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Abstract

The growing adoption of robots for new applications has led to the use of robots in human
environments for human-like tasks, applications well-suited to humanoid robots as they
are designed to move like a human and operate in similar environments. However, a user
must decide which robot and control algorithm is best suited to the task, motivating the
need for standardized performance comparison through benchmarking. Typical humanoid
robotic scenarios in many household and industrial tasks involve manipulation of objects
with two hands, bimanual manipulation. Understanding how these can be performed in the
humanoid’s workspace is especially challenging due to the highly constrained nature due
to grasp and stability requirements, but very important for introducing humanoid robots
into human environments for human-like tasks.

The first topic this thesis focuses on is benchmarking manipulation for humanoid
robotics. The evaluation of humanoid manipulation can be considered for whole-body
manipulation, manipulation while standing and remaining balanced, or loco-manipulation,
taking steps during manipulation. As part of the EUROBENCH project, which aims to de-
velop a unified benchmarking framework for robotic systems performing locomotion tasks,
benchmarks for whole-body manipulation and loco-manipulation are proposed consisting
of standardized test beds, comprehensive experimental protocols, and insightful key perfor-
mance indicators. For each of these benchmarks, partial initial benchmarks are performed
to begin evaluating the difference in performance of the University of Waterloo’s REEM-
C, “Seven”, using two different motion generation and control strategies. These partial
benchmarks showed trade-offs in speed and efficiency for placement accuracy.

The second topic of interest is bimanual manipulation workspace analysis of humanoid
robots. To evaluate the ability of a humanoid robot to bimanually manipulate a box while
remaining balanced, a new metric for combined manipulability-stability is developed based
on the volume of the manipulability ellipsoid and the distance of the capture point from
the edge of the support polygon. Using this metric, visualizations of the workspace are
performed for the following scenarios: when the center of mass of the humanoid has a
velocity, manipulating objects of different size and mass, and manipulating objects using
various grips. To examine bimanual manipulation with different fixed grasps the manipula-
tion of two different boxes, a broom and a rolling pin are visualized to see how grip affects
the feasibility and manipulability-stability quality of a task. Visualizations of REEM-C
and TALOS are also performed for a general workspace and a box manipulation task to
compare their workspaces as they have different kinematic structures. These visualiza-
tions provide a better understanding of how manipulability and stability are impacted in
a bimanual manipulation scenario.
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Chapter 1

Introduction

To extend the abilities of robots to perform human-like tasks they need to be integrated
into human designed environments for everyday use. Humanoid robots, being designed to
replicate a human’s size and motions, offer great possibilities for operating in environments
that only humans can typically use. Motivated by disasters like the Fukishima Daiichi
nuclear disaster and the Deepwater Horizon oil spill, the DARPA Robotics Challenge
offered a glimpse into the applications of humanoid robots to operate in disaster relief
situations that require human intervention but are a danger to humans [10]. The tasks
involved a variety of locomotion and manipulation like traversing rough terrain, using tools,
closing a valve, and entering a door, which at their core involve skills that could be used in
daily scenarios. While work exists outlining humanoid robot applications in simultaneous
locomotion and manipulation tasks, also known as loco-manipulation tasks, operating in
everyday human environments, and performing human tasks with similar performance and
dexterity is still a challenging problem.

With the advent of humanoid robots being able to operate in human-like environments
and perform tasks typically performed by humans, users need to decide which robot is
suitable for their application. The topic of benchmarking is useful at evaluating the per-
formance of a robot and helping users determine if the needs for their application will be
met. This evaluation can also extend to motion generation and techniques used. Most
work toward benchmarking robotics has involved international robotics competitions like
the previously mentioned DARPA Robotics Challenge, Cybathlon, RoboCup, RoCKIn, the
European Robotics League and the Amazon Robotics Challenge. While these competitions
do compare the performance of the robots, the evaluation is focused largely on qualitative
performance (described quality and completion) rather than rigorous evaluation of quanti-
tative (measured and calculated quantities) metrics. Aller et al. [4] performed a literature
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review on the state-of-the-art evaluation of robot performance in a number of scenarios
with a focus on balancing and locomotion, which identified deficiencies in previous bench-
marking efforts. There remains a lack of well-defined benchmarking scenarios with specific
protocols and quantifiable key performance indicators. As a result, the European project,
EUROBENCH, was developed to create a unified benchmarking framework for bipedal
locomotion in robotic systems [1]. This project created two testing facilities hosting test
beds for benchmarking wearable and humanoid robotics as well as a software system for
computing experimental and simulated performance.

When bringing humanoid robots into the real world to perform daily, human-like tasks,
the need for bimanual or dual-arm abilities becomes essential for complex human actions.
Humans can easily manipulate objects in a variety of shapes, sizes and weights, something
that bimanual manipulation with humanoids could offer. For example, consider the biman-
ual tasks identified by Krebs et al. [23] in the KIT Bimanual Manipulation Dataset that
contains human motion capture for motions like sweeping with a broom, opening juice,
mixing cooking ingredients and using a rolling pin. Other human bimanual tasks include
lifting boxes, pushing carts, and carrying trays. Humanoid robots are well-suited for these
tasks as they can adapt to working in human settings such as homes or factories and offer
more motion possibilities given the ability to walk with legs and perform dual-arm tasks.
However, there are several challenges for developing bimanual task motions due to the high
degree of freedom, coordinated, multi-contact nature.

1.1 Problem Definition

This thesis identifies two main problems that are addressed.

Problem 1: Benchmarking loco-manipulation and whole-body manipulation

The first problem is to develop a benchmark for loco-manipulation and whole-body ma-
nipulation scenarios with a focus on humanoid robots. In this thesis, loco-manipulation
will be used to reference motions that involve manipulation of an object with the arms
of a humanoid and performing locomotion over large distances that require many steps.
Whole-body manipulation will refer to motions involving manipulation of an object with
the arms of a humanoid, but with little to no locomotion performed.
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Problem 2: Bimanual manipulation workspace analysis

The second problem arises in relation to the first, due to the difficulties bimanual tasks
present in many loco-manipulation and whole-body manipulation scenarios. This problem
is to evaluate the bimanual workspace of humanoid robots to better understand the com-
plex manipulation tasks involved in coordinated, tightly coupled bimanual manipulation
motions for objects with symmetric and asymmetric grasps.

1.2 Thesis Contributions

1.2.1 Benchmarking Loco-manipulation andWhole-body Manip-
ulation

This thesis focuses on benchmarking whole-body manipulation and loco-manipulation sce-
narios. The creation of these benchmarks is in collaboration with EUROBENCH, the
European benchmarking project for bipedal locomotion in robots, that aims to develop a
unified benchmarking framework for wearable robotics and humanoid robotics along with
a test facility for both robotics fields available to academia and industry [1]. Benchmarks
for whole-body manipulation and loco-manipulation are proposed for the EUROBENCH
framework for scenarios that are representative of many warehouse and logistics scenarios
with similar tasks. The whole-body manipulation benchmark considers the manipula-
tion of a box on a set of shelving units from one shelf to another. The pick and carry
benchmark considers the transport of a box between two shelving units. The benchmarks
consist of the design of a test bed along with the definition of specific test protocols and
meaningful key performance indicators (KPIs). To develop a better understanding of the
benchmarks, partial whole-body manipulation and loco-manipulation benchmarks with the
humanoid robot REEM-C are performed. These partial benchmarks evaluate a subset of
KPIs through the comparison of two different motion generation approaches. Figure 1.1
shows the EUROBENCH benchmarking flow in the context of the whole-body manipula-
tion and loco-manipulation benchmarks.

1.2.2 Bimanual Manipulation Workspace Analysis

This thesis contributes to the existing work on bimanual manipulation workspace analysis
and the existing gaps related to humanoid robots. The analysis considers the manipula-
bility and stability of a humanoid robot in a fixed bimanual grasping scenario with object
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Figure 1.1: EUROBENCH benchmarking work flow with blue highlighting the work in this
thesis.

specific considerations like constraints on the hands, object weight and collision avoid-
ance. Stability considerations extend beyond static stability. Thus the contributions are
a new bimanual manipulability-stability metric for bimanual tasks under static and dy-
namic stability cases; workspace analyses using object specific considerations like object
mass, collisions and end effector constraints; the generation and visualizations of the new
metric for workspaces using various objects (see Figure 1.2) and center of mass velocities;
a workspace comparison for REEM-C and TALOS, two robots that vary significantly in
kinematics and dynamics. This contribution is the result of an equal collaboration with
Vidyasagar Rajendran.

1.3 Thesis Organization

Chapter 2 covers the background of robotic manipulation and humanoid control and mo-
tion generation then presents related work on benchmarking in robotics and bimanual
manipulation. Chapter 3 proposes a whole-body manipulation benchmark consisting of
test beds, protocols and KPIs then performs and evaluates a partial version for different
motion generation and control strategies using the REEM-C. In a similar manner, Chap-
ter 4 proposes a loco-manipulation benchmark then performs a partial version of it for
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another set of motion generation and control strategies using the REEM-C. Chapter 5 de-
velops the bimanual manipulation workspace and generates visualizations for the various
cases, which are analyzed and compared. Chapter 6 presents conclusions and discusses
future work.
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(a) (b)

(c)
(d)

Figure 1.2: Objects with coordinated, tightly coupled bimanual manipulation scenarios:
a) a small 1 kg box b) a large 7 kg box c) a sweeping broom (with a left-handed grasp) d)
a rolling pin.
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Chapter 2

Literature Review

In this literature review, it first reviews robotic manipulation then humanoid control and
motion generation. Next, it covers previous work on benchmarking in robotics and biman-
ual manipulation.

2.1 Robotic Manipulation

This section provides the basic background for robotic manipulation. The coverage of the
following topics will be limited to open-chain robotic manipulators with single degree of
freedom (DoF) revolute joints [28, ch. 2.2]. Open-chain manipulators do not include closed
loops. Revolute joints are joints that allow for rotational motion about a single axis.

2.1.1 Kinematics

From Lynch and Park [28, app. C], determining the position of the end effector based on the
joint angles is a common problem for a robotic manipulator of n DoF. This problem is re-
ferred to as forward kinematics. Given the robotics frames in terms of Denavit-Hartenberg
(D-H) convention, a popular convention used in robotics as it requires only four parameters
to describe the frames at each joint of a robotics chain, the transformation matrix, Ti1,i,
from frame i − 1 to frame i can be written as follows for the robotic chain seen in Figure
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2.1:

Ti−1,i =


cosϕi −sinϕi 0 ai−1

sinϕicosαi−1 cosϕicosαi−1 −sinαi−1 −disinαi−1

sinϕisinαi−1 cosϕisinαi−1 cosαi−1 dicosαi−1

0 0 0 1

 (2.1)

=

[
Ri−1,i xi−1,i

[0, 0, 0] 1

]
(2.2)

where Ri−1,i is the rotation matrix from frame i−1 to frame i and xi−1,i is the vector from
frame i− 1 to frame i. To compute the forward kinematics of a robotic manipulator with
n joints, the transformation matrices for all the links are multiplied sequentially as follows:

T0,n(θ1, ..., θn) = T0,1(θ1)T1,2(θ2)...Tn−1,n(θn) (2.3)

where θi is the joint angle of the ith joint.

Figure 2.1: Two adjacent links of a robotic manipulator with revolute joints using D-H
parameters. Adapted from Lynch and Park 2019 [28, app. C.1].
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Another important set of parameters described by Lynch and Park is the Jacobian,
which gives the sensitivity of the end effector velocity to the joint velocity of a robotic
manipulator [28, ch. 5]. When considering forward kinematics for joint angles θ ∈ Rn for
an end effector in coordinates x ∈ Rm, the forward kinematics are:

x(t) = f(θ(t)) (2.4)

In turn, the end effector velocity can be written as:

ẋ =
∂f(θ)

∂θ

∂θ(t)

∂t
(2.5)

= J(θ)θ̇ (2.6)

where J(θ) ∈ Rmxn is the Jacobian.

Another problem in robotic manipulator kinematics is when the joint angles are desired
for a specific end effector position, called inverse kinematics. This problem can be solved
a variety of ways as detailed by Lynch and Park [28, ch. 6]. In simple cases with few
joints, the joint angles can be solved analytically using trigonometric methods, but in
more complex, non-analytic cases it can be solved numerically. The numerical methods,
such as the Newton-Raphson method, are iterative and in the case where multiple solutions
exist it will find the solution nearest to the initial guess used.

2.1.2 Manipulability

On the topic of robotic manipulation, manipulability is another key concept with the
development below following that of Lynch and Park [28, ch. 5.4]. Consider a robotic
manipulator of n degrees of freedom in a task space of q ∈ Rm with m ≤ n and Jacobian
J . The manipulability ellipsoid can be defined for the end effector velocities for a unit
sphere in the joint velocity space with joint velocities θ̇:

θ̇T θ̇ = 1 (2.7)

(J−1q̇)T (J−1q̇) = 1 (2.8)

q̇TJ−TJ−1q̇ = 1 (2.9)

q̇T (JJT )−1q̇ = 1 (2.10)

q̇T (A)−1q̇ = 1 (2.11)

The square, symmetric and positive definite matrix, A = JJT ∈ Rmxm is a result of this
development, where Equation 2.11 represents a m dimensional manipulability ellipsoid.
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For matrix A the eigenvalues are λi, with the principal semi-axis lengths being σi =
√
λi.

