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Abstract

Semiconductor manufacturing is increasingly reliant in offshore foundries, which has raised
concerns with counterfeiting, piracy, and unauthorized overproduction by the contract
foundry. The recent shortage of semiconductors has aggravated such problems, with the
electronic components market being flooded by recycled, remarked, or even out-of-spec,
and defective parts. Moreover, modern internet connected applications require mechanisms
that enable secure communication, which must be protected by security countermeasures
to mitigate various types of attacks. In this thesis, we describe techniques to aid coun-
terfeit prevention, and mitigate secret extraction attacks that exploit power consumption
information.

Counterfeit prevention requires simple and trustworthy identification. Physical unclon-
able functions (PUFs) harvest process variation to create a unique and unclonable digital
fingerprint of an IC. However, learning attacks can model the PUF behavior, invalidating
its unclonability claims. In this thesis, we research circuits and architectures to make PUFs
more resilient to learning attacks. First, we propose the concept of non-monotonic response
quantization, where responses not always encode the best performing circuit structure.
Then, we explore the design space of PUF compositions, assessing the trade-off between
stability and resilience to learning attacks. Finally, we introduce a lightweight key based
challenge obfuscation technique that uses a chip unique secret to construct PUFs which
are more resilient to learning attacks.

Modern internet protocols demand message integrity, confidentiality, and (often) non-
repudiation. Adding support for such mechanisms requires on-chip storage of a secret
key. Even if the key is produced by a PUF, it will be subject to key extraction attacks
that use power consumption information. Secure integrated circuits must address power
analysis attacks with appropriate countermeasures. Traditional mitigation techniques have
limited scope of protection, and impose several restrictions on how sensitive data must be
manipulated. We demonstrate a bit-serial RISC-V microprocessor implementation with
no plain-text data in the clear, where all values are protected using Boolean masking and
differential domino logic. Software can run with little to no countermeasures, reducing code
size and performance overheads. Our methodology is fully automated and can be applied
to designs of arbitrary size or complexity. We also provide details on other key components
such as clock randomizer, memory protection, and random number generator.
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Chapter 1

Introduction

Semiconductor manufacturing is increasingly reliant in offshore foundries, which has raised
concerns with counterfeiting, piracy, and unauthorized overproduction by the contract
foundry [40]. The revenue lost by legitimate companies was estimated in $100 Billion per
year [70]. The recent shortage of semiconductors has aggravated such problems, with the
electronic components market being flooded by recycled, remarked, or even out-of-spec, and
defective parts [120]. The Semiconductor Industry Association (SIA) estimates that 15%
of all spare and replacement semiconductors purchased by the Pentagon are counterfeit [5].
Quoting general Patrick O’Reilly in 2011, director of the missile defense agency, “We do not
want a $12 million missile defense interceptor’s reliability compromised by a $2 counterfeit
part” [68].

Counterfeit prevention requires simple and trustworthy identification. Traditional solu-
tions would selectively burn polysilicon fuses that modify the value of a publicly readable
identifier. Attackers were able to inspect, probe, and reconnect fuses using easily accessible
laboratory equipment [49]. Memory technologies like flash, offer a safer storage alternative,
where logic values are represented by the amount of trapped charges inside the floating
gate of a memory cell. When using flash memories, a particular sector may be reserved
for one-time programmable data—which is easily achieved using digital logic. Probing
techniques still pose risks for flash memories, but it is considerably harder to tamper or
passively read the stored values [4, 109].

Having a publicly readable identifier stored in flash does not stop other circuits from
impersonating (cloning) an authentic integrated circuit (IC). Therefore, designers often
implement a challenge-response system, where a chip unique secret value is used as key
for a cryptographic operation. In this context, the device acts as an encryption oracle,
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producing encrypted responses for externally provided challenges. The external verifier
knows the secret key stored in memory, so it can validate the produced responses for each
of the inquired challenges. To avoid replay attacks, a challenge is never be used more than
once.

The challenge-response system described above has two main weaknesses, i) the extra
cost of the encryption hardware might be prohibitive for some resource constrained appli-
cations; and ii) if the secret key leaks, it is not possible to differentiate between genuine
and cloned devices. While the extra cost is relevant only for certain niches, the threat of
exposed keys affects all applications. For example, overproduced ICs have a blank flash
memory, therefore, if the correct key is known, they can be programmed to behave like
any other authentic device. Moreover, manipulating external data (challenge) with a secret
key leaks sensitive information in the power consumption, which can lead to key extraction
using power analysis attacks [48].

Distinguishing between genuine and cloned devices requires an identification method
similar to human fingerprints, where uniqueness and unclonability emerge from very com-
plex biological processes. In the context of semiconductor manufacturing, the unique and
unclonable properties must emerge from the inherent variability of the manufacturing pro-
cess. Objects with unclonable properties were already used during the cold war to identify
nuclear weapons [35]. They sprayed a thin coating of light-reflecting particles onto the
weapon’s surface. When it was illuminated from various angles, the randomly distributed
particles generated unique inference patterns that are not easily reproducible.

The first known physical unclonable function (PUF) was introduced in [69]. The device
used a laser pointed at a stationary scattering medium to observe the unique speckle pattern
exiting the structure. The first silicon implementation of PUFs was proposed in [33],
and named arbiter PUF (APUF). The APUF has two signals racing through identically
designed delay paths. The time it takes to traverse the paths depends on the manufacture
variability of each delay cell. The input challenge selects two unique, nominally identical,
delay paths. At the end, an arbiter determines the response based on which signal arrived
first.

As initially proposed in [33], the APUF has one main advantage over key based challenge-
response systems: the device’s memory does not contain secret information. PUFs give
ICs the capability of unique responses, irrespective of how their memory is programmed.
Probing attacks are not able to extract individual gate delays. Exhaustive enumeration
is impractical for challenge spaces of 64, or 128 bits. Moreover, since responses are taken
from a differential measurement, they are mostly stable under different environmental
conditions—reported APUF bit error rates are typically below 5% [87]. Achieving low
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bit error rate in circuits that measure manufacture variability is hard, therefore, practical
solutions often use error correction, or tolerance margins.

Authenticating a PUF enabled device requires an enrollment phase, which occurs in a
secure environment. During enrollment, a randomly selected set of challenges is evaluated
and responses are stored in a secure database. When verifying the authenticity of a de-
vice, the PUF is inquired with a subset of the enrolled challenge-response pairs (CRPs).
If responses match the stored values, the device is deemed authentic. An error margin is
typically acceptable, since responses for some challenges are less stable than others. Chal-
lenges are never used more than once to avoid replay attacks. Notice that practical use of
PUFs still requires the programming of a public chip identifier, which is used to associate
an enrolled CRP database to a particular device.

From their initial introduction in [33], PUFs attracted considerable attention from the
security community. The possibility of dismissing secret keys and use a lightweight, secure
identification system capable of distinguishing between genuine and cloned devices is very
appealing. Nevertheless, researchers later discovered that PUF security is significantly
more fragile than initially thought. Using a subset of challenge-response pairs, attackers
can model the PUF entropy source, and predict responses for unseen challenges with high
accuracy. Early modeling work was done in [55], and later consolidated in [76], where
authors report 95% prediction accuracy for an APUF, using only 640 CRPs.

Following the seminal work in [33], PUFs were divided in two categories: strong and
weak PUFs. The classification criterion is based on challenge space size. Strong PUFs have
a large challenge space, such that exhaustive enumeration is impractical. Weak PUFs, on
the other hand, have a much smaller challenge space. Therefore, weak PUF responses are
not returned to the external user, but used as secret key material for other cryptographic
engines. In such key generation applications, response stability is crucial. A single wrong
key bit results in an incomprehensible output, and possibly lead to analytical key extraction
attacks known as differential fault analysis [18]. Weak PUF implementations solve the
response stability problem using error correction data which is programmed into a one
time programmable (OTP) flash during test.

Weak PUFs are effective at preventing the foundry from overproducing ICs. Even
though the overproduced devices have the same design, their embedded weak PUF ensures
that two ICs will not behave alike. However, similarly to flash memories, weak PUFs are
still susceptible to key extraction attacks, including probing, and possibly power analysis
attacks as well [43, 48, 109]. If the weak PUF responses are leaked, impersonating de-
vices may be created. The first weak PUF publication is a patent which dates back from
2002 [51]. Implementation results first appeared in [96], with an SRAM based design in
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130 nm technology, and 90% bit stability. Pioneering work on SRAM based weak PUFs
was also performed in [41,42].

The development of learning resistant strong PUFs has been an active field of research
for the past two decades. The first attempt at improving the security of strong PUF was
to add “control” logic to the APUF, and was later referred to as controlled PUF [32, 33].
The controlled PUF surrounds the APUF with hash operations, which are applied to the
input challenge and output responses. External helper data is used to correct errors from
unstable responses. In addition to the added cost of the hash, controlled PUFs were shown
vulnerable to attacks that manipulate the external helper data [26,95].

Other strong PUF architectures use compositions to create a strong PUFs with en-
hanced security properties [52, 66, 78, 80, 116]. Similarly to the mathematical notion of
composite functions, PUF compositions use the output of PUF instances as input to other
instances. The resulting PUF has increased resilience to learning attacks, however, re-
sponse bit error rate of the overall composition limits the achievable benefits.

In this thesis, we research circuits and architectures to make PUFs more resilient to
learning attacks. Our results are presented in chapters 3, 4, and 5.

In chapter 3, we propose the concept of non-monotonic response quantization for strong
PUFs [91]. Responses depend not only on which path is faster, but also on the distance
between the arriving signals. Our experiments show that the resulting PUF has increased
security against learning attacks. We report uniformity, uniqueness, and bit error rate
measurements from a testchip fabricated in 65 nm technology.

In chapter 4, we explore the design space and assess the security of several PUF com-
positions [90,116]. We extend previous techniques of influential bits to assess stage bias in
APUF instances. Our data shows that compositions do not always preserve the security
properties of PUFs. We report uniformity, uniqueness, and bit error rate measurements
from a testchip fabricated in 65 nm technology.

In chapter 5, we propose a secure and lightweight key based challenge obfuscation for
strong PUFs [93]. Our obfuscation mechanism uses non-linear feedback shift registers. Re-
sponses are directly provided to the user, without error correction or extra post-processing
steps. We also discuss the cost of protecting our architecture against power analysis attacks.
Security against learning attacks is assessed using avalanche criterion, and deep-neural net-
works.

Counterfeit prevention establishes trust between the user and the hardware. Most mod-
ern internet connected applications, however, requires the implementation of mechanisms
for message integrity, confidentiality, and (often) non-repudiation. Adding support for
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such mechanisms requires on-chip storage of a secret key. Even if the key is produced by
a weak PUF, it will be subject to key extraction attacks. In particular, power analysis
attacks offer, perhaps, the greatest threat since it is non-invasive and can be performed
with inexpensive laboratory equipment [48].

Power analysis attacks use a set of power consumption traces to extract secret informa-
tion from a device. Traces record the device manipulating the secret value with different
input data. For example, recorded power traces may include AES encryptions using the
same key but different plaintexts. A few key bits are extracted each iteration. The attacker
chooses a key candidate and creates a power consumption hypothesis for each input data,
using knowledge of the implemented algorithm, and a leakage model (typically hamming-
weight). The correlation between the hypothesis vector and the recorded power traces will
be the highest when the correct key is used [48].

Secure integrated circuits must address power analysis attacks with appropriate coun-
termeasures. Most countermeasures fit into two categories: masking and hiding. Masking
uses random numbers to hide the value of intermediate computations [61]. Therefore, the
power consumption is, in theory, uncorrelated to the actual data being processed. Hid-
ing techniques, on the other hand, focus on making power consumption independent of
the values being computed. Popular examples are differential input/output dynamic logic
styles with precharge/evaluation phases [74]. Other countermeasures insert random delays
during algorithm execution, causing an intentional misalignment in the recorded power
traces which reduces the effectiveness of power analysis attacks.

Traditional power analysis mitigation techniques have limited scope of protection, and
impose several restrictions on how sensitive data must be manipulated. In chapter 6, we
demonstrate a bit-serial RISC-V microprocessor implementation with no plain-text data
in the clear. All values are protected using Boolean masking and differential domino logic.
Software can run with little to no countermeasures, reducing code size and performance
overheads. Our methodology is fully automated and can be applied to designs of arbitrary
size or complexity. We also provide details on other system components such as clock
randomizer, memory protection, and random number generator. We report measurements
from our 65 nm testchip for the quality of random numbers, and number of traces for key
disclosure.
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Chapter 2

Background

This chapter covers relevant background on PUFs, including the arbiter PUF, ring oscilla-
tor PUF, composite PUFs, challenge obfuscated PUFs, performance metrics, enrollment,
authentication, and learning techniques. We also make a brief review of relevant attacks
to integrated circuits, including probing, fault injection, and power analysis attacks.

2.1 Physical Unclonable Functions (PUFs)

Physical unclonable functions (PUFs) harvest process variability to produce a unique and
unclonable identifier of an integrated circuit. Fabricating two identical PUFs is infeasible
even for the original manufacturer, making it a promising weapon to fight counterfeiting.
Unlike traditional identification alternatives, two authentic ICs using PUFs will produce
distinct outputs, regardless of their programmed memory content. The ideal PUF design
is lightweight, secure against modeling attacks, and produces high entropy responses that
are chip unique, and stable over various environmental conditions.

PUFs generate chip unique responses based on internal parameters that are hidden
from the user. The size of the challenge space determines if a PUF is classified as weak,
or strong. Weak PUFs have a small challenge space and were originally conceived for
key generation processes. Strong PUFs, however, have a large challenge space, such that
exhaustive enumeration is impractical. Therefore, an (ideal) strong PUF may authenticate
with an externally accessible, unencrypted, challenge-response protocol.

In this thesis, when clear from context, we may refer to strong PUFs simply as PUFs.
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Figure 2.1: Arbiter PUF architecture.

2.1.1 Arbiter PUF (APUF)

The arbiter PUF (APUF) uses manufacture variability in gate delays as source of unclon-
able randomness [33]. The APUF architecture is shown in Fig. 2.1. The APUF has two
signals racing through identically designed delay paths. At the end, an arbiter determines
the response based on which signal arrived first. The delay stages are implemented with
muxes controlled by the input challenge, which specifies if a particular stage will perform
a direct, or twisted connection. Each n-bit challenge creates a unique set of connections
that results in two nominally identical delay paths.

The APUF has one main advantage over key based challenge-response systems: the
device’s memory does not contain secret information. Probing attacks are not able to ex-
tract individual gate delays. Exhaustive enumeration attacks are impractical for challenge
spaces of 64, or 128 bits. Moreover, since responses are taken from a differential measure-
ment, they are mostly stable under different environmental conditions—reported APUF
bit error rates are typically below 5% [87].

The internal parameters of PUFs define the challenge-response relationship. If adver-
saries can calculate the internal parameters of a PUF, its security is compromised. In
the case of APUFs, researchers have demonstrated models trained using only 640 CRPs,
that achieve 95% prediction accuracy for unseen challenges [76]. Consequently, the unpro-
tected exposure of APUF challenge-response interface give attackers the resources needed
to model its entropy source, and produce counterfeit copies of the target integrated circuit.

2.1.2 Ring Oscillator PUF (RO-PUF)

Similarly to the APUF, the ring oscillator PUF (RO-PUF) uses gate delays as source
of unclonable randomness [97]. The RO-PUF architecture is shown in Fig. 2.2. The
input challenge selects two oscillators from a pool of oscillators. The response is obtained
by comparing their frequency. The number of possible pairings is n(n − 1)/2, but due to
correlated comparisons, the maximum number of responses that can be extracted is log(n!).
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Figure 2.2: Ring oscillator PUF architecture.

Therefore, the RO-PUF as originally proposed in [97], is a weak PUF. Its challenge-response
interface is internal, and used only for key generation.

Attempts to increase the challenge space of RO-PUFs were made in [58]. As an alter-
native to adding more oscillators to the pool, authors propose a low cost identity mapping
function that expands the set of CRPs. Instead of pairwise frequency comparisons, the
mapping function derives responses from a subset of oscillators. Nevertheless, later works
were able to model the architecture using vulnerabilities in the identity mapping func-
tion [64].

Chapter 3 presents a new ring oscillator based strong PUF architecture using non-
monotonic response quantization, which has an externally available challenge-response in-
terface.

