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cremental Estimation of Users’ Expertise Level,” IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 2019,
pp. 1-8.

v



Abstract

In this thesis, we address various challenges related to optimal planning and task allocation
in a robot fleet supervised by remote human operators. The overarching goal is to enhance
the performance and efficiency of the robot fleets by planning routes and scheduling opera-
tor assistance while accounting for limited human availability. The thesis consists of three
main problems, each of which focuses on a specific aspect of the system.

The first problem pertains to optimal planning for a robot in a collaborative human-
robot team, where the human supervisor is intermittently available to assist the robot to
complete its tasks faster. Specifically, we address the challenge of computing the fastest
route between two configurations in an environment with time constraints on how long the
robot can wait for assistance at intermediate configurations. We consider the application
of robot navigation in a city environment, where different routes can have distinct speed
limits and different time constraints on how long a robot is allowed to wait. Our proposed
approach utilizes the concepts of budget and critical departure times, enabling optimal
solution and enhanced scalability compared to existing methods. Extensive comparisons
with baseline algorithms on a city road network demonstrate its effectiveness and ability
to achieve high-quality solutions. Furthermore, we extend the problem to the multi-robot
case, where the challenge lies in prioritizing robots when multiple service requests arrive
simultaneously. To address this challenge, we present a greedy algorithm that efficiently
prioritizes service requests in a batch and has a remarkably good performance compared
to the optimal solution.

The next problem focuses on allocating human operators to robots in a fleet, considering
each robot’s specified route and the potential for failures and getting stuck. Conventional
techniques used to solve such problems face scalability issues due to exponential growth of
state and action spaces with the number of robots and operators. To overcome these, we
derive conditions for a technical requirement called indexability, thereby enabling the use of
the Whittle index heuristic. Our key insight is to leverage the structure of the value function
of individual robots, resulting in conditions that can be easily verified separately for each
state of each robot. We apply these conditions to two types of transitions commonly seen
in supervised robot fleets. Through numerical simulations, we demonstrate the efficacy of
Whittle index policy as a near-optimal scalable approach that outperforms existing scalable
methods.

Finally, we investigate the impact of interruptions on human supervisors overseeing a
fleet of robots. Human supervisors in such systems are primarily responsible for monitoring
robots, but can also be assigned with secondary tasks. These tasks can act as interruptions
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and can be categorized as either intrinsic, i.e., being directly related to the monitoring
task, or extrinsic, i.e., being unrelated. Through a user study involving 39 participants,
the findings reveal that task performance remains relatively unaffected by interruptions,
and is primarily dependent on the number of robots being monitored. However, extrinsic
interruptions led to a significant increase in perceived workload, creating challenges in
switching between tasks. These results highlight the importance of managing user workload
by limiting extrinsic interruptions in such supervision systems.

Overall, this thesis contributes to the field of robot planning and operator allocation
in collaborative human-robot teams. By incorporating human assistance, addressing scal-
ability challenges, and understanding the impact of interruptions, we aim to enhance the
performance and usability of robot fleets. Our work introduces optimal planning methods
and efficient allocation strategies, empowering the seamless operation of robot fleets in real-
world scenarios. Additionally, we provide valuable insights into user workload, shedding
light on the interactions between humans and robots in such systems. We hope that our
research promotes the widespread adoption of robot fleets and facilitates their integration
into various domains, ultimately driving advancements in the field.
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Chapter 1

Introduction

With the progression of technology, the concept of robot fleets has gained substantial trac-
tion, finding practical applications across a spectrum of industries. From robotic delivery
systems [1], data collection and surveillance [2, 3], to transportation solutions [4–6], these
fleets have the potential to greatly improve system efficiency as autonomy continues to ad-
vance. However, despite their autonomous capabilities, human supervision of robot fleets
remains essential to ensure safety, compliance with regulations and overall robustness. This
paradigm of human-robot interaction holds great promise for improving productivity, effi-
ciency, and safety in sectors such as manufacturing, logistics, agriculture, and search and
rescue operations [7–10]. However, it also presents unique challenges and opportunities
that require careful consideration and resolution [11,12].

This thesis is dedicated to addressing several of the relevant challenges associated with
supervised robot fleets. Specifically, we delve into the planning of routes/missions for
robots within a fleet, where they operate autonomously while being overseen by a lim-
ited number of human operators in case they need assistance. A critical aspect of this
system is the possible intermittent availability of human operators, who may have other
responsibilities or be occupied with supervising other robots in the system. This intermit-
tency poses a challenge as operators cannot be continuously present to supervise or assist
individual robots. Consequently, it becomes crucial to develop planning strategies that
can accommodate the availability of operators and ensure effective supervision of the fleet.
Furthermore, we recognize the scenario where service requests for multiple robots arrive
simultaneously, and it becomes important to decide the optimal order in which their routes
should be planned. This decision is significant as planning for one robot changes operator
availability for the later robots. Instead of arbitrarily choosing robots from the batch, it
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may be helpful to optimally prioritize the robots to ensure efficient utilization of human
assistance and improve overall fleet performance.

Once the robots’ routes are planned and the robots begin their designated routes, it
is crucial to proactively anticipate potential trouble scenarios. Despite thorough plan-
ning, unforeseen circumstances such as robot failures or encountered obstacles may require
human intervention. In such cases, it becomes crucial to establish a system for priori-
tizing which robots should receive assistance and when. This prioritization can be based
on factors such as the severity of the situation, the criticality of the robot’s task, or the
overall impact on system performance. Additionally, taking proactive measures, such as
allocating operators in advance to specific robots during potential trouble spots, can fur-
ther enhance the system’s responsiveness. By strategically allocating human assistance to
individual robots in the fleet, we can effectively mitigate risks, and ensure prompt and
effective human intervention when necessary.

In addition to addressing the challenges of operator allocation and planning, it is crucial
to recognize and understand the human factors associated with the system of supervised
robot fleets. While optimizing robot behavior and coordination remains essential, a com-
prehensive understanding of factors related to the supervision of multiple robots is equally
vital. A key consideration in this context is the occurrence of different types of interrup-
tions, which can have a significant impact on operator performance and workload, thereby
influencing the overall effectiveness of the robot fleet. Examining the impact of interrup-
tions within these systems allows us to acquire valuable insights into the dynamics between
human operators and the robots under their supervision. By studying and addressing these
human factors, we can enhance the design and implementation of supervised robot fleets,
thereby improving their overall efficiency and usability.

For the majority of this thesis, we will primarily refer to and focus on the application
of a fleet of robots navigating through a city environment as an illustrative example. In
this scenario, each robot is tasked with traversing a set of waypoints to navigate from
a given start location to a designated goal location. This example serves as a concrete
and practical demonstration of the principles and methodologies developed throughout
our research, allowing for a comprehensive exploration of the challenges and solutions in
this context.

However, it is important to emphasize that the problem formulation we consider in
this thesis extends beyond the example of a robot fleet in a city environment. Our frame-
work has the flexibility to encompass a wide range of tasks that involve the completion
of multiple sub-tasks with defined precedence and temporal constraints. For instance, our
framework can be effectively applied to assembly tasks, where robots independently work
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on different components of an assembly process given the order of tasks and their corre-
sponding time requirements. In such scenarios, the robots can utilize human assistance
for specific procedures that require a higher level of precision or complex manipulation.
Similarly, the proposed methods can be employed in surveillance missions, where robots
are tasked with surveying a series of waypoints in an environment and may require human
assistance for tasks such as target verification. Additionally, our approach can be extended
to scenarios where different agents contend for other shared resources, such as access to
communication bandwidth or limited workspace [13], while also being applicable to situa-
tions where we are required to optimize the fidelity level (resources allocated) of servicing
the given tasks [14].

This versatility and adaptability of our approach make it applicable to a broad spectrum
of real-world applications, highlighting the significance and impact of the research outcomes
presented in this thesis. Through our research, we strive to enhance the efficiency, safety,
and overall performance of supervised robot fleets, ultimately advancing the field of human-
robot interaction and contributing to the realization of effective collaboration between
humans and robots in real-world applications.

1.1 Contributions and Organization

The organization and contributions of this thesis are as follows.

Chapter 2: In this chapter, we present a brief overview of the multi-agent Human-Robot
Interaction systems. We also provide a framework for understanding and characterizing
such systems, and discuss how a supervised robot fleet fits within this framework.

The work presented in this chapter is part of the following publication.

• Abhinav Dahiya, Alexander M. Aroyo, Kerstin Dautenhahn, and Stephen L. Smith.
“A survey of multi-agent Human–Robot Interaction systems.” Robotics and Au-
tonomous Systems 161 (2023): 104335 [11].

Chapter 3: In this chapter, we provide mathematical preliminaries and definitions relevant
to the thesis. This includes discussion on graphs, shortest path problems, submodularity
and restless multi-armed bandits.

Chapter 4: In this chapter, we present the problem of optimal planning for a robot in a
collaborative human-robot team, where the human supervisor is intermittently available to
assist the robot in completing tasks more quickly. We address the challenge of computing
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the fastest route between two configurations in an environment with time constraints on
how long the robot can wait for assistance. To solve this problem, we propose a novel
approach that utilizes the concepts of budget and critical departure times, which enables
us to obtain optimal solutions while efficiently scaling to larger problem instances compared
to existing methods. We also propose a greedy algorithm that efficiently prioritizes service
requests for multiple robots, while having close to optimal performance.

The work presented in this chapter is based on the following publication.

• Abhinav Dahiya and Stephen L. Smith, “Optimal Robot Path Planning In a Collab-
orative Human-Robot Team with Intermittent Human Availability,” in IEEE Inter-
national Conference on Robot and Human Interactive Communication (RO-MAN),
Busan, South Korea, 2023 [15].

Chapter 5: In this chapter, we discuss the problem of allocating operators among robots
in a fleet, where each robot is required to perform an independent sequence of tasks,
subject to the possibility of failing and getting stuck in a fault state at every task. If and
when required, a human operator can assist or teleoperate a robot. Conventional dynamic
programming-based techniques used to solve such problems face scalability issues due to
exponential growth of state and action spaces with the number of robots and operators.
We derive conditions under which the operator allocation problem satisfies a technical
condition called indexability, thereby enabling the use of the Whittle index heuristic. The
conditions are easy to check, and we show that they hold for a wide range of problems of
interest. Our key insight is to leverage the structure of the value function of individual
robots, resulting in conditions that can be verified separately for each state of each robot.

The work presented in this chapter is based on the following publication.

• Abhinav Dahiya, Nima Akbarzadeh, Aditya Mahajan and Stephen L. Smith, “Scal-
able Operator Allocation for Multirobot Assistance: A Restless Bandit Approach,”
in IEEE Transactions on Control of Network Systems, vol. 9, no. 3, pp. 1397-1408,
Sept. 2022 [16].

Chapter 6: In this chapter, we present the design and outcomes of a user study conducted
to investigate the impact of interruptions in systems where human supervisors monitor
multiple robots. There can be several types of interruptions in such systems and we
categorize the interruptions as either intrinsic, i.e., being directly related to the robot
monitoring task, or extrinsic, i.e., being unrelated. We designed a web platform which
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allows users to monitor multiple robots, and report/fix faults in their navigation. During
the experiments, we interrupt the users with secondary tasks and record parameters of
performance and workload.

The work presented in this chapter is based on the following publication.

• Abhinav Dahiya, Yifan Cai, Oliver Schneider and Stephen Smith, “On the Impact of
Interruptions During Multi-Robot Supervision Tasks,” in IEEE International Con-
ference on Robotics and Automation (ICRA), London, United Kingdom, 2023 [17].

Chapter 7: This chapter consists of a summary of the work presented in this thesis along
with potential directions for future work.
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Chapter 2

Multi-Agent Human-Robot
Interaction

TL;DR: In this chapter, we provide a brief overview of the literature on Human-Robot
Interaction (HRI), with a particular emphasis on multi-agent systems. This survey gives
insights into the broader HRI landscape and helps contextualize supervised robot fleets within
the field.

In order to establish a solid foundation, we begin by providing a framework for under-
standing and characterizing multi-agent HRI systems, drawing insights from the existing
literature. Within this framework, we introduce the concept of an interaction graph, which
serves as a visual representation of the interactions among different agents within an HRI
system. Additionally, we take a moment to discuss how the system of a supervised robot
fleet fits into this characterization, highlighting its role and relevance within the broader
context of multi-agent HRI. This discussion sets the stage for the subsequent chapters,
where we dive into specific research problems related to supervised robot fleets. Detailed
reviews of the literature related to the specific problems are provided in the corresponding
chapters.

Research in Human-Robot Interaction (HRI) has facilitated the introduction of robots
in human spaces, and has gained significant momentum in the past two decades. Existing
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literature indicates that the vast majority of past research pertains to dyadic systems where
a single human interacts with a single robot. However, this trend is changing now. With the
improvement in physical and computational capabilities of robotic systems, we see robots
working in teams of more than two, moving beyond the typical dyadic HRI systems. Even
though multi-agent HRI systems are built on similar infrastructure as dyadic systems, there
are several differences. Multi-agent HRI systems require more complex control strategies to
coordinate several agents that may be dissimilar to one another (in roles, communication
capabilities etc.), can involve interactions that connect more than two agents at once,
and need special attention to address any conflicts that may arise from their interactions.
These differences mean that control strategies developed for dyadic systems are either not
applicable to multi-agent systems or they might not work as intended. As a result, a
considerable body of research has emerged, addressing various aspects of multi-agent HRI
systems specifically.

A human-robot system can have a varied number of agents, both humans and robots,
interacting with each other. Even though any human-robot system is technically a multi-
agent system (comprised of at least one human and one robot), in the HRI literature, the
terminology is used differently. In HRI literature, dyadic systems refer to the ones built
around interactions between exactly one robot and one human. Triadic systems have three
agents, with two humans and a robot, or two robots and a human [18,19]. For systems with
three or more agents, terms such as teams or groups are used [20]. In this thesis, we use
the term multi-agent to refer to any human-robot system containing more than one human
(multi-human) and/or more than one robot (multi-robot). Robots assisting humans in an
industrial task, a group of humans and robots doing a social activity, or human operators
controlling multiple robots are some examples of multi-agent HRI systems.

In the literature, we find several studies and articles reviewing research in the field of
HRI and Collaboration, e.g. [12, 21–23]. There are also studies that present taxonomies
and classification criteria for HRI systems in general, and reviewing the work done in
different social and industrial applications of HRI, e.g. [24, 25]. The literature review
on human interaction with multiple remotely situated robots, conducted by M. Lewis
[26], examines such systems under the notion of command complexity and analyzes its
implications for the users. A comprehensive study by Thomaz et al. [23] provides a detailed
review of the computational aspects of HRI, covering topics such as algorithms, modelling
and computational framework design. Human-Swarm Interaction (HSI) is another subset
of multi-agent systems where a small number of humans (commonly one) interact with a
group of robots that coordinate among themselves and often act as a unified entity. Kolling
et al. present a comprehensive survey of Human-Swarm Interaction systems and discuss
core concepts for their design [27]. In the multi-agent HRI literature, Sebo et al. present a
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review of studies involving robots’ interactions with a group or team of people, and explore
characteristics of such systems [28]. The article discusses the role a robot plays in a group of
humans and focuses on human-robot systems consisting of multiple humans irrespective of
the number of robots involved. From a social psychology perspective, Oliveira et al. discuss
methodological and transversal issues in HRI research conducted in small groups [29].

Expanding upon the existing surveys and reviews, our discussion in this chapter en-
compasses a broader range of systems. We include systems where multiple robots interact
with either a single human or a group of humans, both within and outside of social set-
tings. Moreover, we consider systems built around interactions among multiple humans
and multiple robots simultaneously. Additionally, we incorporate studies on theoretical
and computational research, which may not involve actual robots or humans but still en-
compass crucial aspects of an HRI system. Examples of such research include scheduling
collaboration [30, 31] and optimizing collaborative manipulation [32]. Such studies are in-
valuable contributions to the multi-agent HRI literature and offer useful insight into the
implementation of real-world systems.

Research in Human-Robot Interaction encompasses a broad scope, addressing various
aspects of robot decision-making, human behavioral modeling, and system analysis. This
research area includes systems where robots and humans coexist, whether in team settings
or as independent entities pursuing shared or distinct objectives. This coexistence can
manifest in physically co-located interactions or in systems where remotely located agents
connect through virtual interfaces. Furthermore, the development of capable and efficient
algorithms to enhance interaction between humans and robots has an important place in
HRI research.

The research literature in this domain comprises three types of studies, which can
complement and intersect with one another: 1) System Design: ones that propose a system
useful in the context of HRI (direct application; e.g., [33]), 2) Observational: ones that
detail a study designed to elicit different features of HRI systems (to understand system
behavior; e.g., [34]), and 3) Algorithmic Design: ones that present computational research,
including algorithms, models and frameworks to solve the decision-making problems in HRI
systems (e.g., [16]). In the subsequent discussion, we consider all three kinds of studies
from the multi-agent HRI literature.

2.1 Multi-Agent Human-Robot Systems

In order to formally define multi-agent Human-Robot Interaction systems, we first need
to define the concept of ‘interaction’. The American Psychological Association [35] defines
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a social interaction as a process that involves reciprocal stimulation or response between
two or more individuals. In the context of HRI, however, reciprocity is not a necessary
requirement. Therefore, we define an interaction in this context as follows:

“information flow between two or more agents occurring as a result of commu-
nication, action, or presence of any of those agents”.

This information flow leads to changes in the actions, behaviors, or mental states of the
receiving agents. Using this definition, we can express a multi-agent HRI system using
an interaction graph (Fig. 2.1). The figure illustrates a multi-agent HRI system and its
corresponding interaction graph, where each agent is represented as a node in a directed
graph. The edges in the graph depict interactions between pairs of agents and indicate the
direction of information flow. We use this interaction graph structure to define multi-agent
HRI systems as follows:

Multi-agent Human-Robot Interaction systems are the ones for which the inter-
action graph contains three or more nodes (agents), with at least three nodes
connected via interaction edges, including at least one interaction edge between
a human node and a robot node.

Information exchange within these systems can occur through verbal or non-verbal
communication channels, or through interaction interfaces. The agents in these systems
can be homogeneous, sharing similar roles and identities, or heterogeneous, contributing
differently to the overall system. Moreover, these agents can be located in separate envi-
ronments interacting over virtual channels or they can share the same physical space. In
the following discussion, we consider the literature on multi-agent HRI systems and try to
characterize them based on various properties.

2.2 Characterization of Multi-agent HRI Systems

Human-Robot Interactions among multiple agents introduce a multitude of changes and
complexities compared to dyadic interactions. With multiple agents present, multi-agent
interactions and indirect interactions can emerge in the system. Notably, it becomes pos-
sible to have humans interacting with other humans and robots with other robots. These
Human-Human Interactions (HHI) and Robot-Robot Interactions (RRI), in turn, have an
impact on or are influenced by interactions between humans and robots. Moreover, the
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Figure 2.1: Left: HRI system for robot-assisted tower construction task where the robot allocates
tower pieces between two human teammates [36]. Right: The corresponding interaction graph
representation of the system. In the graph, each human and robot is denoted by a node. Each
arrow represents an interaction and its direction signifies the direction of information flow. When
information flow between two nodes is present in both directions, a bi-directional arrow is used.
In this system, human behavior is dependent on robot’s actions while the robot’s actions are
independent of its human teammates (thus the uni-directional arrows). Both humans can poten-
tially discuss their next actions with the other human teammate (denoted by the bi-directional
arrow).

involvement of multiple agents necessitates advanced communication modalities and in-
terfaces to facilitate effective interaction among all the agents. As the number of agents
in the system increases, the task of modeling their behavior and controlling their actions
becomes increasingly challenging.

To provide a comprehensive understanding of multi-agent HRI systems, we propose a
characterization framework based on three core aspects: 1) Team structure, 2) Interaction
style and 3) Computational characteristics. These aspects represent the way a system is
set up, and the way interactions take place and methods by which agents are controlled in
that system.

Team Structure: The first aspect captures how the agents are organized within the
system. It encompasses various parameters such as the composition of agents, including the
number and types of agents, which can consist of both humans and robots. Additionally,
team structure examines the degree of homogeneity among the agents, considering factors
such as their roles, capabilities, embodiment, and assigned authorities.

Interaction Style: The second aspect of multi-agent HRI systems pertains to the
manner in which the agents engage and interact with one another. This aspect encompasses
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various factors, including the modality of communication utilized among the agents and
the implemented interaction models. This tells us the way in which interactions take
place in the system (through a screen or speech etc.) as well as the agents involved in
these interactions, whether it be a dyadic interaction between two agents or a collective
interaction among multiple agents.

Computational Characteristics: The third aspect examines the computational as-
pects of HRI systems and focuses on how the behavior of various agents is controlled or
influenced. This aspect encompasses elements such as robot task planning algorithms,
model-based or model-free controllers, and other mechanisms that determine the actions
of robots in the system. Additionally, it explores how these computational techniques are
utilized to influence human behavior. By studying the computational characteristics, we
gain insight into the underlying software components and decision-making processes that
shape the interactions between humans and robots in the multi-agent HRI system.

These three aspects provide us with a framework to establish distinctions and make
comparisons among multi-agent HRI systems. For instance, consider a system where a
human operator is supervising a team of remote mobile robots (e.g., [37, 38]). We can
characterize this system as one with a single human interacting with multiple robots (team
size), and one where all the robots exhibit similar characteristics (homogeneity). The
human might be able to give high-level commands to the robot group or control them
individually (interaction model), using a screen-based interface (communication modality).
The robot control can be made adaptive to actions of the operator or designed to optimize
some utility function (computational characteristics). This example demonstrates how the
three aspects enable a comprehensive characterization of multi-agent HRI systems.

Under these core aspects, we can characterize HRI systems based on five different
attributes as shown in Fig. 2.2. It is important to note that these core aspects are inter-
connected, and attributes within one aspect can influence other system attributes. The
nature of these interactions is further explored in Section 2.2.4. Additionally, it is worth
mentioning that these core aspects do not aim to provide an exhaustive or exclusive means
of distinguishing multi-agent HRI systems. Rather, they are selected to offer a taxonomy
that is both broad enough to encompass diverse areas of research within multi-agent HRI
and detailed enough to meaningfully characterize and compare these systems. In the fol-
lowing sections, we discuss the above three aspects and the associated attributes in more
detail, and briefly present the categorizations that arise under these attributes. Under
each category, we include examples from recent literature to understand its application,
and analyze strengths and limitations of different types of systems.
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Figure 2.2: The different categorizations for multi-agent Human-Robot Interactions originating
from the three core aspects: the team structure, the interaction style and the computational
characteristics. These aspects bring forth several attributes of systems, each with its own features
and applications.

2.2.1 Team Structure

The most perceptible feature of a multi-agent HRI system is the size and composition of
the human-robot team. Depending on the application, a human-robot system can take
advantage of more than one human and/or more than one robot in the team. Additionally,
the task requirements may necessitate the involvement of agents with diverse capabilities
and roles. Both the number and type of robots in a group can have significant effects
on human perception and emotions towards the robots [39]. Since humans and robots
usually have different ways of acting in a collaborative setting and interacting with their
partners, the team structure decides various other aspects of the system including the way
in which different agents interact, how they can share information and how their actions
are planned [40,41].

Based on team structure, multi-agent systems can differ from dyadic systems in two
notable ways:

1. There can be several possibilities of having different numbers of agents (both humans
and robots) in the team,

2. There exists a notion of homogeneity/heterogeneity among the agents, as agents may
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share similar roles and capabilities or exhibit variations in their attributes.

Therefore, we discuss in the following two factors under team structure: Team size, and
Team composition.

2.2.1.1 Team Size

Team size in an HRI system refers to the number of humans and robots present in the
system. Based on team size, HRI systems can be categorized into four distinct groups.

Single-human – single-robot systems represent the most common type of HRI sys-
tems studied extensively in the field [22, 42–44]. These systems involve a single human
interacting with a single robot, forming a dyadic relationship.

Single-human – multi-robot systems involve a single human interacting or collab-
orating with multiple robots. These systems are utilized in various applications, such as
fault intervention or performance enhancement in multi-robot teams [37, 45], search-and-
rescue operations [46], and Human-Swarm Interaction [27]. In some cases, the human
user may not be an operator or supervisor but rather receive navigation instructions, co-
operative navigation, or guidance from the robot team [47–51]. Additionally, there are
instances where a team of robots collaboratively executes tasks like storytelling or drama
for enhanced effectiveness [52, 53].

