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Abstract

This thesis deals with problems concerning the local properties of graphs with large
chromatic number in hereditary classes of graphs.

We construct intersection graphs of axis-aligned boxes and of lines in R?® that have
arbitrarily large girth and chromatic number. We also prove that the maximum chromatic
number of a circle graph with clique number at most w is equal to O(wlogw). Lastly,
extending the y-boundedness of circle graphs, we prove a conjecture of Geelen that every
proper vertex-minor-closed class of graphs is y-bounded.
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Chapter 1

Introduction

What causes a graph to have large chromatic number? It is well understood what makes
a graph 2-colourable; these are exactly the graphs without an odd cycle. However already
what distinguishes 3-colourable graphs and graphs with huge chromatic number is not well
understood. Certainly we can not expect any answer as simple as for 2-colourable graphs.
Even distinguishing whether a graph is either 1000-colourable or not 3-colourable is an
NP-complete problem [16].

There are however some simple obstructions a graph may have to being 3-colourable.
For example it is straightforward to check whether or not a graph contains a 4-vertex
clique, and since the vertices of a clique must all receive distinct colours, this verifies that
the graph is not 3-colourable. More generally the chromatic number of a graph is lower
bounded by its clique number. However, the clique number of a graph is not enough
to determine, or even to obtain an upper bound for the chromatic number of a graph;
Tutte [31,32] constructed triangle-free graphs with arbitrarily large chromatic number.

Despite this, it’s well understood when the clique number does exactly determine chro-
matic number for a graph and its induced subgraphs. A perfect graph is a graph for
which every induced subgraph has its chromatic number exactly equal to its clique num-
ber. In addition to odd cycles of length at least 5, their complements also provide minimal
examples of non-perfect graphs. The strong perfect graph theorem of Chudnovsky, Robert-
son, Seymour, and Thomas [19] states that these are the only minimal non-perfect graphs.
Beyond this, it is already much less well understood when the chromatic number of a graph
is at most one more than the clique number. However, it is at least known that this class
of graphs does contain all line graphs by Vizing’s theorem [100].

The property of when the clique number provides an upper bound for the chromatic



Figure 1.1: A chord diagram and its corresponding circle graph.

number of a graph in a class is formalized by the notion of y-boundedness as introduced
by Gyarfas [57]. For a graph G, the chromatic number and clique number are denoted
by x(G) and w(G) respectively. A class of graphs G is x-bounded if there exists a
function f: N — N such that x(G) < f(w(G)) for all G € G. We call such an f the
x-bounding function. We remark that y-bounded classes of graphs have sometimes
instead been called “near perfect graphs” due to the fact that such classes generalize perfect
graphs. Since every graph is a subgraph of a sufficiently large clique, it is most natural to
consider y-boundedness of classes that are closed under taking induced subgraphs rather
than subgraphs. We call such classes hereditary.

A circle graph is a graph whose vertices correspond to chords of a circle and where
two vertices are adjacent whenever their corresponding chords intersect (see Figure 1.1 for
an example). In addition to perfect graphs and line graphs, circle graphs provide another
example of a y-bounded class of graphs. This was proved by Gyarfas [50] and is one
the most classical results in the study of both y-boundedness and geometric intersection
graphs.

For k > 3 it is NP-complete to determine if a graph is k-colourable [16], and this holds
even when restricted to many hereditary classes of graphs such as line graphs [61] and circle
graphs [15]. On the other hand, for many classes such as line graphs and circle graphs [17],
the clique number can be computed in polynomial time. For y-bounded classes, this can
allow for a polynomial time approximation algorithm for the chromatic number based on
the clique number and the known y-bounding function. For line graphs this gives a very
good polynomial time approximation algorithm since the clique number and chromatic
number differ by at most one. While this level of accuracy is not always possible, it is
still desirable to have a good, say polynomial approximation for the chromatic number.
This can be achieved if the y-bounding function is at most some polynomial. We say that
such classes are polynomaally x-bounded. Not all y-bounded classes are polynomially



x-bounded [12], and polynomial y-bounding functions are often much harder to obtain.

Circle graphs are generalized by intersection graphs of line segments in the plane.
Answering a question of Erdds, Pawlik et al [35] proved that segment intersection graphs
are not y-bounded. Despite this, in some sense they are not far off from being y-bounded.
The notion of x-boundedness effectively captures the idea of when huge chromatic number
is essentially an “extremely local” property, but what if we relax our notion of “local”
here? Then we may hope to find that despite our class of graphs not being y-bounded,
huge chromatic number is still a “local” property.

Scott [94] introduced the notion of p-control which effectively captures the idea of when
huge chromatic number is a local property for an entire class of graphs. For a graph G and
positive integer p, we let X(”)(G) denote the maximum chromatic number of an induced
subgraph of G with radius at most p. A class of graphs G is p-controlled if there exists a
function f such that x(G) < f(xP(G)) for all G € G. Tt is easy to prove inductively that
a hereditary class of graphs is 1-controlled if and only if it is x-bounded.

Chudnovsky, Scott, and Seymour [21] proved that segment intersection graphs are 2-
controlled, so despite not being x-bounded [25], huge chromatic number is still a local
property for segment intersection graphs. This is a non-trivial result in general because
Erdos [36] proved that there are graphs with arbitrarily large girth and chromatic number,
where the girth of a graph is equal to the length of its shortest cycle. If G has girth at
least 2r 42, then every induced subgraph of radius at most r is a tree. So in particular, for
every positive integer p, there are graphs GG with arbitrarily large chromatic number such
that x?)(G) = 2. Already p-control is a notion of its own independent interest, but the
idea of first proving p-control as an intermediate step towards obtaining x-boundedness has
also been used to resolve a number of conjectures on y-boundedness in recent years [97].

In the next few sections we introduce and discuss the contributions of this thesis. The
highlights are briefly summarized as follows.

e In Chapter 2 we construct intersection graphs of axis-aligned boxes and of lines in R?
that have arbitrarily large girth and chromatic number. These are the first non-trivial
examples of geometric intersection graphs with large girth and chromatic number.

e In Chapter 3 we improve the known y-bounding function for circle graphs to O(w log w),
and within a small constant factor of the Q(w logw) lower bound construction of Kos-
tochka [67]. We also improve this lower bound.

e In Chapter 4, generalizing the y-boundedness of circle graphs, we prove a conjec-
ture of Geelen (see [31]) that every proper vertex-minor-closed class of graphs is x-
bounded. As an intermediate result, we also prove that they are linearly 2-controlled.