2.1.3 Composite PUF

A number of strong PUF architectures have used compositions to create a strong PUFs
with enhanced security properties [52,66,78,80,116]. Similarly to the mathematical notion
of a composite functions, PUF compositions use the output of certain instances as input to
other instances. The resulting PUF has increased resilience to learning attacks, however,
response bit error rate of the overall composition limits the achievable benefits.

Fig. 2.3 shows the PUF-on-PUF (POP) architecture, where the response of 64 APUFs
in the first layer is used as challenge to a second layer APUF [116]. Compositions often
use PUFs of various sizes to reduce area costs. In the case of Fig. 2.3, APUFs in the first
layer have only two stages. Chapter 4 discusses how different choices in size can affect the
security properties of the overall composition.

An important characteristic of composite PUFs is that the challenge-response interfaces
is externally available. In the case of POP, the internal PUF parameters consist only in
variability induced gate delays.

Other PUF architectures instantiate several strong PUFs that are not technically in a
composite arrangement, such as the XOR-APUF introduced in [97], and shown in Fig. 2.4.
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In the XOR-APUF, the same challenge is evaluated by all instances, and their outputs is
XORed to produce the final response. For simplicity, we also refer to such architectures as
composite PUFs, or simply compositions.

2.1.4 Challenge Obfuscated PUF

To overcome the response stability problems of PUF compositions, challenge obfuscated
architectures perform pre-processing of the input challenge with a secret key. The pre-
processing logic is deterministic, and has no impact in the output response stability. Fig. 2.5
shows the multi PUF (MPUF) architecture, where weak PUFs are used to generate secret
key bits that are XORed with the input challenge [56].

Challenge obfuscated PUFs seek a lightweight solution to make strong PUFs secure
against learning attacks. Using an AES engine, for example, would achieve better security
properties than the XOR performed by the MPUF, but at a much higher cost. Other
proposals of challenge obfuscated PUFs were introduced in [45,107,110–112].

A commonly overlooked aspect of challenge obfuscation refers to power analysis at-
tacks. Manipulating an external challenge with a secret key leaks sensitive information
in the power consumption [48]. If the secret key is extracted, the strong PUF is exposed
to attackers. Chapter 5 introduces a challenge obfuscated strong PUF using non-linear
feedback shift registers, where we evaluate the cost with, and without countermeasures for
power analysis attacks.
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2.1.5 Performance Metrics

Adequate assessment of strong PUFs requires metrics that evaluate uniformity, uniqueness,
and stability of responses.

– Uniformity: estimates the ratio of zeros and ones in PUF responses. It is also known
as normalized hamming weight. Ideal uniformity is 0.5, which indicates, on average,
equal number of zeros and ones.

– Uniqueness: estimates the distance between responses from multiple instances. It is
also known as normalized hamming distance. Ideal uniqueness is 0.5, which indicates
that, for the same set of challenges, on average, half responses will differ.

– Bit error rate (BER): estimates reproducibility of responses under several environ-
mental conditions. Bit error rate (BER) reports a ratio of bits (responses) that differ
from their enrolled value. BER ideal value is 0%, which indicates no incorrect re-
sponses during measurement. Other literature may use the term reliability, which
simply denotes (100% - BER).

2.1.6 Enrollment and Authentication

Authenticating a PUF enabled device requires an enrollment phase, which occurs in a
secure environment. During enrollment, a randomly selected set of challenges is evaluated
and responses are stored in a secure database. When verifying the authenticity of a device,
the PUF is inquired with a subset of the enrolled CRPs. Some CRPs are less stable
than others, therefore, to successfully authenticate, the number of correct responses must
exceed a response threshold, otherwise the authentication fails. The response threshold
is a system defined parameter which is set according to PUF response stability. If the
threshold is expressed as a percentage of correct responses needed to authenticate, we can
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Figure 2.6: Probability of authentication failure simulated with 1M authentications. Uniformity
of 50% is assumed. The minimum number of correct responses is 5% below (100% - BER).

argue that it must be less than (100% - BER), otherwise the PUF is unlikely to successfully
authenticate.

Different PUF architectures have different bit error rates. From a system perspective,
the minimum acceptable bit error rate depends on the number of CRPs used in each
authentication, and on the failure rate required by the application. Fig. 2.6 simulates
PUFs with different bit error rates. Threshold was set 5% below (100% - BER). For
example, when simulating an authentication using 200 CRPs, with a PUF that has 10%
BER, 170 correct responses are required to successfully authenticate. As shown in Fig. 2.6,
the probability of authentication failure falls exponentially with the number of CRPs used
to authenticate. For example, for a 1% failure rate, a PUF with 10% BER will require 200
CRPs, while if the PUF BER is increased to 20% or 30%, the required CRPs to achieve
the same failure rate will increase to 350, and 400, respectively. Therefore, as it will be
discussed in chapters 3, 4, and 5, applications can trade a moderate increase in BER
for enhanced security, given that they can afford to use a larger number of CRPs during
authentication.

2.1.7 Learning PUF Behavior

One of the security assumptions of PUFs is that an adversary is unable to predict responses
based on past CRPs. Such assumption was demonstrated flawed in [55], and later consoli-
dated in [76], where the authors report 95% prediction accuracy for an APUF, after seeing
only 640 CRPs.

Researchers also demonstrated successful attack results by exploring and manipulating
helper data for error correction. In particular, error correcting strong PUFs requires chal-
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Figure 2.7: Blown polysilicon fuse exposed using focused ion beam (FIB). Source [49].

lenge specific helper data. The intentionally large challenge space makes it impractical to
store all the helper data inside the chip, however, providing it externally is not a viable
option either, since it was shown vulnerable to learning attacks in [26,95].

Attacks soon evolved to use side-channel stability information from CRPs. In [13],
an evolution strategy (ES) technique is used to model an XOR-APUF. The key insight
is that, in the APUF, CRPs with small delay difference are more susceptible to noise.
Authors showed that increasing the number of APUFs was ineffective at improving learning
resilience against their technique.

Recently, deep-neural networks (DNNs) have become a popular choice to model strong
PUFs. DNNs require more CRPs and longer training time than typical machine learning
techniques, but they are capable of learning complex PUF structures without a precise
mathematical model of the target PUF [46].

2.2 Attacks to Integrated Circuits

Secure ICs must endure various types of attacks. This section briefly describes the main
attack techniques used to extract secrets from ICs, including probing, fault injection, and
power analysis attacks.

2.2.1 Probing Attacks

Probing attacks decapsulate the chip with chemical processes, and then use various tech-
niques to directly access the values of internal wires. The most common probing techniques
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Figure 2.8: Inspecting SRAM content of a FinFet technology using scanning electron microscope
(SEM). Source Intel [43].

are electrical, optical, and scanning electron probing.

Electrical probing uses microprobes that physically touch the target wire. Electrical
probing is typically combined with a focused ion beam (FIB) equipment, which can re-
move and deposit material with nanometer precision. Fig. 2.7 shows a blown polysilicon
fuse exposed after FIB material removal. The fuse can easily be reconnected using FIB
deposition, or a conductive pad can be created for electrical contact with a microprobe.
Electrical probing is typically performed through the front (top) of the chip [109].

Optical probing uses the back (bottom) of the chip to capture the photons emitted
by transistors during switching. This technique passively detects the received photons to
analyze the signal at a particular location. The wavelength of emitted photons is in the
infrared, therefore, this technique has a resolution limit of about 900 nm, which limits its
applicability [109].

Scanning electron probing uses a focused beam of electrons to measure voltages in metal
wires. It is performed through the back side, and requires a reduction in sample thickness
to about 10 µm [43]. Fig. 2.8 shows an SRAM array in Intel’s FinFet technology. The
metal wires for an 8T bit cell are shown in (a). The same 8T cell is highlighted in (b), and
(c) with dashed lines, when storing a one and a zero. The arrays show clear difference in
voltage contrast between the two states. The bright and dark contrasts correlate with low,
and high voltage in the metal wire, respectively [43,103].

The aforementioned method of reading SRAM memories is applicable to weak PUFs
implemented with SRAMs. It must be observed, however, that this technique uses a very
expensive and specialized equipment. Moreover, it requires the attacker to decapsulate and
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thin the IC without affecting its functionality, since the SRAM values are only readable
while the circuit is operating.

The use of scanning electron probing is not limited to SRAMs and metal wires. Re-
searchers have shown that with proper sample preparation, the same technique can be used
to read the content of flash memories, where logic values are represented by the amount of
trapped charges inside a floating gate [23, 121]. The sample preparation process requires
exposing the floating gate tunnel oxide from the back side of the chip, therefore, it is a
destructive attack. The technique requires a minimum concentration of trapped electrons
in the floating gate, which restricts its applicability to older technology nodes. To the
best of our knowledge, no published work has replicated the results in nodes smaller than
0.21 µm.

A common countermeasure for probing attacks is to use an active shield. Shields create
a dense mesh of metal wires in the top-most metal layer of an IC. Each wire carries a
signal generated from a pattern generator and is constantly monitored to detect possible
tampering [21]. Chapter 6 discusses other techniques such as Boolean masking, clock
randomization, and memory data encryption that also help mitigating the threat of probing
attacks.

2.2.2 Fault Injection Attacks

Fault injection attacks actively manipulate a chip during operation to cause a transient
error. The goal of injected faults is to temporally disable certain security checks or condi-
tions. For example, if the number of bytes to read from memory is tampered, the device can
produce a memory dump. Other possible exploitations include differential fault analysis,
where erroneous outputs from cryptographic operations can reveal information about the
secret key. A classical example is the RSA algorithm using Chinese remainder theorem.
A single flipped internal register during computation causes the exposure of the private
key [18]. Similar techniques were also developed for AES and DES algorithms [16,44].

Typical approaches to inject faults use high intensity lasers, supply glitches, clock
glitches, and electromagnetic pulses. Except for electromagnetic pulses, fault injection
approaches typically require decapsulating the chip (assuming clock and supply pins are
not externally available). Laser faults are often injected from the back of the chip, using
wavelength of about 900 nm to benefit from silicon transparency properties [105]. Clock
and supply glitches may be combined with FIB and microprobing for better chances of
success [9]. For electromagnetic faults, it is possible to use a high voltage spark-gap burst
above the surface of the chip [83].
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Countermeasures for fault injection include the addition of sensors for voltage and clock
glitches, as well as electromagnetic pulses [15,28]. Light sensors are not effective since they
can be easily avoided by careful laser positioning [105]. Other techniques to detect fault
injection attacks is the addition of redundancy—at all levels. Critical registers may be
duplicated, memory can include error correction, data may be read multiple times and
checked for consistency, among others [104]. Also, due to the non-deterministic nature
of fault injection attacks, countermeasures that manipulate timing may lower attacker’s
chance of success. The clock randomization countermeasure is discussed in chapter 6.

Strong PUFs are mostly robust against fault injection attacks. Learning attacks that
explore challenge reliability, however, may benefit from a higher bit error rates. In [14],
authors manipulate the supply voltage to induce erroneous responses, which are then used
to train the PUF model more efficiently. Environment temperature may also be subject to
manipulation in an attempt to increase PUF bit error rate.

2.2.3 Power Analysis Attacks

It is well known that the power consumption of static CMOS logic gates is dependent on
the value of its inputs, but it was a shock for security researchers when the first results on
differential power analysis were published [48]. Authors demonstrated a non-invasive key
extraction technique that uses nothing more than a set of power consumption traces. The
impact of that work was tremendous, creating a large and very active field of research.

Power analysis attacks record power traces of the device manipulating the secret value
with different input data. For example, recorded traces may include AES encryptions using
the same key, but different plaintexts. The encryption algorithm must be known to the
attacker, but implementation details are mostly irrelevant. The attack works by extracting
a few key bits in each iteration. For example, the AES key is typically recovered one byte
at a time, therefore, each key extraction iteration has 256 key candidates.

To find the correct key among all key candidates, the attacker locates an operation in
the algorithm that manipulates both key and input data. A power consumption hypothesis
vector is then created for that operation. In other words, for each input data, the attacker
computes an approximate power consumption hypothesis for the target operation when
using a particular key candidate. Very simple power models work well in most cases. A
popular choice is the hamming-weight of the target operation output. The next step is to
calculate the correlation between the recorded power traces, and the power consumption
hypothesis vector, one key candidate at a time. The correct key candidate will have the
highest correlation.
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Countermeasures for power analysis attacks work by increasing the number of required
power traces such that performing the attack becomes impractical. Most of them fall into
two categories: masking and hiding. Masking uses random numbers to hide the value
of intermediate computations. It can be applied at the algorithm level, or at the logic
level [61]. In this thesis, we focus on Boolean masking, which is applied at the logic
level [34]. Hiding techniques, on the other hand, focus on making power consumption
independent of the values being computed. Popular examples are differential input/output
dynamic logic styles with precharge/evaluation phases [74]. Chapters 5 and 6 discuss
the implementation details of Boolean masking, dynamic logic styles, as well as clock
randomization, which is another effective countermeasure for power analysis attacks.

An often overlooked property of strong PUFs is their robustness against power analysis
attacks. The lack of a secret, in the traditional sense, makes it hard to find correlation
between the input challenge, and the PUF entropy source. Previous publications demon-
strated power analysis attacks against strong PUFs [1, 77], but as mentioned in [54], the
applicability of such techniques is still very limited. One exception must be made to con-
structions that use weak PUFs, such as challenge obfuscated PUFs, where the obfuscation
logic manipulates the input challenge with a secret key, leaking information in the power
consumption. In chapter 5, we introduce a challenge obfuscation technique which has
countermeasures for power analysis attacks.
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Chapter 3

Strong PUFs with Non-monotonic
Response Quantization

Many strong PUF architectures, at their core, encode a comparison result of two identical
structures. For example, Fig. 3.1 (a) illustrates the popular arbiter PUF (APUF) with
two identical delay lines [33]. Each n-bit challenge performs a unique selection of delay
elements for the two paths. Depending on which path is faster, the arbiter makes a binary
(quantized) decision. The APUF uses typical response quantization, where the decision re-
mains the same regardless of the distance between the arriving signals. It’s been shown that
APUF, and many of its variants, can be modeled using learning algorithms [13,76,102,115].
In this chapter, we propose a technique that innovates by changing the core quantization
principle, which is common to most previous strong PUF designs. We introduce the con-
cept of non-monotonic response quantization (NMQ) to increase the security of strong
PUF architectures. The quantized decision depends not only on which path is faster, but
also on the distance between the arriving signals.

A non-monotonically quantized strong PUF (NMQ-PUF) can take various forms. We
demonstrate the technique using a ring oscillator based architecture denoted as NMQ-
RO, shown in Fig. 3.1 (b). It uses two challenge dependent oscillators. One oscillator is
connected to a counter, and the other to a toggling bit. The control logic allows oscillators
to run until the counter reaches a predefined value. The response is taken from the toggling
bit. The final counter value is chosen such that responses, when plotted along the frequency
difference axis, exhibit an alternating pattern of zeros and ones.

Our focus was to increase learning resilience, while keeping bit error rate at a reasonable
level. In section 2.1.6, we showed that higher bit error rates can be tolerated using more
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Figure 3.1: Arbiter PUF with typically quantized response in (a); and ring oscillator based PUF
with non-monotonically quantized response in (b).

CRPs during authentication, but a fix for an insecure PUF is much harder.

3.1 Related Works

As described in chapter 2, the arbiter PUF (APUF) was the first silicon PUF [33]. PUF
architectures have been continuously enhanced to improve resilience against learning at-
tacks. The feed-forward PUF inserts extra arbiters in the delay path to reduce response
linearity [52]. Similarly, XOR-APUF used XOR gates to combine multiple APUFs [97],
while lightweight PUF added input challenge transformation and a parity based output
function [59]. Double arbiter PUF combines two APUFs using a different wiring method
and an XOR gate [57]. The interpose PUF uses a composite architecture of two XOR-
APUFs to generate a response [66]. Recent advances in PUF architectures require larger
CRP datasets, and longer training time, but none was shown secure against learning at-
tacks [13, 46, 76, 102, 115]. Adding architectural, or wiring complexity that always encode
the fastest path has limited benefits, and may ruin response stability. We innovate by
changing the core quantization technique, which is common to all above mentioned PUF
designs.

Authors in [33] discuss self-oscillating circuits and frequency comparison as a method
for measuring on-chip delay, but no implementation details were presented. In [97], a
strong PUF was implemented using a pool of ring oscillators. Responses were obtained by
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pairwise frequency comparisons, which resulted in a limited challenge space. The archi-
tecture was attacked in [76]. Our work does not use pairwise frequency comparisons. We
generate responses using non-monotonic quantization instead of directly encoding oscillator
performance information.