Multi-human – single-robot systems involve multiple human teammates interacting
with a single robot. These systems have been used in applications such as search and
exploration, unmanned aerial vehicle (UAV) operations, and resource distribution [36, 54,
55]. In these settings, humans assume different roles and manage various components of
the robot’s operation [56, 57]. Additionally, there are systems where a robot interacts
with multiple humans for assistance [58–60], to moderate group interactions [61,62], or to
manage resource distribution [36, 58]. Furthermore, social robotics research has explored
robots collaborating with multiple users in contexts like autism therapy [63–65], education
[66–68], and interactions in public spaces [69]. For a more comprehensive review of systems
with robots interacting with groups of humans, refer to [28].

Multi-human – multi-robot systems involve teams with multiple humans and mul-
tiple robots. These systems present significant challenges due to increased uncertainty and
the exponential growth of possible states [16]. They have been applied in military scenar-
ios where human teams coordinate with (semi)autonomous robot teams [70]. Additionally,
such team compositions are found in search-and-rescue tasks [71–73] and supervisory con-
trol of heterogeneous human-robot teams [74–76]. Such teams have also been discussed
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in several theoretical/computational studies addressing the task allocation and operator
scheduling problems [16, 31, 77, 78]. In social interaction and classroom settings, multi-
human – multi-robot teams are explored for understanding socio-emotional aspects [79,80]
and enabling group learning [81,82].

2.2.1.2 Team Composition

Besides the number of humans and robots, another important characteristic of a human-
robot team is the team composition. This pertains to the aspect of homogeneity (or lack
thereof) among the agents, be it humans or robots. In the case of robots, homogeneity
may simply indicate whether there are different types of robots present in the team, with
different hardware design [45], manipulation capabilities [33] or interaction interfaces [71].
In the case of humans, presence of different roles, capabilities or authority determines
homogeneity among team members [19,67].

Homogeneous team composition is commonly seen in applications where agents are
primarily identified as a part of a group, such as robots in a swarm [27] or humans in a
crowd [69,83]. In systems where agents work on similar tasks independently, a homogeneous
team structure is common [11,16]. In social HRI applications, humans are often considered
equal members of the group, resulting in a homogeneous composition [84,85].

Heterogeneous team composition is commonly observed when different types of robots
are required, such as robots with different manipulators or mobility [33, 50]. In military
applications, teams of heterogeneous humans with distinct roles, responsibilities, and au-
thority are used to control complex robots [86]. Differences or similarities among hu-
man teammates can also introduce heterogeneity in system dynamics [87]. Assigning dif-
ferent roles to humans in HRI systems has been explored, similar to roles assigned to
robots [71, 88, 89]. Industrial-oriented tasks often involve teams of heterogeneous humans
in roles such as supervisors and assistants [19, 56, 57]. Heterogeneous team composition
also finds applications in social/educational robotics, such as systems engaging with users
from different generations [90, 91] or when humans have distinct roles or jobs within the
group [92].

Homogeneity in a human-robot team greatly influences the type, level and efficiency of
the interactions [93]. For instance, when managing a team of robots, the human operator
needs to put in more interaction effort when the team is homogeneous as compared to
the one with heterogeneous robots [26, 94], and this may lead to an increase in perceived
workload and decrease in situational awareness [95, 96]. Having homogeneous robots may
also lead to a simpler interaction interface [25]. However, heterogeneous robot teams may
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allow to use specific robot capabilities to carry out a variety of operations [45, 97]. It is
generally agreed that control and operation of a team of heterogeneous agents is more
demanding compared to a homogeneous team, therefore, the literature offers a variety of
studies presenting efficient control strategies for the control of heterogeneous multi-robot
teams [98–100].

2.2.2 Interaction Style

In the context of human-robot systems, interaction style is a broad term that can be used
to refer to different aspects of interaction such as the modes of communication among
agents [101], interaction models [69] and the interaction interface [102, 103]. It also in-
cludes communication methods (verbal/non-verbal) [104, 105], expression of affect [106]
and spatial relationships [107,108].

Interactions in multi-agent human-robot systems differ from those in dyadic systems in
three ways:

1. First, with multiple agents present, it is possible to have interactions within a group
of agents, viz. Human-Human Interactions [71] and Robot-Robot Interactions [109].

2. Second, in addition to the one-to-one interactions seen in dyadic HRI systems, one-
to-many interactions are also realizable in multi-agent HRI systems [69].

3. Third, in multi-agent systems, there are additional types of interactions possible
among the agents.

Patel et al. [110] discussed the differences between ‘direct’ and ‘indirect’ interactions
between two humans in a system in which they can communicate either via verbal com-
munication or through the interface. Che et al. [111] investigated the role of ‘explicit’ and
‘implicit’ communication in social navigation. In [20], authors used the terms ‘the group’
and ‘the observer’ to distinguish the two perspectives of measuring group cohesion in a
multi-agent HRI setting.

Such distinctions of interaction types are useful to better understand HRI systems and
can be applied to improve the interaction outcome. In the context of multi-agent HRI
systems, we find it useful to distinguish ‘direct’ and ‘indirect’ interactions. Direct interac-
tion between a sender and recipient occurs when the sender actively (i.e., intentionally and
explicitly) communicates to the recipient using any mode, verbal or non-verbal. A third
party may also receive information from this direct communication, and we refer to this
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“eavesdropping” as indirect interaction. Taking the example of a study presented by [50],
a robot trying to transfer task information to another robot (e.g., through speech) is an
example of direct interaction, whereas a human observing the robots interacting with each
other is an example of indirect interaction. Making this distinction can help us under-
stand if and how much the agents in the system are actively trying to communicate with
each other, or if they are primarily co-existing in the same environment while observing
each other. Modelling the indirect interactions may be useful to understand how direct
interactions between any two agents can affect the behavior of others [50,61,112].

Examples of systems with different types of interactions are given in Table 2.1. In the
remainder of this section, we discuss two key aspects of interaction style: 1) Interaction
model present, and 2) Communication modalities used in the system.

2.2.2.1 Interaction Models

While a multi-agent HRI system involves multiple agents, not every interaction in the
system necessarily includes all agents simultaneously. Interactions can be implemented
using different-sized communication channels, enabling one-to-one or one-to-many interac-
tion models [69]. Examples of several multi-agent HRI systems with different interaction
models are shown in Table 2.1 using the interaction graph structure defined in Section 2.1.
These interaction models are an extension of the interaction types presented by [25] and
capture a variety of interaction possibilities in multi-agent HRI systems, particularly in
social interactions. They also allow us to specify the direction of information flow between
agents, distinguishing between human-to-robot and robot-to-human interactions.

Note: These interaction models, in their basic form, do not capture all aspects of the
complete system, such as embodiment, roles, heterogeneity among agents, and modes of
communication. However, additional information can be incorporated to represent these
aspects with slight modifications. Table 2.1 shows an example of such additional informa-
tion, indicating whether an interaction is direct or indirect using solid and dashed arrows,
respectively. Liu et al. [113] use edges in their interaction graphs to denote spatial inter-
actions and distinguish between human-human and human-robot interactions.

As depicted in Table 2.1, interactions between different pairs of agents can be imple-
mented using different models, such as one-to-one or one-to-many. The interaction model
may also vary depending on the types of agents involved, such as human-to-robot, robot-
to-human, robot-to-robot, and human-to-human interactions. For example, a human may
give commands to a single robot at a time (one-to-one), but observe the behavior and
receive messages/information from multiple robots simultaneously (one-to-many) [37, 46].
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Study Interaction Graph Remarks

(a) [36,61] Robot actions are independent of human
teammates. Humans decide their actions
based on robot’s actions and potential dis-
cussion with the other human teammate.

(b) [58] Robot actions are independent of human
teammates. Humans decide their actions
based on robot’s actions, and observing ac-
tions of the other human teammate (without
an explicit communication).

(c) [50] A human user directly interacts with one of
the two robots, which then conveys the re-
quired information to the second robot while
the user observes the two robots.

Table 2.1: Examples of multi-agent human-robot systems with respective interaction graphs. The
orange solid arrows signify direct interactions between agents (e.g., explicit communication), while
dashed blue arrows denote the indirect interactions (observational). A maximum of two humans
and robots are shown in the figures but interaction graphs can be drawn for larger number of
agents in a similar way. Note that this table only shows examples of possible interaction graphs
and is not an exhaustive list.

These interaction models are further categorized based on the number of agents connected
at each end of the communication channel.

One-to-one interaction model resembles the dyadic interactions commonly observed
in human-robot systems, where one robot interacts with one human teammate at a time,
despite the presence of other agents in the environment. This form of interaction is com-
monly seen in systems where one can afford the commands/instructions for an agent to
be independent from others (e.g., in systems where coordination among agents is not re-
quired). A common application is seen in systems where a human operator manages a
team of multiple robots by giving each of them separate commands. While a fleet of au-
tonomous robots acts in separate environments, a human operator can monitor their states
remotely, and can intervene to help a robot via teleoperation when the robot encounters a

17



Study Interaction Graph Remarks

(d) [37,38] A human operator controls each robot indi-
vidually. Human’s selection of robot is de-
cided either by observation of robots’ states
or based on the suggestion shown by the in-
terface (G).

(e) [74] Commands of multiple human operators are
converted to actions required by individual
robots. Operators observe each robot di-
rectly and can also interact with each other
to resolve conflicts.

(f) [80] Two teams, each consisting of one human
and one robot, play a competitive card game.
Each agent decides on their actions based on
observations of other agents’ actions. The
only direct communication in the system oc-
curs when a robot speaks to its partner to
convey its emotions.

Table 2.2: Examples of multi-agent human-robot systems with respective interaction graphs
(cont’d).

challenging state [37,38]. The one-to-one interaction model can also be applied in human-
robot swarm systems, e.g., using a leader-follower approach [114]. One-to-one interactions
are also seen in office settings, where a single human interacts with a single robot, even in
the presence of multiple humans or robots [47,60]. In settings where agents are located in
the same environment, the system also has indirect interactions, occurring when an agent
observes other agents and interactions are happening between those agents. These indirect
interactions still follow a one-to-one model, as the flow of information from each agent is
directed towards the observer.

One-to-many interaction model can be seen in situations where one robot is directly
interacting with multiple humans at once [80,81,115], and where one human is simultane-
ously interacting with multiple robots [116–118]. One way to implement this interaction
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model is through verbal communication or gestures, enabling group commands to be issued
to multiple agents simultaneously [119]. Consequently, this model is commonly observed in
social settings where humans and robots coexist in the same environment [80,115]. Another
similar application of this model is found in classroom settings where a robot serves as a
tutor for a group of students to promote group-based learning [52, 81, 120]. Additionally,
when a robot interacts with multiple humans in a public space, the one-to-many model
naturally applies [69]. In industrial or military-oriented applications where humans and
robots may be located in separate environments, the one-to-many model is often imple-
mented using a group command node (see interaction graphs in Table 2.2; shown as node
(G)). This group command node is an interpreter – an interface or an algorithm – that
converts communication from one or more agents into information required for each indi-
vidual agent before relaying that information to the intended recipient(s). For example,
when controlling multiple ground or aerial robots, a human operator can issue commands
to the entire fleet, and the group command node converts these commands into specific
actions for each robot [116, 121]. Similarly, when humans interact with a swarm, a group
command node is typically employed to convert human intentions or commands into control
signals for all robots, ensuring efficient human control [27,122].

Many-to-many interaction model can be observed in multi-human – multi-robot sys-
tems, multiple one-to-many interactions can occur among different agents simultaneously.
Although less common in the literature, some studies [110, 123, 124] have presented inter-
action interfaces to facilitate many-to-many interactions. A common approach to enable
interactions in such systems is through a proxy architecture designed to facilitate collab-
oration between humans and robots with varying levels of autonomy [70, 86, 125]. For
instance, the system presented by Patel et al. [74] utilizes an AR interface on separate
screens to enable multiple users to interact with multiple robots. In the absence of such
proxies, the human users in the system must resolve any conflicts (in commands/decisions)
by themselves and work out a common strategy [126]. Many-to-many interactions can
be represented in the interaction graphs of Table 2.2 as a group node (G) with multiple
incoming and outgoing edges. A many-to-many model provides a natural and efficient
interaction setup in a multi-agent system as there are minimal constraints on when agents
are allowed to communicate with each other, and information from multiple agents can be
simultaneously relayed to their respective recipients.

2.2.2.2 Communication Modalities and Interfaces

Communication modalities refer to the modes through which different agents interact in
the system (e.g., speech, haptics, screen etc.). Similar to conventional dyadic HRI sys-
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tems, a multi-agent system can involve agents communicating through verbal or non-verbal
modes, or a combination of multiple modes simultaneously. The choice of communication
modes depends on factors such as the environment, system application, proximity of agents,
and their interaction capabilities. Each modality has its own advantages, implementation
requirements, and limitations. Proximity plays a significant role in determining feasible
communication modalities for enabling efficient communication among humans and robots.
Therefore, to discuss the different types of communication modalities used in multi-agent
systems, it is helpful to group them based on the proximity of the agents.

Remote communication: is ubiquitous in systems designed to operate in potentially
dangerous or inaccessible environments for enabling remote communication among humans
and robots. Human control of a fleet of UAVs [57,127], supervision during search and rescue
tasks [46,55,128] and teleoperation of underwater robots [129] are some of the applications
that make use of remote communication techniques.

However, remote interaction with robots can lead to higher cognitive workload for hu-
man users [130], which further increases with an increasing number of robots [40,95]. Com-
municating plans to team supervisors and maintaining their situational awareness are also
important challenges in collaborating with remote robots [131]. Thus, developing interac-
tion interfaces that facilitate efficient and reliable human interaction with multiple remote
robots is an important research area in remote HRI [75, 103, 132, 133]. In systems with
a disproportionately high number of robots compared to human operators/supervisors, it
becomes challenging for human users to interact with all robots efficiently due to percep-
tion, workload, and situational awareness challenges [40]. Intelligent interface designs are
therefore required to mitigate these challenges [134]. The existing literature predominantly
consists of screen-based interface designs, which are convenient to implement in such sys-
tems, as evidenced by the studies discussed earlier in this section. Common design features
of multi-robot interfaces include camera feeds of multiple robots in small cards along the
screen edge, an enlarged view of a selected robot, and a map or overview of all robots
in the environment [38, 135]. Recently, immersive interfaces using Virtual Reality (VR)
or Augmented Reality (AR) have gained popularity in multi-robot systems [133, 136] and
have been shown to improve operator’s situational awareness and decrease workload [137].
Some systems also incorporate multiple communication modes, such as haptics and audio,
to enhance interaction outcomes [9, 138].

Proximate communication is found in systems where humans and robots are located
in the same environment, as there is a wider range of options for system designers to choose
from in terms of communication modes. These modes include auditory channels (speech
and non-speech audio), visual channels (gestures, facial expressions, body postures and
gaze), and physical channels (touch and force). For proximate communication, it is also
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common to use multiple modes simultaneously, resulting in a multi-modal communication
architecture. For example, Pourmehr et al. [139] present a system that uses a combination
of haptic and verbal inputs from a human user to control multiple UAVs. In another
system by Gromov et al. [102], a human user can communicate with robots using speech
and gestures, while robots provide visual and verbal feedback to the user.

Proximate communication is more commonly observed in social robotics, as it facilitates
the personal interactions required in a social setup. Social cues, both verbal and non-verbal,
play a significant role in conveying meaning during interactions [101]. Studies have explored
the use of different cues, such as expressions and movements, to communicate a robot’s
intent, emotions, and information more clearly in a group setting [80, 140]. The spatial
placement of agents relative to each other and the environment also influences human
behavior in a group setting [141,142].

When agents are co-located, the interaction between any two agents can have an effect
on the behavior and future interactions of other agents, demonstrating indirect/implicit
communication. Human-Human Interactions can be influenced by Human-Robot Interac-
tions [63,90,91]. Similarly, Robot-Robot Interactions can impact future human interactions
with the robots [50, 143] or affect a human’s psychological state [144]. Moreover, the em-
bodiment or mere presence of a robot can influence human behavior and their perception
of the robots [145,146]. Communication modalities can also vary depending on the agents
involved and the direction of communication. For instance, Berg et al. [147] present an
interaction system where the human to robot communication channel is realized through
gestures and eye tracking while the information from the robot to the human is commu-
nicated using a projection. In the system presented by Rosenthal et al. [60], the robot
communicates its queries using speech and receives human input using a visual interface
on a laptop. Also, it is common to see different communication modalities between Human-
Robot and Human-Human Interactions [71].

2.2.3 Computational Characteristics

In addition to the perceptible aspects of an HRI system, which define the presence and
interactions of agents, computational aspects play a crucial role in influencing and control-
ling their behavior. Now, we look into computational aspects of the system, specifically
how system designers can choose to influence/control the behavior of different agents in the
system. In an HRI system, behavior and actions of robots are controlled directly, either
governed by an optimization-based action-policy or via predefined/rule-based methods, or
a combination of both. On the other hand, human behavior is influenced indirectly us-
ing robots—via robots’ actions, their interactions with the humans, other robots or the
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environment, or by explicit communication. Some systems incorporate human behavioral
models to determine robot actions, while others adopt a model-free approach.

For the purpose of this article, we prioritize the discussion of robot control in multi-
agent HRI systems, while including relevant aspects of human behavior when necessary.
Specifically, we examine the two main types of robot control: 1) Optimization-based con-
trol, and 2) Predefined and rule-based control. Furthermore, we also discuss the differences
that the presence of multiple agents brings to the system.

Optimization-based control refers to a framework of computing robot actions to
optimize one or more performance-defining parameters established for the system. The
performance parameters often represent factors like time of task completion [30], cost
incurred (resources spent) [16] and reward earned (value produced) [37,148]. In the multi-
agent HRI literature, to pose the mathematical optimization problem, we find examples
of systems being modeled in the form of time-series [129], outcome probabilities [16, 45]
or Dynamic Bayesian Network [149]. Machine-learning and other data-driven methods are
also some of the tools used in optimization-based control, e.g., [37, 89, 150]. Such system
models are often motivated by literature from different areas of behavioral study such as
psychology, economics and social sciences. For example, Shannon et al. [151] present the
Pew model from psychology, Swamy et al. [37] make use of the Luce Choice model from
economics, and Bera et al. [152] use entitativity related psychology research in their system.

Optimization-based control is seen in studies where the system behaviour can be mod-
elled reliably using existing theories, or where researchers are trying to validate a new
approach for the same. These systems also require that there exist quantifiable and mea-
surable parameters that can be used as optimizing metrics (such as task completing time,
error rate, etc.). When implementing such robot control in multi-agent systems, there
are a few considerations to handle. When multiple agents are present in the system, the
required information access and the possibility of interactions may increase exponentially
with the number of agents. This problem has motivated a whole segment of research on
the development of computationally efficient decision-making and control techniques for
multi-agent HRI systems. Among other applications, this research is seen in systems en-
abling a robot influence a team of multiple humans [89], enabling multiple robots to safely
navigate among other robots and humans [153], predicting human behavior while super-
vising multiple heterogeneous unmanned vehicles [154], and finding task allocation and
sequencing for multiple robots travelling to collaborate with humans [30]. When dealing
with a large number of robots, human users’ ability to maintain awareness of the system’s
state might be insufficient [155,156] and thus the users may benefit from a decision support
system (DSS). Applications of such DSSs are seen in systems enabling a human operator
to assist multiple remote robots [37], and in allocating operators to multiple navigating
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robots [16,38,78]. There are also several studies on human supervision of fleets or swarms
of remote robots. Lewis [26] presents a review of systems enabling such supervision under
the construct of command complexity, while Kolling et al. [27] review research on human
control of robot swarms.

Predefined and rule-based control methods provide a convenient way of imple-
menting robot control in an HRI system without the use of computational models or data.
This includes techniques like Wizard of Oz, expert knowledge-based if...then rules or pre-
specified sequences of actions. These methods help simplifying the robot’s decision-making
and allow the researchers to focus on other aspects of Human-Robot Interaction that the
system is designed to investigate, e.g., the outcome of a controlled interaction [50, 143].
In some systems, direct use of an optimization-based control is not possible (e.g., due to
lack of a numerical model), and a subjective interpretation of system events is required
based on expert knowledge. Such systems often have robot action policies implemented as
if...then rules instead of numerically computed conditions. For example, Correia et al. [80]
present an algorithm to generate robot emotions given system events, based on knowledge
from psychology. Rule-based control is more commonly seen in studies that deal with
subjective metrics of outcome (e.g., human perception of robots, workload, etc.). It is to
be noted that the optimization-based and rule-based control methods are not mutually
exclusive. It is possible to implement a combination of an optimizing policy with an ex-
pert knowledge-based model. For example, in the system presented by Alves et al. [81],
the robot’s behavior is decided by a hybrid controller that combines manually-encoded
behavioral rules and a machine learning-based mapping function.

While the use of a rule-based control can enable a system to decide the robot’s behavior
based on some feedback from the environment, it is also possible to pre-specify robot
behavior without any decision-making component. This robot control method facilitates
studies to manipulate different test conditions where feedback from the environment is
not required. Such implementation is commonly seen in studies which investigate the
effects of specific robot’s behaviors on human users, e.g., users’ perception of robots [157],
knowledge acquisition [66], group emotions [158] and perceived legibility [159]. Referring
back to the interaction graphs defined in Section 2.1, this type of robot control results
in unidirectional edges from robots to humans. Under predefined and rule-based control
methods, the Wizard of Oz (WoZ) is a common technique of implementing human-assisted
robot control in multi-agent (mainly multi-human) systems. In this technique, a hidden
human ‘Wizard’ (teleoperator) controls some or all of the robots’ actions, speech, gestures
and behavior, unknown to other human users in the system [160]. Depending on the level of
robot autonomy, the Wizard can be used to replace certain parts of the robots’ perception
or cognitive capabilities (e.g., [161,162]), thus overcoming the robots’ limitations. It is also
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possible to have a mixed-initiative approach where either the robots or the human user
can take control of the robots’ actions (e.g., [46, 129,163]).

Note on Group/Individual behavioral parameters: Regardless of the type, robot
control in multi-agent systems can be implemented in two ways: either based on parameters
of individual agents or based on the group as a whole. Taking the parameter of trust as an
example in a system with a single human and multiple robots, one can either plan robots’
actions by considering trust of the human in each individual robot [164], or one can consider
the human’s trust in the whole robot team [165]. Other examples of robot control based
on individual parameters can be seen in studies with parameters like engagement [82] and
attention [143]. Such individual modelling provides a simple method to expand dyadic HRI
research to the multi-agent setting, and to test any differences between the two. Group-
based robot control has its own benefits. Often, the humans in the system are not working
independently of other agents. So, one may find it useful to decide robot control as a
function of group-based parameters, something not possible in dyadic systems. Such control
is particularly useful in systems where agents act as a coordinating team, or in applications
where performance or behavior of the whole group is central. For example, a robot can
express group-based emotions to increase its likability among human teammates [80], or
use audio features to affect group entitativity [166].

2.2.4 Interactions between the Core Aspects and Attributes

When examining the multi-agent HRI literature across the three core aspects, we can ob-
serve that the system attributes chosen by researchers within one core aspect are influenced
by attributes within other aspects. To understand the interaction between these core as-
pects, we consider a specific set of attributes as the “configuration” of the system under
each core aspect. For example, the team structure is defined by its size and composi-
tion. The categorizations across the different core aspects are designed in such a way that
each core aspect’s configuration can be independently determined during system design.
In other words, one can select any attribute from each column of the table in Figure 2.2
to build a multi-agent HRI system1. This implies that a viable system can have any of
the three configurations for team size, featuring homogeneous or heterogeneous agents,
adopting one-to-one or one-to-many interaction models, employing proximate or remote
communication modes, and using optimization-based or rule-based control for the robot(s)
in the system.

1With the exception that having a many-to-many interaction model requires a team size comprising
multiple humans and multiple robots.
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However, the configuration of one core aspect can influence how another core aspect
of the system should ideally be configured. For instance, in the case of a large team
size, a one-to-many communication model may be more efficient, particularly in co-located
settings as demonstrated by Kim et al. [119]. Additionally, systems with a large number
of robots often incorporate a group command node to facilitate coordination among the
robots, as it can be challenging for the human(s) to communicate individually with each
robot. This interaction model is therefore commonly utilized in Human-Swarm Interaction
scenarios [27].

