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Abstract 
 
Background Traditional public health data collection methods are typically based on 

self-reported data and may be subject to limitations such as biases, delays between 

collection and reporting, costs, and logistics. These may affect the quality of collected 

information and the ability of public health agencies to monitor and improve the health of 

populations. An alternative may be the use of personal, off-the-shelf smart devices (e.g., 

smartphones and smartwatches) as additional data collection tools. These devices can 

collect passive, continuous, real-time and objective health-related data, mitigating some 

of the limitations of self-reported information. The novel data types can then be used to 

further study and predict a condition in a population through advanced analytics. In this 

context, this thesis’ goal is to investigate new ways to support public health through the 

use of consumer-level smart technologies as complementary survey, monitoring and 

analyses tools, with a focus on perceived stress. To this end, a mobile health platform 

(MHP) that collects data from devices connected to Apple Health was developed and 

tested in a pilot study collecting self-reported and objective stress-related information, 

and a number of Machine Learning (ML) models were developed based on these data to 

monitor and predict the stress levels of participants. 

Methods The mobile platform was created for iOS using the XCode software, allowing 

users to self-report their stress levels based on the stress subscale of the Depression, 

Anxiety and Stress Scale (DASS-21) as well as a single-item LIKERT-based scale. The 

platform also collects objective data from sensors that integrate with Apple Health, one of 

the most popular mobile health data repositories. A pilot study with 45 participants was 

conducted that uses the platform to collects stress self-reports and variables associated 

with stress from Apple Health, including heart rate, heart rate variability, ECG, sleep, 

blood pressure, weight, temperature, and steps. To this end, participants were given an 

iPhone with the platform installed as well as an Apple Watch, Withings Sleep, Withings 

Thermos, Withings BPM Connect, Withings Body+, and an Empatica E4 (the only 

device that does not connect to Apple Health but included due to its wide use in 

research). Participants were instructed to take device measurements and self-report stress 

levels 6 times per day for 14 days. Several experiments were conducted involving the 

development of ML models to predict stress based on the data, using Random Forests and 
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Support Vector Machines. In each experiment, different subsets of the data from the full 

sample of 45 participants were used. 3 approaches to model development were followed: 

a) creating generalized models with all data; b) a hybrid approach using 80% of 

participants to train and 20% to test the model c) creating individualized user-specific 

models for each participant. In addition, statistical analyses of the data – specifically 

Spearman correlation and repeated measures ANOVA – were conducted. 

Results Statistical analyses did not find significant differences between groups and only 

weak significant correlations. Among the Machine Learning models, the approach of 

using generalized models performed well, with f1-macro scores above 60% for several of 

the samples and features investigated. User-specific models also showed promise, with 

82% achieving accuracies higher than 60% (the bottom limit of the state-of-the-art). 

While the hybrid approach had lower f1-macro scores, suggesting the models could not 

predict the two classes well, the accuracy of several of these models was in line with the 

state-of-the-art. Apple Watch sleep features, as well as weight, blood pressure, and 

temperature, were shown to be important in building the models. 

Discussion and Conclusion ML-based models built with data collected from the MHP in 

real-life conditions were able to predict stress with results often in line with state-of-the-

art, showing that smart technology data can be a promising tool to support public health 

surveillance. In particular, the approaches of creating models for each participant or one 

generalized model were successful, although more validation is needed in future studies 

(e.g., with more purposeful sampling) for increased generalizability and validity on the 

use of these technologies in the real-world. The hybrid approach had good accuracy but 

lower f1-scores, indicating results could potentially be improved (e.g., possibly with less 

missing or noisy data, collected in more controlled conditions). For feature selection, 

important features included sleep data as well as weight, blood pressure and temperature 

from mobile and wearable devices. In summary, this study indicates that a platform such 

as the MHP, collecting data from smart technologies, could potentially be a novel tool to 

complement population-level public health data collection. The predictive stress 

modelling might be used to monitor stress levels in a population and provide personalized 

interventions. Although more validation may be needed, this work represents a step in 

this direction. 
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Chapter 1 - Introduction 

 The field of public health has the goal of protecting and improving the health of 

communities and populations1. To accomplish this, public health agencies and programs 

make use of data to make informed, evidence-based decisions. One of the main sources of 

data are surveys, typically based on subjective and/or self-reported information 2–6. While 

these methods have been widely and successfully used, self-reported data may be subject 

to significant limitations including social7–11 and recall bias,2,3,10–15 loss due to follow-

up,10,11,16 delays between collection and reporting,17–19 and costs/logistics.10,18  

Recently, society has experienced a number of technological advancements that 

make people’s lives easier and better. Among these, mobile and wearable devices – such 

as smartphones, smartwatches, smart rings, wireless scales, among others – have become 

increasingly popular. Notably, these technologies contain sensing equipment capable of 

monitoring vital signs, environmental variables, and behavioural metrics, such as: heart 

rate (HR), sleep, blood pressure (BP), temperature, among others. For example, the Apple 

Watch Series 4 or higher is equipped with an electrode on the device’s digital crown that 

is able to take a 1-lead, 30 seconds ECG when users place their finger on it 20,21. Similarly, 

the same device can measure HR through photoplethysmography (PPG), using green LED 

lights at the bottom of the device paired with photodiodes to detect blood flow in the wrist 
22.  

In this manner, mobile, wearable, and Internet of Things (IoT) technologies could 

potentially be used as additional survey and assessment tools, 23–25 collecting objective data 

that can mitigate limitations in traditional self-reporting methods, as evidenced by a recent 

study that used surveys and the Apple Watch data to study heart rate changes in COVID-

19 patients.26   

These technologies are consumer-level, i.e., they can be acquired by regular 

individuals in a population and not only by research specialists. Further, they have had an 

amazing adoption rate, with 32 million Canadians owning a smartphone 27 and almost 4 

million owning a fitness wearable device 28. This means that a plethora of health metrics 

can be collected continuously using these devices, providing rich and useful information 

for public health agencies. However, little has been done in terms of designing, developing 
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and deploying systems that explore these devices as data collection tools to complement 

traditional public health surveillance efforts.  

The research in this thesis looks to advance this field by presenting the development 

of a mobile health platform (MHP) targeted at public health. This platform collects and 

stores data from mobile and wearable devices – specifically from Apple Health (AH), 29,30 

a popular repository of health data from sensors, collecting information from smart devices 

that can be connected to Apple operating systems – and uses it to predict the prevalence of 

a condition in a population. Specifically, the condition focused on for this work is stress, 

which was termed the “Health Epidemic of the 21st Century” by the World Health 

Organization (WHO)31,32, and as such represent a major public health issue of interest – for 

instance, the prevalence of chronic stress is increasing worldwide (e.g., over 25% of adults 

report stress as impairing proper functioning33) and can lead to cardiovascular diseases, 

hypertension, diabetes, among others34–36. In addition, stress information is also typically 

collected through self-report, thus presenting itself as an ideal use case to evaluate a 

platform that collects objective health data. If stressed individuals can be detected in near 

real-time by personal devices, interventions can then be applied effortlessly and with 

precision – for example, the device could prompt the user to open a meditation app for 

relaxation in case the person is stressed. 

The following chapters describe how the ML-based stress prediction models were 

built, how the mobile health platform was developed and used as a monitoring and 

collection tool, and lessons learned throughout this process, with the goal of providing 

public health agents with additional tools and directions for surveillance and protecting 

population health. 

 
1.1 Structure of the Thesis 

This thesis’ structure is organized as a series of papers which sequentially present the 

development of a mobile health platform that extracts Apple Health data for public 

health, its use in a pilot study that collects real-life stress-related data, and the creation of 

ML-based models for stress prediction. 

Papers were submitted for publication at the time of writing and are presented with 

amended revisions from their original version following feedback by the thesis 

committee. Chapters 6 and 7, already published at the time of writing, were included as 



 3 

published. References throughout the thesis were integrated in a single bibliography 

section and figures/tables numbered in a sequential order. Additional figures and tables 

included in Supplementary Material for publication are included here in the appendixes, 

with the text indicating which appendix has the resource.  

Each chapter included a foreword which discusses the publication in the context of 

the thesis, helping to transition from the previous chapter. After the foreword the paper is 

presented. Finally, in the end of each chapter, an additional section discusses how results 

of the paper contribute to the thesis as a whole and present additional material that were 

not included in the papers due to space constraints as applicable. The chapters are as 

follows: 

Chapter 1 contains the introduction, including the structure of the thesis, motivation, 

and the literature that motivates the papers that follow. Chapter 2 discuss the research 

goals, including the main research question, while Chapter 3 provides details into 

objectives, related sub-questions and how each of the chapters in this thesis answers 

these. 

Chapter 4 to 9 correspond to one manuscript each, with individual chapters 

containing a piece of the full work in this thesis. They include a viewpoint arguing for the 

use of smart technologies in public health (Chapter 4), a paper detailing the modelling 

and development of the MHP (Chapter 5), statistical and preliminary Machine Learning 

analyses (Chapters 6 and 7, respectively) and finally the full analyses and discussions, 

divided in two papers (Chapters 8 and 9). Chapter 10 is a discussion and conclusion 

section, detailing the contributions of this thesis, limitations and future directions.  

 

1.2 Motivation 
 

Smart technologies can minimize limitations in traditional data collection efforts. 

However, they are not currently and consistently being used with an integrated data 

collection ecosystem in this context. There is a gap in the field of public health 

surveillance, as agencies are not able to access large volumes of personal, diverse, 

continuous, and near real-time data to better understand population health. The 

motivation of this thesis, then, involves the study of new ways to support public health 

surveillance based on off-the-shelf, consumer-level smart devices that are prevalent and 
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ubiquitous among the population. The overall goal is to understand how these devices can 

support public health agencies – i.e., entities (generally from governments) that focus on 

understanding, protecting and improving the health of individuals and communities in a 

population – through the creation of a mobile health platform (MHP) that will collect and 

store health data from smart devices, and using data from this platform to study a 

condition in a population with advanced analytics. 

In this manner, the main research question is: Can smart technology data from 

AH, efficiently collected and analyzed, improve survey design and support public health 

surveillance? To answer this question, the areas that the thesis focuses on are: 

 

• Complementing traditional public health data collection efforts with smart 

device data, specifically from Apple Health. 

• Using a mobile platform to collect Apple Health data as a pilot public 

health surveillance mobile ecosystem. 

• Predict the prevalence of a condition (stress) in a population using 

advanced analytical methods to handle large and complex data. 

 

      The overarching motivation of this thesis, connecting these 3 areas, is to investigate 

how traditional public health surveillance efforts can be improved through the use of 

mobile and wearable smart devices. In the following sub-sections, literature related to 

each component that serves as the basis of the work is presented. Since some of these 

relate to specific surveys or programming and development tools, grey literature is used 

when applicable (e.g., to reference specific documentation regarding mobile app 

development). 

 

1.2.1. Canadian Public Health Surveys  

This sub-section describes 3 major Canadian surveys that were investigated for this 

work. These surveys collect indicators of interest for public health agencies, and as such 

are used to illustrate how traditional self-reported data could be complemented with the 

use of smart technologies. 
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The Canadian Health Measures Survey (CHMS) is a Canadian survey that is 

voluntary and aims to collect information related to respondents’ health, behaviours, diet, 

among others, with the goal of improving the health of Canadians and better prevent or 

treat diseases or conditions 6. The survey is conducted every 2 years; for this thesis, all 

information from CHMS is pertaining to the most recent completed cycle at the time of 

writing, Cycle 6, from 2018-2019 37,38. The CHMS is comprised of an hour-long interview 

in the respondents’ home (questionnaire topics include, for example, chronic conditions, 

sleep patterns, physical activity, among others) and a visit to a temporary clinic to collect 

physical measures such as blood and urine samples and additional self-reported data 37,38.  

After the clinician visit, participants are asked to wear an activity monitor for a week 37,38.  

The Canadian Community Housing Survey (CCHS) is an annual cross-sectional 

survey, conducted through electronic questionnaires or in-person/phone interviews, 

focusing on information related to healthcare services use, health status and conditions, 

and lifestyle and mental health, to support public health surveillance and research 4. For 

this thesis, all information from CCHS pertains to the most recently completed annual 

component, from 2022. 

The Physical Activity, Sleep and Sedentary Behaviour Indicator (PASS), is an 

annual indicator of the domains of physical activity, sleep, and sedentarism, as indicated 

by its name, and it is composed of data from several other Canadian surveys including the 

CCHS and the CHMS 39. Data in this thesis pertains to the 2017 edition of PASS. 

Several of the data collected by these surveys, such as sleep data, physical activity, 

blood pressure, among others, could potentially be collected through smart devices. As 

mentioned, however, these devices are not currently being used in this context. 

 

1.2.2 Apple Health, HealthKit Application Programming Interface (API) and 
Developer Tools 

Apple Health is a health data repository that aggregates information from mobile 

and wearable devices that are designed to be compatible with the platform. This typically 

includes Apple products, but products from several other manufacturers are designed 

with Apple Health integration in mind and can be used in conjunction with it, such as 

devices manufactured by Withings 40. The repository can be accessed by the user through 

an iPhone app or a web dashboard.  
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Apple provides developers with several APIs which can be used to access 

resources in devices. For example, the MapKit API allows developers to embed Apple 

Maps in their applications. The HealthKit API, in turn, allows developers to access – with 

user consent – health data stored in the AH repository. In this manner, it is possible for 

third-party developers, including researchers, to create apps that collect and store users’ 

health data 29,30. With the XCode software, developers can create iOS apps 41 using the 

Swift programming language.  

It is important to note that, while this document will focus on AH and related 

available data at the time of publication, this is not the only mobile health data collection 

tool or repository available to developers. In addition, several of the devices used in the 

studies (e.g., devices from Withings, as will be described in later chapters) are compatible 

with other systems such as Android. 

 
 
1.2.3 Stress 

Stress is the body’s normal response to an unexpected situation interpreted as a 

threat, triggering the body’s fight-or-flight response and allowing the individual to deal 

with the extenuating circumstance. When stress is detected, the sympathetic nervous 

system (SNS) signals the adrenal glands to release several hormones, such as cortisol, 

that will help the individual to deal with the situation, causing physiological alterations 

such as increased heartbeat and glucose levels in the bloodstream with the goal of 

generating more energy. Once the situation is resolved, the body should ideally return to 

its normal, pre-stressed state through the parasympathetic nervous system (PNS), re-

establishing homeostasis and characterizing an acute stress response 34,42,43. As a survival 

mechanism, stress is healthy, helping us to identify and handle threats; however, in daily 

life, people are exposed to a variety of stressors, not all of them physical in nature (e.g., 

work or family stressors), which constantly trigger the body’s response. This wreaks 

havoc in several bodily systems, including the gastrointestinal, reproductive, respiratory, 

immune and cardiovascular 34. Individuals with high levels of chronic stress are at higher 

risk for conditions such as hypertension, cardiovascular disease and stroke, among others 
34,35. 
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The prevalence of stress worldwide was high even before the COVID-19 

pandemic, and it is increasing. As discussed, the WHO has called it the “Health Epidemic 

of the 21st Century” 31,32.  

Stress results in quantifiable physiological and behavioural changes 35. For 

example, the autonomous nervous system (ANS), composed of the SNS and PNS, is 

directly related to HR, and so this data can help with discriminating stress.  

In addition to HR, typically modelled as beats per minute, the heart rate 

variability (HRV) is also widely used for stress quantification 35,44. HRV measures the 

time interval between consecutive beats – the larger the interval, the more resilient or 

capable to handle stress a person is 44. Temperature can also be used to discriminate stress 
35,45, as well as physical activity 46–48, weight 49,50, blood pressure 35,51 and sleep 46,52,53.  

It should be noted that, in addition to these physiological changes, the stress 

response also has a psychological, subjective component relating to how an individual 

perceives a threat, i.e., perceived stress. Physiological stress signals do not always 

correlate to perceived stress, which may vary per individual 54. 

 

1.2.4 Machine Learning 

 To process increasingly complex, varied, and large data, such as the signals and 

data types described above, novel methods of advanced analytics are required. One field 

that deals with the analysis of data, supported by recent computer science and Artificial 

Intelligence (AI) advancements, is Machine Learning (ML),  encompassing “techniques 

that fit models algorithmically by adapting to patterns in data” 55.  

ML models are built on a set of training data and evaluated with a set of test data. 

There are three types of techniques 55:  

 

• Supervised learning: involves identifying patterns between variables (known as 

predictors or features) and measured outcomes (known as classes) to maximize 

accuracy in predicting these outcomes. The input data consists of examples 

containing vectors of features and, for each vector, a label indicating what class 

the vector belongs to.  
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• Unsupervised learning: involves pattern detection without designation of an 

outcome of interest. 

• Semi-supervised learning: a “combination” of both methods for prediction when a 

large amount of data is missing. 

 

Stress prediction involves using data labelled as “stress” and “no stress” (for a binary 

classification problem) to train and test the models, consisting of a supervised learning 

problem. Can et al. 35 provided a review of stress detection using smartphones/wearables 

in real-life settings. Widely used methods for stress detection are random forests (RFs, an 

ensemble of Decision Trees) and Support Vector Machines (SVMs)35,56,57. An additional 

review conducted for this work and presented in later chapters also found those methods 

to successful in handling stress-related physiological data, as well as other advantages 

(such as interpretability for RFs). Further, to provide guidance for researchers, Barro and 

Amorim 58 evaluated the accuracy of 179 implementations of classifiers on 121 datasets. 

They found that RFs and SVMs generally achieve the best results. For these reasons these 

models were chosen for stress prediction in this thesis and so their theoretical 

underpinnings will be expanded below, first with an explanation of Decision Trees (DTs), 

which serve the basis for RF, followed by the RF and SVM models. 

 

1.2.4.1 Decision Trees 
DTs are hierarchical models in which decision rules are used to perform recursive 

partitioning on the feature vector space of a problem until a feature subspace with a 

single class is achieved 57,59–61. For example, for the feature space in Figure 1, Figure 2 

shows a DT that partitions the space forming subspaces. Branch nodes in the tree are 

parents of two children nodes, while leaf nodes have no children nodes. A decision rule is 

represented by lines connecting each node and, by following decision rules, DTs achieve 

a prediction. In Figure 1, by following the rule that X is higher/equal than 1 from Figure 

2, the algorithm predicts the class “S”.  

To decide the best split values for the feature subspace, several scoring criteria 

exist. A popular approach is measuring impurity reduction (a 100% purity in a node 
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means the feature subspace contains only one class) by assessing the difference between 

the impurity in the parent node and the average impurity in the child nodes 59,62,63. 

Through these criteria, feature selection is embedded in DTs, requiring fewer data 

pre-processing 63. A major advantage of DTs is its interpretability: the output of the 

method, in addition to the probability of prediction, is the tree itself. Therefore, DTs can 

help with data interpretation 59,63. This is particularly important in public health where 

evidence-based results are fundamental 64.  

 

 
Figure 1: Feature space for features X and Y 

 
 

 

Figure 2: Decision Tree for features X and Y 

 
1.2.4.2 Random Forests 

Ensemble methods are a popular ML approach to increase generalization and 

improve accuracy, in which models are trained on subsamples of the training dataset and 

their prediction is combined 55,59,61. 
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RFs are an ensemble method consisting of multiple DTs built on random 

subsamples (with resampling) of the training dataset, a method known as bagging. The 

observations left out in the subsamples are called out-of-bag and used for testing the 

trees. The use of bagging causes DTs to be diverse and capture complex relationships in 

the data when compared to a single DT 59,61,63,65. 

To further increase this diversity, the trees are built on a random subset of 

features. The prediction of an RF is the average prediction from individual trees using the 

out-of-bag observations 65. 

RFs take advantage of the fact that the format of DTs are largely dependent on the 

training dataset, and that DTs make few assumptions on the real mapping function 

between the features and outcomes (unlike a linear regression, for instance, which 

assumes a linear mapping): the individual DTs built with bagging and random features 

will have good predictive accuracy while being diverse enough to account for complex 

structures and variations in the data.62,63 RFs show high predictive accuracy in several 

cases 55,66. 

By making use of a large number of DTs, RFs  are not inherently as interpretable 

as DTs; while the method provides high accuracy, it does not generate insights into 

relationships between features65. The interpretability of RFs come from a measure of 

variable importance which assesses the importance of each feature relative to the 

outcome. Variable importance provides important insights into the relative value of 

features, including highly correlated ones: if a feature is correlated to a more powerful 

predictor, random subsampling ensures that there are trees where the powerful predictor 

is not included 65.  

 

1.2.4.3 Support Vector Machines 

To explain SVMs, let’s assume a two-dimensional feature vector plotted as shown 

in Figure 3 with a line separating two classes. Orange points above the line belong to one 

class, while blue points below the line belong to a different class. In three-dimensional 

space, this line becomes a plane and extrapolating this concept to n-dimensions feature 

spaces it becomes a hyperplane 67. The hyperplane is selected as the line “in the middle”; 

in other words, the hyperplane separates the two classes with maximum distance to each 
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of the feature vectors. This maximum-margin hyperplane optimizes an SVMs’ accuracy 
63,67: in Figure 4, the dashed and dotted lines are too close to orange/blue points 

respectively; the solid line is the best boundary. Points farther away from this line have a 

higher probability of being accurately predicted.  

A hyperplane may not be able to divide the data (Figure 5).  To handle these 

“errors” the hyperplane decision boundary must be relaxed, allowing some points to cross 

it. This relaxation is a parameter called soft margin (parameter C), defined by the user to 

control how many points are allowed to cross the hyperplane and be misclassified. The 

soft margin should be flexible to account for variation in the data but not so broad as to 

allow for many misclassifications 63,67.  

SVMs also make use of kernel functions to deal with linearly inseparable data. 

The kernel function adds dimensions to the data, such as turning a one-dimensional 

problem into a linearly separable two-dimensional one (Figure 6). The kernel function 

projects data into higher dimensions to become separable, allowing SVMs to handle 

linear and non-linear data similarly to DTs/RFs 57,63,67.  

For every dataset, a kernel function exists that makes it linearly separable. 

However, adding dimensions causes the boundaries between classes to fit rigorously to 

training data, causing overfitting (meaning that the model was too closely fit to the 

training dataset, capturing noise/error but not the actual relationships in the data; in other 

words, the model predicts the training data with high accuracy but is not generalizable for 

new data) 55,59,63. A kernel function should allow data to be separable without introducing 

too many dimensions. A major limitation in SVMs is that this function is typically 

decided by trial-and-error with standard kernels. More rigorous methods to test kernels 

exist, but they are resource-intensive and do not guarantee that a function not considered 

in testing will not perform better 67. 

Unlike DTs/RFs, SVMs may require robust feature selection and standardization 

before the learning stage to define the best features to be analyzed and reduce the size of 

the input data 67. In terms of interpretability, the hyperplane cannot be visualized for more 

than 3 features. Therefore, interpretability is more challenging 67.  

The next chapter will further discuss the research goals that guided this thesis. 
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Figure 3: Two-dimension feature space 

 

 

 
Figure 4: Alternative decision boundaries 
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Figure 5: Linearly inseparable two-dimensional feature space 

 

 
Figure 6: Kernel function (squared values) turning a linearly inseparable 1-

dimensional problem into a linearly separable 2-dimensional problem 

 

 

 

 

 

 

 

 

 

 

 



 14 

Chapter 2 – Research Goals 

Data collected from smart technologies could complement traditional public 

health surveillance efforts. This work will focus on investigating the use of these devices 

for public health and the prevalence of a condition (stress) in the population. Specifically, 

the development of a mobile system to potentially inform and support next-generation 

public health surveillance will be presented, as well as variables collected with mobile 

devices that might complement health surveillance metrics. 

The objective is to provide public health agencies and workers, health scientists 

and researchers with potential new tools in their arsenal to gain insights into and improve 

the health of individuals, communities and populations while capitalizing on 

advancements in smart technologies, mobile devices and remote sensing. The main 

research question, as mentioned is: Can smart technology data from AH, efficiently 

collected and analyzed, improve survey design and support public health surveillance? 

To answer this question, the 3 major goals of this work are: 

 

(1) Identify data being collected by major Canadian surveys that can be collected 

with AH, including stress-related variables to inform further objectives. 

(2) Develop an MHP that collects objective data from off-the-shelf smart devices 

supported by AH. 

(3) Establish how data from the MHP can be used to study the prevalence of stress in 

a population by: 

o Developing ML stress prediction models using collected data from the 

platform. 

o Examining correlations between physiological measures and perceived 

stress using collected data from off-the-shelf devices. 

 
 

As discussed in Chapter 1, smart technologies and mobile devices are used by a 

large part of the population and have embedded sensors that collect a variety of health 

metrics, many stress related. Traditional surveillance methods have been widely used to 

gain insights into the health of populations, leading to intervention and protective 
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measures, but they might be subjected to limitations related to self-reported data that 

might be mitigated through the careful use of objective sensor information from smart 

technologies. A mapping of variables collected by public health surveys (Goal 1) that 

could be collected with AH is, therefore, necessary to better understand and illustrate 

how AH data can improve surveillance.   

 In addition, while there are a lot of separate studies that use mobile and wearable 

devices as tools to collect data, as will be seen in subsequent Chapters, there is currently a 

lack of an ecosystem that integrates mobile and wearable data and use it to support public 

health initiatives. The pilot MHP presented in this dissertation (Goal 2) was developed to 

provide insights and directions into how such a system could be developed using 

consumer-level technologies and products.  

 Finally, a major part of public health surveillance is the analysis of data to inform 

decision-making and interventions. With this in mind, the data collected through a pilot 

study using the MHP is used to predict stress in a population, a major and increasingly 

prevalent health condition worldwide (Goal 3). ML was chosen as the main analysis 

method, as it is ideal to deal with large volumes of complex and varied data, while 

auxiliary statistical analyses were conducted to better understand the data. 

 The objectives outlined above were distilled into research questions that guided 

this research. These are outlined in the next Chapter, which also details how the papers 

described in subsequent chapters framed the research process. 
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Chapter 3 - Research Questions and Objectives 

 
This chapter provides an overview of the process followed in this research 

program and the research questions that led to the program, deriving from the goals 

presented in Chapter 2. In this manner, the goals are further detailed and the questions 

that frame each objective are presented.  

 

3.1 Apple Health, Major Canadian Surveys and Stress 
This goal aims to provide an overview of variables and indicators collected by 

major Canadian public health surveys that can be collected with AH, as well as an 

overview of stress, and what stress-related data can be collected with AH.  

The specific research questions for this objective are: 

1. What data are currently being collected by major Canadian surveys? 

2. What data that composes major Canadian surveys can be collected with 

AH and its associated sensors? 

3. What is stress? 

4. What data types collected through AH can be used to measure stress? 

 

Question 1 and 2 are answered by the paper in Chapter 4 – specifically in Tables 

2-5), while questions 3 and 4 are answered throughout Chapters 6 to 9 which deal with 

the pilot study that uses AH data to predict stress with ML. 

 

3.2 Development of the MHP 
The second objective aims to develop an iOS app that connects to AH and, using 

Apple’s HealthKit API, extracts available stress-related health data with user consent. 

The specific research questions for this objective are: 

1. What are the necessary requirements and tools for the development of the 

MHP? 

2. How can an MHP be developed that allows easy and flexible access to AH 

data? 
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These questions are mainly answered in Chapter 5, which details the elements and 

tools used to develop the MHP as well as the solution’s architecture, modelling and 

infrastructure. The discussion section in Chapter 8 provides lessons learned from 

applying the MHP in practice that shed further light into the second question. 

 

3.3 Applicability of the MHP for Stress Prediction 
This objective aims to apply ML algorithms to stress-related data from the MHP 

to create stress prediction models that classify between stressed and non-stressed 

conditions. This, in turn, will be helpful for public health agencies to determine the 

prevalence of stress at an individual and a population level. Further, the study will also 

examine if there are any statistically significant correlations and relationships in the data 

collected using the MHP. 

The specific research questions for this objective are: 

1. What is the accuracy of ML stress prediction models based on the MHP 

data? 

2. What features are the most important for these models? 

3. Is the data collected with the MHP correlated with perceived stress? 

 
These questions are partly answered in Chapter 7, which shows preliminary ML 

analyses for ECG features. Chapters 8 and 9 describe the pilot study in detail and the 

several approaches to develop the models, their accuracy, and feature importance. 

Chapter 6 presents correlations of the data with perceived stress and additional statistical 

analyses related to question 3. 
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Chapter 4 - Advantages and Challenges for Integrating Mobile Health 
Technologies into Public Health Surveillance 

 
4.1 Foreword 

Major challenges in discussing the use of smart technologies – including mobile 

and wearable devices – for public health surveillance are twofold: first, it is not 

immediately clear which data from major public health surveys can be complemented by 

data available in mobile health systems. Second, equity is a major public health principle 
68. However, not every individual has equal opportunity to technology access, use and 

benefits due to a variety of reasons, from older adults having increased anxiety regarding 

technology use 69 to lower income individuals not being able to acquire devices 70.  

Therefore, public health surveillance efforts intending to integrate smart 

technologies in their design should be aware of these limitations and plan their study 

accordingly. For example, collecting older adult data from mobile technologies in a 

population might not be a recommended approach; on the other hand, as we shall see, 

data from younger populations should in general be representative of that population.  

In addition, the barriers to technology adoption and use are decreasing – for 

instance, the goal of the Government of Canada is to provide access to high-speed 

internet to all Canadians by 2030 71. Therefore, investigating the use of mobile health 

systems that integrate data collected from smart technologies into public health now will 

help us to establish standards, best practices and guidelines regarding the possible 

effectiveness and use of these methods for surveillance in the future. Further, benefits 

from the use of mobile health methods may potentially help with policy changes that 

focus on increased and equitable access to these technologies. 

The viewpoint paper presented in this chapter clarifies, quantifies and expand 

upon the two major challenges described above. A mapping of AH data that could 

complement 3 major Canadian public health surveys – CCHS, CHMS and PASS detailed 

in section 1.2.1 – is presented, helping to clarify how mobile and wearable data can 

support traditional methods of data collection. An overview of studies that use mobile 

health technology for health research is also provided to showcase the benefits of these 

methods. In addition, quantitative information on the use of mobile and wearable device 

users from the 3 largest mobile/wearable companies in Canada are presented, describing 



 19 

the characteristics of these users which can aid with targeted interventions. Finally, major 

barriers to digital health equity are discussed, including income, age, geographical 

location and ethnicity.   

 

4.2 Leveraging Mobile Health Technologies for Public Health: A Viewpoint 
 
4.2.1 Abstract 
Traditional public health surveillance efforts are generally based on self-reported data. 

Well-validated, these methods may nevertheless be subjected to limitations such as 

biases, delays, and costs/logistical challenges. An alternative is the use of smart 

technologies (e.g., smartphones and smartwatches) to complement self-report indicators. 

Having embedded sensors that provide zero-effort, passive and continuous monitoring of 

health variables, these devices generate data that could be leveraged for cases in which 

the data is related to the same self-report metric of interest. However, some challenges 

must be considered when discussing the use of mobile health technologies for public 

health to ensure digital health equity, privacy and best practices. This paper provides an 

overview of research involving mobile data for public health, including a mapping of 

variables currently collected by public health surveys that could be complemented with 

self-report, challenges to technology adoption and considerations on digital health equity 

– with a specific focus on the Canadian context. Population characteristics from major 

smart technology brands – a) Apple, b) Fitbit, and c) Samsung – and demographic 

barriers to the use of technology are provided. We conclude with public health 

implications and a discussion that public health agencies and researchers should leverage 

mobile health data while being mindful of current barriers and limitations to device use 

and access. In this manner, data ecosystems that leverage personal smart devices for 

public health can be put in place as appropriate, as we move towards a future in which 

barriers to technology adoption are decreasing. 

 

4.2.2 Introduction 
Public health surveillance is the collection, analysis, and dissemination of data to 

improve population health 72–74. These data types are the most important source of 

information to support decision-making and interventions by public health agencies. One 
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of the main sources of data are surveys 2,3. However, self-reported survey data may have 

significant limitations related to self-report including social 7–11 and recall biases 2,3,10–15. 

These challenges can produce misleading results: for example, Canadian self-reported 

BMI data were significantly lower than BMI measured directly in a representative sample 

of adults 75, which can be explained by biases and limitations in self-report 24,75. Other 

potential limitations include delays between collection and reporting 17–19, and 

costs/logistics 10,18.  

In this context, an alternative is the use of mobile, wearable, and Internet of 

Things (IoT) technologies – such as smartphones, smartwatches, and wireless scales – as 

additional or complementary survey and assessment tools 23–25 which could possibly 

mitigate some of these challenges, as evidenced by a recent study that used surveys and 

Apple Watch data to study heart rate (HR) changes in COVID-19 patients 26.  

Smart technologies have had an amazing adoption rate, with 32 million Canadians 

owning a smartphone 27 and almost 4 million Canadians owning a fitness wearable device 
28. Notably, smart technologies have sensors that provide zero-effort monitoring of vital 

signs, environmental variables, and behavioural metrics, such as heart rate, sleep, and blood 

pressure (BP), among others 76. For instance, Apple Health (AH) 29,30, a popular source of 

health data from sensors, collects information from smart devices that can be connected to 

Apple operating systems – such as smartwatches, wireless blood pressure cuffs, wireless 

scales, sleep tracking mats, among others. Sensors manufactured by Apple as well as from 

different manufacturers can integrate with AH and read and write data to and from it. In 

this manner, a diverse environment of sensors can be integrated with Apple’s data 

repository.  

These data are typically very large and can often be accessed at relatively low costs. 

Further, the data can be composed of individuals who traditionally may not participate in 

health studies. Sensor data are also collected continuously, providing richer and more 

representative objective information which could potentially be used to complement 

traditional public health self-reporting and reveal new insights into the behaviour of 

individuals in real-life environments 77.  

Velmovitsky et al. 78 provides an example with the Canadian Health Measures 

Survey (CHMS), a major Canadian public health survey consisting of an interview with 
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the respondent, a visit to a clinic for exams and physical measures, and the use of an activity 

monitor for a week. While not a traditional surveillance program, the CHMS and similar 

surveys provide self-reported indicators of interest for public health agencies and so can be 

used to illustrate the potential of mobile health data to complement traditional self-report. 

Indeed, several of the CHMS measures, both taken at the clinic and self-reported, could be 

complemented with data from smart technologies, such as body composition, heart rate, 

sleep behaviour, and physical activity. In addition to providing additional information, this 

data could potentially minimize the aforementioned limitations of biases, costs and delays. 

Further, using data that is passively and continuously collected by personal devices for 

long periods can provide more accurate and representative data than the weekly fitness 

tracker 77,78.  

However, there are still challenges that need to be overcome if smart, personal 

devices are to be used for public health, including technological, ethical, and societal 

challenges. One of the tenants of public health is equity 68. In the context of smart 

technologies, digital health equity is achieved when individuals have equal opportunity to 

“benefit from the knowledge and practices related to the development and use of digital 

technologies to improve health” 79. Digital health equity can be compromised as not 

everyone has equal and fair access to technology.  

These challenges and limitations must be clearly stated and recognized for public 

health entities to understand the potential pitfalls of using smart technologies in 

surveillance. By identifying and being mindful of these, it is possible to plan accordingly 

and integrate new tools and technologies within public health, moving towards a scenario 

in which these issues are mitigated and smart technologies could be used to complement 

data collection. 

The goal of this paper is to provide an overview of the potential, as well as 

limitations, of the use of smart devices for public health, making the case that these tools 

may improve traditional surveillance methods but careful consideration must be taken 

before their use. A particular focus on the Canadian context and technology adoption 

barriers, access and equity will be provided by considering the characteristics of 

populations that widely use smart devices as well as populations that do not use, or do not 
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have access to, these tools. In addition, a mapping of variables collected in major Canadian 

surveys that could potentially be gathered with AH is provided to support our view. 

 
4.2.3 Apple Health and Canadian Surveys 

Several companies now produce devices capable of capturing data in line with 

health metrics traditionally found in public health data collection efforts. A major 

challenge is to identify which data from major surveys can be complemented by data 

available in mobile health systems. To highlight the existing overlap, we compiled the 

variables that can be collected with AH (iOS 15.1) and presented them in Table 1 29,30. 

We then compared these to the ones currently captured by 3 major Canadian public 

health surveys. 

Here we present a summary of which AH data could supplement the Canadian 

Health Measures Survey (CHMS) (Table 2), Canadian Community Housing Survey 

(CCHS) (Table 3), and Physical Activity, Sedentary Behaviour and Sleep indicators 

(PASS) (Table 4 and 5 for adults and children respectively) 80,39, answering the questions 

of which data are currently being collected by major surveys and that could be 

complemented with AH. For these analyses, we used the most recently completed survey 

cycle. Where self-report metrics are composed of many questions, we included examples 

of these questions and indicated which AH variables could potentially be used to 

complement the metrics.  

As can be seen, several metrics including information on activity, symptoms, 

sleep, and biological characteristics (e.g., height and weight), among others, can be 

objectively complemented by AH. These data may also provide more granular and 

detailed information, complementing traditional public health initiatives based on self-

report with more objective data that can be used to gain further insight into the health of 

populations.  

However, it is important to note that – as we will see in the following sections – 

there are many challenges involved in the use of AH and smart technologies for public 

health, and that need to be considered and addressed to ensure digital health equity. 
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4.2.4 Application of Mobile Health Technology in Public Health 
Several studies have begun to apply mobile device data for health research. While 

some of these are not focused on surveillance efforts per se, they highlight how mobile 

and wearable devices can potentially be used to collect data and gain insights into the 

health of individuals and study the prevalence of conditions in a population. 

An interesting study evaluated the levels of physical activity from players of the 

popular Pokémon Go mobile app utilizing data from AH and found that the game is 

associated with short-term physical activity increase, particularly among more sedentary 

individuals 81. To collect the data, participants were asked to take screenshots of their AH 

screen. It is important to note that data can be directly accessed from Apple Health using 

the HealthKit Application Programming Interface (API), which allows third parties to 

access – with user consent given in the device – the health data stored in users’ AH app, 

providing powerful tools for researchers to optimize data collection 29,30.  

In this context, one of the challenges with mobile health research, as pointed out 

by Hicks et al. 77, is that researchers typically need multi-disciplinary experience in 

computer science and health research in order to use these tools to their full potential in 

their studies. If one wishes to use the HealthKit API, for example, it would be necessary 

to program a data collection script that uses Apple’s programming language, Swift. In 

other words, researchers looking to use mobile and wearable data for public health need 

to have knowledge in at least two disparate fields, healthcare (to design proper studies, 

analyze and interpret the data) and computer science (for data collection with mobile 

devices)– and having such multi-disciplinary knowledge may be challenging. In case 

computer science expertise is lacking, public health researchers may be required to find 

more creative ways to collect the data, as shown in the previous study with the screenshot 

requested of users. Another path available to collect the data without the need for coding 

is to export the data directly through the Apple Health app in the Extensible Markup 

Language (XML) format, although that also may require coding skills to handle the data 

inside the file. 

Also of note, to make it easier for researchers to conduct studies using mobile 

technology, Apple has introduced the ResearchKit framework enabling the creation of 

visual consent flows, customizable surveys, and active tasks 30. An example is the 
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mPower app, developed with ResearchKit, which collects iPhone gyroscope data to better 

understand Parkinson’s disease. Initial results included approximately 10,000 enrolled 

participants, providing a continuous flow of data from several individuals that consented 

to their data being used by health researchers around the world 23. To use ResearchKit, 

however, research teams should also have knowledge of mobile technology development. 

This leads to a challenge and opportunity, in that conducting health informatics research 

needs to involve a multi-disciplinary research team with collaboration between the fields 

of public health and computer science. 

Hicks et al. 77 describes several large-scale observational studies that use 

commercial mobile and wearable devices, including a study by the authors themselves 

which used data from over 700,000 activity-tracking app users in 100 countries. This 

study concluded that inequality in the physical activity levels between different countries 

is a stronger predictor of obesity than activity levels in the country. The authors point out 

that novel sources of data from consumer apps allow researchers to gain new insights into 

the health and behaviors of individuals. This can be enhanced by linking mobile data with 

other sources, such as administrative datasets. In addition, the approach of using smart 

technologies, including leveraging data from pre-existing devices, allows the collection 

of larger observational datasets than were previously thought possible, and could even be 

used to identify natural experiments in a population.  

Further, according to Hicks et al. 77, even if a population is not well-represented in 

a dataset, it is possible that if the data is large enough there could still potentially be a 

statistically significant number of participants that follow population distributions and 

allow for methodologically sound analyses. However, the authors are quick to point out 

challenges with this approach such as inaccuracy of sensors and missing data. Inequities 

in technology access may also lead to selection bias as individuals that use the technology 

or app may not be representative of the general population.  

Missing data might be a particular problem for studies dealing with real-life data 

collection, with a lot of factors outside the researcher’s control (e.g., errors in 

measurement due to movement or caused by individuals forgetting to wear the device or 

not wearing it correctly) 21,35. In this case, careful processing of the data must be made, 

including data imputation algorithms or removing the missing intervals 35. 



 25 

Velmovitsky et al.78 discussed the role of Big Data in precision medicine and 

public health. In particular, an overview of different Big Data types is provided, which 

include omics, clinical, social (i.e., social media data), patient-generated health data 

(PGHD) (data from personal smart devices), environmental and demographic data. 

Among challenges related to mobile health research, difficulty in linking PGHD with 

clinical data is highlighted as a lot of medical and administrative information may be 

siloed in providers’ systems which are not typically interoperable and cannot be 

integrated, in addition to security and privacy issues. The authors also suggest areas that 

could be improved with the use of Big Data, such as disease surveillance. A recent 

example of the benefits of mobile devices for this field is the previously mentioned 

observational study that used surveys and Apple Watch data to identify COVID-19 

patients 26. The standard deviation of the interbeat interval of normal sinus beats (SDNN), 

a heart rate variability (HRV) metric, differed significantly in the 7 days prior to and after 

COVID-19 diagnosis compared to uninfected periods, suggesting that the Apple Watch 

could potentially be used as a predictive tool for COVID-19. 

Due to its ability to generate large datasets, mobile research can also be used in 

conjunction with Artificial Intelligence methods, such as Machine Learning (ML), which 

learns patterns in data to make predictions. Indeed, ML predictive models work best with 

large datasets, which can be collected through smart technologies. As an example, several 

studies used ML to forecast COVID-19 incidence, using data from sources such as 

Google’s mobility dataset 82. Applying ML methods will also require further multi-

disciplinary knowledge in computer and data science. 

Several efforts are also underway to create ecosystems that allow users to register 

their devices and continuously donate data for research. For example, the ecobee 

company, producer of a smart thermostat device, has launched the Donate Your Data 

program 83,84, which allows thermostat owners to anonymously share their data with 

researchers. The Ubiquitous Health Technology Lab has conducted studies using this 

dataset 85–87 and has recently deployed a web platform that allows individuals to access 

study information and enroll their personal Fitbit and ecobee devices. Once enrolled, data 

from the devices is collected by the Lab once a day 88. 
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Recently, Velmovitsky et al. 21 developed a mobile platform that collects Apple 

Watch ECG data through HealthKit to predict stress levels using ML. By quantifying 

stress levels, public health agencies could potentially apply interventions such as 

notifying users or asking if they would like to open a meditation application. Of note, this 

study gave devices to participants rather than use data already collected from their 

personal devices, so the dataset used was not particularly large – and so did not represent 

surveillance, but rather worked as a pilot study to illustrate the benefits of mobile and 

wearable applications to public health. Preliminary results of the study achieved model 

accuracies (trained using the entire dataset according to several demographic factors) of 

around 55-60%, consistent with the low end of state-of-the-art for ML stress prediction 

models using real-life data. The models had high specificity, accurately identifying when 

an individual is not stressed but were less successful in predicting when an individual was 

stressed. The process of collecting HealthKit data in this study and the mobile application 

are described elsewhere 89,90. Interestingly, much like the previous work by Hirten et al. 
26, this study also found SDNN to be one of the most important features, in this case for 

predicting stress. 

There have also been several studies that compare the accuracy of mobile devices 

to gold standard measurements. Hart et al. 91 found that the activPal Professional device 

and the Bouchard Activity Record (a self-report log that assesses time spent sitting, lying, 

standing and in physical activity) showed moderate to high agreement and correlation for 

total and concurrent time spent walking and in sedentary behaviour. However, it is not 

always the case that the results are successful. A study comparing the ActiGraph device 

with the International Physical Activity Questionnaire (IPAQ) found low to moderate 

correlations with IPAQ overestimating sitting and vigorous activity, for instance 92.  In 

fact, a systematic review of wearables found that data may be under- or overestimated in 

several devices and models 93, and a study found that the Fitbit Flex went against the 

ActiGraph GT3X+ in reporting steps in free-living conditions (differences increased with 

the number of steps taken) 94.  

Regarding the Apple Watch, the heart’s RR intervals measured with the device 

during relaxation and stress states were shown to have high reliability and agreement 

with signals obtained from the Polar H7 chest strap 95, suggesting that heart data from 
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Apple Watch are accurate. There is also limited but promising evidence on the accuracy 

of Apple Watch sleep data 96. Lastly, it is important to note that there is growing evidence 

of inaccuracies in the use of photoplethysmography (PPG) green light signaling in many 

wearables for individuals with darker skin tones compared to those of lighter skin tones, 

which may introduce biases in the analyses 97.  

It is often challenging to compare the accuracy of mobiles and wearables as 

studies tend to use different metrics for assessing validity/reliability, making the 

comparison between devices difficult 93. In addition, the speed at which new device 

models are released, or systems updated, causes studies to quickly become obsolete, 

especially if there are significant differences between the sensors and algorithms used to 

measure data 24,94. Differences in models may limit the applicability of mobiles/wearables 

in population-level studies over time, as it is not possible to guarantee comparability, and 

that remains a significant issue 24,94. To date, the literature suggests that several mobile 

health devices and metrics are in line with gold standard measurements in public health. 

However, some devices continue to fall below the standard and further development will 

be required before they can be implemented in public health.   

 
4.2.5 Technology Adoption: Facts and Challenges 

As can be seen by the aforementioned studies, although Apple Health is the focus 

of our review of major Canadian surveys, it is not the only available method for mobile 

data collection. In this section, we present results relating to the adoption of smart 

technologies with a focus on the major Canadian companies of wearable devices that also 

collect health metrics. As of 2022, three companies dominate the Canadian wearable 

device market: Apple, Samsung, and Fitbit, respectively 98. A summary is shown in Table 

6. 

Garmin and Samsung have a similar market share (13%), but we focus on 

Samsung due to its focus on smart devices and health metrics. In addition we also 

describe major challenges to technology adoption in the Canadian context. The 

implications for public health are discussed in the next section.  
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4.2.5.1 Characteristics of Major Mobile and Wearable Companies 
4.2.5.1.1 Apple  

Apple has the largest wearable market share in Canada, with 41% of Canadians 

using an Apple device 98. Compared to other brands, Apple has the largest share of 18–

29-year-old users (35%), and there is no significant difference between the percentage of 

female and male users. On the other hand, Apple has the lowest share of 50–64-year-old 

users compared to other brands at approximately 15% 98.  

Apple users are typically more educated compared to other companies, with 38% 

having a bachelor’s degree and 19% having a master’s or doctoral degree. In addition, 

50% of Apple users have a high monthly income. The type of community that Apple 

users are in also differs from other companies, with approximately 68% living in larger 

cities. Of note, 67% of Apple users report accessing the internet through their 

smartwatches compared to other wearable users (53%) 98. This could be related to Apple 

users having a higher income which allows them to obtain more devices with Internet 

access (as further detailed in the subsection on income below). Apple’s popularity has 

grown, with Apple wearable users increasing by 11% in the past 2 years 98.  

On a global scale, Apple's geographical segment is primarily in the United States 

(U.S.) and urban cities 99.  The company's marketing strategy is aimed at consumers with 

high purchasing power and career focus, such as those in professional executive 

positions. Further, Apple relies on the loyalty of customers who typically continue to 

purchase all their electronics from the company. Apple’s brand value was approximately 

$947 billion USD, due in large part to customer loyalty and brand recognition as an 

exclusive, luxury product 100.  

 

4.2.5.1.2 Fitbit  
Fitbit produces the second most used wearable in Canada, with a market share of 

38% 101. In Canada, 61% of Fitbit users are female and Fitbit has the highest share of 50–

64-year-old users compared to any other wearables at 32%. On the other hand, Fitbit has 

the lowest share of 18–29-year-old users compared to other wearables at 20%. 42% of 

Fitbit users have a high monthly income and 61% of users live in larger cities. A large 

share of Fitbit users are educated, with 30% having a bachelor’s degree and 16% having a 

master’s or doctoral degree. Of note, Fitbit users were found to access the internet less 
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often through their devices (46%) compared to the average wearable user (53%).  

Further, Fitbit users have a higher percentage of hiking activities in comparison to any 

other wearable users (26 % and 17%, respectively). They also engage more in aerobic 

and cardio physical activity compared to other wearable users (23 % and 13%, 

respectively), suggesting that Fitbit users are in general more interested in fitness and 

exercising 101. 

On the global scale, as of 2021, Fitbit has sold over 127 million wearables 

worldwide with 111 million registered users 102. For reference. Apple has the highest 

share of the wearable device market with 160 million sold globally. Unlike Apple, 

Fitbit’s wearable market share has declined 12% in the past two years 101. Fitbit was 

valued at 2.1 billion U.S. dollars when Alphabet Inc purchased the company in 2021 102.  

 

4.2.5.1.3 Samsung Wearables  
Samsung produces the third most used wearable in Canada with a market share of 

13% 103. Compared to other brands, Samsung has the highest share of 30–39-year-old 

users (30%) and most users are male (57%). In addition, 47% of users have a high 

monthly income and 21% have a master’s or doctoral degree. Several Samsung users 

(60%) also live in larger cities in Canada 103.  

On a global scale, Samsung’s geographical segment is primarily in the Asian 

market sector and urban cities. Globally, Samsung’s main users are adults, and their 

products are marketed toward society in general. Samsung has products that are for users 

with both low and high purchasing power, expanding the brand’s target market 99.  

 

4.2.5.2 Security, Privacy and Data Ownership Issues 
Security and privacy issues must be addressed during health data collection, and 

are particularly important challenges to the collection, storage, and use of data from smart 

technologies.  

In Canada, the Personal Information Protection and Electronic Documents Act 

(PIPEDA) regulates the collection, use and disclosure of personally identifiable 

information (PII) for private sector organizations involved in a commercial activity. This 

includes pharmacies, providers, and laboratories, among others 104. This federal act 

applies to all types of PII 105,106. Several provinces have adopted health sector laws 
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dealing with personal health information (PHI), some of which are deemed substantially 

similar to PIPEDA and taking precedence in these provinces (Table 7) 105,107,108. PIPEDA 

still applies when PHI is transferred provincially/nationally. 

PIPEDA is based on ten principles (Table 8) 107,109. The principle of Safeguards 

mandates that PII “be protected by security safeguards appropriate to the sensitivity of 

the information” 106. Provincial healthcare acts define similar protective measures; for 

example, PHIPA states that health information custodians must “take steps that are 

reasonable in the circumstances to ensure that personal health information … is protected 

against theft, loss and unauthorized use or disclosure…” 109,110. To inform health 

custodians, the Information and Privacy Commissioner of Ontario (IPC) listed 

recommended safeguards (Table 9) 111. In other words, Canadian privacy laws require 

that health custodians protect PII by appropriate measures. What constitutes an 

appropriate measure will depend on the sensitivity of the information and the custodian’s 

circumstances, including type/size of the organization and if the data are shared with third 

parties 105,111. Organizations must obtain informed consent for the collection, use and 

disclosure of PII and state their purposes for data collection (Table 8). 

Different countries and regions have different regulations. The Health Insurance 

Portability and Accountability Act (HIPAA), which applies to subsets of health 

custodians in the U.S., offers a similar but more comprehensive list of technical, physical 

and administrative safeguards 112, while the General Data Protection Regulation (GDPR) 

regulates the handling of PII in the European Union and is considered to be some of the 

most comprehensive privacy legislation in the world. GDPR and HIPAA guidelines can 

also help Canadian health custodians to understand their security needs and implement 

adequate safeguards.  

The issue of security and privacy is further complicated when ownership of the 

data is considered. In other words, is the data owned by the individuals who generated the 

data, corporations who manufactured the data collection devices, or other stakeholders? 

While a comprehensive discussion of data governance is outside the scope of this paper, 

this legal and societal issue still needs to be addressed when discussing data collection 

with mobile and wearable technologies. Velmovitsky et al.113 highlights potential trust 

issues in the data collection process between corporations, third-party solutions, 
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individuals, providers and regulations. In particular, individuals using such technologies 

need to trust that the corporations (e.g., Apple, Samsung, Fitbit) and research and 

personal applications (e.g., fitness and research apps) are using the data only for the 

purposes originally consented to. Regulatory agencies need to make sure regulations 

(such as the ones discussed above) are being respected by these entities.  

Micheli et al.114 further highlights asymmetries of power regarding technology 

corporations having large and unrestricted access to data which could result in privacy 

violations such as the case of a Facebook data leak which enabled Cambridge Analytica 

to use these data improperly for voter profiling 115. The authors further highlight 

governance models proposed in literature, including a) data sharing pools in which data is 

digitally shared between partners, with contracts stipulating the conditions of use; b) data 

cooperatives, which are similar to sharing pools but with more involvement of data 

subjects, which have more control over the data sharing process; c) public data trusts, 

which involve a public entity accessing citizen and company data; d) and personal data 

sovereignty, in which data subjects have complete control over their data and sharing 

permissions. The open issue of data ownership is particularly important in the context of 

research and public health surveillance, as the gateways offered by companies such as the 

HealthKit API are controlled by these entities, and as such access to data could 

potentially be charged in case mobile health data is increasingly used for research.  

Researchers who collect, use and disclose PII for non-commercial activities are 

not typically subject to PIPEDA but must still get approval from appropriate review 

ethics boards, which typically also require safeguards according to the sensitivity of the 

data 105,110. Further, public health agencies are generally not subject to PIPEDA but to 

federal, provincial and territorial laws dealing with personally identifiable information in 

their region 116. For example, the Public Health Agency of Canada is subjected to the 

federal Privacy Act, which delineates individual privacy rights in relation to the federal 

government 117.  

It should also be noted that applications that allow data sharing between smart 

technologies typically have their consent mechanisms. For example, the HealthKit API 

requires that individuals first give consent to each data type for this data collection 29, as 



 32 

shown in Figure A3. In addition to these mechanisms, researchers and public health 

agencies should still obtain consent for data collection following applicable regulations. 

In summary, any third-party entity collecting health data for commercial purposes 

(e.g., private healthcare providers, mobile app developers) are subject to PIPEDA and 

must respect the principles to protect personal information. Researchers and public health 

agencies are subjected to their own ethics boards and privacy regulations, which typically 

also require obtaining consent for data collection and use. 

 
4.2.5.3 Internet Access by Canadians 

As the use of mobile and wearable data in health continues to grow, researchers 

must acknowledge and address inequalities in technology access. Disparities may lead to 

selection bias as individuals that use the technology or app may not be representative of 

the general population. 

In 2020, nearly 6% of Canadians did not have internet access at home. 63% felt 

no need for it, 26% found the service costs too high, and 13% found the equipment costs 

prohibitive 118. From 2015 to 2023, Canada’s internet users have steadily increased, 

reaching 36 million. In other words, approximately 94% of Canada’s population has 

access to the internet 119. In this manner, while internet access remains a barrier for some 

of the population, most Canadians currently have access to the internet, and this number 

is projected to increase.  

The standards set by the Canadian Radio-television and Telecommunications 

Commission (CRTC) for internet connectivity are a minimum download speed of 50 

Mbps and an upload speed of 10 Mbps. An internet speed of 50 Mbps or more allows 

Canadians to perform multiple online activities and have various devices connected to the 

internet at once 118. Approximately 72% of Canadian households have achieved the 

CRTC standards for internet connectivity. Regarding mobile data, 80% of Canadians 

reported having a personal mobile data plan, with only 1.5% reporting a mobile data plan 

without Internet connection 118. Without good internet speed and connection, therefore, 

the use of mobile and wearable devices for data collection are severely limited. The 

Government of Canada has set a goal of having 98% of Canadians with access to high-

speed internet by 2026 and 100% of Canadians by 2030 71.   
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In this manner, internet access is a major factor in smart technology adoption. 

Many barriers limit the use of technology and high-speed internet for Canadians such as 

household income, age, geographical location, and ethnicity. Understanding these 

barriers to adoption is important when using mobile health data to address health 

inequalities, and they will be expanded in the next sections. 

 

4.2.5.4 Income 
The most prevalent barrier to internet access for Canadians is low household 

income. Deloitte’s digital equity report found that, of survey participants who did not 

have a data plan,  68% reported high costs as a barrier 70. In addition, household income 

can alter an individual’s perception of technology and digital services: people earning 

over $150,000 CAD annually were likelier to agree (74%) that internet and new 

technologies had a positive impact on their lives compared to those earning less than 

$40,000 CAD (49%) 70. This disparity can manifest itself in differences in the quality of 

internet service and the range of digital tools individuals have access to.  

Indeed, internet speed and household income are highly correlated. Households 

with lower incomes are more likely to fall below CRTC thresholds compared to 

households with higher incomes. In fact, most households earning less than $40,000 

CAD annually do not meet the CRTC target, which is 19% higher than the national 

average and 28% higher compared to the highest income category 70. Furthermore, 

families with an annual household income of $200,000 CAD or more had access to 

internet speeds that were approximately 30 Mbps faster than those with an income of less 

than $20,000 70. With an additional 30 Mbps, a household could connect to three more 

devices, including phones and computers. Without high-speed internet, therefore, digital 

health equity is severely affected, as individuals may not be able to have internet 

connection or access to smart technologies. 

 

4.2.5.5 Urban vs Rural Geographical Locations 
Due to Canada’s vast size and dispersed population, individuals residing in rural 

and remote geographical locations face additional challenges in accessing high-speed 

internet. Rural and remote regions encounter distinct challenges concerning internet cost 
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and speed, which can be attributed in large part to Canada's vast size and dispersed 

population.  

Within Canadian Census Metropolitan Areas or Census Agglomerations 

(CMA/CA), 95% of households had access to a home internet connection. For 

households residing outside a CMA/CA, this figure drops to 88%. An even greater 

geographical disparity exists when one considers access to high-speed internet with 

download speeds of 50 Mbps or more. Only 48% of people living outside CMA/CAs 

meet the CRTC target compared to 76% of respondents residing within these areas, and 

73% have a mobile data plan outside CMA/CAs compared to 81% residing within these 

areas 118.  

 

In particular, Canadian Indigenous communities are under-represented in the 

digital landscape: only 39% of First Nation reserves in Canada met the CRTC threshold 

for high-speed internet 70. Researchers must consider these geographical disparities in 

digital equity when implementing and collecting data from devices. 

 

4.2.5.6 Older Adults  
Historically, older adults have used less technology than younger populations 120. 

In general, older adults typically have higher anxiety when using new technologies, and 

declining visual, motor, hearing and cognitive impairments can affect technology 

acceptance 69. 1 in 3 older adults aged over 75 reported frustration when using unfamiliar 

technologies 70.  

Older adults may also not want to use any additional applications, being limited to 

call and messaging functions, and decide not to have a device due to cost 69. In the three 

brands detailed above, individuals aged 50-64 composed the lowest share for Apple and 

Samsung (15% and 14%, respectively), with a better representation in Fitbit at 32%. 

However, a poll conducted during the pandemic revealed that the number of Canadians 

aged 65 and older who own a smartphone increased (65% in 2020 from 58% in 2019), 

and 83% of owners use it daily 121. The pandemic also caused older adults to increase 

their technology use in general, for example through video calls or using social media to 

message family and friends  122. Indeed, in 2020, 72% of Canadians aged over 65 
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revealed that they now feel confident using technology 122, indicating that, although age 

could be a barrier to technology adoption, it seems that it is diminishing. This also 

remains true in other geographical locations, such as in the U.S., where smartphone 

ownership and social media use among older adults is increasing with 61% of seniors 

aged over 65 owning a smartphone and 45% using social media, increasing to 83% and 

73% for individuals aged 50-64 120. 

Although the technology access gap for older adults is becoming smaller, barriers 

still remain that need to be addressed to ensure equitable access, including individual 

(e.g., physical aging, sensory impairments, cognitive limitations)  and technological 

barriers 123.  Indeed, one of the most frequent obstacles to accessing technology among 

older adults is physical aging, particularly hearing and vision impairments. Decreases in 

motor control, such as tremors in the hands, also difficult the use of devices, especially 

with small screens. Lack of experience with technology, perception of their own 

proficiency in using devices, and a general aversion to technology may also difficult 

adoption among other adults  123. Further, technological functional barriers, such as small 

screen and text sizes, as well as complex functionalities that are intuitive and/or assume 

the user has prior experience with the technology, also negatively impact adoption. The 

limited availability of technology devices suited or adapted to older adults also poses a 

challenge. Finally, the cost associated with purchasing electronic devices and data is also 

a significant factor limiting technology adoption; while this is true for most populations, 

it particularly affects older adults if they rely on a restricted or fixed income, such as 

government pensions 123. 

 

4.2.5.7 Ethnicity 
An individual’s ethno-cultural background can affect technology adoption. For 

example, individuals of Middle Eastern, North African, and South Asian descent are 

more likely to view cost as a significant barrier to accessing digital technologies 

compared to both the national average and individuals of European descent 70.  

Further, racially motivated discrimination, cyberbullying, and harassment are 

prevalent in online spaces. Individuals of Indigenous, Middle Eastern, Asian, or African 
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descent are likelier (60%) to have experienced online bullying or discrimination 

compared to individuals of Caucasian or European descent (25%) 70.  

On the other hand, it is also important to note that Canadians of Indigenous, 

Middle Eastern, Asian, or African descent utilize the internet as a means of connecting 

with others who share their ethnocultural background and finding individuals who can 

relate to their experiences. In Canada, 80% of Indigenous individuals utilized the internet 

to maintain regular connections with members of their community, which is significantly 

higher than the national average of 50% 70. Nevertheless, digital inequity remains a 

significant challenge for Indigenous communities across Canada, relating to historical 

failures in recognizing Indigenous rights, which have contributed to longstanding and 

wide-ranging socio-economic disparities between Indigenous and non-Indigenous 

populations.  

 

4.2.6 Implications for Public Health 
The sections above illustrate how data from smart technologies could possibly be 

used to support health sciences and public health efforts, complementing self-report 

metrics with objective data and leveraging personal devices to provide continuous, 

passive data collection from large populations.  

Indeed, studies focusing on mobile datasets are already underway. While 

traditional data collection methods, typically focused on self-report, have years of use and 

validation – as evidenced by the major surveys in use – they might be complemented by 

objective sensor data collected passively through smart technologies that are widely 

adopted by Canadians and worldwide. This could allow researchers and public health 

specialists to access a larger volume of continuous, real-world, and real-time data for 

decision support and to gain new insights into the health of individuals and populations. 

These stakeholders should still respect applicable security and privacy regulations, 

mandates from review ethics boards, and obtain user consent. 

Given that, a system that allows users to share their data with public health 

organizations – such as a larger version of the mobile platform suggested by Velmovitsky 

et al. 21 and by the Ubiquitous Health Technology Lab 88 – might be beneficial in 

supporting health efforts, research and interventions.  
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However, scientists conducting studies based on mobile health population data 

must be aware of the barriers and challenges identified above and take them into account 

when designing their studies and collecting data. For example, these methods may not be 

appropriate for certain ethnicities, older populations or individuals that possess lower 

income or are located in geographically distant areas. It is possible that the Apple Health 

repository, which was the focus of this paper, may not be the best approach for data 

collection depending on the population and study design, and data from other health 

repositories should be considered (e.g., for physical activity studies, it is possible Fitbit 

might be a better choice). Digital health equity concerns must be addressed to ensure all 

populations benefit from the use of smart devices, and in case populations without equal 

access to mobile technologies or internet are part of the study, special care must be taken 

to avoid digital exclusion.  

In addition, to mitigate some of these challenges, scientists can consider the 

characteristics of the population that uses each device. For example, if lower-income 

populations are the focus of a study, it would make more sense to leverage Samsung 

personal devices than Apple ones, as Apple products target individuals with higher 

purchasing power. On the same token, Fitbit devices can better target individuals with a 

prior interest in physical activity. Careful consideration must also be taken to ensure the 

devices have prior evidence suggesting the collected data has good agreement and 

correlation with gold standard measurements. 

Another important factor to note is that a lot of these barriers are already 

recognized by the Government of Canada and other stakeholders, and efforts are in place 

to mitigate or eliminate them over the next years. As mentioned, the Canadian 

government has a goal of enabling all Canadians to access high-speed internet by 2030 
124, and older adults are becoming increasingly comfortable with technology. In a few 

years, it is likely that some of the barriers may not be present anymore. In addition, new 

technologies – such as the implementation of 5G – can greatly reduce some of the 

challenges, for example by increasing the number of devices that can be connected to a 

single point as well as the speed of data collection and transfer 125.  

If researchers and public health organizations develop methods and guidelines for 

collecting and using personal health data now – with careful considerations on current 
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issues regarding adoption, access, privacy, ownership and equity – they will be more 

prepared to use this information in the future if and when those barriers are greatly 

diminished. For example, new standards and best practices can be created on how to 

obtain, process, secure and store mobile health data; how to deal with different device 

models; how to obtain consent in studies using mobile data; or special considerations for 

certain populations. In addition, more studies using mobile and wearable data might 

generate more evidence to decision-makers on whether these devices could improve 

health of populations. 

The lack of interoperability between devices, which adds additional complexities, 

must also be considered: if a public health agency develops a system that extracts data 

from Fitbit devices, for instance, the same data pipeline will not work for Samsung or 

Apple products. Different programming languages, APIs, and protocols need to be used. 

This may affect potential studies as having larger and more robust datasets from a larger 

population would lead to more representative and quality data. The issue of 

interoperability must be carefully considered when designing and creating population-

wide data collection systems and should also be integrated into the development of 

standards and best practices. 

In conclusion, the sooner population-wide data collection and surveillance 

systems using mobile technology are in place, the sooner specialists can take advantage 

of these data. On the same token that contact tracing apps had to be developed quickly 

during the COVID-19 pandemic as there was not a wide system available and in place for 

managing disease spread before it in most countries, by being proactive, anticipating the 

need and investigating these systems in parallel to the process of eliminating barriers to 

device and internet access, health scientists will be better prepared to deal with the 

challenges of tomorrow while taking advantage of the opportunities that the future will 

bring. 

 

Table 1: Variables Collected by AH, per Group 

Group Variable Name 

Activity Flights Climbed 



 39 

Activity Steps 

Activity Walking + Running Distance 

Activity Active Energy  

Activity Exercise Minutes 

Activity Resting Energy 

Activity Stand Hour 

Activity Cardio Fitness(VO2 max ) 

Activity Workouts 

Activity Cycling Distance 

Activity Downhill Snow Sports Distance 

Activity NikeFuel 

Activity Pushes 

Activity Swimming Distance 

Activity Swimming Strokes 

Activity Wheelchair Distance 

Activity Stand Minutes 

Activity Move Minutes 

Mindfulness Mindful Minutes 

Nutrition Biotin 

Nutrition Caffeine 

Nutrition Calcium 

Nutrition Carbohydrates 

Nutrition Chloride 

Nutrition Chromium 

Nutrition Copper 

Nutrition Dietary Cholesterol 

Nutrition Dietary Energy 

Nutrition Dietary Sugar 

Nutrition Fiber 
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Nutrition Folate 

Nutrition Iodine 

Nutrition Iron 

Nutrition Magnesium 

Nutrition Manganese 

Nutrition Molybdenum 

Nutrition Monounsaturated fat 

Nutrition Niacin 

Nutrition Pantothenic Acid 

Nutrition Phosphorus 

Nutrition Polyunsaturated Fat 

Nutrition Potassium 

Nutrition Protein 

Nutrition Riboflavin 

Nutrition Saturated Fat 

Nutrition Selenium 

Nutrition Sodium 

Nutrition Thiamin 

Nutrition Total Fat 

Nutrition Vitamin A 

Nutrition Vitamin B12 

Nutrition Vitamin B6 

Nutrition Vitamin C 

Nutrition Vitamin D 

Nutrition Vitamin E 

Nutrition Vitamin K 

Nutrition Water 

Nutrition Zinc 

Sleep In Bed 
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Sleep Asleep 

Body Measurements Body Fat Percentage 

Body Measurements Body Mass Index 

Body Measurements Height 

Body Measurements Weight 

Body Measurements Lean Body Mass 

Body Measurements Waist Circumference 

Body Measurements Basal Body Temperature 

Body Measurements Body Temperature 

Body Measurements Electrodermal Activity 

Heart Heart Rate 

Heart Resting Heart Rate 

Heart Walking Heart Rate Average 

Heart Cardio Fitness (VO2 Max) 

Heart Cardio Fitness Notifications 

Heart Peripheral Perfusion Index 

Heart High Heart Rate Notifications 

Heart Low Heart Rate Notifications 

Heart Irregular Rythym Notifications 

Heart Heart Rate Variability (HRV) 

Heart Blood Pressure 

Heart Electrocardiogram (ECG) 

Symptoms Abdominal Cramps 

Symptoms Acne 

Symptoms Appetite Changes 

Symptoms Bladder Incontinence 

Symptoms Bloating 

Symptoms Body and Muscle Ache 

Symptoms Breast Pain 
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Symptoms Chest Tightness or Pain 

Symptoms Chills 

Symptoms Congestion 

Symptoms Constipation 

Symptoms Coughing 

Symptoms Diarrhea 

Symptoms Dizziness 

Symptoms Dry Skin 

Symptoms Fainting 

Symptoms Fatigue 

Symptoms Fever 

Symptoms Headache 

Symptoms Heartburn 

Symptoms Hot Flashes 

Symptoms Loss of Smell 

Symptoms Loss of Taste 

Symptoms Lower Back Pain 

Symptoms Memory Lapse 

Symptoms Mood Changes 

Symptoms Nausea 

Symptoms Night Sweats 

Symptoms Pelvic Pain 

Symptoms Rapid, Pounding or Fluttering Heartbeat 

Symptoms Runny Nose 

Symptoms Shortness of Breath 

Symptoms Skipped Hearbeat 

Symptoms Sleep Changes 

Symptoms Sore Throat 

Symptoms Vaginal Dryness 
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Symptoms Vomiting 

Symptoms Wheezing 

Vitals Heart Rate 

Vitals Blood Pressure 

Vitals Body Temperature 

Vitals Respiratory Rate 

Vitals Blood Glucose 

Vitals Menstruation 

Vitals Blood Oxygen 

Cycle Tracking Abdominal Cramps 

Cycle Tracking Acne 

Cycle Tracking Appetite Changes 

Cycle Tracking Basal Body Temperature 

Cycle Tracking Bladder Incontinence 

Cycle Tracking Bloating 

Cycle Tracking Breast Pain 

Cycle Tracking Cervical Mucus Quality 

Cycle Tracking Constipation 

Cycle Tracking Contraceptives 

Cycle Tracking Diarrhea 

Cycle Tracking Dry Skin 

Cycle Tracking Fatigue 

Cycle Tracking Hair Loss 

Cycle Tracking Headache 

Cycle Tracking Hot Flashes 

Cycle Tracking Lactation 

Cycle Tracking Lower Back Pain 

Cycle Tracking Memory Lapse 

Cycle Tracking Menstruation 
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Cycle Tracking Mood Changes 

Cycle Tracking Nausea 

Cycle Tracking Night Sweats 

Cycle Tracking Ovulation Test Result 

Cycle Tracking Pelvic Pain 

Cycle Tracking Pregnancy 

Cycle Tracking Pregnancy Test Result 

Cycle Tracking Progesterone Test Result 

Cycle Tracking Sexual Activity 

Cycle Tracking Sleep Changes 

Cycle Tracking Spotting 

Cycle Tracking Vaginal Dryness 

Hearing Headphone Audio Levels 

Hearing Audiogram 

Hearing Environmental Sound Levels 

Hearing Noise Notifications 

Hearing Headphone Notifications 

Respiratory Cardio Fitness(VO2 Max) 

Respiratory Forced Expiratory Volume, 1 sec 

Respiratory Forced Vital Capacity 

Respiratory Inhaler Usage 

Respiratory Oxygen Saturation 

Respiratory Peak Expiratory Flow Rate 

Respiratory Respiratory Rate 

Respiratory Six-Minute Walk 

Mobility Double Support Time 

Mobility Step Length 

Mobility Walking Speed 

Mobility Walking Asymmetry 
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Mobility Walking Steadiness 

Mobility Stair Speed: Up 

Mobility Stair Speed: Down 

Mobility Cardio Fitness (VO2 Max) 

Mobility Six-Minute Walk 

Mobility Walking Steadiness Notifications 

Other Alcohol Consumption 

Other Blood Alcohol Content 

Other Blood Glucose 

Other Handwashing 

Other Inhaler Usage 

Other Insulin Delivery 

Other Number of Times Fallen 

Other Sexual Activity 

Other Toothbrushing 

Other UV Index 

Immunizations COVID-19 Vaccine Records 

Health Details Name 

Health Details Date of Birth 

Health Details Sexual Activity 

Health Details Blood Type 

Health Details Fitzpatrick Skin Type 

Health Details Wheelchair Distance 

Health Details Medication That Affects Heart Rate 

 
 

Table 2: CHMS Measures related to Possible AH Variables 

Type Description/Question Example AH Possible AH Variables 

Clinic Component       
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Height Standing height measured during 

clinic visit 

Yes Height 

Weight Weight measured during clinic 

visit 

Yes Weight 

Neck 

Circumference 

Neck circumference measured 

during clinic visit 

No N/A 

Waist 

Circumference 

Waist circumference measured 

during clinic visit 

Yes Waist circumference 

Resting blood 

pressure 

Device applied in the clinic to 

measure resting blood pressure 

Yes Blood pressure 

Heart Rate Device applied in the clinic to 

measure heart rate 

Yes Heart Rate, Resting 

Heart Rate, Walking 

Heart Rate Average, 

Heart Rate Variability 

Vision Assessment Consists of several tests in the 

clinic: visual acuity, intraocular 

pressure, visual field, and retinal 

photography 

No N/A 

Cardiovascular 

fitness 

Measured using the Canadian 

Aerobic Fitness test, in which 

individuals go up and down the 

steps for several minutes to 

measure “the efficiency of lungs 

and heart in delivering oxygen to 

the exercising muscles as well as 

the efficiency of these exercising 

muscles in using the oxygen”.  

Yes Flights Climbed, Steps, 

Walking + Running 

Distance, Active Energy 

(kcal), Exercise 

Minutes, Resting 

Energy, VO2  Max, 

Workouts, Oxygen 

Saturation, Forced 

Expiatory Volume 1 sec, 

Forced Vital Capacity, 

Peak Expiratory Flow 

Rate, Respiratory Rate 
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Grip Strength  Measured in the clinic with a 

device called dynamometer that 

is squeezed as hard as the 

individual can. 

No N/A 

Sit and Reach Measured in the clinic, 

individuals sit on a mat and lean 

forward at the hips  

No N/A 

Bone Mineral 

Content 

X-ray at the clinic No N/A 

Vertical jumps Measured in the clinic with two 

tests: multiple two-legged 

hoping test, and vertical jump 

test 

No N/A 

Level of Physical 

Activity 

Measures the intensity, time, 

duration and frequency of the 

activity with a physical activity 

monitor wore for seven days 

following the clinic visit 

Yes Steps, Walking + 

Running Distance, 

Active Energy (kcal), 

Exercise Minutes, 

Resting Energy, Stand 

Hour, VO2  Max, 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Weelchair Distance, 

Stand Minutes 

Blood samples Blood samples from respondent 

at clinic 

No N/A 
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Urine samples Urine samples from respondent 

provided at home 

No N/A 

Household 

Questionnaire 

      

General health 

(GEN) 

Using a scale of 0 to 10, where 0 

means "Very dissatisfied" and 

10 means "Very satisfied", how 

do you feel about your life as a 

whole right now? 

  

No N/A 

Health Utility 

Index (HUI) 

Are you usually free of pain or 

discomfort? 

How would you describe your 

usual ability to remember 

things? 

How often do you use a 

wheelchair? 

Are you able to walk at all? 

  

Yes, for some questions Abdominal Cramps, 

Body and Muscle Ache, 

Breast Pain, Chest 

Tightness or Pain, 

Headache, Lower Back 

Pain, Pelvic Pain, Sore 

Throat, Wheelchair Use, 

Audiogram, 

Environmental Sound 

Levels, Headphone 

Audio Levels, Noise 

Notifications, 

Headphone 

Notifications, Walking 

Speed, Step Length, Six-

Minute Walk, Stair 

Speed: Up, Stair Speed: 

Down, Six-Minute 

Walk, Cardio Fitness, 

Walking Steadiness, 
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Walking Asymmetry, 

Memory Lapse 

Chronic conditions 

(CCC) 

Have you had any asthma 

symptoms or asthma attacks in 

the past 12 months?  

Do you have high blood 

pressure? 

Do you currently take insulin for 

your diabetes? 

In the past month, did you take 

pills to control your blood 

sugar? 

  

  

  

Yes, for some questions Inhaler Usage, Blood 

Pressure, Insulin 

Delivery, Blood Glucose 

Vision (VIS) Have you ever had glaucoma? No N/A 

Sleep Apnea Without the use of sleeping aids, 

how often do you usually have 

trouble going to sleep or staying 

asleep? 

Using a scale from 0 to 10, 

where 0 means "no sleepiness" 

and 10 means "extremely 

sleepy", how would you assess 

your sleepiness during a typical 

day?  

Yes, to some questions Sleep Time In Bed, 

Sleep Time Asleep, 

Sleep Changes 

Pregnancy (PRS) Are you pregnant? Yes Pregnancy, Pregnancy 

Test, Progesterone Test 

Menopause (MEN) Have you had a menstrual period 

in the last 12 months? 

Yes, to some questions Mensturation 
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Fracture History 

(FRH) 

Have you fallen in the past 12 

months? 

Yes, to some questions Number of Times Fallen 

Fracture Details 

(FRD) 

Which bone(s) did you break or 

fracture (on that occasion)? 

No N/A 

Medication Use 

(MEU) 

Have you taken or used any 

other prescription medications in 

the past month? 

No N/A 

Steroids and 

Osteoporosis 

Medications 

(SOM) 

  

Have you ever used steroids 

administered by inhalation, for 

example, Flovent, Pulmicort or 

Vanceril? Do not include nasal 

sprays. 

No N/A 

Height and Weight 

(HWT) 

How tall are you without shoes 

on? 

Yes Height, Weight 

Meat Consumption 

(MFC) 

Now I'd like to ask about the use 

of omega-3 enriched eggs in the 

eggs and egg dishes you just 

reported. 

No N/A 

Milk and Dairy 

Product 

Consumption 

(MDC) 

hat kind of enriched milk 

substitutes do you usually drink 

or use on cereal? 

No N/A 

Grain, Fruit and 

Vegetable 

Consumption 

(GFV) 

Now, a few questions about 

grains, fruits and vegetables. 

Remember, think about all the 

foods you eat, both meals and 

snacks, at home and away from 

home. 

