
Structure from Infrared Stereo Images 
 

 

by 

  

 

Kiana Hajebi 
 

 

A thesis 

presented to the University of Waterloo  

in fulfilment of the  

thesis requirement for the degree of 

Master of Applied Science 

in 

Systems Design Engineering 

 

 

 

Waterloo, Ontario, Canada, 2007 

 

 

© Kiana Hajebi 2007



 ii

 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

Kiana Hajebi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii

 

Abstract 
 

With the rapid growth in infrared sensor technology and its drastic cost reduction, the 

potential of application of these imaging technologies in computer vision systems has 

increased. One potential application for IR imaging is depth from stereo. Discerning depth 

from stereopsis is difficult because the quality of un-cooled sensors is not sufficient for 

generating dense depth maps. In this thesis, we investigate the production of sparse disparity 

maps from un-calibrated infrared stereo images and agree that a dense depth field may not be 

attained directly from IR stereo images, but perhaps a sparse depth field may be obtained that 

can be interpolated to produce a dense/semi-dense depth field. 

In our proposed technique, the sparse disparity map is produced by a robust features-based 

stereo matching method capable of dealing with the problems of infrared images, such as low 

resolution and high noise; initially, a set of stable features are extracted from stereo pairs 

using the phase congruency model, which contrary to the gradient-based feature detectors, 

provides features that are invariant to geometric transformations. Then, a set of Log-Gabor 

wavelet coefficients at different orientations and frequencies is used to analyze and describe 

the extracted features for matching. The resulted sparse disparity map is then refined by 

triangular and epipolar geometrical constraints. In densifying the sparse map, a watershed 

transformation is applied to divide the image into several segments, where the disparity inside 

each segment is assumed to vary smoothly. The surface of each segment is then reconstructed 

independently by fitting a spline to its known disparities;  

Experiments on a set of indoor and outdoor IR stereo pairs lend credibility to the 

robustness of our IR stereo matching and surface reconstruction techniques and hold promise 

for low-resolution stereo images which don’t have a large amount of texture and local details. 
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Chapter 1 

Introduction 

1.1 Goals and Motivation 

Infrared (IR) computer vision has recently attracted some interest with the advent of lower 

cost sensors. The applicability of IR cameras in dark environments is the most motivating 

factor for using IR imagery in computer vision applications. Some examples include military 

applications such as target acquisition [20], autonomous vehicle navigation [66], collision 

avoidance [88], terrain analysis [69], etc.; and surveillance applications like pedestrian 

detection/tracking [4], [52], face detection/recognition [43], [77], etc. 

     In many of the aforementioned applications, a required computational vision process is to 

recover the three-dimensional structure from two-dimensional digital infrared images. This 

process for visible images is a common feature in many biological vision systems. For 

example, Human Vision System (HVS) is capable of estimating depth, surface orientation, 

and spatial relationships, with great accuracy in many situations and circumstances. The main 

mechanism used by the Human Vision System at distances of less than five meters is 

stereopsis, which was first described by Charles Wheatstone in 1838 [14]. He discovered that 

images captured by left and right eyes are different form each other, due to the fact that each 

eye views the visual world from slightly different horizontal positions. This means that 

images of objects at different distances from the eyes are projected in the two eyes with 

different horizontal disparities, giving some cue for depth computation. The same technique 
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has been used in most computational vision applications for three-dimensional structure 

recovery (e.g., in [4], [21], [27], [45]), usually referred to as stereo computer vision. 

     The fundamental idea behind stereo vision is to use distances between the positions of a set 

of primitives in a pair of images with overlapping fields of view. When a very distant object is 

observed from two cameras positioned in almost the same orientation but separated by a 

known distance (baseline), that object will appear in relatively similar positions in both 

images. As the distance between the object and the cameras get smaller, the object’s positions 

in two images will move away from each other. The distance between the projections of a 

particular object (primitive) in the stereo image pairs is known as disparity; a greater disparity 

represents a closer object, and a smaller disparity represents an object further away. The most 

challenging and difficult process in stereo vision is the extraction of the corresponding 

primitives in two images. Once the correspondences between image primitives have been 

established, the depth can be easily computed through triangulation.  

     Computational techniques for extracting depth from stereo has matured significantly and 

many advances and contributions in computational stereo have been made, allowing stereo to 

be applied to new types of images such as infrared. However, the potential for discerning 

depth from stereo using thermal IR imagery has received little attention in the literature. 

Besides, almost most of the existing techniques for IR stereo matching (like [4], [54], [87]) 

are based on some assumptions about the hot contents of the images (e.g., humans, faces, etc.) 

and therefore are not applicable to other situations. This is mainly due to the challenges of this 

problem, which are introduced and discussed in Chapter 2. The primary objective of this 

thesis is therefore to develop an efficient method to compute the depth information from 

stereo images in infrared domain, without having any prior knowledge about the hot or cold 

objects in the scene.  

1.2 Contributions 

Methods for computational stereo are generally divided into two groups (according to the type 

of correspondence algorithm used): area-based and feature-based [47]. Area-based 

algorithms match small image windows centered at the primitives that are low level and 

dense, such as the intensity at each pixel. These techniques result in dense depth maps, but fail 
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when applied to poor textured areas or regions with partial occlusion. In contrast, feature-

based algorithms match sparse and more abstract features (such as edges, lines and corners), 

and provide robust, but sparse disparity maps.  

    Previous works ([66], [97]) in the area of computational stereo for infrared images, have 

shown that the quality (i.e., resolution) of infrared sensors is insufficient for calculating dense 

depth maps. In this thesis, we would like to challenge this result and argue that a dense depth 

field may not be attained directly, but perhaps a sparse depth field can be obtained that can be 

interpolated to produce a dense depth field. To this aim, a novel feature-based technique is 

proposed which involves two phases: (i) feature matching, i.e., finding a set of corresponding 

points in the left and the right images to produce a sparse disparity map; and (ii) 

reconstruction, i.e., producing a dense map from a sparse disparity map.  

     For the first phase, we present a robust IR stereo matching method, which is composed of 

three main steps. In the first step, a set of stable and tractable feature points from each image 

are extracted based on the phase congruency model, which contrary to the gradient-based 

feature detectors, provides features that are invariant to geometric transformations. We obtain 

the local frequency information for computing the phase congruency via banks of Log-Gabor 

wavelets tuned to different spatial frequencies and orientations. The wavelet coefficients are 

further used in describing and matching the extracted features in the second step. Finally, in 

the last step, the matching results are further analyzed in order to detect and eliminate the 

outliers, using the epipolar geometrical constraints. 

     For the second phase, we develop a surface reconstruction technique to densify the sparse 

disparity map, obtained from the first phase. Surface reconstruction refers to a process in 

which a piecewise smooth surface with the same depth discontinuities as the reference image 

is reconstructed from a set of noisy measurements [13]. Our surface reconstruction method 

consists of two main steps: (i) extracting the edge map of the reference image (since the edge 

features provide the exact, non-blurred locations for the discontinuities), and segmenting the 

image into homogeneous regions, where the disparity can be assumed to vary smoothly inside 

each region; (ii) approximating the sparse disparity map in each region by a surface 

interpolation technique.  

     In addition to presenting a novel technique for depth computation from infrared images, 

this thesis makes another contribution by performing a comparative study on the efficiency of 
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different interpolation techniques, applied on a set of synthetic and real-world infrared 

images, in terms of noise and sparseness sensitivity.  

1.3 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2, we first provide a 

background on infrared imagery, its characteristics, advantages and challenges of being used 

in computer vision applications, and then we review the recent works in each of the major 

applications in this domain. Chapter 3 is started by giving an introductory to stereo processing 

and a summary of related research in this field. The problem of stereo correspondence is 

studied by discussing different feature extraction and stereo matching techniques, and then we 

present our approach to stereo correspondence in detail. The problem of surface 

reconstruction is discussed in Chapter 4, where we give a brief review on different techniques, 

evaluate the performance of those methods on synthetic data, and then present the method we 

adopt to interpolate our sparse disparity map. In Chapter 5, experimental results 

demonstrating the feasibility of our approach are presented on real world IR stereo images. 

Finally, in Chapter 6, we draw conclusions about our proposed method and discuss potential 

future directions for our work. 
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Chapter 2 

Background – IR Computer Vision 

In this chapter, we first present an overview of infrared domain characteristics and infrared 

imaging devices; then the advantages and disadvantages of using infrared sensors over visible 

spectrum sensors in computer vision-based applications are discussed; and finally an 

overview of the current and previous works of IR computer vision and IR stereo is presented. 

2.1 Infrared spectrum 

Infrared radiation is a type of electromagnetic radiation, in which the frequency of waves is 

higher than that of radio waves but lower than that of visible light. IR radiation is emitted 

from all objects as a function of their temperature. Hotter objects give off more infrared 

radiation at higher frequency and shorter wavelength than do cooler objects (see Figure 2.1). 

Infrared radiation is perceived by humans as heat, when it is emitted from objects at moderate 

temperatures (above 366K). Unlike visible light, in the infrared domain, every object (even 

ice cubes) with a temperature above absolute zero emits heat. This leads to the development 

of Infrared cameras and sensors that can detect IR/thermal energy emitted by the objects in 

the scene. 

Only a certain region of the spectrum is of interest to the IR detectors because much of the 

radiation in this band is absorbed by water or carbon dioxide in the atmosphere. There are 

several wavelength bands 
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Figure 2.1: Spectral photon emittance at different background temperatures and wavelengths. 
When the temperature of an object gets higher, the spectral radiant energy at all wavelengths 
will become higher and the peak wavelength of the emission will become shorter. 
  

with good transmission, that can be detected by IR cameras/sensors1: 
 

- Long wavelength IR (LWIR or far IR) band: spans roughly 8-14µm, with nearly 100% 

transmission on the 9-12µm band. The LWIR band offers excellent visibility of most 

terrestrial objects.  

- Medium wavelength IR (MWIR or MIR) band: spans roughly 3.3-5.0µm, with nearly 

100% transmission, with the advantage of lower background noise. 

- Visible light and short wavelength IR (SWIR or near IR, NIR) band: spans roughly 

0.35-2.5µm, and corresponds to a band of high atmospheric transmission and peak solar 

illumination, yielding detectors with the best clarity and resolution of the three bands. 

However, SWIR imagers provide poor or no imagery of objects at 300K (around human 

body temperature) when no artificial illumination is present. 

                                                 
1 http://www.xenics.com/ 
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Figure 2.2: The IR images of a human head in different wavelengths. The difference between 
the far infrared (LWIR) image and the near infrared (SWIR) image shows the independence 
of reflectance in the former. Furthermore, as can be seen the LWIR and MWIR lights cannot 
pass through glasses; (Reproduced from [3]). 
 
 

Figure 2.2 shows some example images of a human face in different wavelengths. Far 

infrared cameras (which detect LWIR radiation) have been the most widely used infrared 

sensor for night-vision applications. This is due to the fact that in the long wavelength 

infrared spectrum, in contrary to the other two bands of spectrum, reflectance of the objects 

does not contribute to the captured images and only emission from the scene is registered 

[66]. This has the advantage of eliminating the challenging task of separation of reflectance 

and emission, which is required for the images captured in the other two spectrum bands. In 

the remaining of this thesis, the term “infrared” refers to the far infrared spectrum (LWIR). 

There are two types of IR/thermal imaging detectors [53]. The first type measures IR 

indirectly by detecting the changes in heat induced when absorbing IR radiation. Two widely 

used detectors of this type are the bolometer detectors that measure the heat induced electrical 

resistance change, and the pyroelectric / ferroelectric detectors that measure the heat induced 

electrical capacitance change for certain crystals. The second type of IR imaging detectors is 

quantum based which operates at low temperatures (e.g., approx 77K) and therefore requires 
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specialized cryogenic cooling. The quantum detectors are very expensive in operation and 

purchase price, bulky, heavy and power hungry, inconvenient in terms of waiting for pre-

cooling before use but have fast response time and ultra-high sensitivity. In contrast, the first 

type of detectors is less expensive and has slow response time, but operates at high 

temperatures (i.e., room temperature) and does not need expensive cryogenic cooling.   

2.2 Infrared imaging characteristics 

One of the most important properties of infrared imagery, that characterizes it from visible 

imagery, is the ability to operate in environments with poor or no light. This is because the 

images captured by IR cameras do not vary with changes in lighting conditions but rather 

change with variation in temperature of the scene objects. Taking advantage of this property 

of infrared imagery makes it possible to detect people and vehicles in dark environments, 

which is crucial for many vision applications in the military and surveillance fields. 

Furthermore, the independence from the scene lighting condition is beneficial for image 

processing algorithms (particularly in motion related applications), as lighting conditions 

generally change faster than temperature [32], and besides, no shadow removal is required to 

be applied on the IR images, since shadows are not captured by IR cameras. 