Similarly, the Wizard of Oz control technique is prevalent in systems with a limited
number of robots because of its ease of implementation [160]. However, this technique may
hinder scalability of such systems and restrict researchers to use homogeneous or a limited
number of robots. This highlights the need of developing efficient tools for implementing
robot decision-making to facilitate HRI research in large-scale systems. Moreover, a system
requiring a human Wizard to closely monitor the agent(s) can be cognitively demanding
and time consuming. The choice of configuration is also influenced by the target application
and objective of the study. As seen in Section 2.2.2, systems designed for social settings
often adopt a one-to-many interaction model. In cases where a human operator needs to
supervise multiple robots, a simple screen-based interface is a popular choice among system
designers.

However, it is important to emphasize that research in multi-agent HRI is still in
its early stages, and it does not yet provide a definitive guide for achieving an “ideal”
system configuration, or even establish whether such an ideal configuration exists. For
example, although screen-based interfaces have been prevalent in systems with multiple
robots, researchers are beginning to explore the potential of VR and AR-based interfaces for
their immersive and enhanced capabilities. As the literature in this field continues to grow,
future developments may enable us to determine whether these existing configurations can
serve as guidelines for designing multi-agent HRI systems, or if they represent opportunities
to explore novel configurations.

2.2.5 Supervised Robot Fleet as a Multi-Agent HRI System

In the upcoming chapters, our attention centers on a scenario involving a fleet of robots
navigating an environment under the remote supervision of a limited number of human
operators. Here we will provide an overview of how our system aligns with the classification
framework outlined earlier, shedding light on its classification.

To begin, our system’s team structure consists of multiple robots and multiple human
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operators. A distinguishing characteristic is that all robots share identical attributes,
forming a team of homogeneous robots and similarly all humans form a homogeneous
team as well.

In terms of interaction style, our system employs a central computational entity to fa-
cilitate interactions between the human operators and the robots. This entity gathers data
from all robots and then allocates each human operator to the robots requiring assistance,
resulting in a many-to-many information exchange. After allocation, a human operator
may engage in direct interaction with a specific robot, resulting in a one-to-one interaction
mode. The interaction graph of our system is illustrated in Figure 2.3.

Given that the operators are located remotely, our system necessitates the use of a
remote interface to facilitate communication between the robots and operators. In Chap-
ter 6, for example, we employ a web-based screen interface within the context of the study
presented.

Lastly, regarding robot control strategies, our system adopts different approaches across
the studies featured in various chapters. In Chapter 4, the systems utilize an optimization-
based control approach. Conversely, the studies explored in Chapters 5 and 6 employ
predefined behaviors for the robots.

H

R R
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H

R R

H
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Figure 2.3: Interaction Graphs of the supervised robot fleets as HRI systems discussed in this
thesis. Left: In Chapters 4 and 5, the systems in consideration have a central computational
entity (G) – a decision support system – that collects data from all robots and then allocates
human operator(s) to the robots that need assistance or schedules assistance for future instances.
Operators can directly assist each robot individually, and are allocated by the central computa-
tional entity. Right: In Chapter 6, we look into a scenario where a single user monitors multiple
robots, and interacts with them when required. Moreover, the interface (G) can direct the user’s
focus to specific robots as prompted by interruptions.

26



Chapter 3

Preliminaries

In this chapter, we provide mathematical preliminaries and definitions relevant to the
thesis.

3.1 Graphs

A graph G is defined as a pair of sets G = (V,E), where the set V represents the vertices
in the graph and E ⊆ V × V is the set of edges between the vertices. An edge in E is an
ordered tuple (u, v) connecting u ∈ V to v ∈ V .

Definition 3.1 (Neighbours of a Vertex). In a graph G = (V,E), the neighbours of a
vertex u ∈ V is the set of vertices to which there exists a direct edge connecting them to u,
i.e.,

N (u) = v ∈ V | (u, v) ∈ E.

For brevity, an edge (u, v) can be denoted as euv.

Definition 3.2 (Weighted Graph). A weighted graph is defined as triplet G = (V,E, c),
where c : E → R is a function assigning weights (costs) to each edge in the graph.

When the set of edges E and the associated edge weights c remain constant over time,
the graph is referred to as a static graph. In this thesis, we also look into time-dependent
graphs, where certain properties of the graph are function of time, and therefore, the time
spent traversing an edge or waiting at a vertex are also considered.
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Definition 3.3 (Time-Dependent Graph). A time-dependent graph is defined as G =
(V,E, c, cw, τ), where the function c : E ×R≥0 → R assigns costs to edges, cw : V ×R≥0 ×
R≥0 → R assigns costs to waiting at vertices, and τ : E × R≥0 → R≥0 assigns durations
(traversal time) to each edge in the graph.

We represent the cost of an edge e = (u, v) as c(e, t) or c(u, v, t) for a departure time
t ∈ R≥0. Similarly, duration of and edge can be represented as τ(e, t) or τ(u, v, t). The
cost of waiting for a duration of wu ∈ R≥0 can be represented as cw(u,wu, t). The time
variable t can either be continuous (∈ R≥0) or discrete (∈ Z≥0).

Definition 3.4 (Topological Path). A topological path P⊤ is defined as a sequence of
vertices ⟨v1, v2, . . . vn⟩, where

• vi ∈ V for i ∈ [1, n], and

• (vi, vi+1) ∈ E for 1 ≤ i ≤ n− 1.

A topological path represents a sequence of edges taken to travel from one vertex to
another in a graph. In time-dependent graphs, for a path to be valid, additional conditions
need to be met, which can be expressed using an execution path.

Definition 3.5 (Execution Path). An execution path PX is defined as a sequence of triplets
⟨(v1, t1, w1), (v2, t2, w2), . . . , (vn, tn, wn)⟩, where

• vi ∈ V for i ∈ [1, n],

• (vi, vi+1) ∈ E for 1 ≤ i ≤ n− 1,

• wi ∈ R≥0 for i ∈ [1, n], and

• ti+1 = ti + wi + τ(vi, vi+1, ti + wi) for 1 ≤ i ≤ n− 1.

Here, wi denotes the waiting time at vertex vi and ti denotes the arrival time at vertex
vi. It is possible to have additional constraints over the waiting limits, or edge traversability
depending on the problem requirements. In later chapters, we denote the execution paths
PX simply as P , dropping the superscript X and only provide clarifications where required.

3.1.1 Shortest Path Problems

In a general form, the shortest path problem can be defined as follows for the static and
time-dependent graphs.
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3.1.1.1 Static Graphs

On a static weighted graph, the shortest path problem aims to find a topological path with
the minimum total weight or cost between two specified vertices, a source vertex and a
goal vertex.

Problem 3.1. Given a weighted graph G = (V,E, c), and the set P⊤ of all possible topo-
logical paths P⊤ of arbitrary length n(≥ 0), such that P⊤ := ⟨v1, v2, . . . vn⟩, find the path
with the minimum total weight or cost between vertices s and g, i.e.,

min
P⊤∈P⊤

n−1∑
i=1

c(vi, vi+1)

s.t. v1 = s,

vn = g.

3.1.1.2 Time-Dependent Graphs

Shortest path problem in time-dependent graphs is commonly implemented as a time-
constrained problem. Given a time-dependent graph, the shortest path problem aims to
find an execution path with the minimum total weight or cost between two specified vertices
under the constraint that the total duration of the path does not exceed some given limit.

Problem 3.2. Given a time-dependent graph G = (V,E, c, cw, τ), and the set PX of all
valid execution paths PX of arbitrary length n, such that PX := ⟨(v1, t1, w1), (v2, t2, w2), . . . ,
(vn, tn, wn)⟩, find the path with the minimum total cost between vertices s and g such that
the path duration does not exceed T ∈ R≥0, i.e.:

min
PX∈PX

n−1∑
i=1

cw(vi, wi, ti) + c(vi, vi+1, ti)

s.t. v1 = s,

vn = g,

tn ≤ T.

29



3.1.2 Graph Search for Shortest Path Problems

Performing an informed search through the given graph is a common class of methods
to solve the shortest path problems on static graphs (Problem 3.1). Various algorithms
have been developed in this solution domain, each with its own strengths and limitations.
One widely used approach is the A∗ algorithm, which combines elements of the Dijkstra’s
algorithm [167] with an admissible heuristics [168] to guide the search towards the goal
vertex more efficiently.

Let h : V → R≥0 be a function denoting the heuristic value assigned to vertex v, and
let c∗(v) denote the optimal (minimum) cost from vertex v to the goal.

Definition 3.6 (Admissible Heuristic). A heuristic function h(v) is admissible if for every
vertex v in the graph, it satisfies the condition:

h(v) ≤ c∗(v).

In other words, the heuristic function provides a lower bound estimate of the cost
to reach the goal. By considering both the actual cost from the source vertex and an
estimated cost to the goal vertex, A∗ can efficiently find the shortest path in static graphs.
Algorithm 3.1 gives a pseudo-code for finding the shortest (minimum cost) path in a static
graph.
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Algorithm 3.1 A∗

1: Input: G = (V,E, c), source vertex s, goal vertex g, heuristic function h

2: Output: Minimum cost path P from s to g

3: d(v)←∞ for all v ∈ V
4: d(s)← 0

5: Q← initialize priority queue

6: Q.insert(s, d(s) + h(s))

7: pred← initialize predecessor info

8: while Q not empty do

9: u← Q.extract-min() // Vertex with minimum d(u) + h(u)

10: if u = g then

11: break

12: for all v ∈ neighbors(u) do

13: dist← d(u) + c(u, v)

14: if dist < d(v) then

15: d(v)← dist

16: Q.insert(v, d(v) + h(v))

17: pred(v)← u // Store predecessor vertex

18: P ← [ ] // Initialize empty list for path

19: v ← g // Start from the goal vertex

20: while v ̸= s do

21: P.append(v) // Add current vertex to the path

22: v ← pred(v) // Move to the predecessor vertex

23: P.append(s)

24: P.reverse

25: return P

As we discuss in Chapter 4, this algorithm can also be adapted to solve a discrete time
version of the time-dependent shortest path problem (Problem 3.2) by creating a copy of
each vertex for each time step t ∈ [0, T ], and adding appropriate edges. For instance, if
euv ∈ E, then new edges will connect ut to vt+τ(u,v,t) for all t ∈ [0, T − τ(u, v, t)]. We
provide more details and an admissible heuristic in Chapter 4.
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3.1.3 Time Dependent Shortest Path Problems

The Time Dependent Shortest Path (TDSP) Problems can also be solved using an iterative
approach as shown by Cai et al. [169]. In this thesis, we are concerned about a variant of
TDSP problems which has constraints on the maximum wait time allowed at a vertex. Cai
et al. [169] present a solution to the problem of finding time-varying constrained shortest
path (TCSP) from a given start vertex to other vertices in a time-varying graph constrained
by a maximum time T , and having constrained wait times (CWT). The algorithm works
in a discrete-time setting. In Alg. 3.2, we provide the pseudo-code.

Algorithm 3.2 TCSP -CWT

1: Input: G = (V,E, c, τ), source vertex s, time constraint T , waiting constraints wv for

all v ∈ V
2: Output: Minimum cost d∗C(v) for all v ∈ V under the given time constraint

3: dC(v, t)←∞ for all v ∈ V , t ∈ {0, . . . , T}
4: dC(s, 0)← 0

5: Qv ← {dC(v, 0)} for all v ∈ V // Initialize priority heaps for each vertex

6: dmC (v, 0)← dC(v, 0) for all v ∈ V
7: Sort all values t+ τ(u, v, t) for all t ∈ {1, . . . , T} and (u, v) ∈ E
8: for t = {1, . . . , T} do
9: for all (u, v) ∈ E do

10: ΓC(u, v, t)←∞
11: for all {(u, v) ∈ E and all tD s.t. tD + τ(u, v, tD) = t do

12: ΓC(u, v, t)← min{ΓC(u, v, t), d
m
C (u, tD) + c(u, v, tD)}

13: for all v ∈ V do

14: dC(v, t)← minu|{(u,v)∈E} Γ(u, v, t)

15: Qv.insert(dC(v, t))

16: if t > wv then

17: Qy.delete(dC(v, t− wv − 1))

18: tA ← argmint dC(v, t) // Can be extracted from Qv

19: dmC (v, t)← dC(v, tA)

20: d∗C(v)← min0≤t≤T dC(v, t)

21: return d∗C // Return the final minimum cost

Note that this algorithm does not consider cost of waiting and does not return the
required path, which will require some additional steps similar to Alg. 3.1.
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3.2 Submodularity

In this section we review some essential concepts related to submodular set functions
and submodular sequence functions [170–172]. The concept of submodularity provides a
foundational framework for various optimization challenges characterized by diminishing
returns. This property has significant implications across many disciplines, serving as
a representation of scenarios where resource allocation yields decreasing improvements.
This mathematical principle holds particular relevance in real-world applications, such as
resource distribution and information retrieval.

Let E be a finite set. A function f over E assigns a value to every subset of E, denoted
as f : 2E → R.

Definition 3.7 (Normalized and Monotone). The function f is said to be normalized if
f(∅) = 0. It is also considered monotone non-decreasing if, for any subsets A and B of E
where A ⊆ B ⊆ E, we have f(A) ≤ f(B).

Definition 3.8 (Submodularity). The function f is called submodular if, for all subsets
A and B of E where A ⊆ B ⊆ E, and for all elements x ∈ E \ B, the inequality f(A ∪
{x})− f(A) ≥ f(B ∪ {x})− f(B) holds.

Submodular functions exhibit the property of diminishing marginal returns. This means
that the contribution of any element x to the total value of a set function decreases as the
set size increases. Formally, for all subsets A and B of E where A ⊆ B ⊆ E, it follows
that f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

3.2.1 Sequence Submodularity

Instead of sets, let us consider a function f defined over sequences derived from a base
set E. For our purposes, a sequence A = ⟨a1, . . . , ak⟩ of length k ∈ Z>0 is composed
of k elements from the base set E, i.e., ai ∈ E. Given two sequences A = ⟨a1, . . . , ak⟩
and B = ⟨b1, . . . , bℓ⟩ defined over the same base set, they can be combined into a larger
sequence by concatenation denoted as A ∥ B = ⟨a1, . . . , ak, b1, . . . , bℓ⟩. A sequence A is
called a subsequence of another sequence B, represented as A ⊆ B, if there exists a sequence
C such that B = A ∥ C. A sequence function f maps sequences derived from a base set
E to real numbers. The value of a sequence function depends on both the elements in the
sequence and the order of those elements.

Let A = ∅ denote an empty sequence, and let E \ A denote the set of elements of E
not in the sequence A.
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Definition 3.9 (Sequence Normalized and Monotone). The sequence function f is said
to be normalized if for an empty sequence A = ∅, f(A) = 0. The sequence function
f is monotone non-decreasing if for all subsequences A of a sequence B, i.e., A ⊆ B,
f(A) ≤ f(B).

Definition 3.10 (Sequence Submodularity). The function f is sequence submodular if for
all sequences A and B derived from the set E such that A ⊆ B, and for all sequences C
derived from the set E \ B, we have f(A ∥ C)− f(A) ≥ f(B ∥ C)− f(B).

The property of submodularity significantly influences optimization methods for a given
problem, particularly in the context of greedy algorithms. Greedy algorithms, that sequen-
tially add elements to maximize the marginal gain, are shown to have a remarkably good
performance in maximizing submodular functions. The set greedy algorithm starts with an
empty set S and repeatedly adds an element x ∈ E \ S to S that maximizes the marginal
gain f(S ∪ {x}) − f(S). Similarly, the sequence greedy algorithm begins with an empty
sequence S and repeatedly appends an element x ∈ E \ S that maximizes the marginal
gain f(S ∥ {x})− f(S).

3.3 Restless Multi-Armed Bandits

In this section we provide an overview of Restless Multi-Armed Bandits (RMAB), index-
ability and the Whittle index policy.

3.3.1 Restless Bandit Process

A restless bandit (RB) process is a controlled Markov process (Z̃, {0, 1}, T̃ , C̃, z̃0) where Z̃
is the state space, {0, 1} is the action space, T̃ : Z̃ × Z̃ × {0, 1} → R[0,1] is the transition

probability function, C̃ : Z̃ × {0, 1} → R is the per-step cost function, and z̃0(∈ Z̃) is the
initial state. By convention, action 0 is called the passive action and action 1 is called the
active action.

3.3.2 Restless Multi-armed Bandit Problem

A Restless Multi-armed Bandit (RMAB) is a collection of K independently evolving
RBs (Z̃k, {0, 1}, T̃ k, C̃k, z̃k0 ), k ∈ K := {1, . . . , K}. Each process is conventionally called an
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arm. A decision-maker selects at most M arms (M < K) at each time instance. Let Z̃k
t

and Ãk
t denote the state of arm k and the action chosen for arm k at time t. Let {Z̃t}t≥0

and {Ãt}t≥0 where

Z̃t := (Z̃1
t , . . . , Z̃

K
t ) and Ãt := (Ã1

t , . . . , Ã
K
t ),

denote the states and actions of all arms. As the dynamics of each arm are independent,
we have

T̃ (Z̃t+1|Z̃t, Ãt) =
∏
k∈K

T̃ k(Z̃k
t+1|Z̃k

t , Ã
k
t ).

The instantaneous cost of the system is the sum of costs incurred by each arm. The perfor-
mance of any time homogeneous Markov policy π̃ :

∏K
k=1Zk → {a ∈ {0, 1}K : ||a||1 ≤M}

is measured by

J̃(π̃) = E
[ ∞∑

t=0

γt
K∑
k=1

C̃k(Z̃k
t , π̃(Z̃

k
t ))

∣∣∣∣z̃10 , . . . , z̃K0 ], (3.1)

where γ ∈ (0, 1) denotes the discount factor. Finally, the RMAB optimization problem is
as follows:

Problem 3.3. Given a discount factor γ ∈ (0, 1), a collection of arms {(Z̃k, {0, 1}, T̃ k,
C̃k, z̃k0 )}k∈K, and the number M of arms to be chosen at each time, choose a policy π̃ :∏K

k=1Zk → {a ∈ {0, 1}K : ||a||1 ≤M} that minimizes J̃(π̃).

Even though the arms operate independently, the actions applied to them are not in-
dependent. They are coupled through the operator allocation constraints. Therefore, we
cannot decompose the dynamic programming into multiple smaller MDPs. As discussed
earlier, the Whittle index policy is one of the commonly used heuristics to solve an RMAB
problem [173] and it addresses the scalability issues of dynamic programming-based so-
lutions. This policy is computationally efficient and it readily generalizes to the setting
where K or M changes over time. Next, we present the required definitions.

3.3.3 Indexability and the Whittle index policy

In this section, we restrict our discussion to a single arm and therefore omit the superscript
k for the ease of notation. Consider an arm (Z̃, {0, 1}, T̃ , C̃λ, z̃0) where, for some penalty
λ ∈ R, modify the per-step cost as

C̃λ(z, a) := C̃(z, a) + λa, ∀ z ∈ Z̃, a ∈ {0, 1}. (3.2)
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Then the performance of any given time-homogeneous Markov policy π̃ : Z̃ → {0, 1} is
given by

J̃λ(π̃) := E
[ ∞∑

t=0

γtC̃λ(Z̃t, π̃(Z̃t))

∣∣∣∣Z̃0 ∼ z̃0

]
. (3.3)

Now consider the following auxiliary problem:

Problem 3.4. Given an arm (Z̃, {0, 1}, T̃ , C̃, z̃0), the discount factor γ ∈ (0, 1) and the

penalty λ ∈ R, choose a Markov policy π̃ : Z̃ → {0, 1} to minimize J̃
(π̃)
λ (z̃0) given by (3.3).

Problem 3.4 is a Markov decision process. Let us denote the optimal policy of Prob-
lem 3.4 by π̃λ. It is assumed that the optimal policy picks passive action at any state where
both the active and passive actions result in same expected cost. Next, define passive sets
and indexability.

Definition 3.11 (Passive set). Given λ ∈ R, the passive set P̃(λ) is the set of states where
passive action is prescribed by π̃λ, i.e.,

P̃(λ) := {z ∈ Z : π̃λ(z) = 0} .

Definition 3.12 (Indexability). An arm is indexable if P̃(λ) is non-decreasing in λ, i.e.,
for any λ1, λ2 ∈ R,

λ1 ≤ λ2 =⇒ P̃(λ1) ⊆ P̃(λ2).

A RMAB problem is indexable if all n arms are indexable.

Definition 3.13 (Whittle index). For an indexable arm, the Whittle index of the state z
of an arm is the smallest value of λ for which state z is part of P̃(λ), i.e.,

w̃(z) = inf
{
λ ∈ R : z ∈ P̃(λ)

}
. (3.4)

Equivalently, the Whittle index w̃(z) is the smallest value of λ for which π̃λ is indifferent
between the active action and passive action when the arm is in state z.

The Whittle index policy is as follows: At each time, compute the Whittle indices of
the current state of all arms and select the arms in states with M highest Whittle indices
(provided they are positive).
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Chapter 4

Route Planning in Collaborative
Human-Robot Teams

TL;DR: We define the route planning problem for a single robot, introduce the notion of
budgets and critical departure times, and propose an optimal solution method based on
these concepts. We then extend this approach to address the problem of prioritizing route
planning for multiple robots in the fleet.

Robots have come a long way in the past decades, with increasing levels of autonomy
transforming the way they operate in different domains, from factories and warehouses
to homes and public spaces [11, 174, 175]. However, navigating dynamic environments
effectively continues to be a formidable challenge. Despite the significant strides made
in robot autonomy, human oversight remains vital in enhancing safety, efficiency or to
comply with regulatory requirements. For example, a robot navigating through an urban
environment must abide by traffic regulations and may require human assistance in busy or
construction areas to ensure safety or expedite operations. Similarly, in an exploration task,
robots may require replanning due to changes in the environment, while the supervisor has
already committed to a supervision schedule for other robots and is only intermittently
available. By considering the operator’s availability and environmental restrictions, robots
can plan their routes more efficiently, avoid unnecessary waiting and decide when to use
human assistance.
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In this chapter, we consider the problem of robot planning with the objective of finding
the fastest route between two configurations. We demonstrate our approach through an
example of robot navigation in an urban environment with intermittent operator availabil-
ity, varying travel speeds, and waiting limits. In this context, a route can be defined as an
execution path that includes details about the locations to visit, necessary waiting periods,
and specific segments where operator assistance should be scheduled. Figure 4.1 illustrates
the problem overview1. Specifically, we consider a city road network where the robot can
traverse through different locations either autonomously or with the assistance of a human
supervisor, each taking different amounts of time. However, the supervisor is only available
at certain times, and the robot has a limited amount of time to wait at a location before
it must move on to its next destination. By formulating the problem in this way, we aim
to address the challenge of collaborative robot planning in real-world environments where
the availability of human supervisors may be limited and thus can affect the optimal route
for the robot.

The problem of robot path planning with operator allocation in dynamic networks
is inspired by real-world scenarios where the availability of human assistance and thus
the robot’s speed of travel and its ability to traverse certain paths can change over time,
e.g., [176]. Traditional methods, such as time-dependent adaptations of the Dijkstra’s
algorithm, are not designed to handle situations in dynamic environments where waiting
is limited, and the task durations may not follow the first-in-first-out (FIFO) property
[177]. This means that a robot may arrive at its target location earlier by departing later
from its previous location, for example, by using human assistance. To address these
challenges, we draw on techniques from the time-dependent shortest path literature to
solve the problem. Unfortunately, existing optimal solution techniques are severely limited
by their computational runtime. In this chapter, we propose a novel algorithm that is
guaranteed to find optimal solution and runs orders of magnitude faster than existing
solution techniques.

Contributions: The main contributions of this work are as follows:

1) We propose a novel graph search algorithm for the collaborative planning problem
with intermittent human availability. The algorithm operates by intelligently selecting the
times of exploration and by combining ranges of arrival times into a single search node.

2) We provide the proof that the algorithm generates optimal solutions.

3) We demonstrate, using simulations, the effectiveness of our approach in a city road-
network, and show that it outperforms existing approaches in terms of computational time

1The map shown in Fig. 4.1 shows the road network of the city of Waterloo, generated using QGIS,
OpenStreetMap and OpenRouteService.
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Figure 4.1: Problem Overview: Given the information of a city road network with speed and
waiting restrictions, and the availability of human assistance, the objective is to determine a route
for the robot in form of an execution path that results in the fastest arrival at a goal location. The
execution path consists of three components: (1) the vertices or locations to navigate through,
denoted as (v1, v2, . . . , vn); (2) the amount of waiting required at intermediate locations, denoted
as (w1, w2, . . . , wn−1); and (3) whether to use human assistance, denoted as (m1,m2, . . . ,mn−1).
In this work, we propose a novel and efficient planning algorithm to obtain the required execution
path.
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and/or solution quality.