No N/A 
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Dietary Fat 

Consumption 

(DFC) 

Remember, think about all the 

foods you eat, both meals and 

snacks, at home and away from 

home. 

No N/A 

Water and Soft 

Drink 

Consumption 

(WSD) 

How much water, in cups, do 

you usually drink at home? 

No N/A 

Salt Consumption 

(SLT) 

What type of salt is usually 

used? 

No N/A 

Physical activities - 

Adults (PAA) 

  

In the last seven days, how much 

time in total did you spend doing 

vigorous activities that caused 

you to be out of breath? 

Yes  Steps, Walking + 

Running Distance, 

Active Energy, Exercise 

Minutes, Resting 

Energy, Stand Hour, 

Cardio Fitness, 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Weelchair Distance, 

Stand Minutes, Move 

Minutes 

Physical activities 

for youth (PAY) 

You have reported a total of 

^DV_PAYTOTAL minutes of 

physical activity. Of these 

activities, were there any of 

vigorous intensity, meaning they 

caused you to be out of breath? 

Yes, for most questions 

excluding questions 

which include location 

(e.g., In the last seven 

days, did you use active 

ways like walking or 

Steps, Walking + 

Running Distance, 

Active Energy, Exercise 

Minutes, Resting 

Energy, Stand Hour, 

Cardio Fitness, 
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cycling to get to places 

such as [school, the bus 

stop, the shopping centre, 

work/school, the bus 

stop, the shopping 

centre/the bus stop, the 

shopping centre, 

work/the bus stop, the 

shopping centre] or to 

visit friends?) 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Weelchair Distance, 

Stand Minutes, Move 

Minutes 

Physical Activity 

of Children (CPA) 

Over a typical or usual week, on 

how many days are you 

physically active for a total of at 

least 60 minutes per day? 

Yes, for most questions 

excluding questions 

which include location 

(e.g., About how many 

hours a week do you 

usually take part in 

physical activity that 

makes you out of breath 

or warmer than usual: in 

your class time at 

school?). 

Steps, Walking + 

Running Distance, 

Active Energy, Exercise 

Minutes, Resting 

Energy, Stand Hour, 

Cardio Fitness, 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Weelchair Distance, 

Stand Minutes, Move 

Minutes 

Time Spent 

Outdoors (TSD) 

During a weekday, did you go to 

school (including kindergarten)? 

No N/A 

Sedentary 

Activities (SAC) 

In the last seven days, how much 

of your free time did you spend: 

reading books, magazines or 

newspapers, including in 

No N/A 
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electronic formats? Include time 

spent reading as part of your 

homework, but do not include 

time spent reading at work, 

during class time, while 

travelling in a vehicle or while 

exercising. 

Neighbourhood 

Environment 

(NBE) 

What is the main type of 

housing in your neighbourhood? 

No N/A 

Smoking (SMK) In your lifetime, have you 

smoked a total of 100 or more 

cigarettes (about 4 packs)? 

No N/A 

Electronic 

Cigarette (ELC) 

Have you ever tried an 

electronic cigarette, also known 

as an e-cigarette? 

No         N/A 

Exposure to 

Second-Hand 

Smoke (ETS) 

Is smoking allowed inside this 

home? 

No                 N/A 

Exposure to 

Second-Hand 

Vapor (ETV) 

Overall, in the past month, how 

often were you exposed to 

second-hand vapour inside this 

home?  

No                  N/A 

Alcohol Use (ALC) During the past 12 months, that 

is have you had a drink of beer, 

wine, liquor or any other 

alcoholic beverage? 

No             N/A 

Illicit Drug Use 

(IDU) 

Have you ever used or tried 

marijuana, cannabis or hashish? 

No                  N/A 
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Sexual Behaviour 

(SXB) 

In the past 12 months, have you 

had sexual intercourse? 

Yes, to some questions Sexual Activity 

Birth Control 

(BCL) 

  

In total, over your lifetime, how 

many years did you use birth 

control pills? 

Yes Contraceptives 

Maternal 

Breastfeeding 

(MBF) 

Have you ever given birth? Yes, to some questions Pregnancy 

Breastfeeding 

(BRF) 

Did you breastfeed your baby? No N/A 

Pregnancy 

Information (PRG) 

Did [you/she] smoke during 

[your/her] pregnancy? 

No N/A 

Birth Information 

(BIR) 

How much did you weigh at 

birth? 

No N/A 

Breastfeeding 

Information (BRI) 

For how long did [you/she] 

breastfeed? 

No N/A 

Labour market 

activity minimum - 

LMAM 

Last week, did you work at a job 

or business? (regardless of the 

number of hours) 

No N/A 

Labour market 

activity Sublock 

Labour force status 

- LMA2 

Last week, did you have a job to 

start at a definite date in the 

future? 

No N/A 

Labour market 

activity Sublock 

Class of worker - 

LMA3 

Were you an employee or self-

employed? 

No N/A 

Industry (LMA4) What was the name of your 

business? 

No N/A 
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Labour market 

activity Sublock 

Occupation - 

LMA5 

What was your work or 

occupation? 

No N/A 

Labour Market 

Hours of Work 

(LMH) 

On average, how many hours do 

you usually work per week? 

No N/A 

Immigration Block 

(IMG) 

In what country were you born? No N/A 

Aboriginal 

minimum - AMB 

Are you an Aboriginal person, 

that is, First Nations, Métis or 

Inuk/Inuit? First Nations 

includes Status and Non-Status 

Indians. 

No N/A 

Population Group 

(PG) 

You may belong to one or more 

racial or cultural groups on the 

following list. 

No N/A 

Language 

Extended (LAE) 

Of English or French, which 

language(s) do you speak well 

enough to conduct a 

conversation? 

No N/A 

Education 

Minimum Block 

with Concept 

(EDM) 

What type of educational 

institution [are you attending/did 

you attend]? 

No N/A 

Education Sublock 

School attendance 

"currently" - ESC1 

Are you currently attending 

school, college, CEGEP or 

university? 

No N/A 
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Total Personal 

Income (TPI) 

Can you estimate in which of the 

following groups your personal 

income falls? 

No N/A 

Total Household 

Income (THI) 

Can you estimate in which of the 

following groups your 

household income falls?  

No     N/A 

Administration 

Information 

(ADM) 

Was this interview conducted on 

the telephone or in person? 

No      N/A 

Activity Monitor Use of activity monitor for a 

week 

Yes Steps, Walking + 

Running Distance, 

Active Energy, Exercise 

Minutes, Resting 

Energy, Stand Hour, 

Cardio Fitness, 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Wheelchair Distance, 

Stand Minutes, Move 

Minutes 

  

Table 3: CCHS Measures related to Possible AH Variables 

Type Question Example AH Possible AH Variables 

Respondent 

Availability 

May I speak to [First name 

of household contact] [Last 

Yes The owner of the phone 

is the respondent 
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name of household 

contact]? 

Proxy Respondent 

(PRX) 

Is there someone [Minimum 

age of person providing 

proxy interview] or older 

who could provide us with 

some information on behalf 

[First name of household 

contact]? 

No N/A 

Verification 

(VER2) 

Are you [First name of 

specific respondent] [Last 

name of specific 

respondent]? 

What is your date of birth? 

Yes Date of Birth, 

respondent is the owner 

of the phone 

Date of birth 

(AGE) 

What is [your] date of birth? Yes Date of Birth 

Sex and Gender 

(GDRA) 

What was [your] sex at 

birth? 

Yes, for some questions Biological Sex 

Relationship with 

confirmation 

(RWC) 

  

What is the 

relationship…of: [Name of 

specific respondent] ([Age 

of specific respondent]) to: 

[Name of secondary 

respondent] ([Age of 

secondary respondent])? 

  

  

No N/A 

Main activity 

(MAC) 

In the past 12 months, was 
your main activity working 
at a job or business? 
  

No N/A 
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Main activity (MA) During the past 12 months, 

what was your main 

activity? 

No N/A 

Main Activity 

(EDC) 

Are you currently attending 

a school, college, CEGEP or 

university? 

No N/A 

General health 

(GEN) 

In general, how is your 

health? 

Thinking about the amount 

of stress in your life, how 

would you describe most of 

your days? 

No N/A 

Life satisfaction 

measures (LSM) 

How do you feel aboutyour 

life as a whole right now? 

No N/A 

Pregnancy Are you pregnant? Yes Pregnancy, Pregnancy 

Test Result, 

Progesterone Test 

Result 

Height and weight  

(HWT) 

How tall are you without 

shoes on? 

  

Yes Height, Weight 

Weight perception 

(WTP) 

Do you consider yourself 

overweight, underweight or 

just about right? 

No N/A 

COVID-19 

(COV2) 

In the last 3 months, have 

you experienced any of the 

symptoms that led you to 

believe that you had 

COVID-19, such as fever, 

headache, sore throat, runny 

Yes, for some questions Headache, Fever, 

Runny Nose, Sore 

Throat, Shortness of 

Breath, Wheezing, 

Immunizations 
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nose, difficulty breathing or 

tiredness? 

Have you been vaccinated 

against COVID-19? 

Vaccination 

passeport COVID-

19 (PVC) 

Some public health 

authorities are considering 

establishing a COVID-19 

vaccination passport or have 

already done so. 

Is such a passport a 

motivation for you to get 

vaccinated? 

No N/A 

COVID-19 

(COV3) 

If an additional dose of the 

COVID-19 vaccine is 

offered to stimulate your 

immune system or to fight 

against variants, how likely 

is it that you would get it? 

No N/A 

Chronic conditions 

(CCC) 

Do you currently take 

insulin for your diabetes? 

Do you have high blood 

pressure? 

Do you currently take 

insulin for your diabetes? 

In the past month, did you 

take pills to control your 

blood sugar? 

Do you have heart disease? 

Yes, for some questions Inhaler Usage, Blood 

Pressure, Insulin 

Delivery, Blood 

Glucose, Medication 

That Affects Heart, 

Dietary Cholesterol, 

Mood Changes, 

High/Low Heart Rate 

Notifications, Irregular 

Rhythm Notifications 
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Chronic conditions 

(CC1) 

Do you have an anxiety 

disorder? 

Do you have Alzheimer's 

disease or any other 

dementia? 

Yes, for some questions Mood Changes, 

Memory Lapse, Fatigue 

Abilities (WDM) Do you have difficulty 

doing any of these 

activities? Difficulty 

hearing, even if using a 

hearing aid Do you have 

difficulty doing any of these 

activities? 

Difficulty walking or 

climbing steps 

  

Yes, for some questions Audiogram, 

Environmental Sound 

Levels, Headphone 

Audio Levels, Noise 

Notifications, 

Headphone 

Notifications, Walking 

Speed, Step Length, 

Six-Minute Walk, Stair 

Speed: Up, Stair Speed: 

Down, Six-Minute 

Walk, Cardio Fitness, 

Walking Steadiness, 

Walking Asymmetry  

Injuries (INJ) In the past 12 months, did 

you have any of the 

following injuries? A head 

injury or concussion 

No N/A 

Oral health (OHM) In general, how would you 

rate the health of your 

mouth 

  

No N/A 

Oral health 

(OHM3) 

How often do you usually 

see a dental professional? 

No N/A 
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Changes made to 

improve health 

(CIH) 

In the past 12 months, did 

you do anything to improve 

your health? (For example, 

lost weight, quit smoking, 

increased exercise.) 

  

Yes, for some questions Weight, Steps, Walking 

+ Running Distance, 

Workouts, Cycling 

Distance 

Eating Habits 

(EAH) 

In the past 30 days, how 

many times did you eat food 

from a restaurant? 

In the past 30 days, how 

many times did you eat the 

following fruits and 

vegetables? 

No N/A 

Physical activities - 

adults 18 years and 

older (PAA) 

In the past 7 days, did you 

do sports, fitness or 

recreational physical 

activities?  

In the past 7 days, on which 

days did you do these other 

activities that made you 

sweat at least a little and 

breathe harder? 

  

Yes, for the majority of 

questions excluding questions 

which include location (e.g., 

In the past 7 days, did you do 

any other physical activities 

while at work, in or around 

your home or while 

volunteering?) 

Steps, Walking + 

Running Distance, 

Active Energy, 

Exercise Minutes, 

Resting Energy, Stand 

Hour, Cardio Fitness, 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Weelchair Distance, 

Stand Minutes, Move 

Minutes 

Physical activities 

for youth (PAY) 

In the past 7 days, did you 

do any other physical 

activities? 

Yes, for most questions 

excluding questions which 

include location (e.g., In the 

Steps, Walking + 

Running Distance, 

Active Energy, 
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You have reported a total of 

[total hours of active 

transportation + total hours 

of recreational physical 

activities + total hours of 

other physical activity] 

hours of physical activity. 

Of these activities, were 

there any of vigorous 

intensity, meaning they 

caused you to be out of 

breath? 

  

past 7 days, did you do 

sports, fitness, or recreational 

physical activities while at 

[school or day camp, 

including during physical 

education classes, during 

your breaks and any other 

time you played indoors or 

outdoors/school, including 

during physical education 

classes, during your breaks 

and any other time you 

played indoors or 

outdoors/day camp, including 

any time you played indoors 

or outdoors]?) 

Exercise Minutes, 

Resting Energy, Stand 

Hour, Cardio Fitness, 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

NikeFuel, Pushes, 

Swimming Distance, 

Swimming Strokes, 

Wheelchair Distance, 

Stand Minutes, Move 

Minutes 

Use of protective 

equipment (UPE) 

In the past 12 months, have 

you participated in any of 

these activities? 

1: Bicycling 

2: In-line skating or 

rollerblading 

3: Downhill skiing 

4: Snowboarding 

5: Skateboarding 

6: Playing ice hockey 

Yes, to questions identifying 

activities (however AH does 

not have information on 

protective equipment use) 

Workouts, Cycling 

Distance, Downhill 

Snow Sports Distance, 

Swimming Distance 

Sedentary 

behaviours (SBE) 

On a school or work day, 

how much of your free time 

did you spend watching 

television or a screen on any 

No (while in theory sedentary 

behaviour could be measured 

from smartphones, the 

questions in CCHS ask how 

much free time respondents 

N/A 
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electronic device while 

sitting or lying down? 

spent watching television or a 

screen, which is not 

something AH can capture) 

Sleep (SLP) How long do you usually 

spend sleeping each night? 

How often do you have 

trouble going to sleep or 

staying asleep? 

Yes, for some questions Sleep Time In Bed, 

Sleep Time Asleep, 

Sleep Changes 

Current smoking 

status (CSS) 

Have you ever smoked a 

whole cigarette? 

No N/A 

Smoking – past use 

(SPU) 

Have you ever smoked 

cigarettes daily? 

No N/A 

Electronic 

cigarettes and 

vaping (ECV) 

Have you ever tried an e-

cigarette or vaping device? 

No N/A 

Electronic 

cigarettes and 

vaping 2 (ECV2) 

During the past 30 days, on 

how many days did you 

vape the following 

products? An e-liquid with 

nicotine 

No N/A 

Alcohol use (ALC) Have you ever had a drink 

in your lifetime? 

No N/A 

Medication use — 

pain relievers 

(PRM) 

In the past 12 months, have 

you taken any codeine 

products? 

No (AH may not be capable 

of tracking medication intake 

but it does allow for pain 

symptom self-reporting) 

N/A 

Cannabis use 

(CAN) 

Have you ever used or tried 

cannabis? 

No N/A 
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Maternal 

experiences (MEX) 

Are you taking a vitamin 

supplement containing folic 

acid? 

Have you given birth in the 

past 5 years? 

Yes, for some questions Folate, Iron, Weight, 

Pregnancy, Pregnancy 

Test, Progesterone Test, 

Lactation 

Smoking during 

maternal 

experience (MXS) 

In the 3 months before your 

pregnancy with [your last 

child], or before you 

realized you were pregnant, 

did you smoke cigarettes? 

No N/A 

Alcohol use during 

maternal 

experience (MXA) 

In the 3 months before your 

pregnancy with [your last 

child], or before you 

realized you were pregnant, 

did you drink any alcohol? 

No N/A 

Flu shots (FLU) In the past 12 months, have 

you had a seasonal flu 

vaccine? 

No N/A 

Regular health care 

provider (RHC) 

Which of the following 

health care providers do you 

regularly consult with? 

No N/A 

Labour market 

activities (LMAM) 

Last week, did you work at 

a job or business? 

No N/A 

Labour market 

activities 

(LMAM3) 

Were you an employee or 

self-employed? 

No N/A 

Labour market 

activities 

(LMAM4) 

What kind of business, 

industry or service was this? 

No N/A 
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Labour market 

activities 

(LMAM5) 

What kind of work were 

you doing? 

No N/A 

Labour market 

activities 

(LMAM6) 

[Excluding overtime, on 

average, how many paid 

hours do you usually work 

per week?/On average, how 

many hours do you usually 

work per week?] 

No N/A 

Labour market 

activities (LBF) 

Did you have more than one 

job or business last week? 

No N/A 

Telework (LM) In the past 30 days, in which 

of these locations did you 

work the most hours? 

No N/A 

Place of birth, 

immigration and 

citizenship (IM) 

Where were you born? No N/A 

Indigenous identity 

(ABM) 

Are you First Nations, Métis 

or Inuk (Inuit)? 

No N/A 

Population group 

(PG) 

Are you? [List of Population 

Groups] 

No N/A 

Language Can you speak English or 

French well enough to 

conduct a conversation? 

No N/A 

Sexual orientation 

(SOR) 

What is your sexual 

orientation? 

No N/A 

Home care services 

(HMC) 

In the past 12 months, what 

type of home care services 

have been received? 

No N/A 
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Insurance coverage 

(INL) 

Do you have insurance that 

covers all or part of the cost 

of your long term care, 

including home care? 

No N/A 

Insurance coverage 

(INP) 

Do you have insurance that 

covers all or part of the cost 

of your prescription 

medications? 

No N/A 

Prescriptions cost 

(PCN) 

In the past 12 months, did 

[you] do any of the 

following because of the 

cost of [your] prescriptions? 

No N/A 

Food security 

(FSC) 

The food that you [and other 

household members] bought 

just didn't last, and there 

wasn't any money to get 

more.  

No N/A 

Administration 

information 

(ADMC) 

For which province or 

territory is your health 

number? 

No N/A 

Total household 

income (INC) 

What is your best estimate 

of total household income 

received by all household 

members, from all sources, 

before taxes and deductions, 

during the year ending 

December 31, [Past year]? 

No N/A 

  

Table 4: PASS (Adult) Measures related to Possible AH Variables 

Type Description Source AH Possible AH Variables 
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Physical activity 

guideline 

adherence 

Percentage of adults 

who meet physical 

activity guidelines by 

accumulating at least 

150 minutes of 

moderate-to-vigorous 

physical activity each 

week, in bouts of 10 

minutes or more 

CHMS 

(2016-

2017) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

Total moderate-

to-vigorous 

physical activity 

amount 

Average number of 

minutes per day adults 

are engaged in 

moderate-to-vigorous 

physical activity 

CHMS 

(2016-

2017) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

Occupational 

physical activity 

and active 

chores amount 

Average number of 

hours per week adults 

report doing physical 

activities while at work, 

in or around their home 

or while volunteering 

CCHS 

(2018) 

  

No N/A 

Leisure time 

physical activity 

amount 

Average number of 

hours per week adults 

report doing sports, 

fitness or recreational 

physical activities, 

organized or non-

organized, that lasted a 

CCHS 

(2018) 

  

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 
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minimum of 10 

continuous minutes 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

Sports 

participation 

amount 

Percentage (%) of 

population who 

reported regularly 

participating in any 

sports during the past 

12 months 

General 

Social 

Survey 

(GSS) 

(2016) 

Yes Workouts, Cycling Distance, 

Downhill Snow Sports Distance, 

NikeFuel, Pushes, Swimming 

Distance, Swimming Strokes 

Active travel 

amount 

Percentage (%) of 

adults who report 

walking or cycling to 

work or school/Average 

number of hours per 

week adults report 

using active ways like 

walking or cycling to 

get to places 

CCHS 

(2018) 

  

No N/A 

Intention level Percentage (%) of 

adults who, when 

thinking about the next 

six months, intend to be 

physically active 

Physical 

Activity 

Monitor 

(PAM) 

(2014-

2015) 

  

No N/A 

Enjoyment level Percentage (%) of 

adults who report that 

physical activity is 

generally pleasant 

PAM 

(2014-

2015) 

  

No  N/A 
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Confidence 

level 

Percentage (%) of 

adults who report they 

are confident that they 

could regularly do a 

total of 30 minutes or 

more of moderate 

physical activity three 

or four times a week 

PAM 

(2014-

2015) 

No  N/A 

Physical health 

status 

Percentage (%) of 

adults who report their 

health is "very good" or 

"excellent" 

CCHS 

(2019) 

No  N/A 

Mental health 

status 

Percentage (%) of 

adults who report their 

mental health is "very 

good" or "excellent" 

CCHS 

(2019) 

No  N/A 

Presence of 

parks and 

recreation 

facilities 

Percentage (%) of 

adults that "somewhat 

agree" or "strongly 

agree" that their 

neighbourhood has 

several free or low cost 

recreation facilities, 

such as parks, walking 

trails, bike paths, 

recreation centers, 

playgrounds, public 

swimming pools, etc. 

CCHS 

RR 

(2011) 

No  N/A 

Presence of 

active transport 

infrastructure 

Percentage (%) of 

adults who report their 

community has 

CCHS 

RR 

(2011) 

No  N/A 
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infrastructure that 

supports walking or 

biking (well-maintained 

sidewalks or designated 

bike areas for biking) 

Shower access 

at work 

Percentage (%) of 

adults who report 

having access to 

showers or change 

rooms at or near work 

CCHS 

(2007-

2008) 

No N/A 

Total sedentary 

time amount 

Average number of 

hours per day adults 

spend sedentary, 

excluding sleep time 

CHMS 

(2016-

2017) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

Recreational 

screen time 

amount 

Average number of 

hours per day adults 

report watching 

television, DVDs, or 

videos or spending time 

on a computer, tablet, 

or other hand-held 

electronic device e.g. 

watching videos, 

playing computer/video 

games, emailing or 

surfing the Interne 

CHMS 

(2014-

2015) 

No N/A 
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Nighttime sleep 

amount 

Average number of 

hours adults report 

sleeping in a 24-hour 

period 

CHMS 

(2014-

2015) 

Yes Sleep Time In Bed, Sleep Time 

Asleep 

Sleep quality — 

sleep continuity 

  

Percentage (%) of 

adults who report 

having trouble going to 

sleep or staying asleep 

"most of the time" or 

"all of the time" 

  

CHMS 

(2014-

2015) 

Yes Sleep Time In Bed, Sleep Time 

Asleep , Sleep Changes 

  
Table 5: PASS (Children and Youth) Measures related to Possible AH Variables 

Type Description Source AH Possible AH Variables 

Physical activity 

guideline 

adherence 

Percentage (%) of 

children and youth 

who meet physical 

activity 

recommendations by 

accumulating at least 

60 minutes of 

moderate-to-vigorous 

physical activity per 

day 

CHMS 

(2016-

2017) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

Total moderate-

to-vigorous 

physical activity 

amount 

Average number of 

minutes per day 

children and youth are 

engaged in moderate-

to-vigorous physical 

activity 

CHMS 

(2016-

2017) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 
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Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

24-hour 

movement 

Percentage (%) of 

children and youth 

who meet the 

Canadian 24-Hour 

Movement Guidelines 

for Children and 

Youth 

CHMS 

(2014-

2015) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 

Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

School physical 

activity amount 

Average number of 

hours per week youth 

in Grades 6 to 10 

report taking part in 

physical activity that 

makes them out of 

breath or warmer than 

usual during class time 

at school/Average 

number of hours per 

week that parents 

report their children 

spend doing physical 

activity during class 

time at school 

Health 

Behaviour

s in 

School-

aged 

Children 

(HBSC) 

(2014) 

and 

CHMS 

(2018-

2019) 

No N/A 

Sports 

participation 

amount (leisure 

time) 

Percentage (%) of 

Canadian parents who 

report that their 

children participated in 

Canadian 

Health 

Survey on 

Children 

and Youth 

Yes 

(although in 

this case it 

wouldn’t be 

Workouts, Cycling Distance, 

Downhill Snow Sports Distance, 

NikeFuel, Pushes, Swimming 

Distance, Swimming Strokes 
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sports in the last 12 

months 

(CHSCY) 

(2019) 

reported by 

the parents) 

Active play 

amount (leisure 

time) 

Percentage (%) of 

children who 

accumulate 3 hours or 

less per week of active 

play (unstructured 

physical activity) 

outside of school 

CHMS 

(2016-

2017) 

No N/A 

Active travel 

amount 

Percentage (%) of 

youth who report 

walking or cycling to 

work or 

school/Average 

number of hours per 

week youth report 

using active ways like 

walking or cycling to 

get to 

placesschool/Average 

number of hours per 

week adults report 

using active ways like 

walking or cycling to 

get to places 

CCHS 

(2018) 

No N/A 

Physical health 

status 

Percentage (%) of 

youth who report their 

health is "very good" 

or 

"excellent"/Percentage 

(%) of parents who 

CCHS 

(2019), 

CHMS 

(2018-

2019) 

No N/A 
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report the health of 

their child is "very 

good" or "excellent" 

Mental health 

status 

Percentage (%) of 

youth who report their 

mental health is "very 

good" or "excellent" 

CCHS 

(2019) 

No N/A 

Level of 

parental support 

Percentage (%) of 

Canadian parents who 

report "often" or "very 

often" playing active 

games with their 

children in the past 

year 

PAM 

(2014-

2015) 

No N/A 

Level of peer 

support 

Percentage (%) of 

youth in Grades 9 and 

10 who report that 

most of their friends 

"often" participate in 

organized sports 

activities with others 

HBSC 

(2014) 

No N/A 

Level of 

community 

safety 

Percentage (%) of 

Canadian parents who 

identify safety 

concerns as a barrier to 

their children’s 

physical activity 

CHSCY 

(2019) 

No N/A 

Presence of 

parks and 

Percentage (%) of 

youth who "somewhat 

agree" or "strongly 

CCHS RR 

(2011) 

No   
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recreation 

facilities 

agree" that their 

neighbourhood has 

several free or low cost 

recreation facilities, 

such as parks, walking 

trails, bike paths, 

recreation centers, 

playgrounds, public 

swimming pools, etc. 

Supportive 

policies at 

school 

Percentage (%) of 

schools that have a 

committee that 

overseas policies and 

practices concerning 

physical activity (e.g. 

health action team) 

HBSC — 

Admin 

(2014) 

  

No   

Sedentary 

behaviour 

recommendation 

adherence 

Percentage (%) of 

children and youth 

who report meeting 

sedentary behaviour 

recommendations by 

spending 2 hours or 

less per day watching 

television or using a 

computer during 

leisure-time 

CHMS 

(2018-

2019) 

No   

Amount of 

sedentary time 

Average number of 

hours per day children 

and youth spend 

sedentary, excluding 

sleep time 

CHMS 

(2016-

2017) 

Yes Steps, Walking + Running Distance, 

Active Energy, Exercise Minutes, 

Resting Energy, Stand Hour, Cardio 

Fitness,  Max, Workouts, Cycling 

Distance, Downhill Snow Sports 
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Distance, NikeFuel, Pushes, 

Swimming Distance, Swimming 

Strokes, Wheelchair Distance, Stand 

Minutes, Move Minutes 

Recreational 

screen time 

amount 

Average number of 

hours per day youth 

report watching 

television, DVDs, or 

videos or spending 

time on a computer, 

tablet, or other hand-

held electronic device 

e.g. watching videos, 

playing 

computer/video games, 

emailing or surfing the 

Internet 

CHMS 

(2018-

2019) 

No N/A 

Time spent 

outdoors 

Average number of 

hours per day children 

spend outside 

CHMS 

(2014-

2015) 

No N/A 

Sleep 

recommendation 

adherence 

Percentage (%) of 

children and youth 

who report meeting 

sleep 

recommendations by 

obtaining adequate 

sleep: 9-11 hours per 

night for ages 5 to 13 

years and 8-10 hours 

per night for ages 14 to 

17 years 

CHMS 

(2014-

2015) 

Yes Sleep Time In Bed, Sleep Time 

Asleep 
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Amount of sleep 

in 24-hour 

period 

Average number of 

hours children and 

youth report sleeping 

in a 24-hour period 

CHMS 

(2014-

2015) 

Yes In Bed, Asleep 

Sleep quality — 

sleep continuity 

  

Percentage (%) of 

children and youth 

who report having 

trouble going to sleep 

or staying asleep "most 

of the time" or "all of 

the time"  

CHMS 

(2014-

2015) 

Yes In Bed, Asleep, Sleep Changes 

Electronic 

media in the 

bedroom 

Percentage (%) of 

children and youth 

who use electronic 

devices in the bedroom 

before falling asleep 

CHSCY 

(2019) 

No(althoug

h this 

information 

can be 

obtained 

from 

devices, it is 

not from 

AH) 

N/A 

 

Table 6: Characteristics of Apple, Fitbit and Samsung Users 

Device % Market Share % BSc and 
Above 

% Larger 
Cities 

% Gender % High 
Income 

Predominant 
Age (18-64) 

Apple 41% 57%  68%  Equal share 
of male and 
female 
users 

50% High 
Income 

18-29 years 
(35%) 

Fitbit 38% 46% 61%  61% 
Female  

42% High 
Income 

50-64 (32%) 

Samsung  13% 50% 60% 57% Male 47% High 
Income 

18-29 (34%) 
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Table 7: Canadian provincial health laws deemed substantially similar to PIPEDA 

Province Provincial privacy laws 

Ontario Personal Health Information Protection Act (PHIPA) 

New Brunswick Personal Health Information Privacy and Access Act 

(PHIPAA) 

Newfoundland and 

Labrador 

Personal Health Information Act (PHIA) 

Nova Scotia Personal Health Information Act (PHIA) 

Table 8: 10 principles of PIPEDA 

Principle Description 

Accountability PII is the responsibility of the organization that controls it. The organization must 

designate individuals that are accountable for compliance with PIPEDA’s 

principles. 

Identifying Purposes The purposes for the collection of PII must be stated by the organization before or 

during collection. 

Consent Consent of individuals whose data is being collected, used or disclosed is 

required. 

Limiting Collection 

 

Collection of PII will be limited to what is necessary to fulfill the purposes 

outlined by the organization. The information must be collected legally. 

Limiting Use, 

Disclosure, and 

Retention 

Use and disclosure of PII will be limited to the purposes for which it was 

collected, except when required by law or if consent from the individual is sought 

again. The information will be retained until the purposes are fulfilled. 

Accuracy PII will be as accurate, up-to-date and complete as required to complete the 
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purposes outlined for its collection. 

Safeguards Appropriate safeguards to the sensitivity of the information will be employed by 

the organization to protect PII. 

Openness Policies and practices concerning the management of PII will be made available. 

Individual Access If it is requested by an individual, organizations must inform individuals of the 

existence of PII and related uses. An individual can contest the accuracy of the 

information and have it changed. 

Challenging 

Compliance 

Individuals can challenge compliance with the above principles by an 

organization. 

 

Table 9: Examples of physical, administrative and technical safeguards 
recommended by IPC 

 

Physical  

Locked cabinets 

Restricted office access 

Alarm systems 

 

 

Administrative 

Security clearance 

Confidentiality agreements 

Training 

Regular monitoring of compliance with security policies 

 

Technical 

Login and password 

Encryption 

Firewalls 

Malware detection software 
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4.3 Discussion 
The information and point-of-view presented here serves to inform and support 

the rest of the work in this thesis. Mobile health technologies could increase the access 

and quality of care provided to individuals and populations. Despite many barriers still 

remaining, a lot of the challenges and limitations presented in the paper are becoming 

increasingly reduced, paving the way for a future with digital health equity in which 

consumer-level mobile and wearable technologies could safely monitor and deliver care 

become pervasive and ubiquitous. This thesis represents a tentative step towards this 

direction. In the next chapter, the development and infrastructure of the MHP is 

presented.  
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Chapter 5 - Development of a Mobile Health Platform for Individual and 
Population-Level Surveillance 

 
5.1 Foreword 

The next step is the development of the mobile health platform (MHP), an iOS 

app that uses Apple’s HealthKit API to collect Apple Health data and which is used as a 

tool for the pilot study presented in subsequent chapters. The MHP forms the crux of a 

potential mobile health data ecosystem to be used in public health surveillance initiatives. 

This paper describes the tools used for the creation of the MHP, which are 

provided by Apple to developers. Brief introductions are given on the HealthKit API, 

XCode software, Swift programming language and SwiftUI declarative syntax. While 

these tools are specific to iOS development, other systems have similar methods. The 

interface of the MHP is presented, as well as the flow of the app.  

The multi-modal data that were collected by the MHP were included due to the 

relationship of extracted features with stress: HR/HRV 35,44, temperature 35,44, physical 

activity 46–48, weight 49,50, blood pressure 35,51, and sleep 46,52,53. The devices and data 

collection modes will be discussed in subsequent chapters. 

In terms of infrastructure, the Unified Modelling Language (UML) diagram to 

create the system is also included. Detailed explanations on the MHP’s architecture and 

classes that were programmed for the creation of the app are included with justifications 

on why several modelling and development choices were made.  

It should be noted that, although AH was the chosen health repository in this 

study, there are many other personal devices from different manufacturers that collect 

health data. The previous chapter discussed Fitbit and Samsung in addition to Apple, for 

instance, and each device has its own characteristics and properties. While this chapter 

and the following sections discuss data from AH, this technology is a tool for the studies; 

rather, our focus is on personal mobile devices. 

Finally, the database structure is also described, which details how the health data 

types that were collected in the stress pilot study (described in subsequent chapters) were 

stored, which additional information related to these were collected and how some of the 

data types differ in terms of data structures from one another.  
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5.2 Modelling and Development of a Mobile Health Data Extraction Platform 
for Public Health 
 
5.2.1 Abstract 

Background: The goal of public health is to improve the health of populations. To 

accomplish this, data is needed to support decision-making. These data are typically 

obtained through self-report methods that may be subject to biases, costs and delays. In 

this context, objective data from sensors embedded in personal smart devices present 

themselves as potential alternative measurement tools.  

Objective: The goal of this work is to describe the modelling and development a mobile 

health platform (MHP) that collects health data from the Apple Health repository, to be 

used as a tool for real-world data collection. 

Methods: The MHP was developed using Apple’s XCode software and the Swift 

programming language based on a real-world pilot study protocol involving stress-related 

health data from Apple Health. 

Results: The MHP interface, modelling and architecture is detailed, including the UML 

diagram, app flow, and health data type structures. Future directions for new versions of 

the MHP are also presented. 

Conclusions: A similar system to the MHP could be used for public health surveillance, 

complementing traditional self-report metrics when applicable. Researchers and public 

health specialists must respect applicable security and privacy regulations when 

collecting digital health data. 

 

5.2.2 Introduction 

The field of public health focuses on understanding and improving the health of 

populations 126. To support decision-making, data on individual and population health is 

needed 72–74. Data collection efforts are often based on self-report 78,80 which may be 

subject to limitations including several biases, delays between data collection and 

reporting, high costs and logistical issues 2,3,10–15,17,18.  

In this context, smart devices could be used as additional monitoring tools. 

Personal, off-the-shelf, consumer-level devices often come equipped with sensors that are 

able to collect a variety of health-related data. These data, in turn, could possibly be used 
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to complement traditional public health data collection initiatives. For example, the 

Canadian Community Housing Survey 4 collects self-reported metrics on physical 

activity, sleep, and blood pressure, among others that could be complemented with 

objective sensor data. As an example, the Apple Watch collects data on activity and sleep 

that could be used in conjunction with subjective, self-reported information on these 

metrics 89,90. Given that data from these devices is also generally collected in a passive 

manner, in real-life environments, and for long periods (i.e., for as long as users wears 

their devices), they are likely to collect more representative information of users’ 

behaviours and lifestyles.  

With this in mind, a pilot study is being planned that uses data from mobile and 

wearable devices to predict stress in a population through the use of Machine Learning 

models. To collect data for this study, a Mobile Health Platform (MHP) will be 

developed. This platform will be an iOS app that extracts data from Apple Health 89 127, a 

popular health data repository available in iOS systems and that stores data from Apple 

devices as well as devices from other manufacturers that possess integration with the 

system.  

The goal of this paper is to describe the modelling and development of the MHP 

used in the study as a data collection tool. While a prototype, systems similar to the MHP 

could be leveraged by researchers and public health specialists to collect large volumes of 

continuous and near real-time data from personal devices with arguably less constraints 

than traditional data collection efforts. Further, while the MHP is developed for iOS, a 

similar platform and architecture could be implemented for other systems. We briefly 

describe the study protocol and present how this app was developed, the platform’s 

architecture and its database structure. The discussion section details future directions for 

the platform and how such a platform could be implemented in real-world scenarios as an 

“add-on” to self-reporting applications. 

 

5.2.3 Methods 
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5.2.3.1 Study Protocol 
This section briefly describes the study protocol, with the goal of providing an 

increased understanding of the modelling choice made for creating the MHP (described 

in the next sub-section.  

In the proposed study, 45 participants will be given an iPhone with the MHP installed 

and use the following mobile and wearable devices for a period of 2 weeks to collect 

health data: 

 

• Apple Watch Series 6 with watchOS 8.3, collecting steps, heart rate, heart rate 

variability, electrocardiogram and sleep data.  

• Withings Sleep, collecting sleep and heart rate data. 

• Withings Blood Pressure Monitor (BPM) Connect, collecting heart rate and blood 

pressure data. 

• Withings Thermos, collecting temperature data. 

• Withings Body+, collecting weight data. 

• Empatica E4, collecting heart rate and heart rate variability data. 

 

All these devices, with the exception of the Empatica E4, possess integration with 

Apple Health, i.e., data collected by these devices will be stored in Apple Health. The 

Empatica E4 is a research device and as such will be used to complement results with 

data exported manually. 

Participants will be asked to collect data from these devices 6 times a day while also 

self-reporting their stress levels by answering 8 questions. These questions are based on 

the 7 questions composing the stress scale of the Depression, Anxiety and Stress Scale 

(DASS-21) 128 and an additional question asking how users are feeling right now from 

“Feeling Great” to “Stressed Out” 129. More details on the questions and answer options 

can be found in Table B1 in Appendix B. 

With this protocol in mind, the MHP should be able to collect the aforementioned 

health data from Apple Health, differentiating the devices used for data collection (since 

different devices may collect the same type of data). In addition, the MHP should allow 

users to self-report their stress levels several times a day. 
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5.2.3.2 Mobile Health Platform 
Apple provides developers with several tools to develop apps for its systems (e.g., 

iOS, macOS). The tools that are used in this study to develop the MHP are: 

 

• HealthKit The HealthKit Application Programming Interface (API) allows 

developers to access user data from the Apple Health repository (after user 

consent is obtained through the API). 

 

• XCode and Swift In order to develop apps for Apple systems, developers can use 

XCode, Apple’s native program for creating iOS apps 41. The programming 

language supported by XCode and used in this work is Swift 130.  

 

• SwiftUI To create app interfaces in a more intuitive manner, Apple recently 

introduced the SwiftUI tool, providing a declarative syntax in which developers 

can implement the desired interface with little code by explicitly stating and 

ordering the interface elements and functions 131. 

 

Figure A1 in Appendix A shows the interface of XCode with a standard example 

from Apple 41. XCode, Swift, Swift UI and the HealthKit API were used in developing 

the MHP. As mentioned, the goal of the prototype is to collect stress-related data from 

Apple Health in order to investigate the development of ML stress prediction models in 

real-life settings. With this in mind, the prototype will collect the following data from 

Apple Health through the HealthKit API: a) weight, b) steps, c) heart rate, d) heart rate 

variability, e) blood pressure, f) sleep, g) electrocardiogram (ECG), h) temperature, f) 

workout. The prototype is described in the next section. 

 

5.2.4 Results 
Figure 7 presents the MHP interface and flow. The top-left screen is shown while 

the app collects new data that was uploaded to Apple Health since the previous time the 

MHP was opened. Once that is finished, the user is taken to the top-right screen, titled 
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“Apple Health Variables”, which shows a list of collected variables (while the MHP is 

enabled to collect workout data, although that information was not used for the pilot 

study as it required the participants to specifically do the activity).  

On the tab at the bottom of the screen, the middle icon leads the user to the 

bottom-left screen, titled “Stress Questionnaires”, which shows the completed stress 

questionnaires for the day and how many are remaining. Once the “Fill Questionnaire” 

button is clicked, users are taken to the bottom-right screen, where they can answer the 8 

stress-related questions (assigned a random order to appear each time).  

 
Figure 7: Interface of the MHP 

 

Figure 8 presents the Unified Modelling Language (UML) diagram for the MHP. 

For the model classes, we represent them with the standard UML notation. For SwiftUI 

views in the View container, we include the names of the views. All classes in the Model 
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container follow the Singleton design pattern (represented here by the green icon), 

meaning there is only one instance of these classes throughout the app’s lifecycle 132. 

When the user is entering the app for the first time, the login view is presented. 

The user can also sign up (Figure A2 in Appendix A). For the pilot study, the researchers 

will sign up for the participants through an email containing their participant ID. Looking 

at Figure 8, the LoginManager class is responsible for managing the login functions, 

including adding new users to the database and checking for existing users. If the user is 

logging in for the first time, the HealthKitView will request authorization to access the 

data (Figure A3 in Appendix A) through the HKManager class (in the study, this screen 

does not appear to participants as they give consent using a form following review ethic 

board protocols and are signed in by researchers before the study begins).  

Once authorization is given (or retrieved, if it was given at a previous point in 

time), the HKManager calls the HKDAO class. This class was named with the Data 

Access Object (DAO) suffix as it encapsulates all access to a data source, although it 

does not directly follow the DAO design pattern. In this case, the HKDAO class handles 

all access to HealthKit data through queries. These queries are hardcoded into the code, 

as each of the variables that the user consents to being retrieved from Apple Health must 

be hardcoded together with their specific permission requests. 

HealthKit 133 possesses many different types of queries, such as 

HKStatisticsQuery, which performs statistical calculations over a set of samples 134; 

HKSourceQuery, which returns a list of sources for the data type 135; or 

HKActivitySummaryQuery, which reads summaries of activities 136. For the MHP, we 

make use of the HKAnchoredObjectQuery – which returns new data points since the 

previous query 137– and the HKObserverQuery, which monitors Apple Health and 

provides updates when there are any changes, such as when new data is added 138. 

Specifically in the MHP implementation, the observer query implements the anchored 

query, meaning that when there is an observed change in Apple Health pertaining to new 

data, an anchored query is triggered to collect these new data. This can be seen in the 

methods of the HKDAO class, with both observer and anchored queries for each data 

type. 
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Once new Apple Health data is retrieved, the UserDAO class is responsible for 

formatting and sending it to the database. The data is encoded into a struct defined in the 

code called HKData, which stores an id, value, dates, device, and any additional 

information through the several update functions for each data type, and is then uploaded 

to the database through the API class using the uploadData method.  

Of note, in UserDAO, the updateStress method uploads the results of the stress 

questionnaire as an array of integer tuples. This is because the values of the questionnaire 

are represented in the following format: (Int: Int), meaning a question number and a 

stress rating. For example, (2,3) means that for question 2 the user rated a level of 3 as 

their stress state at the moment. In summary, the uploadData function is responsible for 

storing Apple Health data in the database while updateStress does the same for answers 

to the stress questionnaires. 

The observer queries are set up to enable the background delivery of data. 

However, each data type possesses different minimum periods for background data 

delivery, which are defined by Apple and cannot be changed 139. In other words, each 

data type can only be collected by the queries at specific intervals. In addition, 

background delivery is scheduled automatically according to the usage of the app. If the 

user constantly opens the app, background data collection will occur constantly; however, 

the opposite is also true. In addition, there is a risk that the iPhone’s operating system will 

stop the background queries. For this reason, in addition to setting up the background 

data delivery, new queries are activated and override previous ones every time the app is 

opened, and the login phase completed to avoid missing new Apple Health data. 

As mentioned, while the data retrieval from Apple Health and upload to the 

database occurs (the process typically lasts a few seconds, depending on data size and 

Internet connection), the user is shown the top-left screen of Figure 7. When the process 

completes, the app directs the user to the top-right screen. There, the user can see all 

variables collected and if the process was successful (represented by a green dot on the 

side of the variables’ names) as well as go to the QuestionnaireView through the tab 

options. This will take the users to the bottom-left screen of Figure 7 and, clicking on the 

“Fill Questionnaire” button directs them to the bottom-right screen to answer stress self-

reports. Once the questionnaire is completed, the answers are saved in the User class and 
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sent to the database through the UserDAO and API classes as discussed. Finally, users 

can go to the ProfileView, shown in Figure A4 in Appendix A, which thanks participants 

for their participation, displays their study participation ID and provides an e-mail in case 

of any questions. 

In addition to the flow described above, two additional classes, 

NotificationManager and NetworkMonitor, are activated when the app starts (in the 

AppDelegate.swift class which provides methods to be trigerred when the app is opened). 

NotificationManager configures notifications every 3 hours starting at 9am reminding 

users of the data collection process. Users are instructed to start data collection when they 

wake up and not to necessarily follow the notification timing; rather, the notifications are 

meant to serve as reminders of the ongoing study and data collection to participants. The 

NetworkMonitor class activates when a drop in connectivity is detected, blocking the 

app’s functions and displaying the screen in Figure A5 to avoid any errors due to 

inexistent connectivity. 

Figure A6 in Appendix A shows the database structure. Device and user 

information are stored as well as health data. The information in the Devices table was 

uploaded prior to the data collection in the database, since devices were distributed to 

participants.  

Each data type typically has an id, value (e.g., in Kg for weight, in beats per 

minute for heart rate, and in Celsius for temperature, among others), start and end dates 

for the data collection, device id, and any additional information provided by Apple 

Health. Some data types have different characteristics, such as sleep, which has both a 

decimal value and a category representing if the user was asleep or awake. ECG is 

different from most data types as it has additional attributes (e.g., the algorithm version). 

Also, the actual ECG data is stored in the voltage_measurement fields as a dictionary 

with timestamps and the voltage measured for that timestamp. This dictionary contains 

15360 measurements, which are assembled into the ECG signal used for analyses. 

 

5.2.5 Discussion 
The MHP presented in the previous section, created using Apple’s mobile 

development tools, is able to capture health-related data from the Apple Health repository 
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– which includes data from Apple devices, such as the Apple Watch, and data from other 

devices that integrate with Apple systems, such as devices manufactured by Withings – 

while also allowing users to self-report on their stress levels. This prototype version will 

be used as a data collection tool for a study collecting participant data in real-world 

settings with the goal of predicting stress levels of individuals.  

While the prototype MHP was developed to be used in this study extracting data 

from devices distributed to participants, if successful, a similar system could be deployed 

by health researchers and public health agencies to extract data from personal devices 

already in use by the population. In Canada, where this study takes place, 32 million 

individuals own a smartphone 27 and almost 4 million possess a fitness wearable device 
28. These devices passively and continuously collect data such as physical activity, sleep, 

and heart rate which could be used in research to generate new insights into the health of 

individuals and populations while mitigating limitations of traditional self-report data 

collection efforts. Collecting objective data (or even self-report, as is the case of the stress 

questionnaires) constantly over shorter periods can reduce biases, and it is much simpler 

and cost-effective to deploy an app in the App Store, for example, than handling the 

logistics and costs of deploying full-scale surveys 78. 

Leveraging personal devices also relieves the burden on users to collect data. 

Rather than a “heavy” data collection process such as the one presented in the study 

protocol, a long-term system could extract more data points collected over longer periods. 

Since most devices collect data passively, this could also minimize follow-up losses 

compared to other studies using self-report methods. 

Improvements can also be made to the prototype MHP for future versions. First, a 

backup feature should be implemented in case data cannot be sent from the device to the 

database (e.g., due to low connectivity or malfunction in the server). In case of error, data 

should be saved in the device and sent to the database again at a later point in time. In 

addition, other data types supported by Apple Health could be hardcoded into the source 

code, allowing the system to collect more health-related data that is of interest to 

researchers and public health officials. 
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Figure 8: UML Class Diagram for the MHP 
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Additional features could also be introduced to encourage app use, such as allowing 

individuals to track the progression of their health metrics. In this manner, the app will become 

both a public health surveillance tool and a health management system, beneficial for individuals 

and public health researchers. Future studies should also explore the development of similar 

applications for other systems, such as Android, to understand their commonalities and 

differences to Apple systems. 

It should be noted that, in addition to the technical requirements described here, there are 

legal and ethical issues that should be addressed when collecting personally identifiable 

information and digital data. While a full discussion of these is outside the scope of this paper, 

researchers and public health agencies must obtain user consent for data collection and use 

according to regulations – regardless of whether users already consented to their data being 

collected through the HealthKit API process. In Canada, these regulations may include, for 

example, the Personal Information Protection and Electronic Documents Act (PIPEDA), which 

regulates the use of personally identifiable information in commercial activities; the Privacy Act, 

which regulates the use of data by federal public health agencies and other entities; and 

regulations from review ethics boards for research projects. Researchers and public health 

officials looking to leverage mobile health data in their studies should be mindful of and respect 

applicable legislation for their specific region and case. 

 

5.2.6 Conclusion 
This paper presented the motivation, modelling and development of an iOS-based MHP 

that collects, and stores Apple Health data related to stress while also enabling stress self-report. 

This MHP will be used as a data collection tool in a future study to investigate its effectiveness 

for public health monitoring systems that leverages personal mobile and wearable devices. 

Such a system could complement traditional self-report efforts and possibly enable the 

collection of larger and more representative data in a more simple and cost-effective way. Future 

versions of the MHP can include improvements such as data backups and features that allow 

individuals to track changes in their health metrics to encourage use. Further, researchers and 

public health officials should be mindful of applicable security and privacy legislations and their 

requirements when collecting personally identifiable digital health information. 

 



 93 

5.3 Discussion 
 

As the tool used to collect data for the pilot study, integrating information from several 

devices that can be used in conjunction with Apple’s operating system, the MHP forms the basis 

of this thesis and of a potential public health surveillance system implemented using the tools 

and data described in the work.   

In this chapter, a detailed description of the MHP, its architecture, modelling and storage 

choices were presented. Further information on the practical application of the MHP in the pilot 

study is described in the following Chapters. In particular, Chapter 8 describes lessons learned 

and future directions from the practical application of the MHP in the pilot study. 
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Chapter 6 – Pilot Study and Preliminary Statistical Methods with ECG Data for 
Stress Quantification 

 
6.1 Foreword 

With the MHP developed and included in iPhone devices for study purposes (the 

platform was developed for the study and not currently available for download by the public at 

large), the next of the research process involved data collection to evaluate the platform with a 

pilot study. Among the many data types collected, ECG data from the Apple Watch presents 

itself as an interesting case. The Apple Watch ECG collects a 30-second 1-lead ECG (as opposed 

to the standard 12-lead ECG which places electrodes in the user’s body) when users place their 

finger on the digital crown of the watch 127. This is a very simple, quick, and non-invasive data 

collection method. Further, HRV data can be derived from ECG and are commonly used in the 

identification of stress 140. 

Therefore, before presenting the full study protocol and ML analyses, this chapter focuses 

solely on ECG data and traditional analysis methods, such as Spearman correlation and 

ANOVA, to study how HRV data derived from the Apple Watch ECG can be used to quantify 

stress. This paper uses a subset of the data, considering only healthy participants, to conduct the 

analysis. The goal was to provide preliminary information on the pilot study and data processing, 

apply more traditional health analysis methods to the data, and increase knowledge on the 

usefulness of the Apple Watch ECG for stress detection. To the best of our knowledge, this paper 

and others presented in this thesis are some of the first works to investigate the use of the Apple 

Watch ECG in this context.  

 
6.2 Can Heart Rate Variability data from the Apple Watch Electrocardiogram 
(ECG) Quantify Stress? 
 
6.2.1 Abstract 

Chronic stress has become an epidemic with negative health risks including 

cardiovascular disease, hypertension, and diabetes. Traditional methods of stress measurement 

and monitoring typically relies on self-reporting. However, wearable smart technologies offer a 

novel strategy to continuously and non-invasively collect objective health data in the real-world. 

A novel electrocardiogram (ECG) feature has recently been introduced to the Apple Watch 

device. Interestingly, ECG data can be used to derive Heart Rate Variability (HRV) features 
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commonly used in the identification of stress, suggesting that the Apple Watch ECG app could 

potentially be utilized as a simple, cost-effective, and minimally invasive tool to monitor 

individual stress levels. Here we collected ECG data using the Apple Watch from 36 health 

participants during their daily routines. Heart rate variability (HRV) features from the ECG were 

extracted and analyzed against self-reported stress questionnaires based on the DASS-21 

questionnaire and a single-item LIKERT-type scale. Repeated measures ANOVA tests did not 

find any statistical significance. Spearman correlation found very weak correlations (p<0.05) 

between several HRV features and each questionnaire. The results indicate that the Apple Watch 

ECG cannot be used for quantifying stress with traditional statistical methods, although future 

directions of research (e.g., use of additional parameters and Machine Learning) could 

potentially improve stress quantification with the device. 

 

6.2.2 Introduction 
According to the WHO, stress is the “Health Epidemic of the 21st Century” 141. Over a 

quarter of U.S. adults report such high levels of daily stress that they are not able to function 

properly 33. Stress, as a survival mechanism, is normal and healthy: stress allows the body to 

generate more energy to deal with a potential threat. The stress response is modulated by the 

sympathetic nervous system (SNS) and parasympathetic nervous system (PNS). The SNS is 

responsible for triggering a response to unexpected threats to generate energy and resources for 

the body – the fight-or-flight response – by signalling adrenal glands to release adrenalin and 

cortisol, which lead to several physiological changes including increased heart rate, blood 

pressure, and respiration 34,42. Once the acute stressors are removed, the PNS functions to relax 

the body, returning it to its normal state 34,42.  

Despite the necessity of a stress response to survival, chronic exposure to stressors can 

lead to severe health consequences including cardiovascular diseases, hypertension, obesity, and 

diabetes 34–36. Chronic stress is an increasingly observed condition worldwide. High levels of 

daily stress are reported by 38% of U.S. adults aged 40-49 years and 33% of adults aged 50-59 

years 142. In Canada, daily stress was highest amongst individuals between 35-49 years (27.8%) 

followed by individuals aged 50-64 years (22%) and 18-34 years (21.9%)  31. Individuals over 65 

years reported the lowest levels of stress 31. Chronic stress is estimated to cost over USD 300 

billion annually in associated healthcare expenses, reduced job performance, and absenteeism 
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141,143. Workplace stress is connected with 120,000 premature deaths annually 144. The COVID-

19 pandemic has amplified this crisis: a recent survey by the American Psychological 

Association discovered that approximately 80% of respondents identify the pandemic as a major 

source of stress in their life and almost 70% reported increased levels of stress owing to COVID-

19 32. 

The identification of stress and the application of interventions should be a public health 

priority. Research data on stress is typically collected through self-reporting surveys, which may 

have limitations such as low response rates, recall and social bias, cost and delays 21. Smart 

technologies, such as mobile and wearable devices, have recently been identified as useful tools 

to measure health parameters. Several of these technologies have embedded sensors that collect 

objective health data such as sleep, blood pressure, and heart rate 89,90. In particular, an 

electrocardiogram (ECG) feature for detecting atrial fibrillation has been introduced to the Apple 

Watch device 20,89,90. Unlike the standard 12-lead ECGs, which use electrodes connected to the 

body, the Apple Watch ECG collects a 30-second 1-lead ECG when users place their finger on 

an electrode located in the digital crown of the device 127. Interestingly, ECG data can be used to 

derive Heart Rate Variability (HRV) features which are commonly used in the identification of 

stress 140. This suggests that the Apple Watch ECG app could potentially identify and monitor 

individual stress. Apple Watch applications could use this information to provide instant user 

feedback and interventions, such as suggesting the use of meditation apps 145. Furthermore, the 

use of a wearable data collection device would improve stress research data by eliminating recall 

biases and increasing population sample sizes. However, compared to longer measurements, 

there is not a large amount of evidence suggesting that ultra-short HRV measurements are 

reliable 146. 

The goal of this paper was to explore the associations between HRV data collected from 

the Apple Watch ECG app with perceived stress levels in a real-life study. To the best of our 

knowledge, this is the first paper that provides statistical analyses of data derived from the Apple 

Watch ECG for stress detection, studying the reliability of these short-term measurements, and it 

is a continuation of previous work that uses a set of the same data, from 40 participants, to create 

Machine Learning (ML) stress prediction models 21. ECG data from the Apple Watch ECG app 

was collected from 36 participants in a real-world setting over 2 weeks. We were able to identify 

significant, albeit weak, correlations between several HRV features and self-reported stress 
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states, as well as significant differences between groups. Results from this study support the 

continued development of wearable ECG sensors as tools to measure stress.    

 The paper is organized as follows: section 2 described related work, including previous 

studies that used different sets of the same data for creating Machine Learning models; section 3 

describes the methods, while section 4 presents the results and section 5 discusses our findings. 

Finally, section 6 presents the conclusions. 

 

6.2.3 Related Work 
This paper is an extension of previous work performed by the authors that uses data from 40 

participants, to derive HRV features from the Apple Watch ECG data and use that data to create 

machine learning (ML) models for stress prediction – specifically using Random Forest and 

Support Vector Machines 21. The models, trained on subsets of the data according to age, gender, 

income, profession, and health status, found a weighted f1-score lying approximately between 

55-65%, which is in line with the state-of-the-art for stress prediction using ML, although 

towards the low end. The models possessed high specificity – i.e., in general they were capable 

of successfully predicting when an individual is not stressed – but were less successful when 

predicting the stressed state. Notably, feature importance of the Random Forest models was 

calculated to determine, for each model, what features were most important in determining the 

prediction results. Although they vary per model, in general the heart’s acceleration (AC) and 

deceleration (DC) capacity were some of the most important features, present in most of the 

models. Another noteworthy feature is the standard deviation of interbeat intervals (SDNN). A 

more detailed explanation of HRV features and the feature extraction process is provided in the 

methods section.  

Data from the same study, this time from 27 participants, was used by Benchekroun et al. 
147, although in this case the HRV data was derived from the Empatica E4 device rather than 

from the Apple Watch ECG. The Empatica E4 device collects data continually as opposed to 

cross-sectionally, providing larger datasets. Random Forests trained on this data in an area under 

the receiver operating characteristic (ROC) curve (ROC AUC) of 0.79 and a macro f1-score of 

75%. Further, a cross dataset analysis was performed in which models were trained on a 

laboratory dataset and tested on the Empatica E4 data, achieving a ROC AUC of 65% and a f1-

macro score of 62%. 
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MCcraty et al. 148 performed repeated measures ANOVA analysis on HRV metrics of 24 

patients with panic disorder and healthy control, finding differences in features such as the 

SDNN index, Total Power of VLF, Normalized LF/HF ratio, among others. Hong et al. 149 

conducted repeated ANOVA analyses for participants, finding changes in HF and RMSDD. 

Seipäjärvi et al. 150 studies stress and HRV in a laboratory setting among participants in 

different age groups and health status, finding that with the application of stressors differences in 

HRV could be observed. Föhr et al. 48 investigated the association between physical activity, 

HRV and subjective stress measured with the perceived stress scale (PSS), finding significant 

changes between physical activity and HRV with stress. However, using ecological momentary 

assessments, Martinez  et al. 151 found a significant but small relationship between HRV and 

stress, where only a small amount of variance was explained by models. The author’s concluded 

that HRV might be a good proxy for stress in controlled settings with specific stressors applied, 

but not in real-life. Silva et al. 152 conducted Spearman correlation analysis between the 

perceived stress scale (PSS-14) and 5-minute HRV variables at rest, and found weak to moderate 

correlation for the low frequency (LF) band. A similar Spearman correlation analysis was done 

in this study between HRV features and stress. 

The Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology provide widely used guidelines for the analyses of HRV data and 

were of great help in guiding this research 153. The authors in Acharya et al. provided an 

extensive review of HRV metrics 140, while several papers explored the feasibility and 

characteristics of analyzing HRV data. For example, Benchekroun et al. 154 discussed the impact 

of missing data on several HRV-related metrics and the best interpolation techniques to handle 

this situation.  

It is important to note that there is limited research on the reliability of ultra-short-term 

HRV measurements (less than 5 minutes) when compared to long-term methods. Baek et al. 

studies ultra-short-term measurements to define recommended minimum intervals for each of 

these metrics to be valid 146. In general, each metric has a different recommended interval, 

varying from seconds to minutes. Shaffer et al. 155 conducted a review of ultra-short-term heart 

rate variability norms, finding that most studies did not use criterion validity to study if the 

procedures produce comparable results with validates measurement procedures, applying other 

metrics (e.g., Pearson correlation) which may be insufficient to provide evidence of comparable 
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methods. Studies that did use more appropriate metrics (such as Baek et al. 146 mentioned 

previously) typically found that different metrics will depend on different intervals. Munoz et al. 
156, for example, found that a minimum of 10s was required for RMSSD and 30s for SDNN. The 

authors also found that ultra-short-term measurements are extremely sensitive to artifacts. For 

example, a single false heartbeat can alter the HRV metrics, and so special care must be taken 

when analyzing the data. In short, while ultra-short-term recordings such as the ones used in this 

study have potential due to its increased accessibility and ease-of-use, there is a lack of robust 

evidence base to assert that these recordings can be used as proxies for longer recordings. In this 

study, as will be described, the Kubios Premium Sofware was used to process the data to 

mitigate issues with noise or artificats. 

In addition, while Apple Watch ECG data was shown to be successful in detecting atrial 

fibrillation 157 there is also a lack of a robust evidence base on how the HRV data derived from 

the Apple Watch ECG compares to gold standards. A study by Saghir et al. 158 found good 

results, showing that the agreement between the Apple Watch ECG and a standard 12-lead ECGs 

to be moderate to strong in health adults. In other words, there is promising but limited evidence 

both on ultra-short-term recordings and on how Apple Watch ECG data compares to more 

traditional, longer-term measurement methods.  

It should also be noted that, while on this work we are specifically focusing on HRV 

derived from ECG – HRV being an essential parameter in stress quantification – other metrics, 

such as electrodermal activity (EDA), can also be considered for analyses 159.  

 

6.2.4 Methods 
 
6.2.4.1 Participant Recruitment 

Healthy participants (n = 36) were recruited from the University of Waterloo as well as 

through Facebook Ads and Kijiji (a Canadian website that allows users to advertise products and 

services). Participants had to live close to the Kitchener-Waterloo region in Ontario for devices 

to be delivered in person. Participants were offered CAD 100.00 for two weeks of data 

collection. This study was approved by the University Waterloo Research Ethics Board (REB 

[43612]). Data collection took place between December 2021 and December 2022. Table 1 

shows the characteristics of the study participants. Participants were aged 18 years or older. For 
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the analyses described in this paper, we considered only healthy participants, i.e., who did not 

drink or smoke, did not have any chronic conditions or take prescription medications.  

 
6.2.4.2 Data Collection 

This study followed the Ecological Momentary Assessment (EMA) methodology to 

obtain self-reports closer to the event to approximate real-life scenarios 160. Participants were 

given an iPhone 7 with iOS 15.0 and an Apple Watch Series 6 with watchOS 8.3 for 2 weeks. 

The Apple Watch contained the ECG app, and a Mobile Health Platform (MHP) was installed on 

the iPhone. The MHP was used to collect health data, including ECG recordings, from the 

iPhone’s Apple Health app data repository 21,89,90,147.  

Users were instructed to perform an ECG measurement on the Apple Watch ECG app 6 

times during the day in approximately three-hour intervals followed by the stress questionnaire 

(below) on the iPhone. Figure 9 shows the study protocol (times are included for reference 

purposes; participants were asked to collect data as soon as they woke up). 

 

 
Figure 9: Study Protocol 

The app installed in the iPhone, termed the Mobile Health Platform (MHP), can collect 

health data saved on the iPhone’s health data repository, the Apple Health app, including the 

ECG recordings. The MHP collected this data, which were then saved in our database using the 

JSON format (for each ECG reading there are 15360 voltage measurements and associated 

timestamps in milliseconds, forming the 30-second ECG). The MHP also contains a tab with the 

stress questionnaires to be completed, which will be described next. Figure 10 shows the 

interface of the MHP, including the additional variables collected in the study. 

We noticed that several participants had difficulty managing the study protocol with their 

daily life responsibilities. Therefore, we asked participants to use the devices for additional days 

to compensate as applicable.  
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Figure 10: MHP Interface 

Of note, this study is part of a larger cross-sectional study that investigates the use of 

smart technologies for stress detection. As part of this larger study, in addition to the Apple 

Watch and iPhone, participants were also given additional devices capable of collecting other 

data, such as the Withings Blood Pressure Monitor and the Empatica E4. Since this is not the 

focus of the paper we will not describe the use of these devices further, but more information on 

these expanded protocols is provided in 21,89,90,147. 

 

6.2.4.3 Stress Questionnaires 
As there are a limited number of validated stress questionnaires for the EMA with a 

validation period relevant to this study, we used the stress subscale of the Depression, Anxiety, 

and Stress Scale (DASS-21) for our stress questionnaire. While the DASS-21 is usually applied 

over a week, there is promising evidence of using DASS-21 with EMA 128. In addition, Wang et 

al. 129 used a single-item measure that, while lacking validation in the literature, was used 

successfully for stress prediction and is moderately correlated with robust stress questionnaires. 
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The following questionnaire on a LIKERT-type scale was used for our study. Questions 1-7 are 

related to the DASS-21 and question 8 comprises the single-item measure used by Wang et al.  

1. I found it hard to wind down; 

2. I felt that I was using a lot of nervous energy; 

3. I found myself getting agitated; 

4. I found it difficult to relax; 

5. I tended to over-react to situations; 

6. I was intolerant of anything that kept me from getting on with what I was doing; 

7. I felt that I was rather touchy; 

8. Right now, I am… 

Questions 1-7 have the options: “Not at all”, “To some degree”, “To a considerable degree”, 

and “Very much”, while Question 8 has “Stressed Out”, “Definitely stressed”, “A little stressed”, 

“Feeling good”, and “Feeling great”. The questions were displayed to the user in a random order 

each time the questionnaire was filled in the MHP, and compose the perceived stress, i.e., the 

degree to which a stressfull situation affects an individual, is measured. 

In addition to self-reporting stress throughout the day, participants were asked to self-report their 

stress levels at the beginning of the study with the single-item measure (results shown in Table 

1). 

 

6.2.4.4 Data Pre-Processing 
To obtain the HRV features from the ECG readings, we made use of Kubios Premium 

3.5.0, a widely used software that analyzes and extracts features from several heart-related 

signals 140,161. The JSON ECG data was exported into a CSV format and each voltage 

measurement was sorted by timestamp. The CSV file was imported into Kubios.  

Kubios automatic beat correction feature was used and any samples that contained more 

than 5% of corrected beats were removed. In addition, any ECG sample classified as Poor 

Recording or Inconclusive by the ECG app was also removed from the analysis 127. Frequency 

features were calculated using both the Fast Fourier Transform (FFT) and Autoregressive 

Spectral Analysis (AR). A list of the features generated by Kubios based on the 30-second ECG 

signal is presented in Table 11 140,161.  
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The scores of the DASS-21 questions summed together were multiplied by 2. If the score 

was bigger than 14, the sample was classified as “stress” according to DASS-21 guidelines 162. 

For the single-item measure, the sample was classified as “stress” if the score was bigger than 2, 

as that would represent the user being at least “a little stressed.” If the DASS-21 score or the 

single-item score were classified as “stress,” the measurement was classified as the “stress” state. 

 

6.2.4.5 Statistical Analysis 
Statistical analyses were performed through the Statistical Package for Social Sciences (v. 28.0; 

SPSS, Chicago, IL, USA). Using baseline stress scores from the Single-Item measure at the 

beginning of the study, repeated measures ANOVA analyses were conducted followed by 

Tukey’s Post-Hoc test in case of statistically significant features. In addition, Spearman´s non-

parametric correlation test was applied to detect the correlation between each ECG variable with 

the quantitative DASS-21 and Single Item questionnaire scores. For all analyses, P<.05 was 

considered statistically significant. While correlations were performed for every feature, to limit 

the potential of biases ANOVA analyses were conducted with a subset of the features (Table 3) 

as seen in other works 148,149. In addition, for the analyses, we considered 13 days of data for 

each participant (the minimum days of all participants in the study). 

 

6.2.5 Results 
To determine whether HRV data collected from an Apple Watch ECG was associated 

with perceived stress level, we recruited 36 healthy participants to participate in a real-life study. 

Using the Apple Watch ECG app and an iPhone app developed for this study, users were 

instructed to collect ECG readings and complete a stress questionnaire 6 times during the day in 

approximately three-hour intervals for 2 weeks, as well as fill an initial survey about perceived 

stress levels prior to data collection. Table 2 lists the HRV features captured by the Apple Watch 

ECG. Questionnaires comprised 8 questions based on the DASS-21 162 and the measure used by 

Wang et al 129 as mentioned in the previous section. 

Participants were predominantly female (64%) (Table 1). 61% were employed and 36% 

were students. Participants were mostly South Asian, White, or Latin American (31%, 25%, and 

19% respectively), and reported low to medium income (44% and 36%, respectively The average 

of days a participant had in the study was 17.1 (± 2.5), and an average of 59 (± 16.0) ECG 
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recordings. Participants were also asked to self-report their stress levels at the beginning of the 

study with the single-item measure (results shown in Table 10).  

 
Table 10: Study Population Characteristics 

Participants (N = 36)    Frequency  Percentage 
Age 
  18-24      12   33 
  25-34      10   28 
  35-44      10   28 
  45-64       3   8 
  Above 65      1   3 
  
  
Gender 
  Male      13   36 
  Female     23   64 
  
  
SES 
  Low (0-$30,000)                                                 16    44  
  Medium ($30,000– $100,000)    13    36 
  High (Above $100,000)                                     4    12 
  Do not wish to disclose    3                 8 
  
  
Profession 
  Full-time      17   47 
  Part-time      3   8 
  Student      13   36 
  Self-employed/Other                                   2   6 
  Retired      1   3 
  
  
Ethnicity      
  Black or African American      3   8 
  Black and Southeast Asian                  1   3 
  Chinese        4   11 
  Indian         1   3 
  Latin American                                                      7   19 
  South Asian        11   31  
  White         9   25 
  
  
Self-Reported Stress Level, Beginning of Study 
1 (Great)     0   0 
2 (Good)     8   22 
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3 (A little stressed)    15   42 
4 (Definitely Stressed)   11   31 
5 (Stressed Out)    2   6 

 

Table 11: Kubios HRV Features derived from Apple Watch ECG 

Name Description 
ECG_Mean HR Mean of heart rate  from ECG(ms) 
ECG_ SD HR Standard deviation of instantaneous heart rate from ECG (1/min) 
ECG_Min HR Minimum instantaneous heart rate calculated using 5 beat moving 

average  from ECG(1/min) 
ECG_Max HR Maximum instantaneous heart rate calculated using 5 beat 

moving average  from ECG (1/min) 
HRV-1 Heart rate variability collected as SDNN with the Apple Watch 
ECG_PNS Index Parasympathetic nervous system activity compared to normal 

resting values 
ECG_SNS Index Sympathetic nervous system activity compared to normal resting 

values 
ECG_Stress Index Square root of Baevsky’s stress index 
ECG_Mean RR Mean of R-R intervals (ms) 
ECG_SDNN Standard deviation of R-R intervals (ms) 
ECG_RMSSD Square root of the mean squared differences between successive 

RR intervals f(ms) 
ECG_DC Heart rate deceleration capacity (ms) 
ECG_DCMod Modified DC computer as a two-point difference (ms) 
ECG_AC Heart rate acceleration capacity (ms) 
ECG_ACMod Modified AC computer as a two-point difference (ms) 
ECG_FFT LF Fast Fourier Transform Low Frequency band components (Hz) 
ECG_FFT HF Fast Fourier Transform High Frequency band components (Hz) 
ECG_AR LF Autoregressive Low Frequency band components (Hz) 
ECG_AR HF Autoregressive High Frequency band components (Hz) 
ECG_FFT Absolute Power LF Fast Fourier Transform Absolute Power of Low Frequency band 

components  (ms2) 
ECG_FFT Absolute Power HF Fast Fourier Transform Absolute Power of High Frequency band 

components (ms2) 
ECG_AR Absolute Power LF Autoregressive Absolute Power of Low Frequency band 

components (ms2) 
ECG_AR Absolute Power HF Autoregressive Absolute Power of High Frequency band 

components (ms2) 
ECG_FFT Relative Power LF Fast Fourier Transform Relative Power of Low Frequency band 

components (%) 
ECG_FFT Relative Power HF Fast Fourier Transform Relative Power of High Frequency band 

components (%) 
ECG_AR Relative Power LF Autoregressive Relative Power of Low Frequency band 

components (%) 
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ECG_AR Relative Power HF Autoregressive Relative Power of High Frequency band 
components (%) 

ECG_FFT Normalized Power 
LF 

Fast Fourier Transform Normalized Power of Low Frequency 
band components (n.u) 

ECG_FFT Normalized Power 
HF 

Fast Fourier Transform Normalized Power of High Frequency 
band components (n.u) 

ECG_FFT Total Power Fast Fourier Transform Total Power (ms2) 
ECG_FFT LF/HF Fast Fourier Transform ratio between low and high frequency 
ECG_AR Normalized Power 
LF 

Autoregressive Normalized Power of Low Frequency band 
components (n.u) 

ECG_AR Normalized Power 
HF 

Autoregressive Normalized Power of High Frequency band 
components (n.u) 

ECG_AR Total Power Autoregressive Total Power (ms2) 
ECG_AR LF/HF Autoregressive ratio between low and high frequency  
ECG_SD1 The standard deviation perpendicular to the line-of-identity in 

Poincaré plot (ms) 
ECG_SD2 The standard deviation along the line-of-identity in Poincaré plot 

(ms) 
ECG_SD2/SD1 Ratio between SD2 and SD1 (ms) 

 

As described in the previous section, using the questionnaire score, measurements were 

designated as self-perceived “stress” if (a) the DASS-21 questions were classified as “stress” 

according to a DASS-21 greater than 14; or (b) the single-item measure was classified as “stress” 

if the score was greater than 2. Measurements that did not meet this cut-off were designated as 

“no stress”.    

Repeated measures ANOVA test was performed to compare differences recorded by the 

Apple Watch ECG and self-perceived stress. No statistical significance was revealed (Table 12).  

To determine which ECG variables correlated with stress, we applied a Spearman´s non-

parametric correlation analysis between HRV features and self-perceived stress, divided by each 

of the stress scores (DASS-21 and Single-Item measure). Spearman correlation coefficients (r) 

and p-values were calculated and shown in Table 13.   

Regarding DASS-21, several features were shown to have a weak correlation including: 

SNS Index, Stress Index, SDNN, SD HR, Min HR, RMSSD, NN50, pNN50, RR Tri Index, TINN, 

DC, DC mod, AC, AC mod, FFT Absolute Power VLF, FFT Absolute Power LF, FFT Absolute 

Power HF, FFT Absolute Power VLF log, FFT Absolute Power LF log, FFT Absolute Power HF 

log, AR Absolute Power VLF, AR Absolute Power LF, AR Absolute Power HF, AR Absolute 
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Power VLF log, AR Absolute Power LF log, AR Absolute Power HF log, FFT Total Power, AR 

Total Power, SD1, SD2. 

The Single-Item measure significant correlations were: Stress Index, SDNN, SD HR, 

TINN, DC, AC, FFT Absolute Power VLF, FFT Absolute Power LF, FFT Absolute Power VLF 

log, FFT Absolute Power LF log, AR Absolute Power LF, AR Absolute Power LF log,  FFT 

Total Power, SD2, SD1/SD2.  

 

Table 12: Repeated measures ANOVA for HRV parameters with baseline self-perceived 
stress (p<0.05) 

Parameter Source 
Sum of 
Squares  

Mean 
Square F P-value 

AC Days  1293 108 0.656 0.794 

 
Days x Self-Perceived 

Stress 1332 111 0.675 0.775 

DC Days  2119 177 0.733 0.719 

 
Days x Self-Perceived 

Stress 1242 103 0.430 0.952 
RMSSD Days  1390 116 0.443 0.945 

 
Days x Self-perceived 

stress 2293 191 0.731 0.721 
SDNN Days  678 56.5 0.372 0.973 

 
Days x Self-perceived 

stress 667 55.6 0.366 0.975 
Stress Index Days  150 12.5 0.856 0.592 

 
Days x Self-perceived 

stress 158 13.2 0.901 0.546 
FFT Absolute 

Power LF Days  8.52e+6 710175 0.672 0.779 

 
Days x Self-perceived 

stress 1.70e+7 1.41e+6 1.337 0.195 
FFT Absolute 

Power HF Days  8.85e+6 737302 0.600 0.843 

 
Days x Self-perceived 

stress 1.44e+7 1.20e+6 0.978 0.469 
AR Absolute Power 

LF Days  3.24e+7 2.70e+6 0.787 0.664 

 
Days x Self-perceived 

stress 5.12e+7 4.27e+6 1.245 0.250 
AR Absolute Power 

HF Days  1.08e+9 8.96e+7 0.956 0.491 
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Days x Self-perceived 

stress 1.43e+9 1.19e+8 1.269 0.234 
FFT Relative Power 

LF Days  1591 132.6 0.895 0.552 

 
Days x Self-perceived 

stress 979 81.6 0.551 0.881 
FFT Relative Power 

HF Days  2048 171 1.031 0.419 

 
Days x Self-perceived 

stress 1812 151 0.912 0.535 
AR Relative Power 

LF  Days  2136 178 1.091 0.366 

 
Days x Self-perceived 

stress 1431 119 0.731 0.721 
AR Relative Power 

HF Days  2258 188 1.056 0.396 

 
Days x Self-perceived 

stress 1829 152 0.856 0.593 
 

 

Table 13: Correlation coefficients (r) and p value for Spearman´s non-parametric 
correlation analysis. 

