

interference from within the sub-network and from other sub-networks, respectively.

With a slight modification, previously developed mathematical programming prob-
lems and corresponding algorithms can be extended for a partially decentralized

resource management. Let f be the interference ratio defined as the ratio of the

inter-network to the intra-network interference. The mathematical programming

that can model resource management in the system will be similar to those in

Figures 5.13 and 6.4 with the following modifications:
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1. M, N and other parameters refer to the corresponding values in the sub-

network.

2. The interference term Z;‘;l j#i9i&pj +n or I, will be multiplied by a factor
(1 + f), assuming that the background noise is negligible with respect to the

interference term.

A thorough investigation is performed on the interference ratio f in [6, 76, 74].
The propagation condition in the study is similar to that of our simulations as
described in Table 5.2. It has been shown both analytically and by simulation that
the interference factor at a base station varies between 1/2 and 1/3 by users who
are power controlled by other base stations. Under a similar condition, the inter-
ference ratio for a sub-network is less than that of a single base station because
part of the interference has been already included in the intra-network interfer-
ence. In a more sophisticated design, the size and user population of sub-networks
can be dynamically changed according to the instantaneous state of the network.
Further investigation on evaluation of the interference ratio and ways of dividing
the network into sub-networks is part of the proposed future work. The resource
allocation in a partially decentralized network will be suboptimal and less efficient
than in a centralized network. The advantages would be less information flow and

computational complexity as well as higher practicability when the network size is

very large.

6.3.3 Decentralized Resource Management

When resource management is performed at the base station level, the assignment
of mobiles automatically is excluded from the mathematical programming prob-

lem and should be decided independently, thus resulting in a suboptimal solution.
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For the user assignments, the most popular scheme is the LSA assignment. If we
apply LSA assignments to every user, decide and allocate power and rate values
locally at each base station, the problem to solve will be similar to a single-cell
system which has already been efficiently solved. The only difference is an addi-
tional (1 + f) factor to account for the external interference at the base station.
Extensive research on decentralized resource management schemes has been carried
out. In comparison with other recent works which maximize the throughput us-
ing decentralized schemes, e.g. {80], our algorithm solves the problem using linear
programming methods which are very efficient and provide unique global solutions.
A different objective function from throughput maximization is suggested in the
literature to minimize the total allocated power to the users. This objective is in-
tended to minimize the interference to other cells, however, it eventually reduces
the system throughput, as well. In fact, in the SIR constraint given in (4.4), when
we equate the constraint, it is implied that a certain rate is achieved with the min-
imum required power, or that with a certain allocated power the rate is maximum.
Since we have used the SIR constraint with its equality sign, the throughput is
maximized with the minimum required power. If there is a need to control the
total allocated power, one can set a constraint as ¥°; p; < Poum where P,,,, can be
selected such that the resource utilization by the users in a particular cell is bal-
anced with its neighboring cell. Thus, over-utilization of resources in a particular

cell can be prevented in favor of other cells.

6.3.4 Fully Decentralized Resource Management

In a fully decentralized resource utilization scheme, a user collects the required data
from neighboring base stations, performs necessary computations, and decides on

its power and rate. An example of such an algorithm is given in [39]. According to
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this proposed fully decentralized algorithm, total interference at each base station
is collected from the broadcast data by each base station and path gains to different
base stations are measured by using the pilot signals in the forward links. Then,
the required transmit power to all base stations 1s computed and the one with the
minimum required power is selected for its communications. A single service with
a fixed rate is assumed in this algorithm. In a multi-service environment, selection
of both rate and power is not an easy task unless everybody is forced to transmit at
their minimum rate, resulting in a low throughput efficiency. Another disadvantage

is a higher complexity in the mobile terminal.

6.4 Compatibility with IMT-2000

The recent proposals for third generation mobile systems under the IMT-2000
project have many common features with our system model. This coincidence
provides a ground for compatibility of our resource management algorithms with
the next generation wireless systems. In what follows, we discuss a way of imple-

menting our algorithms in the proposed systems.