1.1 Constructions

Of course not all classes of graphs are y-bounded, and it is important to amass an arsenal
of graph constructions that can be used to show that particular classes of graphs are not
x-bounded. Constructions of triangle-free graphs with arbitrarily large chromatic number
include Tutte’s [31,32], Zykov’s [107], Mycielski’s [79] constructions, Burling graphs [13],
shift graphs [37], and Kneser graphs [71]. Tutte [31,32] gave the first such construction, and
his construction is particularly malleable, allowing for a number of versatile modifications.
So let us present Tutte’s construction.

Tutte’s construction builds a (k + 1)-chromatic triangle-free graph Gy, from a k-
chromatic triangle-free graph Gy, as follows. The graph Gy, has a stable set S such that
each connected component of G — S is isomorphic to Gj; we refer to these components
as the copies of G. To ensure that Gy, is triangle-free we require that each vertex in S
is adjacent to at most one vertex in each copy of GG,.. We also require that each vertex in
each copy of Gy is adjacent to exactly one vertex in S. In fact, not only does Gj.; remain
triangle-free, but if Gy, has girth at least 6, then so does G11. Now to get x(Gry1) > x(Gk)
we want that for each k-colouring of S there is a copy of Gy whose neighbourhood in S
is monochromatic. This will ensure that G, has no k-colouring since every vertex in a
copy of Gy has a neighbour in S and Gy has no (k — 1)-colouring. Tutte achieves this by
choosing |S| > k(|V(Gg)| — 1), and adding a copy of G} whose neighbourhood is X C S
for every |V (Gy)|-vertex subset X of S. This is clearly sufficient, since by the pigeonhole
principle, any k-colouring of S will contain a monochromatic set of |V (Gy)| vertices.

One malleable part of Tutte’s construction is in the choice of |S| and how copies of G,
are added by choosing their |V (Gy)|-vertex neighbourhoods in S. As observed by Toft [100],
one way to view this step in Tutte’s construction is that you consider an auxiliary complete
|V (Gy)|-uniform hypergraph H on vertex set S, then add a copy of Gy, for each hyperedge
of H. Again, when |S| > k(|V(Gy)| — 1), any k-colouring of S will have a monochromatic
set of |V (Gy)| vertices which corresponds to a monochromatic hyperedge of H for which we
added a copy of Gy. So the important feature of the auxiliary |V (G},)|-uniform hypergraph
H used here is that every k-colouring of H has a monochromatic hyperedge, or in other
words, H is not k-colourable. Tutte’s construction guarantees this in the simplest way
by taking H to be a large complete hypergraph. By additionally choosing H to be a
hypergraph with girth at least ¢g/3, Nesettil and Rodl [81] observed that if Gy has girth
at least g, then Gjyq will also have girth at least g (for comparison here, note that a
complete uniform hypergraph has girth equal to 2). Taking as an input a graph G and an
auxiliary |V (G)|-uniform hypergraph H, we let T(G, H) be the operation of performing
the hypergraph variation of Tutte’s construction on the graph G, using H as the auxiliary
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hypergraph. By the above discussion, we have the following.

Lemma 1.1.1. Let G be a graph with chromatic number at least k and girth at least g,
and let H be a |V (G)|-uniform hypergraph with chromatic number greater than k and girth
at least g/3. Then any graph G* obtainable from the operation T(G,H) has chromatic
number greater than k and girth at least g.

By further modifying Tutte’s construction to also work for n-uniform hypergraphs,
rather than just 2-uniform hypergraphs (graphs), Nesetfil and Rodl [21] used this to give
a short constructive proof that there are graphs with arbitrarily large girth and chromatic
number.

Surprisingly, it appears that this freedom in choosing the auxiliary hypergraph had not
been exploited beyond this. We explore this further by choosing our hypergraphs to be

ones based on Gallai’s theorem [35], a generalization of Van der Waerden'’s theorem [105] on
monochromatic arithmetic progressions. By further using a spare variant of Gallai’s The-
orem due to Promel and Voigt [26] we can even ensure that the hypergraphs arising from

Gallai’s theorem have large girth. This modification appears to be particularly well suited
to geometric constructions; in this thesis we give two applications to box and line intersec-
tion graphs in R®. These provide the first non-trivial examples of geometric intersection
graphs with arbitrarily large girth and chromatic number. Let us call a class of graphs
containing graphs with arbitrarily large girth and chromatic number x -amorphous; these
are the classes where large chromatic is in no sense a local property.

We discuss each of these applications further, but before that, let us mention that there
are also other malleable parts of Tutte’s construction that we do not explore in this thesis.
One example of this that has recently received a lot of attention is that Tutte’s construction
is well suited for adding in edges to ensure that induced subgraphs with large chromatic

number contain certain induced subgraphs [12,15,52,63]. For instance this was used in the
recent proofs that there are K -free graphs with arbitrarily large chromatic number and
with no 5-chromatic triangle-free induced subgraph [15], and also that there are hereditary

x-bounded classes of graphs that are not polynomially x-bounded [12].

The first application concerns intersection graphs of axis-aligned boxes. The intersec-
tion graph of a collection of sets C is the graph with vertex set C where two elements
C,C" of C are adjacent if C' and C” intersect. In 1948, Bielecki [1] asked if triangle-free
intersection graphs of axis-aligned rectangles in the plane have bounded chromatic num-
ber. This was answered positively in 1960 by Asplund and Griinbaum [2], who proved
more generally that intersection graphs of axis-aligned rectangles with clique number w
are O(w?)-colourable, making this one of the first results on y-boundedness. Recently

5



Chalermsook and Walczak [16] improved the bound to O(wlogw). The best known lower
bound is that there are rectangle intersection graphs with clique number w and chromatic
number 3w [66].

Surprisingly, the situation is different in R3. In 1965, Burling [13] proved that there are
axis-aligned boxes in R® whose intersection graphs are triangle-free and have arbitrarily
large chromatic number. In light of Burling’s construction, the problem of whether inter-
section graphs of axis-aligned boxes in R? with large girth have bounded chromatic number
was raised by Kostochka and Perepelitsa [71]. Later Kostochka [66] further speculated, for
all positive integers d, that intersection graphs of axis-aligned boxes in R? with girth at
least 5 should have bounded chromatic number.

We prove that there are intersection graphs of axis-aligned boxes in R? with arbitrarily
large girth and chromatic number. In other words, we prove that these graphs are y-
amorphous, and so there is no hope for any weakening of y-boundedness such as p-control
to hold.

Theorem 1.1.2. There are intersection graphs of azis-aligned boxes in R3 with arbitrarily
large girth and chromatic number.

One pleasing consequence of the connection to arithmetic Ramsey theory used in the
proof of Theorem 1.1.2 is that we may obtain Burling’s [1 3] classical result as an application
of Van der Waerden’s theorem [105] on arithmetic progressions.

