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Abstract

In the area of motion planning, considerable work has been done on guarding
problems, where “guards”, modelled as points, must guard a polygonal space from
“intruders”. Different variants of this problem involve varying a number of factors.
The guards performing the search may vary in terms of their number, their mobility,
and their range of vision. The model of intruders may or may not allow them to
move. The polygon being searched may have a specified starting point, a specified
ending point, or neither of these. The typical question asked about one of these
problems is whether or not certain polygons can be searched under a particular
guarding paradigm defined by the types of guards and intruders.

In this thesis, we focus on two cases of a chain of guards searching a room
(polygon with a specific starting point) for mobile intruders. The intruders must
never be allowed to escape through the door undetected. In the case of the two
guard problem, the guards must start at the door point and move in opposite
directions along the boundary of the polygon, never crossing the door point. At all
times, the guards must be able to see each other. The search is complete once both
guards occupy the same spot elsewhere on the polygon. In the case of a chain of
three guards, consecutive guards in the chain must always be visible. Again, the
search starts at the door point, and the outer guards of the chain must move from
the door in opposite directions. These outer guards must always remain on the
boundary of the polygon. The search is complete once the chain lies entirely on a
portion of the polygon boundary not containing the door point.

Determining whether a polygon can be searched is a problem in the area of
visibility in polygons; further to that, our work is related to the area of planning
algorithms. We look for ways to find optimal schedules that minimize the distance
or time required to complete the search. This is done by finding shortest paths
in visibility diagrams that indicate valid positions for the guards. In the case
of the two-guard room search, we are able to find the shortest distance schedule
and the quickest schedule. The shortest distance schedule is found in O(n2) time
by solving an L1 shortest path problem among curved obstacles in two dimensions.
The quickest search schedule is found in O(n4) time by solving an L∞ shortest path
problem among curved obstacles in two dimensions. For the chain of three guards, a
search schedule minimizing the total distance travelled by the outer guards is found
in O(n6) time by solving an L1 shortest path problem among curved obstacles in
two dimensions.
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Chapter 1

Introduction

The idea of guarding the interior of a polygon was first introduced as the art
gallery problem by Klee, with the first published result in [9]. The problem requires
selecting a finite number of points (guards with 360◦ vision) in a polygon such that
every point in the polygon is visible from at least one of the guards. Chvatal
determines that the number of guards necessary for any polygon with n vertices
is at most bn/3c. In general however, determining the exact minimum number of
guards for a polygon is known to be NP-complete [23]. There have since been many
variants and refinements to polygon search problems, including a book devoted to
art gallery problems [32] and much more recent work.

A more complicated problem is obtained by considering mobile guards, in which
case the possible paths of guards must be considered. The term “watchman” is used
for the case of a single mobile guard with vision in all directions at all times [8].
The guard can move anywhere inside the polygon, and the polygon is searched once
the guard has seen every point in it. For the watchman route problem, the shortest
possible cycle that searches the polygon is desired. The best known algorithm to
calculate the shortest watchman route runs in time O(n3 log n) for a tour with a
fixed starting point [13].

The examples discussed so far simply require that every point in the polygon
be seen by a guard. If the goal is instead to try to detect mobile intruders, the
problem becomes more complex. The problem of searching for mobile intruders
inside a polygon was first introduced in [39]. In this case, the guard must follow a
search schedule that ensures no intruders are in the room, under the assumption
that the intruders can move during the search. A guard that can see in all directions
at all times is called an ∞-searcher. More generally, if the guard’s vision is limited
to the beams from k moveable flashlights, it is called a k-searcher. These new
aspects of the problem make it even more complex.

Lee et al. [25] consider the case of a 1-searcher in a room (polygon with a door
point on the boundary). The door point is the starting location for the search,
and the 1-searcher must ensure that no intruders in the room may leave through
the door undetected. Note that with a 1-searcher, it is imperative that the guard
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move along the boundary of the polygon to ensure that the intruder cannot sneak
behind the guard. Lee et al. [25] characterize 1-searchable rooms, give an O(n log n)
time algorithm for determining 1-searchability of a room, and give an O(n2) time
algorithm for generating a search schedule (for searchable rooms).

In the variant known as the two-guard room search problem, the flashlight beam
of a 1-searcher is replaced by a second guard moving along the boundary of the
polygon. Both guards start at the door and must be able to see each other at all
times during the search. This problem was first studied by Park et al. [35], and
they give an O(n log n) time algorithm to determine if a room can be searched.
This is improved to O(n) by Bhattacharya et al. in [4].

Efrat et al. study a more general version of the two-guard search approach
where a chain of n guards is used to search a polygon, where consecutive guards
must maintain mutual visibility [14]. Their work focuses on finding the number of
guards required to search a given room, and they develop an algorithm that finds
the minimum number of guards in O(n2) time for n-vertex polygons.

The work on mobile intruders and limited visibility of guards has concentrated
on identifying which polygons can be searched. The question of optimality of
the search path(s) has not usually been addressed. There are several possible
optimization criteria. One is to minimize the sum of the distances travelled by all
the guards. Another is to minimize the total time spent during the search, assuming
some maximum travel speed for the guards. For a single guard, these measures are
the same, but when the scenario involves more than just the movement of a single
guard, they are different, as we show in Chapter 3.

The main goal of this thesis is to find optimal search schedules for guards search-
ing for mobile intruders. We first look at the problem of two guards searching a
room. For any room that can be searched, we find a search schedule that minimizes
the total distance that the guards need to travel, and we also find a search schedule
that minimizes the amount of time required for the guards to search the room.
Our algorithms find the shortest distance schedule in O(n2) time and the quickest
schedule in O(n4) time. For a chain of three guards, our algorithm finds a schedule
minimizing the distance travelled by the outer guards in O(n6) time.

Our main idea for finding optimal search schedules is to model the problem as
a shortest path problem in a visibility obstruction diagram [22]. These diagrams
indicate which points on the boundary of the polygon represent valid configurations
for the guard(s). Visibility obstruction diagrams have been used previously to
determine if a polygon is searchable ([22, 14, 4]), but they have not been used
before for optimization.

This thesis is organized as follows.

In chapter 2, we go into more detail about variants of the problems discussed
above and provide some preliminary background information that is necessary for
the details of the thesis.

In chapter 3, we use a form of visibility diagram for two guards searching a room
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that contains information such that any path from the starting point in the diagram
(both guards at the door) to an ending line (both guards meeting again somewhere
on the boundary) corresponds directly to a search schedule for the guards. We find
shortest paths in this 2-dimensional visibility diagram corresponding to optimal
search schedules for the room. Specifically, the shortest L1 path from the starting
point to the ending line yields a shortest distance search schedule, and the shortest
such L∞ path yields a quickest search schedule.

In chapter 4, we look at the problem of a chain of 3 guards searching a room.
In this case, the space of all valid configurations of the guards is 4-dimensional.
Because of this, it is not obvious how to solve the resulting search problem in
a reasonable running time. Instead, we use a similar approach in searching a 2-
dimensional link diagram to find a search schedule.

3



Chapter 2

Background Information

This chapter contains information useful for understanding the results contained
within this thesis. In Section 2.1, we first fill in more detail of the background that
was given in the introduction, following developments in polygon guarding from the
basic art gallery theorem to our specific guarding problem with mobile intruders.
Compared with the basic Art Gallery result, our problem involves mobility (of
guards and intruders), and also optimization of the search path. It thus falls within
the general area of Motion Planning, and more specifically Planning Algorithms.
We give an overview of these areas in Section 2.2. The heart of our algorithms
involve shortest path computations; we survey results on shortest paths in Section
2.3. Finally, in Section 2.4 we discuss some related aspects of visibility in polygons.

2.1 Previous Work

Consider a scenario in which a polygonal room contains valuables that must be
kept safely inside the room. Guards, or entities with some form of vision, will be
used to detect intruders that may attempt to remove items from the room. We will
consider different problems that use varying types of guards, and several aspects of
the problem will be considered when determining how to effectively guard a room.
It is firstly necessary to know whether or not a specific room can be guarded at
all, given certain assumptions about the guards and potential intruders. For any
room that can be guarded, the guards need to be told where to go and possibly
where to look. There may be a limited number of guards available, and it may be
important to determine the minimum number of guards that are needed to guard
a particular room. It may also be important to find a shortest route to clear a
room using mobile guards. Different ideas about what a guard is capable of (such
as whether or not a guard can move) have been considered, and different problems
result from these different guarding paradigms.