Although the use of thermal imagery alleviates several classic computer vision problems 

such as shadows, lack of nighttime visibility, sudden illumination changes and etc., IR 

imagery has its own unique challenges which are briefly explained in the following: 

 
- IR high noise (low SNR) and low resolution: in order to use computer vision for IR 

processing, there are the technical problems of high noise and low spatial resolution that 

need to be overcome. High noise invalidates the smoothness model that can be a problem 

for edge detection algorithms based on the differentiation gradient of a smooth 2D 

surface; Low spatial resolution means losing data (i.e., textures) and losing statistical 

significance. This makes correspondence based on pixel correlation more difficult, or 

really impossible, which ironically is necessary for depth from stereo and motion, and is 

essentially fundamental for 3D vision. This drawback may improve as we get better IR 

camera technologies. 
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- IR reflection: The surfaces of many materials reflect IR radiation. This reflection is more 

specular and less diffuse than it is in the visible light. This is mainly due to the longer 

wavelength of infrared radiation [32]. Examples of IR reflection for a car and a pedestrian 

standing on a concrete road are shown in Figure 2.3. IR reflection can cause problems in 

detection systems (particularly region-based ones) as false positive detections may occur 

in some extreme conditions. Vollmer et al. proposed a solution in [92] that uses a polarizer 

to partially polarize the specularly reflected light for distinguishing the direct light form 

the reflected one. 

 
- IR halo effect or saturation: Halo around very hot or cold objects which produces a 

significant contrast with the background is a major characteristic of the thermal images 

captured by common ferroelectric sensors (see Figure 2.4). The halos2 have opposite 

polarity from the objects they surround (i.e., white-black/hot-cold). The presence of halos 

can cause a serious problem for object detection/extraction techniques, because the halo 

around an object may be detected as part of the object, and therefore the result does not 

provide an accurate localization of the object silhouette [18]. However, there are some 

beneficial consequences of halo effect, as well. Fore example, in pedestrian detection, the 

presence of halo around pedestrians can help the threshold/contrast-based segmentation 

methods to detect the pedestrians easier; e.g., in [16], Davis and Sharma proposed a 

segmentation algorithm which takes advantage of the halo effect. In their method, regions 

of interest are first segmented using background thresholding. Then inside each region, 

the precise boundary of the object is extracted by taking advantage of halo effect and 

examining the high contrast areas.  

 
- History effects: This effect is inherent to infrared and cannot be removed by using better 

IR cameras [53]. The strength of IR radiation depends not only on the current states of the 

object and the environment, but also on the combined effects of the history of state 

changes, because temperature variations takes time to propagate and doesn’t affect the 

environment instantly. The brightness constancy assumption, which is the basis for depth 

                                                 
2 Halo is formed when the infrared radiation is not fully blocked by the mechanical chopper; “a hot source will 
heat the back of the chopper, and since this secondary radiation is less focused, it will heat the sensor array over 
a larger area than that of the actual image of the object. It is created when the system electronically subtracts the 
images with and without chopper obstruction” [32]. 
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from motion (i.e., optical flow), is invalidated by history effect in two ways: (i) the 

extremely fast change of temperature, which leads to significant brightness variation even 

between two consecutive video frames; and (ii) a very slow change of temperature like the 

natural dissipation of heat; this can leave behind a “ghost image” after a hot or cold object 

moves (that can lead to ghost object detection). An example of this effect is illustrated in 

Figure 2.5.a, where two adults and a child are shown through an infrared thermal imager. 

After a minute of sitting on the couch the thermal infrared energy of the people is 

transferred and stored in the couch, until they get up. The right image illustrates that this 

energy is now being emitted from the couch and displayed on a thermal imaging 

device. This information can prove useful in a variety of applications, such as criminal 

tracking, land/airborne surveillance, and drug facility detection. Figure 2.5.b shows other 

examples of this effect. 

2.3 IR imagery applications 

With the rapid advances of infrared sensor technology and its drastic3 cost reduction, the 

potential of applications of these imaging technologies in computer vision systems has 

increased. IR imagery has recently been the focus of many vision research efforts, particularly 

pedestrian detection/tracking, face detection/tracking, and face recognition. In this section, we 

briefly review some of the influential works in each of the mentioned applications, in order to 

illustrate the advantages and the challenges of working with infrared images.  

2.3.1 Pedestrian Detection/Tracking 

The detection of obstacles and pedestrians in roads is one of the most active research targets 

in the area of computer vision, due to its important application on road safety. In recent years, 

night vision systems, exploiting advantages and benefits of IR cameras, have gained more and 

more interest, for the automatic detection of pedestrians at night ([4], [6], [86]). 

 

                                                 
3 Improvements in technology have led to uncooled IR sensors that are smaller in size, use less power, and are 
lower in price (i.e., approx. $20,000 USD vs. $100,000 USD for the cooled IR sensors that are very expensive in 
operation and purchase price). 
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Figure 2.3: Examples of IR 
Reflection. The reflection of the 
pedestrian and the vehicle can be 
seen on the ground; (Reproduced 
from [32]). 

 

 
Figure 2.4: Examples of IR halo around the 

pedestrians; (Reproduced from [32]). 
 

 
 
 
 

  

(a) 
 

  
(b) 

 
Figure 2.5: Some examples of IR history effect; (a) the thermal energy of people is transferred 
to the couch after one minute sitting on the coach and is then emitted after getting up; (b) 
other examples of this effect (Courtesy of Sierra Pacific Corp.). 
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Although the use of vision sensors and image processing methods provides promising 

solutions, vision-based pedestrian detection and classification systems must challenge the 

wide variation in the appearance of pedestrians caused by changes in clothes, carry-ons, 

posture, and illumination. Infrared imagery provides a good framework for this problem, since 

the images acquired by infrared cameras only depend on the temperature of objects and the 

amount of heat they emit, and not the illumination; Furthermore, the temperature/brightness 

of different pedestrians in different infrared images are roughly similar in spite of different 

color and textures of their clothing. In addition, infrared cameras are suitable for the detection 

of objects warmer (or colder) than the environment, due to the sufficient contrast of those 

objects with the background.  

Tsuji et al. [88] have proposed a system to help reducing vehicle-pedestrian accidents 

occurring at night, using infrared technology. An infrared stereo configuration mounted on a 

vehicle was used to estimate the distance from objects in the scene. The vehicle’s ego-motion, 

estimated from a gyroscope and the speedometer, was used to capture the relative movement 

in the environment. A simple threshold-based segmentation was used to locate pedestrian 

hypotheses in the image, by finding bright regions. The segmented regions are validated based 

on their sizes, and those are selected with sizes ranging from head-size to full-body size. 

Distance from the pedestrians is computed by using a correlation-based matching to match the 

regions around the pedestrians in right and left images. Finally, the relative movement of the 

vehicle is compared to the pedestrians’ movement, and the pedestrians who are on a collision 

course are reported as the final result. They showed that their algorithm enables judgment of 

the possibility of a collision 3.5s in advance at cruising speeds of 40-80 km/h. 

Bertozzi et al. [4] used an approach based on stereo infrared images to detect areas that are 

more likely to contain pedestrians. Warm parts of the scene are extracted (assuming 

pedestrians are brighter than the background) in the right image yielding rectangular bounding 

boxes around interesting areas. The contents of the resulting bounding boxes are matched 

with the left image in order to find the corresponding areas, and their relative locations to the 

camera. The algorithm groups detected objects with similar coordinates, to produce a list of 

hot areas in which the scene pedestrians are likely to be located. These results are then filtered 

and only areas with specific size and aspect-ratio are considered and analyzed to find head 

morphological characteristics. The approach does not use any temporal information, which 
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probably would have improved the performance of the system. The authors analyzed their 

method on a database created by them, reporting that the system without head detection is 

able to correctly detect more than 80% of pedestrians in the scene. Enabling the head 

detection and varying the correlation threshold in the pattern matching, correct detection 

percentage significantly, reaches the perfect rate (100%) with a very low number of false 

detection per frame.  

Liu and Fujimura proposed a technique [54] as a complementary to previous shape-based 

approaches [96], [62]. To detect pedestrians, they search for moving objects whose motions 

are not consistent with the movement of the background. They have developed a two stage 

stereo correspondence and motion detection procedure that does not compute ego-motion 

explicitly. Their correspondence method first detects the hotspots (blobs) by thresholding 

each frame adaptively and then applies a gray-scale template matching for blobs whose 

counterparts are missing. This method works well in cases where the camera motion has a 

dominant translational motion with a small amount of rotational motion, which is not always 

the case. Furthermore, the method makes use of characteristics of night-vision video data, in 

which humans appear as hotspots; hence it cannot be used for situations where no knowledge 

about the content of the scene is available. 

The techniques which use threshold-based segmentation to locate pedestrians, usually fail 

to perform well in hot environments (e.g., outdoor environments during summer), where 

pedestrians are not considerably brighter than the background anymore. Moreover, clothing 

may mask heat radiation [5]. Therefore, systems based on the assumption that pedestrians are 

hotter than the environment usually produce partly or complete misdetections. In order to 

cope with these deficiencies, some pedestrian detection [17], [6] and tracking [52] techniques 

have been proposed which are based on contemporary use of a visible and an infrared system 

in order to utilize the benefits of both approaches. Although, only a few research efforts have 

been carried out on this subject, the result of visible and infrared fusion has been relatively 

promising. 

Davis and Sharma [17] proposed a fusion technique assuming that the two thermal and 

visible images are co-registered. Using a standard background-subtraction technique, they 

first identify regions-of-interest (ROIs) in IR images. Color and intensity information within 

these regions, are then used to extract the corresponding ROIs in the visible image. The input 
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and background gradient information within each region, are combined into a Contour 

Saliency Map (CSM). The CSM are then thinned and the most salient contours are selected 

using a thresholding strategy. Contour fragments belonging to the corresponding regions in 

the thermal and visible images are then fused using the combined input gradient information 

from both sensors. Any broken contour fragments are completed and closed using a 

watershed-constrained A* search strategy. Lastly, the contours are flood-filled to produce 

silhouettes. Their quantitative results on a database created by them, demonstrated that the 

best performance was obtained by fusing visible and thermal imagery with 76% average 

sensitivity rate (the fraction of object/person pixels that are correctly detected by the 

algorithm), and the average sensitivity rate of only-thermal imagery (65 %) was better than 

the rate of only-visible imagery (43%). 

In another work, Bertozzi et al. [6] presented a tetra-vision (4 cameras) system for the 

detection of pedestrians based on the simultaneous use of one infrared and one visible camera 

stereo pairs. They processed the two stereo flows independently and then fused the results that 

come from the different domains, rather than co-registering the images (which seems to be 

more difficult). The right images of each flow are subdivided into 3×8 pixels regions and their 

corresponding regions (if available) are detected in the left images. Choosing this size for 

regions is due to the fact that a pedestrian shape is characterized by strong vertical features 

(extracted in their method by Sobel filtering). Areas featuring a similar disparity are grouped 

together and marked by a bounding box. Produced bounding boxes in the visible domain and 

IR images are then registered and fused together, to produce the final results. The system has 

proven to be able to detect more than 95% of pedestrians up to 45m and more than 89% up to 

75m. 

2.3.2 Face Recognition/Detection 

Infrared imagery has several advantages over visible imagery, when applied to face detection, 

detection of disguised faces, and recognition of faces under low illumination and even in total 

darkness, where visible techniques fail. Face recognition using imaging modalities in spectral 

bands different from visible (infrared in particular), has become an area of growing interest 

and attention. As mentioned earlier in this chapter, infrared cameras detect the emitted heat 

energy and not the reflected light from the objects, and therefore the captured images are 
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independent of illumination, and are less subject to variation by smoke or dust than images 

captured in the visible domain [43]. The thermal IR images represent the thermal patterns of 

faces which describe the vein and tissue structure of the faces and are unique for each person  

(it is known that even identical twins have different thermal patterns [46]). Therefore, the IR 

images (thermal patterns) can be used to describe and distinguish face images in the task of 

face recognition. 

Face recognition in the infrared-spectrum has received relatively little attention in the 

literature in comparison with face recognition in visible domain. Several efforts have been 

made to compare the performance of face recognition techniques in visible and thermal 

infrared images, and it has been reported that in many cases the performance of thermal face 

recognition systems is superior to the performance of visible ones (e.g., [76], [77], [44]). In 

[15], [76] face recognition performance was evaluated using a PCA algorithm on both visible 

and thermal images. Cutler in [15] reported equivalent performance between mid-wave4 and 

visible imagery in an experiment by eigenfaces and a low resolution sensor (a recognition 

accuracy of 96% was achieved for frontal views, 96% for 45 deg. views, and 100% for profile 

views). Unlike [15], that kept ambient illumination constant between training and test images, 

Socolinsky et al. in [76], [77] studies the effect of changing illumination between training and 

test images, and reported superior performance for thermal infrared imagery (the mean and 

minimum classification performance of eigenfaces on visible imagery are 78% and 32%; and 

on LWIR imagery are 96% and 87%, respectively). In [77], they performed a comprehensive 

comparison of appearance-based algorithms: PCA, LFA, ICA and LDA and they showed that 

even when illumination is the same for training and test images, thermal infrared recognition 

performs 4% to 22% better, depending on the algorithm (the weighted mean performances of 

the aforementioned methods on visible imagery are 73%, 82%, 88% and 93%, respectively; 

while they are 95%, 93%, 94% and 97%, for IR imagery). In a later work of Socolinsky et al. 

[78], the verification was also addressed in addition to the identification, and a Monte Carlo 

approach for performance evaluation was included. Their results indicated that when using 

visible imagery, the best choice of norms for PCA- and ICA-based recognition yield 

equivalent identification (94% for visible and 97% for IR) and verification (Equal-error-rate 

                                                 
4 MWIR images of faces are less illumination invariant than their LWIR counterpart, since the emissivity of skin 
is lower for MWIR wavelengths. 
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of 0.09 for visible and 0.06 for IR) performance; performance for LFA-based face recognition 

are somewhat lower (91% for visible and 96% for IR), whereas LDA-based methods yield the 

best results (97% for visible and 99% for IR). 