4) We extend the problem to multiple robots and show how a simple greedy method
can be used to efficiently prioritize a batch of route planning problems.

4.1 Background and Related Work

In this section, we discuss some relevant studies from the existing literature in the area of
robot planning with human supervision/collaboration. We also look into how the presented
problem can be solved using existing techniques from related fields.

Planning with Human Collaboration: The problem of task allocation and path planning
for robots operating in collaboration with humans has been studied extensively in recent
years. Researchers have proposed approaches such as a data-driven approach for human-
robot interaction modelling that identifies the moments when human intervention is needed
[37], and a probabilistic framework that develops a decision support system for the human
supervisors, taking into account the uncertainty in the environment [16]. In the context of
autonomous vehicles, studies have investigated cooperative merging of vehicles at highway
ramps [178] and proposed a scheduling algorithm for multiple robots that jointly optimize
task assignments and human supervision [179].

Task allocation is a common challenge in mixed human-robot teams across a variety of
applications, including manufacturing [180], routing [30], surveying [181], and subterranean
exploration [176]. In addition, the problem of computing the optimal path for a robot
under time-varying human assistance bears similarity to queuing theory applications, such
as optimal fidelity selection [14] and supervisory control of robots via a multi-server queue
[182]. These studies provide insights into allocating assistance and path planning for
robots in collaborative settings, but do not address our specific problem of computing the
optimal path for a robot under bounded waiting and intermittent assistance availability.
Additionally, our problem differs in that the robot can operate autonomously even when
assistance is available, i.e., the collaboration is optional.

Time-Dependent Shortest Paths: The presented problem is also closely related to time-
dependent shortest path (TDSP) problems, which aim to find the minimum cost or min-
imum length paths in a graph with time-varying edge durations [177, 183]. Existing solu-
tion approaches include planning in graphs with time-activated edges [177], implementing
modified A∗ [184], and finding shortest paths under different waiting restrictions [185,186].
Other studies have explored related problems such as computing optimal temporal walks
under waiting constraints [187], and minimizing path travel time with penalties or limits on
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waiting [188]. Many studies in TDSP literature have addressed the first-in-first-out (FIFO)
graphs [177], while others have explored waiting times in either completely restricted or un-
restricted settings. However, the complexities arising from non-FIFO properties, bounded
waiting and the need to make decisions on the mode of operation, i.e., autonomous or
assisted, have not been fully addressed in the existing literature [186,188,189].

The most relevant solution technique that can be used to solve our problem is presented
by Cai et al. [169], which solves a TDSP problem where the objective is to minimize the path
cost constrained by the maximum arrival time at the goal vertex. This method iteratively
computes the minimum cost for all vertices for increasing time constraint value. A time-
expanded graph search method [190] is another way of solving the presented problem by
creating separate edges for autonomous and assisted modes. We discuss these two methods
in more detail in Sec. 4.5. As we will see, the applicability of these solution techniques to
our problem is limited due to their poor scalability for large time horizons and increasing
graph size.

4.2 Problem Definition

The problem can be defined as follows. We are given a directed graphG = (V,E), modelling
the robot environment, where each edge e ∈ E has two finite travel times corresponding to
the two modes of operation: an autonomous time τ(e, 0) and an assisted time τ(e, 1), with
the assumption that τ(e, 0) ≥ τ(e, 1). When starting to traverse an edge, the robot must
select the mode of operation for the traversal that is used for the entire duration of the edge.
While the autonomous mode is always available, the assisted mode can only be selected if
the supervisor is available for the entire duration of the edge (under assisted mode). The
supervisor’s availability is represented by a binary function µ, with µ([t1, t2]) = 1 indicating
availability during the time window [t1, t2], and 0 otherwise. Additionally, at each vertex
v ∈ V , the robot can wait for a maximum duration of wv ≥ 0 before starting to traverse
an outgoing edge.

The robot’s objective is to determine how to travel from a start vertex to a goal vertex.
This can be represented as an execution path P , specified as a list of edges to traverse, the
amount of waiting required at intermediate vertices and the mode of operation selected for
each edge. The objective of this problem is to find an execution path (simply referred to
as a path) from a start vertex s ∈ V to a goal vertex g ∈ V \ {s}, such that the arrival
time at g is minimized.

Problem 4.1. Given a set P of all possible paths P of arbitrary length n, such that P :=
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⟨(v1, t1, w1,m1), (v2, t2, w2,m2), . . . ,(vn, tn, wn,mn)⟩, we can write the problem objective as
follows:

min
P∈P

tn

s.t. v1 = s, vn = g

evivi+1
∈ E ∀ i ∈ [1, n− 1]

ti+1 = ti + wi + τ(evivi+1
,mi) ∀ i ∈ [1, n− 1]

wi ≤ wvi ∀ i ∈ [1, n− 1]

mi = 1⇒ µ([ti + wi, ti+1]) = 1 ∀ i ∈ [1, n− 1].

The first constraint ensures that the path starts at s and ends at g. The second
constraint ensures that the topological path is valid in the graph. The third constraint
ensures that the path does not violate travel duration requirements at any edge. Fourth
constraint ensures that the waiting restrictions are met at each vertex. Finally, the fifth
condition ensures that an edge can only be assisted if the operator is available throughout
the edge traversal.

To efficiently solve this problem, we must make three crucial decisions: selecting edges
to travel, choosing the mode of operation, and determining the waiting time at each vertex.
Our proposed method offers a novel approach to computing the optimal solution. However,
before delving into the details of our solution, it is necessary to grasp the concept of budget
and how new nodes are generated during the search process.

4.3 Budget and Node Generation

Since the robot is allowed to wait (subject to the waiting limits), it is possible to delay the
robot’s arrival at a vertex by waiting at one or more of the preceding vertices. Moreover,
the maximum amount of time by which the arrival can be delayed at a particular vertex
depends on the path taken from the start to that vertex. Our key insight is that this
information about the maximum delay can be used to efficiently solve the given problem
by removing the need to examine the vertices at every possible arrival time. We achieve
this by augmenting the search space into a higher dimension, using additional parameters
with the vertices of the given graph. A node in our search is defined as a triplet (x, ax, bx),
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corresponding to a vertex x ∈ V , arrival time ax ∈ R≥0 and a budget bx ∈ R≥0. The budget
here defines the maximum amount of time by which the arrival at the given vertex can be
delayed. Thus, the notion of budget allows a single node (x, ax, bx) to represent a range of
arrival times from [ax, ax+bx] at vertex x. Therefore, the allowed departure time from this
vertex lies in the interval [ax, ax + bx + wx]. Thus budget of a node can also be regarded
as the additional wait that one can afford before moving to the next vertex.

4.3.1 Node Generation

The proposed algorithm is similar to standard graph search algorithms, where we maintain
a priority search queue, with nodes prioritized based on the earliest arrival time (plus any
admissible heuristic). Nodes are then extracted from the queue, their neighbouring nodes
are generated and are added to the queue based on their priority. Since in our search a node
is defined by the vertex, arrival time and budget, we must determine these parameters for
the newly generated nodes when exploring a given node. To characterize the set of nodes
to be generated during the graph search in our proposed algorithm, we define the notion
of direct reachability as follows.

Definition 4.1 (Direct reachability). A node (y, ay, by) is said to be directly reachable
from a node (x, ax, bx) if x and y are connected by an edge, i.e., exy ∈ E, and it is possible
to achieve all arrivals times in [ay, ay + by] at y through edge exy for some departure time
tD ∈ [ax, ax + bx + wx] from x and some mode of travel.

As an example, consider a node (x, 10, 2) with τ(exy, 0) = 5 and wx = 3. Then the
nodes (y, 15, 5), (y, 16, 4) and (y, 17, 3) are a few directly reachable nodes from (x, 10, 2)
(corresponding to departure times 10, 11 and 12, respectively).

Like standard graph search methods, our algorithm aims to generate all nodes directly
reachable from the current node during the exploration process. One approach is to gen-
erate all directly reachable nodes from the given node (x, ax, bx) for all possible departure
times in [ax, ax + bx + wx]. However, this results in redundancy when multiple nodes can
be collectively represented using a single node with a suitable budget.

As the operator availability changes, the possible arrival times at the next vertex may
present themselves as separate blocks of time. A block of arrival times can be repre-
sented using a single node, and thus we only need to generate a new node for each arrival
time block. To understand this, we consider the example given in Fig. 4.2, where a node
(x, ax, bx) is being extracted from the queue, and we want to generate the nodes corre-
sponding to a neighbouring vertex y. The arrival time range at x, [ax, ax + bx] is shown
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Figure 4.2: An example explaining the notion of budget and determining the resulting node when
a node (x, ax, bx) is explored. (a) Under autonomous mode, the earliest departure from x is ax
(corresponding to no waiting). Since the autonomous mode is always available to the robot, the
corresponding arrival time at y forms a single block, shown as a solid orange line. This can be
thus represented using a single node n1. (b) Under the assisted mode, feasible departure times
from x are governed by the operator availability function µ, and a time tmax = min(α−β, bx, wx).
In this example, the resulting arrival time at y forms two separate blocks, shown as solid green
lines on the time axis. Thus, exploring the node under assisted operation generates two nodes,
n2 and n3.
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as solid purple line. The possible departure window [ax, ax + bx + wx] is shown as purple
dashed line.

Let us denote the autonomous travel time τ(exy, 0) as α and the assisted travel time
τ(exy, 1) as β. Under autonomous operation, the edge can be traversed by departing at any
time in the departure window, resulting in possible arrival time at vertex y in the interval
[ax + α, ax + bx + wx + α], shown as solid orange line. Therefore, we can represent these
possible arrival times using the node n1 = (y, ax + α, bx +wx), where ax + α is the earliest
arrival time at y and bx + wx is the new budget. Note that the new budget is increased
from the previous value by an amount of wx.

Under assisted operation, only a subset of departure window is feasible, as shown in
Fig. 4.2(b). This results in separate blocks of arrival times at y, shown as solid green lines.
The range of arrival times corresponding to these blocks become the budget values for the
new nodes. In the given example, two nodes are generated: n2 = (y, tD2 + β,∆t2) and
n3 = (y, tD3 + β,∆t3).

Note that the feasible departure times are limited by operator availability and tmax.
The value of tmax is the minimum of bx + wx and α − β. The former quantity limits the
departure from x to ax + bx + wx, while the latter comes from the observation that any
departure time tD > ax + (α − β) will result in arrival at y at a time ay > ax + α, and
a budget by < bx + wx. However, this arrival time range is already covered by the node
generated under autonomous operation.

Critical departure times: Note that the earliest arrival times for each of the three new
nodes correspond to unique departure times from x (tD1, tD2, tD3 in Fig. 4.2). We refer to
these times as critical departure times, as exploring a node only at these times is sufficient
to generate nodes that cover all possible arrival times at the next vertex. Since in the
presented problem, the edge duration depends on the mode of operation selected, the set
of critical departure times for a node is a subset of times when the operator availability
changes, and thus can be efficiently determined.

Next, we present how these concepts are used by our proposed Budget-A∗ algorithm to
solve the given problem.

4.4 Budget A∗ Algorithm

This section details the proposed Budget A∗ algorithm and its three constituent functions:
EXPLORE, REFINE and GET-PATH. To recall, a node in our search is defined as a tuple
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(x, ax, bx). A pseudo-code for the Budget-A∗ algorithm is given in Alg. 4.1, and more details
on the constituent functions follow. The algorithm initializes an empty priority queue Q,

Algorithm 4.1 Budget A∗

1: Input: G = (V,E), τ, µ, w, s, g

2: Q← initialize priority queue

3: S ← ∅
4: ψ(x, a)← nil for all x ∈ V, a ∈ Z≥0 // Initialize predecessor function

5: Q.push((s, 0, 0))

6: while Q not empty do

7: currNode := (x, ax, bx)← Q.extract-min()

8: S ← S ∪ currNode

9: if x = g then

10: break

11: for all y ∈ neighbors(x) do

12: N ← EXPLORE(ax, bx, wx, exy, τ, µ)

13: for all (y, ai, bi,mi) ∈ N do

14: newNode← (y, ai, bi)

15: Q,ψ ← REFINE(Q, newNode, currNode, ψ,mi)

16: path← GET-PATH(currNode, w, ψ, τ)

a processed set S and a predecessor function ψ. It then adds a node (s, 0, 0) to Q denoting
an arrival time of exactly 0 at s. The algorithm iteratively extracts the node with the
earliest arrival time (plus an admissible heuristic) from Q, adds it to S, and generates new
candidate nodes for each of its neighbors using the EXPLORE function. The REFINE
function then checks if these nodes can be added to the queue, removes redundant nodes
from Q, and updates predecessor information. The algorithm continues until Q is empty
or the goal vertex is reached. The GET-PATH function generates the required path using
the predecessor data and waiting limits.

4.4.1 Exploration

In this step, we generate a list of potential nodes to add to the search queue. The EX-
PLORE function takes in several input parameters: arrival time ax, budget bx, waiting
limit wx, edge exy, travel durations τ and operator availability µ. The function returns a
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set N of candidate nodes of the form (y, ai, bi,mi), where ai, bi,mi are the arrival time,
budget and the mode of operation respectively, corresponding to all critical departure times
from the node (x, ax, bx) to vertex y. A pseudo-code is shown in Alg. 4.2.

As discussed in Sec. 4.3, the autonomous mode generates one new node, while assisted
mode can generate multiple nodes depending on operator availability, node budget and
task duration. The function first adds a node (y, ax + α, bx + wx) corresponding to the
autonomous mode to N . The node is (y, ax + α, bx + wx), where α = τ(exy, 0), the
autonomous duration of edge exy.

For the assisted mode, it first computes the maximum useful delay in departure tmax.
Next, it generates an ordered set F of feasible departure times from the current node as
the times in departure window when it’s possible to depart under assisted mode, computed
using µ and β (line 5). Lines 7-8 generate a new node (y, ay, by) for each critical departure
time td, with a budget by = 0 and arrival time ay = td+β. The budget is then incremented
for each consecutive departure time in F . A gap in F means a gap in arrival time at
y indicating that we have considered the complete arrival time range for that critical
departure time. This condition is checked in line 11, and the node (y, ay, by, 1) is added to
N .

Algorithm 4.2 EXPLORE(ax, bx, wx, exy, τ, µ)

1: α← τ(exy, 0), β ← τ(exy, 1)

2: N ← {(y, ax + α, bx + wx, 0)}
3: tmax ← min(α− β, bx + wx)

4: TD ← [ax, ax + tmax] // Possible departure window

5: F := [t ∈ TD s.t. µ([t, t+ β]) = 1] // Feasible set

6: for all td ∈ F do

7: if td − 1 /∈ F then

8: (y, ay, by)← (y, td + β, 0)

9: else

10: by ← by + 1

11: if td + 1 /∈ F then

12: N ← N ∪ (y, ay, by, 1)

13: return N

Once all departure times in F are accounted for, the set N contains all required arrival
time and budget pairs (along with the mode of operation) for the given node (x, ax, bx) and
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neighbour y while accounting for the operator availability, the travel time and the waiting
limit.

4.4.2 Node Refinement

The REFINE function plays a crucial role in determining the inclusion and removal of
nodes in the priority queue Q. Its primary objective is to evaluate the newly generated
nodes and assess their relevance among the existing nodes in the queue. To achieve this,
the function compares the arrival time range of the new node with those already present
in Q (with the same vertex).

Line 5 of Algorithm 4.3 implements a check to identify if any existing node in Q already
encompasses the arrival time range of the new node. If such an overlap exists, the new
node does not provide additional information and can be disregarded. Conversely, if the
condition is not met, the new node is deemed relevant and is added to Q. Subsequently,
line 7 of the algorithm conducts a further check to identify any redundant nodes in Q whose
arrival time window falls entirely within the window of the new node. These redundant
nodes are then removed from Q, ensuring the queue remains efficient. Finally, the function
returns the modified queue along with the predecessor function.

In summary, the REFINE function manages the inclusion and removal of nodes in the
priority queue, optimizing the utilization of budget in making the search process more
efficient.

4.4.3 Path Generation

When the goal vertex is extracted from the priority queue for the first time, its corre-
sponding arrival time represents the earliest arrival time at that vertex (as explained in
Section 4.4.4). To construct the execution path from the start to the goal, we utilize the
predecessor data stored in the function ψ.

Since the problem does not adhere to the optimal substructure property, merely storing
the predecessor vertices as nodes are created is insufficient. It is crucial to capture the
precise path leading to the goal vertex. This necessitates storing both the predecessor
vertex and its associated arrival time, as a vertex and arrival time pair uniquely identify
a search configuration. For a given vertex-time pair (y, a), invoking the function ψ(y, a)
retrieves the predecessor node vertex and its earliest arrival time (x, ax) along with the
corresponding mode of travel mx required to traverse the edge exy. This information,
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Algorithm 4.3 REFINE(Q, newNode, currNode, ψ,m)

1: toRemove← ∅
2: (y, ay, by)← newNode

3: (u, au, bu)← currNode

4: for all (x, a, b) ∈ Q do

5: if x = y and a ≤ ay and a+ b ≥ ay + by then

6: return Q,ψ

7: else if x = y and a ≥ ay and a+ b ≤ ay + by then

8: toRemove← toRemove ∪ (x, a, b)

9: Q← Q \ toRemove
10: Q← Q ∪ newNode

11: ψ(y, ay) = (u, au,m)

12: return Q,ψ

along with the wait limits, enables us to construct the exact path taken to reach the goal
vertex, including the sequence of edges, waiting times at each intermediate vertex, and the
mode of operation selected for each edge.

To accomplish this, we employ the GET-PATH function depicted in Alg. 4.4. This
function backtracks from the goal vertex to the start, calculating the precise departure
time from the predecessor vertex based on the earliest arrival time at the current vertex
and the mode of operation (line 6).

Subsequently, the exact arrival time is determined by incorporating the departure times
and the maximum allowed waiting w (lines 6-9). The resulting path is stored as a list of
tuples, with each tuple representing a vertex, its arrival time, waiting time, and the mode
of operation utilized. This comprehensive path construction procedure ensures the validity
of the generated paths.

4.4.4 Correctness Proof

Let a vertex-time pair (y, ay) be called directly reachable from a node (x, ax, bx), if vertex
y can be reached by departing vertex x between time ax and ax + bx + wx through edge
exy ∈ E.

Lemma 1. Consider a node (x, ax, bx) extracted from Q (line 7), and a y ∈ neighbors(x)
inspected in lines 11-15. If (y, ay) is directly reachable from (x, ax, bx), then there is a node
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Algorithm 4.4 GET-PATH((y, a, b), w, ψ, τ)

1: Initialize an empty path list P

2: Append (y, a, 0, 0) to P

3: rem← 0

4: while ψ(y, a) ̸= nil do

5: (x, a′,m)← ψ(y, a)

6: tD ← a−m τ(exy, 1)− (1−m)τ(exy, 0) + rem

7: wx ← min(tD − a′, wx)

8: rem← tD − a′ − wx

9: ax ← a′ + rem // Required arrival at x

10: Append (x, ax, wx,m) to P

11: (y, a)← (x, a′)

12: return P

in Q with vertex y whose arrival time range contains ay.

Proof. For a given node, the critical departure times represent the number of separate
arrival time blocks. Also, as discussed earlier, a single block of arrival times can be rep-
resented by a node having the earliest arrival time in that block and budget equal to the
width of the block. The EXPLORE function gets called for each neighbour of x (Alg. 4.1
line 11) and generates new nodes corresponding to each critical departure (Alg. 4.2 lines 6-
12). Therefore the resulting nodes cover all possible arrival times at every neighbouring
vertex of x when departing at a time in the range [ax, ax + bx + wx].

During the refinement step, only those nodes are removed for which the arrival time
range is already covered by another node (Alg. 4.3 line 7). Therefore, after execution of
the EXPLORE and REFINE functions, there exist nodes for all achievable arrival times
at the neighboring vertices corresponding to the node (x, ax, bx).

Lemma 2. When a node (x, ax, bx) is extracted from Q, for every achievable arrival time
a′ < ax at x (through any path from the start vertex), there exists at least one node with
vertex x in the explored set S for which the arrival time range includes a′.

Proof. We will use proof by induction.

Base case: Consider the starting node (s, 0, 0), the first node extracted from Q. Since
it has an arrival time of 0, and arrival times are non-negative there is no earlier achievable
arrival time at vertex s, so the statement is true.
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Induction step: Assume the statement is true for the first k nodes extracted and added
to S. We want to show that it is also true for the next node (x, ax, bx) extracted from Q.
We will prove this by contradiction.

Suppose there exists an achievable arrival time a′ < ax at x such that no node of vertex
x in S has an arrival time range that includes a′. Let (x, a′) is achieved via some path2

(s, 0)⇝ (u, au)→ (v, av)⇝ (x, a′), where (u, au) and (v, av) are two consecutive entries in
the path. Let (v, av) be the first pair in the path for which a node enclosing arrival time av
is not present in S. This can also be (x, a′) itself. Since (v, av) is directly reachable from
(u, au), when exploring the node corresponding to (u, au), a node corresponding to arrival
time av at v must have been inserted (or already present) in Q (Lemma 1). Let this node
be (v, a′v, b

′
v).

We have av ∈ [a′v, a
′
v + b′v]. Since b

′
v ≥ 0, we get a′v ≤ av. Also, av ≤ a′ because (v, av)

and (x, a′) lie on a valid path. Since we assumed a′ < ax, we get a′v < ax. However, since
(x, ax, bx) is extracted from Q first, we must have ax ≤ a′v. Therefore, the initial assumption
must be incorrect, and the statement holds for any node extracted from Q.

Theorem 1. Consider a vertex x, and let (x, ax, bx) be the first node with vertex x that is
extracted from Q. Then a is the earliest achievable arrival time at x.

Proof. By Lemma 2, if there exists an arrival time a′ < ax at x which is achievable through
any path from the start, a corresponding node must be in the explored set. Since (x, ax, bx)
is the first node with vertex x that is extracted from Q, there is no node with vertex x in
the explored set S. Therefore, a is the earliest achievable arrival time at x.

4.5 Simulations and Results

In this section, we present the simulation setup and discuss the performance of different
solution methods.

4.5.1 Baseline Algorithms

In this section, we present some solution approaches that we use to compare against the
proposed Budget-A∗ algorithm.

2Here, only the vertex-time pairs are used to denote a path. Wait times and mode of travel are omitted
for simplicity of expressions.
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Figure 4.3: Method for modifying the given graph for TCSP-CWT algorithm. Left: Two vertices
and connecting edge in original graph with autonomous edge duration α, assisted edge duration
β and a wait limit wx at vertex x. Right: Modified vertices and edges in the new graph. This
allows for two different paths from x to y based on mode of operation selected.

4.5.1.1 TCSP-CWT

The TCSP-CWT algorithm (Time-varying Constrained Shortest Path with Constrained
Waiting Times), presented by Cai et al. [169], solves the shortest path problem under
the constraint of a bounded total travel time. Details on the algorithm are provided in
Section 3.3.3. The original algorithm can optimize the travel cost but does not take into
account the cost of waiting, and requires an upper bound T on travel time as an input. To
solve the given problem, we modify the original algorithm as follows.

First, we determine the upper bound on travel time T to search by solving the static
version of the problem, where each edge duration is set to its corresponding autonomous
travel time value. Next, we obtain a new graph by creating two copies of each vertex
in the given graph: one corresponding to autonomous operation (v) and another to the
assisted operation (v̂). For each edge euv ∈ E, two edges are created: euv - from u to v -
representing autonomous travel, and êuv - from u to v̂ - representing assisted travel. We
also add an edge from v̂ to v with a duration of 0. Waiting limit at any v is the original
given limit wv, while no waiting is allowed at v̂. These modifications are shown in Fig. 4.3.

The autonomous edges can be traversed at any time, while the assisted edges are
dependent on the operator availability. The cost of each edge is set to its travel duration
given the departure time and operator availability. Finally, instead of storing cost of
reaching a vertex, we store the time it is reached. Since we are interested in finding
the minimum arrival time only at the goal vertex, when looping through the time steps
t ∈ [1, T ], we stop the search at the first t for which the arrival time at the goal vertex
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Figure 4.4: Method for modifying the graph for the Time-Expanded A∗ algorithm. Left: Two
vertices and connecting edge in original graph with autonomous edge duration α, assisted edge
duration β and a wait limit wx at vertex x. Right: Modified vertices and edges in the new graph
for the vertex xt. There are α+wx+1 edges added for autonomous operation, while the edges for
assisted operation gets filtered based on the operator availability. In the above example, assisted
operation is not available for departure time t+ 1, so the corresponding edge is not added. This
process is repeated for each copy of vertex x for t ∈ {0, 1, . . . , T}.

has a finite value. The optimal path is then generated by backtracking the arrival times
at each intermediate vertex.