Despite not being y-bounded [35], segment intersection graphs having huge chromatic
number is still in some sense a local property. Kostochka and Nesetiil [09] proved that
if the intersection graph of n segments in the plane has girth at least 5, then the graph
has only O(n) edges, consequently such graphs have bounded chromatic number. Fox and
Pach [14] asked if this could be extended to segments in R3. As a second application, we
answer this question with an defnatic no; even the subclass of line intersection graphs is
x-amorphous.

Theorem 1.1.3. There are intersection graphs of straight lines in R® with arbitrarily large
girth and chromatic number.

The problem of whether intersection graphs of lines in R? are y-bounded had been raised
explicitly by Pach, Tardos, and Téth [31], but had been circulating in the community a
few years prior. Norin (see [22]) answered this in the negative by showing that double shift
graphs (which are girth-4 graphs with large chromatic number [37]) are line intersection
graphs. Thus Theorem 1.1.3 extends Norin’s result.



1.2 Circle graphs

A circle graph is an intersection graph of chords on a circle (see Figure 1.1). Gyarfas [70]
proved that circle graphs are y-bounded with y-bounding function 2¢(2% — 2)w? and

asked [57,58] for improved y-bounding functions. In particular Gyérfas [57] originally
asked if a linear y-bounding function was possible. This was answered in the negative by
Kostochka [67] who gave the superlinear lower bound of fw(Inw — 2). Kostochka [67] also

improved the x-bounding function to 2“w(w + 2) and later Kostochka and Kratochvil [68]
improved this further to 50 - 2* — 32w — 64 for the more general class of polygon-circle
graphs, which are the intersection graphs of polygons inscribed in a circle.

Until very recently, a major open problem of Esperet [10] was to determine whether or
not every hereditary y-bounded class of graphs is polynomially y-bounded. With Brianski
and Walczak [12], we very recently answered this in the negative. Before this, it was
believed that circle graphs were a good candidate for a counter-example. Indeed, for over
30 years they had certainly been resilient to attempts to improve the y-bounding function
beyond the exponential 2¢ barrier. Introducing new techniques, with McCarty [29] we
dispelled this widely held belief by proving that circle graphs are polynomially y-bounded
with a y-bounding function of w? + 2w[2log, w] + 8w < 7w?.

In this thesis we further extend and refine the techniques introduced in [29] to improve
the y-bounding function for circle graphs to within a constant factor of Kostochka’s [67]
lower bound construction.

Theorem 1.2.1. Fvery circle graph with clique number at most w has chromatic number
at most 2w log,(w) + 2w log, (log,(w)) + 10w.

Circle graphs and their representations are fundamental objects that appear in a diverse
range of study. Some examples include knot theory [3,5], bioinformatics [60], quantum field
theory [70], quantum computing [11, 10], and data structures [13]. On the more combi-
natorial side, in addition to discrete and computational geometry, circle graphs and their
representations also appear in the study of continued fractions [103], vertex-minors [51],
matroid representation [10], and in various sorting problems [51]. Circle graphs are also
deeply related to planar graphs; the fundamental graphs of planar graphs are exactly the
class of bipartite circle graphs [30]. Direct applications of colouring circle graphs include
finding the minimum number of stacks needed to obtain a given permutation [12], solving
routing problems such as in VLSI physical design [98], and finding stack layouts of graphs,
which also has a number of additional applications of its own (see [33]).



With these applications in mind, it is desirable to have an efficient algorithm for colour-
ing circle graphs. While their clique numbers can be found in polynomial time [17], unfor-
tunately the problem of determining if a circle graph is k-colourable is NP-complete [15].
So the best that can be hoped for is an efficient approximation algorithm for the chromatic
number. The proof of Theorem 1.2.1 is constructive and yields a practical polynomial
time algorithm for colouring circle graphs with a colouring that is optimal up to at most
a logarithmic factor of the chromatic number.

For completeness, we also provide a new simple lower bound construction for the x-
bounding function of circle graphs. As a bonus it improves Kostochka’s [67] lower bound
by a factor of 2.

Theorem 1.2.2. For every positive integer w there is a circle graph with clique number at
most w and chromatic number at least w(lnw — 2).

For large clique number this leaves a constant factor of about 2 log,(e) ~ 2.8854 between
the upper and lower bounds. These new upper and lower bounds are remarkably tight,
but the difference between the logarithmic bases used in the upper and lower bounds is
certainly curious.

For small clique number just one non-trivial tight bound is known; Kostochka [(7]
proved that triangle-free circle graphs are 5-colourable, and Ageev [1] constructed a triangle-
free circle graph with chromatic number 5. In the next case, the best known upper bound is
due to Nenashev [30] who proved that Kj-free circle graphs have chromatic number at most
30. The best lower bound for K,-free circle graphs that we are aware of is a 6-chromatic
graph arising from a modification of Ageev’s [1] construction. By optimizing the proof of
Theorem 1.2.1 to the w = 3 case, we improve the upper bound for Ky -free circle graphs to
19. As with Theorem 1.2.1, its proof can be made algorithmic.

Theorem 1.2.3. Every K,-free circle graph is 19-colourable.

Other classes generalising circle graphs are now known to have polynomially y-bounding
functions. Krawczyk and Walczak [72] proved that if f(w) is a x-bounding function for
circle graphs, then f(w)- (”;1) is a x-bounding function for polygon-circle graphs and (more
generally) interval filament graphs. So combining Theorem 1.2.1 with this result improves
the best known y-bounding function for interval filaments graphs to O(w?logw). Krawczyk
and Walczak [72] proved that there are interval filament graphs with clique number w and
chromatic number (“;rl). An L-shape consists of a vertical segment and a horizontal

segment that meet at their lowermost and leftmost endpoints respectively, so they form a



Figure 1.2: The effect of local complementation on the dashed red vertex.

“L”. An L-shape is grounded if its uppermost point is on the z-axis. A grounded L-
graph is an intersection graph of grounded L-shapes. Grounded L-graphs generalize circle
graphs; it can be shown that circle graphs are exactly the intersection graphs of grounded
L-shapes whose rightmost endpoints are on the y = —x line [78]. Grounded L-graphs were
introduced by McGuinness [78] who proved that they are y-bounded with a y-bounding
function of 2°4*), With Krawczyk, McCarty and Walczak [25], again, by extending ideas
of [29], we improved this doubly exponential bound to the polynomial bound of 17w?.
Theorem 1.2.2 gives the best known lower bound construction for grounded L-graphs.

There are also many classes that contain circle graphs and are known to be y-bounded
(although they usually have extremely large xy-bounding functions). In terms of intersection
graphs of grounded geometric objects, the most general are outer-string graphs, which
are the intersection graphs of strings in the upper half-plane that have an endpoint on
the z-axis. Rok and Walczak [93] proved that outer-string graphs are y-bounded with
y-bounding function 20@““~"*) Optimistically, we may hope that the ideas introduced
in [29] and further developed here an in [28] could be pushed further to eventually prove
that outer-string graphs are polynomially y-bounded.