In [58], authors proposed an RO-PUF with an identity-mapping function to expand the
set of CRPs. They also used error correction to reduce bit error rate. The architecture
was attacked in [64] using vulnerabilities in the identity mapping function. Moreover, the
use of error correction in strong PUFs was shown vulnerable in [26] due to helper data
manipulation. We use challenge dependent delay paths as entropy source. Our proposed
implementation of NMQ has challenge space of 2n, where n is 64. Our architecture allows
designers to find a compromise between learning resilience and response stability, therefore,
we do not employ error correction techniques.

In [20], authors propose a strong PUF based on a bistable ring oscillator (BR-PUF).
Such oscillators use an even number of challenge dependent delay stages that act as a
large SRAM cell. After releasing the reset, values in each stage will eventually settle to
either 01010 . . . 01, or 10101 . . . 10. As stated by the authors, once the ring first enters in
a settled state, it does not leave the state again. However, a number of challenges will
remain oscillating (unsettled) for a longer, or indefinite, period of time. The authors then
define the settling time as an evaluation time limit, which is also used to discard unstable
CRPs during enrollment.

3.2 Non-monotonic Quantization

3.2.1 Key Observations

PUFs compare the manufacturing variability of identically designed circuit components.
The input challenge specifies the structures to be compared. Responses always encode
the comparison result, leaking valuable information about the best performing circuit. For
example, APUF responses immediately expose which delay path is faster for a certain
challenge. Other APUF-based compositions introduce additional instances in an attempt
to obfuscate the entropy source information from the final responses, but they have mostly
failed to produce learning resistant strong PUFs, since the core quantization technique
is still the same. Non-monotonic quantization (NMQ), however, produces outputs that
cannot be individually translated into information about the entropy source.
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Figure 3.2: SPICE simulated responses for 1000 challenges; (a), and (b) plot APUF, and NMQ-
RO (g=400) responses using accumulated path delay as basis, respectively; (c) and (d) plot
APUF, and NMQ-RO (g=400) responses along the quantizer input axis, which is delay difference
for APUF, and frequency difference for NMQ-RO; (c) and (d) also plot the delay and frequency
difference histogram for APUF and NMQ-RO.

Observation 3.2.1 Typically quantized strong PUFs, at their core, encode the best per-
forming structure. Individual CRPs provide direct information about the entropy source.

A geometrical perspective of non-monotonic quantization is shown in Fig. 3.2. In (a),
APUF responses for 1000 challenges are plotted using accumulated path delay as basis.
Similarly, (b) plots NMQ-RO responses. It is clear that the typically quantized responses
in (a) are separable by a line. The NMQ responses in (b) however, cannot be linearly
separable on the chosen basis.

Observation 3.2.2 Non-monotonically quantized strong PUF responses are not linearly
separable on the basis of accumulated path delay.

Based on Obs. 3.2.2, we may argue that linear models, such as logistic regression (LR),
are not able to model NMQ-PUFs. While APUFs require composition to avoid LR attacks,
our NMQ-PUF implementation is shown resistant against LR, even when responses are
taken from a single instance. Detailed experimental data is presented in section 3.6.
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Fig. 3.2 (c) and (d) plot APUF and NMQ-RO responses along the delay, and frequency
difference axis, respectively. While typically quantized responses from the APUF encode
the delay difference sign, NMQ-RO responses show an alternating pattern of zeros and
ones. The delay and frequency difference histograms are plotted above responses in (c)
and (d), for APUF, and NMQ-RO. Unlike APUF, the NMQ-RO histogram is not neces-
sarily centered at zero. NMQ-RO responses are defined by the distance between the two
frequencies, not the sign of their difference.

3.3 NMQ-PUF Using Ring Oscillators

A non-monotonically quantized strong PUF (NMQ-PUF) can take various forms. We
demonstrate a ring oscillator based strong PUF, denoted NMQ-RO, which is shown in
Fig. 3.1. It uses two identical, challenge dependent ring oscillator structures. One ring
oscillator is connected to a counter named trap counter, and the other to a toggling bit.
The toggling bit is complemented, and the trap counter is incremented, at every rising
edge of their associated oscillating signal. The control logic disables both ring oscillators
when the trap counter reaches a predetermined value. The final response is taken from the
toggling bit.

The response, r, may be written in terms of circuit variables as

r = LSB

(⌊
g
Dp(c)

Dq(c)

⌋)
, (3.1)

where D{p,q}(c) are the challenge dependent propagation delays of ring oscillator p, and
q. The term g denotes the pre-determined trap counter final value. The function LSB()
returns the least significant bit.

According to Eq. 3.1, NMQ-RO responses encode the performance ratio of two ring
oscillators into a single bit value that can only represent {0, 1}. Non-monotonic quantiza-
tion arises due to information lost during the encoding of Dp(c)/Dq(c) into the single bit
response r. For example, if

g
Dp(c)

Dq(c)
≥ 2,

the performance ratio information, for that particular challenge, is no longer directly en-
coded in the response, since only the least significant bit of the above product is captured.
From a design perspective, we can promote information loss by increasing the trap counter
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final value, g. The parameter g must be selected such that information loss occurs for a
significant number of challenges.

Large g values, however, increase bit error rate. Our measurement results and security
assessment, sections 3.5 and 3.6, indicate that large g enhances learning resilience, but
impacts response stability. Designers should explore the trade-off between security and
response stability, choosing the parameter g accordingly.

3.4 Compositions of NMQ-PUFs

The security of NMQ-RO is primarily controlled by the chosen g value. However, our
measurement data reveals that g sets a trade off between learning attack resilience and
response stability. As shown in section 3.6, improving security solely by increasing g can
have a significant impact on bit error rate.

In order to find a compromise between security and response stability, we explore PUF
compositions. Researchers have demonstrated that compositions enhance APUF resilience
against learning attacks [76]. Therefore, we apply similar methods to NMQ-RO, but instead
of using typically quantized PUFs, we use NMQ-RO with a moderate final trap counter
value (g=200), such that bit error rate for the overall composition is less than 20%.

We demonstrate a composite strong PUF using three NMQ-ROs. The k-XOR-NMQ-
RO is shown in Fig. 3.3. Term k refers to the number of NMQ-RO instances used. Similarly
to a k-XOR-APUF, all instances evaluate the same challenge. Outputs are XORed to
produce the final response.

Other PUF compositions could also increase the resilience to learning attacks, while
maintaining response stability at an acceptable level. We chose the XOR-APUF style of
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composition because it is well understood, with mature attack techniques.

3.5 Testchip Design and Measurement Results

We designed a testchip to assess strong PUF performance metrics, such as uniformity,
uniqueness, and bit error rate (BER). Our objective is to evaluate the impact of g in
response stability, which will provide essential data to explore the security/stability trade-
off in section 3.6.

3.5.1 Testchip Design

We designed a testchip in 65 nm CMOS technology. Our testchip includes 10 instances
of NMQ-RO, with n = 64. The XOR-NMQ-RO composition is realized through post
processing responses from these instances.

The CMOS implementation of NMQ-RO uses custom designed ring oscillators with
an even number of challenge enabled tri-state inverters, and a NAND gate for control, as
shown in Fig. 3.4. Layout of ring oscillators, and the schematic for tri-state inverters are
shown in Fig. 3.5. No special circuit technique was used to compensate for temperature
or noise.

We used automated synthesis, placement, and routing tools to design the trap counter
and surrounding test logic, which are shown in Fig. 3.6, highlighted in yellow. An addi-
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Figure 3.8: NMQ-RO (a) standard deviation
of trap counter final value minus the number
of toggles; and (b) worst bit error rate.

tional test counter was created to keep track of the total number of toggles, which is only
used for experimental reasons.

3.5.2 Measurement Results

Measurements were performed on a total of 60 NMQ-RO instances, spread over 6 dies.
Each die also included one APUF instance. We performed enrollment at 20 °C with a
single evaluation (no temporal majority voting). To calculate bit error rate, CRPs are
evaluated 100 times at each temperature from 0 °C to 50 °C. The reported metrics were
calculated over all 60 instances of NMQ-RO.

Bit error rate measures the stability of PUF responses. In the case of NMQ-RO, it
depends on the parameter g. Fig. 3.7 (a) shows bit error rate for different values of g,
measured using 10 k CRPs. At 20 °C, we measured BER of 3.3%, 6.5%, and 13.1%, for
g=100, g=200, and g=400, respectively. Other temperatures in the 0 °C – 50 °C range
show a small BER variation compared to their respective enrollment temperature.

Fig. 3.7 (b) depicts the uniformity distribution (mean values) for all instances with
respect to g values. Uniformity was calculated using 10 k CRPs. The larger uniformity
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Figure 3.9: NMQ-RO histogram of trap counter final value minus number of toggles for various
g, using 100 k challenges. The average value was subtracted to center histograms at zero.

spread observed when g is less than 200 is caused by performance mismatches between
the two ring oscillators. Therefore, when NMQ-RO runs with small g values, a significant
number of challenges will not accumulate a sufficiently large delay difference to move
⌊gDp/Dq⌋ away from its average value, leading to biased responses. The use of twisted
ring oscillators could solve this issue, unlocking configurations where g is less than 200.
Designers must be careful, however, with possible frequency locking between the two ring
oscillators due to increased capacitive coupling.

The standard deviation of trap counter final value minus number of toggles is shown in
Fig. 3.8 (a), for a range of g values, using 10 k CRPs. As g increases, more cycles become
available to accumulate the delay difference between the two ROs, which leads to larger
standard deviation values. Fig. 3.8 (b) plots the worst BER distribution for all instances,
at the respective g, also using 10 k CRPs. It shows that bit error rate also increases for
larger values of g. Another perspective on the results is shown in Fig. 3.9, where the
same data is plotted in a histogram format. The average value of each distribution was
subtracted to center them at zero.

The uniformity and uniqueness histograms were calculated using 1M CRPs per instance,
and exhibits near ideal behavior. The uniformity histogram, for all instances combined, is
shown in Fig. 3.10 (a). Uniformity mean is 0.505 with 0.093 standard deviation, which
represents that, on average, 50.5% of responses are 0, and 49.5% are 1. The uniqueness
was calculated with multi-bit responses of 32 bits. The uniqueness histogram is shown in
Fig. 3.10 (b). Uniqueness mean is 0.500 with 0.003 standard deviation, which indicates
that, on average, 50.0% of response bits were different in every group of 32 responses, for
the same challenges, across multiple instances.

Our results report data for a total of 18 instances of 3-XOR-NMQ-RO, and 30 instances
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of 2-XOR-NMQ-RO. Fig. 3.11 shows mean BER calculated using 5 k challenges, from 0 °C
to 50 °C. The lowest BER occurs at the enrollment temperature of 20 °C, while the peak bit
error rate is found at 50 °C. The worst BER for 2-XOR-NMQ-RO, and 3-XOR-NMQ-RO
is 13.4%, and 18.6%, respectively.

Better response stability is possible via the utilization of specialized circuit techniques,
or different RO designs [2, 6, 8]. They have potential to improve stability of NMQ-RO
responses.

3.6 Security Assessment

The goal of learning attacks is to find a representation of the PUF entropy source, such that
it can be used to accurately predict responses to unseen challenges. In this section, we first
develop the concept of uniqueness sensitivity to entropy source, showing how uniqueness
sensitivity can provide rapid insight on PUF resilience to learning attacks. Next, we report
extensive experimental results with various learning attack techniques.

3.6.1 Uniqueness Sensitivity to Entropy Source

We investigate a technique to gain rapid insight on learning resilience of strong PUFs by
exploring the uniqueness metric, and its interaction with PUF entropy source. Experi-
ments using this technique take less than one hour to complete, without any specialized
hardware accelerators. This technique does not replace comprehensive attack experiments,
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but instead, offers valuable insight during design stage, allowing fast iteration between
different PUF architectures, and design parameters. The code for computing uniqueness
sensitivity is publicly available [92].

The entropy source of PUFs originates at random deviations in device parameters that
occur during IC manufacturing. Small deviations in the entropy source of a strong PUF
should produce unique responses. If θ denotes entropy source parameters, the uniqueness
of two different PUF instances is given by U(θ0,θ1).

Definition 3.6.1 Uniqueness sensitivity is the rate of change in uniqueness with respect
to changes in the entropy source.

The high-dimensional space of PUF parameters makes practical use of uniqueness sen-
sitivity non-trivial. To visualize the impact of small entropy source changes in uniqueness,
we use a curvature exploration method, described in [53]. We pick two random direction
vectors δ and η, of same dimension as θ, and evaluate
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f(α, β) = U(θ0,θ0 + αδ + βη). (3.2)

Parameters (α, β) are scalars, which are swept as input coordinates to calculate unique-
ness over a set of challenges. When (α = 0, β = 0), uniqueness will be evaluated for two
identical instances (same entropy source), resulting in zero. As (α, β) move away from the
origin, the distance to the original entropy source, θ0, will increase, hence the uniqueness
between the original instance, and the new instance parameterized by θ0 + αδ + βη, will
diverge from 0 and center around 0.5.

Fig. 3.12 shows contour plots for uniqueness in different PUF architectures. In (a), (b),
and (c) the input coordinate range to Eq. 3.2 is α ∈ [−0.25, 0.25], and β ∈ [−0.25, 0.25]. In
(a), the APUF uniqueness is zero at (0, 0), and gradually increases as α and β move away
from the origin. Similar behavior is observed in (b), where the 5-XOR-APUF uniqueness is
zero at (0, 0), and increases as we move away from the origin. However, the 5-XOR-APUF
shows a much steeper uniqueness increase, with the ideal contours of 0.5 appearing closer
to the origin.

The uniqueness contour plots for NMQ-RO and XOR-NMQ-RO are plotted in Fig.
3.12 (c), (d), (e), and (f). In (c), the NMQ-RO (g=800) is plotted with the same range of
input coordinates as (a), and (b). Uniqueness sensitivity is such that contours with values
smaller than 0.5 are barely visible, requiring a zoomed graph inset.

For plots in Fig. 3.12 (d), (e), and (f), the input coordinate range is 5x narrower,
α ∈ [−0.05, 0.05], and β ∈ [−0.05, 0.05]. The contour plots for NMQ-RO (g=200) is shown
in (d). Extra instances of NMQ-RO (g=200) are XORed to form 2-XOR-NMQ-RO in (e)
and 3-XOR-NMQ-RO in (f). We observed that XORing additional NMQ-RO instances
caused a small increase in uniqueness sensitivity, but removed noticeable patterns in the
contour lines near the origin.

Hypothesis 3.6.1 High uniqueness sensitivity to entropy source deviations is an indicator
of strong PUF robustness to learning attacks.

Typically, learning attacks use differentiable neural network architectures trained by
stochastic, gradient descent algorithms. Those optimization algorithms search for weights
and biases which minimize a loss function between the collected CRP database, and net-
work predictions. If the learned network parameters are a representation of the strong
PUF entropy source, we can argue that the contour plots of uniqueness over the entropy

28



source space, shown in Fig. 3.12, capture the impact of a particular PUF architecture on
the loss function used for training. Therefore, our results suggest that strong PUFs with
high uniqueness sensitivity will likely produce harder to optimize loss functions.

3.6.2 Learning Attack Results

We performed experiments to assess the security of NMQ-PUFs. We used CRP databases
generated from a high-level model, and from our silicon implementation. The high-level
model, the attack code, and the CRP database collected from silicon are publicly avail-
able [92, 94]. Our findings are summarized in Table 3.1. The Quant. column defines the
quantization method used, either non-monotonic, or typical. The k column is the number
of XORed instances. The BER represents the worst case measured BER over the tempera-
ture range from 0 °C to 50 °C. The Database Type column specifies the origin of CRPs used
in the attack—Model refers to the high-level model, while Silicon refers to CRPs from our
testchip. If both database types are specified, it indicates the experiment was run twice,
once with each database, obtaining very similar results for both runs.

The learning resilience of NMQ-PUFs was first assessed using LR. We used 1 M CRPs
to train an LR model with NMQ-RO responses using g=200. As shown in Table 3.1,
the modeling accuracy obtained was 50.1%, which supports Obs. 3.2.2, suggesting that
NMQ-PUF responses cannot be learned with linear models.

Next, we tried the attack in [13], where the authors implemented a covariance matrix
adaptation (CMA-ES) algorithm that uses response stability as side-channel information.
The key insight is that, in typically quantized PUFs, CRPs with small delay difference are
more susceptible to noise. But CMA-ES assumptions on noisy CRPs do not hold for NMQ-
PUF, since small performance differences are not correlated to response stability. This is
confirmed by the low CMA-ES accuracy against NMQ-RO (g=200), of 49.8% (shown in
Table 3.1).