In the art gallery problem, guards are not allowed to move, but every guard
has 360◦ vision. The goal is to select locations in the polygon for the guards to
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Figure 2.1: The Art Gallery problem - three points guarding the polygon

stand so that every point in the polygon is visible to at least one of the guards.
The problem of finding the worst case minimum number of guards needed for an
n-vertex polygon was first posed by Klee. Figure 2.1 gives an example of a polygon
and guard locations. Chvatal determines that this number is bn/3c [9] and Fisk
gives a much simpler proof [15]. These results show that this number holds even
when guards are restricted to being placed only at vertices of the polygon. In
general however, determining the exact minimum number of guards for a given
input polygon is known to be NP-complete [23], even when restricting the possible
positions of the guards in this way.

A variant of the art gallery problem with stationary guards allows the guards
to see a conical range restricted by some fixed angle. Toth [42] first showed that
if the guards have 180◦ vision and can be placed anywhere inside the polygon, the
number of guards always sufficient to guard any n-vertex polygon is still bn/3c.
When guards have vision in the range of [90◦, 180◦), up to 2n/3− 1 guards may be
needed [43]. When the angle of vision for the guards is in [45◦, 60◦), up to 2bn−1

2
c

guards may be needed [44].

The problem of guarding a polygon gets more complicated when the guards
may move. The next scenario we will discuss still assumes that a guard can see in
all directions at all times, but instead of placing stationary guards, there will be a
single moving guard. In the problem of a watchman in a polygon [8], the goal is
to find a path inside the polygon for the guard to follow such that every point on
the boundary of the polygon is visible from at least one point on the path. Thus
a single guard travelling along this path would detect a stationary intruder inside
of the polygon. For the watchman route problem, the shortest possible cycle that
searches the polygon is desired. The best known algorithm to calculate the shortest
watchman route runs in time O(n3 log n) for a tour with a fixed starting point [13].
The same result gives an upper bound of O(n4 log n) on the time complexity for
the version of the problem without a fixed point. Figure 2.2 gives an example of a
polygon and a watchman route that searches the polygon.
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Figure 2.2: Watchman route problem - this route guards the polygon

Having discussed mobile guards, it is natural to consider that any intruders in
the room may also be mobile. The next problem we discuss is one in which a single
guard must search the polygon to ensure that there are no mobile intruders. No
assumptions are made about relative speeds of the guards and the intruders – to
handle worst-case scenarios, intruders are assumed to be arbitrarily fast. Suzuki
and Yamashita first posed this problem [39]. A guard with 360◦ vision at all times
is called an ∞-searcher in this model. Suzuki and Yamashita also consider that
the guard may not be able to see in all directions at all times. Their version of a
guard with limited visibility is a guard with k flashlight beams that it can shine
in different directions over time. The guard sees along these k rays emitted from
his position, thus an intruder crossing one of these light beams would be detected.
Such a guard is called a k-searcher; thus a guard with a single flashlight beam is
called a 1-searcher. A polygon that can be searched by a k-searcher is said to be
k-searchable.

These new aspects of the problem make it more complex. Firstly, note that
since a 1-searcher has only one ray of vision and the intruder moves arbitrarily
quickly, the 1-searcher must move along the boundary of the polygon to prevent
any intruders from moving behind the guard. Consider the polygon in figure 2.3. A
guard with a single flashlight starting at point A can search the BAHG region as
it moves to B, but if it then moves to C, the flashlight will skip over the edge GF
entirely. So an intruder that was hiding near vertex F could move into the BAHG
region undetected while the guard is on the edge BC. We say that the BAHG
region is contaminated. As a result, the guard would need to search the BAHG
region again before the polygon is searched completely.

In [39], characterizations are given of certain polygons that can or cannot be
searched by guards with certain numbers of flashlights. It was proven in [34] that
having k flashlights is no more powerful than having 2, i.e., that any k-searchable
polygon is 2-searchable. A path for a 2-searcher can be constructed in O(n2) time
[34]. Checking the 1-searchability of a polygon can be done in O(n log n) time [33]
and a schedule can be constructed in O(n2) time [22]. There is no mention of
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Figure 2.3: Intruder can move undetected from unsearched to searched region

optimality of the search schedules that are found.

Another direction of research that people have pursued is to fix the starting point
of the guards’ search and require that the searched portion of the polygon always
include this start point. This models having a “door” in the room by which the
searchers enter and through which any intruders attempt to escape undetected. Lee
et al. [25] consider the case of a 1-searcher in a polygon with a door (a room). Since
intruders can move arbitrarily fast, the search must begin at the door. The goal is
to find a search schedule that does not allow intruders to leave through the door
undetected and eventually finds any intruders that are in the room. In [25], they
characterize 1-searchable rooms, give an O(n log n) time algorithm for determining
1-searchability of a room, and give an O(n2) time algorithm for generating a search
schedule (for searchable rooms). No concern is shown for finding an optimal search
schedule.

A variant known as the two-guard room search problem takes a different ap-
proach to the idea of guards searching a room. Imagine the guards as two robots
with a light beam between them. As long as the robots are mutually visible, the
beam between the robots can remain intact. If an intruder were to cross this line
of sight between the robots, the light beam would be broken, and the robots would
detect the intruder. In this case, both guards must remain along the boundary of
the polygon, starting at the door, and the guards must be able to see each other
at all times during the search. This problem was first studied by Park et al. [35],
and they give an O(n log n) time algorithm to determine if a room can be searched.
This is improved to O(n) by Bhattacharya et al. in [4]. These works do not give
algorithms to output search schedules, let alone optimal search schedules.

An earlier variant of the two-guard room search problem considers the case
of searching a polygon starting at a door point and ending at a pre-determined
boundary point. In this version, called searching a corridor or street, the guards may
not cross either the starting or the ending point. For this problem, Icking and Klein
[20] find a search schedule of minimum total length in time O(n log n + k) where
k ∈ O(n2) is the size of the output. Note that while this problem is very similar
to the two-guard room search problem, it is not possible to reuse this algorithm to
find a search schedule of minimum total length by testing all possible final meeting
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points of the two guards, since there are rooms that can be searched only by allowing
the guards to cross the final meeting point [35]. Their approach involves querying
the polygon repeatedly while constructing the search schedule, while our approach
makes use of a secondary data structure built from the polygon. This appears to
be the first appearance of an optimal schedule for a search by multiple guards.

The two-guard approach can be extended to a chain of n guards with a light
beam between each pair of consecutive guards; then each of these pairs must main-
tain mutual visibility at all times. This version is studied by Efrat et al. [14], and
they consider searching a polygon (without a door point). Their work focuses on
finding the number of guards required to search a given polygon. Tan [41] gives
an algorithm that finds the minimum number of guards r∗ required to search an
n-vertex polygon in O(n2) time and an algorithm to generate a search schedule in
O(r∗n2) time. In [40], Tan finds an O(n log n) time algorithm to determine if a
street can be searched by a chain of three guards and generates a search schedule
in O(n log n+m) time, where m ∈ O(n2) is the size of the schedule.

In contrast to the majority of the previous work in polygon search problems,
this thesis focuses on optimizing search schedules. We examine problems involving
a chain of two or three guards searching for a mobile intruder in a polygonal room
with a door. For the case of two-guard room search, we develop an algorithm to
find the minimum-distance search schedule for any polygon in O(n2) time and an
algorithm to find the minimum-time search schedule for any polygon in O(n4) time.
For the case of searching a room by a chain of 3 guards, we find a schedule that
minimizes the distance travelled by the outer guards in O(n6) time.

2.2 Planning Algorithms

This section provides a very brief survey of planning algorithms and some details
from the subarea of motion planning [21].

We consider a plan to be a sequence of actions that will accomplish a particular
task from a specific starting state. The job of a planning algorithm is to create a
desired plan to accomplish a task when given a specific starting state as its input.
Consider the task of moving from the start of a maze to its exit. A specific sequence
of movements that will solve a particular maze is a plan. An algorithm that will
generate a solution to any given maze is a planning algorithm. This maze problem
lies in the realm of motion planning, where the plan describes the movement of
some object [5]. In the area of robotics, where motion planning problems tend to
arise, more complicated problems can involve multiple objects, complex shapes, and
online situations. Planning problems in other areas, such as artificial intelligence
and control theory, consider a range of other situations like any general achievement
of a goal state or manipulation of values in order to maintain a consistent desired
output over time [21].

In polygon search problems using mobile guards, finding a way to search the
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polygon is a planning problem. Given a polygon, possibly with a door point, an
algorithm to find a search schedule for the guards to follow is a planning algorithm.
Polygon search problems discussed in this work will make use of some ideas from
the area of planning.

2.2.1 Configuration Space

For any particular motion planning problem, the set of all possible states is known
as the configuration space. With objects moving in the continuous realm, the con-
figuration space is continuous, giving an infinite number of configurations. For a
simple scenario of a dot moving along a line segment, the configuration space is
simply the entire line segment. If the dot can move in two dimensions (inside a
polygon, for example), the configuration space is also 2-dimensional.