For further results on yx-boundedness of classes of graphs generalizing circle graphs,
see [21,24,25 27,92.95]. Two of these results; proper classes of graphs that are closed
under taking either vertex-minors [25], or more generally pivot-minors [24] are the focus
of the next section.



Figure 1.3: An illustration of how local complementation is performed on the corresponding
chord diagram of a circle graph. The circle graphs of these two chord diagrams are exactly
the graphs in Figure 1.2.

1.3 Vertex-minors

The action of performing local complementation at a vertex v in a graph G replaces
the induced subgraph on N(v) by its complement (see Figure 1.2 for an example). We
denote the resulting graph by G x v. We say that a graph H is a wvertex-minor of
a graph G if H can be obtained from G by a sequence of vertex deletions and local
complementations. There are a number of parallels between vertex-minors and graph
minors, so vertex-minors can be thought of as a analogue of the graph minor relation for
dense classes of graphs. One striking parallel is highlighted by the grid minor theorem [90]
and a recent grid theorem for vertex-minors [51]. Vertex-minors were given their descriptive
name by Oum [33], but they had appeared earlier in Bouchet’s [3] work on isotropic systems.
Since then, local complementation and vertex-minors have appeared in other areas such as
bioinformatics [35] and quantum computing [104].

Circle graphs provide a natural class of graphs that are closed under taking vertex-
minors. Vertex deletion is clear as deleting a vertex of a circle graph simply corresponds
to deleting its corresponding chord in its chord diagram. Local complementation is less
obvious, but to locally complement at a vertex v of our circle graph, we first look at one
of the two arcs between the end points of its corresponding chord, then we reverse the
order that the end points of other chords appear along this arc. The intersection graph of
the resulting chord diagram is then the graph obtained by locally complementing at v (see
Figure 1.3 for an illustration of this operation).

We prove a conjecture of Geelen (see [31]) that every proper vertex-minor-closed class
of graphs is y-bounded.

10



Theorem 1.3.1. Every proper vertex-minor-closed class of graphs is x-bounded.

Several special cases of Theorem 1.3.1 have been proved in the past. As previously
discussed, Gyarfas [50] proved that circle graphs are y-bounded. Another important vertex-
minor-closed class of graphs is those with bounded rank-width; Dvofdk and Kral’ [34]
proved that such graphs are y-bounded. Geelen, Kwon, McCarty and Wollan [51] proved
the grid theorem for vertex-minors, which can be applied with the result of Dvordk and
Kral’ [34]. More precisely, they proved that if H is a circle graph, then the class of graphs
with no H vertex-minor has bounded rank-width and so is also xy-bounded. Let W,, denote
the wheel graph consisting of an n-cycle and a single additional dominating vertex. Two of
the three minimal forbidden vertex-minors for circle graphs are the wheels W; and W [7],
and so generalizing Gyarfas’s result that circle graphs are y-bounded, Choi, Kwon, Oum
and Wollan [17] proved that for each n, the class of graphs with no W,, vertex-minor is also
x-bounded. Kostochka [67] proved that the complements of circle graphs are y-bounded.
This class of graphs is not vertex-minor-closed, however its closure under vertex-minors
can be shown to be x-bounded as an extension of Kostochka’s result [15].

Building on Geelen’s conjecture, Kim, Kwon, Oum and Sivaraman [65] further asked
if all proper vertex-minor-closed classes of graphs are polynomially x-bounded. Recently
there have also been significant developments on this problem. As discussed in the previ-
ous section, with McCarty [29] we proved that circle graphs are polynomially y-bounded.
Bonamy and Pilipczuk [6] proved that graphs of bounded rank-width are polynomially x-
bounded. As a result, it also follows that if H is a circle graph, then the class of graphs with
no H vertex-minor is polynomially y-bounded [6,51]. To prove this conjecture in general,
it is likely that the full strength of a general structure theorem for proper vertex-minor
closed classes of graphs would be required. The starting point towards such a theorem is
the aforementioned grid theorem of Geelen, Kwon, McCarty and Wollan [51] and there
has since been significant further progress towards a general structure theorem [77]. The
polynomial y-boundedness conjecture would follow from the conjectured structure theo-

rem [77], a decomposition theorem in [(], and the fact that circle graphs are polynomially
x-bounded [29].

One advantage of our proof of Theorem 1.3.1 over a potential proof using the con-
jectured structure theorem is that it is of course much shorter and simpler than such a
proof (although our proof is neither short nor simple). Our other motivation for proving
Theorem 1.3.1 without a structure theorem was to develop techniques that could be used
for proving the more general conjecture of Choi, Kwon and Oum [18] that proper pivot-
minor-closed classes of graphs are x-bounded (we delay the definition of pivot-minors until
Section 4.1). Very recently [21] we have been able to extend the techniques used in the
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proof of Theorem 1.3.1 to prove the pivot-minor y-boundedness conjecture in full.

Theorem 1.3.2. Every proper pivot-minor-closed class of graphs is x-bounded.

The proof of Theorem 1.3.2 is significantly more complicated than the proof of The-
orem 1.3.1, so for simplicity, we omit the proof of Theorem 1.3.2 in this thesis and just
prove Theorem 1.3.1. We will however in Section 4.7 discuss differences in their proofs as
well as ideas used to prove Theorem 1.3.2. The full proof of Theorem 1.3.2 will appear in
an upcoming paper [21]. The proof of Theorem 1.3.1 in this thesis differs a bit from in [25];
it incorporates some of the ideas used to prove Theorem 1.3.2 to simply the proof.

To prove Theorem 1.3.1 we use the idea of p-controlled classes of graphs as introduced
by Scott [04]. Let G be a graph. Recall that x?(G) denotes the maximum chromatic
number of an induced subgraph of G with radius at most p, and we say that a class of
graphs G is p-controlled if there exists a function f such that x(G) < f(x'*(G)) for all
G € G. For this natural weakening of y-boundedness, we obtain improved bounds. We say
that a class of graphs G is linearly p-controlled if there exists a constant ¢ > 1 such
that x(G) < ex'P(G) for all G € G.

Theorem 1.3.3. Every proper vertex-minor-closed class of graphs is linearly 2-controlled.