Variables DASS-21 Single item 
 r P r P 

ECG PSN Index 0.039 0.070 -0.010 0.653 
ECG SNS Index -0.075 0.001* -0.026 0.227 
ECG Stress Index -0.105 0.001* -0.046 0.036* 
ECG Mean RR 0.033 0.131 0.014 0.528 
ECG SDNN 0.109 0.001* 0.044 0.041* 
ECG Mean HR -0.033 0.131 -0.014 0.528 
ECG SD HR 0.102 0.001* 0.048 0.027* 
ECG Min HR -0.050 0.021* -0.022 0.303 
ECG Max HR  -0.014 0.522 -0.013 0.554 
ECG RMSSD 0.077 0.001* 0.001 0.957 
ECG NN50 0.064 0.003* -0.003 0.892 
ECG pNN50 0.069 0.001* -0.002 0.925 
ECG RR Tri Index 0.091 0.001* 0.034 0.120 
ECG TINN 0.110 0.001* 0.045 0.038* 
ECG DC 0.099 0.001* 0.058 0.008* 
ECG Dcmod 0.076 0.001* 0.008 0.721 
ECG AC -0.105 0.001* -0.073 0.001* 
ECG ACmod -0.075 0.001* -0.014 0.528 
ECG FFT Absolute Power VLF 0.081 0.001* 0.051 0.020* 
ECG FFT Absolute Power LF 0.102 0.001* 0.047 0.030* 
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ECG FFT Absolute Power HF 0.099 0.001* 0.033 0.127 
ECG FFT Absolute Power VFL 
log 0.081 0.001* 0.051 0.020* 

ECG FFT Absolute Power LF log 0.102 0.001* 0.047 0.030* 
ECG FFT Absolute Power HF log 0.099 0.001* 0.033 0.127 
ECG AR Absolute Power VLF 0.088 0.001* 0.032 0.134 
ECG AR Absolute Power LF 0.099 0.001* 0.044 0.041* 
ECG AR Absolute Power HF 0.085 0.001* 0.016 0.472 
ECG AR Absolute Power VLF log 0.088 0.001* 0.032 0.134 
ECG AR Absolute Power LF log 0.099 0.001* 0.044 0.041* 
ECG AR Absolute Power HF log 0.085 0.001* 0.016 0.472 
ECG FFT Relative Power VLF -0.028 0.191 -0.003 0.903 
ECG FFT Relative Power LF -0.009 0.685 0.010 0.658 
ECG FFT Relative Power HF 0.025 0.247 -0.006 0.782 
ECG AR Relative Power VLF -0.019 0.371 -0.009 0.684 
ECG AR Relative Power LF -0.009 0.676 0.032 0.135 
ECG AR Relative Power HF 0.022 0.304 -0.020 0.350 
ECG FFT Normalized Powers LF -0.023 0.297 0.007 0.763 
ECG FFT Normalized Powers HF 0.023 0.291 -0.006 0.788 
ECG FFT Total Powers 0.110 0.001* 0.053 0.014* 
ECG FFT LFHF -0.023 0.292 0.006 0.773 
ECG AR Normalized Powers LF -0.019 0.393 0.025 0.254 
ECG AR Normalized Powers HF 0.019 0.379 -0.024 0.267 
ECG AR Total Power 0.099 0.001* 0.034 0.118 
ECG AR LFHF -0.019 0.385 0.024 0.262 
ECG SD1 0.077 0.001* 0.001 0.953 
ECG SD2 0.115 0.001* 0.057 0.008* 
ECG SD1SD2 0.021 0.330 0.081 0.001* 

 

6.2.6 Discussion 
Overall, some HRV features captured by the Apple Watch weakly correlate to the stress 

questionnaires. Repeated measures ANOVA test and Tukey’s Post-Hoc test indicated that Apple 

Watch ECG features in the current study design cannot statistically differentiate between stress 

states in a real-world setting. Therefore, the answer of “can Heart Rate Variability data from the 

Apple Watch ECG Quantify Stress” with the use of the statistical methods investigated in this 

work seems to be no. 

Regarding Spearman correlations, while several features in the domains (time domain, 

frequency domain, non-linear) were shown to have a significant correlation with the DASS-21 

and single-item measure, all were weak. Nevertheless, interesting points can be made by 

comparing the differences between the two questionnaires. 
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In general, the significant correlations between HRV features and the single-item 

measure are a subset of the ones from DASS-21. One of the main differences in the correlations 

between the DASS-21 and the single-item measure is that the latter does not seem to be 

significantly correlated to the absolute power high frequency components (FFT Absolute Power 

HF and AR Absolute Power HF). In this way, the use of both questionnaires for the study seem 

to complement each other in capturing differing dimensions of self-perceived stress, although it 

should be noted that the weak correlations may limit the validity of these results.  

Interestingly, Silva et al 152, also found weak to moderate correlations using the Spearman 

test while comparing HRV metrics with stress from the PSS-14 questionnaire but failed to find 

any significant correlations except for the LF band. Given that participants’ measurements were 

taken at rest and the PSS-14 stress scores were in the mid to low range, it is possible that 

physiological changes owing to stress affected the correlation values in our current work.  

Indeed, several factors may have affected the quality of the data. First, being a “real-life” 

experiment, data may be subjected to noise and errors in measurements. For example, 

respondents may forget to take measurements throughout the day, take the measurements 

incorrectly, or be influenced by the Hawthorne Effect in which respondents change their 

behaviour because they are being monitored. On the same token, elements such as sweat, or 

movement may affect the measurement. These factors may have influenced the results, leading 

to potentially inaccurate data. Future work should explore data collection of ECG in controlled 

conditions, potentially with an intervention (e.g., applying stressors in a lab) to evaluate the 

robustness of this data. This recommendation is also in line with Martinez et al. conclusions that 

HRV may be best represented in controlled environments with specific stressors 151. While this 

would diminish the validity of ECG data to be used in real-life scenarios to identify stress, it 

could provide further clues as to how the relationship between these variables work and new 

directions of research. Further, future work on this dataset can consider the distribution of the 

data per day and HRV diurnal fluctuations, which could provide more significant and 

illuminating results. 

In addition, a convenience sample was used in this pilot study, and as can be seen by 

Table 10, there is a predominance of females and participants with low to medium SES which 

may affect the external validity of the results. Finally, since we used the EMA methodology, we 

decided to combine both the DASS-21 and the single-item measure for stress classification, 
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which can potentially affect how individuals report stress and may lead to some of the 

contradictory findings in terms of group differences presented here. On that note, this study 

focused on perceived stress, i.e., the degree to which a situation perceived as stressful affects 

individuals. In this context, subjective ratings of stress may be affected by each participant’s 

internalized definition of stress, which in turn may influence responses 54. Nevertheless, the fact 

that several significant – albeit weak – correlations were found are encouraging and additional, 

more controlled, and stratified experiments should be conducted to confirm and clarify these 

relationships between the HRV features from the Apple Watch ECG and self-perceived stress.  

As described in the Related Work section, there is promising but limited evidence on the 

reliability of ultra-short-term measurements and the Apple Watch ECG when compared to 

traditional measurement methods and data. It is possible that inaccuracies in the Apple Watch 

ECG led to a lack of statistical differences between stress states in this study. In addition to 

controlled experiments, future research could also consider using different methods of ultra-

short-term data collection to verify the results. Given that weak correlations were found, the use 

of additional parameters in addition to simply the Apple Watch ECG might also help with 

quantifying stress. Indeed, several physiological and behavioural variables have been widely 

used in stress research. This could include brain activity measured through electroencephalogram 

(EEG), electrodermal activity (EDA), speech, mobile phone usage, among others 35. Physical 

activity 46–48 and sleep 46,52,53 could also be potentially used to discriminate stress and can also be 

collected passively with the Apple Watch sensors – if ECG and other Apple Watch data were 

successfully used in conjunction to differentiate between stressed states, potential solutions could 

focus simply on the Apple Watch for stress quantification, which would be of great value in 

studying the prevalence of these conditions and providing feedback to users. Finally, the use of 

Machine Learning for prediction, as previously mentioned, has shown promising results 21, and 

further studies also using other parameters could help improve prediction accuracy and realize 

the potential of the Apple Watch for stress studies. 

 

6.2.7 Conclusions 
The use of an Apple Watch ECG to quantify individual stress was piloted in a real-world 

scenario. Significant but weak correlations were found between several HRV features and 

measures of self-perceived stress. This study highlights the potential usefulness of the Apple 
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Watch ECG as a minimally invasive tool for stress monitoring, quantification, and intervention, 

although more robust evidence is needed to establish the relationships between the data and its 

relevancy. 

 

6.3 Additional Data and Discussion 
The results from this paper suggest that traditional statistical methods cannot detect 

strong correlations or differences for stressed/non-stressed states using the Apple Watch ECG 

data. This remains true for other data types collected in the pilot study. While this chapter 

focused solely on HRV data derived from the Apple Watch ECG, given that correlation analyses 

found significant albeit weak values, I have included an additional table (Table 14) showing the 

correlation results from selected other data types. This was not included with the paper, as it was 

focused solely on ECG and additional data types were not yet processed at the time of 

submission. The features for Table 14 were selected based on their importance for models 

developed in Chapters 8 and 9. Similarly to the ECG, although there are statistically significant 

relationships, results do not show strong correlations or even moderate correlations. A 

comprehensive list and description of these data types is presented in Table B2 on Appendix B. 

It should also be noted that, as mentioned, participants found the protocol burdensome, with 

some requiring additional days for study completion. For this specific subset of participants, the 

average days in the study was 16.69 (± 2.4), and 13 days were used for the ANOVA analyses. 

The subset of data had 60% of data labelled as no stress (1612 data points) and 40% as stress 

(1117 data points). 

 
Table 14: Correlation coefficients (r) and p value for Spearman´s non-parametric 
correlation analysis (p<0.05) 

Variables DASS-21 Single item 
 r P r P 

Apple Watch Mean HR - Interval -0.068 <0.001* -0.008 0.704 
Apple Watch Max HR - Interval 0.034 0.098 0.033 0.107 
Apple Watch Min HR - Interval -0.123 <0.001* -0.014 0.497 
Withings Total Time Asleep  -0.021 0.358 -0.094 <0.001* 
Apple Watch Total Time Asleep  -0.015 0.483 -0.009 0.673 
Apple Watch Number of Wake-ups -0.111 <0.001* -0.117 <0.001* 
Apple Watch Consolidated Time Awake 
During Sleep -0.037 0.079 -0.045 0.034* 

Apple Watch Total Time in Bed 0.009 0.668 0.068 0.001* 
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Apple Watch % of Time Asleep While in 
Bed 0.007 0.731 -0.073 <0.001* 

Withings Number of Wake-ups -0.049 0.032* -0.087 <0.001* 
Withings Consolidated Time Awake 
During Sleep -0.004 0.852 -0.045 0.046* 

Withings Total Time in Bed -0.012 0.595 -0.073 0.001* 
Withings % of Time Asleep While in Bed -0.030 0.192 -0.047 0.038 
Time Spent in Light Stage  -0.081 <0.001* -0.114 <0.001* 
Time Spent in Deep Stage  -0.031 0.165 -0.080 <0.001* 
Time Spent in REM Stage  0.131 <0.001* 0.078 <0.001* 
Apple Watch Mean Steps -0.042 0.028* -0.057 0.002* 
Apple Watch Max Steps -0.030 0.115 -0.023 0.222 
Apple Watch Min Steps 0.011 0.563 0.037 0.053 
Short Term Mean HR -0.046 0.015* -0.045 0.019* 
Short Term Max HR -0.013 0.491 -0.017 0.366 
Short Term Min HR -0.072 <0.001* -0.062 0.001* 
Temperature 0.028 0.152 0.058 0.004* 
Weight -0.011 0.635 -0.054 0.017* 
HRV-1 0.087 <0.001* 0.034 0.107 
Systolic Blood Pressure 0.073 <0.001* 0.018 0.347 
Empatica AC -0.158 <0.001* -0.098 0.001* 
Empatica DC 0.172 <0.001* 0.095 0.002* 
Empatica LF HF -0.056 0.063 0.018 0.580 
Empatica RMSSD 0.115 <0.001* 0.033 0.271 
Empatica SDNN 0.144 <0.001* 0.075 0.013* 
Empatica Stress Index -0.149 <0.001* -0.078 0.010* 
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Chapter 7 - Preliminary Machine Learning Analyses for Stress Prediction with 
Apple Watch ECG Data 

 
7.1 Foreword 

While correlation and repeated measures ANOVA analyses did not provide good results, 

the ECG data was also used in the creation of RF and SVM models. A subset of participants was 

used for this analysis, as the full study was not yet completed at this time. This subset included 

healthy and non-healthy participants – the word “healthy” here, and in the rest of the work, being 

shorthand for individuals that did not report any chronic disease or illness, use of prescription 

drugs, alcohol consumption or smoking. Further, this preliminary analysis did not consider any 

advanced data pre-processing techniques. The goal was to study the behaviour of RF and SVM 

with preliminary data, gaining a better understanding of how ML models can be used to predict 

stress. While other methods could have potentially be used to train the models, RF was chosen 

due to its interpretability, while both RF and SVMs are able to handle more complex data types.  

Similarly to Chapter 6, the focus of this paper was on the Apple Watch ECG data due to 

its potential in being a quick and non-invasive tool to monitor stress in real-time. This chapter 

presents more details on preliminary feature selection done on the data as well as how the ML 

models were trained and tested, including different stratifications of participants according to 

traits such as age, gender, income, profession, and health status. A discussion on feature 

importance for the RF models is also presented.  

 

7.2 Using Apple Watch ECG Data for Heart Rate Variability Monitoring and Stress 
Prediction: A Pilot Study 
 
7.2.1 Abstract 

Stress is an increasingly prevalent mental health condition that can have serious effects 

on human health. The development of stress prediction tools would greatly benefit public health 

by allowing policy initiatives and early stress-reducing interventions. The advent of mobile 

health technologies including smartphones and smartwatches has made it possible to collect 

objective, real-time, and continuous health data. We sought to pilot the collection of heart rate 

variability data from the Apple Watch electrocardiograph (ECG) sensor and apply machine 

learning techniques to develop a stress prediction tool. Random Forest (RF) and Support Vector 



 115 

Machines (SVM) were used to model stress based on ECG measurements and stress 

questionnaire data collected from 33 study participants. Data were stratified into socio-

demographic classes to further explore our prediction model. Overall, the RF model performed 

slightly better than SVM, with results having an accuracy within the low end of state-of-the-art. 

Our models showed specificity in their capacity to assess “no stress” states but were less 

successful at capturing “stress” states. Overall, the results presented here suggest that, with 

further development and refinement, Apple Watch ECG sensor data could be used to develop a 

stress prediction tool. A wearable device capable of continuous, real-time stress monitoring 

would enable individuals to respond early to changes in their mental health. Furthermore, large-

scale data collection from such devices would inform public health initiatives and policies.       

 

7.2.2 Introduction 
Stress is an often overlooked determinant of health. High stress levels are linked to severe 

health problems such as depression, obesity, and cardiovascular diseases 34. Unfortunately, 1 in 5 

Canadian citizens report experiencing high levels of stress daily 163. Increased awareness of mental 

health has emphasized the need for more timely stress monitoring and early intervention, and the 

collection of population-wide stress data could support public health initiatives and interventions.   

Self-reporting continues to be the gold standard for monitoring stress. These methods 

face challenges and limitations such as social and recall bias 10,11, loss due to follow-up 10,11, 

delays between collection and reporting 18, and costs/logistics 10,18. However, the link between 

stress and multiple biomarkers has revealed opportunities to develop technologies to quantify 

stress. One such feature is heart rate variability (HRV) which is now routinely quantified through 

an electrocardiograph (ECG). ECGs have been widely used for stress prediction, and are 

typically performed at a healthcare facility which limits their accessibility. The development of 

rapid point-of-care or self-monitoring devices would improve patient outcomes, providing 

invaluable information for public health agencies and real-time interventions (e.g., guided 

meditations) 89,90.   

Digital technologies, including smartphones and wearable smartwatches, are pervasive in 

our lives. In 2020, the number of Apple Watch users worldwide was estimated at 100 million 164. 

In line with the modern health trend toward patient self-care, these technologies now include 

sensors designed to continuously collect health data with minimal user effort 165. Collected health 
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parameters include steps, heart rate, blood pressure, and sleep. These technologies now generate 

massive quantities of objective data. Further, the datasets obtained from this novel, real-life data 

can be used to create prediction models using Machine Learning (ML), allowing public health 

agencies to better understand and study the prevalence of a condition in a population. 

Apple Health, a popular source of digital health data, has recently introduced an ECG 

sensor to their Apple Watch device 89 127. The sensor, which is similar to a 1-lead ECG, collects 

30 seconds of data through an electrode placed on the device’s digital crown 20. According to 

Apple, studies have shown good agreement in classifying the rhythm of the Apple Watch ECG 

compared to standard 12-lead ECGs, and in a clinical trial of 600 participants the ECG sensor 

had 99.6% specificity when classifying synus rhythm and 98.3% sensitivity for atrial fibrillation 
127.   

ECG data collected from this wearable device could potentially be employed to predict 

stress: users would simply take a non-invasive 30-second ECG and get instant feedback on their 

stress levels. It is currently unclear whether the brief 30-second ECG reading will be sufficient 

for stress prediction. 

The goal of this work was to pilot the use of Apple Watch ECG data for stress prediction. 

This analysis is part of the development of a Mobile Health Platform (MHP), which collects 

Apple Health data from several mobile and wearable devices 89,90. We collected ECG and stress 

questionnaire data from 36 participants over 2 weeks with the platform. We applied the machine 

learning models Random Forests (RFs) and Support Vector Machines (SVMs), as these models 

have been successfully used in stress prediction literature 35. To the best of our knowledge, this is 

the first work that utilizes Apple Watch ECG for stress prediction. We found that the models 

performed at the low end of the state-of-the-art stress prediction technology. We were able to 

identify several HRV features, as well as socio-demographic classes which impacted the 

accuracy of the model. The results suggest that, with further development, Apple Watch ECG 

sensors could be employed for mobile, real-time stress prediction. 

   

7.2.2.1 Related Work 
The authors of Can et al. 35 provide a survey of stress prediction in real-life scenarios 

with mobile health technologies. As can be seen in this survey, and supported by stress 
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prediction literature, successful methods for stress detection are Random Forests (RFs) and 

Support Vector Machines (SVMs), which were selected for this study. 

Examples of studies that use these methods include Hovsepian et al. 166, which trains an 

SVM using ECG and respiration data in both laboratory and real-life settings. The model outputs 

the probability that a user is stressed with an accuracy of 90% in the laboratory and 72% in real-

life. Muaremi et al. 167 collected ECG, respiration, galvanic skin response, sleep data and posture 

of sleeping individuals, achieving good accuracy with SVMs (73%) and RF (71%). Gjoreski et 

al. 168 use laboratory data to build RFs that predict stress with an accuracy of 83%; then, the RF 

model is used as an output to train an SVM that achieves 76% accuracy on real-life data. Can et 

al. 169 used heart rate variability and electrodermal activity data for real-life stress prediction, 

achieving 68% accuracy with SVM and 66% with RF. Based on these considerations and review 

results 35, the state-of-the-art accuracy for stress detection in real-life settings lies approximately 

between 60% and 80%.  

Regarding HRV analyses, the Task Force of The European Society of Cardiology and the 

North American Society of Pacing and Electrophysiology provides guidelines on the 

measurement and analyses of HRV data 153, which were of great help for this work (more details 

are described in the sections below). Further, Acharya et al. provide a review of HRV metrics 

and their meaning 140, while Benchekroun et al. analyze the impact of missing data on several 

metrics and studied different interpolation techniques to handle missing data 154. Baek et al. 

analyzed several of these metrics on ultra-short term measurements and defines the minimum 

time interval for each of these metrics to be valid when compared to standard measurements, and 

found that each metric is different with some requiring only a few seconds of data while others 

require several minutes 146. The same work also showed that HRV can vary according to factors 

such as age 146. 

7.2.3 Materials and Methods 
 
7.2.3.1 Data Collection  

Participants were given an iPhone 7 with iOS 15.0 and an Apple Watch Series 6 

containing an installed Apple Watch ECG app (WatchOS 8.3) for two weeks. Following the 

Ecological Momentary Assessment (EMA) methodology 160, which enables self-reporting to 

approximate real-life scenarios, users were asked to perform an ECG reading using the app. 

EMAs are further described in section 2.3. They were instructed to collect data 6 times during 
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the day in approximately three-hour intervals. Before the ECG collection, participants were 

asked to complete a stress questionnaire on the iPhone using the MHP. Figure 11 shows the 

study protocol (the times are just reference; participants were asked to start measurements at 

wake-up).  

 

 
Figure 11: Study Protocol 

 

7.2.3.2 Apple Watch ECG application 
WatchOS 8.3 is an application capable of recording ECG measurements via an Apple 

Watch version 4 or higher. Briefly, ECG measurements requires users to open the ECG app and 

place their finger on the digital crown of the device and remain still for 30 seconds 170. The 

instructions distributed to the users can be found in Appendix C. ECG readings were 

automatically stored in Apple’s HealthKit API. We extracted the API data through the MHP and 

saved it in JSON format on our database.  

 
7.2.3.3 Stress Questionnaires 

There are a limited number of validated stress questionnaires for EMA-style data 

collection. To mitigate this issue, we used the stress subscale of the Depression, Anxiety, and 

Stress Scale (DASS-21) as there is promising evidence of using DASS-21 with EMA (Questions 

1-7) 128. This was combined with a single-item measure (Question 8) used successfully for stress 

measurement with a moderate correlation to robust stress questionnaires 129.   

The following 8 questions, on a LIKERT-type scale 128, were designated as the Stress 

Questionnaire for participants:  

1. I felt that I was using a lot of nervous energy; 

2. I found it hard to wind down; 

3. I found myself getting agitated; 

4. I found it difficult to relax; 
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5. I tended to over-react to situations; 

6. I was intolerant of anything that kept me from getting on with what I was doing; 

7. I felt that I was rather touchy; 

8. Right now, I am… 

Questions 1-7 have the options: “Not at all”, “To some degree”, “To a considerable degree”, 

and “Very much”, while Question 8 has “Stressed Out”, “Definitely stressed”, “A little stressed”, 

“Feeling good”, and “Feeling great”. The questions were displayed to the user in a random order 

each time the questionnaire is filled.  

7.2.3.4 Mobile Health Platform 
As discussed, we developed a mobile health platform (MHP) using Apple’s software for 

creating iOS apps, (XCode, version 12.5.1). The MHP acted as a user interface: automatically 

collecting data from Apple Health (via HealthKit) and allowing users to complete the stress 

questionnaire 29. More details are provided in the Results section. 

 

7.2.3.5 Study Population 
Participants were recruited from the University of Waterloo (students) and online 

advertisements (workers; Facebook Ads and Kijiji). Participants were local to the Kitchener-

Waterloo region in Ontario, Canada. Participants were initially only included if they were 

healthy. This requirement was subsequently relaxed to allow ‘unhealthy’ participants (chronic 

disease or illness, prescription drug use, or frequent use of alcohol or drugs). Participants were 

offered CAD 100.00 for two weeks of data collection. Additional data collection beyond two 

weeks was requested from some participants who had missed measurements (less than 6 

measurements per day). This study was approved by University Waterloo Research Ethics Board 

(REB [43612]). Participant consent for data collection was obtained before device distribution. 

Data from 40 participants were collected. After applying the data cleaning and pre-processing 

described below, 7 participants had less than 50% of data points available. Therefore, these 

participants were excluded, and the subsequent analysis was done on 33 participants. Table 15 

shows the characteristics of the study participants. Of note, 27% of participants were male and 

73% were female; 24% were aged 18-24, 30% were aged 25-34 and the same proportion was 

found for participants aged 35-44, 12% were aged 45-64, and only 3% (1 participant) was aged 
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over 65. The average BMI was 27.2 (±6.70), and participants had an average of 65.1 (±11.80) 

valid ECG recordings.  

 

Table 15: Study Population Characteristics 

Participants (N = 33)    Frequency  Percentage 
Age 
  18-24       8   24 
  25-34      10   30 
  35-44      10   30 
  45-64       4   12 
  Above 65      1   3 
 
 
Gender 
  Male       9   27 
  Female     24   73 
 
 
SES 
  Low (0-$30,000)    15    45  
  Medium ($30,000– $100,000)    15    45 
  High (Above $100,000)    2    6 
  Do not wish to disclose    1                3 
 
 
Profession 
  Full-time      14   42 
  Part-time      3   9 
  Student      13   39 
  Self-employed/Other           2   6 
  Retired      1   3 
 
 
Ethnicity       
  Black or African American       2   6 
  Chinese         4   12 
  Indian          1   3 
  Latin American        8   24 
  South Asian         6   18  
  White         12   36 
 
 
Health Status 
  Healthy     26    79 
  Chronic Disease or Illness,    7   21 
  Prescription Drug Use, 
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  Smoking or Alcohol  
 

7.2.3.6 Data Pre-Processing and Analysis 
We exported the ECG data from HealthKit into a CSV format and sorted each ECG 

voltage measurement by timestamps. We removed any ECG measurement that was classified as 

Poor Recording or Inconclusive by the ECG app 127. The CSV file was imported into Kubios 

Premium 3.5.0 to determine heart rate variability (HRV) signals 161,171.  

In order to apply signal filtering, we used the Kubios automatic beat detection feature as 

well as automatic noise detection, which excludes all segments marked as noise – the default 

Medium setting was used for noise segments. Kubios also has an automatic artefact correction 

method which was used for this analysis, and any samples containing more than 5% of corrected 

beats was removed. A list of the features generated by Kubios is presented in Table 16 140,161. 

Kubios automatically calculates a list of features for HRV analysis 140,161. However, some 

features could not be calculated by the software with the 30 seconds measurements, and so these 

features were not used. The full list of Kubios features used for the analyses are mentioned in 

Table 16. 

Table 16:  HRV Features 

Time-Domain Features  
Name Description 
PNS Index Parasympathetic nervous system activity compared to 

normal resting values 
SNS Index Sympathetic nervous system activity compared to normal 

resting values 
Stress Index Square root of Baevsky’s stress index 
Mean RR Mean of R-R intervals 
SDNN Standard deviation of R-R intervals 
Mean HR Mean of heart rate 
STD HR Standard deviation of instantaneous heart rate 
Min HR Minimum instantaneous heart rate calculated using 5 beat 

moving average 
Max HR Maximum instantaneous heart rate calculated using 5 beat 

moving average 
RMSSD Square root of the mean squared differences between 

successive RR intervals 
DC Heart rate deceleration capacity 
DCMod Modified DC computer as a two-point difference 
AC Heart rate acceleration capacity 
ACMod Modified AC computer as a two-point difference 
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Frequency-Domain Features  
FFT LF Fast Fourier Transform Low Frequency band components 
FFT HF Fast Fourier Transform High Frequency band components 
AR LF Autoregressive Low Frequency band components 
AR HF Autoregressive High Frequency band components 
FFT Absolute Power LF Fast Fourier Transform Absolute Power of Low Frequency 

band components 
FFT Absolute Power HF Fast Fourier Transform Absolute Power of High 

Frequency band components 
AR Absolute Power LF Autoregressive Absolute Power of Low Frequency band 

components 
AR Absolute Power HF Autoregressive Absolute Power of High Frequency band 

components 
FFT Relative Power LF Fast Fourier Transform Relative Power of Low Frequency 

band components 
FFT Relative Power HF Fast Fourier Transform Relative Power of High Frequency 

band components 
AR Relative Power LF Autoregressive Relative Power of Low Frequency band 

components 
AR Relative Power HF Autoregressive Relative Power of High Frequency band 

components 
FFT Normalized Power LF Fast Fourier Transform Normalized Power of Low 

Frequency band components 
FFT Normalized Power HF Fast Fourier Transform Normalized Power of High 

Frequency band components 
FFT Total Power Fast Fourier Transform Total Power 
FFT LF/HF Fast Fourier Transform ratio between low and high 

frequency 
AR Normalized Power LF Autoregressive Normalized Power of Low Frequency band 

components 
AR Normalized Power HF Autoregressive Normalized Power of High Frequency 

band components 
AR Total Power Autoregressive Total Power 
AR LF/HF Autoregressive ratio between low and high frequency 
Non-Linear Features  
SD1 The standard deviation perpendicular to the line-of-

identity in Poincaré plot 
SD2 The standard deviation along the line-of-identity in 

Poincaré plot 
SD2/SD1 Ratio between SD2 and SD1 

In addition, several features were excluded following recommendations made by the Task 

Force of The European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 153: we removed pNN50 and NN50 as they are highly correlated with the 

RMSSD, and the RMSSD was preferred. The TINN, HRV Tri Index, VLF, and log 
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measurements were removed as they were indicated for longer time periods than that measured 

here. Finally, features that were highly correlated were identified using the Pearson correlation 

method (r = 0.95) and removed.  

Participant stress states for each measurement were determined based on the results of the 

stress questionnaires. Measurements were categorized as “stress” or “no stress” based on the 

following criteria. The scores of the DASS-21 questions (Questions 1-7) were summed together 

and multiplied by 2; if the score was greater than 14, the sample was classified as “stress” 162. 

For the single-item measure (Question 8), the sample was classified as “stress” if the score was 

greater than 2. To integrate data from two separate questionnaires, if either the DASS-21 score or 

the single-item score was classified as “stress”, the sample was classified as “stress”. 

We divided the dataset into 70% for training and validation and 30% for testing. We used 

10-fold cross-validation for training the RFs and SVMs, which were developed using sci-kit 

learn. These models were chosen as they are widely and successfully used in stress prediction 

literature 35. The “GridSearchCV” function was used to tune the model parameters and find the 

best ones. The data were normalized using sci-kit learn’s “StandardScaler” function for 

optimization.  

The models were trained to the entire dataset as well as the subset of healthy participants. 

Given the relationship between HRV measures and demographics 146,172–174, we trained models 

based on age (18-24 years, 25-34 years, 35-44 years, and 45-65 years), gender (male, female), 

income (< $30,000 CAD, > $30,000 CAD), and profession (student, worker). For each model, 

we calculated feature importance for the RF model using the mean decrease in impurity (a 100% 

purity in a node means the decision tree’s node contains only one class, and by assessing the 

difference between the impurity in the parent and child nodes we can calculate the best split in 

the tree and use it as a proxy for feature importance). For categories that had only one participant 

we did not perform the model analyses. 

 

7.2.4 Results 
We sought to pilot the use of machine learning with Apple Watch ECG data as a step 

towards developing a wearable device for stress prediction. We recruited students and staff from 

the University of Waterloo (Ontario, Canada) to participate in a two-week study. Participants 

were given an iPhone 7 and an Apple Watch Series 6. It is important to note that this study is 
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part of a larger wearable study involving other devices such as wireless blood pressure cuffs; for 

this study, we focus specifically on the iPhone and Apple Watch and on ECG measurements 

alone. The details of the other study are described elsewhere 89,90.  

Users were asked to collect ECG measures using the Apple Watch ECG app six times 

during the day at approximately three-hour intervals. Before the acquisition of each ECG, 

participants were asked to complete a stress questionnaire on the MHP developed for the study, 

which also updated new ECG measurements to our database. The MHP app interface is depicted 

in Figure 12. 

 

 
Figure 12: MHP Interface 

As there are few validated stress questionnaires, we made use of the stress portion of the 

Depression, Anxiety, and Stress Scale (DASS-21) in conjunction with a single-item measure that 

has been used successfully in previous stress prediction studies 129. In total, we acquired 2421 

ECG/survey measures from 33 participants after data cleaning and pre-processing. Readings 

were classified as “stress” or “no stress” based on the answers to the questionnaire 162. We 
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applied the machine learning models Random Forests (RFs) and Support Vector Machines 

(SVMs) to train the model.  

Table 17 shows a summary of the results for each trained model, described in more detail 

below. 

Table 17: Metrics for Each Trained Model 

 Random Forest Support Vector Machine 
 Items Precision Recall F1-

Score 
Precision Recall F1-Score Support 

 No Stress 0.58 0.66 0.61 0.58 0.58 0.58 359 
Complete Dataset Stress 0.52 0.43 0.47 0.50 0.51 0.51 306 

 Accuracy - - 0.55 - - 0.54 665 
 Weighted 

Average 
0.55 0.55 0.55 0.54 0.54 0.54 665 

 No Stress 0.59 0.73 0.65 0.57 0.57 0.57 283 
Healthy Subjects Stress 0.50 0.34 0.40 0.45 0.45 0.45 221 

 Accuracy - - 0.56 - - 0.52 504 
 Weighted 

Average 
0.55 0.56 0.54 0.52 0.52 0.52 504 

 No Stress 0.64 0.88 0.74 0.63 0.75 0.69 95 
Subjects Aged 18-

24 
Stress 0.50 0.19 0.27 0.43 0.31 0.36 59 

 Accuracy - - 0.62 - - 0.58 154 
 Weighted 

Average 
0.58 0.62 0.56 0.56 0.58 0.56 154 

 No Stress 0.39 0.16 0.23 0.42 0.14 0.22 69 
Subjects Aged 25-
34 

Stress 0.67 0.87 0.76 0.67 0.89 0.77 133 

 Accuracy - - 0.63 - - 0.64 202 
 Weighted 

Average 
0.57 0.63 0.58 0.58 0.64 0.58 202 

 No Stress 0.69 0.91 0.78 0.68 0.67 0.68 116 
Subjects Aged 35-
44 

Stress 0.61 0.26 0.37 0.43 0.45 0.44 65 

 Accuracy - - 0.67 - - 0.59 181 
 Weighted 

Average 
0.66 0.67 0.63 0.59 0.59 0.53 181 

 No Stress 0.70 0.84 0.76 0.68 0.86 0.76 50 
Subjects Aged 45-
64 

Stress 0.53 0.33 0.41 0.50 0.26 0.34 27 

 Accuracy - - 0.66 - - 0.65 77 
 Weighted 

Average 
0.64 0.66 0.64 0.62 0.65 0.61 77 

 No Stress 0.64 0.68 0.66 0.57 0.56 0.57 95 
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Male Participants Stress 0.62 0.58 0.60 0.52 0.53 0.52 85 
 Accuracy - - 0.63 - - 0.55 180 
 Weighted 

Average 
0.63 0.63 0.63 0.55 0.55 0.55 180 

 No Stress 0.59 0.55 0.57 0.59 0.67 0.63 250 
Female Participants Stress 0.52 0.56 0.53 0.55 0.47 0.50 214 
 Accuracy - - 0.55 - - 0.58 464 
 Weighted 

Average 
0.56 0.55 0.55 0.57 0.58 0.57 464 

 No Stress 0.62 0.74 0.68 0.64 0.63 0.64 180 
Low SES 

Participants 
Stress 0.45 0.32 0.37 0.45 0.45 0.45 118 

 Accuracy - - 0.57 - - 0.56 298 
 Weighted 

Average 
0.55 0.57 0.56 0.56 0.56 0.56 298 

 No Stress 0.53 0.42 0.47 0.55 0.48 0.51 161 
Medium and High 
SES Participants 

Stress 0.53 0.64 0.58 0.55 0.62 0.58 167 

 Accuracy - - 0.53 - - 0.55 328 
 Weighted 

Average 
0.53 0.53 0.52 0.55 0.55 0.55 328 

 No Stress 0.57 0.51 0.54 0.60 0.54 0.56 134 
Students Stress 0.54 0.60 0.57 0.56 0.62 0.59 128 

 Accuracy - - 0.55 - - 0.58 262 
 Weighted 

Average 
0.56 0.55 0.55 0.58 0.58 0.58 262 

 No Stress 0.55 0.69 0.61 0.56 0.69 0.62 200 
Workers Stress 0.49 0.35 0.41 0.52 0.39 0.45 170 

 Accuracy - - 0.53 - - 0.55 370 
 Weighted 

Average 
0.52 0.53 0.52 0.54 0.55 0.54 370 

 

 

7.2.4.1 Stress Prediction Models Using Total Dataset and Subset with Healthy Subjects 
The RF and SVM models were trained against the complete data set. The complete 

dataset was fairly balanced, with the “stress” class representing 46% of all test examples (306 out 

of 665 in the test dataset). Due to class imbalances, we reported the F1-score weighted. The best 

accuracy was achieved by the RF model with 55% compared to 54% for the SVM model (Table 

3). Weighted averages were similar to the accuracy. Recall and precision were higher for the “no 

stress” class when compared to the “stress” class, with the SVM having a higher recall for the 

“stress” class than the RF. Results indicated that, when using ECG measurements from a 
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wearable device in a real-life setting, both the RF and SVM machine learning models 

approached the lower end of state-of-the-art accuracy levels for predicting stress levels.  

As there are multiple heart rate variability (HRV) parameters determined by the ECG test, we 

sought to identify the most important features for the RF algorithm. The top 10 features were 

determined using the mean decrease in impurity. Figure 13 shows that the top feature was the 

ECG heart rate deceleration capacity (DC) (Table 16).  

 
Figure 13: RF feature importance, complete dataset 

Originally, all participants involved in this study were healthy; however, due to difficulty 

in finding study subjects, we relaxed the criteria to allow participants that were not healthy 

(chronic disease or illness, prescription drug use, or frequent use of alcohol or drugs). Again we 

found the RF model outperformed the SVM model. The healthy subset achieved a slightly lower 

weighted average for the “stress” class of 54% for the RF model with a recall of 34% (45% for 

SVM) and precision of 50%. DC was again identified as the most important feature (Figure 14) 

followed by the heart’s acceleration capacity (AC). 



 128 

 
Figure 14: RF feature importance, healthy subjects 

 

7.2.4.2 Impact of Age on Stress Prediction Models  
Given that age influences HRV 146,153, we trained the RF and SVM models based on age 

to see if we could improve the weighted average.  

For the 18-24 years group, the “stress” class represented 38% of the data. The RF model 

outperformed the SVM model with an accuracy of 62% and an F1-score weighted of 56%. The 

recall and precision in the “stress” class were 19% and 50% respectively. Low Frequency 

Absolute Power calculated with FFT was identified as the most important feature (Figure 15).  

In the 25-34 years group, the “stress” class is the majority, representing 66% of the 

dataset. Here the SVM model slightly outperformed the RF model with an accuracy of 64% 

compared to 63%. The F1-score weighted was 58% for both models. In the “stress” category, the 

recall (87%) and precision (67%) were high but with a corresponding loss of recall (16%) and 

precision (39%) in the “no stress” class. The most important feature was the standard deviation 

of intervals, SDNN (Figure 16). 

In the 35-44 years group, the “stress” class was the minority, representing 36% of the 

dataset. The RF had a higher accuracy of 67% (F1-score weighted of 63%) compared to 59% for 

the SVM model (F1-score weighted of 53). The SVM had higher recall than the RF for the 

“stress” class (45% to 26%), but lower precision (43% to 61%). The AC was the most important 

feature (Figure 17). 

Finally, for the 45-64 years group, the “stress” class comprised 54% of the dataset. We 

found that the RF model performed better than the SVM with an accuracy of 66% and an F1-
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score weighted of 64%.  The “stress” class had a low recall of 33% and a 53% precision. AC was 

the most important feature as well (Figure 18). 

To determine which features were most commonly identified as important across all age 

groups, we determined the frequency which with features appeared in the top 10. Figure 19 

shows that the deviation of the instantaneous heart rate (SD HR), heart acceleration capacity 

(AC) and AR Low Frequency Absolute Power were the most important features across all age-

related models. 

 
 

 
Figure 15: RF feature importance, subjects aged 18–24 

 

 

Figure 16: RF feature importance, subjects aged 25–34. 
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Figure 17: RF feature importance, subjects aged 35–44 

 

 
Figure 18: RF feature importance, subjects aged 45–64 

 

 
Figure 19: Frequency of features in age related models 
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7.2.4.3 Impact of Gender on Stress Prediction Models 
Evidence suggests that gender has an impact on HRV 172. To determine whether our 

stress prediction would improve if we accounted for gender, we trained the RF and SVM 

learning models for males and females. The “stress” class represented slightly more than 45% of 

the datasets.  

The RF model performed better for the male participants with an accuracy and F1-score 

weighted of 63%. The precision was 62% and recall was 58% for the “stress” class. The PNS 

Index was the most important feature (Figure 20).  

In contrast, the SVM model performed better for female participants with an accuracy of 

58% and weighted average of 57%. The “stress” class had a precision of 55% and a recall of 

47%. SDNN was found to be the most important feature (Figure 21). 

Figure 22 shows the frequency with which each feature appeared as the 10 most 

important features across both gender-related models. DC, PNS Index, and FFT High Frequency 

Absolute Power were identified as the most frequently important HRV features.  

 

 
Figure 20: RF feature importance, male participants 
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Figure 21: RF feature importance, female participants 

 

 
Figure 22: Frequency of Features in gender-related models 

7.2.4.4 Impact of Socioeconomic Status on Stress Prediction Model 
As there are large socioeconomic disparities in cardiovascular disease and HRV, we 

sought to train our machine learning models based on socioeconomic status (SES) 173 . 

Participants were considered to be in the low SES category if their net income was < 30,000 

CAD based on an approximation from the Canadian tax cut-off for low-income populations 175. 

Those with incomes above this threshold were considered medium-to-high SES.  

For the low SES group, the “stress” class comprises 40% of the dataset. The SVM model 

performed better with an accuracy and F1-score weighted of 56%, recall of 45%, and precision 

of 45% for the “stress” class. The most important feature was DC, the heart deceleration capacity 

(Figure 23).  
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For the medium and high SES participants, the “stress” class represented 51% of the 

dataset. The SVM model performed slightly better than the RF model with accuracy and F1-

score weighted of 55%. For the “stress” class, the recall was 62% (slightly higher for RF at 64%) 

and precision was 55%. DC, the heart deceleration capacity, was again identified as the most 

important feature (Figure 24). 

Figure 25 shows the frequency of features that appeared as the 10 most important features 

across both income-related models. The most frequently identified features were DC, SDNN, 

FFT Absolute Power HF, and AC.  

 

 
Figure 23: RF feature importance, Low SES participants 

 
Figure 24: RF feature importance, medium and high SES participants 
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Figure 25: Frequency of features in income-related models 

 

7.2.4.5 Impact of Profession on Stress Prediction Model 
Occupational stress is associated with cardiovascular disease and HRV 172. As such, we 

trained our stress prediction models based on participant occupation. Participants were 

categorized as workers (full-time, part-time, self-employed, or other) and students. We did not 

train a model for the retired participant as only one participant was in that category.  

The SVM had better accuracy (58%) and F1-score weighted (58%) when models were trained 

for students. The “stress” class represented 49% of the dataset with a recall of 62% and precision 

of 56%. The AR High Frequency Absolute Power was the most important feature (Figure 26).  

When we trained the model for workers, the “stress” class represented 46% of the dataset. 

The SVM model slightly outperformed the RF in accuracy (55% compared to 53%) and F1-score 

weighted (54% to 52%). The SVM had a better recall (39%) and precision (52%) for the “stress” 

class. Figure 27 shows the 10 most important features, with the AC as the most important 

feature. 

We determined which features appeared most frequently as the top 10 most important 

features across both datasets (Figure 28). The most important features were DC, SDNN, AC, and 

SD HR.        
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Figure 26: RF feature importance, students 

 

 
Figure 27: RF feature importance, workers 

 
Figure 28: Frequency of features in profession-related models 
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7.2.4.6 Priority HRV Features for Stress Prediction Models 
Several HRV features collected during the ECG measurements were identified as 

important across the models trained for the entire dataset, age, gender, socioeconomic status, and 

profession. We determined the frequency with which each feature appeared as the “10 most 

important features” across all 10 models described above (Figure 19). The top features identified 

were SDNN, AC, and DC. 

 

 
Figure 29: Frequency of features in all models 

 

7.2.5 Discussion 
Here we piloted the use of an Apple Watch ECG sensor to predict participant stress 

levels. Overall, both models performed similarly in different circumstances, achieving F1-

weighted scores ranging from 52% to 64%. The state-of-the-art accuracy for stress detection in 

real-life settings lies approximately between 60% and 80% 35. In general, the “stress” models had 

a high level of precision but lower recall. The “no stress” models performed generally well with 

a recall typically above 60%. Considering the ultra-short duration of the ECG measurements 

performed here compared to the standard, as well as the nature of real-life measurements, the 

results presented were quite promising.  

Divisions by gender, profession or income were found to be good proxies for the 

prediction models, although more data seems to be needed for improvement. In the majority of 

cases, the models performed better for the “no stress” class compared to the “stress” class. As the 

fraction of data falling into the “no stress” class was often greater, the performance discrepancy 

may be related to class imbalance. Future studies should explore over- and under-sampling 
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techniques to improve the models. Overall, while the models have high specificity, predicting 

“no stress” states relatively well, they currently lack the predictive power to accurately predict 

the “stress” states. Future work should focus on frequency-domain metrics and implement novel 

approaches for data analyses. Additional stress-related variables could also be integrated into the 

analyses, as well as exploring training and testing datasets based on subjects rather than 

randomly. 

The heart acceleration (AC) and deceleration capacity (DC) were some of the most 

valuable HRV features included in the model, being present in most, if not all, of the 10 most 

important features in all models described. This is interesting as AC and DC are relatively new 

indicators in HRV analyses and lack research with a focus on stress; these results, then, can 

indicate new avenues of research focusing on these metrics for stress prediction 176. The SDNN, 

one of the most widely used metrics for time-domain HRV, was also present in most models. 

Frequency-domain features were commonly identified as important as well. This was consistent 

with the Task Force recommendations; frequency-domain metrics are better at capturing 

variations in HRV than time-domain metrics for short measurement periods of time.  

Still regarding feature importance, it is important to note the wide error bands for most of 

the calculated mean decrease in impurity, which points to the fact that the different trees in the 

random forest models are varied to take into account all complexities in the data. Most features 

possess similar wide error bands, and that the features described above are repeated throughout 

the models, suggesting that they are the most important ones and should be evaluated carefully. 

One limitation of this study was skewed population representation: participants were primarily 

white females. As such, there may have been insufficient data to accurately train the models for 

other representative groups. As well, due to limited participant numbers, it was challenging to 

stratify characteristics. For example, socioeconomic status and profession were only stratified 

into two categories which may be insufficient to capture demographic features. Here we applied 

the use of RF and SVM to train the models 35, however, other methods may perform better 

including Deep Learning approaches. Future work could apply Deep Learning methods using the 

raw signals from each participant’s ECG measurements as time series data.  

To the best of our knowledge, this is the first study to use Apple Watch ECG data to 

predict the stress levels of individuals. The results are currently in the low-end of state-of-the-art; 

as mentioned above, stratifying participants can improve accuracy, and larger studies that allow 
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further stratification of the cohort might achieve even better results. In addition, data was 

collected in real-life conditions which can potentially introduce noise in the data. On the same 

token, stress self-report was used as the ground truth for a given moment in time, which might 

not always reflect physiological parameters. Since the results were promising with these factors 

potentially introducing noise in the data, and given the novelty of the data type, conducting 

further studies in a controlled setting, such as applying stressors in a lab environment, could give 

us additional insights into the relationship between Apple Watch ECG data and stress. In 

addition, since the Apple Watch can also collect additional data such as sleep and physical 

activity, it should also be interesting to use ECG data with other stress-related variables, as they 

can complement the data and increase the models’ predictive power. 

7.2.6 Conclusion 
This study presented an analysis of Apple Watch ECG data from 33 participants. To the 

best of our knowledge, this is the first study to use Apple Watch ECG data to predict stress levels 

of individuals. RF and SVM models were developed for the task, with the models performing 

similarly. 

Further, the results are in line with the start-of-the-art for stress prediction, although at the 

low-end. This is very promising considering the ultra-short-term and real-life nature, as well as 

the novelty of, the Apple Watch ECG data. However, while the current models have high 

specificity, predicting “no stress” states relatively well, it lacks the predictive power to 

accurately predict the “stress” states as of yet. Future work should focus on the AC, DC, SDNN 

as well as frequency-domain metrics and implement novel approaches for data analyses, such as 

Deep Learning, as well as integrating additional stress-related variables into the analyses. 

Overall, the results from the pilot study validate the continued development of wearable 

ECG technology and suggest that, with further refinement, models can likely achieve stress 

prediction with state-of-the-art quality. In that way, we can develop near real-time, non-intrusive 

stress detection, monitoring, and intervention applications using a technology that is already 

widely popular and accepted by the population, leading to better health outcomes. 
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7.3 Discussion 
 When considering the accuracy metrics, the results in several of the stratifications were 

close to or at the bottom of the state-of-the-art (around 60%) for stress prediction. However, a lot 

of results were close to 50%, highlighting the need for further validation.  

As we shall see, further data pre-processing, including missing data imputation, and more 

robust inclusion/exclusion criteria for features with missing components will improve the 

performance of these models (f1-macro scores will be the focus of later chapters as they consider 

both stress and no stress classes as having equal importance). However, features derived from 

the ECG were not as important as others in future chapters. In this manner, coupled with the 

results from Chapter 6, using HRV data from the Apple Watch ECG by itself does not seem to 

be a good approach for stress quantification, although there is the potential for improvement with 

further research, potentially in more controlled environments. The next chapter describes the 

pilot study in full, including all data types collected and devices used.   
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Chapter 8 - Applying MHP in Public Health Surveillance: Stress Prediction and 
Lessons Learned 

 
8.1 Foreword 

Following the preliminary analyses and models shown in Chapters 6 and 7, this chapter 

discusses the pilot study in its entirety. This includes an overview of all data types collected, 

features derived from these data, and mobile and wearable devices used to collect it. It also uses 

data from all participants rather than a subset as was done in Chapters 6 and 7. Some subsets 

from Chapter 7 are eliminated (e.g., people aged above 45) due to the low number of participants 

in these stratifications, which can affect the results.  

The ML models presented in this chapter were trained in a similar manner to the ones 

presented in Chapter 7, i.e., using data from all participants and dividing the dataset into training 

and testing sets, with 10-fold cross-validation. However, the choice was made to use an 80-20 

split for training and testing rather than 70-30 as used in Chapter 7. Since the dataset collected 

was not particularly large – although larger than most studies in literature, as we will see –

especially when stratifying participants, an 80-20 split enabled more data for the model learning 

process.  

Apple Watch ECG data is also included in this paper, and separate models using only 

these data are included. The data was subject to more data pre-processing than the dataset used in 

Chapter 7, namely missing data imputation using k-nearest neighbours, which led to better 

results. 

Further, separating the entire dataset into training and testing without accounting for 

individual participants is not the only approach for model training with stress prediction that is 

used in the literature, and might have disadvantages such as the models benefiting from seeing 

the data from participants in the test set. Chapter 9 will deal with alternative methods of creating 

the models.  

In addition to presenting the development and results of ML models with the entire 

dataset, this paper also discusses lessons learned from applying the current version of the MHP 

in practice for data collection in the pilot study, including limitations of the prototype and 

challenges encountered with several devices selected for the study. Future directions for new 

versions of the MHP and other similar surveillance systems are also presented. Finally, 

implications for public health from these lessons are discussed. 
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8.2 Application of a Mobile Health Data Platform for Public Health Surveillance: A 
Case Study in Stress Monitoring and Prediction 
 
8.2.1 Abstract 
Background: Public health surveillance involves the collection, analysis and dissemination of 

data to improve population health. The main sources of data for public health decision-making 

are surveys, typically comprised of self-report which may be subject to biases, costs and delays. 

To complement subjective data, objective measures from sensors could potentially be used. 

Specifically, advancements in personal mobile and wearable technologies enable the collection 

of real-time and continuous health data. 

Objective: In this context, the goal of this work is to apply a mobile health platform (MHP) that 

extracts health data from the Apple Health repository to collect data in daily-life scenarios and 

use it for the prediction of stress, a major public health issue. 

Methods: A pilot study was conducted with 45 participants over 2 weeks, using the MHP to 

collect stress-related data from Apple Health and perceived stress self-reports. Apple, Withings 

and Empatica devices were distributed to participants and collected a wide range of data, 

including heart rate, sleep, blood pressure, temperature, and weight. These were used to train 

random forests and support vector machines. The SMOTE technique was used to handle 

imbalanced datasets. 

Results: Accuracy and f1-macro scores were in line with state-of-the-art models for stress 

prediction above 60% for the majority of analyses and samples analyzed. Apple Watch sleep 

features were particularly good predictors, with most models with these data achieving results 

around 70%. 

Conclusions: A system such as the MHP might be used for public health data collection, 

potentially complementing traditional self-reporting methods when possible. The data collected 

with the system showed promise for monitoring and predicting stress in a population. 

 

8.2.2 Introduction 
The goal of public health is to improve and protect the health of communities and 

populations 126. In order to understand the characteristics of a population and where treatments 

and interventions are more effective, public health agencies typically conduct surveillance efforts 

to collect and analyze data 72–74. These efforts are traditionally focused on self-report, such as 

surveys and questionnaires. For example, the Canadian Health Measures Survey 78 and the 



 142 

Canadian Community Health Survey 80 are major surveys that collect data on the characteristics, 

behaviour and health of Canadians. However, subjective and self-reported data may be subject to 

limitations such as biases, delays, costs and logistics 2,3,10–15,17,18.  

New advancements in sensing and remote monitoring technologies allow the ubiquitous 

and effortless monitoring of objective health data with the use of smart devices and Internet of 

Things (IoT) solutions 177. For example, smartphones can typically collect movement data; smart 

thermostats are able to collect temperature and movements around the house; and smartwatches 

collect a range of variables from heart rate to steps and sleep 89,90,177. These technologies might 

potentially be used in complement to traditional data collection techniques, collecting objective 

data that can mitigate challenges associated with self-report – as evidenced by a number of 

recent studies that use mobile and wearable technologies to gain new insights into the health of 

individuals 21,26,77,81,85,147,178. Further, given the personal nature of these devices, it could be 

possible to leverage data that is being passively collected in real-life environments for long 

periods. For instance, smartwatches typically collect heart rate and steps data from individuals 

wearing them throughout the day, without any action required on the user’s part. This could 

provide new and large sources of continuous, real-world data collected with relatively low effort 

that might allow scientists to conduct novel health research 78.  

Indeed, many efforts are being put into place to create platforms that allow individuals to 

share their data for research. For example, the ecobee smart thermostat company has a program 

called Donate Your Data 83,84, which enables the anonymous sharing of device information with 

researchers 25,86,87. The Ubiquitous Health Technology Lab at the University of Waterloo has 

developed a web platform that enables the enrolment of personal Fitbit and ecobee devices for 

research: data from the devices is continuously collected once a day once enrolment is complete 
88. The Digital Epidemiology and Population Health Laboratory (DEPtH Lab) at Western 

University have developed the Smart Platform, which allows researchers to engage with personal 

devices of patients 179.  

However, these mobile health datasets also bring new set of challenges. Larger datasets, 

generated at faster speeds than previous data collection efforts, with a variety of formats, 

structures, and even different data collection periods, require new methods of processing and 

analyzing data. Therefore, to handle this Big Data, Machine Learning (ML) techniques have 

been shown to be useful tools in analysis, discovery and prediction 55.  
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The goal of this study is to contribute to the informatization of public health data 

collection efforts, first by introducing the Mobile Health Platform (MHP), an iOS app that 

leverages data from personal devices that are stored in Apple Health (AH) 89 127, a popular health 

data repository. We describe how this app was applied in a pilot study with 45 participants, 

collecting a plethora of health data (e.g., sleep, steps, heart rate, blood pressure, among others). 

In turn, the collected data is used to predict stress states through the creation of ML models, 

specifically random forests (RFs) and support vector machines (SVM). Related work on stress 

prediction and the rationale behind stress as a use case are presented in the next subsection. 

 

8.2.2.1 Related Work – Stress and Machine Learning 
Stress is a major public health issue, with the World Health Organization calling it the 

“health epidemic of the 21st century” 141, and its prevalence is increasing.  While stress is a 

normal response to an unexpected situation – generating energy and enabling the individual to 

deal with a threatening circumstance – the body should, ideally, return to its normal state once 

the situation is resolved 35,180. Long-term, constant exposure to stressors can increase the risk for 

hypertension, cardiovascular diseases, and stroke, among others 34,35. It is estimated that stress 

places a burden of over $300 billion USD annually on health costs and job performance 141,143, 

leading to 120,000 preventable deaths when coupled with a lack of health insurance 144. The 

pandemic has also greatly affected the stress levels of individuals: according to a recent survey 

from the American Psychological Association, almost 70% of respondents experienced increased 

levels of stress due to COVID-19 32.  

Stress is typically collected for public health initiatives and in real-world environments 

through self-report 4,35,166. In this way, it is an ideal use case for the MHP, which collects 

objective data that can be used for stress prediction. Indeed, many studies have sought to use ML 

coupled with mobile and wearable technologies to predict stress. For example, a study used daily 

self-report for 4 months coupled with variables such as physical activity and heart rate variability 

(HRV) to predict stress in 35 participants 46. Logistic Regression was used in a generalized 

model – using data from all participants and a leave-one-person-out (LOPO) validation method – 

with 53% accuracy, and an individualized model – using data from each participant using a 

leave-one-day-out validation procedure – with 61% accuracy. Jin et al. 45 use data from 6 

participants obtained with the Empatica E4 device such as blood volume pulse and electrodermal 
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activity for 4 weeks, applying RFs and SVMs on a generalized model that uses 10-fold cross-

validation to train and tune the model and a 10% validation set for testing, achieving an Area 

Under the Curve of 87.3% (RF) and 82.1% (SVM). Can et al. 169 collects heart rate (HR) and 

electrodermal activity data from 14 participants, both in the lab and in real life during one week, 

training several combinations of models (e.g., models developed using the real-life data, 

laboratory data, or combination of both). Several ML algorithms are used on a generalized 

dataset. In particular, a 68% accuracy is achieved with SVMs and 52% accuracy with RF using 

10-fold cross-validation and 80- 20 train-test datasets for data collected in real-life.  

In addition to daily self-report, many studies use stressors applied in a laboratory or 

controlled environment 42,166,181. Akmandor and Jha 181 use ECG, respiration, blood pressure, and 

other variables from 32 participants to develop generalized – i.e., combining data from all 

participants into one dataset – and individualized models using SVMs and k-nearest neighbors 

(kNN), dividing the datasets into train, test and validation sets to validate the models without 

cross-validation. They achieved an accuracy of 89.2% (kNN) and 83.1% (SVM) for the 

generalized models and 94.5% (kNN) and 86.7% (SVM) for individualized ones. Liao et al. 182 

use neural networks to develop generalized models based on attention and meditation (as 

opposed to stress and non-stress states) in the laboratory with EEG data from 7 participants, 

achieving f1-scores of 60% for the attention state but of only 1% for the meditation state.  

As can be seen by the examples above, the state-of-the-art accuracy for stress prediction 

seems to lie between 60%-80%, decreasing for studies using real-life data. Further, there are 

many different ways to predict stress. Indeed, the works above vary widely according to the 

number of participants, period of data collection, algorithms used to develop the models, and 

metrics and methods applied to validate the models, among other factors. In this work, based on 

the results of previous studies and a survey by Can et al. 35, we elected to use RFs and SVMs, as 

they were successfully used in a variety of studies to predict stress. These models will be used to 

predict stress based on data collected from the MHP to test its efficacy in monitoring and 

predicting this condition in a population. 

 

8.2.3 Methods 
8.2.3.1 Recruitment and Study Protocol 

We recruited participants from the University of Waterloo as well as through Facebook 

groups and Ads. Kijiji, a Canadian website that allows users to advertise products and services, 
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was also used. Inclusion criteria consisted of participants aged 18 years and older, and initially 

involved participants that did not have any chronic condition, take any medication or consume 

alcohol/smoke frequently. The latter criteria were later relaxed due to a difficulty in finding 

participants, and this was accounted for in the analyses as will be expanded in the following 

subsections. Since devices were delivered to participants in-person, they were required to be 

located near the Kitchener-Waterloo region in Ontario.  

45 participants were recruited for the study and were offered CAD 100.00 for two weeks of 

data collection. Participants were given the following devices (per manufacturer): 

 

• Apple: iPhone 8 with iOS 15.0 and Apple Watch Series 6 with watchOS 8.3.  

 

• Withings: Withings Sleep, Withings Blood Pressure Monitor (BPM) Connect, Withings 

Thermos and Withings Body+ 

 

• Empatica: Empatica E4 wristband 

 

Of this list, the Empatica E4 is the only one that is not considered a personal, consumer-level 

device, and was included due to its extensive use in stress prediction literature. During our 

experiments, we conducted analyses excluding Empatica data to test if this research-grade device 

had a significant impact on the results. 

Table 18 describes the variables collected in each device. In Appendix C, the User Manual 

shared with each participant providing instructions on how devices should be installed and used 

is included. A 1-hour video call was also scheduled with each participant to go over the manual, 

make sure the devices were installed and working properly, and answer any questions about the 

protocol. 

This study followed the Ecological Momentary Assessment (EMA) methodology, which 

strives to obtain self-reports closer to events in daily life to approximate real-world scenarios and 

obtain accurate data 160. Therefore, users were instructed to collect data 6 times during the day 

(starting at wake-up and finishing at sleep), in approximately three-hour intervals according to 

their daily routine. This included taking Weight, Blood Pressure, Heart Rate Variability, ECG 

and Temperature measurements and filling out the stress self-report forms. Apple Watch and 
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iPhone Steps, Apple Watch HR, and Empatica E4 data were collected continuously without 

patient involvement. The protocol is shown in Figure 30, with the times shown being illustrative.  

 

Table 18: Variables Collected and Devices Used in Study 

 

 

 

 
Figure 30: Study Protocol 
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The iPhone contained the prototype MHP. Participants were instructed on how to use the 

platform to complete stress self-reports (see User Manual in Appendix C for detailed 

instructions). The MHP uses the HealthKit Application Programming Interface (API) provided 

by Apple to extract Apple Health data 29.  

Figure 31 shows the interface of the MHP, extracting Apple Health data automatically 

and allowing users to self-report their stress levels. The MHP is used as the data collection tool 

for the study: users open the app to answer the stress questionnaires (at which point all new 

Apple Health measurements are synced with the research database) and proceed to take the 

measurements, following the instructions in the User Manual in Appendix C. 

Notably, the HRV data on the Apple Watch is collected throughout the day based on user 

behavior, but to trigger collection for our study, we used the Breathe app, an Apple Watch 

mindfulness application that asks users to breathe in and out for several minutes (more 

information in the User Manual) 95. To avoid affecting stress levels, we asked users to do this as 

the last step in the data collection protocol.  

In addition, while the Empatica E4 collects data continuously when active, we noticed 

that it constantly disconnected from the iPhone through its Bluetooth connection. Therefore, 

users were asked to constantly check if the Empatica was still active and, if not, to establish the 

connection again (see User Manual). However, as shall be described in further sections, this 

resulted in a lot of missing data from this device. Several participants encountered difficulties 

managing the study protocol with their daily life routines. In these cases, we asked participants to 

use the devices for additional days. This study was approved by the University Waterloo 

Research Ethics Board (REB [43612]). Data collection occurred between December 2021 and 

December 2022. 
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Figure 31: MHP Interface 

8.2.3.2 Stress Self-Report 
One of the challenges encountered when designing the study was a lack of validated 

stress questionnaires for EMA, as most stress questionnaires have a validated period of days or 

weeks. To mitigate this issue, we made use of the stress subscale of the Depression, Anxiety, and 

Stress Scale (DASS-21), comprised of seven questions related to stress. While the DASS-21 is 

usually applied over a week, there is promising evidence of using this questionnaire with EMA 
128. In addition, Wang et al. 129 used a single-item measure that, while lacking validation in the 

literature, was successfully applied for stress quantification and is moderately correlated with 

robust stress questionnaires 129.  

In our study, we used both questionnaires comprising the 8 questions that are asked to 

participants. Questions 1-7 are related to the DASS-21, and question 8 comprises the single-item 

measure used by Wang et al  129. The stress-related questions and respective questionnaires are 

shown in Table B1 in Appendix B. 

  Following DASS-21 guidelines, the score is multiplied by 2 and, if it is above 14, we 

consider users as stressed in that moment 162. For the single-item measure, if the user answers “A 
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little stressed” or above, we consider users having stress. For each questionnaire filled, if the 

DASS-21 or the single-item measure (or both) show stress, that data collection period is marked 

as stress. In other words, if in the moment of data collection the DASS-21 score is marked as 

“stress” and the single-item measure is marked as “no stress”, or vice-versa, that data point will 

be labelled as “stress”. The questions are displayed to the user in a random order each time the 

questionnaire is filled. Figure A25 in Appendix A shows an example of the dataset.  

 

8.2.3.3 Data Collection and Pre-Processing  
For all variables and features, we evaluated if the participant had any data points missing. 

In the case of a missing data point, if that was an isolated event, i.e., if less than two data points 

were consecutively missed, we used the average between the next and previous data points for 

the participant. In case more than two data points were missing, i.e., two or more consecutive 

data points were missing, we used the k-nearest neighbors algorithm to estimate the value based 

on the proximity of features that are not missing. This was done using SciKit Learn’s KNN 

Imputer method with number of neighboring samples set to 5 183. In addition, features were 

included if they had at least 30% of data for the specific user. This number was used to balance 

the amount of data used in the analyses while empirically assessing the KNNImputter behaviour 

and model performance for missing data. 

Next, we describe the processing of variables extracted from each device in Table 18. An 

exhaustive list and description of all features used in the study are shown in Table B2 in 

Appendix B. 

 

8.2.3.4 Steps 
For steps data, only Apple Watch information was used. Since data was collected through 

the HealthKit API differentiating between the Apple Watch and iPhone, it was not possible to 

integrate data from these two devices without avoiding duplication of information. From the 

Apple Watch steps data, we extracted the mean, maximum and minimum number of steps for the 

time interval between the start and end dates of the data point.  

Unlike other data types, for the steps data we did not use averages or KNNImputer for 

missing data, as it was possible the user simply did not walk during the time period in question. 

Figure A26 in Appendix A shows example data points in the dataset for steps. 
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8.2.3.5 Heart Rate  
For HR data, we also focused on Apple Watch as the device collects data throughout the 

day over infrequent periods. The BPM Connect device only calculates HR when the participant 

is using the equipment, and Withings Sleep only collects data during the night. We calculated the 

mean, maximum and minimum heart rate for the time interval, measured as beats per minute.  

In addition, we noticed that during the data collection protocol, when the user activates 

the Breathe or ECG apps, the device typically shortens the HR data collection period to 

milliseconds. Therefore, we also extracted a Short-Term HR feature in which we only consider 

the millisecond data close to the time the user filled out the stress self-report, rather than the 

entire HR data from the 3-hour time interval between the start and end dates of the data point. 

For the Short-Term features, we also extracted the mean, maximum and minimum. Finally, we 

used the data collected from the Apple Watch and for any other devices (e.g., Withings Sleep) 

during the night, i.e., after the last data point collected on day t-1 and before the first data point 

on day t. Figure A27 shows a snapshot of the dataset with the Apple Watch HR features. 

We also considered Empatica HR data. More specifically, we used the BVP.csv file 

supplied by Empatica, which provides raw data, to extract several HR and HRV features. This 

file was processed using the Kubios HRV Premium 3.5.0 software 161. More details on Kubios 

and HRV will be described in the next sub-section. For HR, Kubios provided the mean, 

maximum, minimum, and standard deviation of HR for the Empatica HR data during the time 

interval.  

Finally, ECG data from the Apple Watch ECG app was also processed using Kubios. The 

HR output of ECG is similar to the Empatica, with the mean, maximum, minimum, and standard 

deviation of HR for the ECG data during the time interval 

 

8.2.3.6 Heart Rate Variability/ECG 
In AH, HRV is measured as the standard deviation of beat-to-beat measurements 

(SDNN). The Apple Watch measures SDNN using photoplethysmography (PPG), a technique in 

which a green LED light is used to detect the amount of blood flowing in the wrist 22, irregularly 

throughout the day. In addition to the passive collection of this metric with the Apple Watch, we 

also asked users to leave the Breathe app open for 5 minutes as the final step of the data 

collection process to trigger the HRV data collection, as previously mentioned. To process 
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features, we calculated both the SDNN from the Breathe app and the SDNN collected throughout 

the day.  

Despite not being able to control when the Apple Watch would collect the metric, we 

noticed that there was typically at least one SDNN data point collected per time interval. On the 

other hand, many users failed to activate the Breathe app during the data collection process, 

leading to missing data. Given that, in the real-life deployment of a system such as the MHP it is 

more feasible to depend on passively collected data, we decided to use the SDNN metric 

collected by the Apple Watch throughout the day rather than using the Breathe app as a trigger. 

This feature was named HRV-1 (see Table B2 in Appendix B). 

ECG data, composed of timestamps and voltage measurements which generate a 30-

second measurement on the Apple Watch ECG app (see User Manual for more details), was 

processed using Kubios into HRV data. In terms of program parameters, Kubios automatic beat 

correction algorithm was used, and the automatic noise detection was set to medium.  

It should be noted that there is limited evidence on the use of ultra-short HRV measurements 
146,184 such as the ones provided by the Apple Watch ECG app. To the best of our knowledge, 

this is one of the first works to use the Apple Watch ECG data in stress prediction. Following 

recommendations of the Task Force of The European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology 153, we removed ECG several features, as 

follows: 

- When it comes to time-domain measures, the RMSSD is highly correlated with the 

pNN50 and the NN50, and the RMSSD is preferred. Therefore, we removed pNN50 and 

NN50. 

- TINN, HRV Tri Index, VLF and log measurements were removed as they seem to be 

more indicated for longer periods, and the ECG measurement is 30 seconds long. 

Finally, Empatica E4 data was also processed into HRV data using the Kubios software, as 

shown in Table B2. To capture physiological states during the time of data collection, we used 

10-minute intervals close to the data collection point. Ideally, the intervals started 5 minutes 

before the time of the stress self-report and continued for 5 minutes after, but due to the amount 

of noise in the data as well as missing data due to connectivity issues, this was not always 

possible. Therefore, data was processed as close to the time of data collection as possible. In case 
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there were not 10 full minutes of quality data close to data collection time, we used a cut-off of 5 

minutes, i.e., at least 5 minutes of data were required to be included in the study and processed in 

Kubios. We removed the same features as above with the exception of very low-frequency and 

log components which may capture relevant information for longer measurements. 

Figure A28 shows the Apple Watch HRV-1 feature in the dataset; Figure A29 shows ECG 

HRV features; and Figure A30 shows Empatica HRV features. 

 

8.2.3.7 Weight, Blood Pressure, and Temperature 
Data on weight, blood pressure and temperature were included in this study. For blood 

pressure, in addition to systolic and diastolic pressure, the mean arterial pressure was used as a 

feature. While true MAP can only be obtained with intrusive devices, it is possible to estimate it 

with the following formula: (sys + 3* dys)/3 181,185.  

Due to the size and weight of the Withings Body+ smart scale, participants found it 

difficult to bring this device with them during their daily routine. Therefore, they were instructed 

to only take weight measurements when they were at home and had access to the scale (which 

also reflects how such measurements would be taken in the real-world). For this reason, we 

included weight data in this study despite large gaps, using the KNNImputter to fill these. Figure 

A31 shows snapshots of weight, blood pressure and temperature features. 

 

8.2.3.8 Sleep 
As mentioned in the HR subsection, we calculated mean, maximum and minimum HR 

during the night (between the last data point collected from the previous day and the first from 

the current day).  

In addition, we calculated sleep features from the Apple Watch and the Withings Sleep 

device. From both devices, we calculated the following sleep features: Total Time Asleep, 

Number of Wake-Ups, Time Awake During Sleep, Total Time in Bed, and Percentage of Time 

Asleep While in Bed. Withings Sleep also provided additional information on the time the 

participant spent in Light, Deep and REM stages, respectively (of note, the Apple Watch recently 

introduced an update on sleep monitoring that also collects data on sleep stages, but that was not 

available at the time of the study) 186. 

To calculate Apple Watch sleep durations, we made use of both the Apple Watch and 

iPhone. The Apple Watch calculates times spent asleep. To calculate time in bed, Apple systems 



 153 

make use of the iPhone’s sleep calendar feature. Users were asked to include an estimate of their 

sleep schedules on the iPhone (see User Manual). Those values are updated based on when 

participants are using the phone and were used to estimate when the user went to sleep. 

Because the relationship between sleep and mental health is potentially bidirectional 
53,187, we also created features offsetting the day for 2 additional days and 2 days before. For 

example, if a feature was collected at time t, the t-2 equivalent would place this value two days 

before, t-1 at one day before, t+1 at 1 day after, and t+2 at 2 days after. In order to not greatly 

increase our feature set, initial RF models were used to calculate the feature importance (based 

on mean decrease in impurity) of different offset days, with 2 days before and 2 days after being 

extremely prevalent among the most important features. Therefore, the majority of sleep features 

included were from t-2, t+2, and t. The features from other day offsets that were included, based 

on the tests, were t+1 Apple Watch Mean HR, t+1 Apple Watch Max HR,  t+1 Apple Watch 

Min HR, t+1 Withings Total Time Asleep, t+1 Apple Watch Number of Wake-Ups, t+1 Apple 

Watch Time Awake During Sleep , t-1 Apple Watch Mean HR,  t-1 Apple Watch Max HR,  t-1 

Apple Watch Min HR, t-1 Withings Total Time Asleep, t-1 Apple Watch Total Time In Bed. 

Finally, because sleep data is collected at a different frequency than each of the EMA 

data collection – EMA is collected approximately 6 times a day while sleep data is collected 

once per day –, sleep data were included for the entire day (e.g., every measurement of day t will 

have the same sleep features) to maximize the amount of granular stress information collected. 

Figure A32 shows sleep features for t. 

 

8.2.3.9 Feature Selection and Normalization 
In addition to the removal of features mentioned in the previous section, before every 

experiment, highly correlated features (with a Pearson correlation coefficient higher than 0.95) 

were removed. While RF is not affected by the difference in units, we normalized the data for 

input in the SVM models using SciKit Learn’s Standard Scaler method 188.  

 

8.2.3.10 Analyses/Experiments 
A number of experiments with different subsets of the data were conducted to allow us to 

better understand the predictive power of each device/manufactures (Empatica, Apple, Withings) 

for stress prediction. Further, we conducted the analyses with and without the sleep data due to 

its different data collection periods. We conducted the following experiments excluding sleep: 
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- Dataset with all features, D (n = 22) 

- Dataset with only ECG features, DECG (n = 42) 

- Dataset with only Apple features, DA (n = 42) 

- Dataset with only Withings Features, DW (n = 44) 

- Dataset with Apple and Withings Features, DAW (n = 41) 

- Dataset with Only Empatica Features, DEmpatica(n = 27). 

 

Adding sleep features to the datasets, we conducted the following experiments: 

 

- Sleep Dataset with only Apple features, SDA (n = 34) 

- Sleep Dataset with only Withings Features, SDW (n = 34) 

- Sleep Dataset with Withings and Apple Features, SDAW (n = 27) 

- Sleep Dataset with Withings and Apple Only Sleep Features, SDS (n = 27) 

 

DECG and DA contain the same participants, with different features. In case a participant 

possessed a feature with less than 30% of the data, this participant was removed from datasets 

using the feature. For example, if a user possesses less than 30% of the Empatica features, they 

were not included in the D or DEmpatica sets, and similarly for other features in each dataset. 

For the datasets including sleep features, we did not include Empatica data as this would result in 

very small datasets. Table B3 shows the participant characteristics for each dataset, and each 

separate sampling is further discussed in the Results section. 

As mentioned in the Related Work section, there are many different ways to train, test and 

validate the models in the literature. For these analyses, given that in real-world deployment 

public health agencies would collect a large amount of data from populations, we elected to train 

generalized models, meaning using data from all participants. Randomly, 80% of the dataset is 

used for training/validation and hyper-parameter tuning with 10-fold cross-validation, while 20% 

is used for testing.  

In addition, since data was collected in real-life environments, many users had a 

predominance of one class over another (e.g., with a lot of data points classified as no stress 

compared to stress, or vice-versa). For this reason, we conducted the analyses with imbalanced 
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classes as well as with balanced classes using the SMOTE (Synthetic Minority Over-sampling 

Technique) method on SciKit Learn, which upsamples the minority class 147,189. The technique is 

applied only to the training sets in the examples described above before cross-validation to make 

sure the model is tested on real data 147. In other words, only the train sets are balanced. 

Finally, due to the relationship between stress measures and factors such as sex, age, income, 

work, and health, we trained the following models 21: 

 

(1) Total: comprised of data from all participants in each subset. 

(2) Age: models in the age range of 18-24, 25-34 and 35-44 were trained. We decided not to train 

models in the 45-64 range due to the scarcity of participants in this interval. By the same token, 

we did not train a model for participants aged above 65 as only one participant was in that 

category. 

(3) Sex: we trained models for male and female participants. We did not train a model for the 

participant that self-identified as gender fluid as only one participant was in that category. 

(4) Income: we trained models for participants belonging to low socioeconomic status (SES), 

comprising participants that earn less than CAD 30,000, and participants belonging to middle 

and high SES. The CAD 30,000 cut-off point was based on an approximation of the Canadian 

tax cut-off for low-income populations 175. 

(5) Profession: we trained models for workers (full-time, part-time, and participants that are self-

employed or classified as other) and students. We did not train a model for the retired participant 

as only one participant was in that category.  

(6) Healthy: we trained a model removing participants that reported chronic diseases, illnesses, 

frequent alcohol or drug use, or prescription drug use. 

 

For each of these divisions, we trained the model with binary classification (stress vs no 

stress), reporting accuracy, f1-weighted and f1-macro score in tables B4 and B5 from Appendix 

B. Finally, while the SVM model performs many transformations to fit the data, making it harder 

to obtain information on the importance of features, we calculated feature importance for the RF 

model using the mean decrease in impurity 21. A 100% purity in a node means the decision tree’s 

node contains only one class, and by assessing the change in impurity between parent and child 

nodes we can calculate the best split in the tree and use it as a proxy for feature importance. 
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Figure 32 and Figure 33 show the process of obtaining the different datasets and training the 

models. 

 

 
Figure 32: Division into Datasets Per Device and Per Device + Sleep 

 

 
Figure 33: Training Generalized Models 

 

 

 

Dataset

Data pre-processing + KNN Imputter
(at least 30% in each feature)

Gender EmploymentSES

Healthy Age All

D
N = 22

DECG
N = 42

DA
N = 42

DE
N = 27

DW
N = 44

DAW
N = 41

Per Device Per Device + Sleep

SDA
N = 34

SDW
N = 34

SDAW
N = 27

SDS
N = 27

Dataset

Remove highly 
correlated 
features 

(r>=0.95)

Imbalanced SMOTE

10-fold Cross 
Validation,

RF and SVM



 157 

8.2.4 Results 
 
8.2.4.1 Population Data Characteristics 

Table 2 details the full sample (n=45) used in the study. Most participants are aged 44 

years or younger (87%), female (67%), with low (44%) or medium (40%) income, and workers 

(62%). In terms of ethnicity, a majority identified as white (33%), South Asian (24%) or Latin 

American (22%). Most participants (80%) did not have chronic diseases or illnesses, use 

prescription drugs or frequently consumed alcohol/smoke. The average of days a participant had 

in the study was 17.1 (± 2.5), and participants had an average of 78.91 (± 11.0) data points. Data 

quality did not visibly differ between participants based on number of days required for data 

collection.  

 

Table 19: Participant Characteristics 

Participants (N = 45)    Frequency  Percentage 

Age 
  18-24      13               29 

  25-34      14   31 

  35-44      12   27 

  45-64       5   11 

  Above 65      1   2 

 

 

Sex/Gender 
  Male      14   31 

  Female     30   67 

  Gender Fluid     1   2 

 

SES 

  Low (0-$30,000)    20    44 

  Medium ($30,000– $100,000)    18    40 

  High (Above $100,000)    4    9 

  Do not wish to disclose    3                7 
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Profession 
  Full-time      21   47 

  Part-time      5   11 

  Student      16   36 

  Self-employed/Other           2   4 

  Retired      1   2 

 

 

Ethnicity       
 Black and Southeast Asian    1   2 
 Black or African American    3   7 

 Chinese      4   9 

 Indian       1   2 

 Latin American     10   22 

 South Asian      11   24  

 White       15   33 

 

 

Health Status 
  Healthy     36    80 

  Chronic Disease or Illness,    9   20 

  Prescription Drug Use, 

  Smoking or Alcohol  

 

For the 45 participants, 43% of total answers were classified as stress (1539), while the 

remaining 57% (2012) were labelled as no stress.  This proportion is maintained, approximately, 

for each of the subsamples used in the analyses (Table B3 in Appendix B).  