     In another work, Heo et al. [43] proposed a face recognition approach using correlation 

filters: minimum average correlation energy (MACE) filters and optimum trade-off synthetic 

discriminant function (OTSDF) filters, and showed that correlation filters have the best 

performance at low resolutions for both visual (with 84.10% recognition rate) and thermal 

images (with 96.84% recognition rate), when compared to other face recognition algorithms 

including PCA, normalized correlation, and LFA. They reported that thermal face recognition 

shows higher performance than visual face recognition under various lighting conditions and 

different facial expressions, regardless of which face recognition algorithm is used (with 

82.29% for IR and 68.36% for visible, in average). 

Other researchers, including [79], [11] have used feature-based approaches (rather than 

appearance-based methods), to overcome the challenging conditions such as variable poses 

and facial expressions. Buddharaju et al. in [11] used spectral features. Their method prunes 

the hypothesis space by modeling the extracted spectral features through Bessel parametric 

forms. A Bayesian classifier is then used to determine a unique solution from the pruned 

subset. They showed their method compares favorably to older approaches such as eigenfaces 

(with over 85% average precision rate, at varying test/training ratios, compared to the 

precision rate of 78% for other methods).       

2.3.3 Other applications  

Besides the main applications discussed above, there are some other applications for IR 

imagery that attracted the attention of different parts of industry. Vehicle navigation is among 

these applications, where the main challenge is to avoid obstacles at night time, such as those 

presented in [66], [37]. Owens et al. in [66] developed an unmanned ground vehicle program 

(Demo III) to enable XUV (Experimental Unmanned Vehicles) autonomous nighttime 

navigation at speeds of up to 10 m.p.h.. They performed obstacle detection at night and 

analyzed the suitability of four classes of night vision cameras (3-5µm cooled FLIR, 8-12µm 

cooled FLIR, 8-12µm uncooled FLIR, and image intensifiers) for night-time stereo vision. 

Their analysis of signal to noise ratios showed that uncooled infrared sensors lack the 



 17

necessary sensitivity to produce viable images for nighttime stereo vision during thermal 

transition periods. (temperature differences on the order of degree produce signal to noise 

ratio of 40/1 in cooled and 12/1 in uncooled sensors; while the percentage of stereo matches 

decreases sharply to unacceptable levels for signal to noise ratios below 30/1).  

The other approach discussed by Guilloux et al. [37] is to develop a system to help the 

driver in detecting obstacles and thus allow him a better and earlier reaction in dangerous 

situations. The system takes advantage of complementary information coming from radar and 

infrared cameras. Radar is able to tell at what distance points echoes and infrared can give 

direction to which a relevant event is detected. 

Another application of Infrared imagery is occupant posture analysis, such as that 

presented by Trivedi et al. in [87]. They have developed a real-time vision system for sensing 

occupant body posture in vehicles and providing safe airbag deployment. They described their 

experiments on two systems that estimate occupant body position and pose inside a vehicle 

using long-wavelength infrared (LWIR) imagery and stereo depth data. An edge-based head 

detection algorithm is simultaneously applied on the visible stereo and IR images, to provide 

the head pose and size estimates, using the best fit ellipse/head location method. The thermal 

face detection algorithm remap the IR image to a probability of human skin temperature using 

a simple Gaussian PDF, with the mean and variance manually, empirically set, and at the 

same time, the stereo-based face detection obtains the foreground disparity. They showed that 

although both systems achieve a high success rate (at success rates of 96.4% with visible 

stereo and 90.1% with IR imagery, for various occupant types), they suffer from certain 

limitations, like the inability to detect a head location in IR images when the face is obscured 

with a hat or being turned from the camera and the emissive properties of the subject’s head is 

changed, making it less elliptical; and the inability in dealing with competing elliptical objects 

in the scene, especially hands, in stereo images. 

2.4 Chapter summary 

In this chapter, an overview of infrared domain characteristics and infrared imaging devices 

has been presented. The advantages and disadvantages of using infrared sensors over visible 

spectrum sensors in computer vision-based applications has been discussed, and several  
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influential works which used IR imaging for different computer vision applications (e.g., 

pedestrian detection/tracking, face detection/tracking, and face recognition, occupant posture 

analysis and vehicle navigation) have been reviewed. Our literature review showed that 

discerning depth from stereo using thermal IR imagery (which is the topic of this thesis) has 

received little attention; and besides, almost most of the existing techniques for IR stereo 

matching are based on some assumptions about the hot contents of the images (e.g., humans, 

faces, etc.) and compute distance using region matching, which is not sufficiently reliable and 

accurate, and are not applicable to other situations where no prior knowledge about the 

content of the scene is available.  
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Chapter 3 

Stereo correspondence for IR images 

3.1 Background 

The main purpose of computational stereopsis is to reconstruct the 3D geometry of a scene 

from two (or more) views. The fundamental concept of stereo vision lies in the fact that the 

projection of a point in three-dimensional world is situated on a unique pair of image 

locations when observed by two cameras (see Figure 3.1). Consequently, if corresponding 

points are located in stereo images, then it will be possible to determine the three-dimensional 

location of the scene point. 

The major challenge in computational stereo is correspondence. The correspondence 

problem involves searching the images associated with each camera, for the locations that are 

the projection of the same point in the scene. Because of ambiguous matches (e.g., due to 

occlusion, specularities, lack of texture) and many-to-many possibilities (e.g., due to 

similarities of points matched), there exists no general solution to the correspondence 

problem. Thus, a number of constraints (e.g., epipolar geometry) and assumptions (e.g., image 

brightness constancy, surface smoothness and proximity) are commonly employed to make 

the problem more tractable. These constraints and assumptions are explained in Section 3.4. 

In the following, first a survey of different correspondence approaches in visual imagery is 

provided and the drawbacks of using these techniques for IR imagery are discussed. Then we 

describe our proposed technique for the correspondence problem in the IR domain which 
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Figure 3.1: Stereo Geometry 
 

consists of three steps:(1) feature extraction, (2) stereo matching and (3) matching refinement.  

3.1.1 Stereo correspondence techniques 

Solutions to the problem of stereo correspondence can roughly be divided into global and 

local methods. In Global algorithms, e.g. [45], [9], [28], the disparity assignments are carried 

out in iterative schemes and on the basis of the minimization of a global cost function. These 

algorithms result in accurate and dense disparity measurements, though at the expense of 

higher computational cost. The global function which is minimized in most methods is 

formulated as [72]:  

)()()( dEsmoothdEdatadE λ+= . (3.1)
 

The data term, )(dEdata , measures how well the disparity function d  agrees with the stereo 

image pair, and )(dEsmooth  represents the smoothness assumptions made by the algorithm. 

The main difference between these techniques is the minimization algorithm used. For 

example in traditional approaches with regularization and Markov Random Fields, 

continuation [9] and simulated annealing [28] have been used; and in more recent approaches 

max-flow [70] and graph-cut [45] have been employed to solve the global optimization 

problems. 
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Local stereo matching methods generally fall into two broad categories [19]: area-based 

(e.g., [59], [38], [65]) and feature-based techniques (e.g., [64], [58]). Area-based algorithms 

are employed to solve the correspondence problem for every single pixel in the image. They 

usually use color values and/or intensities within windows of certain sizes. More specifically, 

for each location in the first image, a rectangular or circular region of pixels around it is 

matched to the best corresponding region in the second image, using a correlation measure 

such as cross correlation or sum of squared differences [45]. Although these algorithms have 

the advantage of producing dense depth fields, they require the images to be highly textures in 

all parts. Furthermore, choosing the right size for the regions is not easy, as in most cases 

smaller regions will lead to more mismatches but shorter run-time; while larger regions will 

produce more accurate results at the expense of higher computational time. Well known 

algorithms of this type are by Mori et al. [59], Hannah [38] and Okutomi and Kanade [65].  

Unlike the area-based techniques, feature-based matching approaches, establish 

correspondences for feature points only, not all image pixels. These features need to be 

unique within the left and right images. Examples of good features are: edge points, lines, 

corners or interest points. Considering that only a small subset of the image pixels are used for 

matching, these methods result in less detailed depth maps as the depth value is not calculated 

for every pixel. However, since the possibility of mismatching a feature is less, due to its 

detailed and distinctive description, feature-based methods usually produce more accurate 

depth maps. Well known algorithms of this type are Grimson [64], Marr and Poggio [58] and 

the algorithm of Ohta and Kanade [38] which uses dynamic programming.  

Some properties of infrared images introduce challenges to the correspondence problem 

and limit the performance of most state-of-the-art methods applicable to visible images. As 

mentioned in Chapter 2, there is the problem of low spatial resolution with infrared images, 

which makes the correspondence problem based on pixel correlation difficult. Therefore, 

global and area-based approaches cannot perform well in IR images because the statistical 

assumption of a sufficiently large amount of data1 is not satisfied for the low resolution 

infrared images. On the other hand, since most of the available feature extraction techniques 

are low level and make little assumption on the underlying imaging modality, they can thus be 

                                                 
1 Common correspondence techniques depend on the local statistics of regions of texture. When the resolution is 
not sufficiently high, the number of pixels describing each object is low which makes statistics based method 
unreliable. 
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applied to infrared images as well, with little or no modification. Therefore, we chose to use a 

feature based approach in our problem. Our proposed technique, like the other feature based 

approaches, consists of three main steps: (i) feature extraction, (ii) feature matching, and (iii) 

matching refinement. The following sections describe each step of our algorithm in detail. 

3.2 Feature extraction 

In feature extraction, the goal is to reduce the large number of pixels contained in an image 

into a set of distinctive primitives. Good features should be stable enough to be repeated in 

each stereo image, invariant to noise and robust against geometric transformations. Features 

can be either local (e.g. corners or edges), or global (e.g., polygons or image structures). 

Global features are difficult and expensive (in terms of computational time) to extract and 

furthermore they are more application dependent. In contrast, local features are easier to be 

extracted and in addition, they are more general and are very suitable for situations in which 

no prior knowledge about the content of the image is available. There exist many robust 

feature detection methods that have been applied to visible images. As mentioned in the 

previous section, since most of the available local feature detectors make little assumption on 

the underlying imaging modality, they can be applied to infrared images as well. However, 

the relative performance can differ because most infrared images are generally lower 

resolution and contain more noise than visible-band images. In this section, we first review 

some of the state-of-the-art feature detectors (e.g. Harris [40], Canny [12], Difference-of-

Gaussian (DOG) [56], [57], KLT [85]), and then discuss the feature extraction method we 

employed for IR images in our system.  

3.2.1 Harris corner detection 

Among the most popular and widely used feature detectors is the Harris operator [40]. The 

Harris operator was explicitly designed for geometric stability. It defines keypoints to be 

“points that have locally maximal self-matching precision under translational least squares 

template matching” [90]. In general, these feature points often correspond to corner-like 

structures. The Harris detector searches for pixels ),( yx  in the image where the 
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autocorrelation matrix M  around ),( yx  has two large eigenvalues. The matrix M  can be 

computed from the first derivatives in a window around ),( yx , weighted by a Gaussian 

)2( =αG  : 
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where xI  and yI  denote the image gradients in the x  and y  directions, * is the convolution 

operator. For any image pixel, where the two eigenvalues ( 21 ,λλ ) are large and similar in 

magnitude, a ‘corner’ is said to occur. To avoid an explicit and computationally expensive 

eigenvalue decomposition, Harris and Stephens [40] proposed to use a measure based on the 

determinant and trace of the gradient covariance matrix2. 

)),(()),(det(),( 2 yxMtracekyxMyxc ×−= . (3.3)
 

In the above equation, 2
21)det( CABM −== λλ  and BAMtrace +=+= 21)( λλ . The 

second term is used to eliminate contour points with a strong eigenvalue; the parameter k  is 

usually set to 0.04-0.06. The final result is obtained by applying a non-maxima suppression 

using a 33×  mask, and a threshold to select interest points. Figure 3.3.a show the result of 

this operator on an IR stereo image pair. 

3.2.2 Difference of Gaussian (DoG) features  

Lowe [56], [57] has proposed a method to identify locations in image scale space that are 

invariant with respect to image scaling and rotation, and are minimally affected by noise and 

small distortions. Lowe presented a technique for building up a scale space for an image (I), 

by using a difference-of-Gaussian (DoG) function ),( σxD , which can be efficiently obtained 

from the difference of two adjacent scales that are separated by a factor of k: 
 

)()),(),((),( xIxGkxGxD ∗−= σσσ . (3.4) 
 

                                                 
2 This is a slightly different version from the one that has been first defined by Noble [63]:             
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       (a)                                                                    (b) 

 
Figure 3.2: (a) The left image represents the result of repeatedly convolving the initial image 
with a set of Gaussians, for each octave of the scale space. The right image illustrates the 
difference-of-Gaussian images, produced by subtracting adjacent Gaussians. (b) In order to 
detect maxima and minima of the difference-of- Gaussian images, each considered pixel 
(marked by X) is compared to all its neighbours within 3x3 windows at the current and 
adjacent scales (neighbours are marked with circles); (Reproduced from Lowe [56]). 
 

Lowe [57] shows that when this factor is constant, the computation already includes the 

required scale normalization. He chooses this factor by dividing each scale octave into an 

equal number K of intervals, such that Kk /12= and 0σσ n
n K= . 