This was conjectured in [25] where we only proved that proper vertex-minor closed
classes are linearly 9-controlled. Note that in general not all vertex-minor-closed classes of
graphs have linear x-bounding functions, or are even linearly 1-controlled. For instance,
induced subgraphs of circle graphs with radius 1 are permutation graphs, which are perfect
(see Lemma 3.1.1), while by Theorem 1.2.2 or the earlier construction of Kostochka [66,67],
circle graphs have no linear xy-bounding function. We remark that in general, the bounding
function for p-controlled classes of graphs may need to grow arbitrarily fast (even for any
p' > p). The proof of this is a simple combination of ideas in [12] and [52].

12



Chapter 2

Boxes and lines

In this chapter we prove Theorems 1.1.2 and 1.1.3 that there are intersection graphs of
axis-aligned boxes and of lines in R? with arbitrarily large girth and chromatic number.
These results also have corollaries concerning the average degree of bipartite box and line
intersections with arbitrarily large girth.

Tomon and Zakharov [102] recently showed that there exist bipartite box intersection
graphs with girth at least 6 that have a super-linear number of edges. This resolved a
problem of Kostochka [66]. We extend this showing that bipartite box intersection graphs

with arbitrarily large girth can have a super-linear number of edges.

Kwan, Letzter, Sudakov, and Tran [73] proved that every triangle-free graph with
minimum degree at least ¢ contains an induced bipartite subgraph of minimum degree at
least Q(In¢/Inlnc). So as a corollary of Theorem 1.1.2, we obtain the following.

Corollary 2.0.1. There are bipartite intersection graphs of axis-aligned boxes in R? with
arbitrarily large girth and minimum degree.

It is also possible to modify the construction of Theorem 1.1.2 to prove Corollary 2.0.1
directly. Of course, we can also obtain the analogous corollary for intersection graphs of
lines in R3. Since our construction for Theorem 1.1.2 repeatedly applies the sparse Gallai’s
theorem, the number of boxes used in Theorem 1.1.2 grows extremely rapidly with the
chromatic number. Consequently, the minimum degree of our bipartite intersection graphs
of axis-aligned boxes in R? in Corollary 2.0.1 might grow extremely slowly with the number
of boxes. Very recently Tomon [101] improved on Corollary 2.0.1 by proving that for fixed
g > 4, there are bipartite intersection graphs of n axis-aligned boxes in R?® with girth g
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and minimum degree at least Q,(loglogn). In fact, their graphs are incidence graphs of
points and axis-aligned rectangles in R?,

This new method of combining Tutte’s [31,32] construction with Gallai’s [33] theorem
and its variations appears to be particularity well suited to constructing graphs with large
chromatic number in geometric settings. Indeed, with Keller, Kleist, Smorodinsky, and
Walczak [26], we have recently successfully applied the method in another geometric set-
ting. A constellation is a finite collection of circles in the plane in which no three circles
are tangent at the same point. The tangency graph G(C) of a constellation C is the graph
with vertex set C and edges comprising of the pairs of tangent circles in C. Ringel’s circle
problem [62] from 1959 asked for the maximum chromatic number of tangency graphs of
constellations. With Keller, Kleist, Smorodinsky, and Walczak [20], we resolved Ringel’s
circle problem in a strong sense by proving that these graphs are y-amorphous; they contain
graphs with arbitrarily large girth and chromatic number.

We remark that our choice of hypergraph based on Gallai’s theorem appears to be
crucial in these constructions; with the exception of box intersection graphs in R3, we
suspect that the graph classes in these applications do not contain the graphs from Tutte’s
original construction. Even in the case of boxes, using Gallai’s theorem allows us to prove
the theorem for the subclass of so called grounded square box graphs (see Theorem 2.2.1).

A natural subclass of the intersection graphs of axis-aligned boxes in R3, are those
whose boxes have disjoint interiors. Using a necessarily more relaxed variation of Tutte’s
construction, Reed and Allwright [39] showed that these graphs are not x-bounded either.
Magnant and Martin [75] further showed that there are such intersection graphs where the
boxes only intersect on their top and bottom faces (which in particular means they are
triangle-free), and have arbitrarily large chromatic number.

We remark that while Tutte’s construction can be sparsified, these variations used for
boxes with disjoint interiors cannot be; an intersection graph of n axis-aligned boxes in
R? with disjoint interiors, and with girth at least 5, has at most 24n edges and thus has
bounded chromatic number.

Theorem 2.0.2. Every intersection graph of n axis-aligned bozes in R? with disjoint in-
teriors, and with girth at least 5, has at most 24n edges

Proof. If two boxes with disjoint interiors intersect, then there is a plane that contains a
pair of intersecting faces, one from each of the two boxes. Glebov [53] proved that every
intersection graph of r axis-aligned rectangles in the plane with girth at least 5 has at most
4r edges. Fach of the 6 faces of a box is contained in a unique plane, so we obtain the
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bound of 24n by applying Glebov’s result to each plane contained in R? and the rectangular
faces that they contain. O

This can be strengthened to show that such graphs are 2-controlled by using the fact
that intersection graphs of axis-aligned rectangles are 2-controlled [21] in place of Gle-
bov’s [53] result.

2.1 Gallai’s theorem

Before proving Theorems 1.1.2 and 1.1.3, we must first introduce our main tool; Gallai’s
theorem [38] and its sparse variant [30].

A cornerstone of Ramsey theory is Van der Waerden’s theorem on monochromatic
arithmetic progressions.

Theorem 2.1.1 (Van der Waerden [105]). Every finite colouring of N contains arbitrarily
long arithmetic progressions.

Gallai [38] proved a generalization concerning monochromatic homothetic copies of
finite sets T C RY. A homothetic map f : RY — R? is one of the form f(x) = sz + ¢ for
some s € Ry and & € R?. In other words, a homothetic map is a composition of uniform
scaling and a translation. A set 77 C R? is a homothetic copy of a set T' C R? if there
is a homothetic map f such that f(7) =1T".

Theorem 2.1.2 (Gallai [38]). Let T C R? be a finite set. Then any finite colouring of R?
contains a monochromatic homothetic copy of T'.

Note that Gallai’s theorem is equivalent to the multidimensional van der Waerden’s
theorem; simply consider the lattice Z[T].

Gallai’s theorem would be enough to construct graphs as in Theorems 1.1.2 and 1.1.3
with girth at least 6, however for larger girth we require a sparse version proven by Promel
and Voigt [30].

We say that a collection of distinct sets T1,..., T} form a cycle C' of length k if there
exist distinct elements 1, ...,z such that for alli € {1,...,k — 1} we have z; € T, N T4
and xy € T NT1. The girth of a hypergraph is equal to the length of its shortest cycle.
A triangle-free intersection graph of a collection of sets 7 has a cycle of length k if and
only if there is a collection of k sets contained in 7 that form a cycle of length k. We often
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find it convenient to consider colourings and cycles of objects in R? directly rather than in
their intersection graphs.