Attack techniques that rely on a limited challenge space are unlikely to model NMQ-
RO responses. As mentioned before, NMQ-RO uses challenge dependent ROs, which may
be seen as a pool of 264 different ROs. For example, in [30], the polynomial-size decision
list cannot represent our architecture. Another similar attack using Fourier analysis was
introduced in [31], and as shown in Table 3.1, it was not able to obtain generalized learning
of NMQ-RO.

Deep-neural networks (DNNs) are emerging as an efficient attack technique capable of
learning complex PUF structures. Our DNN attack makes no assumption on the underlying
architecture, and its code is publicly available [92]. We use a 12-layer DNN architecture
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Table 3.1: Learning attack results for non-monotonically quantized PUFs.

Quant. k BER CRPs Database Type Attack Accur. Time

NMQ-RO
(g=200)

NMQ 1 8%

1 M Model & Silicon LR 50.1% 10 s
1 M Model & Silicon CMA-ES 49.8% 10 h
1 M Model & Silicon Fourier 50.0% 1 h
1 M Model & Silicon DNN 95.1% 12 h

NMQ-RO
(g=400)

NMQ 1 15%
1 M Model & Silicon DNN 90.0% 12 h
5 M Model & Silicon DNN 91.4% 2.5 days

NMQ-RO
(g=800)

NMQ 1 29.4%
1 M Model & Silicon DNN 75.0% 12 h
5 M Model & Silicon DNN 86.5% 2.5 days

NMQ-RO
(g=5000)

NMQ 1 * 50 M Model DNN 50.7% 4 days

XOR-NMQ-RO
(g=200)

NMQ
2 13.4%

20 M Model DNN 50.3% 7 days
10 M Silicon DNN 49.6% 3.5 days

3 18.6%
20 M Model DNN 49.9% 7 days
10 M Silicon DNN 50.2% 3.5 days

Notes: BER is the worst bit error rate from 0 °C to 50 °C, with challenges enrolled at 20 °C.

proposed in [46] for all our DNN attacks. The input and output layers have 64, and 2 units,
respectively. Hidden layers have 2000 units. Table 3.1 shows that DNN attacks are capable
of learning NMQ-ROs using g=200, g=400, and g=800. The trade-off between final trap
counter value and stability is present, where larger g values increase learning resilience, but
decrease response stability. An exploratory DNN attack was performed with g=5000. The
DNN model was not able to model NMQ-RO using g=5000, which shows that increasing g
will, eventually, make the PUF resistant to this attack—aside from the significant reduction
in response stability that makes such configuration impractical.

To find a compromise between learning resilience and response stability, we explored
compositions that use NMQ-RO. Since compositions tend to decrease response stability,
we use NMQ-RO at a moderate g value (g=200). Results in Table 3.1 show the DNN
attack was not able to obtain generalized learning of XOR-NMQ-RO. Moreover, both
implementations, with 2, and 3 instances, show acceptable BER of 13.4% and 18.6%,
while preserving the PUF entropy source parameters from DNN attacks using up to 20 M
CRPs.
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3.6.3 Comparison with Prior Works

A comparison of 2-XOR-NMQ-RO with other strong PUF designs is shown in Table 3.2.
In addition to the traditional metrics of area, bit rate, power, and energy, we highlight two
very important criteria, bit error rate, and security testing.

As discussed in section 2.1.6, the requirements for bit error rate are application depen-
dent. We make one important remark, however, on the discarding of unstable CRPs during
enrollment. It is a popular technique to selectively enroll only stable CRPs, but designers
must be conscious that as a side effect, the verifier will have to transmit all CRPs, bit by
bit, during the authentication process. This is unlike solutions without selective enroll-
ment, where CRPs can be locally unrolled using a linear feedback shift register (LFSR),
from a single input challenge.

3.7 Conclusion

We introduced a non-monotonic quantization technique to increase security of strong PUF
architectures. We implemented a non-monotonically quantized RO-based strong PUF in
65 nm CMOS technology. Our experiments show that the resulting PUF has increased
security against learning attacks. Measurement results also show the proposed PUF has
less than 13.4% BER over a temperature range of 0 °C to 50 °C. Moreover, we introduced
the concept of uniqueness sensitivity to entropy source, showing how it can provide rapid
insight on PUF resilience to learning attacks.
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Chapter 4

Design Exploration of Composite
Strong PUF Implementations

In this chapter, we study the effect of composite architectures in the learning resilience and
response stability of PUFs. In particular, we designed and implemented a testchip in 65 nm
technology with several variations of the PUF-on-PUF (POP) architecture, introduced by
Wu et al [116]. POP uses a two layers construction, shown in Fig. 4.1, where responses from
first layer serve as input to the second layer. Our implementation also adds new features to
POP, including support for multiple first round evaluations, and temporal majority voting
(TMV) for noise removal. We use APUFs as basic building block. Our testchip includes
different implementations of the first layer using using APUF of 2, 4, 6, 8, 12, and 24
stages.

To assess the security of our POP implementations, we performed extensive learning
attacks varying depth (rounds) and size (number of stages in first layer APUFs). We report
experiments where attacks using deep neural networks (DNNs) achieve low prediction
scores when the first layer uses APUFs of 6, 8, 12, and 24 stages. We also found counter-
intuitive results for learning resilience. POP implementations using 2, and 4 stage APUFs
in the first layer are shown vulnerable to DNN attacks. Moreover, increasing the number
of rounds brought no improvements against DNN attacks, in fact, it made small sized
POP implementations more vulnerable. We reflect on such results, extending previous
techniques of influential bit analysis to assess stage bias in APUF instances [29]. To shed
light on why depth increase is ineffective to thwart learning attacks, we show that the
hamming-distance of first layer responses decreases as the number of rounds increases.
Therefore, small APUFs in the first layer limit the challenge space of the second layer
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Response

PUF2 PUFm-1

Control Logic: Multiple First Layer Rounds

Figure 4.1: Composite strong PUF architecture supporting multiple first round evaluations. The
design extends the PUF-on-PUF (POP) concept, proposed in [116].

APUF, showing that compositions not always preserve security properties of PUFs—the
size of composing PUFs plays a crucial role.

4.1 Related Works

PUF architectures have been continuously enhanced to improve resilience against learn-
ing attacks [52, 57, 59, 78, 97]. Other works have tried to design PUFs with non-linear
challenge-response relationship by operating in subthreshold regime [50,124], or using am-
plifier chains [122]. Such solutions were effective in improving resilience to classical machine
learning approaches [76], but none was shown resistant to recent attacks using deep neural
networks [46,82].

Composite architectures use the output of PUFs as input of other PUFs. They were
initially introduced in [80]. Later, researchers also proposed combining weak and strong
PUFs [56]. The concept of composite architectures was used in the interpose PUF, where
multiple XOR-APUF instances form a composition with improved resilience to learning
attacks [66]. Composite constructions require larger CRP datasets, and longer training
time, but still, security against DNN attacks remains an open problem [46,82,102,115,116].

The work by Wu et al [116] highlights the vulnerabilities of prior composite PUFs
against cryptanalysis attacks [79], and introduces a new architecture which is resistant
against such attacks, denoted as PUF-on-PUF (POP). In this chapter, we explore the
design space of POP, implementing a testchip in 65 nm CMOS process, and performing an
extensive security assessment on various POP implementations.
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Figure 4.2: Temporal majority voting (TMV)
is implemented in each individual PUF in-
stance. It evaluates the PUF multiple times,
returning the most frequent response.
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Figure 4.3: Input challenge wiring in first layer
for APUFs of size 4. Other sizes follow simi-
lar pattern, where challenge bits are applied to
multiple PUF instances.

4.2 Notation

An arbiter PUF (APUF) with an n-bit challenge is denoted as an APUF of size n, or n-
APUF. An n-APUF-POP refers to a POP implementation where all APUFs in first layer
have n stages. Vectors are written in bold text, and are indexed from zero, for example,
c = (c0, c1, . . . , cn−1). The hamming weight and hamming distance functions are denoted
as HW(), and HD(), respectively. The narrow, and wide temperature sets refer to {0 °C,
20 °C, 60 °C}, and {-30 °C, 0 °C, 20 °C, 60 °C, 80 °C}.

4.3 The PUF-on-PUF Architecture

The PUF-on-PUF (POP) architecture was proposed by Wu et al [116]. It uses composition
as an alternative to increase strong PUF resilience to learning attacks. Our implementation
of POP is shown in Fig. 4.1. It uses a two layers construction, where responses from the first
layer serve as input to the second layer. Our implementation adds support for multiple
first round evaluations as a low-cost alternative to increasing the number of layers. In
other words, first layer responses can be reused as input challenge for additional evaluation
rounds, prior to the final second layer evaluation.

Our implementation of POP uses APUFs as building block, for its simplicity, stability,
and well understood security characteristics. The input challenge has 64 bits, and the
number of APUF instances in the first layer matches the number of challenge bits. The
first layer can be implemented with APUFs of any size, while the second layer APUF must
match the number of stages with the number of APUF instances in the previous layer. In
this chapter, we restrict ourselves to first layer implementations where all APUFs have the
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(a) APUF block diagram

(b) APUF schematic

c0 c1 c2
c3 cn-1

rEn Arb.
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r

c0 cn-1c1

Figure 4.4: Arbiter PUF block diagram in (a), and implemented schematic using tri-state inverters
and NAND-based arbiter in (b).

same size.

Each APUF instance uses temporal majority voting (TMV) to filter out noise, as shown
in Fig. 4.2. TMV performs a predetermined number of repeated evaluations, returning the
most frequent response. It is important to notice that TMV is not applied to the overall
composition, but to each individual APUF instance.

As described by Wu et al, careful wiring of challenge bits in the first layer is required
to avoid cryptanalysis attacks [116]. The wiring pattern must use each challenge bit in
more than a single PUF instance. The POP wiring for a first layer implementation using
4-APUF is shown in Fig. 4.3. Each 4-APUFi is connected to the input challenge at
offset i. If the sum of offset and APUF size is greater than 63, the challenge bits simply
wrap around. When performing evaluations with multiple rounds, the challenge register
is re-loaded with responses from APUFs in the first layer. Responses of each APUFi are
used as challenge bit i for first layer re-evaluation. Similarly, second layer evaluations are
performed by wiring responses of each APUFi in the first layer to the stage i of the second
layer APUF.

4.4 Testchip Design

High-level models offer a convenient alternative to test the security of new PUF archi-
tectures. The delay of each APUF stage follows a well understood normal distribution.
When noise is not considered, PUF responses from high-level models tend to be indistin-
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Table 4.1: Area cost of each APUF size.

# Stages Height Width Area Norm.
(µm) (µm) (µm2) (ND2)

2-APUF 2 1.8 11.8 21.2 14.8
4-APUF 4 1.8 18.2 32.8 22.8
6-APUF 6 1.8 24.6 44.3 30.8
8-APUF 8 1.8 31 55.8 38.8
12-APUF 12 1.8 43.8 78.8 54.8
24-APUF 24 1.8 82.2 148.0 102.8
64-APUF 64 1.8 210.2 378.4 262.8

guishable from responses obtained from silicon. This allows designers to perform an early
assessment of uniformity, uniqueness, and resilience to learning attacks. However, response
stability is a key performance metric which cannot be accurately estimated without silicon
implementation. For this reason, we designed and implemented a testchip in 65 nm CMOS
technology. Our testchip is used to evaluate the response uniformity, uniqueness, and bit
error rate of our POP implementation.

We use APUF as building block. Our APUF instances are designed with tri-state
inverters and a NAND-based arbiter, as shown in Fig. 4.4. Layout of APUFs is custom-
made to ensure identical routing of both delay paths. The layout of an APUF with 2 stages
is shown in Fig. 4.5. We designed APUFs with 2, 4, 6, 8, 12, 24, and 64 stages. Area
information for each APUF is shown in Table 4.1. Height and width dimensions are listed
in µm, while area is provided in µm2, and normalized by the NAND2 area. Our APUF
cells have the same height as logic gates from the commercial standard-cell library, which
allows automatic placement and routing by EDA tools. This methodology significantly
reduces design effort, without loosing the performance of a custom approach.

Die photo and layout are shown in Fig. 4.6. The cells highlighted in yellow implement
a JTAG interface and test logic. APUF instances used in the first layer are highlighted
in blue, they account for 64 instances of each APUF cell size, including 2, 4, 6, 8, 12,
and 24 stages. In total, 384 APUFs are instantiated to construct 6 different first layer
implementations. The PUF with 64 stages, used in the second layer, is highlighted in
red. Cells highlighted in green implement the round control logic and TMV counters. The
TMV logic is largely oversized for exploratory reasons, using a total of 65 counters, each
with 24-bits. Results reported in section 4.5, show that more than 15 TMV evaluations
bring diminishing returns in response stability. Therefore, the size of TMV counters may
be significantly reduced. Further area optimization is possible if the first layer PUFs do
not evaluate simultaneously, allowing operation with fewer TMV counters. This impacts
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throughput, but significantly reduces the TMV hardware size.

In summary, each testchip includes 6 different first layer implementations. Each imple-
mentation uses a different APUF size, including 2, 4, 6, 8, 12, and 24 stages. The first layer
does not mix APUFs of different sizes. There is a single 64-APUF instance, therefore, the
testchip includes only one second layer implementation.

4.5 Measurement Results

We measured a total of 10 dies to accurately assess uniformity, uniqueness, and response
stability. Each die contains 6 different first layer implementations, and a single 64-APUF
which implements the second layer. We performed enrollment at 20 °C. To calculate
bit error rate, CRPs are evaluated 100 times at the narrow and wide temperature sets,
which denote {0 °C, 20 °C, 60 °C}, and {-30 °C, 0 °C, 20 °C, 60 °C, 80 °C}, respectively.
Temporal majority voting (TMV) is used in all evaluations. TMV with a single (one)
repeated evaluation is equivalent to an ordinary evaluation without temporal majority
voting. Boxplots show the distribution of mean values for different chips—they include 10
different mean values of the respective performance metric, one from each tested chip.

Bit error rate measures the stability of PUF responses. Fig. 4.7 (a), and (b) plot
bit error rate for POP implementations with various APUF sizes in the first layer, for
the narrow and wide temperature sets, respectively. A single first layer evaluation was
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Figure 4.7: Worst BER for POP implemen-
tations with various APUF sizes in the first
layer; in (a) for the narrow temperature set;
and (b) for the wide temperature set. Mea-
sured with 5 k CRPs, single first layer evalua-
tion (one round), and 15 TMV.
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Figure 4.8: Worst BER for different repeated
evaluation (TMV) values; (a) assess bit error
rate over the narrow temperature set; and (b)
over the wide temperature set. Measured with
5 k CRPs, and a single first layer evaluation
(one round).

performed (one round). A total of 15 repeated evaluations were used for TMV. The median
BER for 24-APUF-POP is 19.2%, and 22.1% in the narrow, and wide temperature sets,
respectively. Minimum bit-error rate is found with 8-APUF-POP, where we measured
median BER of 17.1%, and 19.7% for the narrow, and wide temperature sets. Small
APUFs, with 2, 4, and 6 stages, showed a steep increase in the spread of bit error rate
across different chips. This is likely related to stage bias, which is discussed in section
4.6.3.

Temporal majority voting (TMV) performs multiple evaluations of a PUF instance to
remove noise from responses. We assessed the impact of TMV in POP response stability.
Results plotted in Fig. 4.8 show bit error rate for different TMV settings. In (a), the
median BER for 8-APUF-POP, in the narrow temperature set, is 23.5%, 18.5%, 17.1%,
and 16.5%, for 1, 7, 15, and 31 repeated TMV evaluations. Increasing the number of
repeated evaluations quickly reaches diminishing returns. A similar trend was observed
for other sizes of POP, in both temperature sets. Therefore, 15 TMV offers a reasonable
compromise between throughput and bit error rate for composite evaluations.