 For an efficient computation, the resulting scale space can be implemented with a Gaussian 

pyramid, which re-samples the image by a factor of 2 after each scale octave. The DoG 

interest points are defined as locations that are simultaneously extrema in the image plane and 

along the scale coordinate of the ),( σxD  function. Such points are found by comparing the 

),( σxD  value of each point with its 8-neighbourhood on the same scale level, and with the 9 

closest neighbours on each of the two adjacent levels (see Figure 3.2). Since the scale 

coordinate is only sampled on discrete levels, it is important to interpolate the responses at 

neighbouring scales in order to increase the accuracy of detected features locations. In 

practice, this is done by fitting a second order polynomial to each candidate point and its two 

closest neighbours (see [57] for more details). Finally, those points are kept that pass a 

threshold t  and whose estimated scales fall into a certain scale range ],[ maxmin ss . Figure 3.3.b 

shows the results of applying this detector on two sample images. 
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3.2.3 Canny edge detection 

Among the most important and powerful edge detectors, which has been widely used in 

computer vision applications including stereo correspondence, is the edge detector developed 

by Canny [12], which detects the edge points and simultaneously suppresses the noise using 

the following algorithm: 

1. Smoothing the image I  with a Gaussian filter σG  in order to reduce noise: 

),(*),(),( jiIjiGjiJ σ=  ,                                              (3.5)
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2. Computing the gradient components of ),( jiJ  using any gradient operator (e.g., Roberts, 

Sobel, etc), T
yx JJJ ],[=∇ , to estimate the edge strength:  
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and the orientation of the edge normal: 
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The output is the strength image sE , created by the values ),( jies , and an orientation 

image oE , created by the values ),( jieo . 

3. Threshold sE :  
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where T  is so chosen that all edge elements are kept while most of the noise is 

suppressed. 

4. Suppress non-maxima pixels in the edges in sE  obtained above to thin the edge ridges (as 

the edges might have been broadened in step 1). To do so, check to see whether each non-

zero ),( jiEs  is greater than its two neighbors along the gradient direction ),( jiEo . If so, 

keep ),( jiEs  unchanged, otherwise, set it to 0.  
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5. Threshold the previous result by two different thresholds 1τ  and 2τ  (where 21 ττ < ) to 

obtain two binary images 1T  and 2T . Note that compared to 1T , 2T  has less noise and 

fewer false edges but larger gaps between edge segments.  

6. Link edges segments in 2T  to form continuous edges. To do so, trace each segment in 2T  

to its end and then search its neighbors in 1T  to find any edge segment in 1T  to bridge the 

gap until reaching another edge segment in 2T .  

The result of applying Canny edge detector on a sample IR stereo pair is shown in Figure 

3.3.c. 

3.2.4 Kanade-Lucas-Tomasi (KLT) 

In a very different approach from those mentioned above, Tomasi et al. [85] proposed a 

technique, known as KLT, which is not only capable of extracting local features in an image, 

but it also can track the extracted features in other views of (almost) the same scene. In this 

method, the displacement T
yx ddd ][=  is computed to minimize the sum of the squared 

differences between consecutive image frames I  and J  (left and right images in our 

experiments) [68]: 
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where W  is a window of pixels around the considered feature point and Tyxx ][=  is a pixel 

in the image. This nonlinear error can be minimized by solving its linearized version 

iteratively, through Taylor series expansion:  
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and [ ] xxJxIxg ∂+∂= /)()(
2
1)(  is the spatial gradient of the average image. Finally, 

features are selected as those points in the image for which both eigenvalues of Z  are greater 

than a minimum threshold. Figure 3.3.d shows the performance of KLT on a pair of IR 

images. 

3.2.5 Feature extraction used in our system (Phase Congruency) 

Although the feature detectors reviewed in the previous section work very well for visible 

images, their performances on IR images are not reasonable enough (results of performing 

different feature detectors on some sample IR stereo images are illustrated in Figure 3.2. More 

detailed and quantitative comparative results are presented in chapter 5); either the number of 

detected features is not adequate, or the feature detectors are not robust enough to detect the 

same scene elements in the left and right images (repeatability characteristic [73]).  

In our system, features are extracted from the phase congruency model. In comparison 

with the other studied approaches, the phase congruency model appears to provide a 

reasonable amount of stable and tractable features. In the following we briefly introduce the 

phase congruency model and its application on feature detection. 

The Phase Congruency (PC) is a feature detection method which is based on the Local 

Energy Model, presented by Morrone et al. [61]. In contrast to the traditional approaches 

assuming that image features are located at points with maximal intensity gradient, the Local 

Energy Model makes the assumption that image features at frequency domain are located at 

points where the Fourier components are maximally in phase (see Figure 3.4). This is a more 

general definition than the one used by the traditional edge detection methods. Using the 

Local Energy Model, it is not required to make any assumptions about the shapes of the 

features being detected. This is an advantage over the other feature extraction techniques, 

which have to make assumptions about the shape of the feature to be detected. In addition, 

this method provides a degree of insensitivity to variation in illumination and contrast. For 

each point of the image in the phase congruency method, the congruency of phases at 

different frequencies (scales) is measured. Points with high phase congruency will get a high 

score, whereas points where the congruency is low get a low score. A PC feature edge map 

can then be computed by applying non-maxima suppression and thresholding. 
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Figure 3.3: Performance of some state-of-the-art feature extractors on a sample IR stereo pair. 
(a), (b), (c) and (d) show the performances of Harris, DOG, Canny and KLT feature detectors.  

(a) 

  

(b) 

  

(c) 

 

(d) 
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 (Square wave)                                                (Triangular wave) 

 
Figure 3.4: In both diagrams, the broken lines illustrate the first few terms of the respective 
Fourier series and the solid lines show the sum of these terms. At the point of the step at 
angles 0º and 180º in the square wave, all the Fourier components are in phase. Similarly, this 
is the case at peak and troughs of triangular wave, at angles 90º and 270º; (Reproduced from 
[49]). 
 

A good way to describe and understand the concept of phase congruency model, is to 

consider the Fourier expansion of a 1D slice through an image [48]:  
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In the above equation, nA  represents the amplitude of the thn  cosine component, ω  is a 

constant (e.g., π2 ), and 
0nφ  represents the phase offset of the thn  component. The local phase 

of the Fourier component at position x  is represented by the function )(xnφ . Using this 

function, Phase Congruency is defined as [61], [49]:  
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The above equation is maximized when the local phase, )(xnφ , is equal to the amplitude 

weighted mean local phase angle of all Fourier terms, )(xφ , at the considered point (see 

Figure 3.5). Phase congruency as defined in equation (3.14) is relatively expensive to  

in  
phase 

 in phase 
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Figure 3.5: For a point in a signal, the polar diagram of the Fourier components is shown. nA  
and nφ  represent the length and the local phase angle of each Fourier component, 
respectively; (Reproduced from [48]). 
 

calculate. Venkatesh and Owens [91] have shown that the Phase Congruency function can be 

equivalently calculated by using the local energy function, which is mainly used in modeling 

iological vision. The local energy function for a 1-D signal is defined as [49]: 
 

)()()( 22 xHxFxE += , (3.15)

 

where )(xF  is the signal with the DC component removed, and )(xH  is the Hilbert transform 

of )(xF  (a 90 deg. phase shift of )(xF ). It was shown by Venkatesh and Owens that local 

energy is equal to phase congruency scaled by the sum of the Fourier amplitudes; that is, 

∑=
n

nAxPCxE )()( . (3.16)

From the above equation, it is obvious that the local energy function is directly proportional to 

the phase congruency function, and therefore, peaks in phase congruency will correspond to 

peaks in local energy. 

Although using the local energy function for finding peaks in phase congruency is 

computationally more convenient, no dimensionless measure of feature significance can be 

provided, as the local energy function is weighted by the sum of the Fourier component 

amplitudes, which have units lumens [49]. This yielded the use of wavelet transform to obtain 
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spatially localized frequency information in images for calculating phase congruency, which 

was first proposed by Morlet et al. [60]. In their approach, linear-phased filters were used, 

which are non-orthogonal wavelets based on complex valued Gabor kernels; each Gabor 

kernel consists of a cosine or even wave (forming the real part of the value) and sine or odd 

wave (forming the imaginary part of the value). Using even and odd filters in quadrature, the 

amplitude and phase of the signal can be computed for any particular frequency and spatial 

location. 

Given I , the signal, and e
nM  and o

nM , the even-symmetric (cosine) and odd-symmetric 

(sine) wavelets at a scale n , one can define the response vector of each quadrature pair of 

filters as: 

]*)(,*)([)](),([ o
n

e
nnn MxIMxIxoxe = , (3.17)

 
The amplitude of the transform at a given wavelet scale is given by: 
 

 22 )()()( xoxexA nnn += , (3.18)

and the phase is calculated by: 
 

))(),((2tan)( xoxeax nnn =φ . (3.19)

 

At each point x  in a signal, a set of response vectors is obtained, one for each scale of a 

filter. These response vectors are used to produce the localized representation of the signal, 

and can be used in exactly the same manner as Fourier components are used to calculate the 

phase congruency. 

Kovesi in [49], [50] follows the approach of Morlet et al. [60], but, rather than using Gabor 

filters, he uses Logarithmic Gabor functions that was suggested by Field [23]. Log-Gabor 

filters have a Gaussian transfer function when viewed on the linear and logarithmic frequency 

scale. They still maintain a zero DC component in the even-symmetric filter, while allowing 

arbitrarily large bandwidth filters to be constructed.3 

The 2D Log-Gabor filter is constructed in the frequency domain. In the spatial domain, it 

can only be numerically constructed using the inverse Fourier transform. Log-Gabor filters 

                                                 
3 A zero DC value cannot be maintained in Gabor functions for bandwidths over one octave [49]. 
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consist of two components, namely the radial filter component and the angular filter 

component. The radial filter has the transfer function [49]: 
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where 0ω  is the center frequency of the filter and k  determines the bandwidth of the filter in 

the radial direction. The angular component, which controls the orientation that the filter 

responds to, has the Gaussian transfer function [49]: 
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where 0θ  is the orientation angle of the filter, T  is a scaling factor, and θΔ  represents the 

orientation spacing between the filters.  

The Log-Gabor filters are produced by multiplying the radial and angular components 

together (see Figure 3.6). A bank of 24 Log-Gabor filters at 4 frequencies and 6 orientations is 

used in our implementation. 

Kovesi [49], [50] developed a modified measure of phase congruency (via wavelets), 

consisting of the cosine minus the magnitude of the sine of the phase deviation, which 

produces a more localized response (than equation (3.14)). This new measure also 

incorporates noise compensation: 
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where =ΔΦ )(x −Φ−Φ ))()((cos( xxn )))()(sin( xxn Φ−Φ . In the above equations, 

)(xΔΦ  is the phase deviation, and )(xW  is a factor that weights for frequency spread. ε  is a  

small constant that is used to avoid division by zero. Note that only energy values that exceed 

T , the estimated noise influence, are regarded in the result; and the ⎣ ⎦  denote that the 

enclosed quantity is equal to itself when its value is positive, and zero otherwise. 
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(a) (b) (c) 

Figure 3.6: (a) Radial log-Gabor component of the filter, (b) angular component of the filter, 
(c) product of (a) and (b) to produce the frequency domain representation of the log-Gabor 
filter. 
 

By combining phase information at different orientations into a covariance matrix, and 

calculating the minimum and maximum moments, a highly localized representation is 

produced that can be used to detect both edges and corners in a contrast invariant manner. In 

order to extract edge features from the phase congruency model, the following measures are 

computed at each point in the image [50]: 
 

                                           
2))cos()((∑= θθPCa , (3.23)

                     ∑= ))sin()())(cos()((2 θθθθ PCPCb , (3.24)

                                           
2))sin()((∑= θθPCc , (3.25)

 

where )(θPC  represents the phase congruency value determined at orientation θ , and the 

sum is performed over all discrete orientations used. Now,  the  edge  coefficient  of  each  

pixel  is  computed  using  the maximum moment of phase congruency covariance:  

 

))((
2
1 22 cabacM −+++= . (3.26)

 
PC edge maps extracted from a sample IR stereo are illustrated in Figure 3.7. The edge maps 

are further processed by a locally adaptive thresholding strategy in order to binarize the results. 

Furthermore, the following two-step process is performed on the binary map in order to remove 

the extra unnecessary points: (i) removing the connected regions whose areas are smaller than a  
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(a) 

(b) 

Figure 3.7: (a) original IR stereo images (b) the phase congruency edge maps. 
 

given threshold and are not reliable, (ii) thinning the connected regions using a set of 
successive morphological operations. 

3.3 Feature matching  

Once the reliable and tractable features are extracted from the left and right images, the next 

question is how these extracted features should be described to make the comparison and 

matching possible. There are a large variety of possible descriptors and associated distance 

metrics which emphasize different image properties like pixel intensities, color, gradient 

magnitude and textures. However, the selection of a reasonable feature descriptor depends 

basically on the type of the extracted features and the underlying extraction technique. For 

example, for the regions extracted by the Difference-of-Gaussians technique, Lowe [56] 
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proposed a scale and rotation invariant description method, which is based on the distribution 

of the gradient magnitudes and orientations, computed during the extraction of the regions. 