 

8.2.4.1 Models 
This section discusses the results of each of our models. The focus of this section is on the f1-

macro metric, as accuracy may not reflect imbalance in classes (if one class is predicted well but 

another is not, the accuracy may still be high), so the f1-score which calculates the harmonic 
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mean between precision and recall is preferred. Further, the macro average treats both classes as 

being of equal importance.  

Table 20 shows the f1-score for the experiments. More detail on other metrics, including 

specifics for each class, accuracy, f1-weighted, precision and recall can be found in Table B4 

(without sleep) and B5 (with sleep). Feature importance in each dataset is presented in Tables 

B10 to B19 in Appendix B for each dataset. 

 

8.2.4.1.1 Generalized 
 
8.2.4.1.1.1 Without Sleep Data  

In this section, we discuss the results of the models for each of the datasets. As can be 

seen by Table 20, which shows the results for each dataset, most contain results above 60% when 

considering all participants in the specific samples. In particular, D, DAW, and DW results for 

all participants are above 65% for RF, indicating that Withings features seem to be good 

predictors and that RF generally works better than SVMs, which generally has lower results. 

Datasets containing only Apple features, and in particular only ECG, perform worse compared to 

others, although several results are still above 60%. 

Looking only at the healthy participants when compared to all, in most cases the f1-

macro score varies slightly (e.g., dropping from 63% to 60% for RF in DA or improving from 

66% to 68% for RF in D). In general, stratifying participants by gender and employment 

improves results, although that is also not always the case – especially with female participants. 

When stratifying according to income, the divisions with low-income participants typically 

perform worse, while divisions containing participants with medium to high-income show 

improvement, often with an f1-macro average above 70%. Finally, stratifying by age seems to 

worsen results in most cases.  

SMOTE results show mild improvement over results without it in most cases, especially 

for RF. However, many examples indicate worsening results – especially for SVM – or do not 

demonstrate any improvement. 

In terms of feature importance for the RF model, tables B10 to B15 in Appendix B show 

the top 10 most important features and importance value – calculated as the mean decrease in 

impurity – for each dataset and stratification. Looking into each of these, we investigated the top 

10 features that repeat across strata. For example, for Gender, the only top 10 feature in the D 
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dataset that appears in both Male and Female stratification is Weight, as can be seen in Figure 

A7 in Appendix A with a frequency of 2 (meaning the feature appeared in the 2 gender-related 

models). We did the same for Income (Low/Medium and High), Employment (Workers and 

Students), Age (18-24, 25-34, and 35-44) and finally, between datasets with all participants and 

datasets with only healthy participants. Figures A7-A15 show this frequency for the 

stratifications in each dataset. DW was not included in these analyses as it only has 5 features. 

When considering the importance of all features in D, a mix of features from different 

sources can be seen, including Apple data from the ECG (ECG_DC, 

ECG_AR_AbsolutePower_HF, ECG_AR_AbsolutePower_LF, ECG_Stress Index), Apple data 

from HRV (HRV-1) Withings blood pressure data (MAP, dia), and Empatica data 

(Empatica_AR_RelativePower_LF, Empatica_AR_LFHF). This mix of modalities is maintained 

throughout other stratifications in D, although with different features for different strata (such as 

sys and Weight in Male stratification). Interestingly, ECG_DC is present in several analyses and 

repeated in stratifications such as All/Healthy, Income, Employment, and Age. This feature is 

also prominent in other datasets that it is present.  

Withings features are very prominent in most datasets that mix features from different 

devices, ranking high among the most important features (e.g., MAP or weight are ranked among 

the top 2 most important features in several stratifications in D and DAW), and Withings features 

repeat among stratifications in these datasets. Also, of note, the User feature appears frequently 

in DECG, DA, DAW, and DEmpatica.  

 

8.2.4.1.1.2 With Sleep Data  
In general, adding sleep data to the dataset improves results, especially with the RF 

algorithm, with most results above 65% and an f1-macro score of 70% being commonplace. 

There were few cases in which the metrics worsened – the latter is mainly seen in SDAW on 

stratifications such as gender and income. In particular, male participants from SDAW showed a 

great decrease from f1-macro scores around 70% to results in the low fifties. This might be due 

to a decrease in the number of male participants from DAW to SDAW (29% to 22%, 

respectively), which may not have given the model enough data to be trained accurately. For 

several sleep datasets, upsampling classes using SMOTE resulted in slight improvements, 



 161 

although a worsening result can be seen in some cases. Since sleep data is repeated over a day, 

the SMOTE method possibly did not accurately synthesize minority class samples. 

Finally, while the dataset using only sleep features, SDS, typically showed results on par 

with the other models, it also produced the worst results among the sleep datasets, notably on 

male participants (f1-macro score below 50%) and on participants aged 35-44 (53% f1-macro 

score with SVM-SMOTE), suggesting these features are more robust when used in conjunction 

with others. 

When looking at feature importance, sleep features typically dominate the datasets in 

Tables B16 to B19.  Interestingly, in datasets that mix Apple and Withings features (SDAW, 

SDS), there is still a predominance of Apple Watch sleep features, although several Withings 

non-related features (e.g., MAP, Weight, sys, temp) are prevalent among the top 10 most 

important features in each stratification. When looking at SDW, containing only Withings 

features, there is also a prevalence of non-sleep related features, and these features are generally 

repeated among stratifications.  

The Apple Watch Consolidated Time Awake During Sleep feature, and its offsets for t+1 

and t+2, also repeat among stratifications in SDA, SDS and SDAW.  

Table 20: Macro-F1 Score Results for Generalized Models  

Dataset with all features (D) 

  RF SVM 
RF-

SMOTE 

SVM-

SMOTE 

All 0.66 0.65 0.68 0.65 

Gender - Male 0.68 0.7 0.63 0.64 

Gender - Female 0.68 0.61 0.66 0.65 

Employment - Student 0.61 0.62 0.6 0.62 

Employment - Worker 0.62 0.61 0.63 0.58 

Income - Low 0.62 0.63 0.63 0.59 

Income - Medium High 0.73 0.7 0.71 0.7 

Age – 18-24 0.51 0.39 0.52 0.47 

Age – 25-34 0.56 0.62 0.6 0.44 

Age – 35-44 0.5 0.55 0.54 0.62 

Healthy 0.68 0.68 0.67 0.62 
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Dataset with only ECG features (DECG) 

All 0.62 0.53 0.61 0.54 

Gender - Male 0.61 0.6 0.62 0.59 

Gender - Female 0.62 0.59 0.62 0.56 

Employment - Student 0.64 0.6 0.62 0.6 

Employment - Worker 0.6 0.56 0.59 0.47 

Income - Low 0.53 0.55 0.53 0.46 

Income - Medium High 0.67 0.61 0.67 0.58 

Age – 18-24 0.61 0.58 0.57 0.51 

Age – 25-34 0.59 0.59 0.59 0.51 

Age – 35-44 0.58 0.56 0.61 0.49 

Healthy 0.58 0.55 0.62 0.57 

Dataset with only Apple Features (DA) 

All 0.63 0.58 0.63 0.53 

Gender - Male 0.63 0.61 0.64 0.58 

Gender - Female 0.59 0.53 0.59 0.58 

Employment - Student 0.65 0.54 0.63 0.58 

Employment - Worker 0.63 0.57 0.61 0.54 

Income - Low 0.54 0.52 0.58 0.55 

Income - Medium High 0.67 0.6 0.66 0.59 

Age – 18-24 0.54 0.56 0.53 0.55 

Age – 25-34 0.6 0.57 0.63 0.56 

Age – 35-44 0.59 0.61 0.65 0.52 

Healthy 0.6 0.56 0.62 0.57 

Dataset with Apple and Withings Features (DAW) 

All 0.67 0.6 0.69 0.61 

Gender - Male 0.73 0.7 0.71 0.7 

Gender - Female 0.67 0.63 0.66 0.58 

Employment - Student 0.65 0.64 0.62 0.61 

Employment - Worker 0.66 0.63 0.67 0.64 

Income - Low 0.53 0.58 0.59 0.56 
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Income - Medium High 0.72 0.65 0.71 0.67 

Age – 18-24 0.6 0.59 0.63 0.6 

Age – 25-34 0.69 0.63 0.66 0.58 

Age – 35-44 0.61 0.69 0.67 0.57 

Healthy 0.62 0.63 0.6 0.6 

Dataset with only Withings Features (DW) 

All 0.69 0.62 0.66 0.64 

Gender - Male 0.65 0.68 0.63 0.63 

Gender - Female 0.63 0.57 0.64 0.62 

Employment - Student 0.65 0.66 0.64 0.6 

Employment - Worker 0.66 0.64 0.66 0.63 

Income - Low 0.58 0.62 0.55 0.57 

Income - Medium High 0.73 0.65 0.69 0.69 

Age – 18-24 0.51 0.55 0.53 0.55 

Age – 25-34 0.6 0.57 0.63 0.56 

Age – 35-44 0.62 0.64 0.65 0.56 

Healthy 0.62 0.58 0.61 0.58 

Dataset with only Empatica Features 

All 0.64 0.6 0.65 0.61 

Gender - Male 0.64 0.7 0.67 0.59 

Gender - Female 0.68 0.66 0.67 0.66 

Employment - Student 0.67 0.66 0.68 0.63 

Employment - Worker 0.65 0.67 0.65 0.65 

Income - Low 0.56 0.57 0.57 0.56 

Income - Medium High 0.65 0.66 0.67 0.66 

Age – 18-24 0.48 0.53 0.58 0.47 

Age – 25-34 0.68 0.67 0.67 0.62 

Age – 35-44 0.54 0.68 0.62 0.61 

Healthy 0.61 0.61 0.63 0.6 

Sleep Dataset with only Apple Features (SDA) 

All 0.7 0.65 0.73 0.66 
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Gender - Male 0.63 0.63 0.65 0.64 

Gender - Female 0.71 0.66 0.71 0.64 

Employment - Student 0.69 0.67 0.69 0.67 

Employment - Worker 0.66 0.65 0.68 0.61 

Income - Low 0.7 0.61 0.71 0.66 

Income - Medium High 0.75 0.72 0.72 0.67 

Age – 18-24 0.7 0.65 0.71 0.64 

Age – 25-34 0.68 0.61 0.69 0.64 

Age – 35-44 0.68 0.67 0.68 0.61 

Healthy 0.72 0.67 0.71 0.64 

Sleep Dataset with Apple and Withings Features (SDAW) 

All 0.73 0.69 0.72 0.71 

Gender - Male 0.53 0.53 0.53 0.45 

Gender - Female 0.7 0.67 0.71 0.66 

Employment - Student 0.74 0.7 0.74 0.74 

Employment - Worker 0.67 0.65 0.7 0.63 

Income - Low 0.74 0.7 0.74 0.71 

Income - Medium High 0.67 0.69 0.67 0.68 

Age – 18-24 0.75 0.74 0.73 0.75 

Age – 25-34 0.71 0.65 0.69 0.68 

Age – 35-44 0.63 0.68 0.65 0.53 

Healthy 0.69 0.67 0.7 0.7 

Sleep Dataset with Withings Features  (SDW) 

All 0.69 0.58 0.67 0.68 

Gender - Male 0.79 0.81 0.8 0.8 

Gender - Female 0.68 0.66 0.67 0.65 

Employment - Student 0.71 0.73 0.73 0.73 

Employment - Worker 0.67 0.65 0.68 0.64 

Income - Low 0.67 0.68 0.69 0.68 

Income - Medium High 0.71 0.73 0.71 0.73 

Age – 18-24 0.67 0.72 0.65 0.67 
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Age – 25-34 0.73 0.75 0.7 0.74 

Age – 35-44 0.72 0.73 0.73 0.68 

Healthy 0.72 0.7 0.7 0.72 

Sleep Dataset with Withings and Apple Only Sleep Features (SDS) 

All 0.7 0.69 0.7 0.71 

Gender - Male 0.45 0.45 0.47 0.49 

Gender - Female 0.71 0.71 0.71 0.71 

Employment - Student 0.73 0.74 0.71 0.74 

Employment - Worker 0.66 0.65 0.63 0.62 

Income - Low 0.69 0.71 0.73 0.73 

Income - Medium High 0.66 0.66 0.63 0.65 

Age – 18-24 0.65 0.6 0.65 0.61 

Age – 25-34 0.67 0.67 0.68 0.69 

Age – 35-44 0.6 0.6 0.64 0.53 

Healthy 0.73 0.73 0.73 0.74 

 

8.2.5 Discussion 
 
8.2.5.1 Stress Models 

While the use of different metrics for model evaluation in literature, as well as the 

different strategies for data collection and model training, difficult comparisons between works, 

the results of the Generalized models achieved good to great accuracy between 60% and 70% 

(Tables B4 and B5), which is in line with the state-of-the-art – particularly for studies that use 

real-life data (see Table B6 in Appendix B with studies labelled DDSR, meaning they were 

trained with daily life self-report labels). The promising f1-macro score values shown in Table 

20 indicate the models are able to predict the two classes. This indicates that the MHP provided 

accurate and representative data and that a similar backend system might potentially be deployed 

by public health agencies for data collection and monitoring of a condition in a population, such 

as stress. This is especially promising considering the models were built on data collected from 

personal, consumer-level, off-the-shelf devices rather than using data from research-grade 

equipment. 
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In terms of which features to collect, Apple Watch sleep features are very prominent 

among the sleep datasets, usually ranking higher than other features. Other features such as 

Temperature, Weight, and Blood Pressure also appear as good predictors when looking at feature 

importance (all Withings related). Datasets that integrated sleep features achieved the best 

results, with an f1-macro score and accuracy typically above 70%. In addition, feature 

importance results suggest that offsets of the data should be considered. Specifically, t + 2 and t - 

2 demonstrated good results, although offsetting for a day also provided important features in 

specific cases. Since this study, Apple has updated its sleep data collection to include additional 

features such as sleep stages 190, which could improve performance even more – especially as 

time Spent in REM was one of the few Withings sleep features that appeared repeatedly among 

stratifications.  

In terms of non-sleep data, datasets that contained Withings data (D, DW, DAW) 

typically performed better than others. Coupled with the prevalence of Withings non-sleep 

features among the important features in the sleep datasets, this suggests that using these devices 

to collect temperature, weight and blood pressure would be an interesting avenue of research to 

follow. 

Encouragingly, Empatica E4 data did not seem to greatly affect the models, as they 

usually performed well without this data, specially sleep-related models. Given this, public 

health agencies could potentially leverage data from personal, consumer-level devices, rather 

than having to resort to medical-grade wearables such as the Empatica E4. 

When looking into Apple Watch ECG data alone, the metrics worsen compared to other 

datasets, although they are generally above 60%. This is an improvement over previous work by 

the authors using the ECG dataset without any missing data imputation and with only a subset of 

the data 21. Much like in the previous work, ECG_DC and, to a lesser extent, ECG_AC, featured 

prominently in ECG-related models. In the present case, ECG_DC also features in datasets 

containing other data modalities in addition to ECG. Empatica_DC was also a prominent feature 

when looking at the Empatica data and among some stratifications. Therefore, the heart’s 

deceleration (DC) and even the heart’s acceleration (AC) seem to be valuable HRV metrics for 

the models, being constantly present among the top 10 most important features. AC and DC are 

relatively new indicators in HRV studies, and it would be interesting to conduct further research 

into stress using AC and DC to establish if they can be robustly used to differentiate stress states.  



 167 

When considering the f1-scores for each class in Tables B4 and B5, generally, the “no 

stress” class seems to outperform the “stress” class, especially for the non-sleep datasets (Table 

B4). This suggests that the models typically have higher specificity than sensitivity. 

 

8.2.5.2 Performances for Different Samples in Datasets 
Given the different samples use for each dataset, it is worthwhile to look at how the 

datasets differ regarding these samples and how this may affect results (Table B3 in Appendix 

B). D contains fewer participants in the 18-24, 25-34 and 35-44 ranges, which may account for 

this dataset generally having poor results in these stratifications when compared to others. 

However, D has good results on the male/female and low/medium and high-income 

stratifications despite possessing half the number of men, women and participants in low to 

middle income (with high-income participants removed entirely). Therefore, it is likely that the 

division of fewer participants into 3 distinct age categories did not provide enough information to 

train the model, and future research collapsing the age category into fewer divisions (e.g., young 

vs. old) as opposed to the intervals presented here could lead to better results.  

D also has lower results than other datasets for profession, likely due to the removal of 

several workers from the dataset. Interestingly, while D has a 7% increase in the proportion of 

unhealthy participants, it also has the highest non-sleep related metric for the healthy 

stratification. With a decrease from 36 healthy participants in the full sample to 16 in D, a higher 

homogenization of participants likely led to better metrics. In particular, of the healthy 

participants in D, 63% were female, 50% were students, and 56% were low income. This 

suggests that creating models for more than one stratification (e.g., healthy women) may lead to 

better results. On the other hand, it will reduce the dataset even further, which may affect the 

model’s effectiveness. Future work, with more purposeful sampling could lead to further insights 

into this avenue of research. 

DEmpatica is another dataset that had a large number of participants excluded, and 

similar observations to D can be made: results in the age stratifications were poor, with other 

stratifications performing better. Stratifying by profession fared better in this dataset, with a 

larger number of workers and students. The number of healthy participants also increased, 

leading to lower metrics – likely due to more heterogeneous participants. When looking at 

demographics, DEmpatica has a higher proportion of healthy females (65%), a slight decrease in 
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healthy low-income participants (55%), and a higher decrease in students (40%), suggesting that 

future sampling of healthy participants by profession could lead to additional insights. 

DECG/DA contain the same sample of participants, with very similar proportions to the 

entire sample. These datasets did not generally perform as well as other models containing 

Withings features, likely due to lower predictive power in non-sleep related Apple features. 

Indeed, DAW – with 4 fewer participants than the total sample of 45 while still maintaining 

similar proportions – performed better, reflecting the higher feature importance of Withings 

features. DW has very similar proportions to DAW with only 1 participant removed from the 

total sample and, when comparing this dataset to DAW, we can see that using only Withings 

features led to good results, sometimes better than using Apple and Withings features combined.  

In general, regardless of how the samples varied – and indeed the sleep datasets had more 

users removed due to missing data –, sleep datasets performed better than datasets without sleep 

features, highlighting their importance. SDA had major changes regarding income (increase from 

44% to 50% in low-income and 9% to 0% in high-income participants). Interestingly, these 

reductions led to slightly better results in general when compared to other datasets, likely due to 

increased homogenization of participants. Most low-income participants in this dataset were 

female (71%) students (77%) aged 18-24 (53%) while most medium-income participants were 

female (64%) workers (94%), aged 25-34 (50%).  

Despite having fewer participants, SDAW maintained good results, indicating the 

importance of both sleep-related features and non-sleep related Withings features. This is 

reflected also in SDS, which uses the same sample but with worsening results due to the removal 

of non-sleep Withings features. Both SDAW and SDS had a 9% decrease in male participants; 

given the already low prevalence of men, this may explain the poor results for these 

stratifications. Finally, as we saw in the previous subsection, Withings features are particularly 

important for SDW.  

 

8.2.5.3 Limitations, Lessons Learned and Implications for Public Health 
In this section, we describe empirical lessons derived from deploying the MHP prototype 

in real-life and developing the ML models and discuss implications for the potential use of a 

similar system in public health. In the process, we also discuss study limitations as well as 

mitigation strategies where applicable. 
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First, a limitation of this study is that, due to convenience sampling, most participants 

were female, typically white and young. Looking at sex/gender in particular, most datasets 

contain approximately 30% men and 70% women, and their model results metrics are similar. As 

mentioned, on SDW and SDS, the male stratification performs poorly; in these datasets, the 

proportion of male participants is closer to 20%, which could indicate there is a lack of data from 

these participants to accurately train the models. The same may have happened for other 

stratifications, such as income and age, which performed poorly in several cases. As mentioned, 

future studies with more purposeful sampling could lead to better stratifications and further 

insights into how models will perform for different traits.  

The RF model in general performed better than the SVM model. The SMOTE method 

was used in this work with mixed results to handle class imbalances, and careful consideration 

must be taken to generate synthetic data for public health decision-making. However, if a system 

similar to the MHP is deployed in the real-world, it would potentially capture much larger 

datasets from each user – for example, by collecting data points for longer periods –, generating 

datasets with more examples in each class that would balance the collected dataset, this 

mitigating this issue. To mitigate this, it would be interesting to investigate the use of 

reinforcement learning, in which the model learns from mistakes through a reward and 

punishment approach 191. For example, the mobile application could display the prediction result 

to the user and ask if this prediction is correct. This feedback will provide rewards or punishment 

to the model, improving future predictions. The collection of context information (e.g., what the 

user is doing at the time of data collection, or which stressors affected them) could potentially 

improve results in all approaches168. 

In terms of feature importance, Apple Watch sleep features as well as Withings non-sleep 

related features (such as temperature, weight and blood pressure) were shown to be important for 

models and should be prioritized. On that note, a limitation of the data collection method was the 

amount of missing data. 10 participants had over 70% missing Apple Watch sleep data, and an 

additional 10 had missing Withings sleep data. While the missing Apple Watch sleep data was 

likely due to participants not wearing the device while sleeping, the Withings Sleep device is 

placed below the mattress, and so should be available at all times when connected to a plug. 

Discussing the device with participants during the video call and looking at the data, it seems this 

error is more likely due to limitations with the device.  
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Indeed, several challenges occurred with the Withings Sleep. First, the device needs to 

connect to a Wi-Fi network. One participant could not use the device as their network was part of 

a university, and a certificate was needed to connect. Since the certificate could not be 

downloaded onto Withings Sleep, the device did not work for this individual. In addition, the 

integration between Withings Sleep and Apple Health did not work consistently. The MHP 

collects data from the Apple Health app, and the Withings Sleep device is synced to the Withings 

proprietary Health Mate app (see User Manual for more details on this app). Health Mate, then, 

integrates with Apple Health after the data-sharing option is selected in the app. Despite this, in 

many situations Health Mate did not share sleep data with Apple Health, requiring the data 

sharing option on Health Mate to be turned on and off by the researcher or participants. There 

were also many situations where researchers did not observe sleep data being synced from the 

Withings Sleep device and, after asking participants to reset the iPhone, data collection 

proceeded as normal. One Withings Sleep device also broke during the study. Finally, although 

the Withings Sleep device was reset to factory mode before being provided to a participant, there 

were many cases during the video call where participants were required to reset it to this mode 

again. Given these issues, and that Withings Sleep data was not shown to be among the most 

important predictive features, Apple Watch sleep data can be prioritized in further deployments. 

The Empatica E4 device also demonstrated issues during data collection. To collect real-

life data, the device had to be used in Bluetooth mode, which required a connection with the E4 

Realtime app on the iPhone (see User Manual in Appendix C). However, if the device was out of 

range, no alert was given when the device disconnected and the data collection stream 

interrupted. To mitigate this issue, participants were asked to monitor the E4 Realtime app and 

reconnect the device as needed. In addition, we also experienced technical issues with the 

Empatica devices, as during the 1-year data collection period, 3 out of 4 available devices broke 

and had to be fixed before collection could proceed. Movement also introduced a lot of noise in 

the data, making a lot of it unusable. For this reason, half of participants (28 out of 45) did not 

have at least 30% of the necessary Empatica data to use in the analyses. As discussed, given that 

Empatica features were not among the most important features, this device does not need to be 

included in future work to complement data from personal devices. 

The prototype version of the MHP did not have any backup features in case data sharing 

between the device and the research database did not work (for example, due to low 
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connectivity). To mitigate this issue, manually exported data from Apple Health was compared 

to the MHP data to make sure missing information due to issues in data sharing is considered in 

the analysis. Future versions of the MHP should contain a failsafe in case the connection does 

not work. In particular for the current iOS system, the Information Property List Files (info.plist) 

in the device might be an interesting solution: Info.plist is a structured text file, available for edits 

in Apple’s iOS development software XCode 41, that contains information describing the app’s 

configuration, and data can be stored in it using a dictionary format 192. Storing information that 

could not be shared with the database on this file, retrieving it and sending it again would be a 

potential backup solution that would not require any online storage.  

The prototype MHP contained data types that were hardcoded into the source code. In 

case researchers need to collect additional data types, the code for requesting additional 

authorizations in Apple Health and for additional HealthKit queries needs to be developed. One 

interesting update to future versions would be to allow researchers to customize which data they 

want to collect. By hardcoding queries for Apple Health data types and allowing users to activate 

them through the app’s interface, the MHP would be flexible in enabling public health scientists 

to collect different types of data depending on their need. On the same token, the devices used in 

the study were hardcoded into the app prior to data collection, but a real-world deployment could 

enrol new devices belonging to each user by obtaining device information from the data sources 

in Apple Health obtained through HealthKit.  

Of note, the MHP queries also enabled data collection in the background, i.e., while the 

app is not terminated but also not being currently used. However, if the app is not regularly used, 

the background queries will not be triggered constantly and may be terminated by the iPhone’s 

operating system. Our solution to this was creating new queries every time the app is opened and 

terminating the app every time it is placed in the background to make sure the queries are 

triggered. Ideally, users would constantly utilize the system, triggering background data 

collection. While out of the scope of this work, to encourage people to use the MHP, there are 

many possible strategies, such as gamification 193 or developing an interface that allows users to 

monitor and manage their health in addition to collecting the data 194. Finally, public health 

agencies can use such a system not only for monitoring but also for intervention. For example, if 

a user's stress levels are high, the MHP could trigger a meditation app (potentially the Breathe 

app on the Apple Watch for Apple systems). This feedback and intervention loop can reach a lot 
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of people in real-time and fulfill the mission of public health – improving the quality of life of 

populations. While a real-time loop would not allow for the use of features collected “in the 

future”, i.e., sleep features from t+2, they could still make use of the rest of the features that 

were shown to be good predictors. In addition, since the public health issue in question is chronic 

stress, real-time intervention may not necessarily be required – rather, long-term, constant stress 

patterns can be evaluated, and feedback provided based on them. 

In terms of study design, the data collection protocols required several devices and apps 

to be used during participants’ daily life, which can be quite intrusive and demanding. In 

particular, many had difficulties leaving the Breathe app open for 5 minutes to collect HRV data 

without making any movements, which would stop data collection. For this reason, we decided 

not to use the 5-minute HRV data, instead using HRV collected randomly throughout the day 

(HRV-1). Interestingly, HRV-1 is an effective feature, appearing among the top 10 most 

important features in many stratifications in datasets containing Apple data.  

In the case of real-world deployment, however, it cannot be expected that users will 

possess all devices described in the study or that they will collect data constantly. To mitigate 

this issue, as we discussed, the Apple Watch was one of the most important device used in this 

study, particularly its sleep data, which produced better models. Weight, collected through the 

Withings Body+, was also shown to be an important feature – even though weight data was only 

collected when participants were at home – and it is very common for individuals to have scales 

as a regular household item. Even if they are not wireless devices, manual input of weight into 

the phone can still be done. The same can be said for thermometers, and to a lesser extent blood 

pressure cuffs (all collected with Withings devices). Therefore, it should not be hard to obtain 

data for the most important features. Further, to reduce the burden on users, it might be more 

useful to ask for fewer data points over a longer period (e.g., once in the morning and once at 

night for several months) rather than for several data collected throughout the day. As discussed, 

this could help with obtaining datasets with more examples of each prediction class. In this way, 

public health researchers might be able to obtain large datasets to build models and study 

individual health while placing less burdens on users.  

While Apple Health was the chosen tool in this study to aggregate sensor data, there are 

other systems that could potentially be used. All Withings devices mentioned in this study – and, 

as we have seen, that had features identified as important predictors – are also compatible with 
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Android devices, for example. On the same token, the findings should translate to other 

equipment that collect data similarly to the devices used here, although that is not a gurantee and 

future work could focus on using other mobile health repositories for increased generalizability.  

Finally, while the results are promising, since a given participant could have had data in 

both training and test set and that the KNNImputter method was applied to the entire dataset 

before split into train and test, future work should focus on additional strategies for model 

development and evaluation such as leave-one-person-out cross validation to increase the 

generalizability of results. 

 

8.2.6 Conclusions 
In this study, we developed an MHP that collects data from Apple Health – which in turn 

integrates data from mobile and wearable devices – that could potentially be used in public 

health data collection efforts. To test its efficacy, we predicted the stress states of individuals 

using ML models of RF and SVM based on Apple Health data gathered throughout participants’ 

daily routines and collected using a mobile health platform. 

Additional future work should implement improvements on the MHP such as backup in 

case of an error in data sharing, customization of data collection and encouragement for people 

to use the platform (e.g., gamification, health management features). In addition, further 

validation of the models in more controlled environments (such as in a lab, where stressors can 

be applied and controlled to generate balanced labeled data) would allow more robust evidence 

of their efficacy. Purposeful sampling will also allow the generation of more robust models for 

different stratifications. 

The development of the MHP and stress prediction models indicates that mobile systems 

have the potential to be successfully used for health data collection. RF models perform well, 

and sleep data from the Apple Watch as well as Withings features, such as weight and 

temperature, are important predictors. This work suggests that health data from smart 

technologies might be used to monitor data for public health surveillance, and Apple and 

Withings devices could be used to study and predict conditions in a population such as stress. 

The platform presented here represents a tentative step towards a future in which smart 

technologies could potentially be used in conjunction with self-report data collection methods to 

enable new insights into the health of populations. 
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8.3 Discussion 
 The ML models presented in this paper were successful in predicting stressed states, 

especially the RF model, with metrics in line with the state-of-the-art (especially when 

considering models developed using real-world data). These results are especially promising 

when considering that models were built using data from mobile and wearable personal devices, 

rather than using research devices as most stress studies (Table B6). Sleep features from the 

Apple Watch were shown to be important to create models, as well as weight, temperature and 

BP data from Withings devices. This suggests that a system such as the MHP might be a 

valuable tool for quantifying and predicting stress in a population.  

However, several limitations and challenges for public health implementation were 

discussed, including the need to collect enough examples of each class in the data, missing data, 

and technical problems with devices. A discussion of how such a system could work in a real-

world deployment, and additional features on the MHP such as a backup failsafe, were also 

presented.  

The next chapter discusses other approaches to train and test the ML models. This 

included using 80% of participants to train and 20% to test the model, as opposed to 80% of all 

data. This is more challenging as the model is tested on new, previously unseen data. Another 

approach is the creation of individualized, user-specific models that use data from a participant 

to create a model specific to that participant. 
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Chapter 9 - Stress and Additional Approaches for Prediction with Mobile and 
Wearable Devices 

 
9.1 Foreword 
 While the results presented in Chapter 8 were promising, the strategy of following a 

train-test split and cross-validation on the entire dataset is not the only one used in the stress 

prediction literature. Other approaches include using leave-one-person-out cross-validation 166, 

or creating individualized models for each participant 195.  

 This chapter investigates these approaches for stress prediction when using the data 

collected from the MHP. An adaption is made to leave-one-person-out cross-validation in which 

80% of participants are used to train the model and 20% to test the model in order to avoid 

biased models due to imbalanced classes in the testing datasets. The goal of this “hybrid” 

approach is to allow more examples of each class to be in the test set while providing the model 

with new data in each iteration to test. Since this approach was shown to have high variance in 

results, i.e., the choice of which participants will be in the training set and which will be used for 

testing affected the metrics, 50 train-test loops were made, and their average calculated for 

evaluation.  

 While the previous chapter focused on the public health aspect of the thesis, this chapter 

focuses more on stress, including more background information on the prevalence of the 

condition and how it affects the body, as well as more detailed related work on stress prediction 

using ML.  

 
9.2 Predicting Stress in Daily-Life Routines Using Personal Mobile and Wearable 
Devices 
 

9.2.1 Abstract 
Background: Stress is an important modifiable health issue. With new advancements in sensing 

and remote monitoring tools, consumer-level devices (e.g., smartphones, smartwatches) have 

embedded sensors that monitor health-related variables such as heart rate, steps and sleep. These 

variables could potentially be used to monitor and predict stress in individuals, leveraging their 

personal devices. 

Objective: Investigate whether health data from mobile and wearable devices can be 

successfully used to predict stress.  



 176 

Methods: A pilot study was conducted with 45 participants for 2 weeks. Participants received an 

iPhone and several mobile and wearable devices (e.g., Apple Watch, Withings Blood Pressure 

Monitor). The iPhone had an app installed that collected device data from the Apple Health 

repository and allowed participants to self-report their stress levels. Random Forests and Support 

Vector Machines were used to predict stress states based on these data, utilizing two approaches: 

using data from all participants, and creating individual user-specific models for each participant.  

Results: Models using data from all participants had f1-macro scores of around 50% for 

different analyses and stratifications. User-specific individualized models typically performed 

with f1-macro scores above 65% when accounting for class imbalances using the SMOTE 

technique. Sleep features were shown to be important for model development. 

Conclusions: Data from personal-level mobile and wearable devices show promise in predicting 

stress using individual data, especially the approach of creating user-specific models. Given that 

the development of models based on real-world data is challenging, the approach of using 

generalized models could be improved with robust data collection in more controlled 

environments. Regardless of the approach used, special care must be taken to gather quality data 

that contains sufficient examples of both stress and non-stress states. 

 

9.2.2 Introduction 
Stress is the “health epidemic of the 21st century” 141. Stress can be formally defined as 

the reaction people have when facing a situation bigger than their capacity to handle 35,196. The 

concept of the term in healthcare is traced back to 1936 when Hans Selye defined it as the 

“nonspecific response of the body to any demand” after noticing that several patients with 

different disease diagnoses reported the same symptoms 180,196,197.  

Stress can be considered a normal response to an unexpected situation, triggering the 

body’s fight-or-flight response and allowing the individual to deal with the threatening 

circumstance. Physiologically speaking, the stress response is related to the autonomous nervous 

system (ANS), composed of the sympathetic nervous system (SNS) and the parasympathetic 

nervous system (PNS). The SNS activates the fight-or-flight response in response to stressors, 

signaling the adrenal glands to release hormones that will lead to several physiological changes 

(e.g., increased heartbeat, blood pressure and respiration rate, as well as an increase in glucose 

levels in the bloodstream). The goal at this stage is to generate energy that allows the body to 
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deal with the unexpected threat or circumstances. Ideally, after the acute stressor is gone, the 

body returns to normal through the PNS, which typically has the opposing effect of the SNS 
34,42,196.  

However, constant exposure to stressors –  a chronic stress response – in daily life can 

have severe negative consequences on the health of individuals, increasing the risk for 

hypertension, cardiovascular diseases, and stroke, among others 34,35,196. Chronic stress can be 

severely debilitating, with over 25% of U.S. adults reporting such high levels of daily stress that 

they cannot function 33, and workplace stress cost over $300 billion USD annually in health 

costs, job performance and absenteeism 141,143. It is estimated that workplace stress and lack of 

health insurance lead to 120,000 preventable deaths 144. Stress also affects individuals in all 

walks of life: in Canada 31, individuals aged between 35 and 49 years had the largest percentage 

of reported high-level of daily perceived stress (27.8%), followed by individuals groups aged 

between 50-64 (22%) and 18-34 (21.9%). Individuals aged 12-17 and over 65 years had the 

lowest percentages, 14.5% and 10.9%, respectively. Recently, a survey from the American 

Psychological Association reported that nearly 80% of respondents perceived the COVID-19 

pandemic as a source of stress in their life, with 67% experiencing increased stress because of 

the pandemic 32.  

The goal of this study is to evaluate stress prediction in the context of a mobile health 

platform (MHP) developed to support public health surveillance efforts. This MHP collects data 

related to Apple Health (AH), a popular health data repository integrating health data from smart 

devices that are compatible with Apple operating systems. We will use objective sensor data 

collected from AH by the MHP to predict stress in a population, with the goal of providing 

public health agencies with a potential new tool to monitor stress and apply interventions. 

 

9.2.2.1 Related Work on Stress Prediction 
Due to its risk and consequences, and the development of smart technologies that can 

monitor health variables associated with stress, many studies have sought to use mobile and 

wearable devices to collect data and use ML to predict stress states, as shown in Table B6 in 

Appendix B. To classify the studies in Table B6, we use a nomenclature developed by Can et al. 
169: 
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• Laboratory-to-laboratory known context (LLKC): Data collection occurs in the laboratory 

environment and the stress labels are based on the known context of stressors applied in the 

same environment. 

• Laboratory-to-laboratory self-report (LLSR): Data collection occurs in the laboratory 

environment and the stress labels are based on collected self-reports in the same 

environment. 

• Daily-to-daily self-report (DDSR): Data collection occurs in the field and stress labels are 

collected on self-reports (as known context is not possible in the field) 

• Laboratory-to-daily known context (LDKC): Data collection occurs in the laboratory 

environment with known context of stressors for training, and training occurs with data 

collected in the field. 

• Laboratory-to-daily self-report (LDSR): Data collection occurs in the laboratory environment 

with self-report stress for training, and training occurs with data collected in the field. 

 

As can be seen in Table B6, the studies vary in several ways, such as laboratory to real-world 

data, number of participants, duration to data collection protocol, method of measuring stress, 

models and variables used, and whether the model uses data from all participants or develops a 

model per participant. Further, in both the table and a survey conducted by Can et al. 35 of stress 

prediction studies in daily life scenarios with smart devices, successful and widely used methods 

for stress prediction include RFs and SVMs. The state-of-the-art for stress prediction in daily life 

seems to lie approximately between 60% and 80% 21, with real-life studies showing worse 

results. 

For example, an LLKC/LLSR study trains an SVM on ECG and respiration data, with a 72% 

accuracy in real-life (compared to 90% in a laboratory setting) 166. This study trains one general 

model using all participant data, using a leave-one-person-out (LOPO) validation method. 

Another study, this time DDSR, uses ECG, respiration, sleep, and galvanic skin response, 

obtaining 73% accuracy with SVM and 71% with RF 167. This study also uses a LOPO method to 

train a general model. On the other hand, a DDSR study 46 that uses HRV, audio, physical 

activity and communication data trains a general model using LOPO with a 53% accuracy using 

Logistic Regression (LR) and 61% accuracy with individualized models for each user. Another 

study 195, DDSR, uses accelerometer data and finds a 71% accuracy for individualized models, 
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with an accuracy of 52% for generalized (both using Naïve Bayes). To validate the generalized 

model, 5-fold cross-validation is used.  

As can be seen by these examples and others in Table B6, there are many different ways of 

creating and testing the models. In the next section, we will describe our methods for data 

collection and model development. Of note, few studies leverage personal devices such as 

smartphones as smartwatches. In this manner, our pilot study is different from prior studies as it 

will focus on consumer-level, off-the-shelf devices and study their feasibility for data collection 

while proposing a mobile public health data collection system. To the best of our knowledge, this 

work and others using the same dataset 21,147 are some of the first studies to use these devices and 

related data (such as the Apple Watch ECG) for stress prediction with ML. 

 

9.2.3 Methods 
 
9.2.3.1 Recruitment and Study Protocol 

For the participant sample, a power calculation was performed using α = 0.10, β = 0.20 and r 

= 0.40 (estimated from the limited evidence on correlation between stress and HRV 152,198,199 and 

stress and sleep 129,200,201) yielding a number of 37 participants. Looking at Table B6, this is 

larger than most reviewed studies. When considering these factors, and that ML models typically 

work better with more data, in this study, 45 participants were recruited. The smallest sample 

used (n = 22 as will be described below) is still larger than most studies in Table B6. Participants 

were recruited from the University of Waterloo and using Facebook (both regional groups as 

well as Ads) and Kijiji, a Canadian marketplace website. Participants were required to be near 

the Kitchener-Waterloo region in Ontario as devices were delivered in-person. $100.00 CAD 

was offered for two weeks of data collection with the following devices (shown per 

manufacturer): 

 

• Apple: iPhone 8 with iOS 15.0 and Apple Watch Series 6 with watchOS 8.3.  

• Withings: Withings Sleep, Withings Blood Pressure Monitor (BPM) Connect, Withings 

Thermos and Withings Body+ 

• Empatica: Empatica E4 wristband 
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Since the goal of the pilot study is to support public health monitoring with the MHP, most 

devices are personal, off-the-shelf, and consumer-level, with the exception of the Empatica E4. 

The inclusion of this device was to complement data if needed, since it is widely used in 

literature for stress prediction (Table B6). As described in subsequent sections, we conducted 

analyses with and without the Empatica E4 data to explore the feasibility of personal devices for 

stress prediction. 

The iPhone contained the MHP mobile app installed. In addition to collecting sensor data, the 

MHP also contained modules for stress self-report questionnaires, described in subsequent 

sections. The architecture and interface of the MHP are described elsewhere. 

Table 21 illustrates variables that can be collected by each device. The User Manual provided 

to participants is included in Appendix C, containing the instructions on how to install and use 

each of the devices during the study. In addition to the User Manual, a 1-hour video call was 

scheduled with each participant to provide an overview of the manual, answer any questions, and 

make sure devices were properly installed.  

Figure 34 shows the study protocol. The Ecological Momentary Assessment (EMA) 

methodology was used to obtain self-reports close to real-world events 160. In this manner, users 

collected data 6 times per day – once when they wake up, once at sleep, and the rest throughout 

the day at approximate 3-hour intervals. The times shown in Figure 1 are merely illustrative. 

Measures included all variables shown in Table 21 with the devices. Apple Watch and iPhone 

Steps, Apple Watch HR, and Empatica E4 data were collected continuously, and so do not 

require any action by participants.  

Participants commonly found it difficult to take all measurements while proceeding with 

their daily life. When necessary, participants were asked to use devices for additional days if 

they were not able to complete measurements. Only 6 participants were able to finish the study 

in two weeks. More information on this is provided in the Results section. This study was 

approved by the University Waterloo Research Ethics Board (REB [43612]), and data collection 

occurred between December 2021 and December 2022. 
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Table 21: Variables Collected and Devices Used in Study 

 

 

 
Figure 34: Study Protocol 

 

9.2.3.2 Stress Self-Report 
One of the challenges encountered when designing the study was a lack of validated 

stress questionnaires specifically for EMA, as most questionnaires have a validated period of 
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days or weeks. To mitigate these issues, two questionnaires were used in this study: the widely 

validates stress subscale of the Depression, Anxiety, and Stress Scale (DASS-21) 128, and a 

single-item measure that lacks validation but was selected due to its simplicity and previous use 

in literature 129. While the DASS-21 is usually applied over a week, there is promising evidence 

of using subscales of the DASS-21 with EMA 128.  In addition, the single-item measure was used 

successfully for stress quantification and is moderately correlated with robust stress 

questionnaires 129.  The stress-related questions are shown in Table B1 in Appendix B.  

Following DASS-21 guidelines, question scores are multiplied by 2 and marked as stress 

if above 14 162. Single-Item scores are marked as stress if above 2. If the DASS-21 or single-item 

measure is marked as stress, the label for that questionnaire is stress. This label will serve as the 

ground truth for the ML models. For example, Figure A25 shows an example data point in the 

dataset. In this case, the DASS-21 score of all 7 questions is 7, or 14 when multiplied by 2. Since 

the value is not above 14, it is labelled as no stress. The single-item score is 3, which is labelled 

as stress since it is larger than 2. Since one of the scores is labelled as stress, the data point is 

classified as stress in the “stress_score” column, used as the model outcome. 

 

9.2.3.3 Data Collection and Pre-Processing  
As a first step in the data pre-processing stage, we looked at the missing data. For a 

feature, we evaluated if any participant had more than two data intervals missing, i.e., more than 

6 hours between data collection. In the negative case, the average between the next and previous 

measurements was used to fill the gap. If positive (if two data points were missing continuously), 

k-nearest neighbors (kNN) was used to estimate the value based on the non-missing features 

through SciKit Learn’s KNNImputer method (number of neighboring samples set to 5) 183. 

Features were included if they had at least 30% of data for the specific user. This number was 

achieved by balancing the amount of data used with empirically observing KNNImputter 

behaviour for missing data. If a user had less than 30% of the data available for a feature, the 

user was removed from the specific dataset (the characteristics of each dataset’s composition is 

detailed in the upcoming subsections and Results section).  

Next, each collected variable was processed into features. An exhaustive list of all 

features derived from the study and their description is shown in Table B2 in Appendix B. 
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Steps We used the Apple Watch steps information to collect steps data. While the iPhone also 

collects steps information, it was not possible to integrate Apple Watch and iPhone data from 

HealthKit without duplication, and so only Apple Watch data was used. From the Apple Watch 

steps data we extracted the mean, maximum and minimum number of steps for the time interval 

in question (from the date of the previous data collection point to date of the current data 

collection point). This was done through an automated Python code which allowed the extraction 

of these values according to date and time. Of note, the KNNImputer was not used for missing 

steps data as it is possible the user did not walk during the period – in which case the step count 

is 0. Figure A26 in Appendix A shows a snapshot of the dataset with the 3 step features. 

 

Heart Rate HR data was also measured with the Apple Watch. The device collects data 

throughout the day using green LED lights and light-sensitive photodiodes to measure the 

amount of blood in the wrist 22. In this manner, heart rate Apple Watch data was passively and 

continuously collected over infrequent periods according to the device’s system. Similarly to 

steps, mean, maximum and minimum heart rate for the time interval was extracted through a 

Python script. The heart rate was calculated as beats per minute. Figure A27 shows a snapshot of 

the Apple Watch HR features in the dataset. 

In addition, when the user activates the Breathe or ECG app as requested during data 

collection (see Appendix C for User Manual), the device typically collected HR data in a 

millisecond interval. Therefore, a Short-Term HR feature was created considering these 

millisecond data close to the data collection date, extracting also the mean, maximum and 

minimum. Finally, data collected from the Apple Watch and for any other devices (e.g., 

Withings Sleep) during the night were also extracted and included as sleep features, as detailed 

in the section on sleep features.  

Apple Watch ECG and Empatica data were processed with the Kubios Premium 3.5.0 

software. Kubios’ automatic beat correction algorithm was selected, and the software’s 

automatic noise detection was set to medium. For Empatica, the raw interbeat interval data from 

the device was used. This file, named “BVP.csv” in the Empatica system, was downloaded 

directly from the Empatica web portal. For each data point, we uploaded into Kubios the 

respective file (BVP.csv from Empatica or a CSV file with 15360 voltage measurements and 

timestamps obtained from the ECG measurements in the Apple Watch). Kubios provided the 
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mean, maximum, minimum, and standard deviation of HR for the time interval. More details on 

Empatica and ECG data extraction and Kubios are provided in the next subsection on heart rate 

variability. 

 

Heart Rate Variability HRV is measured in AH as the SDNN (standard deviation of beat-to-

beat measurements) metric through photoplethysmography (PPG) 22. While this metric is 

collected throughout the day at random intervals and depending on user activity, users were also 

asked to have the Apple Watch Breathe app 202 open for 5 minutes as the final step of the data 

collection process, to forcefully trigger the HRV data collection. However, we found that SDNN 

data were collected per time interval without the need for the Breathe app 5-minute 

measurement, and these measurements have fewer missing data points. Since the passive 

monitoring also closely resembles a real-life deployment, the SDNN metric collected throughout 

the day without the Breathe was used, named HRV-1. 

ECG data, composed of timestamps (30 seconds total) and voltage measurements on the 

Apple Watch ECG app (see User Manual in Appendix C), was processed using Kubios into HRV 

data. Each of the 15360 voltage and timestamp measurements comprising an ECG measure were 

saved to our database in JSON format, exported into a CSV file and ordered by time. Then, this 

file was uploaded to Kubios for feature extraction. To the best of our knowledge, this is one of 

the first works to use the Apple Watch ECG data in stress prediction.  

According to the Task Force of The European Society of Cardiology and the North American 

Society of Pacing and Electrophysiology 153 indications, the following HRV features from the 

ECG were removed:  

- pNN50 and the NN50, which are highly correlated to the RMSSD.  

- TINN, HRV Tri Index, VLF and log measurements, which are not indicated for short 

recordings.  

Empatica E4 data were also processed using the Kubios software, using the “BVP.csv” file 

provided by Empatica as previously mentioned. 10-minute intervals close to the data collection 

point were used to capture states close to the self-report. When possible, 5 minutes before and 5 

minutes after the data collection point were used. We removed the same features as above with 
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the exception of very low-frequency and log components that may capture more information in 

longer measurements. 

Figure A28 shows a snapshot of the Apple Watch HRV-1 feature; Figure A29 shows a 

snapshot of ECG HRV features; and Figure A30 shows an example of Empatica HRV features. 

 

Weight, Blood Pressure, Temperature For blood pressure, in addition to systolic and diastolic 

values, the mean arterial pressure was calculated with the formula: (sys + 3* dys)/3 181,185. Due to 

the size and weight of the Withings Body+ smart scale, participants were asked to take the 

weight measurements with the scale while at home and/or when they had access to the device. 

Since this reflects real-world deployment, we included weight data in this study despite large 

gaps, using the KNNImputter to fill these. Figure A31 shows a snapshot of temperature, weight 

and blood pressure features. 

 

Sleep As mentioned previously, HR during the night (mean, maximum and minimum beats per 

minute) was calculated and included as a sleep feature, using the same Python script used to 

calculate these variables for steps and heart rate. In addition, the following sleep features from 

the Apple Watch and for the Withings Sleep device were calculated: Total Time Asleep, Number 

of Wake-Ups, Time Awake During Sleep , Total Time in Bed, and Percentage of Time Asleep 

While in Bed.  

Withings Sleep provided additional information on Light, Deep and REM stages. While 

the Apple Watch recently enabled the collection of sleep stages information, this was not 

available at the time of the study 186.  

Due to potential bidirectionality between sleep and mental health 53,187, features offset by 

2/1 days before/after were created. As an example, if a data point was collected at time t, the t-2 

feature would place this value two days before, and the same with t-1 (a day before), t+1 (a day 

after), and t+2 (2 days after). Looking at Figure A32, for the data points on December 17th, for 

instance, the t+2 features would place these on December 19th.  

To avoid repetition of features, which could lead to a substantial increase in the dataset 

and poorer performance and results, initial RF models were used to calculate the feature 

importance (based on mean decrease in impurity 21) of different sleep offset days. With this test, 

features from t-2, t+2, and t demonstrated good predictive value. Few features from other days 
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were included, notably: t+1 Apple Watch Mean HR, t+1 Apple Watch Max HR, t+1 Apple 

Watch Min HR, t+1 Withings Total Time Asleep, t+1 Apple Watch Number of Wake-Ups, t+1 

Apple Watch Time Awake During Sleep , t-1 Apple Watch Mean HR, t-1 Apple Watch Max 

HR, t-1 Apple Watch Min HR, t-1 Withings Total Time Asleep, t-1 Apple Watch Total Time In 

Bed. More detail on the sleep features used can be found in Table B2 in Appendix B. 

Since sleep data is collected at a different frequency than the EMA data, sleep features 

were included for the entire day, i.e., every data point of day t will have the same sleep feature. 

 

9.2.3.4 Additional Feature Selection and Normalization 
After pre-processing and cleaning the data, highly correlated features (with a Pearson 

correlation coefficient higher than 0.95) were removed. Data were also normalized for input in 

SVM models using SciKit Learn’s StandardScaler method 188.  

 

9.2.3.5 Analyses/Experiments 
Given the number of devices and variety of data, as well as the different methods of 

testing and validating stress prediction models from the literature, several experiments were 

conducted with different subsets of the data. Further, due to different data collection frequencies, 

analyses were also conducted with and without sleep data.  

Without sleep data, the following datasets were created: 

 

- Dataset with all features, D (n = 22) 

- Dataset with only ECG features, DECG (n = 42) 

- Dataset with only Apple features, DA(n = 42) 

- Dataset with only Withings Features, DW (n = 44) 

- Dataset with Apple and Withings Features, DAW (n = 41) 

- Dataset with Only Empatica Features, DE(n = 27). 

 

Adding sleep features, the datasets used were: 

 

- Sleep Dataset with only Apple features, SDA (n = 34) 

- Sleep Dataset with only Withings Features, SDW (n = 34) 

- Sleep Dataset with Withings and Apple Features, SDAW (n = 27) 
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- Sleep Dataset with Withings and Apple Only Sleep Features, SDS (n = 27) 

 

DECG and DA contain the same participants, with additional Apple features in DA. As 

mentioned, if a participant possessed more than 30% of the data, this participant was removed 

from the dataset in question. For the datasets including sleep features, Empatica data was not 

included as this would result in very small datasets due to missing information (28 users had less 

than 30% of Empatica data due to connectivity problems or noise). Table B3 shows the 

participant characteristics for each dataset. More detail on how they differ is provided in the 

Results section. 

These datasets were then evaluated with two different techniques: 

 

- Generalized_Imb: since data was collected in real-life circumstances, it was common for 

users to have imbalance in the classes, resulting in some users having a predominance of 

stress or no stress classes that could affect results. In this manner, a variation of the 

LOPO approach (which is typically used for generalized models creation) was used. In 

our case, 80% of participants were selected for training and 20% for testing. This was 

chosen instead of a 70-30 split to provide more training data for smaller datasets (e.g., D 

with n = 22). 10-fold cross-validation is used on the training set to tune hyper-parameters. 

To avoid high variance in validation results depending on the selection of the participants 

for training, the 80-20 split - cross-validation - testing procedure was repeated 50 times 

and the average of results used to evaluate the model. 

- Individualized User-Specific Models (USM): separate model trained for each of the 45 

users. 

 

To further deal with class imbalance, the SMOTE (Synthetic Minority Over-sampling 

Technique) method on SciKit Learn, which upsamples the minority class 147,189, was used, and 

we conducted the analyses with the imbalanced classes as well as with balanced classes. SMOTE 

is applied only to the training sets to avoid overfitting 147. This means the test set could 

potentially be imbalanced; for this reason, we report the f1-macro score, which considers both 

classes as being of equal importance. 
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Due to the relationship between stress and factors such as sex, age, income, work, and health 
21, the following stratifications were made: 

 

(1) Total: comprised of data from all participants in each dataset; 

(2) Age: models in the age range of 18-24, 25-34 and 35-44 were trained. Models in the 45-64 

and above were not included due to the scarcity of participants in this interval. 

(3) Sex: models for male and female participants. We did not train a model for the participant 

that self-identified as gender fluid due to the scarcity of participants that self-identified as such. 

(4) Income: models for participants with low socioeconomic status (SES) – earning less than 

CAD 30,000 – and participants belonging to middle and high SES. The CAD 30,000 cut-off 

point is based on an approximation of the Canadian tax cut-off for low-income populations 175. 

(5) Profession: models for workers (full-time, part-time, and participants that are self-employed 

or classified as other) and students. We did not train a model for the retired participant as only 

one participant was in that category.  

(6) Healthy: model removing participants that reported chronic diseases, illnesses, frequent 

alcohol or drug use, or prescription drugs. 

Details on each dataset and its stratifications, including how the samples differ, are 

included in the Results section. 

For each of these divisions, we trained the model with binary classification (stress vs no 

stress). While the SVM model performs many transformations to fit the data, feature importance 

for RF models was calculated using mean decrease in impurity. Figure 35 and Figure 36 show 

the process of obtaining the different datasets and training the Generalized_Imb and USM. 
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Figure 35: Division into Datasets per Device and Per Device + Sleep 

 

 

 
Figure 36: Training GENERALIZED_IMB and USM 

 

9.2.4 Results 
 
9.2.4.1 Descriptive Statistics 
 

Dataset

Data pre-processing + KNN Imputter
(at least 30% in each feature)

Gender EmploymentSES

Healthy Age All

D
N = 22

DECG
N = 42

DA
N = 42

DE
N = 27

DW
N = 44

DAW
N = 41

Per Device Per Device + Sleep

SDA
N = 34

SDW
N = 34

SDAW
N = 27

SDS
N = 27

Dataset

Generalized_Imb
(Repeat 50 iterations)

Remove highly 
correlated 
features 

(r>=0.95)

Imbalanced SMOTE

10-fold Cross 
Validation,

RF and SVM

USM
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9.2.4.1.1 Population Data Characteristics 
Table 22 describes the characteristics of the population. Most participants are in the 

younger range (87% aged 44 years or younger), female (67%), with low or medium income 

(84%), and workers (62%). A majority identified as white (33%), South Asian (24%) or Latin 

American (22%). Most participants (80%) did not have chronic disease or illnesses, use 

prescription drugs/alcohol or smoke. The average of days in the study for each participant was 

17.1 (± 2.5), with an average of 78.91 (± 11.0) data points (rows in the dataset). It should be 

noted that the quality of the data did not differ between participants based on number of days; in 

fact, it was common that participants had datasets without many missing data instances when 

requested to extend the study due to difficulties in taking all 6 measurements for each day. Two 

categories had only one participant – one gender fluid participant and one participant above 65. 

We did not train Generalized_Imb models for these categories; rather, specific models were 

developed for each of them, as will be discussed in following sections and can be seen in Table 

5. 

When considering the entire sample of participants (n=45), 43% of answers were 

classified as stress (1539 data points), while the remaining 57% (2012 data points) were labelled 

as no stress.  The proportion of data points labels is approximately maintained throughout the 

datasets: D (49% stress), DECG/DA/DAW/SDA (44% stress), DW (43% stress), DEmpatica 

(45% stress), SDAW/SDW/SDS (42% stress). Table B8 in Appendix B provides additional 

information on the percentage of data points labelled as stress for each division in the datasets. 

Table 23 provides information on the percentage of data points labelled as stress for each 

division, considering all 45 participants. The total percentage of stressed labels considering the 

full data is 43%. Discounting categories with only one participant (which might not be 

representative), students had the highest percentage of stress labels at 50%, followed by younger 

populations aged 18-24 (48%) – which makes logical sense as most of this population is 

comprised of students –, healthy individuals (48%), and women (45%). Most additional 

categories had values between 43% and 41%, with the exception of men with only 37% of data 

points labelled as stress.  

Looking at Table B8, male participants have a similar percentage of stress intervals in 

most non-sleep datasets when compared to the 43% stress labels from all 45 participants, varying 

between 44% and 39%. In sleep datasets, however, the percentage of stress labels drops, 
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especially in SDAW and SDS at 18%. This is due to the smaller number of male participants 

included in these datasets due to missing data with only 6 men in SDAW and SDS (Table B3). 

On the other hand, women seem to be more stressed than men as reflected in most datasets with 

stressed labels varying between 52% and 45%.  

In terms of income, individuals with low income had data points classified as stress, 

varying from 42% to 38% with the exception of DEmpatica with 47%. On the other hand, 

medium to high income individuals typically had higher values of stress (e.g., 52% in D, 49% in 

DECG/DA, 50% in DEmpatica), varying from 52% to 44%. Since all individuals with medium 

to high income except one are workers, this could likely be due to work stressors. When looking 

solely at workers, their stress values in the datasets varied from 46% (DEmpatica) to 37% 

(SDAW, SDS) with the exception of D, in which workers were stressed 54% of the time. 

Students were stressed approximately 48% of the time. 

In terms of age, values ranged from 43% to 33% for ages 18-24, somewhat in 

contradiction to data from all 45 participants in Table 3. For ages 25-34, values ranged from 64% 

to 42% with consistently high values. For ages 35-44, values ranged from 41% to 23% (we 

report only values for 18-24, 25-34 and 35-44 due to the low number of participants in other 

categories). The big variations seen by age are likely due to the several options in this category 

(18-24, 25-34, 35-44, 45-64, Above 65). Therefore, removal or inclusion of participants by 

dataset could greatly affect the number of stress labels.  

 

9.2.4.1.2 Quantification of Different Datasets 
When looking at specific dataset characteristics (Table B3) when compared to the full 

study population (Table 22), we can see that, due to missing, inaccurate or noisy data, D 

removed several participants in the 18-24, 25-34 and 35-44 age ranges; halved the number of 

men and women and low and medium income; excluded high-income participants; included 

mostly full-time workers and students, with only 8 full-time workers compared to the full 21 in 

the study; and removed the majority of healthy participants, increasing by 7% the proportion of 

unhealthy participants in the study.  

DECG/DA contain the same 42 participants. One participant each was removed from the 

18-24 and 25-34 age categories, not changing the percentage of these categories when compared 

to all participants. The same can be said for male and female participants, with one men and two 
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women removed. One participant with low income and two with medium income were removed, 

changing the proportion on the dataset slightly by 1% for low income and 2% for medium 

income. Only workers were removed (one full-time and two part-time), with the part-time 

proportion reducing by 4%. Finally, two healthy and one unhealthy participants were removed, 

with the proportion of healthy participants increasing 1% to the decrease in the proportion of 

unhealthy ones.  

Similarly, DAW has one less participant from each age category used to build the 

models, with only the 25-34 category changing from 31% to 32%. 2 men and 2 women were 

removed. In terms of income, one low-income individual and 3 medium-income individuals were 

removed, with the medium-income proportion reducing to 37%. 2 full-time workers and 2 part-

time workers were removed, with the proportion of part-time reducing from 11% to 7%. Finally, 

3 healthy individuals and one unhealthy participant were removed, maintaining the same 

proportions.  

DW only removed a 35-44 years old male healthy full-time worker with medium income, 

being very similar to data from all participants with n=44. On the other hand, DEmpatica had 18 

participants removed, including: 6 participants aged 18-24 (proportion reduced from 29 to 26), 4 

aged 25-24 (proportion increased from 31 to 37), and 6 aged 35-44 (proportion reduced from 27 

to 22); 6 men (proportion reduced by only 1%) and 12 women, maintaining the same proportion; 

6 low-income participants (proportion increased from 44 to 52), 9 medium income participants 

(proportion increased from 40 to 48) and all participants with high income or that did not wish to 

disclose; 12 full-time workers (proportion reduced from 47 to 33), 1 part-time worker 

(proportion increased from 11 to 15), and 5 students (proportion increased by 5%); 16 healthy 

participants (proportion decreased by 6%) and 2 unhealthy ones (proportion increased to 26). 

When looking at the sleep datasets, SDA has 2 fewer 18-24 participants, 3 fewer 25-34 

participants and 3 fewer 25-44, with proportions varying from 1% to 3%. 4 men and 7 women 

were removed, again with a slight 1% variation in proportions. 3 low, 4 medium and 4 high-

income participants were removed, with big changes in the proportion of low-income (from 44% 

to 50%) and high-income (from 9% to 0%). 6 full-time and 4 part-time workers were removed as 

well as a retired participant, with an 8% reduction in the part-time proportion. Finally, 8 healthy 

and 2 unhealthy participants were removed, maintaining approximately similar proportions. 
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SDAW has 5 less 18-24, 5 less 25-24 and 5 less 35-44 participants, with very slight 

changes in proportion. 8 male participants were removed with a 9% decrease in proportion and 

10 women were removed with a 7% increase. 7 low, 7 medium and 3 high-income participants, 

as well as one individual that did not disclose information, were removed, although the 

proportions remained similar with some variation. 9 full-time, 4 part-time, 4 students and 1 

retired participant were removed, with only 1 remaining part-time participant (decrease from 

11% to 4%). 16 healthy participants and 2 unhealthy ones were removed, with healthy proportion 

decreasing to 74%. SDS uses the same sample as SDAW. 

When considering only Withings features in SDW, four 18-24, 4 25-34, and 2 35-44 

participants were removed. 5 men and 6 women were removed, with the proportion of men 

decreasing from 31% to 26%. 5 low and 12 medium-income participants were removed as well 

as a participant that did not disclose information, with the proportion of medium-income 

dropping by 25. 5 full-time, 2 part-time, and 4 students were removed, maintaining similar 

proportions in the dataset. 8 healthy participants were removed, again maintaining similar 

proportions.  

 

 Table 22: Full Sample Participant Characteristics 

Participants (N = 45)    Frequency  Percentage 

Age 

  18-24      13               29 

  25-34      14   31 

  35-44      12   27 

  45-64       5   11 

  Above 65      1   2 

 

 

Sex/Gender 
  Male      14   31 

  Female     30    67 

  Gender Fluid     1   2 

 

SES 
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  Low (0-$30,000)    20    44 

  Medium ($30,000– $100,000)    18    40 

  High (Above $100,000)    4    9 

  Do not wish to disclose    3                7 

 

Profession 

  Full-time      21   47 

  Part-time      5   11 

  Student      16   36 

  Self-employed/Other           2   4 

  Retired      1   2 

 

 

Ethnicity       

 Black and Southeast Asian    1   2 
 Black or African American    3   7 

 Chinese      4   9 

 Indian       1   2 

 Latin American     10   22 

 South Asian      11   24  

 White       15   33 

 

 

Health Status 
  Healthy     36    80 

  Chronic Disease or Illness,    9   20 

  Prescription Drug Use, 

  Smoking or Alcohol  

 

Table 23: % of Stress Datapoints Per Division, n = 45 

Division % Stress 

Full 43 
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Gender Male 37 

Gender Female 45 

Gender fluid (n=1) 63 

Income Low 41 

Income Medium High 43 

Employment Students 50 

Employment Workers 41 

Age 18-24 48 

Age 25-34 42 

Age 35-44 43 

Age 45–64 42 

Age Above 65 (n=1) 11 

Healthy 48 

 

9.2.4.2 Machine Learning Models 
The following sections describe the results of the ML models. The focus of results 

reporting is the f1-macro metric, as accuracy may not reflect class imbalances in models trained 

without SMOTE. The f1-score is the harmonic mean between precision and recall, and the macro 

average treats both classes as equal. More detail on other metrics, including specifics for each 

prediction class, accuracy, f1-weighted, precision and recall can be found in Table B7 for 

Generalized_Imb and B9 for USM. The feature importance in each of the datasets are presented 

in Tables B20 to B29. Figures A16-A24 show the frequency of repeated top 10 important 

features for the stratifications in each dataset. DW was not included in these analyses as it only 

has 5 features. 

 
9.2.4.2.1 Generalized_Imb 
 
9.2.4.2.1.1 Without Sleep Data  

In this section, we discuss the results of the Generalized_Imb models, illustrated in Table 

24 with results for each dataset and each subset for imbalanced and SMOTE cases. The were 

usually around 50%, with stratification typically worsening the f1-macro scores. For imbalanced 

datasets, the SVM worked better than the RF model in most cases. Using the SMOTE technique 
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to handle imbalanced data yielded better results for RF-SMOTE, although in general the f1-

macro scores were still below or around 50%. The SVM-SMOTE technique yielded worse 

results in many cases. 

Looking at the mix of different modalities of features in D in Table B20 there is a good 

balance between Apple ECG features (ECG_DC, ECG_AR_AbsolutePower_HF, 

ECG_Stress_Index, ECG_SDNN), Withings Features (MAP, Weight, dia) and Empatica features 

(Empatica_MSE2, Empatica_DC, Empatica_AR_LFHF) which is repeated among the different 

stratifications, although with different features appearing in different divisions. ECG_DC is 

present in several of the stratifications and repeated in Income, Age and All/Healthy (Figure 

A16). When considering the features from all datasets (Tables B20 to B29), ECG_DC, as well as 

Empatica_DC, are prominent in the datasets they are present. Withings features are also 

prominent and rank high among the most important features in datasets that mix different 

devices. In particular, weight is ranked first and repeated in DAW (Figure A19 and Table B23).   

 

9.2.4.2.1.2 With Sleep Data  
Integrating sleep data typically improved results, although they remained typically close 

to 50%. Stratifying the data yielded better results in several cases, especially for female and 

student participants. RF-SMOTE showed improvements in the metrics, with some subsets 

reaching the highest f1-macro score of the Generalized_Imb experiments of 58%. Much like in 

the previous case, SVM-SMOTE did not yield better results, sometimes causing worse metrics. 

Regarding feature importance (Tables B26 to B29), sleep-related features typically rank 

among almost all the top 10 most important features, particularly Apple Watch sleep data, even 

in datasets that contain Withings sleep features such as SDAW and SDS. In SDS, containing 

only Withings features, non-sleep related data ranks high and repeats across stratifications 

(Figure A24 and Table B29).  

The t+1 and t+2 Apple Watch Consolidated Time Awake During Sleep features, in 

addition to ranking high, also repeat among stratifications in SDA, SDS and SDAW.  

 

9.2.4.2.2 USM 
When creating the USM, 5 users were removed from the experiment as they had a 

Stress/No Stress ratio below 10%, which caused results to be poor due to lack of information on 

the stress class, or extremely high since the test dataset did not contain enough samples of the 
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stress class for a non-biased testing process. Table 25 shows the characteristics of these 5 

removed users: all healthy individuals, the majority (4 out of 5) men, full-time workers, South 

Asian and aged 35-44. Income varied from low to high. 

User models for the remaining 40 participants were trained with all available features to 

each specific user, i.e., any feature that contained more than 30% of its data points. As 

mentioned, this choice was made to maximize the data used while still obtaining good empirical 

results from the KNNImputter. Sleep features were included when available. Empatica features 

were excluded from these analyses as only 27 users possessed a set with over 30% of data, and 

the features were shown not to have particularly high predictive power according to previous 

importance analyses.  

Table 26 reports the f1-macro score for each user according to RF, SVM, RF-SMOTE, 

and SVM-SMOTE, the proportion of stress labels, and features that were excluded. The f1-

macro averages for RF, SVM, RF-SMOTE, and SVM-SMOTE are, respectively: 59%, 52%, 

62%, and 57%. Indeed, RF and RF-SMOTE have the best results. Individual f1-macros range 

from low (e.g., 25% with user 10) to very promising results (92% with user 1). 25 participants 

(63%) achieved metrics higher than 60%. Table B9 in Appendix B provides more details on 

precision, recall and accuracy metrics. 

Of note, most of the missing features were sleep-related, whether from Apple Watch, 

Withings, or both (more on that in the Discussion section), which led to lower results from users 

without these features. The average of f1-macro without considering users with removed features 

removed, for RF, SVM, RF-SMOTE, and SVM-SMOTE, respectively (n = 24): 62%, 54%, 65%, 

62%. RF and RF-SMOTE once again have the best results, which improved for all models.  

Table 27 shows the averages of USM when stratified by gender, income, employment, 

age, and healthy participants. Typically, stratification seems to improve the results when 

considering USM, especially RF-SMOTE with results often above 65%. However, when the 

number of participants in a certain division is small (e.g., Gender Fluid, Age – 35-44, 45-64 and 

over 65), results are generally lower.  

 

Table 24: Macro F1-Score Results for GENERALIZED_IMB 

Dataset with all features (D, n = 22) 
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  RF SVM 
RF-

SMOTE 
SVM-SMOTE 

All 0.49 0.52 0.5 0.47 

Gender - Male 0.42 0.49 0.46 0.39 

Gender - Female 0.51 0.51 0.51 0.48 

Employment - Student 0.44 0.47 0.46 0.42 

Employment - Worker 0.4 0.51 0.42 0.42 

Income - Low 0.46 0.48 0.51 0.41 

Income - Medium High 0.4 0.48 0.4 0.42 

Age – 18-24 0.42 0.49 0.51 0.41 

Age – 25-34 0.44 0.5 0.5 0.4 

Age – 35-44 0.33 0.4 0.39 0.33 

Healthy 0.51 0.54 0.53 0.44 

Dataset with only ECG features (DECG, n = 42) 

All 0.5 0.5 0.52 0.5 

Gender - Male 0.45 0.48 0.47 0.46 

Gender - Female 0.52 0.51 0.53 0.49 

Employment - Student 0.48 0.48 0.49 0.47 

Employment - Worker 0.47 0.48 0.51 0.47 

Income - Low 0.45 0.48 0.49 0.46 

Income - Medium High 0.49 0.5 0.51 0.49 

Age – 18-24 0.45 0.48 0.49 0.44 

Age – 25-34 0.48 0.48 0.5 0.44 

Age – 35-44 0.42 0.48 0.46 0.45 

Healthy 0.49 0.5 0.51 0.49 

Dataset with only Apple Features (DA, n = 42) 

All 0.5 0.51 0.53 0.41 

Gender - Male 0.44 0.48 0..47 0.45 

Gender - Female 0.5 0.51 0.51 0.45 

Employment - Student 0.47 0.49 0..48 0.45 

Employment - Worker 0.48 0.48 0.5 0.39 
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Income - Low 0.44 0.52 0.49 0.39 

Income - Medium High 0.49 0.49 0.5 0.48 

Age – 18-24 0.46 0.48 0.5 0.4 

Age – 25-34 0.47 0.49 0.5 0.38 

Age – 35-44 0.42 0.5 0.48 0.43 

Healthy 0.48 0.5 0.53 0.38 

Dataset with Apple and Withings Features (DAW, n = 41) 

All 0.47 0.51 0.51 0.38 

Gender - Male 0.4 0.47 0.42 0.49 

Gender - Female 0.45 0.48 0.47 0.39 

Employment - Student 0.42 0.48 0.47 0.44 

Employment - Worker 0.42 0.47 0.47 0.37 

Income - Low 0.42 0.48 0.47 0.38 

Income - Medium High 0.48 0.46 0.5 0.42 

Age – 18-24 0.44 0.46 0.48 0.39 

Age – 25-34 0.44 0.46 0.48 0.39 

Age – 35-44 0.42 0.49 0.45 0.49 

Healthy 0.46 0.52 0.51 0.37 

Dataset with only Withings Features (DW, n = 44) 

All 0.46 0.47 0.46 0.49 

Gender - Male 0.43 0.43 0.42 0.43 

Gender - Female 0.44 0.47 0.44 0.48 

Employment - Student 0.46 0.5 0.46 0.49 

Employment - Worker 0.47 0.48 0.49 0.5 

Income - Low 0.42 0.45 0.47 0.49 

Income - Medium High 0.48 0.48 0.49 0.5 

Age – 18-24 0.44 0.47 0.46 0.49 

Age – 25-34 0.45 0.46 0.49 0.46 

Age – 35-44 0.43 0.47 0.43 0.46 

Healthy 0.34 0.46 0.48 0.46 

Dataset with only Empatica Features (DEmpatica, n = 27) 
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All 0.46 0.48 0.47 0.49 

Gender - Male 0.42 0.56 0.5 0.51 

Gender - Female 0.44 0.46 0.46 0.47 

Employment - Student 0.46 0.47 0.49 0.48 

Employment - Worker 0.42 0.44 0.42 0.43 

Income - Low 0.45 0.47 0.51 0.49 

Income - Medium High 0.37 0.42 0.38 0.42 

Age – 18-24 0.41 0.46 0.43 0.46 

Age – 25-34 0.44 0.44 0.46 0.44 

Age – 35-44 0.44 0.48 0.45 0.46 

Healthy 0.45 0.48 0.5 0.5 

Sleep Dataset with only Apple Features (SDA, n = 34) 

All 0.52 0.54 0.54 0.47 

Gender - Male 0.36 0.39 0.36 0.38 

Gender - Female 0.55 0.54 0.55 0.49 

Employment - Student 0.57 0.56 0.56 0.43 

Employment - Worker 0.39 0.42 0.46 0.4 

Income - Low 0.52 0.54 0.57 0.43 

Income - Medium High 0.51 0.5 0.52 0.44 

Age – 18-24 0.49 0.54 0.56 0.43 

Age – 25-34 0.52 0.55 0.53 0.4 

Age – 35-44 0.43 0.45 0.51 0.41 

Healthy 0.49 0.53 0.45 0.44 

Sleep Dataset with Apple and Withings Features (SDAW, n = 27) 

All 0.5 0.53 0.56 0.41 

Gender - Male 0.45 0.45 0.46 0.45 

Gender - Female 0.52 0.49 0.54 0.44 

Employment - Student 0.55 0.53 0.57 0.48 

Employment - Worker 0.4 0.46 0.54 0.38 

Income - Low 0.51 0.56 0.55 0.39 

Income - Medium High 0.51 0.51 0.55 0.36 
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Age – 18-24 0.54 0.58 0.56 0.41 

Age – 25-34 0.57 0.51 0.57 0.43 

Age – 35-44 0.44 0.48 0.49 0.44 

Healthy 0.42 0.46 0.52 0.39 

Sleep Dataset with Withings Features (SDW, n = 34) 

All 0.46 0.49 0.51 0.37 

Gender - Male 0.48 0.47 0.51 0.37 

Gender - Female 0.45 0.45 0.47 0.4 

Employment - Student 0.49 0.52 0.51 0.49 

Employment - Worker 0.43 0.44 0.48 0.37 

Income - Low 0.43 0.44 0.51 0.39 

Income - Medium High 0.42 0.47 0.46 0.41 

Age – 18-24 0.5 0.5 0.51 0.38 

Age – 25-34 0.48 0.47 0.5 0.4 

Age – 35-44 0.44 0.4 0.58 0.38 

Healthy 0.48 0.49 0.5 0.38 

Sleep Dataset with Withings and Apple Only Sleep Features (SDS, n 

= 27) 

All 0.51 0.5 0.55 0.48 

Gender - Male 0.45 0.45 0.45 0.44 

Gender - Female 0.52 0.49 0.52 0.5 

Employment - Student 0.55 0.52 0.57 0.52 

Employment - Worker 0.4 0.47 0.47 0.39 

Income - Low 0.52 0.53 0.58 0.5 

Income - Medium High 0.52 0.51 0.54 0.48 

Age – 18-24 0.5 0.53 0.53 0.5 

Age – 25-34 0.52 0.49 0.52 0.52 

Age – 35-44 0.44 0.44 0.5 0.44 

Healthy 0.46 0.49 0.5 0.5 
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Table 25: Characteristics from 5 Users Removed from USM analyses 

Age Sex/Gender Ethnicity Employment Income Healthy 

25-34 Male 

South 

Asian Full-Time $200,000 - $249,999 Yes 

35-44 Male 

South 

Asian Full-Time 

Do not wish to 

disclose Yes 

35-44 Female 

South 

Asian Student $10,000 - $29,999 Yes 

35-44 Male 

South 

Asian Full-time $70,000 - $79,999 Yes 

35-44 Male White Full-Time $100,000 - $124,999 Yes 

 

Table 26: Results for USM 

Users RF SVM 
RF -

SMOTE  

SVM -

SMOTE  
% Stress Features Removed 

1 0.92 0.92 0.92 0.92 30%   

2 0.64 0.41 0.64 0.41 30%   

3 0.62 0.37 0.76 0.58 31%   

4 0.53 0.58 0.78 0.4 32%   

5 0.42 0.36 0.78 0.36 45% AW Sleep 

6 0.62 0.56 0.66 0.51 33% Withings Sleep 

7 0.41 0.41 0.55 0.41 27% Withings Sleep 

8 0.69 0.69 0.69 0.55 46%   

9 0.65 0.39 0.84 0.36 37% AW Sleep, Withings Sleep 

10 0.35 0.38 0.32 0.38 37% Withings Sleep 

11 0.8 0.54 0.8 0.72 44%   

12 0.91 0.45 0.84 0.73 19%   

13 0.54 0.41 0.65 0.79 31%   

14 0.52 0.56 0.41 0.45 20%   

15 0.76 0.81 0.7 0.81 43%   
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16 0.44 0.44 0.56 0.44 25% AW Sleep 

17 0.72 0.63 0.67 0.75 34%   

18 0.43 0.42 0.38 0.43 22% AW Sleep, Withings Sleep 

19 0.61 0.76 0.61 0.76 43%   

20 0.61 0.5 0.67 0.58 45% Withings Sleep 

21 0.3 0.52 0.43 0.52 31% ECG, AW Sleep 

22 0.72 0.41 0.56 0.41 30%   

23 0.43 0.45 0.41 0.45 16% AW Sleep 

24 0.38 0.42 0.33 0.67 28%   

25 0.83 0.64 0.83 0.58 36% AW Sleep 

26 0.76 0.7 0.71 0.76 41%   

27 0.72 0.72 0.6 0.74 19%   

28 0.51 0.45 0.58 0.45 46% 
ECG, AW Sleep, Withings 

Sleep 

29 0.41 0.41 0.41 0.84 22%   

30 0.54 0.54 0.53 0.53 33%   

31 0.76 0.71 0.71 0.76 41% Withings Sleep 

32 0.59 0.55 0.71 0.66 33%   

33 0.41 0.43 0.73 0.43 25%   

34 0.42 0.38 0.68 0.47 35%   

35 0.52 0.35 0.59 0.66 47%   

36 0.71 0.38 0.62 0.38 36% AW Sleep 

37 0.33 0.38 0.38 0.42 33% Temperature, Withings Sleep 

38 0.69 0.72 0.65 0.74 32% Withings Sleep 

39 0.51 0.37 0.53 0.27 40%   

40 0.72 0.74 0.6 0.65 15% ECG, Withings Sleep 

Average 0.59 0.52 0.62 0.57     

 

Table 27: Results for USM, stratified 

Stratification RF SVM 
RF - 

SMOTE 

SVM - 

SMOTE 
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Gender - Male (n = 10) 0.60 0.53 0.66 0.55 

Gender - Female (n = 29) 0.58 0.52 0.60 0.57 

Gender - Gender Fluid (n=1) 0.62 0.37 0.76 0.58 

Income - Low (n = 19) 0.62 0.54 0.65 0.59 

Income - Med High (n=17) 0.56 0.51 0.58 0.58 

Employment - Student (n = 15) 0.63 0.55 0.64 0.65 

Employment - Worker (n = 24) 0.57 0.51 0.62 0.52 

Age - 18-24 (n = 13) 0.59 0.54 0.62 0.60 

Age - 25-34 (n = 13) 0.64 0.58 0.65 0.62 

Age - 35-44 (n = 8) 0.57 0.46 0.59 0.51 

Age - 45-64 (n = 5) 0.47 0.45 0.65 0.49 

Age - Over 65 (n = 1) 0.43 0.45 0.41 0.45 

Healthy (n = 31) 0.58 0.53 0.62 0.56 

 

9.2.5 Discussion 
9.2.5.1 Model Results 

Generalized_Imb models presented lower metrics, regardless of different datasets used, 

suggesting that this approach may not be ideal for training and testing models. On the other hand, 

user-specific results were very promising, with 63% of the 40 participants having an f1-score 

higher than 60%. The RF model typically overperformed the SVM, especially when applied with 

the SMOTE method for balancing classes. Therefore, predicting individualized models with 

within-individual data using RF models seems to be a promising approach for stress prediction in 

public health.  