σi are also considered the singular values. With these values a number of manipulability
metrics can be defined:

µ1(A) =

√
λmax(A)

λmin(A)
=

σmax(A)

σmin(A)
≥ 1 (2.12)

µ2(A) =
λmax(A)

λmin(A)
=

σ2
max(A)

σ2
min(A)

≥ 1 (2.13)

µ3(A) =
√
λ1λ2...λm = σ1σ2...σm =

√
detA =

√
det JJT (2.14)

Equation 2.12 is the ratio of the longest and shortest semi-axis lengths and Equation 2.13 is
the condition number, both of which use values closer to 1 to indicate high manipulabilities.
Equation 2.14 is proportional to the volume of the manipulability ellipsoid, but indicates
high manipulability with larger values.

2.1.3 Planning

Motion planning is a key part of developing feasible motions for a robot manipulator, such
as moving a robot’s end effector from one point in the workspace to another during a pick
and place motion. For the motion to be feasible it must obey the limits of the robot, like
joint and torque limits, and avoid collisions, both with the environment and the robot
itself. A variety of motion planning techniques exist including sampling methods, grid
methods and virtual potential fields [28, ch. 10]. The focus here will be on sampling based
methods as they make up many of the basics for the Open Motion Planning Library [41],
which includes sampling-based planning algorithms that are fast and useful for high DoF
robots.

From Lynch and Park, a rapidly exploring random tree (RRT) develops a tree like
structure for a single query planning method in the configuration space, C-space, or state
space [28, ch. 10]. The RRT algorithm uses a uniform distribution to randomly sample
from the state of the robot, X , and connects the sample to the nearest collision free node
in the tree. This allows the free space, Xfree, to be explored for an initial state of xstart

to a goal set, Xgoal, where the growth starts from xstart. Algorithm 1 shows the basic
form of the RRT algorithm, though other variations exist such as the bidirectional RRT
or RRT*. Note that the local planner mentioned in line 5 could be as simple as a straight
line planner.
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Algorithm 1 RRT algorithm adapted from Lynch and Park 2019 [28, ch. 10]

1: initialize search tree T with xstart

2: while T is less than the maximum tree size do
3: xsamp → sample from X
4: xnearest → nearest node in T to xsamp

5: employ a local planner to find a motion from xnearest to xnew in the direction of
xsamp

6: if the motion is collision free then
7: add xnew to T with an edge from xnearest to xnew

8: N ← N
2

9: if xnew is in Xgoal then
10: Return SUCCESS and the motion to xnew

11: Return FAILURE

Another sampling-based planner described by Lynch and Park is the probabilistic
roadmap (PRM), which develops a graph for multi-query planning in C-space [28, ch. 10].
This method builds a roadmap in the form of an undirected graph to represent Cfree, where
the edges are ways the robot can move. Once the roadmap exists the qstart and qgoal are
added to the roadmap by trying to connect them to the nearest nodes. This roadmap can
then be searched for a path using a planner such as A*. Algorithm 2 shows how a roadmap
is built for N nodes.

Algorithm 2 PRM algorithm adapted from Lynch and Park 2019 [28, ch. 10]

1: for i = 1, ..., N do
2: qi → sample from Cfree
3: add qi to R

4: for i = 1, ..., N do
5: N (qi) → k closest neighbors of qi
6: for each q ∈ N (qi) do
7: if there is a collision-free local path from q to qi and there is not already an

edge from q to qi to the roadmap R then
8: add an edge from q to qi to the roadmap R

9: Return R
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2.2 Humanoid Control and Motion Generation

This section provides the basic background for humanoid robotic control and motion. These
robots take the form of tree-like kinematic structures as the legs and arms are all attached
to the same base structure (the torso and pelvis). Normally the limbs of these robots are
composed of revolute joints making the arms and legs behave very similar to the robotic
manipulators previously discussed.

2.2.1 Stability

Several important stability related points exist for humanoid robots. Here, the basics of
these stability points are covered for later use in motion development.

Center of Mass and Ground Projected Center of Mass

The center of mass (CoM) is a popular point in humanoid robotics as it can be useful when
considering simplified systems like inverted pendulum models. For a humanoid robot, with
N masses, mi, at points, pi, the center of mass can be calculated as:

c =
N∑
i=1

mipi
M

(2.15)

where M is the total mass of the robot [22, ch. 3].

In some cases, the center of mass is projected onto the ground plane. This point is
called the Ground Projected Center of Mass (GPCM) and is simply the projection of the

CoM, c, using projection matrix, P =

[
1 0 0
0 1 0

]
, calculated as follows:

GPCM = P
N∑
i=1

mipi
M

(2.16)

producing a 2D point.
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Zero Moment Point

Another key point for humanoid robots is the zero-moment point (ZMP). As described by
Kajita et al., the ZMP is a 2D point on the ground plane that always remains inside the
support polygon, the convex hull created by the contacts of the feet with the ground, of
the robot when stable [22, ch. 3]. The ZMP, (px, py), is calculated as follows:

px =
Mgx+ pzṖx − L̇y

Mg + Ṗz

(2.17)

py =
Mgy + pzṖy − L̇x

Mg + Ṗz

(2.18)

In Equation 2.17 and 2.18 M is the mass, g is gravity, pz is the height of the ground
(zero for flat ground), Ṗ is the change in linear momentum and L̇ is the change in angular
momentum. Should the robot be standing still, then both momentum terms are zero and
the ZMP simplifies to:

px =x (2.19)

py =y (2.20)

which is equal to the center of pressure of the robot.

Capture Point

Pratt et al. defined the capture point as a 2D point on the ground plane that can be used
to determine the step size to be taken for push recovery when the center of mass is moving
at a velocity, based on the orbital energy of the linear inverted pendulum model (LIPM)
[35]. In the case of a 3 dimensional LIPM with position rCoM and velocity of ṙCoM , the
instantaneous capture point, rICP , is calculated as shown below:

rICP = P (rCoM +
ṙCoM

ω0

) (2.21)

where the projection matrix P =

[
1 0 0
0 1 0

]
and ω0 = sqrt( g

z0
) for an acceleration of

gravity of g and a constant center of mass height of z0 [36]. An important note is that
static stability is preserved if the center of mass is not moving. The important quantities
for the capture point can be seen in Figure 2.2, which shows the 3 dimensional linear
inverted pendulum model.
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Figure 2.2: The 3 dimensional linear inverted pendulum model used to calculate the capture
point. Note that the CoM remains at a constant height indicated by the light red plane.

2.2.2 Walking

Given that humanoid robots have legs, a natural problem is how to make the robot walk.
A famous method for walking is the ZMP based walking pattern generator and preview
control developed by Kajita et al. [21], typically referred to as Kajita walking, and is
described as follows. Considering the 3D LIPM, as seen in Figure 2.3, the governing
equations in terms of the CoM position, (x, y), and the ZMP, (px, py), can be written as:

ẍ =
g

zc
(x− px) (2.22)

ÿ =
g

zc
(y − py) (2.23)

where zc is the height of the CoM in the constrained plane and g is the acceleration of
gravity.
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Figure 2.3: A 3D LIPM for a CoM at a constrained height. Adapted from Kajita et al.
2014 [22, ch. 4.3.1].

The walking pattern generator is based on the cart-table model, as seen in Figure 2.4,
allowing for the following ZMP calculation in the 3D case for the simplified model as:

px =x− zc
g
ẍ (2.24)

py =y − zc
g
ÿ (2.25)

which can be noticed to be a rewritten version of Equation 2.22 and 2.23 with the cart
position as (x, y) . The ZMP can be easily calculated from the motion of the center of mass
trajectory; however, for the pattern generator the cart trajectory should be calculated from
the ZMP to ensure the ZMP satisfies the stepping pattern prescribed. This leads to the
ZMP control problem where the CoM trajectory is generated to calculate the ZMP with a
reference ZMP input. To achieve this, a preview controller is used for the servo controller,
to ensure the CoM appropriately moves for upcoming steps in the pattern. The control
scheme can be seen in Figure 2.5.
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Figure 2.4: A cart of mass M rolling on a mass-less table. Adapted from Kajita et al. 2014
[22, ch. 4.4.1].

Figure 2.5: ZMP tracking control with a servo controller. Adapted from Kajita et al. 2014
[22, ch. 4.4.3].

2.2.3 Whole-body Control

A popular control method for humanoids due the highly redundant, floating base, tree-like
structure is whole-body control (WBC). This control method allows for all the joints of
the robot to be leveraged to coordinate a motion according to a given set of constraints
and tasks. Several WBC methods exist and can be classified as either velocity-based
or torque-based, where velocity-based controllers give joint velocities and the torque-based
give joint torques, and closed-form or optimization-based, where closed-form can be written
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and computed algebraically and optimization-based require a solver for the optimization
problem described [32]. This discussion is limited to velocity-based WBC and treats both
closed-form and optimization-based WBC.

When using closed form techniques for WBC, following the development of Moro and
Sentis [32], k control actions denoted as velocities ẋi can be written as:

ẋi = ki(x
des
i − xi) (2.26)

where a control action aims at achieving a single task. The general definition of the closed-
form velocity-based WBC is then:

q̇ = J̃#
1 ẋ1 + J̃#

2 ẋ2 + ...+ J̃#
k ẋk (2.27)

where J̃i is a matrix that relates joint velocities to task space i velocities, such as the kine-
matic Jacobian matrix. J#

i represents the pseudo-inverse of Ji, where one such calculation
of the pseudo-inverse is the Moore-Penrose pseudo-inverse:

J̃#
i = J̃T

i (J̃iJ̃
T
i )

−1 (2.28)

In this formulation, the control action ẋi can be any velocity measure such as Cartesian
velocity, joint velocity, or centroidal momentum.

Some formulations, such as the Stack of Tasks [29, 30], develop the velocity-based WBC
in a hierarchical manner for the control actions as:

q̇ =J̃#
1 ẋ1 + J̃#

2|1ẋ2 + ...+ J̃#
k|p(k)ẋk (2.29)

J̃i =Ji|p(i) = JiNp(i) (2.30)

where J̃i is defined in the null-space, Np(i) of the tasks with higher priority than task i
[32]. Np(i) can be written as:

Np(i) =
i−1∏
j=i

Nj =
i−1∏
j=i

(I − J#
j Jj) (2.31)

where I is an n× n matrix for n DoF of the robot [32].

Optimization techniques for velocity-based WBC can also be useful as they allow for
the addition of inequality constraints rather than only equality constraints, but at a greater
computation cost. In the optimization approach, a hierarchy exists in the form of multiple
optimization problems that are solved.
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Moro and Sentis define the optimization problems for k velocity tasks or constraints
with xi = q̇i, the linear equality and inequality constraints, where Ai, Ci ∈ Rmxn and
bi, di ∈ Rm, are as follows [32]:

Aix = bi (2.32)

Cix ≤ di (2.33)

With the tasks and constraints from Equation 2.32 and 2.33 the optimization problem is
defined as:

Si = {argminx∈Si−1
||Aix− bi||2 + ||w||2} (2.34)

Cix− w ≤ di, w ∈ Rm+ (2.35)

where w helps to solve the inequality constraints as a vector of slack variables. To solve the
optimization problems for the hierarchical tasks and constraints, the optimization problems
are recursively solved beginning with S0 = Rn where Si is a set of solutions x. The optimal
solution of Si is determined using a desired norm that is chosen as:

x∗
i = {argminx∈Si

||x||2} (2.36)

It is worth noting that the closed form method could also be expressed such that it could
be determined using an optimization solver, though the algebraic method is more efficient.

One Stack of Tasks implementation, named OpenSoT, offers velocity-based WBC using
optimization [37]. The OpenSoT software library provides easy to use interfaces for setting
up the WBC optimization problem and has been used on robots like COMAN, WALKMAN
and CENTAURO [16]. A further development on OpenSoT is the CartesI/O Cartesian
control framework that leverages the OpenSoT library with specific task and constraint
definitions in the task space, allowing for simple Stack of Tasks implementations in ROS
with python scripts and YAML parameter definitions [25].