Consensus in the definition of a standard and its system design aspects has
been very rare in the communications field in the past. The recent proposals for
IMT-2000, e.g. [10, 11, 12], are good steps in the direction of globalization of the
third-generation wireless standard. These proposals are similar in many details of
the system-level design, however, differences still exist mostly in the adaptability
with second-generation systems. As far as reverse-link resource management is
concerned, there is no basic difference between the second generation standard IS-95
and the new proposals. However, as there are a number of undecided and unfinalized

system design issues, it is very likely that the resource management section will
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be modified soon. This fact is explicitly mentioned in the European proposal [11]
that “optimal resource management” is to be considered in the next version of their
proposal. So far, the proposals have considered decentralized resource management.
Users are assigned to the base stations based on the LSA assignment method. Power
control is maintained in both open-loop and closed-loop forms. Open-loop power
control (OLPC) is used on channels that cannot employ closed-loop power control
(CLPC), e.g., on the random access channel (RACH), or at the beginning of a
CLPC cycle. OLPC is performed as follows:

1. The receiver measures the path gain over a certain time period using the pilot

signal in the PERCH (pilot) channel and takes the average.

2. The transmitted power is calculated based on the measured path gain.
CLPC’s basic functions are:

1. The received SIR at the base station is measured periodically.

2. If the measured SIR is less than the target value, a “1” bit is sent to the user.

Otherwise, a “0” is transmitted.

3. The user terminal will decrease/increase its output power by 1 dB upon re-
ceiving a “0”/“1” power control bit. Both the target SIR and the 1 dB step
size can vary dynamically during the operation. An outer-loop power control
is considered to adjust the SIR threshold level.

4. When a power control bit is not received, the power level remains constant.

Variable-rate transmission is performed using a few specified rates and multi-code
transmission. Decisions on the transmission rate are made based on the negotiations

with users.



CHAPTER 6. IMPLEMENTATION ISSUES 127

The frame structure is composed of slots (0.625 us), frames (10 ms), and super-
frames (720 ms). Every 16 slots are multiplexed to form a frame and a super-frame
is made of 72 frames. Rate variations and open-loop power control are updated
in every frame. Closed-loop power control is performed on a slot-based period.
The proposed frame structures of the forward and reverse links for third generation

wireless systems [10, 11] are illustrated in Figures B.1 and B.2 in Appendix B.

Potential application of this research in IMT-2000 - A combination of
our resource management algorithms with the CLPC can be applied to modify and
improve the FDD-mode reverse-link resource management in IMT-2000 proposals.
In this combination, OLPC is excluded and any of our centralized, partially decen-
tralized, and decentralized algorithms can be employed, however, the latter version
being the most compatible. The basic operation of the proposed resource manage-
ment for IMT-2000 using a decentralized algorithm is as follows. It is assumed that
at the beginning of frame n, user : is transmitting at power p; and rate r;, and

assigned to base station k.

1. The user rate and assignment remains unchanged during the frame.

2. Upon receiving the power control bit in slot 1 of frame n, the user’s output
power at slot 2 is changed by 1 dB. This power adjustment will continue until
the last slot (slot 16) of frame n.

3. The path gain measurement is performed in each slot and averaged over the

frame. This can be done in two ways:

- by the user using the information in the forward link, similar to [10, 11, 12],

- by the base station using the information in the reverse link, as proposed

in this thesis.
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In the former case, the path gain information should be made available to the
base station through control channels. In the latter case, the output power
is known based on the initial power at the first slot and all previous power

control bits.

4. The new assignment is found at frame n + 1 using the measured path gains

to the nearby base stations.

5. The allocated power and rate at frame n + 1, slot one is provided by the base

station and sent to the user via forward-link control channels.

Figure 6.12 illustrates the frame structure of the forward link dedicated physical

channel (DPCH) for the proposed resource management scheme.

The centralized algorithm can also be employed in the above combination. In
this case, assignments will be the outcome of the algorithm rather than being
selected independently.

6.5 Summary

In this chapter, we studied some practical aspects of resource management. Re-
garding the path gain measurement error, it became evident that for a limited
number of rate levels, there will be a good error tolerance. Quantitative data to
support this feature has been provided. A less complex version of the -MINLP al-
gorithm (S-MINLP) has been developed to facilitate a centralized implementation
of optimal resource management. It has been shown that S-MINLP outperforms
LSA and, with respect to I-MINLP, runs faster with lower infeasibility at a cost
of 6% less throughput. The other important issue is the way the algorithms are
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0.625 ms — 0.625ms

Slot#1 Slot#15 Slot# 16

DPCH

10 ms

Frame # | Frame #2 Frame # 72

720 ms -

DPCH : Dedicated Physical Channel
TPC:  Transmit Power Control
RS1: Resources Allocation Information ( Power, Rate, Assignment )

Figure 6.12: Forward link DPCH frame structure for the proposed resource management

scheme.

implemented. Among 4 different schemes, centralized and partially decentralized
algorithms are the favorable ones with a high throughput efficiency. A combination

of our algorithms and the CLPC is suggested to improve resource management of
the IMT-2000 proposals.