4.5.1.2 Time-expanded A∗

The Time-expanded A∗ algorithm [190] is a modified version of the A∗ algorithm that
can be used to solve the given problem. It is called “time-expanded” because it creates
a separate node for each vertex at each time step, thus expanding the search space. New
edges are then added to the graph, with edge durations corresponding to the departure time
at a vertex in the expanded graph. This approach is equivalent to our proposed algorithm
without the notion of budget and it allows us to utilize the standard A∗ algorithm used
for static graphs (Algorithm 3.1) to solve our time-dependent problem. Similar to the
TCSP-CWT, we duplicate the edges and determine the upper bound of time steps T by
solving the problem with autonomous travel durations.

4.5.1.3 Greedy (Fastest Mode) Method

One efficient method for obtaining a solution is to combine a time-dependent greedy se-
lection with a static graph search method, as described in Algorithm 4.5. This approach
is similar to an A∗ search on a static graph, but takes into account the arrival time at
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each vertex while exploration. To determine the edge duration to the neighboring vertices,
we consider the faster of the two alternatives: traversing the edge immediately under au-
tonomous mode or waiting for the operator to become available (subject to waiting limits).
This way, the algorithm computes the fastest way to reach the neighboring vertices from
each vertex, given the current time and edge durations. Once the goal vertex is extracted
from the priority queue, we can stop the search and use the predecessor data to obtain the
path.

Algorithm 4.5 Greedy Search

1: Input: G = (V,E), τ, µ, w, s, g

2: Q← initialize priority queue

3: S ← ∅
4: u.pred← nil for all u ∈ V
5: Q.insert((s, 0))

6: while Q not empty do

7: (u, t)← Q.extract-min() // Extract node with minimum t

8: S ← S ∪ u
9: if u = g then

10: break

11: for all v ∈ neighbors(u) do

12: if v /∈ S then

13: ∆t← timeUntilOprAvail(t,mu,wu)

14: timeAuto← t+ τ(euv, 0)

15: timeAssist← t+∆t+ τ(euv, 1)

16: Q.push((v,min{timeAuto, timeAssist}))
17: v.pred← u

If it is not possible to traverse the edge under assisted mode under the given waiting
limit, the ∆t compute in Line 13 takes the value of infinity (or a large positive number).

4.5.2 Problem instance generation

For generating the problem instances, we use the map of the city of Waterloo, Ontario,
Canada (a 10km× 10km area around the city centre). Using the open source tools QGIS
and OpenStreetMap, we place a given number of points at different intersections and land-
marks. These points serve as vertices in our graph. Next, we use Delaunay triangulation to
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Figure 4.5: Example of the street network graph of the city of Waterloo used in the simulations.
The figure shows a screenshot from the QGIS software. The shortest paths (orange lines) between
vertices (red dots) are generated using the OpenRouteService.

connect these vertices and use OpenRouteService (ORS) to compute the shortest driving
distance between these vertices. An example graph of the city is shown in Figure 4.5. To
obtain the travel durations at each edge, we first sample robot speeds from a uniform ran-
dom distribution. The travel durations under the two modes are then computed by dividing
the edge length (computed using ORS) by the speed values and rounding off to the nearest
integer. The travel speeds are sampled as follows: autonomous speed u0xy ∼ U [0, 40]; as-
sisted speed u1xy ∼ U [10 + u0xy, 30 + u0xy]. The maximum waiting duration at each vertex x
is sampled from a uniform random distribution as wx ∼ U [0, 15]. The operator availability
function is generated by randomly sampling periods of availability and unavailability, with
durations of each period sampled from the range of [10, 200]. The distance values used in
our simulations are in meters, times are in minutes and speeds are in meters/minute.

We test the algorithms using the Waterloo city map with varying vertex density, by
selecting 64, 100 or 225 vertices to be placed in the map. We generate 20 problem instances
for each density level (varying speeds, waiting limits and operator availability), and for each
instance, we solve the problem for 100 randomly selected pairs of start and goal vertices.
The algorithms are compared based on solution time and the number of explored nodes.
We also examine some of the solutions provided by the greedy method.

Note on implementation: All three graph search algorithms (Budget-A∗, Greedy
and Time-expanded A∗) use the same heuristic, obtained by solving a problem instance
under the assumption that operator is always available. This heuristic is admissible in a
time-dependent graph [184] and can be computed efficiently. The priority queues used in
all methods are implemented as binary heaps, allowing for efficient insertion, extraction
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and search operations. Additionally, all the methods require computation of the feasibility
set (Alg. 4.2 line 5). This is pre-computed for all departure times and is given as input to
each algorithm.

4.5.3 Results

Figure 4.6 compares the performance of the Budget-A∗ algorithm with that of the Greedy
algorithm in terms of durations of the generated paths. From the figure, we observe
that the Greedy algorithm is able to generate optimal or close-to-optimal solutions for a
large proportion of the tested problem instances. However, for many instances, the path
generated by the greedy approach is much longer than that produced by the Budget-A∗

algorithm, reaching up to twice the duration.

Figure 4.6: Performance comparison of the Greedy algorithm to the proposed Budget-A∗ al-
gorithm. Each point in the graph denotes a problem instance, where the x and y coordinates
correspond to durations of the paths generated by the Budget-A∗ and the Greedy algorithm re-
spectively. The diagonal line represents equal path duration and the vertical distance from the
line indicates the difference in duration between the two solutions.

To gain further insight into our results, we present Fig. 4.7, highlighting example in-
stances where the greedy approach fails to generate an optimal solution. Through these
examples, we demonstrate how our algorithm makes effective decisions regarding path se-
lection, preemptive waiting, and not utilizing assistance to delay arrival at a later vertex.
These decisions ultimately result in improved arrival time at the goal.
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Figure 4.7: Example graphs comparing paths generated by the proposed Budget-A∗ and the
Greedy algorithm. Black solid lines represent autonomous mode and blue dotted lines represent
assisted mode. Grey circles denote waiting, with circle size proportional to waiting duration.
The red and greed shaded regions in the bottom plots represent operator availability. (a) The
Budget-A∗ algorithm preemptively waits at initial vertices to use autonomous mode for later
edges, resulting in a faster path. The greedy algorithm moves towards the goal quickly, but
cannot use operator availability later due to waiting limits. (b) The Budget-A∗ algorithm uses
operator availability more efficiently by selecting a longer path. (c) The Budget-A∗ algorithm
chooses not to use operator’s assistance even when it is available, so that it can be used later
when the assistance is more beneficial.

Figure 4.8 compares the computation time required by different solution methods for
varying number of vertices and the duration of the optimal path between the start and
goal vertices. The plots demonstrate that the proposed algorithm consistently outperforms
the other optimal methods in terms of computation time, with the greedy method being
the fastest but providing suboptimal solutions. The computation time for all methods
increases with the number of vertices. The path duration has the greatest impact on
the performance of the TCSP-CWT algorithm, followed by the Time-expanded A∗, the
Budget-A∗ algorithm, and finally the Greedy algorithm.

Figure 4.9 compares the number of nodes generated and explored by Time-expanded A∗,
Budget A∗, and Greedy search algorithms. The number of nodes is a key metric to evaluate
search efficiency as it reflects the number of insertions and extractions from the priority
queue. The Time-expanded A∗ generates nodes at a faster rate with increasing vertices,
while the proposed algorithm generates an order of magnitude fewer nodes, indicating
better efficiency and scalability. The Greedy search algorithm terminates after exploring
the least number of nodes, indicating that it sacrifices optimality for speed. In contrast,
both the Time-expanded A∗ and Budget A∗ algorithms guarantee optimality in their search
results.
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Figure 4.8: Computation time comparison for different methods. Left: Mean computation time
as a function of the number of vertices in the graph, averaged over all test instances. Note that
the time is plotted on a log scale. Right: Computation time as a function of actual duration of
the optimal path, shown for all test instances.

Figure 4.9: Mean number of nodes generated during graph search under the three methods
for different number of vertices in the map. The bar height shows the total number of nodes
generated and added to the queue during the search. The orange stack denotes the number of
nodes explored before the goal is reached and the search is terminated.
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4.6 Implementation and Efficiency

In this section, we discuss the time efficiency of the given algorithm in a discrete-time
setting. Although the Budget-A∗ algorithm can inherently operate in continuous time, we
adapt it to a discrete time setting to maintain consistency with other baseline algorithms
used for comparison (as discussed in Section 4.5.1). In this discrete-time implementation,
we introduce a time constraint T that represents the upper bound on the arrival time at
the goal location. One approach to determine the value of T is to solve the static version
of the problem, assuming that the operator is always unavailable, which yields a suitable
value for T . Alternatively, we can use a fast (greedy) algorithm to find a tighter bound
on this time constraint, further optimizing the algorithm’s performance. Importantly, the
Budget-A∗ algorithm’s performance remains unaffected by the chosen unit of time steps
in the implementation. This characteristic ensures the robustness and consistency of the
results, regardless of the specific time granularity used.

Examining the time efficiency of the Budget-A∗ algorithm (Alg. 4.1), observe that
a node in the priority queue is determined by the vertex and its earliest arrival time.
Therefore, the primary while loop (line 6) runs for O(T |V |) times. The priority queue Q
is implemented as a binary heap, resulting in an extraction time of O(log(T |V |)). The
REFINE function can be implemented in O(log(T |V |)) time by exploiting the fact that
nodes in the queue are arranged by their arrival times. The GET-PATH function is a simple
backtracking through the predecessor nodes and takes O(|V |) time. By pre-computing the
feasible set outside the while loop, the EXPLORE function in our algorithm achieves a
time complexity of O(|N |), where |N | represents the number of new nodes generated. This
optimization significantly improves the efficiency of the exploration process.

An essential feature of our problem is that the number of newly generated nodes is
constrained by the budget at a vertex and the duration of the edge under autonomous and
assisted operation. In Section 4.3, we discussed how feasible departure times from a node
are constrained by tmax. For a node (x, ax, bx) and an edge exy, the value of tmax is given
by

min{bx + wx, τ(exy, 0)− τ(exy, 1)}.

Furthermore, for an edge to be eligible for assistance, µmust be 1 for the whole duration
of the edge. This means that even for an arbitrarily large value of budget, and even if the
operator availability changes arbitrarily, the maximum number of critical departure times
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under assisted operation for a node are limited by⌈
τ(exy, 0)− τ(exy, 1)

τ(exy, 1)

⌉
.

As a result, the EXPLORE function generates a maximum of 1 +
⌈
τ(exy ,0)−τ(exy ,1)

τ(exy ,1)

⌉
new

nodes. Defining γ = maxe∈E
τ(e,0)
τ(e,1)

, we observe that the EXPLORE function runs in O(γ)
time. Consequently, the Budget-A∗ algorithm exhibits a time complexity of

O(γ T |V |2 log(T |V |)).

In the worst case, |N | = T . Therefore, the time complexity of the given algorithm will
be O(T 2 |V |2 log(T |V |)), which is the same as that of the time-expanded A∗ algorithm.
However, in practice, the value of γ is expected to be much less than T , and thus the algo-
rithm performs much better than the time-expanded A∗ algorithm, as seen in Section 6.3.

Remark. It is also important to note that the runtime of our algorithm remains
unaffected even if all edge durations are scaled by a constant factor. This is because there
are only O(T/λ) possible times to arrive at a given vertex, where λ represents the highest
common factor among all edge durations. As a result, the maximum length of the priority
queue is bounded by O( 1

λ
T |V |). Thus, the time complexity of our algorithm can be more

accurately expressed as

O
(
γ

λ
T |V |2 log

(1
λ
T |V |

))
.

4.7 Extension to multi-robot case

While the Budget-A∗ algorithm presented in this chapter is well suited for a single robot
scenario, we aim to investigate the feasibility and benefits of planning for multiple robots
concurrently.

In the single-robot case, the objective was to minimize the arrival time at the goal
location for the given robot, under operator availability constraints. In a multi-robot set-
ting, several robots compete for the same shared resource, which is the operator assistance.
This implies that trying to minimize the travel time for one robot using operator assistance
can potentially increase the travel time for other robots in the system. Therefore, for the
multi-robot case, we must choose a different, more appropriate reward.
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Consider a set of K robots denoted as {1, . . . , K}, each with its path planning problem
represented as a service request defined by a start and goal vertex pair. These service
requests form a batch, and the planned path for robot k ∈ {1, . . . , K} is represented as
P k. The length of a path, denoted by l(P k), signifies the arrival time at the goal vertex
along the execution path P k. Note that for each robot k ∈ {1, . . . , K}, there exists at least
one path that leads from its start to the corresponding goal vertex without using operator
assistance. Among these paths, let the shortest one be denoted as P̃ k, with the path length
l(P̃ k). We consider the following two reward functions:

Reward-1: Net Reduction in Travel Time: Our first reward function quantifies the
cumulative reduction in travel time (path length) for all robots within the batch:

r({P 1, . . . , PK}) =
K∑
k=1

l(P̃ k)− l(P k). (4.1)

Reward-2: Reduction in Makespan: Similarly, we define an alternative reward
function based on the decrease in makespan, which is the path length of the slowest robot
among all the robots in the batch, and has been used to guide decision-making in similar
applications [179,191]:

r({P 1, . . . , PK}) = max
k∈{1,...,K}

l(P̃ k)− max
k∈{1,...,K}

l(P k). (4.2)

Given the reward function, we can write the multi-robot path planning problem as
follows:

Problem 4.2. Given a graph G = (V,E) and operator availability µ as described in
Sec. 4.2, we consider a batch of service requests for K robots defined by pairs of start
and goal vertices (sk, gk) for each robot k ∈ {1, . . . , K}. Denoting the path for robot k as
P k := ⟨(vk1 , tk1, wk

1 ,m
k
1), (v

k
2 , t

k
2, w

k
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k
2), . . . , (v

k
nk , t

k
nk , w

k
nk ,m

k
nk)⟩, the problem objective can

61



be written as follows:

max
P 1,...,PK∈P

r
(
{P 1, . . . , PK}

)
s.t. vk1 = sk, vk

nk = gk ∀ k ∈ [1, K]

evki vki+1
∈ E ∀ k ∈ [1, K], i ∈ [1, nk − 1]

tki+1 = tki + wk
i + τ(evki vki+1

,mk
i ) ∀ k ∈ [1, K], i ∈ [1, nk − 1]

wk
i ≤ wvki

∀ k ∈ [1, K], i ∈ [1, nk − 1]

mk
i = 1⇒ µ([tki + wk

i , t
k
i+1]) = 1 ∀ k ∈ [1, K], i ∈ [1, nk − 1]∑K

k=1 u(t, k) ≤ 1 ∀ t ∈ [0,maxk t
k
nk ]

u(t, k) = 1 ⇐⇒ ∃ i ∈ [1, nk − 1] s.t. tki ≤ t < tki+1,m
k
i = 1,

where u(t, k) is an indicator function representing whether robot k is scheduled to receive
operator assistance at time t.

The first five constraints are direct extensions of the corresponding constraints of Prob-
lem 4.1. The last two constraints ensure that the operator cannot be assigned to more
than one robot simultaneously3.

To address the multi-robot planning problem, one approach is to extend the time-
expanded A∗ algorithm. In this extension, the system state encompasses the combination
of individual robot states, forming a K-dimensional vector, while actions encompass the
combinations of next edges selected for each robot. This leads to a centralized solution
approach where the plans for all robots are collectively generated. Nevertheless, for a
system withK robots, this centralized approach results in a graph of size V K×T , which can
be computationally intensive to execute [16]. Similar extension of the Budget-A∗ method
can also lead to centralized solutions for multi-robot scenarios. Alternatively, it’s possible
to formulate this problem as a Mixed Integer Linear Program (MILP). Nevertheless, such
formulations can also encounter scalability issues and be operationally infeasible [179].

However, in the context of autonomous delivery applications, we argue that a decen-
tralized planning approach is more preferable. Here, each robot’s plan is individually
generated, independent of the other robots. This approach is supported by the nature of

3Although this discussion assumes a single operator for all robots, the presented formulation can be
easily extended to a multi-operator scenario.
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service requests in such applications, which are typically received individually. This enables
the treatment of each robot as a separate entity during the planning process, addressing
their missions based on the sequential order of service requests.

Moreover, the robots in such systems largely operate independently of each other, with
the allocation of operator assistance being the only point of interdependence among them.
Since the use of operator assistance is optional for each task, it is possible for the robots to
independently complete their missions without impacting the plans of other robots. This
autonomy implies that centralizing the planning for all robots might not yield significantly
better results than a decentralized prioritization-based approach [16]. Furthermore, a
decentralized planning approach offers advantages in terms of robustness over centralized
approaches as it avoids interdependencies among robot plans [13]. Such interdependence
could be detrimental in cases of failure or delays, potentially propagating adverse effects
across the plans of multiple robots [192].

Given these practical considerations, adopting a decentralized approach to our problem
appears to be more feasible and advantageous. This approach involves generating robot
plans one by one, allowing for greater robustness and adaptability in handling individual
service requests. It proves to be highly practical in scenarios where service requests arrive
sequentially, enabling efficient planning for each robot without unnecessary dependencies
on the plans of others.

4.7.1 Prioritizing a batch of service requests

While addressing individual service requests by planning robot paths upon their arrival is a
viable approach, situations can arise where multiple service requests arrive simultaneously
in batches. In such scenarios, prioritizing these requests before planning the paths can lead
to more efficient solutions. This approach involves planning the execution paths of robots
one by one, based on their priority among other robots in the batch. Once a robot’s path is
planned, the operator availability is updated, accounting for scheduled operator assistance
times, and is then used for planning the subsequent robot’s path. The prioritization process
can be summarized as Alg. 4.6 below:
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Algorithm 4.6 Batch Service Request Prioritization

1: Input: Batch of service requests M

2: Initialize operator availability

3: while M is not empty do

4: Identify the robot with the highest priority from the batch

5: Plan an optimal path for the selected robot under current operator availability

6: Update operator availability based on the planned path

7: Remove the selected robot from M

The challenge now lies in devising an effective approach to prioritize the service requests
within the batch. One possible approach is to solve the planning problem for all possible
sequences derived from the set M and selecting the one that maximizes the reward. How-
ever, as we will discuss next, we can employ a greedy algorithm that efficiently prioritizes
the batch of service requests.

4.7.2 Submodularity

We aim to show that the reward functions, as given in equations 4.1 and 4.2, result in
a sequential submodular problem, indicating that planning for robots in any arbitrary
sequence yields diminishing returns (for more details on submodularity, refer to Chapter 3
Section 3.2). This property enables the use of an efficient greedy algorithm for prioritizing
the batch of service requests.

To establish sequential submodularity, we first define a sequence A = ⟨a1, . . . , aK⟩ of
K robots derived from the set M := {1, . . . , K}, where ai ∈ M for each i ∈ {1, . . . , K}.
Let P ai be the optimal (fastest) path for robot ai, given the operator availability after
planning for the first ai−1 robots in the sequence. This allows us to define the rewards
given in equations 4.1 and 4.2 as functions of the sequence A.

We now establish that the reward function presented in equation 4.1 (total reduction
in travel time) satisfies the three required properties:

1. Normalized: For an empty sequence A = ∅, r(A) = 0.

Proof. With no robots in the sequence, l(P k) = l(P̃ k) for all k ∈ {1, . . . , K}. There-
fore, the travel time reduced by the planning process (and the total reward) is
zero.
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2. Monotone non-decreasing: For a sequence B derived from the base set M and A
a subsequence of B, i.e., A ⊆ B, r(A) ≤ r(B).

Proof. Since the use of operator assistance is optional and utilized only when it leads
to a faster path, any path planned with assistance P k will be as fast as, or faster
than, the path planned without any assistance P̃ k for any robot k in the sequence.
In other words, we have l(P̃ k) ≥ l(P k).

Now, consider the sequence B derived from the base set M , which includes the
subsequence A. Any path P k for robots in A is also a valid path for B since A ⊆ B.
This implies that expanding the sequence from A to B cannot decrease the reward
value from r(A), thus confirming r(A) ≤ r(B).

3. Submodular: For sequences A and B such that A ⊆ B, and x ∈M \ B,

r(A ∥ {x})− r(A) ≥ r(B ∥ {x})− r(B)

Proof. Let µA denote the operator availability after the execution paths of all robots
in sequence A are planned and the operator allocation is scheduled. Also, let us
denote µ1 ⊆ µ2 if µ1(t) = 1 ⇒ µ2(t) = 1 for all times t. This means that operator
assistance under µ2 is at least as available as under µ1. Since A ⊆ B, we have
µB ⊆ µA.

Moreover, let us define the length of path planned for robot x under operator avail-
ability µ as l(P x|µ). As discussed earlier, planning a robot’s path can optionally
use operator assistance. Therefore, after a robot’s plan has been created, operator
availability can only decrease. Furthermore, higher operator availability results in
equal or shorter path lengths for a robot, i.e., if µ1 ⊆ µ2, then l(P

x|µ1) ≥ l(P x|µ2).

Now, consider the reward function for sequences A ∥ {x} and B ∥ {x}:

r(A ∥ {x})− r(A) =
∑

k∈A∥{x}

(
l(P̃ k)− l(P k)

)
−
∑
k∈A

(
l(P̃ k)− l(P k)

)
= l(P̃ x)− l(P x|µA). (4.3)
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Similarly,

r(B ∥ {x})− r(B) =
∑

k∈B∥{x}

(
l(P̃ k)− l(P k)

)
−
∑
k∈B

(
l(P̃ k)− l(P k)

)
= l(P̃ x)− l(P x|µB). (4.4)

Since µB ⊆ µA, we have l(P x|µB) ≥ l(P x|µA). Also, recall that l(P̃ x) is the path
length without using any operator assistance and is therefore constant in both cases.
This implies that r(A ∥ {x})− r(A) ≥ r(B ∥ {x})− r(B).

These three properties imply that, for the above reward function, the problem is submod-
ular. Similarly, we can demonstrate that the reward given in equation 4.2 also satisfies the
above three properties.

4.7.2.1 Greedy Approach to Sequencing

Having established the submodularity of the reward functions, we can now devise a greedy
algorithm for efficiently prioritizing service requests when they arrive in batches. The
essence of the greedy approach lies in adding one robot at a time to the sequence. At each
step, we select the robot that offers the maximum reward increase, representing the largest
reduction in travel time (or makespan), when added to the current sequence of robots.
After incorporating the chosen robot, we update the operator availability accordingly and
proceed to add the next robot to the sequence. This iterative process continues until all
robots are included in the sequence, resulting in a prioritized batch of service requests. The
advantage of the greedy approach is its computational efficiency while still providing good
performance due to the monotone submodularity property. Pseudo-code of the greedy
prioritization is given in Alg. 4.7.
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Algorithm 4.7 Greedy Prioritization

1: Input: Batch of service requests M := {1, . . . , K}, start and goal locations sk, gk

Reward function r : 2M → R≥0, graph G, operator availability µ, edge durations τ ,

waiting limits w

2: A ← ∅ // Initialize empty sequence

3: for i = {1, . . . , K} do
4: k∗ ← argmaxk∈M\A r(A ∥ {k})− r(A)
5: P k ← Budget-A∗(G, τ, µA, w, s

k∗ , gk
∗
)

6: A ← A ∥ {k∗}
7: Output: Paths {P 1, . . . PK}

Figure 4.10 illustrates a comparative analysis between the greedy and optimal ap-
proaches for prioritizing service requests, considering varying numbers of robots. The
figure shows the ratio of the reward earned by the greedy prioritization (total reduction in
travel time, as defined in equation 4.1) to the reward earned by the optimal approach. The
optimal approach involves computing the total reward for each possible robot sequence
and selecting the one with the maximum reward. The robot path planning, under a given
operator availability, is accomplished using the Budget-A∗ algorithm. From the figure, it
is evident that the greedy approach performs remarkably well, consistently yielding above
80% of the optimal reward across different numbers of robots. The greedy approach’s
performance slightly decreases as the number of robots increases, but it remains highly
competitive with the optimal method. The advantage of the greedy approach lies in its
significantly faster computation time, being approximately two orders of magnitude faster
than computing the optimal sequence. This substantial reduction in computation time
makes the greedy prioritization an attractive choice in our system.