2.3 Benchmarking

Benchmarking in robotics allows for the comparison of robotic systems under well-defined
test scenarios with the goal of quantifying performance using specific metrics defined for the
given test scenario. This allows users to compare different control and motion generation
strategies on the same robot or compare the performance of different robots for the task
being performed. This section provides some related works on benchmarking of robots in
locomotion, manipulation and loco-manipulation scenarios.
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2.3.1 Locomotion Benchmarking

Torricelli et al. [42] propose a scheme for benchmarking bipedal locomotion. The scheme
considers the classification of bipedal balancing and locomotion tasks like stair walking,
balancing under surface motions or under constant weight and walking on irregular terrain.
They propose a scheme for benchmarks to benchmark bipedal locomotion with two main
categories, performance and human likeness, and with metrics including success rate, ener-
getic and mechanical cost of transport and joint states. Furthermore, they offer a method
for developing benchmarking protocols for others to create new protocols and iterate on
experimental protocols. Other related European projects including H2R, BALANCE, Ko-
roiBot, WALKMAN and Biomot motivated the development of this benchmarking scheme.
Using principals from the benchmarking scheme of Torricelli et al., locomotion benchmark-
ing was performed for HRP-2 measuring performance indicators like success rate, mechani-
cal joint and actuator energy, cost of transport and duration [40]. Locomotion tasks tested
on HRP-2 were inspired by KoroiBot with motions like flat ground walking, walking on
a beam, step stone walking and stair walking [2]. The Koroibot locomotion task can be
seen in Figure 2.6. While the robot used was a humanoid robot, the tasks performed were
limited to bipedal locomotion. This leaves benchmarking in the case of manipulation or
manipulation during locomotion untreated.

Figure 2.6: The Koroibot locomotion tasks. Adapted from [2].

2.3.2 Manipulation Benchmarking

In the field of manipulation and grasping, various types of benchmarks have been explored.
For bimanual manipulation, a benchmark for semi-deformable objects was proposed using
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two different tasks, plate assembly in watchmaking and belt assembly of engines. This
benchmark offered CAD drawings to reproduce the task and proposed metrics like success
rate, completion time and other metrics that considered planning, offline learning, and
online learning [8]. Using soft end effectors, an evaluation method for grasping objects
like fruits and vegetables was developed to measure grasping success [39]. Other bench-
marking in the manipulation space includes planning related work like the evaluation of
grasp planning algorithms for a manipulator with a gripper picking up household objects
[7]. Other benchmarks focus more on dexterity such as a box and blocks test-based pick
and place benchmark for robot manipulators [31] and in-hand manipulation like the bench-
mark for changing the pose of a household object using fingers or the environment [9]. It
is worth noting that many manipulation related benchmarking tasks do not include the
manipulation of large objects that require the consideration of dynamics, such as stability.

2.3.3 Loco-manipulation and Whole-body Motion Benchmark-
ing

Recall that loco-manipulation with a humanoid robot involves the combination of walking
and manipulating an object. Whole-body manipulation involves the manipulation of an
object by a humanoid robot where it performs little to no stepping. For these tasks,
benchmarking uses a combination of locomotion and manipulation related considerations.
Many competitions have operated in this area like the DARPA robotics challenge where
robots competed to complete tasks like driving a vehicle, traversing rough terrain, operating
tools, entering a door, climbing a ladder, and closing a valve [10]. While the challenges
offered interesting loco-manipulation scenarios, they lacked performance measurements
using completion and timing as metrics. Other works in loco-manipulation and whole-
body manipulation include those that are not competition based. The ability for a robot to
balance during manipulation tasks like pushing or pulling was analyzed using a generalized
ZMP approach to evaluate the balance of a humanoid robot during manipulation [15]. One
work evaluated a bipedal robot’s walking posture while performing another task using a
dynamic reconfiguration manipulability shape index based on manipulability metrics like
dynamic and reconfiguration manipulability for greater dynamical shape changeability [38].
For loco-manipulation tasks like pushing a cart and opening a door, a planning method
using constrained manifolds to increase planning speed implemented loco-manipulation
tasks, but only evaluated the motion plan based on time. Other works offer methods
for developing complex loco-manipulation motions for simulated tasks, but again only
evaluated the motion based on time [34, 12]. One work benchmarked loco-manipulation
tasks for box picking and object grasping on flat ground, uneven terrain and in restricted
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space using Valkyrie, but with few metrics as they only measured success rate and the
average time, while lacking the strict protocols as it was from a planning perspective [48].

2.3.4 EUROBENCH Benchmarking Framework

To create a unified benchmarking framework for bipedal locomotion in robotic systems,
specifically humanoids and wearable robotics in Europe, the EUROBENCH project was
created [1]. EUROBENCH addresses the lack of quantifiable performance metrics and
standardized, repeatable approaches to measuring the performance of these robots. This
project developed a benchmarking framework composed of several experimental test beds
hosted in two testing facilities, one for humanoid robotics at Istituto Italiano di Tecnologia
(IIT) and one for wearable robotics at Hospital Los Madroños, and a software system for
computing robotic performance experimentally and in simulation. The two benchmarking
facilities are accessible to the academic and industrial community so that companies and
researchers can test the performance of their robots throughout development and access
reliable, standardized information when purchasing a new robot for a given task. Each
proposed benchmark is composed of three standardized parts: test beds, protocols and
KPIs. The benchmarking software developed allows for simple calculation of the KPIs for
each benchmark. The benchmarks in the project are inspired by real cases with a focus
on locomotion related tasks. Elementary locomotion skills are measured with respect to
stability, robustness, and motions on different terrains. In the case of the manipulation
related tasks, the manipulation considered is more large object manipulation while bal-
ancing and walking. As a result, the object acts as a disturbance on the stability of the
robot, rather than small object manipulation, dexterous manipulation or grasping related
tasks. Figure 2.7 summarizes the outcomes and Figure 2.8 shows the parties and partners
involved in the EUROBENCH project.

2.4 Bimanual Manipulation

This section covers related works in bimanual manipulation and specifically review related
works in manipulability and reachability for humanoids and bimanual robots.

Human demonstration of bimanual manipulation tasks has proven useful for learning
and developing complex bimanual motions. Performing stir fry cooking with two manipu-
lator arms was learned from offline human demonstration to develop a learned transformer
model for one arm and using visual feedback for the other to create motions online [27].
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Figure 2.7: The outcomes of the EUROBENCH benchmarking project. Adapted from [1].

Another work involving human demonstrations for kitchen related tasks used learning
to identify bimanual tasks according to the hand interactions with various objects [11].
A bimanual data set of 12 motions with 21 household objects for motions like pouring,
stirring and cutting were recorded with whole-body motion capture data, finger trajec-
tory data, various camera angle data and human subject IMU data to provide reference
motions for study and possibly other learning from demonstration works for robots [23].
Alternate methods for developing bimanual motions rely on control based methods such
as the method applied on ARMAR-6 using projected force-admittance control [13]. While
these methods can be useful, they do not provide insight in to the kinematic complexity
of bimanual tasks.

Reachability is often of interest with bimanual and humanoid robots, normally in terms
of reachability maps. One method uses inverse dynamic reachability maps to compute
offline quasi-statically stable poses for empty workspaces then online checks the feasibility
of the pose and performs the planning to determine valid, reachable robot configurations
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Figure 2.8: The partners and parties involved in the EUROBENCH project. Adapted from
[1].

for a desired hand pose [47]. This work was extended to consider uneven terrain using a
combination of forward and inverse dynamic reachability maps, where the forward maps
were used with the pelvis as the base link and the feet as tip links and the inverse maps
were used with a hand as the base link and the torso and other hand as tip links, to develop
stances on non-horizontal planes [48]. Another work uses reachability maps in complete
contact loco-manipulation motions of humanoid robots moving large objects to evaluate
transitions of grasp changes and footsteps developed from a graph search approach [34].

Manipulability for bimanual manipulation is a more complex problem as two manip-
ulators are used. One method proposed to measure bimanual manipulability would be
based on the intersection of the manipulability ellipsoids in an attempt to combine kine-
matic constraints the manipulators would create on each other [26]. Vahrenkamp et al.
[46] perform a series of works on bimanual manipulation using the ARMAR-III robot.
Initially, a bimanual reachability approach was considered for one hand as the tip link
and the other as the base link for a 14 DoF kinematic chain to compute reachable grasps
and optimize grasps for increased manipulability. Then an extended manipulability metric
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using the Yoshikawa manipulability (see Equation 2.14) and applying costs according to
joint limits and nearby obstacles was developed for improved grasps [45]. This metric was
then used to compute quality values for an inverse reachability study with ARMAR-III for
different base poses given a required hand pose [44]. In terms of the bimanual workspace
of ARMAR-III, the extended manipulability metric developed was used for a workspace
analysis that considered the position of the two end effectors on either side of a point us-
ing spherical coordinates (see Figure 2.9) [43]. It is worth noting that ARMAR-III uses a
wheeled base design and does not have any stability concerns so many of the poses searched
are achievable on that robot but are possibly unstable on a humanoid robot.

Figure 2.9: The bimanual manipulation workspace of ARMAR-III using the extended
manipulability metric. Adapted from Vahrenkamp et al. 2014 [43].

With the ARMAR-4 humanoid robot, Kaiser et al. [19] developed a stability metric
for static poses that was based on the distance of the GPCM from the edge of the support
polygon divided by the distance of the center of the support polygon to the edge (see
Figure 2.10). This metric was used to determine valid whole-body affordances from a
visually perceived environment from reachability maps containing quality values from the
stability metric. Multiple reachability maps could be combined to improve the selection
of whole-body affordances, such as the stability metric with the extended manipulability
metric of Vahrenkamp et al. [45] with the stability metric by calculating the product of the
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quality values [20]. Though this treatment adds stability considerations necessary when
using a humanoid robot, it only considers static stability for the first and last pose then
moves between them using a WBC that keeps the robot stable.

Figure 2.10: The stability metric visualized at feet for ARMAR-4 with extended manipu-
lability metric visualized for left hand. Adapted from Kaiser et al. 2015 [20].

2.5 Summary

This chapter provided some background on robotic manipulation for key concepts like for-
ward and inverse kinematics, manipulability, and planning. It also provided important
background on humanoid control and motion generation including points related to sta-
bility, walking and whole-body control. Many of the concepts of robotic manipulation are
frequently used in humanoid robotics, so together this provides an understanding of topics
used in humanoid robotics.

An overview of benchmarking robotics was provided for a variety of cases. Some
benchmarks had been developed and studied specifically for locomotion or fine manip-
ulation. Overall, benchmarking was lacking specific benchmarks with detailed perfor-
mance measurements in cases where both locomotion and manipulation are required, loco-
manipulation or whole-body manipulation. This thesis aims at providing a detailed bench-
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mark for loco-manipulation and whole-body manipulation with specific test bed setups,
protocols, and performance metrics to allow for better comparison of humanoid robots and
control strategies.

In addition, an overview of bimanual manipulation was provided including recent works
and many focused on reachability maps and workspace analysis. Bimanual manipulation
involves highly constrained motions, which become even more complex when taking stabil-
ity into consideration for a humanoid robot. This thesis also aims to develop a workspace
analysis for humanoid robots that considers manipulability and non-static stability with
specific object considerations and constraints to better inform motion development in bi-
manual manipulation scenarios.
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Chapter 3

Whole-body Manipulation
Benchmarking

This chapter develops a benchmark for humanoid whole-body benchmarking for the EU-
ROBENCH benchmarking framework, consisting of a test bed, protocols and KPIs for
a box manipulation scenario that involves little locomotion. Then, to provide an initial
benchmark of a whole-body manipulation motion, experiments are performed for a par-
tial set-up of the benchmark. The partial benchmark uses the REEM-C for two different
motion generation and control strategies to provide a comparison for KPI evaluation. An
overview of the benchmarking performed in this chapter can be seen in Figure 3.1.

3.1 Whole-body Manipulation Benchmark

This section proposes the whole-body manipulation benchmark. To provide a benchmark
that is realistic and could be seen in many applications, the benchmark is developed based
on the manipulation of boxes. This sort of larger object manipulation is common in
many industrial, logistics or warehouse applications that require tasks like shelving boxes
or sorting objects. These tasks involve large whole-body motions where two arms are
required to lift the objects and balance must be maintained. These sorts of motions can
even translate to tasks for other applications like in the home or in the service industry.
As the focus of this benchmark is on manipulation tasks with relatively little locomotion
or none at all, the manipulation is restricted to a small workspace with manipulation tasks
in the immediate vicinity of the robot.
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Figure 3.1: EUROBENCH benchmarking work flow with blue highlighting the whole-body
manipulation work in this chapter.

3.1.1 Test Bed

This thesis proposes a test bed with a small, constrained workspace similar to a box
manipulation scenario in a warehouse setting. This test bed consists of three shelving units
surrounding a 1 m2 floor space on three sides. On each shelving unit there are three shelves
that help test pick and place heights like what a human can perform. These heights are
selected as below the waist, between the waist and shoulders and above the shoulders at 0.14
m, 0.78 m and 1.42 m, respectively. To inform this decision, the heights are approximated
using the REEM-C robot, the standard humanoid robot for the EUROBENCH testing
facility (1.64 m tall). With the proposed shelving set-up manipulation motions vertically,
laterally and combined vertically and laterally can be performed. To inform the robot’s pick
and place locations, multi-colour LED light strips are placed along the edge of each shelf
and target placement locations are placed on each shelf. An important part of developing a
standardized benchmark is the ability to replicate the set-up worldwide, therefore this test
bed uses IKEA IVAR system shelving units with a depth of 0.5 m, as they are available
in many locations across the world [17].