Chapter 7

Conclusions and Future Work

This research is aimed at developing algorithms for optimal resource management
in a wireless multimedia WCDMA system to maximize the network resource utiliza-
tion and provide satisfactory QoS for each user. Resource management is modeled
as a mathematical programming problem based on the objective and the proposed
system model. This problem is analyzed, restructured, and solved for single- and
multi-cell systems. Resource management algorithms are developed to adopt solu-

tion procedures.

This chapter summarizes the results and concludes this research. An outline for

the proposed future work follows at the end.

e Wireless Multimedia CDMA Model

A comprehensive model for wireless multimedia CDMA is the first require-
ment for our research. In the literature, several models have been proposed
which lack the generality feature in the sense that they neither include all
service classes, as defined in this thesis, nor can they be applied to a general
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multi-cell environment. We have developed an inclusive model as presented
in Chapter 3. The key features of this model are: supporting a wide range of
delay-tolerant and real-time services, employing power and rate control to ac-
commodate a wide range of QoS’s, and combining resource management and
base station assignment. The mathematical description of this model involves
a set of control variables including mobile transmitted powers, data rates, base
station assignments, and the number of handoffs. To solve the problem, two
sets of input data are required: user-supplied data and network-supplied data.
The user-supplied data includes: BER requirement, delay bound, maximum
rate, maximum power, source rate for VBR class [ services, and the size of the
data for class II file-transmission applications. The network-supplied param-
eters are: maximum number of handoffs, and path gains. The minimum-rate
limits are also required for solving the problem. We have derived mathe-
matical expressions for the minimum-rate limits for different applications, as

reported in Section 3.5.2.

¢ Optimal Resource Management Problem

Using the proposed system model, we have developed a mathematical pro-
gramming problem, i.e., an objective function and a set of constraints, based
on our research objective as presented in Section 4.1. We have adopted a
wireless service provider’s perspective to materialize our objective. A pricing
scheme has been developed to map the network throughput onto the network
revenue, and handoff switching overhead onto a certain cost. This pricing
scheme is a novel approach where every user pays proportional to the amount
of consumed resources, which in turn is related to its QoS requirement and air-
time. The structure of the mathematical programming problem is primarily

nonlinear with a non-convex feasible space. Since such problems are difficult
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to solve both for global and local optima [58, 77], we have attempted to find
equivalent problems with certain preferences in their structures, as discussed
in Chapter 4. We have developed two alternative models for our problem. The
first one has linear constraints with a linear multi-fractional objective func-
tion, as presented in Figure 4.2. The second alternative model is presented in
Appendix A.4 and provides a less complex nonlinear objective function with
linear constraints. Further investigation has proved that the first alternative
is a better choice and leads to interesting solutions. Despite the fact that
power and rate variables in the mathematical programming problem have a
discrete nature, we have shown that we can treac them conveniently as con-
tinuous variables and, thus, save a significant amount of computational cost.
Then, in practice we can allocate close discrete values to the users. It has
also been shown that if the number of discrete levels exceeds 64 and 128 for
power and rate variables, respectively, the throughput loss will be negligible.

e Single-Cell Solution

In Chapter 5, we have proved mathematically that there exists an equivalent
linear programming problem for the resource management model in Figure 4.2
for a populated single cell. The solution of this problem is a global optimum
and can be found efficiently and fast. The single-cell algorithm is developed
for the resource management in a single cell. For a set of target SIR per bits,
there is a capacity limit beyond which is not achievable. This limit defines a
new measure for the network capacity in terms of the throughput weighted
by the service qualities. We believe that this measure of the system capacity
is more suitable for multimedia applications than counting the number of
users in each service. The latter one, adopted in the literature e.g. in [80],
is not a real indication of the capacity if the network is supposed to support
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services as defined in our system model. This capacity is a benchmark and
an upper bound for performance evaluation of any network in terms of its
throughput per cell. The capacity of a multi-cell network must be multiplied
by soft-handoff gain [81] if soft handoff is employed.

e Multi-Cell Solution

A general solntion for the multi-cell environment requires solving a nonlinear
subproblem for a large set of feasible assignments. This process has been
facilitated by developing an equivalent linear problem for the nonlinear sub-
problem and reducing the size of the feasible assignments set by using SIR
and handoff constraints. We have shown that this approach is not viable
when the network size gets large. For decentralized resource management,
where base station assignment is decided independently and only the nonlin-
ear subproblem remains to be solved, Theorem 1 on page 78 is very helpful
to find a unique globally optimum solution.

