
DNA Computing: Modelling in
Formal Languages and Combinatorics

on Words, and Complexity
Estimation

by

Zihao Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Zihao Wang 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Cezar Câmpeanu
School of Mathematical and Computational Sciences
University of Prince Edward Island

Supervisor(s): Lila Kari
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Ming Li
David R. Cheriton School of Computer Science
University of Waterloo

Jeffrey O. Shallit
David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Andrew C. Doxey
Department of Biology
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The main contribution of this thesis consists of the following published articles:

• “Word blending in formal languages” published in Fundamenta Informaticae is the
extended revised journal version of a conference paper I co-authored during my MSc
study titled “Word blending in formal languages: the Brangelina effect.” In particu-
lar, this paper contains complete proofs for all results (omitted if already included in
the conference paper), numerous examples, expanded discussion of inverses of blend-
ing, new results concerning the iterated blending of languages, and revised state
complexity results. The authors are ordered by last name alphabetically. The major
individual contributions are listed below.

Srujan K. Enaganti—topic.

Lila Kari—topic, research ideas and proofs, results, and manuscript writing and
editing.

Timothy Ng—topic, research ideas and proofs, results, and manuscript writing and
editing.

Zihao Wang—topic, research ideas and proofs, results, and manuscript writing and
editing (in particular, Section 3.4.1 and Section 3.4.2).

• The paper “Conjugate word blending: Formal model and experimental implementa-
tion by XPCR” was published in Natural Computing. The authors are ordered by
last name alphabetically. The major individual contributions are listed below.

Francesco Bellamoli—topic, research ideas, biology experiments, and results.

Giuditta Franco—topic, research ideas, biology experiments, results, and manuscript
writing and editing.

Lila Kari—topic, research ideas and proofs, results, and manuscript writing and
editing.

Silvia Lampis—topic, research ideas, biology experiments, and results.

Timothy Ng—topic, research ideas and proofs, results, and manuscript writing and
editing.

Zihao Wang—topic, research ideas and proofs, results, and manuscript writing and
editing (in particular, Section 3.5).

iv

• The paper “Involutive Fibonacci words” was published in Journal of Automata, Lan-
guages and Combinatorics. The authors are ordered by last name alphabetically. The
major individual contributions are listed below.

Lila Kari—topic, research ideas and proofs, results, and manuscript writing and
editing.

Manasi S. Kulkarni—topic, research ideas and proofs, results, and manuscript writing
and editing.

Kalpana Mahalingam—topic, research ideas and proofs, results, and manuscript writ-
ing and editing.

Zihao Wang—topic, research ideas and proofs, results, and manuscript writing and
editing (in particular, Section 4.1, Section 4.3, and Section 4.4).

• The paper “Primitivity of atom Watson-Crick Fibonacci words” was published in
Journal of Automata, Languages and Combinatorics. The authors are ordered by
last name alphabetically. The major individual contributions are listed below.

Lila Kari—topic, research ideas and proofs, results, and manuscript writing and
editing.

Kalpana Mahalingam—topic, research ideas and proofs, results, and manuscript writ-
ing and editing.

Palak Pandoh—topic, research ideas, proofs, and results.

Zihao Wang—topic, research ideas and proofs, results, and manuscript writing and
editing (in particular, Section 4.2, Section 4.6, and Section 4.7).

• The paper “As good as it gets: A scaling comparison of DNA computing, network
biocomputing, and electronic computing approaches to an NP-complete problem”
was published in New Journal of Physics. The first two authors contributed equally.
The major individual contributions are listed below.

Ayyappasamy S. Perumal—topic, research ideas, data curation and analysis, visual-
ization, biology analysis, and manuscript writing and editing.

Zihao Wang—topic, research ideas, data curation and analysis, visualization, and
manuscript writing and editing (in particular, Section 5.2 and Section 5.5).

Giulia Ippoliti—topic, research ideas, and results.

Falco C. M. J. M. van Delft—topic, research ideas, results, biochemistry analysis,
and manuscript writing and editing.

v

Lila Kari—topic, research ideas, results, and manuscript writing and editing.

Dan V. Nicolau—topic, research ideas, results, manuscript writing and editing, and
biochemistry analysis.

vi

Abstract

DNA computing, an essential area of unconventional computing research, encodes problems
using DNA molecules and solves them using biological processes. This thesis contributes
to the theoretical research in DNA computing by modelling biological processes as compu-
tations and by studying formal language and combinatorics on words concepts motivated
by DNA processes. It also contributes to the experimental research in DNA computing by
a scaling comparison between DNA computing and other models of computation.

First, for theoretical DNA computing research, we propose a new word operation in-
spired by a DNA wet lab protocol called cross-pairing polymerase chain reaction (XPCR).
We define and study a word operation called word blending that models and generalizes an
unexpected outcome of XPCR. The input words are αwγ1 and γ2wβ that share a non-empty
overlap w, and the output is the word αwβ. Closure properties of the Chomsky families of
languages under this operation and its iterated version, the existence of a solution to equa-
tions involving this operation, and its state complexity are studied. To follow the XPCR
experimental requirement closely, a new word operation called conjugate word blending is
defined, where the subwords γ1 and γ2 are required to be identical. Closure properties of
the Chomsky families of languages under this operation and the XPCR experiments that
motivate and implement it are presented.

Second, we generalize the sequence of Fibonacci words inspired by biological concepts
on DNA. The sequence of Fibonacci words is an infinite sequence of words obtained from
two initial letters f1 = a and f2 = b, by the recursive definition fn+2 = fn+1 · fn, for
all positive integers n ≥ 1, where “·” denotes word concatenation. After we propose
a unified terminology for different types of Fibonacci words and corresponding results
in the extensive literature on the topic, we define and explore involutive Fibonacci words
motivated by ideas stemming from theoretical studies of DNA computing. The relationship
between different involutive Fibonacci words and their borderedness and primitivity are
studied.

Third, we analyze the practicability of DNA computing experiments since DNA com-
puting and other unconventional computing methods that solve computationally challeng-
ing problems often have the limitation that the space of potential solutions grows expo-
nentially with their sizes. For such problems, DNA computing algorithms may achieve a
linear time complexity with an exponential space complexity as a trade-off. Using the sub-
set sum problem as the benchmark problem, we present a scaling comparison of the DNA
computing (DNA-C) approach with the network biocomputing (NB-C) and the electronic
computing (E-C) approaches, where the volume, computing time, and energy required,

vii

relative to the input size, are compared. Our analysis shows that E-C uses a tiny volume
compared to that required by DNA-C and NB-C, at the cost of the E-C computing time
being outperformed first by DNA-C and then by NB-C. In addition, NB-C appears to
be more energy efficient than DNA-C for some input sets, and E-C is always an order of
magnitude less energy efficient than DNA-C.

viii

Acknowledgements

First and foremost, I want to thank my supervisor Professor Lila Kari for her support in
my academic and personal life over the past eight years. Without her guidance, comments,
and editing, I could not have finished this thesis.

I would also like to thank my examining committee members, Cezar Câmpeanu, Andrew
C. Doxey, Ming Li, and Jeffrey O. Shallit, for reviewing and commenting on my thesis and
attending my defence.

Finally, I thank my colleagues, Fatemeh Alipour, Wanxin Li, Pablo Millan Arias, Tim-
othy Ng, and Gurjit S. Randhawa, for fostering a constructive research environment and
collaborators, Francesco Bellamoli, Srujan K. Enaganti, Giuditta Franco, Manasi S. Kulka-
rni, Silvia Lampis, Kalpana Mahalingam, Dan V. Nicolau, Palak Pandoh, Ayyappasamy
S. Perumal, and Falco C. M. J. M. van Delft, for fruitful collaboration.

ix

Table of Contents

List of Figures xiii

List of Tables xxiv

1 Introduction 1

1.1 Thesis overview . 2

1.2 Notation . 3

2 Overview of DNA Computing 5

2.1 Biological background . 5

2.2 DNA computing . 10

2.2.1 Step 1: Encoding information as DNA 10

2.2.2 Step 2: DNA computation . 11

2.2.3 Step 3: Reading the output of the DNA computation 20

2.3 Some NP-complete problems solved using DNA computing 21

3 Word Blending 28

3.1 Introduction to formal language operations 29

3.1.1 Closure properties . 29

3.1.2 Invertible operations . 34

3.1.3 State complexity . 35

x

3.2 Biologically inspired word operations . 37

3.3 Cross-pairing polymerase chain reaction (XPCR) and overlap assembly . . 40

3.4 Word blending . 43

3.4.1 Closure properties . 45

3.4.2 Decision problems . 50

3.4.3 State complexity . 54

3.5 Conjugate word blending . 59

3.6 DNA implementation of conjugate word blending 64

3.6.1 Molecular biology preliminaries . 65

3.6.2 The initial experimental evidence 66

3.6.3 Conjugate word blending: Experimental results 69

3.7 Conclusion . 72

4 Involutive Fibonacci Words 74

4.1 Introduction . 75

4.2 Preliminaries . 78

4.3 Involutive Fibonacci words . 82

4.3.1 Relations between Fibonacci words and µ-Fibonacci words 89

4.4 Indexed involutive Fibonacci words . 91

4.5 Borders and ϕ-borders of ϕ-Fibonacci words 96

4.6 Primitivity of atom ϕ-Fibonacci words with different initial letters 102

4.6.1 Atom alternating ϕ-Fibonacci words 106

4.6.2 Atom palindromic ϕ-Fibonacci words 110

4.6.3 Atom hairpin ϕ-Fibonacci words . 113

4.7 Primitivity of atom ϕ-Fibonacci words with identical initial letters 116

4.7.1 Atom alternating ϕ-Fibonacci words 117

4.7.2 Atom palindromic ϕ-Fibonacci words 118

4.7.3 Atom hairpin ϕ-Fibonacci words . 119

4.8 Conclusion . 121

xi

5 Complexity Estimation of DNA Computing 123

5.1 Introduction . 124

5.2 DNA computing procedure for solving SSP 126

5.3 Network biocomputing (NB-C) for SSP . 131

5.4 Electronic computing (E-C) . 136

5.5 Scaling comparison of the DNA-C, NB-C, and E-C methods solving SSP . 137

5.5.1 Pre-computing . 138

5.5.2 Volume comparison . 142

5.5.3 Run time comparison . 146

5.5.4 Energy comparison . 149

5.6 Conclusion . 151

6 Conclusions 152

References 154

xii

List of Figures

2.1 DNA double strand [29]. Left panel: The part surrounded by the rectangle
is one example of a nucleotide. A nucleotide is composed of a nitrogenous
base, a phosphate group, and a sugar. There are four kinds of nucleotides
differentiated by their nucleobases (adenine [A, orange], cytosine [C, blue],
guanine [G, green], and thymine [T, grey]). Note that the sizes of different
nucleobases are different, and nucleobases A and C are larger than nucle-
obases G and T. The labelling of carbon atoms in a nucleotide is shown
in Figure 2.2. Two nucleotides can be connected by a covalent bond (a
solid line) between the sugar of one nucleotide and the phosphate group of
the other. Two nucleotides with compatible nucleobases (T with A and C
with G) can form hydrogen bonds (dashed lines) between their nucleobases,
where two bonds are formed between T and A, and three bonds are formed
between C and G. Right panel: A chain of nucleotides connected by covalent
bonds is a DNA single strand. A DNA single strand is directional, and its
direction is from its 5′ end to its 3′ end. A DNA double strand is composed
of two such strands connected by the hydrogen bonds between nucleobases. 6

2.2 Labelling of carbon atoms in a nucleotide. A DNA nucleotide is composed
of a nucleobase (adenine [A], cytosine [C], guanine [G], or thymine [T]), a
sugar (containing a hydroxyl group), and a phosphate group. There are five
carbon atoms in the sugar (represented by junctions of lines), and they are
labelled from 1′ to 5′. The nucleobase is connected to the 1′ carbon, the
hydroxyl group is connected to the 3′ carbon, and the phosphate group is
connected to the 5′ carbon. 7

xiii

2.3 Simplified graphical representations of a single-stranded DNA molecule CG-
TACGTACG. Top panel: Each circle represents a nucleotide, and its type is
denoted by the letter in the circle. The 5′ end is the end labelled with 5′ and
no arrow, and the 3′ end is the end labelled with 3′ and an outgoing arrow.
The solid lines between nodes represent the backbone. Bottom panel: A
similar concept is adopted, but the sequence of nucleotides is represented by
a word instead. 8

2.4 Two Watson-Crick complementary DNA single strands CCTAGGTACG and
CGTACCTAGG (see conventional notations for representing a DNA strand
as a word) bound to each other via Watson-Crick complementarity to form
a DNA double strand with blunt ends. Hydrogen bonds between two com-
plementary nucleobases are represented by dotted lines. 8

2.5 The DNA double strand with an overhang CGTAC consisting of two DNA
single strands CGTACGTACG and CGTAC. This DNA double strand has
one blunt end on the right and one sticky end on the left. 9

2.6 The DNA single strand CGTACGTACGCGTACGCGTAC forming a hair-
pin structure because of Watson-Crick complementarity, pairing G with C
and A with T. The orientation of the DNA strand is denoted by its two ends
labelled with 5′ and 3′ to indicate their different chemical characteristics. . 9

2.7 The DNA single strand encoding the English text “to be or not to be” using
the encoding scheme described in text. 10

2.8 The restriction site of the restriction enzyme EcoRI is GAATTC. The re-
striction point is between the first and second nucleotides from the 5′ end
of each of the DNA single strands. The result of the restriction enzyme
digestion is two new partially double-stranded DNA strands, each with a
sticky end AATT. 12

2.9 The restriction site of the restriction enzyme SamI is CCCGGG. The re-
striction point is between the third and fourth nucleotides from the 5′ end
of each of the DNA single strands. The result of the restriction enzyme
digestion is two new DNA double strands with blunt ends. 13

xiv

2.10 Two partially double-stranded DNA strands with complementary sticky
ends can be joined to form one DNA double strand by ligation. The input to
ligation consists of two partially double-stranded DNA strands with sticky
ends GCTA (top left) and TAGC (top right). In the process of ligation, the
sticky ends hybridize with each other due to Watson-Crick complementarity
(middle), and the enzyme ligase connects the broken backbones to form a
DNA double strand (bottom). 14

2.11 One cycle of polymerase chain reaction (PCR) generates two copies of the
template. The inputs include a template (DNA double strand in the first
row), two primers (DNA single strands α and γ in the first row), nucleotides
(not shown), and DNA polymerase (not shown). One cycle of PCR has three
steps: denaturation, annealing, and extension. During the denaturation
step, the template breaks into single strands αβγ and γβα because of an
increase in temperature. During the annealing step, the single strands from
the template hybridize with primers (αβγ with γ and γβα with α) because of
the decrease in temperature. Finally, during the extension step, the primers
are extended by DNA polymerase using the free-floating nucleotides present
in the solution according to the template strands. 15

2.12 The process to create a recombinant circular DNA molecule from a DNA
double strand containing the target gene and a plasmid. The target gene is
cut by a restriction enzyme whose restriction site occurs once on each end
of the target gene. The same restriction site occurs once on the plasmid,
and the plasmid is cut by the same restriction enzyme. After these cuts, the
resulting strands from the target genes and the plasmid have complementary
sticky ends. Therefore, ligation can be used to create a recombinant plasmid
consisting of the initial plasmid and the inserted target gene. 16

2.13 Gel electrophoresis procedure [167]. Left panel: DNA samples are loaded
into the wells (small rectangles with shades on the top) at one end of the gel
(big rectangle). Middle panel: An electric current is applied to the gel, with
the negative electrode placed at the end of the gel with the wells and the
positive electrode placed at the other end of the gel. Right panel: The DNA
molecules migrate toward the positively charged end and are separated by
size. The shortest DNA molecules migrate the farthest from the wells, while
the longest remain closest to the wells. DNA molecules are visible as bands,
and a band is darker if there are more DNA molecules of that length. . . . 17

xv

2.14 Toehold-mediated DNA strand displacement. The input consists of a par-
tially double-stranded DNA molecule (input strand) and a DNA single
strand (fuel strand). The input strand has strands αβ and βγ and over-
hangs α and γ, and the fuel strand is βγ. They can hybridize to form a
DNA complex involving three single strands, where the “bottom strand” of
the input strand (βγ) hybridizes with the “top strand” of the input strand
αβ as well as the fuel strand (βγ). The branch point is the point where
the invading fuel strand meets the “top strand” of the input strand. The
invading fuel strand displaces the “top strand” of the input strand, and this
moves the branch point in a process called branch migration. Finally, the
“top strand” of the input strand is displaced, and a new recombinant DNA
double strand is produced. 18

2.15 Polymerase-based DNA strand displacement. The input consists of a par-
tially double-stranded DNA molecule (input strand) and a DNA single
strand (fuel strand). The input strand has strands αγ and βαγ and a
sticky end β, and the fuel strand is β. They can hybridize to form a DNA
complex involving three single strands, where the “bottom strand” of the
input strand (βαγ) hybridizes with the “top strand” of the input strand
(αγ) and the fuel strand (β). Next, polymerase extends the invading fuel
strand toward the 3′ end using the bottom strand as the template. After
the polymerase extension, the substrand αγ is displaced, and a DNA double
strand βαγ is produced. 19

2.16 Input graph of the seven-node instance of the directed Hamiltonian path
problem solved by Adleman [3]. The start node is 0 (with an incoming node
from start), and the end node is 6 (double circle). The problem has a unique
solution, namely the directed Hamiltonian path 0→ 1→ 2→ 3→ 4→ 5→
6. 25

2.17 Example of a path formed by connecting two compatible edges using the
node that they have in common [3]. Top: The directed edges from node 2
to node 3 and from node 3 to node 4 are encoded by the DNA single strands
O2→3 and O3→4. Middle: Node 3 is encoded by O3, and the DNA single
strand O3 is used in computation. Bottom: The above strands can recom-
bine to form a partially double-stranded DNA molecule after hybridization
and ligation. Its top strand represents a path passing through the edge from
node 2 to node 3, followed by the edge from node 3 to node 4. It also con-
tains all the nodes that two neighbour edges in the path have in common.
In this case, it is node 3. 26

xvi

3.1 The minimal complete DFA recognizing the regular language a{a, b}∗b. . . 35

3.2 Cross-pairing polymerase chain reaction (XPCR). XPCR can be used to
create and amplify a recombination of two genes. The inputs include two
templates (DNA double strands αXγ and γY β in the first row), two primers
(DNA single strands α and β in the first row), nucleotides (not shown), and
DNA polymerase (not shown). One cycle of XPCR has the three following
steps: denaturation, annealing, and extension. During the denaturation step
of the first cycle, the templates break into single strands αXγ, αXγ, γY β,
and γY β because of an increase in temperature. During the annealing step
of the first cycle, two of the single strands from the templates hybridize with
primers (γY β with β and αXγ with α), and the other two single strands
from the templates hybridize with each other (αXγ with γY β) because of
the decrease in temperature. Finally, during the extension step of the first
cycle, the primers and the single strands of the recombinant are extended
by DNA polymerases using the free-floating nucleotides present in the so-
lution according to the template strands. In the following cycles, XPCR
acts similarly to PCR, with primers α and β and a template αXγY β. The
recombinant DNA double strand αXγY β is amplified exponentially. 41

3.3 XPCR with templates containing different genes [83]. Lane 1: XPCR with
templates αDγ (560 bp) and γBβ (353 bp) amplifies the strand αDγBβ
(892 bp). Lane 2: XPCR with templates αBγ (353 bp) and γDβ (560 bp)
amplifies the strand αBγDβ (892 bp). Lane 3: XPCR with templates αAγ
(1,061 bp) and γBβ (353 bp) amplifies the strand αAγBβ (1,393 bp). Lane
4: XPCR with templates αDγ (560 bp) and γAβ (1,061 bp) amplifies the
strand αDγAβ (1,600 bp). Lanes K-1, K-2, K-3, and K-4: Negative controls
without templates for the reactions in Lanes 1, 2, 3, and 4, respectively. . . 42

3.4 The DFA Am. 56

3.5 The DFA B3. 57

xvii

3.6 XPCR-based two-gene concatenation (genes A and D), from input tem-
plates (αAγ, γBγ, and γDβ) and primers (α and β) [83]. Row 1: Input
templates. Row 2: Partially double-stranded DNA molecules that are two-
gene recombinants generated by hybridization of DNA single strands from
the input templates. Row 3: Partially double-stranded DNA molecules that
are three-gene recombinants generated by the hybridization of DNA single
strands from the input templates and the DNA double strands that were cre-
ated from the recombinants in Row 2 after extension by polymerase. Only
sequences that were exponentially amplified are illustrated. Row 4: Two
DNA double strands that were exponentially amplified are αAγBγDβ and
αAγBβ. The amplification of the longer formation αAγBγDβ was produced
in an insignificant quantity, as illustrated in Figure 3.7. Row 5: These two
DNA double strands were amplified using primers (α and β), like in PCR. 66

3.7 XPCR with templates containing the same gene and different genes, respec-
tively [14]. Amplifications with primers (α and β) and Taq polymerase.
Lane 1: XPCR with templates αAγ, γAγ, and γAβ exhibited a main prod-
uct of about 1,000 bp (αAβ, a dark band) and a secondary product of about
2,000 bp (αAγAβ, a faint grey band, in the same lane). Lane 2: XPCR
with templates αAγ, γBγ, and γDβ exhibited an amplification product of
about 1,600 bp, which corresponded to the output αAγDβ. Lane 3: XPCR
with templates αBγ, γDγ, and γAβ with an output amplification product
of about 1,400 bp, corresponding to αBγAβ. Lanes K-1, K-2, and K-3:
Negative controls without templates for the reactions in Lanes 1, 2, and 3,
respectively. 67

xviii

3.8 A possible explanation for the formation of the conjugate blending operation
output. (The implicit assumption is that there always exists one template
out of millions for which the described premature detachment occurs, and
that this is enough to generate an exponential amplification of αXβ, with
gene X and primers α and β, in the next PCR cycles.) Subgraph 1: Both
primers anneal. Subgraph 2: Primer polymerase extension occurs along
single templates. Over long segments X, this process takes a long time and
may be interrupted by the high denaturation temperature expected in next
step of PCR. This causes a premature detachment of the polymerase enzyme.
Subgraph 3: Incomplete template copies generated. Subgraph 4: In the next
PCR cycle, the resulting incomplete strands may anneal to each other and
also to the other template and then generate (by polymerase extension)
single strands αXβ and αXβ. Subgraph 5: These generated single strands
will work as templates, where they will be exponentially amplified due to
primer annealing. The single strands containing γ or γ anneal with neither
of the primers and are not amplified. 68

3.9 XPCR with templates containing gene D with no interference molecules
(left panel) and XPCR with templates containing gene A with a high con-
centration of interference molecules (right panel) [83]. These reactions were
performed with with primers (α and β) and Pfu polymerase. Left panel,
Lane 1: XPCR with templates αDγ and γDβ exhibited a product of about
500 bp (αDβ). Left panel, Lane K-1: Negative control without templates for
the reaction in Lane 1. Right panel, Lanes 1.1, 1.2, 1.3, 1,4, and 1.5: XPCR
with templates αAγ, γAγ, and γAβ (with concentration ratio 1 : 10 : 1) and
different annealing temperatures exhibited a main product of about 1,000 bp
(αAβ) and a secondary product of about 2,000 bp (αAγAβ). Right panel,
Lane K-1: Negative control without templates for the reactions in Lanes
1.1, 1.2, 1.3, 1,4, and 1.5. 70

xix

3.10 XPCR with templates containing gene B and XPCR with templates con-
taining gene D [14]. Left panel, Lane 1.1: XPCR was performed using Taq
polymerase and templates αBγ, γBγ, and γBβ (with concentration ratio
1 : 2 : 1). It exhibited a main product of about 300 bp (αBβ) and a sec-
ondary product of about 650 bp (αBγBβ). Left panel, Lane 1.2: Negative
control without templates for the reaction in Lane 1.1. Right panel, Lanes
1.1, 1.2, 1.3, 1,4, and 1.5: XPCR was performed with Pfu polymerase, tem-
plates αDγ, γDγ, and γDβ (with concentration ratio 1 : 10 : 1), and different
annealing temperatures. A main product of about 500 bp (αDβ) and a sec-
ondary product of about 1,100 bp (αDγDβ) were exhibited. Right panel,
Lanes K-1: Negative control without templates for the reactions in Lanes
1.1, 1.2, 1.3, 1.4, and 1.5. 71

3.11 XPCR with templates containing gene A at two different ratios of molecu-
lar interference [14]. These reactions were performed with Pfu polymerase
and templates αAγ, γAγ, and γAβ. Lanes 1.1, 1.2, 1.3, 1.4, and 1.5: The
molecular concentration ratio was 1: 2 : 1. A different annealing tempera-
ture was used for every lane. Lanes 2.1, 2.2, 2.3, 2.4, and 2.5: The molecu-
lar concentration ratio was 1: 5 : 1. A different annealing temperature was
used for every lane. All aforementioned lanes exhibited a main product of
about 1,061 bp (corresponding to αAβ) and other very faint bands of biased
products. Lanes K-1 and K-2: Negative controls without templates for the
reactions in all aforementioned lanes. 72

5.1 An SSP instance of size n with input set S = {si | 1 ≤ i ≤ n} represented
by a directed weighted graph with (n + 1) nodes and designated start and
end vertices. In this graph, each subset of S corresponds to a unique path
from the start node (red) to the end node (green), and vice versa. Note that
every such path has to pass through all the nodes of the graph. If, when
connecting node (j − 1) with node j, 1 ≤ j ≤ n, the path traverses the
top edge (thick line), this indicates that the subset it represents contains
the number sj. If, instead, the path traverses the bottom edge (thin line),
this indicates that the subset it represents does not contain the number sj.
The edges are weighted, with the weights of the top and bottom edges being
(bi + c · si), and respectively bi, for 1 ≤ i ≤ n. 126

xx

5.2 The DNA-C procedure in [102] for solving an instance of SSP. Left panel,
bottom: Visual figure legend. Left panel, top: The natural numbers com-
prising the input set S = {s1, . . . , sn}, of an SSP instance of size n, are
encoded into a “computing region of S” inserted into a plasmid. Centre-
left panel: The plasmid is amplified by cloning. Centre-right panel: The
pool comprising all DNA strands representing candidate SSP solutions is
generated, by a succession of split-and-merge substeps, using restriction en-
zyme digestions, purifications by gel electrophoresis, and ligations. Right
panel, bottom: The DNA strands representing the candidate SSP solutions
are length-separated by gel electrophoresis. Right panel, top: The DNA se-
quences of the desired length are extracted, amplified by PCR (optionally),
and sequenced. 128

5.3 Restriction sites of restriction enzymes XbaI (left) and HindIII (right). . . 129

5.4 Two types of junctions used in the network encoding of the subset sum
problem. There are two routes, illustrated by a red arrow and a green arrow,
through a junction. Left: A pass junction is represented by an empty circle.
If a motile agent enters the junction from a route, it will exit following the
same route. Right: A split junction is represented by a shaded circle. If a
motile agent enters the junction from a route, it has a 50 % chance of exiting
via the same route and a 50 % chance of exiting via the other route. 132

5.5 Network encoding of an instance of the subset sum problem with the input
set S = {2, 5, 9}. Split junctions are represented by shaded circles, and pass
junctions are represented by empty circles. The red route of a junction is
directional from top left to bottom right, and the green route of a junction
is directional from top right to bottom left. The parts of routes that are
not connected to other junctions are omitted. There are 17 rows, and the
ith row from the top contains exactly i junctions. All the junctions in the
3rd (1 + 2), 8th (1 + 2 + 5), and 17th (1 + 2 + 5 + 9) rows are split junctions.
The split junction in the 1st row is the entrance of the network, and the
split junctions in the last row are the exits of the network, each of which
represents a potential subset sum of the input set. The possible subset
sums are labelled by blue numbers, and there will be agents exiting the
corresponding split junctions in the last row. A path that represents the
subset {5} with sum 5 is represented by black lines. 133

xxi

5.6 The model flow chart of agent-based NB-C and the associated stages. The
figure here gives a bird’s-eye view of the computational operations like ex-
ploring the network by bacteria and pre- and post- computational steps like
network design and fabrication, bacterial preparation and culture for ex-
perimentation, results readout, image analysis, and the associated required
duration. 135

5.7 Logarithmic scale graph illustrating the length of the DNA strand that en-
codes the computing region of the input set in the DNA-C procedure in [102],
for the unit, prime, Fibonacci, and exponential input sets of different car-
dinalities, from n = 1 to n = 100. Note that the length of the computing
region of the input set grows exponentially (linear growth, logarithmic scale)
for exponential and Fibonacci input sets and grows linearly for unit input
sets (quasi-constant growth, logarithmic scale). 139

5.8 Logarithmic scale graph illustrating the total number of junctions that are
used in the network in the NB-C method of [269] for the unit, prime, Fi-
bonacci, and exponential input sets of different cardinalities, from n = 1 to
n = 50. Note that the total number of junctions grows exponentially for
exponential and Fibonacci input sets and grows linearly for unit input sets. 141

5.9 The estimated volumes of biological agents (solution of DNA molecules and
bacteria, respectively) used by the DNA-C and NB-C methods and network
channel volumes used by NB-C to solve an instance of SSP with unit, prime,
Fibonacci, and exponential input sets of different cardinalities, from n = 1
to n = 50 (logarithmic scale). Note that the agent volume in NB-C is equal
for all various SSP instances of the same cardinality. 144

5.10 The estimated run time required by the DNA-C, NB-C, and E-C methods
to solve an instance of SSP with input sets of different cardinalities, from
n = 1 to n = 100 (logarithmic scale). The real run time of NB-C will be
in between the curves depicting scenario (i) (combinatorial run mode) and
scenario (ii) (multiplication run mode). Note that the run time of the DNA-
C method grows linearly in the cardinality of the input set, while the run
time of the NB-C and the E-C methods grows exponentially. 147

xxii

5.11 The energy consumed in the computation step of DNA-C, NB-C, and E-
C methods to solve an instance of SSP with unit, prime, Fibonacci, and
exponential input sets of different cardinalities, from n = 1 to n = 100 (log-
arithmic scale). Note that the energy cost of the DNA-C and E-C methods
is independent of the type of input set and depends only on its cardinality,
while the energy cost of the NB-C method depends on the cardinality, the
sum of the numbers of the input set, and the type of agent (here E. coli or
actin myosin). 150

xxiii

List of Tables

2.1 List of some DNA computing algorithms (procedures) solving NP-complete
problems and their related optimization problems and the bio-operations
used. This list includes the directed Hamiltonian path problem (HPP),
the maximal independent set problem (MIS), the minimal dominating set
problem (MDS), the knapsack problem, the subset sum problem (SSP), vari-
ations of the satisfiability problem (SAT), and the maximal clique problem.
Depending on the problem, the cardinality of an instance of a problem is
the number of nodes in the input graph, the cardinality of the input set, or
the number of propositional variables. 24

3.1 The relationships among the Chomsky hierarchy of languages, generative
grammars, and recognition machines with examples. 31

3.2 Definitions of some formal language operations. Languages are denoted by
L, alphabets are denoted by Σ, words are denoted by lowercase letters from
the Greek alphabet, and letters are denoted by lowercase letters from the
English alphabet. 32

3.3 Closure properties of the Chomsky family of languages under formal lan-
guage operations. Definitions are given in Table 3.2. The families of the
languages considered are finite, regular, context free, context sensitive, and
recursively enumerable denoted by FIN, REG, CF, CS, and RE, respectively.
A letter “Y” in a cell indicates that the family of the column is closed under
the operation of the row, and a letter “N” in a cell indicates that the family
of the column is not closed under the operation of the row. In the case of
N, the condition surrounded by brackets is the exceptional case, and L1 and
L2 are the left and right operands of the binary operation. 33

xxiv

3.4 Summary of the state complexities of concatenation, union, intersection,
complementation, reverse, and Kleene star. The operands are two languages
Lm and Ln over an alphabet Σ, and they can be recognized by minimal
complete DFA with m and n states, respectively. The state complexities
depend on conditions like the number of states, the size of the alphabet,
the number of states in the set of final states, and whether m and n are
co-prime. The witnesses given in the paper appear in the reference column. 37

4.1 List of all possible involutions over the set Σ4 = {x1, x2, x3, x4}. If the letter
in the cell of the column of ϕi and row of xj is xk, where 1 ≤ i ≤ 10 and
1 ≤ j, k ≤ 4, this denotes that ϕi(xj) = xk. For example, ϕ3(x3) = x1. . . . 80

4.2 List of all possible involutions over the DNA alphabet ∆ = {A,C,G,T}. . 81

4.3 The nth atom ϕ-Fibonacci words gn, g′n, wn, w′
n, zn, and z′n with initial words

A and C, 3 ≤ n ≤ 6, where ϕ(A) = T, ϕ(C) = G, is an involution extended
to either a morphism (MI) or an antimorphism (AMI). 84

4.4 The ϕ-borderedness of ϕ-Fibonacci words where ϕ is an involution extended
to either a morphism (MI) or an antimorphism (AMI). 98

4.5 List of words gϕn(A,C), where 3 ≤ n ≤ 7 and ϕ ∈ {µ1, µ2, µ4, µ5, µ10,
θ1, θ2, θ4, θ5, θ10}. 107

4.6 List of words wϕ
n(A,C), where 3 ≤ n ≤ 7 and ϕ ∈ {µ1, µ2, µ4, µ5, µ10,

θ1, θ2, θ4, θ5, θ10}. 110

4.7 The numbers of occurrences of letters in the atom palindromic ϕi-Fibonacci
words wϕi

n (A,C) for ϕi ∈ {θi, µi}, i ∈ {1, 2, 4, 5, 10} and n ≥ 3. 111

4.8 List of words zϕn(A,C), where 3 ≤ n ≤ 7 and ϕ ∈ {µ1, µ2, µ4, µ5, µ10,
θ1, θ2, θ4, θ5, θ10}. 113

4.9 The numbers of occurrences of letters in the atom hairpin ϕi-Fibonacci words
zϕi
n (A,C) for ϕi ∈ {θi, µi}, i ∈ {1, 2, 4, 5, 10} and n ≥ 3. 114

4.10 Primitivity of atom ϕ-Fibonacci words αϕ
n(A,C) for all n ≥ 1, with different

initial letters A,C ∈ ∆, where αn ∈ {gn, wn, zn} for all n ≥ 1, and ϕ ∈
{θi, µi | 1 ≤ i ≤ 10} . 115

4.11 List of words gϕn(A,A), where 3 ≤ n ≤ 7 and ϕ ∈ {µ2, θ2}. 117

4.12 List of words wϕ
n(A,A), where 3 ≤ n ≤ 7 and ϕ ∈ {µ2, θ2}. 118

4.13 List of words zϕn(A,A), where 3 ≤ n ≤ 7 and ϕ ∈ {µ2, θ2}. 120

xxv

4.14 Primitivity of atom ϕ-Fibonacci words αϕ
n(A,A) for all n ≥ 1, with identical

initial letters A ∈ ∆, where αn ∈ {gn, wn, zn} for all n ≥ 1, and ϕ ∈ {θi, µi |
1 ≤ i ≤ 10} . 121

5.1 Natural computing approaches to solving instances of NP-complete prob-
lems and their related optimization problems. Biological agents used range
from DNA molecules to multi-cellular macroscopic organisms. Only biocom-
putations that have been experimentally implemented are included. 125

xxvi

Chapter 1

Introduction

The central dogma of molecular biology explains the flow of genetic information within
a biological system, where the information in DNA can be transferred to DNA or to
protein molecules via RNA. Although proteins are the building blocks of life, they are
created according to the information stored in DNA. Similarly to the information stored
as bits in electronic computers, the information in DNA can also be manipulated and
used for computation, and this area of research is called DNA computing. Research in
this area started about thirty years ago when Adleman solved a seven-city instance of the
directed Hamiltonian path problem using DNA [3]. This new approach inspired the study
of DNA computing both theoretically and experimentally. In this thesis, we study three
separate but inter-related research topics in DNA computing: modelling biology processes
as a formal language operation, studying combinatorics on words inspired by DNA, and
complexity estimation of DNA computing experiments.

Recall that a formal model of computation, called the Turing machine, was invented
by Alan Turing in 1936, and the Church-Turing thesis states that all effective computa-
tions can be carried out by a Turing machine [52]. There are also some formal systems
defined by some biologically inspired word operations that have been shown to have com-
putational power equivalent to that of the Turing machine, such as those in [150,152,165].
Therefore, modelling DNA processes as bio-operations and studying these bio-operations
as formal language operations are the first steps, which may lead to the creation of a
DNA-based computer. The DNA processes that can be used to implement computations
include naturally-occurring biology phenomena, such as the actions of enzymes on DNA
strands, and biology experiment protocols and techniques. For example, the action of DNA
polymerase was modelled as template-directed extension [74], and gene recombination by
the lab protocol called cross-pairing polymerase chain reaction (XPCR) was formalized as

1

overlap assembly [73]. These operations were studied as formal language operations, and
properties, such as closure property, decidability, and state complexity, were considered.
In this thesis, we first define and study two bio-operations inspired by the unexpected
outcome of XPCR when the input strands are of a particular type.

Another research direction of theoretical DNA computing is related to combinatorics
on words, which dates back to the early 1900s when Axel Thue proved the existence
of square-free words of an arbitrarily large length [20]. The field of combinatorics on
words studies the structure of words, such as borderedness, palindromes, repetitions, and
counting. Combining the field of DNA computing and the field of combinatorics on words
offers an exciting opportunity to study the structure of words that can be generated by
systems defined by some bio-operations. For example, the sequence of Fibonacci words
obtained from two initial letters by a recursive definition was well studied in the field of
combinatorics on words. In this thesis, we then study a generalization of the Fibonacci
words motivated by ideas stemming from theoretical studies of DNA computing.

For electronic computers, different algorithms for a problem can be compared using
their time and space complexity, and a similar idea can be applied to DNA computing
procedures and other natural computing algorithms for solving computational problems.
For the experimental aspect of DNA computing, the time, space, and energy complexity
of a DNA computing procedure for a benchmark problem can be considered. Among
potential benchmark problems, those belonging to the class referred to as nondeterministic
polynomial time complete (NP-complete) are of most significant interest since they are
related to practical problems in logic, graphs, arithmetic, biology, and chemistry. Finally,
in this thesis, a scalability comparison among the classical electronic computing approach, a
DNA computing algorithm, and a network biocomputing solution (another type of natural
computing that uses biotic motile agents to implement computations) to a benchmark
problem called the subset sum problem (SSP) will be given.

1.1 Thesis overview

This thesis is organized as follows.

Chapter 2 gives an overview of DNA computing. It starts with a brief biological back-
ground on DNA, followed by a description of the three main steps of a DNA computing
procedure. It ends with an example of a DNA computing procedure implemented to solve
a seven-node instance of the directed Hamiltonian path problem. This chapter is based on
the paper [215] published in New Journal of Physics.

2

In Chapter 3, we first introduce formal language operations and some biologically in-
spired word operations. After reviewing the details of a lab protocol used to extract DNA
strands, we discuss a bio-operation that models its outcome under normal circumstances.
A generalization of the unexpected outcome of this lab protocol in case the input strands
are of a particular type is modelled as a word operation called word blending, and another
word operation that is more closely related to the experimental requirements is studied,
followed by the description of the wet lab experiments that motivate these operations.
This chapter is based on the paper [76] published in Fundamenta Informaticae and the
paper [15] published in Natural Computing.

Chapter 4 gives a unified terminology of different types of Fibonacci words studied
in the literature and defines several generalizations of Fibonacci words, called involutive
Fibonacci words, inspired by DNA Watson-Crick complementarity. The interrelationships
between involutive Fibonacci words and the borderedness and primitivity of involutive
Fibonacci words are discussed. This chapter is based on the papers [145,149] published in
Journal of Automata, Languages and Combinatorics.

Chapter 5 gives a scaling comparison of DNA computing, network biocomputing, and
electronic computing approaches to the subset sum problem (SSP). After describing a DNA
computing approach and a network biocomputing approach to SSP, the pre-computing
costs, the volume needed for the computation, the run time, and the energy costs of
different approaches for SSP are compared. This chapter is based on the paper [215]
published in New Journal of Physics.

In Chapter 6, we conclude this thesis by reviewing the results and by suggesting future
work.

1.2 Notation

This section lists basic notation used throughout this thesis. Notation used only within a
chapter will be described in the beginning of that chapter.

An alphabet Σ is a finite non-empty set of symbols. We let Σ∗ denote the set of all
words over an alphabet Σ, including the empty word λ, and Σ+ denotes the set of all
non-empty words over an alphabet Σ. If α and β are two words over an alphabet Σ, their
concatenation αβ is also a word over Σ. The empty word λ is an identity with respect to
concatenation, where for all words α ∈ Σ∗, we have αλ = λα = α. If α is a word over an
alphabet Σ, the word αi, i ∈ N, is a word over Σ obtained by concatenating i copies of the
word α. For all words α ∈ Σ∗, we have α0 = λ, and for all numbers i ∈ N, we have λi = λ.

3

The reverse or mirror image of a word is defined as λ = λr and (a1a2 · · · an)r = an · · · a2a1,
where ai ∈ Σ for all 1 ≤ i ≤ n. The length of the word w is denoted by |w|, and the
number of occurrences of the letter a in a word w is denoted by |w|a. For a positive integer
i, we let Σi denote the set of all words of length i over Σ. For words w, x, y, z ∈ Σ∗, where
w = xyz, we call the subwords x, y, and z prefix, infix, and suffix of w, respectively. The
sets pref(w), inf(w), and suff(w) contain all prefixes, infixes, and suffixes of w, respectively.
A prefix, suffix, or infix α of a word w is said to be proper if α ̸= w, and it is said to be
non-empty if α ̸= λ. The sets Pref(w), Inf(w), and Suff(w) contain all proper prefixes,
infixes, and suffixes of w, respectively. The sets pref ′(w) and suff ′(w) contain all non-
empty prefixes and suffixes of w, respectively. For a word α, the set of all letters that
occur in α is denoted by Alph(α). A language L is a subset of Σ∗. The complement of a
language L ⊆ Σ∗ is Lc = Σ∗ \ L, the concatenation of two languages L1 and L2 is defined
as L1L2 = {uv | u ∈ L1, v ∈ L2}, and the power of a language L is defined as L0 = {λ},
L1 = L, and Li = Li−1L for all integers i ≥ 2.

Binary formal language operations ⋄ can be considered as a function ⋄ : 2Σ∗×2Σ∗ → 2Σ∗
.

Similarly, unary formal language operations ⋄ can be viewed as a function ⋄ : 2Σ∗ → 2Σ∗
.

A binary word operation □r is called the reversed operation of □ if for all α, β ∈ Σ∗, we
have that α□rβ = β□α.

In this thesis, we use the following conventions for variables unless noted otherwise:

• Integer variables are denoted by some lowercase letters from the middle of the English
alphabet, such as i, j, and k.

• Word variables are denoted by some letters from the Greek alphabet and some low-
ercase letters from the end of the English alphabet, such as α, β, u, v, and w.

• Letter variables are denoted by lowercase letters from the beginning of the English
alphabet, such as a, b, and c.

• Set variables are denoted by upper case letters from the English alphabet, such as L
and S.

4

Chapter 2

Overview of DNA Computing

This chapter gives an overview of DNA computing. In Section 2.1, a concise biological
background on DNA is given. In Section 2.2, the three main steps of a DNA computing
procedure are described. The first step is to encode information as DNA, as detailed in
Section 2.2.1. The second step is the DNA computation, which consists of a succession
of bio-operations, and some of the main bio-operations used in the DNA computing ex-
periments are listed in Section 2.2.2. The last step is reading the output of the DNA
computation, as detailed in Section 2.2.3. In Section 2.3, an example of a DNA computing
procedure implemented to solve a seven-node instance of the directed Hamiltonian path
problem is described.

Parts of Section 2.2 and Section 2.3 are adapted from a paper I co-authored [215], titled
“As good as it gets: A scaling comparison of DNA computing, network biocomputing, and
electronic computing approaches to an NP-complete problem.”

2.1 Biological background

As shown in Figure 2.1 (right panel), a deoxyribonucleic acid (DNA) double strand is
composed of two chains of nucleotides, and these chains are called DNA single strands. Each
nucleotide (Figure 2.1, left panel) is composed of a nitrogenous base called a nucleobase, a
sugar, and a phosphate group. There are four kinds of nucleobases: adenine (A), cytosine
(C), guanine (G), and thymine (T). A nucleotide with the nucleobase A (respectively C,
G, and T) is called nucleotide A (respectively C, G, and T). Illustrated in Figure 2.2, there
are five carbon atoms labelled from 1′ to 5′ in the sugar, and the sugar contains a hydroxyl

5

group (composed of one hydrogen atom and one oxygen atom) connected to its 3′ carbon.
The nucleobase is connected to the 1′ carbon, and the phosphate group is connected to the
5′ carbon.

Figure 2.1: DNA double strand [29]. Left panel: The part surrounded by the rectangle is
one example of a nucleotide. A nucleotide is composed of a nitrogenous base, a phosphate
group, and a sugar. There are four kinds of nucleotides differentiated by their nucleobases
(adenine [A, orange], cytosine [C, blue], guanine [G, green], and thymine [T, grey]). Note
that the sizes of different nucleobases are different, and nucleobases A and C are larger than
nucleobases G and T. The labelling of carbon atoms in a nucleotide is shown in Figure 2.2.
Two nucleotides can be connected by a covalent bond (a solid line) between the sugar of
one nucleotide and the phosphate group of the other. Two nucleotides with compatible
nucleobases (T with A and C with G) can form hydrogen bonds (dashed lines) between
their nucleobases, where two bonds are formed between T and A, and three bonds are
formed between C and G. Right panel: A chain of nucleotides connected by covalent bonds
is a DNA single strand. A DNA single strand is directional, and its direction is from its
5′ end to its 3′ end. A DNA double strand is composed of two such strands connected by
the hydrogen bonds between nucleobases.

6

O

1′4′
5′

2′3′

Nucleobase (A, C, G, T)

Hydroxyl (OH)

Phosphate
group (P)

Sugar

Figure 2.2: Labelling of carbon atoms in a nucleotide. A DNA nucleotide is composed of
a nucleobase (adenine [A], cytosine [C], guanine [G], or thymine [T]), a sugar (containing
a hydroxyl group), and a phosphate group. There are five carbon atoms in the sugar
(represented by junctions of lines), and they are labelled from 1′ to 5′. The nucleobase
is connected to the 1′ carbon, the hydroxyl group is connected to the 3′ carbon, and the
phosphate group is connected to the 5′ carbon.

Two neighbour nucleotides in a DNA single strand are connected by a covalent bond
between the hydroxyl group of the sugar of one nucleotide and the phosphate group of
the other. The alternating sugars and phosphate groups connected by covalent bonds
form what is called the backbone of a DNA single strand. A DNA single strand has an
unconnected phosphate group on a nucleotide at one end, and this end is called the 5′ end
of this DNA single strand. The other end of the DNA single strand is called the 3′ end of
this DNA single strand.

In this thesis, two types of simplified graphics are used to represent DNA single strands,
as shown in Figure 2.3.

The notational convention used in this thesis is that a word a1a2 · · · an over the DNA
alphabet ∆ = {A,C,G,T} represents the DNA single strand a1a2 · · · an read in the 5′ to
3′ direction. For example, the DNA single strands in Figure 2.3 is represented by the word
CGTACGTACG.

Two DNA single strands can form a DNA double strand by Watson-Crick complemen-
tarity, as detailed below. Nucleotides A can base pair with nucleotides T, and nucleotides C
can base pair with nucleotides G. This is called the Watson-Crick complementarity of bases,
and it connects two nucleotides by creating hydrogen bonds between their nucleobases (rep-

7

TGCATGC5′ A C G 3′

5′ 3′
CGTACGTACG

Figure 2.3: Simplified graphical representations of a single-stranded DNA molecule CG-
TACGTACG. Top panel: Each circle represents a nucleotide, and its type is denoted by
the letter in the circle. The 5′ end is the end labelled with 5′ and no arrow, and the 3′ end
is the end labelled with 3′ and an outgoing arrow. The solid lines between nodes represent
the backbone. Bottom panel: A similar concept is adopted, but the sequence of nucleotides
is represented by a word instead.

resented by dashed lines between nucleobases in Figure 2.1). Note that the nucleobases A
and G are larger, and the nucleobases T and C are smaller. Each pair of complementary
bases contains a larger base and a small base. Two hydrogen bonds are formed between A
and T, and three hydrogen bonds are formed between C and G. Two DNA single strands
of opposite orientations and with complementary nucleobases at each position binding to-
gether via hydrogen bonds form a DNA double strand in a process called Watson-Crick
base pairing. Formally, two DNA single strands α = a1a2 · · · an, β = b1b2 · · · bn of the same
length n ∈ N over the DNA alphabet ∆ are said to be Watson-Crick complementary to
each other if ⟨ai, bj⟩ ∈ {⟨A,T⟩, ⟨T,A⟩, ⟨C,G⟩, ⟨G,C⟩}, where 1 ≤ i ≤ n and j = n + 1− i.
For a DNA single strand α ∈ ∆∗, its Watson-Crick complement is denoted by α. For
example, two DNA single strands CCTAGGTACG and CGTACCTAGG are Watson-Crick
complementary to each other as shown in Figure 2.4.

TGGATCC5′ A C G 3′

C 5′GTACCTAGG3′

Figure 2.4: Two Watson-Crick complementary DNA single strands CCTAGGTACG and
CGTACCTAGG (see conventional notations for representing a DNA strand as a word)
bound to each other via Watson-Crick complementarity to form a DNA double strand with
blunt ends. Hydrogen bonds between two complementary nucleobases are represented by
dotted lines.

If two DNA single strands are of equal length and are Watson-Crick complementary
to each other, they form a DNA double strand with blunt ends (see Figure 2.4). It is

8

also possible that two DNA strands are partially Watson-Crick complementary, in which
case they can form partially double-stranded molecules, such as the one in Figure 2.5. In
this case, the single-stranded portion of the partially double-stranded molecules is called
an overhang or a sticky end since it has the potential to bind to yet another DNA single
strand.

TGCATGC5′ A C G 3′

C 5′GTAC3′

Figure 2.5: The DNA double strand with an overhang CGTAC consisting of two DNA
single strands CGTACGTACG and CGTAC. This DNA double strand has one blunt end
on the right and one sticky end on the left.

Similarly, if two subsequences of a DNA single strand are complementary, this strand
may form intramolecular (intramolecular refers to the structures formed within a single
DNA molecule, while intermolecular refers to the structures formed with two or more DNA
molecules) structures, such as stem-loops, which are more commonly known as hairpins
(Figure 2.6).

TGCATGC5′ A C G

C G

T

A

CG

CGTAC3′

Figure 2.6: The DNA single strand CGTACGTACGCGTACGCGTAC forming a hairpin
structure because of Watson-Crick complementarity, pairing G with C and A with T. The
orientation of the DNA strand is denoted by its two ends labelled with 5′ and 3′ to indicate
their different chemical characteristics.

In addition to the linear DNA single strands mentioned above, there are circular DNA
single stands. Two circular DNA single strands with complementary sequences can form a
circular DNA double strand called a plasmid. Plasmids can be found naturally in bacteria
and some other microscopic organisms.

9

2.2 DNA computing

In the same way we use the letters of the English alphabet to write text, and electronic
computers use bits 0 and 1 to store data, Nature uses the four nucleotides (A, C, G,
and T) to write genetic information as DNA strands. The possibility of encoding the
input of some computational problems as DNA strands and the proved ability of such
biochemical processes as cutting and pasting of DNA strands to implement arithmetic
and logic operations have led to the development of the field of DNA computing and
molecular programming [3]. The three main steps of a DNA computing procedure, which
are described in detail in the remainder of this section, are as follows:

1. Encoding the input information as DNA strands;

2. DNA computation; and

3. Reading the output of the DNA computation.

2.2.1 Step 1: Encoding information as DNA

To encode information using DNA, one first selects an encoding scheme, mapping symbols
onto words over the DNA alphabet ∆ = {A,C,G,T}. For example, in [53], the letters of
the Latin alphabet were encoded using the following triplets:

a = CGA, b = CCA, c = GTT, d = TTG, e = GGT,

n = TCT, o = GGC, r = TCA, t = TTC, . . .

With this encoding, the English text “to be or not to be” becomes the DNA single strand
shown in Figure 2.7.

5′ 3′
TTC GGC CCA GGT GGC TCA TCT GGC TTC TTC GGC CCA GGT

Figure 2.7: The DNA single strand encoding the English text “to be or not to be” using
the encoding scheme described in text.