Figure 4.11 show the relative reward earned by the greedy prioritization for reward
defined in equation 4.2 (reduction in system makespan). The plots show similar results to
the previous case, and the greedy prioritization performs within 80% of the optimal while
being significantly faster.
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Figure 4.10: Left: Average reward earned (reduction in total travel time - equation 4.1) by the
greedy prioritization relative to the optimal sequence for varying graph size and number of robots
in the batch. Right: Computation time comparison of the greedy prioritization approach to the
optimal one for different number of robots.
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Figure 4.11: Left: Average reward earned (reduction in makespan - equation 4.2) by the greedy
prioritization relative to the optimal sequence for varying graph size and number of robots in the
batch. Right: Computation time comparison of the greedy prioritization approach to the optimal
one for different number of robots.
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4.8 Chapter Summary

In this chapter, we introduced Budget-A∗, a new algorithm to address the problem of
collaborative robot planning with bounded waiting constraints and intermittent human
availability. Our approach computes the optimal execution path, which specifies which
path should the robot take, how much to wait at each location and when to use human
assistance. Our simulations on a city road network demonstrate that Budget-A∗ outper-
forms existing optimal methods, in terms of both computation time and number of nodes
explored. Furthermore, we note that the greedy method performs well for the majority of
test cases, which could potentially be utilized to further improve efficiency of the proposed
algorithm.

While this chapter lays the groundwork for developing robot planning solutions for
supervised robot fleets, and there are several avenues for enhancement and adaptation to
different scenarios. Firstly, the Budget-A∗ algorithm can be extended to accommodate
additional constraints and complexities that may arise in real-world applications. For
instance, in some scenarios, it is of importance to limit the human assistance provided to a
robot. Investigating how to incorporate such constraints into the planning framework can
lead to more versatile solutions. To make the approach scalable to even larger networks,
there is room for optimizing the algorithm by exploring better heuristics and pruning
techniques. While extending the planning for multiple robots, it may be interesting to
explore and study other multi-robot reward functions.
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Chapter 5

Operator Allocation in Robot Fleets

TL;DR: In this chapter, we define the operator allocation problem and explore the concepts
of indexability and the Whittle Index. We discuss the application of an index policy for
efficient operator allocation in robot fleets and validate its efficacy via extensive simulations.

In Chapter 2, we discussed how a robot fleet in remote supervision setting is a system
where human supervisors monitor and interact with multiple robots using a group interface
node. Such group nodes enable human supervisors to provide assistance to individual
robots, either in event of a fault [37,129] or to further increase fleet performance in various
industrial and social settings [38,46,193]. However, identifying which robot to assist in an
uncertain environment is a challenging task for human operators [38,194]. Moreover, as the
number of robots increases, it becomes challenging for the operators to maintain awareness
of every robot, which cripples system’s performance [155,156]. Therefore, human operators
can benefit from having a group node that also acts as a decision support system (DSS)
that advises which robots require attention and when [38,195].

In this chapter, we present such a DSS for a multi-robot multi-human system comprising
a fleet of semi-autonomous robots with multiple human operators available for assistance if
and when required. Figure 5.1 presents an overview of the problem setup, showingK robots
navigating in a city block-like environment, moving from start to goal locations. While
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navigating, a robot passes through a series of waypoints, each characterized by a different
probability of success in progressing to the next waypoint. There is also a possibility that
the robot may fail at a task and get stuck in a fault (error) state from which assistance
from a human operator is required to continue. There are M identical human operators
available (M ≤ K), each of whom can assist at most one robot at a time. While being
assisted by an operator, robots have different probabilities of success and failure, and to
get out of a fault state.

It is possible to solve the above problem by modelling it as a Markov Decision Process
(MDP) [196]. However, such formulations suffer from the curse of dimensionality, making
conventional MDP-based solution techniques scale poorly with problem size [197]. More-
over, the policy needs to be re-computed every time a robot or an operator enters or leaves
the system. To tackle the scalability issue, researchers have proposed solutions based on
simple myopic policies, sampling-based planner or an approximation algorithm [30,38,198].
However, these solutions either do not apply to stochastic settings, or they do not scale
well with increasing number of robots and/or operators.

In this chapter, we show how an index-based policy can provide a scalable and better
performing solution than the existing approaches for the given multi-robot multi-operator
allocation problem with stochastic transitions. Specifically, our work makes the following
contributions:

1) We show that the operator allocation problem with multiple independent robots can
be formulated as an instance of the Restless Multi-Armed Bandit (RMAB) problem. We
leverage this formulation to decompose the problem into several single-robot problems and
computing the Whittle index heuristic (see Fig. 5.1). The resulting policy scales linearly
with the number of robots and is independent of the number of operators.

2) We derive simple conditions to verify indexability of the model. These conditions
can be checked independently for each state of each robot, thus providing a method that
scales linearly with the size of the problem. This method can be applied to systems with
any number of states and does not require the optimal policy to be of a threshold type.

3) We then implement our approach in two practical scenarios and present numerical
experiments. The results show that the proposed method provides near-optimal solutions
and outperforms existing efficient solution approaches, namely the reactive policy, 1- and
2-step myopic policies, and the benefit-maximizing policy.
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Figure 5.1: Overview of the multi-robot assistance problem for robots navigating in an environ-
ment. A number of mobile robots are tasked to navigate through a series of waypoints. Operators
are allocated to the robots when required. This is done by decomposing the complete K-robot
problem into K single robot problems and computing the Whittle index heuristic. Given the cur-
rent state of the system, this heuristic can be used to efficiently compute the operator allocation.
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5.1 Related Work

The problem of allocating operators in a multi-robot team bears similarities with the
disciplines of multi-robot supervision, task scheduling and queuing theory. In this section,
we briefly review the related research, followed by an introduction of Restless-Multi Armed
Bandits.

In the literature, several studies discuss the problem of enabling human operators to
assist multiple robots such as a team of navigating robots, a fleet of multiple UAVs, or a
team performing search and rescue operations [191,199,200]. To understand and improve
human supervision, researchers have used frameworks such as sliding autonomy to incor-
porate various human-robot team capabilities (like coordination and situational aware-
ness) [201, 202]. Some studies also present interaction interfaces to facilitate and improve
such supervision [203,204].

The most closely related work to our problem is presented in [38], where the authors
discuss single-operator multi-robot supervision systems. An advising agent guides the op-
erator on which robot they should assist. The problem is solved using an l-step look-ahead
(myopic) approach, which provides an efficient and practical solution, but suffers from scal-
ability issues with increasing number of operators and the look-ahead steps. Researchers
have also discussed deterministic versions of the problem, where exact outcomes of robots’
actions and times for fault occurrences are known, and the allocation policy is determined
using a sampling-based planner [198]. In [30], the authors present an approximation algo-
rithm for a similar scheduling problem. These approaches however are not applicable in a
stochastic setting.

The problem of assisting a number of independent robots, has also been studied under
a learning framework. The approach presented in [37] learns the decision-making model
of human operator from recorded data and tries to replicate that behaviour, optimizing
based on the operator’s internal utility function. In contrast, the problem presented in this
chapter is designed to optimize a global performance metric assuming the knowledge of
success and failure rates of robots with and without an operator allocated to them. Such
knowledge can be estimated using recorded data similar to the work presented in [38]. For
the scope of this chapter, we will assume this knowledge takes the form of known transition
probabilities.

In the queuing discipline, several studies have investigated the effects of different queu-
ing techniques [135] or threshold-based strategies [205] to prioritize operator’s attention to
the robots. However, the model that we study is different from a queuing model as it is
possible for the robots to complete their tasks without the help of operators, and for the
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operators to be allocated to robots not stuck in a fault state.

The multi-target–multi-agent problems form another class of problems similar to the
operator allocation problem. These problems deal with allocation of multiple agents to a
number of targets aiming to detect or follow the targets under certain constraints [206,207].
However, our problem setup is different because the behaviour of the targets (robots)
changes with the allocation of agents (operators) and it is not possible to allocate multiple
agents to a single target at once. Moreover, our problem presents a collaborative task,
where both the robots and operators are working to achieve a common goal.

Restless Multi-Armed Bandit

Restless Multi-Armed Bandits (RMAB), first introduced in [173], is a generalization of
Multi-Armed Bandits (MAB) [208] which has been previously used in problems like assist-
ing human partners [209] and distributing resources among human teammates [58]. RMAB
is a class of scheduling problems where limited resources have to be allocated among several
alternative choices. Each choice, referred to as an arm, is a discrete-time controlled Markov
process which evolves depending on the resource allocated to it. RMAB framework has
been applied to problems in stochastic scheduling, patrol planning, sensor management
and resource allocation in general [210].

Finding the optimal policy for RMAB suffers from the curse of dimensionality as the
state space grows exponentially with the number of arms. In general, obtaining the optimal
policy in an RMAB is PSPACE-hard [211]. However, the Whittle index policy offers a
simpler and scalable alternative to the optimal policy. Even though the Whittle index
policy does not guarantee an optimal solution, it minimizes expected cost for a relaxed
problem under time-averaged constraint [173]. This approach is shown to work quite well
for several scheduling and resource allocation problems [212–214]. A few studies have also
implemented index-based methods to solve a sensor scheduling problem [215] or to serve a
number of users transmitting a queue of data packets through a channel [213]. Therefore,
it is a reasonable approach to solve an RMAB given that the problem satisfies a technical
condition known as indexability. For more details, see Section 3.3. Unfortunately, it
is difficult to verify this condition in general and there is no universal framework that
applies to all problems. Existing methods proposed for verifying indexability have been
investigated for specific systems such as two state restless bandits [216, 217] or restless
bandits with optimal threshold-based policy [214,216,218].
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5.2 Multi-Robot Assistance Problem

Consider a decision support system (DSS), consisting of a team of M human operators
and a fleet of K semi-autonomous robots. Each robot k ∈ K := {1, . . . , K} is required
to complete a sequence of Nk tasks to reach its goal. We will use a fleet of robots deliv-
ering packages in a city as a running example but similar interpretations hold for other
applications mentioned in previous sections (e.g., robots reaching a sequence of configura-
tions [198]). In this case, the robot’s trajectory would correspond to a series of waypoints
that a robot needs to navigate to reach its destination (goal location). At each waypoint,
a robot can either operate autonomously or be teleoperated/assisted by one of the human
operators. We assume that all human operators are identical in the way they operate the
robots and that a human operator can assist at most one robot at a time.

Remark on notation: Throughout this chapter, we use calligraphic font to denote sets
and roman font to denote variables. Uppercase letters are used to represent random vari-
ables and the corresponding lowercase letters represent their realizations. Bold letters are
used for variables pertaining to multi-robot system while light letters represent correspond-
ing single-robot variables.

We now provide a mathematical model for different components of the system.

5.2.1 Model of the robots

It is assumed that when operating autonomously, each robot uses a pre-specified control
algorithm to complete its task. For the delivery robot example, this could be, for instance,
a SLAM-based local path planner that the robot uses for navigating between the waypoints.
We will not model the details of this control algorithm but simply assume that this control
is imperfect and occasionally causes the robot to enter a fault state while doing a task
(e.g., delivery robot getting stuck in a pothole or losing its localization). We model this
behaviour by assuming that while completing each task, the robot may be in one of the
two internal states: a normal state (denoted by s = 0) or a fault state (denoted by s = 1).
When a robot is being assisted, it may still be possible for it to enter into a fault state.

The operating state of robot k ∈ K at time t, denoted by xkt = (nk
t , s

k
t ), is tuple of its

current task and internal state. The state space for robot k is given by

X k :=
Nk⋃
n=1

{(n, 0), (n, 1)} ∪ {(G, 0)},
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where the terminal state (G, 0) indicates that all tasks have been completed. The state
space for all robots is denoted by XXX = X 1 × · · · × XK .

The state of a robot evolves differently depending on whether it is operating au-
tonomously (denoted by mode ak = 0) or assisted (denoted by ak = 1). Given robot
k ∈ K in state (n, s) ∈ X k operating in mode a ∈ {0, 1}, let pkans denote the probability
of successfully completing the current task at the current time step and let qkans denote the
probability of toggling the current internal state (i.e. going from normal to fault state and
vice-versa). A diagram describing these transitions is shown in Fig. 5.2. Note that the
terminal state (G, 0) is an absorbing state, so pkaG0 = 0 and qkaG0 = 0.

Figure 5.2: State-transition diagram for robot k working on task n, where in (n, 0) the robot is in
the normal state s = 0, and in (n, 1) the robot is in the fault state s = 1. Transitions can occur
between (n, 0), (n, 1) and (n+ 1, 0), and the probabilities change with operating mode a.

There is a per-step cost Ck : X k×{0, 1} → R≥0, where C
k((nk, sk), ak) denotes the cost

of operating robot k ∈ K in mode ak when the robot is in state (nk, sk). Note that the
per-step cost is zero in the terminal state, i.e, Ck((G, 0), a) = 0.

5.2.2 Model of the decision support system (DSS)

There is a decision support system that helps to allocate operators to the robots. At
each time the decision support system observes the operating state X t := (X1

k , . . . , X
K
t )
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of all robots and picks at most M robots to assist. We capture this by the allocation
At = (A1

t , . . . , A
K
t ) ∈ A, where

A =

{
a := (a1, . . . , aK) ∈ {0, 1}K :

K∑
k=1

ak ≤M

}
. (5.1)

The allocation is selected according to a time-homogeneous Markov policy π : XXX → A.
The expected total cost incurred by any policy π is given by

J(π) = Eπ

[ ∞∑
t=0

γt
K∑
k=1

Ck(Xk
t , A

k
t )

∣∣∣∣X0 = x0

]
, (5.2)

where γ ∈ (0, 1) is the discount factor and x0 = (x10, . . . , x
K
0 ) is the initial state with

xk0 = (1, 0) for every k ∈ K.

5.2.3 Problem objective

We impose the following assumptions on the model:

(A1) Given an allocation a = (a1, . . . , aK) by the DSS, the operating states of the robots
evolve independently of each other.

(A2) For every robot k ∈ K, the probability of getting out the faulty internal state when
assisted is strictly greater than 0, i.e., pk1n1 + qk1n1 > 0.

(A3) Under autonomous operation, a robot stays in the fault state, i.e., pk0n1 = qk0n1 = 0.

The design objective is to solve the following optimization problem:

Problem 5.1. Given the set K of robots, the system dynamics and the per-step costs,
the number M of human operators, and the discount factor γ ∈ (0, 1), choose a policy
π : XXX → A to minimize the total discounted cost J(π) given by (5.2).

Optimal solution for Problem 5.1 can be found by modelling it as a Markov decision
process and solving using dynamic programming [196]. However, the sizes of state and
action spaces of the resulting model grows exponential with the number of robots and
operators. Thus, solving Problem 5.1 using dynamic programming becomes intractable for
larger systems. To address this, we model Problem 5.1 as a restless multi-armed bandit
(RMAB) problem and use the notion of indexability to find an efficient and scalable policy.
We start by providing an overview of RMAB in the next section.
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5.3 Indexability of the assistance problem

Problem 5.1 can be formulated as an instance of RMAB, where each robot corresponds
to an arm. Under such a formulation, the state Z̃k

t of arm k corresponds to operating
state xkt = (nk

t , s
k
t ) of robot k. The transition function T̃ k corresponds to the robot state

evolution shown in Fig. 5.2 and the cost function C̃k corresponds to the associated per-step
cost Ck. In addition, allocating an operator to a robot corresponds to choosing the active
action for that arm while autonomous operation corresponds to choosing the passive action.
This motivates using the Whittle index policy to solve Problem 5.1. However, before we
can implement this approach, we must check for indexability of the problem. As discussed
earlier, there is no universal framework to verify indexability of a problem. Moreover,
the optimal policy for the given problem does not show any threshold-based behaviour.
Therefore, we determine sufficient conditions for indexability from first principles by using
properties of the value function of each individual arm.

Since indexability has to be checked for each arm separately, for this analysis, we drop
the superscript k from all variables.

Let Vλ : X → R be the unique fixed point of the following equation

Vλ(x) = min
a∈{0,1}

Qλ(x, a),

where

Qλ(x, a) = C(x, a) + λa+ γ
∑
x′∈X

T (x′|x, a)Vλ(x′), (5.3)

represents the Q-value of taking action a in state x. Here the transition function T (x′|x, a)
denotes the probability of transition from state x to state x′ under action a and is repre-
sented by Fig. 5.2. Let πλ : X → {0, 1} be the corresponding optimal policy

πλ(x) = arg min
a∈{0,1}

Qλ(x, a).

To ensure uniqueness of the argmin, we follow the convention that when Qλ(x, 0) =
Qλ(x, 1), the passive action a = 0 is chosen. Let P(λ) be the passive set given penalty λ
and w(x) be the Whittle index of state x for the problem of operator allocation in a
single-robot system. Furthermore, define the benefit function as

Bλ(x) = Qλ(x, 1)−Qλ(x, 0). (5.4)
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Then, a sufficient condition for indexability is as follows:

Lemma 3. A sufficient condition for Problem 5.1 to be indexable is that the benefit function
Bλ(x) for each robot is monotonically increasing in λ for all states x ∈ X .

Proof. The result follows from the observation that using (5.4) and Def. 3.11, we can
re-write the passive set as

P(λ) = {x ∈ X : Bλ(x) ≥ 0} . (5.5)

Thus, monotonicity of the benefit function Bλ(x) implies that the condition for index-
ability given in Def. 3.12 is satisfied.

We verify the monotonicity of Bλ(x) by finding bounds on the value function and
establish the following:

Theorem 2. Let rans ≜ 1 − pans − qans denote the probability of repeating a task n under
mode a with internal state s. Define α1(n) and β0(n) as follows:

α1(n) = 1 +
γq1n0

1− γ r1n1
+

γq0n0

(
γ r1n0 +

γ2q1n0q
1
n1

1− γ r1n1
− 1

)
1− γ r1n1 − γ r0n0 + γ2r1n1r

0
n0 − γ2q0n0q1n1

,

and

β0(n) =
γ(p1n0 − p0n0) + γ2(p0n0r

1
n0 − p1n0r0n0)

1− γ r0n0
.

Then, the single-robot problem is indexable if for all n ∈ {1, 2, . . . , N}:

α1(n) ≥ 0 and
β0(n)

1− γ
≥ −1. (5.6)

Proof. See Section 5.7.

The multi-robot problem is indexable if the conditions given in Theorem 2 hold true
for all robots. In the next section, we present specific instances of the general model de-
scribed in Section 5.2 which are indexable and discuss their relevance in practical assistance
problems for (semi)autonomous delivery robots.
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5.4 Special Cases: Robot transitions in the city

This section presents two specific classes of transition functions which represent two types
of faults commonly occurring in systems with remote navigating robots.

5.4.1 Transition Type-1 : Faults with continuation

Consider the following transition behaviour along a robot’s waypoints. At each time step,
the robot moves to its next waypoint with a probability representing, for example, the
crowd in the area. There is also a probability of getting into a fault state such as en-
countering an unidentifiable obstacle. A human operator can assist the robot to its next
waypoint both from a normal or fault state. Such transitions represent faults where the
robot is functioning properly but is unsure about how to proceed due to uncertainty in its
surroundings. Thus the probability of success when being assisted is the same regardless
of whether the robot is in its normal state or stopped in the fault state, i.e., p1n0 = p1n1 and
q1n0 = q1n1 = 0. The corresponding transition dynamics are shown in Figure 5.3. Note that
in this case r1n0 = r1n1 = 1− p1n0.

Figure 5.3: State-transition probabilities under the autonomous operation and teleoperation for
type-1 transitions.

In this case, the coefficients α1(n) and β0(n) can be simplified to the following expres-
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sions:

α1(n) = 1− γq0n0
1− γr0n0

,

β0(n) =
γ(1− γ)(r0n0 − r1n0) + γq0n0(1− γ r1n0)

1− γ r0n0
. (5.7)

Note that

α1(n) =
1− γ + γp0n0
1− γr0n0

≥ 0,

β0(n)

1− γ
+ 1 ≥ γ(r0n0 − r1n1)

1− γr0n0
+ 1 =

1− γr1n1
1− γr0n0

≥ 0.

Thus, α1(n) and β0(n) satisfy the sufficient condition of Theorem 2 for all allowed values
of transition probabilities and the discount factor γ. Therefore, any robot following the
Type-1 transitions is indexable.

5.4.2 Transition Type-2 : Faults with reset

Consider another type of transition where the robot can get into a fault state and needs
error fixing while staying at its next waypoint. This includes scenarios such as losing
localization or getting stuck in a minor obstacle. The human operator can try to assist
the robot out of that situation by fixing the fault, resetting it back to its current waypoint
(assuming the system is equipped with means to do so). Such transitions will mean that
the probabilities q1n0 = p1n1 = 0 and the corresponding transition dynamics are shown in
Fig. 5.4:

Substituting the values of transition probabilities from Fig. 5.4 to the expressions of
α1(n) and β0(n), the coefficients can be simplified to the following:

α1(n) = 1− γq0n0(1− γr1n0)
(1− γr0n0)(1− γ(1− q1n1))− γ2q0n0q1n1

,

β0(n) =
γ(1− γ)(r0n0 − r1n0) + γq0n0(1− γ r1n0)

1− γ r0n0
. (5.8)
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Figure 5.4: State-transition probabilities under the autonomous and teleoperate/assist actions
for Type-2 transition dynamics.

Note that β0(n) here is the same as (5.7) and, therefore, satisfies (5.6). For α1(n) to
satisfy (5.6), the condition α1(n) ≥ 0 results in the following condition on q1n1:

q1n1 ≥ 1− 1

γ
+

γq0n0p
1
n0

1− γr0n0 − γq0n0
. (5.9)

As q1n1 ≤ 1, (5.9) also yields the following condition on q0n0:

q0n0 ≤
1− γr0n0

γ(1 + γp1n0)
. (5.10)

Therefore, any robot state following the Type-2 transitions will satisfy the condition of
indexability in Theorem 3 if (5.9) and (5.10) are satisfied, i.e., the probability q0n0 that the
robot transitions from a normal state to fault state during autonomous operation is not
too high and the probability q1n1 that the operator brings the robot from a fault state to a
normal state is not too small.

As an example, consider a robot following Type-2 transitions with p0n0 = q0n0 = p1n0 = 0.3
and γ = 0.95. In this setting, any q0n0 ∈ [0, 1] satisfies (5.10) and any q1n1 ∈ [0.1462, 1]
satisfies (5.9). Thus, the model is indexable if there is at least a 14.62% chance that
teleoperation successfully resets the robot from the fault state to a normal state.
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5.5 Computation of Whittle Index

As discussed in Section 5.1, once the indexability of the problem instance has been verified,
we can compute Whittle indices for all robots and determine the Whittle index policy.

General approaches of computing Whittle indices are either based on adaptive greedy
algorithm [214, 219] or binary search [218]. In this section, we briefly provide details on
adaptive greedy algorithm and describe how the Whittle index policy works. Readers are
encouraged to refer to [214] for a detailed explanation and validation of the algorithm. The
algorithm is presented in Alg. 5.1 for computing Whittle indices for a single robot.

Algorithm 5.1 Adaptive Greedy Algorithm for Whittle Index Computation

1: Input: Robot (X ,A, T, C, γ, x0).
2: Initialize P = ∅.
3: while P ̸= X do

4: Compute µ∗
y, ∀y ∈ X\P using Eq. (5.11).

5: λ∗ ← miny∈X\P µ∗
y

6: Y ← argminy∈X\P µ∗
y

7: w(y)← λ∗, ∀y ∈ Y
8: P ← P ∪ Y

The algorithm operates as follows: For any subset Z ⊆ X , define the policy vector1

π(Z) : X → {0, 1} as

π(Z)(x) =

{
0, if x ∈ Z
1, if x ∈ X\Z.

Also define, Cπ =
[
C(x, π(x))

]
x∈X , the cost vector for all states under a policy π, and

Tπ =
[
T (x′|x, π(x))

]
x,x′∈X , the transition matrix under policy π.

Then, in each iteration of the while loop, compute µ∗
y as follows:

µy(x) = −
Dπ(P)(x)−Dπ(P∪{y})(x)

Nπ(P)(x)−Nπ(P∪{y})(x)
, ∀x ∈ X

µ∗
y = min

x∈Λy

µy(x), (5.11)

1In the following expressions π is used as a vector of size |X |, constructed as a mapping from each state
to corresponding action a ∈ {0, 1}.
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where

Dπ(x) =
[
(I − γTπ)−1Cπ

]
(x) ,

Nπ(x) =
[
(I − γTπ)−1π

]
(x) ,

Λy = {s ∈ X : Nπ(P)(x)−Nπ(P∪{y})(x) ̸= 0}.