In order to overcome the assignment problem and its large scale, the problem
has been reformulated from a max-max structure to a single MINLP problem.
Despite being very difficult in nature, we have been able to use an available
tool to solve the MINLP problem. Minor changes have been necessary in the
structure of the problem in using the tool. Simulation results suggest that the
best throughput performance can be achieved when we select the LSA assign-
ment as the starting point for the assignment variables (I-MINLP algorithm).
In comparison with random initial assignment (MINLP algorithm), I-MINLP
has gained a 14% throughput improvement. Overall, a throughput efficiency
better than 94% is attained (reuse factor of 0.94) for a network with up to 9

base stations. The reuse factor will decrease as the number of base stations
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increases. Furthermore, it has been shown that the computation time varies

almost linearly with the number of users in the network.

e Sensitivity Analysis

It is important to know how robust the developed algorithms are to the es-
timation error in path gain measurements. The result of our investigation
shows that the more we utilize the network capacity, the more vulnerable the
algorithm is to the estimation error. Therefore, with a reasonable margin, an
acceptable robustness is achievable. If the number of discrete rate levels is
not too high, e.g. less than 32, the margin will automatically be there (see
Figure 4.3 on page 59).

o Centralized versus Decentralized Algorithms

A centralized implementation attains maximum performance due to its global
outlook in the solution. No matter how practical it is, the centralized algo-
rithm provides an upper bound performance for the system and can be used as
a benchmark for evaluation purposes. It has been argued, however, that con-
trary to the centralized resource allocation algorithms in conventional wireless
systems, e.g. dynamic channel allocation, which are very difficult in practice
to implement, WCDMA system does not face similar problems. For example,
in centralized dynamic channel allocation algorithms, frequency management
is a very complex task and users may have to use different radio channels as a
requirement of the network-wide solution. In contrast, WCDMA system users
use the same radio channel and PN codes throughout their calls. Neverthe-
less, a similar complexity may occur in assigning the users to the base stations
in successive time frames, i.e., the so-called ping-pong effect, as described in

Chapter 2 on page 25. This problem has already been taken care of by in-
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cluding the handoff switching cost in the objective function and controlling
its effect by the cost per handoff A\; and maximum number of handoffs Ayay-
The assignment of the rate and power only adds corresponding information
flow from the RMC to base stations through broadband wired links and to
users through dedicated control channels. For a more effective realization, a
simplified version of the centralized algorithm (S-MINLP) has been developed
with less computational complexity and information flow among base stations
and the RMC at the cost of a lower achievable throughput. The comparative
performance of S-MINLP and I-MINLP has shown that for the simulation
condition in Table 5.4 on page 96, on average, the throughput loss is 10%.

Decentralization at the sub-network, base station, and user levels has also
been discussed. With small modifications, the centralized algorithms can be
extended to a lower level resource management. A good compromise among
different schemes is the partially decentralized algorithm which favors the
advantages of both centralized and decentarlized algorithms. It is flexible
enough to range from a centralized algorithm when the sub-network consists
of all existing base stations to a decentralized algorithm by having only one
base station in its sub-network. It has been argued that a fully centralized

scheme is not a good choice in wireless multimedia CDMA systems.

e Compatibility with IMT-2000

Since there is no significant improvement in the reverse-link resource man-
agement of the current proposals for IMT-2000, we believe that the results
of this research can be applied to the proposals for further upgrade and per-
formance improvement. In this thesis, we have proposed a resource manage-

ment scheme which is a combination of our developed algorithms and the
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well known closed-loop power control. According to this scheme, our resource
management algorithm allocates data rates, powers and base station assign-
ments to all users based on a partially decentralized scheme at every 10-ms
frame. During that frame, data rate and base station assignments remain un-
changed. In order to capture fast channel variation, closed-loop power control
is employed to update the power level by +1 dB in accordance with a “1” or

“0” power control bit.