Then, DNA single strands that encode information can be synthesized. DNA synthesis
is one of the most basic bio-operations used in DNA computing. DNA solid-state synthesis
is based on a method by which the initial nucleotide is bound to a solid support, and

10

successive nucleotides are added step-by-step, from the 3′ end to the 5′ end, in a reactant
solution. While the above encoding example is purely hypothetical, DNA strands of lengths
of up to 1,000 base pairs (bp) can be readily synthesized, using fully automated DNA
synthesizers, in under 24 hours [163]. The synthesis of DNA strands longer than 10 kilo
base pairs (kbp) is more challenging and time consuming. There are two major approaches
to synthesizing such strands—namely, chemical synthesis and enzymatic synthesis; these
approaches both involve multiple rounds of synthesis of short DNA fragments, followed by
their assembly into longer DNA strands. A commonly used tool like BioBrick assembly
[105] could take 30 to 45 days to synthesize DNA strands longer than 10 kbp.

It should be noted that, in most DNA computing experiments, DNA-encoded infor-
mation is not associated with a memory location but consists of infinitesimal free-floating
DNA strands in a solution. Because of Watson-Crick complementarity, these free-floating
DNA strands can interact with each other in ways that are programmed but also in ways
that are undesired. For example, information-encoding DNA single strands can contain
Watson-Crick complementary substrands within themselves causing them to form hair-
pins and rendering them unavailable for Watson-Crick complementarity interactions with
other information-encoding strands. Several DNA computing studies explore choices for
encoding information as DNA strands that ensure that undesirable base pairing does not
occur [97, 133, 144, 181, 185, 212, 225, 266]. Exceptions are surface-based DNA computing
experiments, such as those reported in [40, 169], wherein data-encoding DNA strands are
fixed to a solid surface.

2.2.2 Step 2: DNA computation

A DNA computation consists of a succession of bio-operations. In this section, we list some
of the main bio-operations used in DNA computing experiments.

Watson-Crick base pairing, also called hybridization or annealing, occurs because of the
Watson-Crick complementarity of bases (A with T and C with G), and it is the principal
bio-operation underlying most—if not all—DNA computations. Watson-Crick base pair-
ing connects two nucleotides by creating hydrogen bonds between their nucleobases (three
hydrogen bonds between G and C and two hydrogen bonds between A and T). Since a
hydrogen bond is weaker than the covalent bond in the backbone of DNA molecules, it
will break when subjected to a high temperature. The process using heat to break DNA
double strands into their constituent DNA single strands is called melting or denaturation.
Watson-Crick base pairing was utilized in the first proof-of-concept DNA computing exper-
iment, which solved a seven-node instance of the directed Hamiltonian path problem [3].

11

It was also used in the DNA computing experiment that solved a 20-variable instance of
the 3-satisfiability problem, which marked the first instance of a DNA computation solv-
ing a problem beyond the normal range of unaided human computation [25]. Finally,
Watson-Crick base pairing was the crucial computational primitive used in the algorithmic
self-assembly of DNA tiles utilized, such as for the implementation of logic gates [180],
stochastic computing [2], and cellular automata [238], and it was used in molecular algo-
rithms using reprogrammable DNA self-assembly [275].

Cutting, also called restriction enzyme digestion, is a bio-operation implemented by
restriction endonuclease enzymes. A restriction enzyme cuts double-stranded DNA into
fragments at or near an enzyme-specific pattern known as the restriction site, and the lo-
cation of cutting is called the restriction point. Restriction enzyme digestion is inexpensive
from the point of view of energy consumption because no external energy is needed [272].
The result of cutting a DNA double strand at a restriction site (by cutting the backbones
of each of its two component single strands) is either two DNA double strands with new
complementary sticky ends or two DNA double strands with new blunt ends. For example,
the restriction site of the restriction enzyme EcoRI is shown in Figure 2.8, and the restric-
tion site of the restriction enzyme SmaI is shown in Figure 2.9. Note that the vertical
arrows indicate the restriction point. A cut by the restriction enzyme EcoRI creates two
new sticky ends AATT, whereas a cut by the restriction enzyme SmaI creates two blunt
ends.

CTTAAG5′ 3′

5′GAATTC3′

Figure 2.8: The restriction site of the restriction enzyme EcoRI is GAATTC. The restric-
tion point is between the first and second nucleotides from the 5′ end of each of the DNA
single strands. The result of the restriction enzyme digestion is two new partially double-
stranded DNA strands, each with a sticky end AATT.

Cutting was used to generate DNA molecules encoding a potential solution for the
subset sum problem [102], the maximal independent set problem [97], and the minimal
dominating set problem [103]. Some enzymes cut non-specifically, outside their restriction
site, and they have also been employed for computations, such as in the wet lab implemen-
tation of a programmable finite automaton using the FoKI enzyme [16,18].

12

GGGCCC5′ 3′

5′CCCGGG3′

Figure 2.9: The restriction site of the restriction enzyme SamI is CCCGGG. The restriction
point is between the third and fourth nucleotides from the 5′ end of each of the DNA single
strands. The result of the restriction enzyme digestion is two new DNA double strands
with blunt ends.

Pasting, also called ligation, is a bio-operation that accomplishes the opposite of cut-
ting, and this is implemented by DNA ligase enzymes that can join together DNA strand
backbones. Some DNA ligases join together DNA double strands with complementary
sticky ends, whereas others join together blunt-ended DNA double strands. For example,
in Figure 2.10, ligation can join a partially double-stranded DNA strand with a sticky end
GCTA and a partially double-stranded DNA strand with a sticky end TAGC.

Compared with cutting, ligation is energy intensive because ligases consume adenosine
triphosphate (ATP) (ATP is an organic compound and an energy-storing molecule; it is
considered the “universal battery” because it provides the energy required by many pro-
cesses in living cells, such as muscle contraction, nerve impulse propagation, and chemical
synthesis). One ATP molecule is consumed while connecting each pair of nucleotides on
the same strand by a new covalent bond, so the process shown in Figure 2.10 requires two
ATP molecules. Ligation was used in [3] to generate potential solutions for an instance of
the directed Hamiltonian path problem. It was also used with restriction enzyme digestion
to remove part of a DNA double strand for the maximal independent set problem [97].

Polymerase chain reaction (PCR) is often used in DNA computing experiments to
amplify (produce an exponential increase of) DNA double strands called templates. PCR
is affected by the DNA polymerase enzyme, which extends a primer (short DNA sequence
that base pairs to the 3′ end of one of the single strands of the template) nucleotide by
nucleotide until it produces a full Watson-Crick complement of the template. As shown in
Figure 2.11, the inputs of PCR include a template (DNA double strand in the middle of
the first row of Figure 2.11), two primers (DNA single strands α and γ at the left and right,
respectively, of the first row of Figure 2.11), nucleotides (not shown), and DNA polymerase
(not shown). The primer γ can hybridize with one strand of the template αβγ at the 3′

end, and the primer α can hybridize with the other strand of the template γβα at the 3′

end. PCR involves multiple cycles, and each cycle includes denaturation, annealing, and

13

5′ A · · · G 3′

3′ T · · · C A T C G 5′

5′ T A G C A · · · T 3′

+

5′A· · ·T3′

5′ A · · · G T A G C A · · · T 3′

3′ T · · · C A T C G T · · · A 5′

Annealing

5′ A · · · G T A G C A · · · T 3′

3′ T · · · C A T C G T · · · A 5′

Ligation

Figure 2.10: Two partially double-stranded DNA strands with complementary sticky ends
can be joined to form one DNA double strand by ligation. The input to ligation consists of
two partially double-stranded DNA strands with sticky ends GCTA (top left) and TAGC
(top right). In the process of ligation, the sticky ends hybridize with each other due
to Watson-Crick complementarity (middle), and the enzyme ligase connects the broken
backbones to form a DNA double strand (bottom).

extension. During denaturation, the DNA double strands break into their constituent DNA
single strands. This is followed by annealing, caused by the decrease of the temperature
of the mixture, during which the primers hybridize with the DNA single strands from the
template. The last step of this cycle is extension, during which DNA polymerase extends
the primers in the 3′ to the 5′ direction using the free-floating nucleotides present in the
solution until it produces a full complement of each single strand comprising the template.
After one cycle of PCR, one copy of the template becomes two copies of the template, and
2n copies of the template can be generated after n cycles. Whiplash PCR (a variation of
PCR where the template and the primers are on the same DNA single strand) has been
specifically used in the implementation of a finite state machine by hairpin formation [242].
When used in non-standard ways, PCR can produce a combinatorial richness of molecules,
but it may also behave in ways which are complex and difficult to control [111,134,175].

Cloning is another method of amplifying so-called “target genes” (DNA double strands).
Here, a target gene is inserted into a plasmid to create a recombinant DNA molecule,
consisting of the initial plasmid and the inserted target gene, as shown in Figure 2.12.
A restriction enzyme is chosen to cut the plasmid and the target gene with the property

14

Inputs:
α β γ

α β γ

α
γ

Denaturation:
α β γ

α β γ

Annealing:
α β γ

α β γγ

α

Extension:
α β γ

α β γγα β

α β γ

Figure 2.11: One cycle of polymerase chain reaction (PCR) generates two copies of the
template. The inputs include a template (DNA double strand in the first row), two primers
(DNA single strands α and γ in the first row), nucleotides (not shown), and DNA poly-
merase (not shown). One cycle of PCR has three steps: denaturation, annealing, and
extension. During the denaturation step, the template breaks into single strands αβγ and
γβα because of an increase in temperature. During the annealing step, the single strands
from the template hybridize with primers (αβγ with γ and γβα with α) because of the
decrease in temperature. Finally, during the extension step, the primers are extended by
DNA polymerase using the free-floating nucleotides present in the solution according to
the template strands.

that its recognition site has one occurrence on the plasmid and occurs once on each end
of the target gene. After restriction enzyme digestion, the plasmid and the target gene
have complementary sticky ends, and they can hybridize to form a recombinant DNA
molecule. This process is used in the traditional cloning procedure, and difficulties arise
if suitable natural restriction sites are unavailable on the target gene. There are other
methods to create a recombinant DNA molecule that avoid this problem [22, 265, 282].
This recombinant is then introduced to a bacterium, such as Escherichia coli (E. coli).
Since bacteria multiply exponentially, this process will lead to an exponential increase in
the target gene contained in their recombinant plasmids. This bio-operation was used in a
DNA computing algorithm to solve a six-bit instance of the maximal clique problem [97].

15

Plasmid

Target gene

Recombinant

Cut

Cut

Paste

Figure 2.12: The process to create a recombinant circular DNA molecule from a DNA
double strand containing the target gene and a plasmid. The target gene is cut by a
restriction enzyme whose restriction site occurs once on each end of the target gene. The
same restriction site occurs once on the plasmid, and the plasmid is cut by the same
restriction enzyme. After these cuts, the resulting strands from the target genes and the
plasmid have complementary sticky ends. Therefore, ligation can be used to create a
recombinant plasmid consisting of the initial plasmid and the inserted target gene.

Gel electrophoresis is used to separate DNA strands by length. DNA molecules are
negatively charged because they have a backbone of negatively charged phosphate groups
Therefore, if DNA molecules are put in a gel with an electric current applied, they will
migrate toward the positively charged end. Short DNA molecules move through a gel
faster because they are able to better navigate the small space available, so smaller DNA
molecules move more quickly toward the positively charged end than larger DNA molecules
do. It was shown in [101] that the speed of migration of a DNA molecule in a gel is
inversely proportional to the log of the length of the DNA molecule. The procedure of gel
electrophoresis is shown in Figure 2.13. At one end of the gel, there are wells where the DNA
samples will be loaded. The negative electrode is placed at the end of the gel with wells,
and the positive electrode is placed at the other end of the gel. After migrating through
the gel, the DNA molecules are separated by size. A group of DNA molecules of the same
length is visible as a band on the gel if its total weight is at least one nanogram [90,129]. A
band is darker if there are more DNA molecules of that length. There are high-resolution
types of electrophoresis (e.g., non-denaturing polyacrylamide gel electrophoresis [PAGE]
or 2% agarose gel electrophoresis) that can differentiate DNA molecules with as small as
a one base pair difference in length. This bio-operation was used for selecting the DNA
strands encoding the solution to the directed Hamiltonian path problem in [3] and for
selecting the solution to the subset sum problem in [102].

Extraction is used to select DNA strands that contain a certain pattern α as a substrand

16

−

+

Figure 2.13: Gel electrophoresis procedure [167]. Left panel: DNA samples are loaded into
the wells (small rectangles with shades on the top) at one end of the gel (big rectangle).
Middle panel: An electric current is applied to the gel, with the negative electrode placed
at the end of the gel with the wells and the positive electrode placed at the other end of
the gel. Right panel: The DNA molecules migrate toward the positively charged end and
are separated by size. The shortest DNA molecules migrate the farthest from the wells,
while the longest remain closest to the wells. DNA molecules are visible as bands, and a
band is darker if there are more DNA molecules of that length.

using hybridization between DNA molecules. A DNA single strand α is created and chem-
ically immobilized to a solid surface. Therefore, when a mixture of DNA strands is passed
over the surface, those DNA molecules with the Watson-Crick complementary substrand
α are connected to the surface by hybridization with the immobilized strands. After other
DNA strands are washed away, the remaining DNA molecules contain the pattern α. This
bio-operation was used, for example, in [3] to select the paths that pass through a given
node.

DNA strand displacement is a more recent bio-operation, and it can be polymerase-
based or toehold-mediated. The input of both types of DNA strand displacement consists
of a partially double-stranded DNA molecule called the input strand and a DNA single
strand called the fuel strand. The input strand contains a single-stranded substrand that
is Watson-Crick complementary to part of the fuel strand, so they can hybridize to form
a DNA complex. For toehold-mediated DNA strand displacement, a single strand of the
input strand is replaced by the fuel strand because the new DNA duplex is thermodynam-

17

ically favoured. An example is shown in Figure 2.14, where the input strand is a partially
double-stranded DNA molecule, and it has an overhang that is complementary to one end
of the fuel strand. However, as shown in Figure 2.15, for polymerase-based DNA strand
displacement, a single strand of the input strand is replaced by a new strand created by
DNA polymerase with the fuel strand as the primer and the other strand of the input
strand as the template.

Fuel strand:
γβ

Input strand:
α β

β γ

Hybridization:
α

β

β

γ

β γ

Branch point

Branch migration:

Moving

Outputs:
β γ

β γ

βα

Figure 2.14: Toehold-mediated DNA strand displacement. The input consists of a partially
double-stranded DNA molecule (input strand) and a DNA single strand (fuel strand). The
input strand has strands αβ and βγ and overhangs α and γ, and the fuel strand is βγ.
They can hybridize to form a DNA complex involving three single strands, where the
“bottom strand” of the input strand (βγ) hybridizes with the “top strand” of the input
strand αβ as well as the fuel strand (βγ). The branch point is the point where the invading
fuel strand meets the “top strand” of the input strand. The invading fuel strand displaces
the “top strand” of the input strand, and this moves the branch point in a process called
branch migration. Finally, the “top strand” of the input strand is displaced, and a new
recombinant DNA double strand is produced.

18

Input strand:
α γ

β α γ

Fuel strand:
β

Hybridization:
β α γ

Broken backbone

β α γ

Polymerase extension:
β α

α
γ

β α γ

Extension

Outputs:
β α γ

β α γ

α γ

Figure 2.15: Polymerase-based DNA strand displacement. The input consists of a partially
double-stranded DNA molecule (input strand) and a DNA single strand (fuel strand). The
input strand has strands αγ and βαγ and a sticky end β, and the fuel strand is β. They
can hybridize to form a DNA complex involving three single strands, where the “bottom
strand” of the input strand (βαγ) hybridizes with the “top strand” of the input strand
(αγ) and the fuel strand (β). Next, polymerase extends the invading fuel strand toward
the 3′ end using the bottom strand as the template. After the polymerase extension, the
substrand αγ is displaced, and a DNA double strand βαγ is produced.

DNA strand displacement was used to implement DNA-based artificial neural networks
that can recognize 100-bit hand-written digits [42,227] and to implement artificial biochem-
ical circuits [283]. It has also been used for computing the square root of a number [226,255],
for building full adders and logic gates [258], and for implementing chemical reaction net-
works [250]. In addition, DNA strand displacement is used in so-called localized DNA
computing, whereby logic circuits are implemented by spatially arranging reactive DNA
hairpins on a DNA origami surface [40], potentially reducing the computation time by
orders of magnitude. Among these examples, toehold-mediated DNA strand displacement

19

was used in [40,42,226,227,283], and polymerase-based DNA strand displacement was used
in [250,255,258].

2.2.3 Step 3: Reading the output of the DNA computation

At the end of a DNA computation, the DNA strands representing the output of the com-
putation can be read out and decoded.

In the case of computational problems with yes/no answers, solving the problems could
amount to the verification if a solution exists instead of asking for a solution. In this
case, solving them could amount to the verification of the presence or absence of a certain
solution-encoding DNA strand in the test tube that contains the output of the DNA
computation. In such problems, gel electrophoresis can be used to detect DNA molecules
of a specific length, and extraction can be used to detect DNA strands that contain a
certain pattern as a substrand. If a solution is required, sequencing can be used to read
out the information stored in the output DNA strands.

One sequencing method uses special chemically modified nucleotides (dideoxynucleoside
triphosphates [ddNTPs]); these act as “chain terminators” during PCR as follows: A
sequencing primer is annealed to the DNA template to be read. A DNA polymerase then
extends the primer. The extension reaction is split into four tubes, each containing a
different chain terminator nucleotide mixed with standard nucleotides. For example, a
tube would contain chemically modified nucleotides C (ddCTP), as well as the standard
nucleotides (dATP, dGTP, dCTP, and dTTP). In this tube, extension of the primer by the
polymerase enzyme produces all prefixes ending in G (complement of C) of the complement
of the original strand. A separation of these strands by length, using gel electrophoresis,
allows the determination of the position of all Gs (complements of Cs). Combining the
results obtained in this way for all four nucleotides allows the reconstruction of the original
sequence.

Thousands of genomes have been sequenced since the completion of the Human Genome
Project (HGP) [271] using a technique called shotgun sequencing. Here, short genome frag-
ments called “reads” are sequenced; computer programs then use the overlapping ends of
different reads to assemble them into a continuous sequence. Such conventional methods
for reading the output of a DNA computation, including Illumina-based sequencing meth-
ods, are straightforward, rapid, and accurate (one percent maximum error), and DNA
sequences of the size of the human genome (over three billion base pairs) can now be
sequenced in one to three days [233]. In contrast with these sequential sequencing ap-
proaches, nanopore-based sequencing techniques parallelize the sequencing process, and

20

despite being more error-prone (10% maximum error), they are now preferred for their
speed, sequencer size, and convenience of use. Such single-molecule sequencers can process
as many as 16,000 reads simultaneously using a parallel operating array of nanopores. Us-
ing nanopore sequencing methods, DNA strands of a total length of up to 90 million base
pairs (with contiguous DNA strands as long as 60,000 bp being read) can be sequenced in
18 hours [37,233].

2.3 Some NP-complete problems solved using DNA

computing

A decision problem is a problem that can be phrased as a yes/no problem. A decision
problem is said to be polynomial-time solvable if there exists a deterministic single-tape
Turing machine that can solve the problem using polynomial time [254], and the complex-
ity class P consists of all such problems. For example, the problem to decide whether a
number is a prime number is in P [5]. A decision problem is said to be in nondeterministic
polynomial time if a solution can be verified by a deterministic Turing machine in polyno-
mial time [54], and the complexity class NP consists of all such problems. Equivalently, a
decision problem is said to be in NP if it can by solved by some nondeterministic Turing
machine in polynomial time [254]. In addition, a decision problem is said to be NP-hard
if all NP problems are reducible to this problem in polynomial time. Informally, NP-hard
problems are at least as hard as every NP problem. A decision problem is said to be
in the class NP-complete if it is NP and NP-hard [234]. Each NP-complete problem has
a solution space that grows exponentially with its size. The question of whether or not
polynomial-time algorithms exist for NP-complete problems is one of the foremost open
problems in computer science. If a polynomial time algorithm were found for a single NP-
complete problem, all NP problems would be solvable in polynomial time. (It is widely
thought that this is not the case.) Some NP-complete problems and reductions between
these problems were listed in [155]. Thus, every NP-complete problem is significant; some
of the most well-known NP-complete problems are defined below.

Many NP-complete problems are about graphs.

A Hamiltonian path is a path in a graph that visits each node exactly once. The path is
said to be directed if the graph is directed, which means that the edges between nodes are
directional; otherwise, it is said to be undirected. Given a (directed) graph, a start node,
and an end node, the (directed) Hamiltonian path problem (HPP) asks if there exists a
(directed) Hamiltonian path in the graph from the start node to the end node.

21

An independent set of a graph is a set of nodes such that there exist no edges between
every pair of nodes in the set. A maximal independent set of a graph is an independent
set such that, for each node outside the set, there exists an edge between this node and
a node in the set. Given a graph, the maximal independent set problem (MIS) asks how
many nodes are in a maximal independent set of the graph. This problem has a related
NP-complete decision problem: Given a graph and a positive integer t, does there exist an
independent set S of the graph such that |S| = t?

A dominating set of a graph is a set of nodes such that, for each node in the graph,
either the node is in the set, or there exists an edge between the node and a node in the set.
A dominating set of a graph is said to be minimal if it has the smallest cardinality among
all dominating sets of that graph. Given a graph, the minimal dominating set problem
(MDS) asks how many nodes are in a minimal dominating set of the graph. This problem
has a related NP-complete decision problem: Given a graph and a positive integer t, does
there exist a dominating set S of the graph such that |S| = t?

A clique of an undirected graph is a set of nodes such that there exists an edge between
each pair of nodes in this set. A clique of a graph is said to be maximal if it has the largest
cardinality among all cliques in that graph. Given a graph, the maximal clique problem
asks how many nodes are in a maximal clique of the graph. This problem has a related
NP-complete decision problem: Given a graph and a positive integer t, does there exist a
clique S of the graph such that |S| = t?

Some NP-complete problems are about mathematical programming and logic.

Consider a set of items S = {si | 1 ≤ i ≤ n}, where n ∈ N, and each item si is
associated with a weight wi and a value vi for 1 ≤ i ≤ n, and a positive integer t ∈ N
called the target. The knapsack problem asks for the numbers ni, 1 ≤ i ≤ n, such that the
total value

∑
1≤i≤n vi × ni is maximized while the total weight is not over the target, that

is
∑

1≤i≤n wi × ni ≤ t. This problem has a related NP-complete decision problem: Given
a set of items with weights and values and two positive integers t and k, does there exist
a solution where the total value is k without exceeding the weight limit t? If the numbers
have the property that ni ∈ {0, 1} (ni ≤ c ∈ N and ni ∈ N, respectively), for 1 ≤ i ≤ n,
the problem is called the 0-1 (bounded and unbounded, respectively) knapsack problem.

The subset sum problem (SSP) can be viewed as a special case of the knapsack problem.
Given a finite set S ⊂ N of positive integers and a positive integer target number t ∈ N,
the subset sum problem asks if there exists a subset S ′ ⊆ S such that t = Σs∈S′s.

A propositional variable is a variable that can be either true or false, which are com-
plementary to each other. The binary connective “or” is denoted by ∨, and its result is
true if and only if at least one of its operands is true. The binary connective “and” is

22

denoted by ∧, and its result is true if and only if both its operands are true. The unary
connective “not” is denoted by ¬, and its result is true if and only if its operand is false. A
propositional formula can be a propositional variable, ¬B, D ∧B, or D ∨B, where B and
D are propositional formulas. Propositional variables and their complements (“not” of the
propositional variables) are called literals. A disjunctive clause is a single literal or a list
of literals connected by ∨. A propositional formula is in conjunctive normal form (CNF)
if it is a single disjunctive clause or a list of disjunctive clauses connected by ∧. A truth
valuation assigns true or false to all propositional variables, and a formula can be evaluated
to true or false using a truth valuation according to the definitions of logic connectives.
A propositional formula is said to be satisfiable if there exists a truth valuation that de-
termines this formula to be true. Given a propositional formula in CNF, the satisfiability
problem (SAT) asks if this formula is satisfiable. If all of its disjunctive clauses have at
most three literals, the problem is called the 3-satisfiability problem (3-SAT).

The three steps of a DNA computing procedure, described in Section 2.2 (encoding the
input information as DNA strands, performing the DNA computation, and reading out the
output of the DNA computation), have been used to solve instances of such NP-complete
problems and their related optimization problems as the directed HPP [3], the MIS problem
[97], the MDS problem [103], the knapsack problem and its variant, SSP, [7, 102, 257], the
3-SAT problem [25, 26, 130, 169, 203], and the maximal clique problem [207]. These are
summarized in Table 2.1.

Since the area of DNA computing started when Adleman used DNA to solve a seven-
node instance of the directed Hamiltonian path problem [3], we use this procedure as an
example of DNA computing. The input directed graph is as shown in Figure 2.16, the
start node is 0, and the end node is 6. The problem has a unique solution, namely the
directed Hamiltonian path 0→ 1→ 2→ 3→ 4→ 5→ 6.

In the first step of this DNA computing approach, this graph was encoded as DNA
single strands as follows. For each node i in the graph, where 0 ≤ i ≤ 6, it was encoded
by a DNA single strand Oi of length 20. For each directed edge from node i to node j
in the graph, 1 ≤ i ≤ 6 and 0 ≤ j ≤ 5, it was encoded by a DNA single strand Oi→j of
length 20 that was the concatenation of the second half of Oi and the first half of Oj. For
each directed outgoing edge from the start node 0 to node j in the graph, 0 ≤ j ≤ 5, it
was encoded by a DNA single strand O0→j of length 30 that was the concatenation of O0

and the first half of Oj. Similarly, for each directed incoming edge to the end node 6 from
node i in the graph, 1 ≤ i ≤ 6, it was encoded by a DNA single strand Oi→6 of length 30
that was the concatenation of the second half of Oi and O6. Lastly, if there was a directed
edge from the start node 0 to the end node 6, it would be encoded by a DNA single strand
O0→6 of length 40 that was the concatenation of O0 and O6.

23

Problem Cardinality Bio-operations Reference
Directed HPP 7 nodes Annealing, PCR, extraction, gel electrophoresis [3]

MIS 6 nodes Cutting, pasting, cloning, gel electrophoresis, sequencing [97]
MDS 6 nodes Cutting, pasting, cloning, PCR, gel electrophoresis [103]

Knapsack/SSP
7 items Cutting, pasting, cloning, gel electrophoresis, sequencing [102]
3 items Pasting, PCR, gel electrophoresis, annealing, sequencing [7]
3 items Cutting, pasting, gel electrophoresis, annealing [257]

SAT

6 variables
20 variables
10 variables

PCR, sequencing, extraction,
gel electrophoresis, annealing, pasting

[26]
[25]
[130]

4 variables Extraction, cutting, PCR, annealing [169]

6 variables
Annealing (hairpins), cutting, pasting,
PCR, sequencing, gel electrophoresis

[242]

4 variables Annealing (competitive), extraction [260]

4 variables
Cutting, pasting (ligase chain reaction), cloning,

gel electrophoresis, extraction, sequencing
[273]

Maximal clique 6 nodes
Annealing, PCR (overlap extension),

gel electrophoresis, cloning, sequencing, cutting
[207]

Table 2.1: List of some DNA computing algorithms (procedures) solving NP-complete
problems and their related optimization problems and the bio-operations used. This list
includes the directed Hamiltonian path problem (HPP), the maximal independent set
problem (MIS), the minimal dominating set problem (MDS), the knapsack problem, the
subset sum problem (SSP), variations of the satisfiability problem (SAT), and the maximal
clique problem. Depending on the problem, the cardinality of an instance of a problem is
the number of nodes in the input graph, the cardinality of the input set, or the number of
propositional variables.

With this encoding, if DNA single strands Oi, where 1 ≤ i ≤ 5, are mixed with DNA
single strands for edges, then partially double-stranded DNA molecules representing paths
through the graph can be generated after hybridization and ligation. For each partially
double-stranded DNA molecule representing a path, one of its strands represents a list
of edges that this path passes through. Because of the encoding of the nodes and edges,
this strands also represents a (partial) list of nodes that this path visits. The similar
information is also stored in the other strand, where the orders of nodes and edges are
reversed, and the Watson-Crick complement of the encodings are used. For example, as
shown in Figure 2.17, a partially double-stranded DNA molecule that represents the path
2 → 3 → 4 can be generated from the DNA single strand (O3) complementary to the
encoding of node 3 and the DNA single strands encoding the two directed edges from node

24

0start

3

2

4 1

5

6

Figure 2.16: Input graph of the seven-node instance of the directed Hamiltonian path
problem solved by Adleman [3]. The start node is 0 (with an incoming node from start),
and the end node is 6 (double circle). The problem has a unique solution, namely the
directed Hamiltonian path 0→ 1→ 2→ 3→ 4→ 5→ 6.

2 to node 3 (O2→3) and from node 3 to node 4 (O3→4). Its top strand represents a path
passing through the edge from node 2 to node 3, followed by the edge from node 3 to node
4.

Next is the actual DNA computation, and the algorithm is as follows:

1. Generate random paths through the graph. This is achieved by annealing DNA
single strands Oi, 1 ≤ i ≤ 5, with DNA single strands encoding each of the directed
edges. The backbones of these DNA double strands are connected by ligation. In [3],
approximately 3 × 1013 copies of each input DNA single strand are used. Since
infinitesimal free-floating DNA strands are in great quantity, they can interact with
each other randomly through hybridization. Therefore, all possible paths through
the graph are generated with high probability (theoretically, even one copy of each
path is sufficient for this computation).

2. Select all paths that start with node 0 and end with node 6 from the pool of above
randomly generated paths. This is achieved using PCR to amplify the DNA double
strands generated from the last step with primers O0 and O6. With these two primers,

25

only those DNA (sub)strands that have O0 at one end and O6 at the other end are
amplified by PCR.

3. Select all paths that have the desired length. Since every Hamiltonian path would
have to traverse seven nodes, a solution to the problem, if one exists, would be a
DNA strand of length 140 bp. Gel electrophoresis is used to select those strands of
140 bp in length.

4. Select all paths that traverse all remaining nodes 1, 2, 3, 4, and 5 from the paths
that remain after the selection in the previous step. This is achieved by sequentially
extracting DNA strands that contain O1, O2, O3, O4, and O5 as a substrand. For
node 1, the DNA strands with O1 as a substrand are selected by extraction, with
the DNA single strands O1 as the sequence attached to the surface. The remaining
paths go through a similar selection for the remaining nodes in a sequential order.

5′ 3′
GTATATCCGAGCTATTCGAG

O2→3 : 5′ 3′
CTTAAAGCTAGGCTAGGTAC

O3→4 :

3′ 5′
CGATAAGCTCGAATTTCGAT

O3 :

5′ 3′
GTATATCCGAGCTATTCGAGCTTAAAGCTAGGCTAGGTAC

O2→3 O3→4

3′ 5′
CGATAAGCTCGAATTTCGAT

O3

Figure 2.17: Example of a path formed by connecting two compatible edges using the
node that they have in common [3]. Top: The directed edges from node 2 to node 3 and
from node 3 to node 4 are encoded by the DNA single strands O2→3 and O3→4. Middle:
Node 3 is encoded by O3, and the DNA single strand O3 is used in computation. Bottom:
The above strands can recombine to form a partially double-stranded DNA molecule after
hybridization and ligation. Its top strand represents a path passing through the edge from
node 2 to node 3, followed by the edge from node 3 to node 4. It also contains all the
nodes that two neighbour edges in the path have in common. In this case, it is node 3.

After these selections, the remaining paths (if any) are Hamiltonian paths from node 0
to node 6 because each of them starts with node 0 and ends with node 6 (by step 2), each

26

traverses all seven nodes (by step 3), and each traverses each of the nodes at least once
(by step 4).

The last step is the result readout, which can be done by checking if there are DNA
double strands encoding paths left in the solution. The resulting DNA double strands
can be amplified by PCR, and we can use gel electrophoresis to check the existence of
DNA molecules. The answer to the Hamiltonian path problem is “yes” if there are DNA
molecules of length 140 bp left and “no” otherwise. If there exists a Hamiltonian path, and
one wants to know what is in the path, sequencing can be used to read the DNA sequence;
it can then be decoded using the encoding scheme described above.

27

Chapter 3

Word Blending and Other Formal
Models of Bio-operations

Since a seven-city instance of the directed Hamiltonian path problem was solved using
programmed DNA interactions in a test tube [3], there has been an ongoing effort to
model biological processes on DNA as computations. We continue this research direction
by modelling the unexpected outcomes of a DNA wet lab protocol, when particular types of
input DNA strands are its input, as two new bio-operations, and by studying their formal
language properties.

In Section 3.1, an introduction to formal language operations is given. In Section 3.2,
some biologically inspired word operations in the literature are described. In Section 3.3,
the details of cross-pairing polymerase chain reaction (XPCR) is given. In addition, a
previously studied bio-operation inspired by XPCR is discussed. In Section 3.4, a word
operation that models a generalization of a special case of XPCR is defined and studied. In
Section 3.5, a new word operation that is more closely related with the XPCR experimental
requirement is proposed and studied, and Section 3.6 describes the wet lab experiments
that motivate and implement this operation. In Section 3.7, a conclusion and possible
future work are discussed.

Section 3.4 contains updated results from a paper I co-authored [76] titled “Word
blending in formal languages.” This paper is the journal version of a conference paper I
co-authored during my Master’s studies [75] titled “Word blending in formal languages:
the Brangelina effect.”

Section 3.5 and Section 3.6 contain theoretical and experimental results from a pa-
per I co-authored [15] titled “Conjugate word blending: Formal model and experimental

28

implementation by XPCR.”

The co-authors of [15] include an experimental team who implemented the XPCR
experiments and generated the gel electrophoresis results in Section 3.6.

3.1 Introduction to formal language operations

This section gives a summary of the aspects of formal language study that are related to
this thesis, and it includes the closure properties of some families of languages under some
operations, their left- and right-inverses, and their descriptional state complexity.

3.1.1 Closure properties

Among different families of languages, the Chomsky hierarchy of languages is well known
and well studied. The four families of languages in the Chomsky hierarchy are regular,
context-free, context-sensitive, and recursively enumerable languages. Languages are cat-
egorized into these different families according to their generative grammar.

The following definitions are from [243].

Definition 3.1. A grammar is a quadruple G = (VN , VT , a0, F), where VN is the non-
terminal alphabet, VT is the terminal alphabet, a0 ∈ VN is the initial symbol, and F ⊆
{α→ β | α, β ∈ {VN ∪ VT}∗,Alph(α) ∩ VN ̸= ∅} is the set of production rules.

Definition 3.2. A grammar G = (VN , VT , a0, F) is called:

• a type-3 grammar if

F ⊆ {a→ bα | a, b ∈ VN , α ∈ V ∗
T } ∪ {a→ α | a ∈ VN , α ∈ V ∗

T };

• a type-2 grammar if F ⊆ {a→ α | a ∈ VN , α ∈ {VN ∪ VT}∗};

• a type-1 grammar if

F ⊆ {α1aα2 → α1βα2 | a ∈ VN , α1, α2, β ∈ (VN ∪ VT)∗, β ̸= λ}; and

• a type-0 grammar if there are no restrictions on F .

29

Note that these types of grammar are hierarchical, where a type-i grammar is also a
type-j grammar, 0 ≤ j ≤ i ≤ 3. The Chomsky hierarchy of languages can thus be defined
as follows:

Definition 3.3. [48] A language is said to be:

• regular if it can be generated by a type-3 grammar;

• context free if it can be generated by a type-2 grammar;

• context sensitive if it can be generated by a type-1 grammar; and

• recursively enumerable if it can be generated by a type-0 grammar.

The family of regular (context-free, context-sensitive, and recursively enumerable, re-
spectively) languages is denoted by REG (CF, CS, and RE, respectively). A language L is
said to be finite if it contains a finite number of words, and the family of finite languages
is denoted by FIN.

In addition to generative grammars, there are simple idealized machines that recognize
or accept languages [243].

Definition 3.4. A non-deterministic finite automaton (NFA) is a quintuple M = (S, VT ,
s0, A, F), where S is the set of states, VT is the alphabet, s0 ∈ S is the initial state, A ⊆ S
is the set of final states, and F ⊆ {sa→ s′ | s, s′ ∈ S, a ∈ VT} ∪ {s→ s′ | s, s′ ∈ S} is the
set of transitions.

The set of transitions F of an NFA can also be written as a function δ : S×(Σ∪{λ})→
2S, defined as follows. Given states s, s′ ∈ S and a letter a ∈ Σ, there is a transition of
the form sa → s′ ∈ F if and only if we have s′ ∈ δ(s, a); there is a transition of the form
s→ s′ ∈ F if and only if we have s′ ∈ δ(s, λ).

Definition 3.5. A deterministic finite automaton (DFA) is a quintuple M = (S, VT , s0,
A, F), where S is the set of states, VT is the alphabet, s0 ∈ S is the initial state, A ⊆ S
is the set of final states, and F ⊆ {sa → s′ | s, s′ ∈ S, a ∈ VT} is the set of transitions.
Moreover, F contains at most one transition sa → s′ for each pair (s, a), where s, s′ ∈ S
and a ∈ VT .

Definition 3.6. A pushdown automaton (PDA) is a septuple M = (S, VI , VZ , z0, s0, A, F),
where S is the set of states, VI is the input alphabet, VZ is the stack alphabet, z0 ∈ VZ is
the initial stack letter, s0 ∈ S is the initial state, A ⊆ S is the set of final states, and F ⊆
{zsia→ αsj | z ∈ VZ , a ∈ VI , α ∈ V ∗

Z , si, sj ∈ S} ∪ {zsi → αsj | z ∈ VZ , α ∈ V ∗
Z , si, sj ∈ S}

is the set of transitions.

30

Definition 3.7. A linear bounded automaton (LBA) is a sextuple M = (S, VI , VT , s0,
A, F), where S is the set of states, VI ⊆ VT is the input alphabet, VT is the tape alphabet,
s0 ∈ S is the initial state, A ⊆ S is the set of final states, and F ⊆ {sia → sjb | si, sj ∈
S, a, b ∈ VT} ∪ {sia→ asj | si, sj ∈ S, a ∈ VT} ∪ {csia→ sjca | si, sj ∈ S, a, c ∈ VT} is the
set of transitions. Moreover, for each triple (si, a, sj), where si, sj ∈ S and a ∈ VT , the set
of transitions F either contains no rules of the form csia → sjca or contains all rules of
the form csia→ sjca for all c ∈ VT .

Definition 3.8. A Turing machine (TM) is a septuple M = (S, VI , V1, VT , s0, A, F), where
S is the set of states, VT is the tape alphabet, # ∈ VT is the tape boundary marker,
V1 = VT \ {#} is a non-empty alphabet, VI ⊂ V1 is the input alphabet, s0 ∈ S is the initial
state, A ⊆ S is the set of final states, □ ∈ V1 denotes an empty cell on the tape, and
F ⊆ {sia → sjb | si, sj ∈ S, a, b ∈ V1} ∪ {siac → asjc | si, sj ∈ S, a, c ∈ V1} ∪ {sia# →
asj□# | si, sj ∈ S, a ∈ V1} ∪ {csia → sjca | si, sj ∈ S, a, c ∈ V1} ∪ {#sia → #sj□a |
si, sj ∈ S, a ∈ V1} is the set of transitions.

In addition, for each triple (si, a, sj), where si, sj ∈ S, a ∈ V1, the set of transitions
F either contains no rules of the form siac → asjc and sia# → asj□# (csia → sjca
and #sia → #sj□a) or contains all rules of the form siac → asjc and sia# → asj□#
(csia→ sjca and #sia→ #sj□a) for all c ∈ V1.

Moreover, for each pair (si, a), where si ∈ S, a ∈ V1, there is at most one transition of
the form sia#→ asj□#, #sia→ #sj□a and sia→ sjb in F , where sj ∈ S and b ∈ V1.

The relationships among the Chomsky hierarchy of languages, generative grammars,
and recognition machines are summarized in Table 3.1 with examples.

Family Grammar Machine Example
REG Type-3 NFA/DFA {an | n ≥ 0}
CF Type-2 PDA {anbn | n ≥ 0}
CS Type-1 LBA {anbncn | n ≥ 0}
RE Type-0 TM {w | w encodes a TM that halts with empty input.}

Table 3.1: The relationships among the Chomsky hierarchy of languages, generative gram-
mars, and recognition machines with examples.

A family of languages L is said to be closed under an operation ⋄ if application of the
operation ⋄ on languages in the family L always produces a language in the same family
L. Definitions of some operations are given in Table 3.2, and the closure properties of the
Chomsky hierarchy of languages under these operations are summarized in Table 3.3.

31

Operation Definition
Union L1 ∪ L2 = {α | α ∈ L1 or α ∈ L2}

Concatenation L1L2 = {αβ | α ∈ L1, β ∈ L2}
Kleene star L∗ =

⋃∞
i=0 L

i

Kleene plus L+ =
⋃∞

i=1 L
i

Reverse Lr = {a1a2 · · · ak | akak−1 · · · a1 ∈ L}

Substitution
σ(L) = {α | ∃β ∈ L : α ∈ σ(β)}
σ(λ) = λ, σ(αβ) = σ(α)σ(β)
∀a ∈ Σ : σ(a) ⊆ Σ∗

a

Homomorphism
σ(L) = {α | ∃β ∈ L : α ∈ σ(β)}
σ(λ) = λ, σ(αβ) = σ(α)σ(β)

∀a ∈ Σ : σ(a) ∈ Σ∗
a

Intersection L1 ∩ L2 = {α | α ∈ L1, α ∈ L2}
Set difference L1 \ L2 = {α | α ∈ L1, α /∈ L2}

Complementation Lc = {α ∈ Σ∗ | α /∈ L} = Σ∗ \ L
Left quotient L−1l

2 L1 = {β | αβ ∈ L1, α ∈ L2}
Left derivative ∂αL = {β | αβ ∈ L}
Right quotient L1L

−1r
2 = {α | αβ ∈ L1, β ∈ L2}

Right derivative ∂r
βL = {α | αβ ∈ L}

Prefix
Suffix
Infix

pref(L) = {α | αβ ∈ L, α, β ∈ Σ∗}
suff(L) = {β | αβ ∈ L, α, β ∈ Σ∗}

inf(L) = {β | α1βα2 ∈ L, α1, α2, β ∈ Σ∗}
Sequential insertion

L1 ← L2 =
⋃

α∈L1,β∈L2
(α← β)

α← β = {α1βα2 | α = α1α2}
Parallel insertion

L1 ⇐ L2 =
⋃

α∈L1,β∈L2
(α⇐ β)

α⇐ L = {β0a1β1a2 · · · akβk | α = a1a2 · · · ak, β0, β1, . . . , βk ∈ L}
Sequential deletion

L1 → L2 =
⋃

α∈L1,β∈L2
(α→ β)

α→ β = {α1α2 | α = α1βα2, α1, α2 ∈ Σ∗}
Dipolar deletion

L1 ↔ L2 =
⋃

α∈L1,β∈L2
(α↔ β)

α↔ β = {α2 | α = α1α2α3, β = α1α3, α1, α2, α3 ∈ Σ∗}

Shuffle
L1

∐
L2 =

⋃
α∈L1,β∈L2

(α
∐

β)

α
∐

β = {α1β1α2β2 · · ·αkβk | α = α1α2 · · ·αk, β = β1β2 · · · βk,
k ∈ N+, αi, βi ∈ Σ∗, 1 ≤ i ≤ k}

Cyclic shift SHIFT(L) = {αβ | βα ∈ L}

Table 3.2: Definitions of some formal language operations. Languages are denoted by
L, alphabets are denoted by Σ, words are denoted by lowercase letters from the Greek
alphabet, and letters are denoted by lowercase letters from the English alphabet.

32

Operation REG CF CS RE References
Union Y Y Y Y [243]

Concatenation Y Y Y Y [243]
Kleene star Y Y Y Y [243]
Kleene plus Y Y Y Y [243]

Reverse Y Y Y Y [243]
Substitution Y Y N Y [243]

Homomorphism Y Y N Y [243]

Intersection Y
N

(L1 ∈ REG
or L2 ∈ REG)

Y Y [166,234,243,246]

Set difference Y N Y N [243,246]
Complementation Y N Y N [117,164,243,254]

Left/right quotient Y
N

(L2 ∈ REG)
N

(L2 ∈ FIN)
N [88,139,243]

Left/right derivative Y Y Y Y [243]
Prefix
Suffix
Infix

Y Y N Y [243]

Sequential insertion Y Y Y Y [139]
Parallel insertion Y Y Y Y [139]

Sequential deletion Y N N Y [140]
Dipolar deletion Y N N Y [140]

Shuffle Y N Y Y [118,139]
Cyclic shift Y Y Y Y [182,206]

Table 3.3: Closure properties of the Chomsky family of languages under formal language
operations. Definitions are given in Table 3.2. The families of the languages considered
are finite, regular, context free, context sensitive, and recursively enumerable denoted by
FIN, REG, CF, CS, and RE, respectively. A letter “Y” in a cell indicates that the family
of the column is closed under the operation of the row, and a letter “N” in a cell indicates
that the family of the column is not closed under the operation of the row. In the case of
N, the condition surrounded by brackets is the exceptional case, and L1 and L2 are the left
and right operands of the binary operation.

33

3.1.2 Invertible operations

Consider an algebraic equation of the form ax = b, where a and b are known numbers, and
x is an unknown number. Its solution can be calculated by x = b/a, where quotient can
recover the right operand of multiplication from its left operand and product. A similar
idea can be used to solve equations involving languages and formal language operations.
For example, given two known languages L and R and an unknown language Y over an
alphabet Σ, decision problems related to whether or not there exists a solution to LY = R
were studied in [141].

In this section, language equations involving binary word operations are considered.
For example, consider an equation of the form L ⋄ Y = R or X ⋄ L = R, where ⋄ is
a binary word operation, L and R are known languages, and X and Y are unknown
languages. The question “whether or not there exists a solution to the equation” was
studied in [141,143,154].

Using the idea that quotient can recover an operand of multiplication from its other
operand and product, the left- and right-inverse of a binary word operation can be defined
as follows.

Definition 3.9. A binary word operation ⋄ is called the left-inverse of □ if for all α, β, γ ∈
Σ∗, we have that γ ∈ (α□β) if and only if α ∈ (γ ⋄ β). Similarly, a binary word operation
⋄ is called the right-inverse of □ if for all α, β, γ ∈ Σ∗, we have that γ ∈ (α□β) if and only
if β ∈ (α ⋄ γ).

For example, concatenation and right quotient are the left-inverses of each other, and
sequential insertion and reversed dipolar deletion are the right-inverses of each other.

Using the definition of left- and right-inverses of binary word operations, the following
propositions from [141] provide a way to find the solution to a language equation of the
form L ⋄ Y = R or X ⋄ L = R.

Proposition 3.10. Consider an equation L⋄Y = R. If there is a solution to this equation,
the language Y ′ = (L□Rc)c is also a solution to the equation, where □ is the right-inverse
of ⋄, and all the solutions to this equation are subsets of Y ′.

Proposition 3.11. Consider an equation X ⋄L = R. If there is a solution to the equation,
the language X ′ = (Rc□L)c is a solution to the equation, where □ is the left-inverse of ⋄,
and all the solutions to the equation are subsets of X ′.

Note that X ′ and Y ′ are the maximal solutions.

34

Using the above two propositions, the decidability of the existence of a (singleton)
solution to an equation can be determined.

For example, consider an alphabet Σ, two regular languages L,R over Σ, and binary
operations ⋄ and □, where the family of regular languages is closed under them, and they
are the right-inverses to each other. We want to determine whether the question “does
a solution to the equation L ⋄ Y = R exist?” is decidable or not. A maximal solution
Y ′ = (L□Rc)c can be effectively constructed because the family of regular languages is
closed under □ and complementation. A solution exists if and only if the regular language
L⋄Y ′ equals the regular language R. Since testing the equivalence of two regular languages
is decidable [6], the existence of a solution to the equation is also decidable.

3.1.3 State complexity

In this section, we briefly introduce state complexity and offer results about the state
complexity of operations under which the family of regular language is closed.

The size of a DFA M = (S, VT , s0, A, F) can be determined by either the number of
states |S| or the number of transitions |F |. These are related measurements because the
number of transitions of M is at most |VT | · |S|. The state complexity of a regular language
L, denoted by sc(L), is defined as the number of states in the minimal complete DFA M
that recognizes L. A DFA is said to be complete if there is a transition sa → s′ in F
for every state s ∈ S and letter a ∈ VT . A complete DFA is said to be minimal if there
does not exist any complete DFA with fewer states recognizing the same language. For
every regular language, there is a unique minimal complete DFA up to the renaming of the
states, and it can be generated using the Myhill-Nerode theorem [199,252].

For example, the minimal complete DFA recognizing the regular language L = a{a, b}∗b
is shown in Figure 3.1, which gives up sc(L) = 4.

s0start d s1 s2
b

a

a

b

a

b

a

b

Figure 3.1: The minimal complete DFA recognizing the regular language a{a, b}∗b.

35

A regular language L is called an m-state DFA language if L can be recognized by a
DFA with m states.

The definition of state complexity can be extended to a regularity-preserving operation
(an operation that outputs a regular language whenever its operand[s] are regular) as
follows.

Definition 3.12. Let ⋄ be a regularity-preserving operation taking k operands, and let Li

be an mi-state DFA language for 1 ≤ i ≤ k. The state complexity of ⋄ is the number of
states, in terms of mi, 1 ≤ i ≤ k, that is sufficient and necessary for a minimal complete
DFA to recognize the output of ⋄ on operands Li, 1 ≤ i ≤ k.

To show that the state complexity of ⋄ is a tight upper bound, a family of languages for
each operand should be provided such that the number of states of the minimal complete
DFA recognizing the output reaches that bound. These families of languages are called
witnesses.

For example, consider an alphabet Σ, an m-state regular language Lm over Σ, and
an n-state regular language Ln over Σ, where m = 1, n ≥ 2, and |Σ| ≥ 2, the state
complexity of concatenation sc(LmLn) is 2n − 2n−1, and the witnesses are Lm = {a, b}∗
and Ln = {ubv ∈ {a, b}∗ | |v|a ≡ n− 2 (mod n− 1)} [279].

The state complexities of concatenation, union, intersection, complementation, reverse,
and Kleene star were studied in [125–127, 189, 229, 278, 279]. These are summarized in
Table 3.4.

In addition to the above mentioned operations, the state complexities of other opera-
tions, such as left/right quotient [279] and left/right derivative [71], were studied. Other
variations, such as the state complexity regarding NFA [71, 125–128, 187] and state com-
plexity considering such sub-regular languages as finite languages [33,34,93,109,110,278],
were studied.

A family of languages called universal witnesses was identified in [30]. These can be used
as witnesses for many of the above mentioned operations and compositions of operations.
The conditions about the universal witnesses can be used as heuristics when searching for
witnesses for a given upper bound.

It has also been proved that no algorithm exists to calculate the state complexity of
an operation that is a composition of regularity-preserving operations with known state
complexities [244].

36

Operation State complexity Condition References

LmLn

2n − 2n−1 m = 1, n ≥ 2, |Σ| >= 2 [279]
m2n − 2n−1 m ≥ 2, n ≥ 2, |Σ| >= 2 [126]

m m ≥ 1, n = 1, |Σ| >= 1 [279]
mn m = 1, n ≥ 2, |Σ| = 1, gcd(m,n) = 1 [279]

Lm ∪ Ln mn
m ≥ 1, n ≥ 1, |Σ| ≥ 2 [279]

m ≥ 1, n ≥ 1, |Σ| = 1, gcd(m,n) = 1 [278]

Lm ∩ Ln mn
m ≥ 1, n ≥ 1, |Σ| ≥ 2 [229,279]

m ≥ 1, n ≥ 1, |Σ| = 1, gcd(m,n) = 1 [278]
Lc
m m m ≥ 1, n ≥ 1, |Σ| ≥ 1 [125]

Lr
m

2m m ≥ 1, n ≥ 1, |Σ| ≥ 2 [127]
m m ≥ 1, n ≥ 1, |Σ| = 1 [189]

L∗
m

2m−1 + 2m−k−1 m ≥ 2, k = |A \ {s0}| ≥ 1, |Σ| ≥ 2

[279]
m m ≥ 2, |A \ {s0}| = 0, |Σ| ≥ 1
2 m = 1, |Σ| ≥ 1

(m− 1)2 + 1 m ≥ 2, |A \ {s0}| ≥ 1, |Σ| = 1

Table 3.4: Summary of the state complexities of concatenation, union, intersection, com-
plementation, reverse, and Kleene star. The operands are two languages Lm and Ln over
an alphabet Σ, and they can be recognized by minimal complete DFA with m and n states,
respectively. The state complexities depend on conditions like the number of states, the
size of the alphabet, the number of states in the set of final states, and whether m and n
are co-prime. The witnesses given in the paper appear in the reference column.

3.2 Biologically inspired word operations

This section lists biologically inspired word operations. They formalize DNA processes
that are:

• naturally occurring—duplication, inversion, transposition, repeat deletion, and block
substitution;

• related to the actions of enzymes on DNA strands—splicing, hairpin completion, and
template-directed extension; and

• related to lab protocols with multiple steps—contextual insertion/deletion and site-
directed deletion/insertion.