 In our system, features are described by a set of Log-Gabor coefficients at different scales 

(e.g. 4) and orientations (e.g. 6), computed during the extraction of feature points by the phase 

congruency model. Similar to Gabor wavelets, Log-Gabor wavelets are biologically 

motivated convolution kernels restricted by a Gaussian function. Gabor and Log-Gabor 

wavelet coefficients have been used as descriptors in several applications including object 

recognition [51], face recognition [93] and content based image retrieval [26]. The Log-Gabor 

wavelet kernels used in our system are illustrated in Figure 3.8.   

 Once the features are described, the matching between the right and the left images is 

possible through a simple and straightforward algorithm: each feature at ),( yx  in the first 

image (left/right) is compared with a set of potential  features  in  the  other  image (right/left),  

located  within  a yx ww ×  rectangular window, W , centered on ),( yx ,  where xw  and yw  are 

the  maximum  expected  disparities in horizontal and vertical axes, respectively. Features are 

compared using the cosine similarity function, which has also been used in [51] and [93] for 

comparing wavelet-based description vectors: 
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where F  and F ′ are two sets of Log-Gabor coefficients’ magnitudes to be compared, and jf  

and jf ′  are the thj  coefficients in F  and F ′ , respectively. For each feature in the first image, 

the feature in the second image which maximizes the similarity measure is then selected as the 

tentative corresponding point. 

The performance of any correspondence method is impaired by ‘occlusions’ (points with 

no counterpart in the other image) and ‘spurious matches’ (false corresponding pairs created 

by noise). Appropriate constraints reduce the effects of both phenomena. We impose two such 

constraints on our system: namely, the left-right consistency constraint, and the uniqueness 

constraint. The uniqueness constraint means that a given feature from one image can be  
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Figure 3.8:  Log-Gabor filters at four scales and six orientations. Only the real parts of the 
filters are shown. 

 

matched to only one feature from the other image [58]. On the other hand, the left-right 

consistency constraint is on the basis of checking that a valid match point be equally matched 

and have the same disparity in both left-right and right-left directions. Fua in [27] proposed a 

technique for left-right consistency, which is illustrated in Figure 3.9.  

3.4 Matching refinement  

In general, since for a given point in one stereo image, a corresponding point in the other 

image may not exist, due to occlusion or missing parts, the feature matching process is usually 

considered as an ill-posed problem. Furthermore, if the feature points are not located in a 

sufficiently textured area (which is common in IR images), the matching algorithm may fail to 

correctly find the correspondences, thus, producing outliers. 

 

Orientation 

Sc
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Figure 3.9: Left-right consistency checking. Each arrow represents the matched elements and 
the matching direction (left-right or right-left). A match between two elements is valid if they 
are matched to each other in both directions.  
 

In this section we describe a method for removing the outliers, using the fundamental 

matrix for estimating the epipolar geometry and RANSAC strategy to robustly fit the 

Fundamental Matrix to the matched points. 

3.4.1 Epipolar geometry 

The intrinsic projective geometry between two views is called the geometry of stereo, also 

known as epipolar geometry [42], which is independent of scene structure, and only depends 

on the cameras’ internal parameters and relative pose. First of all, we need to establish some 

basic notations. 

 
Notation. Let’s consider a scene point M  that is visible in both stereo cameras. Given its 

projection, lm , on the image plane formed by the left camera, its corresponding projection, 

rm , on the image plane formed by the right camera, has to be located on the epipolar line, rml  

(epipolar constraint). The epipolar line is the intersection between the epipolar plane, Π , 

(defined by the optical centers of the stereo cameras lC  and rC , and the scene point under 

investigation M ) and the image planes, lπ  and rπ  [29]. Figure 3.10 shows the epipolar 

geometry. As can be seen, the epipolar lines, lml  and rml , show the relative orientation and 

position of the scene points in the stereo images. The points le  and re  in Figure 3.10 are the 

epipols and are defined by the intersection of the image planes with the baseline },{ rl CC . 

The most common way to represent the epipolar geometry is through a 33×  matrix called 

the Fundamental Matrix [42], noted as F . The fundamental matrix can be derived from the 

Left 

Right 

matched unmatched 



 38

 

 

 

 

Figure 3.10: The epipolar geometry 
 

mapping between a point and its epipolar line: for a given point m  in the first image, the 

projective representation of the epipolar line in the second image ml ′ , is given by: 

Fmlm =′ . (3.28)

Since the point m′  corresponding to m  belongs to the line ml ′  by definition, therefore: 

0=′=′′ Fmmlm TT . So, the fundamental matrix satisfies the condition that for any pair of 

corresponding feature points mm ′↔  in the two images: 

0=′ Fmm T , (3.29) 
 

where  Tyxm )1,,(=  and Tyxm )1,,( ′′=′ , in homogeneous coordinates. 

The simplest method of computing the fundamental matrix is the 8-point algorithm, 

presented originally by Longuet-Higgins [55]: Given a sufficient number of matched points 

ii mm ′↔ , (at least 8), the equation (3.29) can be used to compute the unknown matrix F . In 

particular, writing Tyxm )1,,(=  and Tyxm )1,,( ′′=′ , each matched pair gives rise to one linear 

equation in the unknown entries of F . The coefficients of this equation are easily written in 

terms of the known coordinates m  and m′ . Specifically, the equation corresponding to a pair 

of  )1,,( yx  and )1,,( yx ′′  is: 

0]1[ =′′′′′′ fyxyyyyxxxyxx , (3.30)

where  TFFFFFFFFFf ][ 333231232221131211=  is a 9-vector containing the elements of the 

fundamental matrix F . By stacking eight of these equations in a matrix A , we can obtain a 

linear system of the form 0=Af . The least-squares solution for f  is the singular vector 

Π 
M 

πrπl 

mrml lml lmr er el

Cl Cr 



 39

corresponding to the smallest singular value of A , that is, the last column of V in the 
TUDVASVD =)( . The solution vector f found in this way minimizes Af  subject to the 

condition 1=f . 

In order to reduce the numerical complexities while calculating the matrix F , Hartley in 

[41] proposed the normalized 8-point algorithm. In this approach, the center of corresponding 

points is translated to the origin of the image reference frame and then the corresponding 

points are scaled so that the average distance from the origin becomes equal to 2 . Finally, 

after the calculation of matrix F̂  by using the 8-point algorithm, it is converted to the matrix 

F  of corresponding points before normalization using: l
T

r TFTF ˆ= , where rT  and lT  are the 

transformation (normalization) matrices for the right and left images, respectively. 

3.4.2 Fundamental matrix RANSAC fit 

The RANSAC (or RANdom SAmple Consensus) algorithm [24], [86] is an algorithm for 

robust fitting of models in the presence of many data “outliers”. We use this algorithm to 

robustly fit a fundamental matrix to a set of putatively matched image points and obtain a 

subset (called “inliers”), that is consistent with the epipolar geometry.  

Given N  matched feature pairs, the RANSAC algorithm iteratively performs the following 

steps: (i) selecting p  sample pairs ( p =8, the minimum number required to compute a 

fundamental matrix) at random, (ii) computing the fundamental matrix (as described in 

Section 3.4.1), and (iii) determining to what degree all the available matches support the 

epipolar constraint. The random sampling is repeated m  times until at least one random 

sample contains only good matches with probability mpP ))1(1(1 ε−−−= , (ε  is the 

percentage of outliers). After fitting the fundamental matrix, any matched points which do not 

satisfy the fitted model, are returned as outliers.  

In our approach, once the matched points are extracted and the left-right consistency is 

applied (using the algorithm described in Section 3.3), we fit a fundamental matrix to the 

remained matched points using the RANSAC technique (as described above) to detect and 

remove the outliers. Figures 3.11 and 3.12 illustrate the matching performance, the recovery 

of the epipolar lines and the associated disparity map for one sample stereo pair of our data 
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set. The blue lines indicate the features matched in both views, and the red and green circles 

represent the feature points in the right and left images, respectively. It can be observed that 

the incorrectly detected epipolar lines derived from the mismatched features are successfully 

identified and removed. 

3.5 Chapter summary 

In this chapter, we proposed a method for feature-based matching to produce sparse depth 

maps that can be used to generate semi-dense depth fields. Our method was composed of 

three main steps, namely, feature extraction, feature matching, and matching refinement. In 

the feature extraction step, we studied the performances of some of the state-of-the-art feature 

detectors and compared them with the performance of the phase congruency model, used in 

our system for feature extraction. Analyzing the results qualitatively, phase congruency 

method achieved the best performance on the texture-less and low-resolution IR images 

(quantitative analysis of the performance of different detectors on IR images are presented in 

Chapter 5). In the feature matching step, a set of Log-Gabor wavelet coefficients in different 

orientations and frequencies (computed during the calculation of phase congruency) were 

used to describe the extracted features, and a cosine similarity function was employed to 

match the features in left and right images. Epipolar geometry and left-right consistencies 

were then used in the third step in order to detect and eliminate the outliers. More experiments 

with our methodology and quantitative analysis of the results will be presented in Chapter 5. 
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(a) 

 
(b) 

 
Figure 3.11: (a) shows the original IR stereo pair; (b) displays the right image overlaid with 
all matched feature points from the right and left images, along with the correspondences 
(with blue lines);  
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(a) (b) 

 
(c) 

 
(d) 

 
Figure 3.12: (a) displays Figure 3.11.b after outlier elimination; (b) displays the detected 
outliers. (c) Sparse disparity map generated from an IR stereo pair. Darkest blue, in disparity 
map, indicates objects closest to the camera, and darkest red indicates objects farthest from 
the camera; (d) the ground truth data that was obtained with respect to the depth ordering of 
the presented objects in the scene, to make the evaluation of the resulted disparity map 
possible. Closer objects are shown with brighter gray values, while farther objects are shown 
with darker gray levels. 
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Chapter 4 

Surface reconstruction 

Once the sparse depth map is generated, the next step is to reconstruct the surface in order to 

find more detailed depth information. Surface reconstruction is the process of reconstructing a 

piecewise smooth surface from a set of noisy measurements (known data). Besides the 

smoothness, in many applications the reconstructed surface is also required to identify and 

preserve the discontinuities.  

     In the feature-based stereo imaging, measurements are often obtained through the feature 

matching between the left and the right images (i.e., depth constraints). Therefore, usually a 

very sparse and irregular sampling is obtained which very likely doesn’t contain 

measurements in some parts of the image (e.g., where no feature is detected or matched in the 

left and right images). This makes the reconstruction problem ill-posed and therefore some 

additional constraints are required to make it well-posed1. 

     In this chapter, we first present a brief study on some surface fitting methods. Then we 

describe the problem of identifying and preserving discontinuities, and finally we present 

different steps of our surface reconstruction technique.  

                                                 
1 A common approach to solve this ill-posed problem is through the regularization technique originally proposed 
by Tikhonov [84], which restricts the solution to be a smooth function. See section 4.3.2 for more details. 
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4.1 Related work 

Most of the feature-based stereo matching methods [34], [58] incorporate a surface 

reconstruction (interpolation) technique to densify their result. Generally, the techniques used 

for interpolation or approximation of possibly sparse depth maps (produced by a feature-

based stereo matching) by a surface, can be categorized in at least two forms: (i) minimization 

of spline2 functional and (ii) directly fitting polynomial based surface patches. These 

categories are briefly reviewed in the following: 
 
Minimization of spline functional. Influential works in this category are those of 

Terzopolous [83], Grimson [34] and Blake and Zisserman [9]. Grimson proposed a visual 

surface interpolation technique in which depth information is obtained from stereo images. 

More specifically, this approach deals with fitting the best surface to a sparse set of depth 

values produced by the Marr and Poggio [58] stereo algorithm. For smooth interpolation of 

visual surfaces from depth measurements, Grimson minimized the quadratic variation E  of 

the surface ),( yxf : 
 

dxdyfffE yyxy
R

xx
222 2 ++= ∫∫ . (4.1)

 

In the above equation, R  is the image region in which the depth constraints are specified. 

This functional is equivalent to the energy of a thin plate, whose minimization produces a 

function called thin-plate splines. Grimson developed an iterative algorithm based upon the 

biharmonic equation that results from applying Euler’s equations to minimize E  [10]. Since 

this approach did not deal with surface or orientation discontinuities, it cannot be applied to 

the general surface reconstruction problem. 

     A significant disadvantage of the thin-plate spline is that, its global 1C  continuity gives 

rise to undesirable exceeded values near large gradients. To overcome this deficiency of 

global smoothness constraints Terzopoulos [82], [83] introduced a general class of controlled-

continuity stabilizers, which provides the necessary control over smoothness. This non-

quadratic stabilizing functional is a 2D extension of the spline under tension functional and is 
                                                 
2 A spline funstion for interpolation is considered as a minimizer of suitable measures of smoothness subject to 
some interpolation constraints. 
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recognized as a weighted convex combination of the thin-plate and membrane generalized 

spline kernels: 

{

[ ] } dxdyffyx
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where 2ℜ⊂Ω  refers to the images domain and ),( yxf is the approximation function. The 

2D functions ),( yxρ  and ),( yxτ , also called continuity control functions, involve an 

explicit representation of depth and orientation discontinuities, respectively. 

The stabilizer is controlled as follows: when 1),(),( == yxyx τρ , which is the case over 

smooth surface patches and away from depth and orientation discontinuities, the solutions are 

thin-plate splines. At discontinuities in surface orientation, where 1),( =yxρ  and 

0),( =yxτ , the solutions are the membrane splines. Finally, near depth 

discontinuities, 0),( =yxρ , the solution is constrained to agree with the measured data as 

closely as possible. Setting the continuity control functions ρ  and τ  requires a prior 

knowledge of the location of the discontinuities. Terzopolous in [83] proposed two ways to 

identify the discontinuities, namely local validation by bending moment method and the 

variational continuity control. 
 