The standard manipulation object proposed is a typical milk crate with the dimensions
of 0.33 m wide by 0.33 m deep by 0.28 m tall (13” x 13” by 11”). The milk crate is chosen
due to the versatility it offers as weight can be easily added to the open top and it allows
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(a) Outer dimensions (b) Handle dimensions

Figure 3.2: Standard whole-body manipulation benchmarking box.

for different grip options for the robot. The robot could grip the crate with the handles,
like how a human would, or with a friction grip by pressing on the sides, which is a simpler
grip for robots. The test object and key dimensions can be seen in Figure 3.2. Moving
forward, the term box may be used as well to describe the benchmark.

The test bed with the three shelving units and important dimensions can be seen
in Figure 3.3 with the standard manipulation object, the milk crate, and REEM-C, the
standard humanoid platform for EUROBENCH.

3.1.2 Protocols

Four protocols are proposed to evaluate the robot’s performance to offer a complete as-
sessment of the robot in whole-body manipulation scenarios. As this box manipulation
scenario involves the pick and place of a large object, these protocols are used to represent
a general use case for whole-body manipulation rather than a single specific application.
By maintaining generality and performing a comprehensive set of tests, the performance of
the robot and its algorithms can translate to a variety of applications rather than a single
case.
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(a) Rear view (b) Side view

Figure 3.3: Whole-body manipulation test bed model.

Protocol 1: Predefined Frontal Placement

Protocol 1 considers the ability of the robot to perform whole-body box manipulations
vertically. In this protocol the robot picks the box from a shelf on the middle shelving unit
and places it on a different shelf of the same shelving unit using predefined locations. Both
the pick and place location are predefined for each box motion. Over the course of this
protocol several are performed, where each run consists of 10 placements. The placements
are recorded for evaluation using the KPIs. When a run is successfully completed, the
weight of the object is increased according to the user’s choice, where weight is added to
the box in an even distribution. The maximum time allowed per run is 15 minutes as it
would be expected that a human could perform 10 motions within this time and to avoid
overly long runs.

Protocol 2: Predefined Lateral Placement

Protocol 2 tests the ability of the robot to perform lateral whole-body box manipulation
motions. The motions that the robot must perform consist of manipulations where the
robot picks an object from a shelf in front or to the side of itself and must place it on a shelf
of the same height on another shelving unit in front or to the side based on the predefined
box manipulation. Like Protocol 1, multiple runs are performed with the weight of the box
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increasing each time according to the user’s choice, with 10 placements and a 15 minute
time limit per run.

Protocol 3: Predefined Combined Placement

Protocol 3 tests combined vertical and lateral whole-body box manipulations of the robot.
In this protocol the robot picks a box from a shelf in front or to the side of itself and places
it on another shelf in front or to the side of itself at a different height for a predefined box
manipulation. Similarly, several runs are performed with the weight increasing each run
according to the user’s choice, with 10 placements and a maximum time of 15 minutes per
run.

Protocol 4: Variable Combined Placement

Protocol 4 tests whole-body box manipulations for combined vertical and lateral placement,
but in a variable manner. In this protocol the robot must pick and place the box according
to the LED lights on the front of the shelves that visually indicate the pick and place
location where green lights indicate the shelf to pick the box from and red lights indicate
the location to place the box. The LED lights are computer controlled to switch after
the end of a manipulation motion and uses a random combination each time. Several
shelves contain boxes with varying weights, up to the maximum weight the robot was able
to manipulate in previous scenarios. A single run is performed with a fixed time of 20
minutes, where the robot manipulates as many boxes as it can in the given time. The run
ends when the 20 minutes elapses or the robot cannot manipulate any more boxes.

Details on Performing a Protocol

All the protocols consist of the run structure, so the rules for performing the protocols are
all similar and can be described through the performance of a run. Each run consists of
box manipulations where the box of a certain weight is picked from one shelf and placed
on another. At the beginning of the run, the robot can be placed anywhere within the 1
m2 floor space where all segments of the robot must be above this same floor space and not
within the shelves. Once the robot starts its motion then the time and joint data of the
robot is recorded until the robot completes the box placements or the time limit elapses.
During the run, the robot must return to the initial location it started from after each
placement. The data recorded for the run is put into the desired CSV file format for the
benchmarking software for performance metric processing.
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3.1.3 Key Performance Indicators

Key performance indicators are the performance metrics measured for each protocol to
evaluate the performance of the robot for a specific task. The KPIs are generated as a set of
averages for all the box placements performed in the protocol tested. Table 3.1 summarizes
the KPIs used for benchmarking whole-body manipulation with further description for
some following the table.

Overall, the goal of these KPIs is to measure how well the box manipulation is per-
formed, so the time, success rate and placement error (position and orientation) are mea-
sured. Time helps measure the speed of the manipulation and success rate is important
to measure if the task was successfully completed. By measuring placement error, that
accuracy of the box manipulation can be measured. However, the strength, versatility
and capability of the box manipulation is another important factor to measure, so the
maximum weight and shelf heights reached are measured to indicate the limitations on the
manipulations that can be performed. KPIs like mechanical work, cost of operation and
power consumed offer insight into the energy consumption to perform the box manipu-
lations and help forecast the cost to run a robotic platform. Finally, the human-likeness
compares the motion of the humanoid robot to that of a human as it is trying to replicate
the performance that a human can achieve.

In the case of the placement position and orientation error it is determined based on
the error of the center of the box from the target position as considered in a 2-dimensional
plane. The position error is calculated using the Euclidean error:

ϵp =
√

(xactual − xtarget)2 + (yactual − ytarget)2 (3.1)

For the orientation error, there is only one degree of orientation in a 2-dimensional plane,
so the orientation error is calculated as:

ϵo = |θactual − θtarget| (3.2)

The image below illustrates the error of a box placement:

The mechanical work is calculated as the work done by the robot on the box to move
it from the pick location to the placement location calculated as follows:

W =
n∑

j=1

∫ T

0

|τj · ϕ̇j|dt (3.3)
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Table 3.1: Key performance indicators for the whole-body manipulation benchmark.

Name Description/Formulation
Success Rate (%) The ratio of objects placed on the correct shelf
Placement Position The average position error of the object placed
Error (m) on the shelf from the target location of the shelf

as calculated in Equation 3.1
Placement Orientation The average orientation error of the object placed
Error (rad) on the shelf from the target location of the shelf

as calculated in Equation 3.2
Time (s) The average time for a correct box placement
Maximum Weight (kg) The maximum weight of an object with which

the robot can perform a placement
Shelf Heights Reached (m) A list of the attainable shelf heights

that the robot could successfully perform picks
from and placements at

Mechanical Work (J) The average absolute mechanical work calculated
as in Equation 3.3

Cost of Operation The average energy consumed per placement and
(Amps · s/kg) mass of objects calculated as in Equation 3.4
Power Consumed (W ) The average total amount of power consumed from

the battery including actuators, sensors and PCs.
Human-likeness in Time (s) The average difference in time of the robot motions

to human motions performing the same task
Human-likeness in Path (m) The average difference in position of the humanoid

end effector paths to human hand paths performing
the same task as in Equation 3.5

where n is the number of joints, τj is the torque at joint j, ϕ̇j is the angular velocity at joint
j and T is the time to complete the entire box manipulation from initial starting position
back to the initial starting position. Note that as this metric requires joint torques, some
robots may not be able to record these experimentally, such as the position-controlled
robot REEM-C. Alternatively, they can be determined by a dynamic simulation of the
robot motion such as with Gazebo [14].

The cost of operation is calculated as the current consumed by the joints of the robot
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Figure 3.4: A box foot print, in red, misplaced on the shelf with respect to the target.

for a box manipulation divided by the mass of the box manipulated and is calculated as
follows:

Cost =
n∑

j=1

∫ T

0

1

mO

|ij|dt (3.4)

where n is the number of current consuming joints, ij is the current of the actuator for
joint j, T is the time to perform the entire box manipulation from initial starting position
back to initial starting position, and mO is the mass of the box being manipulated. Motor
currents are typically readily available for most robots, such as in the joint states published
with ROS by REEM-C during operation.

The human-likeness in path is calculated as the Euclidean error between the humanoid
end effector paths to the human hand paths over the trajectories calculated as:

ϵee =
n=2∑
j=1

∫ τ

0

√
(xr,j(τ)− xh,j(τ))2 + (yr,j(τ)− yh,j(τ))2 + (zr,j(τ)− zh,j(τ))2dτ (3.5)

where n = 2 is the number of robot end effectors and human hands, (xr,j(τ), yr,j(τ), zr,j(τ))
are paths of robot end effector j over a normalized time, (xh,j(τ), yh,j(τ), zh,j(τ)) are paths
of human hand j over a normalized time, τ is the normalized time for the two motions. As
the motions of the robot and human are unlikely to take the same time, the normalized
time is computed to allow for comparison in this calculation.
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Given the number of metrics, the user has access to many measures of performance of
the robot performing whole-body manipulation that can be used to determine what robot
or algorithm best suits the application. Not all KPIs are as important as others because
each application has unique requirements. The user can use the metrics to understand
performance like the speed, accuracy, strength, efficiency, and human-likeness and how
this may relate to their task. For example, in a situation where a robot is stocking shelves
it would likely be important to stock shelves quickly, but also accurately to ensure space
is optimized. In this case, metrics like time and placement error would be very important.
If the robot is operating independently in a separate environment, then human-likeness
metrics are of little concern as how natural the motion matters very little. However, if
the environment was collaborative with a human, then human-likeness could be important
to help the human in the environment understand the robot’s motions better and feel
more comfortable working alongside the robot. This demonstrates how a general use case
benchmark allows the user to flexibly consider the performance for their specific case and
interpret the performance indicators in a way that is useful for their needs.

To calculate the KPIs evaluating the robot’s performance a set of CSV files in a specified
format containing the robot’s joint data is provided to the software framework, which
consists of joint angles, joint velocities, joint currents, and the measured or simulated joint
torques. For this benchmark a few additional CSV files are provided to add experimental
details such as success rate, placement error and object weight. The general structure
of the files for a protocol is a set of CSV files for each run that the software splits into
box manipulations. The calculations are computed for each box manipulation then are
averaged at the end to provide an average value for the KPIs that use average values.
Figure 3.5 shows the workflow for the performance metric processing. It is important
to note that the KPI calculation is standardized to ensure that KPIs are all calculated
identically and measure exactly what the benchmark is defined to measure. This allows
the end-user to interpret these standardized metrics to determine what is important for
their application. Should the user wish to add to the benchmarking framework or modify
part of a benchmark they could consider a collaboration to meet their need.

As this benchmark is part of the EUROBENCH framework, which focuses on bench-
marking humanoid robots, this benchmarking set-up could be used for non-humanoid
robots, though they would score poorly in human-likeness and the benchmark of other
robots is not the main intention. This benchmark within the EUROBENCH framework is
specifically used for humanoid robots. There is another whole-body manipulation bench-
mark that is specifically for wearable robotics.
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Figure 3.5: EUROBENCH benchmarking performance metric work flow where the protocol
is performed and data collected in orange. Green highlights the data converted to the
EUROBENCH format and red indicates the performance indicator calculation workflow,
with Docker use for the metric calculation is implemented (dark red). The output to the
user is shown in blue. Adapted from Aller et al. 2022 [3].

3.2 Partial Benchmark Performed

This section performs a simplified version of the benchmark for Protocol 1 with the REEM-
C to begin to evaluate the motion of a humanoid on the whole-body manipulation bench-
mark proposed. Due to time limitations, certain simplifications were made in the exper-
imental set-up, performance of the protocol and number of KPIs measured; however, it
provides a set of initial motions to validate the use of the benchmark and offers insight into
possible improvements. In addition, some parts of the benchmark had yet to be finalized,
so may differ slightly from the complete benchmark presented earlier.

3.2.1 Experimental Setup

To test Protocol 1, the experiment uses test bed as described in Subsection 3.1.1. For this
set-up it uses only the center shelf, but still respects the 1 m2 floor space. The main reason
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for not including the other shelves is that they are not used in this protocol and allow for
clearer photos and videos of the motions. Two more alterations to the test bed described
exist in this partial benchmark. The LED light strips are not installed on the shelf as
Protocol 1 does not require them and the target is altered, which is explained below.

When performing these experiments, the box for manipulation had yet to be finalized,
so a cardboard box with dimensions 0.5 m in width, 0.16 m in height and 0.15 m in depth,
weighing 0.1 kg was used. This box was selected as appropriate for this partial benchmark
as it large enough to require a bimanual pick and place motion but is not exceedingly heavy
and allows for a simple friction grip.

See Figure 3.6 for the middle shelving unit with the box on the middle shelf in front of
Waterloo’s REEM-C “Seven”.

In the execution of Protocol 1, only vertical placements are performed. For this partial
benchmark the box manipulation from the middle shelf to the top shelf is performed. The
box starts on the middle shelf, centered horizontally at the front edge, and should be placed
on the top shelf in a similar manner at the target location. The box is placed near the edge
of the shelf to allow for an easier pick and place for the robot in this partial benchmark.