7.1 Concluding Remarks

This thesis presents the result of a research on modeling and optimal resource
management in wireless multimedia WCDMA systems. In addition to the research
objective, background material, and literature survey on the subject, a system
model including a wide range of multimedia services is proposed. The problem of
resource management in a multimedia environment is formulated as a mathematical
programming problem which maximizes the profit gained by a wireless multimedia
service provider subject to satisfying the service and QoS requirement for each user.
The problem is solved with a great deal of effort for single- and multi-cell systems.
The sensitivity of the solution to erroneous input data is examined. Different algo-
rithms for the resource management are developed. The simulation results validate
the viability of the algorithms in high resource utilization. Resource management
operation at different operation levels are discussed and a partially decentralized
scheme is introduced. A resource management scheme is suggested for the reverse-

link FDD-mode resource management of IMT-2000 systems.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 137
The main contributions of this work can be enumerated as:

1. Introduction of an inclusive model for wireless multimedia communications

including the new concept of minimum-rate limit for delay control.

2. Introduction of a pricing scheme and a throughput and capacity measure for

multimedia wireless services.

3. Solution of a complex large-scale nonlinear programming problem resulting

in:

- Developing an equivalent LP problem for a sum of linear fractions (extension

of LFP theorem).

- development of resource management algorithms for single- and multi-cell

systems with high performance and low complexity,

- derivation of conditions for robustness against path gain estimation errors.

4. Introduction of a flexible partially decentralized scheme for resource manage-

ment.

5. Suggestion of a combined optimal resource management and CLPC for the

reverse-link FDD-mode resource management in IMT-2000 systems.

This research, in part, has been published in [1, 2].

7.2 Future Work

The outline of the suggested future work is as follows:
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- In the formulation of the partially decentralized resource management, the inter-
ference ratio f is an important factor. Despite availability of mathematical
expressions and simulation results for the interference ratio in the IS-95 sys-
tem, we need similar expressions and results for WCDMA multimedia appli-
cations. Derivation of the desired expressions is a requirement for partially

decentralized implementation of the resource management algorithms.

- In this research, we have dealt with the base station assignment in the form of
hard handoff. As a basic feature of CDMA systems, the algorithms should

include soft handoff in the formulation of the resource management.

- It is desirable to extend resource management techniques to the forward link. The
extension and combination of the resource management in both links can be

another trend in the future work.

- The TDD mode in IMT-2000 proposals {10, 11) is proposed as a hybrid technique
(CDMA/TDMA) where each WCDMA channel is split into 16 TDMA time
slots. In this mode, the forward and reverse link use the same frequency band.
A thorough study of this mode and associated problems involved in resource

management is another interesting topic for the future work.

- Further work is required to optimize the programs developed for implementation

of the resource management algorithms to minimize the computation time.



Appendix A

Optimization Theory and

Techniques

Many problems of both practical and theoretical importance concern themselves
with the choice of a “best” configuration or set of variables to achieve some goal.
Mathematical programming employs a mathematical model to describe an opti-
mization problem and includes three basic sets of elements: decision or control
varigbles, constraints, and the objective function. The control variables are the
unknowns which are to be determined from the solution of the model. The set of
constraints limits the control variables to their feasible or permissible values. A
common constraint is the so-called nonnegativity constraint which requires all con-
trol variables to be either zero or positive. The objective function specifies the goal
in terms of the control variables. An optimal solution of the model is obtained if
the control variables yield the best value of the objective function, while satisfying
all the constraints.

Depending on the characteristics of the control variables, the objective function
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and the constraints, most mathematical programming problems fall in one of the
wide categories of linear/non-lirear, integer/continuous-variable and single/multi-

objective problems.

In what follows, several definitions and theorems of optimization theory and
linear algebra are introduced for further use in the thesis. A brief description of

the simplex method is provided, as well.

A.1 Definitions and Theorems

Definition 2 The gradient of a continuous function f: R - Ratz € R is
defined as

V(e) = | (e gl (e (A1)

The second-order partial derivative of f, the so-called Hessian matriz, is defined as

2y &8t i
83z, 82822 "°° O=mazn
: : : (A.2)
8¢ & 2
Bzndz) m 58"!:
Definition 3 f is convez (concave) if, whenever z, y € ", and 0 < a £ 1,
flaz + (1 — a)y) < (Z)af(z) + (1 - a)f(y). (A.3)

This means, geometrically, that the line segment drawn between any two points on
the graph of the function never lies below (above) the graph. A set E C R"is a
convez set if az + (1 —a)y € E for any z,y € E and 0 < a < 1 [27]. A convez
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programming problem is one which minimizes a convex function (or maximizes a

concave function) over a convex constraint set {28].