Of note, f1-scores are used to evaluate models to ensure we are taking into account the 

prediction of both stress and non-stress states, especially since, due to data collection in real-life 

environments, many participants did not have balanced stress and non-stress classes to test the 

models. However, accuracy is typically used to measure state-of-the-art in the literature. As 

mentioned, looking at Table B6, the state-of-the-art accuracy for stress prediction seems to lie 

between 60% and 80%, with lower results for models using real-world data. For evaluation 

purposes, Table 8 shows the accuracy results for each user (which can also be seen with 

additional metrics in Table B9). In this case, for RF, SVM, RF-SMOTE and SVM-SMOTE, the 
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average accuracies are, respectively, 70%, 69%, 68%, 69%, with the RF model performing 

slightly better. Since accuracies may favor one class over another with better predictions, it 

makes sense that the balanced classes from the SMOTE method would not necessarily result in 

better results. When looking at the RF model, 33 out of 40 participants (82%) have accuracies 

higher than the bottom limit of the state-of-the-art of 60%. 22 participants (55%) have accuracies 

higher than 70%, and 6 participants (15%) performed better than the state-of-the-art. Therefore, 

considering within-individual data and USM, the majority of results are in line with or better 

than the state-of-the-art. Looking at Table B7 accuracies for Generalized_Imb models are usually 

above 60%, especially for sleep datasets, suggesting the models may predict one class better than 

another and that results could potentially be improved. 

 

Table 28: Accuracy per User 

Users RF SVM 

RF-

SMOTE 

SVM-

SMOTE % Stress Features Removed 

1 0.94 0.94 0.94 0.94 30%   

2 0.75 0.7 0.7 0.7 30%   

3 0.71 0.59 0.76 0.65 31%   

4 0.67 0.73 0.8 0.67 32%   

5 0.43 0.57 0.43 0.57 45% AW Sleep 

6 0.71 0.59 0.71 0.53 33% Withings Sleep 

7 0.71 0.71 0.71 0.71 27% Withings Sleep 

8 0.69 0.69 0.69 0.56 46%   

9 0.71 0.64 0.86 0.57 37% AW Sleep, Withings Sleep 

10 0.54 0.62 0.46 0.62 37% Withings Sleep 

11 0.82 0.64 0.82 0.73 44%   

12 0.94 0.83 0.89 0.83 19%   

13 0.69 0.69 0.69 0.81 31%   

14 0.67 0.72 0.5 0.56 20%   

15 0.76 0.82 0.71 0.82 43%   

16 0.78 0.78 0.72 0.78 25% AW Sleep 

17 0.78 0.72 0.72 0.78 34%   
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18 0.77 0.77 0.62 0.77 22% AW Sleep, Withings Sleep 

19 0.65 0.76 0.65 0.76 43%   

20 0.61 0.5 0.67 0.67 45% Withings Sleep 

21 0.43 0.64 0.5 0.64 31% ECG, AW Sleep 

22 0.76 0.71 0.59 0.71 30%   

23 0.76 0.82 0.71 0.82 16% AW Sleep 

24 0.61 0.72 0.5 0.72 28%   

25 0.87 0.67 0.87 0.6 36% AW Sleep 

26 0.76 0.71 0.71 0.76 41%   

27 0.88 0.88 0.76 0.82 19%   

28 0.54 0.46 0.62 0.46 46% 

ECG, AW Sleep, Withings 

Sleep 

29 0.71 0.71 0.71 0.88 22%   

30 0.61 0.61 0.56 0.56 33%   

31 0.76 0.71 0.71 0.76 41% Withings Sleep 

32 0.68 0.63 0.74 0.68 33%   

33 0.69 0.75 0.81 0.75 25%   

34 0.5 0.62 0.69 0.5 35%   

35 0.53 0.53 0.6 0.67 47%   

36 0.75 0.62 0.62 0.62 36% AW Sleep 

37 0.5 0.62 0.44 0.5 33% Temperature, Withings Sleep 

38 0.76 0.76 0.71 0.76 32% Withings Sleep 

39 0.65 0.59 0.59 0.59 40%   

40 0.89 0.72 0.78 0.83 15% ECG, Withings Sleep 

Average 0.70 0.69 0.68 0.69     

 

Still regarding USM, 4 participants had a very high f1-score above 80% - users 1,9, 25 

and 12. All users were healthy, aged between 18-24 or 25-34. 2 were men and 2 women, with 

income varying from low (2 participants) to middle (1 participant) and high (1 participant). In 

particular, users 1, 25, 12 – who achieved the highest score of 92% for all models – had a robust, 

complete dataset, following the protocol strictly, with very few examples of missing data in the 
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features and no missing Apple Watch sleep features. User 12 took all 6 measurements every day, 

necessitating only 14 days to complete the study; user 25 took 15 days; while user 1 was asked to 

wear the devices for 17 days to compensate for times in which not all measurements were taken. 

Interestingly when looking at user 12, only 23% of the data points were labelled as stress. 

However, the RF method without SMOTE for balancing classes actually performed better than 

RF-SMOTE (91% compared to 84%), suggesting that the classes do not necessarily need to be 

balanced so long as there are enough data points to provide information on the class for model 

training. User 9 seems to be an exception to the rule, with no sleep data and needing 20 days to 

complete the study and more instances of missing data. This user also had a relatively high 

proportion of stress points at 37%, which might account for the high f1-score values.  

Most of the 15 users with an RF-SMOTE f1-score below 60% had at least one device 

sleep feature missing (Apple Watch, Withings, or both). Further, 4 of these participants were not 

considered healthy, with 3 of these not having any missing data, suggesting that health status 

may affect the capacity of USM to correctly identify stressed states. These participants greatly 

varied in terms of sex/gender, income, employment, and age. Further, these users’ datasets were 

characterized by higher levels of missing data in features such as ECG and Blood Pressure that 

were applied to the KNNImputter, although other users that performed well also possessed data 

with these issues. Overall, suggests that sleep data is essential for good predictions, and models 

developed from participants without any chronic conditions, medication or drug/alcohol use will 

likelier be more accurate. Further, missing data imputation might behave differently depending 

on within-individual characteristics.  

Also, of note, users 22, 25 and 35, which do not have sleep missing data and have 

generally complete datasets achieved promising metrics with other models other than the RF-

SMOTE. For example, participant 35 had a 66% f1-score with SVM-SMOTE. Therefore, while 

RF-SMOTE consistently achieved higher values, that might not always be the case depending on 

individual differences. Interestingly, these 3 participants were all white females, although more 

research is needed to investigate these traits in terms of stress prediction. 

To summarize findings on USM models, the results were promising, – specially using the 

RF method coupled with SMOTE for balancing classes – and could potentially be used for stress 

prediction. Sleep features seem to be essential for good prediction, and healthy individuals will 

likely achieve better results. Special care must be taken for individual differences, however, 
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which might lead to worsening metrics, and evidence on the robustness of individual models 

should be collected before those models are applied in the real-world. 

While USM models achieved results in line with the state-of-the-art, Generalized_Imb 

models had lower f1-scores, even when accounting for class imbalances using SMOTE. Seeing 

how USM models and their stratifications were mostly successful, it is likely that the models 

learn data for specific user metrics. Exploring the grouping of users according to characteristics 

such as gender, income, employment, age, or health, may also lead to improvement in 

performances, although that is not always the case and the number of users in each stratification 

should be high. New clusters of users could potentially be discovered using unsupervised 

learning approaches as well 77, generating more robust evidence on the effectiveness of 

individualized models.  

 

9.2.5.2 Feature Importance 
Apple Watch sleep features rank highly in importance when looking at Generalized_Imb. 

This is consistent with observations from the individualized models were users missing sleep 

data performed worse. Temperature, Weight, and Blood Pressure features from Withings also 

have high importance, as well as Apple Watch HRV data to a lesser extent. Offsets of the sleep 

data should also be considered, specifically, t + 2 and t-2. However, these results did not 

improve the Generalized_Imb models f1-scores in most cases.  

In terms of non-sleep data, datasets that contained Withings data (D, DW, DAW) 

typically performed better. Coupled with the prevalence of Withings non-sleep features among 

the Apple sleep features in the sleep datasets, this suggests that using Withings devices to collect 

temperature, weight and blood pressure data would be an interesting avenue of research. 

Empatica E4 data did not seem to be a good predictor regarding feature importance, as 

USM models without this data perform well, specially sleep-related models. Therefore, future 

studies can focus on the use of personal mobile and wearable devices. 

The RF model performed better in general when compared to the SVM model, 

particularly on balanced datasets using the SMOTE method. If a system similar to the MHP is 

deployed in the real-world, datasets with more examples in each class could be used to train the 

model, therefore negating the need of generating synthetic health data which can potentially 

introduce biases.  
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9.2.5.3 Limitations and Future Directions 
A limitation of the data collection method was the amount of missing data. Looking at 

Table 6, 18 out of 40 participants used in the USM models had over 70% of missing data for 

several features, in particular AW Sleep or Withings Sleep data, and these models typically 

performed worse than others, again suggesting the importance of sleep data. As previously 

mentioned, one of the main challenges with the data in this study was that, given the real-life 

nature of the design, several participants had imbalanced classes in their datasets. For this reason, 

when conducting the USM analyses, 5 users were removed, as their results were extremely good 

or poor due to the predominance of one class over the other. We used the SMOTE method to 

upsample the minority class for each user in our analyses, which typically generated better 

results, although any real-world deployments should be aware that large datasets should be 

collected to gather enough examples of each class.  

The stress/no stress classes used as ground truth were derived from the DASS-21 and 

single-item measures, constituting a classification problem. Future work could further explore 

each of these datasets, creating models for each or even conducting ordinal classification for the 

numbered labels on the measures. In addition, developing USM models on controlled conditions 

(e.g., applying stressors in a lab and then applying the model to real-world data) would also solve 

the issue of imbalanced classes and, because of the noise reduction, could lead to improvements. 

Due to convenience sampling, a majority of participants were female, white, and young. Further 

studies should also explore a purposeful sampling of different participant traits for increased 

generalizability. 

Further, despite the success of USM, more research should also be done on the 

Generalzed_Imb approach. As mentioned, the accuracy of Generalized_Imb models, especially 

for sleep datasets, was also in line with the state-of-the-art, suggesting these models are able to 

predict at least one class well. Conducting studies using this approach in more controlled 

conditions, as mentioned above, could lead to an improvement in results, as well as the use of 

more collapsed categories (for example, two age categories). 

 

9.2.6 Conclusions 
In this study, we developed RF and SVM models based on data from mobile and 

wearable devices collected with the MHP, a mobile app developed to support public health 
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efforts. Two approaches were used, one that considers 80% of participants for training and 20% 

for testing and developing individualized models for each participant.  

Several of the USM models were promising, and stratification according to 

characteristics such as gender, income, employment, age, and health, could further improve 

results. The Generalized_Imb approach had promising accuracy but worse f1-macro scores, 

requiring more validation. Therefore, the MHP seems to be a good approach for stress prediction 

in real-life when developing individualized models. Further evidence is needed on why models 

perform better on some individuals compared to others, and on the Generalized_Imb models. 

Lessons learned suggest that sleep data are extremely important, particularly from the Apple 

Watch, and that healthier participants are more likely to have good results. Future research 

should focus on collecting more data with purposeful sampling to develop improved models and 

further study stratification. Additional future work can involve further models based on different 

self-report metrics and conducting controlled stress experiments based on the data provided here 

for robustness.  

 
9.3 Discussion 

The accuracies of the “hybrid” approach (called Generalized_Imb in the paper), using 

80% of participants for training and 20% for testing, were promising while the f1-macro scores 

were close to 50%, i.e., similar to chance. F1-macro scores, being the harmonic mean between 

precision and recall and considering both stress and no stress classes as having equal importance, 

can capture differences in prediction between the two classes better than accuracy. This suggests 

these models work well for one class, and future work (e.g., collecting more balanced and 

complete data in controlled conditions) could lead to improvements. In addition, the results of 

individualized user-specific models were in general promising.  

Consistent with Chapter 8, sleep features were considered important for prediction, and 

users with these features missing performed worse than users with complete data.  

The next chapter integrates the tools, models and results from the papers presented in this 

thesis (Chapter 4 to 9) into a final discussion, including implication of results for public health, 

and conclusions.  
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Chapter 10 - Discussion and Conclusions 

After presenting the papers that comprise the research program, this chapter will discuss 

the research contributions, limitations, and future research derived from the results and 

conclusions from previous chapters.  

 

10.1 Research Contributions 
The work presented throughout the papers in this thesis on the development of a MHP 

and use of mobile and wearable technologies for public health has the potential to contribute to 

the fields of (a) public health surveillance, (b) stress prediction with ML. These contributions 

will be further detailed in the next sub-sections, as well as limitations of the research. 

Throughout this chapter, directions for future research are also highlighted. 

 

10.1.1 Contributions to Public Health Surveillance 
Public health surveillance is essential in collecting and analyzing data for decision-

making and interventions that have the goal of improving the health of populations. In this 

research, I have discussed how smart technologies could potentially be used to complement 

public health studies, including in data collection and research, as well as opportunities, 

challenges, and limitations of using these devices in such a context (Chapter 4). The results show 

that smart technologies, using data from Apple Health, might be a promising tool for public 

health data collection and monitoring. Indeed, mobile and wearable devices can provide easy-to-

use, faster and cost-effective tools to collect data continuously, passively, and in near real-time.  

Equity must be considered when discussing public health data collection, which can be a 

major challenge as not everyone has equal access to and benefit from smart technologies. Age, 

income, location and ethnicity are major barriers to digital health equity in the Canadian context. 

As stated in Chapter 4, these issues should not hinder the application of mobile and wearable 

devices in health research and public health efforts, but rather inform it. This thesis showed how 

major Canadian surveys collect self-reported variables that might be complemented with 

objective sensor data from Apple Health and provided an overview of several works that use 

mobile technology as additional tools in health research. Public health agencies should be aware 

of current limitations in access to smart technologies and carefully ensure their protocols and 

studies consider these while also taking advantage of them when possible and applicable, 
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creating best practices and guidelines for their use in public health programs. This is especially 

important as society is moving in a direction where barriers to technology access are decreasing, 

and hopefully will continue to do so. 

In this context, Chapter 5 discussed the infrastructure of the MHP used as a data 

collection tool in the rest of the thesis, and which might be used as the basis for a future mobile 

surveillance application. Chapters 6, 7, 8 and 9 discussed the pilot study that uses the MHP to 

collect data and several analyses of these data for the quantification and prediction of stress.  

Regarding the practical application of the MHP as a data collection tool in the pilot study, 

conducted under daily life conditions, several lessons were highlighted for public health, mainly 

in Chapter 8. First, to study the prevalence of a condition in a population with the use of 

supervised Machine Learning, it is essential that enough examples of each class involved in the 

prediction (e.g., stress and no stress for our case) be collected, which is challenging in real-world 

conditions. This means that large volumes of data should be gathered. To reduce the burden on 

users while ensuring scale, one approach could be asking users for few data points for a certain 

period over a long time, such as measurements at wake-up and before sleep every day for several 

weeks.  

Public health analysts and researchers should also be mindful of missing or noisy data. In 

particular, data from the Empatica E4 device was severely affected by movement and lost 

Bluetooth connection, while the Withings Sleep device failed to integrate with the Apple Health 

app several times. Inaccurate data could also come from users forgetting to wear the device or 

wearing it improperly. While in the pilot study users were provided with an instruction manual 

and a video call was made to ensure everything was clear, possible real-world deployments of a 

mobile surveillance ecosystem should be proactive in detecting missing or inaccurate 

information, even providing actionable feedback to the user (e.g., a notification reminding users 

not to forget wearing their device and containing instructions on its proper use).  

Given that Apple Watch sleep data was shown to be extremely important, future studies 

and research could prioritize this feature. Weight, temperature and blood pressure from Withings 

devices were also shown to be important features, which is particularly encouraging as these 

devices allow more flexible integration (e.g., they are also compatible with Android devices). 

Even if individuals do not have smart technologies to objectively collect this information, they 

might have devices that inform the data to them, such as regular weight scales. Therefore, future 
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public health data collection efforts with mobile systems could allow for self-report of these data. 

It is important to note, however, that while this self-report may be collected more constantly than 

major surveys, it will still fall under the same limitations described in previous chapters for this 

type of data such as biases.  

While devices that collect data in a similar manner to the ones used here should provide 

similar results, this is not a guarantee and, as mentioned in Chapter 4 comparison between 

devices is often difficult. In this manner, future studies should investigate other technologies for 

increased validity. 

Still regarding the MHP, the data types that were collected in the pilot study were 

hardcoded into the app, i.e., queries and permissions for collecting these data were embedded in 

the source code. A potential real-world surveillance system should be flexible and allow 

customization according to different study objectives. In Apple systems, this could be done by 

hardcoding every data type and allowing researchers to add the data type they want to collect to 

their specific study application instance. Since the code for permission and queries will already 

be implemented, the data should be collected without issues. 

While statistical methods did not reveal strong correlations, stress prediction model 

results were promising and often in line with state-of-the-art, which is especially encouraging 

considering models were built using data from personal, consumer-level devices as opposed to 

most research studies, which typically use research equipment (Table B6).  

Different approaches for model training and evaluation yielded different results. In 

particular, using all data from participants to develop a generalized model or creating 

individualized user-specific models seem to be the best approaches. The current implication for 

public health agencies is that, if a potential system is put in place to predict stress in a population 

with smart technologies, large amounts of data from several participants should be collected for 

one generalized model, or models for each specific user should be developed, although both 

approaches need more validation. The latter approach had a lot of variation depending on 

specific users and data quality, and so should be deployed with great care and robust testing and 

validation. The fact that the models’ performance drops with previously unseen data from several 

participants, as seen by the results of the Generalized_Imb models, limit their external validity 

and requires additional studies. However, accuracy metrics in this approach were often in line 

with state-of-the-art and showed promise. In short, mobile and wearable technologies might 
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potentially be an asset for public health surveillance as results were promising and in-line with 

state-of-the-art. Further validation and testing studies are needed to apply stress prediction to 

mobile health data in order to study the prevalence of stress in the population. The next sub-

section provides additional details on the stress prediction models and ML aspects of the study. 

 
10.1.2 Contributions to Stress Prediction with ML 

As detailed in Chapters 8 and 9, ML methods have been greatly used to process 

behavioural and physiological data in order to predict stress levels of participants. In the same 

chapters, we presented 3 distinct approaches to train, test and evaluate stress prediction models 

built with RF and SVM: Generalized models using data from all participants, with 80-20 train 

test split and 10-fold cross-validation; Generalized_imb models which use 80% of participants 

for training and 20% for testing with 10-fold cross-validation and 50 loops to average the results 

and decrease variance; and creating individualized, user-specific models.  

The most successful approach was creating generalized models, which constantly 

performed in line with the state-of-the-art when looking at accuracy metrics. User-specific 

individualized models also typically achieved promising results, with a lot of variations among 

specific users depending on data quality and missing features. The Generalized_Imb approach 

performance decreased when looking into f1-scores, even when accounting for class imbalances 

using SMOTE. However, accuracy results were still in line with state-of-the-art, suggesting that 

these models can accurately predict at least one class and further validation could lead to 

improvements.  

Seeing how often the “User” feature appears in several of the generalized datasets, and 

several user-specific models were very successful, it is likely that the models learn data for 

specific user metrics. Indeed, the Generalized_Imb approach that cross-validates by participant 

(thus, not using the “User” feature) shows worsened results, while the USM approach that uses 

data from each participant at a time has a lot of variance. This suggests that, while any potential 

public health efforts looking into predicting stress states should consider collecting large 

amounts of data to be used on one generalized model or develop a specific model for each user, 

both approaches have downsides – the first having reduced generalizability, and the second may 

have a lot of variance between subjects. Exploring the grouping of users according to 

characteristics such as gender, income, employment, age, or health, may also lead to 

improvement in performances, although that is not always the case and should be done in 
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conjunction with careful planning and purposeful sampling. While the poor results of the 

Generalized_Imb approach limit the external generalizability and validity of the models, lessons 

can be learned for further validation and future research directions.  

First, and encouragingly, Empatica E4 data did not seem to greatly affect the models, as 

generalized models and user-specific models without this data perform well, specially sleep-

related models. Given this, data from personal consumer-level devices can be leveraged rather 

than having to resort to medical-grade wearables such as the Empatica E4. As discussed, Apple 

Watch sleep data was shown to generate particularly strong predictive features. 

The RF models in general performed better than the SVM and having balanced classes 

can improve performance, further highlighting the need for large datasets to be collected without 

the need to generate synthetic data for balance.   

The variance observed among the users for the user-specific models should give 

researchers pause before real-world deployment. How can public health agencies create 

individualized models and guarantee they will work for the majority of users, thus ensuring 

equity? While more validation is needed, an interesting future approach might be the use of 

reinforcement learning, a type of Machine Learning application in which the model learns from 

mistakes by trial and error through reward and punishment, maximizing the first while 

minimizing the other 191. Feedback might be provided by the user of the smart technology. As a 

potential scenario, a user installs a system like the MHP on their device, which collects data and 

creates a user-specific model. This model then makes a prediction, and lets the user know of their 

condition. If the application asks feedback from the user on the accuracy of the prediction in the 

moment, the feedback can provide rewards or punishment to the classifier depending on the 

accuracy of the prediction made. This, in turn, might lead to more robust models. 

In summary, the results of stress prediction for ML are encouraging, and often in line 

with the state-of-the-art. Given that state-of-the-art models are generally developed with research 

or medical-grade equipment, the good results of using mobile and wearable devices and the 

novel data types collected by these are very promising for future public health data collection 

initiatives, although more research and validation are needed for real-world deployment of 

similar systems. 
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10.2 Limitations and Future Directions 
In this section some of the limitations in the research program are detailed, as well as 

approaches to address or mitigate them in the future. 

 
10.2.1 Limitations of the MHP and Future Directions 

As mentioned in the previous sub-section and throughout Chapters 7, 8 and 9, missing 

data was a major problem in this study. While missing data can come from users not wearing the 

device, in many instances the information was properly collected by the device and sent to Apple 

Health but could not be sent to the researcher’s database due to technical issues (such as slow 

Internet connection). An approach to mitigate this in the future is the inclusion of backup 

features. Chapter 8 describes how such a feature could be implemented in the current iOS 

systems.  

In our study, to handle this issue, data from the database was compared with manually 

exported Apple Health data to account for these types of missing data. A python script was 

created specifically to compare the data in Extensible Markup Language (XML) format exported 

from Apple Health with the data from our servers. 

Even when considering errors in data sharing, there were still a lot of missing data to 

contend with, as evidenced by Chapters 8 and 9. This was mostly due to the burden of the study 

protocol on participants, who had difficulty using the devices during their daily routine or 

remembering to take every measurement. For future studies and real-world deployment, as we 

discussed, public health agencies should strive for collecting less data points over long periods to 

avoid placing a huge burden on users. 

Apple guidelines provide different periods for background data delivery set up by 

HealthKit queries, as explained in Chapter 8 139. Further, background delivery is scheduled based 

on app usage, meaning that if the app is not constantly used, background data collection might 

not be triggered. To make matters worse, the iPhone’s system may stop background queries. To 

circumvent these issues in the study, new queries are activated every time the app is opened. In 

case the app is used more constantly, or if users are meant to collect few data points over longer 

periods, different strategies for updating the data might be considered and implemented. To 

further engage users with the app, future research should also consider using the MHP system as 

a backend of a more integrated health management system. For example, an application that 

allows users to track their condition (whether stress or another) including improvements and 
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downturns, and that also collects data similar to the MHP would further engage users and ensure 

they keep coming back to the application and system. 

 

10.2.2 Limitations of the Pilot Study and Stress Prediction Models and Future 
Directions 

While this pilot study is larger than most stress studies reviewed (see Table B6 in Chapter 

9), 45 participants is still a small sample size when compared to traditional public health studies 

and initiatives. Therefore, stratified results in this thesis should be more indicative of future 

directions of research. On that note, due to convenience sampling, several participants were 

young, white, and female. Therefore, further studies should include more purposeful sampling in 

their design for different stratifications and increased generalizability. The fact that good results 

were found for stratifications with the generalized model approach, even with a relatively small 

dataset, is promising.  

Participants found the data collection protocol burdensome. An alternative for future 

studies and real-world deployment would be collecting less data points for longer periods, 

reducing the burden on participants while collecting larger datasets. Further, since data was 

collected in real-life environments, subjective stress measures were used (see Chapters 6 to 9). 

However, different people may have different perceptions of stress. Indeed, “there is no uniform 

and universal relationship between a stressor and the stress response” 54. In other words, different 

people might respond differently to the same stressors, which in turn may affect the labelled 

data. This could also explain why correlations in Chapter 6 were low. To mitigate this issue, we 

used validated questionnaires coupled with a single-item measure successfully used in literature 

and correlated with robust stress questionnaires. However, future work conducting experiments 

in more controlled conditions (e.g., applying stressors in a lab and collecting more objective 

stress measures like cortisol) would further increase the robustness of the evidence that mobile 

and wearable technologies can be used for stress prediction. Such experiments would also 

mitigate the issues of missing data and imbalanced classes, leading to improvements in models, 

although they would decrease the real-world validity of results.  

As mentioned, complementary model training approaches could potentially be used to 

improve results, such as reinforcement learning to get feedback from users and reduce the 

variance in USM or gathering more context information for model development.  
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Nevertheless, the promising results found – especially considering the challenges of data 

collection “in the wild” and the use of novel, consumer-level devices not widely used in stress 

research – are encouraging and suggest that smart technologies have the potential to be effective 

tools in predicting stress, although care must be taken to address the issues and limitations 

presented in this work and what a real-world deployment would entail. 

 

10.3 Conclusion 
Mobile and wearable devices are in use by the majority of the population worldwide 203.  

These devices have sensors that collect a variety of health variables which might potentially be 

used as a complement to traditional public health surveillance initiatives. 

In this thesis, I have presented a potential new tool for data collection from smart 

technologies with the objective of providing a multi-modal prototype public health data 

collection and monitoring mobile ecosystem. The architecture and modelling of the MHP was 

presented, and the platform evaluated through a pilot study that used the MHP to collect stress-

related data from mobile and wearable devices. These data, in turn, were used in the creation of a 

number of ML-based models to predict this condition among participants. Although more 

validation is needed, the results were promising, especially considering the models were built 

using data from personal devices. 

The tools, ML-based models and results presented in this thesis represent a potential step 

towards the integration of mobile health technologies for public health. The ultimate goal of this 

work is to provide public health agencies with possible new directions, tools and methods to 

improve the lives of populations.  
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Appendix A – Additional Support Figures 
 

 
Figure A1: XCode's Interface37 

 

 
 

Figure A2: Login and Sign-Up Screens38 
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Figure A3: Apple Health Consent Screen39 

 

 
Figure A4: Profile View with Settings40 
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Figure A5: Internet Alert View 41 
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Figure A6: Database Structure 42 

dbo.appuser
*P id INTEGER

name VARCHAR (45)
email VARCHAR (45)
last_access DATETIME
step_device VARCHAR (15)
sleep_device VARCHAR (15)
heartrate_device VARCHAR (15)
hrv_device VARCHAR (15)
weight_device VARCHAR (15)
bloodpressure_device VARCHAR (15)
ecg_device VARCHAR (15)
workout_device VARCHAR (15)
temperature_device VARCHAR (15)
mindfulness_device VARCHAR (15)

PK__appuser__3213E83F0381E948 (id)

dbo.blood_pressure
*PF id INTEGER

bp_systolic DECIMAL (18,6)
bp_diastolic DECIMAL (18,6)

*P start_date DATETIME
end_date DATETIME

*PF device_id INTEGER
recordinfo NVARCHAR (MAX)

PK__blood_pr__B247867100213B7D (id, start_date, device_id)

FK__blood_pre__devic__1E3A7A34 (device_id)
FK__blood_pressu__id__1D4655FB (id)

dbo.device
*P device_id INTEGER

hardware VARCHAR (45)
manufacturer VARCHAR (45)
model VARCHAR (45)
name VARCHAR (45)
software VARCHAR (45)
souce_bundle VARCHAR (60)
source_name VARCHAR (45)

PK__device__3B085D8B10E5A6AF (device_id)

dbo.ecg
*PF id INTEGER
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

averageheartrate DECIMAL (18,6)
classification INTEGER
ecg_algorithm_version DECIMAL (18,6)
n_voltage_measurement INTEGER
sampling_frequency DECIMAL (18,6)
sympton_status INTEGER
voltage_measurement NVARCHAR (MAX)
recordinfo NVARCHAR (MAX)

PK__ecg__B24786710CFED425 (id, start_date, device_id)

FK__ecg__device_id__27C3E46E (device_id)
FK__ecg__id__26CFC035 (id)

dbo.heart_rate
*PF id INTEGER

bpm DECIMAL (18,6)
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

recordinfo NVARCHAR (MAX)

PK__heart_ra__B24786716EE23768 (id, start_date, device_id)

FK__heart_rat__devic__0FEC5ADD (device_id)
FK__heart_rate__id__0EF836A4 (id)

dbo.heart_rate_variabilidty
*PF id INTEGER

sdnn FLOAT
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

recordinfo NVARCHAR (MAX)

PK__heart_ra__B247867144A0C4A7 (id, start_date, device_id)

FK__heart_rat__devic__14B10FFA (device_id)
FK__heart_rate_v__id__13BCEBC1 (id)

dbo.mindfulness
*PF id INTEGER
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

recordinfo NVARCHAR (MAX)

PK__mindfuln__B2478671CA951DCE (id, start_date, device_id)

FK__mindfulne__devic__370627FE (device_id)
FK__mindfulness__id__361203C5 (id)

dbo.sleep
*PF id INTEGER

value DECIMAL (18,6)
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

category VARCHAR (15)
recordinfo NVARCHAR (MAX)

PK__sleep__B2478671605E2A43 (id, start_date, device_id)

FK__sleep__device_id__0B27A5C0 (device_id)
FK__sleep__id__0A338187 (id)

dbo.steps
*PF id INTEGER

value DECIMAL (18,6)
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

recordinfo NVARCHAR (MAX)

PK__steps__B24786713AFA4F78 (id, start_date, device_id)

FK__steps__device_id__0662F0A3 (device_id)
FK__steps__id__056ECC6A (id)

dbo.stress_questionnaire
*PF id INTEGER
*P date DATETIME

value NVARCHAR (MAX)
recordinfo NVARCHAR (MAX)

PK__stress_q__EF8E0A20C0501E87 (id, date)

FK__stress_quest__id__220B0B18 (id)

dbo.temperature
*PF id INTEGER

temp DECIMAL (18,6)
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

recordinfo NVARCHAR (MAX)

PK__temperat__B247867144E760E6 (id, start_date, device_id)

FK__temperatu__devic__324172E1 (device_id)
FK__temperature__id__314D4EA8 (id)

dbo.weight
*PF id INTEGER

value DECIMAL (18,6)
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

recordinfo NVARCHAR (MAX)

PK__weight__B24786719F1EDA28 (id, start_date, device_id)

FK__weight__device_i__1975C517 (device_id)
FK__weight__id__1881A0DE (id)

dbo.workout
*PF id INTEGER
*P start_date DATETIME

end_date DATETIME
*PF device_id INTEGER

activitytype VARCHAR (20)
duration INTEGER
totaldistance DECIMAL (18,6)
totalenergyburned DECIMAL (18,6)
recordinfo NVARCHAR (MAX)

PK__workout__B24786719D52D1B1 (id, start_date, device_id)

FK__workout__device___2D7CBDC4 (device_id)
FK__workout__id__2C88998B (id)
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Figure A7: Frequency of top 10 features in each stratification, dataset D43 

 
 
 

 
Figure A8: Frequency of top 10 features in each stratification, dataset DECG 44 
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Figure A9: Frequency of top 10 features in each stratification, dataset DA 45 

 
 

 
Figure A10: Frequency of top 10 features in each stratification, dataset DAW 46 
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Figure A11: Frequency of top 10 features in each stratification, dataset DEmpatica 47 

 

 
Figure A12: Frequency of top 10 features in each stratification, dataset SDA 48 
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Figure A13: Frequency of top 10 features in each stratification, dataset SDAW 49 

 
 
 
 
 

 
Figure A14: Frequency of top 10 features in each stratification, dataset SDW 50 
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Figure A15: Frequency of top 10 features in each stratification, dataset SDS (no features 
repeated for Gender) 51 

 
 
 
 

 
Figure A16: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
D 52 
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Figure A17: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
DECG  53 

 
 
 
 
 

 
Figure A18: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
DA 54 
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Figure A19: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
DAW 55 

 
 
 
 
 
 

 
Figure A20: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
DEmpatica 56 
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Figure A21: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
SDA 57 

 
 
 
 
 

 
Figure A22: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
SDAW 58 
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Figure A23: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
SDW 59 

 
 
 
 

 
Figure A24: Generalized_Imb - Frequency of top 10 features in each stratification, dataset 
SDS60 

 
 

 
Figure A25: Example of Stress Scoring in the Dataset 61 
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MAP sys Temp Weight Withings Total
Time Asleep

Gender

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

% of Time
Asleep While

In Bed

MAP T-2 Time
Spent in REM

Stage

Temp Time Spent in
REM Stage

Weight

Income

0
0.2

0.4

0.6
0.8

1
1.2

1.4
1.6

1.8

2

MAP Weight

Employment
0

0.5

1

1.5

2

2.5

3

MAP Temp Weight % of
Time

Asleep
While In

Bed

dia sys T-2 Time
Spent in

REM
Stage

T+2
Withings

Total
Time

Asleep

Time
Spent in

REM
Stage

Age

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

AW Total Time in Bed T+1 AW Consolidated
Time During Awake

T+2 AW Consolidated
Time During Awake

T+2 AW Number of
Wake-Ups

All/Healthy

0
0.2

0.4

0.6
0.8

1
1.2

1.4
1.6

1.8

2

T+2 AW Consolidated Time During Awake T+2 Time Spent in Deep Stage

Gender

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

T+1 AW Consolidated Time
During Awake

T+2 AW Consolidated Time
During Awake

T+2 AW Number of Wake-
Ups

Income

0
0.2

0.4

0.6
0.8

1
1.2

1.4
1.6

1.8

2

T-2 AW Min HR T+2 AW Min HR Time Spent in REM Stage

Employment

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

T-2 Time Spent in REM Stage T+1 AW Consolidated Time
During Awake

T+1 AW Min HR

Age
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Figure A26: Snapshot of Steps Features in Dataset 62 

 

 
Figure A27: Snapshot of Apple Watch Heart Rate Features in Dataset 63 

 

 
Figure A28: HRV-1 Feature in Dataset 64 

 

 
Figure A29: Snapshot of ECG HRV Features in Dataset 65 
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Figure A30: Snapshot of Empatica HRV Features in Dataset 66 

 

 
Figure A31: Snapshot of Temperature, Weight and Blood Pressure Features in Dataset 67 

 

 
Figure A32: Snapshot of Sleep Features in Dataset 68 
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Appendix B – Additional Support Tables 
 

Table B1: Questionnaire Questions  29 

Questionnaire Question Answer Options 
DASS-21 I found it hard to wind down; 0 – Not at all 

1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

DASS-21 I felt that I was using a lot of nervous 
energy; 

0 – Not at all 
1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

DASS-21 I found myself getting agitated; 0 – Not at all 
1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

DASS-21 I found it difficult to relax; 0 – Not at all 
1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

DASS-21 I tended to over-react to situations; 0 – Not at all 
1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

DASS-21 I was intolerant of anything that kept me 
from getting on with what I was doing; 

0 – Not at all 
1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

DASS-21 I felt that I was rather touchy; 0 – Not at all 
1 – To Some Degree 
2 – To a Considerable Degree 
3 – Very Much 

Single-Item Right now, I am… 1 – Feeling Great 
2 – Feeling Good 
3 – A little stressed 
4 – Definitely Stressed 
5 – Stressed Out 

 
 

Table B2: Features Used in the Study 30 

Manufacturer Variabl
e 

Feature Description (unit) Dataset 

Apple Steps Apple Watch Mean 
Steps 

Mean of steps for the time 
interval  

D, DA, 
DAW, SDA, 
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SDAW 
Apple Steps Apple Watch Max 

Steps 
Maximum of steps for the 
time interval 

D, DA, 
DAW, SDA, 
SDAW 

Apple Steps Apple Watch Min 
Steps 

Minimum HR for the time 
interval (bpm) 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR Apple Watch Mean 
HR - Interval 

Mean HR for the time 
interval (bpm) 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR Apple Watch Max 
HR – Interval  

Maximum HR for the time 
interval (bpm) 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR Apple Watch Min 
HR - Interval 

Minimum of steps for the 
time interval 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR Short Term Mean  Mean HR for the 
millisecond time interval 
close to data collection 
(bpm) 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR Short Term Max Maximum HR for the 
millisecond time interval 
close to data collection 
(bpm) 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR Short Term Min Minimum HR for the 
millisecond time interval 
close to data collection 
(bpm) 

D, DA, 
DAW, SDA, 
SDAW 

Apple HR ECG_Mean HR Mean of heart rate  from 
ECG(ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HR ECG_ SD HR Standard deviation of 
instantaneous heart rate 
from ECG (1/min) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HR ECG_Min HR Minimum instantaneous 
heart rate calculated using 5 
beat moving average  from 
ECG(1/min) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HR ECG_Max HR Maximum instantaneous 
heart rate calculated using 5 
beat moving average  from 
ECG (1/min) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Empatica HR Empatica_Mean HR Mean of heart rate  from 
Empatica device (ms) 

D, 
DEmpatica 

Empatica HR Empatica_ SD HR Standard deviation of 
instantaneous heart rate 

D, 
DEmpatica 
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from Empatica device 
(1/min) 

Empatica HR Empatica_Min HR Minimum instantaneous 
heart rate calculated using 5 
beat moving average  from 
Empatica device (1/min) 

D, 
DEmpatica 

Empatica HR Empatica_Max HR Maximum instantaneous 
heart rate calculated using 5 
beat moving average  from 
Empatica device (1/min) 

D, 
DEmpatica 

Apple HRV HRV-1 Heart rate variability 
collected as SDNN with the 
Apple Watch 

D, DA, 
DAW, SDA, 
SDAW 

Apple HRV ECG_PNS Index Parasympathetic nervous 
system activity compared to 
normal resting values 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_SNS Index Sympathetic nervous system 
activity compared to normal 
resting values 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_Stress Index Square root of Baevsky’s 
stress index 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_Mean RR Mean of R-R intervals (ms) D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_SDNN Standard deviation of R-R 
intervals (ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_RMSSD Square root of the mean 
squared differences between 
successive RR intervals 
f(ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_DC Heart rate deceleration 
capacity (ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_DCMod Modified DC computer as a 
two-point difference (ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AC Heart rate acceleration 
capacity (ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_ACMod Modified AC computer as a 
two-point difference (ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT LF Fast Fourier Transform Low 
Frequency band components 

D, DECG, 
DA, DAW, 
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(Hz) SDA, SDAW 
Apple HRV ECG_FFT HF Fast Fourier Transform High 

Frequency band components 
(Hz) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR LF Autoregressive Low 
Frequency band components 
(Hz) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR HF Autoregressive High 
Frequency band components 
(Hz) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT Absolute 
Power LF 

Fast Fourier Transform 
Absolute Power of Low 
Frequency band components  
(ms2) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT Absolute 
Power HF 

Fast Fourier Transform 
Absolute Power of High 
Frequency band components 
(ms2) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR Absolute 
Power LF 

Autoregressive Absolute 
Power of Low Frequency 
band components (ms2) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR Absolute 
Power HF 

Autoregressive Absolute 
Power of High Frequency 
band components (ms2) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT Relative 
Power LF 

Fast Fourier Transform 
Relative Power of Low 
Frequency band components 
(%) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT Relative 
Power HF 

Fast Fourier Transform 
Relative Power of High 
Frequency band components 
(%) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR Relative 
Power LF 

Autoregressive Relative 
Power of Low Frequency 
band components (%) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR Relative 
Power HF 

Autoregressive Relative 
Power of High Frequency 
band components (%) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT 
Normalized Power 
LF 

Fast Fourier Transform 
Normalized Power of Low 
Frequency band components 
(n.u) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT 
Normalized Power 
HF 

Fast Fourier Transform 
Normalized Power of High 
Frequency band components 
(n.u) 

D, DECG, 
DA, DAW, 
SDA, SDAW 
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Apple HRV ECG_FFT Total 
Power 

Fast Fourier Transform 
Total Power (ms2) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_FFT LF/HF Fast Fourier Transform ratio 
between low and high 
frequency 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR 
Normalized Power 
LF 

Autoregressive Normalized 
Power of Low Frequency 
band components (n.u) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR 
Normalized Power 
HF 

Autoregressive Normalized 
Power of High Frequency 
band components (n.u) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR Total 
Power 

Autoregressive Total Power 
(ms2) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_AR LF/HF Autoregressive ratio 
between low and high 
frequency  

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_SD1 The standard deviation 
perpendicular to the line-of-
identity in Poincaré plot 
(ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_SD2 The standard deviation 
along the line-of-identity in 
Poincaré plot (ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Apple HRV ECG_SD2/SD1 Ratio between SD2 and SD1 
(ms) 

D, DECG, 
DA, DAW, 
SDA, SDAW 

Empatica HRV Empatica_PNS 
Index 

Parasympathetic nervous 
system activity compared to 
normal resting values 

D, 
DEmpatica 

Empatica HRV Empatica_SNS 
Index 

Sympathetic nervous system 
activity compared to normal 
resting values 

D, 
DEmpatica 

Empatica HRV Empatica_Stress 
Index 

Square root of Baevsky’s 
stress index 

D, 
DEmpatica 

Empatica HRV Empatica_Mean RR Mean of R-R intervals (ms) D, 
DEmpatica 

Empatica HRV Empatica_SDNN Standard deviation of R-R 
intervals (ms) 

D, 
DEmpatica 

Empatica HRV Empatica_RMSSD Square root of the mean 
squared differences between 
successive RR intervals (ms) 

D, 
DEmpatica 

Empatica HRV Empatica_DC Heart rate deceleration 
capacity (ms) 

D, 
DEmpatica 

Empatica HRV Empatica_DCMod Modified DC computer as a D, 
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two-point difference (ms) DEmpatica 
Empatica HRV Empatica_AC Heart rate acceleration 

capacity (ms) 
D, 
DEmpatica 

Empatica HRV Empatica_ACMod Modified AC computer as a 
two-point difference (ms) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT VLF Fast Fourier Transform Very 
Low Frequency band 
components (Hz) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT LF Fast Fourier Transform Low 
Frequency band components 
(Hz) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT HF Fast Fourier Transform High 
Frequency band components 
(Hz) 

D, 
DEmpatica 

Empatica HRV Empatica_AR_VLF Autoregressive Very Low 
Frequency band components 
(Hz) 

D, 
DEmpatica 

Empatica HRV Empatica_AR LF Autoregressive Low 
Frequency band components 
(Hz) 

D, 
DEmpatica 

Empatica HRV Empatica_AR HF Autoregressive High 
Frequency band components 
(Hz) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
Absolute Power 
VLF 

Fast Fourier Transform 
Absolute Power of Very 
Low Frequency band 
components  (ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
Absolute Power LF 

Fast Fourier Transform 
Absolute Power of Low 
Frequency band components  
(ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
Absolute Power HF 

Fast Fourier Transform 
Absolute Power of High 
Frequency band components 
(ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Absolute Power 
VLF 

Autoregressive Absolute 
Power of Very Low 
Frequency band components 
(ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Absolute Power LF 

Autoregressive Absolute 
Power of Low Frequency 
band components (ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Absolute Power HF 

Autoregressive Absolute 
Power of High Frequency 
band components (ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT Fast Fourier Transform D, 
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Relative Power VLF Relative Power of Very Low 
Frequency band components 
(%) 

DEmpatica 

Empatica HRV Empatica_FFT 
Relative Power LF 

Fast Fourier Transform 
Relative Power of Low 
Frequency band components 
(%) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
Relative Power HF 

Fast Fourier Transform 
Relative Power of High 
Frequency band components 
(%) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Relative Power VLF 

Autoregressive Relative 
Power of Very Low 
Frequency band components 
(%) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Relative Power LF 

Autoregressive Relative 
Power of Low Frequency 
band components (%) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Relative Power HF 

Autoregressive Relative 
Power of High Frequency 
band components (%) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
Normalized Power 
LF 

Fast Fourier Transform 
Normalized Power of Low 
Frequency band components 
(n.u) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
Normalized Power 
HF 

Fast Fourier Transform 
Normalized Power of High 
Frequency band components 
(n.u) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT Total 
Power 

Fast Fourier Transform 
Total Power (ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_FFT 
LF/HF 

Fast Fourier Transform ratio 
between low and high 
frequency 

D, 
DEmpatica 

Empatica HRV Empatica_resp Respiration rate (Hz) D, 
DEmpatica 

Empatica HRV Empatica_AR 
Normalized Power 
LF 

Autoregressive Normalized 
Power of Low Frequency 
band components (n.u) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
Normalized Power 
HF 

Autoregressive Normalized 
Power of High Frequency 
band components (n.u) 

D, 
DEmpatica 

Empatica HRV Empatica_AR Total 
Power 

Autoregressive Total Power 
(ms2) 

D, 
DEmpatica 

Empatica HRV Empatica_AR 
LF/HF 

Autoregressive ratio 
between low and high 

D, 
DEmpatica 
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frequency  
Empatica HRV Empatica_SD1 The standard deviation 

perpendicular to the line-of-
identity in Poincaré plot 
(ms) 

D, 
DEmpatica 

Empatica HRV Empatica_SD2 The standard deviation 
along the line-of-identity in 
Poincaré plot (ms) 

D, 
DEmpatica 

Empatica HRV Empatica_SD2/SD1 Ratio between SD2 and SD1 
(ms) 

D, 
DEmpatica 

Empatica HRV Empatica_ApEn Approximate entropy D, 
DEmpatica 

Empatica HRV Empatica_SampEn Sample entropy D, 
DEmpatica 

Empatica HRV Empatica_alpha1 In detrended fluctuation, 
short term fluctuation slope 

D, 
DEmpatica 

Empatica HRV Empatica_alpha2 In detrended fluctuation, 
long term fluctuation slope 

D, 
DEmpatica 

Empatica HRV Empatica_D2 Correlation dimension D, 
DEmpatica 

Empatica HRV Empatica_Mean line 
length 

Mean line length of the 
recurrent plot analysis 

D, 
DEmpatica 

Empatica HRV Empatica_Max line 
length 

Max line length of the 
recurrent plot analysis 

D, 
DEmpatica 

Empatica HRV Empatica_REC Recurrence rate of the 
recurrent plot analysis 

D, 
DEmpatica 

Empatica HRV Empatica_DET Determinism of the 
recurrent plot analysis 

D, 
DEmpatica 

Empatica HRV Empatica_Shannon Shannon entropy of the 
recurrent plot analysis 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE1 

Multiscale entropy for scale 
factor 1 

D, 
DEmpatica 

Empatica HRV Empatica_MSE2 
 

Multiscale entropy for scale 
factor 2 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE3 

Multiscale entropy for scale 
factor 3 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE4 

Multiscale entropy for scale 
factor 4 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE5 

Multiscale entropy for scale 
factor 5 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE6 

Multiscale entropy for scale 
factor 6 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE7 

Multiscale entropy for scale 
factor 7 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE8 

Multiscale entropy for scale 
factor 8 

D, 
DEmpatica 
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Empatica HRV 
Empatica_MSE9 

Multiscale entropy for scale 
factor 9 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE10 

Multiscale entropy for scale 
factor 10 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE11 

Multiscale entropy for scale 
factor 11 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE12 

Multiscale entropy for scale 
factor 12 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE13 

Multiscale entropy for scale 
factor 13 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE14 

Multiscale entropy for scale 
factor 14 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE15 

Multiscale entropy for scale 
factor 15 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE16 

Multiscale entropy for scale 
factor 16 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE17 

Multiscale entropy for scale 
factor 17 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE18 

Multiscale entropy for scale 
factor 18 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE19 

Multiscale entropy for scale 
factor 19 

D, 
DEmpatica 

Empatica HRV 
Empatica_MSE20 

Multiscale entropy for scale 
factor 20 

D, 
DEmpatica 

Withings Temper
ature 

Temp Temperature (Celsius) DAW, DW, 
SDAW, 
SDW 

Withings Weight Weight Weight (kg) DAW, DW, 
SDAW, 
SDW 

Withings Systolic 
blood 
pressure 

sys Systolic Blood Pressure 
(mmHg) 

DAW, DW, 
SDAW, 
SDW 

Withings Diastoli
c blood 
pressure 

dia Diastolic Blood Pressure 
(mmHg) 

DAW, DW, 
SDAW, 
SDW 

Withings Mean 
arterial 
pressure 

MAP Mean Arterial Pressure 
calculated as (sys + 3* 
dys)/3 (mmHg) 

DAW, DW, 
SDAW, 
SDW 

Apple Sleep/St
eps 

Apple Watch Mean 
Steps (also included 
offset by: t+2, t-2) 

Mean of steps for the night 
from last measure of 
previous day to first 
measure of day  

SDA, 
SDAW, SDS 

Apple Sleep/St
eps 

Apple Watch Max 
Steps (also included 
offset by: t+2, t-2) 

Maximum of steps from last 
measure of previous day to 
first measure of day 

SDA, 
SDAW, SDS 
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Apple Sleep/St
eps 

Apple Watch Min 
Steps (also included 
offset by: t+2, t-2) 

Minimum HR for the time 
interval from last measure of 
previous day to first 
measure of day (bpm) 

SDA, 
SDAW, SDS 

Apple Sleep/H
R 

Apple Watch Mean 
HR – Interval (also 
included offset by: 
t+2, t-2, t+1, t-1) 

Mean HR from last measure 
of previous day to first 
measure of day (bpm) 

SDA, 
SDAW, SDS 

Apple Sleep/H
R 

Apple Watch Max 
HR – Interval (also 
included offset by: 
t+2, t-2, t+1, t-1) 

Maximum HR from last 
measure of previous day to 
first measure of day (bpm) 

SDA, 
SDAW, SDS 

Apple Sleep/H
R 

Apple Watch Min 
HR – Interval (also 
included offset by: 
t+2, t-2, t+1, t-1) 

Minimum of steps from last 
measure of previous day to 
first measure of day (bpm) 

SDA, 
SDAW, SDS 

Apple Sleep Apple Watch Total 
Time Asleep (also 
included offset by: 
t+2, t-2) 

Total time asleep calculated 
with the Apple Watch (min) 

SDA, 
SDAW, SDS 

Apple Sleep Apple Watch 
Number of Wake-
Ups (also included 
offset by: t+2, t-2, 
t+1) 

Number of wake-ups in the 
night calculated with the 
Apple Watch  

SDA, 
SDAW, SDS 

Apple Sleep Apple Watch 
Consolidated Time 
Awake During Sleep 
(also included offset 
by: t+2, t-2, t+1) 

Aggregated time duration of 
wake-ups (min) calculated 
with the Apple Watch 

SDA, 
SDAW, SDS 

Apple Sleep Apple Watch Total 
Time In Bed (also 
included offset by: 
t+2, t-2, t-1) 

Total time spent in bed, 
awake or asleep (min) 
calculated with the Apple 
Watch 

SDA, 
SDAW, SDS 

Apple Sleep Apple Watch % of 
Time Asleep While 
In Bed (also 
included offset by: 
t+2, t-2) 

Percentage of time spent 
asleep compared to total 
time in bed calculated with 
the Apple Watch 

SDA, 
SDAW, SDS 

Withings Sleep Withings Total Time 
Asleep (also 
included offset by: 
t+2, t-2, t+1, t-1) 

Total time asleep calculated 
with Withings Sleep (min) 

SDW, 
SDAW, SDS 

Withings Sleep Withings Number of 
Wake-Ups (also 
included offset by: 

Number of wake-ups in the 
night calculated with the 
Withings Sleep   

SDW, 
SDAW, SDS 
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t+2, t-2) 
Withings Sleep Withings 

Consolidated Time 
Awake During Sleep 
(also included offset 
by: t+2, t-2) 

Aggregated time duration of 
wake-ups calculated with 
the Withings Sleep (min) 

SDW, 
SDAW, SDS 

Withings Sleep Withings Total Time 
In Bed (also 
included offset by: 
t+2, t-2) 

Total time spent in bed, 
awake or asleep calculated 
with the Apple Watch (min) 

SDW, 
SDAW, SDS 

Withings Sleep Withings % of Time 
Asleep While In Bed 
(also included offset 
by: t+2, t-2) 

Percentage of time spent 
asleep compared to total 
time in bed calculated with 
the Withings Sleep (min) 

SDW, 
SDAW, SDS 

Withings Sleep Total Time Spent in 
Light Stage (also 
included offset by: 
t+2, t-2) 

Time spent in light sleep 
stage calculated with 
Withings Sleep (min) 

SDW, 
SDAW, SDS 

Withings Sleep Total Time Spent in 
Deep Stage (also 
included offset by: 
t+2, t-2) 

Time spent in deep sleep 
stage calculated with 
Withings Sleep (min) 

SDW, 
SDAW, SDS 

Withings Sleep Total Time Spent in 
REM Stage (also 
included offset by: 
t+2, t-2) 

Time spent in REM sleep 
stage calculated with 
Withings Sleep (min) 

SDW, 
SDAW, SDS 

 
Table B3: Participant Characteristics in Each Dataset 31 

Dataset with All Features (D), N = 22 
 
Participants         Frequency     Percentage 
Age 
  18-24      5                23.    
  25-34      9   41 
  35-44      5   23 
 
Sex/Gender 
  Male      7   32 
  Female     14   64 
 Gender Fluid     1   5 
 
SES 
  Low (0-$30,000)    12    54 
  Medium ($30,000– $100,000)    10    46 
  High (Above $100,000)    0    0 
  Do not wish to disclose   0                  0 
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Profession 
  Full-time      8   36 
  Part-time      1   5 
  Student      11   50 
  Self-employed/Other           1   5 
  Retired      1   5 
 
 
Health Status 
  Healthy     16    73 
  Chronic Disease or Illness,    6   27 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
 
 
Dataset with Only ECG Features (DECG) / Dataset with Only Apple Features 
(DA), N = 42 
Age 
  18-24      12                29 
  25-34      13   31 
  35-44      12   29 
 
Sex/Gender 
  Male      13   31 
  Female     28   67 
 Gender Fluid     1   2 
 
SES 
  Low (0-$30,000)    19    45 
  Medium ($30,000– $100,000)    6    38 
  High (Above $100,000)    4    10 
  Do not wish to disclose   3                 7 
 
Profession 
  Full-time      20   48 
  Part-time      3   7 
  Student      16   38 
  Self-employed/Other           2   4 
  Retired      1   2 
 
 
Health Status 
  Healthy     34    81 
  Chronic Disease or Illness,    8   19 
  Prescription Drug Use, 
  Smoking or Alcohol  
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Dataset with Apple and Withings Features (DAW), N = 41 
Age 
  18-24      12               29 
  25-34      13   32 
  35-44      11   27 
 
Sex/Gender 
  Male      12   29 
  Female     28   68 
 Gender Fluid     1   2 
 
SES 
  Low (0-$30,000)    19    46 
  Medium ($30,000– $100,000)    15    37 
  High (Above $100,000)   4    10 
  Do not wish to disclose   3                7 
 
Profession 
  Full-time      19   46 
  Part-time      3   7 
  Student      16   39 
  Self-employed/Other           2   4 
  Retired      1   2 
 
 
Health Status 
  Healthy     33    80 
  Chronic Disease or Illness,    8   20 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
 
Dataset with Only Withings Features (DW), N = 44 
Age 
  18-24      13               30 
  25-34      14   32 
  35-44      11   25 
   
 
 
Sex/Gender 
  Male      13   30 
  Female     30   68 
  Gender Fluid     1   2 
 
SES 
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  Low (0-$30,000)    20    45 
  Medium ($30,000– $100,000)    17    39 
  High (Above $100,000)    4    9 
  Do not wish to disclose    3                7 
 
Profession 
  Full-time      20   45 
  Part-time      5   11 
  Student      16   36 
  Self-employed/Other           2   5 
  Retired      1   3 
 
 
Health Status 
  Healthy     35    80 
  Chronic Disease or Illness,    9   20 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
Dataset with Only Empatica Features (DEmpatica), N = 27 
Age 
  18-24      7               26 
  25-34      10   37 
  35-44      6   22 
   
 
 
Sex/Gender 
  Male      8   30 
  Female     18   67 
  Gender Fluid     1   4 
 
SES 
  Low (0-$30,000)    14    52 
  Medium ($30,000– $100,000)    13    48 
  High (Above $100,000)    0    0 
  Do not wish to disclose    0                0 
 
Profession 
  Full-time      9   33 
  Part-time      4   15 
  Student      11   41 
  Self-employed/Other           2   8 
  Retired      1   4 
 
 
Health Status 
  Healthy     20    74 
  Chronic Disease or Illness,    7   26 
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  Prescription Drug Use, 
  Smoking or Alcohol  
 
 
Sleep Dataset with only Apple Features (SDA), N = 34 
Age 
  18-24      11               32 
  25-34      11   32 
  35-44      9   26 
   
 
 
Sex/Gender 
  Male      10   29 
  Female     23   68 
  Gender Fluid     1   3 
 
SES 
  Low (0-$30,000)    17    50 
  Medium ($30,000– $100,000)    14    41 
  High (Above $100,000)    0    0 
  Do not wish to disclose    3                 9 
 
Profession 
  Full-time      15   44 
  Part-time      1   3 
  Student      16   47 
  Self-employed/Other           2   6 
  Retired      0   0 
 
 
Health Status 
  Healthy     28    82 
  Chronic Disease or Illness,    7   18 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
 
 
Sleep Dataset with Apple and Withings Features (SDAW), N = 27 
Age 
  18-24      8               30 
  25-34      9   33 
  35-44      7   26 
   
 
 
Sex/Gender 
  Male      6   22 
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  Female     20   74 
  Gender Fluid     1   4 
 
SES 
  Low (0-$30,000)    13    48 
  Medium ($30,000– $100,000)    11    41 
  High (Above $100,000)    1    4 
  Do not wish to disclose    2                7 
 
Profession 
  Full-time      12   44 
  Part-time      1   4 
  Student      12   44 
  Self-employed/Other           2   8 
  Retired      0   0 
 
 
Health Status 
  Healthy     20    74 
  Chronic Disease or Illness,    7   26 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
Classes 
 Stress      894   42 
 No Stress     1245   58 
 
Sleep Dataset with Withings Features (SDW), N = 34 
Age 
  18-24      9                 26 
  25-34      10   29 
  35-44      10   29 
   
 
 
Sex/Gender 
  Male      9   26 
  Female     24   71 
  Gender Fluid     1   3 
 
SES 
  Low (0-$30,000)    15    44 
  Medium ($30,000– $100,000)     6    38 
  High (Above $100,000)    4    12 
  Do not wish to disclose    2                  6 
 
Profession 
  Full-time      16   47 
  Part-time      3   9 
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  Student      12   35 
  Self-employed/Other           2   6 
  Retired      1   3 
 
 
Health Status 
  Healthy     8    82 
  Chronic Disease or Illness,    28   18 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
Sleep Dataset with Withings and Apple Only Sleep Features (SDS), N = 27 
Age 
  18-24      8               30 
  25-34      9   33 
  35-44      7   26 
   
 
 
Sex/Gender 
  Male      6   22 
  Female     20   74 
  Gender Fluid     1   4 
 
SES 
  Low (0-$30,000)    13    48 
  Medium ($30,000– $100,000)    11    41 
  High (Above $100,000)    1    4 
  Do not wish to disclose    2                7 
 
Profession 
  Full-time      12   44 
  Part-time      1   4 
  Student      12   44 
  Self-employed/Other           2   8 
  Retired      0   0 
 
 
Health Status 
  Healthy     7    26 
  Chronic Disease or Illness,    20   74 
  Prescription Drug Use, 
  Smoking or Alcohol  
 
 
Table B4: Precision, Recall, Accuracy, F1-Score for Non-Sleep Datasets, Generalized  32 

D RF SVM Support 
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 Items Precision Recall F1-
Score 

Precision Recall F1-Score  

 
 
 

Complete 
Dataset 

No Stress 0.67 0.67 0.67 0.66 0.65 0.66 185 

Stress 0.65 0.65 0.65 0.64 0.65 0.64 175 

Accuracy   0.66   0.65 360 

Weighted 
Average 

0.66 0.66 0.66 0.65 0.65 0.65 360 

Macro 
Average 

0.66 0.66 0.66 0.65 0.65 0.65 360 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.70 0.67 0.68 0.67 0.63 0.65 185 

Stress 0.66 0.69 0.68 0.63 0.67 0.65 175 

Accuracy   0.68   0.65 360 

Weighted 
Average 

0.68 0.68 0.68 0.65 0.65 0.65 360 

Macro 
Average 

0.68 0.68 0.68 0.65 0.65 0.65 360 

Gender - Male No Stress 0.69 0.85 0.76 0.71 0.82 0.76 67 

Stress 0.72 0.50 0.59 0.71 0.58 0.64 52 

Accuracy   0.70   0.71 119 

Weighted 
Average 

0.70 0.70 0.69 0.71 0.71 0.71 119 

Macro 
Average 

0.70 0.68 0.68 0.71 0.70 0.70 119 

No Stress 0.66 0.76 0.71 0.67 0.73 0.70 67 
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Gender – 
Male 
(SMOTE) 

Stress 0.62 0.50 0.55 0.61 0.54 0.57 52 

Accuracy   0.65   0.65 119 

Weighted 
Average 

0.64 0.65 0.64 0.64 0.65 0.64 119 

Macro 
Average 

0.64 0.63 0.63 0.64 0.63 0.64 119 

Gender – 
Female  

No Stress 0.76 0.52 0.62 0.64 0.46 0.54 108 

Stress 0.66 0.85 0.74 0.61 0.76 0.68 118 

Accuracy   0.69   0.62 226 

Weighted 
Average 

0.71 0.69 0.68 0.62 0.62 0.61 226 

Macro 
Average 

0.71 0.68 0.68 0.62 0.61 0.61 226 

Gender – 
Female 
(SMOTE) 

No Stress 0.68 0.56 0.62 0.66 0.56 0.61 108 

Stress 0.65 0.75 0.70 0.65 0.74 0.69 118 

Accuracy   0.66   0.65 226 

Weighted 
Average 

0.67 0.66 0.66 0.66 0.65 0.65 226 

Macro 
Average 

0.67 0.66 0.66 0.66 0.65 0.65 226 

Employment - 
Student 

No Stress 0.65 0.55 0.60 0.66 0.60 0.63 53 

Stress 0.57 0.67 0.61 0.59 0.64 0.61 63 
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Accuracy   0.61   0.62 116 

Weighted 
Average 

0.61 0.61 0.61 0.63 0.62 0.62 116 

Macro 
Average 

0.61 0.61 0.61 0.62 0.62 0.62 116 

Employment – 
Student 
(SMOTE) 

No Stress 0.65 0.54 0.59 0.66 0.59 0.63 53 

Stress 0.56 0.67 0.61 0.59 0.65 0.62 63 

Accuracy   0.60   0.62 116 

Weighted 
Average 

0.61 0.60 0.60 0.63 0.62 0.62 116 

Macro 
Average 

0.60 0.60 0.60 0.62 0.62 0.62 116 

Employment – 
Worker 

No Stress 0.63 0.51 0.57 0.58 0.57 0.57 76 

Stress 0.64 0.74 0.68 0.63 0.65 0.64 88 

Accuracy   0.63   0.61 164 

Weighted 
Average 

0.63 0.63 0.63 0.61 0.61 0.61 164 

Macro 
Average 

0.63 0.63 0.62 0.61 0.61 0.61 164 

Employment – 
Worker 
(SMOTE) 

No Stress 0.61 0.59 0.60 0.55 0.54 0.54 76 

Stress 0.66 0.67 0.66 0.61 0.61 0.61 88 

Accuracy   0.63   0.58 164 
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Weighted 
Average 

0.63 0.63 0.63 0.58 0.58 0.58 164 

Macro 
Average 

0.63 0.63 0.63 0.58 0.58 0.58 164 

Income - Low No Stress 0.67 0.74 0.70 0.68 0.68 0.68 112 

Stress 0.59 0.50 0.54 0.57 0.57 0.57 82 

Accuracy   0.64   0.63 194 

Weighted 
Average 

0.63 0.64 0.63 0.63 0.63 0.63 194 

Macro 
Average 

0.63 0.62 0.62 0.63 0.63 0.63 194 

Income – Low 
(SMOTE) 

No Stress 0.68 0.68 0.68 0.64 0.91 0.75 112 

Stress 0.57 0.57 0.57 0.71 0.30 0.43 82 

Accuracy   0.63   0.65 194 

Weighted 
Average 

0.63 0.63 0.63 0.67 0.65 0.62 194 

Macro 
Average 

0.63 0.63 0.63 0.68 0.61 0.59 194 

Income – 
Medium High 

No Stress 0.82 0.55 0.66 0.82 0.49 0.62 73 

Stress 0.72 0.90 0.80 0.70 0.91 0.79 94 

Accuracy   0.75   0.73 167 

Weighted 
Average 

0.76 0.75 0.74 0.75 0.73 0.72 167 



 274 

Macro 
Average 

0.77 0.73 0.73 0.76 0.70 0.70 167 

Income – 
Medium High 
(SMOTE) 

No Stress 0.71 0.62 0.66 0.70 0.60 0.65 73 

Stress 0.73 0.81 0.77 0.72 0.80 0.76 94 

Accuracy   0.72   0.71 167 

Weighted 
Average 

0.72 0.72 0.72 0.71 0.71 0.71 167 

Macro 
Average 

0.72 0.71 0.71 0.71 0.70 0.70 167 

Age – 18-24 No Stress 0.67 0.94 0.78 0.65 1.00 0.79 52 

Stress 0.57 0.14 0.23 0.00 0.00 0.00 28 

Accuracy   0.66   0.65 80 

Weighted 
Average 

0.64 0.66 0.59 0.42 0.65 0.51 80 

Macro 
Average 

0.62 0.54 0.51 0.33 0.50 0.39 80 

Age – 18-24 
(SMOTE) 

No Stress 0.67 0.81 0.73 0.65 1.00 0.79 52 

Stress 0.41 0.25 0.31 0.00 0.00 0.00 28 

Accuracy   0.61   0.65 80 

Weighted 
Average 

0.58 0.61 0.58 0.42 0.65 0.51 80 

Macro 
Average 

0.54 0.53 0.52 0.33 0.50 0.39 80 
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Age 25-34 No Stress 0.56 0.27 0.36 0.56 0.41 0.47 56 

Stress 0.67 0.88 0.76 0.71 0.81 0.76 97 

Accuracy   0.65   0.67 153 

Weighted 
Average 

0.63 0.65 0.62 0.65 0.67 0.65 153 

Macro 
Average 

0.62 0.57 0.56 0.63 0.61 0.62 153 

Age 25-34 
(SMOTE) 

No Stress 0.50 0.45 0.47 0.40 0.07 0.12 56 

Stress 0.70 0.74 0.72 0.64 0.94 0.76 97 

Accuracy   0.63   0.62 153 

Weighted 
Average 

0.63 0.63 0.63 0.55 0.62 0.53 153 

Macro 
Average 

0.60 0.59 0.60 0.52 0.50 0.44 153 

Age 35-44 No Stress 0.60 0.78 0.68 0.63 0.89 0.74 46 

Stress 0.44 0.25 0.32 0.62 0.25 0.36 32 

Accuracy   0.56   0.63 78 

Weighted 
Average 

0.54 0.56 0.53 0.62 0.63 0.58 78 

Macro 
Average 

0.52 0.52 0.50 0.62 0.57 0.55 78 

Age 35-44 
(SMOTE) 

No Stress 0.62 0.78 0.69 0.67 0.80 0.73 46 
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Stress 0.50 0.31 0.38 0.61 0.44 0.51 32 

Accuracy   0.59   0.65 78 

Weighted 
Average 

0.57 0.59 0.57 0.65 0.65 0.64 78 

 Macro 
Average 

0.56 0.55 0.54 0.64 0.62 0.62 78 

Age 45-64  No Stress 0.65 0.61 0.63 0.75 0.67 0.71 18 

Stress 0.59 0.62 0.61 0.67 0.75 0.71 16 

Accuracy   0.62   0.71 34 

Weighted 
Average 

0.62 0.62 0.62 0.71 0.71 0.71 34 

Macro 
Average 

0.62 0.62 0.62 0.71 0.71 0.71 34 

Age 45-64 
(SMOTE) 

No Stress 0.65 0.61 0.63 0.71 0.67 0.69 18 

Stress 0.59 0.62 0.61 0.65 0.69 0.67 16 

Accuracy   0.62   0.68 34 

Weighted 
Average 

0.62 0.62 0.62 0.68 0.68 0.68 34 

Macro 
Average 

0.62 0.62 0.62 0.68 0.68 0.68 34 

Healthy No Stress 0.68 0.78 0.72 0.69 0.73 0.71 139 

Stress 0.69 0.57 0.63 0.67 0.62 0.65 120 
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Accuracy   0.68   0.68 259 

Weighted 
Average 

0.68 0.68 0.68 0.68 0.68 0.68 259 

Macro 
Average 

0.68 0.68 0.68 0.68 0.68 0.68 259 

Healthy - 
SMOTE 

No Stress 0.69 0.71 0.70 0.64 0.66 0.65 139 

Stress 0.65 0.62 0.64 0.59 0.57 0.58 120 

Accuracy   0.67   0.62 259 

Weighted 
Average 

0.67 0.67 0.67 0.62 0.62 0.62 259 

Macro 
Average 

0.67 0.67 0.67 0.62 0.62 0.62 259 

DECG RF SVM  

 Items Precision Recall F1-
Score 

Precision Recall F1-Score Support 

 
 
 

Complete 
Dataset 

No Stress 0.64 0.74 0.69 0.58 0.66 0.62 373 

Stress 0.59 0.48 0.53 0.48 0.40 0.44 294 

Accuracy - - 0.63 - - 0.55 667 

Weighted 
Average 

0.62 0.61 0.61 0.54 0.55 0.54 667 

Macro 
Average 

0.62 0.63 0.62 0.53 0.53 0.53 667 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.65 0.66 0.66 0.59 0.76 0.67 373 

Stress 0.56 0.55 0.56 0.52 0.34 0.41 294 
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Accuracy - - 0.61 - - 0.57 667 

Weighted 
Average 

0.61 0.61 0.61 0.56 0.57 0.55 667 

Macro 
Average 

0.61 0.61 0.61 0.56 0.55 0.54 667 

Gender - Male No Stress 0.65 0.73 0.69 0.65 0.70 0.68 114 

Stress 0.58 0.49 0.53 0.56 0.50 0.53 86 

Accuracy   0.62   0.61 200 

Weighted 
Average 

0.62 0.62 0.62 0.61 0.61 0.61 200 

Macro 
Average 

0.61 0.61 0.61 0.60 0.60 0.60 200 

Gender – 
Male 
(SMOTE) 

No Stress 0.67 0.67 0.67 0.65 0.64 0.65 114 

Stress 0.56 0.57 0.57 0.53 0.55 0.54 86 

Accuracy   0.62   0.60 200 

Weighted 
Average 

0.63 0.62 0.63 0.60 0.60 0.60 200 

Macro 
Average 

0.62 0.62 0.62 0.59 0.59 0.59 200 

Gender – 
Female  

No Stress 0.65 0.69 0.67 0.63 0.65 0.64 247 

Stress 0.60 0.55 0.57 0.56 0.53 0.55 204 

Accuracy   0.63   0.60 451 
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Weighted 
Average 

0.63 0.63 0.63 0.60 0.60 0.60 451 

Macro 
Average 

0.62 0.62 0.62 0.59 0.59 0.59 451 

Gender – 
Female 
(SMOTE) 

No Stress 0.66 0.64 0.65 0.61 0.58 0.59 247 

Stress 0.58 0.60 0.59 0.52 0.55 0.53 204 

Accuracy   0.62   0.57 451 

Weighted 
Average 

0.62 0.62 0.62 0.57 0.57 0.57 451 

Macro 
Average 

0.62 0.62 0.62 0.56 0.56 0.56 451 

Employment - 
Student 

No Stress 0.69 0.58 0.63 0.61 0.64 0.63 135 

Stress 0.60 0.71 0.65 0.58 0.55 0.57 121 

Accuracy   0.64   0.60 256 

Weighted 
Average 

0.65 0.64 0.64 0.60 0.60 0.60 256 

Macro 
Average 

0.65 0.64 0.64 0.60 0.60 0.60 256 

Employment – 
Student 
(SMOTE) 

No Stress 0.66 0.59 0.62 0.62 0.64 0.63 135 

Stress 0.59 0.67 0.63 0.58 0.56 0.57 121 

Accuracy   0.62   0.60 256 

Weighted 
Average 

0.63 0.62 0.62 0.60 0.60 0.60 256 
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Macro 
Average 

0.63 0.63 0.62 0.60 0.60 0.60 256 

Employment – 
Worker 

No Stress 0.63 0.75 0.68 0.61 0.77 0.68 224 

Stress 0.56 0.43 0.49 0.54 0.36 0.44 171 

Accuracy   0.61   0.59 395 

Weighted 
Average 

0.60 0.59 0.59 0.58 0.59 0.57 395 

Macro 
Average 

0.60 0.61 0.60 0.58 0.57 0.56 395 

Employment – 
Worker 
(SMOTE) 

No Stress 0.64 0.64 0.64 0.57 0.81 0.67 224 

Stress 0.53 0.54 0.53 0.44 0.20 0.27 171 

Accuracy   0.59   0.54 395 

Weighted 
Average 

0.60 0.59 0.60 0.51 0.54 0.50 395 

Macro 
Average 

0.59 0.59 0.59 0.51 0.50 0.47 395 

Income - Low No Stress 0.63 0.79 0.70 0.64 0.67 0.65 224 

Stress 0.47 0.29 0.36 0.45 0.43 0.44 171 

Accuracy   0.59   0.57 395 

Weighted 
Average 

0.57 0.59 0.57 0.57 0.57 0.57 395 

Macro 
Average 

0.55 0.54 0.53 0.55 0.55 0.55 395 
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Income – Low 
(SMOTE) 

No Stress 0.63 0.65 0.64 0.60 0.82 0.69 224 

Stress 0.43 0.41 0.42 0.38 0.17 0.24 171 

Accuracy   0.56   0.56 395 

Weighted 
Average 

0.55 0.56 0.55 0.51 0.56 0.51 395 

Macro 
Average 

0.53 0.53 0.53 0.49 0.49 0.46 395 

Income – 
Medium High 

No Stress 0.73 0.58 0.65 0.64 0.57 0.60 166 

Stress 0.64 0.77 0.70 0.60 0.67 0.63 159 

Accuracy   0.68   0.62 325 

Weighted 
Average 

0.69 0.68 0.67 0.62 0.62 0.61 325 

Macro 
Average 

0.68 0.68 0.67 0.62 0.62 0.61 325 

Income – 
Medium High 
(SMOTE) 

No Stress 0.70 0.63 0.66 0.62 0.49 0.55 166 

Stress 0.65 0.72 0.68 0.56 0.68 0.62 159 

Accuracy   0.67   0.58 325 

Weighted 
Average 

0.68 0.67 0.67 0.59 0.59 0.58 325 

Macro 
Average 

0.68 0.67 0.67 0.59 0.58 0.58 325 

Age – 18-24 No Stress 0.68 0.84 0.75 0.67 0.71 0.69 166 
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Stress 0.61 0.39 0.47 0.50 0.46 0.48 159 

Accuracy   0.66   0.61 325 

Weighted 
Average 

0.65 0.66 0.65 0.61 0.61 0.61 325 

Macro 
Average 

0.65 0.61 0.61 0.59 0.58 0.58 325 

Age – 18-24 
(SMOTE) 