3.2.2 Performance Metrics

The partial benchmark uses certain KPIs from Subsection 3.1.3 to measure the performance
of the motions. To measure the placement error, the experiment uses a simplified scheme,
where two taped boundaries are used on the top shelf that indicate the box has met that
error level if the robot places the box within the inner edge of the boundary. The green
tape indicates a 2.5% error in placement accuracy and the blue tape indicates a 5% error
in placement accuracy where the error margin added to the target location is based on
a percentage of the shelf’s dimension. Again, this simplified target location and error
measurement strategy was used as it had not been finalized when performing the motions.
The KPIs selected are seen in Table 3.2, noting that an adjusted success rate is used to
accommodate the taped boundary version of placement error.

3.2.3 The Humanoid Robot “Seven”

Seven, who arrived at the University of Waterloo in the summer of 2020, is a REEM-C
humanoid robot developed by PAL Robotics and is the 7th REEM-C in the world. It is a
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Figure 3.6: Partial whole-body manipulation benchmarking set-up.
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Table 3.2: Key performance indicators for the partial whole-body manipulation benchmark.

Name Description/Formulation
Success Rate of 2.5% The ratio of objects placed correctly within the
Placement Accuracy 2.5% error boundary
Success Rate of 5% The ratio of objects placed correctly within the
Placement Accuracy 5% error boundary
Time (s) The average time for a correct box placement
Mechanical Work (J) The average absolute mechanical work calculated

as in Equation 3.3
Cost of Operation The average energy consumed per placement and
(Amps · s/kg) mass of objects calculated as in Equation 3.4

floating base robot that contains 68 DoF, including the two 19 DoF hands that are under-
actuated. Seven is 1.64 m in height and weighs 80 kg. With respect to sensors, there is an
IMU in the pelvis, a force torque sensor at both wrists and ankles, lasers in the feet and
an Intel RealSense camera in the head with an NVIDIA Jetson TX2 for vision processing.
Out of the box, REEM-C comes with certain functionality developed by PAL Robotics
including walking, stabilization, grasping, whole-body control and text to speech, with
code development available using ROS. Another member of the REEM-C series, the 6th
REEM-C, is available at the EUROBENCH facility available for performing benchmarks
by those who wish to use it with code they develop.

3.2.4 Motion Generation and Control Methods

Separate Upper and Lower Body Controllers

The first motion generation method is the separate upper and lower body control method,
where the torso and arm joints are controlled using one controller and another is used to
control the leg joints. This split control method allows for the highly redundant kinematic
structure to be simplified for the controllers and motion planning. The lower body con-
troller used is the default controller developed by PAL Robotics. This controller includes
Kajita walking pattern generation [21] with IK for the leg joints and a stabilizer. Fig-
ure 3.7 shows an overview of the walking controller control structure. The upper body
controller uses joint trajectory controllers for each arm with the torso joints maintained at
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Figure 3.7: PAL Robotics walking controller. Adapted from Baños 2020 [5].

the zero position. The torso joints are kept at zero to stay within a stability region that
the stabilizer can compensate. The joint trajectory moves the joints of the arms through
joint trajectories consisting of positions at specified times along with velocities and accel-
erations if provided using spline interpolation. In this case, inverse kinematic planning
results from MoveIt! [33], a kinematic motion planning framework, are used to solve joint
position trajectories that respect joint limits and are collision free with respect to the rest
of the robot. Motion plans with MoveIt! are created with the TRAC-IK kinematics solver
using a threaded approach to solve the IK problem with two different solvers where a valid
solution is returned from whichever converges first. One solver uses an inverse Jacobian
method with Newton’s method convergence that can avoid local minima created from joint
limits and the other uses sequential quadratic programming nonlinear optimization with
quasi-Newton methods [6]. MoveIt! leverages the Open Motion Planning Library (OMPL)
[41] to generate motion plans for moving the arms from one position to another. RRT-
Connect was the planner used in this implementation, which is very similar to regular RRT
except it grows two trees until they meet with one at the start position and one at the
goal position [24]. Due to the fact that MoveIt! does not contain motion planning for
tree-like kinematic structures, only chains, the joint positions for a given hand pose were
pre-calculated with MoveIt! for a single arm then mirrored for both arms when sending
joint trajectories. An overview of the separate upper and lower body control structure can
be seen in Figure 3.8 where a predefined arm motion and stepping sequence is provided as
input to the motion generation scheme.
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Figure 3.8: Separate upper and lower body control method.

To generate motions with this control method, MoveIt! can be used to determine if the
robot can reach the box from the starting position. If the box is out of reach, then the
robot can walk forward so that it can reach the box and pick it up. Again, using MoveIt!,
it can be determined if the box can be lifted to the top shelf without any collisions. If
not, then the robot can step backwards to raise the box then step forward and place it.
This methodology allows an arm motion and stepping sequence to be developed as the
input to the control method in Figure 3.8. Note that the inverse kinematics for the hand
positions to generate the arm joint positions is performed offline. Also, based on the frame
definitions of the robot’s arms, the same joint angles can be provided to both arms to
achieve a mirrored arm pose. Based on this motion generation approach, the resultant
motion requires stepping and is shown in Figure 3.9.

Figure 3.9: Separate upper and lower body controllers method motion sequence.

In this motion, the robot takes steps towards the shelf and away from the shelf depend-
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ing on the stage of the motion sequence. A benefit of this motion generation method is
that it uses the ability of humanoid robots to move around in the environment to use a
wider workspace for obstacle avoidance and reachability issues experienced in this scenario.

Whole-body Controller

The second control method and motion generation approach is a whole-body control
method using CartesI/O [25], the Cartesian control framework that uses the OpenSoT
Stack of Tasks library, which uses a velocity-based optimization approach. This approach
allows for the creation of a hierarchical Stack of Tasks approach with tasks defined in the
Cartesian world frame as well as the ability to specify constraints. In this implementation,
joint and velocity limits were set as constraints and the task list was set in the following
order, descending in priority:

1. Left foot Cartesian pose, right foot Cartesian pose

2. Center of mass XY position, waist yaw

3. Left hand Cartesian pose, right hand Cartesian pose, torso posture, left arm joint 2
posture, right arm joint 2 posture

4. Head posture, left leg posture, right leg posture

To generate motions with this method, Cartesian poses were sent to the left and right
hand along with center of mass XY positions. This generates whole-body motions for the
robot online with joint states composed of position and velocity being published in ROS.
These joint states can then be sent to the joint trajectory controllers for all the joints to
play motions on the robot. An overview of the whole-body control method can be seen in
Figure 3.10.

Figure 3.10: Whole-body control method.

Due to the ability to move all joints simultaneously, the robot can bend and lean forward
to grab the box then pull it back and raise the box to place it on the top shelf without
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taking steps or encountering collisions with the shelf. The motions generated using this
approach can be seen in Figure 3.11.

Figure 3.11: Whole-body controller method motion sequence.

It can be seen that the robot makes use of the legs to crouch then reach further forward
with the arms by using the torso joint. An increased number of possible motions with
the robot is offered with this WBC method allowing for a valid box manipulation to be
found in the constrained workspace. In this solution, the general trajectory of the box was
selected to avoid collisions as no collision avoidance was implemented or available with
CartesI/O. To bias the elbows out to avoid self-collision while lifting the box, the left and
right joint 2 postures were used. Other postures like waist yaw, torso posture, head posture
and left and right leg postures were used to produce favourable positions of certain joints
during the motion, such as keeping the torso upright while raising the box, or limiting the
motion altogether, like keeping the waist from turning and the head moving for no reason.
Another task limitation was that there was no stabilization task available or implemented,
so the center of mass position was shifted to maintain balance. It is worth noting that
even with the ease of assembling the task list this motion still requires the fine tuning of
parameters in the WBC definition on the robot to achieve a feasible, stable motion, which
is a common problem encountered with Stack of Tasks methods.

3.2.5 Experimental Results & Discussion

To collect data that could be processed for the KPIs of the partial benchmarking scenario,
each of the two motion generation and control approaches were performed 10 times for the
box manipulation from the middle shelf to the top shelf on the center shelving unit for the
0.1 kg cardboard box. Table 3.3 shows the results for the KPIs with mechanical work and
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cost of operation computed as described in Subsection 3.1.3. Time, mechanical work and
cost of operation are all computed as average values with standard deviations for the 10
box manipulations performed with each motion.

Table 3.3: Results from 10 trials of two motion generation approaches for the partial
whole-body manipulation benchmark

Performance Metric Separate Upper and Whole-body
Lower Body Control Method

Control Method
Success Rate of 2.5% 60 % 100%
Placement Accuracy
Success Rate of 5% 100% 100%
Placement Accuracy
Average Time ± 52.96 ± 0.14 62.41 ± 0.12

Standard Deviation (s)
Mechanical Work ± 2585.25 ± 775.33 561.69 ± 7.75

Standard Deviation (J)
Cost of Operation ± 10802.08 ± 15.14 20245.68 ± 9.67

Standard Deviation (Amps · s/kg)

In the results, it can be seen that the separate upper and lower body control method
was approximately 10 seconds faster than the whole-body control method. This increased
speed came at the expense of a 40% lower success rate for the 2.5% placement accuracy.
The whole-body method achieved excellent accuracy due to the non-stepping approach it
used as taking steps introduces error in the position of the robot with respect to the shelf.
Both methods did achieve perfect 5% placement accuracy though. In terms of mechanical
work, the separate upper and lower body control method was almost five times that of the
whole-body method as it does more work on the box by taking steps during the motion
than the non-stepping whole-body method. However, the cost of operation for the separate
upper and lower body control method is approximately half that of the whole-body control
method. The reason for this is that much more current is consumed in the whole-body
method due to the longer time to perform the box manipulations and the increased use of
joints in the robot. Performing crouching motions with the robot consumes high amounts
of current to support the robot’s weight and remain stable compared to the current required
for stepping. The differences in performance metrics measured offer a trade-off for the user
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depending on the needs of their application as certain KPIs may matter more to them
than others. Therefore, if a user required a very accurate motion, the whole-body control
method would be the better algorithm to use, but if a faster or more energy efficient
algorithm is important then the separate upper and lower body control method would
be more desirable. Overall, the results between trials were very similar as indicated by
the small standard deviations in time and cost of operation, with no noticeable decrease in
performance. However, larger standard deviations can be observed for the mechanical work,
especially for the separate upper and lower body control method. The larger variability
is owing to the variability of the results obtained through Gazebo simulations and the
variation in the way the PAL walking controller performs the stepping action to remain
stable.

When performing the experiments, a few other observations were made that should be
considered regarding the whole-body manipulation benchmark. In a few cases the robot
would bump the shelf on the approach for placing the box using the separate upper and
lower body control method. This only affected the success rate of the box placement. While
this did not damage the shelf or the robot, this is an undesirable result as it could damage
the robot in other real applications. Also, depending on the way the box is manipulated
the object or shelves could get damaged due to motions like dragging a heavy object across
a shelf, banging the object into the shelf, or dropping the object. Furthermore, if the object
was something delicate or an open top box like the milk crate with contents that could be
spilled then the contents of the box being manipulated is of greater concern. In the partial
benchmark here, the box was shaken around during the walking motions of the separate
upper and lower body control method, which could be damaging for the object. To treat
these motion safety concerns, a metric for how carefully the object is manipulated and if
a collision occurred could be valuable. A possible solution to monitor how carefully the
object is manipulated could be to add an IMU to the manipulated object and measure the
change in acceleration. With respect to collisions, a possible solution could be a metric
that counts the number of collisions of the robot or box with the environment (aside from
placement).

Furthermore, while the cost of operation does give a sense of the current consumed at the
joints this can be challenging to interpret in terms of battery usage. If the robot is always
plugged in or performing the motions with a full battery, then the battery usage is of little
concern. However, the battery life of most humanoid robots is very short and operating
with a cable attached is generally not desirable due to tripping and tangling hazards. Using
the power consumption metric proposed as part of the complete benchmark would help
give a better understanding of the power required for the task, but it may also be valuable
to provide a metric in terms of the number of batteries used or charge cycles required as
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this is a very real problem when using humanoids in real world applications. One other
note on battery use is that some systems may experience a degradation in performance
as the battery depletes. To identify this, the performance of the robot would need to be
observed over time. Possible solutions would be to perform a time-based comparison of
the motions or perform the same motion at two different charge states, like full battery
and low battery, to compare the performance.

A final note on the motions in this partial benchmark is that the grasping approach
used was a simple friction grasp. REEM-C does have hands with five fingers that allow
for the robot to grasp objects and even handles on a box like the milk crate; however, the
kinematic structure adds complications. On the arms of REEM-C there are 7 DoF, but
joint 5 (the first joint after the elbow) and joint 7 can each rotate the hand and joint 6
can tilt the hand. This means that the robot cannot simultaneously tilt the hands up or
down and bend them in or out at the wrist while keeping the palms of the hands parallel
to each other the way humans can. A single hand grasping the milk crate handle can be
seen in Figure 3.12.

Figure 3.12: REEM-C grasping milk crate handle.