If we consider the case of a 1-searcher, where the guard and flashlight beam can
move independently, each configuration no longer represents simply a point in space,
but rather the combination of the location of the guard and the direction of the
flashlight beam. In the case of a 1-searcher searching for a mobile intruder inside a
polygon, where the guard may only move along the boundary of the polygon, we can
consider the flashlight beam as also being located on the boundary of the polygon
(where the beam first hits a wall). Thus the movement of the guard is 1-dimensional
along the perimeter of the polygon, and the movement of the flashlight beam is 1-
dimensional, also along the perimeter of the polygon; therefore the configuration
space is 2-dimensional.

A path through the configuration space represents a plan of continuous states.
Thus a plan to solve a particular problem corresponds to some path through the
configuration space of that problem. However, not every state in the configuration
space is a valid state for the problem being considered. These are manifest as
obstacles in the configuration space. For example, in a polygon with a reflex vertex,
there are points on the polygon boundary that cannot see every other point in the
polygon. Taking a pair of points that are not mutually visible, it is not possible
for a 1-searcher to shine its flashlight beam from one of these points to the other.
Thus, in the configuration space for this kind of problem, the reflex vertex would
cause an obstacle to appear. A continuous path through the configuration space
that does not intersect any obstacles corresponds to a valid plan, and a path from
a starting configuration to a desired state is a solution to the problem.

2.3 Shortest Path Problems

A common optimization problem with respect to paths is to find a shortest distance
path between two endpoints; this is the type of problem that we need to solve for our
results. In a graph, the shortest path from a node to any other node along edges of
the graph is typically found using Dijkstra’s algorithm [11]. In a geometric shortest
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path problem, a path is not confined to edges. Instead, there are other restrictions
on feasible paths, such as obstacles that must not be intersected or polygon edges
that must not be crossed. For a survey on problems related to shortest paths, see
[29].

2.3.1 Distance Metrics

The typical geometric shortest path problem concerns Euclidean space, where the
distance between two points is equal to the length of the direct straight line segment
between the two points. Shortest paths can be considered in different metrics where
the distance between two points is defined in alternative ways. Consider the Lp

metrics, where the distance between two points in 2-dimensional space is defined to
be ((∆x)p + (∆y)p)1/p; Euclidean space is considered the L2 metric. We will look
at two more special values for p, giving us the L1 and L∞ metrics.

In the L1 metric, the distance between 2 points in 2-dimensional space is (∆x+
∆y), or in other words, the sum of the horizontal and vertical distances between the
two points. In the L∞ metric, the distance between 2 points in 2-dimensional space
is max((∆x), (∆y)), or in other words, the greater of the horizontal and vertical
distances between the two points. These are related in that a unit disc is a square
in both cases, though rotated 45◦ in the case of the L1 metric where it resembles a
diamond shape [24]. In general, we denote the length of a path π in the Lp metric
as |π|p.

A geometric path need not consist of line segments. Thus we must consider the
length of a general curve when determining the length of a path. The length of a
curve C = C(t), t ∈ [0, T ] in any metric is defined to be sup(

∑k
i=1 d(C(ti), C(ti−1)))

where the sup is taken over partitions t0, . . . , tk of [0, T ], as long as the supremum
exists [16]. Thus, the distance along a path in any metric is defined in this way. This
distance is finite for rectifiable curves, which are the only curves we are concerned
with.

2.3.2 Algorithmic Approaches for Geometric Shortest Paths

We will examine two general approaches to solving geometric shortest path prob-
lems. Both approaches are based on ideas for solving shortest path problems in the
simpler realm of graphs.

Graph Approaches

Shortest path problems on graphs tend to be less complicated to solve than geomet-
ric shortest path problems due to the discrete nature of graphs. Some geometric
shortest path problems can be simplified by considering a finite subset of points
that are particularly significant. For example, in the L2 metric, it can be shown
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that the shortest path between points amongst polygonal obstacles bends only at
corners of obstacles. These points are represented by vertices in a new graph, and
distances between pairs of points that can see each other are the weights on the
edges between the corresponding pairs of vertices. This visibility graph can be
computed in O(n log n + m) time [36], [37], [38]. Then the shortest path between
the original points can be found by running Dijkstra’s Algorithm on this graph in
O(n log n+m) time. The same approach to solving the problem will work in other
metrics, as long as an appropriate definition of mutually-visible points is used when
constructing the visibility graph.

Continuous Dijkstra

Another approach to the problem would be to try to find the shortest path directly,
without having to create the entire visibility graph. The technique, known as
Continuous Dijkstra [30], uses an approach similar to the way Dijkstra’s algorithm
works on a graph. Starting from the source point, the algorithm considers all
points that can be reached within a particular distance, which increases during the
algorithm. When these points include an obstacle vertex, the subsequent calculation
of all points at a particular (slightly greater) distance from the source may depend
on travelling along a path around this obstacle. This is one kind of event that may
occur during the calculation, and there are other types as well. Eventually, the set
of points will include the destination point, and the shortest path to get there is
reconstructed based on events that occurred along the way. The running time of
the algorithm depends on the efficiency of determining the occurrence of the events
and making updates. Hershberger and Suri derive a running time of O(n log n) for
finding shortest L2 paths using the Continuous Dijkstra approach [19].

2.4 Visibility in Polygons

An interesting aspect of polygons concerns how pairs of points are visible to one
another within the polygon. Clearly, polygon search problems are related to vis-
ibility within polygons. Ghosh [17] provides a thorough examination of visibility
algorithms on polygons. In this section, we briefly give some explanations of a few
concepts relevant to our work.

An LR-visible polygon is a polygon with two points s and t such that every point
on the clockwise boundary from s to t is visible from some point on the clockwise
boundary from t to s, and every point on the clockwise boundary from t to s is
visible from some point on the clockwise boundary from s to t [17]. LR-visibility
has been used as a factor in determining the searchability of polygons under several
guarding paradigms [45], [4].

For any polygon P , let ∂P denote the boundary of the polygon. When we discuss
mutual visibility of a pair of points, we are using the notion of weak visibility; if
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Figure 2.4: Backward and forward extension points of a reflex vertex

two points on ∂P are mutually visible, then the line segment connecting them lies
inside P and does not intersect the interior of any disjoint edges. Thus, two points
on the same edge of P are mutually visible.

In a convex polygon, all points of the polygon see each other. More interesting
polygons have reflex vertices, which prevent certain polygon points from seeing each
other. For any reflex vertex r, we define the forward and backward extension points,
F (r) and B(r), to be the points where two rays extending inward from the edges
incident with r first intersect the boundary of the polygon. See Figure 2.4 for an
example. These points are notable since each one separates a boundary region that
can see all points along an edge incident with r from one that cannot see any of
those points besides r.

LaValle et al. [22] introduce a visual representation of the visibility between all
pairs of points on the boundary of a polygon. This idea of a visibility obstruction
diagram has been very useful in solving problems related to polygon search and is
vital to the results in this thesis. We describe the relevant diagrams more specifically
in Section 3.4 and Section 4.3. Also, see [46] for an extensive examination into this
area.
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Chapter 3

Room Search by Two Guards

3.1 Introduction

Let (P, d) denote a room, which is a simple polygon P with a designated point
d on its boundary, called a door. The two guards are allowed to walk along the
boundary of the room. They both start at d and initially go in opposite directions.
Neither one may cross d at any time. The goal is for them to maintain their mutual
visibility at all times and meet again somewhere else on ∂P , at which point the
whole room has been searched for a mobile intruder. This problem, a variation
on searching for a mobile intruder inside a polygon by a 1-searcher [39], was first
studied by Park et al. [35]. For more background, see section 2.1.

In this chapter we will present an algorithm that will find optimal search sched-
ules, if they exist, using two different notions of optimality: the shortest distance
travelled and the shortest length of time required to search the room. The short-
est distance schedule is found in O(n2) time and the quickest schedule is found in
O(n4) time. This algorithm makes use of a search space that is a visibility diagram
describing the valid positions for the two guards to maintain mutual visibility. The
concept was first discussed in [22] and later modified by Zhang [46]. To maintain
relevance to the current problem, we use the latter version, which assumes that
two points on a single polygon edge are mutually visible. Our main lemma is that
minimizing the distance (resp. time) of the room search schedule corresponds to
minimizing the length of a path in the search space under the L1 (resp. L∞) metric.