37

First, there are many naturally occurring DNA processes that modify DNA strands,
such as mutations, insertions, and deletions. Genes are segments of DNA that can deter-
mine the traits of an organism, a chromosome is a linear collection of genes, and a genome
is the complete set of DNA of an organism. There are many known processes of genome
rearrangements, and the following bio-operations are related to them.

The process where a segment of a chromosome is reversed end-to-end is called chromo-
somal inversion. For example, consider words u, v, and w over an alphabet Σ, the word
uvw becomes uvrw after a chromosomal inversion. This process is formalized as inversion
in [59]. The process, where the whole segment does not reverse completely during inver-
sion, is formalized as pseudo inversion [43]. For a chromosome, multiple inversions may
happen at the same time. This process is modelled as non-overlapping inversion [156]. A
related operation called block reversal was studied in [174]. Hairpin inverted repeat models
the situation where an inversion occurs at the head of a hairpin structure [57].

The process where a segment of a chromosome is moved to a new location in the
chromosome is called transposition. For example, the word uαβv becomes vβαu. This
process is formalized as transposition in [59].

The process called duplication copies a segment of a chromosome to a new location. For
example, the word uvw becomes uvvw. This process is formalized as duplication in [59]. A
variation of duplication that identifies a set of subwords that can be duplicated was studied
in [119]. In addition, duplication with length limitation was considered in [121]. Copying
errors can occur during duplication, such as the duplicated part having an altered sequence
(modelled by pseudo duplication [44]) or the duplicated part being reversed (modelled by
reverse duplication [44, 58]). The bio-operation repeat deletion models the process where
the duplicated substrand of DNA is skipped, and it was studied in [119].

The phenomenon of errors occurring in DNA strands, where part of a DNA strand is
replaced with another strand of the same length, is modelled by the bio-operation called
block substitution, defined and studied in [146].

Next, we consider the DNA processes that are related to the actions of enzymes, such
as restriction enzymes, ligases, and DNA polymerases.

The DNA recombination achieved by restriction enzyme digestion and ligation is mod-
elled as a bio-operation called splicing, as studied in [95,221,223].

Given an alphabet Σ, a splicing rule r is defined as r = u1#u2$u3#u4, where #, $ ̸∈ Σ
and u1, u2, u3, u4 ∈ Σ∗ [223]. In a splicing rule u1#u2$u3#u4, the words u1 and u4 are
called visible sites, while u2 and u3 are called invisible sites. For two strings x = x1u1u2x2

and y = y1u3u4y2, applying the rule r = u1#u2$u3#u4 produces a string z = x1u1u4y2,

38

and this is denoted by (x, y) ⊢r z. Splicing rules of the form w#λ$w#λ, where w ∈ Σ+,
are called null-context splicing rules [95].

A splicing scheme is a pair σ = (Σ,R), where Σ is an alphabet, and R is a set of
splicing rules. A splicing scheme σ = (Σ,R) is said to be regular (context free, context
sensitive, respectively) if R is a regular (context-free, context-sensitive, respectively) lan-
guage contained in Σ∗#Σ∗$Σ∗#Σ∗. The closure properties of various families of languages
under a splicing scheme were studied in [96].

A splicing system is a splicing scheme together with an initial language, and the lan-
guage generated by a splicing system is the set of all words obtained by iteratively ap-
plying splicing rules on the initial language. A splicing system is called a simple splicing
system [184] if the splicing rules are restricted to rules of the form a#λ$a#λ for a ∈ Σ.
In [222], it is shown that the families of regular, context-free, and recursively enumerable
languages are closed under splicing systems with a regular splicing scheme and finitely
many visible sites. Splicing systems with a regular splicing scheme and a finite initial
language have the same computational power as the Turing machine [210,224].

As mentioned in Section 2.1, a DNA single strand can form an intramolecular structure
called a hairpin if it contains compatible substrands. The resulting hairpin structure may
have a partially double-stranded stem, and a polymerase enzyme can be used to extend
the stem to become fully double stranded. This process is formalized as a unary word
operation called hairpin completion, defined in [41], where the closure properties under it
and its iterated version have been studied. Its variation with length restrictions on the
sticky end was defined and studied in [120,162]. Other related bio-operations were studied
in [120,176–179].

The process where a DNA polymerase enzyme extends a primer according to a template
is formalized as template-directed extension, introduced in [74]. The families of regular
and recursively enumerable languages are closed under it, but the families of context-free
and context-sensitive languages are not.

Lastly, there are some lab protocols that are used to modify DNA strands.

Insertions and deletions of nucleotide sequences can be achieved by a biology lab tech-
nique called PCR site-specific oligonucleotide mutagenesis [64], and these processes can
be modelled as language operations called contextual insertion and contextual deletion
defined and studied in [153]. Closure properties under contextual insertion and contex-
tual deletion and the decidability of the existence of solutions to equations involving
them were studied in [153]. They can be used to defined a computation system called
an insertion-deletion system that has the same computational power as the Turing ma-

39

chine [151, 153, 211, 259]. Related operations called site-directed deletion/insertion were
defined and studied in [45–47,173].

3.3 Cross-pairing polymerase chain reaction (XPCR)

and overlap assembly

Cross-pairing polymerase chain reaction (XPCR) is a wet lab procedure introduced in [84]
for extracting all the strands that contain a given pattern (a substring) from a heteroge-
neous pool of DNA strands. It was employed to implement several DNA recombination
algorithms [86], to create the solution space for a SAT problem [82], and for mutagene-
sis [85]. The combinatorial power of this technique was explained using logical-symbolic
schemes in [175], while algorithms to create combinatorial libraries were experimented
in [85] and improved in [83], where all permutations of the three genes were generated.
The process of XPCR is shown in Figure 3.2, where the inputs of XPCR are αXγ and
γY β, and the output is αXγY β.

The wet lab experiments reported in this chapter involve three different genes: dbtAa
(Ferredoxyn Reductase, 1,019 bp), dbtAb (Ferredoxyn, 311 bp), and dbtAd (β Dioxygenase
subunit, 518 bp), extracted from the widely studied bacterial strain Burkholderia fungorum
DBT1 [62]. In the following, we denote these three genes by the capital letters A, B,
and D, respectively, and the primers (21 bp long DNA sequences used in XPCR) by α,
β, and γ. The primer α (β and γ, respectively) is TTCTACAAGGAGGATATTACC
(GATATCAGGTACATCTCCATA and ATATTGGAGGAGGTATACAAC, respectively).
The experimental results of XPCR to concatenate pairs of genes (D with B, B with D, A
with B, and D with A) using primers α, β, and γ are shown in Figure 3.3.

The process of XPCR illustrated in Figure 3.3 was formalized as a binary word operation
called overlap assembly in [73].

Definition 3.13. Given two words x, y ∈ Σ∗, the overlap assembly of x with y is defined
by

x⊙ y = {uvw | x = uv, y = vw, u, w ∈ Σ∗, v ∈ Σ+}.

This operation was studied under the name linear self-assembly in [55] and chop in [108].
It can also be considered a special case of a semantic shuffle on trajectories, as studied
in [65]. The iteration of this process was called parallel overlap assembly, and it was used
to generate combinations of partially double-stranded DNA molecules [137].

40

Inputs:
α X γ

α X γ

γ Y β

γ Y β

α

β

Denaturation:
α X γ γ Y β

α X γ γ Y β

Annealing:
γ Y β

β

α X γ

βYγ α X γ

α

Extension:
γ Y β

α X γβγ Y

α X γα X γ Y β

βYγα X

Figure 3.2: Cross-pairing polymerase chain reaction (XPCR). XPCR can be used to create
and amplify a recombination of two genes. The inputs include two templates (DNA double
strands αXγ and γY β in the first row), two primers (DNA single strands α and β in
the first row), nucleotides (not shown), and DNA polymerase (not shown). One cycle of
XPCR has the three following steps: denaturation, annealing, and extension. During the
denaturation step of the first cycle, the templates break into single strands αXγ, αXγ,
γY β, and γY β because of an increase in temperature. During the annealing step of the
first cycle, two of the single strands from the templates hybridize with primers (γY β with
β and αXγ with α), and the other two single strands from the templates hybridize with
each other (αXγ with γY β) because of the decrease in temperature. Finally, during the
extension step of the first cycle, the primers and the single strands of the recombinant are
extended by DNA polymerases using the free-floating nucleotides present in the solution
according to the template strands. In the following cycles, XPCR acts similarly to PCR,
with primers α and β and a template αXγY β. The recombinant DNA double strand
αXγY β is amplified exponentially.

The closure properties of the Chomsky families of languages under overlap assembly, the
decidabilities of some decision problems (such as emptiness, context-freeness and finiteness
about the languages generated by overlap assembly), as well as properties about languages

41

generated by the iterative application of overlap assembly, were studied in [72, 73]. In
addition, the state complexity of overlap assembly was studied in [31].

Figure 3.3: XPCR with templates containing different genes [83]. Lane 1: XPCR with
templates αDγ (560 bp) and γBβ (353 bp) amplifies the strand αDγBβ (892 bp). Lane
2: XPCR with templates αBγ (353 bp) and γDβ (560 bp) amplifies the strand αBγDβ
(892 bp). Lane 3: XPCR with templates αAγ (1,061 bp) and γBβ (353 bp) amplifies
the strand αAγBβ (1,393 bp). Lane 4: XPCR with templates αDγ (560 bp) and γAβ
(1,061 bp) amplifies the strand αDγAβ (1,600 bp). Lanes K-1, K-2, K-3, and K-4: Negative
controls without templates for the reactions in Lanes 1, 2, 3, and 4, respectively.

As shown in Definition 3.13, the operands x and y can be decomposed as x = uv and
y = vw, where u and w are non-overlapping parts, and v is the overlapping part. Some
related operations are summarized as follows with different length restrictions on these
(non-)overlapping parts of the operands.

• Restricted assembly : The non-overlapping parts u and w are non-empty [55].

• Word operation denoted by
⊗

: The concatenation of the non-overlapping parts uw
are non-empty, but the overlapping part v can be empty [122]. Note that a∗

⊗
b∗ =

{a+b∗} ∪ {a∗b+}, whereas a∗ ⊙ b∗ = ∅.

• Max chop denoted by
⊙

max: Only the longest overlapping part is considered [108].

42

• Min chop denoted by
⊙

min: Only the shortest overlapping part is considered [108].

• Short concatenation: Only the longest overlapping part is considered, and the over-
lapping part can be empty [35].

• Word operation denoted by
⊙

N : The length of the overlapped part is required to
be at least N ∈ N+ [66].

• Fusion denoted by
⊙

/Latin product : The overlapped part is a single character [10,
89,106,107].

3.4 Word blending

This section contains updated results from a paper I co-authored [76], and if a proof was
already included in [75], it will be omitted.

As shown in Section 3.3, the XPCR procedure has been successfully used to join two
different genes if they are attached to compatible primers [83]. Formally, αXγ and γY β
were combined to produce αXγY β (X and Y are gene sequences, and α, γ, and β are
primers). However, when X = Y , that is, when two sequences containing the same gene
were combined by XPCR, the result was not as expected. More specifically, when using
XPCR with the input αXγ, γXβ, α, and β, instead of obtaining the expected αXγXβ,
the experiments repeatedly produced the result αXβ.

In this section, we define and investigate a binary word and language operation called
word blending, which formalizes the following generalization of this experimentally observed
outcome of XPCR: The word blending of two words αXγ1 and γ2Xβ that share a non-
empty overlap X results in αXβ. Note that while γ1 = γ2 was required by XPCR, it is
not required for our definition of the operation. Interestingly, this phenomenon has been
observed independently in linguistics [91], under the name “blend word” or “portmanteau,”
and is responsible for the creation of words in the English language such as smog (smoke +
fog), labradoodle (labrador + poodle), emoticon (emotion + icon), and Brangelina (Brad
+ Angelina).

We model this string recombination as follows.

Definition 3.14. Given two words x, y over an alphabet Σ, we define the word blending
or, simply, blending of x with y as

x ▷◁ y = {z ∈ Σ+ | ∃α, β, γ1, γ2 ∈ Σ∗,∃w ∈ Σ+ : x = αwγ1, y = γ2wβ, z = αwβ}.

43

Note that the result of blending between two words is the empty set (the operation is
undefined) if the words do not share a non-empty infix. If one or both words are empty, the
operation is similarly undefined. The definition of blending can be extended to languages
L1 and L2 by

L1 ▷◁ L2 =
⋃

x∈L1,y∈L2

x ▷◁ y.

First, for example, consider u = bbac and v = caab. Then we have

u ▷◁ v = {b, bb, bbab, bbaab, bbacaab},

v ▷◁ u = {c, cac, caac, caabac, caabbac}.
Next, consider L1 = a∗b∗ and L2 = b∗c∗. Then we have L1 ▷◁ L2 = a∗b+c∗ and L2 ▷◁ L1 =
b+. It is clear from this that blending is not commutative.

We emphasize that the definition of blending is a generalization of the experimentally
observed outcome of XPCR on DNA strings. Indeed, to match the experimentally observed
process, we would have to take γ1 = γ2 in Definition 3.14. We also note that for a realistic
model, we would need additional restrictions, such as the fact that the words w, γ1, and
γ2 should be of a sufficient length and that these words should not appear as a substring
in the other strings involved.

The blending operation resembles the Latin product [89] and the crossover operation
[36, 184]. The Latin product, denoted by ⋄, was defined as u ⋄ v = u′av′ for u = u′a and
v = av′, where a ∈ Σ and u′, v′ ∈ Σ∗, and, by definition, u ⋄ λ = λ ⋄ u = u. Even though,
as will be proved in Lemma 3.15, word blending is equivalent to single-letter-overlap word
blending, the Latin product differs from blending: In the Latin product, the overlap and
blending can only occur at the extremities of the words, while in word blending it can
happen anywhere inside the two operand words. Given a subset of the alphabet M ⊆ Σ,
the crossover operation ♯M is defined as L1♯ML2 = pref(L1) ⋄M suff(L2), where ⋄M is a
restriction of the Latin product, defined by

u ⋄M v =

{
u′av′ if u = u′a, v = av′, a ∈M , u′, v′ ∈ Σ∗,

undefined otherwise.

By definition, u ⋄M λ = λ ⋄M u = u, and the crossover on languages is defined as
L1 ⋄M L2 =

⋃
u∈L1,v∈L2

(u ⋄M v). The blending operation resembles the crossover operation
♯M with M = Σ. However, due to its biological motivation, unlike the Latin product and
the crossover operation, blending is not defined when one of the operands is λ, and this leads

44

to additional differences. For example, the crossover using M = Σ = {a, b} between ab and
ba is ab♯Σba = pref(ab)⋄suff(ba) = {λ, a, b, ab, ba, aba}, while the Latin product of the same
words is ab ⋄ ba = {aba}, and the blending between the same words is ab ▷◁ ba = {a, aba}.
Also, both the Latin product and the crossover operation ♯M for a given M are associative,
while word blending is not. For example, (ba ▷◁ a) ▷◁ b∗a = ba ▷◁ b∗a = b+a, while
ba ▷◁ (a ▷◁ b∗a) = ba ▷◁ a = ba.

One can extend the blending operation to an iterated version as follows. For L ⊆ Σ∗,
the iterated (word) blending of L is defined by L▷◁0 = L, and L▷◁i = L ▷◁ L▷◁i−1 , i ≥ 1. We
define the iterated blending closure of L by

L▷◁∗ =
⋃
i≥0

L▷◁i .

We observe that the result of the iterated blending operation resembles the result of a
splicing system. It is easy to see that the language L▷◁∗ can be generated using a set of null-
context splicing rules. In fact, we can show that iterated blending can be expressed as a
simple splicing system, where the crossover operation described above was also introduced
as “one step” of a simple splicing system. The relationship between iterated blending and
splicing will be discussed in greater detail in Section 3.4.1.

3.4.1 Closure properties

In this section, we prove that the families of regular, context-free, and recursively enumer-
able languages are closed under blending, but that the family of context-sensitive languages
is not. The section also contains closure properties of the Chomsky families under the right-
and left-inverse of blending as well as under iterated blending.

The following lemma shows that blending is equivalent to a restricted version where
only one-letter overlaps are utilized. A similar simplification was made for synchronized
insertion and deletion and hairpin inversion by Daley et al. [56].

Lemma 3.15. If x, y are non-empty words over Σ, then

x ▷◁ y = {z ∈ Σ+ | ∃α, β, γ1, γ2 ∈ Σ∗,∃a ∈ Σ : x = αaγ1, y = γ2aβ, z = αaβ}.

Proof. Let A denote the right-hand side of the equality. The inclusion A ⊆ x ▷◁ y is
obvious by the definition of blending. To prove the converse, let z ∈ x ▷◁ y. Then z = αwβ
for some α, β, γ1, γ2 ∈ Σ∗ and w ∈ Σ+ such that x = αwγ1, y = γ2wβ. As w ∈ Σ+, w can

45

be written as w = w1a, where w1 ∈ Σ∗ and a ∈ Σ. It follows that x = αw1aγ1, y = γ2w1aβ,
and z = αw1aβ, that is, x = α′aγ1, y = γ′

2aβ, and z = α′aβ with α′ = αw1 ∈ Σ∗ and
γ′
2 = γ2w1 ∈ Σ∗. Thus, z ∈ A, which proves equality.

The above lemma indicates that word blending, ▷◁, is a generalization of the chop
operation (also called fusion), as studied in [106,107], whereby u⊙v equals u′av′ if u = u′a,
v = av′, u′, v′ ∈ Σ∗, and a ∈ Σ, and it is undefined otherwise. Also note that the chop
operation differs from the Latin product only when one of the operands is λ, in which case
the result of the Latin product equals the other operand, while the chop operation (fusion)
is undefined. Lemma 3.15 can be extended to languages in the natural way. From this
lemma, we can show that the blending of two languages can be obtained by combining the
right quotient, catenation, left quotient, and union operations as follows.

Proposition 3.16. Given languages L1, L2 ⊆ Σ+,

L1 ▷◁ L2 =
⋃
a∈Σ

(
L1(aΣ∗)−1r

)
a
(
(Σ∗a)−1lL2

)
.

Proof. Let z ∈ L1 ▷◁ L2. Then, by Lemma 3.15, z = αaβ for some x ∈ L1 and y ∈ L2

such that x = αaγ1 and y = γ2aβ, where a ∈ Σ and α, β, γ1, γ2 ∈ Σ∗. It is clear that
α ∈ L1(aΣ∗)−1r and β ∈ (Σ∗a)−1lL2, so z = αaβ ∈ (L1(aΣ∗)−1r) a ((Σ∗a)−1lL2).

Conversely, let z ∈ ⋃a∈Σ (L1(aΣ∗)−1r) a ((Σ∗a)−1lL2). Then there exists a letter a ∈ Σ
and words α, γ1, γ2, β ∈ Σ∗, such that z = αaβ, where x = αaγ1 ∈ L1 and y = γ2aβ ∈ L2,
which implies that z ∈ L1 ▷◁ L2.

Corollary 3.17. The families of regular, context-free, and recursively enumerable lan-
guages are closed under blending.

Proof. It follows from Proposition 3.16 and the fact that families of regular, context-free,
and recursively enumerable languages are closed under left/right quotient with regular
languages, catenation, and union [243].

A counterexample can be found to prove the following proposition [75].

Proposition 3.18. The family of context-sensitive languages is not closed under blending.

Next, we consider the left- and right-inverses of blending.

The right-inverse of an operation does not always resemble a binary operation in the
traditional sense. For example, if we define the operation u ∗ v = {a|u| | a ∈ Σ}, where Σ

46

is the alphabet, then the right-inverse of this operation, x ∗−1
r y, equals Σ∗ if y = a|x| and

equals ∅ if y ̸= a|x|. However, the relation y ∈ x ∗−1
r (x ∗ y) still holds, and this will be

sufficient for solving language equations involving binary word operations, as detailed in
Section 3.4.2.

Also note that the right-inverse of a binary word operation inherits some of the prop-
erties of the original binary operation. For example, a standard property of many familiar
binary word operations (catenation, left/right quotient, insertion, deletion, shuffle, etc.) is
that they have a right (left) identity: A binary word operation with a right identity is a
binary word operation ⊕ with the property u⊕λ = {u} for all u ∈ Σ∗. The notion of binary
word operation with a left identity is defined similarly. For example, catenation, insertion,
and shuffle are binary operations with both right and left identities, while deletion and
left/right quotient are binary word operations with a right identity only. The operation
of word blending has neither a right identity nor a left identity. In general, the following
result holds.

Proposition 3.19. If ⊕ is a binary word operation with a left identity, then its right-
inverse ⊕−1

r is also a binary operation with a left identity.

Proof. Let v be a word in (λ ⊕−1
r w). By definition of the right-inverse, v ∈ (λ ⊕−1

r w) if
and only if w ∈ (λ⊕v), which, in turn, equals {v}, as ⊕ is an operation with a left identity.
Thus, for all v ∈ (λ ⊕−1

r w), we have that v = w, which means that {w} = (λ ⊕−1
r w), so

⊕−1
r is a binary operation with a left identity.

Proposition 3.20. The right-inverse of a binary word operation ⊕ is unique.

Proof. Assume the contrary, that is, assume that a binary word operation ⊕ has two
distinct right-inverses ⊕1 and ⊕2. By definition, for all words u, y, w ∈ Σ∗, the following
relations hold: w ∈ (u ⊕ y) if and only if y ∈ (u ⊕1 w), and w ∈ (u ⊕ y) if and only if
y ∈ (u⊕2 w).

Since ⊕1 and ⊕2 are distinct, there exist some words α, β such that (α⊕1β) ̸= (α⊕2β).
Without loss of generality, assume that there exists a word γ ∈ (α ⊕1 β) such that γ /∈
(α⊕2 β).

By definition of ⊕1, from γ ∈ (α ⊕1 β), we have that β ∈ (α ⊕ γ), which implies
that γ ∈ (α ⊕2 β) by definition of ⊕2. This contradicts our assumption about γ, so the
right-inverse of a binary word operation is unique.

Definition 3.21. For two words u,w ∈ Σ∗, the binary word operation ▷◁−1
r is defined as

u ▷◁−1
r w =

⋃
a∈Σ

Σ∗a(u(aΣ∗)−1ra)−1lw.

47

The definition of ▷◁−1
r can be extended to languages by

L1 ▷◁
−1
r L2 =

⋃
u∈L1,w∈L2

(⋃
a∈Σ

Σ∗a(u(aΣ∗)−1ra)−1lw)

)
.

We observe that, similar to insertion, deletion, and other binary word operations [141],
the result of u ▷◁−1

r w is in general a set of words (not necessarily a singleton word). In
general, the operation ▷◁−1

r can be used to recover the right operand of blending: The right
operand (a word) belongs to the set obtained by applying ▷◁−1

r to the other operand and
one of the words in the result of blending.

For example, let Σ = {a, b}. We have that aabb ▷◁−1
r aab = Σ∗aab ∪ Σ∗ab ∪ Σ∗b = Σ∗b.

The result of blending aabb with ab is aabb ▷◁ ab = {ab, aab, aabb}. The right operand ab is
an element of the set obtained by applying ▷◁−1

r to the other operand and one of the words
of the result of ▷◁ : ab ∈ aabb ▷◁−1

r aab = Σ∗b.

We can show that the operation ▷◁−1
r is the unique right-inverse of ▷◁ [75].

Proposition 3.22. The operation ▷◁−1
r is the right-inverse of ▷◁.

Corollary 3.23. The operation ▷◁−1
r is the unique right-inverse of the blending operation

▷◁.

We also study the closure properties of the Chomsky families of languages under ▷◁−1
r .

Corollary 3.24. The families of regular and recursively enumerable languages are closed
under the right-inverse of blending. Moreover, if L1 is an arbitrary language and L2 is
a regular language, then L1 ▷◁−1

r L2 is regular; if L1 is a regular language and L2 is a
context-free language, then L1 ▷◁

−1
r L2 is context free.

Proof. The proof follows from Proposition 3.22. The family of regular languages is closed
under right quotient and catenation, and the family of context-free languages is closed
under union, catenation, and left quotient with regular languages [141, 243], so the right-
inverse of blending of a regular language with a context-free language is context free.

A counterexample can be found to prove the following proposition [75].

Proposition 3.25. The family of context-free languages is not closed under the right-
inverse of blending.

48

Proposition 3.26. The family of context-sensitive languages is not closed under the right-
inverse of blending.

Proof. Let L0 be a recursively enumerable language over Σ, which is not context sensitive.
It is known that a context-sensitive language L1 over Σ ∪ {a, b} with a, b ̸∈ Σ can be
constructed such that L1 is a subset of {aibα | α ∈ L0, i ≥ 0} and, in addition, for every
α ∈ L0, there is an i ≥ 0 such that aibα ∈ L1 (see, for example, [243]).

The result now follows as (L1 ▷◁−1
r {a∗b}) ∩ bΣ∗ = {bα | b /∈ Σ, α ∈ L0} = bL0,

which is not context sensitive, and the family of context-sensitive languages is closed under
intersection with regular languages.

Next, we consider the left-inverse of blending. Similarly to Proposition 3.19, we can
prove that:

Proposition 3.27. If ⊕ is a binary word operation with a right identity, then its left-
inverse ⊕−1

l is also a binary operation with a right identity.

Define now the binary word operation w ▷◁−1
l v = (vr ▷◁−1

r wr)r. The operation ▷◁−1
l is

the left-inverse of ▷◁, and this can be proved similarly to Proposition 3.22 by invoking the
mirror image operation. Because all the families of languages in the Chomsky hierarchy are
closed under mirror image, their closure properties under the left-inverse of blending are
the same as their closure properties under the right-inverse of blending. Lastly, similar to
Proposition 3.20, we can also prove that the left-inverse of a binary operation is unique, and,
as a consequence, the operation ▷◁−1

l is the unique left-inverse of the blending operation.

We now consider the iterated blending operation ▷◁∗. Recall that, as mentioned in
Section 3.4, for every language L ⊆ Σ∗, the language L▷◁∗ can be generated by a splicing
system with null-context splicing rules. This connection, together with Proposition 3.16,
allows us to express iterated blending using so-called simple splicing systems [184].

Recall that simple splicing schemes are splicing schemes with splicing rules of the form
a#λ$a#λ for a ∈ Σ. Note that for two languages L1 and L2 over Σ, we now have that

L1 ▷◁ L2 =
⋃

x∈L1,y∈L2

σ▷◁(x, y),

where σ▷◁ is the simple splicing scheme σ▷◁ = (Σ, R) with R = {a#λ$a#λ | a ∈ Σ}.
Note that in a simple splicing scheme that expresses word blending, each and every let-
ter of the alphabet must be used in a splicing rule. This observation, together with
Proposition 3.16 which showed that the blending of two languages can be written as
L1 ▷◁ L2 =

⋃
a∈Σ(L1(aΣ∗)−1r)a((Σ∗a)−1lL2), gives us the following result.

49

Proposition 3.28. For every language L ⊆ Σ∗, we have σ▷◁(L) = L ∪ (L ▷◁ L) and
σ∗
▷◁(L) = L▷◁∗.

We note that the splicing scheme σ▷◁ is finite, since the number of rules depends only
on the number of symbols in Σ, and is unary (its rules use words of length at most 1).
We also note that, even though in [184] consideration is restricted to the case when L is a
finite language, the properties of the splicing systems obtained therein imply the following
closure properties.

Proposition 3.29. The families of regular, context-free, and recursively enumerable lan-
guages are closed under iterated blending.

It was shown in [184] that the class of languages generated by simple splicing systems is
a subclass of the class of strictly locally testable languages, which is a subregular language
class. The authors also showed that the class of languages generated by simple splicing
systems contains the class of finite languages. This is done by constructing a simple splicing
system with a finite language L as the initial language and introducing a new alphabet
symbol to be used with a splicing rule. The effect is that no splicing can be performed in
this system since no words in L contain the new symbol, so no new words are generated.
This approach does not work in the case of iterated blending because we cannot restrict
the use of blending, which must occur whenever two words have a one-letter overlap. The
following example shows that, even though iterated blending is related to simple splicing,
there are differences between the two: In contrast to the case of simple splicing (whereby
every finite language can be generated by a simple splicing scheme), there exist finite
languages that cannot be generated via iterated blending.

For example, let L = {aa}. We will show that L cannot be generated via iterated
blending. Suppose that there exists a language B such that B▷◁∗ = L. Then there exist
words u, v ∈ B such that aa ∈ u ▷◁ v. This means either u = aau′ and v = v′a for some
u′, v′ ∈ Σ∗ or u = au′ and v = v′aa for some u′, v′ ∈ Σ∗. In either case, together with
aa ∈ B▷◁∗ , we have a+ ⊆ B▷◁∗ = L, which is a contradiction.

3.4.2 Decision problems

This section investigates some decision problems related to the blending operation, such as
the existence of solutions to language equations of the type X ▷◁ L = R and L ▷◁ Y = R
(where L,R are given known languages and X, Y are unknown languages), the closure of
languages under ▷◁∗, and the existence of a (finite) language base for a given language.

50

We also show that, for a given alphabet, there exist finitely many languages that can be
obtained by iterated blending from an initial language.

Consider the question whether or not there exists a (singleton) solution to language
equations of the type X ▷◁ L = R and L ▷◁ Y = R (where L,R are given known languages
and X, Y are unknown languages), and we have the following results [75].

Proposition 3.30. The existence of a solution Y to the equation L ▷◁ Y = R is decidable
for the given regular languages L and R.

We note that the solution to a language equation of the type L ▷◁ Y = R does not need
to be unique.

For example, let Σ = {a, b}. The equation {anbn|n ≥ 0} ▷◁ Y = a+b+ has the maximal
solution Ymax = a∗b+ ∪ {λ}, but it also has the solution Y = b+ ⊂ Ymax.

As another example, the equation {anbn|n ≥ 0} ▷◁ Y = a+ has the maximal solution
Ymax = ({anbn|n ≥ 0} ▷◁−1

r (a+)c)c = ({anbn|n ≥ 0} ▷◁−1
r ({λ} ∪ Σ∗bΣ∗))c = ({anbn|n ≥

0} ▷◁−1
r Σ∗bΣ∗)c = (Σ∗bΣ∗)c = a∗, but it also has the solution Y = a+ ⊂ Ymax.

Proposition 3.31. The existence of a singleton solution {w} to the equation L ▷◁ {w} = R
is decidable for regular languages L and R.

Proposition 3.32. The existence of a singleton solution {w} to the equation L ▷◁ {w} = R
is undecidable for regular languages R and context-free languages L.

Corollary 3.33. The existence of a solution Y to the equation L ▷◁ Y = R is undecidable
for regular languages R and context-free languages L.

Proposition 3.34. The existence of a (singleton) solution X to the equation X ▷◁ L = R
is decidable for regular languages L and R, and it is undecidable for regular languages R
and context-free languages L.

Next, we consider the decidability of the question of whether a language is closed under
iterated blending.

Proposition 3.35. Let L be a regular language. It is decidable whether or not L is closed
under ▷◁∗.

Proof. By Proposition 3.28 and [221], we can construct an NFA A′ that recognizes L▷◁∗ .
The testing equivalence of two NFAs is known to be decidable [112], so testing whether
L = L▷◁∗ is decidable.

51

Proposition 3.36. It is undecidable whether or not L is closed under ▷◁∗, where L is
context free.

Proof. Assume the contrary. Under this assumption, given an arbitrary context-free lan-
guage L over an alphabet Σ, and a letter # not in Σ, we claim that the context-free
language B = #L(#Σ∗)∗ is closed under ▷◁∗ if and only if L = Σ∗ or L = ∅.

It is clear that if L = Σ∗ or L = ∅, then B is closed under ▷◁∗. Now, we consider the
other implication and assume that B is closed under ▷◁∗. If B = ∅, then L = ∅. If B ̸= ∅,
then L ̸= ∅. Consider the languages #L and #L(#Σ∗)+, both included in B. As B is
closed under ▷◁∗, the blending of these two languages should be included in B▷◁∗ , that is,
#L ▷◁ #L(#Σ∗)+ = (#Σ∗)+ ⊆ B▷◁∗ . Thus, B = (#Σ∗)+, and this implies that L = Σ∗.

Thus, if we could decide the problem in the proposition, since emptiness is decidable
for context-free languages [112], we would be able to decide whether or not L = Σ∗ for
arbitrary context-free languages L, which is impossible [112].

Let L,B ⊆ Σ∗ be two languages. We say that B is a base of L (with respect to ▷◁∗)
if L = B▷◁∗ . In [184], it is shown that it is decidable whether or not a regular language is
generated by a simple splicing scheme and a finite language base, and we can prove similar
results with respect to ▷◁∗.

Note that a language L is closed under ▷◁∗ if and only if it has a base with respect to ▷◁∗.
If L is closed under ▷◁∗, L is a base for itself. Otherwise, if L is not closed under ▷◁∗, it does
not have a base. Indeed, if it had a base B, we would have that L = B▷◁∗ = (B▷◁∗)▷◁∗ = L▷◁∗ ,
which is a contradiction.

A language L is said to be an iterated blending language if it can be generated by
iterated blending, that is, if there exists a base B, such that L = B▷◁∗ . Some languages
are iterated blending languages and some are not, as shown by the following examples.

Let Σ = {0, 1}. The language L1 = Σ∗0, which consists of the binary represen-
tations of all even natural numbers, is an iterated blending language because it can
be generated by applying iterated blending to the base B1 = L1 or to the finite base
B2 = {110, 100, 010, 000}. On the other hand, the language L2, consisting of the binary
representations of all prime numbers, is not an iterated blending language because it is not
closed under ▷◁∗.

Proposition 3.35 and Proposition 3.36 can now be rephrased as follows: The question
of whether or not a language L is an iterated blending language (has a base) is decidable
if L is regular, and it is undecidable if L is context free. The next proposition answers the
analogous question regarding the existence of a finite base.

52

Proposition 3.37. The question of whether or not a language L has a finite base with
respect to ▷◁∗ is decidable if L is regular, and it is undecidable if L is context free.

Proof. The proof is the same as that of the question of whether or not a language L can
be generated by a simple splicing system, which was proved to be decidable if L is regular
and undecidable if L is context free [184].

A similar proof idea can also be used to prove the following result, showing that a
language has a base if and only if it has a finite base.

Proposition 3.38. Let L ⊆ Σ∗ be an arbitrary language. There exists a language R ⊆ Σ∗

such that L = R▷◁∗ if and only if L = B▷◁∗, where B = L ∩ {w ∈ Σ∗ | |w|a ≤ 2 for all
a ∈ Σ}.

Proof. It is clear that if L = B▷◁∗ , then there exists a language R ⊆ Σ∗ such that L = R▷◁∗ .
For the other implication, assume that there exists a language R ⊆ Σ∗ such that L = R▷◁∗ .
Since L = R▷◁∗ , by definition, R is a base for L with respect to ▷◁∗. Therefore, L is closed
under ▷◁∗, and L▷◁∗ = L = R▷◁∗ .

Let w ∈ L such that there exists a ∈ Σ with |w|a ≥ 3, and let S0
w = {w}. Since

|w|a ≥ 3, the word w can be decomposed as w = w1aw2aw3aw4, where w1 ∈ Σ∗ and
w2, w3, w4 ∈ (Σ \ {a})∗. Consider the words w′ = w1aw2aw4 and w′′ = w1aw3aw4. It is
clear that w ∈ w′ ▷◁ w′′, that w′ ∈ w ▷◁ w ⊆ L, and that w′′ ∈ w ▷◁ w ⊆ L.

Consider now the set S1
w = (S0

w \ {w})∪{w′, w′′}. We have that w ∈ (S1
w)▷◁∗ , (S1

w)▷◁∗ ⊆
L▷◁∗ , and |w′|a = |w′′|a = |w|a − 1. If there exists a word in S1

w wherein the number of
occurrences of a is at least 3, then we repeat the process for this word to obtain a new
set; otherwise, choose another letter b ∈ Σ \ {a}, and repeat the process. By repeating
this process, after a finite number of steps, we obtain a set Sw such that Sw ⊆ B, where
B = L ∩ {w | |w|a ≤ 2 for all a ∈ Σ}. Moreover, w ∈ S▷◁∗

w , S▷◁∗
w ⊆ B▷◁∗ , and S▷◁∗

w ⊆ L. It is
clear that

⋃
w∈L\B

Sw ∪ {w ∈ L | |w|a ≤ 2 for all a ∈ Σ} = B.

We claim that B▷◁∗ = L. Indeed, since B ⊆ L and L is closed under ▷◁∗, we have that
B▷◁∗ ⊆ L. For the other inclusion, if w ∈ L and |w|a ≤ 2 for all a ∈ Σ, then w ∈ B ⊆ B▷◁∗ .
Otherwise, that is, if w ∈ L but w has at least three occurrences of a for some a ∈ Σ, we
have that w ∈ S▷◁∗

w ⊆ B▷◁∗ . This proves that L ⊆ B▷◁∗ .

53

Corollary 3.39. Given a language L ⊆ Σ∗, the following are equivalent:

• L is closed under iterated blending.

• L is an iterated blending language.

• L has a base R with respect to iterated blending, i.e., such that R▷◁∗ = L.

• L has a finite base B with respect to iterated blending, i.e., such that B▷◁∗ = L.

Corollary 3.40. For an arbitrary language R ⊆ Σ∗, R▷◁∗ is regular. All the families of
languages in the Chomsky hierarchy are closed under ▷◁∗.

Corollary 3.41. Given an alphabet Σ, there are finitely many iterated blending languages
over Σ.

Proof. Consider an alphabet Σ of cardinality n. Every word of length at least 2n + 1
must have a letter repeated at least 3 times, so there are at most

∑2n
i=0 n

i different words
containing each letter at most twice. Therefore, by Proposition 3.38, there are at most
2
∑2n

i=0 n
i

different bases, and thus there are finitely many iterated blending languages.

3.4.3 State complexity

By Proposition 3.16, the family of regular languages is closed under blending. Thus,
we can consider the state complexity of blending on two regular languages. Recall from
Proposition 3.16 that the blending of two languages can be expressed as a series of union,
catenation, and quotient operations. While the state complexity of each of these operations
is known, the state complexity of a combination of operations is not necessarily the same
as the composition of the state complexities of the operations [245].

We construct a DFA that recognizes the language of the blending of the two lan-
guages Lm and Ln, recognized respectively by DFAs Am = (Qm,Σ, sm, Fm, δm) and An =
(Qn,Σ, sn, Fn, δn). We construct a DFA A′ = (Q′,Σ, s′, F ′, δ′), where

• Q′ = Qm × 2Qn ;

• s′ = (sm, ∅);

• F ′ = {(q, P) ∈ Qm × 2Qn | P ∩ Fn ̸= ∅}; and

54

• δ′((q, P), a) = (δm(q, a), P ′) for a ∈ Σ, where

P ′ =

{⋃
p∈P δn(p, a) if δm(q, a) is the sink state,⋃
p∈Qn

δn(p, a) otherwise.

Each state of A′ is a pair consisting of a state of Am and a subset of states of An.
Informally, we can divide the computation of a word into two phases. In the first phase,
states of the form (q, P) are reached where q is not the sink state of Am. Here, the set P is
determined solely by the input symbol as the machine tries to guess the symbol on which
the blending occurs. In the second phase, the machine reaches states (q∅, P), where q∅ is
the sink state of Am. The second phase only occurs when the blending occurs, and the
input that has been read is no longer a prefix of a word recognized by Am. In this phase,
the set P is determined by the transition function of An. It follows from this construction
that A′ recognizes the language Lm ▷◁ Ln.

A simple count shows that the number of states in the state set of A′ is m · 2n. We will
show that, depending on the size of the alphabet, not all of these states are necessarily
reachable. First, we consider the case where the alphabet is unary.

Proposition 3.42. Let Lm and Ln be regular languages defined over a unary alphabet such
that Lm is recognized by an m-state DFA, and Ln is recognized by an n-state DFA. Then
the state complexity of Lm ▷◁ Ln is m + n− 2 if both Lm and Ln are finite or 2 otherwise.
Furthermore, this bound is reachable.

Proof. Recall that by Proposition 3.16, Lm ▷◁ Ln = (Lm(a+)−1r)a((a+)−1lLn). If either Lm

or Ln is infinitely large, then we have Lm ▷◁ Ln = a+, in which case the state complexity of
Lm ▷◁ Ln is 2. If both Lm and Ln are finite, then it is easy to see that the state complexity
of Lm ▷◁ Ln is m + n− 2.

Now, we consider the state complexity when the languages are defined over alphabets
of a size greater than 1.

Lemma 3.43. The DFA A′ requires at most (m − 1) · (k − 1) + 2n + 1 states, where
k = |Σ| ≤ 2n.

Lemma 3.44. Let m,n ≥ 3 and 4 ≤ k < 2n. There exist families of DFAs Am with
m states and Bn with n states defined over an alphabet with k letters such that a DFA
recognizing Am ▷◁ Bn requires at least (m− 1) · (k − 1) + 2n + 1 states.

55

Proof. Let Σ = {a1, . . . , ak−2, b, c}. We define the DFAs Am and Bn over Σ.

Let Am = (Qm,Σ, sm, Fm, δm), where Qm = {0, . . . ,m−1}, sm = 0, and Fm = {m−2}.
We define the transition function δm by

• δm(p, ai) = p for all 0 ≤ p ≤ m− 2 and 1 ≤ i ≤ k − 2;

• δm(p, b) = p + 1 for 0 ≤ p ≤ m− 2;

• δm(p, c) = m− 1 for 0 ≤ p ≤ m− 2; and

• δm(m− 1, a) = m− 1 for all a ∈ Σ.

The DFA Am is shown in Figure 3.4.

0start 1 2 · · · m− 2 m− 1

a1, . . . , ak−2 a1, . . . , ak−2 a1, . . . , ak−2

a1, . . . , ak−2 a1, . . . , ak−2, b, c

b b b b b, c

c
c

c

Figure 3.4: The DFA Am.

Let Bn = (Qn,Σ, sn, Fn, δn), where Qn = {0, . . . , n− 1}, sn = 0, and Fn = {n− 1}. We
define the transition function δn by

• δn(q, b) = q + 1 mod n for 0 ≤ q ≤ n− 1; and

• δn(q, c) = q for 0 ≤ q ≤ n− 1.

For transitions on symbols ai with 1 ≤ i ≤ k − 2, we define an enumeration of the subsets
of Qn and let Qn[i] be the ith subset of Qn. Every arbitrary enumeration of the subsets of
Qn suffices for this proof subject to the condition that:

• for 0 ≤ i ≤ k−2, each i corresponds to a distinct subset of Qn (that is, Qn[i] ̸= Qn[j]
if and only if i ̸= j for 0 ≤ i, j ≤ k − 2); and

56

• we reserve the following: Qn[0] = Qn, Qn[1] = {0, 1, . . . , n− 2}, Qn[2] = {0}.

Also note that while we have defined Qn[0], there are no symbols a0. We will show later
that, by our definitions, the role of a0 will be played by b. If k > 2n, then this property
cannot hold, but it is clear that we can enumerate all 2n subsets of Qn.

Then we define transitions on ai ∈ Σ by

δn(q, ai) =

{
q if q ∈ Qn[i],

(q + min(q+j mod n)∈Qn[i] j) mod n if q ̸∈ Qn[i].

In other words, for each state q ∈ Qn, the transition on the symbol ai goes to the “next”
state that is in Qn[i]. If q ∈ Qn[i], then that q itself is the “next” state.

The DFA B3 is shown in Figure 3.5, with Q3[i] defined for 0 ≤ i ≤ 6 as follows:

Q3[0] = {0, 1, 2},
Q3[1] = {0, 1}, Q3[2] = {0}, Q3[3] = {1},
Q3[4] = {2}, Q3[5] = {0, 2}, Q3[6] = {1, 2}.

0start 1 2

a1, a2, a5, c a1, a3, a6, c a4, a5, a6, c

a3, a6, b

a4

a2

a4, a5, b

a1, a2, b

a3

Figure 3.5: The DFA B3.

We will show that A′ contains (m− 1) · (k − 1) + 2n + 1 reachable and distinguishable
states.

First, to show that the states are reachable, we note that s′ = (sm, ∅) is clearly reachable
as the initial state. Then, we observe that for 1 ≤ i ≤ k − 2, the state (q,Qn[i]) with
q ∈ Qm \ {m− 1} is reachable on the word bqai, and (q,Qn[0]) is reachable on the word bq.
Since the only symbol not used here is c, this gives us (m− 1) · (k − 1) states.

57

Now we consider states of the form (m−1, P), where P ⊆ Qn. Observe that (m−1, Qn)
can be reached on the word bm−1. Also, note that (m− 1, ∅) can be reached on the letter
c from (0, ∅).

Next, we will show that all states of the form (m− 1, P), where P = Qn \ T , for some
T ⊆ Qn, are reachable from (m − 1, Qn) by induction on |T |. First, consider |T | = 1,

T = {t}, 0 ≤ t ≤ n− 1. Then, we have (m− 1, Qn)
a1bt+1

−−−→ (m− 1, Qn \ {t}).
Assume that all states (m − 1, Qn \ T ′) are reachable from (m − 1, Qn), where u =

|T ′| ≥ 1. We will show that all states (m − 1, Qn \ T) are reachable from (m − 1, Qn),
where |T | = u + 1 < |Qn|. Let P = Qn \ T = {t1, t2, . . . , tl−1}, where elements in P are in
ascending order. If t1 = 0, tl−1 ̸= n− 1, then we have

(m− 1, {0, t2, . . . , tl−1, n− 1}) a1−→ (m− 1, {0, t2, . . . , tl−1}) = (m− 1, P). (3.1)

Thus, (m− 1, P) is reachable from the state (m− 1, P ∪ {n− 1}), which is reachable from
(m− 1, Qn) by assumption.

If t1 = 0 and tl−1 = n − 1, there exists a largest integer v /∈ P , where 1 ≤ v < n − 1,
then we have

(m− 1, {w + n− v − 1 mod n | w ∈ P}) bv+1

−−→ (m− 1, P).

Thus, (m− 1, P) is reachable from (m− 1, Qn) by Equation 3.1.

If t1 > 0, then we have

(m− 1, {0, t2 − t1, . . . , tl−1 − t1}) bt1−→ (m− 1, {t1, t2, . . . , tl−1}).

That is, (m − 1, P) is reachable from (m − 1, Qn) by Equation 3.1. Thus, all states
(m− 1, Qn \ T) with |T | = u + 1 are reachable.

Thus, we have an additional 2n reachable states of the form (m − 1, P), giving us a
total of (m− 1) · (k − 1) + 2n + 1 reachable states.

Next, we will show that these states are pairwise distinguishable. Consider two states
(q, P) and (q′, P ′). First, we consider when P ̸= P ′. In this case, reading c takes the state
(q, P) to (m− 1, P) and (q′, P ′) to (m− 1, P ′). Without loss of generality, there exists an
element t ∈ P such that t ̸∈ P ′. Then these states are distinguished by the word bn−1−t.

Now, fix P = P ′ and assume without loss of generality that q > q′. First, suppose
q < m− 1. Then we have

(q, P)
bm−1−q

−−−−→ (m− 1, Qn[0])
a2−→ (m− 1, Qn[2])

a1−→ (m− 1, {0}).

58

Recall that we had defined Qn[2] = {0}. Now, since q > q′, we have m−1−q+q′ < m−1.
Let q′′ = m− 1− q + q′, and we have

(q′, P ′)
bm−1−q

−−−−→ (q′′, Qn[0])
a2−→ (q′′, Qn[2])

a1−→ (q′′, Qn[1]).

Since Qn[1] ̸= {0}, the two states are now distinguishable by the prior case.

Now, suppose q = m− 1. Then we have

(q, P) = (m− 1, P)
a2−→ (m− 1, Qn[2]) = (m− 1, {0}) a1−→ (m− 1, {0})

and
(q′, P ′) = (q′, P)

a2−→ (q′, Qn[2])
a1−→ (q′, Qn[1]).

Again, since Qn[1] ̸= {0}, the two states are now distinguishable by the prior case.

Thus, we have shown that all (m−1) · (k−1)+2n +1 states are reachable and pairwise
distinguishable.

These results together give us the following theorem.

Theorem 3.45. Let Am be a DFA with m states recognizing the language Lm and let
An be a DFA with n states recognizing the language Ln, where Lm and Ln are defined
over an alphabet Σ of size k, and m,n ≥ 3. Then the state complexity of Lm ▷◁ Ln is
(m− 1) · (k− 1) + 2n + 1 if 4 ≤ k < 2n, and (m− 1) · (2n − 1) + 2n + 1 if k ≥ 2n, and this
bound can be reached in the worst case.

3.5 Conjugate word blending

As shown in Definition 3.14, word blending allows γ1 and γ2 to be different strings. As a
step towards a formal model that is closer to the XPCR process experimentally observed
in [83], we now require that γ1 = γ2, γ1 ̸= λ, and γ2 ̸= λ, and the conjugate word blending
of two words is defined as follows.

Definition 3.46. Given two words x and y over an alphabet Σ, the conjugate word blending
of x with y is defined as

x ▷◁ y = {αwβ | x = αwγ, y = γwβ, α, β ∈ Σ∗, γ, w ∈ Σ+}.

59

The term “conjugate word blending” alludes to the fact that the common segments of
the operands, wγ and γw, are conjugate words (a word u is a conjugate of a word v if u
can be obtained from v by cyclically shifting its letters [239]). We can extend this word
operation to languages in the natural way:

L1 ▷◁L2 =
⋃

x∈L1,y∈L2

(x ▷◁ y).

As an example, if u = 1010101 and v = 10101, then u ▷◁ v = {101010101, 1010101,
10101} (the underlined subwords are the corresponding overlaps w). If Σ is an alphabet,
and a ∈ Σ, then Σ∗ ▷◁Σ∗ = Σ+, Σ∗ ▷◁ {aa} = Σ∗a, and {aa} ▷◁Σ∗ = aΣ∗. As this example
shows, the conjugate word blending operation is not commutative.

As with the original version of word blending in Section 3.4, we can express the conju-
gate word blending operation as a splicing scheme. The connection between splicing and
word blending was shown in Section 3.4, where it was proved that word blending ▷◁ can
be expressed as one step of the splicing scheme consisting of the rules

R▷◁ = {a#λ$a#λ | a ∈ Σ}.

It is not difficult to see that the conjugate word blending operation cannot be expressed
in the same way. Conjugate word blending can be thought of as a single step of a splicing
scheme with the following set of rules

R ▷◁ = {w#γ$γw#λ | w, γ ∈ Σ+}.

However, observe that this splicing scheme is not regular. In fact, it is context sensitive.
If we apply a morphism φ that erases # and $, we get

φ(R ▷◁) = {wγγw | w, γ ∈ Σ+},

which is not context free. This suggests that the closure properties of the conjugate word
blending operation may be different from the original version of the word blending opera-
tion.

We now investigate the closure properties of the main Chomsky families of languages
under conjugate word blending. We first show that we can construct a nondeterministic
finite automaton that recognizes the conjugate word blending of two regular languages.

Proposition 3.47. Given two NFAs A and B, we can effectively construct an NFA C
such that L(C) = L(A) ▷◁L(B).

60

Proof. Consider states p ∈ QA and q ∈ QB and NFAs A = (QA,Σ, sA, FA, δA) and B =
(QB,Σ, sB, FB, δB). We define the following two languages:

L(Ap) = {w ∈ Σ+ | δA(p, w) ∩ FA ̸= ∅} and

L(qB) = {w ∈ Σ+ | q ∈ δB(sB, w)}.

We can now construct the NFA C = (Q′,Σ, s′, F ′, δ′) that accepts exactly the language
L(A) ▷◁L(B), as follows. The sets of states of the NFA C is Q′ = QA∪(QA×QB×QB)∪QB,
the initial state is s′ = sA, and the set of final states is F ′ = FB. The transition function
δ′ : Q′ × Σ ∪ {λ} → 2Q′

is constructed as follows:

1. δ′(p, a) = δA(p, a) ∪ {⟨p′, q′, r′⟩ | p′ ∈ δA(p, a), q′ ∈ δB(r′, a), r′ ∈ QB} for all p ∈ QA,
and a ∈ Σ;

2. δ′(⟨p, q, r⟩, a) = {⟨p′, q′, r⟩ | p′ ∈ δA(p, a), q′ ∈ δB(q, a)} for all p ∈ QA, q, r ∈ QB, and
a ∈ Σ;

3. δ′(⟨p, q, r⟩, λ) = {q} for all p ∈ QA and q, r ∈ QB for which L(Ap)∩L(rB)∩Σ+ ̸= ∅;
and

4. δ′(q, a) = δB(q, a) for all q ∈ QB and a ∈ Σ.

The idea behind this construction is that for a word αwβ ∈ αwγ ▷◁ γwβ, the states in
QA are used for the derivation of α, the states in QB are used for the derivation of β, and
the states in QA×QB×QB are used for the derivation of w, as follows. If the NFA C is in
a state from QA and reads a letter, it nondeterministically decides the letter is in α or the
letter is the first letter of w by transitions of type 1. If the state ⟨p, q, r⟩ is reached after
a transition of type 1, we assume that the state of B after reading γ is r, and the state
of A (respectively B) after reading the first letter of w is p (respectively q). Transitions
of type 2 simulate the simultaneous processing, by both A and B, of letters from w. By
transitions of type 3, the NFA C checks if the non-empty subword γ exists, and, if it does,
it continues with the derivation of β according to transitions of type 4.