Directly fitting polynomial based surface patches. In this form of surface fitting, the 

assumption on disparity smoothness is implemented by fitting planar or quadratic surface 

patches locally to the measurements (e.g., Hoff and Ahuja [44], Eastman and Waxman [21], 

Faugeras et al. [22]).  

Hoff and Ahuja in [44] presented an approach that integrates the processes of feature 

matching, contour detection, and surface interpolation, into a single process. The integration 

is implemented in a multiresolution hierarchy of surface maps. In their algorithm, a Laplacian 

of Gaussian operator is used to extract edgels and then matching is performed in both left-to-

right and right-to-left passes. The possible surfaces (first planar and then quadratic) are fitted 

to the points within a circular patch around each depth point across the image, using Hough 

transform. The objects in the scene grow smaller planar patches at known surface points until 

they merge or break at discontinuities (which are detected by fitting a bipartite patch at 
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various orientations). Finally, a piecewise smooth surface evolves. This approach achieves 

very promising results; however it fails when the matching features are too sparse. Also, the 

surface discontinuities usually are not located accurately.  

Eastman and Waxman [21], also use fitting planar patches to a set of offset values. In their 

approach, those matching candidates, which have a disparity gradient greater than 1, or 

deviate the residual of the fit more than three times, are identified as outliers and therefore are 

eliminated. A new fit is made and the process is iterated up for to three times. Finally, the 

disparity offset with the minimum residual is accepted. 

4.2 Discontinuities: detection and preservation 

Surface reconstruction involves not only interpolating the smooth surfaces over uniform 

regions but also locating and preserving the discontinuities that bound these regions, since 

very often they carry the most important information in the scene [89]. Standard 

regularization techniques (e.g., [34], [67]) impose a smoothness criterion over the whole 

image and therefore are not capable of preserving the discontinuities in depth. More advanced 

techniques which consider the discontinuity detection and preservation, can be generally 

categorized into three groups: (i) methods which detect discontinuities prior to reconstruction 

(e.g., in a work by Grimson and Pavlidis [35], discontinuities are detected by monitoring local 

statistics of the residuals of a local planar approximation to the depth data); (ii) those methods 

which integrate the surface depth discontinuity information into the surface reconstruction 

problem (e.g., Blake suggested in [8] the idea of including a discontinuity penalty term as part 

of the minimal energy formulation for piecewise continuous reconstruction);  and (iii) 

methods which detect discontinuities subsequently (e.g., Terzopoulos in [83] applies a post 

processing local validation on the reconstructed surface to locate and recover the 

discontinuities).  

4.3 Our technique 

Since in our application (depth from IR stereo), the prior knowledge about the location of 

discontinuities can always be generated from one of the stereo images (referred to as 
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reference image), we chose to handle the problem of depth discontinuity detection and 

preservation by first extracting the edge map of the reference image (since the edge features 

provide the exact, non-blurred locations for the discontinuities). Then we perform 

segmentation to obtain homogeneous regions, where the disparity can be assumed to vary 

smoothly inside each region. Finally, the surface in each region is reconstructed 

independently.   

4.3.1 Segmentation 

Segmentation, as the process of separating touching objects in an image, is a very difficult 

image processing task. Among the available techniques for image segmentation, we chose to 

use a watershed-based method [7], due to its simple and efficient framework, and because of 

its ability of producing more stable segmentation results for IR images.  

In geography, a watershed is the ridge that divides areas drained by different river systems. 

In this sense, a catchment basin means a geographical area from which rainfall flows into a 

river or reservoir, and watershed lines are the dams which separate the basins [95]. The 

watershed transform applies these ideas to image processing to enable the solution of a 

variety of computer vision problems. Considering the input image as a topological surface, 

where the values of ),( yxf are interpreted as heights, the watershed transform finds the 

catchment basins and ridge lines in such an input image. When the aim is to use watershed 

transformation for gray-scale image segmentation, the main task is to change the original 

gray-scale input image to an intermediate representation, whose catchment basins are the 

objects or regions we want to distinguish. Among the widely used intermediate representation 

techniques, employed together with watershed transformation, are the distance transform and 

gradient. Since we are interested in identifying regions in the reference image where the 

disparity/depth information varies smoothly (or in other word, regions with no major 

discontinuity involved), we chose to use the distance transform of the edge map, as the 

intermediate representation for the watershed segmentation of the reference IR image. 
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Distance Transform 

 
Figure 4.1: Distance Transform (DT) 

 

The distance transform of a binary image (i.e., edge map) is a simple concept [31]. It 

represents the Euclidean distance from each pixel with its value of 1 to the nearest nonzero-

valued pixel as can be seen in Figure 4.1. The peaks of the distance transform are in the 

middle of the regions of interest. The idea is to run the watershed transformation using these 

peaks as the starting points (markers). For this, we invert the distance transform so that the 

peaks become the regional minima (catchment basin), and assign all zero pixels of the 

distance transform (those pixels which are located in edge points of the reference image) by 

∞− . Figure 4.2.c shows the distance transform of the binary map in Figure 4.2.b. After 

proper preprocessing of the distance transform, the watershed is applied to obtain the image 

segments (Figure 4.2.d). 

A well-known problem of watershed segmentation is a tendency towards 

oversegmentation3. Since the watershed generates a large number of segmented regions, the 

main challenge is to make a proper choice and select and merge the relevant regions only. 

There are several approaches for merging watershed regions to obtain larger and more 

interesting image segments, like [94] and [39]. We also applied some image pre-processing 

and post-processing, in order to suppress the oversegmentation and obtain a concise region 

representation: 

Pre-processing. We preprocessed the distance transform with a simple 55×  median filter. 

The aim of this filter is to get rid of spurious minima and improve the result of watershed 

segmentation. Larger size filters may cause over-smoothing that will weaken important edges, 

therefore, causing an incomplete image representation.  

Post-processing. This stage consists of, first, merging some of the basins in a proper way by 

removing  irrelevant  watershed lines, and  then  merging those segmented  regions that do not  

                                                 
3 Oversegmentation occurs when every local minimum, even if insignificant, forms its own catchment basin. 
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satisfy the minimum valid region size criterion, with their neighbors.  

     In the first step, the irrelevant watershed lines, i.e., regions’ common boundaries, are 

eliminated and adjacent regions are merged, if:  
 

321 ,, TNT
N
NTN L

L

E
E >≤< , (4.3) 

where, EN  is the number of edge pixels on the watershed line (common boundary), and LN  

is the length of the watershed line. 1T , 2T  and 3T  are preset thresholds. In all our 

experiments 1T , 2T  and 3T  are set to 5, 1/12 and 5, respectively. 

In the second step, we remove small size regions4. If a certain region has an area smaller 

than a threshold AT , then its borders with the neighboring regions are searched, and this 

region is merged with the neighboring region which has the widest border. It is clear that 

threshold AT  is inherently application dependent, because the minimum object area can vary 

significantly for different applications.  

As an illustration of the efficiency of our post-processing technique, the final segmentation 

of a sample IR image is displayed in Figure 4.2.f. In our experiments, we used 50=AT  (for 

images of size 240320× ), so that regions with an area smaller than 50 pixels were merged. 

4.3.2 Interpolation of each segment 

We assume that for the homogeneous regions obtained from segmentation, the disparity varies 

smoothly and depth discontinuities coincide with the boundaries of those regions ([75], [98]), 

which holds true for most natural images (including IR images). Therefore, to reconstruct the 

surface and preserve the discontinuities in the result, we reconstruct each region individually 

based on the available measurements within that region. In order to find out which surface 

fitting method is more robust to be employed in our final system, we perform a comparative 

study on different surface fitting techniques, using several synthetic data (10 images). In the 

following we first describe different surface fitting techniques and then present our 

comparative experiment. 

                                                 
4 Usually, realistic objects in an image exist within a range of sizes; therefore, it is possible to impose a 
constraint on object area for segmented regions. 
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(a) (b) 

 
(c) (d) 

(e) (f) 
 

Figure 4.2: (a) left image of an IR stereo pair (reference image); (b) binary edge map; (c) the 
distance transform of the binary edge map; (d) initial segmentation result; (e) segmentation 
result after removing irrelevant watershed lines; (f) segmentation result after removing 
irrelevant watershed lines and removing/merging small regions. 
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Surface fitting techniques. In general, there are two forms of expressing surfaces: implicit 

and explicit forms [10]. Explicit surface reconstruction techniques are commonly 

characterized as optimal approximation problems dealing with a class of generalized spline 

functions. The smoothness constraint is the basic component in all these formulations which 

acts as a stabilizing functional. These surface fitting techniques, usually lead to robust 

algorithms, due to their strong formulation. 

     The depth map obtained from a stereo correspondence can be interpreted in the explicit 

form ),( yxfz = , where z  is the distance from the camera to an object point in a scene and 

),( yx  are the image projection coordinates of the considered object point. The depth 

function ),( kk yxf  can be computed for all image positions ),( kk yx by minimizing the error 

function:  

)()),(()( 2 fSyxCfzfE
k

kkk λ+−=∑ . (4.4)

 

In the above equation, the first term is the data constraint, i.e., the residual error in fitting the 

surface f  to the known measurements, kz . C  is a matrix that maps the depth domain to the 

measurements domain. In the second term, )( fS  represents the smoothness requirement 

applied to f , and λ  is a regularization constant which tune the tradeoff between the data 

constraint and the smoothness constraint. Two common choices for the functional )( fS  is the 

first-order form (membrane): 

∫∫ += dxdyfDfDfS yx ])()[()( 22 , (4.5)

 
and the second-order form (thin-plate): 
 

∫∫ ++= dxdyfDfDDfDfS yyxx ])()(2)[()( 22222 , (4.6)

 

where, xD  and yD  are the differential operators with respect to x  and y , respectively. The 

Euler-Lagrange differential equation is used to solve these variational problems. 

     Unlike the explicit methods, the implicit surface reconstruction techniques often try to 

extract global properties (parameters) of a surface [10]. For reliable and accurate parameter 

estimation, all the points that are used for the estimation are required to lie on the same 
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surface, the surface for which the parameters are estimated. The implicit form of the surface is 

expressed as the function: .),,( constzyxf = , where ),,( zyx are the Cartesian coordinates of 

the surface points. The depth ( z ) of a point located at ),( yx according to the planar and 

quadratic models, is given by the following equations, respectively:  
 

111 cybxaz ++= , (4.7) 

1111
2

1
2

1 fyexdxycybxaz +++++= , (4.8) 

 
A standard least-squares technique can be used to compute the coefficients. 
 
Comparative experiment. We compare these methods with respect to their sensitivity to 

noise and sparseness. In order to test the sensitivity of the methods to noise, we add zero-

mean Gaussian white noise to the available measurements of each of the synthetic images. 

The variance ( 2σ ) of the Gaussian noise used in our experiments varies from 0.01 to 0.1, and 

all experiments are performed for a density rate of 10%. For each technique we calculate the 

sensitivity to noise using the following formula: 
 

),(),(__ 0 GTZRMSGTZRMSRMSofdifference n −= , (4.9)

 

where, GT  is the ground truth image, nZ  is the reconstructed surface from noisy 

measurements, n  indicates the variance of the noise and 0Z is the reconstructed surface from 

non-noisy measurements. The performance of each method for different amounts of noise is 

plotted in Figure 4.3.  

     In order to test the sensitivity of the methods to sparsity, for each of our synthetic images, 

we use different data constraint densities, varies from 5% to 20%. The average RMS 

reconstruction error for each method versus the sparsity is shown in Figure 4.4. 

     As can be seen in Figure 4.4, the thin-plate smoothing spline performed better than the 

other fitting methods in terms of sparsity. Therefore, in our application we chose to use the 

thin-plate spline as an interpolant for segmented regions. Figure 4.3, shows that the 

polynomial least squares fitting methods are adequate for normal noise, however, the 

closeness of their performance in terms of noise to the performance of thin-plate spline is 

acceptable. In addition to the results of our experiments, another motivation for using splines 
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is that they offer a unified representation of surface information obtained from various visual 

cues such as stereo, that has been well argued by both Grimson [34] and Terzopoulos [83]. 

The other motivation is that the polynomial least squares fitting does not guarantee 

smoothness. The result of surface reconstruction on two sample synthetic images by the use of 

thin-plate spline as an interpolant has been shown in Figure 4.5, 4.6; 

In order to validate the efficiency of our approach for discontinuity detection and 

preservation, we made a comparison of our result with the result of one of the common 

surface reconstruction methods, Terzopoulos [83], which dynamically adjust the discontinuity 

model, during surface reconstruction such that its continuity becomes consistent with 

discontinuities implied by data. Experimentally we found that the discontinuity detection and 

preservation performance of our approach is close to the Terzopoulos’ (see Figure 4.7 for an 

example), however our technique performs much faster (the average computational time of 

our method for interpolating the synthetic images was three times less than the computational 

time of Terzopoulos’ in the exact same conditions). 