In Section 3.2, we briefly look at the relationship between searching with a sin-
gle guard with one flashlight and searching with two guards. In Section 3.3, we
show how optimizing distance and optimizing time may result in different search
schedules. In Section 3.4, we describe the visibility diagram we will use in our al-
gorithms. In Section 3.5, we discuss the relationship between paths in this diagram
and schedules for searching the room. In Section 3.6, we describe how to contruct
the diagram and analyze the runtime of this procedure. Then in Section 3.7, we
give the details of the algorithms to find schedules minimizing overall distance and
time of a search schedule.
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3.2 Two Guards vs. a 1-Searcher

The two guard problem is very similar to another room search variant [25] involving
a 1-searcher. A 1-searcher is a single guard with a flashlight who must remain on
the boundary of the polygon and may move the direction of the the flashlight beam.
The goal is to search the entire polygon by the flashlight beam in such a way as
to ensure that no intruder could have possibly reached the door undetected by the
guard and flashlight, and that no intruder inside the room remains undetected at
the end of the search.

It is easy to see that any search schedule for two guards maintaining mutual
visibility yields a search schedule for a single guard with a flashlight. The motion
of one of the guards corresponds to the motion of the 1-searcher. The motion of
the other guard corresponds to the movement of the light beam along edges of the
polygon. Since there is mutual visibility between the two guards at every point
in time, the corresponding locations of the guard and flashlight beam are feasible.
Also, since intruders have nowhere to hide in the two-guard version, there is no way
for intruders to avoid the 1-searcher.

The converse fails: not every search schedule for a 1-searcher corresponds to a
search schedule for two guards. This is because a continuous change in the angle
of the flashlight may correspond to a discontinuous change in the position of the
projection of the light onto polygon edges. Zhang demonstrates an example showing
this [46].

3.3 Shortest Distance Schedule vs. Quickest Sched-

ule

Minimizing the distance and minimizing the time required for searching a room
may result in different search schedules. Figure 3.1 shows an example of a room,
with a door at 0, where the two notions of optimal schedule give two different search
schedules. The shortest distance is achieved if one guard travels from 0 to 2 while
the other guard waits at 5. The resulting total distance travelled at the end of the
schedule is equal to 24 (the perimeter of the polygon). This schedule takes at least
19 time units, since the guard travelling from 0 to 2 travels a distance of at least
19. The quickest search schedule involves one guard travelling along 0, 5, 4, 3, and
2 while the other guard must go from 0 to b and back to a to maintain mutual
visibility. This requires backtracking from b to a, which results in a total distance
travelled that is greater than 24, but it takes less than 15 time units to complete
the entire search.
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Figure 3.1: Shortest distance schedule is different from quickest schedule

3.4 V-Diagram

For any room (P, d), the visibility diagram [22] encodes, for any pair of points on the
boundary of P , whether or not the points are mutually visible. We modify a visi-
bility diagram from [4] and call it the V-diagram; it contains the minimum amount
of relevant information for the room search problem. The diagram’s boundary is
a right triangle with the left and top sides equal in length to the perimeter of P .
With the top left corner (0, 0) representing the door d, the x (resp. y) coordinate
represents the distance along ∂P from the door in the clockwise (resp. counter-
clockwise) direction. Then we can associate any point (x, y) in the diagram with
positions of the two guards on ∂P .

To represent the mutual visibility of pairs of points, any point (x, y) in the V-
diagram is shaded iff the corresponding positions of the two guards are not mutually
visible in the polygon. Figure 3.2 shows an example of this, with vertex labels
on the axes marking off distances from the door to the vertex. Shaded regions
make up obstacles. Each obstacle in the V-diagram is a union of barriers, where a
barrier represents the guard positions blocked by one reflex vertex. A barrier has
a horizontal and vertical side determined by the two edges adjacent to the reflex
vertex [46]. The remainder of the barrier boundary is defined by the pairs of points
on the polygon that are connected by a line that also goes through the reflex vertex.
For example, obstacle A in Figure 3.2 is composed of two barriers, associated with
reflex vertices 9 and 10. The box in the figure shows the portion of the barrier
where vertex 9 would obstruct the view between guards on edges (6,7) and (0,13).

Any point on the diagonal corresponds to a meeting point of the two guards.
Then any path π in the V-diagram from the top-left corner (the door) to the
diagonal (the goal) that does not cross any shaded areas (obstacles) corresponds to
a valid search schedule s of P ; we say that s = S(π). See Figure 3.3 for an example
of a search schedule corresponding to a path in the V-Diagram.
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Figure 3.2: Room (door at 0) and its V-diagram from [4] (obstacles shaded)

3.5 Correspondence Between Paths in the V-diagram

and Search Schedules

The V-diagram can be used to construct optimal schedules for searching the room.
We first describe a relationship between the length of a path in the V-diagram
and the distance/time of the corresponding room search schedule. We will assume
that each guard can travel independently at varying speeds in the range [0, 1] both
forwards and backwards (without crossing the door point). For any search schedule
s, let D(s) denote the distance travelled by the guards during s, and let T (s) denote
the time required for s. Recall that |π|p denotes the length of a path π in the Lp

metric.

Lemma 3.5.1 Let π be a path in the V-diagram for a room and s = S(π) be the
corresponding search schedule of the room. Then |π|1 = D(s) and |π|∞ = T (s).

In order to prove this lemma we must define D(s) and T (s) more precisely.
Let us first recall how the length of a curve is defined. A distance metric d(a, b)
defines the distance between a pair of points a and b. This is the length of the
line segment from a to b. As mentioned in Section 2.3.1, the length of a general
curve π = π(t), t ∈ [0, T ] is defined to be sup(

∑k
i=1 d(π(ti), π(ti−1))) where the

sup is taken over partitions t0, . . . , tk of [0, T ] [16]. The sup exists for curves with
finite lengths, or rectifiable curves, and these are the only ones with which we are
concerned.

We define T (s) and D(s) in a similar fashion, first for straight line segments
and then using a sup.
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Figure 3.3: V-Diagram path and snapshots of corresponding search schedule
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Proof. [Proof of Lemma 3.5.1] By the above clarification of the definition of D(s)
and T (s) it suffices to prove the result for a path π that is a straight line segment.

In the L1 metric, |π|1 = |a − b|1 = |(a − b)x| + |(a − b)y|. This represents the
sum of the distances travelled by the two guards, so π1 = D(s).

In the L∞ metric, |π|∞ = |a − b|∞ = max(|(a − b)x|, |(a − b)y|). Since both
guards have the same maximum speed of 1, assume that the guard travelling the
greatest distance max(|(a − b)x|, |(a − b)y|) = |π|∞ travels at speed 1 to minimize
the time spent. Then the time it takes that guard to travel that distance is |π|∞,
and the other guard can easily travel the shorter distance during that amount of
time. Thus it takes |π|∞ time for both guards to travel along π. We then have
|π|∞ = T (s).

�

Corollary 3.5.2 The search schedule minimizing the total distance travelled by the
two guards corresponds to the shortest path in the L1 metric from the door to the
goal in the V-diagram. The search schedule minimizing the time (i.e., the quickest
search schedule) corresponds to the shortest path in the L∞ metric from the door to
the goal in the V-diagram.

3.6 V-diagram Construction

We now discuss the nature of the V-diagram and how it is constructed.

Theorem 3.6.1 The border of each obstacle in the V-diagram is piecewise hyper-
bolic.

We begin by proving an intermediate result.

Lemma 3.6.2 When a single reflex vertex obstructs visibility between two edges
in the polygon, the curve on the corresponding region of a shaded portion of the
V-diagram is hyperbolic.

Proof. Refer to Figure 3.4. We will assign coordinates to the relevant part of the
polygon. Without loss of generality, assume that one of the endpoints of one of
the edges is (0, 0), and the direction along that side is represented by the vector
(0, 1). Then let R = (r1, r2) be the reflex vertex, let (a1, a2) be one endpoint of
the other edge, and let (v1, v2) be the normalized vector representing the direction
along the other edge. Let C = (0, 0) + s(0, 1) be any point along the first edge
and let D = (a1, a2) + t(v1, v2) be any point along the second edge. The barrier of
the shaded region has a curve corresponding to the points along the edges where
the visibility line along the edges goes through R (that is, when CR and DR are
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Figure 3.4: Movement of mutually visible guards with a reflex vertex

parallel). Then by treating the points as points in three dimensions, we can use the
vector cross product to decide that two points along the edges give a point on this
curve whenever

CR×DR = 0
⇐⇒ (((0, 0) + s(0, 1))− (r1, r2))× ((a1, a2) + t(v1, v2)− (r1, r2)) = 0
⇐⇒ (−r1, s− r2)× (a1 + tv1 − r1, a2 + tv2 − r2) = 0
⇐⇒ −r1a2 − r1tv2 + sa1 + stv1 − sr1 + r2a1 + r2tv1 = 0
⇐⇒ −s(a2 + tv2 − r2) = −r1a2 − r1tv2 + r2a1 + r2tv1

⇐⇒ s =
r1a2 + r1tv2 − r2a1 − r2tv1

a1 + tv1 − r1
Note that this expression is a quotient of two terms that are linear in t. Thus

the relationship between the movement along one edge and the movement of the
projection of the line of sight along another edge of the polygon is given by the
equation of a hyperbolic curve.