No Stress 0.66 0.66 0.66 0.63 0.85 0.72 166 

Stress 0.47 0.47 0.47 0.48 0.22 0.30 159 

Accuracy   0.59   0.61 325 

Weighted 
Average 

0.59 0.59 0.59 0.57 0.61 0.56 325 

Macro 
Average 

0.57 0.57 0.57 0.56 0.54 0.51 325 

Age 25-34 No Stress 0.63 0.35 0.45 0.58 0.38 0.46 91 

Stress 0.64 0.85 0.73 0.64 0.80 0.71 124 

Accuracy   0.64   0.62 215 

Weighted 
Average 

0.63 0.60 0.59 0.62 0.62 0.61 215 

Macro 
Average 

0.63 0.60 0.59 0.61 0.59 0.59 215 

Age 25-34 
(SMOTE) 

No Stress 0.54 0.48 0.51 0.43 0.44 0.44 91 

Stress 0.65 0.70 0.67 0.59 0.58 0.58 124 
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Accuracy   0.61   0.52 215 

Weighted 
Average 

0.60 0.61 0.61 0.52 0.52 0.52 215 

Macro 
Average 

0.60 0.59 0.59 0.51 0.51 0.51 215 

Age 35-44 No Stress 0.67 0.84 0.75 0.66 0.69 0.67 113 

Stress 0.57 0.34 0.42 0.46 0.42 0.44 71 

Accuracy   0.65   0.59 184 

Weighted 
Average 

0.63 0.65 0.62 0.58 0.59 0.58 184 

Macro 
Average 

0.62 0.59 0.58 0.56 0.56 0.56 184 

Age 35-44 
(SMOTE) 

No Stress 0.69 0.72 0.70 0.62 0.83 0.71 113 

Stress 0.52 0.49 0.51 0.42 0.20 0.27 71 

Accuracy   0.63   0.59 184 

Weighted 
Average 

0.63 0.63 0.63 0.55 0.59 0.54 184 

 Macro 
Average 

0.61 0.60 0.61 0.52 0.51 0.49 184 

Healthy No Stress 0.64 0.75 0.69 0.62 0.72 0.66 308 

Stress 0.55 0.42 0.48 0.50 0.39 0.44 224 

Accuracy   0.61   0.58 532 
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Weighted 
Average 

0.60 0.61 0.60 0.57 0.58 0.57 532 

Macro 
Average 

0.59 0.58 0.58 0.56 0.56 0.55 532 

Healthy 
(SMOTE) 

No Stress 0.68 0.68 0.68 0.64 0.65 0.64 308 

Stress 0.56 0.55 0.55 0.50 0.49 0.50 224 

Accuracy   0.63   0.58 532 

Weighted 
Average 

0.63 0.63 0.63 0.58 0.58 0.58 532 

Macro 
Average 

0.62 0.62 0.62 0.57 0.57 0.57 532 

DA  RF SVM  

 Items Precision Recall F1-
Score 

Precision Recall F1-Score Support 

 
 
 

Complete 
Dataset 

No Stress 0.66 0.72 0.69 0.62 0.73 0.67 373 

Stress 0.60 0.53 0.56 0.56 0.44 0.49 294 

Accuracy - - 0.65 - - 0.60 667 

Weighted 
Average 

0.63 0.64 0.63 0.60 0.60 0.59 667 

Macro 
Average 

0.63 0.628 0.63 0.59 0.58 0.58 667 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.69 0.64 0.66 0.59 0.61 0.60 373 

Stress 0.58 0.63 0.60 0.48 0.46 0.47 294 

Accuracy - - 0.63 - - 0.54 667 
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Weighted 
Average 

0.64 0.63 0.64 0.54 0.54 0.54 667 

Macro 
Average 

0.63 0.63 0.63 0.53 0.53 0.53 667 

Gender - Male No Stress 0.67 0.76 0.71 0.65 0.71 0.68 114 

Stress 0.61 0.50 0.55 0.57 0.50 0.53 86 

Accuracy   0.65   0.62 200 

Weighted 
Average 

0.65 0.65 0.64 0.62 0.62 0.62 200 

Macro 
Average 

0.64 0.63 0.63 0.61 0.61 0.61 200 

Gender – 
Male 
(SMOTE) 

No Stress 0.68 0.72 0.70 0.63 0.64 0.64 114 

Stress 0.60 0.56 0.58 0.52 0.51 0.51 86 

Accuracy   0.65   0.58 200 

Weighted 
Average 

0.65 0.65 0.65 0.58 0.58 0.58 200 

Macro 
Average 

0.64 0.64 0.64 0.58 0.58 0.58 200 

Gender – 
Female  

No Stress 0.62 0.68 0.65 0.57 0.63 0.60 247 

Stress 0.56 0.50 0.53 0.49 0.43 0.46 204 

Accuracy   0.60   0.54 451 

Weighted 
Average 

0.60 0.60 0.60 0.54 0.54 0.54 451 
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Macro 
Average 

0.59 0.59 0.59 0.53 0.53 0.53 451 

Gender – 
Female 
(SMOTE) 

No Stress 0.64 0.56 0.60 0.63 0.57 0.60 247 

Stress 0.54 0.62 0.58 0.53 0.59 0.56 204 

Accuracy   0.59   0.58 451 

Weighted 
Average 

0.60 0.59 0.59 0.58 0.58 0.58 451 

Macro 
Average 

0.59 0.59 0.59 0.58 0.58 0.58 451 

Employment - 
Student 

No Stress 0.71 0.58 0.64 0.57 0.55 0.56 135 

Stress 0.61 0.74 0.67 0.52 0.54 0.53 121 

Accuracy   0.65   0.54 256 

Weighted 
Average 

0.66 0.65 0.65 0.54 0.54 0.54 256 

Macro 
Average 

0.66 0.66 0.65 0.54 0.54 0.54 256 

Employment – 
Student 
(SMOTE) 

No Stress 0.71 0.52 0.60 0.60 0.60 0.60 135 

Stress 0.59 0.77 0.67 0.55 0.55 0.55 121 

Accuracy   0.64   0.58 256 

Weighted 
Average 

0.65 0.64 0.63 0.58 0.58 0.58 256 

Macro 
Average 

0.65 0.64 0.63 0.58 0.58 0.58 256 
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Employment – 
Worker 

No Stress 0.66 0.75 0.71 0.62 0.65 0.63 224 

Stress 0.61 0.50 0.55 0.51 0.49 0.50 171 

Accuracy   0.64   0.58 395 

Weighted 
Average 

0.64 0.64 0.64 0.58 0.58 0.58 395 

Macro 
Average 

0.63 0.63 0.63 0.57 0.57 0.57 395 

Employment – 
Worker 
(SMOTE) 

No Stress 0.66 0.66 0.66 0.60 0.62 0.61 224 

Stress 0.56 0.56 0.56 0.48 0.45 0.46 171 

Accuracy   0.62   0.55 395 

Weighted 
Average 

0.62 0.62 0.62 0.55 0.55 0.55 395 

Macro 
Average 

0.61 0.61 0.61 0.54 0.54 0.54 395 

Income - Low No Stress 0.64 0.84 0.73 0.63 0.73 0.68 224 

Stress 0.52 0.27 0.36 0.44 0.32 0.37 171 

Accuracy   0.62   0.57 395 

Weighted 
Average 

0.59 0.62 0.58 0.55 0.57 0.56 395 

Macro 
Average 

0.58 0.56 0.54 0.53 0.53 0.52 395 

Income – Low 
(SMOTE) 

No Stress 0.67 0.69 0.68 0.64 0.67 0.66 224 
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Stress 0.50 0.47 0.48 0.45 0.42 0.44 171 

Accuracy   0.61   0.57 395 

Weighted 
Average 

0.60 0.61 0.60 0.57 0.57 0.57 395 

Macro 
Average 

0.58 0.58 0.58 0.55 0.55 0.55 395 

Income – 
Medium High 

No Stress 0.69 0.63 0.66 0.60 0.64 0.62 166 

Stress 0.65 0.70 0.67 0.59 0.55 0.57 159 

Accuracy   0.67   0.60 325 

Weighted 
Average 

0.67 0.67 0.67 0.60 0.60 0.60 325 

Macro 
Average 

0.67 0.67 0.67 0.60 0.60 0.60 325 

Income – 
Medium High 
(SMOTE) 

No Stress 0.68 0.61 0.65 0.60 0.61 0.60 166 

Stress 0.64 0.70 0.67 0.59 0.58 0.58 159 

Accuracy   0.66   0.59 325 

Weighted 
Average 

0.66 0.66 0.66 0.59 0.59 0.59 325 

Macro 
Average 

0.66 0.66 0.66 0.59 0.59 0.59 325 

Age – 18-24 No Stress 0.64 0.81 0.72 0.66 0.66 0.66 166 

Stress 0.50 0.29 0.37 0.46 0.46 0.46 159 
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Accuracy   0.61   0.58 325 

Weighted 
Average 

0.59 0.61 0.58 0.58 0.58 0.58 325 

Macro 
Average 

0.57 0.55 0.54 0.56 0.56 0.56 325 

Age – 18-24 
(SMOTE) 

No Stress 0.63 0.65 0.64 0.65 0.63 0.64 166 

Stress 0.43 0.40 0.41 0.45 0.47 0.46 159 

Accuracy   0.56   0.57 325 

Weighted 
Average 

0.55 0.56 0.56 0.57 0.57 0.57 325 

Macro 
Average 

0.53 0.53 0.53 0.55 0.55 0.55 325 

Age 25-34 No Stress 0.65 0.35 0.46 0.58 0.34 0.43 91 

Stress 0.64 0.86 0.74 0.63 0.82 0.71 124 

Accuracy   0.65   0.62 215 

Weighted 
Average 

0.65 0.65 0.62 0.61 0.62 0.59 215 

Macro 
Average 

0.65 0.61 0.60 0.61 0.58 0.57 215 

Age 25-34 
(SMOTE) 

No Stress 0.60 0.52 0.56 0.50 0.46 0.48 91 

Stress 0.68 0.75 0.71 0.63 0.66 0.64 124 

Accuracy   0.65   0.58 215 



 290 

Weighted 
Average 

0.65 0.65 0.65 0.57 0.58 0.57 215 

Macro 
Average 

0.64 0.63 0.63 0.56 0.56 0.56 215 

Age 35-44 No Stress 0.67 0.89 0.77 0.66 0.82 0.74 113 

Stress 0.65 0.31 0.42 0.55 0.34 0.42 71 

Accuracy   0.67   0.64 184 

Weighted 
Average 

0.66 0.67 0.63 0.60 0.58 0.58 184 

Macro 
Average 

0.66 0.60 0.59 0.60 0.64 0.61 184 

Age 35-44 
(SMOTE) 

No Stress 0.73 0.75 0.74 0.63 0.69 0.66 113 

Stress 0.58 0.55 0.57 0.42 0.35 0.38 71 

Accuracy   0.67   0.56 184 

Weighted 
Average 

0.67 0.67 0.67 0.55 0.56 0.55 184 

 Macro 
Average 

0.65 0.65 0.65 0.52 0.52 0.52 184 

Healthy No Stress 0.65 0.79 0.71 0.62 0.77 0.69 308 

Stress 0.59 0.42 0.49 0.54 0.36 0.43 224 

Accuracy   0.63   0.60 532 

Weighted 
Average 

0.63 0.63 0.62 0.59 0.60 0.58 532 
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Macro 
Average 

0.62 0.60 0.60 0.58 0.57 0.56 532 

Healthy 
(SMOTE) 

No Stress 0.68 0.71 0.69 0.65 0.57 0.61 308 

Stress 0.57 0.54 0.56 0.49 0.58 0.53 224 

Accuracy   0.64   0.57 532 

Weighted 
Average 

0.63 0.64 0.64 0.58 0.57 0.57 532 

Macro 
Average 

0.63 0.62 0.62 0.57 0.57 0.57 532 

DAW  RF SVM  

 Items Precisi
on 

Recall F1-Score Precision Recall F1-Score Support 

 
 
 

Complete 
Dataset 

No Stress 0.69 0.82 0.75 0.64 0.69 0.66 367 

Stress 0.70 0.52 0.60 0.55 0.50 0.53 284 

Accuracy - - 0.69 - - 0.61 651 

Weighted 
Average 

0.69 0.69 0.68 0.60 0.60 0.60 651 

Macro 
Average 

0.69 0.67 0.67 0.60 0.61 0.60 651 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.72 0.77 0.74 0.64 0.69 0.67 367 

Stress 0.67 0.60 0.64 0.56 0.51 0.53 284 

Accuracy - - 0.70 - - 0.61 651 

Weighted 
Average 

0.70 0.70 0.70 0.60 0.60 0.60 651 
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Macro 
Average 

0.69 0.69 0.69 0.61 0.61 0.61 651 

Gender - Male No Stress 0.74 0.92 0.82 0.74 0.80 0.77 109 

Stress 0.81 0.52 0.63 0.67 0.59 0.62 75 

Accuracy   0.76   0.71 184 

Weighted 
Average 

0.77 0.76 0.74 0.71 0.71 0.71 184 

Macro 
Average 

0.77 0.72 0.73 0.70 0.69 0.70 184 

Gender – 
Male 
(SMOTE) 

No Stress 0.75 0.82 0.78 0.72 0.83 0.77 109 

Stress 0.69 0.60 0.64 0.68 0.53 0.60 75 

Accuracy   0.73   0.71 184 

Weighted 
Average 

0.73 0.73 0.72 0.70 0.68 0.68 184 

Macro 
Average 

0.72 0.71 0.71 0.70 0.71 0.70 184 

Gender – 
Female  

No Stress 0.68 0.79 0.73 0.65 0.70 0.68 247 

Stress 0.68 0.54 0.60 0.61 0.55 0.58 204 

Accuracy   0.68   0.63 451 

Weighted 
Average 

0.68 0.68 0.67 0.63 0.63 0.63 451 

Macro 
Average 

0.68 0.67 0.67 0.63 0.63 0.63 451 
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Gender – 
Female 
(SMOTE) 

No Stress 0.70 0.68 0.69 0.61 0.67 0.64 247 

Stress 0.62 0.64 0.63 0.55 0.49 0.51 204 

Accuracy   0.66   0.59 451 

Weighted 
Average 

0.66 0.66 0.66 0.58 0.58 0.58 451 

Macro 
Average 

0.66 0.66 0.66 0.58 0.59 0.58 451 

Employment - 
Student 

No Stress 0.69 0.61 0.65 0.66 0.66 0.66 135 

Stress 0.62 0.70 0.66 0.62 0.63 0.63 121 

Accuracy   0.65   0.64 256 

Weighted 
Average 

0.66 0.65 0.65 0.64 0.64 0.64 256 

Macro 
Average 

0.66 0.65 0.65 0.64 0.64 0.64 256 

Employment – 
Student 
(SMOTE) 

No Stress 0.69 0.52 0.59 0.62 0.69 0.65 135 

Stress 0.58 0.74 0.65 0.61 0.55 0.57 121 

Accuracy   0.62   0.62 256 

Weighted 
Average 

0.64 0.62 0.62 0.62 0.62 0.61 256 

Macro 
Average 

0.63 0.63 0.62 0.62 0.61 0.61 256 

Employment – 
Worker 

No Stress 0.69 0.81 0.75 0.68 0.74 0.71 219 
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Stress 0.66 0.50 0.57 0.59 0.51 0.55 160 

Accuracy   0.68   0.65 379 

Weighted 
Average 

0.68 0.68 0.67 0.64 0.65 0.64 379 

Macro 
Average 

0.68 0.66 0.66 0.64 0.63 0.63 379 

Employment – 
Worker 
(SMOTE) 

No Stress 0.71 0.74 0.73 0.67 0.74 0.71 219 

Stress 0.63 0.59 0.61 0.59 0.51 0.55 160 

Accuracy   0.68   0.64 379 

Weighted 
Average 

0.68 0.68 0.68 0.63 0.63 0.63 379 

Macro 
Average 

0.67 0.67 0.67 0.64 0.64 0.64 379 

Income - Low No Stress 0.64 0.85 0.73 0.67 0.79 0.73 162 

Stress 0.50 0.25 0.33 0.53 0.38 0.44 101 

Accuracy   0.62   0.63 263 

Weighted 
Average 

0.59 0.62 0.58 0.62 0.63 0.62 263 

Macro 
Average 

0.57 0.55 0.53 0.60 0.58 0.58 263 

Income – Low 
(SMOTE) 

No Stress 0.68 0.74 0.71 0.66 0.73 0.69 162 

Stress 0.52 0.45 0.48 0.48 0.39 0.43 101 
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Accuracy   0.63   0.60 263 

Weighted 
Average 

0.62 0.63 0.62 0.59 0.60 0.59 263 

Macro 
Average 

0.60 0.59 0.59 0.57 0.56 0.56 263 

Income – 
Medium High 

No Stress 0.75 0.68 0.71 0.66 0.68 0.67 161 

Stress 0.68 0.76 0.72 0.64 0.62 0.63 148 

Accuracy   0.72   0.65 309 

Weighted 
Average 

0.72 0.72 0.72 0.65 0.65 0.65 309 

Macro 
Average 

0.72 0.72 0.72 0.65 0.65 0.65 309 

Income – 
Medium High 
(SMOTE) 

No Stress 0.75 0.65 0.70 0.69 0.68 0.68 161 

Stress 0.67 0.76 0.71 0.66 0.67 0.66 148 

Accuracy   0.71   0.67 309 

Weighted 
Average 

0.71 0.71 0.70 0.67 0.67 0.67 309 

Macro 
Average 

0.71 0.71 0.71 0.67 0.67 0.67 309 

Age – 18-24 No Stress 0.68 0.85 0.75 0.67 0.79 0.72 113 

Stress 0.60 0.36 0.45 0.54 0.39 0.45 72 

Accuracy   0.66   0.63 185 
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Weighted 
Average 

0.65 0.66 0.64 0.62 0.63 0.62 185 

Macro 
Average 

0.64 0.61 0.60 0.60 0.59 0.59 185 

Age – 18-24 
(SMOTE) 

No Stress 0.71 0.74 0.72 0.68 0.79 0.73 113 

Stress 0.56 0.51 0.54 0.56 0.42 0.48 72 

Accuracy   0.65   0.64 185 

Weighted 
Average 

0.65 0.65 0.65 0.63 0.64 0.63 185 

Macro 
Average 

0.63 0.63 0.63 0.62 0.60 0.60 185 

Age 25-34 No Stress 0.73 0.52 0.61 0.57 0.58 0.58 91 

Stress 0.71 0.86 0.78 0.69 0.68 0.68 124 

Accuracy   0.72   0.64 215 

Weighted 
Average 

0.72 0.72 0.71 0.64 0.64 0.64 215 

Macro 
Average 

0.72 0.69 0.69 0.63 0.63 0.63 215 

Age 25-34 
(SMOTE) 

No Stress 0.64 0.54 0.59 0.54 0.45 0.49 91 

Stress 0.70 0.78 0.74 0.64 0.72 0.68 124 

Accuracy   0.68   0.60 215 

Weighted 
Average 

0.68 0.68 0.67 0.60 0.60 0.60 215 
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Macro 
Average 

0.67 0.66 0.66 0.59 0.58 0.58 215 

Age 35-44 No Stress 0.71 0.91 0.79 0.76 0.83 0.80 108 

Stress 0.66 0.32 0.43 0.64 0.53 0.58 60 

Accuracy   0.70   0.73 168 

Weighted 
Average 

0.69 0.70 0.66 0.72 0.73 0.72 168 

Macro 
Average 

0.68 0.61 0.61 0.70 0.68 0.69 168 

Age 35-44 
(SMOTE) 

No Stress 0.75 0.84 0.79 0.69 0.81 0.74 108 

Stress 0.63 0.48 0.55 0.49 0.33 0.40 60 

Accuracy   0.71   0.64 168 

Weighted 
Average 

0.70 0.71 0.70 0.61 0.64 0.62 168 

 Macro 
Average 

0.69 0.66 0.67 0.59 0.57 0.57 168 

Healthy No Stress 0.67 0.82 0.74 0.68 0.79 0.73 303 

Stress 0.62 0.42 0.50 0.61 0.46 0.52 213 

Accuracy   0.66   0.66 516 

Weighted 
Average 

0.65 0.66 0.64 0.65 0.65 0.64 516 

Macro 
Average 

0.64 0.62 0.62 0.64 0.63 0.63 516 
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Healthy 
(SMOTE) 

No Stress 0.67 0.70 0.68 0.66 0.66 0.66 303 

Stress 0.54 0.51 0.53 0.52 0.52 0.52 213 

Accuracy   0.62   0.60 516 

Weighted 
Average 

0.62 0.62 0.62 0.59 0.59 0.59 516 

Macro 
Average 

0.61 0.60 0.60 0.60 0.60 0.60 516 

 
DW  RF SVM  

 Items Precision Recall F1-
Score 

Precision Recall F1-Score Support 

 
 
 

Complete 
Dataset 

No Stress 0.72 0.81 0.76 0.66 0.76 0.71 398 

Stress 0.69 0.57 0.62 0.60 0.48 0.54 297 

Accuracy - - 0.71 - - 0.64 695 

Weighted 
Average 

0.70 0.71 0.70 0.64 0.64 0.64 695 

Macro 
Average 

0.70 0.69 0.69 0.63 0.62 0.62 695 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.72 0.68 0.70 0.71 0.64 0.67 398 

Stress 0.60 0.64 0.62 0.57 0.65 0.61 297 

Accuracy - - 0.66 - - 0.64 695 

Weighted 
Average 

0.66 0.66 0.66 0.65 0.64 0.65 695 

Macro 
Average 

0.67 0.66 0.66 0.64 0.65 0.64 695 
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Gender - Male No Stress 0.71 0.87 0.78 0.72 0.89 0.80 124 

Stress 0.67 0.42 0.51 0.71 0.45 0.56 77 

Accuracy   0.70   0.72 201 

Weighted 
Average 

0.69 0.70 0.68 0.72 0.72 0.70 201 

Macro 
Average 

0.69 0.64 0.65 0.72 0.67 0.68 201 

Gender – 
Male 
(SMOTE) 

No Stress 0.71 0.74 0.72 0.72 0.69 0.70 124 

Stress 0.55 0.51 0.53 0.53 0.57 0.55 77 

Accuracy   0.65   0.64 201 

Weighted 
Average 

0.65 0.65 0.65 0.65 0.64 0.64 201 

Macro 
Average 

0.63 0.62 0.63 0.63 0.63 0.63 201 

Gender – 
Female  

No Stress 0.65 0.76 0.70 0.61 0.72 0.66 251 

Stress 0.63 0.50 0.56 0.55 0.43 0.48 203 

Accuracy   0.65   0.59 454 

Weighted 
Average 

0.64 0.65 0.64 0.58 0.59 0.58 454 

Macro 
Average 

0.64 0.63 0.63 0.58 0.57 0.57 454 

No Stress 0.67 0.72 0.69 0.65 0.67 0.66 251 
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Gender – 
Female 
(SMOTE) 

Stress 0.62 0.56 0.59 0.58 0.56 0.57 203 

Accuracy   0.65   0.62 454 

Weighted 
Average 

0.65 0.65 0.65 0.62 0.62 0.62 454 

Macro 
Average 

0.64 0.64 0.64 0.62 0.62 0.62 454 

Employment - 
Student 

No Stress 0.70 0.61 0.65 0.68 0.65 0.67 135 

Stress 0.62 0.70 0.66 0.63 0.66 0.65 121 

Accuracy   0.66   0.66 256 

Weighted 
Average 

0.66 0.66 0.66 0.66 0.66 0.66 256 

Macro 
Average 

0.66 0.65 0.65 0.66 0.66 0.66 256 

Employment – 
Student 
(SMOTE) 

No Stress 0.68 0.58 0.63 0.66 0.52 0.58 135 

Stress 0.60 0.70 0.65 0.57 0.70 0.63 121 

Accuracy   0.64   0.61 256 

Weighted 
Average 

0.64 0.64 0.64 0.61 0.61 0.60 256 

Macro 
Average 

0.64 0.64 0.64 0.62 0.61 0.60 256 

Employment – 
Worker 

No Stress 0.69 0.85 0.76 0.68 0.79 0.73 249 

Stress 0.68 0.47 0.55 0.61 0.46 0.52 174 
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Accuracy   0.69   0.65 423 

Weighted 
Average 

0.69 0.69 0.68 0.64 0.63 0.63 423 

Macro 
Average 

0.69 0.66 0.66 0.65 0.65 0.64 423 

Employment – 
Worker 
(SMOTE) 

No Stress 0.70 0.74 0.72 0.71 0.63 0.67 249 

Stress 0.60 0.55 0.57 0.54 0.63 0.59 174 

Accuracy   0.66   0.63 423 

Weighted 
Average 

0.65 0.65 0.65 0.63 0.63 0.63 423 

Macro 
Average 

0.66 0.66 0.66 0.63 0.63 0.63 423 

Income - Low No Stress 0.66 0.77 0.71 0.67 0.74 0.71 189 

Stress 0.52 0.39 0.44 0.52 0.44 0.48 121 

Accuracy   0.62   0.62 310 

Weighted 
Average 

0.61 0.62 0.61 0.60 0.59 0.59 310 

Macro 
Average 

0.59 0.58 0.58 0.61 0.62 0.62 310 

Income – Low 
(SMOTE) 

No Stress 0.65 0.61 0.63 0.67 0.57 0.61 189 

Stress 0.45 0.49 0.47 0.46 0.57 0.51 121 

Accuracy   0.56   0.57 310 
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Weighted 
Average 

0.57 0.56 0.57 0.56 0.57 0.56 310 

Macro 
Average 

0.55 0.55 0.55 0.59 0.57 0.57 310 

Income – 
Medium High 

No Stress 0.75 0.74 0.74 0.71 0.73 0.72 182 

Stress 0.70 0.72 0.71 0.67 0.66 0.66 157 

Accuracy   0.73   0.69 339 

Weighted 
Average 

0.73 0.73 0.73 0.69 0.69 0.69 339 

Macro 
Average 

0.73 0.73 0.73 0.65 0.65 0.65 339 

Income – 
Medium High 
(SMOTE) 

No Stress 0.73 0.67 0.70 0.72 0.68 0.70 182 

Stress 0.65 0.71 0.68 0.65 0.69 0.67 157 

Accuracy   0.69   0.69 339 

Weighted 
Average 

0.69 0.69 0.69 0.69 0.69 0.69 339 

Macro 
Average 

0.69 0.69 0.69 0.69 0.69 0.69 339 

Age – 18-24 No Stress 0.64 0.89 0.74 0.65 0.82 0.73 122 

Stress 0.52 0.20 0.29 0.51 0.30 0.38 76 

Accuracy   0.62   0.62 198 

Weighted 
Average 

0.59 0.62 0.57 0.60 0.62 0.59 198 
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Macro 
Average 

0.58 0.54 0.51 0.58 0.56 0.55 198 

Age – 18-24 
(SMOTE) 

No Stress 0.64 0.69 0.66 0.64 0.61 0.62 122 

Stress 0.42 0.37 0.39 0.42 0.46 0.44 76 

Accuracy   0.57   0.55 198 

Weighted 
Average 

0.55 0.57 0.56 0.53 0.53 0.53 198 

Macro 
Average 

0.53 0.53 0.53 0.56 0.55 0.55 198 

Age 25-34 No Stress 0.65 0.35 0.46 0.58 0.34 0.43 91 

Stress 0.64 0.86 0.74 0.63 0.82 0.71 124 

Accuracy   0.65   0.62 215 

Weighted 
Average 

0.65 0.65 0.62 0.61 0.62 0.59 215 

Macro 
Average 

0.65 0.61 0.60 0.61 0.58 0.57 215 

Age 25-34 
(SMOTE) 

No Stress 0.60 0.52 0.56 0.50 0.46 0.48 91 

Stress 0.68 0.75 0.71 0.63 0.66 0.64 124 

Accuracy   0.65   0.58 215 

Weighted 
Average 

0.65 0.65 0.65 0.57 0.58 0.57 215 

Macro 
Average 

0.64 0.63 0.63 0.56 0.56 0.56 215 
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Age 35-44 No Stress 0.71 0.87 0.78 0.72 0.88 0.79 108 

Stress 0.61 0.37 0.46 0.64 0.38 0.48 60 

Accuracy   0.69   0.70 168 

Weighted 
Average 

0.68 0.69 0.67 0.69 0.70 0.68 168 

Macro 
Average 

0.66 0.62 0.62 0.68 0.63 0.64 168 

Age 35-44 
(SMOTE) 

No Stress 0.74 0.79 0.76 0.69 0.69 0.69 108 

Stress 0.57 0.50 0.53 0.44 0.43 0.44 60 

Accuracy   0.68   0.60 168 

Weighted 
Average 

0.68 0.68 0.68 0.60 0.60 0.60 168 

 Macro 
Average 

0.65 0.64 0.65 0.56 0.56 0.56 168 

Healthy No Stress 0.68 0.77 0.72 0.66 0.80 0.72 327 

Stress 0.58 0.47 0.52 0.56 0.38 0.45 220 

Accuracy   0.65   0.63 547 

Weighted 
Average 

0.64 0.65 0.64 0.62 0.63 0.61 547 

Macro 
Average 

0.63 0.62 0.62 0.61 0.59 0.58 547 

Healthy 
(SMOTE) 

No Stress 0.69 0.68 0.68 0.66 0.65 0.66 327 
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Stress 0.54 0.55 0.54 0.49 0.50 0.50 220 

Accuracy   0.63   0.59 547 

Weighted 
Average 

0.63 0.63 0.63 0.59 0.59 0.59 547 

Macro 
Average 

0.61 0.62 0.61 0.58 0.58 0.58 547 

DEmpatica  RF SVM  

 Items Precision Recall F1-
Score 

Precision Recall F1-Score Support 

 
 
 

Complete 
Dataset 

No Stress 0.64 0.79 0.71 0.63 0.67 0.65 238 

Stress 0.65 0.47 0.55 0.57 0.53 0.55 197 

Accuracy - - 0.65 - - 0.61 435 

Weighted 
Average 

0.65 0.63 0.63 0.60 0.61 0.61 435 

Macro 
Average 

0.65 0.65 0.64 0.60 0.60 0.60 435 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.68 0.69 0.68 0.64 0.67 0.65 238 

Stress 0.62 0.60 0.61 0.58 0.55 0.56 197 

Accuracy - - 0.65 - - 0.61 435 

Weighted 
Average 

0.65 0.65 0.65 0.61 0.61 0.61 435 

Macro 
Average 

0.65 0.65 0.65 0.61 0.61 0.61 435 

Gender - Male No Stress 0.69 0.87 0.77 0.74 0.83 0.78 82 
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Stress 0.67 0.41 0.51 0.68 0.56 0.61 54 

Accuracy   0.68   0.72 136 

Weighted 
Average 

0.68 0.68 0.66 0.72 0.72 0.71 136 

Macro 
Average 

0.68 0.64 0.64 0.71 0.69 0.70 136 

Gender – 
Male 
(SMOTE) 

No Stress 0.73 0.78 0.75 0.66 0.91 0.77 82 

Stress 0.62 0.56 0.59 0.70 0.30 0.42 54 

Accuracy   0.69   0.67 136 

Weighted 
Average 

0.69 0.69 0.69 0.68 0.61 0.59 136 

Macro 
Average 

0.68 0.67 0.67 0.68 0.61 0.59 136 

Gender – 
Female  

No Stress 0.70 0.66 0.68 0.66 0.72 0.69 145 

Stress 0.66 0.70 0.68 0.67 0.60 0.63 137 

Accuracy   0.68   0.66 282 

Weighted 
Average 

0.68 0.68 0.68 0.66 0.66 0.66 282 

Macro 
Average 

0.68 0.68 0.68 0.66 0.66 0.66 282 

Gender – 
Female 
(SMOTE) 

No Stress 0.70 0.62 0.66 0.66 0.70 0.68 145 

Stress 0.64 0.72 0.68 0.66 0.61 0.64 137 
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Accuracy   0.67   0.66 282 

Weighted 
Average 

0.67 0.67 0.67 0.62 0.66 0.66 282 

Macro 
Average 

0.67 0.67 0.67 0.62 0.66 0.66 282 

Employment - 
Student 

No Stress 0.71 0.66 0.68 0.70 0.62 0.66 96 

Stress 0.64 0.69 0.66 0.62 0.69 0.65 84 

Accuracy   0.67   0.66 180 

Weighted 
Average 

0.67 0.67 0.67 0.66 0.66 0.66 180 

Macro 
Average 

0.67 0.67 0.67 0.66 0.66 0.66 180 

Employment – 
Student 
(SMOTE) 

No Stress 0.72 0.66 0.69 0.64 0.77 0.70 96 

Stress 0.65 0.71 0.68 0.66 0.50 0.57 84 

Accuracy   0.68   0.64 180 

Weighted 
Average 

0.69 0.68 0.68 0.65 0.64 0.64 180 

Macro 
Average 

0.68 0.69 0.68 0.65 0.64 0.63 180 

Employment – 
Worker 

No Stress 0.66 0.73 0.70 0.67 0.77 0.72 122 

Stress 0.64 0.56 0.60 0.67 0.55 0.61 103 

Accuracy   0.65   0.67 225 
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Weighted 
Average 

0.65 0.65 0.65 0.67 0.66 0.66 225 

Macro 
Average 

0.65 0.65 0.65 0.67 0.67 0.67 225 

Employment – 
Worker 
(SMOTE) 

No Stress 0.67 0.69 0.68 0.66 0.75 0.70 122 

Stress 0.62 0.60 0.61 0.65 0.54 0.59 103 

Accuracy   0.65   0.66 225 

Weighted 
Average 

0.65 0.65 0.65 0.66 0.65 0.65 225 

Macro 
Average 

0.65 0.65 0.65 0.66 0.66 0.65 225 

Income - Low No Stress 0.64 0.82 0.72 0.65 0.70 0.67 131 

Stress 0.55 0.33 0.41 0.50 0.44 0.47 89 

Accuracy   0.62   0.60 220 

Weighted 
Average 

0.60 0.62 0.59 0.59 0.60 0.59 220 

Macro 
Average 

0.59 0.57 0.56 0.57 0.57 0.57 220 

Income – Low 
(SMOTE) 

No Stress 0.66 0.63 0.64 0.64 0.86 0.74 131 

Stress 0.48 0.52 0.50 0.59 0.29 0.39 89 

Accuracy   0.58   0.63 220 

Weighted 
Average 

0.59 0.58 0.58 0.62 0.63 0.60 220 
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Macro 
Average 

0.57 0.57 0.57 0.62 0.58 0.56 220 

Income – 
Medium High 

No Stress 0.64 0.66 0.65 0.67 0.62 0.64 107 

Stress 0.65 0.63 0.64 0.65 0.69 0.67 108 

Accuracy   0.65   0.66 215 

Weighted 
Average 

0.65 0.65 0.65 0.66 0.66 0.66 215 

Macro 
Average 

0.65 0.65 0.65 0.66 0.66 0.66 215 

Income – 
Medium High 
(SMOTE) 

No Stress 0.68 0.64 0.66 0.67 0.62 0.64 107 

Stress 0.67 0.70 0.68 0.65 0.69 0.67 108 

Accuracy   0.67   0.66 215 

Weighted 
Average 

0.67 0.67 0.67 0.66 0.66 0.66 215 

Macro 
Average 

0.67 0.67 0.67 0.66 0.66 0.66 215 

Age – 18-24 No Stress 0.68 0.95 0.79 0.69 0.77 0.72 69 

Stress 0.50 0.10 0.17 0.39 0.30 0.34 30 

Accuracy   0.67   0.61 99 

Weighted 
Average 

0.62 0.67 0.58 0.59 0.61 0.60 99 

Macro 
Average 

0.59 0.53 0.48 0.54 0.53 0.53 99 
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Age – 18-24 
(SMOTE) 

No Stress 0.69 0.67 0.68 0.66 0.80 0.72 69 

Stress 0.38 0.40 0.39 0.29 0.17 0.21 30 

Accuracy   0.58   0.59 99 

Weighted 
Average 

0.53 0.53 0.53 0.54 0.59 0.55 99 

Macro 
Average 

0.58 0.58 0.58 0.48 0.48 0.47 99 

Age 25-34 No Stress 0.79 0.44 0.56 0.64 0.52 0.57 71 

Stress 0.70 0.92 0.79 0.70 0.79 0.74 100 

Accuracy   0.72   0.68 171 

Weighted 
Average 

0.74 0.72 0.70 0.67 0.68 0.67 171 

Macro 
Average 

0.75 0.68 0.68 0.67 0.68 0.67 171 

Age 25-34 
(SMOTE) 

No Stress 0.63 0.56 0.60 0.63 0.41 0.50 71 

Stress 0.71 0.77 0.74 0.66 0.83 0.74 100 

Accuracy   0.68   0.65 171 

Weighted 
Average 

0.68 0.68 0.68 0.65 0.65 0.64 171 

Macro 
Average 

0.67 0.67 0.67 0.65 0.62 0.62 171 

Age 35-44 No Stress 0.65 0.95 0.77 0.72 0.88 0.79 59 
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Stress 0.70 0.19 0.30 0.71 0.46 0.56 37 

Accuracy   0.66   0.72 96 

Weighted 
Average 

0.67 0.66 0.59 0.72 0.72 0.70 96 

Macro 
Average 

0.68 0.57 0.54 0.72 0.67 0.68 96 

Age 35-44 
(SMOTE) 

No Stress 0.67 0.83 0.74 0.67 0.75 0.70 59 

Stress 0.57 0.35 0.43 0.50 0.41 0.45 37 

Accuracy   0.65   0.61 96 

Weighted 
Average 

0.63 0.65 0.62 0.60 0.61 0.61 96 

 Macro 
Average 

0.62 0.59 0.59 0.58 0.61 0.61 168 

Healthy No Stress 0.65 0.81 0.72 0.66 0.76 0.71 186 

Stress 0.61 0.41 0.59 0.58 0.45 0.51 135 

Accuracy   0.65   0.63 321 

Weighted 
Average 

0.64 0.64 0.63 0.63 0.63 0.62 321 

Macro 
Average 

0.63 0.61 0.61 0.62 0.61 0.61 321 

Healthy 
(SMOTE) 

No Stress 0.69 0.70 0.69 0.66 0.66 0.66 186 

Stress 0.58 0.56 0.57 0.53 0.53 0.53 135 
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Accuracy   0.64   0.60 321 

Weighted 
Average 

0.64 0.64 0.64 0.60 0.60 0.60 321 

Macro 
Average 

0.63 0.63 0.63 0.59 0.60 0.60 321 

 

Table B5: Precision, Recall, F1-Score, Accuracy for Sleep Datasets, Generalized 33 

SDA RF SVM Support 

 Items Precisi
on 

Recall F1-
Score 

Precision Recall F1-Score  

 
 
 

Complete 
Dataset 

No Stress 0.72 0.78 0.75 0.71 0.65 0.68 309 

Stress 0.68 0.61 0.65 0.59 0.65 0.62 238 

Accuracy - - 0.71 - - 0.65 547 

Weighted 
Average 

0.71 0.71 0.71 0.65 0.65 0.65 547 

Macro 
Average 

0.70 0.70 0.70 0.65 0.65 0.65 547 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.77 0.76 0.76 0.68 0.82 0.75 309 

Stress 0.69 0.71 0.70 0.69 0.50 0.58 238 

Accuracy - - 0.73 - - 0.68 547 

Weighted 
Average 

0.74 0.73 0.74 0.68 0.68 0.67 547 

Macro 
Average 

0.73 0.73 0.73 0.68 0.66 0.66 547 

Gender - Male No Stress 0.72 0.85 0.78 0.72 0.92 0.81 102 



 313 

Stress 0.58 0.39 0.47 0.69 0.33 0.45 54 

Accuracy   0.69   0.72 156 

Weighted 
Average 

0.68 0.69 0.67 0.71 0.72 0.69 156 

Macro 
Average 

0.65 0.62 0.63 0.71 0.63 0.63 156 

Gender – 
Male 
(SMOTE) 

No Stress 0.75 0.80 0.77 0.73 0.93 0.82 102 

Stress 0.57 0.48 0.52 0.72 0.33 0.46 54 

Accuracy   0.69   0.72 156 

Weighted 
Average 

0.68 0.69 0.69 0.72 0.72 0.69 156 

Macro 
Average 

0.66 0.64 0.65 0.72 0.63 0.64 156 

Gender – 
Female  

No Stress 0.72 0.70 0.71 0.68 0.64 0.66 186 

Stress 0.69 0.71 0.70 0.64 0.68 0.66 173 

Accuracy   0.71   0.66 359 

Weighted 
Average 

0.71 0.71 0.71 0.66 0.66 0.66 359 

Macro 
Average 

0.71 0.71 0.71 0.66 0.66 0.66 359 

Gender – 
Female 
(SMOTE) 

No Stress 0.73 0.70 0.71 0.64 0.75 0.69 186 

Stress 0.69 0.72 0.70 0.67 0.54 0.60 173 
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Accuracy   0.71   0.65 359 

Weighted 
Average 

0.71 0.71 0.71 0.65 0.65 0.64 359 

Macro 
Average 

0.71 0.71 0.71 0.65 0.65 0.64 359 

Employment - 
Student 

No Stress 0.73 0.65 0.69 0.75 0.58 0.65 135 

Stress 0.65 0.73 0.69 0.62 0.79 0.70 121 

Accuracy   0.69   0.68 256 

Weighted 
Average 

0.69 0.69 0.69 0.69 0.68 0.67 256 

Macro 
Average 

0.69 0.69 0.69 0.69 0.68 0.67 256 

Employment – 
Student 
(SMOTE) 

No Stress 0.74 0.64 0.69 0.70 0.66 0.68 135 

Stress 0.65 0.75 0.70 0.64 0.69 0.66 121 

Accuracy   0.69   0.67 256 

Weighted 
Average 

0.70 0.69 0.69 0.67 0.67 0.67 256 

Macro 
Average 

0.70 0.69 0.69 0.67 0.67 0.67 256 

Employment – 
Worker 

No Stress 0.71 0.84 0.77 0.71 0.78 0.75 169 

Stress 0.65 0.47 0.54 0.59 0.50 0.55 107 

Accuracy   0.70   0.67 276 
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Weighted 
Average 

0.69 0.70 0.68 0.67 0.67 0.67 276 

Macro 
Average 

0.68 0.65 0.66 0.65 0.64 0.65 276 

Employment – 
Worker 
(SMOTE) 

No Stress 0.74 0.77 0.76 0.68 0.86 0.76 169 

Stress 0.61 0.58 0.60 0.62 0.37 0.47 107 

Accuracy   0.70   0.67 276 

Weighted 
Average 

0.69 0.70 0.69 0.66 0.67 0.65 276 

Macro 
Average 

0.68 0.67 0.68 0.65 0.62 0.61 276 

Income - Low No Stress 0.74 0.81 0.78 0.68 0.70 0.69 161 

Stress 0.67 0.57 0.62 0.53 0.52 0.53 108 

Accuracy   0.72   0.62 269 

Weighted 
Average 

0.71 0.72 0.71 0.62 0.62 0.62 269 

Macro 
Average 

0.71 0.69 0.70 0.61 0.61 0.61 269 

Income – Low 
(SMOTE) 

No Stress 0.77 0.76 0.77 0.70 0.90 0.79 161 

Stress 0.65 0.67 0.66 0.74 0.43 0.54 108 

Accuracy   0.72   0.71 269 

Weighted 
Average 

0.73 0.72 0.73 0.72 0.71 0.69 269 
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Macro 
Average 

0.71 0.72 0.71 0.72 0.66 0.66 269 

Income – 
Medium High 

No Stress 0.76 0.75 0.76 0.73 0.75 0.74 122 

Stress 0.73 0.74 0.74 0.72 0.70 0.71 111 

Accuracy   0.75   0.73 233 

Weighted 
Average 

0.75 0.75 0.75 0.73 0.73 0.73 233 

Macro 
Average 

0.75 0.75 0.75 0.72 0.72 0.72 233 

Income – 
Medium High 
(SMOTE) 

No Stress 0.76 0.69 0.72 0.69 0.68 0.68 122 

Stress 0.69 0.76 0.72 0.65 0.66 0.65 111 

Accuracy   0.72   0.67 233 

Weighted 
Average 

0.72 0.72 0.72 0.67 0.67 0.67 233 

Macro 
Average 

0.72 0.72 0.72 0.67 0.67 0.67 233 

Age – 18-24 No Stress 0.74 0.83 0.78 0.73 0.65 0.69 103 

Stress 0.68 0.57 0.62 0.55 0.64 0.59 69 

Accuracy   0.72   0.65 172 

Weighted 
Average 

0.72 0.70 0.70 0.64 0.64 0.64 172 

Macro 
Average 

0.71 0.70 0.70 0.66 0.65 0.65 172 
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Age – 18-24 
(SMOTE) 

No Stress 0.77 0.75 0.76 0.69 0.83 0.75 103 

Stress 0.64 0.67 0.65 0.64 0.43 0.52 69 

Accuracy   0.72   0.67 172 

Weighted 
Average 

0.72 0.72 0.72 0.67 0.67 0.66 172 

Macro 
Average 

0.70 0.71 0.71 0.66 0.63 0.64 172 

Age 25-34 No Stress 0.65 0.53 0.59 0.58 0.41 0.48 68 

Stress 0.73 0.82 0.77 0.68 0.81 0.74 105 

Accuracy   0.71   0.65 173 

Weighted 
Average 

0.70 0.71 0.70 0.64 0.65 0.64 173 

Macro 
Average 

0.69 0.67 0.68 0.63 0.61 0.61 173 

Age 25-34 
(SMOTE) 

No Stress 0.59 0.65 0.62 0.67 0.41 0.51 68 

Stress 0.76 0.71 0.74 0.69 0.87 0.77 105 

Accuracy   0.69   0.69 173 

Weighted 
Average 

0.68 0.68 0.68 0.68 0.69 0.67 173 

Macro 
Average 

0.69 0.69 0.69 0.68 0.64 0.64 173 

Age 35-44 No Stress 0.78 0.95 0.85 0.79 0.84 0.81 98 



 318 

Stress 0.76 0.37 0.50 0.57 0.49 0.53 43 

Accuracy   0.77   0.73 141 

Weighted 
Average 

0.77 0.77 0.75 0.72 0.73 0.72 141 

Macro 
Average 

0.77 0.66 0.68 0.68 0.66 0.67 141 

Age 35-44 
(SMOTE) 

No Stress 0.80 0.82 0.81 0.75 0.91 0.82 98 

Stress 0.56 0.53 0.55 0.59 0.30 0.40 43 

Accuracy   0.73   0.72 141 

Weighted 
Average 

0.73 0.73 0.73 0.70 0.72 0.69 141 

 Macro 
Average 

0.68 0.68 0.68 0.67 0.61 0.61 141 

Healthy No Stress 0.75 0.83 0.79 0.71 0.74 0.73 254 

Stress 0.70 0.60 0.65 0.60 0.56 0.58 174 

Accuracy   0.73   0.67 428 

Weighted 
Average 

0.73 0.73 0.73 0.66 0.65 0.65 428 

Macro 
Average 

0.73 0.71 0.72 0.67 0.67 0.67 428 

Healthy - 
SMOTE 

No Stress 0.77 0.77 0.77 0.71 0.70 0.70 254 

Stress 0.66 0.66 0.66 0.57 0.58 0.58 174 
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Accuracy   0.72   0.65 428 

Weighted 
Average 

0.72 0.72 0.72 0.65 0.65 0.65 428 

Macro 
Average 

0.71 0.71 0.71 0.64 0.64 0.64 428 

SDAW RF SVM  

 Items Precisi
on 

Recall F1-
Score 

Precision Recall F1-Score  

 
 
 

Complete 
Dataset 

No Stress 0.75 0.82 0.79 0.72 0.80 0.76 249 

Stress 0.72 0.63 0.67 0.67 0.58 0.62 179 

Accuracy - - 0.74 - - 0.70 428 

Weighted 
Average 

0.74 0.74 0.74 0.70 0.70 0.70 428 

Macro 
Average 

0.74 0.72 0.73 0.70 0.69 0.69 428 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.78 0.75 0.76 0.76 0.76 0.76 249 

Stress 0.67 0.70 0.68 0.66 0.66 0.66 179 

Accuracy - - 0.73 - - 0.72 428 

Weighted 
Average 

0.73 0.73 0.73 0.72 0.72 0.72 428 

Macro 
Average 

0.72 0.72 0.72 0.71 0.71 0.71 428 

Gender - Male No Stress 0.83 0.93 0.88 0.83 0.88 0.85 73 

Stress 0.29 0.12 0.17 0.25 0.19 0.21 16 
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Accuracy   0.79   0.75 89 

Weighted 
Average 

0.73 0.79 0.75 0.73 0.75 0.74 89 

Macro 
Average 

0.56 0.53 0.53 0.54 0.53 0.53 89 

Gender – 
Male 
(SMOTE) 

No Stress 0.83 0.88 0.85 0.82 0.99 0.89 73 

Stress 0.25 0.19 0.21 0.00 0.00 0.00 16 

Accuracy   0.75   0.81 89 

Weighted 
Average 

0.73 0.75 0.74 0.67 0.81 0.73 89 

Macro 
Average 

0.54 0.53 0.53 0.41 0.49 0.45 89 

Gender – 
Female  

No Stress 0.70 0.73 0.72 0.68 0.67 0.68 166 

Stress 0.70 0.68 0.69 0.66 0.66 0.66 157 

Accuracy   0.70   0.67 323 

Weighted 
Average 

0.70 0.70 0.70 0.67 0.67 0.67 323 

Macro 
Average 

0.70 0.70 0.70 0.67 0.67 0.67 323 

Gender – 
Female 
(SMOTE) 

No Stress 0.71 0.72 0.72 0.68 0.63 0.65 166 

Stress 0.70 0.69 0.70 0.64 0.69 0.66 157 

Accuracy   0.71   0.66 323 
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Weighted 
Average 

0.71 0.71 0.71 0.66 0.66 0.66 323 

Macro 
Average 

0.71 0.71 0.71 0.66 0.66 0.66 323 

Employment - 
Student 

No Stress 0.75 0.75 0.75 0.74 0.66 0.70 99 

Stress 0.73 0.73 0.73 0.67 0.75 0.71 92 

Accuracy   0.74   0.70 191 

Weighted 
Average 

0.74 0.74 0.74 0.71 0.70 0.70 191 

Macro 
Average 

0.74 0.74 0.74 0.70 0.70 0.70 191 

Employment – 
Student 
(SMOTE) 

No Stress 0.76 0.73 0.74 0.75 0.74 0.74 99 

Stress 0.72 0.75 0.73 0.72 0.74 0.73 92 

Accuracy   0.74   0.74 191 

Weighted 
Average 

0.74 0.74 0.74 0.74 0.74 0.74 191 

Macro 
Average 

0.74 0.74 0.74 0.74 0.74 0.74 191 

Employment – 
Worker 

No Stress 0.74 0.84 0.79 0.74 0.78 0.76 151 

Stress 0.64 0.49 0.56 0.58 0.52 0.55 87 

Accuracy   0.71   0.68 238 

Weighted 
Average 

0.71 0.71 0.70 0.68 0.68 0.68 238 
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Macro 
Average 

0.69 0.67 0.67 0.66 0.65 0.65 238 

Employment – 
Worker 
(SMOTE) 

No Stress 0.77 0.81 0.79 0.73 0.73 0.73 151 

Stress 0.64 0.59 0.61 0.53 0.53 0.53 87 

Accuracy   0.73   0.66 238 

Weighted 
Average 

0.72 0.73 0.72 0.66 0.66 0.66 238 

Macro 
Average 

0.70 0.70 0.70 0.63 0.63 0.63 238 

Income - Low No Stress 0.80 0.82 0.81 0.78 0.76 0.77 119 

Stress 0.69 0.67 0.68 0.62 0.64 0.63 73 

Accuracy   0.76   0.71 192 

Weighted 
Average 

0.76 0.76 0.76 0.72 0.71 0.71 192 

Macro 
Average 

0.75 0.74 0.74 0.70 0.70 0.70 192 

Income – Low 
(SMOTE) 

No Stress 0.83 0.75 0.79 0.80 0.73 0.76 119 

Stress 0.65 0.75 0.70 0.61 0.70 0.65 73 

Accuracy   0.75   0.72 192 

Weighted 
Average 

0.76 0.75 0.75 0.73 0.72 0.72 192 

Macro 
Average 

0.74 0.75 0.74 0.71 0.71 0.71 192 
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Income – 
Medium High 

No Stress 0.71 0.75 0.73 0.72 0.75 0.73 110 

Stress 0.64 0.77 0.70 0.66 0.62 0.64 86 

Accuracy   0.68   0.69 196 

Weighted 
Average 

0.69 0.68 0.67 0.69 0.69 0.69 196 

Macro 
Average 

0.68 0.68 0.67 0.69 0.69 0.69 196 

Income – 
Medium High 
(SMOTE) 

No Stress 0.70 0.73 0.71 0.71 0.73 0.72 110 

Stress 0.63 0.60 0.62 0.64 0.63 0.64 86 

Accuracy   0.67   0.68 196 

Weighted 
Average 

0.67 0.67 0.67 0.68 0.68 0.68 196 

Macro 
Average 

0.67 0.67 0.67 0.68 0.68 0.68 196 

Age – 18-24 No Stress 0.79 0.79 0.79 0.80 0.73 0.76 66 

Stress 0.72 0.72 0.72 0.68 0.76 0.72 50 

Accuracy   0.76   0.74 116 

Weighted 
Average 

0.76 0.76 0.76 0.75 0.74 0.74 116 

Macro 
Average 

0.75 0.75 0.75 0.74 0.74 0.74 116 

Age – 18-24 
(SMOTE) 

No Stress 0.78 0.74 0.76 0.79 0.76 0.78 66 
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Stress 0.68 0.72 0.70 0.70 0.74 0.72 50 

Accuracy   0.73   0.75 116 

Weighted 
Average 

0.74 0.73 0.73 0.75 0.75 0.75 116 

Macro 
Average 

0.73 0.73 0.73 0.75 0.75 0.75 116 

Age 25-34 No Stress 0.70 0.63 0.66 0.64 0.57 0.60 67 

Stress 0.71 0.78 0.74 0.67 0.74 0.70 80 

Accuracy   0.71   0.66 147 

Weighted 
Average 

0.71 0.71 0.71 0.66 0.66 0.66 147 

Macro 
Average 

0.71 0.70 0.71 0.66 0.65 0.65 147 

Age 25-34 
(SMOTE) 

No Stress 0.68 0.63 0.65 0.64 0.67 0.66 67 

Stress 0.71 0.75 0.73 0.71 0.69 0.70 80 

Accuracy   0.69   0.68 147 

Weighted 
Average 

0.69 0.69 0.69 0.68 0.68 0.68 147 

Macro 
Average 

0.69 0.69 0.69 0.68 0.68 0.68 147 

Age 35-44 No Stress 0.81 0.95 0.88 0.84 0.89 0.86 82 

Stress 0.64 0.28 0.39 0.55 0.44 0.49 25 
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Accuracy   0.79   0.79 107 

Weighted 
Average 

0.77 0.79 0.76 0.77 0.79 0.78 107 

Macro 
Average 

0.72 0.62 0.63 0.69 0.67 0.68 107 

Age 35-44 
(SMOTE) 

No Stress 0.83 0.88 0.85 0.78 0.98 0.87 82 

Stress 0.50 0.40 0.44 0.60 0.12 0.20 25 

Accuracy   0.77   0.78 107 

Weighted 
Average 

0.75 0.77 0.76 0.74 0.78 0.71 107 

 Macro 
Average 

0.66 0.64 0.65 0.69 0.55 0.53 107 

Healthy No Stress 0.75 0.85 0.80 0.76 0.75 0.75 195 

Stress 0.67 0.52 0.58 0.58 0.60 0.59 114 

Accuracy   0.73   0.69 309 

Weighted 
Average 

0.72 0.73 0.72 0.69 0.69 0.69 309 

Macro 
Average 

0.71 0.68 0.69 0.67 0.67 0.67 309 

Healthy 
(SMOTE) 

No Stress 0.79 0.74 0.77 0.79 0.76 0.77 195 

Stress 0.60 0.66 0.63 0.61 0.65 0.63 114 

Accuracy   0.71   0.72 309 
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Weighted 
Average 

0.72 0.71 0.71 0.72 0.72 0.72 309 

Macro 
Average 

0.69 0.70 0.70 0.70 0.70 0.70 309 

SDW  RF SVM  

 Items Precisi
on 

Recall F1-
Score 

Precision Recall F1-Score  

 
 
 

Complete 
Dataset 

No Stress 0.73 0.76 0.74 0.62 0.73 0.67 307 

Stress 0.65 0.62 0.64 0.56 0.44 0.49 228 

Accuracy - - 0.70 - - 0.60 535 

Weighted 
Average 

0.70 0.70 0.70 0.60 0.60 0.59 535 

Macro 
Average 

0.69 0.69 0.69 0.59 0.58 0.58 535 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.72 0.74 0.73 0.73 0.74 0.73 307 

Stress 0.64 0.61 0.62 0.64 0.63 0.63 228 

Accuracy - - 0.68 - - 0.69 535 

Weighted 
Average 

0.68 0.68 0.68 0.69 0.69 0.69 535 

Macro 
Average 

0.68 0.67 0.67 0.68 0.68 0.68 535 

Gender - Male No Stress 0.80 0.96 0.88 0.83 0.93 0.88 85 

Stress 0.90 0.58 0.71 0.84 0.67 0.74 48 

Accuracy   0.83   0.83 133 
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Weighted 
Average 

0.84 0.83 0.82 0.84 0.83 0.83 133 

Macro 
Average 

0.85 0.77 0.79 0.84 0.80 0.81 133 

Gender – 
Male 
(SMOTE) 

No Stress 0.83 0.91 0.87 0.86 0.86 0.86 85 

Stress 0.80 0.67 0.73 0.75 0.75 0.75 48 

Accuracy   0.82   0.82 133 

Weighted 
Average 

0.82 0.82 0.82 0.82 0.82 0.82 133 

Macro 
Average 

0.81 0.79 0.80 0.80 0.80 0.80 133 

Gender – 
Female  

No Stress 0.70 0.75 0.73 0.68 0.73 0.70 212 

Stress 0.67 0.61 0.64 0.64 0.59 0.61 174 

Accuracy   0.69   0.67 386 

Weighted 
Average 

0.69 0.69 0.69 0.66 0.67 0.66 386 

Macro 
Average 

0.69 0.68 0.68 0.66 0.66 0.66 386 

Gender – 
Female 
(SMOTE) 

No Stress 0.70 0.71 0.71 0.70 0.64 0.67 212 

Stress 0.64 0.64 0.64 0.60 0.66 0.63 174 

Accuracy   0.68   0.65 386 

Weighted 
Average 

0.68 0.68 0.68 0.65 0.65 0.65 386 
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Macro 
Average 

0.67 0.67 0.67 0.65 0.65 0.65 386 

Employment - 
Student 

No Stress 0.74 0.68 0.71 0.74 0.75 0.74 99 

Stress 0.68 0.74 0.71 0.73 0.72 0.72 92 

Accuracy   0.71   0.73 191 

Weighted 
Average 

0.71 0.71 0.71 0.73 0.73 0.73 191 

Macro 
Average 

0.71 0.71 0.71 0.73 0.73 0.73 191 

Employment – 
Student 
(SMOTE) 

No Stress 0.73 0.67 0.69 0.75 0.73 0.74 99 

Stress 0.67 0.73 0.70 0.72 0.74 0.73 92 

Accuracy   0.70   0.73 191 

Weighted 
Average 

0.70 0.70 0.73 0.73 0.73 0.73 191 

Macro 
Average 

0.70 0.70 0.73 0.73 0.73 0.73 191 

Employment – 
Worker 

No Stress 0.72 0.76 0.74 0.71 0.74 0.72 195 

Stress 0.62 0.57 0.60 0.59 0.55 0.57 133 

Accuracy   0.69   0.66 328 

Weighted 
Average 

0.68 0.69 0.68 0.66 0.66 0.66 328 

Macro 
Average 

0.67 0.67 0.67 0.65 0.65 0.65 328 
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Employment – 
Worker 
(SMOTE) 

No Stress 0.74 0.74 0.74 0.71 0.72 0.72 195 

Stress 0.62 0.61 0.61 0.58 0.56 0.57 133 

Accuracy   0.69   0.66 328 

Weighted 
Average 

0.69 0.69 0.69 0.66 0.66 0.66 328 

Macro 
Average 

0.68 0.68 0.68 0.64 0.64 0.64 328 

Income - Low No Stress 0.73 0.85 0.78 0.74 0.82 0.78 144 

Stress 0.66 0.49 0.56 0.64 0.53 0.58 88 

Accuracy   0.71   0.71 232 

Weighted 
Average 

0.70 0.71 0.70 0.70 0.71 0.70 232 

Macro 
Average 

0.70 0.67 0.67 0.69 0.68 0.68 232 

Income – Low 
(SMOTE) 

No Stress 0.76 0.78 0.77 0.76 0.76 0.76 144 

Stress 0.62 0.60 0.61 0.61 0.61 0.61 88 

Accuracy   0.71   0.70 232 

Weighted 
Average 

0.71 0.71 0.71 0.70 0.70 0.70 232 

Macro 
Average 

0.69 0.69 0.69 0.68 0.68 0.68 232 

Income – 
Medium High 

No Stress 0.78 0.65 0.71 0.79 0.69 0.74 149 
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Stress 0.65 0.78 0.71 0.68 0.78 0.72 125 

Accuracy   0.71   0.73 274 

Weighted 
Average 

0.72 0.71 0.71 0.74 0.73 0.73 274 

Macro 
Average 

0.72 0.72 0.71 0.73 0.73 0.73 274 

Income – 
Medium High 
(SMOTE) 

No Stress 0.79 0.64 0.71 0.80 0.66 0.73 149 

Stress 0.65 0.79 0.71 0.67 0.80 0.73 125 

Accuracy   0.71   0.73 274 

Weighted 
Average 

0.73 0.71 0.71 0.74 0.73 0.73 274 

Macro 
Average 

0.72 0.72 0.71 0.73 0.73 0.73 274 

Age – 18-24 No Stress 0.75 0.66 0.70 0.82 0.66 0.73 80 

Stress 0.60 0.69 0.65 0.64 0.80 0.71 59 

Accuracy   0.68   0.72 139 

Weighted 
Average 

0.69 0.68 0.68 0.74 0.72 0.72 139 

Macro 
Average 

0.67 0.68 0.67 0.73 0.73 0.72 139 

Age – 18-24 
(SMOTE) 

No Stress 0.73 0.64 0.68 0.75 0.64 0.69 80 

Stress 0.58 0.68 0.63 0.59 0.71 0.65 59 
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Accuracy   0.65   0.67 139 

Weighted 
Average 

0.67 0.65 0.66 0.68 0.67 0.67 139 

Macro 
Average 

0.65 0.66 0.65 0.67 0.67 0.67 139 

Age 25-34 No Stress 0.70 0.69 0.70 0.68 0.82 0.74 72 

Stress 0.76 0.77 0.76 0.83 0.69 0.75 90 

Accuracy   0.73   0.75 162 

Weighted 
Average 

0.73 0.73 0.73 0.76 0.75 0.75 162 

Macro 
Average 

0.73 0.73 0.73 0.75 0.75 0.75 162 

Age 25-34 
(SMOTE) 

No Stress 0.63 0.79 0.70 0.67 0.83 0.74 72 

Stress 0.79 0.63 0.70 0.83 0.67 0.74 90 

Accuracy   0.70   0.74 162 

Weighted 
Average 

0.72 0.70 0.70 0.76 0.74 0.74 162 

Macro 
Average 

0.71 0.71 0.70 0.75 0.75 0.74 162 

Age 35-44 No Stress 0.78 0.91 0.84 0.78 0.91 0.84 99 

Stress 0.74 0.50 0.60 0.75 0.52 0.61 52 

Accuracy   0.77   0.77 151 
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Weighted 
Average 

0.76 0.77 0.75 0.77 0.77 0.76 151 

Macro 
Average 

0.76 0.70 0.72 0.77 0.71 0.73 151 

Age 35-44 
(SMOTE) 

No Stress 0.79 0.88 0.83 0.78 0.77 0.78 99 

Stress 0.71 0.56 0.62 0.57 0.60 0.58 52 

Accuracy   0.77   0.71 151 

Weighted 
Average 

0.76 0.77 0.76 0.71 0.71 0.71 151 

 Macro 
Average 

0.75 0.72 0.73 0.68 0.68 0.68 151 

Healthy No Stress 0.75 0.86 0.80 0.75 0.80 0.78 243 

Stress 0.73 0.56 0.63 0.66 0.59 0.62 157 

Accuracy   0.74   0.72 400 

Weighted 
Average 

0.74 0.74 0.74 0.72 0.72 0.72 400 

Macro 
Average 

0.74 0.71 0.72 0.71 0.70 0.70 400 

Healthy 
(SMOTE) 

No Stress 0.75 0.80 0.78 0.80 0.75 0.77 243 

Stress 0.66 0.59 0.62 0.65 0.71 0.67 157 

Accuracy   0.72   0.73 400 

Weighted 
Average 

0.72 0.72 0.72 0.74 0.73 0.73 400 
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Macro 
Average 

0.71 0.70 0.70 0.72 0.73 0.72 400 

SDS  RF SVM  

 Items Precision Recall F1-
Score 

Precision Recall F1-Score Support 

 
 
 

Complete 
Dataset 

No Stress 0.73 0.81 0.77 0.73 0.78 0.76 249 

Stress 0.69 0.59 0.64 0.66 0.60 0.63 179 

Accuracy - - 0.72 - - 0.71 428 

Weighted 
Average 

0.72 0.72 0.72 0.70 0.71 0.70 428 

Macro 
Average 

0.71 0.70 0.70 0.70 0.69 0.69 428 

 
 

Complete 
Dataset 

(SMOTE) 

No Stress 0.78 0.69 0.73 0.78 0.72 0.75 249 

Stress 0.63 0.73 0.68 0.65 0.71 0.68 179 

Accuracy - - 0.71 - - 0.72 428 

Weighted 
Average 

0.72 0.71 0.71 0.72 0.72 0.72 428 

Macro 
Average 

0.70 0.71 0.70 0.71 0.72 0.71 428 

Gender - Male No Stress 0.81 0.86 0.83 0.81 0.85 0.83 73 

Stress 0.09 0.06 0.07 0.08 0.06 0.07 16 

Accuracy   0.72   0.71 89 

Weighted 
Average 

0.68 0.72 0.70 0.68 0.71 0.69 89 
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Macro 
Average 

0.45 0.46 0.45 0.44 0.46 0.45 89 

Gender – 
Male 
(SMOTE) 

No Stress 0.81 0.82 0.82 0.84 0.59 0.69 73 

Stress 0.13 0.12 0.13 0.21 0.50 0.30 16 

Accuracy   0.70   0.57 89 

Weighted 
Average 

0.69 0.70 0.69 0.73 0.57 0.62 89 

Macro 
Average 

0.47 0.47 0.47 0.53 0.54 0.49 89 

Gender – 
Female  

No Stress 0.72 0.72 0.72 0.71 0.74 0.72 160 

Stress 0.71 0.70 0.70 0.71 0.68 0.70 153 

Accuracy   0.71   0.71 313 

Weighted 
Average 

0.71 0.71 0.71 0.71 0.71 0.71 313 

Macro 
Average 

0.71 0.71 0.71 0.71 0.71 0.71 313 

Gender – 
Female 
(SMOTE) 

No Stress 0.72 0.72 0.72 0.71 0.72 0.72 160 

Stress 0.71 0.71 0.71 0.71 0.69 0.70 153 

Accuracy   0.71   0.71 313 

Weighted 
Average 

0.71 0.71 0.71 0.71 0.71 0.71 313 

Macro 
Average 

0.71 0.71 0.71 0.71 0.71 0.71 313 



 335 

Employment - 
Student 

No Stress 0.76 0.71 0.73 0.75 0.74 0.74 99 

Stress 0.71 0.76 0.73 0.72 0.74 0.73 92 

Accuracy   0.73   0.74 191 

Weighted 
Average 

0.73 0.73 0.73 0.74 0.74 0.74 191 

Macro 
Average 

0.73 0.73 0.73 0.74 0.74 0.74 191 

Employment – 
Student 
(SMOTE) 

No Stress 0.75 0.66 0.70 0.77 0.72 0.74 99 

Stress 0.67 0.76 0.71 0.72 0.77 0.74 92 

Accuracy   0.71   0.74 191 

Weighted 
Average 

0.71 0.71 0.71 0.75 0.74 0.74 191 

Macro 
Average 

0.71 0.71 0.71 0.74 0.74 0.74 191 

Employment – 
Worker 

No Stress 0.73 0.85 0.79 0.73 0.79 0.76 151 

Stress 0.64 0.45 0.53 0.58 0.51 0.54 87 

Accuracy   0.71   0.68 238 

Weighted 
Average 

0.70 0.71 0.69 0.68 0.68 0.68 238 

Macro 
Average 

0.68 0.65 0.66 0.66 0.65 0.65 238 

No Stress 0.73 0.72 0.72 0.73 0.68 0.70 151 
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Employment – 
Worker 
(SMOTE) 

Stress 0.53 0.55 0.54 0.50 0.56 0.53 87 

Accuracy   0.66   0.63 238 

Weighted 
Average 

0.66 0.66 0.66 0.65 0.63 0.64 238 

Macro 
Average 

0.63 0.63 0.63 0.61 0.62 0.62 238 

Income - Low No Stress 0.76 0.78 0.77 0.78 0.78 0.78 125 

Stress 0.63 0.60 0.61 0.64 0.64 0.64 78 

Accuracy   0.71   0.72 203 

Weighted 
Average 

0.71 0.71 0.71 0.72 0.72 0.72 203 

Macro 
Average 

0.69 0.69 0.69 0.71 0.71 0.71 203 

Income – Low 
(SMOTE) 

No Stress 0.81 0.76 0.79 0.82 0.74 0.78 125 

Stress 0.65 0.72 0.68 0.64 0.74 0.69 78 

Accuracy   0.74   0.74 203 

Weighted 
Average 

0.75 0.74 0.75 0.75 0.74 0.74 203 

Macro 
Average 

0.73 0.74 0.73 0.73 0.74 0.73 203 

Income – 
Medium High 

No Stress 0.71 0.69 0.70 0.70 0.71 0.71 110 

Stress 0.62 0.64 0.63 0.62 0.62 0.62 86 
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Accuracy   0.67   0.67 196 

Weighted 
Average 

0.67 0.67 0.67 0.67 0.67 0.67 196 

Macro 
Average 

0.66 0.67 0.66 0.66 0.66 0.66 196 

Income – 
Medium High 
(SMOTE) 

No Stress 0.69 0.65 0.67 0.70 0.68 0.69 110 

Stress 0.58 0.62 0.60 0.61 0.63 0.62 86 

Accuracy   0.64   0.66 196 

Weighted 
Average 

0.64 0.64 0.64 0.66 0.66 0.66 196 

Macro 
Average 

0.63 0.64 0.63 0.65 0.65 0.65 196 

Age – 18-24 No Stress 0.72 0.62 0.67 0.66 0.61 0.63 71 

Stress 0.58 0.69 0.63 0.54 0.60 0.57 55 

Accuracy   0.65   0.60 126 

Weighted 
Average 

0.66 0.65 0.65 0.61 0.60 0.60 126 

Macro 
Average 

0.65 0.66 0.65 0.60 0.60 0.60 126 

Age – 18-24 
(SMOTE) 

No Stress 0.74 0.59 0.66 0.67 0.62 0.64 71 

Stress 0.58 0.73 0.65 0.55 0.60 0.57 55 

Accuracy   0.65   0.61 126 
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Weighted 
Average 

0.67 0.65 0.65 0.63 0.62 0.61 126 

Macro 
Average 

0.66 0.66 0.65 0.62 0.61 0.61 126 

Age 25-34 No Stress 0.67 0.58 0.62 0.67 0.58 0.62 67 

Stress 0.69 0.76 0.72 0.69 0.76 0.72 80 

Accuracy   0.68   0.68 147 

Weighted 
Average 

0.68 0.68 0.68 0.68 0.68 0.68 147 

Macro 
Average 

0.68 0.67 0.67 0.68 0.67 0.67 147 

Age 25-34 
(SMOTE) 

No Stress 0.67 0.63 0.65 0.67 0.64 0.66 67 

Stress 0.70 0.74 0.72 0.71 0.74 0.72 80 

Accuracy   0.69   0.69 147 

Weighted 
Average 

0.69 0.69 0.69 0.69 0.69 0.69 147 

Macro 
Average 

0.68 0.68 0.68 0.69 0.69 0.69 147 

Age 35-44 No Stress 0.81 0.87 0.84 0.81 0.84 0.83 82 

Stress 0.42 0.32 0.46 0.41 0.36 0.38 25 

Accuracy   0.74   0.73 107 

Weighted 
Average 

0.72 0.74 0.73 0.72 0.73 0.72 107 
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Macro 
Average 

0.61 0.59 0.60 0.61 0.60 0.60 107 

Age 35-44 
(SMOTE) 

No Stress 0.84 0.80 0.82 0.80 0.60 0.69 82 

Stress 0.43 0.48 0.45 0.28 0.52 0.37 25 

Accuracy   0.73   0.58 107 

Weighted 
Average 

0.74 0.73 0.73 0.68 0.58 0.61 107 

 Macro 
Average 

0.63 0.64 0.64 0.54 0.56 0.53 107 

Healthy No Stress 0.71 0.71 0.71 0.67 0.82 0.74 55 

Stress 0.75 0.75 0.75 0.81 0.66 0.73 65 

Accuracy   0.73   0.73 120 

Weighted 
Average 

0.73 0.73 0.73 0.74 0.74 0.73 120 

Macro 
Average 

0.73 0.73 0.73 0.75 0.73 0.73 120 

Healthy 
(SMOTE) 

No Stress 0.67 0.82 0.74 0.68 0.82 0.74 55 

Stress 0.81 0.66 0.73 0.81 0.68 0.74 65 

Accuracy   0.73   0.74 120 

Weighted 
Average 

0.75 0.73 0.73 0.75 0.74 0.74 120 

Macro 
Average 

0.74 0.74 0.73 0.75 0.75 0.74 120 



 340 

 
 

Table B6: Review of Stress Prediction ML Studies 34 

Study Year Type Device Variables Size Period Ground 
Truth Model G/I Accuracy 

 
Validation 

46 2013 DDSR Wahoo chest 
belt 

Audio, Physical 
Activity, HRV, 
Communication  

35 4 
Months 

PANAS self-
report 

questionnaire 
+ audio self-

report + stress 
self-

assessment 
before sleep 

LR G/I 

Generalized: 
53%  

Individualized: 
61%  

 
 
 

Generalized Leave One 
Person Out 

Individualized Leave 
One Day Out 

42 2010 LLKC Emotion 
Board EDA 33 N/A Known 

context 
LDA, SVM, 

NCC G 83%  (LDA), 
˜81% (SVM) 

 
 

Leave One Person Out 

 
45 2020 DDSR Empatica E4 

EDA, BVP, 
Acc, HR, Skin 
Temperature 

6 4 
Weeks 

Button Press 
from device 
indicating a 

stressful event 

RF, SVM G 

87.4% (RF), 
82.1% (SVM) - 

calculated as 
AUC 

 
 
 

10-fold Cross 
Validation, testing on 

10% validation set 

204 2012 LLSR 

Polar 
WearLink+, 
SA9311M, 

AgCI 
electrodes 

HRV, 
Respiration, 

EDA 
10 N/A 

7-point 
LIKERT scale 
on perceived 
stress levels 

LR I 81% 

 
 
 

Leave One Person Out 
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169 2020 
Mix of 

different 
modalities 

Empatica E4  EDA, HRV, HR 14 1 week 

DDSR: PSS-5 
and EMA 

LDSR: PSS-5 
and known 

context.  