A continuous function f(z) is quasi-convex over a set S if either of the following

equivalent statements holds [28]:

(@) {z|f(z) <c,z € S} is convex for all c.

(b) z1,22 € S, f(z2) < f(z1) = flaza + (1 — a)z1) < f(z1).

Definition 4 Let A € R**" be an n x n symmetric matrix. A is said to be
positive (negative) definite if z’ Az > 0(< 0) for every nonzero z € R™. A is positive
(negative) semidefinite if 2’ Az > 0(<) for all nonzero z € R*. A is indefinite if it is
neither positive semidefinite nor negative semidefinite. All eigenvalues of a positive

(negative) semidefinite matrix are nonnegative (nonpositive) real numbers [26).

Definition 5 The two mathematical programming problems
(I) Mazimize F(z) subject toxz € A

(II) Meazimize G(z) subject to z € T
where A and I’ are some feasible sets, are called equivalent if there is a one-to-

one map y(.) of the feasible set A of (I) onto the feasible set I' of (II) such that
F(z) = Gly(z)] for each z € A. Thus, (I) is equivalent to (II) if and only if (II)
is equivalent to (I) [27].

Definition 6 An gffine function of z € R is a linear function of z plus a constant.
If the objective function is the ratio of two affine functions of z and the constraints
are linear, the problem is called linear fractional programming.
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Definition 7 A mathematical programming problem has a standard form if [29]

1. All the constraints are equations except for the nonnegativity constraints
which remain “>" inequalities.

2. The right hand side element of each constraint equation is nonnegative.

3. All the variables are nonnegative.

4. The objective function is of the maximization or the minimization type.

Theorem 2 Any local minimum of a convex programming problem is a global

minimum [28].

Theorem 3 A positive semidefinite quadratic form is convex [28].

Theorem 4 The linear fractional programming

Maximize m'p
subject to p>0, A b, +n7>0 A4
» {gp+} J P p=0b gp+n (A.4)

has an equivalent linear program with one additional variable and constraint given

as

Ma?nuze {m'y} subjectto y >0, u>0, gy+nu=1, Ay—bu=0 (A.5)

where p, y, and b belong to RN, A € R¥*¥, and u € R, and it is assumed that no
point (y,0) with y > 0 is feasible for (A.5) [27].
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Proof: Let

1
v = A6
grp+n (A.6)
y = up (A.7)
then, y > 0, u > 0, and
Ay—ub = u(Ap-8)=0 (A.8)
gy+un = ulgpt+n)=1 (A.9)

Thus, the point (y,u) is feasible for (A.5). Conversely, if (y,u) is feasible for (A.5),
and no point (y,0) is feasible for (A.5), then, « > 0, and p = y/u satisfies p > 0,
and Ap — b = u~!(Ay — ub) = 0. Therefore, (A.6) and (A.7) map the feasible set of
(A.4) one-to-one onto the feasible set (A.5). Moreover, the objective functions are

related by

m'p m'y .
= =m21y. A.].O
gp+n gdy+nu y ( )

]

A.2 Simplex Method

Given a linear programming problem where constraints have “=", “<”, and “>"
signs, the optimal solution (if one exists) is obtained by the simplex method in the

following steps [29):

1. Ezpress the problem in the standard form

To convert inequality constraints to equalities, slack variables and artificial

variables are used as described in the following two-variable examples. All
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variables are nonnegative.

a11T; + 61222 < b, = a11Z) + ay2Z2 +uy = b
a21T; + 2222 = b, = @21T) + G22T2 + vz = by

G312 + G322 > by = a31Z) + G32Z2 + v3 —ug = by

where b;, ¢ € {1,2,3} is nonnegative, u; and v; are the slack and artificial

variables, respectively.

2. Select a starting basic feasible solution

A system of n linear equations and m variables (unknowns), where m > n, has
an infinite number of solutions. A feasible solution can be obtained by setting
any m — n unknowns to zero and solving for the remaining n unknowns. In
the simplex method, there is a selective iterative procedure which will yield
the optimum solution in a finite number of iterations. The variables set to

zero are called non-basic variables and the rest are called basic variables.

Determination of a starting feasible solution involves two cases: for inequali-
ties with <, the slack variables are basic variables and all other variables are
set to zero; in the constraints with = or >, artificial variables are considered

as the basic vanables.

3. Generate new basic feastble solutions using the optimality and the feastbility

conditions

In this step, slack and artificial variables are replaced such that the new basic

variable both improves the objective function and satisfies the constraints.