�

We now prove Theorem 3.6.1.

Proof. From the above lemma, we know that a single reflex vertex obstructing
visibility between two edges of the polygon corresponds to a hyperbolic portion of
a barrier in the V-diagram. This is true for any pair of edges with mutual visibility
obstructed by the reflex vertex, so each barrier is made up of hyperbolic pieces.
Each obstacle is a union of barriers, so each obstacle is piecewise hyperbolic. �

To construct the V-diagram we need to accurately describe all of the obstacles.
To do this, we must, for each reflex vertex r:

1. Find the backward and forward extension points, B(r) and F (r) (recall from
Section 2.4). This takes O(n) time.
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2. Starting with the line through r and B(r) and ending with the line through r
and F (r), sweep the line in a clockwise rotation about r. During each portion
of the sweep in which the same 2 polygon edges intersect the sweep line, find
the hyperbolic curve of the V-diagram representing the pairs of points on the
polygon that have a connecting line through r. For each new polygon edge
encountered, a new hyperbolic portion is determined. This takes O(n) time.

Therefore, with O(n) reflex vertices, the exact visibility diagram can be de-
scribed in O(n2) time.

3.7 Algorithms for Optimal Schedules

We have now reduced the problem of finding optimal search schedules with respect
to distance and time to the problem of finding shortest paths in the L1 and L∞
metrics among curved obstacles in the plane that are piecewise hyperbolic.

We note the following two properties of L1 and L∞ shortest paths:

1. Between any two points there is a shortest L1 path that is rectilinear. This
remains true in the presence of curved obstacles, except in the situation – that
doesn’t arise for us – where the shortest path travels between two abutting
curved objects.

2. Recall from Section 2.3.1, the L1 and L∞ norms are related by a linear map-
ping; in particular we can find shortest L∞ paths by rotating the plane and
its obstacles by 45◦ and scaling, and then finding shortest L1 paths.

Thus it suffices to find shortest L1 paths, either among the original obstacles,
or among the obstacles rotated by 45◦.

There is considerable work on finding shortest L1 paths among polygonal ob-
stacles in the plane [7, 28]. There is also work on “curvilinear” computational
geometry [12] which has led to shortest path algorithms among “splinegons” [27].
However, there appears to be no solution in the literature to finding shortest L1

paths among curved obstacles. Recall the two basic approaches to solving this
problem described in Section 2.3.2. The continuous Dijkstra approach is used by
Mitchell [28] for polygonal obstacles. Alternatively, the problem may be modelled
as a graph shortest path problem [10]. The former approach will likely lead to a
more efficient solution, but we will simply claim a polynomial time algorithm via
modelling the problem on a graph.

As vertices of the graph, we will use the local x or y extreme points of the
obstacles, with the understanding that if a whole segment of an obstacle boundary
is extreme (i.e. is horizontal or vertical) then we only take the endpoints of the
segment.
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Figure 3.5: Intersection of path and obstacle

Lemma 3.7.1 Between any two points there exists a shortest path among obstacles
in the L1 metric such that the path intersects obstacle boundaries only at local x or
y extreme points of the obstacles, and such that the portion of the path between two
consecutive such points is monotone in x and y.

Proof. By note (1) at the beginning of section 3.7, there is a shortest path that is
rectilinear. Suppose π is a shortest rectilinear path that contains obstacle intersec-
tion points that are not local extreme points. Let q = π(t) be the first such point
on π.

If π does not change direction at q then q is a local extreme point. Otherwise
π makes a right angle turn at q, and we can alter the path as shown in Figure 3.5;
the dotted path turns before q, avoiding it, and then rejoins the original path. The
revised path has the same length, and if the detour is small enough, the revised
path intersects no obstacles. Applying this inductively yields the desired path.

Now suppose that the path is not monotone between two consecutive extreme
points. Then, assuming the path does not backtrack on itself, somewhere on the
path there are 3 consecutive segments such that the first and third go in opposite
directions (w would be the second of these segments in Figure 3.6). Since there are
no extreme points on the second segment, it can be translated so as to shorten the
lengths of the first and third segments without intersecting any obstacles (w can be
shifted down without hitting any obstacles). Thus the path can be shortened until
an obstacle is hit, which happens at an extreme point. So any such non-monotone
subpath between consecutive extreme points can be shortened.

�

This lemma justifies creating a graph whose vertices are the extreme points of
obstacles and whose edges correspond to monotone paths between pairs of points.
We will in fact use a subset of these edges, not because it reduces the quadratic
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Figure 3.6: Shortest L1 subpaths between extreme points

number of edges, but because it simplifies finding the edges. If there is a monotone
path between two points then there is a lowest monotone path, the lower envelope of
all monotone paths. A lowest monotone path is minimal if it does not go through an
extreme point of an obstacle except at its endpoints. Observe that a non-minimal
path is a concatenation of minimal paths.

This justifies restricting the edges of the graph to minimal lowest monotone
paths between pairs of points. The weight of an edge is the L1 distance between
the endpoints.

We add one additional vertex g to represent the goal line in the V-diagram. In
the case where the goal line is 45◦ from horizontal (i.e., when finding the shortest
distance search schedule), the vertex is treated as if it were located in the V-diagram
at the point mirrored by d through the goal line. The edges and edge weights to
g are defined as those in the rest of the graph. Thus, g is equidistant in the L1

metric from all points on the goal line (that distance being the perimeter of P ), so
any shortest path to g from the starting point in the V-diagram (where the path
goes through the goal line) contains a shortest path to the goal line.

In the case where the goal line is horizontal (i.e., the rotated case when finding
a quickest search schedule), we use a more direct approach, since there is no point
that is equidistant from all points on the goal line. We add the vertex g to the
graph, and we add an edge between it and an extreme point iff the vertical path
between the extreme point and the goal line does not cross any obstacles. To
determine this for any particular vertex, we need only to determine if any obstacles
lie directly below the extreme point. The edge weight is the distance between the
point and the goal line.

Let N be the number of vertices of the graph. Since there are O(n) barriers
each with O(n) extreme points, thus N is O(n2). The graph has O(N2) edges. In
the case where the obstacles are not rotated by 45◦ (the original L1 case) we obtain
a tighter bound.

Claim 3.7.2 There are O(n) vertices in the graph in the L1 case.
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Proof. We show that each of the O(n) barriers in the V-diagram of a simple
polygon contains O(1) extreme points. The boundary of each barrier consists of one
horizontal segment, one vertical segment, and a curve joining them that is composed
of hyperbolic sections (Theorem 3.6.1). The horizontal and vertical portions define
3 extreme points. We claim that the remaining curve is weakly monotone in x and y,
which implies that there are no extreme points along it, with the possible exception
of 2 points having the same extreme values as the 2 of the 3 previously-mentioned
extreme points.

Let v be the reflex vertex corresponding to the barrier. An x coordinate of
a point P on the curve of the barrier’s boundary corresponds to the position of
one guard on the polygon boundary. There is a unique line through the guard’s
position and vertex v. Continuing this line on the other side of v, it will intersect the
polygon again. If the intersection occurs at an edge of the polygon that is collinear
with the line, then all points along that edge determine y coordinates for that x
coordinate on the barrier; this corresponds to a vertical portion of the obstacle
boundary. Otherwise, we are concerned with the first time the line intersects the
polygon boundary again to determine a single y coordinate; no additional points of
intersection between the line and the polygon boundary are actually able to see the
reflex vertex. Thus the curve defined in this way gives no local maxima or minima.

�

We now show how to construct the graph. Find the extreme points of the
obstacles, and the pieces of obstacle boundaries between extreme points. Note
that these pieces are monotone. For each extreme point shoot rays downward and
to the left and the right stopping when we hit the first obstacle boundary piece
encountered. We claim that this can all be done in O(N logN) time using plane
sweeps in the x and y directions.

Consider two extreme points ρ and ψ, with ρ higher. Suppose ψ is to the right
of ρ.

Claim 3.7.3 There is a minimal lowest monotone path between ρ and ψ iff (1)
the ray down from ρ meets the ray left from ψ (i.e. before either encounters an
obstacle), or (2) the two rays meet the same piece of obstacle boundary.

Proof. (⇐) If the ray down from ρ meets the ray left from ψ, then these rays
define a minimal lowest monotone path between the two points.

If the two rays do not meet each other, but they meet the same piece of obstacle
boundary, then these rays and the piece of obstacle boundary (which has no extreme
points on it) define a minimal lowest monotone path between the points.