4.3.3 Refining the sparse disparity map 

The results of our experiments on a set of synthetic data, presented in the previous section, 

provoked us to use thin-plate spline for interpolating image regions segmented by watershed 

transformation. However there are two main differences between the sparse disparity maps 

obtained from our stereo matching system, and the synthetic images used in our surface 

reconstruction experiments: (i) the obtained disparity maps are very sparse, often with density 

rate of less than 5%, (ii) the seed points in the obtained disparity maps are not distributed as 

evenly as they are in our synthetic test data. Therefore, in order to increase the number of seed 

points and make the distribution as even as possible, we employ a refinement technique based 

on the triangular and epipolar (described in section 3.4.1) geometrical constraints to yield a 

denser disparity map.  

Our refinement algorithm begins with the sparse disparity map produced by our stereo 

matching system. Similar to [33], we add new corresponding points to the current set of 

matched points, using epipolar geometric and triangular constraints. Imposing these 

constraints helps us to prune the search space for feature point matching. The algorithm 

proceeds in the following steps:     
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Figure 4.3: noise sensitivity of different interpolation techniques (thin-plate spline, membrane 
spline, planar and quadratic polynomials). 
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Figure 4.4: Average RMS error in surface estimation using thin-plate spline, membrane 
spline, planar and quadratic polynomials, as a function of measurements density (5%, 10%, 
15%, and 20%).  
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Figure 4.5: Reconstruction of a synthetic image from depth constraints. (a) an artificially 
generated ground truth (this is a standard artificial image used in many works, e.g., [83] and 
[34], for evaluation), (b) edge map obtained by phase congruency, (c) watershed segmentation 
of the image using the edge map, (d) constraints randomly sampled with density of 10% from 
(a) and normal noise with variance: 0.01, (e) reconstructed surface by thin-plate smoothing 
spline. 
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(a)  

 

(c)  

 

(d) 

 

 
(b) 

(f)  
(e) 

Figure 4.6: Reconstruction of a synthetic image from depth constraints. (a) an artificially 
generated ground truth (128x128 pixel), (b) 3D of (a), (c) binary edge map obtained by phase 
congruency, (d) watershed segmentation of the image using the edge map, e) constraints 
randomly sampled with density of 10% from (a) and normal noise with variance: 0.01, (f) 
reconstructed surface by thin-plate smoothing spline. 
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(a) 

 
(b) 

 
Figure 4.7: Reconstruction of the sparse disparity map in Figure 4.5.d.; (a) our method with 
log(difference-of-RMS) error = -9.18, (b) Terzopoulos’ method with log(difference-of-RMS) 
error = -8.92; (density: 10%, noise variance: 0.01). 
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1. The Delaunay triangulation5 on the matched points of the first image is computed and the 

triangulation of the second image is estimated from that: three vertices of a triangle in the 

second image are corresponding to the vertices of the same triangle in the first image.  

2. For each triangle in the first image the center of the triangle, im , is considered as a 

potential feature point, if it is located at a textured area6. In order to find the possible 

matching partners in the second image, jm′ , we restrict the search area to those points 

which are located within the corresponding triangle in the second image and in a narrow 

band of width ε ))4~2(( ∈ε pixels centered on the corresponding epipolar line, 

ii Fml = ; (see Figure 4.8). The distance between each candidate match, jm′ ,  and the 

epipolar line il  is calculated using the Euclidean distance, based on the following 

equation: 
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′
=′ , (4.10)

 

where 2)( kiFm  is the thk component of vector iFm . 

3. For each feature point im  in the first image, the candidate feature, jm′ , in the second 

image which maximizes the similarity measure (Equation 3.26) is selected as the 

corresponding point. 

4. Once the best match for each feature point in the first image is found, we use a threshold 

value to determine whether the similarity value between the descriptors of the points is 

high enough to consider them as a valid match.  
 
     This process stops when no more matched pair is added. Although by applying this 

algorithm on a sparse disparity map, the sparsity would be improved and measurements 

would be more evenly distributed, there are still some segments of the reference image that do 

not contain enough measurements. These segments either do not contain enough texture or 

suffer from partial occlusion, and therefore we do not reconstruct the surface of such 

segments.  

                                                 
5 See Appendix A, for a brief introduction to Delaunay triangulation. 
6 To measure the texture at each location the entropy of the normalized histogram of pixel values within a 
window around that location, was used. This entropy value should be greater than a predefined threshold value. 
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Figure 4.8: (Reproduced from [33]). The correspondence of the point m  in the first image 
within the triangle ),,( cba , is the point m′  in the second image, located on the epipolar line 

mF.  within the triangle ),,( cba ′′′ . Similarly, the point m′  has its correspondence in Image1 
on mF T ′. and within ),,( cba ; 

4.4 Chapter summary 

In this chapter, we described our method to compute dense disparity map from infrared stereo 

image pairs. First, the disparity maps produced by our stereo matching method (described in 

the previous chapter) are refined in terms of density rate and measurements distribution, using 

triangular and epipolar geometrical constraints. In order to densify sparse disparities we 

developed a surface reconstruction technique which makes use of the prior knowledge of 

depth discontinuities in the reconstruction process. Reconstruction is performed separately in 

image regions segmented by watershed method. Our analysis of some of the surface fitting 

methods on synthetic data prompted us to use thin-plate splines which are more robust in the 

face of high sparsity and noise. 
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(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 4.9: (a) left image of an IR stereo pair (reference image); (b) binary edge map; (c) 
sparse disparity map; (d) refined sparse disparity map; (e) produced dense disparity map; (f) 
ground truth. 
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 Chapter 5 

Experimental results 

Having explained the structure and operation of our technique, we now evaluate its 

performance, with regards to a variety of measurements, on a dataset of several infrared stereo 

images. Our experiments consist of two main stages: in the first stage, the intention is to test 

the performance of our feature matching technique on a set of indoor IR pairs and compare it 

quantitatively with the performance of several state-of-the-art feature matching methods 

widely used for visible images; in the second one, the goal is to validate the efficiency of the 

our technique in producing dense disparity maps. Although the main aim of this thesis is to 

extract structure from indoor IR images, we are also interested in investigating how well our 

matching model performs on outdoor images; therefore, a qualitative assessment of our 

technique is performed for outdoor IR images, as well. In the following, we first describe the 

dataset used in our experiments and then we present and discuss our experimental results.   

5.1 Experimental setup        

There is not any publicly available dataset of infrared stereo images that we can use for 

testing our method. However, there is one database of infrared images of which two sets [2] 

(one consisting of IR & color pairs, and the other is a motion sequence of a single IR camera) 

are used to evaluate our results in addition to our own IR stereo image data. Our IR image 

pairs were created by setting up a stereo configuration of two commercial IR cameras 
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mounted on a commercial Manfrotto stereo tripod system (as can be seen in Figure 5.1.a and 

5.1.b). Each IR camera used in our setup is a Raytheon ControlIR 2000b camera which is an 

uncooled ferroelectric type with the resolution of 320 by 240 and spectral response of 7-

14μ m . The type of detector used in the cameras is a hybrid ferroelectric staring focal plane 

array and is utilized by pyroelectric and dielectric effect measuring. The sensor material is 

Barium Strontium Titanate (BST). The startup time required for the cameras is less than 30 

seconds typical and less than 90 seconds maximum. Each camera is outfitted with an 18 mm  

lens and the field of view is 45 degrees by 35 degrees. The depth of field is 5 m  to infinity (at 

infinity focus) and the focus range is 3 m  to infinity. The adjustable iris permits f/1.0 to f/8.0. 

The input voltage to operate each camera is 9 to 28 VDC with operating current less than 1 A  

at steady state and less than 7 A  at start-up (ambient for 20μ s ). The weight of each camera 

with the lens is 1.6 lbs. 

     Using our IR stereo configuration, we captured several IR stereo pairs from indoor scenes. 

All acquired images are 320×240 pixels, and pre-processed using intensity adjustment 

(remapping intensity values to the specified range of [0 255]) and Gaussian low-pass filtering 

(of size [3 3] with 5.0=σ ) in order to reduce the noise influence (some sample IR images 

from our dataset are shown in Figure 5.2). For each stereo pair, a ground-truth disparity map 

is also constructed for the foreground objects of the scenes to be used in our experiments. The 

reason that we only consider the disparity of foreground objects in our quantitative evaluation 

is that background objects in indoor environments are usually at “thermal crossover” (i.e., 

thermal properties of the objects are relatively similar to those of the surrounding environment 

[17]), and therefore the captured IR images at those areas do not contain enough information 

for image processing tools. 

 

 
 

Figure 5.1: The stereo rig; a close up of the dual IR cameras mounted on a tripod. 



 63

  

  

  
 

Figure 5.2: Some samples of the left images of our IR stereo pairs. 

5.2 Results 

5.2.1 Feature matching 

In order to be able to validate the efficiency of the feature matching technique used in our 

method and compare it with other methods quantitatively, we perform a comparative 

experiment on a small subset of our IR stereo dataset. Besides our feature matching method, 

the other feature matching techniques used in our comparative experiments are Harris-NGC1, 

DoG-SIFT, Canny-NGC, and KLT (all these techniques have been described in Chapter 3). 

We applied all techniques on our test stereo images, and for each method, calculated the 

average results in terms of the number of feature points detected in the left and right images, 

and the mismatch percentage. In our experiments, similar to other works in the field (e.g. 

[29]), we calculated mismatch percentages by manually counting the number of correct 

                                                 
1 Normalized Grayscale Correlation 
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matches using a 55×  window, for each test stereo pair, and dividing it by the total number of 

matches. Table 5.1 summarizes the results.  

As can be seen, although most of the feature matching techniques used in our comparative 

studies are among the widely used matching methods for visible images, their results on our 

IR stereo test images are not well enough, and our matching method achieved the best average 

results both in terms of the number of detected features and the mismatch rate. In our method, 

in average, 3685 features were detected in the left images and 3425 features in the right 

images. 78% of detected features were matched and the other features were discarded due to 

occlusion or left-right consistency constraint; among the matched points, 14% were outliers. 

Using our matching refinement technique based on RANSAC fitting, the final mismatch rate 

reduced to 1.5%. 

 

Method Result 

Detector Descriptor Matching Metric Nbr of 
Feature Pts

Matched 
points 

Mismatch 
% 

Used 
in 

Harris Normalized Grayscale Correlation 307 240 21 % [71] 

DoG SIFT Euclidean distance 211 65 10.3 % [57] 

Canny Normalized Grayscale Correlation 4481 2241 17 % [80] 

Kanade-Lucas-Tomasi (KLT) - 99 15.5 % [74] 

Our technique without matching refinement 3555 2772 14 %  

Our technique with matching refinement 3555 2178 1.5 %  
 

Table 5.1: Compared efficiencies of the matching methods described in Chapter 3. 
 

5.2.2 More results on feature matching 

In the previous section we have analyzed the performance of our matching algorithm on our 

dataset of IR stereo images. However, since all the images in our dataset are from indoor 

scenes, we are interested in investigating how well our matching model performs on outdoor 

IR images. Furthermore, we would like to discover how similar are the features matched from 

IR images of a scene, to the features matched from the visible images of the same scene (to 
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see if fusion of visible and IR imaging can perhaps be a potential direction for improving the 

results). To address these investigations, we use a publicly available database, OTCBVS [2], 

that is a collection of IR infrared and visible images and videos. We use two of the seven 

datasets available in OTCBVS in our evaluations, namely: the Terravic Motion IR Database 

and the OSU Color-Thermal Database. Although these databases do not contain stereo 

images, all the data sequences are of motion and can be used for matching purposes as test.  

To investigate the performance of our matching on outdoor IR images, we have applied the 

method on several pairs of frames from the outdoor sequences of the Terravic Motion IR 

Database. Analyzing the results qualitatively, we found out that the performance of our 

matching on outdoor images is almost as good as it is on indoor images (see Figure 5.3 for 

some examples). Furthermore, we figured that the average number of matched points detected 

in outdoor test pairs was higher than the average number of matched points detected in indoor 

test pairs (as can be observed by comparing Figure 5.3.b and 5.8.b., for example). This could 

be due to the higher complexity of the outdoor scenes which is because of the fact that 

outdoor environments are more dynamic (both visually and thermally) and therefore the 

number of the objects (scene areas) which are at thermal crossover is less in outdoor scenes 

than it is in indoor scenes.  

To exploit the similarity between the matched features from IR images of a scene, and the 

matched features from the visible images of the same scene, we have applied our matching 

method on several IR pairs and their corresponding visible ones, from the OSU Color-

Thermal Database. Figure 5.4 shows the result of applying our matching algorithm on these 

pairs. As can be seen there is a large overlap between the matched points detected in IR pairs 

and those detected in visible pairs. But currently, with our algorithm, matching the features 

from the IR and color images is not possible as the feature descriptors in visible and IR 

domains are not close. 

The sudden illumination changes and the presence of shadows (see Figure 5.5 and 5.6), 

which can result miss-matches in visible pairs, are not issues in matching IR pairs, and on the 

other hand, the halo effect which is a problem in matching IR pairs, is not an issue in 

matching visible pairs. Hence, one can conclude that the fusion of visible and IR results can 

be a potential direction for improving the final performance of the system. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5.3: Some examples of feature matching for two pairs of outdoor IR images; (a), (c): 
frames taken from an IR sequence in dataset 05/otcbvs collection; (b), (d): matched features 
of (a), (c), which are illustrated in green & red in the left and the right images, respectively. 
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(a1) (a2) 

 

 
(b1) (b2) 

 

 
(c1) (c2) 

 
Figure 5.4: Some examples of feature matching on three visible pairs (a1), (b1) and (c1), and 
their corresponding IR pairs (a2), (b2) & (c2). Frames have been taken from dataset 3/otcbvs.  
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infrared 
 
Figure 5.5: Some examples of sudden illumination changes/presence of shadows (pedestrians 
and the lamppost’s shadows). 