The feasibility condition of the simplex method, called the first phase of the sim-
plex method, is used in nonlinear problems with linear constraints for the feasibility

test.
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A.3 Proof of Corollary 5

For the feasibility condition of a system of 2 users and 2 base stations, we use the
first phase of the simplex method. Using the rate constraint in Figure 4.2, the

constraints of this system are

4
W1914, P1
Rymin L ——— < R A.11
l.min > géa‘Pz'*-fl —_ 1, max ( )
{
W2gs,,P2
Rz i —= " < Rom A.12
2,min > g{n:pl_*_n — 2, max ( )
P1 S Pipax, P2 < Pomax (A.13)

which set six inequalities. To perform the simplex feasibility test, we need to express
the constraints in the standard form, as defined in Appendix A.1 . That is, to alter
the above inequalities into equalities. For this purpose, we add the slack variable u;
and the artificial variable v; to the inequalities [29]. Thus, the constraints become

w
) — g0, P1 — GaP2+tw = 7 (A.14)
1,max
w
R 2 g;cgpz - giagpl tuz = 7 (A15)
2,max
w
Yl Pi = G Prt s —us = 7 (A.16)
1.min
w
R—z'—g;a,pg - glxa,?l TV —U = 7 (A.17)
2,min
P~ Pimaxtus = 0 (A.18)
P2— Pomax+ue = 0 (A.19)

We solve this system of linear equations symbolically for p;, p2, and different sets
of four Slack and artificial variables. The desired feasibility condition is derived
by applying the nonnegativity property of p; and pa to the solution of the linear
system with the entering variables p;, p3, vs, ¥4, us and ug, as given in (5.23) on

page 82. |
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A.4 Equivalent Mathematical Programming

Another attempt to linearize the constraints with a simpler objective function is

proposed as follows. Let
pi = eiry, (A.20)

where e; > 0, then, the constraint in (4.5) can be written as (time indices are
omitted)
i = {
wl'gia.‘ei - E ng.pJ = 'I- (A'21)
J=la#i

Thus, the objective function becomes

Maximize {maxix.-‘—’i—m}, e #0 (A.22)
a peh = e
subject to
0<p < P .(A-23)
Rimin€i Spi < Rimaxei (A.24)
h < hyge (A.25)

(A.26)

[
3

N
I |
Widhai®% = Y. YjaiPi
j=1,j#i

Our new mathematical programming has a nonlinear objective function and
linear constraints with both equality and inequality signs. The Hessian matrix of
the nonlinear term in the objective function, i.e., 2,-’21 A;Ef =¥, /\.i—. where

z = [ple], can be shown to be

P H
H, H,

H= (A.27)
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where partitions are n x n, @ is an all zero partition, and H; and H, are diagonal
with diagonal elements —A;/z2.; and 2\z;/zd_;, respectively. Matrix H has a
sparse structure with diagonal partitions which can be exploited to reduce the

computational complexity.

A.5 Mixed Integer Nonlinear Programming

MINLP problems, in general, consist of both continuous and integer variables which
appear in nonlinear terms in the objective function and constraints. A particular
class of MINLP problems has been appeared in many branches of engineering and
extensive effort has been exerted for their solution. In this class of MINLP, in-
teger variables are binary and in linear terms, and nonlinearities are confined in
continuous variables in separate terms. There are many problem-specific methods
to solve this class of MINLP problems, however, general-purpose algorithms also
exist. Some of the important algorithms are branch and bound {70] and the outer
approximation/equality relaxation method [66, 67]. The latter method has been de-
veloped as a solver called DICOPT for GAMS modeling language. In the following
more information on GAMS/DICOPT MINLP solver is provided.

GAMS/DICOPT Algorithm

DICOPT is a program for solving MINLP problems with linear binary and con-
tinuous nonlinear variables. It has been developed by Dr. Grossmann’s group at
the Engineering Design Research Center (EDRC) at Carnegie Mellon University.
DICOPT is designed based on the outer approximation for the equality relaxation
strategy. It solves a number of NLP (nonlinear programming) and MILP (mixed-
integer linear programming) subproblems. Any NLP and MILP solver can be used
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for solving these subproblems. The DICOPT algorithm has some provisions to find

global optimum, however, it is not guaranteed.