(⇒) Suppose there is a minimal lowest monotone path µ between ρ and ψ. Because
the path is a lowest monotone path, no point on it can be pushed downward, so each
point on it lies on the ray down from ρ or on the ray left from ψ, or on an obstacle
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boundary. Furthermore, monotonicity implies that the path cannot leave and return
to either of the two rays. Thus the path travels down from ρ, then possibly along
obstacle boundaries, then right to ψ. If the path does not encounter obstacle
boundaries, condition (1) is satisfied. Otherwise, because the path is minimal, it
does not encounter an extreme point along the obstacle boundary. Thus the ray
down from ρ and the ray left from ψ meet the same piece of obstacle boundary and
condition (2) is satisfied.

�

An analogous result holds in case ψ is to the left of ρ. We can test intersection
of rays during the plane sweep. It remains to identify edges arising from condition
(2). For any piece of obstacle boundary b, let U be the set of extreme points whose
downward ray hits b, let R be the set of extreme points whose leftward ray hits b,
and let L be the set of extreme points whose rightward ray hits b. Note that R or
L is empty. We add an edge between any pair ρ ∈ U and ψ ∈ R if ρ is above and
to the left of ψ. We add an edge between any pair ρ ∈ U and ψ ∈ L if ρ is above
and to the right of ψ. The number of edges is O(N2) and we can output them in
that time.

Note that both cases of adding g to the graph are taken care of easily. When
adding g directly to the V-diagram before creating the graph, the graph creation
procedure ensures that the proper edges incident with g are added, along with their
proper edge weights. In the other case, determining if an extreme point lies directly
above an obstacle is already taken care of when finding the first obstacle (if any)
that is encountered by shooting a ray downward from the extreme point.

On the constructed graph, Dijkstra’s algorithm finds a shortest path from the
door vertex to g in O(N2) time. From this we can recover a shortest path in the
V-diagram and hence an optimal room search schedule. Thus, we find a shortest
distance schedule in O(n2) time and a quickest search schedule in O(n4) time.
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Chapter 4

Room Search by a Chain of Three
Guards

4.1 Introduction to Problem

In this chapter, we explore a generalization of the two-guard room search problem
where, instead of two guards, we have a chain of k guards. This problem was first
considered in [14] for the case of a polygon without a door point. We look at the
version with a door point d, and with just 3 guards. Let (P, d) denote a room as
defined earlier. All three guards are initially at the door point d. Two guards, the
first and last one on the chain, are allowed to walk along the boundary of the room,
starting at d, initially going in opposite directions. Neither one may cross d at any
time. The rest of the k guards (in our case, the only other guard) may move inside
the polygon. At all times, the chain of guards must be connected such that every
pair of consecutive guards maintains mutual visibility. The goal is for the entire
room to be swept by the chain of guards; this happens when the chain lies along a
contiguous portion of the polygon boundary not containing d.

Our goal is to solve the same problems as we did for two-guard room search.
In particular, we will explore the relationship between this problem and the search
problem for a 2-searcher (one guard with 2 flashlights). We would also like to find
search schedules that minimize the sum of the distances travelled by the 3 guards,
or the total time spent in the search. When optimizing search schedules for two
guards, our approach of searching the V-diagram required finding a shortest path in
the 2-dimensional configuration space of the problem. Using the same approach to
find the search schedule that minimizes the total distance travelled by all guards or
the time required for the search would require solving shortest path problems in the
4-dimensional configuration space. While there are results for some shortest path
problems among obstacles in three dimensions, they tend to be NP-hard [31]. We
expect that it is hard to find shortest paths among obstacles in 4 dimensions, so for
now, we will restrict ourselves to finding a schedule that minimizes the total distance
travelled by the two guards on the border of the polygon, as it is a manageable
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problem to solve. Since this will involve searching through a diagram that does not
model the entire configuration space, it is necessary to show that a path through
this space, which will define motion for the outer guards, leads to a valid search
schedule for the chain of 3 guards. We prove this in detail in Section 4.4.

Efrat et al. [14] find the minimum number of guards needed to search a polygon
in this way, and they introduce a link diagram that slightly resembles the V-diagram
for two guards. The shape of the diagram is the same in that each point in the
diagram corresponds to a pair of points on ∂P . Instead of having shaded regions
for pairs of guard positions where the two guards cannot see each other, each point
in the diagram is labelled with the link distance between the corresponding two
points on ∂P . The link distance of a pair of points in a polygon is the minimum
number of edges in a path in the polygon joining the two points. If the points are
mutually visible, the link distance is 1; if they are not mutually visible, but there
is a 2-edge path between the points that lies inside P , the link distance is 2. Each
region of points with the same link distance is grouped together. A path in the
link diagram defines motion for the outer guards, which implies a search schedule
for a chain of guards. If the starting and ending points of the path correspond to
meeting points of the outer guards, and the corresponding distance travelled by
the guards is equal to the perimeter of the polygon, then a search schedule for the
entire polygon exists. If the path goes through regions with link distance at most
k − 1, then k guards are needed to perform that search. Efrat et al. [14] use this
approach to find the minimum number of guards required to search the polygon
by an algorithm with running time O(n3). Tan [41] describes a faster O(n2) time
algorithm to find this number.

In this chapter, we find schedules to minimize the distance travelled by the outer
guards when searching a polygonal room. In Section 4.2, we describe the difference
between a chain of three guards and a single guard with 2 flashlights (i.e., a 2-
searcher). In Section 4.3, we discuss the modified version of the link diagram that
we need to solve our problem. In Section 4.4, we show how paths in the link diagram
correspond to search schedules for the guards. Finally, in Section 4.5, we give the
algorithm for finding a search schedule minimizing the distance travelled by the
outer guards.

4.2 Three Guards vs. A 2-Searcher

In this section, we compare the power of a chain of three guards versus a 2-searcher
(a guard with two flashlights). This section is not necessary for understanding
the rest of the chapter. Recall from Section 3.2 that a 1-searcher (i.e., a searcher
with a flashlight) can search any room that can be searched by two guards, but the
converse is not true [46]. We prove the analogous result that a 2-searcher can search
any room that can be searched by a chain of three guards, but that the converse is
false.
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Claim 4.2.1 Any room that can be searched by a chain of three guards can be
searched by a single guard with two flashlights.

Proof. Suppose a room is searchable by a chain of 3 guards. We will convert the
search schedule into a valid search schedule for a 2-searcher. The position of the
2-searcher guard corresponds to the position of the inner guard of the chain of 3.
The positions of the flashlight beams correspond to the positions of the other two
guards of the chain of 3. Since there is mutual visibility between adjacent guards
in the chain, there is a line of sight for each of the flashlight beams to reach the
positions of the corresponding guards on the edges of the room. Thus, at any point
in time, the positioning of the chain of three guards in the search defines a valid
configuration of the 2-searcher. Also, the beams of light can mimic the continuous
motion of the outer guards. By the end of the search, the chain of 3 guards lies
along a contiguous portion of the border of the polygon not containing d, which
corresponds to the 2-searcher guard and its beams all lying along some portion
of the boundary not containing d, indicating a complete search. So the complete
search by a chain of 3 guards defines a valid search by a 2-searcher. �

Claim 4.2.2 There exist rooms that can be searched by a 2-searcher and cannot be
searched by a chain of 3 guards.

The rest of this section will prove the claim with an example of such a room, the
one in figure 4.1. The door is labelled D, and the room has five arms, where each
arm contains one of the vertices A, B, C, F , and G. Bolded boundary regions s, t,
and u in the diagram indicate areas that are visible from the middle of arms A, C,
and B respectively, and the dotted lines indicate the areas of visibility from within
arms F and G. First, we describe how a 2-searcher can search the room. The
searcher starts at the door and clears up to region s and arm A with the flashlight
beams (top-left of figure 4.2). To clear arm A, the searcher must move inside arm
A. It keeps one beam shining at s to ensure no intruders escape through the door
from the uncleared region, and the other beam is used to search the arm (top-right
of figure 4.2). Note that the 2-searcher can search all parts of arm A while shining
one beam at region s. Afterwards, the 2-searcher clears arms C and B in similar
ways.

At this point, the beams of the 2-searcher are between B & F , and between
C & G. Next, the 2-searcher will search arm F . In doing so, the flashlight beam
on the right side of the room reaches back near D, but still on the right side of it
to prevent intruders from leaving through it. This leaves arm C contaminated, as
any intruders hiding in arm G could move undetected into arm C while the beam
is near the door. After clearing arm F , the 2-searcher moves to and clears arm G,
while the other beam is still just near D (still on the right side of it). Finally, the
2-searcher must clear arm C again, since it was contaminated. It moves towards
arm C, bringing the two beams to where it is connected to the rest of the room
(bottom row of 4.2), and then it searches the arm, completing the search.
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Figure 4.1: Searchable by a 2-searcher but not by three guards

We will now show that this room cannot be searched by a chain of 3 guards
by showing that there is a limited amount of progress that can be made towards
searching the entire room. First of all, notice that the search schedule given above
for the 2-searcher cannot be converted directly into a search schedule with a chain
of 3 guards, since one flashlight beam “jumps” across arm C during the search (just
before arm F is searched), which an outer guard (who is restricted to moving along
the boundary) cannot do. We will call the outer guard moving in the clockwise
direction guard 1, the outer guard moving in the counter-clockwise direction guard
3, and the inner guard guard 2. We begin by showing that (except for useless
repetition) the arms must be searched in the order A, C, B.