As a result, picking a handled box and lifting it using the arms is more constrained than
expected resulting in a very small bimanual workspace for this box, not to mention the
added constraints involving possible collisions and stability of the robot. This challenge
motivates the work presented in Chapter 5, which explores the workspace of humanoid
robots in bimanual manipulation scenarios with object imposed constraints.
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Chapter 4

Loco-manipulation Benchmarking

This chapter develops a benchmark for humanoid loco-manipulation benchmarking for the
EUROBENCH benchmarking framework, which like the whole-body manipulation bench-
mark, consists of a test bed, protocols and KPIs for a box manipulation scenario though
with a longer locomotion phase. Then it constructs and tests a partial set-up of the bench-
mark to provide an initial benchmark of the scenario. Also similar to the whole-body
manipulation, the chapter performs KPI evaluation using two motion generation and con-
trol strategies. Unfortunately, due to the REEM-C being damaged in another experiment,
results remain limited. An overview of the benchmarking performed in this chapter can be
seen in Figure 4.1.
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Figure 4.1: EUROBENCH benchmarking work flow with blue highlighting the loco-
manipulation benchmarking work in this chapter.

4.1 Pick and Carry Benchmark

This section proposes the pick and carry benchmark for loco-manipulation. Similar to
the whole-body manipulation benchmark, a realistic benchmark is inspired by industrial,
logistics and warehouse applications. Often materials or large objects need to be lifted and
carried to different locations like transporting packages or moving objects on a factory floor.
This involves lifting and carrying these objects to place them at more distant locations.
Again, these sorts of motions are applicable in the home or service industry like carrying
a basket of laundry or a tray of food. This benchmark focuses on manipulation tasks that
require significant locomotion, so the workspace is larger to force the robots to walk during
the manipulation of the objects.

4.1.1 Test Bed

The proposed test bed replicates a common pick and place scenario like in a warehouse
setting. The loco-manipulation benchmark, which will also be referred to as the pick and
carry benchmark, is essentially an extension of the whole-body manipulation benchmark. It
uses two of the same IKEA IVAR shelving units, but instead they are separated by a larger

48



distance, 3 m, which requires locomotion from the robot to perform the box manipulation
task of picking and carrying a box to the other shelf. The shelving units are set up with
the same shelving heights as the whole-body manipulation test bed based on human sized
heights below the waist, between the waist and shoulders and above the shoulders at 0.14
m, 0.78 m and 1.42 m, respectively. The shelves contain the same targets with LED light
strips on the edges too. It also uses the milk crate as the standard manipulation object
(see Figure 3.2). Figure 4.2 shows the two shelving unit test bed with the milk crate and
REEM-C.

4.1.2 Protocols

To evaluate the robot’s performance in the pick and carry scenario four protocols are
proposed. Again, generality is maintained with the definition of these protocols to ensure
the performance is measured in a way that will allow for the extension to a variety of
applications.

Protocol 1: Predefined Basic Carrying

Protocol 1 tests the ability of the robot to pick and carry objects from one shelving unit
to another. For predefined pick and place locations, the robot picks up the box from one
shelf and transports it to a specified shelf on the other shelving unit. This protocol requires
multiple runs to be performed, with 10 placements per run. After the successful completion
of a run, the weight of the box is increased based on the user’s choice. The maximum time
permitted per run is 20 minutes as it is expected that a human could perform a run in this
time, and it helps avoid extremely long runs.

Protocol 2: Predefined Basic Carrying at Specified Velocity

Protocol 2 tests the ability of the robot to perform pick and carry motions at specified
velocities. In this protocol the robot performs pick and carry motions from one shelving
unit to the other with predefined pick and place locations using the heaviest weight the
robot can carry in the box. Multiple runs will be performed, which again contain 10
placements with a maximum time of 20 minutes per run. For each run the locomotion
speed for carrying the box is increased based on the user’s choice.
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(a) Rear view

(b) Side view

Figure 4.2: Pick and carry test bed model.
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Protocol 3: Endurance Carrying

Protocol 3 tests how long the robot can carry the heaviest object it can. The pick and carry
test bed is not used for this protocol. Instead, the robot must walk and carry the object
as long as it can around the track available at the EUROBENCH facility for humanoids.
This protocol only has one run, that consists of 10 trials. The 10 trials are used to generate
an average result. Each run ends when the robot can no longer carry the object.

Protocol 4: Variable Endurance Pick and Carry

Protocol 4 tests how long the robot can perform pick and carry motions. In this protocol
the LED lights indicate pick and place locations, with green indicating the pick location and
red indicating the placement location, that the robot must perform pick and carry motions
for. Multiple shelves will contain boxes with different weights, up to the maximum weight
the robot can handle. This protocol only uses a single run of 20 minutes, where the test
ends when the time runs out or the robot cannot manipulate anymore objects.

Details on Performing a Protocol

The same run structure is used in all these protocols and therefore all require very similar
rules. The robot must be placed in the center of the two shelving units when starting a
run and after each placement must return to the initial position after each placement. The
only exception to this is Protocol 3 that continuously carries the object on the track and
begins holding the object. Similar to the whole-body manipulation benchmark, the time
and joint data are recorded once the motion starts until the completion of the required
motion or time elapses. Again, the recorded data is placed in the required CSV format for
KPI processing with the benchmarking software.

4.1.3 Key Performance Indicators

The key performance indicators used for this benchmark are very similar to the ones for
the whole-body manipulation benchmark in Table 3.1 and are calculated similarly, though
now walking speed is more of a concern than manipulation locations. Due to the longer
locomotion phase the walking speed will directly relate to the performance of the robot
in this scenario. Table 4.1 shows the KPIs that will be calculated for the protocols. See
Subsection 3.1.3 for full calculation details and equations.

51



Table 4.1: Key performance indicators for the pick and carry benchmark.

Name Description/Formulation
Success Rate (%) The ratio of objects placed on the correct shelf
Placement Position The average position error of the object placed
Error (m) on the shelf from the target location of the shelf

as calculated in Equation 3.1
Placement Orientation The average orientation error of the object placed
Error (rad) on the shelf from the target location of the shelf

as calculated in Equation 3.2
Time (s) The average time for a correct box placement
Maximum Weight (kg) The maximum weight of an object with which

the robot can perform a placement
Maximum Walking Speed The maximum walking speed of the robot while
(m/s) carrying the heaviest object that it can handle
Mechanical Work (J) The average absolute mechanical work calculated

as in Equation 3.3
Cost of Operation The average energy consumed per placement and
(Amps · s/kg) mass of objects calculated as in Equation 3.4
Power Consumed (W ) The average total amount of power consumed from

the battery including actuators, sensors and PCs.
Human-likeness in Time (s) The average difference in time of the robot motions

to human motions performing the same task
Human-likeness in Path (m) The average difference in position of the humanoid

end effector paths to human hand paths performing
the same task as in Equation 3.5

4.2 Partial Benchmark Performed

This section presents a partial benchmark with REEM-C for a simplified version of Protocol
1 to begin evaluating motions on the pick and carry test bed. Due to issues with the
robot being damaged the results are limited but are currently in progress. This partial
benchmark shares many similarities with the whole-body manipulation partial benchmark
in Section 3.2 and is referred to throughout the section.
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4.2.1 Experimental Setup

To test Protocol 1, the test bed proposed in Subsection 4.1.1 is used except the shelves do
not have LED light strips. The motion tested involves picking up a box from the middle
shelf of the shelving unit that the robot is facing and placing it on the top shelf of the other
shelving unit behind the robot. In a similar manner to the whole-body partial benchmark,
a cardboard box with dimensions 0.5 m in width, 0.16 m in height and 0.15 m in depth,
weighing 0.1 kg was used with a simple friction grip. The placement location at the front
edge of the shelf uses the taped boundaries as seen in Figure 3.6. The set up for the pick
and carry partial benchmark can be seen in Figure 4.3.

Figure 4.3: Partial pick and carry benchmarking set-up.

4.2.2 Performance Metrics

For the partial benchmark the same KPIs are used as in Subsection 3.2.2, with the exception
that a success rate for placing the box on the correct shelf not considering placement
accuracy is added. This is due to the fact that the placement accuracy may be tougher to
achieve when performing locomotion over a larger distance.
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Table 4.2: Key performance indicators for the partial pick and carry benchmark.

Name Description/Formulation
Placement Success The ratio of objects placed on the correct shelf
Rate (no error considerations)
Success Rate of 2.5% The ratio of objects placed correctly within the
Placement Accuracy 2.5% error boundary
Success Rate of 5% The ratio of objects placed correctly within the
Placement Accuracy 5% error boundary
Time (s) The average time for a correct box placement
Mechanical Work (J) The average absolute mechanical work calculated

as in Equation 3.3
Cost of Operation The average energy consumed per placement and
(Amps · s/kg) mass of objects calculated as in Equation 3.4

4.2.3 Motion Generation and Control Methods

Separate Upper and Lower Body Controllers

The first motion generation method is the separate upper and lower body control method
as described in Subsection 3.2.4, see this section for full details. Figure 4.4 shows an
example of this motion under development.

In this motion, the robot walks towards the shelf and picks up the box then retreats
and turns around. After a few side steps to re-center, the robot then approaches the other
shelf to place the box. It is worth noting that due to the PAL walking controller using
the underlying Kajita pattern generation [21], the robot cannot turn on the spot. Turning
involves walking in a small arc.

Separate Upper and Lower Body Controllers with ArUco Markers

The second motion control method uses the same separate upper and lower body controllers
as the first method, except prior to the stage of approaching the second shelf to place the
box, the robot uses the camera in the head to measure how centered the robot is with
respect to the shelving unit based on ArUco markers on the shelving unit. It reads the
ArUco markers seen by the camera and turns or takes a sidestep accordingly to center itself
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Figure 4.4: Separate upper and lower body controllers method pick and carry motion
sequence ordered across then down.

with respect to the shelf. Once reoriented and re-centered, the robot can walk towards the
shelf for the box placement. This method was motivated to correct the error in the robot’s
stepping motions that are slightly inaccurate due to foot slippage and stepping inaccuracies.
Current observations of the robot walking with the PAL walking controller show that when
the robot is walking over a larger distance, it tends to drift. This error is due to slipping
of the feet on the floor and the inaccuracy in the actual distance travelled compared to the
footsteps commanded. In part, this can be tuned through experimentation, but it is not
always repeatable. By adding in ArUco marker error correction, the robot can determine
if it is centered with respect to the shelf and if it is oriented to walk directly at the shelf.
This error correction should produce a higher success rate for placement accuracy and less
potential misplacement, such as the box missing the shelf. Figure 4.5 shows the ArUco
markers on the shelf used for error correction as seen by the robot.
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Figure 4.5: ArUco markers on shelving unit as seen by the robot.

4.2.4 Experimental Results & Discussion

Unfortunately, the REEM-C used in these experiments was damaged in another experiment
that caused a broken force torque sensor in the right foot and in turn the robot could not
walk. Experimental results are limited to the motion generated and shown above, but
further experimentation is in progress.
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Chapter 5

Bimanual Manipulation Workspace
Analysis

This chapter performs an in-depth analysis of the workspace of humanoid robots for biman-
ual motions. As identified at the end of Chapter 3, bimanual box manipulation can result
in highly constrained motions with some that are possibly infeasible, motivating this work.
Building off previous work in bimanual workspace analysis, as discussed in Section 2.4, this
chapter develops a new quality metric to represent the manipulability and stability of a
bimanual pose. Next it uses this metric to perform a general workspace analysis similar to
the work of Vahrenkamp et al. [43]. Then workspace analyses are performed for specific
bimanual object grasps studying the impact of CoM velocity of the robot, object mass,
object grasp and robot kinematic and dynamic structure on the workspace. The work
presented in this chapter is the culmination of an equal collaboration with Vidyasagar
Rajendran.

5.1 Workspace Metrics

This section develops a quality metric for workspace analysis that accounts for biman-
ual manipulability and stability of the humanoid. Individual manipulability and stability
metrics are first developed followed by a method for combining them into a single quality
metric.
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5.1.1 Manipulability

Manipulability can often be measured with manipulability metrics like those presented in
Equation 2.12, 2.13 and 2.14 presented in Subsection 2.1.2, but these metrics are intended
for the manipulability of single chains. In the case of bimanual manipulability, the ma-
nipulability of two arms must be considered, which makes it more challenging to define a
manipulability metric. One way to define the bimanual manipulability, denoted as cm is
by selecting the lower manipulability as shown below:

cm = min (µ(ALeftArm), µ(ARightArm)) (5.1)

where µ(ALeftArm) and µ(ARightArm) are the manipulabilities of the left and right arm, re-
spectively, as calculated using Equation 2.14 for the volume of the manipulability ellipsoid.
The bimanual manipulability metric is defined as such because in a bimanual task the less
manipulable arm will be the one that limits the motion making it more representative of
the true manipulability of the object being manipulated.

5.1.2 Stability

To define a stability metric for a humanoid robot in a given pose, the capture point as de-
scribed in Equation 2.21 in Subsection 2.2.1 can be considered as it allows for the inclusion
of a velocity at the center of mass. To determine if a pose is stable with the capture point,
the capture point should be found inside the support polygon. Therefore, the closer to the
edge of the support polygon, the closer the humanoid is to becoming unstable. This leads
to a definition of the stability metrics as the minimum distance to the edge of the support
polygon:

cs = min(df , db, dl, dr) (5.2)

where df , db, dl and dr are distances from the capture point to the front edge, back
edge, left edge and right edge of the support polygon, respectively, when the feet are in
a static side by side pose. Only the non-stepping case will be considered in this analysis
for simplicity. These distances and the support polygon for a humanoid robot can be seen
in Figure 5.1, where the stability metric would select the distance df marked in red for
the support polygon marked in blue. Note that when the velocity is zero it reduces to the
static stability criterion using the GPCM.
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Figure 5.1: A simplified support polygon showing the capture point and the selected min-
imum distance for the stability metric, df .