MLP, RF, 
kNN, SVM, 

LR 
G 

 DDSR: 68% 
(SVM), 64% 
(LR), 60% 

(kNN), 52% 
(RF) 

 LDSR: 74.6% 
(RF), 73.8% 
(LR), 73.4% 
(SVM), kNN 
AND MLP 

(72.2%) 

 
 
 

10-fold CV with data 
from all users 

80% training, 20% 
testing 

167 2014 DDSR 
BioHarness 

3.0 + , 
Empatica E4 

ECG, HRV, 
Resp, Temp, 

GSR, Posture, 
Accelerometer, 

Sleep 

10 18 days 

2 questions 
before sleep 
on how the 

participant felt 
during the day 

SVM, LR, 
kNN, RF, 

NN 
G 

73% (SVM), 
71% (RF), NN 
(˜63%), kNN 
(˜60%), LR 

(52%) 

 
 

Leave One Person Out 

181 2017 LLKC 

NeuLog 
(ECG, GSR, 

Resp), 
Contec 

PM50 (BP), 
Kenek Edge 

pulse 
oximeter 
(SpO2) 

ECG, Resp, 
GSR, BP, SpO2 32 N/A Known 

context SVM, kNN G/I 

Generalized: 
89.2% (kNN), 
83.1% (SVM) 
Individualized: 
94.5% (kNN), 
86.7% (SVM) 

 
 
 
 

Train, Test, Validation 
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166 2015 LLKC and 
LLSR 

Sensor suite 
similar to 

the 
BioHarness 

ECG, Resp 20 1 week 

Known 
context in lab, 

PSS-5 with 
EMA in the 

field 

SVM  G LLKC: 90%  
LLSR: 72% 

 
 
 

Leave One Person Out 

168 2016 LLKC and 
LLSR Empatica E4 

BVP, HR, 
HRV, ST and 

GSR 
5 55 days 

Known 
context and 

Short STAY-
Y 

Questionnaire 
in the 

laboratory, 4-6 
random EMA 

prompts 
asking users 

for the 
duration and 
the level of 
stress in the 

field 

RF for 
laboratory 

stress 
followed by 

SVM for 
real-life data 

I 92% (SVM) 

 
 
 
 
 
 
 

Leave One Person Out 

182 2018 LLKC 
NeuroSky 
Mindwave 

Mobile 
EEG 7 N/A 

Known 
context while 
listening to 

music 
(meditation 

and attention 
instead of 
stress/non-

stress) 

Neural 
Network G 

0.60 
(Attention), 

0.01 
(Meditation) – 
calculated as 

F1-score 

 
 

Train, Test and 
Validation 
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205 2013 LLSR 

Androind 
Phone + 

Wristworn 
Sensor 

ACC, Skin 
Conductance, 
Phone Usage 

18 5 days 

PSS, PSQI, 
Big Five 
Inventory 

Personality 
Test 

SVM, kNN G 

Over 75% 
(with a number 

of trained 
model and 

feature 
combinations) 

 
10-fold CV with data 

from all users 
90% training, 10% 

testing 

195 2015 DDSR 
Samsung 

Galaxy SIII 
Mini 

ACC 30 8 
weeks 

OLBI + 3 
EMA prompts 
per day asking 
users to rate 

stress on a 1-5 
scale 

Naïve 
Bayes, DT, 
Ordinal 
Naïve Bayes 

G/I 

 
Generalized: 
Accuracy - 

52%  
MAE – 0.83 
RMSE – 1  

Individualized: 
Accuracy - 

71% 
MAE – 0.66 
RMSE – 0.96 

 
5-fold CV for 
Individualized, Leave 
One Person Out for 
Generalized 

206 2019 

DDSR and 
DDKC (in a 
structured 

programming 
contest) 

Samsung 
Gear S1, S2 

and S3, 
Empatica E4 

HRV, ACC, 
EDA 21 9 days 

Frustration 
collected in 
the NASA-

TLX 
questionnaire 
+ 0-100 scale 
with question, 
3 class stress 

PCA + 
LDA, SVM, 
LR, RF, 
Multilayer 
Perceptrom,  

G/I 

Generalized: 
88.20% (RF) 
with DDKC, 
86.38% with 

DDSR 
Individualized:  
97.92% (RF) 

 
Train amd Test for 
Individualized, 10-fold 
CV for Generalized 

184 2018 LLKC BioPatch 
M3 HRV 128 N/A 

Known 
Context (, 

Stroop Colour 
Word Test, 

videogames) 

SVM G 64%   

 
 
 
10-fold CV 

207 2016 LLKC 
Emotiv 
Epoch 
headset 

EEG 6 N/A 

Mathematical 
Questions, 
self-report 
with the 

NASA-TLX 

SVM, LDA, 
QDA, kNN G 89% (SVM) 

 
10-fold CV 
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208 2015 LLKC 
BioNomadix 
model BN-

PPGED 
EDA, HRV 5 N/A 

State Trait 
Anxiety 

Inventory, 
Triet Social 
Stress Test 

SVM I 

For each 
participant: 

78.90%, 
73.26%, 
83.08%, 
82.82%, 
76.83% 

 
 
Train and Test (75% 
and 25%) 



 345 

Table B7: Precision, Recall, F1-Score, Accuracy for Datasets, Generalized_Imb 35 

D (n = 22) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1- Weighted F1-Macro Accuracy 
Full 0.48 0.49 0.49 0.53 0.52 0.53 

Gender Male 0.43 0.42 0.48 0.51 0.49 0.52 
Gender Female 0.53 0.51 0.55 0.52 0.51 0.52 

Income Low 0.50 0.46 0.54 0.52 0.48 0.54 
Income Medium High 0.43 0.40 0.50 0.50 0.48 0.51 
Employment Students 0.44 0.44 0.46 0.47 0.47 0.47 
Employment Workers 0.40 0.40 0.45 0.52 0.51 0.52 

Age 18-24 0.54 0.42 0.64 0.60 0.49 0.64 
Age 25-34 0.53 0.44 0.62 0.56 0.50 0.57 
Age 35-44 0.37 0.33 0.39 0.50 0.40 0.47 

Healthy 0.52 0.51 0.53 0.55 0.54 0.54 
D SMOTE (n = 22) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1- Weighted F1-Macro Accuracy 
Full 0.50 0.50 0.50 0.46 0.47 0.50 

Gender Male 0.47 0.46 0.50 0.39 0.39 0.49 
Gender Female 0.53 0.51 0.55 0.48 0.48 0.50 

Income Low 0.54 0.51 0.54 0.46 0.41 0.58 
Income Medium High 0.43 0.40 0.48 0.45 0.42 0.51 
Employment Students 0.46 0.46 0.48 0.41 0.42 0.48 
Employment Workers 0.42 0.42 0.45 0.42 0.42 0.50 

Age 18-24 0.62 0.51 0.65 0.54 0.41 0.66 
Age 25-34 0.56 0.50 0.58 0.51 0.40 0.64 
Age 35-44 0.44 0.39 0.42 0.42 0.33 0.48 

Healthy 0.54 0.53 0.55 0.44 0.44 0.51 
DECG (n = 42) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-weighted F1-Macro Accuracy 
Full 0.51 0.50 0.52 0.52 0.50 0.53 

Gender Male 0.48 0.45 0.50 0.51 0.48 0.52 
Gender Female 0.53 0.52 0.53 0.52 0.51 0.52 

Income Low 0.50 0.45 0.54 0.52 0.48 0.53 
Income Medium High 0.49 0.49 0.50 0.50 0.50 0.50 
Employment Students 0.47 0.48 0.48 0.48 0.48 0.49 
Employment Workers 0.49 0.47 0.52 0.50 0.48 0.51 

Age 18-24 0.48 0.45 0.51 0.51 0.48 0.52 
Age 25-34 0.51 0.48 0.55 0.52 0.48 0.54 
Age 35-44 0.50 0.42 0.55 0.54 0.48 0.54 

Healthy 0.51 0.49 0.53 0.52 0.50 0.53 
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DECG SMOTE (n = 42) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.52 0.52 0.52 0.52 0.50 0.54 

Gender Male 0.51 0.47 0.51 0.50 0.46 0.55 
Gender Female 0.53 0.53 0.53 0.50 0.49 0.53 

Income Low 0.52 0.49 0.52 0.52 0.46 0.58 
Income Medium High 0.52 0.51 0.52 0.49 0.49 0.50 
Employment Students 0.49 0.49 0.50 0.47 0.47 0.49 
Employment Workers 0.52 0.51 0.52 0.48 0.47 0.53 

Age 18-24 0.51 0.49 0.51 0.50 0.44 0.57 
Age 25-34 0.53 0.50 0.54 0.48 0.44 0.55 
Age 35-44 0.53 0.46 0.54 0.53 0.45 0.60 

Healthy 0.53 0.51 0.52 0.51 0.49 0.55 
DA (n = 42) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.51 0.50 0.53 0.52 0.51 0.52 

Gender Male 0.48 0.44 0.51 0.51 0.48 0.51 
Gender Female 0.50 0.50 0.51 0.52 0.51 0.53 

Income Low 0.49 0.44 0.54 0.55 0.52 0.56 
Income Medium High 0.49 0.49 0.50 0.50 0.49 0.49 
Employment Students 0.46 0.47 0.48 0.49 0.49 0.49 
Employment Workers 0.49 0.48 0.52 0.50 0.48 0.51 

Age 18-24 0.49 0.46 0.52 0.52 0.48 0.54 
Age 25-34 0.49 0.47 0.53 0.52 0.49 0.54 
Age 35-44 0.46 0.42 0.54 0.54 0.50 0.56 

Healthy 0.50 0.48 0.53 0.52 0.50 0.53 
DA SMOTE (n = 42) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.53 0.53 0.53 0.43 0.41 0.53 

Gender Male 0.50 0.47 0.50 0.48 0.45 0.50 
Gender Female 0.51 0.51 0.51 0.46 0.45 0.51 

Income Low 0.52 0.49 0.53 0.46 0.39 0.59 
Income Medium High 0.51 0.50 0.51 0.48 0.48 0.49 
Employment Students 0.48 0.48 0.49 0.45 0.45 0.49 
Employment Workers 0.51 0.50 0.51 0.41 0.39 0.52 

Age 18-24 0.52 0.50 0.52 0.46 0.40 0.58 
Age 25-34 0.52 0.50 0.52 0.41 0.38 0.51 
Age 35-44 0.51 0.48 0.53 0.47 0.43 0.55 

Healthy 0.52 0.49 0.53 0.42 0.38 0.55 
DAW (n = 31) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.49 0.47 0.52 0.52 0.51 0.53 

Gender Male 0.44 0.40 0.49 0.52 0.47 0.53 
Gender Female 0.46 0.45 0.47 0.50 0.48 0.50 
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Income Low 0.49 0.42 0.56 0.53 0.48 0.55 
Income Medium High 0.48 0.48 0.49 0.47 0.46 0.47 
Employment Students 0.46 0.46 0.48 0.49 0.49 0.50 
Employment Workers 0.45 0.42 0.50 0.49 0.47 0.50 

Age 18-24 0.48 0.44 0.54 0.49 0.46 0.52 
Age 25-34 0.48 0.44 0.54 0.49 0.46 0.52 
Age 35-44 0.50 0.42 0.58 0.56 0.49 0.58 
Age 45-64 0.39 0.37 0.39 0.48 0.43 0.49 

Healthy 0.49 0.46 0.54 0.54 0.52 0.55 
DAW SMOTE (n = 31) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.52 0.51 0.52 0.41 0.38 0.55 

Gender Male 0.46 0.42 0.48 0.53 0.49 0.55 
Gender Female 0.48 0.47 0.48 0.40 0.39 0.49 

Income Low 0.51 0.47 0.53 0.48 0.38 0.62 
Income Medium High 0.51 0.50 0.51 0.42 0.42 0.45 
Employment Students 0.48 0.47 0.49 0.44 0.44 0.48 
Employment Workers 0.48 0.47 0.49 0.42 0.37 0.55 

Age 18-24 0.51 0.48 0.52 0.46 0.39 0.58 
Age 25-34 0.51 0.48 0.52 0.46 0.39 0.58 
Age 35-44 0.52 0.45 0.55 0.57 0.49 0.60 

Healthy 0.53 0.51 0.53 0.42 0.37 0.56 
DW (n = 44) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.48 0.46 0.51 0.49 0.47 0.49 

Gender Male 0.49 0.43 0.52 0.48 0.43 0.49 
Gender Female 0.44 0.44 0.45 0.49 0.47 0.49 

Income Low 0.46 0.42 0.52 0.49 0.45 0.54 
Income Medium High 0.48 0.48 0.51 0.49 0.48 0.50 
Employment Students 0.47 0.46 0.48 0.51 0.50 0.52 
Employment Workers 0.50 0.47 0.53 0.50 0.48 0.51 

Age 18-24 0.49 0.44 0.56 0.51 0.47 0.53 
Age 25-34 0.46 0.45 0.50 0.48 0.46 0.50 
Age 35-44 0.49 0.43 0.52 0.52 0.47 0.52 

Healthy 0.34 0.35 0.39 0.49 0.46 0.53 
DW SMOTE (n = 44) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.48 0.46 0.48 0.50 0.49 0.50 

Gender Male 0.46 0.42 0.48 0.46 0.43 0.46 
Gender Female 0.45 0.44 0.45 0.50 0.48 0.49 

Income Low 0.49 0.46 0.50 0.52 0.49 0.52 
Income Medium High 0.50 0.49 0.51 0.50 0.50 0.50 
Employment Students 0.47 0.47 0.48 0.49 0.49 0.50 
Employment Workers 0.50 0.48 0.51 0.49 0.48 0.49 

Age 18-24 0.50 0.46 0.52 0.52 0.49 0.52 



 348 

Age 25-34 0.50 0.49 0.52 0.48 0.46 0.49 
Age 35-44 0.48 0.43 0.51 0.51 0.46 0.50 

Healthy 0.49 0.48 0.50 0.48 0.46 0.48 
DEmpatica (n = 27) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.46 0.46 0.48 0.49 0.48 0.51 

Gender Male 0.46 0.42 0.53 0.58 0.56 0.60 
Gender Female 0.44 0.44 0.46 0.46 0.46 0.48 

Income Low 0.50 0.45 0.57 0.51 0.47 0.53 
Income Medium High 0.36 0.37 0.40 0.42 0.42 0.44 
Employment Students 0.47 0.46 0.50 0.47 0.47 0.48 
Employment Workers 0.42 0.42 0.45 0.45 0.44 0.46 

Age 18-24 0.54 0.41 0.64 0.56 0.46 0.60 
Age 25-34 0.47 0.44 0.53 0.49 0.44 0.54 
Age 35-44 0.44 0.40 0.50 0.53 0.48 0.55 

Healthy 0.48 0.45 0.54 0.50 0.48 0.54 
DEmpatica SMOTE (n = 27) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.47 0.47 0.49 0.49 0.49 0.51 

Gender Male 0.53 0.50 0.54 0.53 0.51 0.55 
Gender Female 0.46 0.46 0.49 0.47 0.47 0.48 

Income Low 0.54 0.51 0.54 0.52 0.49 0.52 
Income Medium High 0.38 0.38 0.40 0.42 0.42 0.44 
Employment Students 0.50 0.49 0.52 0.48 0.48 0.49 
Employment Workers 0.42 0.42 0.43 0.43 0.43 0.45 

Age 18-24 0.51 0.43 0.52 0.56 0.46 0.60 
Age 25-34 0.49 0.46 0.51 0.50 0.44 0.54 
Age 35-44 0.46 0.45 0.46 0.50 0.46 0.49 

Healthy 0.51 0.50 0.51 0.52 0.50 0.53 
 

SDA (n = 34) RF SVM 
Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.54 0.52 0.56 0.56 0.54 0.57 

Gender Male 0.43 0.36 0.54 0.45 0.39 0.53 
Gender Female 0.55 0.55 0.56 0.54 0.54 0.54 

Income Low 0.57 0.52 0.60 0.57 0.54 0.58 
Income Medium High 0.52 0.51 0.53 0.50 0.50 0.51 
Employment Students 0.57 0.57 0.59 0.56 0.56 0.57 
Employment Workers 0.45 0.39 0.56 0.47 0.42 0.53 

Age 18-24 0.52 0.49 0.57 0.56 0.54 0.57 
Age 25-34 0.57 0.52 0.61 0.58 0.55 0.60 
Age 35-44 0.59 0.43 0.69 0.59 0.45 0.65 

Healthy 0.50 0.45 0.55 0.56 0.53 0.58 
SDA SMOTE (n = 34) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
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Full 0.55 0.54 0.55 0.50 0.47 0.56 
Gender Male 0.42 0.36 0.49 0.47 0.38 0.60 

Gender Female 0.56 0.55 0.57 0.49 0.49 0.51 
Income Low 0.59 0.57 0.61 0.48 0.43 0.59 

Income Medium High 0.54 0.52 0.55 0.43 0.44 0.49 
Employment Students 0.59 0.58 0.60 0.50 0.51 0.54 
Employment Workers 0.49 0.46 0.54 0.47 0.40 0.59 

Age 18-24 0.58 0.56 0.60 0.48 0.43 0.58 
Age 25-34 0.57 0.53 0.58 0.46 0.40 0.57 
Age 35-44 0.63 0.51 0.68 0.59 0.41 0.70 

Healthy 0.52 0.50 0.53 0.49 0.44 0.59 
SDAW (n = 27) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.54 0.50 0.57 0.55 0.53 0.56 

Gender Male 0.74 0.45 0.81 0.71 0.45 0.74 
Gender Female 0.53 0.52 0.54 0.49 0.49 0.50 

Income Low 0.57 0.51 0.63 0.59 0.56 0.61 
Income Medium High 0.53 0.51 0.55 0.52 0.51 0.54 
Employment Students 0.55 0.55 0.57 0.53 0.53 0.53 
Employment Workers 0.49 0.40 0.60 0.53 0.46 0.58 

Age 18-24 0.58 0.54 0.61 0.58 0.58 0.59 
Age 25-34 0.61 0.57 0.62 0.52 0.51 0.54 
Age 35-44 0.69 0.44 0.78 0.67 0.48 0.71 

Healthy 0.49 0.42 0.58 0.52 0.46 0.57 
SDAW SMOTE (n = 27) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.58 0.56 0.59 0.47 0.41 0.59 

Gender Male 0.71 0.46 0.74 0.75 0.45 0.83 
Gender Female 0.55 0.54 0.57 0.43 0.44 0.47 

Income Low 0.59 0.55 0.61 0.49 0.39 0.63 
Income Medium High 0.57 0.55 0.58 0.37 0.36 0.50 
Employment Students 0.59 0.57 0.60 0.47 0.48 0.51 
Employment Workers 0.54 0.48 0.57 0.50 0.38 0.63 

Age 18-24 0.61 0.56 0.64 0.42 0.41 0.52 
Age 25-34 0.62 0.57 0.65 0.43 0.43 0.50 
Age 35-44 0.70 0.49 0.76 0.69 0.44 0.78 

Healthy 0.56 0.52 0.58 0.48 0.39 0.62 
SDW (n = 34) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.50 0.46 0.57 0.52 0.49 0.54 

Gender Male 0.57 0.48 0.63 0.56 0.47 0.61 
Gender Female 0.46 0.45 0.49 0.46 0.45 0.51 

Income Low 0.52 0.43 0.62 0.53 0.44 0.61 
Income Medium High 0.42 0.42 0.45 0.48 0.47 0.49 
Employment Students 0.50 0.49 0.53 0.52 0.52 0.53 
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Employment Workers 0.57 0.43 0.55 0.49 0.44 0.55 
Age 18-24 0.54 0.50 0.59 0.52 0.50 0.54 
Age 25-34 0.49 0.48 0.52 0.48 0.47 0.49 
Age 35-44 0.53 0.44 0.60 0.50 0.40 0.56 

Healthy 0.61 0.48 0.66 0.54 0.49 0.57 
SDW SMOTE (n = 34) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.54 0.51 0.55 0.44 0.37 0.58 

Gender Male 0.60 0.51 0.63 0.44 0.37 0.54 
Gender Female 0.48 0.47 0.49 0.42 0.40 0.52 

Income Low 0.57 0.51 0.60 0.50 0.39 0.64 
Income Medium High 0.47 0.46 0.48 0.41 0.41 0.46 
Employment Students 0.52 0.51 0.55 0.49 0.49 0.51 
Employment Workers 0.51 0.48 0.53 0.44 0.37 0.58 

Age 18-24 0.56 0.51 0.59 0.42 0.38 0.54 
Age 25-34 0.51 0.50 0.53 0.40 0.40 0.48 
Age 35-44 0.67 0.58 0.66 0.48 0.38 0.59 

Healthy 0.54 0.50 0.56 0.47 0.38 0.62 
SDS (n = 27) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.54 0.51 0.57 0.52 0.50 0.53 

Gender Male 0.75 0.45 0.82 0.74 0.45 0.82 
Gender Female 0.52 0.52 0.54 0.49 0.49 0.49 

Income Low 0.59 0.52 0.65 0.57 0.53 0.59 
Income Medium High 0.54 0.52 0.57 0.52 0.51 0.54 
Employment Students 0.56 0.55 0.58 0.52 0.52 0.53 
Employment Workers 0.49 0.40 0.60 0.53 0.47 0.58 

Age 18-24 0.52 0.50 0.56 0.54 0.53 0.54 
Age 25-34 0.57 0.52 0.59 0.49 0.49 0.52 
Age 35-44 0.69 0.44 0.78 0.68 0.44 0.76 

Healthy 0.47 0.46 0.50 0.49 0.49 0.51 
SDS SMOTE (n = 27) RF SVM 

Items F1-Weighted F1-Macro Accuracy F1-Weighted F1-Macro Accuracy 
Full 0.57 0.55 0.57 0.50 0.48 0.54 

Gender Male 0.66 0.45 0.67 0.72 0.44 0.78 
Gender Female 0.53 0.52 0.55 0.50 0.50 0.51 

Income Low 0.62 0.58 0.63 0.54 0.50 0.58 
Income Medium High 0.57 0.54 0.59 0.48 0.48 0.51 
Employment Students 0.58 0.57 0.60 0.53 0.52 0.54 
Employment Workers 0.51 0.47 0.52 0.49 0.39 0.62 

Age 18-24 0.56 0.53 0.59 0.50 0.50 0.53 
Age 25-34 0.59 0.52 0.62 0.54 0.52 0.55 
Age 35-44 0.67 0.50 0.69 0.69 0.44 0.77 

Healthy 0.52 0.50 0.54 0.52 0.50 0.52 
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Table B8: Percentage of Stress in Each Division, Each Dataset  36 

D (n = 22) % Stress 

Full 49 
Gender Male 44 

Gender Female 52 
Income Low 42 

Income Medium High 56 
Employment Students 47 
Employment Workers 54 

Age 18-24 35 
Age 25-34 64 
Age 35-44 41 

Healthy 46 
DECG (n = 42) % Stress 

Full 44 
Gender Male 43 

Gender Female 45 
Income Low 39 

Income Medium High 49 
Employment Students 47 
Employment Workers 43 

Age 18-24 39 
Age 25-34 42 
Age 35-44 38 

Healthy 42 
DA (n = 42)  

Items  
Full 44 

Gender Male 43 
Gender Female 45 

Income Low 39 
Income Medium High 49 
Employment Students 47 
Employment Workers 43 

Age 18-24 39 
Age 25-34 42 
Age 35-44 38 

Healthy 42 
DAW (n = 41) 44 

Full 44 
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Gender Male 41 
Gender Female 45 

Income Low 39 
Income Medium High 48 
Employment Students 47 
Employment Workers 42 

Age 18-24 39 
Age 25-34 42 
Age 35-44 36 

Healthy 41 
DW (n = 44)  

Full 43 
Gender Male 39 

Gender Female 45 
Income Low 39 

Income Medium High 46 
Employment Students 47 
Employment Workers 41 

Age 18-24 39 
Age 25-34 42 
Age 35-44 36 

Healthy 40 
DEmpatica (n = 27)  

Full 45 
Gender Male 40 

Gender Female 49 
Income Low 47 

Income Medium High 50 
Employment Students 47 
Employment Workers 46 

Age 18-24 33 
Age 25-34 59 
Age 35-44 39 

Healthy 42 
SDA (n = 27)  

Full 44 
Gender Male 35 

Gender Female 48 
Income Low 40 

Income Medium High 48 
Employment Students 47 
Employment Workers 39 

Age 18-24 40 
Age 25-34 61 
Age 35-44 31 
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Healthy 41 
SDAW (n = 27)  

Full 42 
Gender Male 18 

Gender Female 49 
Income Low 38 

Income Medium High 44 
Employment Students 48 
Employment Workers 37 

Age 18-24 43 
Age 25-34 55 
Age 35-44 23 

Healthy 37 
SDW (n = 34)  

Full 42 
Gender Male 36 

Gender Female 45 
Income Low 38 

Income Medium High 46 
Employment Students 48 
Employment Workers 41 

Age 18-24 42 
Age 25-34 55 
Age 35-44 35 

Healthy 39 
SDS (n = 27)  

Full 42 
Gender Male 18 

Gender Female 49 
Income Low 38 

Income Medium High 44 
Employment Students 48 
Employment Workers 37 

Age 18-24 43 
Age 25-34 45 
Age 35-44 23 

Healthy 54 
 

Table B9: Precision, Recall, F1-Score and Accuracy for Each User 37 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 

No Stress 0.92 1.00 0.96 0.92 1.00 0.96 11 
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1 

Stress 1.00 0.80 0.89 1.00 0.80 0.89 5 

Accuracy - - 0.94 - - 0.94 16 

Weighted 
Average 

0.94 0.94 0.94 0.94 0.94 0.94 16 

Macro 
Average 

0.96 0.90 0.92 0.96 0.90 0.92 16 

 
 

1 - SMOTE 

No Stress 0.92 1.00 0.96 0.92 1.00 0.96 11 

Stress 1.00 0.80 0.89 1.00 0.80 0.89 5 

Accuracy - - 0.94 - - 0.94 16 

Weighted 
Average 

0.94 0.94 0.94 0.94 0.94 0.94 16 

Macro 
Average 

0.96 0.90 0.92 0.96 0.90 0.92 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
2 

No Stress 0.76 0.93 0.84 0.70 1.00 0.82 14 

Stress 0.67 0.33 0.44 0.00 0.00 0.00 6 

Accuracy - - 0.75 - - 0.70 20 

Weighted 
Average 

0.74 0.75 0.72 0.49 0.70 0.58 20 

Macro 
Average 

0.72 0.63 0.64 0.35 0.50 0.41 20 

 
 

2 - SMOTE 

No Stress 0.79 0.79 0.79 0.70 1.00 0.82 14 

Stress 0.50 0.50 0.50 0.00 0.00 0.00 6 
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Accuracy - - 0.70 - - 0.70 20 

Weighted 
Average 

0.70 0.70 0.70 0.49 0.70 0.58 20 

Macro 
Average 

0.64 0.64 0.64 0.35 0.50 0.41 20 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
3 

No Stress 0.77 0.83 0.80 0.67 0.83 0.74 12 

Stress 0.50 0.40 0.44 0.00 0.00 0.00 5 

Accuracy - - 0.71 - - 0.59 17 

Weighted 
Average 

0.69 0.71 0.70 0.47 0.59 0.52 17 

Macro 
Average 

0.63 0.62 0.62 0.33 0.42 0.37 17 

 
 

3 - SMOTE 

No Stress 0.83 0.83 0.83 0.75 0.75 0.75 12 

Stress 0.60 0.60 0.60 0.40 0.40 0.40 5 

Accuracy - - 0.76 - - 0.65 17 

Weighted 
Average 

0.76 0.76 0.76 0.65 0.65 0.65 17 

Macro 
Average 

0.72 0.72 0.76 0.57 0.57 0.58 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
4 

No Stress 0.69 0.90 0.78 0.71 1.00 0.83 10 

Stress 0.50 0.20 0.29 1.00 0.20 0.33 5 
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Accuracy - - 0.67 - - 0.73 15 

Weighted 
Average 

0.63 0.67 0.62 0.81 0.73 0.67 15 

Macro 
Average 

0.60 0.55 0.53 0.86 0.60 0.58 15 

 
 

4 - SMOTE 

No Stress 0.89 0.80 0.84 0.67 1.00 0.80 10 

Stress 0.67 0.80 0.73 0.00 0.00 0.00 5 

Accuracy - - 0.80 - - 0.67 15 

Weighted 
Average 

0.81 0.80 0.80 0.44 0.67 0.53 15 

Macro 
Average 

0.78 0.80 0.78 0.33 0.50 0.40 15 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
5 

No Stress 0.33 0.33 0.33 0.00 0.00 0.00 6 

Stress 0.50 0.50 0.50 0.57 1.00 0.73 8 

Accuracy - - 0.43 - - 0.57 14 

Weighted 
Average 

0.43 0.43 0.43 0.33 0.57 0.42 14 

Macro 
Average 

0.42 0.42 0.42 0.29 0.50 0.36 14 

 
 

5 - SMOTE 

No Stress 0.33 0.33 0.33 0.00 0.00 0.00 6 

Stress 0.50 0.50 0.50 0.57 1.00 0.73 8 

Accuracy - - 0.43 - - 0.57 14 
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Weighted 
Average 

0.43 0.43 0.43 0.33 0.57 0.42 14 

Macro 
Average 

0.42 0.80 0.78 0.29 0.50 0.36 14 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
6 

No Stress 0.71 0.91 0.80 0.70 0.64 0.67 11 

Stress 0.67 0.33 0.44 0.43 0.50 0.46 6 

Accuracy - - 0.71 - - 0.59 17 

Weighted 
Average 

0.70 0.71 0.67 0.60 0.59 0.59 17 

Macro 
Average 

0.69 0.62 0.62 0.56 0.57 0.56 17 

 
 

6 - SMOTE 

No Stress 0.75 0.82 0.78 0.67 0.55 0.60 11 

Stress 0.60 0.50 0.55 0.38 0.50 0.43 6 

Accuracy - - 0.71 - - 0.53 17 

Weighted 
Average 

0.70 0.71 0.70 0.56 0.53 0.54 17 

Macro 
Average 

0.68 0.66 0.66 0.52 0.52 0.51 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
7 

No Stress 0.71 1.00 0.83 0.71 1.00 0.83 12 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 5 

Accuracy - - 0.71 - - 0.71 17 
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Weighted 
Average 

0.50 0.71 0.58 0.50 0.71 0.58 17 

Macro 
Average 

0.35 0.50 0.41 0.35 0.50 0.41 17 

 
 

7 - SMOTE 

No Stress 0.73 0.92 0.81 0.71 1.00 0.83 12 

Stress 0.50 0.20 0.29 0.00 0.00 0.00 5 

Accuracy - - 0.71 - - 0.71 17 

Weighted 
Average 

0.66 0.71 0.66 0.50 0.71 0.58 17 

Macro 
Average 

0.62 0.56 0.55 0.35 0.50 0.41 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
8 

No Stress 0.62 0.71 0.67 0.62 0.71 0.67 7 

Stress 0.75 0.67 0.71 0.75 0.67 0.71 9 

Accuracy - - 0.69 - - 0.69 16 

Weighted 
Average 

0.70 0.69 0.69 0.70 0.69 0.69 16 

Macro 
Average 

0.69 0.69 0.69 0.69 0.69 0.69 16 

 
 

8 - SMOTE 

No Stress 0.62 0.71 0.67 0.50 0.43 0.46 7 

Stress 0.75 0.67 0.71 0.60 0.67 0.63 9 

Accuracy - - 0.69 - - 0.56 16 
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Weighted 
Average 

0.70 0.69 0.69 0.56 0.56 0.56 16 

Macro 
Average 

0.69 0.69 0.69 0.55 0.55 0.55 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 
9 

No Stress 0.67 0.40 0.50 0.00 0.00 0.00 5 

Stress 0.73 0.89 0.80 0.64 1.00 0.78 9 

Accuracy - - 0.71 - - 0.64 14 

Weighted 
Average 

0.71 0.71 0.69 0.41 0.64 0.50 14 

Macro 
Average 

0.70 0.64 0.65 0.32 0.50 0.39 14 

 
 

9 - SMOTE 

No Stress 0.80 0.80 0.80 0.00 0.00 0.00 5 

Stress 0.89 0.89 0.89 0.62 0.89 0.73 9 

Accuracy - - 0.86 - - 0.57 14 

Weighted 
Average 

0.86 0.86 0.86 0.40 0.57 0.47 14 

Macro 
Average 

0.84 0.84 0.84 0.31 0.44 0.36 14 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

10 

No Stress 0.58 0.88 0.70 0.62 1.00 0.76 8 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 5 

Accuracy - - 0.54 - - 0.62 13 
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Weighted 
Average 

0.36 0.54 0.43 0.38 0.62 0.47 13 

Macro 
Average 

0.29 0.44 0.35 0.31 0.50 0.38 13 

 
 

10 - SMOTE 

No Stress 0.55 0.75 0.63 0.62 1.00 0.76 8 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 5 

Accuracy - - 0.46 - - 0.62 13 

Weighted 
Average 

0.34 0.46 0.39 0.38 0.62 0.47 13 

Macro 
Average 

0.27 0.38 0.32 0.31 0.50 0.38 13 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

11 

No Stress 0.75 1.00 0.86 0.60 1.00 0.75 6 

Stress 1.00 0.60 0.75 1.00 0.20 0.33 5 

Accuracy - - 0.82 - - 0.64 11 

Weighted 
Average 

0.86 0.82 0.81 0.78 0.64 0.56 11 

Macro 
Average 

0.88 0.80 0.80 0.80 0.60 0.54 11 

 
 

11 - SMOTE 

No Stress 0.75 1.00 0.86 0.71 0.83 0.77 6 

Stress 1.00 0.60 0.75 0.75 0.60 0.67 5 

Accuracy - - 0.82 - - 0.73 11 
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Weighted 
Average 

0.86 0.82 0.81 0.73 0.73 0.72 11 

Macro 
Average 

0.88 0.80 0.80 0.73 0.72 0.72 11 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

12 

No Stress 1.00 0.93 0.97 0.83 1.00 0.91 15 

Stress 0.75 1.00 0.86 0.00 0.00 0.00 3 

Accuracy - - 0.94 - - 0.83 18 

Weighted 
Average 

0.96 0.94 0.95 0.69 0.83 0.76 18 

Macro 
Average 

0.88 0.97 0.91 0.42 0.50 0.45 18 

 
 

12 - SMOTE 

No Stress 1.00 0.87 0.93 0.93 0.87 0.90 15 

Stress 0.60 1.00 0.75 0.50 0.67 0.57 3 

Accuracy - - 0.89 - - 0.83 18 

Weighted 
Average 

0.93 0.89 0.90 0.86 0.83 0.84 18 

Macro 
Average 

0.88 0.93 0.84 0.71 0.77 0.73 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

13 

No Stress 0.71 0.91 0.80 0.69 1.00 0.81 11 

Stress 0.50 0.20 0.29 0.00 0.00 0.00 5 

Accuracy - - 0.69 - - 0.69 16 
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Weighted 
Average 

0.65 0.69 0.64 0.47 0.69 0.56 16 

Macro 
Average 

0.61 0.55 0.54 0.34 0.50 0.41 16 

 
 

13 - SMOTE 

No Stress 0.80 0.73 0.76 0.90 0.82 0.86 11 

Stress 0.50 0.60 0.55 0.67 0.80 0.73 5 

Accuracy - - 0.69 - - 0.81 16 

Weighted 
Average 

0.71 0.69 0.69 0.83 0.81 0.82 16 

Macro 
Average 

0.65 0.66 0.65 0.78 0.81 0.79 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

14 

No Stress 0.25 0.25 0.25 0.33 0.25 0.29 4 

Stress 0.79 0.79 0.79 0.80 0.86 0.83 14 

Accuracy - - 0.67 - - 0.72 18 

Weighted 
Average 

0.67 0.67 0.67 0.70 0.72 0.71 18 

Macro 
Average 

0.52 0.52 0.52 0.57 0.55 0.56 18 

 
 

14 - SMOTE 

No Stress 0.14 0.25 0.18 0.17 0.25 0.20 4 

Stress 0.73 0.57 0.64 0.75 0.64 0.69 14 

Accuracy - - 0.50 - - 0.56 18 
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Weighted 
Average 

0.60 0.50 0.54 0.62 0.56 0.58 18 

Macro 
Average 

0.44 0.41 0.41 0.46 0.45 0.45 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

15 

No Stress 0.80 0.80 0.80 0.82 0.90 0.86 10 

Stress 0.71 0.71 0.71 0.83 0.71 0.77 7 

Accuracy - - 0.76 - - 0.82 17 

Weighted 
Average 

0.76 0.76 0.76 0.82 0.82 0.82 17 

Macro 
Average 

0.76 0.76 0.76 0.83 0.81 0.81 17 

 
 

15 - SMOTE 

No Stress 0.78 0.70 0.74 0.82 0.90 0.86 10 

Stress 0.62 0.71 0.67 0.83 0.71 0.77 7 

Accuracy - - 0.71 - - 0.82 17 

Weighted 
Average 

0.71 0.71 0.71 0.82 0.82 0.82 17 

Macro 
Average 

0.70 0.71 0.70 0.83 0.81 0.81 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

16 

No Stress 0.78 1.00 0.88 0.78 1.00 0.88 14 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 4 

Accuracy - - 0.78 - - 0.78 18 
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Weighted 
Average 

0.60 0.78 0.68 0.60 0.78 0.68 18 

Macro 
Average 

0.39 0.50 0.44 0.39 0.50 0.44 18 

 
 

16 - SMOTE 

No Stress 0.80 0.86 0.83 0.78 1.00 0.88 14 

Stress 0.33 0.25 0.29 0.00 0.00 0.00 4 

Accuracy - - 0.72 - - 0.78 18 

Weighted 
Average 

0.70 0.72 0.71 0.60 0.78 0.68 18 

Macro 
Average 

0.57 0.55 0.56 0.39 0.50 0.44 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

17 

No Stress 0.75 0.50 0.60 0.67 0.33 0.44 6 

Stress 0.79 0.92 0.85 0.73 0.92 0.81 12 

Accuracy - - 0.78 - - 0.72 18 

Weighted 
Average 

0.77 0.78 0.76 0.71 0.72 0.69 18 

Macro 
Average 

0.77 0.71 0.72 0.70 0.62 0.63 18 

 
 

17 - SMOTE 

No Stress 0.60 0.50 0.55 0.67 0.67 0.67 6 

Stress 0.77 0.83 0.80 0.83 0.83 0.83 12 

Accuracy - - 0.72 - - 0.78 18 
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Weighted 
Average 

0.71 0.72 0.72 0.78 0.78 0.78 18 

Macro 
Average 

0.68 0.67 0.67 0.75 0.75 0.75 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

18 

No Stress 0.77 1.00 0.87 0.77 1.00 0.87 10 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 3 

Accuracy - - 0.77 - - 0.77 13 

Weighted 
Average 

0.59 0.77 0.67 0.59 0.77 0.67 13 

Macro 
Average 

0.38 0.50 0.43 0.38 0.50 0.42 13 

 
 

18 - SMOTE 

No Stress 0.73 0.80 0.76 0.77 1.00 0.87 10 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 3 

Accuracy - - 0.62 - - 0.77 13 

Weighted 
Average 

0.56 0.62 0.59 0.59 0.77 0.67 13 

Macro 
Average 

0.36 0.40 0.38 0.38 0.50 0.43 13 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

19 

No Stress 0.60 0.43 0.50 0.71 0.71 0.71 7 

Stress 0.67 0.80 0.73 0.80 0.80 0.80 10 

Accuracy - - 0.65 - - 0.76 17 
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Weighted 
Average 

0.64 0.65 0.63 0.76 0.76 0.76 17 

Macro 
Average 

0.63 0.61 0.61 0.76 0.76 0.76 17 

 
 

19 - SMOTE 

No Stress 0.60 0.43 0.50 0.71 0.71 0.71 7 

Stress 0.67 0.80 0.73 0.80 0.80 0.80 10 

Accuracy - - 0.65 - - 0.76 17 

Weighted 
Average 

0.64 0.65 0.63 0.76 0.76 0.76 17 

Macro 
Average 

0.63 0.61 0.61 0.76 0.76 0.76 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

20 

No Stress 0.67 0.60 0.63 0.56 0.50 0.53 10 

Stress 0.56 0.62 0.59 0.44 0.50 0.47 8 

Accuracy - - 0.61 - - 0.50 18 

Weighted 
Average 

0.62 0.61 0.61 0.51 0.50 0.50 18 

Macro 
Average 

0.61 0.61 0.61 0.50 0.50 0.50 18 

 
 

20 - SMOTE 

No Stress 0.70 0.70 0.70 0.62 1.00 0.77 10 

Stress 0.62 0.62 0.62 1.00 0.25 0.40 8 

Accuracy - - 0.67 - - 0.67 18 
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Weighted 
Average 

0.66 0.66 0.66 0.79 0.67 0.61 18 

Macro 
Average 

0.67 0.67 0.67 0.81 0.62 0.58 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

21 

No Stress 0.60 0.60 0.60 0.73 0.80 0.76 10 

Stress 0.00 .00 .00 0.33 0.25 0.29 4 

Accuracy - - 0.43 - - 0.64 14 

Weighted 
Average 

0.43 0.43 0.43 0.61 0.64 0.63 14 

Macro 
Average 

0.30 0.30 0.30 0.53 0.53 0.52 14 

 
 

21 - SMOTE 

No Stress 0.67 0.60 0.63 0.73 0.80 0.76 10 

Stress 0.20 0.25 0.22 0.33 0.25 0.29 4 

Accuracy - - 0.50 - - 0.64 14 

Weighted 
Average 

0.53 0.50 0.51 0.61 0.64 0.63 14 

Macro 
Average 

0.43 0.42 0.43 0.53 0.53 0.52 14 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

22 

No Stress 0.83 0.83 0.83 0.71 1.00 0.83 12 

Stress 0.60 0.60 0.60 0.00 0.00 0.00 5 

Accuracy - - 0.76 - - 0.71 17 
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Weighted 
Average 

0.76 0.76 0.76 0.50 0.71 0.58 17 

Macro 
Average 

0.72 0.72 0.72 0.35 0.50 0.41 17 

 
 

22 - SMOTE 

No Stress 0.78 0.58 0.67 0.71 1.00 0.83 12 

Stress 0.38 0.60 0.46 0.00 0.00 0.00 5 

Accuracy - - 0.59 - - 0.71 17 

Weighted 
Average 

0.66 0.59 0.61 0.50 0.71 0.58 17 

Macro 
Average 

0.58 0.59 0.56 0.35 0.50 0.41 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

23 

No Stress 0.81 0.93 0.87 0.82 1.00 0.90 14 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 3 

Accuracy - - 0.76 - - 0.82 17 

Weighted 
Average 

0.67 0.76 0.71 0.68 0.82 0.74 17 

Macro 
Average 

0.41 0.46 0.43 0.41 0.50 0.45 17 

 
 

23 - SMOTE 

No Stress 0.80 0.86 0.83 0.82 1.00 0.90 14 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 3 

Accuracy - - 0.71 - - 0.82 17 
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Weighted 
Average 

0.66 0.71 0.68 0.68 0.82 0.74 17 

Macro 
Average 

0.40 0.43 0.41 0.41 0.50 0.45 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

24 

No Stress 0.69 0.85 0.76 0.72 1.00 0.84 13 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 5 

Accuracy - - 0.61 - - 0.72 18 

Weighted 
Average 

0.50 0.61 0.55 0.52 0.72 0.61 18 

Macro 
Average 

0.34 0.42 0.38 0.36 0.50 0.42 18 

 
 

24 - SMOTE 

No Stress 0.64 0.69 0.67 0.83 0.77 0.80 13 

Stress 0.00 0.00 0.00 0.50 0.60 0.55 5 

Accuracy - - 0.50 - - 0.72 18 

Weighted 
Average 

0.46 0.50 0.48 0.74 0.72 0.73 18 

Macro 
Average 

0.32 0.35 0.33 0.67 0.68 0.67 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

25 

No Stress 1.00 0.60 0.75 0.50 0.60 0.55 5 

Stress 0.83 1.00 0.91 0.78 0.70 0.74 10 

Accuracy - - 0.87 - - 0.67 15 
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Weighted 
Average 

0.89 0.87 0.86 0.69 0.67 0.67 15 

Macro 
Average 

0.92 0.80 0.83 0.64 0.65 0.64 15 

 
 

25 - SMOTE 

No Stress 1.00 0.60 0.75 0.43 0.60 0.50 5 

Stress 0.83 1.00 0.91 0.75 0.60 0.67 10 

Accuracy - - 0.87 - - 0.60 15 

Weighted 
Average 

0.89 0.87 0.86 0.64 0.60 0.61 15 

Macro 
Average 

0.92 0.80 0.83 0.59 0.60 0.58 15 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

26 

No Stress 0.67 0.86 0.75 0.62 0.71 0.67 7 

Stress 0.88 0.70 0.78 0.78 0.70 0.74 10 

Accuracy - - 0.76 - - 0.71 17 

Weighted 
Average 

0.79 0.76 0.77 0.71 0.71 0.71 17 

Macro 
Average 

0.77 0.78 0.76 0.70 0.71 0.70 17 

 
 

26 - SMOTE 

No Stress 0.60 0.86 0.71 0.67 0.86 0.75 7 

Stress 0.86 0.60 0.71 0.88 0.70 0.78 10 

Accuracy - - 0.71 - - 0.76 17 
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Weighted 
Average 

0.75 0.71 0.71 0.79 0.76 0.77 17 

Macro 
Average 

0.73 0.73 0.71 0.77 0.78 0.76 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

27 

No Stress 1.00 0.33 0.50 1.00 0.33 0.50 3 

Stress 0.88 1.00 0.93 0.88 1.00 0.93 14 

Accuracy - - 0.88 - - 0.88 17 

Weighted 
Average 

0.90 0.88 0.86 0.90 0.88 0.86 17 

Macro 
Average 

0.94 0.67 0.72 0.94 0.67 0.72 17 

 
 

27 - SMOTE 

No Stress 0.33 0.33 0.33 0.00 0.00 0.00 3 

Stress 0.86 0.86 0.86 0.82 1.00 0.90 14 

Accuracy - - 0.76 - - 0.82 17 

Weighted 
Average 

0.76 0.76 0.76 0.68 0.82 0.74 17 

Macro 
Average 

0.60 0.60 0.60 0.41 0.50 0.74 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

28 

No Stress 0.50 0.33 0.40 0.40 0.33 0.36 6 

Stress 0.56 0.71 0.63 0.50 0.57 0.53 7 

Accuracy - - 0.54 - - 0.46 13 
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Weighted 
Average 

0.53 0.54 0.52 0.45 0.46 0.46 13 

Macro 
Average 

0.53 0.52 0.51 0.45 0.45 0.45 13 

 
 

28 - SMOTE 

No Stress 0.67 0.33 0.44 0.40 0.33 0.36 6 

Stress 0.60 0.86 0.71 0.50 0.57 0.53 7 

Accuracy - - 0.62 - - 0.46 13 

Weighted 
Average 

0.63 0.62 0.59 0.45 0.46 0.46 13 

Macro 
Average 

0.63 0.60 0.58 0.45 0.45 0.45 13 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

29 

No Stress 0.00 0.00 0.00 0.00 0.00 0.00 4 

Stress 0.75 0.92 0.83 0.75 0.92 0.83 13 

Accuracy - - 0.71 - - 0.71 17 

Weighted 
Average 

0.57 0.71 0.63 0.57 0.71 0.63 17 

Macro 
Average 

0.38 0.46 0.41 0.38 0.46 0.41 17 

 
 

29 - SMOTE 

No Stress 0.00 0.00 0.00 0.75 0.75 0.75 4 

Stress 0.75 0.92 0.83 0.92 0.92 0.92 13 

Accuracy - - 0.71 - - 0.88 17 
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Weighted 
Average 

0.57 0.71 0.63 0.88 0.88 0.88 17 

Macro 
Average 

0.38 0.46 0.41 0.84 0.84 0.84 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

30 

No Stress 0.40 0.33 0.36 0.40 0.33 0.36 6 

Stress 0.69 0.75 0.72 0.69 0.75 0.72 12 

Accuracy - - 0.61 - - 0.61 18 

Weighted 
Average 

0.59 0.61 0.60 0.59 0.61 0.60 18 

Macro 
Average 

0.55 0.54 0.54 0.55 0.54 0.54 18 

 
 

30 - SMOTE 

No Stress 0.38 0.50 0.43 0.38 0.50 0.43 6 

Stress 0.70 0.58 0.64 0.70 0.58 0.64 12 

Accuracy - - 0.56 - - 0.56 18 

Weighted 
Average 

0.59 0.56 0.57 0.59 0.56 0.57 18 

Macro 
Average 

0.54 0.54 0.53 0.54 0.54 0.53 18 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

31 

No Stress 0.67 0.86 0.75 0.62 0.71 0.67 7 

Stress 0.88 0.70 0.78 0.78 0.70 0.74 10 

Accuracy - - 0.76 - - 0.71 17 
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Weighted 
Average 

0.79 0.76 0.77 0.71 0.71 0.71 17 

Macro 
Average 

0.77 0.78 0.76 0.70 0.71 0.70 17 

 
 

31 - SMOTE 

No Stress 0.60 0.86 0.71 0.67 0.86 0.75 7 

Stress 0.86 0.60 0.71 0.88 0.70 0.78 10 

Accuracy - - 0.71 - - 0.76 17 

Weighted 
Average 

0.75 0.71 0.71 0.79 0.76 0.77 17 

Macro 
Average 

0.73 0.73 0.71 0.77 0.78 0.76 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

32 

No Stress 0.73 0.85 0.79 0.71 0.77 0.74 13 

Stress 0.50 0.33 0.40 0.40 0.33 0.36 6 

Accuracy - - 0.68 - - 0.63 19 

Weighted 
Average 

0.66 0.68 0.66 0.62 0.63 0.62 19 

Macro 
Average 

0.62 0.59 0.59 0.56 0.55 0.55 19 

 
 

32 - SMOTE 

No Stress 0.83 0.77 0.80 0.82 0.69 0.75 13 

Stress 0.57 0.67 0.62 0.50 0.67 0.57 6 

Accuracy - - 0.74 - - 0.68 19 
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Weighted 
Average 

0.75 0.74 0.74 0.72 0.68 0.66 19 

Macro 
Average 

0.70 0.72 0.71 0.66 0.68 0.66 19 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

33 

No Stress 0.73 0.92 0.81 0.75 1.00 0.86 12 

Stress 0.00 0.00 0.00 0.00 0.00 0.00 4 

Accuracy - - 0.69 - - 0.75 16 

Weighted 
Average 

0.55 0.69 0.61 0.56 0.75 0.64 16 

Macro 
Average 

0.37 0.46 0.41 0.38 0.50 0.43 16 

 
 

33 - SMOTE 

No Stress 0.85 0.92 0.88 0.75 1.00 0.86 12 

Stress 0.67 0.50 0.57 0.00 0.00 0.00 4 

Accuracy - - 0.81 - - 0.75 16 

Weighted 
Average 

0.80 0.81 0.80 0.56 0.75 0.64 16 

Macro 
Average 

0.76 0.71 0.73 0.38 0.50 0.43 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

34 

No Stress 0.25 0.17 0.20 0.00 0.00 0.00 6 

Stress 0.58 0.70 0.64 0.62 1.00 0.77 10 

Accuracy - - 0.50 - - 0.62 16 
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Weighted 
Average 

0.46 0.50 0.47 0.39 0.62 0.48 16 

Macro 
Average 

0.42 0.43 0.42 0.31 0.50 0.38 16 

 
 

34 - SMOTE 

No Stress 0.57 0.67 0.62 0.33 0.33 0.33 6 

Stress 0.78 0.70 0.74 0.60 0.60 0.60 10 

Accuracy - - 0.69 - - 0.50 16 

Weighted 
Average 

0.70 0.69 0.69 0.50 0.50 0.50 16 

Macro 
Average 

0.67 0.68 0.68 0.47 0.47 0.47 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

35 

No Stress 0.56 0.62 0.59 0.53 1.00 0.70 8 

Stress 0.50 0.43 0.46 0.00 0.00 0.00 7 

Accuracy - - 0.53 - - 0.53 15 

Weighted 
Average 

0.53 0.53 0.53 0.28 0.53 0.37 15 

Macro 
Average 

0.53 0.53 0.52 0.27 0.50 0.35 15 

 
 

35 - SMOTE 

No Stress 0.60 0.75 0.67 0.67 0.75 0.71 8 

Stress 0.60 0.43 0.50 0.67 0.57 0.62 7 

Accuracy - - 0.60 - - 0.67 15 
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Weighted 
Average 

0.60 0.59 0.58 0.67 0.67 0.66 15 

Macro 
Average 

0.60 0.60 0.59 0.67 0.66 0.66 15 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

36 

No Stress 0.75 0.90 0.82 0.62 1.00 0.77 10 

Stress 0.75 0.50 0.60 0.00 0.00 0.00 6 

Accuracy - - 0.75 - - 0.62 16 

Weighted 
Average 

0.75 0.75 0.74 0.39 0.62 0.48 16 

Macro 
Average 

0.75 0.70 0.71 0.31 0.50 0.38 16 

 
 

36 - SMOTE 

No Stress 0.75 0.60 0.67 0.62 1.00 0.77 10 

Stress 0.50 0.67 0.57 0.00 0.00 0.00 6 

Accuracy - - 0.62 - - 0.62 16 

Weighted 
Average 

0.66 0.62 0.63 0.39 0.62 0.48 16 

Macro 
Average 

0.62 0.63 0.62 0.31 0.50 0.38 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

37 

No Stress 0.00 0.00 0.00 0.00 0.00 0.00 5 

Stress 0.62 0.73 0.67 0.67 0.91 0.77 11 

Accuracy - - 0.50 - - 0.62 16 
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Weighted 
Average 

0.42 0.50 0.46 0.46 0.62 0.53 16 

Macro 
Average 

0.31 0.36 0.33 0.33 0.45 0.38 16 

 
 

37 - SMOTE 

No Stress 0.17 0.20 0.18 0.20 0.20 0.20 5 

Stress 0.60 0.55 0.57 0.64 0.64 0.64 11 

Accuracy - - 0.44 - - 0.50 16 

Weighted 
Average 

0.46 0.44 0.45 0.50 0.50 0.50 16 

Macro 
Average 

0.38 0.37 0.38 0.42 0.42 0.42 16 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

38 

No Stress 0.75 0.43 0.55 0.67 0.57 0.62 7 

Stress 0.76 0.93 0.84 0.80 0.86 0.83 14 

Accuracy - - 0.76 - - 0.76 21 

Weighted 
Average 

0.76 0.76 0.74 0.76 0.76 0.76 21 

Macro 
Average 

0.76 0.68 0.69 0.73 0.71 0.72 21 

 
 

38 - SMOTE 

No Stress 0.60 0.43 0.50 0.62 0.71 0.67 7 

Stress 0.75 0.86 0.80 0.85 0.79 0.81 14 

Accuracy - - 0.71 - - 0.76 21 



 379 

Weighted 
Average 

0.70 0.71 0.70 0.77 0.76 0.77 21 

Macro 
Average 

0.8 0.64 0.65 0.74 0.75 0.74 21 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

39 

No Stress 0.62 1.00 0.77 0.59 1.00 0.74 10 

Stress 1.00 0.14 0.25 0.00 0.00 0.00 7 

Accuracy - - 0.65 - - 0.59 17 

Weighted 
Average 

0.78 0.65 0.56 0.35 0.59 0.44 17 

Macro 
Average 

0.81 0.57 0.51 0.29 0.50 0.37 17 

 
 

39 - SMOTE 

No Stress 0.62 0.80 0.70 0.59 1.00 0.74 10 

Stress 0.50 0.29 0.36 0.00 0.00 0.00 7 

Accuracy - - 0.59 - - 0.59 17 

Weighted 
Average 

0.57 0.59 0.56 0.35 0.59 0.44 17 

Macro 
Average 

0.56 0.54 0.53 0.29 0.50 0.37 17 

User RF SVM Support 

 Items Precision Recall F1-Score Precision Recall F1-Score  
 
 
 

40 

No Stress 0.88 1.00 0.94 0.86 0.80 0.83 15 

Stress 1.00 0.33 0.50 0.25 0.33 0.29 3 

Accuracy - - 0.89 - - 0.72 18 
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Weighted 
Average 

0.90 0.89 0.86 0.76 0.72 0.74 18 

Macro 
Average 

0.94 0.67 0.72 0.55 0.57 0.56 18 

 
 

40- SMOTE 

No Stress 0.87 0.87 0.87 0.88 0.93 0.90 15 

Stress 0.33 0.33 0.33 0.50 0.33 0.40 3 

Accuracy - - 0.78 - - 0.83 18 

Weighted 
Average 

0.78 0.78 0.78 0.81 0.83 0.82 18 

Macro 
Average 

0.60 0.60 0.60 0.69 0.63 0.65 18 

 
Table B10: Generalized Model - RF Feature Importance, D 38 

All 
Feature Values 
MAP                 0.018 
ECG_DC 0.016 
User 0.015 
ECG_AR_AbsolutePower_HF 0.014 
ECG_AR_AbsolutePower_LF 0.014 
dia 0.013 
HRV-1 0.013 
Empatica_AR_RelativePower_LF 0.013 
Empatica_AR_LFHF 0.012 
ECG_Stress Index 0.012 

Gender - Male 
Feature Values 
MAP 0.032 
AW Min HR - Interval 0.027 
Empatica_SampEn 0.021 
Empatica_MSE13 0.018 
Empatica_MSE17         0.017 
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sys                   0.016 
Empatica_MSE3          0.016 
Empatica_MSE2        0.016 
Short Term Min      0.016 
Weight                0.016 

Gender - Female 
Feature Values 
User                         0.038 
Weight                       0.022 
ECG_SNS_Index               0.020 
ECG_DC                      0.019 
ECG_SDNN                    0.019 
ECG_AC                         0.016 
ECG_RMSSD                  0.014 
Empatica_FFT_LFHF            0.014 
ECG_FFT_AbsolutePower_HF     0.014 
ECG_AR_AbsolutePower_HF     0.013 

Income - Low 
Feature Values 
ECG_Dcmod           0.019 
Empatica_MSE2        0.019 
MAP                 0.018 
ECG_RMSSD           0.018 
User                 0.017 
ECG_SDNN            0.017 
ECG_Stress Index    0.016 
Empatica_MSE12      0.016 
Empatica_DC          0.015 
ECG_DC              0.014 

Income Medium High 
Feature Values 
ECG_DC                             0.021 
ECG_SD1SD2                        0.016 
ECG_AC 0.015 
dia                               0.014 
Empatica_DC                      0.014 
Empatica_FFT_RelativePower_VLF     0.014 
HRV-1                             0.014 
ECG_AR_AbsolutePower_HF            0.013 
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Empatica_FFT_AbsolutePower_HF     0.013 
Empatica_FFT_HF                  0.012 

Employment Students 
Feature Values 
User                        0.042 
ECG_RMSSD                    0.023 
MAP                         0.022 
ECG_Dcmod                    0.021 
ECG_Stress Index             0.021 
ECG_DC                       0.020 
ECG_FFT_TotalPower           0.019 
ECG_FFT_AbsolutePower_LF     0.018 
ECG_SNS_Index               0.017 
ECG_AR_AbsolutePower_HF     0.017 

Employment Workers 
Feature Values 
MAP                              0.027 
Weight                             0.017 
sys                              0.015 
AW Max Steps            0.015 
HRV-1                             0.014 
Empatica_FFT_RelativePower_VLF    0.014 
Empatica_MSE11                     0.014 
ECG_DC                           0.014 
Empatica_Max HR                   0.014 
AW Mean Steps             0.014 

Age 18-24 
Feature Values 
Weight                      0.026 
sys                           0.024 
Empatica_Mean line length    0.018 
Empatica_MSE2                 0.016 
ECG_FFT_RelativePower_LF     0.015 
Empatica_Min HR               0.015 
AW Max Steps         0.015 
AW Mean Steps        0.014 
ECG_FFT_LF                  0.014 
ECG_FFT_AbsolutePower_LF     0.014 

Age 25-34 
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Feature Values 
MAP                                0.021 
HRV-1                            0.021 
Weight                           0.021 
Empatica_MSE4                     0.016 
Empatica_FFT_RelativePower_VLF    0.015 
Temp                              0.014 
ECG_SD HR                         0.014 
ECG_DC                            0.013 
ECG_AR_AbsolutePower_LF            0.013 
ECG_AC                                0.013 

Age 35-44 
Feature Values 
Temp                        0.019 
User                      0.018 
ECG_AR_LFHF                 0.016 
ECG_AC                         0.015 
Empatica_MSE15             0.015 
AW Mean Steps     0.015 
ECG_AR_RelativePower_LF     0.015 
Empatica_FFT_HF            0.015 
Empatica_alpha2             0.014 
ECG_DC                    0.014 

Healthy 
Feature Values 
MAP                       0.023 
ECG_DC                      0.017 
ECG_AR_HF                   0.017 
ECG_AR_AbsolutePower_HF      0.015 
Empatica_MSE2                0.014 
ECG_FFT_AbsolutePower_HF     0.014 
AW Min HR        0.014 
Empatica_MSE3               0.014 
sys                         0.013 
ECG_SDNN                     0.013 
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Table B11: Generalized Model - RF Feature Importance, DECG 39 

All 
Feature Values 
User                          0.11 
ECG_DC                       0.049 
ECG_AR_AbsolutePower_HF      0.044 
ECG_Max HR                   0.043 
ECG_FFT_AbsolutePower_HF     0.041 
ECG_SDNN                     0.040 
ECG_AC 0.040 
ECG_Stress Index             0.040 
ECG_FFT_RelativePower_LF     0.039 
ECG_SNS_Index                0.038 

Gender - Male 
Feature Values 
User                        0.137 
ECG_Mean RR                 0.064 
ECG_Mean HR 0.053 
ECG_PNS Index               0.052 
ECG_AR_HF                   0.049 
ECG_SD1SD2                  0.042 
ECG_RMSSD                   0.040 
ECG_AR_AbsolutePower_LF     0.037 
ECG_DC                      0.036 
ECG_AR_AbsolutePower_HF     0.036 

Gender - Female 
Feature Values 
User                         0.067 
ECG_DC                       0.044 
ECG_AC                         0.044 
ECG_AR_AbsolutePower_HF      0.044 
ECG_Stress Index             0.044 
ECG_FFT_AbsolutePower_HF     0.043 
ECG_SDNN                     0.042 
ECG_Max HR                   0.042 
ECG_Mean RR                  0.041 
ECG_SNS_Index                0.041 

Income - Low 
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Feature Values 
User                        0.045 
ECG_Stress Index            0.042 
ECG_DC                      0.042 
ECG_AC 0.041 
ECG_AR_AbsolutePower_HF     0.041 
ECG_Dcmod                   0.039 
ECG_RMSSD                   0.039 
ECG_SD HR                   0.039 
ECG_AR_AbsolutePower_LF     0.039 
ECG_FFT_LFHF                0.039 

Income Medium High 
Feature Values 
User                         0.158 
ECG_DC                       0.052 
ECG_AC 0.045 
ECG_AR_AbsolutePower_LF      0.041 
ECG_SD1SD2                   0.040 
ECG_SDNN                     0.038 
ECG_Mean RR                  0.038 
ECG_Stress Index             0.036 
ECG_FFT_AbsolutePower_HF     0.034 
ECG_SD HR                    0.034 

Employment Students 
Feature Values 
User                         0.094 
ECG_AR_AbsolutePower_HF      0.047 
ECG_RMSSD                    0.042 
ECG_DC                       0.041 
ECG_SD HR                    0.040 
ECG_Stress Index             0.040 
ECG_Dcmod                    0.040 
ECG_FFT_RelativePower_LF     0.039 
ECG_FFT_LFHF                 0.038 
ECG_AC 0.037 

Employment Workers 
Feature Values 
User                        0.110 
ECG_SDNN                    0.044 
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ECG_AR_AbsolutePower_LF     0.041 
ECG_AC 0.040 
ECG_SD1SD2                  0.039 
ECG_Max HR                  0.039 
ECG_DC                      0.039 
ECG_Mean RR                 0.038 
ECG_PNS Index               0.038 
ECG_Stress Index            0.037 

Age 18-24 
Feature Values 
ECG_AR_HF                    0.049 
ECG_SD1SD2                   0.045 
ECG_FFT_HF                   0.045 
ECG_SD HR                    0.043 
ECG_Mean RR                  0.042 
ECG_FFT_AbsolutePower_LF     0.041 
ECG_Mean HR                  0.041 
ECG_AR_AbsolutePower_HF      0.041 
ECG_AC 0.040 
ECG_FFT_LF                   0.040 

Age 25-34 
Feature Values 
User                        0.048 
ECG_DC                      0.042 
ECG_AR_LFHF                 0.042 
ECG_AR_AbsolutePower_HF     0.042 
ECG_FFT_LF                  0.042 
ECG_AR_AbsolutePower_LF     0.042 
ECG_Mean RR                 0.041 
ECG_FFT_LFHF                0.040 
ECG_SNS_Index               0.040 
ECG_AR_RelativePower_LF     0.040 

Age 35-44 
Feature Values 
User                         0.083 
ECG_SD1SD2                   0.047 
ECG_AR_HF                    0.046 
ECG_Mean RR                  0.039 
ECG_AR_RelativePower_LF      0.038 
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ECG_SD HR                    0.038 
ECG_AC                         0.038 
ECG_FFT_RelativePower_LF     0.037 
ECG_DC                       0.036 
ECG_FFT_HF                   0.036 

Healthy 
Feature Values 
User                         0.053 
ECG_AC 0.044 
ECG_DC                       0.043 
ECG_AR_AbsolutePower_HF      0.041 
ECG_FFT_AbsolutePower_HF     0.039 
ECG_SDNN                     0.039 
ECG_SD1SD2                   0.039 
ECG_FFT_LFHF                 0.038 
ECG_FFT_RelativePower_LF     0.038 
ECG_Stress Index             0.038 

 
 

Table B12: Generalized Model - RF Feature Importance, DA 40 

All 
Feature Values 
User                       0.052 
AW Mean Steps     0.033 
HRV-1                      0.033 
ECG_AC 0.033 
AW Mean HR - Interval                               0.033 
AW Min HR - Interval 0.032 
ECG_DC                     0.031 
ECG_SDNN                   0.030 
AW Max Steps      0.030 
ECG_Max HR                 0.029 

Gender - Male 
Feature Values 
User                    0.091 
AW Min HR - Interval 0.046 
ECG_Mean RR             0.036 
ECG_Mean HR             0.036 
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AW Mean HR - Interval                               0.035 
HRV-1                   0.034 
ECG_AR_HF               0.031 
ECG_SD1SD2              0.031 
ECG_PNS Index           0.029 
ECG_RMSSD               0.027 

Gender - Female 
Feature Values 
User                         0.053 
ECG_SDNN                     0.036 
ECG_DC                       0.036 
ECG_FFT_AbsolutePower_HF     0.036 
ECG_AC                         0.035 
ECG_Stress Index             0.034 
ECG_AR_AbsolutePower_HF      0.034 
AW Mean Steps       0.032 
ECG_RMSSD                    0.031 
ECG_SD HR                    0.031 

Income - Low 
Feature Values 
AW Mean Steps     0.035 
User                       0.034 
HRV-1                      0.032 
ECG_AC 0.032 
ECG_Stress Index           0.032 
ECG_DC                     0.030 
AW Min HR - Interval                       0.030 
AW Max Steps      0.030 
ECG_RMSSD                  0.029 
AW Mean HR        0.029 

Income Medium High 
Feature Values 
User                    0.075 
ECG_DC                  0.035 
AW Mean HR - Interval                       0.034 
ECG_AC 0.032 
HRV-1                   0.031 
Short Term Min          0.030 
ECG_SD1SD2              0.030 
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AW Min HR - Interval      0.029 
AW Max HR - Interval 0.028 
ECG_SD HR               0.028 

Employment Students 
Feature Values 
User                        0.116 
ECG_RMSSD                   0.041 
ECG_Stress Index            0.038 
ECG_DC                      0.036 
ECG_SDNN                    0.036 
ECG_Dcmod                   0.036 
ECG_AR_AbsolutePower_HF     0.033 
HRV-1                       0.031 
ECG_AC 0.030 
ECG_SD HR                   0.029 

Employment Workers 
Feature Values 
User                        0.103 
AW Mean HR - Interval 0.039 
HRV-1                       0.034 
AW Min HR - Interval    0.031 
ECG_SDNN                    0.030 
AW Mean Steps      0.029 
ECG_AR_AbsolutePower_LF     0.029 
ECG_RMSSD                   0.028 
ECG_DC                      0.028 
AW Max Steps       0.028 

Age 18-24 
Feature Values 
AW Mean Steps       0.048 
ECG_AR_HF                    0.041 
ECG_FFT_HF                   0.038 
AW Max HR           0.033 
HRV-1                        0.032 
ECG_FFT_LFHF                 0.031 
AW Max Steps        0.031 
ECG_SD1SD2                   0.031 
AW Mean HR - Interval         0.030 
ECG_FFT_RelativePower_LF     0.030 
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Age 25-34 
Feature Values 
HRV-1                       0.041 
User                        0.040 
AW Mean HR - Interval          0.038 
ECG_AR_LFHF                 0.031 
ECG_DC                      0.031 
AW Mean Steps      0.030 
ECG_SD HR                   0.030 
ECG_AR_AbsolutePower_HF     0.030 
ECG_AR_RelativePower_LF     0.029 
ECG_FFT_LFHF                0.029 

Age 35-44 
Feature Values 
User                        0.068 
AW Max HR - Interval          0.036 
ECG_SD1SD2                  0.033 
ECG_AR_HF                   0.032 
ECG_AR_RelativePower_LF     0.032 
HRV-1                       0.031 
Short Term Min              0.030 
AW Max Steps       0.029 
ECG_AR_LFHF                 0.029 
AW Mean Steps      0.029 

Healthy 
Feature Values 
User                       0.040 
HRV-1                      0.034 
AW Mean Steps     0.034 
AW Mean HR - Interval        0.033 
ECG_AC 0.033 
ECG_DC                     0.031 
AW Max HR - Interval       0.030 
ECG_SD1SD2                 0.030 
AW Max Steps      0.030 
AW Min HR - Interval         0.030 
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Table B13: Generalized Model - RF Feature Importance, DAW 41 

All 
Feature Values 
Weight                     0.047 
User                       0.042 
MAP                        0.034 
Temp                       0.031 
AW Mean Steps     0.029 
HRV-1                      0.028 
AW Mean HR - Interval        0.028 
ECG_DC                     0.026 
dia                        0.026 
ECG_AC                         0.025 

Gender - Male 
Feature Values 
Weight                  0.058 
User                    0.051 
AW Min HR - Interval      0.040 
Temp                    0.038 
MAP                     0.037 
AW Mean HR - Interval    0.030 
ECG_SD1SD2              0.027 
ECG_AR_HF               0.027 
dia                     0.026 
sys                     0.026 

Gender - Female 
Feature Values 
Weight                     0.041 
User                       0.039 
Temp                       0.030 
MAP                        0.030 
HRV-1                      0.028 
ECG_AC                         0.028 
AW Mean Steps     0.028 
AW Mean HR - Interval        0.027 
ECG_DC                     0.026 
ECG_Stress Index           0.026 

Income - Low 



 392 

Feature Values 
Weight                       0.038 
Temp                         0.035 
AW Min HR - Interval                       0.028 
MAP                          0.028 
AW Mean Steps       0.027 
ECG_AC                         0.026 
User                         0.026 
ECG_SD HR                    0.026 
HRV-1                        0.026 
ECG_FFT_AbsolutePower_HF     0.026 

Income Medium High 
Feature Values 
User                    0.074 
Weight                  0.064 
Temp                    0.041 
AW Mean HR - Interval     0.036 
dia                     0.034 
sys                     0.031 
HRV-1                   0.027 
AW Min HR - Interval      0.026 
ECG_SD1SD2              0.025 
AW Max HR - Interval 0.024 

Employment Students 
Feature Values 
Weight                      0.110 
User                        0.074 
ECG_RMSSD                   0.033 
MAP                         0.032 
Temp                        0.032 
ECG_Stress Index            0.032 
ECG_Dcmod                   0.029 
ECG_DC                      0.029 
ECG_SD HR                   0.027 
ECG_AR_AbsolutePower_HF     0.027 

Employment Workers 
Feature Values 
User                    0.065 
Weight                  0.053 
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Temp                    0.042 
AW Mean HR - Interval     0.036 
MAP                     0.033 
AW Min HR - Interval 0.030 
HRV-1                   0.026 
ECG_SD1SD2              0.025 
sys                     0.025 
dia                     0.025 

Age 18-24 
Feature Values 
Weight                       0.061 
AW Mean Steps       0.036 
ECG_AR_HF                    0.032 
Temp                         0.031 
ECG_FFT_HF                   0.028 
HRV-1                        0.028 
ECG_FFT_LFHF                 0.027 
ECG_FFT_RelativePower_LF     0.027 
AW Max Steps        0.026 
AW Mean HR - Interval          0.025 

Age 25-34 
Feature Values 
Weight                      0.063 
Temp                        0.032 
HRV-1                       0.031 
MAP                         0.031 
AW Mean HR - Interval         0.031 
AW Min HR - Interval         0.030 
ECG_DC                      0.028 
ECG_AR_AbsolutePower_HF     0.027 
User                        0.026 
ECG_FFT_LF                  0.025 

Age 35-44 
Feature Values 
Weight                      0.053 
User                        0.051 
ECG_SD1SD2                  0.036 
ECG_AR_RelativePower_LF     0.033 
dia                         0.031 
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MAP                         0.031 
sys                         0.030 
ECG_AR_LFHF                 0.028 
HRV-1                       0.027 
AW Max HR - Interval         0.026 

Healthy 
Feature Values 
Weight                     0.054 
Temp                       0.035 
MAP                        0.032 
User                       0.027 
AW Mean Steps     0.026 
HRV-1                      0.026 
ECG_AC 0.026 
AW Mean HR - Interval        0.025 
sys                        0.025 
ECG_DC                     0.025 

 
Table B14: Generalized Model - RF Feature Importance, DW  42 

All 
Feature Values 
Weight     0.251 
User       0.204 
Temp       0.160 
MAP        0.151 
dia        0.118 

Gender - Male 
Feature Values 
Weight     0.295 
User       0.201 
Temp       0.147 
MAP        0.128 
dia        0.122 

Gender - Female 
Feature Values 
Weight     0.25 
User       0.18 
Temp       0.18 
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MAP        0.15 
sys        0.12 

Income - Low 
Feature Values 
Weight     0.235 
Temp       0.193 
MAP        0.166 
User       0.139 
dia        0.138 
Income Medium High 

Feature Values 
Weight     0.299 
User       0.278 
Temp       0.160 
dia        0.139 
sys        0.125 
Employment Students 
Feature Values 
Weight     0.293 
User       0.222 
Temp       0.145 
MAP        0.144 
dia        0.101 
Employment Workers 
Feature Values 
Weight     0.252 
User       0.237 
Temp       0.154 
MAP        0.137 
dia        0.122 

Age 18-24 
Feature Values 
Weight     0.295 
Temp       0.207 
MAP        0.151 
dia        0.135 
sys        0.127 

Age 25-34 
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Feature Values 
Weight     0.295 
Temp       0.207 
MAP        0.151 
dia        0.135 
sys        0.127 

Age 35-44 
Feature Values 
Weight     0.231 
MAP        0.173 
Temp       0.168 
sys        0.151 
dia        0.146 

Healthy 
Feature Values 
Weight     0.248 
Temp       0.198 
MAP        0.172 
sys        0.139 
dia        0.137 

 
 

Table B15: Generalized Model - RF Feature Importance, DEmpatica 43 

All 
Feature Values 
User                               0.046 
Empatica_resp                      0.026 
Empatica_MSE3                      0.021 
Empatica_ApEn                      0.020 
Empatica_FFT_RelativePower_VLF     0.020 
Empatica_Max HR                    0.018 
Empatica_SD HR                     0.018 
Empatica_MSE4                      0.018 
Empatica_FFT_LF                    0.018 
Empatica_D2                        0.017 

Gender - Male 
Feature Values 
Empatica_MSE13      0.037 
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Empatica_resp       0.034 
Empatica_MSE3       0.028 
Empatica_MSE15      0.026 
Empatica_MSE2       0.024 
Empatica_MSE9       0.023 
Empatica_MSE11      0.021 
Empatica_FFT_LF     0.020 
User                0.019 
Empatica_MSE8       0.018 

Gender - Female 
Feature Values 
User                              0.056 
Empatica_NN50                     0.025 
Empatica_MSE18                    0.021 
Empatica_TINN                     0.019 
Empatica_DC                       0.019 
Empatica_SampEn                   0.019 
Empatica_SD1SD2                   0.019 
Empatica_AR_RelativePower_VLF     0.018 
Empatica_MSE19                    0.018 
Empatica_resp                     0.017 

Income - Low 
Feature Values 
Empatica_DET                      0.024 
Empatica_DC                       0.024 
User                              0.024 
Empatica_REC                      0.021 
Empatica_MSE15                    0.020 
Empatica_AR_AbsolutePower_VLF     0.020 
Empatica_SampEn                   0.020 
Empatica_MSE3                     0.020 
Empatica_MSE2                     0.019 
Empatica_resp                     0.019 

Income Medium High 
Feature Values 
User                                  0.0512 
Empatica_resp                         0.0252 
Empatica_DC                           0.0212 
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Empatica_FFT_RelativePower_VLF        0.0210 
Empatica_MSE12                        0.0202 
Empatica_AR_LF                        0.0193 
Empatica_MSE3                         0.0191 
Empatica_FFT_AbsolutePower_HF_log     0.0189 
Empatica_FFT_AbsolutePower_HF         0.0175 
Empatica_MSE14                        0.0175 

Employment Students 
Feature Values 
User                              0.066 
Empatica_resp                     0.023 
Empatica_DC                       0.022 
Empatica_SampEn                   0.021 
Empatica_FFT_HF                   0.021 
Empatica_REC                      0.019 
Empatica_MSE3                     0.019 
Empatica_FFT_RelativePower_LF     0.019 
Empatica_MSE12                    0.019 
Empatica_AR_AbsolutePower_VLF     0.019 

Employment Workers 
Feature Values 
Empatica_MSE13                     0.023 
User                               0.021 
Empatica_FFT_RelativePower_VLF     0.020 
Empatica_MSE15                     0.020 
Empatica_Min HR                    0.019 
Empatica_MSE3                      0.019 
Empatica_ApEn                      0.018 
Empatica_MSE18                     0.018 
Empatica_Mean RR                   0.018 
Empatica_resp                      0.018 

Age 18-24 
Feature Values 
Empatica_MSE4                          0.028 
Empatica_MSE17                         0.026 
Empatica_FFT_AbsolutePower_VLF_log     0.024 
Empatica_AR_LF                         0.020 
Empatica_FFT_AbsolutePower_VLF         0.020 
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Empatica_FFT_LF                        0.019 
Empatica_MSE15                         0.019 
Empatica_D2                            0.019 
Empatica_MSE9                          0.019 
Empatica_FFT_RelativePower_VLF         0.019 

Age 25-34 
Feature Values 
User                  0.096 
Empatica_MSE6         0.024 
Empatica_AR_LF        0.023 
Empatica_resp         0.022 
Empatica_MSE8         0.021 
Empatica_MSE19        0.020 
Empatica_FFT_LFHF     0.019 
Empatica_SampEn       0.019 
Empatica_MSE18        0.018 
Empatica_MSE3         0.018 

Age 35-44 
Feature Values 
User                                   0.032 
Empatica_MSE3                          0.031 
Empatica_MSE15                         0.028 
Empatica_FFT_HF                        0.027 
Empatica_resp                          0.025 
Empatica_MSE5                          0.021 
Empatica_MSE16                         0.020 
Empatica_MSE13                         0.019 
Empatica_MSE12                         0.018 
Empatica_FFT_AbsolutePower_VLF_log     0.018 

Healthy 
Feature Values 
Empatica_resp       0.030 
Empatica_MSE3       0.028 
Empatica_MSE2       0.022 
Empatica_MSE15      0.022 
User                0.021 
Empatica_FFT_HF     0.020 
Empatica_MSE4       0.019 
Empatica_MSE13      0.019 
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Empatica_MSE17      0.018 
Empatica_MSE8       0.018 

 
Table B16: Generalized Model - RF Feature Importance, SDA 44 

All 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.023 
T+1 AW Consolidated Time Awake During Sleep 0.023 
T+2 AW Number of Wake-Ups           0.021 
AW Consolidated Time Awake During Sleep 0.018 
AW Mean HR - Interval                               0.017 
AW Min HR - Interval                                    0.017 
T-2 AW Mean HR                                 0.017 
AW Total Time in Bed                             0.017 
T-2 AW Max HR                                  0.017 
T-2 AW Total Time Asleep                      0.016 

Gender - Male 
Feature Values 
AW Min HR - Interval                 0.042 
AW Total Time in Bed                     0.024 
Short Term Min                                  0.023 
User                                            0.023 
T-2 AW Total Time Asleep              0.022 
T+1 AW Consolidated Time Awake During Sleep 0.021 
AW Mean HR - Interval                  0.020 
T-2 AW Total Time in Bed                 0.020 
ECG_AR_HF                                       0.019 
T+2 AW Max HR                          0.019 

Gender - Female 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.030 
T+2 AW Consolidated Time Awake During Sleep 0.024 
User                                                    0.020 
AW Total Time in Bed                             0.019 
T+2 AW Number of Wake-Ups           0.019 
AW Total Time Asleep                          0.018 
ECG_Stress Index                                        0.017 
T-1 AW Total Time in Bed                         0.017 
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AW Consolidated Time Awake During Sleep 0.017 
AW Mean Steps                                  0.016 

Income - Low 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.034 
T+2 AW Number of Wake-Ups           0.033 
T+1 AW Consolidated Time Awake During Sleep 0.031 
AW Total Time in Bed                             0.021 
AW Consolidated Time Awake During Sleep 0.021 
T+2 AW Total Time in Bed                      0.020 
T-1 Total Time in Bed                         0.020 
T-2 AW Number of Wake-Ups           0.019 
T+1 AW Number of Wake-Ups           0.019 
T-2 Consolidated Time Awake During Sleep 0.018 

Income Medium High 
Feature Values 
User                                                    0.029 
AW Min HR                                      0.023 
Short Term Min                                          0.022 
T+2 AW Total Time in Bed                      0.021 
T-2 AW Mean HR                                 0.021 
AW Min HR - Interval                            0.020 
T+2 AW Min HR                                  0.020 
T+1 AW Consolidated Time Awake During Sleep 0.020 
AW Mean HR - Interval                       0.020 
T+2 AW Number of Wake-Ups           0.019 