Our POP implementations adds support to multiple first layer evaluation rounds. We
assessed the response stability for 1, 2, 3, and 4 evaluation rounds, using 1 k CRPs.
Results are shown in Fig. 4.9 (a), (b), (c), and (d) for 2, 4, 8, and 24 stages in first layer
APUFs, respectively. All implementations showed median BER below 20% for single round
evaluations. Larger APUFs in the first layer lead to lower response stability when using
additional rounds. Similarly to Fig. 4.7, small APUFs in the first layer show a wide spread
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Figure 4.9: Bit error rate for various evalu-
ation rounds using 2-APUF-POP in (a), 4-
APUF-POP in (b), 8-APUF-POP in (c), and
24-APUF-POP in (d). Measured in the narrow
temperature set, with 1 k CRPs, and 15 TMV.
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Figure 4.10: Uniformity and uniqueness for
various evaluation rounds for 2-APUF-POP in
(a, c), and 8-APUF-POP in (b, d). Measure-
ments were performed with 1 k CRPs at 20 °C,
with 15 TMV.

of BER measurement across multiple chips. Therefore, median BER for 2-APUF-POP,
and 4-APUF-POP, may be a misleading performance metric, if not accompanied by the
corresponding standard deviation.

We also measured uniformity and uniqueness of POP instances in our testchip. The
former, captures the balance of zeros and ones in the final response, while the later, mea-
sures the normalized hamming distance of different instances. Measured uniformity and
uniqueness for various rounds are plotted in Fig. 4.10, for 2-APUF-POP in (a, c), and
8-APUF-POP in (b, d). Both uniformity, and uniqueness showed a small variation in per-
formance values across different sizes of POP. The median uniformity for 2-APUF-POP,
and 8-APUF-POP, with one evaluation round, is 0.55, and 0.52, respectively. The corre-
sponding median uniqueness is 0.50 for both 2-APUF-POP and 8-APUF-POP. Other POP
implementations with different sizes presented similar results.

In section 4.6.4 we show that small APUFs in the first layer lead to poor hamming
distance in the intermediate responses. Such result is not noticeable when evaluating the
final output of POP, but it is likely the cause of security vulnerabilities studied in the next
section.
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4.6 Security Assessment

The primary motivation for composite strong PUFs is to increase security against learning
attacks. We start this section discussing the applicability of logistic regression, cryptanaly-
sis, and reliability attacks to POP. Next we describe how deep neural networks (DNNs) are
used to model strong PUFs. We assess the learning resilience of our POP implementations
against (DNNs) using up to 10 M CRPs. Next, we discuss influential bits, and hamming
distance of intermediate responses, showing that compositions do not necessarily preserve
the security properties of PUFs—the size of composing PUFs plays a crucial role.

4.6.1 Learning Attack Results

Logistic regression and cryptanalysis: logistic regression (LR), and cryptanalysis attacks
are described in [76] and [79]. LR uses gradient descent to find coefficients of a linear
model that minimize the prediction error. Modeling POP with LR is non-trivial, since
careful mathematical manipulation is required for an adequate linear fitting [116]. The
cryptanalysis attack exploits the mapping of challenge bits to different APUFs in the first
layer. It was shown in [116], that such attacks are ineffective against POP due to the
wiring scheme used in the first layer—every challenge bit is fed to more than a single PUF
instance.

Reliability based attacks: reliability based attacks were initially introduced in [13]. The
key insight is that CRPs with small delay difference are more susceptible to noise. Au-
thors demonstrated the attack efficacy against XOR-APUFs using response stability as
side-channel information. The POP architecture, however, uses a construction where noisy
CRPs in the first layer affect the final output with different probabilities. Such charac-
teristic is described in detail in section 4.6.2. Therefore, analogously to the formal proof
provided for the interpose PUF in [66], reliability-based attacks are unlikely to obtain bet-
ter prediction accuracy than other learning attacks that do not exploit response stability
information.

Deep neural networks: deep-neural networks (DNNs) are emerging as an efficient attack
technique capable of learning complex PUF structures. DNNs do not require a mathemat-
ical model of the PUF being modelled. We use a 12-layer DNN architecture proposed
in [46] for our DNN attacks. The input and output layers have 64, and 2 units, respec-
tively. Hidden layers have 2000 units. Performance metrics in section 4.5 were calculated
using CRPs generated from our testchip, but our attack experiments use CRPs from a
high-level model to avoid noise as confounding factor for prediction accuracy. Table 4.2
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Table 4.2: Learning attack results.

Implementation Rounds BER Area (ND2) Accuracy

2-APUF-POP 1 20.0% 1.2 k 81.8%
4-APUF-POP 1 18.5% 1.7 k 74.7%
6-APUF-POP 1 17.4% 2.2 k 48.0%
8-APUF-POP 1 17.1% 2.7 k 51.5%
12-APUF-POP 1 17.3% 5.4 k 49.6%
24-APUF-POP 1 19.2% 6.8 k 54.4%

2-APUF-POP 1 20.0% 1.2 k 81.8%
2-APUF-POP 2 17.0% 1.2 k 91.3%
2-APUF-POP 4 20.1% 1.2 k 96.1%
2-APUF-POP 8 – 1.2 k 99.5%

24-APUF-POP 1 19.0% 6.8 k 54.4%
24-APUF-POP 2 31.7% 6.8 k 55.0%
24-APUF-POP 4 41.6% 6.8 k 56.4%
24-APUF-POP 8 – 6.8 k 56.2%

Notes: worst BER is the worst bit error rate (median) from {0 °C,
20 °C, 60 °C}, using 15 repeated evaluations for TMV. The area in-
cludes only APUF instances (control and TMV logic not included).
All attacks were performed using deep neural networks (DNNs), with
10 M CRPs and 72h training time.

summarizes DNN attack results using 10 M CRPs. The Implementation column specifies
POP parameters used, for example, the 2-APUF-POP uses 64 instances of 2-APUF in the
first layer. All our POP implementations use a 64-APUF instance in the second layer. The
Rounds column refers to the number of first layer evaluations used, prior to the second
layer evaluation. The BER column reports the median of worst bit error rate among the
temperature points of {0 °C, 20 °C, 60 °C}. The Area column reports the silicon area
(normalized by the NAND2 area) for all APUF instances, excluding control, and TMV
logic. The Accuracy column reports the accuracy obtained after 72 h of training using a
Quadro P4000 GPU.

Results reported in Table 4.2 show that the DNN model achieved accuracy of 81.8%
for 2-APUF-POP using 1 round. This implementation has median BER of 20.0%, and
uses an area of 1.2 k ND2. Increasing the size of APUFs in the first layer to 4, 6, 8,
12, and 24 stages reduces prediction accuracy to 74.7%, 48.0%, 51.5%, 49.6%, and 54.4%,
respectively. Therefore, our results suggest that increasing the size of APUFs in the first
layer strengthens the POP composition, at an area and response stability cost.

We explored multiple first layer evaluation rounds as a cost-effective approach for
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strengthening POP against learning attacks. Table 4.2 reports bit error rate and pre-
diction accuracy result for 2-APUF-POP and 24-APUF-POP, using 1, 2, 4, and 8 rounds.
Response stability falls as more evaluation rounds are used. We measured median BER of
17.7% and 31.7% for 2-APUF-POP and 24-APUF-POP when using 2 evaluation rounds,
respectively. Prediction accuracy for 24-APUF-POP did not shown significant change when
varying number of rounds, however, prediction accuracy for 2-APUF-POP increased when
more rounds are used. This result was unexpected, and counter-intuitive. We carefully
reflect on possible explanations for such outcome in the next sections.

4.6.2 Probability of Output Change

The DNN prediction accuracy when using small APUFs in the first layer, reported in
section 4.6.1, deserves additional investigation. In this section, we use the concept of strict
avalanche criterion (SAC) to look into the differences between APUFs of various sizes.

As defined in [113], if a cryptographic function is to satisfy the strict avalanche criterion
(SAC), then, each output bit should change with a probability of one half, whenever a single
input bit is complemented. In [60, 65] this concept was extended to strong PUFs, where
authors measure the probability of output response change given a single bit change in the
input challenge. Furthermore, it was demonstrated that the probability of output change
for the APUF, depends on the distance between toggled bit and the arbiter. Challenge
bits applied to stages near the arbiter are more likely to cause a change in the response.
This result is reproduced in Fig. 4.11 (a). Using simulation, we estimate the probability
of output change for 64-APUF when evaluating a random challenge, before, and after it is
XORed with a mismatch pattern e. When HW(e) = 1, a single challenge bit will toggle
between evaluations. In the plots of Fig. 4.11, the position of the toggled bit is shifted
towards the arbiter, and denoted as mismatch pattern shift. When the pattern shift is zero,
probability of output change is 5.5%, but as the toggled bit nears the arbiter, probability
of output change increases, reaching 90.5% at the last APUF stage. This result can be
intuitively explained by the conditional wire twist present in every stage of the APUF, and
the cumulative nature of the delay path.

We also estimate the probability of output change when two consecutive challenge bits
are toggled. This is plotted in Fig. 4.11 (a) as HW(e) = 2, showing that, for 64-APUF,
the probability of output change remains nearly constant, at 8%. This result represents a
more realistic view on the SAC criterion for APUFs, where minimal input change requires
toggling two adjacent stages, instead of a single one. The same technique was applied to
APUFs of various sizes in Fig. 4.11 (b). The estimated probability of output change for
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2-APUF-POP: HW(e)=2
4-APUF-POP: HW(e)=2
6-APUF-POP: HW(e)=2
8-APUF-POP: HW(e)=2
12-APUF-POP: HW(e)=2
24-APUF-POP: HW(e)=2

Figure 4.11: Simulated probability of output change when evaluating a random challenge, before,
and after it is XORed with a mismatch pattern. Results in (a) for 64-APUF, and in (b) for smaller
APUF sizes. The HW(e)=2 only includes mismatch patterns where nonzero bits adjacent.

APUFs with 24, 12, 8, 6, 4, and 2 was 13.2%, 19%, 23.6%, 26.5%, 33.5%, and 50.5%,
respectively. The increase in probability of output change for smaller sizes of APUFs gives
an important insight to understand the results found in section 4.6.1: the influence of
individual stages on the output increases, as APUF size decreases.

4.6.3 Influential Bits and Stage Bias

Influential bits were previously studied in [29, 84, 117]. Authors showed how distinct
challenge bits have different influence on the output of a bistable ring PUF (BR-PUF).
Based on the value of a few influential challenge bits, it is possible to predict responses with
high accuracy [29]. To avoid confusion with previous work nomenclature, we denote the
influence of each challenge bit as stage bias. This section performs an assessment of stage
bias in APUFs of various sizes, leading to conclusions that help explain learning attack
results obtained in section 4.6.1.
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Algorithm 1 Stage bias assessment for an APUF instance.

1: let NC be the number of challenges
2: let CW be the challenge width in bits
3: let y and n be zero initialized matrices of size (2, CW )
4: for i = 0 to NC − 1 do
5: c = RandomizeChallenge()
6: r = EvaluateResponse(c)
7: p = 0
8: for j = 0 to CW − 1 do
9: p = p⊕ c[j]
10: end for
11: for j = 0 to CW − 1 do
12: t = c[j]
13: p = p⊕ t
14: y[t, j] += (r ⊕ p)
15: n[t, j] += 1
16: end for
17: end for
18: y = y/n

To the best of our knowledge, no previous literature reports the measurement of stage
bias in APUFs. We introduce Algorithm 1 for measuring stage bias in APUFs. The main
idea is to evaluate a set of randomized challenges, keeping track of responses statistics
per stage, and per challenge bit value. The key insight of Algorithm 1 is on line 14.
When summing the response, r, for challenge bit value t, at stage j, the response is
conditionally inverted (XORed) with p, where p is a parity bit (reduced XOR operation)
over the challenge bits from position j + 1, onwards. If the number of twisted stages after
position j is odd, the value of p will be 1, which then inverts the response r. The final
stage bias is stored in the matrix y, indexed by challenge bit value, and by stage position.
Notice that the division operation in line 18 is element-wise.

Using CRPs from our testchip, we calculated stage bias for different APUF sizes. The
results are shown in Fig. 4.12. A distinction was made for stage bias when ci is zero (first
row), and one (second row), since challenge bits select between two pairs of inverters in
each stage, and each pair exerts different influence on the response. The plots (a, e), (b,
f), (c, g), and (d, h), refer to APUFs with 2, 4, 8, and 24 stages, respectively. The results
refer to a single APUF instance of each size (not the overall POP composition).
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Results plotted in Fig. 4.12 express the probability of response r being equal to (1 ⊕
pi(c)), given challenge bit ci is zero, or one. The term pi(c) is denoted as parity, and will
have a value of one when the challenge imposes an odd number of wire twists between the
stage under analysis i, and the arbiter. Parity is calculated as

pi(c) =
n−1⊕

j=i+1

cj. (4.1)

For example, based on data from Fig. 4.12 (f) for the 4-APUF, the probability of r = 1,
given c3 = 1, is 0.38, or equivalently, probability of r = 0, given c3 = 1, is 0.62. In this
case, the parity calculated by Eq. 4.1 is zero, since there are no stages that could twist
the wires between position 3 and the arbiter. As an additional example, the stage bias
reported in Fig. 4.12 (c) for the 8-APUF shows that, the probability of r = (1 ⊕ pi(c)),
given c4 = 0, is 0.76. Therefore, all challenges which have c4 = 0, and an even number of
ones in (c5, c6, c7), have 0.76 probability of evaluating to 1. Moreover, challenges that have
c4 = 0, but an odd number of ones in (c5, c6, c7), have a 0.76 probability of evaluating to 0.

Large stage bias deviations from 0.5 are undesirable, since they grant certain challenge
bits an unfair influence over the response. It was also shown that large stage bias can be
exploited by attackers [29]. Section 4.6.4 presents data suggesting that large stage bias is
correlated with poor uniqueness performance. To understand how stage bias varies across
APUFs of different sizes, we simulated 100 APUF instances using 3 k CRPs, and plotted
the stage bias distribution in Fig. 4.13. The stage bias mean is 0.5 for all APUF sizes,
but the standard deviation increases significantly for smaller APUFs. Therefore, we may
conclude what is also apparent in the measurements presented in Fig. 4.12, fewer APUF
stages increase the likelihood of large stage bias deviations.

4.6.4 Hamming Distance of Intermediate Responses

Previous section assessed the effects of smaller APUFs on stage bias, showing that reducing
the size of APUFs creates challenge bits that hold large influence over the final response.
Such result motivates an investigation of the hamming distance between responses pro-
duced by the first layer of the POP architecture, over multiple rounds (same challenge),
and across multiple challenges. Although mathematically similar, we avoid using the term
uniqueness for such experiment, since it is not applied to the final POP response.

The normalized hamming distance (HD) measures the distance between two numbers,
divided by their length. The normalized HD is herein denoted as distance, for short.
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Figure 4.12: Stage bias calculated using CRPs from our testchip. The first row shows biases
when ci = 0, while the second row shows biases when ci = 1. The plots (a, e), (b, f), (c, g), and
(d, h), refer to APUFs with 2, 4, 8, and 24 stages, respectively. We used 100 k CRPs to calculate
stage bias for the 24-APUF, while APUFs of 2, 4, and 8 stages were enumerated (all CRPs were
collected).

For example, if the distance between two numbers is 0.5, it implies that half the bits of
their binary representation differ. Fig. 4.14 (a) plots the average distance between the
responses produced by the POP first layer, across multiple rounds, for the same challenge,
for various APUF sizes. For instance, the data denoted as (1,2)-round reports the average
distance between responses produced from first to the second evaluation round. While
implementations with 24-APUF show nearly ideal distance of 0.5 across all evaluation
rounds, reducing the size of APUFs gradually degrades the distance between responses. In
implementations with 2-APUF, the average distance between responses from first to the
second round is 0.36, which implies that 64% of response bits from the first evaluation
remained unchanged after the second evaluation. As the number of rounds increases,
average distance for 2-APUF continues to fall, reaching 0.24 for responses between fourth,
and fifth rounds.

We also examine the average distance of first layer responses, across multiple challenges,
after 1, 2, 4, and 8 evaluation rounds. Results are plotted in Fig. 4.14 (b). Implementations
using 24-APUF show nearly ideal distance of 0.5 across multiple challenges, but reducing

47



0.0 0.2 0.4 0.6 0.8 1.0
Bias

0

1

2

3

Pr
ob

 D
en

sit
y

2-APUF
4-APUF
8-APUF
24-APUF

Figure 4.13: Distribution of stage bias for obtained from simulation with 100 APUF instances
and 3 k CRPs.

the size of APUFs, gradually degrades the distance between responses—this time, across
multiple challenges. For example, 2-APUF implementations show average distance of 0.36,
0.30, 0.25, and 0.22 when evaluated with 1, 2, 4, and 8 rounds. Moreover, the data
suggests that even with a single evaluation round, small APUFs fail to produce responses
with distance near 0.5. Another perspective to such result, is to consider that small APUFs
limit the challenge space of the second layer APUF, seriously impacting to the learning
resilience of the overall composition.