5.1.3 Combined Manipulability-Stability Metric

A combined manipulability metric can be defined to allow for the evaluation of reachable
points with both considerations. As values of different scales are produced in Equation 5.1
and 5.2 they can be normalized using the largest value found for each metric during the
workspace analysis as follows:

c′mi =
cmi

max(cm0, cm1, ..., cmn)
(5.3)

c′si =
csi

max(cs0, cs1, ..., csn)
(5.4)

where n is the number of reachable points in the workspace analysis and i is the ith reachable
point.

Using the normalized metrics in Equation 5.3 and 5.4, a weighted sum can be used to
create the combined manipulability-stability metric for a reachable point as:

cvi = αc′mi + βc′si (5.5)

where α and β are weights between 0 and 1 that when added together equal 1. Weight
values of 0.5 each are proposed for the initial evaluation of the metric.
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5.2 Workspace Generation and Visualization

5.2.1 Whole-body Inverse Kinematics

In order to solve the inverse kinematics problem of reaching a point in space with both
arms of a humanoid, a whole-body inverse kinematics approach must be used due to the
tree-like kinematic structure of the robot, unlike the approaches typically used with chain-
like kinematic structures for typical manipulators. This problem can be solved using an
optimization approach with the Extensible Optimization Toolset (EXOTica) framework,
that defines an optimization problem with a cost function constructed from task maps
and allows for constraints [18]. Task maps can be used to define desired functionality
like joint limits, end effector position and orientation and center of mass position. For the
whole-body inverse kinematics optimization, the task maps are defined as seen in Table 5.1.

Table 5.1: EXOTica task maps in whole body inverse kinematics formulation.

Task Map Formulation

Joint position ΦRef (x) = x− xref

Joint limits ΦBound(x) =


x− xmin − ϵ, if x < xmin + ϵ

x− xmax + ϵ, if x > xmax − ϵ

0, otherwise

End effector frame ΦEffFrame(x) = MB
A where MB

A ∈ SE(3)

End effector position ΦEffPos(x) = PB
A where PB

A ∈ SE(3)

End effector orientation ΦEffRot(x) = RB
A where RB

A ∈ SE(3)

Center of mass ΦCoM(x) =
∑

i(P
world
CoMi

mi)

With these task maps, the positions of the tool center point (TCP), defined as the left
and right hand of the humanoid, can be queried. In this problem the model of the REEM-C,
Seven, uses simplified hands since use of the fingers and grasping is not considered. As the
task maps form an optimization problem, they require weights. The weights in descending
priority are respecting joint limits, restricting position of the feet, limiting unnecessary
CoM motion, and reaching desired end effector poses.
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(a) (b)

Figure 5.2: a) The REEM-C humanoid with World, left and right TCP frames with x in
red, y in green and z in blue. b) A single point on the workspace grid indicates the center
between the two end effectors of the robot for general workspace generation.

5.2.2 General Workspace Generation

The general workspace analysis is similar to that of Vahrenkamp et al. [43], which specifies
a center point and then sets the hands to positions around the point for different distances.
In this situation includes no considerations for objects, such as the specific hand poses to
manipulate the object. In the generation of this thesis, a 6D voxelized workspace is created
by discretizing the area in front of the robot where most manipulation tasks would occur
for humanoids. The center points for the workspace analysis are the points in the 3D
grid with a range of spherical coordinates at each point. This point is described by a 3D
position vector in the World frame, which is depicted in Figure 5.2a, and the end effector
positions are encoded with the spherical coordinate (r, θ, ϕ) as seen in Figure 5.2b. Note
that no end effector orientation is stored in this method. The lack of orientation greatly
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increases the speed of the generation because of the simpler position-only IK performed.

For the workspace generation, let j = [v0, v1, v2] be position of a 6D voxel, v, in the
World frame. If the spherical coordinates are s = [r, θ, ϕ] then another Cartesian position,
j′ = [x′, y′, z′], can be calculated as:

x′ =rsin(θ)cos(ϕ) (5.6)

y′ =rsin(θ)sin(ϕ) (5.7)

z′ =rcos(θ) (5.8)

which allows for the Cartesian positions of the left and right TCPs to be calculated in the
World frame as follows:

TCPleft =j − j (5.9)

TCPright =j + j′ (5.10)

As a result, the TCPs can be positioned around the point at different distances, where
they are always across from each other. For an IK solution to be considered valid during
the generation of the workspace it must be reachable using this bimanual configuration,
the capture point must lie within the support polygon, the humanoid’s configuration must
be collision free and obey the joint limits. These requirements are performed with checks
after the whole-body IK is performed as the optimization approach does not have any
constraints applied, so invalid solutions can be generated.

Algorithm 3 details the generation method for the general workspace analysis. This
algorithm takes the range of each voxel dimension, the discretization steps, and the veloc-
ity of the center of mass and then computes the metric cv as defined in Equation 5.5 for
a valid IK state of the robot. Note that q represents the whole-body position as calcu-
lated by the inverse kinematics in calcBothArmsIK that takes in the left and right TCP
positions. Also, the algorithm is designed to compute both sides of the workspace without
exploiting symmetry. While this does result in double the generation time, it allows for
the consideration of asymmetric models, which is more realistic for a model that represents
the real robot very well.

5.2.3 Workspace Generation with Objects

The general workspace analysis generated in the previous section provides a generous view
of manipulating an object in a bimanual scenario, but this is not very realistic as objects
introduce various constraints. Constraints related to objects include the fact that the
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Algorithm 3 General Bimanual Workspace Generation

Input: x, y, z, r, θ, ϕ ranges and discretization steps, VCOM

Parameters:
1: for x ∈ {xmin, . . . , xmax} do
2: for y ∈ {ymin, . . . , ymax} do
3: for z ∈ {zmin, . . . , zmax} do
4: for r ∈ {rmin, . . . , rmax} do
5: for θ ∈ {θmin, . . . , θmax} do
6: for ϕ ∈ {ϕmin, . . . , ϕmax} do
7: j ← Vector(x, y, z)
8: j′ ← calcSphericalCoordOffsets(r, θ, ϕ)
9: q ← calcBothArmsIK(j + j′, j − j′)
10: stateValid ← isStateValid(q)
11: if stateValid then
12: c′m ← calcNormManipulability(q)
13: c′s ← calcNormStability(q,VCOM )

14: cv ← αc′m + βc′s
15: writeVoxelToDatabase(x, y, z, r, θ, ϕ, cv)

16: Return workspaceDataFile

distance of the hand separation is fixed according to the bimanual grasp of the object,
the orientation of the hands with respect to each other matters based on the grasp of
the object and certain objects have additional orientation constraints like how open top
boxes or crates must be carried close to horizontal to avoid spilling the contents. Therefore,
this section considers a bimanual workspace analysis that is object specific. The workspace
generation procedure is similar to that of Algorithm 3, where the space in front of the robot
is discretized into a 6D voxelized workspace, except the voxel parameters are position and
orientation. To compute the object specific workspace an object specific grasp must be
defined to provide offsets for each TCP. This replaces the spherical coordinates used with
the position-only IK of the general workspace analysis. Consequently, to meet the grasp
requirements the IK must be full position and orientation. The use of orientation at the
voxels then allows for different orientations of the object to be considered at that point in
the workspace as it could be useful when manipulating the object for a certain task.

The details of the object specific workspace map generation is shown in Algorithm 4.
The input to the algorithm is the range of the voxel positions and orientations, the dis-
cretization steps, the velocity of the center of mass (ṙCoM) and the TCP offsets based on
the grasp and object geometry. The algorithm computes the metric cv from Equation 5.5.
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In this workspace generation the kinematic grasp is being considered for the object, but
also the dimensions of the object to consider collisions and the mass of the object at the
TCPs to consider for stability. This provides a much more comprehensive treatment of
manipulating an object than the general workspace analysis did. Note that the hands are
still simplified for computational speed and only consider simplified fixed contact grasps.
The objects and the grasps used by the robot can be seen in Figure 1.2. This algorithm
also does not exploit symmetry. While this could be performed for symmetric grasps if
the robot was perfectly symmetric, the longer generation time is accepted to allow for the
treatment of asymmetric grasps and more realistic robot models.

Algorithm 4 Object Bimanual Workspace Generation

Input: x, y, z, roll, pitch, yaw ranges and discretization steps, ṙCoM , object geometry

Parameters:
1: for x ∈ {xmin, . . . , xmax} do
2: for y ∈ {ymin, . . . , ymax} do
3: for z ∈ {zmin, . . . , zmax} do
4: for roll ∈ {rollmin, . . . , rollmax} do
5: for pitch ∈ {pitchmin, . . . , pitchmax} do
6: for yaw ∈ {yawmin, . . . , yawmax} do
7: j ← Vector(x, y, z, roll, pitch, yaw)
8: jl, jr ← calcGraspOffsets(object geometry)
9: q ← calcBothArmsIK(j + j′l, j + j′r)
10: stateValid ← isStateValid(q)
11: if stateValid then
12: c′m ← calcNormManipulability(q)
13: c′s ← calcNormStability(q, ṙCoM )

14: cv ← αc′m + βc′s
15: writeVoxelToDatabase(x, y, z, roll, pitch, yaw, cv)

5.2.4 Workspace Visualization

To visualize the results of cv for the various workspace analyses, the voxels in front of the
robot use a colour spectrum. Low quality is shown in blue then green as medium quality
to yellow-orange for high quality. Since not all voxels explored will be feasible as they may
be unreachable or unstable, they are shown as light gray. Also, since only 3D voxels can
be shown, the average of the multiple results is displayed at the voxel by overlapping the
voxels and using a transparency.
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5.3 Results

This section presents the results of the various workspace analysis scenarios with the pro-
posed manipulability-stability metric for use with humanoid bimanual manipulation.

5.3.1 General Workspace Maps

First, this section studies the general workspace map for a 0.8 m3 workspace with 5 cm
voxel discretization. This workspace is the main area where the manipulation task of the
robot would be performed, and no CoM velocity is applied in this case. In Figure 5.3,
the full workspace and a horizontal cut of the workspace can be seen for the metric cv of
varying weights to show the manipulability, stability and combined manipulability-stability
quality metrics. The manipulability metric, where α = 1 and β = 0 in Equation 5.5, is
shown in Figure 5.3a and 5.3d. It can be seen that the values closer to the robot are higher
quality, or more manipulable, and the further from the robot the lower the quality, or less
manipulable, they become. This is expected since the arms would be more extended and
closer to singularity. The stability metric, where α = 0 and β = 1 in Equation 5.5, is
seen in Figure 5.3b and 5.3e. In this case, the voxels near the robot are higher quality so
more stable as expected since the CoM remains close to the center of the support polygon.
The quality is lower near the edges as the CoM would have to shift closer to the edge of
the support polygon to reach those poses. The combined manipulability-stability metric,
where α = 0.5 and β = 0.5 for equal weighting in Equation 5.5, is displayed in Figure 5.3c
and 5.3f. Again, the higher quality poses are for the voxels closer to the robot. The
visualization for the combined metric provides a good overview of the locations where
the most stable and manipulable configurations are in the workspace. Note that in the
workspace generation REEM-C could reach 22% of the queried voxels in the workspace.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Workspace visualizations for the general generation method. Low quality
voxels are blue and high quality voxels are yellow/orange. Voxels that are unreachable or
unstable are translucent grey. The first row shows the entire workspace that was considered
and the second row shows a horizontal cut through the workspace. a) and d) show the
manipulability metric, b) and e) show the stability metric and c) and f) show the combined
manipulability-stability metric as detailed in Equation 5.5.

5.3.2 Workspace Maps with Varying Center of Mass Velocities

When developing the new metric, the stability metric used was based on the distance of the
capture point to the nearest edge of the support polygon, which allows for CoM velocities
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to be considered. Including CoM velocity in the workspace visualization helps provide a
deeper understanding of the robot’s bimanual manipulation abilities while moving. A set
of workspace analyses with different CoM velocities was generated to see how this affects
stability and voxel reachability. To illustrate the effect of CoM velocities, this analysis
considers a smaller subset of the general workspace presented earlier with four different
CoM velocities to compare using the stability metric, where α = 0.0 and β = 1.0 in
Equation 5.5. First, the analysis considers a workspace with no CoM velocity in Figure 5.4a.
In this case most of the voxels can be reached and the voxels closer to the robot are higher
quality, so more stable. Applying a CoM velocity in the x-direction, as seen in Figure 5.4b,
causes a portion of the workspace to become unreachable because the robot is no longer
stable in those positions as the capture point would leave the support polygon and require
a step. In like manner, a portion of the workspace becomes unreachable when as CoM
velocity in the y-direction is applied, as seen in Figure 5.4c. Only a small portion of the
workspace is reachable when a CoM velocity is applied in the x and y-directions, which
is shown in Figure 5.4d. This sort of analysis can be useful for bimanual manipulation
scenarios beyond the simple static case as CoM velocity plays a key role in planning loco-
manipulation motions.
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(a) (b)

(c) (d)

Figure 5.4: Various CoM velocity cases visualized for a subset of the general workspace
with the stability metric. a) ṙCoM = [0.0, 0.0, 0.0] b) ṙCoM = [0.0, 0.2, 0.0] box c) ṙCoM =
[0.0, 0.6, 0.0] d) ṙCoM = [0.2, 0.6, 0.0]
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5.3.3 Workspace Maps with Different Object Masses

Here, two workspace scenarios for box manipulation with REEM-C are analyzed. The
two situations involve boxes of different dimensions, which will be considered for collision
checking, and mass, which will be considered for stability.