We may now state the sparse version of Gallai’s theorem [$8] due to Promel and
Voigt [36] that we require.

Theorem 2.1.3 (Promel and Voigt [36]). Let T C R? be a finite subset containing at least
three elements and let g and k be positive integers. Then there exists a finite set X C RY
such that every k-colouring of X contains a monochromatic homothetic copy T of T and
no set of at most g — 1 homothetic copies of T form a cycle.

Promel and Voigt [37] also proved sparse versions of other theorems including the
Hales—Jewett theorem [59] and the Graham—Rothschild theorem [55]. A special case of
Theorem 2.1.3 is also equivalent to a sparse van der Waerden’s theorem.

As discussed in Section 1.1, the graphs we shall construct are based on a hypergraph
variation of Tutte’s [31,32] construction of triangle-free graphs with arbitrarily large chro-
matic number that has been considered several times before [70,31, 100].

Note that Theorem 2.1.3 is implicitly a theorem concerning the existence of certain
hypergraphs with large girth and chromatic number; the (implicit) hypergraph has vertex
set X and hyperedge set being the homothetic copies of T in X. The proofs of Theo-
rems 1.1.2 and 1.1.3 both go by showing that we can build up graphs with larger and
larger chromatic number with each new graph created as in the hypergraph variation of
Tutte’s construction, with the input auxiliary hypergraph being the one implicit in an ap-
plication of Theorem 2.1.3. So by Lemma 1.1.1, it will just be enough to ensure that the
intersections between our geometric objects witness this construction.

2.2 Boxes

Before proving Theorem 1.1.2, we need to introduce a more restricted setting to facilitate
the inductive argument. We say that an axis-aligned box B C R? is a square box if its
top and bottom faces are squares. Let P,—, C R® be the 2 = y plane, and let L,_, be the
line given by projecting P,—, into the (z,y)-plane. We say that a square box B C R? is
grounded if B intersects P,_,, and the rest of B is contained in the x > y side of R? (as
divided by P,—,). In other words, B is grounded if the top left corner of the square given
by projecting B into the (x,y)-plane is contained in the x = y line L,—,. Notice that if B
is grounded, then BN P,—, is a vertical line segment, an edge of the box, and its projection
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Figure 2.1: An illustration from above of part of the construction applied to three boxes
forming a path. The solid black boxes are tall thin boxes of Bx. The figure includes three
homothetic copies of By, each corresponding to a different homothetic copy of 7. Two
correspond to translations of 7" in X, and the one with dashed sides corresponds to a
translation and uniform scaling by a factor of 2. We use the unseen z-axis to avoid boxes
corresponding to different homothetic copies of T' intersecting, in particular, the boxes
corresponding to the dotted rectangles are higher.

onto the (z,y)-plane is a single point of the line L,—,. A graph is a grounded square
box graph if it is the intersection graph of a collection of grounded square boxes.

We prove Theorem 1.1.2 for the subclass of grounded square box graphs. While the
grounded condition is used to ease the inductive argument, achieving square boxes rather
than general grounded axis-aligned boxes is simply a bonus we get for free from the proof.

Theorem 2.2.1. For every g > 3 and k > 1, there exists a grounded square box graph
with girth at least g and chromatic number at least k.

Proof. This is trivially true for £ < 3, as all odd cycles are grounded square box graphs.
So we fix g and proceed inductively on k. Let B, be a collection of grounded square
boxes whose intersection graph has girth at least g and chromatic number at least k. We
wish to apply the 1-dimensional (sparse) Gallai’s theorem to a finite set 7" contained in
the line L,—,. Each point of T" will correspond to a box B, ;. We choose the point ¢tz of T
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corresponding a box B € B, to be the point given by projecting P,—, N B onto the (z,y)-
plane. The points of T" should all be distinct to maintain a one to one correspondence,
this can be achieved by slightly perturbing the grounded square boxes of B, along P,—,
(while preserving their intersections).

Now we apply Theorem 2.1.3 to T C L,—, to obtain a finite set X C L,—, such that
every k-colouring of X contains a monochromatic homothetic copy 7" of T', and no set
of at most || homothetic copies of T contained in X form a cycle. Let T be the set of
homothetic copies of T"in X. With G being the intersection graph of B, and H being
the hypergraph with vertex set X and hyperedge set 7, we now aim to witness a graph
G* obtainable from the operation T(G, H) (as in Lemma 1.1.1) as an intersection graph of
grounded square boxes. Throughout the rest of the proof the reader may wish to refer to
Figure 2.1 for an illustration of the construction.

We begin with constructing the boxes corresponding to the vertices V(H) = X of G*.
For each z € X, we choose a very thin and very tall grounded square box B, whose inter-
section with P,_, projects to the point x € L,—,. Each of these boxes are chosen to contain
the same (large) interval Z when projected onto the z-axis. Let Bx = {B, : x € X}.

Now we need to construct the boxes corresponding to the copies of GG, one for each for
each 7" € E(H) = T. For each T" € T, we choose a set of grounded square boxes By
homothetic to By, so that the points of By intersecting P,—, project onto the subset 7" C
X. By appropriately translating these homothetic copies along the z-axis, we can ensure
that the boxes of each By intersect exactly their corresponding box of {B, : t € T'} C By,
and also ensure that there are no intersection between boxes of distinct homothetic copies

BTU BT2 Of Bng.

Let By x+1 be the union of the grounded square boxes Bx and (Bp : 7" € T). Now
the intersection graph of By 41 is a graph obtainable from the operation T(G, H), so the
theorem follows by Lemma 1.1.1. m

It only takes a minor modification of this proof to obtain, as an application of Van der
Waerden’s theorem, a proof of Burling’s [13] classical result that there are triangle-free
intersection graphs of axis-aligned boxes with arbitrarily large chromatic number. In fact,
here we can already achieve a girth of 6. One just has to arrange at the start that the
boxes of Bg, are perturbed in such a way that their intersections with FP,—, project down
to a set of rational points 7" in L,—,. Then there is some arithmetic progression in L,—,
that contains T', and so we may use Van der Waerden’s theorem in place of Theorem 2.1.3.
For larger girth we could also choose to use the sparse Van der Waerden’s theorem [$7] in
place of Theorem 2.1.3.
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2.3 Lines

Next we prove Theorem 1.1.3, that there are intersection graphs of lines in R? with arbi-
trarily large girth and chromatic number. The proof is similar to that of Theorem 2.2.1,
we just have to modify the geometric arguments for this setting. We restate Theorem 1.1.3
slightly differently for convenience.

Theorem 2.3.1. For every g > 3 and k > 1, there exist lines in R3 whose intersection
graph has girth at least g and chromatic number at least k.