The minimum value of µ∗
y calculated in Line 5 in Alg. 5.1 corresponds to the Whittle indices

of the minimizing states (Line 6). These states are then taken out of consideration in the
next iteration of the while loop by including them in the passive set P . When the Alg. 5.1
exits the while loop, the Whittle indices for all states of that robot are calculated. This
procedure is then repeated for all the robots in the system.

Once the Whittle indices for all states of all robots are obtained, the Whittle index
policy can be implemented as given in Alg. 5.2. In Line 2 of the algorithm, the function
arg top M({wk(xk)}) returns indices of top M positive elements in a set, where ties are
broken randomly. As determined in [214], the computational complexity of this method
is O(K|X |3). In contrast, the computational complexity of finding the optimal policy for
Problem 5.1 is O(

(
K
M

)
|X |2K) using value iteration, where |X | is the size of state space of

individual robot.

Algorithm 5.2 Whittle Index Policy πI

1: Input: Set of Whittle indices wk(xk) for all k ∈ {1, . . . , K} and xk ∈ Sk, No. of

Operators M

2: M← arg top M({wk(xk)})
3: ak ← 0 for all k /∈M
4: ak ← 1 for all k ∈M // Allocate operators

5: return (a1, . . . , aK)

5.6 Simulations and Results

In this section, we present performance results for a simulated multi-robot assistance prob-
lem under the following policies (described later): 1) Optimal policy, 2) Index policy,
3) Benefit maximizing Policy, 4) Myopic Policy, and 5) Reactive Policy. The problem
and the solution frameworks for all policies were implemented using POMDPs.jl library in
Julia [220].
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Figure 5.5: An instance of multi-robot assistance problem for robots navigating in a city block-
like environment. Transition zones are marked by different color shadings, representing type-1
and type-2 transitions, as described in Section 5.4. Three robots are shown navigating to their
corresponding goal locations, via a sequence of waypoints shown as black circles. These waypoints
may lie in different transition zones resulting in varied performance for the robots.

5.6.1 Simulation Setup

For the simulations, a city map is generated as shown in Fig. 5.5 where the map is randomly
divided into different zones corresponding to one of the two transition types presented in
Section 5.4.

The exact values of transition probabilities at different locations in the map are sampled
randomly from a uniform distribution, according to Table 5.1. The bounds on transition
probabilities qk1n1 and qk0n0 for transition type-2 are determined by (5.9) and (5.10) respec-
tively.
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Table 5.1: Probabilities values used for simulations for the two types of transitions.

Probability Type-1 Type-2

rk0n0 [0.2, 0.5] [0.2, 0.5]

qk0n0 [0.2, 0.5] [0.1,min{qk0n0, 1− rk0n0}]
rk1n0 [0.1, 0.4] [0.1, 0.4]

qk1n0 0.0 0.0

rk1n1 rk1n0 1− qk1n1
qk1n1 0.0 [max{qk1n1, 0.1}, 0.9]

For the teleoperation problem, we use the following cost structure:

Ck ((n, s), a) =



0 if n = G

ρkn if a = 0, s = 0

ϕk
n if a = 0, s = 1

ρkn + ρkT if a = 1, s = 0

ϕk
n + ρT if a = 1, s = 1,

(5.12)

with ρkn, ϕ
k
n, ρ

k
T ∈ R≥0 for any n ∈ {1, . . . , Nk}. This cost function captures the time that

a robot takes to reach its goal, i.e., zero cost on reaching goal, non-negative costs for
intermediate states, and an additional cost while being assisted.

Values of the different costs and the discount factor used are specified in Table 5.2.

Table 5.2: Parameter values used in the simulated operator allocation problem.

Parameter ρT ρ ϕ γ

Value 0.75 2.0 4.0 0.99

Separate tests were performed to test the validity, performance and scalability of the
Index policy. At the beginning of each simulation, a number of robots are placed on
the map (ranging from 1 to 50) with randomly generated start and goal locations, and 7
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waypoints uniformly placed between the two. In practice, these waypoints are generated
by a separate robot path planner for each individual robot, and are considered as an input
for the operator allocation problem.

5.6.2 Baseline Policies

We consider the following baseline policies to assess the performance of the Index policy.

Optimal policy

The Optimal policy π∗ : XXX → A, as defined by (5.2), is found by encoding the complete
problem with all robots as an MDP and solving it using the Sparse Value Iteration Solver
from the POMDP.jl library.

Reactive policy

The reactive policy allocates an operator to any robot stuck in a fault state. If there are
more such robots than operators, a random subset of those robots is selected.

Myopic policy

Myopic/Greedy Policies are commonly used to obtain fast (but sub-optimal) solutions to
intractable problems. For a comparison, we implement an l-step myopic policy presented
in [38] for l ∈ {1, 2}. Define V 0(xt+1) as the expected cost incurred by the system from
current time step to infinity under passive actions. The l-step myopic policy πG-l : XXX → A
is then defined as

πG-l(xt) = argmin
a∈A

g(xt,a, l), (5.13)

where the l-step look-ahead cost g(xt,a, l) is given by

g(xt,a, l) =

C (xt,a) +
∑
xt+1

γ T (xt+1|xt,a) g(xt,a, l − 1), if l ̸= 0,

V 0(xt+1), otherwise,
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where

C (x,a) =
K∑
k=1

Ck
(
xk, ak

)
,

is the cost incurred in the current time step.

Benefit maximizing policy

For comparison, we also propose a heuristic policy which we call benefit maximizing policy
that tries to exploit the independence of the robots’ transitions. This policy is inspired by
the advantage function used in reinforcement learning (for example, see [221]). The policy
considers the benefit or advantage of taking the active action over the passive action for
each robot and picks the robots with highest benefit at each time step, i.e.,

πB(xt) = argmin
a∈A

K∑
k=1

ak B0(x
k
t ), (5.14)

where B0(x) corresponds to Bλ(s) defined in (5.4) with λ = 0.

5.6.3 Comparison with the Optimal policy

First, the Index policy is compared against the Optimal policy to validate its applicability
for our problem. Due to its poor scalability, the Optimal policy cannot be computed for
larger problem instances, therefore this test is limited to smaller problem size (up to 4
robots and 2 operators). The relative performance (ratio of the cost incurred under Index
policy to that under Optimal policy) is shown in Fig. 5.6. For comparison, 100 problem
instances were tested under both policies and were simulated through Monte Carlo rollouts.
Each problem instance is run until all robots reach their respective goal locations. This is
repeated for 106 iterations and average cost is recorded.

It is observed that the Index policy performs quite close to the optimal policy for all
test cases. As the ratio of number of robots to number of operators increases, the Index
policy starts to degrade in comparison to the optimal. However, the relative cost for most
cases still remains within 5% of the optimal.
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Figure 5.6: Relative performance of Index policy compared to the optimal policy. The plots
show distribution of 100 indexable problem instances based on their performance under the two
policies. Relative performance is calculated as the ratio of the average cost incurred under Index
policy to that under Optimal policy.

5.6.4 Comparison with other baseline policies

Next, we compare the performance (measured as average cost incurred per robot before
reaching its goal) of the Index policy with the three baseline policies on larger problem
instances. For the comparison, a set of 100 problem instances is created, each with a
set of 7 waypoints with randomly sampled transition probabilities according to Table 5.1.
Each instance of the problem is then simulated separately under the different policies using
Monte Carlo rollouts until all robots reach their goal states, repeated for 500 iterations.
Each simulation iteration (rollout) is timed out at 10 seconds for each policy. If an iteration
takes longer than this time, the simulations are interrupted and the policy’s result for that
test condition is not reported.

Figure 5.7 shows performance comparison of the four policies. The Index policy per-
forms best out of the four policies, followed by the benefit maximizing policy (πB) and the
myopic policy (πG). The Reactive policy performed the worst as expected. As a side note,
the average cost incurred per robot under any policy is strongly correlated with the ratio
of number of robots to the number of available operators. This observation supports the
intuition that as human operators are required to distribute their assistance among more
robots, their effectiveness decreases.
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Figure 5.7: Performance comparison of the four policies for different number of operators available
for allocation. Error bars in the plots show one standard-deviation above and below the average.
Note that in larger problem instances, the simulations for myopic policies timed out and could
not be completed in the specified time limit (10 sec per rollout).

5.6.5 Scalability

Table 5.3 shows the time that each policy takes to compute operator the allocation under
different problem sizes. For these simulations, each robot is set to have 7 waypoints. As
observed from the table, the computation times of the two Myopic policies scale expo-
nentially with both the number of robots and the number of operators, with the time for
2-step Myopic policy growing at a much higher rate.

The computation times for the index and benefit maximizing policies scale linearly with
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the number of robots and are independent of the number of operators. Also, note that the
Whittle index computation for one robot is independent from the rest. Therefore robots
can be added/removed without re-computation of already computed indices. Furthermore,
if the number of operators changes to M > 1, the policy simply allocates operators to the
robots with the M highest Whittle indices. As a result, the policy is efficiently scalable
with the number of robots and operators. For reference, the simulations were run on a
Desktop PC with a 4 core, 4.20 GHz processor and 32 GB of RAM.

Table 5.3: Computation times of different policies (seconds).

Operators/
Robots

Index Policy 1-step Myopic 2-step Myopic Benefit Maxi-
mizing

2/6 1.2e−6 3.8e−3 2.4e−1 3.4e−6
3/6 1.2e−6 6.2e−3 4.8e−1 3.4e−6
4/6 1.2e−6 8.1e−3 6.6e−1 3.4e−6
1/9 1.7e−6 9.6e−2 4.8e+0 4.9e−6
2/9 1.7e−6 2.6e−1 2.2e+1 4.9e−6
3/9 1.7e−6 6.4e−1 6.2e+1 4.9e−6

5.7 Proofs and Preliminary Results

For any fixed value of λ, the value function Vλ(x) can also be written as

Vλ(x) = min
π∈Π

E
[ T∑

t=0

[
C(Xt, At) + λAt

]
|X0 = x

]
,

where Π denotes the set of all Markov policies from X to {0, 1}. Since the state space X is
finite, so is Π. Thus, Vλ(x) is the minimum of a finite number of functions, each of which
is linear in λ. Therefore, Vλ(x) is continuous and piecewise linear, with a finite number of
corner points. This means Vλ(x), and therefore Qλ(x, a) and Bλ(x), are non differential
w.r.t. λ at a finite number of points. Therefore, Bλ(x) is monotonically increasing if
∂Bλ(x)/∂λ, wherever it exists, is non-negative. Let Λ∗(x) denote the finite set of values
where Bλ(x) is non-differentiable. Let Λ

∗ = ∪x∈XΛ∗(x), which is also finite.
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The main idea for the proof of Theorem 2 is to show that if (5.6) is satisfied then
∂Bλ(x)/∂λ is non-negative for λ /∈ Λ∗. Then, Lemma 3 implies the indexability of the
problem.

Now fix an n ∈ {1, . . . , N}. Define z = (n, 0), z′ = (n + 1, 0) and e = (n, 1). Then
using Eq. (5.3) and Fig. 5.2, we have

Qλ(z, a) = C(z, a) + λa+ γqan0Vλ(e) + γpan0Vλ(z
′) + γran0Vλ(z), (5.15)

Qλ(e, a) = C(e, a) + λa+ γqan1Vλ(z) + γpan1Vλ(z
′) + γran1Vλ(e). (5.16)

Then we have the following results:

Lemma 4. For all λ /∈ Λ∗,

0 ≤ ∂Vλ(x)

∂λ
≤ 1

1− γ
, ∀x ∈ X .

Proof. Under an optimal policy π∗, we have:

Vλ(x) = E
[ ∞∑

t=0

γtCλ(Xt, π
∗(Xt))

∣∣∣∣X0 = x

]
.

Therefore, we get

∂Vλ(x)

∂λ
=

∂

∂λ
E
[ ∞∑

t=0

γtCλ(Xt, π
∗(Xt))

∣∣∣∣X0 = x

]

= E
[ ∞∑

t=0

γt
∂

∂λ
Cλ(Xt, π

∗(Xt))

∣∣∣∣X0 = x

]
.

Since ∂
∂λ
Cλ(x, π

∗(x)) ∈ [0, 1] for all x ∈ X , we can write

0 ≤ ∂Vλ(x)

∂λ
≤

∞∑
t=0

γt =⇒ 0 ≤ ∂Vλ(x)

∂λ
≤ 1

1− γ
.
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Define

α0(n) = 1,

β0(n) =
γ(p1n0 − p0n0) + γ2(p0n0r

1
n0 − p1n0r0n0)

1− γ r0n0
,

α1(n) = 1 +
γq1n0

1− γ r1n1
+

γq0n0

(
γ r1n0 +

γ2q1n0q
1
n1

1− γ r1n1
− 1

)
1− γ r1n1 − γ r0n0 + γ2r1n1r

0
n0 − γ2q0n0q1n1

,

β1(n) = γp1n0 +
γ2q1n0p

1
n0

1− γr1n1
+

(γp0n0 − γ2p0n0r1n1 + γ2q0n0p
1
n0)

(
γr1n0 +

γ2q1n0q
1
n1

1− γr1n1
− 1

)
1− γr1n1 − γr0n0 + γ2r1n1r

0
n0 − γ2q0n0q1n1

.

Also define b00(n) = b10(n) = 1 and

b01(n) =
1− γr0n0
1− γr1n0

,

b11(n) =
1− γr1n1 − γr0n0 + γ2r1n1r

0
n0 − γ2q1n1q0n0

1− γr1n1 − γr1n0 + γ2r1n1r
1
n0 − γ2q1n1q1n0

.

Lemma 5. Let πλ(z) = i and πλ(e) = j, then for λ /∈ Λ∗,

∂Bλ(z)

∂λ
= bij(n)

[
αj(n) + βj(n)

∂Vλ(z
′)

∂λ

]
.

Proof. The result follows from considering the four cases (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
separately and simplifying

∂Bλ(z)

∂λ
=
∂Qλ(z, 1)

∂λ
− ∂Qλ(z, 0)

∂λ
. (5.17)

Example Case: (i, j) = (0, 1):
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Since πλ(z) = 0, we have Vλ(z) = Qλ(z, 0). Therefore using (5.15), we get

Qλ(z, 0) =
C(z, 0) + γq0n0Vλ(e) + γp0n0Vλ(z

′)

1− γr0n0
, (5.18)

Qλ(z, 1) = C(z, 1) + λ+ γq1n0Vλ(e) + γp1n0Vλ(z
′) + γr1n0Qλ(z, 0). (5.19)

Since πλ(e) = 1, we have Vλ(e) = Qλ(e, 1). From (5.16), we get

Vλ(e) =
C(e, 1) + λ+ γq1n1Vλ(z) + γp1n1Vλ(z

′)

1− γr1n1
. (5.20)

Differentiating w.r.t. λ, we get

∂Qλ(z, 0)

∂λ
=

1

1− γr0n0

(
γq0n0

∂Vλ(e)

∂λ
+ γp0n0

∂Vλ(z
′)

∂λ

)
,

∂Qλ(z, 1)

∂λ
= 1 + γq1n0

∂Vλ(e)

∂λ
+ γp1n0

∂Vλ(z
′)

∂λ
+ γr1n0

∂Qλ(z, 0)

∂λ
,

∂Vλ(e)

∂λ
=

1

1− γr1n1

(
1 + γq1n1

∂Qλ(z, 0)

∂λ
+ γp1n1

∂Vλ(z
′)

∂λ

)
. (5.21)

Therefore,
∂Qλ(z, 0)

∂λ
can be written as:

∂Qλ(z, 0)

∂λ
=

1

1− γr0n0

(
γq0n0

1− γr1n1

(
1 + γq1n1

∂Qλ(z, 0)

∂λ
+ γp1n1

∂Vλ(z
′)

∂λ

)
+ γp0n0

∂Vλ(z
′)

∂λ

)
,

=
γq0n0

(1− γr0n0)(1− γr1n1)

+
γ2q0n0q

1
n1

(1− γr0n0)(1− γr1n1)
∂Qλ(z, 0)

∂λ
+
γ2q0n0p

1
n1 + γp0n0(1− γr1n1)

(1− γr0n0)(1− γr1n1)
∂Vλ(z

′)

∂λ
,

∂Qλ(z, 0)

∂λ
=

1

(1− γr0n0)(1− γr1n1)

(
γq0n0 + γ2q0n0q

1
n1

∂Qλ(z, 0)

∂λ
+
(
γ2q0n0p

1
n1 + γp0n0(1− γr1n1)

)∂Vλ(z′)
∂λ

)
,

∂Qλ(z, 0)

∂λ
=

1

(1− γr0n0)(1− γr1n1)− γ2q0n0q1n1

(
γq0n0 +

(
γ2q0n0p

1
n1 + γp0n0(1− γr1n1)

)∂Vλ(z′)
∂λ

)
.

(5.22)
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Substituting the above equations in (5.17), we get

∂Bλ(z)

∂λ
=
∂Qλ(z, 1)

∂λ
− ∂Qλ(z, 0)

∂λ

= 1 + γq1n0
∂Vλ(e)

∂λ
+ γp1n0

∂Vλ(z
′)

∂λ
− (1− γr1n0)

∂Qλ(z, 0)

∂λ

= 1 +
(
γq1n0 −

1− γr1n0
1− γr0n0

γq0n0

)∂Vλ(e)
∂λ

+
(
γp1n0 −

1− γr1n0
1− γr0n0

γp0n0

)∂Vλ(z′)
∂λ

.

Substituting the value of ∂Vλ(e)
∂λ

using equations (5.21) and (5.22), we get

∂Bλ(z)

∂λ
= b01

(
α1(n) + β1(n)

∂Vλ(z
′)

∂λ

)
.

Results for the remaining cases: (i, j) ∈ {(0, 0), (1, 0), (1, 1)} can be obtained in a similar
way as above.

Lemma 6. For all λ /∈ Λ∗, ∂Bλ(e)/∂λ ≥ 0.

Proof. We consider two cases:

1) Case I: πλ(e) = 0:
From (5.16), we have

Qλ(e, 0) = Vλ(e) =
C(e, 0)

1− γ
,

which is independent of λ. Therefore, we get

∂Bλ(e)

∂λ
=
∂Qλ(e, 1)

∂λ
= 1 + γ q1n1

∂Vλ(z)

∂λ
+ γ p1n1

∂Vλ(z
′)

∂λ
.

From Lemma 4, we get that
∂Vλ(z)

∂λ
≥ 0 and

∂Vλ(z
′)

∂λ
≥ 0. This gives us ∂Bλ/∂λ ≥ 0.

2) Case II: πλ(e) = 1:
As a result, we have

Qλ(e, 0) = C(e, 0) + γ Vλ(e).
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Therefore, using (5.17), we get

∂Bλ(e)

∂λ
= (1− γ)∂Vλ(e)

∂λ
.

From Lemma 4, we get that ∂Bλ/∂λ ≥ 0.

5.7.1 Proof of Theorem 2

Lemma 6 shows that the Benefit function Bλ(x) is always monotonically increasing for all
fault states.

Since q1n1 ≤ 1− r1n1 and q0n0 ≤ 1− r0n0, we can write

γ2q1n1q
0
n0 ≤ (γ − γr1n1)(γ − γr0n0). (5.23)

Moreover, since γ ∈ (0, 1), we have

(γ − γr1n1)(γ − γr0n0) < (1− γr1n1)(1− γr0n0). (5.24)

From (5.23) and (5.24), we can write

1− γr1n1 − γr0n0 + γ2r1n1r
0
n0 − γ2q1n1q0n0 > 0.

Similarly,
1− γr1n1 − γr1n0 + γ2r1n1r

1
n0 − γ2q1n1q1n0 > 0.

This implies that b11 > 0.

Lemma 4 gives us bounds on the derivative of the value function w.r.t. λ. These bounds
are then used with results of Lemma 5 to show that the function Bλ(x) is monotonically
increasing for all x ∈ X if for all n ∈ {1, 2, . . . , N} and j ∈ {0, 1} 2:

αj(n) ≥ 0 and αj(n) + βj(n)
1

1− γ
≥ 0.

We observe that α0(n) = 1 ≥ 0. Also, α1(n) and β1(n) can be simplified as:

2To obtain this result, we make use of Lemma 4, which establishes bounds on the derivative of the
value function. Since transition probabilities at each state are independent, monotonicity of the Benefit
function Bλ is guaranteed if αj(n)+ βj(n)∂V (n+ 1)/∂λ is non-negative for both lower and upper bounds
of ∂V (n+ 1)/∂λ.
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α1(n) = 1 +
γq1n0

1− γ r1n1
+

γq0n0

(
γ r1n0 +

γ2q1n0q
1
n1

1− γ r1n1
− 1

)
1− γ r1n1 − γ r0n0 + γ2r1n1r

0
n0 − γ2q0n0q1n1

=
1− γ q0n0 + γ q1n0 − γ r0n0 − γ r1n1 − γ2 q0n0 q1n1 + γ2 q0n0 r

1
n0 − γ2 q1n0 r0n0 + γ2 r0n0 r

1
n1

1− γ r0n0 − γ r1n1 + γ2 r0n0 r
1
n1 − γ2 q0n0 q1n1

,

β1(n) = γp1n0 +
γ2q1n0p

1
n0

1− γr1n1
+

(γp0n0 − γ2p0n0r1n1 + γ2q0n0p
1
n0)

(
γr1n0 +

γ2q1n0q
1
n1

1− γr1n1
− 1

)
1− γr1n1 − γr0n0 + γ2r1n1r

0
n0 − γ2q0n0p1n1

=

γ (1− γ)

(
q0n0 − q1n0 + r0n0 − r1n0 + γ q0n0 q

1
n1 − γ q1n0 q1n1

− γ q0n0 r1n0 + γ q1n0 r
0
n0 − γ r0n0 r1n1 + γ r1n0 r

1
n1

)
1− γ r0n0 − γ r1n1 + γ2 r0n0 r

1
n1 − γ2 q0n0 q1n1

Therefore,

α1(n) +
β1(n)

1− γ
=

1− γr1n0 − γr1n1 + γ2r1n0r
1
n1 − γ2q1n0q1n1

1− γr0n0 − γr1n1 + γ2r0n0r
1
n1 − γ2q0n0q1n1

=
1

b11
.

Since, b11(n) > 0, we get α1(n) + β1(n)/(1− γ) > 0.

Therefore, the single-robot problem is indexable if:

α1(n) ≥ 0 and
β0(n)

1− γ
≥ −1, ∀n ∈ {1, . . . , N}.

5.8 Chapter Summary

In this chapter, we provide an analysis of operator allocation problem for a multi-robot
assistance task and demonstrate the effectiveness of Restless Bandit framework to obtain
a scalable policy. This policy is based on Whittle index heuristic and performs close to the
optimal and significantly better than other efficient solution approaches. We also provide
an analysis of indexability of such problems and give a simplified condition to quickly
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verify if a problem instance is indexable. These results can also be used to specify required
transition behavior in the form of bounds on transition probabilities.

There are, however, a few limitations of the proposed approach. When a problem in-
stance is not indexable, the Whittle indices are not defined and the methods of computing
these indices may not give meaningful values. Therefore, the proposed approach is not
applicable in such cases. Also, note that the conditions for indexability identified in The-
orem 2 are sufficient but not necessary. However, the assistance problem presented here is
indexable in most instances. This was verified by randomly generating problem instances
without any bounds and numerically verifying monotonicity of the passive set P(λ). Out
of the 1000 random instances, 999, 992 and 940 instances were found to be indexable for
discount factors γ = 0.9, 0.95, 0.99 respectively. However, the sufficient conditions were
satisfied for 700, 607 and 452 instances for γ = 0.9, 0.95, 0.99. This suggests that model is,
in general, indexable and the Whittle index heuristic is applicable. It also suggests that
the system may benefit from improved sufficient conditions for indexability. It is worth
noting that this analysis can provide us with class of transitions for which there is no need
to check the conditions. For instance, in case of transition type-1, the sufficient condi-
tions are satisfied for all values of transitions probabilities and thus the requirements for
indexability are always met.

There are several research directions for future work that can lead to a richer modelling
of such operator allocation problems. Incorporating the notion of uncertain transition
probabilities instead of assuming the knowledge of exact values will result in a more robust
model. The probabilities can be estimated using recorded data [37, 38] or, by modelling
performance parameters such as operators’ expertise [222]. Shifting the system definition
from discrete to continuous space (or just adding the time dimension to the actions) can
represent a more practical scenario. Overall, this work presents a starting point to a
wide variety of human-robot collaborative systems with multiple agents and provides a
promising framework to solve large instances of such problems.
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Chapter 6

Interruptions in Remote Supervision
of Robot Fleets

TL;DR: In this chapter, we discuss the design of the user study and the development
of the experiment interface used to evaluate the impact of interruptions in a multi-robot
supervision system, alongside the resulting outcomes.