Let us now prove that L(A) ▷◁L(B) ⊆ L(C). Consider a word z ∈ L(A) ▷◁L(B) with
z = αwβ, where x = αwγ ∈ L(A), y = γwβ ∈ L(B), and γ ∈ Σ+. Now, write w = aw′ for
a ∈ Σ and w′ ∈ Σ∗. Since x ∈ L(A), there must be a path in A:

sA
α−→ p1

a−→ p2
w′
−→ p3

γ−→ p4,where p4 ∈ FA.

61

Similarly, since y ∈ L(B), there must be a path in B:

sB
γ−→ q1

a−→ q2
w′
−→ q3

β−→ q4,where q4 ∈ FB.

From this, we will show that there exists an accepting computation path for z in C:

s′ = sA
α−→ p1

a−→ ⟨p2, q2, q1⟩ w′
−→ ⟨p3, q3, q1⟩ λ−→ q3

β−→ q4,

where q4 ∈ FB = F ′.

More precisely, we observe that at the beginning of the blending on a, we have that
⟨p2, q2, q1⟩ ∈ δ′(p1, a) since q2 ∈ δB(q1, a). Since p4 ∈ δA(p3, γ), p4 ∈ FA, q1 ∈ δB(sB, γ),
and γ ∈ Σ+, we have γ ∈ L(Ap3) and γ ∈ L(q1B), so we have γ ∈ L(Ap3) ∩ L(q1B) ∩ Σ+.
Therefore, q3 ∈ δ′(⟨p3, q3, q1⟩, λ). Thus, we have shown that z ∈ L(C), and consequently
L(A) ▷◁L(B) ⊆ L(C).

Now we show that L(C) ⊆ L(A) ▷◁L(B). Let z ∈ L(C). Then there exists a path on z
in C from sA to a state in FB. Recall that there are three types of states in C: states of
A from QA; triples of states ⟨p, q, r⟩, where p ∈ QA and q, r ∈ QB; and states of B from
QB. The definition of C implies that every accepting computation of a word w in C must
contain all three types of states, in this order. Then we can consider an accepting path for
z = αaw′β, where α, β, w′ ∈ Σ∗ and a ∈ Σ, by

s′ = sA
α−→ p1

a−→ ⟨p2, q2, q1⟩ w′
−→ ⟨p3, q3, q1⟩ λ−→ q3

β−→ q4 ∈ FB = F ′.

In this path, p1 is the last state of A that occurs, ⟨p2, q2, q1⟩ is the first triple that occurs,
⟨p3, q3, q1⟩ is the final triple that occurs, q3 is the first state of B that occurs, and q4 is an
accepting state of C, which by definition is an accepting state of B.

From the definition of the transition function, it is clear that the words α, αa, and
αaw′ are all prefixes of a word in L(A) and the words β and w′β are all suffixes of a word
in L(B).

The final observation is that we need to consider transitions from ⟨p3, q3, q1⟩ to q3 on
the empty word λ. Such a transition can only occur if there exists a non-empty word
γ ∈ L(Ap3) ∩ L(q1B) ∩ Σ+. From this, we have αaw′γ ∈ L(A) since p3 ∈ δA(sA, αaw

′) and
δA(p3, γ)∩FA ̸= ∅ by definition of L(Ap3). We also have γaw′β ∈ L(B) since by definition
of L(q1B), we have q1 ∈ δB(sB, γ). By the definition of δ′, we have ⟨p2, q2, q1⟩ ∈ δ′(p1, a) if
q2 ∈ δB(q1, a). Therefore, there is a path in B:

sB
γ−→ q1

a−→ q2
w′
−→ q3

β−→ q4 ∈ FB.

62

Taking w = aw′, we can now write z = αwβ ∈ L(C), with x = αwγ ∈ L(A) and
y = γwβ ∈ L(B). By the definition of conjugate word blending, this implies z ∈ x ▷◁ y and
thus z ∈ L(A) ▷◁L(B).

Therefore, L(C) ⊆ L(A) ▷◁L(B), and we can conclude that L(C) = L(A) ▷◁L(B).

Corollary 3.48. The class of regular languages is closed under conjugate word blending.

Next, we will show that unlike word blending, the family of context-free languages is
not closed under conjugate word blending.

Proposition 3.49. The class of context-free languages is not closed under conjugate word
blending.

Proof. This can be proved by a counterexample. Consider two context-free languages
L1 = {anbn# | n ∈ N} and L2 = {#bmam | m ∈ N}, we have that (L1 ▷◁L2) ∩
a∗$b∗$a∗ = {anbnan | n ∈ N}, which is not context free. Thus, since the class of context-
free languages is closed under intersection with regular languages, it is not closed under
conjugate word blending.

Proposition 3.50. The class of context-sensitive languages is not closed under conjugate
word blending.

Proof. Assume that the class of context-sensitive languages is closed under conjugate word
blending. Let L0 be a recursively enumerable but not context-sensitive language over an
alphabet Σ and let a, b ̸∈ Σ. Then, there is a context-sensitive language L such that L
consists of words of the form wbai, where i ≥ 0 and w ∈ L0, and for every word w in L0

there is an i ≥ 0 such that wbai ∈ L. We have that (La ▷◁ a+b) ∩ Σ∗b = L0b. If the class
of context-sensitive languages were closed under conjugate word blending, then L0b would
be context sensitive, which is a contradiction.

We will now show that the class of recursively enumerable languages is closed under
conjugate word blending. Recall that sequential deletion was defined in [139] as the binary
language operation L1 → L2 =

⋃
u∈L1,v∈L2

(u → v), where u → v = {w ∈ Σ∗ | u =
w1vw2, w = w1w2, w1, w2 ∈ Σ}. We begin with the following lemma.

Lemma 3.51. Consider two languages L1, L2 over an alphabet Σ, two symbols #, $ /∈ Σ,
and a homomorphism h(a) = a, for a ∈ Σ, and h(#) = h($) = λ. Conjugate word blending
can be expressed as

L1 ▷◁L2 = (L ∩ L′)→ (#Σ+$Σ+$),

63

where
L = (h−1(L1) ∩ (Σ∗Σ+#Σ+$))⊙

(
h−1 (L2) ∩

(
#Σ+$Σ+$Σ∗)) ,

→ is the sequential deletion operation, ⊙ is the overlap assembly operation, and L′ =⋃
w∈Σ∗ Σ∗w#Σ+wΣ∗.

Proof. Consider a word z ∈ L1 ▷◁L2, where there exists a decomposition z = αwβ where
x = αwγ ∈ L1, y = γwβ ∈ L2, and γ ∈ Σ+. We have that

z = αwβ

∈ αw#γwβ → (#Σ+$Σ+$)

= (αw#γwβ ∩ L′)→ (#Σ+$Σ+$)

⊆ (L ∩ L′)→ (#Σ+$Σ+$).

Next, consider a word z ∈ (L ∩ L′) → (#Σ+$Σ+$). There exist words α, β ∈ Σ∗ and
w, γ ∈ Σ+ such that z = αwβ and z′ = αw#γwβ ∈ (L ∩ L′) ⊆ L. Thus, there exist
words x′ = αw#γ$ ∈ (h−1(L1) ∩ (Σ∗Σ+#Σ+$)) and y′ = #γ$w$β ∈ (h−1(L2) ∩ (#Σ+$
Σ+$Σ∗)) such that z′ ∈ x′ ⊙ y′, x = αwγ ∈ L1, and y = γwβ ∈ L2. Thus, we have that
z ∈ L1 ▷◁L2.

Proposition 3.52. The class of recursively enumerable languages is closed under conjugate
word blending.

Proof. This follows from Lemma 3.51, since the class of recursively enumerable languages
is closed under overlap assembly [73], inverse homomorphism, intersection [243], and se-
quential deletion [139].

In summary, the results of this section show that the classes of regular and recur-
sively enumerable languages are closed under conjugate word blending, while the classes of
context-free and context-sensitive languages are not. As conjectured earlier, these closure
properties are different from those of word blending, the difference being that the class
of context-free languages is closed under word blending but not under conjugate word
blending.

3.6 DNA implementation of conjugate word blending

In this section, we describe the wet lab experiments that motivated and implemented
the conjugate word blending operation. Section 3.6.1 introduces some basic notions of

64

molecular biology. Section 3.6.2 outlines the initial experimental evidence that led to the
definition of conjugate word blending operation. Section 3.6.3 reports the experiments that
confirmed and validated the XPCR-based implementation of the conjugate word blending.
Note that some preliminary work for these experiments was developed in [14,83] with the
aim of generating a DNA library of operons (i.e., permutations of genes) able to optimize
the PAH degradation work of Burkholderia fungorum DBT1.

3.6.1 Molecular biology preliminaries

In the remainder of this chapter, we will denote the union of the sets U and V by U + V .
Often we will use as synonyms the terms strand, word, string, fragment, and molecule.
The term amplicon is used to denote a fragment of DNA that is the product of molecular
amplification (i.e., replication).

XPCR is a PCR-based protocol that realizes what in the context of splicing systems
is called a null-context splicing rule [95], which is a particular splicing rule u1#u2$u3#u4

having u2u4 = λ and u1 = u3. In its general form, XPCR takes as input sequences
αX1γY2β + αY1γX2β, where X1, Y1, Y2, and X2 are genes, and α, β, and γ are primer
sequences, and produces as an output the chimeric sequences (a chimeric sequence is a
sequence formed from the prefix of one sequence and the suffix of another sequence joined
together) αX1γX2β and αY1γY2β—this corresponds to the application of a null-context
splicing rule with u1 = u3 = γ. The essential feature of this process (e.g., the recombination
between αX1γ and γX2β that produces αX1γX2β) can also be formalized as the overlap
assembly operation between two strings xy and yz, resulting in the string xyz. Figure 3.2
illustrates the overlap assembly between xy and yz, where x = αX, y = γ, and z = Y β. If
X = A and Y = D are the genes introduced in Section 3.3, then the expected length of the
chimeric amplicon αAγDβ is 1,600 bp, due to the primer and gene length (|A| = 1,019 bp,
|D| = 518 bp, and |α| = |β| = |γ| = 21 bp).

All experiments of DNA strand amplification were performed in double sampling (that
is, on two test tubes in parallel), with negative controls (test tubes with the same con-
tents, except with no DNA templates), under different experimental conditions (including
temperature, concentration, gene, and length variations), and repeated with two different
polymerase enzymes, Taq polymerase and Pfu polymerase. To ensure higher duplication
fidelity, Pfu DNA polymerase was chosen over the routinely used Taq DNA polymerase
for initial reactions (gene extraction from the original genome) due to its proofreading
capabilities and thermal resistance.

65

3.6.2 The initial experimental evidence

Concatenation of two different genes by XPCR was successfully implemented, even under
interference, as illustrated in Figure 3.6, where a third input template γBγ was added
(to favour the formation of additional longer molecules αAγBγDβ), apt to perturb the
expected two-genes amplification. This was a way to prove the stability and robustness of
XPCR, namely, its reliability under perturbation.

Aα γ B γγ Dγ β1

5

α γ γγ γ βA B D

Aα γ

γγ B
B γγ

γ βD

Aα Bγ

βD

γ

γ

γ βB D

Aα γ

γ

Aα γ B γ D β

α γ γ βA B D

Aα γ B γ D β

α γ γ βA B D

α
β

2

3

4

Aα γ

γ βD

Aα Dγ β

α γ βA D

Aα Dγ β

α γ βA D

β
α

Figure 3.6: XPCR-based two-gene concatenation (genes A and D), from input templates
(αAγ, γBγ, and γDβ) and primers (α and β) [83]. Row 1: Input templates. Row 2:
Partially double-stranded DNA molecules that are two-gene recombinants generated by
hybridization of DNA single strands from the input templates. Row 3: Partially double-
stranded DNA molecules that are three-gene recombinants generated by the hybridization
of DNA single strands from the input templates and the DNA double strands that were
created from the recombinants in Row 2 after extension by polymerase. Only sequences
that were exponentially amplified are illustrated. Row 4: Two DNA double strands that
were exponentially amplified are αAγBγDβ and αAγBβ. The amplification of the longer
formation αAγBγDβ was produced in an insignificant quantity, as illustrated in Figure 3.7.
Row 5: These two DNA double strands were amplified using primers (α and β), like in
PCR.

66

In fact, also in some experiments reported in this section, an interference molecule γXγ
was added (with X ∈ {A,B,D}), at higher concentrations than the other input molecules,
to see whether it would interfere with the amplification of molecules containing γ as a
prefix or suffix by forming longer concatenations (of three genes, as in Figure 3.6).

XPCR did not behave as expected when attempts were made to concatenate copies of
the same gene using the method illustrated in Figure 3.6. In [14], several experiments were
carried out with the aim of concatenating two (or more) copies of the same gene, using
primers (α and β) and templates αXγ and γXβ (or templates αXγ, γXγ, and γXβ),
where X is a gene. The output of these experiments was, unexpectedly, αXβ rather than
αXγXβ (or αXγXγXβ, respectively). These results were observed in presence of the
interference molecules γXγ at different concentration ratios.

1 K-1 2 K-2 3 K-3

1000 bp
900 bp

1 kb100 bp

2000 bp
1500 bp

1000 bp

750 bp

Figure 3.7: XPCR with templates containing the same gene and different genes, respec-
tively [14]. Amplifications with primers (α and β) and Taq polymerase. Lane 1: XPCR
with templates αAγ, γAγ, and γAβ exhibited a main product of about 1,000 bp (αAβ, a
dark band) and a secondary product of about 2,000 bp (αAγAβ, a faint grey band, in the
same lane). Lane 2: XPCR with templates αAγ, γBγ, and γDβ exhibited an amplification
product of about 1,600 bp, which corresponded to the output αAγDβ. Lane 3: XPCR with
templates αBγ, γDγ, and γAβ with an output amplification product of about 1,400 bp,
corresponding to αBγAβ. Lanes K-1, K-2, and K-3: Negative controls without templates
for the reactions in Lanes 1, 2, and 3, respectively.

67

α

α

[gene]

[gene]

α [partial gene] [partial gene] β

α [partial gene]

[partial gene] β

γ

γ

[gene]

[gene] β

α

α

β

β

α [gene]

[gene]

1

3

4

5

α

γ

γ

[gene]

[gene]

γ

γ

β

β

β

α

α [gene]
2

γ

[gene] β

β

γ

Figure 3.8: A possible explanation for the formation of the conjugate blending operation
output. (The implicit assumption is that there always exists one template out of millions
for which the described premature detachment occurs, and that this is enough to generate
an exponential amplification of αXβ, with gene X and primers α and β, in the next PCR
cycles.) Subgraph 1: Both primers anneal. Subgraph 2: Primer polymerase extension
occurs along single templates. Over long segments X, this process takes a long time and
may be interrupted by the high denaturation temperature expected in next step of PCR.
This causes a premature detachment of the polymerase enzyme. Subgraph 3: Incomplete
template copies generated. Subgraph 4: In the next PCR cycle, the resulting incomplete
strands may anneal to each other and also to the other template and then generate (by
polymerase extension) single strands αXβ and αXβ. Subgraph 5: These generated single
strands will work as templates, where they will be exponentially amplified due to primer
annealing. The single strands containing γ or γ anneal with neither of the primers and are
not amplified.

As exemplification of these phenomena, in Figure 3.7, we report experimental results
that exhibit as outputs both the concatenation of two different genes described in Fig-
ure 3.6 (in the presence of a long interference molecule containing a different gene) and
the unexpected amplicon αAβ, when two copies of the same gene A were present in the
templates. More precisely, amplification of an input composed of three different templates,
αAγ, γBγ, and γDβ (αBγ, γDγ, and γAβ, respectively) produced as an output αAγDβ
(αBγAβ, respectively)), as seen in Lane 2 (Lane 3, respectively) of Figure 3.7. On the
other hand, amplification of an input composed of three different templates all containing

68

the gene A, that is, αAγ, γAγ, and γAβ, produced as an output only the sequence αAβ,
as seen in Lane 1 of Figure 3.7. In all cases, we amplified three different templates, present
in equal concentrations, by PCR reactions under identical experimental conditions, with
basic Taq polymerase.

These results provided experimental evidence of a limitation of the XPCR protocol,
which indeed cannot be used to concatenate multiple occurrences of the same gene in a
significant quantity [83].

In the case of multiple occurrences of the same gene, the unexpected outcome of XPCR
might be due to phenomena similar to those observed in [111], which altered the normal
amplification of DNA strands sharing long fragments. In particular, when we perform PCR
with primers (α and β) on templates with the same gene X, such as αXγ and γXβ, it
results in the biased production of the shortest amplicon αXβ, as depicted in Figure 3.8,
up to the point where longer fragments are not detectable. On the electrophoresis gel, this
leads to faint or indistinguishable bands for the longer products and a strong signal for
the short product. In other words, once the shortest sequence αXβ has been formed, it
is amplified faster than the longer strand αXγXβ, probably due to the higher annealing
efficiency of primers on shorter sequences.

3.6.3 Conjugate word blending: Experimental results

In this section, we report the details of additional wet lab DNA experiments that motivated
and validated the notion of conjugate word blending explored in this paper. Below is a
summary of all PCR experiments that demonstrate the conjugate word blending operation
in action. The primers used are α and β, and these experiments confirmed the amplified
production of αXβ sequences, as detailed below. Note that, based on the length of primers
α, γ, and β (21 bp) and genes A (1,019 bp), B (311 bp), and D (518 bp), the expected
lengths of the amplicons αXβ are 1,061 bp (for X = A), 353 bp (for X = B), and 560 bp
(for X = D).

1. XPCR with two different templates containing gene D, namely αDγ and γDβ, out-
put αDβ. The reaction, performed with Pfu polymerase, has the output amplicon
reported in Lane 1 on the left panel of Figure 3.9.

2. The main output of XPCR with three different templates containing gene D, namely,
αDγ, γDγ, and γDβ, was αDβ. The DNA double strand γDγ was the interference
molecule. The template concentration ratio (of αDγ, γDγ, and γDβ) was 1: 10 : 1

69

to favour the amplification of longer amplicons. Reactions were carried out with
Pfu polymerase and five different annealing temperatures that corresponds to the
amplicons visible in Lanes 1.1, 1.2, 1.3, 1.4, and 1.5 on the right panel of Figure 3.10.

100 bp

1000 bp
750 bp

500 bp

1 K-1

Figure 3.9: XPCR with templates containing gene D with no interference molecules (left
panel) and XPCR with templates containing gene A with a high concentration of inter-
ference molecules (right panel) [83]. These reactions were performed with with primers
(α and β) and Pfu polymerase. Left panel, Lane 1: XPCR with templates αDγ and
γDβ exhibited a product of about 500 bp (αDβ). Left panel, Lane K-1: Negative control
without templates for the reaction in Lane 1. Right panel, Lanes 1.1, 1.2, 1.3, 1,4, and
1.5: XPCR with templates αAγ, γAγ, and γAβ (with concentration ratio 1 : 10 : 1) and
different annealing temperatures exhibited a main product of about 1,000 bp (αAβ) and a
secondary product of about 2,000 bp (αAγAβ). Right panel, Lane K-1: Negative control
without templates for the reactions in Lanes 1.1, 1.2, 1.3, 1,4, and 1.5.

3. The output of XPCR with three different templates containing gene B, namely αBγ,
γBγ, and γBβ with the concentration ratio 1 : 2 : 1, was αBβ. Reactions were carried
out with Taq polymerase, and corresponding products are visible in Lane 1.1 in the
left panel of Figure 3.10.

4. The output of XPCR with three different templates containing gene A, namely αAγ,
γAγ, and γAβ, was αAβ. Reactions were carried out with Pfu polymerase and with
different concentrations for the interference molecule γAγ with respect to the other
two templates αAγ and γAβ. The experimental results of XPCR with template
concentration ratios (of αAγ, γAγ, and γAβ) of 1 : 2 : 1 and 1: 5 : 1 are shown in

70

Figure 3.11, and those of 1 : 10 : 1 are shown in Figure 3.9. Each of these three
experiments, corresponding to the different concentration ratios, was performed at
five different annealing temperatures.

We now describe in more detail a typical reaction, such as those shown in Figure 3.9,
where the templates are αDγ and γDβ (or αAγ, γAγ, and γAβ, with concentration ratios
1 : 10 : 1, respectively). The left panel of Figure 3.9 exhibits the outcome of XPCR with
templates αDγ and γDβ in the form of a band that confirms the presence of a product
of about 500 bp. Sequencing showed that this product was indeed the amplicon αDβ. On
the right panel of Figure 3.9, in all five reactions with different temperatures, the main
products of about 1,000 bp (αAβ) are evident as the result of an XPCR over templates
αAγ, γAγ, and γAβ. A faint band of about 2,000 bp is visible as well, possibly containing
expected concatenations αAγAβ (2,101 bp), while concatenations αAγAγAβ (3,141 bp)
were not formed in observable quantities.

1.1 1.2

1000 bp

750 bp

500 bp

250 bp

1500 bp

1 kb 1.1 1.2 1.3 1.4 1.5 K-1

1500 bp

1000 bp

750 bp

500 bp

1 kb

Figure 3.10: XPCR with templates containing gene B and XPCR with templates contain-
ing gene D [14]. Left panel, Lane 1.1: XPCR was performed using Taq polymerase and
templates αBγ, γBγ, and γBβ (with concentration ratio 1 : 2 : 1). It exhibited a main
product of about 300 bp (αBβ) and a secondary product of about 650 bp (αBγBβ). Left
panel, Lane 1.2: Negative control without templates for the reaction in Lane 1.1. Right
panel, Lanes 1.1, 1.2, 1.3, 1,4, and 1.5: XPCR was performed with Pfu polymerase, tem-
plates αDγ, γDγ, and γDβ (with concentration ratio 1 : 10 : 1), and different annealing
temperatures. A main product of about 500 bp (αDβ) and a secondary product of about
1,100 bp (αDγDβ) were exhibited. Right panel, Lanes K-1: Negative control without tem-
plates for the reactions in Lanes 1.1, 1.2, 1.3, 1.4, and 1.5.

71

1.1 1.2 1.3 1.4 1.5 K-1 2.1 2.2 2.3 2.4 2.5 K-2

1500 bp

1000 bp
750 bp

1 kb

Figure 3.11: XPCR with templates containing gene A at two different ratios of molecular
interference [14]. These reactions were performed with Pfu polymerase and templates αAγ,
γAγ, and γAβ. Lanes 1.1, 1.2, 1.3, 1.4, and 1.5: The molecular concentration ratio was
1: 2 : 1. A different annealing temperature was used for every lane. Lanes 2.1, 2.2, 2.3, 2.4,
and 2.5: The molecular concentration ratio was 1: 5 : 1. A different annealing temperature
was used for every lane. All aforementioned lanes exhibited a main product of about
1,061 bp (corresponding to αAβ) and other very faint bands of biased products. Lanes
K-1 and K-2: Negative controls without templates for the reactions in all aforementioned
lanes.

The experiments illustrated in Figure 3.9 and Figure 3.11 demonstrate that XPCR
with templates containing the gene A is robust, as the same outcome was obtained under
different annealing temperatures and different interference molecule concentration ratios.
Similar experiments were repeated with genes B and D with different DNA polymerases,
different annealing temperatures, and different interference molecule concentration ratios,
as illustrated in Figure 3.9 and Figure 3.10. This suggests that this process has no restric-
tions on the length of the gene.

3.7 Conclusion

In Section 3.1, we reviewed some related aspects of formal language studies. Section 3.2
listed some biologically inspired word operations. Section 3.3 discussed XPCR details and
the previous defined word operation, called overlap assembly, inspired by it.

72

In Section 3.4, we first defined a word blending operation motivated by an experimen-
tally observed outcome of XPCR on DNA strings. We studied closure properties, decision
problems, and the state complexity for this operation, and we showed that given an al-
phabet, there are finitely many languages that can be the result from the iterated word
blending applied to an initial language.

Section 3.5 introduced and studied conjugate word blending, a binary string operation
that models the unexpected outcome of the wet lab XPCR procedure under a specific
set up, namely when used to attempt concatenating two copies of the same gene. We
investigated computational properties of this operation and proved that the classes of
regular and recursively enumerable languages are closed under conjugate word blending,
while the classes of context-free and context-sensitive languages are not.

In Section 3.6, we reviewed the wet lab experiments that the conjugate word blending
operation is modelled upon, with three bacterial genes of different lengths, and verify its
outcome under several experimental conditions, such as using different DNA polymerase
enzymes (Taq and Pfu), different primer annealing temperatures, and in the presence of a
so-called interference molecule, at various concentration ratios to the template molecules.
In [83], it was hypothesized that the unexpected behaviour of XPCR under these spe-
cific conditions is caused by strand displacement (template switching and/or hydrolysis
of competing strands [136]). Another explanation was proposed for this phenomenon, as
illustrated in Figure 3.8. Further experimental work is needed to validate this explanation
and the exact mechanisms of the observed molecular biology phenomenon on which the
conjugate word blending is based.

As future work, we will develop theoretical investigations of its variants to more closely
model the experimental reality of DNA string computation implemented by the XPCR
wet lab procedure. Another direction could be to consider the complexity of the decision
problems studied in Section 3.4.2 to find the exact number of different iterated blending
languages in Corollary 3.41 and to characterize the class of languages generated by iter-
ated blending. Finally, the question of determining the state complexity of iterated word
blending remains open. Possible approaches could potentially make use of the connections
between iterated blending and simple splicing systems.

73

Chapter 4

Involutive Fibonacci Words

The sequence of Fibonacci strings is an infinite sequence of strings obtained from two initial
letters, f1 = a and f2 = b, by the recursive definition fn+2 = fn+1fn for all n ≥ 1 [159].
We first propose a unified terminology to identify the different types of Fibonacci words
in the extensive literature on the topic. Motivated by ideas stemming from theoretical
studies of DNA computing, we then define and explore involutive Fibonacci words (ϕ-
Fibonacci words and indexed ϕ-Fibonacci words, where ϕ denotes either a morphic or an
antimorphic involution). As mentioned in Section 2.2, information-encoding DNA single
strands can form intramolecular structures, such as hairpins, that are undesirable for some
DNA computing experiments. Therefore, it is useful to find a simple and recursive method
to design DNA single strands that can avoid those undesired intramolecular structures.
We study borderedness and primitivity of involutive Fibonacci words in our search for a
method that generates arbitrarily long DNA words that do not have undesired self-binding
properties. We also study other properties of involutive Fibonacci words, such as structures
and relationships.

In Section 4.1, a unified terminology is proposed, and different types of Fibonacci words
are grouped according to this definition. Section 4.2 gives some preliminaries used in the
following sections. In Section 4.3, we define and study several generalizations of Fibonacci
words, called involutive Fibonacci words, inspired by DNA Watson-Crick complementarity.
Section 4.4 proposes a generalization of indexed Fibonacci words to indexed ϕ-Fibonacci
words and discusses their interrelationships. Section 4.5 explores borders and ϕ-borders
of involutive Fibonacci words. In Section 4.6 and Section 4.7, the primitivity of various
involutive Fibonacci words with singleton letters as the initial words is studied. Section 4.8
summarizes the results and discusses future work.

74

Section 4.1, Section 4.3, Section 4.4, and parts of Section 4.2 are adapted from a paper
I co-authored [145] titled “Involutive Fibonacci words.”

Section 4.6, Section 4.7, and parts of Section 4.2 are adapted from a paper I co-authored
[149] titled “Primitivity of atom Watson-Crick Fibonacci words.”

4.1 Introduction

Fibonacci words or Fibonacci strings were introduced as word counterparts of the Fibonacci
numbers defined by F0 = 0, F1 = 1, and the recursion Fn = Fn−1 + Fn−2 for all n ≥ 2.
“Fibonacci strings” were first defined by Knuth in his “The Art of Computer Programming”
(volume 1, section 1.2.8, exercise 36, [159]) as being an infinite sequence of strings obtained
from two initial letters, f1 = a and f2 = b, by the recursive definition fn+2 = fn+1fn for all
n ≥ 1. Various other definitions of Fibonacci words have been proposed since, as detailed
in the sequel. In this section, we propose a unified terminology for the purpose of clarifying
and comparing the multiple variants of the definition of Fibonacci words that exist in the
literature.

The following definition proposes a uniform and intuitive terminology for the various
types of Fibonacci words studied in the literature.

Definition 4.1. Let Σ be an alphabet with |Σ| ≥ 2 and let u, v ∈ Σ+. The nth standard
Fibonacci words are defined recursively as:

f1(u, v) = u, f2(u, v) = v, and

fn(u, v) = fn−1(u, v)fn−2(u, v) for n ≥ 3.

The sequence of standard Fibonacci words is defined as F (u, v) = {fn(u, v)}n≥1, that is,
F (u, v) = {u, v, vu, vuv, vuvvu, vuvvuvuv, vuvvuvuvvuvvu, . . .}.

Similarly, the nth reverse Fibonacci words are defined recursively as:

f ′
1(u, v) = u, f ′

2(u, v) = v, and

f ′
n(u, v) = f ′

n−2(u, v)f ′
n−1(u, v) for n ≥ 3.

The sequence of reverse Fibonacci words is defined as F ′(u, v) = {f ′
n(u, v)}n≥1, that is,

F ′(u, v) = {u, v, uv, vuv, uvvuv, vuvuvvuv, uvvuvvuvuvvuv, . . .}.
If the initial words u and v are singleton letters, the resulting words will be called atom

standard Fibonacci words and atom reverse Fibonacci words, respectively.

75

Note that the length of the nth atom standard/reverse Fibonacci word fn is in fact the
Fibonacci number Fn for n ≥ 1.

Below is a summary—not necessarily exhaustive—of papers in the literature, grouped
by the types of Fibonacci words they study, according to Definition 4.1:

• Atom standard Fibonacci words: [19, 24, 50, 51, 60, 61, 68, 78, 79, 81, 158–160, 188, 192,
198,208,219,220,240,241,247,248,251,256,274];

• Atom reverse Fibonacci words: [51,78,104,138,248,267,268,281];

• (Non-atomic) standard Fibonacci words: [49,78,281]; and

• (Non-atomic) reverse Fibonacci words: [49,78,267,268,281].

Indeed, according to Definition 4.1, the strings defined in [159] are atom standard
Fibonacci words. They were extensively studied in such examples as [19, 60, 61, 160, 240],
with some slight modifications of either changing the initial letters or slightly changing the
indices. For examples, see [19,61,240,241]. Some properties involving the structure of such
atom standard Fibonacci words were studied in [68,81].

It was noted in [78] that every standard (reverse) Fibonacci sequence F (u, v) (F ′(u, v),
respectively) is a homomorphic image of the atom standard (atom reverse, respectively)
Fibonacci sequence F (a, b) (F ′(a, b), respectively) via the homomorphism h(a) = u and
h(b) = v, where a ̸= b. Thus, properties of atom Fibonacci words are especially important.

In the remainder of this chapter, if the first two Fibonacci words are obvious from the
context, the argument (u, v) will be omitted, and we will write the nth standard Fibonacci
word as fn, the nth reverse Fibonacci word as f ′

n, the standard Fibonacci sequence as F ,
and the reverse Fibonacci sequence as F ′.

An equivalent definition of the sequence of atom standard Fibonacci words, using the
iteration of a morphism, was given in such studies as [19, 188], where a morphism ν :
Σ∗ → Σ∗ is defined by ν(b) = ba, ν(a) = b, f1 = a, and fn+1 = νn(a) for all n ≥ 1,
which determines the sequence a, b, ba, bab, babba, babbabab, babbababbabba, Properties
of atom standard Fibonacci words and sequences generated by iterating the morphism ν
were studied in [24,188,208,219,220,247,274]. It was shown in [219] that the length of the
word fn, defined by such a morphism, is the nth Fibonacci number. In [251], it was shown
that the infinite atom standard Fibonacci sequence is an automatic sequence (a sequence
computed by a deterministic finite automaton with output), and Mousavi, Schaeffer, and
Shallit [192] used the software Walnut to study properties of Fibonacci words using such
automata.

76

Yet another alternative definition of the sequence of atom standard Fibonacci words is
based on the “golden mean” Φ = (1 +

√
5)/2 [256], whereby fn = c1c2 · · · cn, with ci = a if

i ∈ {⌊kΦ⌋ | k ≥ 1}, and ci = b otherwise, for all 1 ≤ i ≤ n.

The atom reverse Fibonacci words of Definition 4.1 were defined in [138] using an
iterative morphism and discussed by Higgins [104] under the name papal sequence. Their
properties were further studied in [248].

A generalization of atom standard and reverse Fibonacci words to the standard and
reverse Fibonacci words of Definition 4.1 (wherein the first two words are non-atomic) was
discussed in [49,78,267,268,281].

Another generalization was introduced in [49], which defined what we herein call indexed
Fibonacci words. Under this definition, every indexed Fibonacci word is associated with a
binary sequence whose last digit is 0 if the word was obtained by the standard concatenation
order of the previous two words, and 1 if it was obtained by the reverse concatenation order.
Properties of indexed Fibonacci words were studied in [50,51].

In this chapter, we propose several generalizations of standard, reverse, and indexed
Fibonacci words, motivated by an idea first advanced and studied in the context of DNA
computing [142, 212], whereby the Watson-Crick DNA complementarity is formalized as
an antimorphic involution function θ on ∆∗, where ∆ is the DNA alphabet defined as
∆ = {A,C,G,T}. Indeed, a DNA strand can be viewed as a word over ∆, wherein A is
Watson-Crick complementary to T and C to G, that is, θ(A) = T and θ(C) = G. Two
complementary DNA single strands of opposite orientation bind together to form a DNA
double strand (intermolecular structure). Also, if non-overlapping subwords of a DNA
strand are complementary, the strand may bind to itself to form intramolecular structures
such as stem-loops, known more commonly as hairpins (Figure 2.6).

As such, hairpins tend to interfere with DNA computations, and therefore are usually
explicitly avoided by DNA computing experimentalists when encoding information as DNA
strands. See [3,9,132,133,225] about this problem and about some of the “good” designs of
DNA strands that are free of hairpins. However, hairpins are not a structure to always be
avoided in DNA computations. For example, hairpins are the main component of “hairpin
engine” DNA computing techniques [92, 237, 242]. In [135, 261, 262], hairpins serve as a
binary information medium for DNA-based random-access memory. Last but not least,
hairpins are the basic components of some DNA-based programmable “smart drugs” [17].
As it turns out, several of the generalizations of the Fibonacci words defined in this paper
are guaranteed to form hairpins, which makes them a good candidate for encodings in
hairpin-based DNA computations.

77

Note that other extensions of the atom Fibonacci sequence have been proposed and
investigated in the literature, such as:

• The mapped shuffled Fibonacci languages is defined as F(u,v) = {h(w) | w ∈ F(a,b)},
whereby h(a) = u, h(b) = v, and F(a,b) =

⋃
i≥1 Fi. The languages Fi, i ≥ 1, are

obtained from F1 = {a} and F2 = {b} by the recursive definition Fn+2 = Fn ⋄ Fn+1

for all n ≥ 1, where ⋄ is the shuffle operation, as shown in [115].

• The sequence {sn}n≥−1 is defined by s−1 = 1, s0 = 0, and sn = sdnn−1sn−2 for n ≥ 1,
where d1 ≥ 0 and dn > 0 for n > 1 [21].

• The k-Fibonacci words, whereby fk,0 = 0, fk,1 = 0k−11, and fk,n = fk
k,n−1fk,n−2 for

n ≥ 2 and k ≥ 1 [230].

• The (n, i)-Fibonacci words whereby f
[i]
0 = 0, f

[i]
1 = 0i−11, and f

[i]
n = f

[i]
n−1f

[i]
n−2 for

n ≥ 2 and i ≥ 1 [231,232].

• The m-bonacci words, whereby fi = ϕi
m(0), ϕm(m− 1) = 0, and ϕm(i) = 0(i+ 1), for

all 0 ≤ i ≤ m− 2 [28].

These and other extensions of Fibonacci words, such as that in [69], are out of the scope
of this thesis.

4.2 Preliminaries

An involution is a function f that is its own inverse, that is, for all x in the domain of f ,
we have f(f(x)) = x. A function h : Σ∗ → Σ∗ is called a morphism on Σ∗ if h(λ) = λ,
and we have that h(uv) = h(u)h(v) for all u, v ∈ Σ∗. A function h : Σ∗ → Σ∗ is called
an antimorphism on Σ∗ if h(λ) = λ, and we have that h(uv) = h(v)h(u) for all u, v ∈ Σ∗.
Note that if h is a morphism on the language Σ∗, then h(a1a2 · · · an) = h(a1)h(a2) · · ·h(an),
and, if h is an antimorphism on Σ∗, then h(a1a2 · · · an) = h(an) · · ·h(a2)h(a1) for all ai ∈ Σ
and 1 ≤ i ≤ n. A function ϕ : Σ∗ → Σ∗ is called a morphic involution on Σ∗ (an
antimorphic involution on Σ∗) if it is an involution on Σ extended to a morphism on Σ∗ (to
an antimorphism on Σ∗, respectively). For convenience, in the remainder of this chapter,
we use the convention that the letter ϕ denotes an involution that is either morphic or
antimorphic (such a function will be termed [anti]morphic involution), that the letter θ
denotes an antimorphic involution, and that the letter µ denotes a morphic involution.

78

A word x ∈ Σ∗ is called a border of w ∈ Σ+ if w = xα = βx for some α, β ∈ Σ∗. A
border x of w is said to be proper if |x| ≠ |w|. A word x ∈ Σ∗ is called a ϕ-border of w ∈ Σ+

if w = xα = βϕ(x) for some α, β ∈ Σ∗, and a proper ϕ-border if, in addition, |x| ≠ |w|,
see [147]. The empty word λ is a ϕ-border of every w ∈ Σ+. A non-empty word is said
to be ϕ-bordered if it has a proper non-empty ϕ-border, and ϕ-unbordered otherwise. If
ϕ is the identity on Σ extended to a morphism on Σ∗, then the ϕ-bordered words coincide
with the classical bordered words, and the ϕ-unbordered words coincide with the classical
unbordered words [280]. We recall:

Lemma 4.2. [147] Let θ be an antimorphic involution on Σ∗. Then, for all x ∈ Σ+, we
have that x is θ-bordered if and only if x = ayθ(a) for some a ∈ Σ and y ∈ Σ∗.

A word u ∈ Σ∗ is called a conjugate of v ∈ Σ∗ if there exists a word w ∈ Σ∗ such
that uw = wv, or, equivalently, if u = xy and v = yx for x, y ∈ Σ∗. In [148] the concept
of the conjugacy of words was extended to incorporate the notion of an (anti)morphic
involution: A word u ∈ Σ∗ is a ϕ-conjugate of v ∈ Σ∗ if there exists a word w ∈ Σ∗ such
that uw = ϕ(w)v. If ϕ is the identity on Σ extended to a morphism on Σ∗, this notion
becomes the classic conjugacy on words.

A word w ∈ Σ∗ is called a palindrome if w = wr. A word w ∈ Σ∗ is called a ϕ-palindrome
if w = ϕ(w), and the set of all ϕ-palindromes is denoted by Pϕ. If ϕ = µ is a morphic
involution on Σ∗, then the only µ-palindromes are the words over Σ′, where Σ′ ⊆ Σ and
µ is the identity on Σ′. Lastly, if ϕ = θ is the identity function on Σ extended to an
antimorphism on Σ∗, then a θ-palindrome is a classical palindrome, while, if ϕ = µ is the
identity function on Σ extended to a morphism on Σ∗, then every word is a µ-palindrome.

A word w ∈ Σ+ is said to be primitive if w = ui implies w = u and i = 1. Let Q
denote the set of all primitive words. For every word w ∈ Σ+, there exists a unique word
ρ(w) ∈ Σ+ called the primitive root of w such that ρ(w) ∈ Q and w = ρ(w)n for some
n ≥ 1. A word w ∈ Σ+ is said to be ϕ-primitive if w = {u, ϕ(u)}i implies w ∈ {u, ϕ(u)}
and i = 1. If ϕ is the identity on Σ extended to a morphism on Σ∗, this notion becomes
the classic primitivity on words.

The following observations will be used in the remainder of the chapter.

Lemma 4.3. For n,m ≥ 1, the following hold.

• gcd(n, n + 1) = 1.

• For m even, if gcd(n,m) = 1, then gcd(n, m
2

) = 1.

79

• gcd(n, n + 2) is 1 if n is odd and 2 if n is even.

We will also make use of the following identities on the Fibonacci numbers Fn, which
can be proved using Lemma 4.3 and induction.

Lemma 4.4. For all n ≥ 1, the following identities hold.

• gcd(Fn, Fn+1) = 1.

• gcd(Fn,
Fn+1

2
) = 1 for Fn+1 even.

• gcd(Fn

2
, Fn+1) = 1 for Fn even.

• gcd(Fn − 1, Fn + 1) is 1 if Fn is even and 2 if Fn is odd.

• gcd(Fn−1
2

, Fn+1
2

) = 1 if Fn is odd.

Given a set Σ4 = {x1, x2, x3, x4}, out of all possible permutations of Σ4 of the form

ϕ =

(
x1 x2 x3 x4

ϕ(x1) ϕ(x2) ϕ(x3) ϕ(x4)

)
,

there are 10 mappings that are involutions on Σ4. We denote them by ϕi, 1 ≤ i ≤ 10, and
they are listed in Table 4.1.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10

x1 x1 x2 x3 x4 x1 x1 x1 x2 x3 x4

x2 x2 x1 x2 x2 x3 x4 x2 x1 x4 x3

x3 x3 x3 x1 x3 x2 x3 x4 x4 x1 x2

x4 x4 x4 x4 x1 x4 x2 x3 x3 x2 x1

Table 4.1: List of all possible involutions over the set Σ4 = {x1, x2, x3, x4}. If the letter in
the cell of the column of ϕi and row of xj is xk, where 1 ≤ i ≤ 10 and 1 ≤ j, k ≤ 4, this
denotes that ϕi(xj) = xk. For example, ϕ3(x3) = x1.

Note that the mapping ϕ1 is the involution whereby all letters are mapped to themselves
(the identity on Σ4). The mappings ϕi, 2 ≤ i ≤ 7, are the involutions whereby two of the
letters are mapped to each other, and the other two are mapped to themselves. The
mappings ϕ8, ϕ9, and ϕ10 are the only involutions whereby two of the letters are mapped
to each other, and the other two letters are also mapped to each other.

80

Throughout this chapter, we use the convention that for a sequence (x1, x2, x3, x4) of
letters from Σ4, we have xi ̸= xj whenever i ̸= j. In the particular case of the DNA
alphabet, that is, where Σ4 = ∆ = {A,C,G,T}, there are a total of 4! = 24 possibilities
for the choice of (x1, x2, x3, x4) for xi ̸= xj and i ̸= j. For each such choice of (x1, x2, x3, x4),
the Watson-Crick involution θDNA will coincide on ∆∗ with one of ϕ8, ϕ9, and ϕ10. For
example, if we fix (x1, x2, x3, x4) = (A,C,G,T), then ϕ10 coincides with θDNA on ∆∗,
whereas, if we fix (x1, x2, x3, x4) = (C,G,A,T), then ϕ8 coincides with θDNA on ∆∗, and,
if we fix (x1, x2, x3, x4) = (A,C,T,G), then ϕ9 coincides with θDNA on ∆∗.

Table 4.2 illustrates a particular case from Table 4.1, where we have (x1, x2, x3, x4) =
(A,C,G,T). For this example, we list all possible mappings ϕ on ∆ that can be extended
to an (anti)morphic involution on ∆∗.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10

A A C G T A A A C G T
C C A C C G T C A T G
G G G A G C G T T A C
T T T T A T C G G C A

Table 4.2: List of all possible involutions over the DNA alphabet ∆ = {A,C,G,T}.

In the remainder of the chapter, the mapping ϕi on ∆ extended to a morphic involution
on ∆∗ will be denoted by µi for 1 ≤ i ≤ 10, and similarly, the mapping ϕi on ∆ extended
to an antimorphic involution on ∆∗ will be denoted by θi for 1 ≤ i ≤ 10. Note that
for (x1, x2, x3, x4) = (A,C,G,T), the morphic involution µ1 is the identity on ∆∗, the
antimorphic involution θ1 is the mirror image, and the antimorphic involution θ10 = θDNA

formalizes the Watson-Crick complementarity of DNA strings in ∆∗, as shown in [142,212].

We recall the following from [60,172,276].

Theorem 4.5. [60] For n ≥ 1, the atom Fibonacci word fn is primitive.

Lemma 4.6. [172] Let x, y ∈ Σ+ be two non-empty words.

• If xy = pi, p ∈ Q, and i ≥ 1, then yx = qi for some q ∈ Q.

• If xy = yx, then ρ(x) = ρ(y).

Proposition 4.7. [276] Let p and q be primitive and d = gcd(|p|, |q|). If pm = qx, for
m ≥ 2 with q = xy, y ∈ Σ+, and |x| ≥ |p| − d, then p = q.

81

Lastly, in Section 4.6 and Section 4.7, we will make an extensive use of the following
result.

Lemma 4.8. For a word x over an alphabet Σ, we have that if gcd(|x|a, |x|b) = 1 for at
least a pair of letters a, b ∈ Σ, then x is primitive.

Proof. We prove the contrapositive. By definition, if x is not primitive, then it can be
written as x = pi, where p ∈ Q and i > 1. For all pairs of letters a, b ∈ Alph(x), we
have |x|a = i · |p|a and |x|b = i · |p|b. Therefore, gcd(|x|a, |x|b) is a multiple of i, thus,
gcd(|x|a, |x|b) ̸= 1. For all pairs of letters a, b ∈ Σ, if one of the letters is not in Alph(x),
then gcd(|x|a, |x|b) ̸= 1.

4.3 Involutive Fibonacci words

In this section, we generalize Definition 4.1 to define the nth standard and reverse ϕ-
Fibonacci words/sequences in several ways, where ϕ is an (anti)morphic involution. We
consider special cases of such ϕ-Fibonacci words where the initial two words u and v have
various properties: u and v are both palindromes, u and v are both ϕ-palindromes, or
u = ϕ(v).

Definition 4.9. Let Σ be an alphabet with |Σ| ≥ 2, let ϕ be an (anti)morphic involution on
Σ∗, and u, v ∈ Σ+. If the first two ϕ-Fibonacci words are u and v, respectively, three types
of nth standard ϕ-Fibonacci words, gϕn(u, v), wϕ

n(u, v), and zϕn(u, v), n ≥ 3, are defined
recursively as follows:

gϕn(u, v) = ϕ(gϕn−1(u, v)) · gϕn−2(u, v) (alternating);

wϕ
n(u, v) = ϕ(wϕ

n−1(u, v)) · ϕ(wϕ
n−2(u, v)) (palindromic); and

zϕn(u, v) = zϕn−1(u, v) · ϕ(zϕn−2(u, v)) (hairpin).

Similarly, three types of nth reverse ϕ-Fibonacci words, [gϕn(u, v)]′, [wϕ
n(u, v)]′, and

[zϕn(u, v)]′, n ≥ 3, are defined recursively as follows:

[gϕn(u, v)]′ = [gϕn−2(u, v)]′ · ϕ([gϕn−1(u, v)]′) (alternating);

[wϕ
n(u, v)]′ = ϕ([wϕ

n−2(u, v)]′) · ϕ([wϕ
n−1(u, v)]′) (palindromic); and

[zϕn(u, v)]′ = ϕ([zϕn−2(u, v)]′) · [zϕn−1(u, v)]′ (hairpin).

82

The sequence of standard alternating ϕ-Fibonacci words G(u, v) can now be defined
as G(u, v) = {gϕn(u, v)}n≥1, and the sequences W (u, v), Z(u, v), G′(u, v), W ′(u, v), and
Z ′(u, v) can be similarly defined.

If the first two ϕ-Fibonacci words in the sequence are singleton letters in Σ, the respective
ϕ-Fibonacci words will be called atom (standard or reverse) ϕ-Fibonacci words. If the
involution ϕ is clear from the context, we will sometimes call ϕ-Fibonacci words simply
involutive Fibonacci words.

In the remainder of this chapter, when the particular (anti)morphic involution ϕ in-
volved in the Fibonacci recursion needs to be emphasized, we will use the notation gϕn(u, v),
wϕ

n(u, v), or zϕn(u, v) to denote the corresponding ϕ-Fibonacci words for n ≥ 1. However, if
either the initial words u and v or the mapping ϕ is clear from the context (as is the case
in Definition 4.9), they will sometimes be omitted.

Note that, in the particular case when ϕ is the identity function on Σ extended to a
morphism on Σ∗, the words gn = wn = zn all coincide with the standard Fibonacci words
fn, while g′n = w′

n = z′n all coincide with f ′
n, for all n ≥ 1. Thus, fn and f ′

n can also be
called standard and reverse ϕ-Fibonacci words, respectively, for all n ≥ 1, with ϕ being
the identify function extended to a morphism.

We now illustrate the definitions with the following examples. Consider the DNA
alphabet ∆ = {A,C,G,T}, ϕ(A) = T, ϕ(G) = C, and vice versa. Assume that the first
two ϕ-Fibonacci words are A and C, respectively. Table 4.3 describes the first of the various
atom standard and reverse ϕ-Fibonacci words, where ϕ is either a morphic involution (MI)
or an antimorphic involution (AMI) on ∆∗. Note that, since ∆ denotes the DNA alphabet,
if the involution ϕ = θ defined as above on ∆ is extended to an antimorphism on ∆∗,
then it models the DNA Watson-Crick complementarity of DNA strands. In this case,
the standard palindromic θ-Fibonacci words wn and the reverse palindromic θ-Fibonacci
words w′

n form hairpin structures with partially double-stranded stems (Figure 2.6 depicts
the word w8), while the standard and reverse hairpin θ-Fibonacci words zn and z′n form
hairpins with fully double-stranded stems.

It was first shown in [60] that the prefix of the atom standard Fibonacci word fn of
length |fn| − 2 is a palindrome, for all n ≥ 3. Later in [78], the authors proved that the
prefix of length |fn| − 2 of fn is also the suffix of the atom reverse Fibonacci word f ′

n, for
all n ≥ 3. These results from [60,78] can be combined in the following lemma.

Lemma 4.10. Let Σ = {a, b}, with a ̸= b, and let f1 = a and f2 = b. Then, for n ≥ 3,
we have that fn = sndn and f ′

n = d′nsn, where d′n = drn such that sn is a palindrome, and
dn = ab if n is even, while dn = ba if n is odd.

83

gn = ϕ(gn−1)gn−2 g′n = g′n−2ϕ(g′n−1)
n MI AMI MI AMI
3 GA GA AG AG
4 CTC TCC CTC CCT
5 GAGGA GGAGA AGGAG AGAGG
6 CTCCTCTC TCTCCTCC CTCTCCTC CCTCCTCT

wn = ϕ(wn−1)ϕ(wn−2) w′
n = ϕ(w′

n−2)ϕ(w′
n−1)

n MI AMI MI AMI
3 GT GT TG TG
4 CAG ACG GAC GCA
5 GTCCA CGTAC ACCTG CATGC
6 CAGGTGTC GTACGCGT CTGTGGAC TGCGCATG

zn = zn−1ϕ(zn−2) z′n = ϕ(z′n−2)z
′
n−1

n MI AMI MI AMI
3 CT CT TC TC
4 CTG CTG GTC GTC
5 CTGGA CTGAG AGGTC GAGTC
6 CTGGAGAC CTGAGCAG CAGAGGTC GACGAGTC

Table 4.3: The nth atom ϕ-Fibonacci words gn, g′n, wn, w′
n, zn, and z′n with initial words

A and C, 3 ≤ n ≤ 6, where ϕ(A) = T, ϕ(C) = G, is an involution extended to either a
morphism (MI) or an antimorphism (AMI).

One can easily observe from Lemma 4.10 that sn = srn, for all n ≥ 3. Hence, for n ≥ 3,
we have that d′nsn = f ′

n = f r
n = drns

r
n. Thus, we conclude the following.

Lemma 4.11. Let Σ = {a, b}, with a ̸= b, and let f1 = f ′
1 = a, f2 = f ′

2 = b. Then we have
f ′
n = f r

n, for all n ≥ 1.

One can easily show that a result similar to Lemma 4.11 also holds for atom standard
and atom reverse ϕ-Fibonacci words.

In the remainder of this chapter, we will often have to make statements that hold for
several types of ϕ-Fibonacci words. For brevity, we will use the notational convention that
a statement of the type “αn ∈ {fn, gn, wn, zn} for all n ≥ 1” means that either we have
αn = fn for all n ≥ 1, or that αn = gn for all n ≥ 1, or that αn = wn for all n ≥ 1, or that
αn = zn for all n ≥ 1. Moreover, we will use the notational convention that a statement of
the type “αn = gn for all n ≥ 1” also implies the statement “α′

n = g′n for all n ≥ 1.”

84

Lemma 4.12. Let Σ = {a, b, c, d}, let ϕ be an (anti)morphic involution on Σ∗, and let the
initial ϕ-Fibonacci words be α1 = α′

1 = a, α2 = α′
2 = b. If αn ∈ {fn, gn, wn, zn} for all

n ≥ 1, then α′
n = αr

n for all n ≥ 1.