Claim 4.2.3 Consider the events that a guard is at one of the vertices A, B, F , G,
and C. In a minimum-distance search schedule for a chain of 3 guards, the order
of these events must start with a guard at A, then C, and then B.

Proof. First consider arm C. To search it first, guard 3 would need to reach vertex
C, which can only see points in the outer half of arm C. Thus guard 2 needs to be
in this area. Since guard 1 is on the other side of the door (if we’re searching arm
C first), it needs to be in region t to see guard 2. This implies arm A was already
searched, contradicting the idea that we’re searching arm C first. Either arm A
or arm C must be searched first, since they are the first arms that can be reached
when moving from the door, so arm A must be searched first. By a very similar
argument, arm C must be the next one to be searched after arm A (rather than
arm B). Therefore the order for the first two arms is A and then C.
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Figure 4.2: 2-searcher search schedule

29



At this point, either arm B or arm G must be searched next, since they are the
next arms that the guards can encounter. Suppose we try to search arm G next.
Guard 2 is required to go into the outer part of the arm when guard 3 hits vertex
G. Since guard 1 cannot reach arm G, it is then required to go back near the door
to maintain visibility with guard 2. This would require backtracking through A.
But this in turn would require guard 3 to backtrack through C to get to region s,
eliminating the progress made up to this point (thus making the search longer than
necessary). Thus B must be the next arm to be searched. �

Claim 4.2.4 The room in figure 4.1 cannot be searched by a chain of 3 guards.

Proof. Note that there exists a partial search schedule that searches arms A, C,
and then B. As guard 1 approaches vertex A, guard 2 enters the outer part of arm
A, and guard 3 must be in region s. After finishing the search of arm A, the same
basic idea is repeated for arms C and B. After searching these arms, the two outer
guards are past arms B and C on the boundary of the room, leaving arms F and
G to be searched.

If we try to search arm G next, we run into a problem of undoing the search
of the left side of the polygon, as guard 1 must go back near the door to remain
in sight of guard 2. Getting guard 1 back near the door would require guard 2 to
move back into sections u and then s, hitting a previous configuration. This cannot
happen in a minimum-distance search schedule. Similarly, if we try to search arm
F next, we must backtrack through C to get guard 3 back near the door. This in
turn requires guard 1 to go through region t, which means that arm B would no
longer be searched and we would need to search it again before searching arm F .
Again, we’ve hit a previous configuration. Therefore we cannot search arm F or
arm G with a chain of three guards. �

Thus some rooms can be searched by a 2-searcher but not by a chain of 3 guards.

4.3 Link Diagram

As mentioned earlier, the link diagram used by Efrat et al. categorizes pairs of points
on ∂P according to their link distance, which is one less than the number of interior
guards that would be needed to create a chain of guards between them, with mutual
visibility between each pair of consecutive guards [14]. For the case of 3 guards,
a link distance of 1 or 2 between two points indicates that the chain of guards
can meet the visibility constraints with the two outer guards at those 2 points.
Any greater link distance indicates an invalid configuration, since the visibility
constraints cannot be met with just 3 guards while the outer guards occupy those
2 points. We modify the link diagram by keeping only the information necessary
to find a full search schedule starting at the door.
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Figure 4.3: A reduced link diagram

For any room (P, d), the reduced link diagram encodes, for any pair of points
on the boundary of P , whether or not the link distance of the two points is less
than or equal to 2. It contains the minimum amount of relevant information for
our room search problem. The diagram’s boundary is a right triangle with the left
and top sides equal in length to the perimeter of P . With the top left corner (0, 0)
representing the door d, the x (resp. y) coordinate represents the distance along
∂P from the door in the clockwise (resp. counterclockwise) direction. Then we can
associate any point (x, y) in the diagram with positions of the two outer guards on
∂P .

To represent the feasibility of the link distance of pairs of points, any point
(x, y) in the reduced link diagram is shaded iff the corresponding positions of the
two guards have a link distance of 3 or more. Shaded regions make up obstacles.
Note that the reduced link diagram only represents information for combinations of
positions of the outer guards; valid positions for the inner guard are not represented.
See Figure 4.3 for an example of a simple reduced link diagram.

4.4 Correspondence Between Paths in Reduced

Link Diagram and Search Schedules

In the case of searching a room with two guards, the V-diagram is a representation
of all possible configurations of the guards (i.e., it represents the configuration
space of the problem). In the case of a chain of 3 guards, each of the outer guards
is restricted to moving one-dimensionally along ∂P , but the inner guard may move
two-dimensionally inside the polygon. Thus the configuration space for this problem
is four-dimensional. As we stated earlier, we will simply search through the 2-
dimensional link diagram, and we therefore must prove that a path from the door

31



to the goal in the modified link diagram leads to a corresponding search schedule
for the chain of three guards. In particular, we will show that any continuous curve
between points in the diagram corresponds to valid motion of the three guards
where the two outer guards travel between pairs of corresponding points on the
border of the polygon. It appears that while some of the results in [14] use this
fact, they do not prove it. Also, Tan [41] proves a very similar result using a graph
approach that is different from the link diagram. However, the distance information
for a path through the reduced link diagram, which is vital to the algorithm here,
is lost in the graph construction.

Theorem 4.4.1 There is a path from the door to the goal in the link diagram iff
there is a valid schedule for the chain of three guards to search the room. Further-
more, the correspondence is such that the L1 length of the path in the link diagram
is equal to the total distance travelled by the two outer guards in the search schedule
for the chain of three guards.

Proof. The backwards direction of the theorem is immediate because if we take
a three guard schedule and ignore the middle guard, we get a path in the link
diagram, since the motion of the guards is continuous through valid configurations
for the outer guards. The total distance travelled by the outer guards is the L1

length of the link diagram path.

For the other direction, we will divide the path in the link diagram into subpaths
for which the motion of the middle guard can be specified.

Any continuous path can be divided into subpaths that are each monotone in
both x and y. In the link diagram, this corresponds to each outer guard moving in
one direction along ∂P . In any of these subpaths, a guard may be moving along
multiple edges. Each of these subpaths can be further subdivided so that in each
subpath, each outer guard is moving only along a single edge (in one direction).
We now look at these smaller components of a path.

Lemma 4.4.2 Given a path in the modified link diagram, consider a monotone
subpath from (p, q) to (p′, q′) such that p and p′ are on the same polygon edge and
q and q′ are on the same polygon edge. Then there is a valid schedule for a chain
of three guards such that the outer guards travel from p to p′ and from q to q′

respectively, and such that the sum of the distances travelled by the outer guards is
equal to the L1 length of the subpath in the modified link diagram.

Proof. (Our proof is constructive, leading to a definition of motion of all three
guards given starting and ending points for the outer guards. This motion is used
by the algorithm described later.)

Because (p, q) is a valid point in the modified link diagram there is a path π in
the polygon from p to q that has link distance at most 2. Similarly, there is a path
π′ in the polygon from p′ to q′ of link distance at most 2.
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Figure 4.4: Line of sight exists between outer guards

Consider first the case where π and π′ are both link distance 1 paths. We will
show that there is a schedule for two guards, one travelling from p to p′ and one
travelling from q to q′ so that they are always mutually visible. Later on we will
use this as a stepping stone for the three’guard version. The line segments pq and
p′q′ lie inside the polygon though they may cross each other. The cycle pqq′p′ forms
a 4-gon Q that may or may not be simple, but is entirely contained in P . There
are 3 cases for Q: a simple convex quadrilateral, a simple non-convex quadrilateral,
and a non-simple “bow-tie shaped” 4-gon (Figure 4.4). We consider them in turn.
In a convex quadrilateral, every two points can see each other; thus direct motion
from p to p′ and from q to q′ yields a schedule where the guards can see each other
at all times. In a simple, non-convex quadrilateral, exactly one of the vertices is a
reflex vertex, from which all other points are visible. In this case, one of the guards
must be at the reflex vertex for the entire period that the other guard travels in the
region that can only see that reflex vertex (the shaded region in Figure 4.6 can see
only q of line segment qq′). The remaining region is convex where both guards can
always see each other, and the movement of the guards is direct to the endpoints.
In the third case, where visibility lines cross, mutual visibility is always possible
through that intersection point between any point on pp′ and some point on qq′.
Thus guard 1’s movement is continuous along pp′ as guard 3’s motion is continuous
along qq′.