The first box under consideration is 1 kg with dimensions 0.1 m × 0.4 m × 0.1 m. A
workspace of 0.8 m3 with a voxel discretization of 5 cm was generated with slices shown in
Figure 5.5. It can be seen that a symmetric workspace is generated for a box manipulated
with a symmetric grasp. Due to the weight of the box, the feasible workspace is reduced in
the x-direction because the capture point leaves the support polygon at the outer voxels.
In this case, 18% of the checked workspace was found to be feasible and is less than the
result from the general workspace.

(a) (b)

Figure 5.5: Visualization of the bimanual manipulability-stability metric for the REEM-C
manipulating a 1 kg box. a) A slice at z = 1.0 m b) A slice at z = 1.2 m.

The second box under consideration is 7 kg with dimensions 0.2 m× 0.6 m× 0.4 m. In
Figure 5.6 it can be seen that the large mass significantly impacts the feasible workspace
causing a large portion of the outer voxels to be infeasible. Compared to the first box, the
quality of the feasible voxels is also lower due to the challenge of manipulating the larger
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object as more collisions and unreachable poses occur. The checked workspace for this
scenario yielded only 10% as feasible, a marked decrease from the first box. In Figure 5.6a,
the box is held at 0.2-0.3 m from the torso and the capture point, which is displayed
between the feet in green, is very close to the edge of the support polygon, shown in blue.

(a) (b)

Figure 5.6: Visualization of the bimanual manipulability-stability metric for the REEM-C
manipulating a 7 kg box. a) A slice at z = 1.0 m b) A slice at z = 1.2 m.

5.3.4 Workspace Maps with Different Objects

Next, two other objects of different grasping requirements, a rolling pin and a broom, are
considered.

The grasping configuration for a rolling pin requires gripped handles or a palms down
hand contact with the rolling pin, which is how the grasp is represented for REEM-C’s
simplified hand contacts. The analysis uses a small workspace directly in front of the
robot with all orientations limited to 7.5◦. In Figure 5.7a the rolling pin workspace is
shown at the slice height of z = 0.9 m from the ground. Only the middle portion of the
workspace is feasible. The area close to the robot is infeasible as self-collisions of the arms
and torso occur and the area further from the robot near the edges requires the significant
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arm extension and torso bending that would result in stability issues. Considering the
height of z = 1.1 m in Figure 5.7b, the workspace is much larger and the quality values
of the middle region are higher. This results from the configuration of the robot with
its elbows out helping to avoid self-collisions, so evidently the workspace for this grasp
is significantly impacted by height. This would be important when selecting a table for
REEM-C to perform a rolling pin task, as the height that allows for more highly stable
and manipulable configurations would allow for much easier motion planning. Note that
contact and force are not considered in this workspace analysis, only the kinematics for
the constrained bimanual task.

(a) (b)

Figure 5.7: Visualization of the bimanual manipulability-stability distribution for REEM-C
manipulating a rolling pin. a) A cut through at z = 0.9 m b) A cut through at z = 1.1 m

In the case of a broom, the grasping configuration requires a certain handed pose as
one hand is placed below the other. This analysis considers the left-handed grasp with
the left hand below the right hand when grasping the broom. When grasping a broom the
palms face in opposite directions, but in different locations along the broom handle. The
workspace for the broom can be seen in Figure 5.8. Due to the left-handed grasp, higher
quality voxels and more feasible voxels exist of the left side and most of the right side is
infeasible. This is sensible as reaching across the body to reach the robot’s right side with
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the left-handed grasp would result in collisions between the left arm and the torso. This
helps inform the area the robot can easily manipulate the broom in a sweeping task and if
the robot should turn or switch grips to sweep a different area.

(a) (b)

Figure 5.8: Visualization of the bimanual manipulability-stability distribution for REEM-C
manipulating a broom. a) cut through at z = 0.9 m b) cut through at z = 1.0 m

5.3.5 Workspace Maps of TALOS

The final workspaces considered use the humanoid robot TALOS. Similar to the general
workspace performed with REEM-C, Figure 5.9 shows the manipulability-stability metric
for a general workspace using the spherical coordinates and the position-only IK for a
workspace of 0.8 m3 and 5 cm discretization. As expected, the higher quality voxels
are closer to TALOS and the lower quality voxels are further from the robot. In this
workspace generation 34% of the voxels were feasible compared to the 22% for REEM-C.
This significant increase is owing to the longer arms and alternate shoulder configuration
of TALOS, allowing for more range of motion than REEM-C.

In addition, the 1 kg box with dimensions 0.1 m × 0.4 m × 0.1 m is visualized with
TALOS in Figure 5.10. Of the voxels checked 26% were feasible compared to the 18% with
REEM-C again because TALOS is a larger robot with an alternate kinematic structure.
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(a) (b)

Figure 5.9: Visualization of the bimanual manipulability-stability metric with TALOS, for
the general workspace generation with spherical coordinates. a) A slice at z = 0.9 m c) A
slice at z = 1.1 m.

(a) (b)

Figure 5.10: Visualization of the bimanual manipulability-stability metric for the TALOS
manipulating a 1 kg box. a) A slice at z = 1.0 m b) A slice at z = 1.2 m.
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5.3.6 Applications of the Combined Manipulability Metric and
Workspace Visualization

Through these visualizations, the highly constrained nature of bimanual manipulation tasks
became more apparent and what regions of the workspace were completely infeasible. A
direct application of this visualization would be for the box manipulation benchmarking
with REEM-C as described at the end of Chapter 3. Not only could the visualizations
help determine the feasibility of a desired motion, but the metric could even be added as a
KPI to rate the quality of the manipulation being performed. Another application of these
workspace visualizations could be to design or redesign workspaces to be more optimal
for the robot. As some motions may be infeasible for the robot, the workspace could be
designed to allow for the motions required to remain in the more stable and manipulable
regions of the robot’s workspace. Considering the example of picking and placing a box
on a shelf, like in the whole-body manipulation benchmarking scenario, altering the pick
and place location of the boxes to be at the edge of the shelf and using a shelf that was
less deep would keep the robot from having to reach too far where the workspace becomes
unreachable or unstable.
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Chapter 6

Thesis Conclusions

6.1 Summary of Findings

This thesis developed two manipulation benchmarks for humanoids robots, one for whole-
body manipulation and another for loco-manipulation. These two benchmarks were pro-
posed as part of the EUROBENCH unified robotic benchmarking framework by devel-
oping a standardized test bed, comprehensive protocols, and insightful key performance
indicators to evaluate performance. A partial initial benchmark was performed for the
whole-body benchmark using the REEM-C robot Seven to evaluate two different motion
generation and control strategies where one used a separate controller approach of the up-
per and lower body and the other used a whole-body controller. The separate upper and
lower body control approach was approximately 10 seconds faster but had a 2.5% place-
ment accuracy rate that was 40% lower. Also, this control approach had a mechanical work
five times that of the whole-body control approach, but half the cost of operation. This
evaluation provided insights into trade-offs in accuracy and cost of operation for speed.
The challenge of performing bimanual manipulation tasks was identified leading to the bi-
manual manipulation workspace analysis that followed. Similarly, a partial benchmark was
performed for the loco-manipulation benchmark; however, testing was interrupted due to
a damaged force torque sensor in the foot of Seven. This partial benchmark also compared
two motion generations and control strategies where one uses ArUco marker detection for
error correction and the other does not. Together these two manipulation benchmarks offer
a well-defined, comprehensive approach to measuring the performance of humanoid robots
and the motion generation algorithms in loco-manipulation scenarios.

Another development of this thesis was the bimanual manipulation workspace analysis
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for humanoid robots. This workspace analysis developed a new quality metric to evaluate
the bimanual manipulation of humanoids based on bimanual manipulability and capture
point stability. This metric was then visualized for a general workspace generation method,
based on the work in [43], and an object specific workspace generation method. In the gen-
eral workspace of 0.8 m3 with 5 cm voxel discretization 22% of the voxels were reachable
with the REEM-C. The object specific workspace generation method allowed for the eval-
uation of different objects that impose different constraints on the bimanual manipulation
task like collisions, mass, and grasp requirements. The objects considered were boxes of
two different sizes, a rolling pin, and a broom. The workspace analysis also allowed for the
impact of CoM velocity of the robot on the feasible workspace to be evaluated due to the
use of the capture point based stability metric. An evaluation of the workspace of TALOS
and REEM-C was performed in the same scenario showing that the size of TALOS and
shoulder structure result in a workspace with more feasible configurations. For the general
workspace case, TALOS had 34% voxels reachable compared to the 22% of the REEM-C
and for the 1 kg box 26% of voxels were reachable compared to 18% with REEM-C. Using
these visualizations and the new metric greater understanding for bimanual tasks and the
feasible regions can be gained. The new metric also offers another possibility for evaluating
the quality of a bimanual manipulation task being performed, such as for benchmarking.

6.2 Limitations

While comprehensive benchmarks were provided for whole-body manipulation and loco-
manipulation, only partial benchmarks could be performed to provide an initial benchmark
of different motions. This helped provide insight into comparisons that could be made but
does not provide the complete picture that completely performing the benchmark would.
Unfortunately, the REEM-C robot Seven was broken for approximately 6 months limiting
the testing that could be performed. Further work investigating motions and comparing
different robots should be performed to validate the benchmarks.

For the bimanual manipulation workspace analysis, the workspace generation methods
are based on an optimization method using EXOTica to perform whole-body inverse kine-
matics with many pose requirement checks to ensure the motion is feasible. One drawback
of these methods was the long workspace generation time, which often took several hours to
run with many voxels being infeasible. Another was the variation in some of the workspace
results regarding voxel symmetry and smoothness of the coloured regions. As the genera-
tion uses an optimization approach necessary to handle the complex task requirements and
is useful for tree-like kinematic structures such as those of humanoid robots, some config-
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urations found could have been higher quality or even feasible though the solver may not
have converged on that result. To improve the symmetry and smoothness of the figures,
the optimization approach would have to be run for many more iterations to ensure the
solver converges to the correct points. Both generation time and voxel symmetry could
have been improved by exploiting symmetry in the algorithm; however, this trade-off was
made to allow for use with asymmetric robot models and asymmetric grasps.

6.3 Future Work

Future work related to the benchmarking would be to perform the complete benchmarking
protocol for the two manipulation benchmarks and calculate the key performance metrics
to have a complete initial benchmark. This would involve adding the LED lights to the
shelves for the variable protocols and adding a placement error tracking system like a
vision based one with ArUCo markers. Also, to compute human likeness performance,
human data of the motions being benchmarked is required, so human motion capture
should be performed to have a complete human motion set for the benchmarks. One last
area to investigate for the benchmarks in future work is to compare the performance of
two different humanoid robots, like Waterloo’s REEM-C and TALOS.

With respect to the bimanual manipulation workspace analysis work, future work will
involve the development of a cost-based planner that uses the combined manipulability-
stability metric to plan motions for bimanual tasks with objects. This would allow for
highly stable and manipulable motion plans to be created for bimanual manipulation tasks.
Another topic for future work is exploring stability metrics using angular momentum with
the zero moment point for the linear inverted pendulum model.
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[41] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library.
IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012. https://ompl.
kavrakilab.org.

[42] Diego Torricelli, Jose Gonzalez-Vargas, Jan F. Veneman, Katja Mombaur, Nikos
Tsagarakis, Antonio J. del Ama, Angel Gil-Agudo, Juan C. Moreno, and Jose L.
Pons. Benchmarking bipedal locomotion: A unified scheme for humanoids, wearable
robots, and humans. IEEE Robotics Automation Magazine, 22(3):103–115, 2015.

[43] Nikolaus Vahrenkamp and Tamim Asfour. Representing the robot’s workspace through
constrained manipulability analysis. Autonomous Robots, 38:1–14, 01 2014.

[44] Nikolaus Vahrenkamp, Tamim Asfour, and Rüdiger Dillmann. Robot placement based
on reachability inversion. In 2013 IEEE International Conference on Robotics and
Automation, pages 1970–1975, 2013.

[45] Nikolaus Vahrenkamp, Tamim Asfour, Giorgio Metta, Giulio Sandini, and Rüdiger
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