Proof. By strong induction on n.

Note that Lemma 4.11 and Lemma 4.12 justify our terminology, calling fn, gn, wn, and
zn “standard” ϕ-Fibonacci words, while calling f ′

n, g′n, w′
n, and z′n “reverse” ϕ-Fibonacci

words. Lemma 4.11, which holds for atom Fibonacci words, can now be generalized to
Fibonacci words with f1 = u and f2 = v, provided that u and v are (non-empty) palin-
dromes. Indeed, the following result is a direct corollary of Theorem 4 in [49], which stated
that fn(u, v) and f ′

n(u, v) are conjugates for every u, v ∈ Σ+.

Corollary 4.13. Let f1 = f ′
1 = u and f2 = f ′

2 = v, such that u and v in Σ+ are
palindromes. Then, for all n ≥ 3, there exist non-empty palindromes xn, yn ∈ Σ+ such that
fn = xnyn and f ′

n = ynxn, and hence f ′
n = f r

n.

Note that, in general, the decomposition of fn as a product of two non-empty palin-
dromes xn and yn (Corollary 4.13) is not necessarily unique. For example, if we have
f1 = bab and f2 = aba, then f3 = ababab = (a)(babab) = (ababa)(b) = (aba)(bab) has three
different decompositions into a product of two palindromes.

In the following, we will prove a result similar to Corollary 4.13, for the ϕ-Fibonacci
words gn and g′n, for both morphic as well as antimorphic involutions. The following result
is a generalization of Lemma 4.10, to the case of gn and g′n.

Proposition 4.14. Let ϕ be an (anti)morphic involution on Σ∗, and let g1 = g′1 = u and
g2 = g′2 = v, where u, v ∈ Σ+. Then, for n ≥ 3, we have:

gn =

{
snxy : n mod 2 = 0,

snpq : n mod 2 = 1,
g′n =

{
yxs′n : n mod 2 = 0,

qps′n : n mod 2 = 1,

where s3 = s′3 = λ, and

• If ϕ = µ is a morphic involution, then x = µ(u), y = v, p = µ(v), q = u, and
for all n ≥ 4, sn = s′n = µ(sn−1)g

′
n−2 = gn−2µ(sn−1). In addition, for n ≥ 4,

there exists word yn such that yngn = g′nyn and yn = g′n−2µ(u)v when n is even and
yn = g′n−2µ(v)u otherwise.

85

• If ϕ = θ is an antimorphic involution, then x = y = v, p = θ(v), q = u and for all
n ≥ 4, sn = θ(yn−1)θ(s′n−1) and s′n = θ(sn−1)θ(yn−1). In addition, for n ≥ 4, there
exists a word yn such that yngn = g′nyn and yn = yn−2gn−2, where y3 = u and y2 = v.

Proposition 4.14 can now be used to prove Corollary 4.15, which generalizes Theorem
4 in [49] and Corollary 4.13 to the case of gn and g′n.

Corollary 4.15. Let ϕ be an (anti)morphic involution on Σ∗, and let the two initial words
g1 = g′1 = u and g2 = g′2 = v be words in Σ+. Then the words gn and g′n are conjugates
for all n ≥ 1. If in addition, u and v are palindromes, then for all n ≥ 3, there exists
palindromes xn and yn such that gn = xnyn, g

′
n = ynxn, and hence also g′n = grn.

Given an (anti)morphic involution ϕ and initial words g1 and g2, the decomposition
of gn into palindromes is not necessarily unique. Consider for example the (anti)morphic
involution ϕ such that ϕ(a) = b and ϕ(b) = a. If g1 = bab and g2 = aba, then g4 =
abaabaaba, which can be expressed as g4 = (aba)(abaaba) = (abaaba)(aba).

Theorem 4 of [49] showed that the Fibonacci words fn and f ′
n are conjugates of each

other. Similarly, Corollary 4.15 shows that the ϕ-Fibonacci words gn and g′n are conjugates
of each other, for both morphic and antimorphic ϕ. This does not hold for ϕ-Fibonacci
words zn and wn, as shown by checking the case n = 4 in Table 4.3.

Even though we cannot prove conjugacy of zn and z′n (wn and w′
n, respectively) for all

n ≥ 1 in the general case, the following proposition holds, implying that if the first two
Fibonacci words are palindromes, then z′n = zrn and w′

n = wr
n (Corollary 4.17).

Proposition 4.16. Let ϕ be an (anti)morphic involution on Σ∗, and let α1 = α′
1 = u and

α2 = α′
2 = v, where u, v ∈ Σ+. If αn ∈ {zn, wn} for all n ≥ 1, then, for all n ≥ 3, we have

that αn = sndn and α′
n = d′ns

′
n, where:

• If αn = zn and ϕ = µ is a morphic involution, then

dn =


µ(u)µ(v) : n mod 4 = 0,

µ(v)u : n mod 4 = 1,

uv : n mod 4 = 2,

vµ(u) : n mod 4 = 3,

d′n =


µ(v)µ(u) : n mod 4 = 0,

uµ(v) : n mod 4 = 1,

vu : n mod 4 = 2,

µ(u)v : n mod 4 = 3.

• If αn = zn and ϕ = θ is an antimorphic involution, then we have dn = uθ(v) and
d′n = θ(v)u for all n ≥ 5.

86

• If αn = wn and ϕ = µ is a morphic involution, then

dn =


uµ(v) : n mod 4 = 0,

vu : n mod 4 = 1,

µ(u)v : n mod 4 = 2,

µ(v)µ(u) : n mod 4 = 3,

d′n =


µ(v)u : n mod 4 = 0,

uv : n mod 4 = 1,

vµ(u) : n mod 4 = 2,

µ(u)µ(v) : n mod 4 = 3.

• If αn = wn and ϕ = θ is an antimorphic involution, then

dn =


uv : n mod 3 = 1,

θ(v)θ(u) : n mod 3 = 2,

vθ(v) : n mod 3 = 0,

d′n =


vu : n mod 3 = 1,

θ(u)θ(v) : n mod 3 = 2,

θ(v)v : n mod 3 = 0.

Proof. We only prove the case when αn = wn for all n ≥ 1 and ϕ = µ is a morphic
involution by strong induction on n. The base cases for n ∈ {4, 5, 6, 7} can be verified
directly where µ(u) = u′ and µ(v) = v′. Assume the statement is true for all k ≤ n, and
consider wn+1. If n + 1 mod 4 = 0, then we have that

wn+1 = µ(wn)µ(wn−1) = µ(snv
′u′sn−1u

′v) = µ(sn)vuµ(sn−1)uv
′ = sn+1uv

′,

where sn+1 = µ(sn)vuµ(sn−1), and at the same time

w′
n+1 = µ(w′

n−1)µ(w′
n) = µ(vu′s′n−1)µ(u′v′s′n) = v′uµ(s′n−1)uvµ(s′n) = v′us′n+1,

where s′n+1 = µ(s′n−1)uvµ(s′n). If u = ur and v = vr, then we have a decomposition
whereby s′n+1 = µ(srn−1)uvµ(srn) = srn+1. Also, note that w′

n+1 = wr
n+1. Cases where

n + 1 mod 4 ∈ {1, 2, 3} can be proved similarly.

Corollary 4.17. Let ϕ be an (anti)morphic involution on Σ∗, let u, v ∈ Σ+, and let
α1 = α′

1 = u and α2 = α′
2 = v. If αn ∈ {zn, wn} for all n ≥ 1, then for all n ≥ 3, we

have that αn = sndn and α′
n = d′ns

′
n as in Proposition 4.16. If in addition u and v are

palindromes, then for all n ≥ 5, we have that α′
n = αr

n, s
′
n = srn, and d′n = drn.

Corollary 4.13, Corollary 4.15, and Corollary 4.17 show that in the special case of u
and v being non-empty palindromes, if αn ∈ {fn, gn, wn, zn} for all n ≥ 1, then α′

n is
the reverse of αn for all n ≥ 5. We now consider other special cases by imposing other
constraints on the initial words u and v. We first consider the case when the initial words
u and v are (non-empty) ϕ-palindromes. If ϕ = µ is a morphic involution, then µ is the
identity mapping on Alph(u) ∪ Alph(v), and a newly defined ϕ-Fibonacci word gn, wn, or
zn coincides with fn for all n ≥ 1 (the case of fn was discussed in Corollary 4.13). The
following proposition considers the case when ϕ = θ is an antimorphic involution.

87

Theorem 4.18. Let fi = f ′
i , gi = g′i, wi = w′

i, and zi = z′i for i = 1, 2, and let θ be
an antimorphic involution on Σ∗. If fi, gi, wi, and zi are non-empty θ-palindromes for
i = 1, 2, then:

• For all n ≥ 1, fn = θ(f ′
n), gn = θ(g′n), wn = θ(w′

n), and zn = θ(z′n).

• For all n ≥ 5, gn and g′n are conjugates of each other, namely gn = xnyn and
g′n = ynxn, where xn, yn are θ-palindromes. In addition, x2n can be decomposed as
x2n = y2n−1 = g1g3 · · · g2n−5g2n−3, while x2n+1 can be decomposed as x2n+1 = y2n =
g22g4g6 · · · g2n−4g2n−2.

• If n mod 3 ̸= 0, we have that zn = z′n. Otherwise, we have that zn and z′n are
conjugates, that is, zn = xnyn and z′n = ynxn, where both xn = zn−1 and yn = zn−2

are θ-palindromes.

• For all n ≥ 5, wn and w′
n are θ-conjugates, that is, we have wn = xnyn and w′

n =
θ(yn)xn, where xn is a θ-palindrome, and we have decompositions whereby xn =
wn−3w

′
n−3 and yn = w′

n−4w
′
n−2.

Proof. By strong induction on n.

It was observed in [104] that the length of the atom reverse Fibonacci word f ′
n is the

Fibonacci number Fn. For other ϕ-Fibonacci words αn ∈ {gn, zn, wn, g
′
n, z

′
n, w

′
n} for all

n ≥ 1, and if either α1 = α2 or ϕ(α1) = α2, then αn = u1u2u3 · · ·uk, where, for 1 ≤ i ≤ k,
ui ∈ {α1, ϕ(α1)}, and therefore the length of the nth ϕ-Fibonacci word equals |α1| × Fn.

We end this section by considering another special case of ϕ-Fibonacci words, where
the initial words u and v satisfy the condition ϕ(u) = v.

Proposition 4.19. Let u, v ∈ Σ+, let g1 = w1 = z1 = g′1 = w′
1 = z′1 = u, and let

g2 = w2 = z2 = g′2 = w′
2 = z′2 = v. Let ϕ be an (anti)morphic involution on Σ∗ such that

ϕ(u) = v. Then, for all n ≥ 3, we have:

1. If n is odd, gn = g′n = uFn, and if n is even, gn = g′n = vFn.

2. If ϕ = µ is a morphic involution and u and v are palindromes, then{
wn = xnyn, w

′
n = ynx

r
n : n mod 2 = 0,

wn = xnyn, w
′
n = yrnxn : n mod 2 = 1.

88

3. If ϕ = θ is an antimorphic involution and u and v are palindromes, then{
wn = (uv)i, w′

n = (vu)i : n mod 3 = 0, i = |Fn|
2
,

wn = w′
n : n mod 3 ̸= 0.

Proof. 1. Follows from the definition of gn, g′n, and the hypothesis that ϕ(u) = v.

2. Follows by induction on n, from the definition of wn, w′
n, and the assumptions that

µ(u) = v and that u and v are palindromes.

3. Proof similar to that of (2).

4.3.1 Relations between Fibonacci words and µ-Fibonacci words

In this section, we find relationships that exist between alternating µ-Fibonacci words gn
and standard Fibonacci words fn for morphic involutions µ (see Theorem 4.21). We namely
prove that, as suggested by Table 4.3, in the case of a morphic involution µ, the words in the
sequence of µ-Fibonacci words {gn(u, v)}n≥1 can be obtained by alternating the words from
two different sequences of standard Fibonacci words, {fn(u, µ(v))}n≥1 and {fn(µ(u), v)}n≥1,
as follows: gn(u, v) coincides with fn(u, µ(v)) for odd n and with fn(µ(u), v) for even n.
This property was the rationale for calling gn “alternating Fibonacci words.” A similar
relationship holds between sequences {g′n}n≥1 and {f ′

n}n≥1, and between sequences {wn}n≥1

(respectively {w′
n}n≥1) and {zn}n≥1 (respectively {z′n}n≥1). The following lemma is used

to prove these relationships.

Lemma 4.20. Let ϕ = µb be a morphic involution on Σ∗, let µa be a morphic involution on
Σ∗ such that µaµb = µbµa, and let u, v ∈ Σ+. If αn ∈ {fn, gn, wn, zn} for all n ≥ 1 are µb-
Fibonacci words then µa(αn(u, v)) = αn(µa(u), µa(v)) and µa(α

′
n(u, v)) = α′

n(µa(u), µa(v))
for all n ≥ 1.

Proof. We consider the standard µb-Fibonacci words gn. The proof is by strong induction
on n. By definition, we have µa(g1(u, v)) = µa(u) = g1(µa(u), µa(v)), and µa(g2(u, v)) =
µa(v) = g2(µa(u), µa(v)), so the base case holds. Assume µa(gi(u, v)) = gi(µa(u), µa(v)) for
all 1 ≤ i ≤ k. Using the definition of gn for n ≥ 1, the fact that µa is a morphism, and the
induction hypothesis, we have that

µa(gk+1(u, v)) = µa(µb(gk(u, v)) · gk−1(u, v))

89

= µb(µa(gk(u, v))) · µa(gk−1(u, v))

= µb(gk(µa(u), µa(v))) · gk−1(µa(u), µa(v))

= gk+1(µa(u), µa(v)).

The proofs for other µb-Fibonacci words are similar.

Lemma 4.20 can be used to prove the following result.

Theorem 4.21. Let µ be a morphic involution on Σ∗, let u, v ∈ Σ+, and let

(αn, βn) ∈ {(fn, gn), (gn, fn), (zn, wn), (wn, zn), (f ′
n, g

′
n), (g′n, f

′
n), (z′n, w

′
n), (w′

n, z
′
n)},

for all n ≥ 1. The following relations hold for all n ≥ 1:

αn(u, v) =

{
βn(µ(u), v) : n mod 2 = 0,

βn(u, µ(v)) : n mod 2 = 1.

Proof. We prove the pair (gn, fn) using strong induction on n. By definition, we have
g1(u, v) = u = f1(u, µ(v)) and g2(u, v) = v = f2(µ(u), v).

Assume now that for 1 ≤ i ≤ k, gi(u, v) = fi(u, µ(v)) if i is odd and gi(u, v) = fi(µ(u), v)
if i is even.

If k + 1 is odd (the case of k + 1 even is similar), then per the definition of gk+1 and
fk+1, the induction hypothesis, and Lemma 4.20 with µa = µb = µ, we have that:

gk+1(u, v) = µ(gk(u, v)) · gk−1(u, v)

= µ(fk(µ(u), v)) · fk−1(u, µ(v))

= fk(u, µ(v)) · fk−1(u, µ(v))

= fk+1(u, µ(v)).

The proofs for other cases are similar.

In the case of an antimorphic involution, a relation like that of Theorem 4.21 does not
hold. Indeed, Table 4.3 shows that

g4(A,C) = TCC ̸= CTC = f4(θ(A),C) = f4(T,C).

We will end this subsection with some observations on iterated morphisms generating
certain types of involutive Fibonacci words. Let ∆ = {A,C,G,T} be the DNA alphabet
and θ be the Watson-Crick antimorphic involution on ∆∗ that maps A to T and C to G.
Then, assuming that A and C are the first two Fibonacci words, we have that:

90

• The word gn can be obtained by iterating on A the morphism hg defined as hg(A) = C,
hg(C) = GA, hg(G) = TC, and hg(T) = G.

• The word wn can be obtained by iterating on A the morphism hw defined as hw(A) =
C, hw(C) = GT, hw(T) = G, and hw(G) = AC.

• The word zn can be obtained by iterating on A the morphism hz defined as hz(A) = C,
hz(C) = CT, hz(T) = G, and hz(G) = AG.

4.4 Indexed involutive Fibonacci words

In this section we show that in the case of both a morphic and an antimorphic involution,
the ϕ-Fibonacci words are connected to the indexed Fibonacci words defined and studied in
[49]. We also define indexed ϕ-Fibonacci words (Definition 4.28), which are a generalization
of indexed Fibonacci words, and find relationships between various types of such words.

We first show the relations between the θ-Fibonacci words gn and indexed Fibonacci
words. Recall the notion of indexed Fibonacci words, defined and investigated in [49] (note
that [49] used a different notation):

Definition 4.22. Let Σ be an alphabet, and let u, v ∈ Σ+. The indexed Fibonacci words
are defined recursively as

f 0(u, v) = u, f 00(u, v) = v,

and, for all n ≥ 2,

f r1r2···rn0(u, v) = f r1r2···rn(u, v)f r1r2···rn−1(u, v) and

f r1r2···rn1(u, v) = f r1r2···rn−1(u, v)f r1r2···rn(u, v),

where r1 = r2 = 0 and ri ∈ {0, 1} for all 3 ≤ i ≤ n.

Informally, in the construction of an indexed Fibonacci word f 00r3r4···rnrn+1(u, v), we use
the digit rn+1 = 0 to denote concatenating the last word with the second last word in the
sequence (according to the standard Fibonacci concatenation order), and digit rn+1 = 1
to denote concatenating the second last word with the last word (according to the reverse
Fibonacci concatenation order). Note that the standard (respectively reverse) Fibonacci
words now become particular cases of indexed Fibonacci words, in the construction of which
the standard Fibonacci concatenation order (respectively reverse Fibonacci concatenation

91

order) is always used, that is, rn = 0 for all n ≥ 3 (respectively rn = 1 for all n ≥ 3), as
follows:

f1(u, v) = f ′
1(u, v) = f 0(u, v) = u, f2(u, v) = f ′

2(u, v) = f 00(u, v) = v, and

for n ≥ 3, fn(u, v) = f 00 0n−2

(u, v) and f ′
n(u, v) = f 00 1n−2

(u, v).

As before, when the initial words u, v are clear for the context, the argument (u, v) will
be omitted.

The derivation of a sequence of indexed Fibonacci words can be represented by a path
from the root (f 0 and f 00) to a leaf f 00r3···rn , n ≥ 3, in a tree-like structure as follows:

f 0 = u, f 00 = v →


f 000 = vu→

{
f 0000 = vuv → · · ·
f 0001 = vvu→ · · ·

f 001 = uv →
{
f 0010 = uvv → · · ·
f 0011 = vuv → · · ·

We now recall a result from [49].

Proposition 4.23. If u and v are non-empty palindromes, then for all n ≥ 3, we have
that f 00r3r4···rn(u, v) = (f 00s3s4···sn(u, v))r, where sj = 1− rj for 3 ≤ j ≤ n.

The following Lemma generalizes the above result and will aid in the proof of Propo-
sition 4.25.

Lemma 4.24. Let ϕ be an (anti)morphic involution on Σ∗ and u, v ∈ Σ+. Then, for all
n ≥ 3, we have that ϕ(f 00r3···rn(u, v)) = f 00s3···sn(ϕ(u), ϕ(v)), where ri ∈ {0, 1}, and for all
3 ≤ i ≤ n {

si = ri : ϕ is a morphic involution,

si = 1− ri : ϕ is an antimorphic involution.

Proof. We only prove for the case when ϕ = θ is an antimorphic involution by strong
induction on n. The base case (n = 3) follows by the definition of indexed Fibonacci words
and the fact that θ is antimorphic. Indeed, we have that

θ(f 000(u, v)) = θ(vu) = θ(u)θ(v) = f 001(θ(u), θ(v)),

θ(f 001(u, v)) = θ(uv) = θ(v)θ(u) = f 000(θ(u), θ(v)).

92

The case n = 4 can be proved similarly.

Assume now that θ(f 00r3···rj(u, v)) = f 00s3···sj(θ(u), θ(v)), where ri ∈ {1, 0} and si =
1− ri, 3 ≤ i ≤ j, for all 3 ≤ j ≤ k and k ≥ 4. Consider f 00r3···rkrk+1(u, v) and assume that
rk+1 = 0. Using the definition of indexed Fibonacci words and the induction hypothesis,
we have:

θ(f 00r3···rk0(u, v)) = θ(f 00r3···rk(u, v)f 00r3···rk−1(u, v))

= θ(f 00r3···rk−1(u, v))θ(f 00r3···rk(u, v))

= f 00s3···sk−1(θ(u), θ(v))f 00s3···sk(θ(u), θ(v))

= f 00s3···sk−1sk1(θ(u), θ(v)).

The case rk+1 = 1 can be proved similarly. Thus, the inductive step and the proof hold.

The next result shows that for an antimorphic involution θ, the sequence of alternating
θ-Fibonacci words gn consists of interleaving words from two sequences: If n is odd, it takes
the word from the sequence of indexed Fibonacci words f 00010101010··· (which alternates
between the standard and reverse concatenation in its construction). If n is even, it takes
the word from the sequence of indexed Fibonacci words f 0010101010··· (which alternates
between the reverse and standard concatenation in its construction).

Proposition 4.25. Let θ be an antimorphic involution on Σ∗, let u, v be two words in Σ+,
and let αn ∈ {gn, g′n} for all n ≥ 1. The following relations hold for all n ≥ 3:

αn(u, v) =

{
f 00{sr}i(θ(u), v) : n mod 2 = 0, i = n−2

2
,

f 00r{sr}i(u, θ(v)) : n mod 2 = 1, i = n−3
2
,

where r = 0, s = 1 if αn = gn, and r = 1, s = 0 if αn = g′n.

Proof. It follows by strong induction on n, using Lemma 4.24.

A relationship similar to that of Proposition 4.25 can be obtained for the case of morphic
involutions as stated in Proposition 4.27, the immediate proof of which uses Lemma 4.24
and Lemma 4.26.

Lemma 4.26. Let u, v be two words in Σ+. Then, fγ00(u, v) = fγ11(u, v) for all words
γ = r1r2 · · · rn, n ≥ 2, where r1 = r2 = 0, ri ∈ {0, 1} for 3 ≤ i ≤ n.

Proof. It follows fγ00(u, v) = fγ(u, v)f r1r2···rn−1(u, v)fγ(u, v) = fγ11(u, v).

93

Proposition 4.27. Let µ be a morphic involution on Σ∗, let u, v be two words in Σ+, and
let αn ∈ {gn, g′n} for all n ≥ 1. Then, α3(u, v) = f 00r(u, µ(v)) and the following relations
hold for n ≥ 4:

αn(u, v) =

{
f 00riss(µ(u), v) : i = n− 4, n mod 2 = 0,

f 00riss(u, µ(v)) : i = n− 4, n mod 2 = 1,

where r = 0, s = 1 if αn = gn, and r = 1, s = 0 if αn = g′n.

We now extend the concept of indexed Fibonacci words defined and studied in [49] to
indexed ϕ-Fibonacci words.

Definition 4.28. Let ϕ be an (anti)morphic involution on Σ∗, let u, v ∈ Σ+, and let
α ∈ {f, g, w, z}. The indexed ϕ-Fibonacci words are defined recursively as

α0(u, v) = u, α00(u, v) = v,

and for all n ≥ 2 we have that r1 = r2 = 0, ri ∈ {0, 1} for 3 ≤ i ≤ n, and:

αr1r2···rn0(u, v) =


αr1r2···rn(u, v) · αr1r2···rn−1(u, v) : α = f,

ϕ(αr1r2···rn(u, v)) · αr1r2···rn−1(u, v) : α = g,

ϕ(αr1r2···rn(u, v)) · ϕ(αr1r2···rn−1(u, v)) : α = w,

αr1r2···rn(u, v) · ϕ(αr1r2···rn−1(u, v)) : α = z,

αr1r2···rn1(u, v) =


αr1r2···rn−1(u, v) · αr1r2···rn(u, v) : α = f,

αr1r2···rn−1(u, v) · ϕ(αr1r2···rn(u, v)) : α = g,

ϕ(αr1r2···rn−1(u, v)) · ϕ(αr1r2···rn(u, v)) : α = w,

ϕ(αr1r2···rn−1(u, v)) · αr1r2···rn(u, v) : α = z.

Note that for a morphic involution µ, the results in Lemma 4.26 hold also for the
indexed µ-Fibonacci words g, while Proposition 4.27 also holds if the roles of f and g are
swapped. However, one can easily verify that Lemma 4.26 does not hold for the indexed µ-
Fibonacci words z or w, and Proposition 4.27 does not hold in the case where αn ∈ {zn, z′n}
for all n ≥ 1 and f is the indexed µ-Fibonacci word w, or in the case where αn = {wn, w

′
n}

for all n ≥ 1 and f is the indexed µ-Fibonacci word z.

However, the following results hold, which extends Theorem 4.21 to the case of indexed
Fibonacci words.

94

Proposition 4.29. Let µ be a morphic involution on Σ∗, let u, v ∈ Σ+, and let (αn, β) ∈
{(fn, g), (gn, f), (zn, w), (wn, z), (f ′

n, g
′), (g′n, f

′), (z′n, w
′), (w′

n, z
′)} for all n ≥ 1. Then the

following relations hold for all n ≥ 1 :

αn(u, v) =

{
β00rn−2

(µ(u), v) : n mod 2 = 0,

β00rn−2
(u, µ(v)) : n mod 2 = 1,

where r = 0 if αn ∈ {gn, fn, zn, wn}, and r = 1 if αn ∈ {g′n, f ′
n, z

′
n, w

′
n}.

Proof. It follows by strong induction on n.

We now generalize Lemma 4.24 to indexed ϕ-Fibonacci words as follows.

Lemma 4.30. Let ϕ = ϕ2 be an (anti)morphic involution on Σ∗, and let ϕ1 be an
(anti)morphic involution on Σ∗ such that ϕ1ϕ2 = ϕ2ϕ1. Let u, v be two words in Σ+, and let
α ∈ {f, g, w, z} be constructed using the (anti)morphic involution ϕ2. Then, for all n ≥ 1,
we have that ϕ1(α

r1r2r3···rn(u, v)) = αs1s2s3···sn(ϕ1(u), ϕ1(v)), where r1 = r2 = s1 = s2 = 0,
and for all 3 ≤ i ≤ n, we have:{

si = ri, if ϕ1 is a morphic involution,

si = 1− ri, if ϕ1 is an antimorphic involution.

Proof. It follows by induction on n.

Using Lemma 4.30, one can now show relations between various indexed θ-Fibonacci
words, similar to those of Proposition 4.25.

Proposition 4.31. Let θ be an antimorphic involution on Σ∗, let u, v ∈ Σ+, and let
(αn, β) ∈ {(fn, g), (gn, f), (zn, w), (wn, z), (f ′

n, g
′), (g′n, f

′), (z′n, w
′), (w′

n, z
′)} for all n ≥ 1.

The following relations hold for all n ≥ 3:

αn(u, v) =

{
β00{sr}i(θ(u), v) : i = n−2

2
, n ≥ 4, n mod 2 = 0,

β00r{sr}i(u, θ(v)) : i = n−3
2
, n ≥ 3, n mod 2 = 1,

where r = 0, s = 1 if αn ∈ {gn, fn, zn, wn}, and r = 1, s = 0 if αn ∈ {g′n, f ′
n, z

′
n, w

′
n}.

Proof. The statement follows from Lemma 4.30 by induction on n.

95

4.5 Borders and ϕ-borders of ϕ-Fibonacci words

It is well known that both the standard and reverse Fibonacci words are bordered for all
n ≥ 3. In this section, we investigate the borderedness and ϕ-borderedness of ϕ-Fibonacci
words. As seen in the next example, the borderedness of ϕ-Fibonacci words depends on
the two initial Fibonacci words, as well as on the involution under consideration.

Example 4.32. Let ϕ be an (anti)morphic involution on ∆∗, where ∆ = {A,C,G,T},
defined as ϕ(A) = T, ϕ(C) = G, and vice versa, and let g1 = w1 = z1 = AC and
g2 = w2 = z2 = T. Consider the ϕ-Fibonacci words wn, gn, zn, for n ≥ 3.

If ϕ = θ is an antimorphic involution:

• The first standard palindromic θ-Fibonacci words are

w3 = AGT, w4 = ACTA, w5 = TAGTACT, w6 = AGTACTATAGT,

and w7 = ACTATAGTACTAGTACTA. Thus, the word w6 is bordered as well as
θ-bordered, but the word w7 is not θ-bordered.

• The first standard alternating θ-Fibonacci words are

g3 = AAC, g4 = GTTT, and g5 = AAACAAC.

Note that the words gi, for 3 ≤ i ≤ 5, are neither bordered nor θ-bordered.

• The first standard hairpin θ-Fibonacci words are

z3 = TGT, z4 = TGTA, z5 = TGTAACA, and z6 = TGTAACATACA.

Note that z3 is bordered, but z4, z5, and z6 are not bordered. Also, z4, z5, and z6 are
θ-bordered.

If, on the other hand, ϕ = µ is a morphic involution:

• The first standard palindromic µ-Fibonacci words are

w3 = ATG, w4 = TACA, w5 = ATGTTAC, and w6 = TACAATGATGT.

Thus, w6 is both bordered and µ-bordered.

96

• The first standard alternating µ-Fibonacci words are

g3 = AAC, g4 = TTGT, g5 = AACAAAC, and g6 = TTGTTTGTTGT.

Note that the words g5 and g6 are bordered but not µ-bordered.

• The first standard hairpin µ-Fibonacci words are

z3 = TTG, z4 = TTGA, z5 = TTGAAAC, and z6 = TTGAAACAACT.

Note that z4, z5, and z6 are µ-bordered, but z4 and z5 are not bordered.

Example 4.32 suggests the following result.

Theorem 4.33. Let ϕ be an (anti)morphic involution on Σ∗. Then, for all n ≥ 6, we
have:

• If ϕ = µ, then the µ-Fibonacci words gn, g
′
n, wn, w

′
n, zn, and z′n are bordered.

• If ϕ = µ, then the µ-Fibonacci words wn and w′
n are µ-bordered.

• If ϕ = θ, then the θ-Fibonacci words wn and w′
n are bordered.

• The ϕ-Fibonacci words zn and z′n are ϕ-bordered.

Proof. The statement follows from Definition 4.9, as one can easily infer the following. For
a morphic involution µ, we have:

• For all n ≥ 4, gn = gn−2µ(gn−3)gn−2 and g′n = g′n−2µ(g′n−3)g
′
n−2.

• For all n ≥ 4, wn = wn−2wn−3µ(wn−2) and w′
n = µ(w′

n−2)w
′
n−3w

′
n−2.

• For all n ≥ 6, zn = zn−4µ(zn−5)µ(zn−4)µ(zn−3)µ(zn−3)zn−4, and similarly, for all
n ≥ 6, z′n = z′n−4µ(z′n−3)µ(z′n−3)µ(z′n−4)µ(z′n−5)z

′
n−4.

• For all n ≥ 6, wn = wn−4wn−5µ(wn−4)wn−3wn−3wn−4, and similarly, for all n ≥ 6,
w′

n = w′
n−4w

′
n−3w

′
n−3µ(w′

n−4)w
′
n−5w

′
n−4.

For an antimorphic involution θ, we have wn = wn−3wn−2wn−4wn−3 and similarly
w′

n = w′
n−3w

′
n−4w

′
n−2w

′
n−3 for n ≥ 5. For an (anti)morphic involution ϕ, we have zn =

zn−2ϕ(zn−3)ϕ(zn−2) and z′n = ϕ(z′n−2)ϕ(z′n−3)z
′
n−2 for n ≥ 4.

97

gn = ϕ(gn−1)gn−2 zn = zn−1ϕ(zn−2) wn = ϕ(wn−1)ϕ(wn−2)
MI AMI MI AMI MI AMI

bordered True False True False True True
ϕ-bordered False False True True True False

Table 4.4: The ϕ-borderedness of ϕ-Fibonacci words where ϕ is an involution extended to
either a morphism (MI) or an antimorphism (AMI).

The results are summarized in Table 4.4.

From Theorem 4.33, we see that zn is ϕ-bordered. In fact, for the case of an antimorphic
involution θ, the following relations hold for all n ≥ 6: the θ-borders of zn are longer than
zn−2 and zn = Anzrθ(An) when n is odd, while zn = Anθ(zr)θ(An) if n is even, where
An = zi1zi2 · · · zik−1

zik , with r = (n mod 3) + 3, i1 = n − 2, it = it−1 − 3, and ik = r + 1.
A similar decomposition holds for z′n. When θ is the Watson-Crick antimorphic involution
on DNA strings, the property of θ-borderedness results in the DNA strings binding to
themselves and forming hairpin structures (with fully double-stranded stems) [242], so we
call zn and z′n “hairpin ϕ-Fibonacci words.”

In cases where the borderedness or ϕ-borderedness does not hold in general, the follow-
ing examples suggest that placing additional constraints on the initial words may ensure
the borderedness or ϕ-borderedness of ϕ-Fibonacci words.

Example 4.34. Let ϕ be defined as in Example 4.32. We have the following:

• If z1 = C, z2 = AT, and ϕ = θ, then z3 = ATG, z4 = ATGAT, z5 = ATGATCAT,
and z6 = ATGATCATATCAT. Note that z4, z5, and z6 are bordered. The condition
is pref ′(z2) ∩ suff ′(θ(z2)) ̸= ∅.

• If g1 = A, g2 = CT, and ϕ = θ, then g3 = AGA, g4 = TCTCT, g5 = AGAGAAGA,
and g6 = TCTTCTCTTCTCT. Note that g3, g4, g5, and g6 are bordered. The
condition is pref ′(θ(g1)) ∩ suff ′(g2) ̸= ∅.

• If g1 = A, g2 = CA, and ϕ = θ, then g3 = TGA, g4 = TCACA, g5 = TGTGATGA,
and g6 = TCATCACATCACA. Note that g3, g4, g5, and g6 are θ-bordered. The
condition is suff ′(g1) ∩ suff ′(g2) ̸= ∅.

• If g1 = AT, g2 = TGA, and ϕ = µ, then g3 = ACTAT, g4 = TGATATGA, g5 =
ACTATACTACTAT, and g6 = TGATATGATGATATGATATGA. Note that g2, g3,
g4, g5, and g6 are µ-bordered. The condition is suff ′(g1) ∩ pref ′(g2) ̸= ∅.

98

• If w1 = CA, w2 = CTG, and ϕ = θ, then

w3 = CAGTG, w4 = CACTGCAG, w5 = CTGCAGTGCACTG,

and w6 = CAGTGCACTGCAGCTGCAGTG. Note that w2, w3, w4, w5, and w6 are
θ-bordered. Note that the language pref ′(w2)∩ suff ′(θ(w1)) is non-empty, and so are
pref ′(w1) ∩ pref ′(w2) and pref ′(θ(w1)) ∩ suff ′(w2).

We will now prove that the observations inferred from Example 4.34 hold in general
(Proposition 4.36). We use the following Lemma.

Lemma 4.35. Let u and v be two words in Σ+, let g1 = g′1 = w1 = w′
1 = z1 = z′1 = u, and

let g2 = g′2 = w2 = w′
2 = z2 = z′2 = v. If ϕ = θ is an antimorphic involution on Σ∗, then

the following relations hold for all n ≥ 3 and some tn, t
′
n ∈ Σ∗:

gn =

{
θ(u)tnv : n mod 2 = 0,

θ(v)tnu : n mod 2 = 1,
g′n =

{
vt′nθ(u) : n mod 2 = 0,

ut′nθ(v) : n mod 2 = 1,

wn =


θ(v)tnθ(u) : n mod 3 = 0,

utnθ(v) : n mod 3 = 1,

vtnv : n mod 3 = 2,

w′
n =


θ(u)t′nθ(v) : n mod 3 = 0,

θ(v)t′nu : n mod 3 = 1,

vt′nv : n mod 3 = 2,

zn = vtnθ(v), z′n = θ(v)t′nv : n ≥ 4.

If, on the other hand, ϕ = µ is a morphic involution on Σ∗, then the following relations
hold for all n ≥ 3 and some tn, t

′
n ∈ Σ∗:

gn =

{
vtnv : n mod 2 = 0,

µ(v)tnu : n mod 2 = 1,
g′n =

{
vt′nv : n mod 2 = 0,

ut′nµ(v) : n mod 2 = 1.

Proof. We only prove for the θ-Fibonacci word gn for n odd. Note that the first standard
alternating θ-Fibonacci words are g1 = u, g2 = v, g3 = θ(v)u, and g4 = θ(u)vv. Assume
true for all k ≤ n. Consider the word gn+1 for n + 1 an even number. Then by strong
induction, we have

gn+1 = θ(gn)gn−1 = θ(θ(v)tnu)θ(u)tn−1v = θ(u)θ(tn)vθ(u)tn−1v = θ(u)tn+1v,

hence the result. The other cases can be proved in a similar fashion.

99

It is clear from Theorem 4 in [49] that if f1 = u and f2 = v, then the Fibonacci words
fn are of the form vutnvu when n is odd and of the form vsnv when n is even, and hence
are bordered for all n ≥ 4. One can clearly see that if ϕ is an (anti)morphic involution such
that ϕ(pref ′(y)) ∩ suff ′(x) ̸= ∅ and ϕ(pref ′(y)) ∩ suff ′(y) ̸= ∅, then each fn is ϕ-bordered.

We now use Lemma 4.35 to provide conditions on the initial words, which are sufficient
to ensure that the θ-Fibonacci words gn and wn are θ-bordered, that the µ-Fibonacci words
gn are µ-bordered, and that the θ-Fibonacci words zn and gn are bordered for all n ≥ 4.

Proposition 4.36. Let ϕ = θ be an antimorphic involution on Σ∗, let u, v ∈ Σ+, and let
g1 = w1 = z1 = u and g2 = w2 = z2 = v. The following relations hold for all n ≥ 3:

• If pref ′(v) ∩ suff ′(θ(v)) ̸= ∅, then zn is bordered.

• If pref ′(θ(u)) ∩ suff ′(v) ̸= ∅, then gn is bordered.

• If suff ′(u) ∩ suff ′(v) ̸= ∅, then gn is θ-bordered.

• If pref ′(θ(u)) ∩ suff ′(v) ̸= ∅, pref ′(v) ∩ suff ′(θ(u)) ̸= ∅, pref ′(u) ∩ pref ′(v) ̸= ∅, then
wn is θ-bordered.

If, on the other hand, ϕ = µ is a morphic involution on Σ∗ and suff ′(u)∩ pref ′(v) ̸= ∅ and
v is µ-bordered, then gn is µ-bordered for n ≥ 4.

Proof. It follows directly from Lemma 4.35 and the definition of ϕ-borders.

Note that the initial words α1 and α2 given in Example 4.34 satisfy the conditions in
Proposition 4.36. Also, Proposition 4.36 implies the following, for the case of the atom
θ-Fibonacci words.

Corollary 4.37. Let ϕ = θ be an antimorphic involution on Σ∗, let a, b be two letters in
Σ, and let g1 = z1 = w1 = a and g2 = z2 = w2 = b. Then for all n ≥ 4, we have:

• If b = θ(b), then zn is θ-bordered.

• If θ(a) = b, then gn is bordered.

• If a = b, then gn is θ-bordered, and in addition if θ(a) = b, then wn is θ-bordered.

Lastly, we present a property of wn for the case of an antimorphic involution, which
justifies their being called “palindromic Fibonacci words.”

100

Definition 4.38. Let θ be an antimorphic involution on Σ∗, and define

Pθ = {w ∈ Σ+ | w = θ(w)}, and P2θ = {wθ(w) | w ∈ Σ+}.
We call a string x a θ-palstar if it belongs to P ∗

2θ. A non-empty θ-palstar is said to be prime
θ-palstar if it cannot be written as a concatenation of two or more θ-palstars.

Note that in the particular case when θ is the mirror image, the definition above becomes
the well-known definitions of palstar and prime palstar that were introduced in [160]. Note
that each string in P2θ is a θ-palindrome of even length, and conversely, P2θ = {x ∈ Pθ |
2k = |x| for some k}. By repeated decompositions, one can show that every θ-palstar
is expressible as a concatenation of prime θ-palstars. One can also prove that such a
decomposition of a θ-palstar into prime θ-palstars is unique, which is a consequence of the
following Lemma.

Lemma 4.39. For an antimorphic involution θ on Σ∗, a prime θ-palstar cannot begin with
another prime θ-palstar.

Proof. It can be proved similarly to the known fact that a prime palstar cannot begin with
another prime palstar [160].

The following result shows that θ-Fibonacci words wn and w′
n can be expressed in two

different ways as a θ-palstar concatenated with a θ-Fibonacci word wi (respectively w′
i).

This justifies the ϕ-Fibonacci words wn being called “palindromic-Fibonacci words.”

Proposition 4.40. Given an antimorphic involution ϕ = θ on Σ∗, for all n ≥ 6, the word
wn can be decomposed as wn = Anwr = wrBn, where An, Bn are the θ-palstars

An = pi1qj1pi2qj2 · · · pik−1
qjk−1

pikqjk , Bn = ps1ps2 · · · psl−1
psl ,

such that pi = wiθ(wi), qi = θ(wi)wi, jt = it−1, it = it−1−3, i1 = n−3, ik = r, s1 = r+1,
sl = n− 2, st = st−1 + 3, and r = (n mod 3) + 3.

Proof. We prove the result by induction on n. For the base case, let n = 6, which gives us
w6 = θ(w5)θ(w4) = w3w4w2w3 = w3θ(w3)θ(w2)w2w3. Assume that,

wk = pk−3qk−4pk−6qk−7 · · · pr+3qr+2prqr−1wr,

for r = (k mod 3) + 3 and for all k ≤ n. Consider wk+1. Then, by definition, we have

wk+1 = θ(wk)θ(wk−1) = wk−2wk−1wk−3wk−2 = wk−2θ(wk−2)θ(wk−3)wk−3wk−2.

Hence, we have by induction that wk+1 = pk−2qk−3pk−5qk−6 · · · prqr−1wr. The proof for the
other equality is similar.

101

For the reverse palindromic θ-Fibonacci words, the following result, similar to Propo-
sition 4.40, holds.

Proposition 4.41. Let ϕ = θ be an antimorphic involution on Σ∗. Then, for all n ≥ 6,
the word w′

n can be decomposed as w′
n = Cnw

′
r = w′

rDn, where Cn, Dn are the θ-palstars

Cn = q′i1q
′
i2
· · · q′ik−1

q′ik , Dn = p′j1q
′
s1
p′j2q

′
s2
· · · p′jk−1

q′sk−1
p′jkq

′
sk
,

such that p′i = w′
iθ(w′

i), q
′
i = θ(w′

i)w
′
i, i1 = n− 2, it = it−1 − 3, ik = r + 1, and j1 = r − 1,

jk = n− 3, st = jt + 1, jt = jt−1 + 3, and r = (n mod 3) + 3.

Proof. Similar to that of Proposition 4.40, by induction on n.

4.6 Primitivity of atom ϕ-Fibonacci words with dif-

ferent initial letters

In this section, we discuss the primitivity of atom ϕ-Fibonacci words αϕ
n(a, b) with different

initial letters a, b ∈ Σ4, for all n ≥ 1, where ϕ is an (anti)morphic involution on Σ∗
4 and αn ∈

{gn, wn, zn} for all n ≥ 1. We first show that if we have an alphabet Σ4 = {x1, x2, x3, x4}
and a sequence (x1, x2, x3, x4), if we choose x1 and x2 as the two initial letters of the ϕ-
Fibonacci sequence {αϕ

n(x1, x2)}n≥1, it is enough to discuss the primitivity properties of
atom ϕ-Fibonacci words for the mappings ϕ1, ϕ2, ϕ4, ϕ5, and ϕ10.

Note that if ϕ = µ1, the identity function on Σ∗
4, and αn ∈ {gn, wn, zn} for all n ≥ 1, the

atom ϕ-Fibonacci words αµ1
n (x1, x2) coincide with the classical Fibonacci words fn(x1, x2),

which are primitive when x1, x2 ∈ Σ4 for all n ≥ 1 as shown in [60].

Lastly, note that the proofs for the results of this section hold for every choice of
(x1, x2, x3, x4) and with x1 and x2 as the initial letters of the ϕ-Fibonacci sequence. This
justifies stating/proving the subsequent results for only one of the cases (usually the se-
quence [A,C,G,T] with A and C as the two initial letters).

In the sequel, we let [x]a→b denote the word obtained from x by replacing all occurrences
of a in x by b and let [x]a⇄b denote the word obtained from x by replacing all occurrences of
a by b and all occurrences of b by a. For example, if x = abbab then [x]a→b = [abbab]a→b =
bbbbb and [x]a⇄b = [abbab]a⇄b = baaba. We first observe the following.

Lemma 4.42. Let a, b ∈ Σ and x ∈ Σ∗. We have that:

102

• [x]a⇄b = [x]b⇄a.

• If b /∈ Alph(x), we have that [x]a→b = [x]a⇄b.

• If b /∈ Alph(x), we have [[x]a→b]b→a = x.

Lemma 4.43. Let a, b ∈ Σ, x ∈ Σ∗, and i ≥ 0. We have that [xi]a→b = ([x]a→b)
i and

[xi]a⇄b = ([x]a⇄b)
i.

Lemma 4.44. Let a, b ∈ Σ and x ∈ Σ∗. We have that:

1. If b /∈ Alph(x), then x is primitive if and only if [x]a→b is primitive.

2. If a, b ∈ Alph(x), then x is primitive if and only if [x]a⇄b is primitive.

Proof. For statement (1), if a /∈ Alph(x), then x = [x]a→b, so x is primitive if and only if
[x]a→b is primitive. Let a ∈ Alph(x). Assume x is not primitive but [x]a→b is primitive.
Since x is not primitive, we have x = qi, where q ∈ Q and i ≥ 2. By Lemma 4.43, we
have [x]a→b = [qi]a→b = ([q]a→b)

i, which is a contradiction. The case where x is primitive
but [x]a→b is not primitive can be proved similarly. Therefore, x is primitive if and only if
[x]a→b is primitive. The statement (2) can be proved similarly using Lemma 4.43.

Theorem 4.45. Let ϕi ∈ {µi, θi}, 1 ≤ i ≤ 10, be an (anti)morphic involution on Σ∗
4 and

αn ∈ {gn, wn, zn} for n ≥ 1. For n ≥ 1, the following statements hold for ϕi-Fibonacci
words αϕi

n (x1, x2) :

1. [αϕ4
n (x1, x2)]x4→x3 is primitive if and only if αϕ4

n (x1, x2) is primitive.

2. [αϕ5
n (x1, x2)]x3→x4 is primitive if and only if αϕ5

n (x1, x2) is primitive.

3. [αϕ10
n (x1, x2)]x4⇄x3 is primitive if and only if αϕ10

n (x1, x2) is primitive.

Proof. 1. Let αn ∈ {gn, wn, zn} for all n ≥ 1. One can easily prove by induction that,
for all n ≥ 1, we have x3 /∈ Alph(αϕ4

n (x1, x2)). Hence by Lemma 4.44, the statement
holds.

2. Let αn ∈ {gn, wn, zn} for all n ≥ 1. For all n ≥ 1, one can prove by induction that
x4 /∈ Alph(αϕ5

n (x1, x2)). Hence by Lemma 4.44, the statement holds.

103

3. We have two cases. The first one is when αn ∈ {wn, zn} for all n ≥ 1. In this case,
if 1 ≤ n ≤ 4, the statement can be easily verified. If n ≥ 5, then one can easily
prove by induction that x3, x4 ∈ Alph(αϕ10

n (x1, x2)). Thus, the statement holds by
Lemma 4.44.

The second case is when αn = gn for all n ≥ 1. In this case, one can first prove
by induction that, for all n ≥ 1, we have x3 /∈ Alph(gϕ10

n (x1, x2)) if n is even and
x4 /∈ Alph(gϕ10

n (x1, x2)) if n is odd. Using this fact, if n is even then by Lemma 4.42,
we have [gϕ10

n (x1, x2)]x4⇄x3 = [gϕ10
n (x1, x2)]x3⇄x4 = [gϕ10

n (x1, x2)]x3→x4 . Also if n is
even, then by Lemma 4.44, we have that [gϕ10

n (x1, x2)]x4⇄x3 = [gϕ10
n (x1, x2)]x3→x4 is

primitive if and only if gϕ10
n (x1, x2) is primitive. The case where n is odd can be

proved similarly.

We now show the equivalence of various ϕ-Fibonacci words αϕ
n(x1, x2) for certain values

of ϕ ∈ {ϕi | 1 ≤ i ≤ 10}. We use the following lemma, which can be proved easily by
induction on n.

Lemma 4.46. Let ϕi ∈ {µi, θi}, 1 ≤ i ≤ 10, be an (anti)morphic involution on Σ∗
4 and

αn ∈ {gn, wn, zn} for n ≥ 1. The following equalities hold for ϕi-Fibonacci words α
ϕi
n (x1, x2)

and for all n ≥ 1:

1. ϕ1(α
ϕ1
n (x1, x2)) = ϕ7(α

ϕ7
n (x1, x2)) if and only if αϕ1

n (x1, x2) = αϕ7
n (x1, x2).

2. ϕ2(α
ϕ2
n (x1, x2)) = ϕ8(α

ϕ8
n (x1, x2)) if and only if αϕ2

n (x1, x2) = αϕ8
n (x1, x2).

3. [ϕ4(α
ϕ4
n (x1, x2))]x4→x3 = ϕ3(α

ϕ3
n (x1, x2)) if and only if [αϕ4

n (x1, x2)]x4→x3 = αϕ3
n (x1, x2).

4. [ϕ5(α
ϕ5
n (x1, x2))]x3→x4 = ϕ6(α

ϕ6
n (x1, x2)) if and only if [αϕ5

n (x1, x2)]x3→x4 = αϕ6
n (x1, x2).

5. [ϕ10(α
ϕ10
n (x1, x2))]x4⇄x3 = ϕ9(α

ϕ9
n (x1, x2)) if and only if

[αϕ10
n (x1, x2)]x4⇄x3 = αϕ9

n (x1, x2).

Proof. We only prove statement (1) by induction, and it is sufficient to prove it for one
of αn ∈ {gn, wn, zn} for all n ≥ 1 since the other cases are similar. Let ϕ1 be a morphic
involution, and, without loss of generality, let αn = zn for all n ≥ 1. By Definition 4.9
and Table 4.1, the result holds for n = 1 and n = 2. For the inductive step, assume that
ϕ1(z

ϕ1

i (x1, x2)) = ϕ7(z
ϕ7

i (x1, x2)) if and only if zϕ1

i (x1, x2) = zϕ7

i (x1, x2) for all 3 ≤ i < k.
We now have to prove that the equivalence holds for k.

104

For the direct implication, assume ϕ1(z
ϕ1

k (x1, x2)) = ϕ7(z
ϕ7

k (x1, x2)). Therefore, we

have ϕ1(z
ϕ1

k (x1, x2)) = ϕ1(z
ϕ1

k−1(x1, x2)ϕ1(z
ϕ1

k−2(x1, x2))) = ϕ1(z
ϕ1

k−1(x1, x2))z
ϕ1

k−2(x1, x2), and

similarly we have ϕ7(z
ϕ7

k (x1, x2)) = ϕ7(z
ϕ7

k−1(x1, x2))z
ϕ7

k−2(x1, x2). By ϕ1(z
ϕ1

k (x1, x2)) =

ϕ7(z
ϕ7

k (x1, x2)), and the fact that |zϕ7

k−2(x1, x2)| = |zϕ1

k−2(x1, x2)|, we have zϕ7

k−2(x1, x2) =

zϕ1

k−2(x1, x2) and ϕ7(z
ϕ7

k−1(x1, x2)) = ϕ1(z
ϕ1

k−1(x1, x2)). Therefore, we have zϕ1

k (x1, x2) =

zϕ1

k−1(x1, x2)ϕ1(z
ϕ1

k−2(x1, x2)) = zϕ7

k−1(x1, x2)ϕ7(z
ϕ7

k−2(x1, x2)) = zϕ7

k (x1, x2) by the inductive
hypothesis.

For the converse implication, assume zϕ1

k (x1, x2) = zϕ7

k (x1, x2). Therefore, we have

zϕ1

k (x1, x2) = zϕ1

k−1(x1, x2)ϕ1(z
ϕ1

k−2(x1, x2)), and similarly we have

zϕ7

k (x1, x2) = zϕ7

k−1(x1, x2)ϕ7(z
ϕ7

k−2(x1, x2)).

By zϕ1

k (x1, x2) = zϕ7

k (x1, x2), and the fact that |zϕ7

k−1(x1, x2)| = |zϕ1

k−1(x1, x2)|, we have

zϕ7

k−1(x1, x2) = zϕ1

k−1(x1, x2) and ϕ7(z
ϕ7

k−2(x1, x2)) = ϕ1(z
ϕ1

k−2(x1, x2)). Therefore, we have

ϕ1(z
ϕ1

k (x1, x2)) = ϕ1(z
ϕ1

k−1(x1, x2)ϕ1(z
ϕ1

k−2(x1, x2))) = ϕ1(z
ϕ1

k−1(x1, x2))z
ϕ1

k−2(x1, x2)

= ϕ7(z
ϕ7

k−1(x1, x2))z
ϕ7

k−2(x1, x2) = ϕ7(z
ϕ7

k−1(x1, x2)ϕ7(z
ϕ1

k−2(x1, x2))) = ϕ7(z
ϕ7

k (x1, x2))

by the inductive hypothesis.