The poor hamming distance performance of smaller APUFs, likely caused by larger
stage bias, is a plausible cause for the learning results observed in section 4.6.1. The bad
performance seen for APUFs with 2 and 4 stages in Fig. 4.14 agrees with our attack
experiments, where DNNs showed reduced prediction accuracy starting from 6-APUF-
POP implementations and above (see section 4.6.1). It is also important to notice that
our results do not assess the benefits of multiple round evaluations for larger APUFs
in the first layer. In terms of prediction accuracy, those implementations were already
resilient to DNN attacks with a single round. Our analysis shows, however, that there is
no apparent reduction in challenge space when multiple evaluations rounds are used in first
layer implementations with 12, and 24 stages.

4.7 Conclusion

We explored the design space of the POP architecture using APUFs of various sizes. We
performed extensive DNN attacks to assess the security of POP. Our results suggest an
increase in learning resilience when using APUFs with 6, or more, stages in the first layer.
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Figure 4.14: Simulation of the average normalized hamming distance (HD) between responses for
various sizes of APUFs in first layer (L1). Across multiple rounds, for the same challenge in (a);
and across multiple challenges, after 1, 2, 4, and 8 evaluation rounds in (b).

Compositions using APUFs with 2, and 4 stages are shown vulnerable to DNN attacks.
Moreover, POP implementations with 2 stage APUFs in the first layer show a trend of
higher prediction accuracy as the number of evaluation rounds increases. To study such
result, we extended previous techniques of influential bits to assess stage bias in APUF
instances. Our data suggests that small APUFs in the first layer limit the challenge space
of the second layer APUF, showing that compositions do not always preserve security
properties of PUFs. Measurements from our testchip show that minimum bit error rate is
obtained when using APUFs with 8 stages, while fewer APUF stages lead to a large spread
in bit error rate across different chips.
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Chapter 5

Key Based Challenge Obfuscation for
Strong PUFs

In this chapter we propose a lightweight key based challenge obfuscation for strong PUFs.
Our architecture is designed to be resistant against learning attacks. A high-level view is
presented in Fig. 5.1. First, we XOR the external challenge with a secret key. The result
is loaded into a non-linear feedback shift register (NLFSR), which is run for a number of
cycles before the first evaluation (warm-up). The NLFSR state is then used as (obfuscated)
challenge to evaluate the strong PUF. Responses are directly provided to the user—no error
correction or post-processing is required. The secret key may be implemented with a one
time programmable (OTP) flash, or weak PUF.

The mitigation of key extraction attacks is crucial for any challenge obfuscation archi-
tecture that uses a secret key. A brief review of common attack techniques is presented in
chapter 2. In this chapter, we focus on power analysis attacks, but the solutions presented
here help mitigate other types of attacks as well, such as probing and fault injection.

Protecting hardware implementations against power analysis attacks is costly, but ef-
fective [34]. We made careful design choices in our obfuscation architecture, such that side-
channel mitigation techniques have minimum impact in cost. Our implemented NLFSR
uses only two instances of non-linear logic gates, reducing the area overhead and complex-
ity of Boolean masked implementations. We also discuss the implementation of a clock
randomization countermeasure against power analysis attacks.
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Figure 5.1: High-level view of our proposed key based challenge obfuscation architecture for
strong PUFs.

5.1 Related Works

Previous works used composition of strong PUFs to obfuscate the internal challenge, but
resilience to learning attacks is ultimately limited by the stability of responses [80,90,116].
Error corrected strong PUFs require external helper data to cope with its large challenge
space, but such alternative was shown to be insecure [26]. Recent works employ weak
PUFs to generate an error corrected chip-unique secret, which is then used to obfuscate the
external challenge [45, 56, 107, 110–112]. The obfuscation algorithm must be lightweight,
and secure against learning attacks. Moreover, manipulating external data (challenge)
with sensitive information (secret key), requires countermeasures against power analysis
attacks [48].

5.2 Challenge Obfuscation

This section describes our proposed architecture for challenge obfuscation, and its asso-
ciated evaluation algorithm. We also briefly discuss some important details of two secret
storage options, OTP flash, and weak PUF.

5.2.1 Non-linear Feedback Shift Register (NLFSR)

Non-linearity is a fundamental property for obfuscation algorithms. In the case of block
ciphers, non-linear transformations are performed by substitution boxes (SBOXes). The
implementation cost of SBOXes, however, is significant [98]. To achieve lightweight non-
linear challenge transformation, we use NLFSRs. NLFSRs are deterministic digital circuits
capable of non-linear state transitions. Unlike their linear counterpart, NLFSRs lack a solid
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Figure 5.2: NLFSR arrangement used in challenge obfuscation architecture.

mathematical representation. The sequence length is found using brute force methods,
therefore, maximum length NLFSRs hardly exceed 231 [24].

Our NLFSR design is shown in Fig. 5.2. It uses a composition of two smaller NLFSRs,
with 27 and 29 bits. Our feedback expressions have maximum length and were taken
from [24]. A 56 bit challenge is obtained by concatenating the state of both NLFSRs. To
make both states dependent of one another, we XOR the lowest significant bit of each
NLFSR with the next state logic of the other—a similar technique was used in the Trivium
cipher [75]. In the context of strong PUFs, registers are required to hold the challenge even
if obfuscation is not used. Therefore, in addition to the control logic, the only overhead
present in Fig. 5.2 are the logic gates that compute the next state.

Unless otherwise specified, we may refer to the 56 bit concatenated state simply as
NLFSR state. Moreover, when clear from context, the term state might be omitted.

5.2.2 Evaluation Algorithm (no countermeasures)

The evaluation procedure for our proposed challenge obfuscation is listed in Algorithm 2.
This algorithm is not yet protected against side-channel attacks. It assumes the secret key
was read from OTP flash or weak PUF. First, the external challenge is XORed with secret
key, and loaded in the NLFSR, which is run for a total of 112 warm-up cycles. Before each
strong PUF evaluation, we flush the previous NLFSR state, running it for 56 cycles.

More warm-up cycles enhances security, but increases latency. The number of warm-up
cycles (112) was determined empirically to satisfy the avalanche criterion (see section 5.5.1).
Other NLFSR expressions may require shorter, or longer warm-up periods to satisfy the
avalanche criterion.
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Algorithm 2 Evaluate external challenge using an implementation without side-channel
attack countermeasures.

Assumptions: secret key has been read from OTP flash, or weak PUF. Both secret key
and external challenge are 56 bits.

1. XOR key with external challenge, and load result to NLFSR
2. Run NLFSR for 112 cycles (for warm-up)
3. Run NLFSR for 56 cycles (flush state)
4. Evaluate strong PUF with NLFSR state as challenge
5. Output the 1 bit response (no post-processing)
6. If number of response bits is enough: return success
7. Otherwise: goto step 3

5.2.3 Secret Key Storage

The secret key storage may be implemented with one time programmable (OTP) flash,
or weak PUF. Since uniqueness and unclonability properties are already provided by the
strong PUF, using a weak PUF for secret key storage is possible, but adds extra complexity.
One may argue that if a secret key is stored in flash, there is no need for a strong PUF.
Such statement is inaccurate. For example, if the strong PUF is removed, over-produced
chips (with blank OTP flash) can be programmed to behave alike any other device. That
is not feasible when a strong PUFs is included in the design.

Other relevant considerations for both secret key storage options include protection
against fault injection attacks, such as voltage and clock glitches. Storing the secret key
with error correction data, and performing multiple reads from memory for consistency
checking was shown very effective in mitigating fault injections [104].

5.3 Power Analysis Attack Mitigation

Manipulating external data (challenge) with sensitive information (secret key) is vulnerable
to power analysis attacks [48]. This section discusses countermeasures to mitigate such
risks.
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Figure 5.3: Clock randomization logic and pseudo random number generator (PRNG).

5.3.1 Pseudo Random Number Generator (PRNG)

Random numbers are necessary to implement the countermeasures described in this section.
Our pseudo random number generator (PRNG) is based on [88], and is shown in Fig. 5.3. It
uses a linear feedback shift register (LFSR) and a cellular automata shift register (CASR),
with outputs derived from their combined (XORed) state. The PRNG has three outputs,
each of which generates a new random number every clock cycle. LFSR and CASR have
maximum sequence length, with expressions taken from [85], and [19]. Because their
cycle length is relatively prime, the total cycle length of the output is close to 219. The
seeding of LFSR/CASR states is performed using the available strong PUF. For that, we
identify a challenge with unstable responses during enrollment, and store it in non-volatile
memory. This challenge is repeatedly evaluated to generate random bits that initialize the
LFSR/CASR states.

5.3.2 Clock Randomization

Power analysis attacks extract the key over a large number of recorded power traces.
The effectiveness of power attacks is higher when traces are aligned in time. The clock
randomizer circuit is shown in Fig. 5.3, it produces an irregular clock waveform, which
will randomly skip clock edges. Our obfuscation architecture uses the randomized clock
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Figure 5.4: Boolean masked implementation of the NLFSR used for challenge obfuscation. Ran-
dom numbers r1 and r2 are outputs from the PRNG.

output. The skip clock signal is derived from the 8 bit LFSR, therefore, the randomized
clock waveform pattern repeats every 255 cycles, allowing authentication with predictable
performance.

5.3.3 Boolean Masking of the NLFSRs

Boolean masking uses random numbers to split each value into two shares that are (ideally)
uncorrelated to the original value. For example, the shared representation of x is (x1, x2),
which are computed as x1 = x⊕ r, and x2 = r, where r is a random number. The original
value is recovered by XORing the shares, therefore, x = x1 ⊕ x2. Probing of both shares is
necessary to inspect the original data. When operations are performed with shared data,
the power consumption is, in theory, uncorrelated to the data being processed. Moreover,
if the secret key is stored in two shares, its plain-text value is never exposed.

Converting conventional single share circuits to operate with multiple shares of data
differs for linear and non-linear operations. Linear operations, like XOR, shifts, and per-
mutations, are simply applied to both shares without any changes. Non-linear operations,
however, require a replacement circuit that will compute the shared outputs without dis-
closing the original value. We redesigned the NLFSRs described in section 5.2.1 to run
using multiple shares. The resulting circuit is shown in Fig. 5.4. The number of state
registers doubles to accommodate both shares of all values. Since XORs and shifts are lin-
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ear operations, the NLFSR design remains mostly unchanged, except for the AND gates,
which are replaced by their masked counterpart. The expression for the masked AND was
taken from [17]. In fact, during the design of our challenge obfuscation architecture, we
intentionally selected NLFSR expressions with a small number of non-linear gates to re-
duce the cost and complexity of masked implementations. For example, glitches are a well
known source of information leakage in masked non-linear logic [62], but our original design
has both AND inputs driven by registers—the best practice was already implemented.

Other design details include remasking the AND gate at every cycle, which is done by
XORing fresh random numbers, r1 and r2, with both shares of the masked AND output.
Remasking helps remove possible correlations between the original data and the shared
values.

When the NLFSR warm-up cycles are completed, their shared state is XORed to obtain
the unmasked, obfuscated challenge, necessary for evaluation. It is very important that
this XOR operation is only performed after completion of all warm-up cycles. In other
words, the XOR inputs must be gated during warm-up to avoid information leakage from
the toggling XOR outputs.

5.3.4 Evaluation Algorithm (with countermeasures)

The evaluation procedure for the masked implementation is listed in Algorithm 3. Similarly
to Algorithm 2, it assumes that the secret key was read from OTP flash, or weak PUF.
However, the key is expected in two shares of 56 bits each. First, the PRNG is seeded and
the clock randomizer is enabled. The NLFSR is then seeded with random numbers from
the PRNG. Both shares must be loaded with the same random number. The secret key is
then XORed with the NLFSR state, which essentially performs a remasking operation of
the key shares. Next, the NLFSR is run for 128 cycles to allow random delay insertion by
the clock randomizer. The external challenge is then XORed with current NLFSR state.
The second share of the external challenge is considered to be zero. This will not leak
information since the NLFSR content is already masked with fresh random numbers. The
remaining steps are analogous to Algorithm 2, with the extra requirement of XORing the
NLFSR shares to unmask the obfuscated challenge before each strong PUF evaluation.
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Algorithm 3 Evaluate external challenge using an implementation with clock randomiza-
tion, and Boolean masking.

Assumptions: secret key has been read from OTP flash, or weak PUF in two shares of
56 bits each. External challenge is 56 bits, with second share being all zeros.

1. Using the challenge with unstable responses, (serially) seed the PRNG with random
numbers (8 + 11 = 19 bits)

2. Enable the clock randomizer
3. Using the PRNG output, (serially) seed the NLFSR with the same 56 bit random

number in both shares
4. XOR the NLFSR content with the key, and load result back to NLFSR (for key

remasking)
5. Run the NLFSR for 128 cycles (for time misalignment)
6. XOR external challenge with NLFSR, and load result back to NLFSR
7. Run the NLFSR for 112 cycles (for warm-up)
8. Run NLFSR for 56 cycles (flush state)
9. XOR the NLFSR shares and evaluate strong PUF with the unmasked state (obfus-

cated challenge)
10. Output the 1 bit response (no post-processing needed)
11. If number of response bits is enough: return success
12. Otherwise: goto step 8

5.4 Testchip Implementation

To accurately assess the effectiveness of our countermeasures against power analysis at-
tacks, we designed a 65 nm testchip. Our design was submitted for fabrication, and the
RTL code is publicly available [89]. Table 5.1 shows the post-layout area results for the
three implementations included in the testchip. The number of instances, and area are
listed for each implementation, and its components. Area for test logic is not reported. All
implementations use 7 repeated evaluations for enhanced response stability. The 56-APUF
is a custom designed arbiter PUF with 56 delay stages, see chapter 4 for APUF circuit
details. The clock randomizer and CASR were split in two different design blocks. The
placement of standard-cells and layout is shown in Fig. 5.5.

The 56-LFSR-APUF uses an APUF with challenge stored/unrolled by an LFSR. It rep-
resents the smallest viable authentication system that can be built using an arbiter PUF.
It uses an area of 1583 ND2, which we define as our comparison baseline. The 56-NLFSR-
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Table 5.1: Testchip area results in 65 nm CMOS (post-layout).

# Inst. Area (µm2) Area (ND2)

56-LFSR-APUF 490 2279 1583
LFSR 152 754 524
56-APUF 1 332 231
Control logic & buffers 337 1193 829

56-NLFSR-APUF 717 2904 2017
NLFSR 186 854 593
Clock randomizer 24 148 103
56-APUF 1 332 231
Control logic & buffers 506 1570 1090

56-NLFSR-APUF (Masked) 1448 5016 3483
Masked NLFSR 494 2057 1428
Clock randomizer 25 148 103
CASR 65 237 165
56-APUF 1 332 231
Control logic & buffers 863 2243 1557

Notes: area associated to the secret key storage/read is not included. Area is
reported in µm2 and normalized by NAND2.

APUF implements our challenge obfuscation architecture, without Boolean masking. This
implementation is not completely unprotected against power analysis attacks. It includes
a clock randomizer instance, which represents 5% of the used area. The overall area of
the 56-NLFSR-APUF implementation is 27% (1.27x) larger than the baseline. Finally, the
56-NLFSR-APUF (Masked) denotes the fully masked implementation, with clock random-
ization. The area for this implementation is 120% (2.2x) larger than the baseline. Results
reported in chapter 6 suggest that clock randomization alone delivers 2260x increase in
resilience against power analysis attacks. An even greater increase, of 17330x, is achieved
when clock randomization is combined with Boolean masking.

5.5 Security Assessment

This section evaluates the security of our challenge obfuscation architecture using strict
avalanche criterion, and deep-neural networks.
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Figure 5.5: Testchip placement of standard-cells and layout in 65 nm CMOS.

5.5.1 Avalanche Criterion

As defined in [113], if a cryptographic function is to satisfy the strict avalanche criterion
(SAC), then, each output bit should change with a probability of one half, whenever a
single input bit is complemented. We assess the avalanche criterion from the perspective
of our obfuscation algorithm—input is the external challenge, and output is the NLFSR
state after (112 + 56) cycles. Our experiment used 10000 unique external challenges, each
of them was run twice, with a single toggled bit between runs. The secret key is randomized
at the beginning and remained unchanged during the experiment.