Proof. The theorem is trivially true for £ < 3, as all odd cycles are intersection graphs of
lines in R3. So we fix g and proceed inductively on k. Let S, be a collection of lines in
R? whose intersection graph has girth at least g and chromatic number at least k.

Choose a plane P C R? such that every line of S, . intersects P in a single point, and
no two lines of S, j, intersect P at the same point. Let 7" be the set of points of P contained
in a line of Sy 1, in particular there is a one to one correspondence between points of 7" and
lines in S .

By Theorem 2.1.3, there exists a finite set X C P such that every k-colouring of X
contains a monochromatic homothetic copy 7" of T', and no set of at most [ §] homothetic
copies of T' contained in X form a cycle. Let T be the set of homothetic copies of T in X.
With G being the intersection graph of S, and H being the hypergraph with vertex set
X and hyperedge set T, we now aim to witness a graph G* obtainable from the operation
T(G, H) (as in Lemma 1.1.1) as an intersection graph of lines.

For each T" € T, let Sy be a homothetic copy of S, such that S» NP = T". Now

choose a direction d parallel to P, but not parallel to a line between any two points of
X, so that the homothetic copies (S : T" € S) of S, can each be translated in the d
direction so as to avoid intersections between lines of distinct homothetic copies Spy, S,
of S, ;.. Perform such translations to each (Spv : 1" € S).

Now, for each z € X, let S, be the line containing = that is parallel to d. Let Sx =
{S; : x € X}. The lines of Sx are all parallel and non-intersecting, and for each 7" € T,
each line of Sy intersects exactly its corresponding line of {Sy : ¢’ € T"} C Sx.

Let Sy x+1 be the union of the lines of Sx and (S : 77 € T). We have the desired
intersections between lines of S 41, so the theorem now follows from Lemma 1.1.1. O
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Chapter 3

Circle graphs

In this chapter we prove Theorems 1.2.1 and 1.2.2 narrowing the optimal y-bounding
function for circle graphs to within a small constant factor. Theorem 1.2.2 has a simple
construction and is proved in Section 3.6, while Sections 3.1-3.4 are dedicated to proving
Theorem 1.2.1. In Section 3.5 we optimize the proof of Theorem 1.2.1 to the Ky -free case
to prove Theorem 1.2.3, that Ky-free circle graphs are 19-colourable.

The proof of Theorem 1.2.1 essentially goes by proving a stronger statement on being
able to extend certain well-structured partial pre-colourings. This better facilitates an
inductive argument and is an idea most famously used in Thomassen’s [99] proof that
planar graphs are 5-choosable. As in our proof that circle graphs are O(w?)-colourable
with McCarty [29], we use what we call a pillar assignment to colour our circle graphs.
The reason for this is two-fold: pillar assignments provide a convenient way to describe the
possible pre-colourings, and they also act as a useful tool for extending the pre-colourings.
However we require a definition of pillar assignments that is different to that of [29].

In [29] we used pillar assignments to obtain an improper colouring such that every
monochromatic component was a permutation graph. By exploiting the structure of our
improper colouring and using a natural Turan-type lemma on permutation graphs, we were
able to bound the number of colours needed in this improper colouring. Then finally a
proper colouring was obtained by refining the improper colouring.

Although significantly easier, obtaining a proper colouring by first going via this im-
proper colouring appears to present a degree of inefficiency in minimizing the number of
colours used. So the most significant difference with the notion of pillar assignment that
we use is that it provides a proper colouring of the circle graph directly. This involves
colouring certain induced permutation subgraphs in a particular well-structured way. The
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purpose of this additional structure in the colouring is to allow for a new Turan-type lemma
(see Lemma 3.3.3). Although this lemma is less natural, it is much more specialized to our
notion of pillar assignments. With this new notion of pillar assignment and its tailor-made
Turan-type lemma, we are then able to obtain the improved bounds with an inductive
argument on extending pillar assignments.

As a step towards proving our required tailor-made Turan-type lemma, we actually
prove a tight (and somewhat more abstract) version of the Turdn-type lemma on permu-
tation graphs used in [29] (see Theorem 3.3.2).

An old problem of Kostochka and Kratochvil [68] asks whether the optimal y-bounding
function for polygon-circle graphs is within a constant factor of the optimal y-bounding
function for circle graphs. By Theorems 1.2.1 and 1.2.2, circle graphs are now known
to have an optimal y-bounding function of ©(wlogw). So two reasonable approaches to
this problem would be to either improve the lower bound construction, or to extend the
proof of Theorem 1.2.1 to polygon-circle graphs. We believe that polygon-circle graphs are
also O(w log w)-colourable, but somewhat surprisingly the proof of Theorem 1.2.1 does not
appear to easily extend to polygon-circle graphs. On the other hand, our original proof
with McCarty [29] that circle graphs are polynomially y-bounded can be extended with
very little changes to prove the same O(w?) y-bounding function for polygon-circle graphs
(see [23]). The key part of the proof of Theorem 1.2.1 that does not appear to translate
well to polygon-circle graphs is Lemma 3.1.1 which gives a colouring of permutation graphs
with desirable properties. For polygon-circle graphs the analogue is trapezoid graphs, but
they appear to not have such colourings.

3.1 Preliminaries

For convenience of proving Theorem 1.2.1 we use an interval overlap representation of
our circle graphs rather than a chord diagram representation. An interval system is
a collection of open intervals in (0,1) such that no two share an endpoint. Two distinct
intervals Iy, I, overlap if they have non-empty intersection, and neither is contained in the
other. The overlap graph of an interval system Z is the graph with vertex set Z where
two vertices are adjacent whenever their corresponding intervals overlap. By cutting the
circle and deforming it onto the real line, it can easily be checked that circle graphs are
exactly overlap graphs of interval systems. Similarly, permutation graphs are exactly
the overlap graphs of interval systems Z such that there exists a p € (0,1) with p € I for
all intervals I € Z [51].
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Figure 3.1: The colouring ¢, of an interval system whose intervals all contain p in the case
that C' = {1,2,3}. The colour that the intervals receive is the number appearing below
their leftmost endpoint.

It is often more convenient to examine properties of a circle graph as equivalent prop-
erties of their interval systems. Note that sets of pairwise non-overlapping intervals in an
interval system correspond to stable sets in the overlap graph, and sets of pairwise over-
lapping intervals correspond to cliques. Given an interval system Z, we let w(Z) be equal
to the size of the largest set of pairwise overlapping intervals contained in Z. Equivalently,
w(Z) is equal to the clique number of the overlap graph of Z. Similarly we consider colour-
ings of an interval system with a notion equivalent to that of colourings of their overlap
graphs. A proper partial colouring of an interval system Z is an assignment of colours
to a subset of the intervals of Z so that no pair of overlapping intervals receive the same
colour. We say that a proper partial colouring of Z is complete if every interval of Z is
assigned a colour.