The case when ϕ1 is an antimorphic involution is similar.

We now prove the following.

Lemma 4.47. Let ϕi ∈ {µi, θi}, 1 ≤ i ≤ 10, be an (anti)morphic involution on Σ∗
4 and

αn ∈ {gn, wn, zn} for n ≥ 1. For all n ≥ 1, the following equalities hold for ϕi-Fibonacci
words αϕi

n (x1, x2) :

1. αϕ1
n (x1, x2) = αϕ7

n (x1, x2).

2. αϕ2
n (x1, x2) = αϕ8

n (x1, x2).

3. [αϕ4
n (x1, x2)]x4→x3 = αϕ3

n (x1, x2).

4. [αϕ5
n (x1, x2)]x3→x4 = αϕ6

n (x1, x2).

5. [αϕ10
n (x1, x2)]x4⇄x3 = αϕ9

n (x1, x2).

105

Proof. We only prove statement (1) by induction, as the other cases are similar. By
Definition 4.9, the result holds for n = 1 and n = 2. We assume αϕ1

i (x1, x2) = αϕ7

i (x1, x2)
holds for 3 ≤ i < k. It is enough to prove for one of αn ∈ {gn, wn, zn} for all n ≥ 1.
Without loss of generality, let αn = zn for all n ≥ 1. Then, αϕ1

k (x1, x2) = zϕ1

k (x1, x2) =

zϕ1

k−1(x1, x2)ϕ1(z
ϕ1

k−2(x1, x2)). By the inductive hypothesis and by Lemma 4.46 we have

zϕ1

k (x1, x2) = zϕ7

k−1(x1, x2)ϕ7(z
ϕ7

k−2(x1, x2)) = zϕ7

k (x1, x2).

Hence, the result.

From Corollary 4.13, Corollary 4.15, Corollary 4.17, and the fact that words of length
1 are palindromes, we have the following observation.

Lemma 4.48. Let ϕ be an (anti)morphic involution on Σ∗, αn ∈ {gn, wn, zn} for all n ≥ 1,
and a, b ∈ Σ. For n ≥ 1, the atom standard ϕ-Fibonacci word αϕ

n(a, b) is primitive if and
only if the atom reverse ϕ-Fibonacci word [αϕ

n(a, b)]′ is primitive.

As a consequence of Theorem 4.45, Lemma 4.47, and Lemma 4.48, we only need to study
the primitivity of atom ϕ-Fibonacci words αϕ

n(x1, x2) for all n ≥ 1, where αn ∈ {gn, wn, zn}
for all n ≥ 1 and ϕ ∈ {θ1, θ2, θ4, θ5, θ10, µ2, µ4, µ5, µ10}.

Note that the results obtained above hold for every choice of (x1, x2, x3, x4) and with
x1 and x2 as the initial letters of the ϕ-Fibonacci sequence. Therefore, in the remainder
of this section, we will only prove primitivity results about one of the cases, namely the
sequence (A,C,G,T) over the DNA alphabet ∆, with A and C as the two initial letters.

4.6.1 Atom alternating ϕ-Fibonacci words

We first discuss the primitivity of atom alternating ϕ-Fibonacci words gn for n ≥ 1. In
Table 4.5, we give the first few values of the sequences {gϕn(A,C)}n≥1 for (anti)morphic
involutions ϕ ∈ {µ1, µ2, µ4, µ5, µ10, θ1, θ2, θ4, θ5, θ10}.

Using Lemma 4.10, we prove the following theorem. Note that the cyclic shift by
one position from the front of a word x ∈ Σ∗ to the end of it can be represented by a
composition of (left) derivative, concatenation, and finite union, that is, by

⋃
a∈Σ(∂ax)a.

Theorem 4.49. Let ϕ = θ1. For all n ≥ 1, the atom ϕ-Fibonacci word gθ1n (A,C) is a
conjugate of f ′

n(A,C). More precisely,

gθ1n =

{
(∂Cf

′
n)C : n mod 2 = 0,

(∂Af
′
n)A : n mod 2 = 1.

106

ϕ gϕ3 (A,C) gϕ4 (A,C) gϕ5 (A,C) gϕ6 (A,C) gϕ7 (A,C)
µ1 CA CAC CACCA CACCACAC CACCACACCACCA
µ2 AA CCC AAAAA CCCCCCCC AAAAAAAAAAAAA
µ4 CA CTC CACCA CTCCTCTC CACCACACCACCA
µ5 GA CAC GAGGA CACCACAC GAGGAGAGGAGGA
µ10 GA CTC GAGGA CTCCTCTC GAGGAGAGGAGGA
θ1 CA ACC CCACA ACACCACC CCACCACACCACA
θ2 AA CCC AAAAA CCCCCCCC AAAAAAAAAAAAA
θ4 CA TCC CCACA TCTCCTCC CCACCACACCACA
θ5 GA ACC GGAGA ACACCACC GGAGGAGAGGAGA
θ10 GA TCC GGAGA TCTCCTCC GGAGGAGAGGAGA

Table 4.5: List of words gϕn(A,C), where 3 ≤ n ≤ 7 and ϕ ∈ {µ1, µ2, µ4, µ5, µ10,
θ1, θ2, θ4, θ5, θ10}.

Proof. For 1 ≤ n ≤ 7, this can be easily checked from Table 4.5. Assume the statement
holds for gθ1i , where 7 ≤ i < k. We now prove this for gk. Without loss of generality, let k
be even. Then, by definition and Lemma 4.10, we have

gθ1k = θ1(g
θ1
k−1)g

θ1
k−2 = (gθ1k−1)

rgθ1k−2 = ((∂Af
′
k−1)A)r · ((∂Cf ′

k−2)C)

= (((∂Af
′
k−3f

′
k−2))A)r · ((∂Cf ′

k−2)C) = A(Csk−3CAsk−2)
rAsk−2C

= Ask−2ACsk−3CAsk−2C = Ask−2(f
′
k−3f

′
k−2)C = Ask−2f

′
k−1C

= (∂CCAsk−2f
′
k−1)C = (∂Cf

′
k−2f

′
k−1)C = (∂Cf

′
k)C.

By Theorem 4.5 and Lemma 4.6, we have the following corollary.

Corollary 4.50. Let ϕ = θ1. For all n ≥ 1, the atom ϕ-Fibonacci word gθ1n (A,C) is
primitive.

We now use the following lemma which is a generalized version of Lemma 4.20 when
ϕ is a morphic involution. We show that the result also holds when ϕ is an antimorphic
involution.

Lemma 4.51. Let ϕ be an (anti)-morphic involution on Σ∗, let µa be a morphic involution
on Σ∗ such that µaϕ = ϕµa, and let u, v ∈ Σ+. If αn ∈ {fn, gn, wn, zn} for all n ≥
1, then for all n ≥ 1, we have µa(α

ϕ
n(u, v)) = αϕ

n(µa(u), µa(v)), and µa([α
ϕ
n(u, v)]′) =

[αϕ
n(µa(u), µa(v))]′.

107

Proof. We consider the standard ϕ-Fibonacci words gn. The proof is by induction on n.
By definition of gn (Definition 4.9), we have µa(g1(u, v)) = µa(u) = g1(µa(u), µa(v)), and
µa(g2(u, v)) = µa(v) = g2(µa(u), µa(v)), so the base case holds. Assume that µa(gi(u, v)) =
gi(µa(u), µa(v)) for all 1 ≤ i ≤ k. Using the definition of gn (Definition 4.9), the fact that
µa is a morphism, and the induction hypothesis, we have

µa(gk+1(u, v)) = µa(ϕ(gk(u, v)) · gk−1(u, v))

= ϕ(µa(gk(u, v))) · µa(gk−1(u, v))

= ϕ(gk(µa(u), µa(v))) · gk−1(µa(u), µa(v))

= gk+1(µa(u), µa(v)).

The proofs for other ϕ-Fibonacci words are similar.

The following result can be proved by induction and Lemma 4.51. We first observe
that θi = θ1µi = µiθ1 for 1 ≤ i ≤ 10.

Lemma 4.52. For i ∈ {4, 5, 10} and for all n ≥ 1, the following relations between the atom
alternating ϕ-Fibonacci words gθ1n and the atom alternating ϕ-Fibonacci words gθin (A,C)
hold.

1. If i = 10, for n ≥ 1, we have that

gθ10n (A,C) =

{
gθ1n (T,C) : n mod 2 = 0,

gθ1n (A,G) : n mod 2 = 1.

2. If i = 5, for n ≥ 1, we have that

gθ5n (A,C) =

{
gθ1n (A,C) : n mod 2 = 0

gθ10n (A,C) : n mod 2 = 1
=

{
gθ1n (A,C) : n mod 2 = 0,

gθ1n (A,G) : n mod 2 = 1.

3. If i = 4, for n ≥ 1, we have that

gθ4n (A,C) =

{
gθ10n (A,C) : n mod 2 = 0

gθ1n (A,C) : n mod 2 = 1
=

{
gθ1n (T,C) : n mod 2 = 0,

gθ1n (A,C) : n mod 2 = 1.

Proof. We only prove statement (1) by induction on n, as the other cases are similar.
By definition of gn (Definition 4.9), the result holds for n = 1 and n = 2. Assume the

108

statement to be true for gθ10i (A,C), where 3 ≤ i < k. If k is even, then k mod 2 = 0 and
by the inductive hypothesis,

gθ10k (A,C) = θ10(g
θ10
k−1(A,C))gθ10k−2(A,C) = θ10(g

θ1
k−1(A,G))gθ1k−2(T,C)

= θ1(µ10(g
θ1
k−1(A,G)))gθ1k−2(T,C).

Then by Lemma 4.51, we have

gθ10k (A,C) = θ1(g
θ1
k−1(µ10(A), µ10(G)))gθ1k−2(T,C) = θ1(g

θ1
k−1(T,C))gθ1k−2(T,C) = gθ1k (T,C).

The case when k is odd is similar.

Hence, we conclude the following.

Theorem 4.53. For all n ≥ 1 and ϕ ∈ {θ4, θ5, θ10}, the atom ϕ-Fibonacci word gϕn(A,C)
is primitive.

Proof. It is clear from Corollary 4.50 that the atom ϕ-Fibonacci words gθ1n (T,C), gθ1n (A,G),
and gθ1n (A,C) are primitive for n ≥ 1. Hence, by Lemma 4.52, we conclude that gϕn(A,C)
are primitive for all n ≥ 1 and ϕ ∈ {θ4, θ5, θ10}.

We now show (Theorem 4.54) that for all µ = µi and i ∈ {4, 5, 10}, the atom µ-
Fibonacci words gn are primitive for all n ≥ 1.

Theorem 4.54. Let ϕ ∈ {µ4, µ5, µ10}. For all n ≥ 1, the atom ϕ-Fibonacci word gϕn(A,C)
is primitive.

Proof. By Theorem 4.21, we have gϕn(A,C) = fn(A, ϕ(C)) if n is odd and gϕn(A,C) =
fn(ϕ(A),C) if n is even. Note that ϕ(A) ̸= C and ϕ(C) ̸= A for ϕ ∈ {µ4, µ5, µ10}. Then,
by Theorem 4.5, the word gϕn(A,C) is primitive for ϕ ∈ {µ4, µ5, µ10} and n ≥ 1.

We have the following theorem.

Theorem 4.55. Let ϕ ∈ {µ2, θ2}. For all n ≥ 3, the atom ϕ-Fibonacci word gϕn(A,C) is
not primitive.

Proof. Note that for ϕ ∈ {µ2, θ2}, ϕ maps A to C and vice versa, so, by Proposition 4.19,
gϕn = AFn if n is odd and gϕn = CFn if n is even. Thus, gϕn is not primitive for ϕ ∈ {µ2, θ2}
for n ≥ 3.

109

4.6.2 Atom palindromic ϕ-Fibonacci words

In this subsection, we discuss the primitivity of atom palindromic ϕ-Fibonacci words. In
Table 4.6, we give the first few values of the sequences {wϕ

n(A,C)}n≥1 for (anti)morphic
involutions ϕ ∈ {µ1, µ2, µ4, µ5, µ10, θ1, θ2, θ4, θ5, θ10}.

ϕ wϕ
3 (A,C) wϕ

4 (A,C) wϕ
5 (A,C) wϕ

6 (A,C) wϕ
7 (A,C)

µ1 AC CAC CACCA CACCACAC CACCACACCACCA
µ2 AC CAA ACCCA CAAACACC ACCCACAACAAAC
µ4 CT CAC CTCCA CACCTCTC CTCCACACCACCT
µ5 GA CAG GACCA CAGGAGAC GACCACAGCAGGA
µ10 GT CAG GTCCA CAGGTGTC GTCCACAGCAGGT
θ1 CA ACC CCAAC CAACCCCA ACCCCAACCAACC
θ2 AC ACA CACAC ACACACAC ACACACACACACA
θ4 CT ACC CCTAC CTACCCCT ACCCCTACCTACC
θ5 GA ACG CGAAC GAACGCGA ACGCGAACGAACG
θ10 GT ACG CGTAC GTACGCGT ACGCGTACGTACG

Table 4.6: List of words wϕ
n(A,C), where 3 ≤ n ≤ 7 and ϕ ∈ {µ1, µ2, µ4, µ5, µ10,

θ1, θ2, θ4, θ5, θ10}.

Using the definition of ϕ and wϕ
n and induction, we calculate the number of occur-

rences of letters in the words wϕ
n(A,C) for n ≥ 3 and an (anti)morphic involution ϕ ∈

{ϕ1, ϕ4, ϕ5, ϕ10}. These values are summarized in Table 4.7.

We now discuss the primitivity of wµ2
n (A,C) for all n ≥ 1, and we use the following

lemma.

Lemma 4.56. Let Σ be an alphabet and a, b ∈ Σ be letters. The following hold.

1. For all n ≥ 1, Fn mod 2 = 0 if and only if n mod 3 = 0.

2. For ϕ ∈ {µ2, µ8} and for all n ≥ 2, wϕ
3n(a, b) ̸= xϕ(x) where x ∈ Σ+.

Proof. Statement (1) can be proved easily by induction and using properties of modulo
operation. We now prove statement (2) for the case ϕ = µ2 (the case when ϕ = µ8 is
similar). One can easily verify from Table 4.6 that the statement holds for n = 2. Assume
now that w3i ̸= xµ2(x), with x ∈ Σ+, for all 3 ≤ i < k. Then, by definition of wn

(Definition 4.9) and by the inductive hypothesis, we have w3k = µ2(w3k−1)µ2(w3k−2) =
w3k−2w3k−3µ2(w3k−2) ̸= w3k−2xµ2(x)µ2(w3k−2). Hence, the result holds.

110

i = 1 i = 2 i = 5
n mod 3 ≥ 0 0 1 2 0 1 2
|wϕi

n (A,C)|A Fn−2 Fn

2

Fn+1
2

Fn−1
2

Fn−2

|wϕi
n (A,C)|C Fn−1

Fn−1
2

Fn+1
2

Fn−1−1
2 Fn−1

2

Fn−1+1
2

|wϕi
n (A,C)|G − − Fn−1+1

2
Fn−1−1

2

i = 4 i = 10
n mod 3 0 1 2 0 1 2

|wϕi
n (A,C)|A Fn−2−1

2
Fn−2+1

2
Fn−2

2
Fn−2−1

2
Fn−2+1

2
Fn−2

2

|wϕi
n (A,C)|C Fn−1

Fn−1−1
2 Fn−1

2

Fn−1+1
2

|wϕi
n (A,C)|G − Fn−1+1

2
Fn−1−1

2

|wϕi
n (A,C)|T Fn−2+1

2
Fn−2−1

2
Fn−2

2
Fn−2+1

2
Fn−2−1

2
Fn−2

2

Table 4.7: The numbers of occurrences of letters in the atom palindromic ϕi-Fibonacci
words wϕi

n (A,C) for ϕi ∈ {θi, µi}, i ∈ {1, 2, 4, 5, 10} and n ≥ 3.

Proposition 4.57. Let ϕ = µ2. For all n ≥ 1 such that n mod 3 = 0, the atom palindromic
ϕ-Fibonacci word wµ2

n (A,C) is primitive.

Proof. By Table 4.6, wn is primitive for 1 ≤ n ≤ 7. Suppose wn is not primitive for n > 7
and n mod 3 = 0, then we have wn = pj, where j ≥ 2 and p ∈ Q. By definition of wn

(Definition 4.9), the word wn can be decomposed as

wn = µ2(wn−1)µ2(wn−2) = wn−2wn−3wn−3wn−4 = wn−4wn−5µ2(wn−4)wn−3wn−3wn−4.

Let y = wn−4wn−5µ2(wn−4)wn−3wn−3 such that wn = yx and x = wn−4. Note that (n −
4) mod 3 = 2 and by Table 4.7, we have |wn|A = |wn|C and |x|A+1 = |x|C, so |y|A = |y|C+1.
Hence, by Lemma 4.4 and Lemma 4.8, both y and x are primitive. Since x = wn−4, we have
|x| = Fn−4 ≥ 7Fn−4−Fn−8

7
− 1 = Fn

7
− 1. For j ≥ 7, we get |x| ≥ Fn

j
− 1 ≥ Fn

j
− gcd(|p|, |y|) =

|p| − gcd(|p|, |y|), as gcd(|p|, |y|) ≥ 1. Then, by Proposition 4.7, we have p = y, which is
impossible. Hence, wn ̸= pj for j ≥ 7 and p ∈ Q.

We now consider the cases when 2 ≤ j ≤ 6. We split it into three cases when j is even,
j = 3, and j = 5.

• If j is even, then wn can be written as wn = pp, where |p| = Fn

2
> 4. By Lemma 4.56,

|wn−3| is even, so there exist x, y ∈ ∆+ such that |x| = |y| and wn−3 = xy. Then, by
definition wn = wn−2wn−3µ2(wn−2), we have p = wn−2x = yµ2(wn−2) for wn−3 = xy.
Thus, p = wn−2x = µ2(wn−3)µ2(wn−4)x = µ2(x)µ2(y)µ2(wn−4)x = yµ2(wn−2) implies
y = µ2(x) and wn−3 = xµ2(x), which contradicts Lemma 4.56, so j cannot be even.

111

• If j = 3, then by induction, we have Fn mod 3 = 0 if and only if n mod 4 = 0.
Therefore, if n mod 4 ̸= 0, then wn cannot be written as wn = q3, where q ∈ Q, so
we only need to consider the case where n mod 12 = 0. Note that the word wn can
be written as

wn = µ2(wn−3)µ2(wn−4)wn−3wn−3wn−4

= wn−4wn−5µ2(wn−4)µ2(wn−4)µ2(wn−5)µ2(wn−4)µ2(wn−5)wn−4 = q3

and |Fn−4| is divisible by 3. Then, there exist x, y, r ∈ ∆+ such that |x| = |y| = |r|
and wn−4 = xyr. Since wn = q3, we have

q = xyrwn−5µ2(xy) = µ2(r)µ2(xyr)µ2(wn−5)µ2(x) = µ2(yr)µ2(wn−5)xyr.

Thus, we have x = µ2(y) = µ2(r) = y, which is a contradiction because µ2 is not the
identity mapping. Hence, j ̸= 3.

• If j = 5, by induction, we have Fn mod 5 = 0 if and only if n mod 5 = 0. Therefore,
if n mod 5 ̸= 0, wn cannot be written as wn = q5, where q ∈ Q, so we only need
to consider the case where n mod 15 = 0. Note that the word wn can be written
as wn = wn−4wn−5µ2(wn−4)µ2(wn−4)µ2(wn−5)µ2(wn−4)µ2(wn−5)wn−4 = q5 and |Fn−5|
is divisible by 5. Then, there exist x, y, r, s, t ∈ ∆+ such that |x| = |y| = |r| =
|s| = |t| and wn−5 = xyrst. Since wn = q5, we have q = wn−4xyr = stµ2(wn−4)s

′ =
t′µ2(xyrs) = µ2(t)µ2(wn−4)µ2(xy) = µ2(rst)wn−4, where µ2(wn−4) = s′t′ for some
s′, t′ ∈ ∆+. Then, we have r = µ2(r), which is a contradiction because µ2 is not the
identity mapping. Hence, j ̸= 5.

Theorem 4.58. Let ϕ ∈ {θ1, θ2, θ4, θ5, θ10, µ2, µ4, µ5, µ10}. The primitivity properties of
the atom palindromic ϕ-Fibonacci words wϕ

n(A,C) for n ≥ 3, are as follows:

1. For ϕ = θ2, the atom ϕ-Fibonacci word wθ2
n (A,C) is primitive if and only if n mod 3 ̸=

0.

2. If ϕ ∈ {θ1, θ4, θ5, θ10, µ2, µ4, µ5, µ10}, the atom ϕ-Fibonacci word wϕ
n(A,C) is primi-

tive.

Proof. 1. Given that ϕ = θ2. From Table 4.6, we have wθ2
3 = AC, which is primitive.

By Proposition 4.19, the words wθ2
n are not primitive for n > 3 and n mod 3 = 0.

Conversely, if n mod 3 ̸= 0, then by Table 4.7, gcd(|wθ2
n |A, |wθ2

n |C) = 1 for all n ≥ 3.
Therefore, by Lemma 4.8, the words wθ2

n are primitive for n ≥ 3 and n mod 3 ̸= 0.

112

2. For ϕ = µ2, by Proposition 4.57, the words wµ2
n are primitive for n mod 3 = 0. By

Table 4.7, for the converse and for all other cases of ϕ, there exist two letters a, b ∈ ∆,
where gcd(|wϕ

n|a, |wϕ
n|b) = 1, for all n ≥ 3. Therefore, by Lemma 4.4 and Lemma 4.8,

the words wϕ
n are primitive for all n ≥ 3.

4.6.3 Atom hairpin ϕ-Fibonacci words

In Table 4.8, we begin by giving the first few values of the sequences {zϕn(A,C)}n≥1 for
(anti)morphic involutions ϕ ∈ {µ1, µ2, µ4, µ5, µ10, θ1, θ2, θ4, θ5, θ10}.

ϕ zϕ3 (A,C) zϕ4 (A,C) zϕ5 (A,C) zϕ6 (A,C) zϕ7 (A,C)
µ1 CA CAC CACCA CACCACAC CACCACACCACCA
µ2 CC CCA CCAAA CCAAAAAC CCAAAAACAACCC
µ4 CT CTC CTCCA CTCCACAC CTCCACACCACCT
µ5 CA CAG CAGGA CAGGAGAC CAGGAGACGACCA
µ10 CT CTG CTGGA CTGGAGAC CTGGAGACGACCT
θ1 CA CAC CACAC CACACCAC CACACCACCACAC
θ2 CC CCA CCAAA CCAAACAA CCAAACAACCCAA
θ4 CT CTC CTCAC CTCACCAC CTCACCACCTCAC
θ5 CA CAG CAGAG CAGAGCAG CAGAGCAGCACAG
θ10 CT CTG CTGAG CTGAGCAG CTGAGCAGCTCAG

Table 4.8: List of words zϕn(A,C), where 3 ≤ n ≤ 7 and ϕ ∈ {µ1, µ2, µ4, µ5, µ10,
θ1, θ2, θ4, θ5, θ10}.

Similar to that of Table 4.7, we calculate the number of occurrences of letters in the
words zϕn(A,C), for all n ≥ 3 and ϕ ∈ {ϕ1, ϕ4, ϕ5, ϕ10}, as summarized in Table 4.9.

Lemma 4.59. Let ϕ ∈ {θ2, µ2}. For all n > 3, the atom hairpin ϕ-Fibonacci word zϕn(A,C)
cannot be a square.

Proof. First, we consider the case where ϕ = θ2. By Table 4.8, the statement is true
for 4 ≤ n ≤ 7. Assuming that the statement holds for zϕi (A,C), where 7 ≤ i < k, we
now prove it for zϕk (A,C). We only need to consider the condition where k mod 3 = 0,
since by induction, we have Fk mod 2 = 0 if and only if k mod 3 = 0. By definition
of zn (Definition 4.9), we have zk = zk−2θ2(zk−3)θ2(zk−2) = pp. Since (k − 3) mod 3 =

113

i = 1 i = 2 i = 5
n mod 6 ≥ 0 0 1, 5 2, 4 3 0, 5 1, 4 2, 3
|zϕi

n (A,C)|A Fn−2
Fn

2
+ 1 Fn+1

2
Fn−1

2
Fn

2
− 1 Fn−2

|zϕi
n (A,C)|C Fn−1

Fn

2
− 1 Fn−1

2
Fn+1

2
Fn

2
+ 1 Fn−1−1

2
Fn−1

2
Fn−1+1

2

|zϕi
n (A,C)|G − − Fn−1+1

2
Fn−1

2
Fn−1−1

2

i = 4 i = 10
n mod 6 0, 1 2, 5 3, 4 0 1 2 3 4 5

|zϕi
n (A,C)|A Fn−2+1

2
Fn−2

2
Fn−2−1

2
Fn−2+1

2
Fn−2

2
Fn−2−1

2
Fn−2

2

|zϕi
n (A,C)|C Fn−1

Fn−1−1
2 Fn−1

2

Fn−1+1
2 Fn−1

2

Fn−1−1
2

|zϕi
n (A,C)|G − Fn−1+1

2
Fn−1−1

2
Fn−1+1

2

|zϕi
n (A,C)|T Fn−2−1

2
Fn−2

2
Fn−2+1

2
Fn−2−1

2
Fn−2

2
Fn−2+1

2
Fn−2

2

Table 4.9: The numbers of occurrences of letters in the atom hairpin ϕi-Fibonacci words
zϕi
n (A,C) for ϕi ∈ {θi, µi}, i ∈ {1, 2, 4, 5, 10} and n ≥ 3.

Fk−3 mod 2 = 0, there exist x, y ∈ ∆+ such that zk−3 = xy and |x| = |y|. Here, p =
zk−2θ2(y) and p = θ2(x)θ2(zk−2) = θ2(x)zk−4θ2(zk−3) = θ2(x)zk−4θ2(y)θ2(x). Therefore,
θ2(x) = θ2(y), so zk−3 = x2, which contradicts the inductive hypothesis.

Next, we consider the case where ϕ = µ2. By Table 4.8, the statement is true for
4 ≤ n ≤ 7. Assuming the statement holds for zϕi (A,C), where 7 ≤ i < k, we now
prove it for zϕk (A,C). We only need to consider the condition where k mod 3 = 0,
since by induction, we have Fk mod 2 = 0 if and only if k mod 3 = 0. By definition
of zn (Definition 4.9), we have zk = zk−2µ2(zk−3)µ2(zk−2) = pp. Since (k − 3) mod 3 =
Fk−3 mod 2 = 0, so there exist x, y ∈ ∆+ such that zk−3 = xy and |x| = |y|. We now
have p = zk−2µ2(x) = zk−3µ2(zk−4)µ2(x) = xyµ2(zk−4)µ2(x), and p = µ2(y)µ2(zk−2) =
µ2(y)µ2(zk−3)zk−4 = µ2(yxy)zk−4. This implies x = µ2(y) and µ2(zk−4)µ2(x) = xzk−4.
Note that zk−3 = zk−4µ2(zk−5) = xy, so zk−4 = xµ2(y1) for some y = y1y2. Thus,
xzk−4 = xxµ2(y1) = µ2(zk−4)µ2(x) = µ2(xy1)µ2(x), which implies x = µ2(x), so zk−3 = x2,
which is a contradiction.

Theorem 4.60. Let ϕ ∈ {θ1, θ2, θ4, θ5, θ10, µ2, µ4, µ5, µ10}. For all n ≥ 1, we have:

1. If ϕ ∈ {θ2, µ2} and n ̸= 3, then the atom hairpin ϕ-Fibonacci word zϕn(A,C) is
primitive.

2. If ϕ ∈ {θ1, θ4, θ5, θ10, µ4, µ5, µ10}, then the atom hairpin ϕ-Fibonacci word zϕn(A,C) is
primitive.

114

Proof. 1. Let ϕ ∈ {θ2, µ2}. Note that z3 = CC is not primitive. By Table 4.9, for
n mod 6 ∈ {1, 2, 4, 5}, we have gcd(|zϕn|A, |zϕn|C) = 1, so by Lemma 4.8, the word zϕn
is primitive in these cases. For n mod 6 ∈ {0, 3}, the number of occurrences of A and
C are even or odd integers that are consecutive and positive. If they are consecutive
positive odd integers, by Lemma 4.8, the word zϕn is primitive. If they are consecutive
positive even integers, the only non-trivial common divisor is 2, and we can prove
that zϕn is primitive by contradiction. Assume zϕn is not primitive in this case, which
means that zϕn = pi (refer to proof of Lemma 4.8 to show that i = 2), where p ∈ Q,
and this contradicts Lemma 4.59.

2. By Table 4.9, for all other cases of ϕ, there exist two letters a, b ∈ ∆, where
gcd(|zϕn|a, |zϕn|b) = 1 for all n ≥ 3. Therefore, by Lemma 4.8, the word zϕn is primitive
for all n ≥ 3.

Let αn ∈ {gn, wn, zn} for all n ≥ 1 and let ϕ ∈ {θ1, θ2, θ4, θ5, θ10, µ2, µ4, µ5, µ10}. Based
on Corollary 4.50, Theorem 4.53, Theorem 4.54, Theorem 4.55, Theorem 4.58, and Theo-
rem 4.60, we conclude that the words gθ2n and gµ2

n are not primitive for all n ≥ 3, the word
wµ2

n is primitive if n mod 3 ̸= 0 and n ≥ 3, and for all other cases, the word αϕ
n is primitive.

These are summarized in Table 4.10.

i ∈ {1, 7} i ∈ {2, 8} i ∈ {3, 4} i ∈ {5, 6} i ∈ {9, 10}
gθin (A,C) ✓ ✗ (except n = 1, 2) ✓ ✓ ✓

gµi
n (A,C) ✓ ✗ (except n = 1, 2) ✓ ✓ ✓

wθi
n (A,C) ✓ ✓ (except n mod 3 = 0, n > 3) ✓ ✓ ✓

wµi
n (A,C) ✓ ✓ ✓ ✓ ✓

zθin (A,C) ✓ ✓(except n = 3) ✓ ✓ ✓

zµi
n (A,C) ✓ ✓(except n = 3) ✓ ✓ ✓

Table 4.10: Primitivity of atom ϕ-Fibonacci words αϕ
n(A,C) for all n ≥ 1, with different

initial letters A,C ∈ ∆, where αn ∈ {gn, wn, zn} for all n ≥ 1, and ϕ ∈ {θi, µi | 1 ≤ i ≤ 10}
(here, ✓ means that the words are primitive, and ✗ means that they are not primitive).

115

4.7 Primitivity of atom ϕ-Fibonacci words with iden-

tical initial letters

In this section, we discuss the primitivity of atom ϕ-Fibonacci words αϕ
n(a, a) with identical

initial letters for all n ≥ 1, where a ∈ Σ4, ϕ ∈ {θi | 1 ≤ i ≤ 10} ∪ {µi | 1 ≤ i ≤ 10}, and
αn ∈ {gn, wn, zn} for all n ≥ 1. The primitivity results of this section hold for every choice
of (x1, x2, x3, x4) and with x1 and x1 as the initial letters of the ϕ-Fibonacci sequence.
Therefore, we only prove primitivity results for one of the cases, the sequence (A,C,G,T)
over the DNA alphabet ∆, with A and A as the first two initial letters.

We can classify ϕ into two categories, where ϕ(a) = a and ϕ(a) ̸= a. If ϕ(a) = a, then
for all n ≥ 1 we have that αϕ

n(a, a) = aFn , where αn ∈ {gn, wn, zn} for all n ≥ 1. Hence,
αϕ
n(a, a) is not primitive for all n ≥ 3. Therefore, we only need to consider the case where

ϕ(a) ̸= a. The set of all (anti)morphic involutions ϕ for the sequence (x1, x2, x3, x4) with
x1 = a and ϕi(a) ̸= a is {ϕi | i = 2, 3, 4, 8, 9, 10}. It is enough if we discuss the primitivity
for one of such ϕi, say ϕ2. We first show that it is sufficient to study the primitivity only
for αϕ2

n (a, a), where n ≥ 1.

We use the following lemma.

Lemma 4.61. Let ϕi ∈ {µi, θi}, i ∈ {2, 3, 4, 8, 9, 10}, be an (anti)morphic involution on Σ∗
4

and αn ∈ {gn, wn, zn} for all n ≥ 1. For all n ≥ 1, the following equalities hold regarding
ϕi-Fibonacci words αϕi

n (x1, x1):

• ϕ2(α
ϕ2
n (x1, x1)) = ϕ8(α

ϕ8
n (x1, x1)) if and only if αϕ2

n (x1, x1) = αϕ8
n (x1, x1).

• ϕ3(α
ϕ3
n (x1, x1)) = ϕ9(α

ϕ9
n (x1, x1)) if and only if αϕ3

n (x1, x1) = αϕ9
n (x1, x1).

• ϕ4(α
ϕ4
n (x1, x1)) = ϕ10(α

ϕ10
n (x1, x1)) if and only if αϕ4

n (x1, x1) = αϕ10
n (x1, x1).

• [ϕ2(α
ϕ2
n (x1, x2))]x2→x3 = ϕ3(α

ϕ3
n (x1, x2)) if and only if [αϕ2

n (x1, x2)]x2→x3 = αϕ3
n (x1, x2).

• [ϕ2(α
ϕ2
n (x1, x2))]x2→x4 = ϕ4(α

ϕ4
n (x1, x2)) if and only if [αϕ2

n (x1, x2)]x2→x4 = αϕ4
n (x1, x2).

Proof. The proof, by induction on n, is similar to that of Lemma 4.46.

Based on Lemma 4.61, we have the following result.

Lemma 4.62. Let ϕi ∈ {θi, µi}, i ∈ {2, 3, 4, 8, 9, 10}, be an (anti)morphic involution on
Σ∗

4, and let αn ∈ {gn, wn, zn} for all n ≥ 1. For all n ≥ 1, the following equalities regarding
ϕi-Fibonacci words αϕi

n (x1, x1) hold:

116

• αϕ2
n (x1, x1) = αϕ8

n (x1, x1).

• [αϕ2
n (x1, x1)]x2→x3 = αϕ3

n (x1, x1) = αϕ9
n (x1, x1).

• [αϕ2
n (x1, x1)]x2→x4 = αϕ4

n (x1, x1) = αϕ10
n (x1, x1).

Proof. The proof by induction on n and using Lemma 4.61 is similar to that of Lemma 4.47.

One can easily observe that for αϕ
n(a, a), we have |Alph(αϕ

n(a, a))| ≤ 2 for all n ≥ 3,
where ϕ is an (anti)morphic involution and αn ∈ {gn, wn, zn} for all n ≥ 3. Thus, by
Lemma 4.62 and Lemma 4.48, it is enough to discuss the primitivity for αϕ2

n (x1, x1), n ≥ 3.
As the choice of initial letter does not matter, we choose for convenience A and A to be
the two initial letters. We now study the primitivity of the words αϕ2

n (A,A) for all n ≥ 3,
where αn ∈ {gn, wn, zn} for all n ≥ 3.

4.7.1 Atom alternating ϕ-Fibonacci words

The first few values of the sequence {gϕn(A,A)}n≥1 for ϕ ∈ {µ2, θ2} are given in Table 4.11.

ϕ gϕ3 (A,A) gϕ4 (A,A) gϕ5 (A,A) gϕ6 (A,A) gϕ7 (A,A)
µ2 CA ACA CACCA ACAACACA CACCACACCACCA
θ2 CA CAA CCACA CACAACAA CCACCACACCACA

Table 4.11: List of words gϕn(A,A), where 3 ≤ n ≤ 7 and ϕ ∈ {µ2, θ2}.

We first show that for a morphic involution µ2, the µ2-Fibonacci words gn with identical
initial letters are primitive. The proof is similar to that of Theorem 4.54.

Theorem 4.63. Let ϕ = µ2. For all n ≥ 1, the atom alternating ϕ-Fibonacci word
gµ2
n (A,A) is primitive.

Proof. By Theorem 4.21, we have gϕn(A,A) = fn(A, ϕ(A)) if n is odd and gϕn(A,A) =
fn(ϕ(A),A)if n is even. Note that ϕ(A) ̸= A for ϕ = µ2. Then, by Theorem 4.5, the word
gϕn(A,A) is primitive for ϕ = µ2 and n ≥ 1.

We now discuss the primitivity of θ2-Fibonacci words gθ2n (A,A), n ≥ 3. The following
result can be proved by induction, and we omit the proof.

117

Theorem 4.64. Let ϕ ∈ {θ1, θ2}. For all n ≥ 1, the atom alternating ϕ-Fibonacci word
gθ2n (A,A) can be represented by atom alternating ϕ-Fibonacci words gθ1n (A,C) and gθ1n (C,A)
as follows:

gθ2n (A,A) =

{
gθ1n (C,A) : n mod 2 = 0,

gθ1n (A,C) : n mod 2 = 1.

Proof. The proof by induction on n and using Lemma 4.51 is similar to that of Lemma 4.52.

Using Theorem 4.64 and Corollary 4.50, we have the following corollary.

Corollary 4.65. Let ϕ = θ2. For all n ≥ 1, the atom alternating ϕ-Fibonacci word
gθ2n (A,A) is primitive.

4.7.2 Atom palindromic ϕ-Fibonacci words

The first few values of the sequences {wϕ
n(A,A)}n≥1 for ϕ ∈ {µ2, θ2} are given in Table 4.12.

ϕ wϕ
3 (A,A) wϕ

4 (A,A) wϕ
5 (A,A) wϕ

6 (A,A) wϕ
7 (A,A)

µ2 CC AAC CCAAA AACCCCCA CCAAAAACAACCC
θ2 CC AAC ACCAA CCAACACC AACACCAACCAAC

Table 4.12: List of words wϕ
n(A,A), where 3 ≤ n ≤ 7 and ϕ ∈ {µ2, θ2}.

Therefore, we have the following theorem.

Theorem 4.66. Let ϕ = µ2. For all n ≥ 1, the atom palindromic ϕ-Fibonacci word
wµ2

n (A,A) is primitive.

Proof. We have by Theorem 4.21, wµ2
n (A,A) = zµ2

n (A,C) if n is odd and wµ2
n (A,A) =

zµ2
n (C,A) if n is even. Therefore, by Theorem 4.60, wµ2

n (A,A) is primitive for n ≥ 1.

We now count the number of occurrences of the letters A and C in the atom palindromic
ϕ2-Fibonacci words.

Lemma 4.67. Let ϕ ∈ {µ2, θ2}. For all n ≥ 1, the numbers of occurrences of letters in
the atom palindromic ϕ-Fibonacci word wϕ

n(A,A) satisfy:

|wϕ
n|A =

{
Fn

2
− 1 : n mod 3 = 0,

Fn+1
2

: n mod 3 ̸= 0,
|wϕ

n|C =

{
Fn

2
+ 1 : n mod 3 = 0,

Fn−1
2

: n mod 3 ̸= 0.

118

Proof. The proof uses the fact that |wϕ
n+2|A = |wϕ

n+1|C + |wϕ
n|C, |wϕ

n+2|C = |wϕ
n+1|A + |wϕ

n|A
and is by induction on n.

By induction on n, we have the following lemma.

Lemma 4.68. Let ϕ = θ2. For all n > 3, the atom palindromic ϕ-Fibonacci word wθ2
n (A,A)

cannot be a square.

Proof. The proof is by induction on n. One can easily check that the statement is true
for 4 ≤ n ≤ 10. We now assume that wθ2

i (A,A) is not a square for all 10 ≤ i < k.
We prove that this is true for wθ2

k (A,A). We only need to consider the condition where
k mod 3 = 0, since by induction, we have Fk mod 2 = 0 if and only if k mod 3 = 0. By def-
inition of wn (Definition 4.9), we have wk = θ2(wk−1)θ2(wk−2) = wk−3wk−2wk−4wk−3 =
wk−3θ2(wk−3)θ2(wk−4)wk−4wk−3 = wk−3wk−5wk−4wk−6wk−5wk−4wk−3 = pp. Since (k −
6) mod 3 = Fk−6 mod 2 = 0, there exist x, y ∈ ∆+ such that wk−6 = xy and |x| = |y|. We
now have

p = wk−3wk−5wk−4x = θ2(wk−4)θ2(wk−5)wk−5wk−4x = wk−6wk−5θ2(wk−5)wk−5wk−4x

= xywk−5θ2(wk−5)wk−5wk−4x,

and p = ywk−5wk−4wk−3. Therefore, we have x = y, so wk−6 = x2, which contradicts the
inductive hypothesis.

Theorem 4.69. Let ϕ = θ2. For n ≥ 1, the atom palindromic ϕ-Fibonacci word wθ2
n (A,A)

is primitive if and only if n ̸= 3.

Proof. The proof is similar to part (1) of the proof of Theorem 4.60 and uses Lemma 4.68.

4.7.3 Atom hairpin ϕ-Fibonacci words

In Table 4.13, we give the first few values of the sequences {zϕn(A,A)}n≥1 for ϕ ∈ {µ2, θ2}.

Theorem 4.70. Let ϕ = µ2. For all n ≥ 1, the atom hairpin ϕ-Fibonacci word zµ2
n (A,A)

is primitive.

Proof. We have by Theorem 4.21, zµ2
n (A,A) = wµ2

n (A,C) if n is odd and zµ2
n (A,A) =

wµ2
n (C,A) if n is even. Therefore, by Theorem 4.58, zµ2

n (A,A) is primitive for all n ≥ 1.

119

ϕ zϕ3 (A,A) zϕ4 (A,A) zϕ5 (A,A) zϕ6 (A,A) zϕ7 (A,A)
µ2 AC ACC ACCCA ACCCACAA ACCCACAACAAAC
θ2 AC ACC ACCAC ACCACAAC ACCACAACACAAC

Table 4.13: List of words zϕn(A,A), where 3 ≤ n ≤ 7 and ϕ ∈ {µ2, θ2}.

We now count the number of occurrences of the letters A and C in the atom hairpin
ϕ2-Fibonacci words. The proof is by induction, and we omit it.

Lemma 4.71. Let ϕ ∈ {µ2, θ2}. For all n ≥ 1, the numbers of occurrences of letters in
the atom hairpin ϕ-Fibonacci word zϕn(A,A) satisfy:

|zϕn|A =


Fn

2
: n mod 6 = 0, 3,

Fn+1
2

: n mod 6 = 1, 2,
Fn−1

2
: n mod 6 = 4, 5,

|zϕn|C =


Fn

2
: n mod 6 = 0, 3,

Fn−1
2

: n mod 6 = 1, 2,
Fn+1

2
: n mod 6 = 4, 5.

Proof. The proof is by induction on n and uses the fact that for all n ≥ 1, |zϕn+2|A =

|zϕn+1|A + |zϕn|C, |zϕn+2|C = |zϕn+1|C + |zϕn|A, where |zϕ1 |A = |zϕ2 |A = 1 and |zϕ1 |C = |zϕ2 |C = 0.

Hence, using inductive hypothesis, one can obtain the result for |zϕk |A and |zϕk |C.

We next show that the atom hairpin µ2-Fibonacci words zµ2
n (A,A) are primitive for

n ≥ 3. We need the following lemma, which can be proved by induction on n.

Lemma 4.72. Let ϕ = θ2. The following hold for all n ≥ 1:

1. If n mod 3 = 0, then zθ2n (A,A) ̸= q2 for every θ2-palindrome q.

2. If n mod 4 = 0, then zθ2n (A,A) ̸= q3 for every θ2-palindrome q.

3. If n mod 5 = 0, then zθ2n (A,A) ̸= q5 for every θ2-palindrome q.

Proof. We only prove statement (1). Given that n mod 3 = 0. Then, Fn mod 2 = 0,
and there exist x, y ∈ ∆+ such that |zn| = xy and |x| = |y|. One can easily verify the
statement for n = 3 and n = 6. Assume the statement to be true for zθ2i (A,A), where
i mod 3 = 0 and 3 ≤ i < k. Let k be a number such that k mod 3 = 0 and k > n. Sup-
pose zk = zk−1θ2(zk−2) = p2, where p is a θ2-palindrome. Then, zk = zk−1θ2(zk−2) =
zk−2θ2(zk−3)θ2(zk−2) and p = zk−2x = yθ2(zk−2) for θ2(zk−3) = xy. Since p is a θ2-
palindrome, x = θ2(y) and zk−2 = zk−3θ2(zk−4) = xθ2(x)θ2(zk−4). This implies that
x = y = θ2(x) and hence zk−3 = x2, which contradicts to our induction hypothesis. Hence,
the result.

120

The following result uses Lemma 4.72 and has a proof similar to that of Proposition 4.57.

Theorem 4.73. Let ϕ = θ2. For all n ≥ 1, the atom hairpin ϕ-Fibonacci word zθ2n (A,A)
is primitive.

Based on Corollary 4.65 and Theorem 4.63, Theorem 4.66, Theorem 4.69, Theorem 4.70,
and Theorem 4.73, the results can be generalized to non-trivial ϕ-Fibonacci words with
the same initial letters. The primitivity properties of the nth atom ϕ-Fibonacci word with
the same two initial letters, for all n ≥ 1, are summarized in Table 4.14.

i ∈ {2, 3, 4, 8, 9, 10} i ∈ {1, 5, 6, 7}
gϕi
n (A,A) ✓ ✗

wϕi
n (A,A) ✓ (except n = 3) ✗

zϕi
n (A,A) ✓ ✗

Table 4.14: Primitivity of atom ϕ-Fibonacci words αϕ
n(A,A) for all n ≥ 1, with identical

initial letters A ∈ ∆, where αn ∈ {gn, wn, zn} for all n ≥ 1, and ϕ ∈ {θi, µi | 1 ≤ i ≤ 10}
(here, ✓ means that the words are primitive, and ✗ means that they are not primitive).

4.8 Conclusion

This chapter proposed a unified terminology (Definition 4.1) for the various definitions
of Fibonacci words that exist in the literature. It also defined and investigated two gen-
eralizations of Fibonacci words, namely ϕ-Fibonacci words (Definition 4.9) and indexed
ϕ-Fibonacci words (Definition 4.28), where ϕ is a morphic or an antimorphic involution on
Σ∗.

The results about (θ-)borderedness and primitivity of various involutive Fibonacci
words are important since they could lead to a method that generates arbitrarily long
DNA words avoiding intramolecular structures. These results are summarized as follows.

According to Theorem 4.33, the standard and reverse hairpin θ-Fibonacci words zn and
z′n are θ-bordered for n ≥ 6, and thus form hairpins with fully double-stranded stems. One
can easily observe that the standard palindromic θ-Fibonacci words wn and the reverse
palindromic θ-Fibonacci words w′

n form hairpin structures with partially double-stranded
stems, as illustrated in Figure 2.6. In addition, according to Proposition 4.36, if the
initial θ-Fibonacci words u and v satisfy some additional conditions, then the standard
alternating θ-Fibonacci words gn(u, v) and the standard palindromic θ-Fibonacci words

121

wn(u, v) are θ-bordered for n ≥ 3, and thus they can form hairpins with fully double-
stranded stems. Lastly, according to Proposition 4.40 and Proposition 4.41, the standard
and reverse palindromic θ-Fibonacci words wn and w′

n contain θ-palstars for n ≥ 6, and
thus they can self-assemble into DNA secondary structures containing multiple hairpin
structures.

According to Section 4.6 and Section 4.7, the primitivity properties of atom involutive
Fibonacci words over a four-letter alphabet indicate that, for some (anti)morphic involu-
tions, some initial letters, and some indices n, the nth ϕ-Fibonacci word is primitive, while
for some others, it is not. In the particular case of the Watson-Crick complementarity
involution θDNA over the DNA alphabet ∆ = {A,C,G,T}, our results imply that regard-
less of the initial two letters in the Fibonacci recursion (different, or the same), the nth

atom Watson-Crick Fibonacci word is primitive for all n > 3. Although primitivity does
not ensure the avoidance of DNA self-binding, this is an initial step towards the study of
θ-primitivity, where θ is an antimorphic involution.

Future topics of research include investigating relations between various types of ϕ-
Fibonacci words for the antimorphic case (similar to the results obtained in Section 4.3.1
for the morphic case) and the study of the properties of ϕ-Fibonacci words zn in the special
case when the first two ϕ-Fibonacci words satisfy the relation ϕ(u) = v. Other areas of
investigation include the ϕ-primitivity of ϕ-Fibonacci words, as well as the combinatorial
properties of ϕ-Fibonacci words (counting their distinct factors, squares, ϕ-squares, cubes,
ϕ-cubes, palindromes, ϕ-palindromes, etc.).

122

Chapter 5

Complexity Estimation of DNA
Computing Algorithms on the Subset
Sum Problem

This chapter gives a scaling comparison of two implemented natural computing algorithms
(DNA computing using DNA strands and network biocomputing using biotic motile agents)
and an electronic computing algorithm to solve the benchmark NP-complete problem, the
subset sum problem (SSP). Section 5.1 gives a brief introduction to this chapter. In Sec-
tion 5.2, details about a DNA computing procedure for SSP experimentally demonstrated
in [102] are given. Section 5.3 gives a summary of a network biocomputing method solving
SSP experimentally implemented in [202]. In Section 5.5, the pre-computing costs, the
volume needed for the computation, the run time, and the energy costs of these three dif-
ferent implementations of algorithms that solve SSP are compared. Section 5.6 concludes
this chapter.

This chapter is adapted from the co-authored paper [215] titled “As good as it gets: A
scaling comparison of DNA computing, network biocomputing, and electronic computing
approaches to an NP-complete problem.”

The co-authors of [215] include an experimental team who designed and implemented
the compared network biocomputing method for the subset sum problem. The actual
implementation was published and discussed in [202,269].

123

5.1 Introduction

NP-complete problems are the mathematical representations of many and very diverse
real-life applications, such as protein design [217] and folding [80], data clustering in net-
works [27], circuit verification [196], optimal routing [113], and formal contextual reason-
ing [183]. Because of the exponential increase of solution space with the problem input
size, electronic computers, including high-end supercomputers, cannot solve large instances
of NP-complete problems since they operate with limited parallelism at best. Electronic
computers face additional difficulties, such as reaching their fundamental physical limits of
the gate size, which are already in the couple of nanometers, and engineering-related limits
(for example, required energy and heat dissipation). All these difficulties challenge the
sustainability of Moore’s law [157, 190], which predicts the doubling of computing power
approximately every two years. Consequently, alternative computational paradigms capa-
ble of massively parallel operations have been proposed since the mid 1990s [3,4]. Inspired
by the natural massive parallelism of biological systems, many of these alternative compu-
tational paradigms use biological entities, from molecular to cellular, in vitro or in vivo,
to solve computational problems. The large variety of biocomputation approaches (see
Table 5.1 for a summary), combined with the fact that they are not yet standardized,
precludes a direct comparison of their respective scalability, as well as a comparison with
the “classical” electronic computing approach.

This chapter compares the key performance parameters of three fundamentally differ-
ent computing approaches: two massively parallel biocomputation approaches (the DNA
computing [DNA-C] [3] and the more recently reported network biocomputing using motile
agents [NB-C] [202,269]) and the classical electronic computing (E-C) approach. To achieve
a fair analysis, all these computing approaches were employed to solve the same benchmark
NP-complete problem, the subset sum problem (SSP).

In comparing the DNA-C, NB-C, and E-C approaches for solving SSP, the key oper-
ating parameters surveyed comprised the pre-computing costs (Section 5.5.1), the volume
needed for computation (Section 5.5.2), the run time (Section 5.5.3), and the energy costs
(Section 5.5.4). All were calculated using the experimental parameters and estimation
methodology previously reported in [102,202,269].

Before we go further, a detailed definition of SSP is discussed. As mentioned in Sec-
tion 2.3, SSP (see [254]) asks the following yes/no question: “Given a finite set S ⊂ N
of positive integers and a positive integer target number t ∈ N, does there exist a subset
S ′ ⊆ S such that t = Σs∈S′s?” Note that other variants of SSP allow the input set S to
be a multiset, which allows repetitions of its elements. An instance of SSP consists of a

124

particular set S and a particular number t, and the size of the instance is defined as the
cardinality of the input set S. Note that each instance of SSP has a yes/no answer. For
example, for the SSP instance of size 3 with input set S = {2, 3, 9} and target number
t = 5, the answer is “yes”, and the subset of numbers that add up to t = 5 is S ′ = {2, 3}
(the “yes” answer is the solution to this instance of the problem). In computer science,
solving SSP means finding an algorithm that outputs the correct solution (yes/no answer)
for all instances. In the case of a “yes” answer, there is the optional step to identify the
subsets that fulfill the required condition.