The GAMS/DICOPT algorithm has been designed based on the following two

objectives:

1. To use the existing modeling language GAMS.

2. To employ existing NLP and MILP solvers so that any improvement in any
of the solvers is available to MINLP problems.

DICOPT typically solves the following type of problems:

Maximize/Minimize f(z) + c'y (A.28)
subject to
g(z) + Hy(<,=,2)b (A.29)
|l < z<u (A.30)
y € {0,1} (A.31)

The vector of binary variables y appears only in linear terms while the vector of
continuous variables z can be in nonlinear terms in the objective function and

constraints.

The DICOPT algorithm has been developed based on the following techniques
(69]:

1. Outer Approximation refers to the fact that the surface described by a
convex function lies above the tangent hyper-plane at any interior point of

the surface. In the DICOPT algorithm outer approximations are obtained
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by generating linear approximations of nonlinear convex functions at each
iteration. These estimations should underestimate the objective function and

overestimate the feasible region.

2. Equality Relaxation refers to relaxing an equality constraint to be an in-
equality constraint. This property is used in the MILP master problem to

accumulate linear approximations.

3. Augmented Penalty refers to the introduction of non-negative slack vari-
ables on the right hand sides of the inequalities obtained by the equality re-
laxation technique. It also refers to the modification of the objective function

in non-convex cases.

The DICOPT algorithm starts by solving the relaxed MINLP (RMINLP) prob-
lem, i.e., the binary variables are treated as continuous variables having values
between 0 and 1. If the solution yields binary values for the corresponding vari-
ables, it is considered as the optimum solution and the algorithm stops. Otherwise,
it continues with an alternating sequence of NLP subproblems and MILP master
problems. The NLP subproblems are solved for fixed binary variables that are pre-
dicted by the MILP master problem at each iteration. The algorithm by default
stops when NLP subproblem starts worsening. The algorithm for the given problem

Minimize c'y + f(z) (A.32)
subject to
Ay+h(z) = 0 (A.33)
By+g(z) < 0 (A.34)
I<z<u, y € {0,1} (A.35)

works as follows:
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1. Solve the problem as an RMINLP. If ° = y is binary, stop. Binary solution
is found. Otherwise go to step 2. (The superscript denotes the sequence of

intermediate solutions.)

2. Find a binary point y' with an MILP master problem that features an aug-
mented penalty function to find the minimum over the convex hull determined

by the half-spaces at the solution (z?,y°).

3. Fix the binary variables y = y* and solve the resulting NLP. The new solution
would be (z!,y!).

4. Find a binary solution y? with an MILP master problem that corresponds to
the minimization over the intersection of the convex hulls described by the

half-spaces of KKT points' at y° and y!.

5. Repeat step 3 and 4 until the NLP subproblem starts worsening (increasing).
Repeating step 4 means augmenting the set over which the minimization is

performed with additional linearizations at the new KKT point.

1A feasible point that satisfies the Karush-Kuhn-Tucker conditions. This condition is the
Lagrange Multiplier Rule, which Kuhn and Tucker published as an extension to allow inequality

constraints.



Appendix B

IMT-2000 Frame Structures

The dedicated physical channels (DPCH) in the forward and reverse link are used
to carry user and control information between the network and users. These chan-
nels correspond to two category of channels as dedicated physical data channels
(DPDCH) and dedicated physical control channels (DPCCH) [10]. In the following,
the frame structure of these channels is plotted in order to provide the necessary
background for the proposed resource management algorithm for the IMT-2000

standard.
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B.1 Forward Link

Slot
- 0.625 ms >
Pilot RI | Data
20*2¥ bits(k=0..6), SG=2""%
Slot# 1 Slot # 2 Slot# 16
- 10 ms —>
Frame
Frame # 1 Frame # 2 Frame # 72
- 720 ms >
Super-Frame

TPC : Transmit Power Control
RI: Rate Information

SG: Spreading Gain

Figure B.1: Forward link DPCH frame structure in IMT-2000 proposals.
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B.2 Reverse Link

- 0.625 ms -
DPDCH
~ Pilot L DPCCH
10* 2" bits (k=0..6) SG=28*
Slot # 16
L ] . L] I
[ 3 L ] L ] Q
- 10 ms -
Framk} Frame #2 /rame #72
[ ] L] . I

- 720 ms »

DPDCH : Dedicated Physical Data Channel (I - channel )
DPCCH : Dedicated Physical Control Channel (Q - channel )

TPC : Transmit Power Control
RI: Rate Information
SG: Spreading Gain

Figure B.2: Reverse link DPDCH and DPCCH frame structure in IMT-2000 proposals.
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