Now we return to the general case where π and π′ have link distance at most
2. Let m be the bend point on the path π that can see p and q (in case π has a
single edge, let m be any interior point of it). Similarly, let m′ be the bend point
of π′. We will define a schedule for the three guards where guard 1 travels from p
to p′, guard 2 travels from m to m′, and guard 3 travels from q to q′. See Figure
4.5 for a simple example. Note that pp′ and qq′ lie on polygon edges, and that the
line segments pm, mq, p′m′, and m′q′ lie inside the polygon, though they may cross
each other. The cycle pmqq′m′p′ forms a polygon Q that may or may not be simple
but is entirely contained in P and has a well-defined inside and outside. Define the
path µ for guard 2 to be the shortest path from m to m′ that is entirely contained
in Q.

Now consider cases where π or π′ is a link distance 2 path. Take the shortest
path µ from m to m′ lying inside Q. If µ is a straight line then the paths of guards

33



q’

m’

p’

q

m

p

����������

������������

��������

��
��
��
��

��

��
��
��
��

��

��
��
��
��

��
��
��
��
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Figure 4.7: Direct path in Q from
m to m′

1 and 2 form a 4-gon, and the paths of guards 2 and 3 form a 4-gon (Figure 4.7).
The two guard case shows how to maintain mutual visibility between each pair of
guards. For the schedules in each of these 4-gons, guard 2 travels along µ without
backtracking, possibly at varying speeds. For any point along µ, the speed of guard
2 is defined separately for each of the search schedules of the 4-gons pmm′p′ and
qmm′q′; at each point along µ, guard 2 will move forward at the slower of these
two speeds. Each outer guard mimics its movement from its 4-gon search schedule
based on its position and the position and speed of guard 2. Then, for example,
at every point in time in the search of Q, the positions of guards 1 and 2 are a
configuration of the guards at some point in the search of the 4-gon.
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Figure 4.8: µ bends at intersec-
tion point
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Figure 4.9: µ bends at reflex ver-
tex
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Otherwise, µ bends somewhere. First we consider the case where µ bends at an
intersection point of two visibility lines, such as pm and q′m′ in Figure 4.8. We will
label the intersection point x. Note that pp′ and qq′ may not intersect any edges of
Q, so the edges that cross must be incident to m or m′. Also, two edges incident
with the same vertex cannot cross, so each of the two edges is incident with exactly
one of those vertices. Thus mx and m′x lie on edges of Q, and x lies on µ. Then
µ must be mxm′. We will assume, without loss of generality, that the intersecting
edges are pm and q′m′. Then as guard 2 moves to x along mp, it maintains visibility
with a guard 1 at p. Also, mxq′q is a 4-gon covered by the two guard case with
guard 3 moving from q to q′ and guard 2 moving from m to x. Then m′xpp′ is also
a 4-gon covered by the two guard case while guard 3 remains at q′ in sight of guard
2.

The last case is when µ bends at a reflex vertex, one of p, p′, q, and q′; without
loss of generality, assume it’s at p′ (Figure 4.9). We will assume that π and π′ are
minimum link paths; this will restrict our choices of m and m′ when constructing
paths. Then µ is mp′m′. Consider extending the line segment m′p′ past p′. It
starts off inside Q and exits it somewhere. It can’t exit through edges m′p′, pp′,
or q′m′, since they share a vertex with m′p′. It can’t exit through pm because µ
bends at p′ towards m′, and the edge on the other side of the reflex vertex p′ is p.
If it exits through qq′, then p′ sees q′, so there was a link 1 path from p′ to q′. This
contradicts π′ being a minimum link path. This means that the extension of m′p′

intersects mq; call this intersection point x. Now we will define the path of guard
2 to be slightly different from µ. From m, the path goes to x, along the edge mq.
Thus guard 3 can stay at q during this section. The motion of guards 1 and 2 is
taken care of in the two guard case, as p′pmx is a convex 4-gon. At the end of this,
guard 1 is at p′ and guard 2 is at x. The remainder of the search involves the case
where the path for guard 2 is a straight line (from x to m′) which is taken care of
in an earlier case.

�

This completes the proof of Theorem 4.4.1.

�

4.5 Algorithm for Finding An Optimal Schedule

As mentioned in the introduction, due to the perceived hardness of searching for
a path in the 4-dimensional configuration space, we are restricting our search for
an optimal path to one which minimizes the total distance travelled by the outer
guards. Based on the previous section, we can search for a path in the modified
link diagram from the door to the goal line to get a search schedule for the outer
guards that is part of a valid schedule for all three guards.
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Efrat et al. [14] give a O(n3) time algorithm to find the link diagram. The same
algorithm can be used to find the modified link diagram where the link distance is
determined to be either greater than 2, or 2 or less. Then, much like in the previous
chapter, the schedule that minimizes the distance travelled by the outer guards can
be found by finding the shortest L1 path from the door to the goal in the modified
link diagram. Since the modified link diagram is essentially the same in terms of
the information it captures, the same approach for finding the shortest path in the
V-diagram will work for finding a shortest path in the modified link diagram.

One of the steps in finding the shortest path required finding the x and y extreme
points of the diagram. It is not immediately obvious how to define a tight bound
for the worst case number of extreme points in a link diagram. Efrat et al. [14]
show that the worst case size of a link diagram is Θ(n3), thus there are O(n3)
extreme points in the worst case. This bound may be loose; further analysis may
show that there are o(n3) extreme points in the worst case. After the extreme
points are identified during the construction of the modified link diagram, a graph
is constructed from these extreme points, along with the door point and goal line,
just as in Section 3.7. The construction of the graph required only the knowledge
of the extreme points of the obstacles, so the same technique is valid here. With N
extreme points, it took O(N2) time, so graph construction here takes O(n6) time.
Running Dijkstra’s algorithm on the graph finds a shortest L1 path from the door
to the goal in the modified link diagram in O(N2), or O(n6) time.

At this point, a schedule for the outer guards minimizing the total distance
they travel has been determined. In order to find a valid search schedule for all
three guards, the path through the modified link diagram must be divided into
subpaths, each of which corresponds to each outer guard travelling in one direction
along a single edge of P . Consider only the endpoints of all of these subpaths. By
Theorem 4.4.1, for each subpath, there is a schedule for all of the guards between the
corresponding points in the polygon that satisfies the visibility constraints and has
the outer guards travelling the distance of the L1 distance between the endpoints.
Given additional valid endpoints for the middle guard, this proof is constructive,
describing a search schedule for the 3 guards between the endpoints. Thus we need
to know, for a pair of positions for the outer guards, a valid position for the middle
guard. This information is not captured by the link diagram, but the link diagram
is constructed using an algorithm by Arkin et al. [1] that does find actual link paths
between any pair of points on a polygon. Note in our proof, we assumed minimum
link paths through the position of the middle guard; this algorithm finds minimum
link paths, as required. After the initial O(n3) time to preprocess the polygon,
each minimum link path is found in O(log n) time. Since there are at most O(n3)
vertices in the link diagram, there are at most O(n3) edges in the shortest path,
and thus there are at most O(n4) of these monotone, single-edge segments in the
shortest path. Finding the points for the middle guard for each of these segments
thus takes at most O(n4 log n) time, and outputting the path from this point takes
an additional O(n4 log n) time at most.
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Chapter 5

Conclusions and Future Work

5.1 Contributions

For the two-guard room search, no previous work has given an algorithm to find
a schedule. More importantly, it seems no attempts had been made at finding an
optimal schedule. We have given algorithms to find both shortest-distance and
quickest search schedules for a two-guard room search, running in time O(n2) and
O(n4) respectively. For the chain of guards problem, we give an O(n6) time algo-
rithm to find a search schedule that minimizes the distance travelled by the outer
guards. We also explicitly show how a 2-searcher can search more rooms than a
chain of 3 guards.

More generally, the idea of finding L1 and L∞ shortest paths in a configuration
space in order to find optimal schedules seems to be a new idea.

5.2 Future Work

There are many variants of polygon-search problems that have not been considered
here. We believe optimal schedules can be found for some of these problems using
the approach described here. In particular, we believe that the approach to solving
shortest paths in visibility diagrams is applicable to the cases of chains of two or
three guards searching a polygon without a door point and a street with an endpoint
specified. This approach would require using a visibility diagram that is specialized
for the type of problem to deal with the different starting or ending point situation.

Minimizing L1 and L∞ paths is applicable when using multiple guards, but
in situations other than two guards moving one-dimensionally, the dimension of
the configuration space seems to become unmanageable. Attempts to reduce the
number of dimensions that need to be considered may yield reasonable running
times for similar algorithms in other variants.
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Additionally, the analysis of some algorithms presented here is probably not
tight. Careful analysis of worst cases of the V-diagram and link-diagram may show
that these algorithms are indeed faster than the worst case analysis here would
suggest.
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