Agent Problem Reference

DNA

Hamiltonian path problem [3]
Maximal independent set [97]
Minimal dominating set [103]

Knapsack/subset sum problem [7,102,257]
Satisfiability [25,26,169,242,260,273]

Maximal clique problem [207]
Maze [39]

Motor proteins Subset sum problem [202]

Bacteria
Hamiltonian path problem [13]

Maze [209,214]

Slime mold
Steiner tree problem [168,194]

Travelling salesman problem [131]
Maze [195]

Fungi Maze [94,98]
C. elegans Maze [228]

Bees
Travelling salesman problem [32]

Maze [285]
Ants Travelling salesman problem [67]

Other multi-cellular organisms Maze [23,205,216,236,264]

Table 5.1: Natural computing approaches to solving instances of NP-complete problems
and their related optimization problems. Biological agents used range from DNA molecules
to multi-cellular macroscopic organisms. Only biocomputations that have been experimen-
tally implemented are included.

125

5.2 DNA computing procedure for solving SSP

DNA computing overview was given in Section 2.2. Existing DNA-C procedures for solving
SSP can be categorized as either theoretical DNA algorithms with no experimental imple-
mentation [38,213] or DNA algorithms with a wet lab experimental implementation [7,102].
The latter are based on the idea of expressing each subset S ′ of the input set S as a unique
path in a special type of directed weighted graph, as illustrated in Figure 5.1.

0 1 2

· · ·

· · ·
n− 2 n− 1 n

b1 + c · s1 b2 + c · s2 bn−1 + c · sn−1 bn + c · sn

b1 b2 bn−1 bn

Figure 5.1: An SSP instance of size n with input set S = {si | 1 ≤ i ≤ n} represented by
a directed weighted graph with (n + 1) nodes and designated start and end vertices. In
this graph, each subset of S corresponds to a unique path from the start node (red) to the
end node (green), and vice versa. Note that every such path has to pass through all the
nodes of the graph. If, when connecting node (j − 1) with node j, 1 ≤ j ≤ n, the path
traverses the top edge (thick line), this indicates that the subset it represents contains the
number sj. If, instead, the path traverses the bottom edge (thin line), this indicates that
the subset it represents does not contain the number sj. The edges are weighted, with the
weights of the top and bottom edges being (bi + c · si), and respectively bi, for 1 ≤ i ≤ n.

If the input set is S = {s1, . . . , sn}, the corresponding graph has n + 1 nodes, a desig-
nated start node labelled 0, and a designated end node labelled n. For each 1 ≤ j ≤ n,
the node labelled j corresponds to the number sj in S, and two consecutive nodes are
connected by exactly two directed edges. Each path between node 0 and node n uniquely
represents a subset S ′ of S, as follows. The presence or absence of a number sj in S ′ is
indicated by the path representing S ′ traversing either one, or the other (but not both),
of the two edges that connect node (j − 1) to node j: If sj is in S ′, the path traverses the
“top” edge, and if sj is not in S ′ then the path traverses the “bottom” edge instead (see
Figure 5.1). In addition, the weights of the two edges that connect consecutive nodes are
different, so that the length of each start-to-end path (the sum of the weights of its edges)
corresponds to the sum of the numbers in the subset that it represents.

This conceptual design can be physically implemented by first encoding each directed

126

weighted edge as a DNA strand of a certain length. This is followed by the generation of
a combinatorial library of DNA strands encoding all possible start-to-end paths (concate-
nations of edges/strands) through the graph, which in turn represent all possible subsets
of S. The next step is the physical extraction, from this library, of the DNA strands of
the desired length representing the solutions to the SSP instance. The length of such an
SSP-solution-representing DNA strand is determined based on the target number t spec-
ified by that SSP instance. Note that, in practice, experimental considerations dictate
the introduction of additional parameters c and b1, . . . , bn, whereby the weight of the edge
signaling the presence of si in a subset is (bi + c ·si), while the weight of the edge signalling
the absence of si in a subset is bi. For example, the set S itself is represented by the
start-to-end path that traverses all the “top” edges in the graph, and the DNA strand
that encodes it has the expected length

∑
1≤i≤n(bi + c · si). In contrast, the empty set ∅

is represented by the start-to-end path that traverses all the “bottom” edges in the graph,
and the (much shorter) DNA strand that encodes it has the expected length

∑
1≤i≤n bi. For

a target number t, a subset S ′ of S whose elements sum up to t exists, if and only if there
exists a start-to-end path in the graph encoded by a DNA strand of length

∑
1≤i≤n bi +c · t.

Both [102] and [7] are based on the concept above, with [7] solving an instance of SSP
of size n = 3 with input set S = {2, 3, 4}, target number t = 5, and parameters c = 10,
b1 = 25, and b2 = b3 = 20, and with [102] solving two instances of SSP of size n = 8 and
input set S = {21, 45, 36, 51, 36, 36, 36, 36}, one with target number t = 104 and another
with target number t = 174, and parameters c = 1 and bi = 6 for 1 ≤ i ≤ 8.

The wet lab experimental details of the more recent of the two DNA-C procedures
for SSP in [102] are described further. For a direct comparison with NB-C, this DNA-C
procedure has to be applicable also to SSP instances with small numbers in the input
set (in particular, numbers smaller than the length of the restriction sites of the enzymes
used in the DNA computation). To this end, in the description below, the parameters
c = bi = k, where 1 ≤ i ≤ n, are used, where k is the length of the restrictions sites of all
enzymes employed in the experiment.

The DNA-C procedure for solving SSP comprises three steps: the pre-computing step,
the solution generation step, and the result readout step.

In the pre-computing step, the natural numbers comprising input set S = {s1, . . . , sn}
of an SSP instance of size n are encoded into a so-called “computing region of S” that is
inserted into a plasmid (a circular DNA double strand), as follows (Figure 5.2, left panel,
top). To each number si, 1 ≤ i ≤ n, one associates a restriction enzyme ei with restriction
site ri of length k. In addition, two unique restriction enzymes estart and eend are used, with
restrictions sites rstart and rend (also of length k) as delimiters of the computing region of S

127

as defined later on. The enzymes are chosen so that all restriction sites are different from
each other. Each restriction enzyme ei, i ∈ {1, 2, . . . , n} ∪ {start, end}, cuts according to
a specific pattern, and its restriction point (the location of its cut) is after the kth

i base of
its restriction sequence from the 5′ end. Also, in this experiment, all restrictions sites are
palindromic, so ki uniquely describes the cuts on both strands.

Figure 5.2: The DNA-C procedure in [102] for solving an instance of SSP. Left panel,
bottom: Visual figure legend. Left panel, top: The natural numbers comprising the input
set S = {s1, . . . , sn}, of an SSP instance of size n, are encoded into a “computing region of
S” inserted into a plasmid. Centre-left panel: The plasmid is amplified by cloning. Centre-
right panel: The pool comprising all DNA strands representing candidate SSP solutions is
generated, by a succession of split-and-merge substeps, using restriction enzyme digestions,
purifications by gel electrophoresis, and ligations. Right panel, bottom: The DNA strands
representing the candidate SSP solutions are length-separated by gel electrophoresis. Right
panel, top: The DNA sequences of the desired length are extracted, amplified by PCR
(optionally), and sequenced.

128

Next, for each number si, 1 ≤ i ≤ n, a DNA strand of length k + (k · si − k) + k =
k · (si + 1), called a station, is designed, consisting of the concatenation of three sequences:
the recognition site ri, a specially designed “middle sequence” of length k · si − k, and a
second copy of ri.

In the DNA-C procedure for SSP in [102], the enzyme estart is XbaI and the enzyme eend
is HindIII, with the respective restriction sites shown in Figure 5.3, with kstart = kend = 1.

AGATCT5′ 3′

5′TCTAGA3′

TTCGAA5′ 3′

5′AAGCTT3′

Figure 5.3: Restriction sites of restriction enzymes XbaI (left) and HindIII (right).

The input set S is encoded by a DNA double strand called the computing region of S,
which consists of the concatenation of the recognition site rstart, one station for each of the
input numbers si, 1 ≤ i ≤ n, and the recognition site rend. Note that the recognition sites
and middle sequences are carefully designed so that rstart and rend occur exactly once (at
the beginning and end of the computing region of S, respectively), and each ri, 1 ≤ i ≤ n,
occurs exactly twice in the computing region of S (once at the beginning and once at the
end of the station for si).

Using this encoding scheme, a DNA strand representing the computing region of the
input set S is synthesized and inserted into a base plasmid containing one copy of the
recognition site rstart and one copy of the recognition site rend (with no overlap), using
the respective restriction enzyme digestions and ligations. Care must be taken with the
encodings and choice of plasmid, so the restriction sites occur only in the designated
places. As shown in the centre-left panel of Figure 5.2, this base plasmid is then inserted
into bacteria, such as E. coli, and amplified (exponentially multiplied) to the amount
necessary for the ensuing DNA computation. The generated plasmids are then extracted
from bacteria and transferred to a test tube.

In the solution generation step, the goal is to generate the space of all potential so-
lutions for this SSP instance by creating all different plasmids with a computing region
representing a subset of the input set. The computing region of a subset S ′ of S consists
of the concatenation of the restrictions site rstart, followed by the ordered concatenation
of n DNA strands, each representing the presence or absence of a number si in S ′, and

129

followed by the restriction site rend. More precisely, if the number si belongs to S ′ then the
station of si (which includes two copies of ri) is present at the ith location in the computing
region of S ′, while if si does not belong to S ′ then a single copy of ri is present at the ith

location in the computing region of S ′. The length of the DNA double strand encoding
the computing region of a subset S ′ is:

LS′

DNA(n) = k + k · (n− |S ′|) +
∑
sj∈S′

k(sj + 1) + k (bp).

The generation of the combinatorial library of solution candidates can now proceed by
a succession of split-and-merge substeps, as follows (Figure 5.2, centre-right panel). The
content of the initial test tube T , containing the plasmid with the computing region of S, is
evenly split into two tubes T1 and T2. Next, while tube T2 remains intact, the plasmids in
tube T1 are digested by the restriction enzyme e1 in order to cut out the station representing
the number s1. The resulting linear DNA molecules are ligated back into circular DNA
molecules (after purification by gel electrophoresis to separate and extract the DNA strands
encoding the station representing s1). Following this, the contents of the new T1 and T2 are
merged into a tube T ′, which now comprises plasmids of two types: half of the plasmids
have a computing region of subsets containing s1, and the other half of the plasmids have
computing regions of subsets that do not contain s1. This succession of split-and-merge
substeps is repeated for each of the remaining numbers in S, resulting in a final tube that
contains a combinatorial library of plasmids with computing regions spanning all possible
subsets of S.

In the result readout step, the possible solution candidates are separated by high reso-
lution electrophoresis (e.g., non-denaturing polyacrylamide gel electrophoresis, PAGE, or
2% agarose gel electrophoresis), and the existence of an SSP solution is determined by the
presence or absence of a band on the gel corresponding to the desired DNA strand length
(Figure 5.2, right panel, bottom). Optionally, the DNA strands in the band indicating a
solution can then be sequenced (Figure 5.2, right panel, top).

More precisely, the plasmids in the final test tube are first cut by the restriction enzymes
estart and eend, resulting in linear DNA molecules representing all possible subset sum
combinations for the set S. If a solution to the given SSP instance exists, that is, if there
exists a subset S ′ of numbers in S that contains numbers adding up to the target number
t (that is,

∑
sj∈S′ sj = t), then a band with DNA strands of length

LS
DNA(n)− kstart − kend −

∑
sj∈S\S′

ksj = LS
DNA(n)− kstart − kend − [(

∑
si∈S

ksi)− kt] (bp)

130

will be detected on the gel, and the answer to this instance of SSP is “yes.” In this case one
can, optionally, sequence each DNA strand representing an SSP solution, to identify the
corresponding subset of numbers in S that sum up to t (there can be several such subsets).
To determine such a subset S ′, for every number si, 1 ≤ i ≤ n, its presence or absence in
S ′ can be determined by checking the number of occurrences of the recognition site ri in
the DNA sequence representing S ′ (two occurrences of ri if si ∈ S ′, and one occurrence of
ri if si ̸∈ S ′).

Alternatively, if there is no band on the gel corresponding to the aforementioned ex-
pected length, then the answer to this instance of SSP is “no.”

5.3 Network biocomputing (NB-C) for SSP

Various implementations of massively parallel computation using motile agents were pro-
posed to solve NP-complete problems. Agents can be abiotic, such as photons [204, 277]
and beads [114,124]. NB-C uses biological agents such as cytoskeletal filaments (actin fila-
ments or microtubules) propelled by protein molecular motors (myosin or kinesin) [200,202]
and microorganisms [98,197,214,270]. Exploring computational networks requires that the
motile agents are self-propelled, independent of each other, easily visible, reasonably small,
and able to move at a high velocity. The large variety of motile biological agents offers the
opportunity of selecting those that fulfil these requirements.

Unlike electronic computers, which perform operations in silico, NB-C uses motile bio-
logical agents that explore and perform “operations” in a physical space, designed according
to the problem to be solved. These special features of NB-C have interesting consequences
for the scaling of computation.

The following discussion focuses on the details of the implementation of NB-C to solve
SSP [202, 269]. It comprises the pre-computing step, the solution generation step (where
motile biological agents explore the network), and the result readout step.

In the pre-computing step, the input information is encoded as a physical network. The
design of the network that encodes SSP instances was first reported in [201] and refined
in [202], where the input is encoded by a triangular shape network made of junctions.
There are two types of junctions used: pass junction and split junction, as illustrated in
Figure 5.4.

131

Figure 5.4: Two types of junctions used in the network encoding of the subset sum problem.
There are two routes, illustrated by a red arrow and a green arrow, through a junction.
Left: A pass junction is represented by an empty circle. If a motile agent enters the junction
from a route, it will exit following the same route. Right: A split junction is represented
by a shaded circle. If a motile agent enters the junction from a route, it has a 50 % chance
of exiting via the same route and a 50 % chance of exiting via the other route.

If the input set is S = {s1, . . . , sn}, the corresponding network has 1 +
∑

1≤i≤n si rows

of junctions, and the ith row has i junctions. In addition, all the junctions in the ith row
are split junctions if and only if there exists 0 ≤ j ≤ n such that i = 1 +

∑
1≤l≤j sl,

and the split junctions in the ith row correspond to the input number sj+1. The motile
agents enter the network by the split junction in the first row, and they exit the network
by the split junctions in the last row. Each split junction in the last row corresponds to
a number between 0 and

∑
1≤i≤n si. The design of the network ensures that agents exit a

split junction in the last row if and only if there exists a subset of the input set that sums
to the number corresponding to the junction. Each path from the entrance junction to an
exit junction represents a subset of the input set, and the sum of this subset is the number
that corresponds to the exit junction. This path includes a red route out of a split junction
if and only if the corresponding number from the input set is included in the subset. For
example, the network encoding of an instance of SSP with input set S = {2, 5, 9} used
in [202] is illustrated in Figure 5.5.

The dimensions and optimizations of the designed network are related to the partic-
ularities of the biological agents used. The size of a junction in the network for different
biological agents is described in a previous study [269]. For example, if protein molecu-
lar motor-propelled cytoskeletal filaments are chosen, the network channel dimensions and
surface modifications will be tailored to accommodate agents to freely traverse the net-
work [202]. The fabrication of the networks can be achieved by PDMS-based soft lithogra-
phy, low resolution SU-8-based optical lithography, and e-beam lithography, where a higher
resolution is required for the networks designed for smaller agents, such as cytoskeletal fil-
aments. Furthermore, for bacterial-driven NB-C, the networks need to be able to provide
nutrients for bacteria, while for cytoskeletal filaments-driven NB-C, the networks need to
be able to provide ATP.

In the solution generation step, all possible subsets are generated by biological agents

132

traversing all different paths from the entrance junction to an exit junction. For example,
in Figure 5.5, the subset sum numbers associated with an exit junction that an agent can
traverse to from the entrance junction is colored blue. In addition, a path representing the
subset {5} is shown in Figure 5.5, where it takes the green routes from the first and third
split junctions (2 and 9 are not included) and the red route from the second split junction
(5 is included), and it exits the network from the junction representing the subset sum 5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Exit row:

Entrance: 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

2

5

9

Figure 5.5: Network encoding of an instance of the subset sum problem with the input
set S = {2, 5, 9}. Split junctions are represented by shaded circles, and pass junctions are
represented by empty circles. The red route of a junction is directional from top left to
bottom right, and the green route of a junction is directional from top right to bottom left.
The parts of routes that are not connected to other junctions are omitted. There are 17
rows, and the ith row from the top contains exactly i junctions. All the junctions in the 3rd

(1 + 2), 8th (1 + 2 + 5), and 17th (1 + 2 + 5 + 9) rows are split junctions. The split junction
in the 1st row is the entrance of the network, and the split junctions in the last row are
the exits of the network, each of which represents a potential subset sum of the input set.
The possible subset sums are labelled by blue numbers, and there will be agents exiting
the corresponding split junctions in the last row. A path that represents the subset {5}
with sum 5 is represented by black lines.

The network is called a class II network if there is a one-to-one correspondence between
subset sums and paths from the entrance junction to an exit junction, and it is called a

133

class I network otherwise [269]. For example, the network in Figure 5.5 is class I, but the
network encoding the input set S = {2, 3, 5} is class II because the subset that sums to 5
can be either {2, 3} or {5}.

In the above model, it is assumed that the biological agents go through pass and split
junctions perfectly according to the design. However, in experiments, physical factors like
biased turn preferences and interactions with the boundaries of the channels can influence
the binary decision. For instance, when bacteria explore a network, their ability to choose
a route is modulated by chemotactic cues, nutrient foraging, flagellum/a architecture, and
interactions with surrounding walls [98,99,214].

In the result readout step, the existence of an SSP solution can be verified by checking
whether there are any agents exiting the exit junction that represents the target num-
ber. In addition, because images of the whole network were taken during the solution
generation step, the composition of the subsets that represent SSP solutions can (option-
ally) be obtained by analyzing the traces of the agents. The trajectories of the agents
in the network can be recorded using an optical interface, such as a microscope. The
various limits of the optical readout interfaces were reviewed recently, specifically the var-
ious limits of the field of view on NB-C [269]. A timestamped image recording, necessary
to obtain a reliable readout from agent-based computation [197, 214], comprises image
acquisition, image post-processing, and agent tracking. Image processing tools, such as
ImageJ Fiji [1,263], and tracking plugins, such as Track Mate (semi-automatics) [186,263]
and MTrackJ(manual) [186, 249], will process the recorded frames of agent movement in
the network. The deciphered tracks and the density maps encode the solutions, and the
readout can be achieved using the following approaches.

• Density maps and backtracking: The sum of all the agent trajectories is projected as
a heat map, i.e., spatially distributed frequencies of agent locations. Depending on
the color scheme used, the most taken paths (correct solutions) are brightly colored
or of the highest saturation, while the least taken paths (incorrect solutions) are dark
or of minimum saturation (alternatively, the heat maps can be interrogated for their
numerical values too). These density maps are used as a qualitative measure and a
form of quick parallel readout to arrive at the solutions for a particular set. Although
quick, this methodology only delivers the target sums, i.e., the existence of a solution
to SSP. The combination of the target sum and the multiple routes for the same exit
for complexity class II type SSP can be derived by backtracking.

• Agent counting at the exits of the network: Another methodology is based on count-
ing the number of agents at the exits. This methodology, demonstrated for cytoskele-
tal filaments-driven NB-C [202], translates to a bar chart with a distribution of agents

134

with the highest relative count for correct exits versus the lowest relative counts for
agents exiting incorrect exits.

• Continuous tracking of the agents from the entry to the exit: Another methodol-
ogy could be based on single-particle continuous tracking, either by manual, semi-
automatic, or automatic methods, which can be adapted to track the agent movement
in the computation network, thus recording the visited junctions encoding a partic-
ular solution.

Figure 5.6: The model flow chart of agent-based NB-C and the associated stages. The figure
here gives a bird’s-eye view of the computational operations like exploring the network
by bacteria and pre- and post- computational steps like network design and fabrication,
bacterial preparation and culture for experimentation, results readout, image analysis, and
the associated required duration.

In addition to these already demonstrated methodologies, several more elaborate ap-

135

proaches have been proposed. Examples include the switchable tagging of biological agents
“on the fly,” which would allow the computational trajectories being stored in the agents
as transient or permanent memory [269].

A comprehensive list of experimental procedures and the time taken to solve each stage
of the agent-based computation is represented in Figure 5.6. Numerical calculations, such
as the total number of agents required to solve SSP instances of different sizes (cardinality),
and the network sizes comparison were reproduced, with some modifications, as reported in
[269]. The applied modifications to previous scaling analysis stem from considering different
input sets (i.e., unit, prime, Fibonacci, and exponential), as introduced in Section 5.5.

5.4 Electronic computing (E-C)

A review of the electronic computing is beyond the scope of this contribution. However, a
balanced comparison of the projected capacities of DNA-C and NB-C to solve NP-complete
problems will benefit from benchmarking it against the equivalent projected performance
of electronic computers.

Electronic computers are essentially sequential machines (multi-core computers feature
bounded parallelism, at best), and therefore they are inherently challenged by the exponen-
tial increase of the number of possible solutions with the size of the NP-complete problem.
However, electronic computers do present important advantages in tackling NP-complete
problems. First and foremost, the speed of computation is presently running in the bil-
lions of operations per second. Presently, AMD Threadripper 3990X, one of the fastest
commercial chips, performs approximately 2.3 million MIPS (million instruction per sec-
ond) at 4.35 GHz [249]. Second, after more than half a century of technology development
following Moore’s law [190,191], electronic computer chips benefit from a deep, large, and
fully functional ecosystem, including manufacturing and performance standards, business
networks, and last but not least, a large body of elaborate mathematical algorithms and
information processing protocols. Third, despite reports of a slow-down in technology de-
velopment and of the “end of Moore’s law” [70,123], the semiconductor industry continues
to find ways for dramatic improvements.

To ensure a correct comparison between the performance of DNA-C, NB-C, and the
benchmark electronic computers with regard to their performance in solving SSP, the latter
must perform the calculations by brute force, similar to the former two massively parallel
computation approaches. The basic methodology to solve SSP by various generations of
electronic computer chips was described in [269]. Briefly, a computer program to solve SSP

136

was developed in the C programming language to enable low-level memory access, efficient
mapping to machine instructions, and flexibility. Out of several algorithms to solve SSP,
a näıve, brute force approach was adopted. The SSP algorithm was designed to explore
all Σ0≤k≤n

(
n
k

)
= 2n subsets, each of which contains at most n elements. Thus, the running

time is of the order O(n · 2n).

Due to random access memory (RAM) and clock speed being the major factors af-
fecting CPU speed, we replicated the computing resources of Intel 286, Intel 386, Intel
486, and Intel Pentium Pro by simulating part of their computer hardware with virtual
machines. However, these calculations were dependent on chip power, and consequently
the fastest chip could not solve an SSP instance larger than n = 50, for the prime input
set. Fortunately, the computing time was found to be in a near perfect relationship with
the technical parameters of the chips, i.e., MIPS and clock frequency, and this allowed the
extrapolation of the computing time for solving SSP at higher cardinalities and for more
advanced computer chips (AMD Threadripper 3990X).

5.5 Scaling comparison of the DNA-C, NB-C, and E-

C methods solving SSP

This section comprises a detailed scaling comparison of three qualitatively different meth-
ods for solving SSP: the DNA-C procedure of [102] described in Section 5.2, the NB-C
method of [202,269] described in Section 5.3, and the classical E-C implementation of the
(sequential) exhaustive search algorithm for SSP. As comparison benchmarks, four different
types of input sets are considered, drawn from the following sequences of positive integers.
The unit sequence is {ai}i≥0, where ai = 1 for all i ∈ N, the prime sequence {pi}i≥0

consists of all the prime numbers in ascending order, the Fibonacci sequence is {fi}i≥0,
where f0 = f1 = 1 and fi+2 = fi+1 + fi for all i ∈ N, and the two-exponential sequence
is {expi}i≥0, where expi = 2i for all i ∈ N. The unit set of cardinality n is now defined
as comprising the first n elements of the unit sequence, and the prime set, the Fibonacci
set, and the two-exponential set (or, simply, exponential set) of cardinality n are similarly
defined. For example, for cardinality n = 7, the unit set is {1, 1, 1, 1, 1, 1, 1}, the prime
set is {2, 3, 5, 7, 11, 13, 17}, the Fibonacci set is {1, 1, 2, 3, 5, 8, 13}, and the exponential set
is {1, 2, 4, 8, 16, 32, 64}. Using these sets as inputs for instances of SSP, the DNA-C and
NB-C methods for solving the SSP problem are now compared, at different cardinalities,
as follows. Section 5.5.1 discusses the pre-computing step for both methods: the synthesis
and length of DNA strands utilized in the case of DNA-C method, and the network fabri-
cation details in the case of the NB-C method. Section 5.5.2 compares the physical volume

137

of the computation for each method, while Section 5.5.4 compares the energy needed for
computation, and Section 5.5.3 compares the running time of both biocomputations.

5.5.1 Pre-computing

Before considering the “core” operational parameters of the three computational proce-
dures considered here, it must be observed that the classical electronic computers are,
following decades of development and standardization, “ready-made hardware” in that
no substantial pre-computing procedures need to be performed. Furthermore, in most in-
stances electronic computers utilize pre-loaded algorithms, possibly including those solving
special cases of NP-complete problems.

In contrast, non-classical computing methods such as DNA-C and NB-C are character-
ized by a lack of standardization and usually offer ad-hoc, problem-dependent, solutions
(possibly involving the fabrication of new “hardware” for each problem). Consequently,
while this state of affairs is expected to improve with further development of non-classical
computing, a thorough scaling comparison and analysis cannot ignore the necessary pre-
computing step for the DNA-C and NB-C methods.

In the case of DNA-C procedure, the implementation of the pre-computing step de-
scribed in Section 5.2 comprises the synthesis of the DNA strands representing the com-
puting region of the input set S, followed by their insertion into plasmids, and by the
amplification of the plasmids containing the computing region of S. As detailed in Sec-
tion 5.2, for an SSP instance of size n with input set S = {s1, s2, . . . , sn}, the length of
the DNA strand representing the computing region of S is LS

DNA(n). Figure 5.7 illustrates
the lengths of computing regions of the unit, prime, Fibonacci, and exponential input sets
of various cardinalities, if the length of all restriction enzyme recognition sites is k = 6,
as chosen in [102]. Using these calculations, and taking 10 kbp as the maximum length of
synthesizable DNA strands (see Section 2.2), it follows that the largest input sets that can
be encoded using this DNA-C procedure and current technology are input sets of cardinal-
ity n = 1,665 for unit sets, n = 30 for prime sets, n = 15 for Fibonacci sets, and n = 9 for
exponential sets.

The possible rate-limiting factors for DNA-C include:

• Despite the high-fidelity DNA-polymerase based amplification, random errors still
occur [11, 171].

• DNA fragment hybridization mismatches [8, 87].

138

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
10−1

107

1015

1023

1031

Cardinality of Input Set

L
en

g
th

[b
p
]

unit
prime
Fibonacci
exponential

Figure 5.7: Logarithmic scale graph illustrating the length of the DNA strand that encodes
the computing region of the input set in the DNA-C procedure in [102], for the unit, prime,
Fibonacci, and exponential input sets of different cardinalities, from n = 1 to n = 100.
Note that the length of the computing region of the input set grows exponentially (linear
growth, logarithmic scale) for exponential and Fibonacci input sets and grows linearly for
unit input sets (quasi-constant growth, logarithmic scale).

• Metastable DNA hybrid structures, e.g., hairpin loops [77,170,284].

However, these errors can be mitigated with optimized protocols, e.g., variation of temper-
ature and use of specific enzymes relaxing the hairpin loops and other metastable struc-
tures [12]. Additionally, the use of New Generation Sequencing can help the quantification
of errors and provide feedback loops for protocol optimization. Consequently, considering
these achievable optimization paths, the scaling estimations regarding DNA-C procedures
consider only the optimal properties of the DNA strands.

Besides the length of the computing region of the input set, which determines an upper
limit on the size of the SSP instance solvable by this DNA-C procedure, another limitation

139

on the pre-computing step is the number of restriction enzymes available. This is because
encoding of an input set of cardinality n requires (n + 2) restriction enzymes (one for
each number in the input set, and one for each end of the computing region of S). Each
enzyme must have a distinct recognition site, and all restriction sites have to be of the
same length k. If k = 6, as chosen in [102], the number of known enzymes with different
recognition sites of this length is at most 47 (see [235]), and this becomes an additional
upper limit for the maximum size of SSP instance solvable by this DNA-C procedure. Note
the constraints on the design of viable number-encoding stations, and the limitations on
the length of DNA strands that can be synthesized (discussed in Section 2.2), which could
lead to further limiting the maximum size of the SSP instance that can be solved by this
technique.

In the case of the NB-C method, the scaling analysis will use the bacteria-operated
version because it offers more opportunities for insight, especially due to the possibility of
agent multiplication. In general, NB-C also needs two separate pre-computing modules: (i)
micro- or nano-fabrication of the computational network using photolitography or electron-
beam lithography, followed by semiconductor manufacturing proper for the computational
device for cytoskeletal filaments-driven NB-C, or for the master mold for microorganisms-
driven NB-C, followed in the latter case by PDMS-based soft lithography [100, 202]; (ii)
genetic engineering of the bacterial strain with fluorescence expressing plasmids [197,214].
The split and pass junctions have an average diagonal length of 106.3 µm for a bacterium
agent of an average size of 0.5 µm · 1.0 µm. The diagonal length may vary depending
on the bacterial or the motile agents used for computation. The fabrication time for
the network is computed based on the total number of junctions in each input set. A
nanometer-precise fabrication is necessary for finer cytoskeletal filaments version [200,202],
but for e-beam lithography, a higher resolution, coupled with larger channel dimensions,
results in a longer fabrication time per unit cell. Another limiting factor is the largest
wafer size available to accommodate the computational network, with the most used wafer
diameter being 8 inches. Figure 5.8 presents the number of unit cells required for a specific
cardinality; the fabrication time is proportional to this number. As for NB-C analysis,
the pre-computation processes, such as network fabrication and the mass production of
bacteria, are not included in the assessment of the computing time needed to solve SSP for
various cardinalities. The preparation of bacteria for NB-C proceeds once per computation,
with a duration allowing several of these preliminary procedures within 12 hours. Because
the NB-C network encodes a brute force mathematical algorithm for solving SSP, once the
key parameters of the geometry are acquired, e.g., number, type, position of the nodes,
length and widths of the channels, templates for post-processing rectifiers, and “ghost
lanes” [270], the actual design of the planar layout of the biological agents-driven computer

140

can progress entirely automatically, e.g., using lithography design software.

0 5 10 15 20 25 30 35 40 45 50
10−2

106

1014

1022

1030

Cardinality of Input Set

T
ot
al

N
u
m
b
er

of
J
u
n
ct
io
n
s

unit
prime
Fibonacci
exponential

Figure 5.8: Logarithmic scale graph illustrating the total number of junctions that are used
in the network in the NB-C method of [269] for the unit, prime, Fibonacci, and exponential
input sets of different cardinalities, from n = 1 to n = 50. Note that the total number of
junctions grows exponentially for exponential and Fibonacci input sets and grows linearly
for unit input sets.

To further clarify the design procedure: in the SSP network used, a set of a problem with
total sum size ς is encoded in a modular system, i.e., a lattice build from two isomorphic
unit cells. One unit cell type contains a pass junction, where agent traffic lines cross
without interaction, and the other unit cell type has additional split junctions, allowing
a change of traffic direction [202, 269, 270]. The elements si of the set are represented by
one split-junctions-containing unit cell followed by (si − 1) pass-junction-only unit cells.
All elements si of the set represented this way are sequentially ordered to obtain a row of
ς unit cells. This row forms the basis of the network, which is copied (ς − 1) times and
stacked in the direction perpendicular to the row. The concept of this design was presented
in [270]. Note that adding an element in the set results in diagonal upward traffic, whereas

141

skipping an element results in horizontal traffic. As a consequence, only a triangular part
of the rectangular lattice, starting in the bottom-left corner, is needed. This translation of
a set into a triangular network can be fully automated; the time needed scales with ς2.

Note that in case the split lanes in the split junctions unit cell can be optionally blocked.
One type of unit cell can be employed in the whole lattice, allowing all sets of total sum
size ς to be calculated by the same network [202, 269]; this would considerably reduce the
design and fabrication costs for this type of calculation network.

To summarize, the limitations on the pre-computing step of this DNA-C procedure are
the length of synthesizable DNA strands and the number of available restriction enzymes,
while the limitations on the pre-computing step of the NB-C method are the fabrication
resolution and the size of the silicon wafer to be fabricated. Thus, the pre-computing step
limits the size of an SSP instance that can be solved by the DNA-C procedure to at most
n = 45 for unit sets, n = 30 for prime sets, n = 15 for Fibonacci sets, and n = 9 for
exponential sets. Similarly, for the NB-C method used in this comparison, which uses
bacteria as the agents and uses e-beam fabrication, the pre-computing step limits the size
of an SSP instance that can be solved by the NB-C method to at most n = 2000 for unit
sets, n = 37 for prime sets, n = 16 for Fibonacci sets, and n = 10 for exponential sets.

While serious challenges remain, it is important to note that none relate to a current
technological limitation. Even with the present state-of-the-art technologies, there are
several ways to improve performance to scale the computation at a cost. However, for a fair
comparison of the E-C computing time with the computing time of alternative computing
approaches, the time cost for pre-computing and readout procedures is omitted. For this
scaling analysis, we only use information from the experimentally implemented procedures
for solving SSP reported in [102] for DNA-C and [202,269] for NB-C, and the performance
specifications of typical electronic computers for E-C.

5.5.2 Volume comparison

In this section, we compare the maximum physical volume required by the DNA-C, NB-C,
and E-C methods at a given time during the computation of a solution to an SSP instance:
the maximum volume of DNA molecules for the DNA-C procedure, the maximum volume
of biological agents (bacteria) for the NB-C method, and the volume of the computer for
E-C.

For the DNA-C method, the maximum volume of the computation is proportional to
the maximum number of DNA molecules, which is reached during the pre-computing step
and remains constant afterwards. Indeed, the DNA-C procedure generates all 2n potential

142

solutions to an SSP instance of input size n by selectively removing number-representing
“stations” from the computing region of the input set. For this volume calculation, we
make the assumption that each SSP-solution-encoding DNA molecule is present in the
same number of copies, and that wmin denotes the weight of the smallest amount of DNA
detectable on a gel (with current technology, wmin is 1 ng [90,129]). With these assumptions,
the maximum number of molecules that are required during a DNA-C computation can
now be computed, based on the maximum number of the shortest SSP-solution-encoding
DNA molecules that have a total weight of wmin.

To calculate the number of base pairs of a partially double-stranded DNA molecule
with sticky ends, we assume that each base in a sticky end counts as 1

2
base pair. With

this assumption, the length of the shortest computing region of a subset (the empty set)
at the result readout step is L∅

DNA(n) − k (bp). To calculate how many of these shortest
molecules fit into wmin, we use the fact that the weight of linear double-stranded DNA
molecules of length x (bp) is

Wds(x) = 617.96 · (x− 2) + 2 · (617.96 + 18.02) = (617.96 · x + 36.04) (g/mol),

where the average molecular weight of one internal base pair is 617.96 g/mol, and the
average molecular weight of the two bases at an extremity is (617.96 + 18.02) g/mol (this
includes the weight of the additional -OH and -H groups at the ends), see [218]. If the
DNA double strands are circular, then their weight is Wc(x) = 617.96 · x g/mol.

Given that the number of all potential solutions to a given SSP instance of size n is
2n, it follows that the maximum number Nmax

DNA(n) of linear DNA molecules encoding the
computing region of the input set is:

Nmax
DNA(n) =

2n · wmin

Wds(L
∅
DNA(n)− k)

(mol).

It follows that the maximum volume required during the DNA-C procedure equals the
total number Nmax

DNA(n) of plasmids, including the computing regions of the input set S,
multiplied by the weight of one such “fully-stuffed” plasmid and divided by the density of
DNA in the solution:

V max
DNA(n) =

Nmax
DNA(n) ·Wc(b + LS

DNA(n))

d
(mL),

where d is the density of the DNA solution in g/mL, and b is the number of base pairs in
the part of the base plasmid that is used. Taking b = 2,174 bp, k = 6 bp, wmin = 1 · 10−9 g,
and d = 1 · 10−3 g/mL (see [90]), the estimated volumes of DNA molecules in the DNA-C

143

procedure for SSP with unit, prime, Fibonacci, and exponential input sets of different sizes
are shown in Figure 5.9. If we take a 5 L as the maximum size of container that can be
handled in a lab setting, the maximum size of an SSP instance that is solvable with the
DNA-C procedure is n = 28 for unit sets, n = 26 for prime sets, n = 21 for Fibonacci sets,
and n = 17 for exponential sets. Note that this is a theoretical upper limit, and that with
a larger volume additional experimental, difficulties could arise at every step.

0 5 10 15 20 25 30 35 40 45 50
10−11

10−2

107

1016

1025

Cardinality of Input Set

V
ol
u
m
e
[m

L
]

NB-C(agent, all)

NB-C(network, unit)

NB-C(network, prime)

NB-C(network, Fibonacci)

NB-C(network, exponential)

DNA-C(unit)

DNA-C(prime)

DNA-C(Fibonacci)

DNA-C(exponential)

Figure 5.9: The estimated volumes of biological agents (solution of DNA molecules and bac-
teria, respectively) used by the DNA-C and NB-C methods and network channel volumes
used by NB-C to solve an instance of SSP with unit, prime, Fibonacci, and exponential
input sets of different cardinalities, from n = 1 to n = 50 (logarithmic scale). Note that
the agent volume in NB-C is equal for all various SSP instances of the same cardinality.

For NB-C, in the bacterial-driven version, the volume of the computational agents
required for solving a particular cardinality of SSP is dependent on the minimum number
of bacteria needed for solving a specific cardinality. The minimum number of agents
(bacteria) required to solve an SSP instance of cardinality n can be calculated using the

144

Euler coupon collector relation [253], with the Euler-Mascheroni constant γ ≈ 0.577 21, as:

MNB-C(n) = 2 · (2n · ln(2n) + γ · 2n +
1

2
).

A more conservative estimation will use a multiplier of the number provided by Euler’s
relationship for the minimum number of agents to explore the SSP network for a given
cardinality. Furthermore, the higher the error rates in the junctions, the larger the number
of agents needed to solve SSP. According to experimental reports of bacterial errors, i.e.,
0.5 % at the pass junctions of SSP networks, a doubling of the value provided by the Euler
relationship appears as conservatively justified [161, 253, 269]. The graph in Figure 5.9
presents the minimum volume of the required bacteria. A similar calculation can be made
for cytoskeletal filaments, leading to smaller volume of the computational agents. At the
other end of the spectrum, similar calculations can be performed for larger motile species,
e.g., from the Euglena genus, leading to a considerably larger volume of agents. The volume
of agents required during the NB-C approach is

VNB-C(n) =
MNB-C(n)

d
(mL),

where d is the density of the agents in the solution. Taking E. coli as the agent, which
has a density of 2 · 109 cells in 1 mL of culture solution [193], the estimated minimum
volumes of agents required by the NB-C approach for solving SSP instances with unit,
prime, Fibonacci, and exponential input sets of different sizes are shown in Figure 5.9.
This value is equal for solving SSP instances with unit, prime, Fibonacci, and exponential
input sets of the same cardinality.

For NB-C however, apart from the total (bacterial) agent volume needed, there is
the need to also consider the volume of the network channels. This volume is calculated
using the track lengths in all junction unit cells of a network design, multiplied by the
track width and height (for E. coli networks being 2 µm and 4 µm, respectively). For the
compact complexity class II networks, with unit, prime, and Fibonacci input sets, the
network channel volume is expanding moderately with cardinality (Figure 5.9), as many
channels (and exits) will be visited multiple times. However, for the (unary coded) two-
exponential network, (complexity class I, in which sets can only be reached by one route),
the network volume will rapidly increase with cardinality.

For electronic computers, it can be arguably assumed that at the limit, the computing
agents are the electrons. In addition to their very small size, given their sequential pro-
cessing of electronic computers, there is a very small need for “agents,” thus making the
discussion regarding the volume of agents superfluous.

145

To summarize, the maximum physical volume required by the DNA-C and the (bacte-
rial) agents and network volumes required by the NB-C methods to solve an SSP instance
grows exponentially with the size of the input set. The volume required by the DNA-C
algorithm also grows proportionally to the sum of the numbers in the input set. Compared
with the NB-C method, the DNA-C method requires orders of magnitudes larger volumes
even for unit input sets. For example, the NB-C method to solve an SSP instance with an
input set of cardinality of n = 30 requires approximately 1.07 mL of bacteria, while for the
same cardinality the DNA-C method requires 14.7 L for unit sets, 68.8 L for the prime set,
7.54 · 104 L for the Fibonacci set, and 7.44 · 107 L for the exponential set.

5.5.3 Run time comparison

Perhaps the most important performance criterion for comparing various computing meth-
ods for solving NP-complete problems is the computing time required to solve a benchmark
problem. Indeed, one of the goals of the research into alternative computing methods was
to exploit their massive parallelism to shorten the computing time required to solve NP-
complete problems.

The time complexity of a bio-algorithm comprises three parts: the time required for
the pre-computing, the time required by the actual computation step (potential solutions’
generation), and the time needed to read out the results. The time comparison in this
section refers only to the time required during the actual computation step, called thereafter
run time, and excludes the time spent in the pre-computing step (creating the plasmids in
the case of DNA-C, and fabricating the network and culturing the bacteria in the case of
NB-C). Similarly, the time spent for read-out analysis was not included either, because:

• The process is simple if only the existence of an SSP solution is considered.

• The process of finding the actual solutions could in principle be parallelized and thus
achievable with present technologies, depending on cost considerations only.

For the solution generation step of the DNA-C approach, mentioned in Section 5.2, the
DNA-C procedure for solving an SSP instance of size n comprises n split-and-merge steps.
Each such step starts with the digestion of half of the plasmid population by restriction
enzymes to cut out a specific number-encoding “station.” This is followed by purification
by agarose gel electrophoresis to separate and remove the number-encoding “station” short
DNA strands. This is followed, in turn, by the re-ligation of the longer linear strands, which
include the computing region of some subset of the input set, back into circular plasmids.

146

Thus, if te is the time required for one restriction digestion, tp the time required for one
plasmid purification, and tl the time required for one ligation, then the estimated run time
for a DNA-C procedure solving a size n instance of SSP is:

Tmax
DNA(n) = (te + tp + tl) · n (s).

Taking te = 0.5 h (1,800 s), tp = 1.5 h (5,400 s), and tl = 0.25 h (900 s), see [90], this
results in a run time complexity of Tmax

DNA(n) = 8,100 · n (s), as illustrated in Figure 5.10,
for various values of n. Note that the time complexity is always linear, but that larger
restriction digestion time te for some enzymes could increase the constant in its formula.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
10−9

102

1013

1024

1035

Cardinality of Input Set

R
u
n
T
im

e
[s
]

DNA-C(all)

NB-C(unit, (i))

NB-C(prime, (i))

NB-C(Fibonacci, (i))

NB-C(exponential, (i))

NB-C(unit, (ii))

NB-C(prime, (ii))

NB-C(Fibonacci, (ii))

NB-C(exponential, (ii))

E-C(AMD, all)

E-C(Intel, all)

Figure 5.10: The estimated run time required by the DNA-C, NB-C, and E-C methods to
solve an instance of SSP with input sets of different cardinalities, from n = 1 to n = 100
(logarithmic scale). The real run time of NB-C will be in between the curves depicting
scenario (i) (combinatorial run mode) and scenario (ii) (multiplication run mode). Note
that the run time of the DNA-C method grows linearly in the cardinality of the input set,
while the run time of the NB-C and the E-C methods grows exponentially.

147

The total NB-C run time for solving SSP, as a function of cardinality of the input set,
depends on many parameters but can be modelled as a mixture of two extreme run modes
between which the “real world” operation takes place:

(i) The combinatorial run mode [269]: agents enter the network at the starting point
with a fixed booting frequency (determined by the effective agent length in a queue
and the average agent speed) and proceed on their routes to the exits. The total run
time is the time needed to boot all 2n agents (times the coupon collectors correction
for stochastic multiple identical variable combinations [253]), plus the time needed
for a single agent to run from start to exit. For low cardinality problems, the single
agent run time is important; for high cardinality problems, this value is eclipsed by
the booting time needed for all agents to enter the network.

(ii) The optimum multiplication run mode [269]: a single agent enters at the starting
point, and at every split junction there is agent multiplication (cell division). In case
there is only one route to every legal SSP exit (complexity class I network), the total
run time equals the (longest) one-agent run time from start to exit. This would be
the case for the strongly expanding exponential set. More compact networks show
multiple routes to the same exits (complexity class II network). As a consequence,
there will be a rise in traffic density farther down the network; this may lead to
traffic jams. In the “optimistic” scenario here, the agents simply wait until there
is space available to proceed. The total run time is the run time of one agent plus
the time needed to “de-boot” the agents that need to leave the (most-visited) middle
exits of the network, with a fixed “de-booting” frequency (likewise determined by the
effective agent length and average agent speed). Again, at low cardinality, the single
agent run time is important, but for high cardinality problems, this value is eclipsed
by the “de-booting” time needed for the agents to leave the exits in the middle part
of the network.

In the “real world,” cell division will probably not occur at every split junction, and may
slow down at higher traffic density. Regardless, the run time versus cardinality plot for a
given network will be in between the curves of scenarios (i) and (ii) described above, also
shown in Figure 5.10.

To summarize, the run time complexity of the DNA-C procedure, Tmax
DNA(n), is linear

in the problem size n, in contrast with the exponential run time complexity for both the
NB-C and the E-C methods for solving SSP. In addition, the run time required by the
NB-C method also grows linearly in the sum of the numbers in the input set. Overall,
the linear run time complexity of the DNA-C procedure for SSP is its most competitive
feature compared with both NB-C and E-C.

148

5.5.4 Energy comparison

Another key performance criterion, especially for high performance computing, is energy
consumption. The following analysis takes into consideration the pre-computing procedures
or readout energy consumption for none of the three computing methods considered.

In the computation step of the DNA-C procedure, two operations are employed: cutting
by restriction enzymes and pasting by ligase enzymes, as described in Section 2.2. The
restriction enzyme digestion is inexpensive in terms of energy consumption, as no external
energy is needed [272]. However, ligation is energy-intensive, as ligases consume one ATP
(6.3 kcal/mol = 26,359.2 J/mol of energy [63]) per backbone nick-sealing event. Ligating
two DNA double strands together entails two such nick-sealing events, one for each single
strand. Recall that the DNA-C procedure comprises n split-and-merge substeps, and each
substep entails re-ligating half of the plasmids (namely those from which one number-
representing station was cut out). Hence, the energy consumption of the computation step
of the DNA-C procedure for an SSP instance of size n is:

EDNA(n) = n · (1

2
Nmax

DNA(n)) · (2 · 26,359.2) (J).

Note that the energy cost for the computation stage of the DNA-C procedure grows expo-
nentially in the input size n, due to exponential growth of the number of strands Nmax

DNA(n),
as illustrated in Figure 5.11. Note that, while the total energy cost grows exponentially in
the input size n, the DNA-C procedure is very energy efficient when we consider the aver-
age electrical power in watts (energy divided by the run time, analyzed in Section 5.5.3).
Indeed, even though the wattage also grows exponentially with n, for an input set size as
large as n = 50 the wattage needed is only about 20 W, similar to the energy consumption
of an LED light bulb. Note that in order to keep the computation in an optimal reacting
environment (temperature, concentration, etc.), additional energy sources may be required.

For the NB-C energy computation, at a given cardinality we know how many agents are
needed to finish the calculation (including the coupon collector’s correction [253]). We know
the locomotion energy needed for passing one node [269]. Hence, we can easily calculate
the total locomotion energy needed to perform the calculation for the combinatorial run
mode (no cell division, scenario (a) in Section 5.5.3), as shown in Figure 5.11. In the
multiplication run mode (with cell division, scenario (b) in Section 5.5.3), on the one hand,
we are over-calculating the locomotion energy because many agents originate somewhere
in the network and need to run only part of the total track. On the other hand, we fully
ignore the energy needed for agent multiplication (cell division), which is likely to cost
much more than just running several nodes. At present, we do not yet have a proper
energy estimate for the multiplication run mode.

149

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
10−19

10−1

1017

1035

1053

Cardinality of Input Set

E
n
er
gy

[J
]

DNA-C(all)

NB-C(unit, actin myosin)

NB-C(prime, actin myosin)

NB-C(Fibonacci, actin myosin)

NB-C(exponential, actin myosin)

NB-C(unit, E. coli)

NB-C(prime, E. coli)

NB-C(Fibonacci, E. coli)

NB-C(exponential, E. coli)

E-C(AMD, all)

E-C(Intel, all)

Figure 5.11: The energy consumed in the computation step of DNA-C, NB-C, and E-C
methods to solve an instance of SSP with unit, prime, Fibonacci, and exponential input
sets of different cardinalities, from n = 1 to n = 100 (logarithmic scale). Note that the
energy cost of the DNA-C and E-C methods is independent of the type of input set and
depends only on its cardinality, while the energy cost of the NB-C method depends on the
cardinality, the sum of the numbers of the input set, and the type of agent (here E. coli or
actin myosin).

Finally, the energy required by an E-C method to solve SSP can be easily calculated as
the product between the number of operations required by the E-C procedure for solving a
particular instance of SSP and the energy cost per operation from the chip specifications.

To summarize, the energy cost of the computation step for DNA-C, NB-C, and E-
C grows exponentially with the size of the input set. Moreover, the energy cost in the
computation step of the NB-C method also increases linearly in the sum of the numbers
in the input set. Overall, NB-C appears to be more energy efficient than DNA-C in
some cases (unit and prime input sets). In other cases (Fibonacci and exponential input
sets), NB-C consumes more energy than DNA-C, increasingly so with the increase of the

150

input set cardinality and regardless of the agents used. However, despite the energy cost
being high for NB-C in some cases, we note that bacteria can self-produce the ATP from
cheaply available nutrient sources like beef extract, yeast extract, and tryptone, while for
DNA-C the ATP has to be externally supplied as a purified additive. Hence, in a way,
bacterial-based NB-C is more self-sustainable [116], despite its sometimes high energy cost
compared to DNA-C. Finally, E-C appears to be an order of magnitude less energy efficient
than DNA-C.

5.6 Conclusion

Our analysis showed that the sequentiality of E-C translated in a very small volume com-
pared to that required by DNA-C and NB-C, at the cost of the E-C computing time being
outperformed first by DNA-C (linear run time), and then by NB-C. Finally, NB-C appears
to be more energy efficient than DNA-C for some types of input sets, while being less
energy efficient than DNA-C for other types of input sets, while E-C is always an order of
magnitude less energy efficient than DNA-C.

This scaling study suggests that currently none of these computing approaches won,
even theoretically, for all three key performance criteria, and that they all required break-
throughs to overcome their limitations.

151

Chapter 6

Conclusions

We conclude this thesis by reviewing its contributions and suggesting future research topics.

This thesis investigated three inter-related topics of DNA computing: formal language
models of two DNA computing bio-operations (Chapter 3), concepts in combinatorics of
words that capture the properties of information encoded by DNA strands (Chapter 4), and
a comparison between the time, space, and energy complexities of experimental implemen-
tations of DNA computing, network biocomputing, and electronic computing algorithms
for solving the subset sum problem (Chapter 5).

In Chapter 3, we defined the operation called word blending, where the input words
are αwγ1 and γ2wβ sharing a non-empty overlap w, and the output word is αwβ. This
operation was motivated by an unexpected outcome of a wet lab experiment that attempted
to recombine two DNA molecules containing the same gene. We studied closure properties
of the Chomsky families of languages under this operation and its iterated version, the
decidability of the existence of a solution to equations involving this operation, and the
state complexity of this operation. We then defined and studied conjugate word blending,
which is more closely related to XPCR experimental details, where γ1 and γ2 are required
to be identical and non-empty. In the future, we can consider variations of word blending
where a length restriction on parts of the input words is imposed.

In Chapter 4, a unified terminology for various definitions of Fibonacci words in the
literature was proposed. It was then generalized to involutive Fibonacci words motivated
by Watson-Crick complementarity. We have shown the borderedness and ϕ-borderedness of
involutive Fibonacci words under various conditions and the primitivity of atom involutive
Fibonacci words defined with different (anti)morphic involutions. Future research topics

152

include the ϕ-primitivity of involutive Fibonacci words and their combinatorial properties,
such as the number of distinct factors and squares.

In Chapter 5, the experimental implementations of DNA computing (DNA-C), network
biocomputing (NB-C), and electronic computing (E-C) algorithms for solving the subset
sum problem were reviewed and compared. Our scaling analysis showed that none of DNA-
C, NB-C, and E-C approaches won for all of the time, space, and energy complexities, and
they all had their limitations and trade-offs. In the future, a similar analysis can be
applied to other NP-complete problems, and we can work on a hybrid computation model
that combines the advantages of different approaches.