Employment Students 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.035 
T+2 AW Number of Wake-Ups           0.035 
T+2 AW Consolidated Time Awake During Sleep 0.029 
T+1 AW Number of Wake-Ups           0.022 
AW Consolidated Time Awake During Sleep 0.021 
AW Number of Wake-Ups               0.017 
T+2 AW Total Time in Bed                      0.017 
T-2 AW Number of Wake-Ups           0.017 
ECG_FFT_RelativePower_LF                                0.016 
ECG_FFT_LFHF                                            0.016 
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Employment Workers 
Feature Values 
User                                    0.028 
AW Min HR - Interval               0.024 
AW Total Time in Bed             0.021 
AW Mean HR - Interval           0.020 
T+1 AW Max HR                  0.019 
Short Term Min                          0.019 
T+2 AW Total Time in Bed      0.019 
T-2 AW Mean HR                 0.019 
AW Total Time Asleep          0.018 
T+2 AW Mean HR                 0.017 

Age 18-24 
Feature Values 
T+2 AW Number of Wake-Ups           0.024 
T+1 AW Consolidated Time Awake During Sleep 0.024 
T+2 AW Consolidated Time Awake During Sleep 0.023 
AW Total Time in Bed                             0.021 
AW Mean Steps                                  0.020 
AW % of Time Asleep While In Bed                 0.019 
T+2 AW % of Time Asleep While In Bed             0.019 
T+2 AW Total Time in Bed                      0.018 
AW Consolidated Time Awake During Sleep 0.017 
T-2 AW Min HR                                  0.017 

Age 25-34 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.027 
T+2 AW Number of Wake-Ups           0.026 
T-2 AW Total Time Asleep                      0.025 
T-2 AW Total Time in Bed                         0.024 
AW Consolidated Time Awake During Sleep 0.022 
T+2 AW Total Time in Bed                      0.022 
AW Total Time in Bed                             0.022 
AW Mean HR - Interval          0.021 
HRV-1                                                   0.021 
T-1 AW Total Time in Bed                         0.020 

Age 35-44 
Feature Values 
AW Min HR                              0.030 
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T+1 AW Mean HR                         0.026 
T-2 AW % of Time Asleep While In Bed     0.024 
AW Min HR - Interval                       0.024 
Short Term Min                                  0.022 
AW Mean HR - Interval                      0.020 
AW Min Steps                           0.019 
T+2 AW Mean HR                         0.019 
AW Mean Steps                          0.018 
T-1 AW Min HR                          0.018 

Healthy 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.021 
T-2 AW Max HR                                  0.020 
T+1 AW Consolidated Time Awake During Sleep 0.020 
AW Mean Steps                                  0.019 
T+1 AW Max HR 0.017 
AW Min HR - Interval 0.017 
AW Total Time Asleep                          0.017 
T-2 AW Total Time Asleep                      0.017 
AW Max Steps                                   0.017 
T+2 AW Number of Wake-Ups           0.016 

 
Table B17: Generalized Model - RF Feature Importance, SDAW 45 

All 
Feature Values 
T+2 AW Number of Wake-Ups           0.020 
T+1 AW Consolidated Time Awake During Sleep 0.019 
Weight                                                  0.017 
T+2 AW Consolidated Time Awake During Sleep 0.017 
Temp                                                    0.015 
AW Total Time in Bed                             0.014 
MAP                                                     0.014 
T+2 AW Min HR                                  0.014 
AW Min HR - Interval                                0.013 
T+1 AW Number of Wake-Ups           0.013 

Gender - Male 
Feature Values 
T+1 AW Max HR                      0.030 
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T-2 AW Total Time Asleep          0.024 
T-2 AW Max HR                      0.021 
AW Max HR                          0.020 
ECG_FFT_RelativePower_HF                    0.018 
Weight                                      0.018 
MAP                                         0.018 
T-1 AW Max HR                      0.017 
sys                                         0.016 
Short Term Mean                             0.016 

Gender - Female 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.022 
AW Total Time in Bed                             0.018 
Weight                                                  0.017 
Temp                                                    0.017 
T+2 AW Number of Wake-Ups           0.015 
T+2 AW Consolidated Time Awake During Sleep 0.015 
ECG_Stress Index                                        0.014 
AW Min HR - Interval                       0.014 
AW Min HR                                      0.014 
ECG_SNS_Index                                           0.013 

Income - Low 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.033 
T+2 AW Consolidated Time Awake During Sleep 0.028 
T+1 AW Number of Wake-Ups           0.027 
T+2 AW Number of Wake-Ups           0.024 
AW Consolidated Time Awake During Sleep 0.016 
T-2 AW Number of Wake-Ups           0.015 
T+2 AW % of Time Asleep While In Bed             0.014 
T+2 Time Spent in REM Stage                            0.014 
AW Min HR - Interval                       0.014 
T-2 Time Spent in Light Stage                       0.013 

Income Medium High 
Feature Values 
AW Min HR                              0.027 
T+2 AW Min HR                          0.018 
T-1 AW Total Time in Bed                 0.017 
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T-2 AW Min HR                          0.017 
AW Total Time in Bed                     0.016 
Temp                                            0.016 
T+1 AW Consolidated Time Awake During Sleep 0.016 
T-2 AW Mean HR                         0.015 
AW Consolidated Time Awake During Sleep 0.014 
ECG_AR_AbsolutePower_HF                         0.014 

Employment Students 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.031 
T+2 AW Number of Wake-Ups           0.027 
T+2 Time Spent in REM Stage                            0.026 
T+1 AW Consolidated Time Awake During Sleep 0.025 
T+1 AW Number of Wake-Ups           0.023 
T+2 AW Min HR                                  0.019 
Time Spent in REM Stage                                0.018 
AW Number of Wake-Ups               0.017 
Weight                                                  0.013 
T-2 AW Min HR                                  0.012 

Employment Workers 
Feature Values 
AW Total Time in Bed         0.018 
AW Mean HR - Interval             0.017 
AW Min HR                  0.017 
Temp                                0.016 
AW Mean Steps              0.015 
AW Min HR - Interval             0.015 
T-1 AW Total Time in Bed     0.014 
Time Spent in REM Stage            0.014 
HRV-1                               0.013 
sys                                 0.013 

Age 18-24 
Feature Values 
Weight                                              0.025 
T+2 Time Spent in REM Stage                        0.025 
T+2 AW Consolidated Time Awake During Sleep 0.024 
T+2 AW Min HR                              0.023 
T+1 AW Min HR                              0.019 
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T+1 AW Consolidated Time Awake During Sleep 0.016 
Time Spent in REM Stage                            0.016 
AW Number of Wake-Ups           0.015 
ECG_FFT_RelativePower_LF                            0.015 
T-1 AW Min HR                              0.015 

Age 25-34 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.030 
T+2 AW Number of Wake-Ups           0.028 
Weight                                                  0.022 
T+2 AW Mean HR                                 0.018 
T+1 AW Min HR                                  0.018 
T+2 AW Min HR                                  0.018 
T-2 % of Time Asleep While In Bed                       0.017 
T+1 AW Consolidated Time Awake During Sleep 0.017 
% of Time Asleep While In Bed                           0.016 
AW Number of Wake-Ups               0.015 

Age 35-44 
Feature Values 
T+2 AW Mean HR                     0.018 
T+1 AW Mean HR                     0.018 
T+2 Time Spent in Light Stage           0.018 
T-1 Withings Total Time Asleep             0.016 
AW Max HR - Interval                        0.016 
Temp                                        0.015 
T-2 Time Spent in Deep Stage            0.015 
HRV-1                                       0.015 
AW Mean HR - Interval                  0.015 
AW Min HR                          0.014 

Healthy 
Feature Values 
T+2 AW Number of Wake-Ups           0.020 
AW Total Time in Bed                             0.019 
Weight                                                  0.018 
T+1 AW Consolidated Time Awake During Sleep 0.018 
T+2 AW Consolidated Time Awake During Sleep 0.017 
User                                                    0.016 
T-2 AW Max HR                                  0.015 
T-2 AW Total Time in Bed                         0.015 
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T-2 AW Min HR                                  0.014 
T-2 Time Spent in REM Stage                            0.014 

 

Table B18: Generalized Model - RF Feature Importance, SDW 46 

All 
Feature Values 
Weight                                   0.089 
Temp                                     0.082 
MAP                                      0.068 
dia                                      0.063 
sys                                      0.062 
T-2 Time Spent in REM Stage             0.034 
T+2 Time Spent in REM Stage             0.031 
Withings Total Time Asleep              0.030 
T+1 Withings Total Time Asleep          0.029 
Time Spent in REM Stage                 0.029 

Gender - Male 
Feature Values 
T-1 Withings Total Time Asleep             0.058 
T+2 Withings Total Time Asleep             0.056 
T-2 Withings Total Time Asleep             0.055 
Temp                                        0.049 
MAP                                         0.048 
T+1 Withings Total Time Asleep             0.045 
sys                                         0.044 
T-2 Time Spent in Light Stage           0.044 
T+2 Time Spent in Light Stage           0.043 
Withings Total Time Asleep                 0.043 

Gender - Female 
Feature Values 
Weight                                   0.067 
User                                     0.053 
T+1 Withings Total Time Asleep          0.053 
Temp                                     0.044 
T+2 Withings Total Time Asleep          0.042 
Withings Total Time Asleep              0.042 
T-2 Time Spent in REM Stage             0.039 
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sys                                      0.037 
T+2 Time Spent in REM Stage             0.036 
T-1 Withings Total Time Asleep          0.035 

Income - Low 
Feature Values 
Weight                                  0.066 
Temp                                    0.062 
MAP                                     0.055 
sys                                     0.050 
dia                                     0.049 
T+2 Time Spent in REM Stage            0.043 
Time Spent in Light Stage           0.040 
T-2 Time Spent in REM Stage            0.039 
Time Spent in REM Stage                0.035 
Total Time In Bed                       0.034 

Income Medium High 
Feature Values 
Temp                                        0.086 
Weight                                      0.071 
MAP                                         0.065 
sys                                         0.060 
dia                                         0.060 
User                                        0.052 
Time Spent in REM Stage                    0.042 
T+1 Withings Total Time Asleep             0.033 
T+2 Time Spent in Light Stage           0.028 
T+2 Withings Total Time Asleep             0.028 

Employment Students 
Feature Values 
T+2 Time Spent in REM Stage          0.070 
Weight                                0.067 
Time Spent in REM Stage              0.055 
Temp                                  0.053 
MAP                                   0.047 
T-2 Time Spent in REM Stage          0.046 
User                                  0.040 
sys                                   0.040 
dia                                   0.039 
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T+2 % of Time Asleep While In Bed     0.036 
Employment Workers 

Feature Values 
Temp                                     0.088 
Weight                                   0.071 
MAP                                      0.068 
dia                                      0.067 
sys                                      0.064 
T+1 Withings Total Time Asleep          0.035 
User                                     0.034 
T-1 Withings Total Time Asleep          0.032 
T-2 Time Spent in REM Stage             0.029 
T+2 Withings Total Time Asleep          0.029 

Age 18-24 
Feature Values 
Weight                                   0.098 
Temp                                     0.078 
MAP                                      0.072 
sys                                      0.066 
dia                                      0.065 
T+2 Time Spent in REM Stage             0.049 
Time Spent in REM Stage                 0.044 
% of Time Asleep While In Bed            0.033 
T+2 Withings Total Time Asleep          0.031 
T+2 % of Time Asleep While In Bed        0.030 

Age 25-34 
Feature Values 
Weight                                     0.103 
T-2 % of Time Asleep While In Bed          0.057 
T+2 % of Time Asleep While In Bed          0.050 
T-2 Time Spent in Deep Stage           0.049 
% of Time Asleep While In Bed              0.049 
User                                       0.046 
Time Spent in REM Stage                   0.046 
Temp                                       0.038 
MAP                                        0.038 
T+2 Time Spent in Deep Stage           0.034 

Age 35-44 
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Feature Values 
T+2 Withings Total Time Asleep             0.069 
T+2 Total Time In Bed                       0.064 
T-1 Withings Total Time Asleep             0.056 
T+2 Time Spent in Light Stage           0.047 
T-2 Time Spent in REM Stage                0.046 
Total Time In Bed                           0.045 
User                                        0.045 
T-2 Total Time In Bed                       0.041 
Weight                                      0.040 
T-2 Withings Total Time Asleep             0.039 

Healthy 
Feature Values 
Weight                                   0.080 
Temp                                     0.049 
MAP                                      0.047 
sys                                      0.045 
T-2 Time Spent in REM Stage             0.045 
T+1 Withings Total Time Asleep          0.041 
dia                                      0.040 
Time Spent in Light Stage            0.039 
Time Spent in Deep Stage             0.037 
T+2 Withings Total Time Asleep          0.036 

 
 

Table B19: Generalized Model - RF Feature Importance, SDS  47: 

All 
Feature Values 
T+2 AW Number of Wake-Ups           0.049 
T+1 AW Consolidated Time Awake During Sleep 0.047 
User                                                    0.034 
T+2 AW Consolidated Time Awake During Sleep 0.033 
AW Total Time in Bed                             0.033 
T-2 AW Min HR                                  0.029 
T+2 AW Min HR                                  0.028 
T+1 AW Number of Wake-Ups           0.028 
AW Min HR                                      0.026 
T-2 Time Spent in REM Stage                            0.024 
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Gender - Male 
Feature Values 
T+1 AW Max HR                          0.039 
T-2 AW Max HR                          0.038 
T+2 AW Consolidated Time Awake During Sleep 0.034 
AW Max HR                              0.033 
T-2 AW Total Time in Bed                 0.033 
T-1 AW Max HR                          0.028 
T-2 AW Total Time Asleep              0.028 
T+2 AW % of Time Asleep While In Bed     0.026 
T-2 Time Spent in REM Stage                    0.025 
T+2 % of Time Asleep While In Bed               0.022 

Gender - Female 
Feature Values 
AW Total Time in Bed                     0.039 
T+1 AW Consolidated Time Awake During Sleep 0.037 
User                                            0.027 
T+2 AW Total Time Asleep              0.026 
AW Min HR                              0.025 
Time Spent in Light Stage                   0.024 
T+2 Time Spent in REM Stage                    0.023 
AW Consolidated Time Awake During Sleep 0.022 
T-2 AW Min HR                          0.022 
T-2 Time Spent in Deep Stage                0.021 

Income - Low 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.043 
T+2 AW Consolidated Time Awake During Sleep 0.036 
T+2 AW Number of Wake-Ups           0.034 
Time Spent in Light Stage                           0.028 
T-2 W Consolidated Time Awake During Sleep 0.027 
T+1 AW Number of Wake-Ups           0.027 
T+2 AW % of Time Asleep While In Bed             0.026 
T-2 AW Number of Wake-Ups           0.022 
T-1 AW Mean HR                                 0.021 
AW Consolidated Time Awake During Sleep 0.021 

Income Medium High 
Feature Values 
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AW Min HR                                  0.047 
T-1 AW Total Time in Bed                     0.032 
AW Total Time in Bed                         0.028 
T+2 AW Min HR                              0.028 
T+1 AW Min HR                              0.026 
T-2 AW Min HR                              0.024 
T-2 AW Mean HR                             0.024 
AW Number of Wake-Ups           0.023 
AW Consolidated Time Awake During Sleep 0.022 
T+1 AW Consolidated Time Awake During Sleep 0.022 

Employment Students 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.047 
T+2 AW Number of Wake-Ups           0.041 
T+2 Time Spent in REM Stage                            0.040 
T+2 AW Min HR                                  0.036 
T+1 AW Number of Wake-Ups           0.035 
T+2 AW Consolidated Time Awake During Sleep 0.030 
Time Spent in REM Stage                                0.029 
AW Number of Wake-Ups               0.022 
T-2 Time Spent in REM Stage                            0.022 
User                                                    0.021 

Employment Workers 
Feature Values 
AW Min HR                          0.040 
AW Total Time in Bed                 0.040 
T-1 AW Total Time in Bed             0.036 
User                                        0.030 
Time Spent in REM Stage                    0.028 
AW Max HR                          0.027 
T+2 AW Max HR                      0.024 
AW Consolidated Time Awake During Sleep 0.024 
T+2 AW Total Time in Bed             0.024 
AW Mean HR                         0.022 

Age 18-24 
Feature Values 
Time Spent in REM Stage                        0.043 
T+2 Time Spent in REM Stage                    0.042 
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T+1 AW Min HR                          0.040 
T-2 AW Min HR                          0.040 
T+2 AW Min HR                          0.038 
T+1 AW Consolidated Time Awake During Sleep 0.038 
T-1 AW Min HR                          0.035 
AW Min HR                              0.032 
T-2 AW Mean HR                         0.029 
T+2 AW Total Time in Bed                 0.026 

Age 25-34 
Feature Values 
T+2 AW Number of Wake-Ups           0.058 
T+2 AW Consolidated Time Awake During Sleep 0.047 
T+2 AW Mean HR                                 0.042 
T+1 AW Min HR                                  0.034 
T-2 % of Time Asleep While In Bed                       0.033 
AW Number of Wake-Ups               0.031 
T+2 AW Min HR                                  0.030 
T+1 AW Mean HR                                 0.027 
T+1 AW Consolidated Time Awake During Sleep 0.027 
AW Mean HR                                     0.024 

Age 35-44 
Feature Values 
T-1 Withings Total Time Asleep                 0.042 
T+1 AW Mean HR                         0.031 
T-2 Time Spent in REM Stage                    0.030 
T+1 Withings Total Time Asleep                 0.028 
T+2 AW Mean HR                         0.027 
T+2 Time Spent in Light Stage               0.026 
T+2 AW Max HR                          0.025 
AW Min HR                              0.025 
T-2 AW % of Time Asleep While In Bed     0.024 
T-2 Time Spent in Deep Stage                0.023 

Healthy 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.051 
T-2 AW Total Time in Bed                         0.044 
T+1 AW Consolidated Time Awake During Sleep 0.043 
T+2 AW Total Time in Bed                         0.036 
User                                                    0.035 
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T+2 AW Number of Wake-Ups           0.032 
T-2 AW Max HR                                  0.029 
T-1 AW Total Time in Bed                         0.025 
T+2 Time Spent in REM Stage                            0.024 
T+1 AW Min HR                                  0.021 

 
Table B20: Generalized_Imb Model - RF Feature Importance, D 48 

All 
Feature Values 
MAP 0.032 
ECG_DC 0.023 
Weight 0.019 
dia 0.019 
Empatica_MSE2 0.019 
Empatica_DC 0.019 
ECG_SDNN 0.018 
ECG_AR_AbsolutePower_HF 0.018 
ECG_Stress Index 0.018 
Empatica_AR_LFHF 0.018 

Gender - Male 
Feature Values 
MAP 0.030 
Weight 0.029 
AW Min HR - Interval 0.029 
Temp 0.020 
Empatica_FFT_HF 0.020 
sys 0.019 
dia 0.019 
Empatica_resp 0.019 
Empatica_SampEn 0.018 
Empatica_MSE2 0.018 

Gender - Female 
Feature Values 
Weight 0.026 
ECG_DC 0.022 
ECG_SDNN 0.021 
ECG_Stress Index 0.021 
ECG_SNS_Index 0.019 



 415 

ECG_Dcmod 0.019 
ECG_AC 0.018 
Empatica_AR_AbsolutePower_VLF 0.018 
ECG_AR_AbsolutePower_HF 0.018 
ECG_FFT_AbsolutePower_HF 0.018 

Income - Low 
Feature Values 
MAP 0.023 
Empatica_DC 0.021 
Empatica_MSE2 0.020 
Weight 0.018 
ECG_AC 0.017 
Empatica_MSE3 0.017 
ECG_Stress Index 0.017 
ECG_Dcmod 0.017 
ECG_RMSSD 0.017 
ECG_DC 0.017 

Income Medium High 
Feature Values 
ECG_DC 0.030 
Empatica_DC 0.025 
dia 0.024 
ECG_SD1SD2 0.020 
HRV-1 0.020 
Empatica_FFT_AbsolutePower_HF 0.019 
Weight 0.019 
Empatica_FFT_RelativePower_VLF 0.019 
Short Term Min 0.019 
ECG_AC 0.018 

Employment Students 
Feature Values 
MAP 0.027 
Weight 0.023 
Empatica_DC 0.020 
Empatica_MSE2 0.020 
ECG_RMSSD 0.019 
ECG_SD HR 0.019 
ECG_Stress Index 0.019 
ECG_SDNN 0.019 
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sys 0.019 
Empatica_MSE3 0.018 

Employment Workers 
Feature Values 
MAP 0.026 
Weight 0.024 
Empatica_FFT_RelativePower_VLF 0.019 
Empatica_Mean RR 0.018 
HRV-1 0.018 
Short Term Min 0.017 
Empatica_Max HR 0.016 
ECG_DC 0.016 
AW Mean Steps 0.015 
Empatica_SD HR 0.015 

Age 18-24 
Feature Values 
Weight 0.029 
sys 0.019 
AW Max Steps 0.019 
AW Mean Steps 0.018 
dia 0.018 
Empatica_MSE4 0.017 
Empatica_MSE2 0.016 
ECG_FFT_RelativePower_LF 0.016 
ECG_SD1SD2 0.016 
Temp 0.016 

Age 25-34 
Feature Values 
MAP 0.027 
Weight 0.024 
HRV-1 0.020 
ECG_DC 0.016 
Empatica_FFT_LFHF 0.016 
Empatica_FFT_RelativePower_VLF 0.015 
Empatica_FFT_RelativePower_LF 0.015 
ECG_AR_AbsolutePower_HF 0.015 
ECG_AR_AbsolutePower_LF 0.015 
Empatica_AR_RelativePower_VLF 0.015 

Age 35-44 
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Feature Values 
Temp 0.019 
Weight 0.019 
Empatica_FFT_HF 0.018 
Empatica_MSE11 0.018 
ECG_AR_AbsolutePower_HF 0.017 
ECG_DC 0.016 
HRV-1 0.016 
Empatica_FFT_LF 0.016 
Empatica_MSE4 0.016 
Empatica_Mean RR 0.015 

Healthy 
Feature Values 
MAP 0.035 
Empatica_resp 0.022 
ECG_DC 0.021 
Empatica_MSE2 0.020 
dia 0.019 
ECG_AR_AbsolutePower_HF 0.018 
Empatica_MSE3 0.018 
ECG_FFT_AbsolutePower_HF 0.017 
sys 0.017 
ECG_SDNN 0.017 

 
Table B21: Generalized_Imb Model - RF Feature Importance, DECG 49 

All 
Feature Values 
ECG_DC 0.050 
ECG_Stress Index 0.047 
ECG_AC 0.046 
ECG_SDNN 0.046 
ECG_AR_AbsolutePower_HF 0.046 
ECG_SNS_Index 0.044 
ECG_FFT_AbsolutePower_HF 0.044 
ECG_Max HR 0.044 
ECG_AR_AbsolutePower_LF 0.044 

ECG_FFT_RelativePower_LF 0.044 
Gender - Male 

Feature Values 
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ECG_AR_HF 0.062 
ECG_Mean RR 0.059 
ECG_PNS Index 0.054 
ECG_FFT_HF 0.050 
ECG_Max HR 0.049 
ECG_SD1SD2 0.047 
ECG_RMSSD 0.047 
ECG_DC 0.045 
ECG_AC 0.045 
ECG_SNS_Index 0.045 

Gender - Female 
Feature Values 
ECG_Stress Index 0.050 
ECG_AC 0.050 
ECG_DC 0.049 
ECG_SDNN 0.048 
ECG_FFT_AbsolutePower_HF 0.047 
ECG_AR_AbsolutePower_HF 0.047 
ECG_SNS_Index 0.046 
ECG_RMSSD 0.046 
ECG_Max HR 0.044 
ECG_SD HR 0.044 

Income - Low 
Feature Values 
ECG_DC 0.048 
ECG_SD HR 0.048 
ECG_Stress Index 0.047 
ECG_Mean RR 0.046 
ECG_SNS_Index 0.046 
ECG_AC 0.046 
ECG_AR_AbsolutePower_HF 0.045 
ECG_RMSSD 0.045 
ECG_SDNN 0.045 
ECG_AR_AbsolutePower_LF 0.044 

Income Medium High 
Feature Values 
ECG_DC 0.055 
ECG_AC 0.051 
ECG_SD1SD2 0.050 
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ECG_AR_AbsolutePower_LF 0.047 
ECG_FFT_LF 0.047 
ECG_Stress Index 0.047 
ECG_SDNN 0.047 
ECG_SD HR 0.046 
ECG_FFT_RelativePower_LF 0.046 
ECG_Mean RR 0.046 

Employment Students 
Feature Values 
ECG_Stress Index 0.055 
ECG_RMSSD 0.054 
ECG_AR_AbsolutePower_HF 0.054 
ECG_SD HR 0.052 
ECG_SDNN 0.049 
ECG_FFT_RelativePower_LF 0.048 
ECG_DC 0.047 
ECG_SNS_Index 0.047 
ECG_FFT_AbsolutePower_HF 0.047 
ECG_PNS Index 0.047 

Employment Workers 
Feature Values 
ECG_DC 0.046 
ECG_SD1SD2 0.046 
ECG_AR_AbsolutePower_LF 0.045 
ECG_FFT_RelativePower_LF 0.045 
ECG_AC 0.045 
ECG_PNS Index 0.045 
ECG_Mean RR 0.045 
ECG_AR_LFHF 0.045 
ECG_SDNN 0.045 
ECG_Max HR 0.044 

Age 18-24 
Feature Values 
ECG_FFT_HF 0.049 
ECG_SD1SD2 0.049 
ECG_FFT_RelativePower_LF 0.048 
ECG_Mean RR 0.047 
ECG_Max HR 0.047 
ECG_AR_HF 0.046 
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ECG_FFT_LFHF 0.046 
ECG_AR_AbsolutePower_LF 0.046 
ECG_SD HR 0.045 
ECG_RMSSD 0.045 

Age 25-34 
Feature Values 
ECG_AR_RelativePower_LF 0.050 
ECG_Mean RR 0.049 
ECG_AR_LFHF 0.048 
ECG_AR_AbsolutePower_HF 0.048 
ECG_DC 0.048 
ECG_SD HR 0.048 
ECG_SNS_Index 0.048 
ECG_AR_AbsolutePower_LF 0.046 
ECG_FFT_LF 0.045 
ECG_FFT_LFHF 0.045 

Age 35-44 
Feature Values 
ECG_AR_HF 0.061 
ECG_SD1SD2 0.059 
ECG_FFT_HF 0.052 
ECG_AR_RelativePower_LF 0.049 
ECG_AR_LFHF 0.047 
ECG_AR_AbsolutePower_HF 0.047 
ECG_FFT_RelativePower_LF 0.047 
ECG_SD HR 0.046 
ECG_AC 0.046 
ECG_Mean RR 0.046 

Healthy 
Feature Values 
ECG_DC 0.048 
ECG_AC 0.048 
ECG_AR_AbsolutePower_HF 0.046 
ECG_Max HR 0.046 
ECG_FFT_LFHF 0.046 
ECG_SD1SD2 0.046 
ECG_SDNN 0.045 
ECG_Stress Index 0.045 
ECG_RMSSD 0.045 
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ECG_FFT_AbsolutePower_HF 0.044 
 

Table B22: Generalized_Imb Model - RF Feature Importance, DA 50 

All 
Feature Values 

AW Mean HR - Interval 0.037 
ECG_DC 0.036 
HRV-1 0.035 
AW Mean Steps 0.035 
ECG_SDNN 0.035 
ECG_FFT_AbsolutePower_HF 0.034 
ECG_Stress Index 0.034 
ECG_SNS_Index 0.034 
AW Min HR - Interval 0.033 

ECG_AC 0.033 
Gender - Male 

Feature Values 
AW Min HR - Interval 0.056 
ECG_AR_HF 0.055 
AW Mean HR - Interval 0.044 
ECG_Mean RR 0.043 
ECG_FFT_HF 0.040 
ECG_PNS Index 0.040 
ECG_AR_LF 0.038 
ECG_SD1SD2 0.037 
Short Term Min 0.037 
ECG_RMSSD 0.037 

Gender - Female 
Feature Values 
ECG_SDNN 0.040 
ECG_Stress Index 0.039 
ECG_DC 0.038 
ECG_AC 0.038 
ECG_FFT_AbsolutePower_HF 0.037 
ECG_RMSSD 0.037 
ECG_AR_AbsolutePower_HF 0.036 
ECG_SNS_Index 0.036 
ECG_SD HR 0.034 
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AW Mean Steps 0.034 
Income - Low 

Feature Values 
AW Mean Steps 0.037 
HRV-1 0.035 
ECG_DC 0.034 
ECG_Stress Index 0.034 
ECG_SD HR 0.034 
AW Min HR - Interval 0.034 
ECG_RMSSD 0.033 
ECG_AC 0.033 
ECG_SDNN 0.033 
ECG_AR_AbsolutePower_HF 0.033 

Income Medium High 
Feature Values 
AW Mean HR - Interval 0.046 
ECG_DC 0.045 
ECG_SD1SD2 0.040 
ECG_AC 0.038 
ECG_SDNN 0.036 
AW Min HR - Interval 0.035 
ECG_Stress Index 0.035 
Short Term Min 0.035 
HRV-1 0.035 
ECG_FFT_AbsolutePower_HF 0.034 

Employment Students 
Feature Values 
ECG_Stress Index 0.042 
ECG_RMSSD 0.041 
ECG_SDNN 0.039 
ECG_AR_AbsolutePower_HF 0.038 
ECG_FFT_AbsolutePower_HF 0.038 
AW Min HR - Interval 0.037 
ECG_SD HR 0.037 
ECG_DC 0.036 
ECG_PNS Index 0.036 
HRV-1 0.036 

Employment Workers 
Feature Values 



 423 

AW Mean HR - Interval 0.041 
HRV-1 0.036 
AW Mean Steps 0.034 
ECG_AR_HF 0.034 
ECG_PNS Index 0.033 
AW Min HR - Interval 0.033 
AW Max Steps 0.033 
ECG_SD1SD2 0.032 
ECG_RMSSD 0.032 
ECG_DC 0.032 

Age 18-24 
Feature Values 
AW Mean Steps 0.045 
ECG_FFT_HF 0.038 
ECG_FFT_LFHF 0.035 
ECG_SD1SD2 0.035 
ECG_FFT_RelativePower_LF 0.035 
ECG_AR_HF 0.034 
ECG_Max HR  0.034 
AW Max HR - Interval 0.034 
ECG_Mean RR 0.034 
AW Mean HR - Interval 0.033 

Age 25-34 
Feature Values 
AW Mean HR - Interval 0.040 
HRV-1 0.040 
ECG_AR_LFHF 0.036 
ECG_DC 0.036 
AW Min HR - Interval 0.035 
ECG_AR_AbsolutePower_HF 0.035 
AW Mean Steps 0.034 
ECG_AR_RelativePower_LF 0.034 
ECG_SD HR 0.033 
ECG_AR_AbsolutePower_LF 0.033 

Age 35-44 
Feature Values 
ECG_AR_HF 0.047 
ECG_SD1SD2 0.046 
ECG_FFT_HF 0.039 
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ECG_AR_RelativePower_LF 0.038 
HRV-1 0.037 
ECG_AR_LFHF 0.036 
AW Min HR - Interval 0.036 
AW Max HR - Interval 0.036 
AW Mean Steps 0.035 
Short Term Min 0.035 

Healthy 
Feature Values 
AW Mean HR - Interval 0.036 
AW Mean Steps 0.036 
ECG_AC 0.036 
ECG_SDNN 0.036 
HRV-1 0.036 
ECG_DC 0.036 
ECG_FFT_AbsolutePower_HF 0.034 
ECG_SD1SD2 0.033 
ECG_Stress Index 0.033 
AW Min HR - Interval 0.033 

 
Table B23: Generalized_Imb Model - RF Feature Importance, DAW 51 

All 
Feature Values 

Weight 0.065 
Temp 0.037 
MAP 0.035 
ECG_SDNN 0.034 
ECG_Stress Index 0.033 
ECG_DC 0.030 
AW Mean HR - Interval 0.030 
ECG_AR_AbsolutePower_HF 0.030 
AW Min HR - Interval 0.029 

ECG_AC 0.029 
Gender - Male 

Feature Values 
Weight 0.076 

AW Min HR - Interval 0.047 
Temp 0.044 
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MAP 0.044 
dia 0.038 
ECG_AR_HF 0.037 
sys 0.036 
ECG_SD1SD2 0.035 
AW Mean HR - Interval 0.035 
ECG_Mean RR 0.032 

Gender - Female 
Feature Values 
Weight 0.054 
ECG_SDNN 0.036 
ECG_Stress Index 0.035 
ECG_FFT_AbsolutePower_HF 0.035 
ECG_AC 0.034 
ECG_DC 0.034 
ECG_AR_AbsolutePower_HF 0.033 
Temp 0.033 
ECG_RMSSD 0.032 
ECG_SNS_Index 0.031 

Income - Low 
Feature Values 
Weight 0.049 
Temp 0.037 
MAP 0.034 
ECG_FFT_AbsolutePower_HF 0.032 
ECG_SD HR 0.032 
AW Min HR - Interval 0.031 
ECG_RMSSD 0.031 
ECG_Stress Index 0.031 
ECG_DC 0.030 
ECG_AR_AbsolutePower_HF 0.030 

Income Medium High 
Feature Values 
Weight 0.086 
Temp 0.048 
AW Mean HR - Interval 0.037 
dia 0.036 
ECG_DC 0.033 
MAP 0.033 
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ECG_Stress Index 0.033 
ECG_SD1SD2 0.031 
ECG_AC 0.031 
ECG_SDNN 0.030 

Employment Students 
Feature Values 
Weight 0.085 
MAP 0.039 
ECG_Stress Index 0.034 
Temp 0.033 
ECG_RMSSD 0.032 
ECG_AR_AbsolutePower_HF 0.032 
sys 0.032 
ECG_SDNN 0.032 
ECG_FFT_AbsolutePower_HF 0.031 
ECG_SD HR 0.031 

Employment Workers 
Feature Values 
Weight 0.073 
Temp 0.046 
AW Mean HR - Interval 0.036 
MAP 0.036 
dia 0.032 
sys 0.030 
ECG_SD1SD2 0.030 
HRV-1 0.029 
AW Min HR - Interval 0.029 
AW Mean Steps 0.027 

Age 18-24 
Feature Values 
Weight 0.083 
AW Mean Steps 0.039 
Temp 0.033 
ECG_FFT_LFHF 0.031 
ECG_FFT_RelativePower_LF 0.031 
ECG_FFT_HF 0.031 
ECG_FFT_LF 0.030 
MAP 0.030 
ECG_AR_HF 0.029 
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ECG_RMSSD 0.029 
Age 25-34 

Feature Values 
Weight 0.083 
AW Mean Steps 0.039 
Temp 0.033 
ECG_FFT_LFHF 0.031 
ECG_FFT_RelativePower_LF 0.031 
ECG_FFT_HF 0.031 
ECG_FFT_LF 0.030 
MAP 0.030 
ECG_AR_HF 0.029 
ECG_RMSSD 0.029 

Age 35-44 
Feature Values 
Weight 0.077 
ECG_SD1SD2 0.044 
dia 0.042 
MAP 0.038 
ECG_AR_RelativePower_LF 0.037 
ECG_AR_HF 0.035 
ECG_AR_LFHF 0.035 
sys 0.035 
Temp 0.033 
HRV-1 0.032 

Healthy 
Feature Values 
Weight 0.075 
MAP 0.039 
Temp 0.037 
ECG_SDNN 0.032 
HRV-1 0.030 
ECG_AC 0.030 
ECG_Stress Index 0.029 
sys 0.029 
ECG_DC 0.029 
ECG_AR_HF 0.029 
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Table B24: Generalized_Imb Model - RF Feature Importance, DW 52 

All 
Feature Values 
Weight 0.374 
Temp 0.199 
MAP 0.168 
dia 0.130 
sys 0.130 

Gender - Male 
Feature Values 
Weight 0.335 
Temp 0.207 

MAP 0.170 
dia 0.145 
sys 0.144 

Gender - Female 

Feature Values 

Weight 0.32 
Temp 0.22 
MAP 0.18 
dia 0.14 
sys 0.14 

Income - Low 
Feature Values 
Weight 0.278 
Temp 0.221 
MAP 0.197 
dia 0.155 
sys 0.148 
Income Medium High 

Feature Values 
Weight 0.353 
Temp 0.213 
MAP 0.157 
dia 0.147 
sys 0.131 
Employment Students 
Feature Values 
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Weight 0.369 
Temp 0.188 
MAP 0.185 
dia 0.132 
sys 0.127 
Employment Workers 
Feature Values 
Weight 0.338 
Temp 0.216 
MAP 0.169 
dia 0.140 
sys 0.137 

Age 18-24 
Feature Values 
Weight 0.329 
Temp 0.225 
MAP 0.170 
dia 0.140 
sys 0.136 

Age 25-34 
Feature Values 
Weight 0.366 
Temp 0.191 
MAP 0.170 
dia 0.137 
sys 0.136 

Age 35-44 
Feature Values 
Weight 0.294 
Temp 0.200 
MAP 0.183 
dia 0.164 
sys 0.160 

Healthy 
Feature Values 
Weight 0.429 
Temp 0.185 
MAP 0.162 
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sys 0.128 
dia 0.097 

 
Table B25: Generalized_Imb Model - RF Feature Importance, DEmpatica  53 

All 
Feature Values 
Empatica_resp 0.027 
Empatica_MSE3 0.023 

Empatica_FFT_HF 0.022 
Empatica_MSE2 0.021 
Empatica_FFT_AbsolutePower_HF 0.021 
Empatica_MSE15 0.021 
Empatica_DC 0.020 
Empatica_ApEn 0.020 
Empatica_MSE13 0.020 

Empatica_FFT_RelativePower_VLF 0.020 
Gender - Male 

Feature Values 
Empatica_MSE13 0.037 

Empatica_MSE3 0.035 
Empatica_resp 0.032 
Empatica_MSE9 0.027 
Empatica_FFT_LF 0.026 
Empatica_MSE2 0.026 
Empatica_MSE7 0.026 
Empatica_PNS Index 0.024 
Empatica_MSE15 0.024 
Empatica_FFT_HF 0.024 

Gender - Female 
Feature Values 
Empatica_NN50 0.025 
Empatica_FFT_AbsolutePower_HF_log 0.022 
Empatica_FFT_AbsolutePower_HF 0.022 
Empatica_MSE18 0.022 
Empatica_TINN 0.021 
Empatica_SampEn 0.021 
Empatica_MSE20 0.021 
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Empatica_DC 0.021 
Empatica_FFT_HF 0.021 
Empatica_SD1SD2 0.020 

Income - Low 
Feature Values 
Empatica_DC 0.026 
Empatica_MSE3 0.025 
Empatica_MSE18 0.024 
Empatica_MSE2 0.023 
Empatica_MSE15 0.023 
Empatica_resp 0.022 
Empatica_FFT_AbsolutePower_HF 0.022 
Empatica_SD HR 0.022 
Empatica_MSE14 0.022 
Empatica_DET 0.022 

Income Medium High 
Feature Values 
Empatica_MSE3 0.0260 
Empatica_DC 0.0257 
Empatica_resp 0.0255 
Empatica_FFT_HF 0.0246 
Empatica_AR_RelativePower_VLF 0.0242 
Empatica_Mean RR 0.0237 
Empatica_FFT_RelativePower_VLF 0.0235 
Empatica_FFT_AbsolutePower_HF_log 0.0229 
Empatica_MSE2 0.0226 
Empatica_FFT_AbsolutePower_HF 0.0220 

Employment Students 
Feature Values 
Empatica_resp 0.028 
Empatica_MSE3 0.028 
Empatica_DC 0.027 
Empatica_MSE2 0.027 
Empatica_MSE12 0.025 
Empatica_FFT_RelativePower_LF 0.024 
Empatica_FFT_AbsolutePower_HF 0.024 
Empatica_FFT_HF 0.023 
Empatica_ApEn 0.023 
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Empatica_Shannon 0.023 
Employment Workers 

Feature Values 
Empatica_D2 0.026 
Empatica_MSE13 0.026 
Empatica_MSE3 0.025 
Empatica_NN50 0.025 
Empatica_Min HR 0.024 
Empatica_MSE15 0.024 
Empatica_FFT_AbsolutePower_HF 0.024 
Empatica_SNS_Index 0.023 
Empatica_MSE9 0.023 
Empatica_PNS Index 0.023 

Age 18-24 
Feature Values 
Empatica_MSE4 0.028 
Empatica_FFT_AbsolutePower_VLF_log 0.028 
Empatica_AR_LF 0.026 
Empatica_FFT_AbsolutePower_VLF 0.026 
Empatica_MSE13 0.025 
Empatica_Max line length 0.024 
Empatica_DC 0.024 
Empatica_MSE2 0.023 
Empatica_SD1SD2 0.023 
Empatica_ApEn 0.023 

Age 25-34 
Feature Values 
Empatica_resp 0.027 
Empatica_FFT_HF 0.024 
Empatica_AR_RelativePower_VLF 0.023 
Empatica_FFT_LFHF 0.022 
Empatica_Shannon 0.022 
Empatica_MSE6 0.022 
Empatica_MSE14 0.022 
Empatica_REC 0.022 
Empatica_MSE19 0.022 
Empatica_AR_LF 0.022 

Age 35-44 
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Feature Values 
Empatica_MSE3 0.036 
Empatica_FFT_HF 0.034 
Empatica_resp 0.029 
Empatica_alpha2 0.028 
Empatica_Mean RR 0.026 
Empatica_Max line length 0.025 
Empatica_MSE18 0.024 
Empatica_MSE17 0.024 
Empatica_SNS_Index 0.024 
Empatica_DC 0.023 

Healthy 
Feature Values 
Empatica_resp 0.034 
Empatica_MSE3 0.031 
Empatica_FFT_HF 0.029 
Empatica_MSE2 0.024 
Empatica_MSE15 0.021 
Empatica_MSE13 0.021 
Empatica_FFT_AbsolutePower_HF 0.020 
Empatica_MSE9 0.020 
Empatica_MSE8 0.020 
Empatica_DC 0.020 

 
Table B26: Generalized_Imb Model - RF Feature Importance, SDA 54 

All 
Feature Values 
T+2 AW Number of Wake-Ups  0.043 
T+2 AW Consolidated Time Awake During Sleep 0.039 
T+1 AW Consolidated Time Awake During Sleep 0.038 
AW Consolidated Time Awake During Sleep 0.028 
T-1 AW Total Time in Bed 0.026 
T+1 AW Number of Wake-Ups  0.026 
T-2 AW Number of Wake-Ups  0.026 
AW Number of Wake-Ups  0.025 
T-2 AW Mean HR 0.025 

AW Min HR 0.024 
Gender - Male 

Feature Values 
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AW Min HR 0.045 

T-2 AW Total Time Asleep   0.033 
AW Total Time in Bed 0.031 
T+1 AW Consolidated Time Awake During Sleep 0.030 
T-2 AW Min HR 0.028 
T+2 AW Max HR 0.027 
T-2 Total Time in Bed 0.026 
ECG_AR_HF 0.025 
T+1 AW Max HR 0.025 
T+1 AW Mean HR 0.024 

Gender - Female 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.052 
T+2 AW Consolidated Time Awake During Sleep 0.036 
T+2 AW Number of Wake-Ups    0.035 
AW Total Time in Bed 0.028 
T+1 AW Number of Wake-Ups    0.026 
AW Consolidated Time Awake During Sleep 0.025 
T+1 AW Mean HR 0.024 
ECG_RMSSD 0.024 
AW Min HR 0.023 
T-1 AW Total Time in Bed 0.022 

Income - Low 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.045 
T+2 AW Consolidated Time Awake During Sleep 0.044 
T+2 AW Number of Wake-Ups    0.036 
T+1 AW Number of Wake-Ups    0.029 
T+2 AW Total Time in Bed 0.028 
AW Total Time in Bed 0.027 
AW Consolidated Time Awake During Sleep 0.027 
T+2  % of Time Asleep While In Bed 0.026 
T-2 AW Number of Wake-Ups    0.024 
T-1 AW Total Time in Bed 0.024 

Income Medium High 
Feature Values 
AW Min HR 0.034 
T-2 AW Mean HR 0.032 



 435 

T+1 AW Consolidated Time Awake During Sleep 0.031 
T-2 AW Min HR 0.030 
T+2 AW Min HR 0.029 
T+1 AW Min HR 0.029 
Short Term Min 0.027 
T+2 AW Mean HR 0.026 
AW Min HR - Interval 0.026 
T-1 AW Mean HR 0.026 

Employment Students 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.058 
T+2 AW Consolidated Time Awake During Sleep 0.053 
T+2 AW Number of Wake-Ups    0.050 
T+1 AW Number of Wake-Ups    0.037 
AW Consolidated Time Awake During Sleep 0.028 
AW Number of Wake-Ups    0.025 
T-2 AW Number of Wake-Ups    0.024 
T+2 AW Min HR 0.023 
T-2 AW Min HR 0.023 
ECG_Stress Index 0.022 

Employment Workers 
Feature Values 
AW Min HR 0.031 
AW Total Time in Bed 0.028 
AW Min HR - Interval 0.025 
AW Mean HR - Interval 0.024 
T+1 AW Max HR 0.024 
T-2 Consolidated Time Awake During Sleep 0.024 
T-2 AW Mean HR 0.024 
T+2 AW Max HR 0.024 
T+1 AW Consolidated Time Awake During Sleep 0.024 
T+2 AW  Total Time in Bed 0.023 

Age 18-24 
Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.035 
T+2 AW % of Time Asleep While In Bed 0.034 
T+1 AW Consolidated Time Awake During Sleep 0.031 
T+2 AW Number of Wake-Ups    0.027 
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AW Total Time in Bed 0.027 
T-2 AW Min HR 0.025 
T-2 AW Max HR 0.024 
T+2 AW Total Time in Bed 0.024 
T+2 AW Min HR 0.024 
ECG_FFT_RelativePower_LF 0.024 

Age 25-34 
Feature Values 
T-2 AW Total Time in Bed 0.035 
T+1 AW Consolidated Time Awake During Sleep 0.033 
T-2 AW Total Time Asleep   0.031 
T+2 AW Number of Wake-Ups    0.031 
AW Total Time in Bed 0.031 
T+2 AW Consolidated Time Awake During Sleep 0.030 
T+2 AW Total Time in Bed 0.028 
AW Consolidated Time Awake During Sleep 0.025 
T-1 Total Time in Bed 0.024 
HRV-1 0.023 

Age 35-44 
Feature Values 
AW Min HR 0.034 
T-2  % of Time Asleep While In Bed 0.028 
T+1 AW Mean HR 0.027 
T+2 AW Mean HR 0.026 
Short Term Min 0.025 
AW Min HR.1 0.024 
T+2 AW Min HR 0.023 
T-2 AW Total Time in Bed 0.023 
T-2 AW Min HR 0.023 
T-1 AW Min HR 0.023 

Healthy 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.029 
T-2 AW Max HR 0.027 
T+2 AW Number of Wake-Ups    0.026 
T+2 AW Consolidated Time Awake During Sleep 0.026 
T-2 AW Min HR 0.026 
T-2 AW Total Time Asleep   0.024 
AW Number of Wake-Ups    0.024 
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T-1 AW Max HR 0.024 
ECG_AR_HF 0.024 
T+1 AW Max HR 0.024 

 
Table B27: Generalized_Imb Model - RF Feature Importance, SDAW  55: 

All 
Feature Values 

T+2 AW Number of Wake-Ups    0.037 
T+2 AW Consolidated Time Awake During Sleep 0.031 

T+1 AW Consolidated Time Awake During Sleep 0.029 
AW Total Time in Bed 0.026 
Weight 0.025 
AW Min HR 0.025 
T+2 AW Min HR 0.024 
T+2 Time Spent in REM Stage   0.024 
T+1 AW Number of Wake-Ups    0.024 

T-2 AW Min HR 0.023 
Gender - Male 

Feature Values 
T+1 AW Max HR 0.025 

Weight 0.024 
T-2 AW Number of Wake-Ups    0.024 
MAP 0.022 
T+2 AW Consolidated Time Awake During Sleep 0.022 
sys 0.021 
Temp 0.020 
T-2 AW Total Time Asleep   0.020 
dia 0.019 
ECG_FFT_RelativePower_HF 0.019 

Gender - Female 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.033 
AW Total Time in Bed 0.029 
T+2 AW Number of Wake-Ups    0.028 
T+2 AW Consolidated Time Awake During Sleep 0.027 
T+1 AW Number of Wake-Ups    0.021 
AW Min HR 0.020 
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Weight 0.020 
T-2 Time Spent in Deep Stage     0.020 
ECG_Stress Index 0.019 
T-2 AW Min HR 0.019 

Income - Low 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.042 
T+2 AW Consolidated Time Awake During Sleep 0.037 
T+2 AW Number of Wake-Ups    0.031 
T+1 AW Number of Wake-Ups    0.028 
T+2 Time Spent in REM Stage   0.027 
T+2  % of Time Asleep While In Bed 0.021 
T-2 AW Number of Wake-Ups    0.020 
AW Consolidated Time Awake During Sleep 0.020 
AW Total Time in Bed 0.019 
T-2 AW Consolidated Time Awake During Sleep 0.019 

Income Medium High 
Feature Values 
AW Min HR 0.037 
T+2 AW Min HR 0.027 
AW Total Time in Bed 0.025 
T+1 AW Min HR 0.025 
T+2 AW Number of Wake-Ups    0.024 
T-2 AW Min HR 0.024 
T-2 AW Mean HR 0.024 
T+1 AW Consolidated Time Awake During Sleep 0.023 
Temp 0.023 
T+2 AW Consolidated Time Awake During Sleep 0.023 

Employment Students 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.039 
T+2 Time Spent in REM Stage   0.036 
T+2 AW Consolidated Time Awake During Sleep 0.036 
T+2 AW Number of Wake-Ups    0.033 
T+2 AW Min HR 0.030 
Time Spent in REM Stage   0.029 
T+1 AW Number of Wake-Ups    0.026 
T+1 AW Min HR 0.025 
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T-2 Time Spent in REM Stage   0.025 
T-2 AW Min HR 0.025 

Employment Workers 
Feature Values 
AW Min HR 0.027 
T-2 AW Min HR 0.024 
AW Total Time in Bed 0.024 
T+2 AW Max HR 0.023 
T+1 AW Max HR 0.023 
Time Spent in Deep Stage     0.022 
Weight 0.021 
T+2 AW Min HR 0.020 
AW Mean HR - Interval 0.018 
Time Spent in REM Stage   0.018 

Age 18-24 
Feature Values 
T+2  % of Time Asleep While In Bed 0.034 
T+2 Time Spent in REM Stage   0.033 
Weight 0.030 
T-2 AW Min HR 0.029 
AW Total Time in Bed 0.026 
T-2 Time Spent in REM Stage   0.025 
T-1 AW Mean HR 0.025 
Time Spent in REM Stage   0.025 
T+1 AW Min HR 0.023 
T+2 AW Consolidated Time Awake During Sleep 0.023 

Age 25-34 
Feature Values 
T+2 AW Number of Wake-Ups    0.038 
Weight 0.031 
T+2 AW Consolidated Time Awake During Sleep 0.030 
T+2 AW Mean HR 0.029 
T+1 AW Consolidated Time Awake During Sleep 0.027 
T+2 AW Min HR 0.026 
T-2 AW Mean HR 0.024 
T+1 AW Min HR 0.022 
T-2 Time Spent in Deep Stage     0.022 
T-2 AW Number of Wake-Ups    0.021 

Age 35-44 
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Feature Values 
T+2 Time Spent in Light Stage     0.024 
T+1 AW Mean HR 0.023 
T-2  % of Time Asleep While In Bed 0.023 
T-2 Time Spent in Deep Stage     0.022 
T+1 Withings Total Time Asleep   0.022 
T-2 Time Spent in REM Stage   0.021 
T+1 AW Min HR 0.021 
Withings Total Time Asleep   0.021 
AW Min HR 0.020 
T-2 AW Total Time Asleep   0.020 

Healthy 
Feature Values 
Weight 0.026 
AW Total Time in Bed 0.026 
T-2 AW Min HR 0.023 
T+2 AW Number of Wake-Ups    0.022 
T+2 Time Spent in REM Stage   0.022 
T-2 Time Spent in REM Stage   0.021 
T-2 AW Total Time in Bed 0.020 
T+2 AW Consolidated Time Awake During Sleep 0.020 
T+1 AW Consolidated Time Awake During Sleep 0.020 
AW Min HR 0.019 

 
Table B28: Generalized_Imb Model - RF Feature Importance, SDW 56 

All 
Feature Values 

Weight 0.089 
Temp 0.059 
dia 0.058 
sys 0.058 
MAP 0.056 
T-2 Time Spent in REM Stage  0.053 
T+2 Time Spent in REM Stage  0.048 
Withings Total Time Asleep  0.046 
T+2 Withings Total Time Asleep  0.044 

T+1 Withings Total Time Asleep  0.041 
Gender - Male 
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Feature Values 
T-2 Withings Total Time Asleep   0.075 

T+2 Withings Total Time Asleep   0.071 
T-1 Withings Total Time Asleep   0.069 
Temp 0.065 
T-2 Time Spent in Light Stage     0.064 
MAP 0.058 
Weight 0.055 
Withings Total Time Asleep   0.054 
sys 0.052 
T+2 Total Time In Bed 0.050 

Gender - Female 
Feature Values 
Weight 0.077 
Temp 0.051 
MAP 0.049 
sys 0.048 
T-2 Time Spent in REM Stage   0.047 
T+1 Withings Total Time Asleep   0.045 
T+2 Time Spent in Deep Stage     0.042 
T+2 Time Spent in REM Stage   0.042 
Withings Total Time Asleep   0.042 
T+2 % of Time Asleep While In Bed 0.041 

Income - Low 
Feature Values 
Weight 0.059 
T+2 Time Spent in REM Stage   0.055 
Total Time In Bed 0.052 
T-2 Time Spent in REM Stage   0.051 
Time Spent in Light Stage     0.048 
Time Spent in REM Stage   0.047 
Temp 0.046 
Withings Total Time Asleep   0.044 
% of Time Asleep While In Bed 0.044 
MAP 0.043 

Income Medium High 
Feature Values 
Weight 0.075 
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Temp 0.066 
MAP 0.054 
sys 0.054 
dia 0.053 
T-2 Time Spent in REM Stage   0.047 
T+2 Withings Total Time Asleep   0.045 
T+1 Withings Total Time Asleep   0.045 
Time Spent in REM Stage   0.045 
% of Time Asleep While In Bed 0.043 

Employment Students 
Feature Values 
Time Spent in REM Stage   0.072 
Weight 0.072 
T+2 Time Spent in REM Stage   0.071 
T-2 Time Spent in REM Stage   0.061 
Time Spent in Light Stage     0.045 
T+2 % of Time Asleep While In Bed 0.044 
MAP 0.042 
% of Time Asleep While In Bed 0.040 
T-2 Time Spent in Light Stage     0.039 
T-2 Time Spent in Deep Stage     0.038 

Employment Workers 
Feature Values 
Temp 0.063 
Weight 0.061 
dia 0.058 
sys 0.055 
MAP 0.054 
T+2 Withings Total Time Asleep   0.051 
Time Spent in Deep Stage     0.048 
T+2 Total Time In Bed 0.046 
T+1 Withings Total Time Asleep   0.045 
T-1 Withings Total Time Asleep   0.045 

Age 18-24 
Feature Values 
Weight 0.097 
Time Spent in REM Stage   0.066 
T+2 Time Spent in REM Stage   0.066 
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Temp 0.049 
T-2 Time Spent in REM Stage   0.048 
% of Time Asleep While In Bed 0.041 
MAP 0.041 
sys 0.041 
dia 0.040 
T+2 Withings Total Time Asleep   0.040 

Age 25-34 
Feature Values 
Weight 0.106 
% of Time Asleep While In Bed 0.060 
T-2 % of Time Asleep While In Bed 0.057 
Temp 0.049 
T+2 % of Time Asleep While In Bed 0.048 
T-2 Time Spent in Deep Stage     0.046 
MAP 0.045 
Time Spent in REM Stage   0.044 
dia 0.041 
sys 0.040 

Age 35-44 
Feature Values 
T+2 Total Time In Bed 0.072 
T+2 Withings Total Time Asleep   0.063 
T-1 Withings Total Time Asleep   0.063 
T+2 Time Spent in Light Stage     0.055 
Weight 0.054 
T-2 Time Spent in REM Stage   0.053 
Temp 0.052 
T-2 Withings Total Time Asleep   0.049 
Total Time In Bed 0.049 
MAP 0.049 

Healthy 
Feature Values 
Weight 0.076 
T-2 Time Spent in REM Stage   0.060 
T+2 Withings Total Time Asleep   0.054 
T+1 Withings Total Time Asleep   0.047 
Temp 0.047 
Time Spent in Light Stage     0.047 
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Withings Total Time Asleep   0.046 
T+2 Time Spent in REM Stage   0.044 
Time Spent in REM Stage   0.042 
Time Spent in Deep Stage     0.042 

 
Table B29: Generalized_Imb Model - RF Feature Importance, SDS  57 

All 
Feature Values 
T+2 AW Number of Wake-Ups 0.042 
T+1 AW Consolidated Time Awake During Sleep 0.041 

T+2 AW Consolidated Time Awake During Sleep 0.039 
AW Total Time in Bed 0.039 
T-2 AW Min HR 0.034 
T+2 AW Min HR 0.031 
T-1 AW Min HR 0.031 
T+1 AW Number of Wake-Ups  0.030 
AW Min HR 0.030 

T-2 Time Spent in REM Stage  0.030 
Gender - Male 

Feature Values 
T+2 AW Consolidated Time Awake During Sleep 0.048 

T+1 AW Max HR 0.044 
T-2 AW Total Time in Bed 0.038 
T-1 AW Max HR 0.035 
T+2 Time Spent in Deep Stage     0.035 
T-2 AW Max HR 0.034 
T-1 AW Mean HR 0.033 
% of Time Asleep While In Bed 0.033 
AW Mean HR 0.032 
T-2 Time Spent in REM Stage   0.032 

Gender - Female 
Feature Values 
AW Total Time in Bed 0.045 
T+1 AW Consolidated Time Awake During Sleep 0.044 
T+2 AW Consolidated Time Awake During Sleep 0.032 
T+2 AW Number of Wake-Ups    0.032 
T+2 Time Spent in Deep Stage     0.031 
AW Min HR 0.028 
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T-2 Time Spent in Deep Stage     0.027 
T+2 Time Spent in REM Stage   0.027 
T+2 AW Total Time Asleep   0.027 
AW Consolidated Time Awake During Sleep 0.026 

Income - Low 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.051 
T+2 AW Number of Wake-Ups    0.042 
T+2 AW Consolidated Time Awake During Sleep 0.037 
T+1 AW Number of Wake-Ups    0.032 
Time Spent in Light Stage     0.032 
T-2 W Consolidated Time Awake During Sleep 0.031 
Time Spent in REM Stage   0.030 
T+2 AW % of Time Asleep While In Bed 0.030 
T+2 Time Spent in REM Stage   0.029 
T-2 Time Spent in Light Stage     0.029 

Income Medium High 
Feature Values 
AW Min HR 0.048 
T+2 AW Min HR 0.039 
AW Total Time in Bed 0.038 
T-2 AW Min HR 0.036 
T+1 AW Min HR 0.035 
T+1 AW Consolidated Time Awake During Sleep 0.035 
T+2 AW Number of Wake-Ups    0.035 
AW Total Time Asleep   0.034 
T-1 AW Total Time in Bed 0.034 
T+2 AW Consolidated Time Awake During Sleep 0.033 

Employment Students 
Feature Values 
T+1 AW Consolidated Time Awake During Sleep 0.058 
Time Spent in REM Stage   0.042 
T+2 Time Spent in REM Stage   0.041 
T+2 AW Min HR 0.037 
T-2 Time Spent in REM Stage   0.037 
T-2 AW Min HR 0.036 
T+2 AW Number of Wake-Ups    0.036 
Time Spent in Light Stage     0.035 
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T+1 AW Min HR 0.034 
T+1 AW Number of Wake-Ups    0.034 

Employment Workers 
Feature Values 
AW Total Time in Bed 0.040 
AW Min HR 0.034 
T-2 AW Min HR 0.033 
Time Spent in Deep Stage     0.032 
T+2 AW Max HR 0.029 
Time Spent in REM Stage   0.029 
T-2 AW % of Time Asleep While In Bed 0.028 
T-2 AW Total Time Asleep   0.028 
T+1 Withings Total Time Asleep   0.028 
T+2 AW Min HR 0.028 

Age 18-24 
Feature Values 
T-1 AW Mean HR 0.046 
T+2 AW % of Time Asleep While In Bed 0.044 
Time Spent in REM Stage   0.043 
T-2 AW Min HR 0.039 
T+1 AW Consolidated Time Awake During Sleep 0.038 
T-2 Time Spent in REM Stage   0.038 
T-1 AW Min HR 0.037 
T+2 Time Spent in REM Stage   0.036 
AW Total Time in Bed 0.035 
T-2 AW Mean HR 0.034 

Age 25-34 
Feature Values 
T+2 AW Number of Wake-Ups    0.055 
T+2 AW Mean HR 0.043 
T+2 AW Consolidated Time Awake During Sleep 0.043 
T+1 AW Consolidated Time Awake During Sleep 0.036 
T+2 AW Min HR 0.034 
T-2 AW Number of Wake-Ups    0.033 
T+2 AW Max HR 0.033 
T-2 % of Time Asleep While In Bed 0.033 
T-2 Time Spent in Deep Stage     0.031 
T+1 AW Min HR 0.030 

Age 35-44 
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Feature Values 
AW Mean HR 0.040 
T-2 AW % of Time Asleep While In Bed 0.038 
T+1 AW Mean HR 0.037 
T+2 Withings Total Time Asleep   0.036 
T+2 Time Spent in Light Stage     0.035 
T+1 Withings Total Time Asleep   0.035 
T-1 Withings Total Time Asleep   0.035 
T-2 AW Total Time Asleep   0.035 
T-2 Time Spent in REM Stage   0.034 
T+1 AW Min HR 0.033 

Healthy 
Feature Values 
T-2 AW Total Time in Bed 0.045 
T+2 AW Consolidated Time Awake During Sleep 0.044 
T+1 AW Consolidated Time Awake During Sleep 0.043 
T-1 AW Total Time in Bed 0.038 
T-2 % of Time Asleep While In Bed 0.036 
T+2 AW Number of Wake-Ups    0.035 
AW Total Time in Bed 0.035 
T-2 AW Mean HR 0.032 
T-2 AW Number of Wake-Ups    0.032 
T-2 AW % of Time Asleep While In Bed 0.032 
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Appendix C – User Manual 

 
Get Started 
 
Welcome and thank you for participating in our study and contributing to our research on the use 
of wearable devices to improve population health and stress detection. We ask that you please 
take a moment to read these instructions to ensure you know how to properly install the devices 
and apps.  
 
Study Package 
 
You should have received a package with the devices below and 3 documents: User Manual – 
Get Started, User Manual – Data Collection Schedule, and User Manual – Data Collection 
Protocol. 
 
The contents of the documents are as follows: 
 
User Manual – Get Started: Please read this document first in order to properly set up the 
devices. 
 
User Manual – Data Collection Schedule: Please read this document to understand the 
schedule for data collection. 
 
User Manual – Data Collection Protocol: Please read this document to understand the data 
collection protocol for each device. 
 
Devices of the Study 
 
For this study, you should have received: 
 

1. iPhone (iOS 14.1 or higher) and charging cable 
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2. Apple Watch (Series 4 or higher, watchOS 5.1 or higher), small size band and charging 
cable 
 

         
 

 
3. Withings Sleep and charging cable  

 
4. Withings BPM Connect and charging cable 

 

 
5. Withings Wireless Scale 

 

 
 

6. Withings Termos 
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7. Empatica E4 and charging cable 

 

 
 

 
Setting up the devices 
 
 

1. iPhone – Get Started – Password of iPhone: 000000 

• Open the Health app  . 
• On the Browse tap, please select Body Measurements. 
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• Click on Height. 
• On the top right corner, select Add Data. 
• Please include your Height. 
• On the Browse tap, please select Sleep. 

 

 
• In Your Schedule, click Edit and insert your sleep schedule. Please include the most 

approximate estimate of the times you generally go to sleep and wake up. 
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2. Apple Watch – Get Started 
 
Placement The Apple Watch band should fit closely but comfortably on the top of your wrist. 
Please adjust the band accordingly, not too tight or too loose and with room for the skin to 
breathe. You may tighten Apple Watch for workouts if necessary, and loosen the band when the 
workout is done. Please use the Apple Watch in your dominant wrist and adjust it so that the 
Digital Crown on the side of the Watch is nearest to the top of your wrist.  
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In case band is too big The package also contains a smaller size band for the bottom of the 
Apple Watch. To switch bands, please hold down the band release button and slide the band 
across to remove it. 

 

Adapted from: https://support.apple.com/en-us/HT204818 

Select Crown Orientation and Dominant Hand The Digital Crown should be nearest to the top 
of your wrist. If necessary, please adjust your orientation as follows: open the Settings app , 
then go to General > Orientation. To change the settings in the Apple Watch app on iPhone, tap 
My Watch, then go to General > Watch Orientation.  
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Charging: Please follow the instructions below to charge your Apple Watch: 
 
1.Plug in the charging cable into the USB port on your computer or the USB wall charger 
provided. 
2.Place the concave end of the charging cable on the back of your Apple Watch. The concave 
end of the charging cable magnetically snaps to the back of your Apple Watch and aligns it 
properly.  
3.You will hear a chime when charging begins (unless your Apple Watch is in silent mode) and 
see a green charging symbol on the watch face.  
4.Charging fully takes about two to three hours. While the watch charges, you can tap it to check 
the battery level. A fully charged watch shows the green charging symbol encircled by a green 
circle on the watch face. 
 
Your fully charged Apple Watch has battery life of up to 18 hours. 

 
 
 
 
Adapted from: https://support.apple.com/en-ca/guide/watch/welcome/watchos 
 

3. Health Mate – Get Started 
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1.Open the Health Mate  app. 
2. On the tab at the top, click the + sign at the top. 

 
3. Select Weight and include an estimate of weight. This information is necessary for the 
scale to identify you as the user. 
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4. Withings Sleep – Get Started 
 

1. Open the Health Mate  app. 
2. Tap the Devices tab, scroll to the bottom and select Install a Device. 
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3. Tap Sleep Sensors 

 
 

4. Tap Sleep 
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5. Tap Install 
 

6. Place Sleep entirely under your mattress according to the provided instructions. You can 
also place it between the mattress and mattress topper/pad. 
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7. Plug Sleep using the provided adapter. Please keep the device plugged in throughout 

the duration of the study. 
 

 
8. Pair the sensor to the iPhone by tapping Pair as requested by the app. 
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9. Tap the Wi-Fi network you want to use or tap Choose a different network. Please select 
the network that is most stable and with better connectivity. 

 

 
10. Tap Next for the calibration of your Sleep to start. This step can last up to 10 minutes 

during which a buzzing sound can be heard. Please do not sit on the bed during the 
process. You will receive a notification in the Timeline of the Health Mate app once the 
calibration process is over. 
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11. If the calibration process went well, you can start using the Sleep Sensor! Thank you for 

following the instructions. 
12. Please return the device inflated to the researcher at the end of the study. 

 
 
Adapted from: https://support.withings.com/hc/en-us/articles/360020911714-Sleep-Sleep-
Analyzer-User-Guide 
 
 

5. Withings BPM Connect – Get Started 
 
 
Charging BPM Connect lasts about 6 months per charge, so you shouldn’t need to charge it 
during the study. However, if the battery of the device is low, you can charge your BPM Connect 
using the charging cable. To do so, connect the USB end of the charging cable to a power source. 
Please charge it for approximately 3 hours. 
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Adapted from: https://support.withings.com/hc/en-us/articles/360024569473-BPM-Connect-
Charging-the-device 
 
 
 

6. Empatica E4 – Get Started 
 
The Empatica E4 comes with pre-installed silver-plated electrodes (1), a USB dock placed under 
the device (2), and a USB MICRO-B Cable (4).  
 

 
 

The E4 is easy to wear and adjust. To ensure proper fit and quality data, please follow the steps 
below: 
 

1. Slide the loop towards the case and place the E4 wristband top-down on a surface. 
2. Wear the E4 wristband on the non-dominant hand with the case on the top of the wrist. 

The EDA electrodes (under the snap-fastener) should line up on the bottom of the wrist. 
Line them up under the middle and ring fingers. 
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3. Wrap the band over snaps and tighten. To secure, connect one snap at a time. If too 
tight, loosen by one snap. Tighten the E4 wristband band enough to ensure the EDA 
electrodes do not change position on the skin during normal movement but not so 
much as to constrict blood flow or cause discomfort. Adjust the band by sliding up the 
wrist towards the elbow until it is snug. Reposition the band if it becomes loose during 
use. 

4. The E4 wristband should fit snugly above the wrist joint. When the E4 wristband is 
properly secured, you should not be able to see any light escaping from the PPG sensor 
on the back of the wrist under the E4 wristband without lifting the housing from the 
wrist. 

5. Press the button for 2 seconds to power on the E4 wristband. 

 
Adapted from: https://www.empatica.com/get-started-e4 
 
Charging In order to charge the device please follow the instructions below.  

• Snap the E4 into the dock and affix the dock via USB to a power source. 
• The LED will turn YELLOW indicating it has received power and is charging. 
• When E4 is fully charged, the LED will turn a solid green. 

The charging dock is only used while charging the E4; remove it before wearing the device. It 
is a passive component. Charging typically takes between 1 and 2 hours. 
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Data Collection Schedule 
 
Welcome and thank you for participating in our study and contributing to our research on the use 
of wearable devices to improve population health and stress detection. If you haven’t done so, 
we ask that you first read the User Manual – Get Started document. 
 
If you already read the previous document, we ask that you please take a moment to read the 
following instructions to ensure you properly follow the schedule for data collection.  
 
Please take a moment to look at the schedule below. 

 

 
 

Throughout the study, we kindly ask that you wear the Empatica E4 and the Apple Watch 
throughout the day and night, taking the devices at the end of day for charging as detailed in 
the diagram and wearing them again to bed. Further, we ask that you leave the Withings Sleep 
device plugged for the duration of the study.  
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Obs: if the Empatica device is too far away from the phone, the session disconnects. We ask that 

you please check throughout the day in the Empatica E4 Realtime App  to ensure data 
collection is still ongoing. If not, please start recording a new session as soon as possible. 
 
We also ask that you perform the data collection protocols, detailed in the document User 
Manual – Data Collection Protocol, 6 times during the day. Please try taking the measurements 
approximately every 3 hours. Taking the measurement before or after the 3 hours shouldn’t be a 
problem – the important is to take the measurements 6 times during the day according to 
intervals as regular as possible. If you miss one data collection, please take the readings as soon 
as possible. 
 
The order for data collection is as follows: 
 

1. Fill the Stress Questionnaire. 
2. Take an Apple Watch ECG Reading. 
3. Take a Blood Pressure reading with the Withings BPM Connect. 
4. Take a Weight reading with the Withings Wireless Scale (obs: For the scale, please take 

the readings every moment that you are at home; it is not expected that you will carry the 
scale with you throughout the day). 

5. Take a Temperature reading with the Withings Thermos. 
6. Take an Apple Watch Mindfulness app 5-minute reading. 

 
Items 2, 3,4 and 5 can be done in any order. However, please fill out the Stress Questionnaire at 
the beginning of the cycle and use the Apple Watch Breathe App as the last measure in the 
cycle. 
 
After data collection: 

Once you are done with all the readings, please fully close the Apple Health and Health 

Mate  app, open it again and wait until it syncs the new data.  
 
Obs: To fully close an app in the iPhone, double click on the Home Button (the circle beneath 
the screen). You will see all open apps. Swipe up to close them. 
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Data Collection Protocol 
 
Welcome and thank you for participating in our study and contributing to our research on the use 
of wearable devices to improve population health and stress detection. If you haven’t done so, 
we ask that you first read the User Manual – Get Started document. 
 
If you already read the previous document, we ask that you please take a moment to read the 
following instructions to ensure you know how to properly use the devices and apps and collect 
data for the study. 
 
Before taking the readings, please ensure that you are wearing your Apple Watch device on your 
dominant hand and the Empatica E4 on your non-dominant hand throughout the day. 
 

1. Empatica E4 
 
At the start of the day, please wear your Empatica E4 as described in the User Manual – Get 
Started Document. In order to begin taking the reading: 
 

• Launch the E4 realtime App   
• Power ON the E4 - when the device is powered off a 2-sec button press will power it on. 

The LED indicator will blink light blue. 
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• Start streaming - tap “CONNECT E4 AND START STREAMING” and select your E4 from 

the list. The LED light turns a steady blue to indicate that streaming has started. In a few 
second the real-time streaming starts. 

 
• For the Empatica E4 device, you only need to start recording once throughout the day. 

 
• End session - press the "STOP RECORDING" button on the home screen. The E4 powers 

off and the session uploads automatically to Empatica secure cloud storage. The E4 will 
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also power off if the Bluetooth connection is lost. e.g. is out-of-range. Please only end 
the session at the end of day or and charge the device.  
 

• In occasions where the device should be removed (e.g., shower), please end the 
session and start it again once you wear the device. 
 

2. Stress Questionnaire 
 
Important: please ensure that the phone is connected to Wi-Fi before taking the stress 
questionnaire. 

1. Please access the MHP app.  
 

2. Please click on the tab Questions (the second tab in the bottom)  
 

 
 

3. Please click on the Fill Questionnaire button 
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4. Please complete the form to the best of your abilities. After you respond to a 
question, click rhe right arrow to move on to the next one. 

 
 

5. Once all questions are responded, the screen below will appear. Please wait until the 
Updating…message disappears. Please wait on the tab for a few seconds until you 
are redirected to the first questionnaire screen. 
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3. Apple Watch - ECG 
 
Preparing for taking the reading: 
 

• Rest your arms on a table or in your lap while you take a recording. Try to relax and not 
move too much. 

• Make sure that your Apple Watch isn’t loose on your wrist. The band should be snug, 
and the back of your Apple Watch needs to be touching your wrist.  

• Make sure that your wrist and your Apple Watch are clean and dry.  
• Make sure that your Apple Watch is on the wrist that you selected in the Apple Watch 

app. To check, open the Apple Watch app, tap the My Watch tab, then go to General > 
Watch Orientation. 

• Move away from any electronics that are plugged into an outlet to avoid electrical 
interference. 

 
Please follow the instructions below when taking an ECG reading:  
 

1. Make sure that your Apple Watch is snug and on the wrist that you selected in the Apple 
Watch app. To check, open the Apple Watch app, tap the My Watch tab, then go 
to General > Watch Orientation. 

2. Open the ECG app  on your Apple Watch. 
3. Rest your arms on a table or in your lap.  
4. With the hand opposite your watch, hold your finger on the Digital Crown. You don't need 

to press the Digital Crown during the session.  
5. Wait. The recording takes 30 seconds. 
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Please keep in mind that the Apple Watch cannot: detect a heart attack; blood clots or 
stroke; other heart-related conditions. If you are not feeling well, please contact emergency 
services. 
Adapted from: https://support.apple.com/en-ca/HT208955 
 
 

4. Withings BPM Connect  
 
Preparing for taking the reading: 
 

• Use BPM Connect on the left upper arm  
• Rest 5 minutes before the measurement.  
• Sit down in a comfortable position, legs uncrossed, feet flat or on the floor, arm and 

back supported. 
• Do not speak or move during the measurement. 
• You can wear one layer of clothes but it should not cover your left arm.  
• The electrodes should be in contact with the skin.  
• Take the measurement in a calm and quiet area. 
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Please follow the instructions below when taking a Blood Pressure reading:  
 

• Unroll cuff and place your arm inside it. 
 

 
 

• Tighten the cuff around your arm. The tube should be positioned against your inner 
arm. 
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• Place your arm on a table and level with your heart. 

 

 
 

• Press the button to start BPM Connect. Press the button again to start the 
measurement. 
 

 
 

• At the end of the measurement, results are displayed on the screen of BPM Connect. 
Press the button to validate the measurement. Press the button again to attribute the 
measurement. Results are sent via WiFi or Bluetooth in the HealthMate app. Please 
ensure the results were updated.  
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Adapted from: https://support.withings.com/hc/en-us/articles/360026536033-BPM-Connect-
User-Guide 
 

5. Withings Wireless Scale  
 
Taking the reading: 
 

• Step on the scale. Reading should start automatically.  
• Adjust your body position according to the arrows that appear on the scale if necessary 

until the number shown as your weight starts blinking. 
 

6. Withings Thermos 
 

• Remove the protective cap (green cap at the bottom of the thermometer). 
• Put the device in front of the forehead. The device does not need to touch the skin but it 

must be close. 
• Starting from the center of the forehead, press and release the button of your Thermo 

and scan across the forehead in a straight line to the temple. 
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• Thermos vibrates at the end of the measurement and the result comes up on the 

display. If the result is RETRY, please take another measurement with the device closer 
to the forehead and moving more slowly, until the result comes up as your current 
temperature. 

• Once the data is read, please assign the correct user. You can do this by sliding your 
finger up or down on the touch sensitive area of the display to select the correct user, 
and pressing the button to confirm your choice. 

• Pleae open the Thermos app.  
• If there is a blue banner at the top of the screen: 
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• Click on the Assign to button, and click Me. 
 

 
• The new measurement should appear on top of the timeline. 
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7. Apple Watch – Breathe/Mindfulness App 

 
Please remember to take this reading as your last reading of the cycle, after blood pressure, 
ECG, and stress questionnaire.  
 
Taking a reading: 

• On the Apple Watch, access the Mindfulness app  
• Press the Digital Crown to go to the Home screen, then open the Mindfulness app. 
• The session length should be set for 5 minutes to ensure data accuracy. In case the 

session length is different, please turn the Digital Crown to set the session's length to 5 
minutes. 

• Tap Start when you're ready. Remember to stay still while you breathe.  
• Inhale as the animation grows and your watch taps your wrist. Then exhale as the 

animation shrinks and the taps stop.  
• Breathe until the session ends and your watch taps you twice and chimes. When you're 

done, you can see your heart rate. 
• When you use the Mindfulness app, your watch mutes some notifications, so you can 

focus. If you answer a call or move too much during a session, the session ends 
automatically, and you won’t get credit. 

 
Adapted from: https://support.apple.com/en-ca/HT206999 
 

8. Apple Watch – Workout App  
 
When you begin a workout, please use the workout app on the Apple Watch.  
1. Open the Workout app. 
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2. Find the workout that best matches your activity and select it.

 
3. To end your workout, swipe right, then tap the End Button. . 

 
 

9. Withings Sleep 
 

• After setup as described in User Manual – Get Started, Withings Sleep will collect data 
automatically when plugged. Please keep the device plugged for the duration of the 
study. 

• In the morning, please verify in the Health Mate app that sleep data was collected 
correctly.  
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