Fig. 5.6 (a), (b), and (c) show that toggling a single input bit causes a widespread
(avalanche) effect in the NLFSR state, where each obfuscated challenge bit has an estimated
50% probability of changing. Same behavior was observed when other bit positions were
toggled. For comparison, we replaced the NLFSR by a 56 bit linear feedback shift register
(LFSR) of maximum sequence length (same as our baseline implementation discussed in
section 5.4). The LFSR experiment also evaluates using a secret key, with output taken
after (112 + 56) cycles. Results for the LFSR are reported in Fig. 5.6 (d), (e), and
(f), showing that the effects of a single toggled input bit on the final LFSR state are
deterministic, that is, either 0%, or 100%. Therefore, LFSR based challenge obfuscation
fails to meet the avalanche criterion.

5.5.2 DNN Attacks

Deep-neural networks (DNNs) are capable of learning complex PUF structures, without
a mathematical model of the PUF being modelled. We performed experiments using a
challenge obfuscated arbiter PUF, and a 12-layer DNN architecture similar to [46]. The
input and output layers have 56, and 2 units, with 2000 units in hidden layers. The DNN
was trained for 72 hours using 10 million CRPs, with a resulting accuracy equivalent to
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Figure 5.6: Probability of change in NLFSR/LFSR state when a single bit of the external challenge
changes.

the PUF uniformity bias, which was 56% in our experiment. Therefore, the DNN model
failed to obtain generalized learning on the challenge obfuscated arbiter PUF.

5.6 Conclusion

We demonstrated the design of a lightweight key based challenge obfuscation for strong
PUFs. We addressed security for both learning, and power analysis attacks. Future work
shall use the fabricated testchip to assess the effectiveness of our countermeasures against
power analysis attacks.
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Chapter 6

Design and Implementation of a
Secure Microprocessor

Previous chapters discussed PUFs, and their applications for counterfeit prevention. PUFs
establish trust between the user and the hardware. However, to accommodate modern in-
ternet protocols, devices should also provide mechanisms for message integrity, confidential-
ity, and (often) non-repudiation [114]. The National Institute of Standards and Technology
(NIST), has standardized a number of algorithms that offer the aforementioned properties,
but solutions require on-chip storage of a secret key. Quoting Ron Rivest, at CRYPTO
2011, “Merely calling a bit string a secret key does not make it secret, but rather identifies
it as an interesting target for the adversary”.

Similarly to chapter 5, this chapter focus on power analysis attacks, but the described
solutions help mitigate probing and fault injection attacks as well.

Traditional countermeasures only target a few most vulnerable elements, such as sys-
tem bus, memory, and cryptographic accelerators. In this chapter, we demonstrate a
bit-serial RISC-V microprocessor implementation with no plain-text data in the clear. All
values are protected using Boolean masking (BM) and differential domino logic (DDL).
Our architecture sets no constraints on how sensitive data must be manipulated. Soft-
ware implementations can run with little to no countermeasures, reducing code size and
performance overheads.

Unlike previous literature, our methodology is fully integrated to the ASIC digital
design flow, requiring no changes to the input RTL. We used a bit-serial microprocessor
due to area constraints, but our techniques can be applied to digital designs of any size or
complexity. Original circuit functionality and latency are not affected.
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6.1 Related Works

As discussed in chapter 2, secret keys can be extracted from the power consumption or
electromagnetic emanations of unprotected devices [48,73]. Boolean masking was proposed
as a possible countermeasure in [34]. It splits each value into two or more shares that
are (ideally) uncorrelated to the original value. Most of Boolean masking literature is
centered at protecting non-linear operations in cryptographic algorithms, but interest in
larger scopes of protection has risen in recent years. In [36], a microprocessor ALU is
masked using TI. Other works applied masking to a binarized neural network [27], and to
RISC-V microprocessors [25,37]. In this chapter, we explore low cost masking expressions
which are easy to integrate into already existing designs [17].

Differential logic styles with return to zero encoding make power consumption less data-
dependent. For example, in [99] a sense amplifier based logic (SABL) is used to reduce
asymmetries of the dynamic logic. In [100], wave dynamic differential logic (WDDL)
uses static CMOS gates to replicate the behavior of dynamic logic, but glitches still leak
sensitive information. Our work uses a well known differential domino logic style [74], but
we innovate in the applied methodology. Instead of “semi-custom” techniques, our scripts
are integrated with EDA tools and perform automatic replacement of relevant cells by
dynamic cells, without affecting place and route or timing analysis.

High-throughput random number generators (RNGs) are essential for effective masking
of digital circuits. Large literature exists for harvesting random numbers from different
entropy sources [22, 118, 123]. But perhaps the most well understood entropy source is
still phase jitter [11]. While cryptographic algorithms need high-quality random numbers
with forward/backward secrecy [47], masking implementations tolerate random numbers
generated by lightweight RNG designs that focus on throughput—and that is where our
RNG is positioned.

6.2 Hardware Architecture

6.2.1 Top Level Design

Our design has three RISC-V microprocessors (see Fig. 6.1). Each microprocessor is de-
signed to test a different set of security countermeasures. They share two SRAM memories
for code, data, and register file (RF). The test logic selects which one of the three micropro-
cessors will be operational, as well as the desired configuration for clock edge randomization
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Figure 6.2: Bit-serial RISC-V datapath. Thin
lines have width of a single bit.

and random numbers. The RISC-V implementation with no countermeasures (NCM-uP)
has direct access to the SRAM memories, while others go through a memory protection
unit. Netlist manipulation techniques described in this section are only applied to the
BM-uP and BM-DDL-uP microprocessors. Other blocks are synthesized with the typical
digital design flow, using a commercial library of standard cells.

6.2.2 Bit-serial RISCV Microprocessor

We used a bit-serial CPU, show in Fig. 6.2. Although not shown in the diagram, memory
and register file are shared among the three microprocessors. The CPU is based on a
publicly available design1, which was chosen for its small area footprint. The internal
datapath is one bit wide. Techniques described in this work are equally applicable to
larger microprocessors, with wider datapaths.

The main memory is single port and uses 32 bit words to store both code and data. The
register file (RF) is dual port. One port for writes, another for reads with 2 bit words to
avoid an additional read port. Arithmetic logic unit (ALU) operates on a single bit of data
per cycle. The fetch-execute-writeback process requires 36 cycles. Instructions need one,
or two phases to complete. Two-phase instructions such as loads, stores, and branches can
use up to 70 cycles. Only three 32 bit registers exist. BUF is a 32 bit register that holds
data between phases, which can be addresses for branches, load/store, or data to be shifted.
DAT is another 32 bit register, used for memory load and store operations, where data is
shifted in from RS2 during store operations, and shifted out to RD during load operations.

1https://github.com/olofk/serv
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The last 32 bit register holds the program counter (PC). If the instruction is not a branch,
the next address (PC + 4) is calculated one bit at a time, in parallel with ALU execution.
All three 32 bit registers work similarly to a shift register during execution. For memory
operations, parallel output/capture functionality is used. The instruction decoder (ID)
parses instructions from DAT. It outputs immediate fields to BUF, CTRL/PC, and ALU,
one bit at a time, to calculate jumps addresses and arithmetic operations.

Control and status registers (CSRs), interrupts, multiplication, and divide instructions
were not implemented. Using 65 MHz clock, an AES encryption of 128 bits, without any
software countermeasures, takes nearly 20 ms—substitution boxes (SBOXes) not stored as
lookup tables, but computed during execution.

6.2.3 Clock Generation and Randomization

Power analysis attacks require a large number of power traces. As discussed in section 6.3.5,
the effectiveness of power attacks is significantly higher if traces are aligned in time. There-
fore, the insertion of random delays to purposely misalign power traces may be used as
countermeasure. To avoid changing software or existing hardware architectures, we insert
random delays by manipulating the clock signal.

Our clock generation and randomization logic is shown in Fig. 6.3. A ring oscillator
generates the clock using 36 inverters and a NAND gate. Layout of the ring oscillator was
done manually. To generate a random signal for clock edge randomization we used an 8 bit
LSFR of maximum sequence length [3]. The frequency on which clock cycles are skipped
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is selected using a multiplexer. The values of 25%, 50%, or 75%, correspond to outputs
from AND, XOR, and OR, respectively.

Within a 255 cycles window, the randomized clock will have a constant number of
edges. This enables performance predictability with resolution of 255 system clock cycles.
Nevertheless, one may argue that a repeating clock randomization pattern introduces po-
tential vulnerabilities. For this reason, we allow the 8 bit LFSR to be perturbed, at a user
adjustable rate. We suggest a moderate perturbation rate, for example, when perturbed
every 32 cycles, the clock randomizer pattern will follow the 8 bit LFSR natural counting
sequence for 31 cycles, until it is perturbed again.

6.2.4 Random Number Generator (RNG)

Random numbers are a critical component of secure integrated circuits. Both clock random-
ization and Boolean masking require random numbers to work effectively. In particular,
Boolean masking needs a large quantity of fresh (new) random numbers every clock cycle
for remasking operations. The entropy requirement for Boolean masking however, is not
as high as typical cryptographic uses such as key generation. Therefore, we designed a
random number generator (RNG) focused on high throughput to attend the demand of
our implemented countermeasures.

Our RNG design is shown in Fig. 6.4, it uses thermal noise as entropy source. The
ring oscillator has 22 inverters and a NAND gate, it accumulates thermal noise over the
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sampling period. The number of stages is relatively prime with the clock oscillator to
avoid frequency locking, since sampling clock is derived from system clock. The entropy
of sampled values is proportional to the sampling period used, which depends on target
entropy and technology noise characteristics.

The sampling clock is typically much slower than the system clock. To increase through-
put and remove possible entropy source biases, we added a post-processing block. Our
solution is based on [101]. We use an 43 bit LFSR [3], and a one-dimensional linear hy-
brid cellular automata shift register (CASR) of 37 cells [19]. The LFSR/CASR states are
initialized with raw random numbers during power on. Both LFSR and CASR update at
every system clock cycle, and are perturbed when a new raw random bit is available, which
depends on the sample frequency.

Output is derived by XORing LFSR and CASR states. We use an XOR network,
shown in Fig. 6.5, that derives 243 outputs from LFSR/CASR state. Up to 1591 outputs
are possible using two input XOR gates. More outputs require the XORing more than two
state bits. The connection pairs are unique, randomly assigned, and defined at design time
(they are static).

6.2.5 Boolean Masking

Boolean masking (BM) splits each value into two or more shares that are (ideally) un-
correlated to the original value. Computation using multiple shares requires careful logic
manipulation, where each operation is replaced by its masked counterpart. We applied
Boolean masking to the microprocessors designated as BM-uP and BM-DDL-uP, with
masking expressions from [17]. Although the masking expressions themselves are secure,
further linear combinations can make them insecure [39]. Nevertheless, the used expres-
sions have key characteristics that are very attractive for the construction of fully-masked
large-scale designs: i) they are compact, and ii) do not require fresh randomness at every
operation.

Fig. 6.6 shows the masked implementation of basic non-linear logic gates (AND, OR)
using expressions from [17]. Linear operations such as XOR, shifts, and permutations
do not require any modification, they are applied to both shares equally. Fresh random
numbers are required when converting from single share to two shares. Conversions between
2 shares and single share are only performed in the memory protection module, while data
is encrypted by session keys. Therefore, plain-text values are never exposed.

We developed a script that converts arbitrary circuit netlists into their masked coun-
terparts. The script is integrated with EDA tools and is shown in Fig. 6.7. It imposes
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only two restrictions: i) the input netlist cannot use clock and reset as data; and ii) reset
must be asynchronous. First, the script splits every signal, except reset and clock, in two
shares, replacing all basic operations by their masked counterparts. Circuit functionality
and latency are not affected. Then, all registers are duplicated and wired to accommodate
the additional share of each state. An XOR gate is added before every register to refresh
the masking with a new random number every cycle. New top level ports are automatically
created to accommodate the additional share of all previously existing input/output ports.
A new top level input port bus for fresh random numbers is also created, it is driven by
the RNG output network, shown in Fig. 6.5.

6.2.6 Differential Domino Logic

Glitches in the masking of non-linear logic may momentarily expose protected values,
reducing the effectiveness of Boolean masking [62]. Traditional solutions use registers
to stop glitch propagation, which modifies circuit latency and requires significant design
effort to protect preexisting designs. We reduce glitches by implementing our logic gates
using differential domino logic (DDL), a differential input/output dynamic logic style with
precharge/evaluation phases [74]. During precharge, both outputs are driven to the same
value, but only one of them toggles in the evaluation phase. Logic gate inputs are restricted
to a single 0 to 1 transition. Fig. 6.8 shows the transistor level schematic of AND, OR,
and XOR using DDL, with associated layout. Inverters are implemented by swapping the
output wires.

Our netlist conversion script was adapted to use our DDL logic gates instead of the
commercial library cells. The output netlist has each wire split in two shares for Boolean
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masking. Moreover, each share is again split in two complementary signals for DDL. This
technique was applied to BM-DDL-uP, in Fig. 6.1. The layout of our DDL cells has same
height of the commercial cells, so that we can conveniently mix DDL gates with gates
from the commercial library. Better area results are possible with taller DDL cells, but
interoperability with commercial library cells would be extremely hard.

Our output netlist uses sequential elements from the commercial library. The remasking
XOR gate preceding every sequential element also uses a cell from the commercial library—
its output has no connection to dynamic cells, and glitches in that gate are unlikely to cause
significant information leakage since one of the inputs is a random number. Inverted inputs
to DDL gates are wired to registers inverted output pins. Complementary signals were
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not granted their own sequential element—the number of registers do not quadruple with
respect to the original design. Inverted outputs from the last DDL gate in a combinational
path (prior to the remasking XOR) are left unconnected. This is a source of load imbalance
that will leak information, but it avoids significant area cost.

We characterized multiple strengths of the DDL cells using a commercial tool. Our
custom DDL library has two strengths of the AND/OR gate, and three strengths of the
XOR gate. Dynamic logic is not supported by the characterization tool, so we manually
specified the relevant input/output timing arcs for delay characterization. We also wrote
Verilog models for functional simulation, supporting delay annotation. The Liberty and
Verilog files were used for timing analysis and design sign-off.
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6.2.7 Memory Protection

A trivial solution for memory protection is to duplicate the memory size and store both
shares of the Boolean masked data. To avoid a twofold increase in the SRAM size, we
perform encryption using a session based key, which is XORed with the data to alter
its hamming weight. Moreover, we also scramble the address bus using another session
based key that is XORed with the address, changing the memory layout. Session keys
have different values at every session. The definition of a session is application dependent,
but in our case, it corresponds to one execution of the target program in one of the
microprocessors. Session keys remain stable for the duration of a session. Our session
keys are provided via test logic. Fig. 6.9 shows the memory protection blocks. The order
in which the XOR operations are performed is extremely important to avoid exposing
plain-text values.

Single-port memory protection can be improved further. The encrypted data can be
XORed with the address before it is written, making data encryption address dependent,
but this requires a non-linear expansion of the 10 bit address into a 32 bit word, which has
extra area costs. It is also important to notice that our memory protection unit does not
include firewall capabilities to detect unauthorized accesses. If present, such logic must be
protected with Boolean masking and DDL.
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Table 6.1: Area utilization in 65 nm CMOS.

Unit name # of Instances Area (µm2)

Clock generation & randomization 203 922
Random number generation 674 2735
Microprocessor NCM-uP 731 3509
Microprocessor BM-uP 8232 22967
Microprocessor BM-DDL-uP 7633 44426
Main memory (code & data) 13 39505
Register file 19 10720
Memory protection and muxes 768 2653

Notes: XOR output network uses 242 XOR instances and account for
871-µm2 of the area reported for the RNG.

Reg.
File Main

Memory

Unrelated
Logic

Secure
Microprocessors

Figure 6.10: Die photo of the implemented
chip in 65 nm CMOS technology and its lay-
out. The layout highlights standard cells for
NCM-uP (green), BM-up (yellow), and BM-
DDL-uP (pink). Test logic, RNG, clock gener-
ation/randomization are shown in light blue.
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6.3 Measurement Results

6.3.1 Chip Area Utilization

We fabricated a testchip in a 65 nm CMOS process, shown in Fig. 6.10. Table 6.1 shows
the number of instances and area utilization of each block after design sign-off. The clock
generation includes a 57-µm2 RO and all clock edge randomization logic. The RNG includes
a 37-µm2 RO and all post-processing logic (LFSR, CASR, and XOR network). The XOR
network uses 242 XOR instances and accounts for 871-µm2 of the reported area for RNG.
The main memory uses a single-port 32 kbit SRAM (1024x32). RF uses a dual-port 1 kbit
SRAM (512x2). The BM-uP implementation had an area increase of 6.5x compared to
baseline (NCM-uP), while the number of instances increased by 11.3x. The BM-DDL-uP
had an area increase of 1.9x compared to BM-uP, but the number of instances showed
small reduction due to the absence of inverters in differential logic styles.