153

References

[1] M. D. Abràmoff, P. J. Magalhães, and S. J. Ram. Image processing with ImageJ.
Biophotonics International, 11(7):36–42, 2004.

[2] R. Adar, Y. Benenson, G. Linshiz, A. Rosner, N. Tishby, and E. Shapiro. Stochastic
computing with biomolecular automata. Proceedings of the National Academy of
Sciences, 101(27):9960–9965, 2004.

[3] L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266(5187):1021–1024, 1994.

[4] L. M. Adleman. Computing with DNA. Scientific American, 279(2):54–61, 1998.

[5] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[7] Y. Aoi, T. Yoshinobu, K. Tanizawa, K. Kinoshita, and H. Iwasaki. Solution of the
knapsack problem by deoxyribonucleic acid computing. Japanese Journal of Applied
Physics, 37(10R):5839–5841, 1998.

[8] Y. Aoi, T. Yoshinobu, K. Tanizawa, K. Kinoshita, and H. Iwasaki. Ligation errors
in DNA computing. Biosystems, 52(1):181–187, 1999.

[9] M. Arita and S. Kobayashi. DNA sequence design using templates. New Generation
Computing, 20(3):263–277, 2002.

[10] S. A. Babu and P. K. Pandya. Chop expressions and discrete duration calculus.
In D. D’Souza and P. Shankar, editors, Modern Applications of Automata Theory,
volume 2 of IISc Research Monographs Series, pages 229–256. World Scientific, 2012.

154

[11] W. M. Barnes. PCR amplification of up to 35-kb DNA with high fidelity and high
yield from lambda bacteriophage templates. Proceedings of the National Academy of
Sciences, 91(6):2216–2220, 1994.

[12] A. D. Bates and A. Maxwell. DNA Topology. Oxford University Press, 2005.

[13] J. Baumgardner et al. Solving a Hamiltonian path problem with a bacterial computer.
Journal of Biological Engineering, 3(11):1–11, 2009.

[14] F. Bellamoli. Production of Gene Libraries by Multiple XPCR. Master’s thesis,
Department of Biotechnology, University of Verona, 2013.

[15] F. Bellamoli, G. Franco, L. Kari, S. Lampis, T. Ng, and Z. Wang. Conjugate word
blending: Formal model and experimental implementation by XPCR. Natural Com-
puting, 20(4):647–658, 2021.

[16] Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule
provides a computing machine with both data and fuel. Proceedings of the National
Academy of Sciences, 100(5):2191–2196, 2003.

[17] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular
computer for logical control of gene expression. Nature, 429(6990):423–429, 2004.

[18] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Pro-
grammable and autonomous computing machine made of biomolecules. Nature,
414(6862):430–444, 2001.

[19] J. Berstel. Mots de Fibonacci. In Séminaire d’Informatique Théorique, pages 57–78.
Rapport L.I.T.P., 1980.

[20] J. Berstel. Axel Thue’s Papers on Repetitions in Words: A Translation.
Départements de mathématiques et d’informatique, Université du Québec à
Montréal, 1995.

[21] J. Berstel. On the index of Sturmian words. In J. Karhumäki, H. Maurer, et al.,
editors, Jewels are Forever: Contributions on Theoretical Computer Science in Honor
of Arto Salomaa, pages 287–294. Springer, 1999.

[22] S. Bhat, D. Bialy, J. E. Sealy, J.-R. Sadeyen, P. Chang, and M. Iqbal. A ligation and
restriction enzyme independent cloning technique: An alternative to conventional
methods for cloning hard-to-clone gene segments in the influenza reverse genetics
system. Virology Journal, 17(82):1–9, 2020.

155

[23] R. A. Bierley, G. J. Rixen, A. I. Tröster, and W. W. Beatty. Preserved spatial
memory in old rats survives 10 months without training. Behavioral and Neural
Biology, 45(2):223–229, 1986.

[24] E. Bombieri and J. E. Taylor. Which distributions of matter diffract? An initial
investigation. Journal de Physique Colloques, 47(C3):19–28, 1986.

[25] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. M. Adle-
man. Solution of a 20-variable 3-SAT problem on a DNA computer. Science,
296(5567):499–502, 2002.

[26] R. S. Braich, C. Johnson, P. W. K. Rothemund, D. Hwang, N. Chelyapov, and L. M.
Adleman. Solution of a satisfiability problem on a gel-based DNA computer. In
A. Condon and G. Rozenberg, editors, Proceedings of 6th International Workshop on
DNA-Based Computers (DNA 2000), volume 2054 of LNCS, pages 27–42. Springer,
2001.

[27] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. On modularity clustering. IEEE Transactions on Knowledge and Data Engi-
neering, 20(2):172–188, 2008.

[28] K. Břinda, E. Pelantová, and O. Turek. Balances of m-bonacci words. Fundamenta
Informaticae, 132(1):33–61, 2014.

[29] L. Brody. Nucleotide. National Human Genome Research Institute, 2022. Retrieved
August 2, 2022, from https://www.genome.gov/genetics-glossary/Nucleotide.

[30] J. A. Brzozowski. In search of most complex regular languages. International Journal
of Foundations of Computer Science, 24(6):691–708, 2013.

[31] J. A. Brzozowski, L. Kari, B. Li, and M. Szyku la. State complexity of overlap
assembly. International Journal of Foundations of Computer Science, 31(8):1113–
1132, 2020.

[32] A. Buatois and M. Lihoreau. Evidence of trapline foraging in honeybees. Journal of
Experimental Biology, 219(16):2426–2429, 2016.

[33] C. Câmpeanu, K. Culik, K. Salomaa, and S. Yu. State complexity of basic operations
on finite languages. In O. Boldt and H. Jürgensen, editors, Proceedings of 4th In-
ternational Workshop on Implementing Automata (WIA 99), volume 2214 of LNCS,
pages 60–70. Springer, 2001.

156

[34] C. Câmpeanu and W. H. Ho. The maximum state complexity for finite languages.
Journal of Automata, Languages and Combinatorics, 9(2–3):189–202, 2004.

[35] A. Carausu and G. Păun. String intersection and short concatenation. Revue
Roumaine de Mathématiques Pures et Appliquées, 26(5):713–726, 1981.

[36] R. Ceterchi. An algebraic characterization of semi-simple splicing. Fundamenta
Informaticae, 72(1–2):19–25, 2006.

[37] S. Chandak et al. Overcoming high nanopore basecaller error rates for DNA storage
via basecaller-decoder integration and convolutional codes. In Proceedings of 2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2020), pages 8822–8826. IEEE, 2020.

[38] W.-L. Chang, M. S.-H. Ho, and M. Guo. Molecular solutions for the subset-sum
problem on DNA-based supercomputing. Biosystems, 73(2):117–130, 2004.

[39] J. Chao et al. Solving mazes with single-molecule DNA navigators. Nature Materials,
18(3):273–279, 2019.

[40] G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips, and G. Seelig. A spatially
localized architecture for fast and modular DNA computing. Nature Nanotechnology,
12(9):920–927, 2017.

[41] D. Cheptea, C. Martın-Vide, and V. Mitrana. A new operation on words suggested
by DNA biochemistry: Hairpin completion. In J.-G. Dumas, editor, Proceedings of
Transgressive Computing 2006 (TC 2006), pages 105–114, 2006.

[42] K. M. Cherry and L. Qian. Scaling up molecular pattern recognition with DNA-based
winner-take-all neural networks. Nature, 559(7714):370–376, 2018.

[43] D.-J. Cho, Y.-S. Han, S.-D. Kang, H. Kim, S.-K. Ko, and K. Salomaa. Pseudo-
inversion: Closure properties and decidability. Natural Computing, 15(1):31–39, 2016.

[44] D.-J. Cho, Y.-S. Han, H. Kim, A. Palioudakis, and K. Salomaa. Duplications and
pseudo-duplications. In C. S. Calude and M. J. Dinneen, editors, Proceedings of 14th
International Conference on Unconventional Computation and Natural Computation
(UCNC 2015), volume 9252 of LNCS, pages 157–168. Springer, 2015.

[45] D.-J. Cho, Y.-S. Han, H. Kim, and K. Salomaa. Site-directed deletion. In M. Hoshi
and S. Seki, editors, Proceedings of 22nd International Conference on Developments

157

in Language Theory (DLT 2018), volume 11088 of LNCS, pages 219–230. Springer,
2018.

[46] D.-J. Cho, Y.-S. Han, T. Ng, and K. Salomaa. Outfix-guided insertion. Theoretical
Computer Science, 701:70–84, 2017.

[47] D.-J. Cho, Y.-S. Han, K. Salomaa, and T. J. Smith. Site-directed insertion: Language
equations and decision problems. Theoretical Computer Science, 798:40–51, 2019.

[48] N. Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137–167, 1959.

[49] W.-F. Chuan. Fibonacci words. Fibonacci Quarterly, 30(1):68–76, 1992.

[50] W.-F. Chuan. Symmetric Fibonacci words. Fibonacci Quarterly, 31(3):251–255,
1993.

[51] W.-F. Chuan. Generating Fibonacci words. Fibonacci Quarterly, 33(2):104–112,
1995.

[52] A. Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, 58(2):345–363, 1936.

[53] C. T. Clelland, V. Risca, and C. Bancroft. Hiding messages in DNA microdots.
Nature, 399(6736):533–534, 1999.

[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT press, 4th edition, 2022.

[55] E. Csuhaj-Varjú, I. Petre, and G. Vaszil. Self-assembly of strings and languages.
Theoretical Computer Science, 374(1–3):74–81, 2007.

[56] M. Daley, O. H. Ibarra, and L. Kari. Closure and decidability properties of some
language classes with respect to ciliate bio-operations. Theoretical Computer Science,
306(1–3):19–38, 2003.

[57] J. Dassow. A ciliate bio-operation and language families. In C. S. Calude, E. Calude,
et al., editors, Proceedings of 8th International Conference on Developments in Lan-
guage Theory (DLT 2004), volume 3340 of LNCS, pages 151–162. Springer, 2004.

[58] J. Dassow, V. Mitrana, and G. Păun. On the regularity of duplication closure.
Bulletin of the European Association for Theoretical Computer Science, 69:133–136,
1999.

158

[59] J. Dassow, V. Mitrana, and A. Salomaa. Operations and language generating devices
suggested by the genome evolution. Theoretical Computer Science, 270(1):701–738,
2002.

[60] A. de Luca. A combinatorial property of the Fibonacci words. Information Processing
Letters, 12(4):193–195, 1981.

[61] A. de Luca. A division property of the Fibonacci word. Information Processing
Letters, 54(6):307–312, 1995.

[62] S. Di Gregorio, C. Zocca, S. Sidler, A. Toffanin, D. Lizzari, and G. Vallini. Identifi-
cation of two new sets of genes for dibenzothiophene transformation in Burkholderia
sp. DBT1. Biodegradation, 15:111–123, 2004.

[63] K. S. Dickson, C. M. Burns, and J. P. Richardson. Determination of the free-energy
change for repair of a DNA phosphodiester bond. Journal of Biological Chemistry,
275(21):15828–15831, 2000.

[64] C. W. Dieffenbach and G. S. Dveksler, editors. PCR Primer: A Laboratory Manual.
Cold Spring Harbor Laboratory Press, 2nd edition, 2003.

[65] M. Domaratzki. Semantic shuffle on and deletion along trajectories. In C. S. Calude,
E. Calude, et al., editors, Proceedings of 8th International Conference on Devel-
opments in Language Theory (DLT 2004), volume 3340 of LNCS, pages 163–174.
Springer, 2005.

[66] M. Domaratzki. Minimality in template-guided recombination. Information and
Computation, 207(11):1209–1220, 2009.

[67] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

[68] X. Droubay. Palindromes in the Fibonacci word. Information Processing Letters,
55(4):217–221, 1995.

[69] C. F. Du, H. Mousavi, E. Rowland, L. Schaeffer, and J. O. Shallit. Decision algo-
rithms for Fibonacci-automatic words, II: Related sequences and avoidability. The-
oretical Computer Science, 657:146–162, 2017.

[70] L. Eeckhout. Is Moore’s law slowing down? What’s next? IEEE Micro, 37(4):4–5,
2017.

159

[71] K. Ellul. Description Complexity Measures of Regular Languages. Master’s thesis,
David R. Cheriton School of Computer Science, University of Waterloo, 2003.

[72] S. K. Enaganti, O. H. Ibarra, L. Kari, and S. Kopecki. Further remarks on DNA
overlap assembly. Information and Computation, 253:143–154, 2017.

[73] S. K. Enaganti, O. H. Ibarra, L. Kari, and S. Kopecki. On the overlap assembly of
strings and languages. Natural Computing, 16:175–185, 2017.

[74] S. K. Enaganti, L. Kari, and S. Kopecki. A formal language model of DNA poly-
merase enzymatic activity. Fundamenta Informaticae, 138(1-2):179–192, 2015.

[75] S. K. Enaganti, L. Kari, T. Ng, and Z. Wang. Word blending in formal languages:
The Brangelina effect. In S. Stepney and S. Verlan, editors, Proceedings of 17th
International Conference on Unconventional Computation and Natural Computation
(UCNC 2018), volume 10867 of LNCS, pages 72–85. Springer, 2018.

[76] S. K. Enaganti, L. Kari, T. Ng, and Z. Wang. Word blending in formal languages.
Fundamenta Informaticae, 171(1-4):151–173, 2020.

[77] Z. Ezziane. DNA computing: Applications and challenges. Nanotechnology,
17(2):R27–39, 2005.

[78] C.-M. Fan and H. J. Shyr. Some properties of Fibonacci languages. Tamkang Journal
of Mathematics, 27(2):165–182, 1996.

[79] G. Fici. Factorizations of the Fibonacci infinite word. Journal of Integer Sequences,
18(9):1–14, 2015.

[80] A. S. Fraenkel. Complexity of protein folding. Bulletin of Mathematical Biology,
55(6):1199–1210, 1993.

[81] A. S. Fraenkel and J. Simpson. The exact number of squares in Fibonacci words.
Theoretical Computer Science, 218(1):95–106, 1999.

[82] G. Franco. A polymerase based algorithm for SAT. In M. Coppo, E. Lodi, et al., edi-
tors, Proceedings of 9th Italian Conference on Theoretical Computer Science (ICTCS
2005), volume 3701 of LNCS, pages 237–250. Springer, 2005.

[83] G. Franco, F. Bellamoli, and S. Lampis. Experimental analysis of XPCR-based
protocols. arXiv preprint arXiv:1712.05182, 2017.

160

[84] G. Franco, C. Giagulli, C. Laudanna, and V. Manca. DNA extraction by XPCR. In
C. Ferretti, G. Mauri, et al., editors, Proceedings of 10th International Workshop on
DNA Computing (DNA 10), volume 3384 of LNCS, pages 104–112, 2005.

[85] G. Franco and V. Manca. Algorithmic applications of XPCR. Natural Computing,
10(2):805–819, 2011.

[86] G. Franco, V. Manca, C. Giagulli, and C. Laudanna. DNA recombination by XPCR.
In A. Carbone and N. A. Pierce, editors, Proceedings of 11th International Workshop
on DNA Computing (DNA 11), volume 3892 of LNCS, pages 55–66. Springer, 2006.

[87] M. Garzon, P. Neathery, R. Deaton, R. C. Murphy, D. R. Franceschetti, and
S. Stevens Jr. A new metric for DNA computing. In J. R. Koza, K. Deb, et al.,
editors, Proceedings of 2nd Annual Conference on Genetic Programming, volume 32,
pages 472–478. Morgan Kaufman, 1997.

[88] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier, 1975.

[89] J. S. Golan. The Theory of Semirings with Applications in Mathematics and Theo-
retical Computer Science. Addison-Wesley, 1992.

[90] M. R. Green and J. Sambrook. Molecular Cloning: A Laboratory Manual. Cold
Spring Harbor Laboratory Press, 4th edition, 2012.

[91] S. T. Gries. Shouldn’t it be breakfunch? A quantitative analysis of blend structure
in English. Linguistics, 42(3):639–667, 2004.

[92] M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, and S. Yokoyama. Towards parallel
evaluation and learning of boolean µ-formulas with molecules. In H. Rubin and
D. H. Wood, editors, Proceedings of DIMACS Workshop DNA Based Computers III,
volume 48 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 57–72. American Mathematical Society, 1999.

[93] Y.-S. Han and K. Salomaa. State complexity of union and intersection of finite
languages. International Journal of Foundations of Computer Science, 19(3):581–
595, 2008.

[94] K. L. Hanson, D. V. Nicolau Jr., L. Filipponi, L. Wang, A. P. Lee, and D. V.
Nicolau. Fungi use efficient algorithms for the exploration of microfluidic networks.
Small, 2(10):1212–1220, 2006.

161

[95] T. Head. Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759,
1987.

[96] T. Head, G. Păun, and D. Pixton. Language theory and molecular genetics: Genera-
tive mechanisms suggested by DNA recombination. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 2, pages 295–360. Springer, 1997.

[97] T. Head, G. Rozenberg, R. S. Bladergroen, C. K. D. Breek, P. H. M. Lommerse,
and H. P. Spaink. Computing with DNA by operating on plasmids. Biosystems,
57(2):87–93, 2000.

[98] M. Held, M. Binz, C. Edwards, and D. V. Nicolau. Dynamic behaviour of fungi in
microfluidics: A comparative study. In D. L. Farkas, D. V. Nicolau, et al., editors,
Proceedings of the Imaging, Manipulation, and Analysis of Biomolecules, Cells, and
Tissues VII (SPIE 7182), page 718213. SPIE, 2009.

[99] M. Held, C. Edwards, and D. V. Nicolau. Probing the growth dynamics of Neurospora
crassa with microfluidic structures. Fungal Biology, 115(6):493–505, 2011.

[100] M. Held, O. Kašpar, C. Edwards, and D. V. Nicolau. Intracellular mechanisms of
fungal space searching in microenvironments. Proceedings of the National Academy
of Sciences, 116(27):13543–13552, 2019.

[101] R. B. Helling, H. M. Goodman, and H. W. Boyer. Analysis of endonuclease R·EcoRI
fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel
electrophoresis. Journal of Virology, 14(5):1235–1244, 1974.

[102] C. V. Henkel, T. Bäck, J. N. Kok, G. Rozenberg, and H. P. Spaink. DNA computing
of solutions to knapsack problems. Biosystems, 88(1–2):156–162, 2007.

[103] C. V. Henkel, R. S. Bladergroen, C. I. A. Balog, A. M. Deelder, T. Head, G. Rozen-
berg, and H. P. Spaink. Protein output for DNA computing. Natural Computing,
4(1):1–10, 2005.

[104] P. M. Higgins. The naming of Popes and a Fibonacci sequence in two noncommuting
indeterminates. Fibonacci Quarterly, 25(1):57–61, 1987.

[105] O. Ho-Shing, K. H. Lau, W. Vernon, T. T. Eckdahl, and A. M. Campbell. Assembly
of standardized DNA parts using BioBrick ends in E. coli. In J. Peccoud, editor, Gene
Synthesis: Methods and Protocols, volume 852 of Methods in Molecular Biology, pages
61–76. Humana Press, 2012.

162

[106] M. Holzer and S. Jakobi. Chop operations and expressions: Descriptional complexity
considerations. In G. Mauri and A. Leporati, editors, Proceedings of 15th Interna-
tional Conference on Developments in Language Theory (DLT 2011), volume 6795
of LNCS, pages 264–275. Springer, 2011.

[107] M. Holzer and S. Jakobi. State complexity of chop operations on unary and finite
languages. In M. Kutrib, N. Moreira, et al., editors, Proceedings of 14th International
Workshop on Descriptional Complexity of Formal Systems (DCFS 2012), volume
7386 of LNCS, pages 169–182. Springer, 2012.

[108] M. Holzer, S. Jakobi, and M. Kutrib. The chop of languages. Theoretical Computer
Science, 682:122–137, 2017.

[109] M. Holzer and M. Kutrib. State complexity of basic operations on nondeterministic
finite automata. In J.-M. Champarnaud and D. Maurel, editors, Proceedings of 7th
International Conference on Implementation and Application of Automata (CIAA
2002), volume 2608 of LNCS, pages 148–157. Springer, 2003.

[110] M. Holzer and M. Kutrib. Unary language operations and their nondeterministic
state complexity. In M. Ito and M. Toyama, editors, Proceedings of 6th International
Conference on Developments in Language Theory (DLT 2002), volume 2450 of LNCS,
pages 162–172. Springer, 2003.

[111] C. M. Hommelsheim, L. Frantzeskakis, M. Huang, and B. Ülker. PCR amplification
of repetitive DNA: A limitation to genome editing technologies and many other
applications. Scientific Reports, 4(5052):1–13, 2015.

[112] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 3rd edition, 2006.

[113] J. J. Hopfield and D. W. Tank. “Neural” computation of decisions in optimization
problems. Biological Cybernetics, 52(3):141–152, 1985.

[114] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golesta-
nian. Self-motile colloidal particles: From directed propulsion to random walk. Phys-
ical Review Letters, 99(4):048102, 2007.

[115] H.-K. Hsiao and S.-S. Yu. Mapped shuffled Fibonacci languages. Fibonacci Quarterly,
41(5):421–430, 2003.

163

[116] P. Hunter. Can bacteria save the planet? New developments in systems biology and
biotechnology to harness bacteria for renewable energy and environmental regenera-
tion. EMBO Reports, 11(4):266–269, 2010.

[117] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on computing, 17(5):935–938, 1988.

[118] M. Ito. Algebraic Theory of Automata and Languages. World Scientific, 2004.

[119] M. Ito, L. Kari, Z. Kincaid, and S. Seki. Duplication in DNA sequences. In A. Con-
don, D. Harel, et al., editors, Algorithmic Bioprocesses, Natural Computing Series,
pages 43–61. Springer, 2009.

[120] M. Ito, P. Leupold, F. Manea, and V. Mitrana. Bounded hairpin completion. Infor-
mation and Computation, 209(3):471–485, 2011.

[121] M. Ito, P. Leupold, and K. Shikishima-Tsuji. Closure of language classes under
bounded duplication. In O. H. Ibarra and Z. Dang, editors, Proceedings of 10th
International Conference on Developments in Language Theory (DLT 2006), volume
4036 of LNCS, pages 238–247. Springer, 2006.

[122] M. Ito and G. Lischke. Generalized periodicity and primitivity for words. Mathe-
matical Logic Quarterly, 53(1):91–106, 2007.

[123] H. Iwai. End of the scaling theory and Moore’s law. In Y.-L. Jiang, X.-P. Qu, et al.,
editors, Proceedings of 16th International Workshop on Junction Technology (IWJT
2016), pages 1–4. IEEE, 2016.

[124] S. Jiang and S. Granick. Janus Particle Synthesis, Self-Assembly and Applications.
Royal Society of Chemistry, 2012.

[125] J. Jirásek, G. Jirásková, and A. Szabzri. State complexity of concatenation and com-
plementation. International Journal of Foundations of Computer Science, 16(3):511–
529, 2005.

[126] G. Jirásková. State complexity of some operations on binary regular languages.
Theoretical Computer Science, 330(2):287–298, 2005.

[127] G. Jirásková. On the state complexity of complements, stars, and reversals of regular
languages. In M. Ito and M. Toyama, editors, Proceedings of 12th International
Conference on Developments in Language Theory (DLT 2008), volume 5257 of LNCS,
pages 431–442. Springer, 2008.

164

[128] G. Jirásková. Concatenation of regular languages and descriptional complexity. The-
ory of Computing Systems, 49:306–318, 2011.

[129] B. G. Johansson. Agarose gel electrophoresis. Scandinavian Journal of Clinical and
Laboratory Investigation, 29(sup124):7–19, 1972.

[130] C. R. Johnson. Automating the DNA computer: Solving n-variable 3-SAT problems.
In C. Mao and T. Yokomori, editors, Proceedings of 12th International Meeting on
DNA Computing (DNA 2006), volume 4287 of LNCS, pages 360–373. Springer, 2006.

[131] J. Jones and A. Adamatzky. Computation of the travelling salesman problem by a
shrinking blob. Natural Computing, 13(1):1–16, 2014.

[132] N. Jonoska, D. Kephart, and K. Mahalingam. Generating codes for DNA computing.
Congressus Numerantium, 156:99–110, 2002.

[133] N. Jonoska and K. Mahalingam. Languages of DNA based code words. In J. Chen and
J. Reif, editors, Proceedings of 9th International Workshop on DNA Based Computers
(DNA 9), volume 2943 of LNCS, pages 61–73. Springer, 2004.

[134] E. Kalle, M. Kubista, and C. Rensing. Multi-template polymerase chain reaction.
Biomolecular Detection and Quantification, 2:11–29, 2014.

[135] A. Kameda, M. Yamamoto, A. Ohuchi, S. Yaegashi, and M. Hagiya. Unravel four
hairpins! Natural Computing, 7:287–298, 2008.

[136] T. Kanagawa. Bias and artifacts in multitemplate polymerase chain reactions (PCR).
Journal of Bioscience and Bioengineering, 96(4):317–323, 2003.

[137] P. D. Kaplan, Q. Ouyang, D. S. Thaler, and A. Libchaber. Parallel overlap assembly
for the construction of computational DNA libraries. Journal of Theoretical Biology,
188(3):333–341, 1997.

[138] J. Karhumäki. On cube-free ω-words generated by binary morphisms. Discrete
Applied Mathematics, 5(3):279–297, 1983.

[139] L. Kari. On Insertion and Deletion in Formal Languages. PhD thesis, University of
Turku, 1991.

[140] L. Kari. Deletion operations: Closure properties. International Journal of Computer
Mathematics, 52(1-2):23–42, 1994.

165

[141] L. Kari. On language equations with invertible operations. Theoretical Computer
Science, 132(1-2):129–150, 1994.

[142] L. Kari, R. Kitto, and G. Thierrin. Codes, involutions, and DNA encodings. In
W. Brauer, H. Ehrig, et al., editors, Formal and Natural Computing: Essays Dedi-
cated to Grzegorz Rozenberg, volume 2300 of LNCS, pages 376–393. Springer, 2002.

[143] L. Kari and S. Konstantinidis. Language equations, maximality and error-detection.
Journal of Computer and System Sciences, 70(1):157–178, 2005.

[144] L. Kari, S. Konstantinidis, and P. Sośık. Bond-free languages: Formalizations, maxi-
mality and construction methods. International Journal of Foundations of Computer
Science, 16(5):1039–1070, 2005.

[145] L. Kari, M. S. Kulkarni, K. Mahalingam, and Z. Wang. Involutive Fibonacci words.
Journal of Automata, Languages and Combinatorics, 26(3–4):255–280, 2021.

[146] L. Kari and E. Losseva. Block substitutions and their properties. Fundamenta
Informaticae, 73(1):165–178, 2006.

[147] L. Kari and K. Mahalingam. Involutively bordered words. International Journal of
Foundations of Computer Science, 18(5):1089–1106, 2007.

[148] L. Kari and K. Mahalingam. Watson-Crick conjugate and commutative words. In
M. H. Garzon and H. Yan, editors, Proceedings of 13th International Meeting on
DNA computing (DNA 13), volume 4848 of LNCS, pages 273–283. Springer, 2008.

[149] L. Kari, K. Mahalingam, P. Pandoh, and Z. Wang. Primitivity of atom Watson-Crick
Fibonacci words. Journal of Automata, Languages and Combinatorics, 27(1–3):151–
178, 2022.

[150] L. Kari, G. Păun, G. Rozenberg, A. Salomaa, and S. Yu. DNA computing, sticker
systems, and universality. Acta Informatica, 35(5):401–420, 1998.

[151] L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of DNA computing and
formal languages: Characterizing recursively enumerable languages using insertion-
deletion systems. In H. Rubin and D. H. Wood, editors, Proceedings of DIMACS
Workshop DNA Based Computers III, volume 48 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 329–346, 1999.

[152] L. Kari and P. Sośık. On the weight of universal insertion grammars. Theoretical
Computer Science, 396(1):264–270, 2008.

166

[153] L. Kari and G. Thierrin. Contextual insertions/deletions and computability. Infor-
mation and Computation, 131(1):47–61, 1996.

[154] L. Kari and G. Thierrin. Maximal and minimal solutions to language equations.
Journal of Computer and System Sciences, 53(3):487–496, 1996.

[155] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W.
Thatcher, et al., editors, Proceedings of a Symposium on the Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer, 1972.

[156] H. Kim and Y.-S. Han. Non-overlapping inversion on strings and languages. Theo-
retical Computer Science, 592:9–22, 2015.

[157] L. B. Kish. Moore’s law and the energy requirement of computing versus performance.
IEE Proceedings—Circuits, Devices and Systems, 151(2):190–194, 2004.

[158] B. Kjos-Hanssen. Automatic complexity of Fibonacci and Tribonacci words. Discrete
Applied Mathematics, 289:446–454, 2021.

[159] D. E. Knuth. The Art of Computer Programming (Volume 1: Fundamental Algo-
rithms). Addison-Wesley, 1st edition, 1968.

[160] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323–350, 1977.

[161] J. E. Kobza, S. H. Jacobson, and D. E. Vaughan. A survey of the coupon collec-
tor’s problem with random sample sizes. Methodology and Computing in Applied
Probability, 9(4):573–584, 2007.

[162] S. Kopecki. On iterated hairpin completion. Theoretical Computer Science,
412(29):3629–3638, 2011.

[163] S. Kosuri and G. M. Church. Large-scale de novo DNA synthesis: Technologies and
applications. Nature Methods, 11(5):499–507, 2014.

[164] S. Kuroda. Classes of languages and linear-bounded automata. Information and
Control, 7(2):207–223, 1964.

[165] L. F. Landweber and L. Kari. Universal molecular computation in ciliates. In L. F.
Landweber and E. Winfree, editors, Proceedings of DIMACS Workshop Evolution as
Computation, Natural Computing Series, pages 257–274. Springer, 2002.

167

[166] P. S. Landweber. Three theorems on phrase structure grammars of type 1. Informa-
tion and Control, 6(2):131–136, 1963.

[167] P. Y. Lee, J. Costumbrado, C.-Y. Hsu, and Y. H. Kim. Agarose gel electrophoresis for
the separation of DNA fragments. Journal of Visualized Experiments, 62(3923):1–5,
2012.

[168] L. Liu, Y. Song, H. Zhang, H. Ma, and A. V. Vasilakos. Physarum optimization: A
biology-inspired algorithm for the steiner tree problem in networks. IEEE Transac-
tions on Computers, 64(3):818–831, 2015.

[169] Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA
computing on surfaces. Nature, 403(6766):175–179, 2000.

[170] Z. Liu, R. W. Deibler, H. S. Chan, and L. Zechiedrich. The why and how of DNA
unlinking. Nucleic Acids Research, 37(3):661–671, 2009.

[171] K. S. Lundberg, D. D. Shoemaker, M. W. Adams, J. M. Short, J. A. Sorge, and E. J.
Mathur. High-fidelity amplification using a thermostable DNA polymerase isolated
from Pyrococcus furiosus. Gene, 108(1):1–6, 1991.

[172] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group.
Michigan Mathematical Journal, 9:289–298, 1962.

[173] O. A. S. Lyon and K. Salomaa. Nondeterministic state complexity of site-directed
deletion. In P. Caron and L. Mignot, editors, Proceedings of 26th International
Conference on Implementation and Application of Automata (CIAA 2022), volume
13266 of LNCS, pages 189–199. Springer, 2022.

[174] K. Mahalingam, A. Maity, P. Pandoh, and R. Raghavan. Block reversal on finite
words. Theoretical Computer Science, 894:135–151, 2021.

[175] V. Manca and G. Franco. Computing by polymerase chain reaction. Mathematical
Biosciences, 211(2):282–298, 2008.

[176] F. Manea, C. Mart́ın-Vide, and V. Mitrana. Hairpin lengthening: Language theoretic
and algorithmic results. Journal of Logic and Computation, 25(4):987–1009, 2015.

[177] F. Manea, R. Mercas, and V. Mitrana. Hairpin lengthening and shortening of reg-
ular languages. In H. Bordihn, M. Kutrib, et al., editors, Languages Alive: Essays
Dedicated to Jürgen Dassow on the Occasion of His 65th Birthday, volume 7300 of
LNCS, pages 145–159. Springer, 2012.

168

[178] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In S. B.
Cooper, B. Löwe, et al., editors, Proceedings of 3rd Conference on Computability in
Europe (CiE 2007), volume 4497 of LNCS, pages 532–541. Springer, 2007.

[179] F. Manea, V. Mitrana, and T. Yokomori. Two complementary operations inspired
by the DNA hairpin formation: Completion and reduction. Theoretical Computer
Science, 410(4):417–425, 2009.

[180] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407(6803):493–
496, 2000.

[181] A. Marathe, A. E. Condon, and R. M. Corn. On combinatorial DNA word design.
Journal of Computational Biology, 8(3):201–219, 2001.

[182] A. N. Maslov. Cyclic shift operation for languages. Problemy Peredachi Informatsii,
9(4):81–87, 1973.

[183] F. Massacci. Contextual reasoning is NP-complete. In B. Clancey and D. Welds,
editors, Proceedings of 13th National Conference on Artificial intelligence (AAAI
96), pages 621–626. AAAI Press, 1996.

[184] A. Mateescu, G. Păun, G. Rozenberg, and A. Salomaa. Simple splicing systems.
Discrete Applied Mathematics, 84(1–3):145–163, 1998.

[185] G. Mauri and C. Ferretti. Word design for molecular computing: A survey. In
J. Chen and J. Reif, editors, Proceedings of 9th International Workshop on DNA
Based Computers (DNA 9), volume 2943 of LNCS, pages 37–47. Springer, 2004.

[186] E. Meijering, O. Dzyubachyk, and I. Smal. Chapter nine—methods for cell and
particle tracking. In P. M. Conn, editor, Imaging and Spectroscopic Analysis of Living
Cells: Optical and Spectroscopic Techniques, volume 504 of Methods in Enzymology,
pages 183–200. Academic Press, 2012.

[187] F. Mera and G. Pighizzini. Complementing unary nondeterministic automata. The-
oretical Computer Science, 330(2):349–360, 2005.

[188] F. Mignosi and G. Pirillo. Repetitions in the Fibonacci infinite word. RAIRO The-
oretical Informatics and Applications, 26(3):199–204, 1992.

[189] B. G. Mirkin. On dual automata. Cybernetics, 2(1):6–9, 1966.

169

[190] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, 1965.

[191] G. E. Moore. Moore’s law at 40. In D. C. Brock, editor, Understanding Moore’s
Law: Four Decades of Innovation, pages 67–84. Chemical Heritage Press, 2006.

[192] H. Mousavi, L. Schaeffer, and J. O. Shallit. Decision algorithms for Fibonacci-
automatic words, I: Basic results. RAIRO Theoretical Informatics and Applications,
50(1):39–66, 2016.

[193] J. A. Myers, B. S. Curtis, and W. R. Curtis. Improving accuracy of cell and chro-
mophore concentration measurements using optical density. BMC Biophysics, 6(1):4,
2013.

[194] T. Nakagaki, R. Kobayashi, Y. Nishiura, and T. Ueda. Obtaining multiple separate
food sources: Behavioural intelligence in the physarum plasmodium. Proceedings
of the Royal Society of London Series B: Biological Sciences, 271(1554):2305–2310,
2004.

[195] T. Nakagaki, H. Yamada, and Á. Tóth. Maze-solving by an amoeboid organism.
Nature, 407(6803):470, 2000.

[196] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar. A new FPGA detailed routing
approach via search-based boolean satisfiability. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 21(6):674–684, 2002.

[197] M. Nayak, A. S. Perumal, D. V. Nicolau, and F. C. M. J. M. van Delft. Bacterial
motility behaviour in sub-ten micron wide geometries. In Proceedings of 16th IEEE
International New Circuits and Systems Conference (NEWCAS 2018), pages 382–
384. IEEE, 2018.

[198] L. Németh. Fibonacci words in hyperbolic Pascal triangles. Acta Universitatis Sapi-
entiae, Mathematica, 9(2):336–347, 2017.

[199] A. Nerode. Linear automaton transformations. Proceedings of the American Mathe-
matical Society, 9(4):541–544, 1958.

[200] D. V. Nicolau, D. V. Nicolau Jr., G. Solana, K. L. Hanson, L. Filipponi, L. Wang,
and A. P. Lee. Molecular motors-based micro- and nano-biocomputation devices.
Microelectronic Engineering, 83(4–9):1582–1588, 2006.

170

[201] D. V. Nicolau Jr., K. Burrage, and D. V. Nicolau. Computing with motile bio-agents.
In D. V. Nicolau, editor, Biomedical Applications of Micro- and Nanoengineering III,
volume 6416, pages 220–228. SPIE, 2006.

[202] D. V. Nicolau Jr. et al. Parallel computation with molecular-motor-propelled agents
in nanofabricated networks. Proceedings of the National Academy of Sciences,
113(10):2591–2596, 2016.

[203] S. Ogasawara and K. Fujimoto. Solution of a SAT problem on a photochemical DNA
computer. Chemistry Letters, 34(3):378–379, 2005.

[204] M. Oltean and O. Muntean. Solving the subset-sum problem with a light-based
device. Natural Computing, 8(2):321–331, 2009.

[205] D. S. Olton, C. Collison, and M. A. Werz. Spatial memory and radial arm maze
performance of rats. Learning and Motivation, 8(3):289–314, 1977.

[206] T. Oshiba. Closure property of the family of context-free languages under the cyclic
shift operation. Institute of Electronics, Information and Communication Engineers,
55(4):119–122, 1972.

[207] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal
clique problem. Science, 278(5337):446–449, 1997.

[208] J.-J. Pansiot. Mots infinis de Fibonacci et morphismes itérés. RAIRO Theoretical
Informatics and Applications, 17(2):131–135, 1983.

[209] S. Park, P. M. Wolanin, E. A. Yuzbashyan, P. Silberzan, J. B. Stock, and R. H.
Austin. Motion to form a quorum. Science, 301(5630):188, 2003.

[210] G. Păun. Regular extended H systems are computationally universal. Journal of
Automata, Languages and Combinatorics, 1(1):27–36, 1996.

[211] G. Păun, M. J. Pérez-Jiménez, and T. Yokomori. Representations and characteri-
zations of languages in Chomsky hierarchy by means of insertion-deletion systems.
International Journal of Foundations of Computer Science, 19(4):859–871, 2008.

[212] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing
Paradigms. Texts in Theoretical Computer Science. Springer, 1998.

171

[213] M. J. Pérez-Jiménez and F. Sancho-Caparrini. Solving knapsack problems in a sticker
based model. In N. Jonoska and N. C. Seeman, editors, Proceedings of 7th Interna-
tional Workshop on DNA-Based Computers (DNA 7), volume 2340 of LNCS, pages
161–171. Springer, 2002.

[214] A. S. Perumal, M. Nayak, V. Tokárová, O. Kašpar, and D. V. Nicolau. Space parti-
tioning and maze solving by bacteria. In A. Compagnoni, W. Casey, et al., editors,
Proceedings of 11th EAI International Conference on Bio-inspired Information and
Communication Technologies (BICT 2019), volume 289 of LNICST, pages 175–180.
Springer, 2019.

[215] A. S. Perumal, Z. Wang, G. Ippoliti, F. C. M. J. M. van Delft, L. Kari, and D. V.
Nicolau. As good as it gets: A scaling comparison of DNA computing, network
biocomputing, and electronic computing approaches to an NP-complete problem.
New Journal of Physics, 23(12):125001, 2021.

[216] C. G. Pick and J. Yanai. Eight arm maze for mice. International journal of Neuro-
science, 21(1–2):63–66, 1983.

[217] N. A. Pierce and E. Winfree. Protein design is NP-hard. Protein Engineering, Design
and Selection, 15(10):779–782, 2002.

[218] S. Pilo, G. Zizelski Valenci, M. Rubinstein, L. Pichadze, Y. Scharf, Z. Dveyrin,
E. Rorman, and I. Nissan. High-resolution multilocus sequence typing for Chlamydia
trachomatis: Improved results for clinical samples with low amounts of C. trachoma-
tis DNA. BMC Microbiology, 21(1):28, 2021.

[219] G. Pirillo. On a combinatorial property of Fibonacci semigroup. Discrete Mathemat-
ics, 122(1):263–267, 1993.

[220] G. Pirillo. Fibonacci numbers and words. Discrete Mathematics, 173(1):197–207,
1997.

[221] D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics, 69(1–
2):101–124, 1996.

[222] D. Pixton. Splicing in abstract families of languages. Theoretical Computer Science,
234(1–2):135–166, 2000.

[223] G. Păun. On the splicing operation. Discrete Applied Mathematics, 70(1):57–79,
1996.

172

[224] G. Păun. DNA computing based on splicing: Universality results. Theoretical Com-
puter Science, 231(2):275–296, 2000.

[225] G. Păun, G. Rozenberg, and T. Yokomori. Hairpin languages. International Journal
of Foundations of Computer Science, 12(6):837–847, 2001.

[226] L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

[227] L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475(7356):368–372, 2011.

[228] J. Qin and A. R. Wheeler. Maze exploration and learning in C. elegans. Lab on a
Chip, 7(2):186–192, 2007.

[229] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

[230] J. L. Ramı́rez and G. N. Rubiano. On the k-Fibonacci words. Acta Universitatis
Sapientiae, Informatica, 5(2):212–226, 2013.

[231] J. L. Ramı́rez and G. N. Rubiano. Properties and generalizations of the Fibonacci
word fractal, exploring fractal curves. The Mathematica Journal, 16:1–25, 2014.

[232] J. L. Ramı́rez, G. N. Rubiano, and R. D. Castro. A generalization of the Fibonacci
word fractal and the Fibonacci snowflake. Theoretical Computer Science, 528:40–56,
2014.

[233] J. A. Reuter, D. V. Spacek, and M. P. Snyder. High-throughput sequencing tech-
nologies. Molecular Cell, 58(4):586–597, 2015.

[234] E. Rich. Automata, Computability and Complexity: Theory and Applications. Pear-
son, 3rd edition, 2008.

[235] R. J. Roberts, T. Vincze, J. Posfai, and D. Macelis. REBASE—a database for DNA
restriction and modification: Enzymes, genes and genomes. Nucleic Acids Research,
43(D1):D298–D299, 2014.

[236] W. A. Roberts and N. Van Veldhuizen. Spatial memory in pigeons on the radial
maze. Journal of Experimental Psychology: Animal Behavior Processes, 11(2):241–
260, 1985.

173

[237] J. A. Rose, K. Komiya, S. Yaegashi, and M. Hagiya. Displacement whiplash PCR:
Optimized architecture and experimental validation. In C. Mao and T. Yokomori,
editors, Proceedings of 12th International Meeting on DNA Computing (DNA 12),
volume 4287 of LNCS, pages 393–403. Springer, 2006.

[238] P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of
DNA Sierpinski triangles. PLOS Biology, 2(12):2041–2053, 2004.

[239] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 1:
Word, Language, Grammar. Springer, 1997.

[240] W. Rytter. The structure of subword graphs and suffix trees of Fibonacci words.
Theoretical Computer Science, 363(2):211–223, 2006.

[241] K. Saari. Periods of factors of the Fibonacci word. In Proceedings of 6th International
Conference on Words (WORDS 07), pages 273–279. Institut de Mathématiques de
Luminy, 2007.

[242] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori,
and M. Hagiya. Molecular computation by DNA hairpin formation. Science,
288(5469):1223–1226, 2000.

[243] A. Salomaa. Formal Languages. ACM Monograph Series. Academic Press, 1973.

[244] A. Salomaa, K. Salomaa, and S. Yu. Undecidability of the state complexity of
composed regular operations. In A.-H. Dediu, S. Inenaga, et al., editors, Proceedings
of 5th International Conference on Language and Automata Theory and Applications
(LATA 2011), volume 6638 of LNCS, pages 489–498. Springer, 2011.

[245] K. Salomaa and S. Yu. On the state complexity of combined operations and their
estimation. International Journal of Foundations of Computer Science, 18(4):683–
698, 2007.

[246] S. Scheinberg. Note on the boolean properties of context free languages. Information
and Control, 3(4):372–375, 1960.

[247] P. Séébold. Sequences generated by infinitely iterated morphisms. Discrete Applied
Mathematics, 11(3):255–264, 1985.

[248] P. Séébold. Fibonacci morphisms and Sturmian words. Theoretical Computer Sci-
ence, 88(2):365–384, 1991.

174

[249] A. Semenov. Distributed computing based on container-component model. In A. Bog-
dan, editor, Proceedings of 8th International Conference on Applied Mathematics and
Mechanics in the Aerospace Industry (AMMAI 2020), volume 927 of IOP Conference
Series: Materials Science and Engineering, page 012070. IOP Publishing, 2020.

[250] S. Shah, J. Wee, T. Song, L. Ceze, K. Strauss, Y.-J. Chen, and J. Reif. Using
strand displacing polymerase to program chemical reaction networks. Journal of the
American Chemical Society, 142(21):9587–9593, 2020.

[251] J. O. Shallit. A generalization of automatic sequences. Theoretical Computer Science,
61(1):1–16, 1988.

[252] J. O. Shallit. A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, 2009.

[253] S. Shioda. Coupon subset collection problem with quotas. Methodology and Com-
puting in Applied Probability, pages 1–33, 2020.

[254] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,
2012.

[255] T. Song, A. Eshra, S. Shah, H. Bui, D. Fu, M. Yang, R. Mokhtar, and J. Reif. Fast and
compact DNA logic circuits based on single-stranded gates using strand-displacing
polymerase. Nature Nanotechnology, 14(11):1075–1081, 2019.

[256] K. B. Stolarsky. Beatty sequences, continued fractions, and certain shift operators.
Canadian Mathematical Bulletin, 19(4):473–482, 1976.

[257] E. Stoschek, M. Sturm, and T. Hinze. DNA-Computing—ein funktionales Modell im
laborpraktischen Experiment. Informatik Forschung und Entwicklung, 16(1):35–52,
2001.

[258] H. Su, J. Xu, Q. Wang, F. Wang, and X. Zhou. High-efficiency and integrable
DNA arithmetic and logic system based on strand displacement synthesis. Nature
Communications, 10(1):5390, 2019.

[259] A. Takahara and T. Yokomori. On the computational power of insertion-deletion
systems. In M. Hagiya and A. Ohuchi, editors, Proceedings of 8th International
Workshop on DNA Based Computers (DNA 8), volume 2568 of LNCS, pages 269–
280. Springer, 2002.

175

[260] Y. Takenaka and A. Hashimoto. DNA computing by competitive hybridization for
maximum satisfiability problem. In Proceedings of the 2002 Congress on Evolutionary
Computation (CEC 02), volume 1, pages 472–476. IEEE, 2002.

[261] M. Takinoue and A. Suyama. Molecular reactions for a molecular memory based on
hairpin DNA. Chem-Bio Informatics Journal, 4(3):93–100, 2004.

[262] M. Takinoue and A. Suyama. Hairpin-DNA memory using molecular addressing.
Small, 2(11):1244–1247, 2006.

[263] J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine,
S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri. TrackMate: An open and extensible
platform for single-particle tracking. Methods, 115:80–90, 2017.

[264] E. C. Tolman and C. H. Honzik. Introduction and removal of reward, and maze
performance in rats. University of California Publications in Psychology, 4(17):257–
275, 1930.

[265] H. Tseng. DNA cloning without restriction enzyme and ligase. Biotechniques,
27(6):1240–1244, 1999.

[266] D. C. Tulpan, H. H. Hoos, and A. E. Condon. Stochastic local search algorithms
for DNA word design. In M. Hagiya and A. Ohuchi, editors, Proceedings of 8th
International Workshop on DNA Based Computers (DNA 8), volume 2568 of LNCS,
pages 229–241. Springer, 2003.

[267] J. C. Turner. Fibonacci word patterns and binary sequences. Fibonacci Quarterly,
26(3):233–246, 1988.

[268] J. C. Turner. The alpha and the omega of the Wythoff pairs. Fibonacci Quarterly,
27(1):76–86, 1989.

[269] F. C. M. J. M. van Delft, G. Ipolitti, D. V. Nicolau Jr., A. Sudalaiyadum Perumal,
O. Kašpar, S. Kheireddine, S. Wachsmann-Hogiu, and D. V. Nicolau. Something
has to give: Scaling combinatorial computing by biological agents exploring physical
networks encoding NP-complete problems. Interface Focus, 8(6):20180034, 2018.

[270] F. C. M. J. M. van Delft, A. S. Perumal, A. van Langen-Suurling, C. de Boer,
O. Kašpar, V. Tokárová, F. W. A. Dirne, and D. V. Nicolau. Design and fabrication
of networks for bacterial computing. New Journal of Physics, 23(8):085009, 2021.

176

[271] J. C. Venter et al. The sequence of the human genome. Science, 291(5507):1304–1351,
2001.

[272] T. Vincze, J. Posfai, and R. J. Roberts. NEBcutter: A program to cleave DNA with
restriction enzymes. Nucleic Acids Research, 31(13):3688–3691, 2003.

[273] X. Wang, Z. Bao, J. Hu, S. Wang, and A. Zhan. Solving the SAT problem using a
DNA computing algorithm based on ligase chain reaction. Biosystems, 91(1):117–
125, 2008.

[274] Z.-X. Wen and Z.-Y. Wen. Some properties of the singular words of the Fibonacci
word. European Journal of Combinatorics, 15(6):587–598, 1994.

[275] D. Woods, D. Doty, C. Myhrvold, J. Hui, F. Zhou, P. Yin, and E. Winfree. Diverse
and robust molecular algorithms using reprogrammable DNA self-assembly. Nature,
567(7748):366–372, 2019.

[276] H. L. Wu. On the Properties of Primitive Words. Master’s thesis, Institute of Applied
Mathematics, Chung-Yuan Christian University, 1992.

[277] X.-Y. Xu, X.-L. Huang, Z.-M. Li, J. Gao, Z.-Q. Jiao, Y. Wang, R.-J. Ren, H. Zhang,
and X.-M. Jin. A scalable photonic computer solving the subset sum problem. Science
Advances, 6(5):eaay5853, 2020.

[278] S. Yu. State complexity of regular languages. Journal of Automata, Languages and
Combinatorics, 6(2):221–234, 2001.

[279] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations
on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

[280] S.-S. Yu. Languages and Codes. Tsang Hai Book Publishing, 2005.

[281] S.-S. Yu and Y.-K. Zhao. Properties of Fibonacci languages. Discrete Mathematics,
224(1):215–223, 2000.

[282] F. Zeng, Z. Hao, P. Li, Y. Meng, J. Dong, and Y. Lin. A restriction-free method for
gene reconstitution using two single-primer PCRs in parallel to generate compatible
cohesive ends. BMC Biotechnology, 17(1):32, 2017.

[283] D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree. Engineering entropy-driven
reactions and networks catalyzed by DNA. Science, 318(5853):1121–1125, 2007.

177

[284] F. Zhang, J. Nangreave, Y. Liu, and H. Yan. Structural DNA nanotechnology:
State of the art and future perspective. Journal of the American Chemical Society,
136(32):11198–11211, 2014.

[285] S. W. Zhang, K. Bartsch, and M. V. Srinivasan. Maze learning by honeybees. Neu-
robiology of Learning and Memory, 66(3):267–282, 1996.

178

	List of Figures
	List of Tables
	Introduction
	Thesis overview
	Notation

	Overview of DNA Computing
	Biological background
	DNA computing
	Step 1: Encoding information as DNA
	Step 2: DNA computation
	Step 3: Reading the output of the DNA computation

	Some NP-complete problems solved using DNA computing

	Word Blending
	Introduction to formal language operations
	Closure properties
	Invertible operations
	State complexity

	Biologically inspired word operations
	Cross-pairing polymerase chain reaction (XPCR) and overlap assembly
	Word blending
	Closure properties
	Decision problems
	State complexity

	Conjugate word blending
	DNA implementation of conjugate word blending
	Molecular biology preliminaries
	The initial experimental evidence
	Conjugate word blending: Experimental results

	Conclusion

	Involutive Fibonacci Words
	Introduction
	Preliminaries
	Involutive Fibonacci words
	Relations between Fibonacci words and mu-Fibonacci words

	Indexed involutive Fibonacci words
	Borders and phi-borders of phi-Fibonacci words
	Primitivity of atom [phi]-Fibonacci words with different initial letters
	Atom alternating [phi]-Fibonacci words
	Atom palindromic [phi]-Fibonacci words
	Atom hairpin [phi]-Fibonacci words

	Primitivity of atom [phi]-Fibonacci words with identical initial letters
	Atom alternating [phi]-Fibonacci words
	Atom palindromic [phi]-Fibonacci words
	Atom hairpin [phi]-Fibonacci words

	Conclusion

	Complexity Estimation of DNA Computing
	Introduction
	DNA computing procedure for solving SSP
	Network biocomputing (NB-C) for SSP
	Electronic computing (E-C)
	Scaling comparison of the DNA-C, NB-C, and E-C methods solving SSP
	Pre-computing
	Volume comparison
	Run time comparison
	Energy comparison

	Conclusion

	Conclusions
	References