Many of the systems built for assisting humans in remote supervision of multiple robots
are developed around the assumption that human operators will be solely working on the
supervision task [11, 223]. However, in a common implementation of such systems, there
are several different tasks that a supervisor can be working on (or switching between)
at a given time. Their primary task is to monitor the robots looking for fault status in
their operation. As a secondary task, they may be responsible for resolving faults when
a robot’s automatic correction procedure fails [135]. Additionally, in a practical scenario,
a supervisor may need to work on tasks unrelated to active robot monitoring, such as
coordinating with colleagues. However, even though these secondary tasks are parts of
supervisor’s job, they can act as interruptions as they take the supervisor’s attention away
from the primary task of monitoring the robots. This can be a problem, especially in the
case of time-critical systems (e.g., robots navigating on a road network).

In the multi-robot supervision literature, it is well-established that controlling a large
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Figure 6.1: Multi-robot supervision user study setup: a) A participant monitoring multiple robots
using the web-based interface, b) Clearpath Jackal robots used for the study.

number of robots negatively affects supervisor’s attention and increases their workload
[26, 223]. Researchers have used approaches like implementing different communication
strategies [224], using task coordinators [194] or adjusting robot behaviors [193] to tackle
this problem. Several studies from outside the robotics literature have compared the im-
pact of interruptions on workload based on their relation to the primary task [225–227].
However, there is a gap in research in understanding the role of interruptions in multi-
robot supervision systems, and the significance of differentiating interruptions based on
their relation to the primary task of robot supervision.

In this chapter, we investigate the effects of two types of interruptions in a multi-robot
supervision system. We consider a system where users primarily work on a monitoring
task (reporting faults in robot behaviour) and intermittently face either of the two types
of interruptions: 1) Intrinsic: ones related to the primary task, and 2) Extrinsic: ones
unrelated to the primary task. Given a primary task, we define intrinsic interruptions
as the ones that are closely related to the primary task. In a robot supervision task,
intrinsic interruptions can include teleoperating the robot or resolving robot failures. We
define extrinsic interruptions as those where the supervisor works on something completely
unrelated to the primary task environment. This can either be another part of their job
or simply an unexpected distraction.

We investigate the effects of the two types of interruptions using a user study with a
simulated robot supervision task (Fig. 6.1). The main findings of this work are as follows.
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We found the number of robots monitored by the participants to be a good predictor of their
performance, both in terms of percentage fault reported (F = 20.23, p < 0.001) and average
response time (F = 852, p < 0.001). Even though the interruptions do not significantly
affect performance, they do result in an increase in participants’ perceived workload on
most of the NASA-TLX scales. Pairwise comparison of different test conditions reveal
a significant increase in participants’ workload, with extrinsic interruptions resulting in
higher workload than intrinsic ones.

The rest of the chapter is organized as follows: In Section 6.1, we present some of
the existing work on interruptions in workplace, and in multi-robot supervision tasks. In
Section 6.2, we describe different elements of our study design and in Section 6.3, the results
are presented. The chapter ends with Section 6.4 discussing the findings and implications.

6.1 Related Work

In this section, we discuss existing work on interruptions in workplace and their role in
human–multi-robot systems, as well as the relevance of intrinsic and extrinsic interruptions.

6.1.1 Human Supervision of Multiple Robots

Even though robotic systems are rapidly increasing their autonomous capabilities, human
supervision is still considered necessary to ensure that task goals are met during unan-
ticipated events [16, 228]. There exists motivation to decrease the number of supervisors
required in large multi-robot systems [229], but doing so negatively impacts supervisors’
workload and performance [223,230,231].

The existing research primarily attempts to address this problem from the robotics
side of the system, for example, by implementing different communication strategies [224],
using task coordinators [194], adjusting robot behaviors [193] or using frameworks such
as sliding autonomy [201, 202]. However, human factors also play an important role in
governing system performance, and it is crucial to design the system in a way that results
in effective human operation.

Interruptions are one of the common issues that can disrupt the ability of operators
to maintain attention on a given task. Studies have shown that interruptions during a
task can negatively impact user workload and increase error rates [232, 233]. However,
the role and impact of interruptions in human–multi-robot systems has not been studied
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adequately in the literature. This is especially true for remote multi-robot supervision
tasks where we naturally have different kinds of interruptions based on their relation to
the monitoring task.

6.1.2 Interruptions in the Workplace

Studying interruptions faced by humans is an important area of research in many appli-
cations as they can negatively affect the performance and workload of workers [232, 233].
Interruptions can be simply defined as unanticipated disruption in one’s primary task and
diversion of attention to a related or unrelated secondary task [234]. Interruptions can
originate externally, from the environment (noise, notifications or other external factors),
or they can arise internally, from within the human (due to, for example, boredom or non-
task-related thoughts). They can also be characterized based on their timing, relevance
and attentional requirement [235–237].

In the literature on workplace interruptions (mostly in healthcare applications), re-
searchers have studied different types of interruptions based on their relation and rele-
vance to the primary task that workers are performing [225, 226]. Researchers have used
the term extraneous interruptions to describe those that do not directly pertain to the
primary task, and such interruptions are found to be one of the most common types faced
by workers [227].

6.1.3 Interruptions in Multi-Robot Supervision

When looking at the multi-robot supervision literature, we notice a gap in the research on
how different types of interruptions affect system performance and user workload. With this
work, we aim to bridge this gap by differentiating different secondary tasks that supervisors
need to perform in a multi-robot system into intrinsic and extrinsic interruptions, as ones
related and unrelated to the primary task respectively.

This distinction also bears similarities with notion of different types of cognitive loads
studied under the Cognitive Load Theory (CLT). The theory distinguishes between three
different types of cognitive load: Intrinsic (load from the task itself), Extrinsic/Extraneous
(load not related to the task but induced by its design), and Germane (load from learner’s
deliberate use of cognitive strategies) [238, 239]. This distinction provides further motiva-
tion to explore significance of differentiating interruptions based on their relationship with
the primary task.
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6.2 Methodology

In this section, we provide details of our user study, including the application designed for
robot monitoring, different tasks that participants encounter, and our study hypotheses.
The study adopts a mixed factorial design in which the type of interruption (intrinsic or
extrinsic) is the within-participant factor, while the number of robots to be monitored (4
or 9) is the between-participant factor. These numbers are selected based on a pilot study,
which ensures that the difficulty level of the monitoring task ranges from easy to moderately
difficult, and aligns with the existing understanding of human psychological attention limit.
Moreover, similar numbers have been used in prior studies on human-multi-robot systems
across various applications [195]. We recruited 39 participants in total distributed evenly
between 4 and 9 robots cases. The participants of the study consisted of university students
and individuals who were recruited via personal networks. None of the participants had
prior experience using a robot monitoring interface. The study has been reviewed and
received ethics clearance through a University of Waterloo Research Ethics Committee
(ORE#43628).

6.2.1 Study Design

A web-based application is designed to conduct the study. The application replicates a
basic setup of a remote-monitoring interface, with camera feed from multiple robots in one
half of the screen, and an enlarged view of a single robot in the other half. Participants can
select any one robot for an enlarged view for detailed inspection and for reporting faults
in that robot. The application also displays notifications for any interruption that may
arrive, which in our case are the prompts for secondary tasks based on the test condition.

Each robot’s camera feed shows a pre-recorded video from a camera mounted on the
robot, navigating in an indoor building environment with light foot traffic (see Fig. 6.1(b)).
The robot navigation was intentionally corrupted to include faults, which were designed
to appear as one of three behaviors in robots’ movements: 1) Stops moving, 2) Moving
in circles at a spot, and 3) Turning side-to-side without moving forward. The faults were
randomly introduced during robot navigation with their start and end times determined
randomly as well. Each fault lasted for at least 20 seconds and there was at least 30 seconds
between two faults. In the videos used for the study, the robots experienced faults between
1 and 5 times, with an average fault duration of 30 seconds. A robot was in a fault state
for about 29.5% of the total duration.

At any given time during the experiment, a participant can be working on one of the
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Figure 6.2: Interface for robot monitoring task. The grid of robot cards on the left side shows
video information from all robots. On the right, there is an enlarged visual of the selected robot.
On the top, there is a notification panel for incoming secondary tasks.

following three tasks:

1) Robot monitoring: This is the primary (default) task during the experiment,
which requires participants to monitor all the robots shown in the interface (Fig. 6.2), and
detect if any of the robots is in a fault state. Once a fault is detected, participants need
to select that robot and press the ‘Report Fault’ button. This action is programmed to fix
the fault, and its camera feed is refreshed to show the robot navigating normally again.
Participants are required to report all the faults that appear during the experiment and
as soon as possible from their appearance.

2) Fault Correction: During this secondary task, participants are shown a video feed
of a potentially faulty robot and are required to answer questions about it (see Fig. 6.3).
This acts as an intrinsic interruption closely related to the primary monitoring task while
not requiring any technical knowledge about the robot operation. Once all questions are
answered correctly, the participant is taken back to the monitoring task. For the study,
videos for this task are randomly selected from a pool of 15 videos each showing a different
type of fault (or no fault at all).

3) Messaging Task: This secondary task represents the extrinsic interruption during
which participants are required to write a message to their colleagues. The message is
already displayed on the screen and participants need to type it again in the space provided
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Figure 6.3: Interface for fault correction task. On the left, participants see a robot potentially in
a fault state. On the right, there are several questions to characterize the fault.

(see Fig. 6.4). Once the message is typed, the participant can press the ‘Send message’
button and is then taken back to the monitoring task. For the study, messages for this
task are randomly selected from a pool of 15 messages, each with 85 or fewer characters.

6.2.2 Procedure

Each participant first goes through a training session and then completes the experiment
under three different test conditions, which decide the type of interruption they will be
facing. The order of these three conditions is counterbalanced. Therefore participants see
these conditions in a different order, with a minute-long break between conditions. The
three conditions are described below.

1) Condition-0 (No interruption): In this condition, no interruption occurs and
participants work on the robot monitoring task for the whole duration.

2) Condition-1 (Intrinsic interruption): In this condition, participants are shown
a notification after they spend certain amount of time on the monitoring task. In this
condition, clicking a notification takes the participant to the fault correction task screen.

3) Condition-2 (Extrinsic interruption): Under this condition, the experiment
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Figure 6.4: Interface for the messaging task. On the left, participants see a pre-written message
to be sent. On the right is a text box to type the message and the send button.

is conducted in a similar way as Condition-1, except that clicking notifications takes the
participant to the messaging task screen.

Under each condition, participants work on the monitoring task for 2 minutes, during
which they may receive notifications for interruptions in the form of secondary tasks.
These notifications are randomly presented after the participant spends between 15 and 40
seconds on the monitoring task, with the exact time sampled from a uniform distribution.
These durations were selected based on pilot testing to ensure a balance between time
spent on the primary and secondary tasks.

6.2.3 Metrics

After a participant is finished with the assigned tasks, they are asked to fill out the NASA-
TLX questionnaire [240] (once after each test condition). Once they complete the task
under all conditions, they fill a post-experiment questionnaire and the procedure is finished.
Additionally, the application also records participant’s performance parameters, such as
faults reported and response time of identifying faults. If a robot gets into fault when
a participant is working on an interruption, the response time only starts to count when
they resume the monitoring task. This allows us to avoid counting the time a participant
spends on an interruption task towards their response time.

6.2.4 Hypotheses

This study seeks to learn how the intrinsic and extrinsic interruptions can affect super-
visor’s performance and workload in a multi-robot remote supervision system. However,
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NASA-TLX scores are highly influenced by individual differences especially when using
the unweighted scores1 [240]. To eliminate the effects of individual differences, we analyze
change in scores of participants across test conditions.

For this study, we propose the following null hypotheses:
H0-1: Task performance does not differ across test conditions (type of interruptions
shown).
H0-2: Perceived workload does not differ across test conditions.

6.3 Results

We analyze the experiment data under three categories: users’ performance, perceived
workload, and responses to post-experiment questionnaire.

6.3.1 Results on Performance

For the presented task, we use the following metrics as a measure of performance: First is
the percentage of faults reported, calculated as the ratio of faults reported to total faults
appeared during a task. Second is the response time, calculated as the average time it took
a user to report a fault (time from appearance of a fault to its reporting2).

Figure 6.5 shows the percentage of faults reported by participants under each test con-
dition. From the graph, we observe that when monitoring 4 robots, most of the participants
were able to detect the majority of the faults (> 70%) under all three test conditions. As
the number of robots increases to 9, the percentage of faults reported decreases under all
three test conditions. A 2-Way ANOVA confirms that number of robots is a very strong
predictor of percent fault reported (F = 20.23, p < 0.001). This is expected as partici-
pants are required to keep attention over a larger stream of information. The conditions
themselves do not show any significant main effect on the outcome (F = 0.21, p = 0.81).

1We do not use category weights for two reasons: First, it is unclear how using category weights affect
sensitivity of the score across different systems [240]. Second, administering ranking questions for the
weighting step requires a fair amount of effort from the participants which, in our case, is comparable to
the effort required for the task itself.

2If a participant fails to report a fault, the fault duration is considered to be the response time for that
fault.
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Figure 6.5: Percentage Fault Reported under different test conditions for participants monitoring
4 robots (left) and 9 robots (right).

Figure 6.6 shows the average amount of time a participant took to report faults under
different conditions. These results are similar to the case of percent fault reported, where
number of robots are a strong predictor of outcome (F = 852, p < 0.001) while interruption
type does not have a significant effect (F = 0.05, p = 0.95). This may be partially because
the response time only starts to count when participants resume the monitoring task. This
allows us to avoid counting the time a participant spends on an interruption task towards
their response time.

Given these results, the null hypothesis H0-1 cannot be rejected: task perfor-
mance does not differ significantly with test conditions (type of interruptions shown).

6.3.2 Results on Workload

Figure 6.7 shows the participants’ perceived workload during different test conditions,
measured as NASA-TLX scores.

From the figure, we observe that participants reported higher workload, on average,
under Condition-2 (extrinsic interruptions) on most of the workload categories followed by
Condition-1 and then Condition-0, regardless of the number of robots they monitored.

Since we are using unweighted scores, it is more relevant for the study to compare
change in scores between test conditions for individual participants rather than taking
the average. Therefore, we present pairwise comparisons of participants’ scores for each
workload category.
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Figure 6.6: Average response time (time from fault appearance to fault reporting) for all users
under different conditions.

Figure 6.7: Average Rating for TLX Questions for different conditions for 4 and 9 robots.

109



Figure 6.8: Fraction of participants who reported higher/lower/same scores between two con-
ditions. For example, for pair 1-0, blue represents that participants’ reported higher workload
in condition-1, orange means scores were same for both conditions and yellow means a higher
workload reported in condition-0.

Figure 6.8 shows how individual participants’ workload scores changed between con-
ditions. These are shown as the percentage of participants who reported higher, lower,
or the same workload score. Comparisons are performed in going from Condition-0 to
1, Condition-0 to 2, and Condition-1 to 2. A one sample t-test reveals that differences
between most of the test conditions are significantly different from a zero-mean distribu-
tion, except for the difference between condition-1 and condition-0 for the 9-robot case.
Table 6.1 shows the result of these t-tests.

To provide a more comprehensive analysis, we also present the distribution of changes
in workload scores for participants across all workload categories and pairwise comparisons
in Figures 6.9 and 6.10. The results indicate that a majority of participants reported higher
workload scores under condition-2 compared to both condition-0 and condition-1.

These findings lead us to reject the null hypothesis H0-2, i.e., perceived workload
differs with test conditions (type of interruptions).
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Figure 6.9: Difference in TLX scores between different conditions for 4 robots. For example,
the Condition 1-0 plots show distribution of condition 1 minus condition 0 scores for individual
participant.
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Figure 6.10: Difference in TLX scores between different conditions for 9 robots.
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Table 6.1: One-sample t-test p-values for different pairwise comparison of TLX scores.

Conditions 1-0 Conditions 2-0 Conditions 2-1

4 robots 0.0299 0.0009 0.0011

9 robots 0.1150 0.0109 0.0419

Overall 0.0071 0.0000 0.0001

Table 6.2: Prompts used in post-experiment questionnaire.

1 I found the fault correction tasks and messaging tasks
disruptive while monitoring the robots.

2 I found it difficult to switch from the robot monitoring
task to the correction task.

3 I found it difficult to switch from the robot monitoring
task to the messaging task.

4 I found it difficult to resume the robot monitoring task
after the correction task.

5 I found it difficult to resume the robot monitoring task
after the messaging task.

6.3.3 Post-Experiment Questionnaire

Besides measuring performance and workload of the participants, we also asked them
some further questions regarding their perception of different tasks they performed during
the whole experiment. This post-experiment questionnaire is shown in Table 6.2, and
participants’ agreement with each statement was recorded on a 20-point scale (1 being
Strongly Disagree and 20 being Strongly Agree).

From participants’ responses, we observe that majority of participants found the in-
terruption tasks disruptive while monitoring the robots, with higher average score among
participants who monitored 9 robots (Question 1). Participants also reported more diffi-
culty while switching from monitoring task to the messaging task compared to the fault
correction task, with mean difference µ̄ = 2.79 (Questions 2,3). A one sample t-test
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confirms the significance of difference (p = 0.015). We note similar results on perceived
difficulty for resuming the monitoring task after an interruption (Questions 4,5) (µ̄ = 3.20,
p = 0.001).

6.4 Chapter Summary

The study presented in this chapter reveals some interesting features of multi-robot super-
vision systems where users monitor several independent mobile robots. From the results,
we observe that while working on the robot monitoring task, any interruption, be it intrin-
sic (fault correction) or extrinsic (messaging), will result in an increase of user workload.
The effects of extrinsic interruptions on workload are more severe than those of intrinsic
ones for both four- and nine-robot cases.

However, the impact of these interruptions on the task performance is found to be
insignificant. The number of robots being monitored is observed to be the major factor in
a change of performance. One possible reason for this observation is that the monitoring
task in our system requires a short working memory as faults in the system are determined
solely based on the current state/short-term behaviour of the robots. Even though the
type of interruption does not significantly affect performance, participants reported them
to be disruptive while monitoring the robots. Participants also reported that switching to
the extrinsic task and resuming the monitoring task afterward is more difficult compared
to the intrinsic task.

These findings suggest that when designing such multi-robot supervision systems, it is
important to prevent interruptions from extrinsic tasks while working on robot monitoring.
It may be helpful to postpone such interruptions towards the end of the task. It may also
be helpful to distribute the responsibility for robot monitoring and fault correction tasks
among different operators to limit supervisors switching between the two tasks. In the
future, we would like to expand this study to further characterize the effects of intrinsic and
extrinsic interruptions by controlling the frequency of interruptions, changing the difficulty
of the task, and having a larger number of robots to monitor. It is also interesting to
explore how the results will change if the secondary tasks are introduced in a multi-tasking
scenario instead of being separate interruption tasks, where users try to work on different
tasks simultaneously.
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Chapter 7

Conclusion and Future Work

The thesis has made significant contributions to addressing the challenges associated with
supervised robot fleets, focusing on the planning of routes and missions, operator alloca-
tion, and human factors in these systems. Throughout the research, we have presented
novel methodologies and algorithms, conducted simulations, and provided valuable insights
into the dynamics of human-robot interaction. Collectively, these contributions enhance
the efficiency, safety, and overall performance of supervised robot fleet systems, advancing
the field of human-robot interaction and enabling effective collaboration between humans
and robots in real-world applications. The Budget-A∗ algorithm efficiently addresses col-
laborative robot planning with intermittency in the availability of human assistance, while
the Restless Bandit framework provides an effective operator allocation policy. Addition-
ally, the user study offers valuable insights for designing multi-robot supervision systems.
These contributions advance the field of human-robot interaction, enabling effective collab-
oration between humans and robot fleets in various real-world applications. The outcomes
of this thesis lay a foundation for further research and improvement in this evolving field.

7.1 Future Work

While this thesis has made contributions to various aspects of supervised robot fleet re-
search, there are several opportunities for further improvement and directions for future
work to extend the presented findings.

Optimizing costs and ensuring equitable allocation: The solutions presented in
Chapter 4 aim to minimize path durations for the robots to reach their goals efficiently.
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However, in certain applications, it may be more relevant to optimize different costs, such
as the usage of operator assistance, waiting times, or specific routes. Including such costs
in the planning process can provide finer control over the robot paths and assist in limiting
the amount of assistance allocated to each robot. In a multi-robot setting, we may also
be interested in making sure that the operator allocation is done in an equitable manner,
distributing human assistance fairly among the robots.

Dynamic and unknown environments: In Chapter 4, we considered known and
stationary travel durations for the robots. Similarly, in Chapter 5, we considered the
state-transition probabilities to be known to the decision support system. To enhance
the adaptability of our solutions, future research can explore dynamic and non-stationary
environments where travel durations and operator availability may vary over time. Addi-
tionally, considering scenarios where task demands change and robots need to adapt their
plans or replan for new service requests would enable more responsive fleet planning. More-
over, in Chapter 5, the state transition probabilities are defined such that the task durations
are exponentially distributed random variables. While this assumption was appropriate for
certain applications, it is worth investigating the impact of different distribution models
on the performance of the proposed algorithm. Exploring the extension of our results to
other distribution models for task durations could provide a deeper understanding of the
robustness and applicability of our solution approach in a wider range of scenarios.

Risk-aware planning: Ensuring safety in robot fleet operations is crucial. Traditional
approaches to safe planning often aim to mitigate the possibilities of encountering critical
situations, such as entering hazardous zones or reaching states where further progress is
uncertain. However, in robotic systems where human operators are available to provide
assistance, the final layer of safety relies on the interaction between the robot and the
operator, rather than solely on the critical situation itself. Therefore, to define safety
requirements in this context, we can use the notion of service loss, capturing the times
when a robot requires assistance but no operator is available. Under this notion, we can
define different safety-related aspects such as the probability, duration, or cost of service
loss associated with a given robot path and operator allocation. Additionally, it may be
important to consider the robustness of planned routes, i.e., the ability to maintain or
recover the original plan in the event of delays. By incorporating these considerations, we
can design safer and more reliable routes for the robots in the fleet.

Improving study design: The research presented in Chapter 6 provides valuable
insights into the effects of interruptions on robot supervision. However, there are various
opportunities to further enhance the validity and applicability of the findings by improving
the study design. One important aspect is the construction of secondary tasks, which
were artificially created for the study. To better reflect real-world scenarios, using actual
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supervisors’ tasks could provide more realistic and meaningful results. In addition, the
duration of the study should be extended, as robot supervision often involves long periods
of engagement with the system. While the short study allowed us to explore the effects of
interruptions in a controlled environment, understanding how these interruptions impact
performance over extended durations is essential.

Expanding scope of the user study: In the work presented in Chapter 6, the
user study focused on a single modality of communication, the screen. Nevertheless, in
applications such as search and rescue or subterranean surveillance, the incorporation of
multi-modal communication could hold greater utility. Incorporating an exploration of
interruption effects within these multi-modal communication systems could significantly
broaden the scope of our work and yield valuable insights into different real-world contexts.
Additionally, extending the scope of the research to investigate the effects of interruptions
in different contexts and exploring strategies to minimize disruptions would be beneficial.
For example, understanding how interruptions impact performance in safety-critical envi-
ronments or high-stress situations could provide essential guidance for designing effective
human-robot interaction strategies. Moreover, developing interruption management tech-
niques to optimize task completion under interrupted conditions could prove valuable in
enhancing overall system efficiency and user satisfaction.
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[201] S. Musić and S. Hirche, “Control sharing in human-robot team interaction,” Annual
Reviews in Control, vol. 44, pp. 342–354, 2017. 73, 101

[202] M. B. Dias, B. Kannan, B. Browning, E. Jones, B. Argall, M. F. Dias, M. Zinck,
M. Veloso, and A. Stentz, “Sliding autonomy for peer-to-peer human-robot teams,”
in International conference on intelligent autonomous systems, 2008, pp. 332–341.
73, 101

138



[203] D. Szafir, B. Mutlu, and T. Fong, “Designing planning and control interfaces to
support user collaboration with flying robots,” The International Journal of Robotics
Research, vol. 36, no. 5-7, pp. 514–542, 2017. 73

[204] E. A. Kirchner, S. K. Kim, M. Tabie, H. Wöhrle, M. Maurus, and F. Kirchner, “An
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