6.3.2 Power Consumption

Dynamic power consumption was measured from 0.8V up to 1.1V, for the NCM-uP, BM-
uP, BM-DDL-uP, and RNG. Nominal voltage is 1.0 V (see Fig. 6.11 (a) and (b)). We
share the same power supply pin with other non-related digital circuits which had their
clock disabled during experiments. Moreover, static power was measured and excluded
from all reported values. The RNG was not active during measurements of NCM-uP. The
power reported for the RNG includes system clock oscillator for sampling, RNG oscillator,
LFSR/CASR post-processing, XOR output network, and remasking XOR gates.

6.3.3 Quality of Random Numbers

The National Institute of Standards and Technology (NIST) published tests to assess the
quality of random numbers [10]. Table 6.2 reports results for all tests. A total of 100
bitstreams with 1 M bits each was used. All tests meet the suggested passing criterion of
80%. Fig. 6.3 plots the autocorrelation of 1 M (a) raw random bits, and (b) after post-
processing by LFSR/CASR logic. We used a sampling frequency of 3.4 MHz. Dashed lines
represent the interval that contains 95% of the data. Fig. 6.3 (c) plots the Shannon entropy
for 1 M bits at various sampling frequencies. Entropy was calculated using intervals of 5
bits.
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Table 6.2: NIST tests on RNG output.

Test Name ρ Proportion

Frequency 0.554420 98/100
Block Frequency 0.042808 98/100
Cumulative Sums 0.964295 97/100
Runs 0.013569 99/100
Longest Run 0.289667 98/100
Rank 0.249284 98/100
FFT 0.474986 99/100
Non Overlap 0.867692 96/100
Overlap 0.115387 100/100
Universal 0.334538 97/100
Approx Entropy 0.181557 99/100
Rand Exc 0.941144 67/69
Rand Exc Var 0.619772 66/69
Serial 0.224821 98/100
Linear Complexity 0.017912 100/100

Notes: Cumulative Sums, Non Overlapping,
Random Excursions, Random Excursions Var,
and Serial run multiple times in the NIST SP
800-22 Rev1a. Values in table refers to the
worst pass proportion among all runs.
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Table 6.4: Comparison of RNG results.

This work JSSC’16 JSSC’16 JSSC’22
[63] [7] [123]

Technology 65 nm 14 nm 65 nm 130 nm
Entropy Jitter Meta Meta+Jitter Meta
Bit rate (Gb/s) 12.8 0.225 3 0.002
Area (µm2) 2735 1088 1609 5561
Power (mW) 0.992 1.5 5 -
Energy (fJ/bit) 0.078 6.67 1.67 -
Post-processing LFSR/CASR AES None VN8W

Notes: Power and energy reported for our work do not include the
static component.
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Our RNG produces 243 random bits each clock cycle, therefore its total throughput at
56 MHz is 12.8 Gb/s. Further details such as area, power, and energy efficiency are provided
in Table 6.4. This lightweight, throughput focused RNG design meets our requirement for
Boolean masking operations, but arguably, other sensitive contexts such as key generation,
padding, and nonces will require minimum entropy guarantees, slower sampling frequencies,
and forward/backward secrecy in the post-processing—which increases the hardware size
significantly. We recommend the interested reader to see AIS 31 standard for details [47].

6.3.4 Experimental Setup for Side-channel Analysis

Fig. 6.12 shows our experiment setup for side-channel analysis. We added a 75 Ohms
resistor in series with the testchip power supply. The signal is conditioned by a high-speed
amplifier (OPA858, 5.5 GHz GBW) in a non-inverting configuration with gain of 7. A 0.84
V reference was connected to the gain resistor to avoid clamping of the output signal. The
external chip power supply was set to 1.2 V instead of the nominal 1.0 V, to account for the
voltage drop in the series resistor. Our oscilloscope has input bandwidth of 1 GHz. The
acquisition system is orchestrated by a desktop computer which controls the oscilloscope
using GPIB and communicates to the testchip using an FPGA. The FPGA writes the
encrypted software using JTAG. All power traces use unique session keys for memory pro-
tection. The sampling rate is 10 GS/s. We used an open source Julia toolbox2 to perform
the correlation power analysis (CPA) with, and without dynamic time warping (DTW)
pre-processing. We attack only the first key byte during an AES encryption operation,
targeting the last instruction of the SBOX computation routine—an XOR between a reg-
ister and a constant, where the result is stored into another register. We used a hamming
weight leakage model. Oscilloscope trigger is obtained from a testchip output set by the
microprocessor software 36 cycles before the sensitive instruction. The number of samples
logged in each power trace is adjusted depending on clock edge randomization settings to
ensure all relevant clock cycles are captured.

6.3.5 Correlation Power Analysis

Correlation power analysis (CPA) uses a set of power traces to extract secret information
from a device. Traces record the device manipulating the secret value with different input
data. For example, recorded power traces may include many AES encryptions using the
same key but different plaintexts. CPA attacks extract a few key bits in each iteration.

2https://github.com/Riscure/Jlsca
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Figure 6.12: Side-channel analysis acquisition setup.

The attacker chooses a key candidate and creates a power consumption hypothesis for each
input data, using knowledge of the implemented algorithm, and a leakage model (typically
hamming-weight). The correlation between the hypothesis vector and the recorded power
traces will be the highest when the correct key is used.

Our side-channel analysis does not include test vector leakage assessment (TVLA) [12].
Such tests do not replace conventional key extraction attacks, but provide a quick alter-
native to detect potential side-channel problems. Nevertheless, they require saving a long
power trace that includes a series of encryptions, which would use an enormous amount of
oscilloscope memory due to the low throughput of our hardware architecture. Future work
shall use a faster architecture so that we can perform these tests.

Fig. 6.13 shows CPA results, plotting the correlation versus number of traces used in
the attack. Each plot has 256 lines, one for each key candidate. The correct key (red) is
exposed when its correlation is the highest. In Fig. 6.13 (a), the baseline implementation
with no countermeasures (NCM-uP) had its key exposed with 375 power traces. Results
with Boolean masking are shown in Fig. 6.13 (b), where the key is exposed with 6200 power
traces. If Boolean masking is combined with the dynamic logic implementation, Fig. 6.13
(c), it takes 375 k power traces, 1000x compared to the baseline, to expose the key.

Next, we investigated effectiveness of the clock randomization on the baseline micro-
processor (NCM-uP). We tested three types of clock edge randomization. In Fig. 6.13 (d)
25% of clock edges were skipped, and it took 850 k power traces to expose the key. The
required number of traces to expose the key increased dramatically to 6.2 M, and 9.1 M,
as we skipped 50% and 75% of the clock edges, as respectively shown in Fig. 6.13 (e) and
(f).

Pre-processing techniques such as dynamic time warping (DTW) may be used to align
power traces before a CPA attack [81]. The DTW algorithm originated from speech recog-
nition systems to match spoken words to a database containing prerecorded words with
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Figure 6.13: CPA coefficient versus number of traces for different sets of countermeasures. Results
without clock edge randomization for (a) NCM-uP; (b) BM-uP, and (c) BM-DDL-uP; results for
original netlist (NCM-uP) using clock edge randomization of (d) 25%, (e) 50%, and (f) 75%; and
results using DTW pre-processing for trace alignment on NCM-uP with clock edge randomization
of (g) 25%, (h) 50%, and (i) 75%.

different timing. We use a FastDTW variant which has complexity O(Tk), where T is num-
ber of traces, and k is trace length [106]. In our experiments with DTW pre-processing,
the radius parameter was set to 90. Larger radius enhance representation accuracy of the
original DTW algorithm, but significantly increase computing time and memory usage.

Fig. 6.13 (g), (h), and (i) show the CPA attack results with DTW pre-processing on
the baseline microprocessor (NCM-uP), with clock randomization enabled. In Fig. 6.13
(g), with 25% of clock cycles skipped, the key was exposed with only 60 k traces, which is
14.2x fewer traces compared to CPA without DTW pre-processing, as shown in Fig. 6.13
(d). However, it takes nearly 10x longer computation time. Similarly, Fig. 6.13 (h), and
(i), with 50% and 75% of clock cycles skipped, show that the key was not exposed after a
500 k traces CPA attack using DTW pre-processing, as opposed to the 6.5 M and 9.1 M
traces required to expose the key without DTW.

We also assess the information leakage of all countermeasures combined. For that,
we skip 50% of clock cycles at the BM-DDL-uP microprocessor, which implements both
Boolean masking and DDL. Fig. 6.14 shows that CPA attacks using (a) 20 M traces without
pre-processing, and (b) 2 M traces with DTW, were not enough to expose the key.
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Figure 6.14: CPA coefficient versus number of traces for BM-DDL-uP with clock edge ran-
domization of 50%. Results (a) without DTW trace pre-processing and (b) with DTW trace
pre-processing.

6.3.6 Comparison with Prior Work

There are several implementations of Boolean masked microprocessors in the literature [25,
37,71]. Table 6.5 provides a comparison of our work with previous publications with respect
to several key security features listed in the first column. It is clear from Table 6.5 that our
work covers a broad range of techniques and components necessary to implement a secure
microprocessor.

Unlike other works, we used a CPU implementation with datapath size of 1 bit. Such
decision was made due to area constraints in our testchip, but our methodology can be
applied to any digital design, of any size. In fact, our RTL and implementation scripts
are publicly available to interested researchers [86]. However, comparing the effectiveness
of countermeasures from different publications is not trivial. Changes in the acquisition
system, and the presence of combined countermeasures make it hard to draw any definitive
conclusions. It is also important to mention that the effectiveness of our countermeasures
will likely increase when applied to larger designs. In addition to higher switching noise,
the sensitive signals of larger designs will be relatively weaker, compared to the total power
consumption, requiring attackers to collect more power traces.
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Table 6.5: Comparison with other secure microprocessors.

This work CHES’07 CARDIS’16 DAC’19
[71] [37] [25]

Technology 65 nm 65 nm 65 nm 130 nm FPGA FPGA
Architecture RISC-V RISC-V RISC-V 8051 RISC-V RISC-V
Datapath 1 bit 1 bit 1 bit 8 bit 32 bit 32 bit
Clock rand No No Yes (50%) No No No
Entropy source Jitter Jitter Jitter No No No
PRNG Yes Yes Yes Not avail Not avail Not avail
Rand bits/cycle 243 243 243 1 – –
Mem addr Scr Yes Yes Yes No No No
Mem data enc Yes Yes Yes No No Yes
Masking [17] [17] [17] MDPL [72] DOM [38] TI [67]*
Fully masked Yes Yes Yes Yes* No Yes*
Pre-charge logic No DDL DDL MDPL [72] No No
Methodology Auto. Auto. Auto. Not avail Manual Not avail
Traces to discl. 375 375 375 5 k – 15 k
Max Traces 6.2 k 375 k 20 M 300 k 100 M 3 M
Attack types CPA CPA CPA/DTW DPA TVLA TVLA
Open-source Yes [86] Yes [86] Yes [86] No No No

Notes: (*) few details were provided in the publication.

6.4 Conclusion

We demonstrated a bit-serial RISC-V microprocessor implementation with no plain-text
data in the clear. Our design uses Boolean masking at the logic level, and dynamic domino
logic at the transistor level. We selected a set of countermeasures that require no changes
to the input RTL code. Unlike previous literature, our methodology is fully integrated
with EDA tools, and can be applied to digital designs of any size or complexity. We also
provided details on other key components of secure ICs, such as clock randomizer, memory
protection, and random number generator. The random numbers generated with our RNG
pass on all NIST tests. Side-channel analysis on the baseline implementation extracted the
AES key using only 375 traces, while our secure microprocessor was able to withstand
attacks using 20 M traces.
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Chapter 7

Conclusion

PUFs harvest process variation to create a unique and unclonable identification of an
IC, but learning attacks are able to impersonate PUFs after seeing a subset of CRPs.
We studied circuits and architectures to make PUFs more resilient to learning attacks.
Our approaches included low voltage operation, non-monotonic quantization, composite
architectures, and challenge obfuscation.

Our first initiative was to explore low voltage operation of APUFs, under the hypoth-
esis that PUFs could benefit from increased sensitivity to process variations, and produce
more stable responses. The results of this attempt were not included in this thesis, but
are published in [87]. We found that running APUFs at lower supply voltages offers mod-
est improvements in reliability, with reasons possibly related to larger noise components.
We also learned that SPICE simulations fail to predict the stability of responses. We
recommend the interested reader to see [87] for details.

Next, we pursued the development of an architecture where responses not always encode
the best performing circuit structure. Our hypothesis was that APUF responses immedi-
ately expose which delay path is faster, giving learning algorithms valuable information
about the PUF entropy source. Therefore, we introduced the concept of non-monotonic
response quantization, and demonstrated a ring-oscillator based strong PUF that imple-
ments the idea. Our silicon measurements showed a significant improvement in learning
resistance, with bit error rate smaller than 13.4% for the temperature range from 0 °C to
50 °C. The reported results motivate continued development of the architecture, possibly
with circuit techniques that could yield better temperature stability. Other contributions
of this work include a technique to quickly estimate, and visualize the learnability of strong
PUFs.
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Looking for alternatives to design learning resistant strong PUFs, we investigated com-
posite PUFs. In particular, we explored the design space of the POP architecture to better
understand the trade-off between security and response stability. We designed a testchip
with POP implementations of various sizes. We also added temporal majority voting for
better response stability, and multiple evaluation rounds to investigate the possible security
improvements of an increased architectural depth. Our security assessment was done with
DNNs, and it produced unintuitive results. While our DNN experiments report increased
security when using APUFs with 6, or more stages in the first layer, smaller APUFs sizes
were shown vulnerable to DNN attacks. Moreover, they showed a trend of higher pre-
diction accuracy as the number of rounds increased. To carefully examine such results,
we extended previous techniques of influential bits to assess stage bias in APUF instances.
Our conclusion is that small APUFs in the first layer limit the challenge space of the second
layer APUF, therefore, compositions not always preserve security properties of PUFs.

The trade-off between response stability and security dictates what is feasible in the
design of strong PUFs. Following a recent trend of combining weak and strong PUFs in
a single design to overcome aforementioned problems, we investigated key based challenge
obfuscation. Our proposed architecture uses NLFSRs to manipulate the external challenge
prior to evaluation. Responses are directly provided to the user, without error correction
or extra post-processing steps. Security was assessed using strict avalanche criterion, and
DNN attacks. We highlighted the fact that secret key storage can be achieved with a
weak PUF, or an OTP flash, since unclonability properties are already provided by the un-
derlying strong PUF. We also noted that key based challenge obfuscation mechanisms are
susceptible to key extraction attacks that use power consumption information. We detailed
countermeasures to protect our architecture against such attacks, including Boolean mask-
ing and clock randomization. Compared to the baseline APUF implementation, the cost
increase of our proposed architecture is 1.27x, and 2.2x when using clock randomization,
and when clock randomization is combined with Boolean masking, respectively.

PUFs establish trust between the user and the hardware, but internet connected ap-
plications demand mechanisms for message integrity, confidentiality, and (often) non-
repudiation—which require on-chip storage of a secret key. Even if the key is produced
by a PUF, it will be subject to key extraction attacks that use power consumption infor-
mation. Secure integrated circuits must address power analysis attacks with appropriate
countermeasures. Traditional countermeasures have limited scope of protection, and im-
pose several restrictions on how sensitive data must be manipulated. We demonstrated
a bit-serial RISC-V microprocessor implementation with no plain-text data. All values
are protected using Boolean masking and differential domino logic. Software can run with
little to no countermeasures, reducing code size and performance overheads.

80



Unlike previous literature, our methodology is fully automated and can be applied to
designs of arbitrary size or complexity. We also provided details on other system compo-
nents such as clock randomizer, memory protection, and random number generator. Using
measurements from a testchip fabricated in 65 nm technology, we confirmed the quality of
random numbers using NIST tests, and also performed extensive power analysis attacks
with a total of more than 40 M traces. The baseline implementation had its key extracted
using only 375 traces, while our secure microprocessor was able to withstand attacks using
20 M traces.

Future work may address the aging effects in CMOS circuits and how they affect PUF
bit error rate. Other possibilities include the study of challenge selection aided by the meta-
data produced by temporal majority voting circuitry in PUF-on-PUF implementations.
With respect to the secure RISC-V microprocessor, there is space for further investigation
on the trade-off between clock randomizer perturbation and performance predictability.
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