 
 

  
visible infrared 

 
Figure 5.6: Some examples of the presence of shadows (statue shadow) in visible and infrared 
images; as can be seen from the IR images, the shadow has been stationary long enough to 
cool the background.  
 

5.2.3 Reconstructed disparity map 

We evaluated the disparity maps produced by our method, using our dataset of IR stereo 

images described in Section 5.1. For each stereo pair, the disparity map produced by our 

method was compared to the ground truth (similar to [81], [99]) and the error was computed 
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by counting the number of pixels with disparities that differ by more than 5 from the ground 

truth, called bad matching pixels. In our statistics, we only take into account the disparities 

computed for foreground objects (as discussed in Section 5.1) and we also ignore occluded 

areas. The percentage of bad matching pixels is computed through the equation (5.1): 
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where N  is the total number of pixels, ),( yxdC  is the disparity map, ),( yxdT  is the ground 

truth map and dδ  is the disparity error tolerance. For our experiments we set dδ  = 5 (similar 

to [81]). 

Our method achieved an average error percentage of 11%, which is comparable to the 

results achieved by state-of-the-art techniques in visible domain [1]. Results from different 

steps of our technique on four sample IR stereo pairs are illustrated in Figures 5.7-5.18. 

Figure 5.19 shows the result of the method on a sample of IR outdoor images. 

 Analyzing the results on the test set, we observed that a large percentage of the failure 

responses of our technique occurred in the regions where the temperature (intensity) is 

uniformly distributed. Furthermore, the presence of the halos in IR images (some samples of 

IR halos have been marked in green, in Figures 5.8.a, 5.14.a and 5.17.a) severely impairs the 

performance as the halo artifact around foreground objects occlude the thermal pattern 

(texture) of the objects nearby (halos can be detected and filtered out as a suggestion for 

future work). Also, the halo effect is minimized if objects are further away from the camera 

which they will be for outdoor applications 

     The computational time of the proposed method does not depend considerably on the 

content of the stereo images. The most computationally intensive components of the 

algorithm are the feature extraction and description, which take almost half of the 

computational time. The surface reconstruction can also be costly to compute, however as it is 

only applied to a relatively small number of segments (rather than all image segments), it does 

not significantly contribute to the overall processing time. Using un-optimized Matlab code 

on a 3.2 GHz Pentium 4 computer, we experienced typical processing times of 20-25 seconds 

for each stereo pair, depending on the complexity of the images. However, the computational 

time can be significantly reduced by using a faster programming language, such as C++, to 
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implement the method. Also, by reducing the size of the images from 320×240 to 160×120 

and 80×60, we can speed up the processing time by almost 66% and 83%, respectively, but at 

the expense of losing accuracy. 

5.3 Chapter summary 

In this chapter we evaluated the performance of our method, with regards to a variety of 

measurements, on a dataset of several infrared stereo images. Two main sets of experiments 

were performed while in the first one the aim was to validate the efficiency of the feature 

matching technique used in our method on a set of indoor IR stereo pairs and compare it with 

other methods quantitatively, and in the second one the goal was to evaluate the disparity 

maps produced by our method. In addition, some qualitative assessments of outdoor IR and 

color sequences have been done to investigate how well our matching model performs on 

outdoor IR images. The results are quite convincing and suggest that the concepts presented 

so far are feasible and are worthwhile to be used in real-world applications such as pedestrian 

detection and tracking for surveillance systems, robot obstacle detection in dark environment, 

passenger pose estimation for airbag systems, etc. A more detailed analysis of the possible 

improvements of the current work and the future directions will be provided in the next 

chapter. 
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(a) 

(b) 

(c) (d) 
 
Figure 5.7: (a) shows the original IR stereo pair; (b) the phase congruency edge maps; (c) 
displays the right image overlaid with the inliers of the right image (red points) and of the left 
image (green points), resulted from the matching refinement, along with the correspondences 
(with blue lines); (d) displays the detected outliers. 
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(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 5.8: (a) right image of an IR stereo pair (reference image); (b) binary edge map; (c) 
distance transform of the binary map; (d) initial segmentation result; (e) segmentation result 
after removing irrelevant watershed lines; (f) segmentation result after removing irrelevant 
watershed lines and removing/merging small regions. 
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(a) (b) 

(c) (d) 
 

Figure 5.9: (a) sparse disparity map; (b) refined sparse disparity map after Delaunay 
triangulation; (c) produced dense disparity map; (d) ground truth. 
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(a) 

(b) 

(c) (d) 
 
Figure 5.10: (a) shows the original IR stereo pair; (b) the phase congruency edge maps; (c) 
displays the left image overlaid with the inliers of the left image (red points) and of the right 
image (green points), resulted from the matching refinement, along with the correspondences 
(with blue lines); (d) displays the detected outliers. 
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(a) (b) 

(c) (d) 

(e) (f) 
 
Figure 5.11: (a) left image of an IR stereo pair (reference image); (b) binary edge map; (c) 
distance transform of the binary map; (d) initial segmentation result; (e) segmentation result 
after removing irrelevant watershed lines; (f) segmentation result after removing irrelevant 
watershed lines and removing/merging small regions. 
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(a) (b) 

(c) (d) 
 

Figure 5.12: (a) sparse disparity map; (b) refined sparse disparity map after Delaunay 
triangulation; (c) produced dense disparity map; (d) ground truth. 
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(a) 

(b) 

(c) (d) 
 
Figure 5.13: (a) shows the original IR stereo pair; (b) the phase congruency edge maps; (c) 
displays the left image overlaid with the inliers of the left image (red points) and of the right 
image (green points), resulted from the matching refinement, along with the correspondences 
(with blue lines); (d) displays the detected outliers. 
 



 78

(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 5.14: (a) left image of an IR stereo pair (reference image); (b) binary edge map; (c) 
distance transform of the binary map; (d) initial segmentation result; (e) segmentation result 
after removing irrelevant watershed lines; (f) segmentation result after removing irrelevant 
watershed lines and removing/merging small regions. 
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(a) (b) 

(c) (d) 
 

Figure 5.15: (a) sparse disparity map; (b) refined sparse disparity map after Delaunay 
triangulation; (c) produced dense disparity map; (d) ground truth. 
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(a) 

(b) 

(c) (d) 
 
Figure 5.16: (a) shows the original IR stereo pair; (b) the phase congruency edge maps; (c) 
displays the left image overlaid with the inliers of the left image (red points) and of the right 
image (green points), resulted from the matching refinement, along with the correspondences 
(with blue lines); (d) displays the detected outliers. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
Figure 5.17: (a) left image of an IR stereo pair (reference image); (b) binary edge map; (c) 
distance transform of the binary map; (d) initial segmentation result; (e) segmentation result 
after removing irrelevant watershed lines; (f) segmentation result after removing irrelevant 
watershed lines and removing/merging small regions. 
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(a) (b) 

(c) (d) 
 
Figure 5.18: (a) sparse disparity map; (b) refined sparse disparity map after Delaunay 
triangulation; (c) produced dense disparity map; (d) ground truth. 
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(a) 

  
(b) 

  
  

(c) (d) 
 
Figure 5.19: An example of surface reconstruction on an outdoor IR pair. (a) Original IR pair 
taken from a motion infrared sequence; (b) matched features from (a); (c) sparse disparity 
map; since the camera is not moving, the disparities of non-moving objects (background) are 
zero (d) dense disparity map. 
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Chapter 6 

Conclusions and future work 

We have presented a novel technique for the computation of semi-dense disparity map from 

infrared stereo images, and evaluated it on a dataset of stereo IR images from indoor scenes. 

Our method has shown the ability to compute reliable disparity information in infrared 

domain for foreground objects in the scenes, without taking into account any prior knowledge 

about the content of scenes.  

6.1 Contributions 

In contrast to the previous works ([66] [97]) in the area of computational stereo for infrared 

images, which showed that the quality (i.e., resolution) of infrared sensors is insufficient for 

calculating dense depth maps, in this thesis, we have challenged their results and illustrated 

that a dense depth field may not be attained directly, but perhaps a sparse depth field can be 

obtained that can be further interpolated to produce a dense/semi-dense depth field.  

     We have proposed a novel feature-based technique which involves two phases: (i) feature 

matching, i.e., finding a set of corresponding points in the left and the right images to produce 

a sparse disparity map; and (ii) reconstruction, i.e., producing a dense map from a sparse 

disparity map. For the first phase, we presented a robust IR stereo matching method, which is 

composed of three main steps. In the first step, a set of stable and tractable feature points from 

each image is extracted based on the phase congruency model, which contrary to the gradient-
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based feature detectors, provides features that are invariant to geometric transformations. We 

obtain the local frequency information for computing the phase congruency via banks of Log-

Gabor wavelets at different spatial frequencies and orientations. The wavelet coefficients are 

further used in describing and matching the extracted features in the second step. Finally, in 

the last step, the matching results are further analyzed in order to detect and eliminate the 

outliers, using the epipolar geometrical constraints (Section 3.4.2). 

     For the second phase, we developed a surface reconstruction technique to densify the 

sparse disparity map, obtained from the first phase. Our surface reconstruction method 

consists of three main steps. In the first step, the given sparse disparity map is refined in terms 

of density rate and measurement distribution. This has been done using triangular and 

epipolar geometrical constraints (Section 3.4.1). In the second step, the reference image is 

segmented into homogeneous regions based on its edge map (since the edge features provide 

the exact, non-blurred locations for the discontinuities), where the disparity can be assumed to 

vary smoothly inside each region. We achieved this by applying a watershed transformation 

on the distance transform of the reference image’s edge map, along with reasonable image 

pre- and post- processing to suppress the over-segmentation and obtain a concise region 

representation (Section 4.3.1). Finally, in the third step, the sparse disparity map is 

approximated in each region by a surface interpolation technique. Our analysis of several 

surface fitting methods on synthetic data (Section 4.3.2) prompted us to use thin-plate splines 

for this step, due to their robustness in the face of high sparsity and noise.   

6.2 Future work 

With regards to our stereo matching method, one potential direction for future work is to test 

the efficiency of using different combinations of feature detectors, rather than using only one 

certain detector, to detect more reliable and tractable features and therefore produce a better 

sparse disparity map in terms of density rate and measurement distribution. It is unclear if a 

better feature detector exists but due diligence is necessary before any claims are made. 

     With regards to our surface reconstruction method, future work is planned to apply the 

adaptive selection of regularization parameter (lambda) for smoothing surface patches, by 
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using a validation method (e.g., [30]). Using a more sophisticated surface model (rather than 

thin-plate splines) in the surface fitting process also remains a topic for future work. 

     Another direction of our future work is to fuse the depth results from infrared cameras 

(obtained by our method) with other results from visible cameras. Thermal video cameras 

detect relative differences in the amount of thermal energy emitted/reflected from objects in 

the scene, making them independent of illumination, and more effective than color cameras 

under poor lighting conditions. Color sensors on the other hand are oblivious to temperature 

differences in the scene, and are typically more effective than thermal cameras when objects 

are at “thermal crossover”, provided that the scene is well illuminated and the objects have 

color signatures different from the background. Therefore, developing a method which relies 

on two complementary bands of the electromagnetic spectrum, infrared (thermal) and visible, 

can perform better than one which relies on an individual band. Preliminary results in Chapter 

5 indicate either our method already can do this; or with the use of appropriate detector and 

representation this should be possible. 

 Finally, we would like to test our method with real-world applications, including 

pedestrian detection and tracking for surveillance systems, passenger pose estimation for 

airbag safety system, robot obstacle detection in dark environment, etc. 
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Appendix A 

Delaunay triangulation 

The optimal triangulation of a set of points is one that maximizes the minimum angle in each 

triangle, producing a set of triangles that are as equilateral as possible [25]. One of the 

extensively used optimal triangulations is Delaunay triangulation technique, which we chose 

to use in our method. The Delaunay triangulation for a set P of points in the plane is the 

triangulation )(PDT , defined as follows: 
 

1. Three points Pppp kji ∈,, are vertices in the same face of the Delaunay triangulation iff  

the circle through kji ppp ,,  contains no other points. This circle is known as the 

circumcircle of the triangle defined by ),,( kji ppp . 

2. Two points Ppp ji ∈,  form an edge in the Delaunay triangulation if there is a circle that 

contains two points ji pp ,  on its boundary and does not contain any other point. 

 

Consequently, the circumcircles of all triangles in )(PDT  will contain exactly three points in 

P  on their boundaries if and only if no more than three points in P  are co-circular. Delaunay 

triangulation is usually computed from Voronoi diagram. The relation between the Delaunay 

triangulation )(PDT  and Voronoi diagram )(PV  can be described using a concept known as 

the dual graph. The dual graph of a planar graph G  has a node for each of the face in G  and 

an arc joining two nodes if their corresponding faces share a common edge. )(PDT  is the 

“straight line” dual graph of )(PV . It follows that every edge in )(PV  has a corresponding 
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edge in )(PDT  and every cell in )(PV  has a corresponding point in )(PDT  (see Figure A). 

Algorithms for fast computation of Delaunay triangulation are available in [36].  

 

 

 
 

 
 

Figure A: The Voronoi diagram and Delaunay triangulation for a set of sample points. 
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