For an interval I C (0, 1), let £(I) be its leftmost endpoint and let (I) be its rightmost
endpoint. For two intervals I1, Is C (0, 1), we use I; < I5 to denote that r(I;) < £(I2), and
similarly I; > I to denote that ¢(I;) > r(ly). Given a finite partially ordered set (X, <),
and some z € X, the height h(zx) of x in the partial order is equal to the maximum length
of a chain ending in x. For a positive integer k, we let [k] = {1,... k}.

We finish this section with a lemma on colouring permutation graphs that is used in
our definition of pillar assignments. In addition to the bound on the number of colours
required, we also make use of an additional property of this colouring.

Given an interval system Z with w(Z) = w such that all intervals of Z contain some
given point p € R, we can naturally define a partial order on Z as follows. Let < be the
partial order of Z such that I < I’ whenever ¢(I) < ((I') and r(I) < r(I') (or I = TI").
Notice that two intervals overlap exactly when they are comparable in the partially ordered
set (Z,=). So we can obtain a colouring ¢, of Z by colouring the intervals according to
their height in the partially ordered set (Z,<). Since comparable elements overlap, the
longest chain in (Z, <) has length w, so ¢, is a w-colouring of Z. For an example of such a
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colouring ¢,, see Figure 3.1.

With this colouring, whenever we find a sequence of intervals whose left (or right)
endpoints are increasing (with respect to the natural ordering of R), and whose colours
as given by ¢, are strictly increasing (as a subset of N), although these intervals need not
overlap, we can find the same number of intervals between them that do overlap. This is a
useful property of the colouring since it gives us a way to indirectly find sets of overlapping
intervals. Let us justify this property formally.

Suppose that Iy,..., Iy € T are such that ¢,([1) < --- < ¢p(I)) and £([;) < --- < ().
Let I; = I and for each j < k in decreasing order, let I be the interval with ((I7)
maximum, subject to I7 < I, and ¢,([;) = ¢,(I;). Such intervals I must exist with
0(I;) < L(I7) < £(I7,,) by the choice of colouring ¢, as if I' € Z were an interval with
I' < Iry, ¢(I') = ¢p(I;), and £(I') < £(I;), then I" and I; would be non-overlapping
(since they receive the same colour), and so I; would overlap with [ ;+1 and hence precede
I7,, in the partial order. Then I7 < --- < [, and so the intervals I7,... I} are pairwise

overlapping with ¢(I7),...,0(I) € [¢(11), ¢(I;)].

Similarly, if we instead had that r(I;) < --- < r(}), then the analogous property for
right endpoints also holds. So by the above discussion, we obtain the following lemma.
Since the given colours are important for the lemma’s applications, we allow our colours
to be an arbitrary set C' C N with |C| = w.

Lemma 3.1.1. Let Z be an interval system with w(Z) = w such that all intervals of T
contain some given point p € R, and let C C N have |C| = w. Then there is a proper
colouring ¢, : T — C such that if Iy, ..., I € T are intervals with ¢,(I1) < --- < ¢p(Ix)
and 0(Iy) < --- < l(Iy) (orr(ly) < --- <r(ly)), then there exist k pairwise overlapping in-
tervals I, ... I} € T with £(If), ..., 0(I}) € [((11),0(Ix)] (or r(If),...,r(I%) € [r(11),r(Ix)]
respectively).

3.2 Pillar assignments

We start this section by defining our notion of pillar assignments, the tool we use to colour
circle graphs. The colouring in Lemma 3.1.1 is crucial to the definition of pillar assignments
and thus crucial for colouring our circle graphs. Afterwards we examine some properties
of pillar assignments.

A pillar of an interval system Z is a point within (0,1) that is distinct from the
endpoints of the intervals of Z. For totally ordered pillars (P, <) (where < is not necessarily
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Figure 3.2: The colouring 9 (p <) of an interval system Z for a collection of totally ordered
pillars (P, =) with P = {p1, pa, p3, P41, ps} and p; < pa < p3 < py < ps. The colour that the
intervals receive is the number appearing below their leftmost endpoint. In this example
we get that C), = {1,2,3}, C,, = {4}, C,, = {5}, C,, ={2,6}, and C,, = {1, 3}.

the natural ordering of R), we say that an interval I € Z is assigned to a pillar p € P
if p € I and there is no pillar p’ € P such that p’ € I and p’ < p. So every interval is
assigned to at most one pillar. For each pillar p € P, we let Z, be the intervals of Z that
are assigned to p. The foundation F), of a pillar p € P is the open interval containing
p that has its endpoints in {p’ € P : p’ < p} U{0,1} and contains no pillar p’ € P with
P < p.

Next we show how to obtain a proper partial colouring of an interval system Z from
a collection of totally ordered pillars (P, <). We refer the reader to Figure 3.2 for an
illustration of a pillar assignment and the colouring obtained from ordered pillars. For
each pillar p € P in order, we assign a set of colours C,, C N to p and a Cj-colouring
¢p : L, — C, of the intervals assigned to p as follows.

If p is the first pillar in the total order <, then let C, = {1,...,w(Z,)}, and let ¢, = ¢,
be a Cy-colouring of Z, as in Lemma 3.1.1.

Otherwise let p* be the pillar immediately preceding p in the total order <. Then let F,
be the intervals of Z that have exactly one endpoint in F,. Let C), be the set of the smallest
w(Z,) positive integers that are not contained in )+ (F,). Then let ¢, be a C),-colouring of
1, as in Lemma 3.1.1. Let v, = 9« U ¢,. Note that 1, remains a proper partial colouring
of 7 as the intervals of Z, are all contained in the foundation F},, and so do not overlap
with any of the intervals 1/1];1(Cp) by the choice of C,,.

Then for the last pillar ¢ in the total order <, we let 9(p <) = 1),. Another convenient
equivalent definition which we often use is ¥(p<) = UpE p Pp-

A pillar assignment of an interval system Z is a triple (P, <, ) such that P is a set
of pillars, < is a total ordering of P, and 1 is the proper partial colouring p<) of T as
described above. A pillar assignment (P, <,1)) is complete if every interval of Z contains
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some pillar of P (or equivalently if ¢ colours every interval of Z). For a pillar assignment
(P, =<,1), let x(P,=,%) be equal to ’UPGP Cy| = |¥(Z)], in other words x (P, <,%) is the

number of colours that the pillar assignment (P, <,1)) uses to colour its interval system
Z. Soif (P,=,) is a complete pillar assignment, then x(Z) < x(P, =%,%). By the above
definition and discussion, we have the following.

Lemma 3.2.1. Let (P, =,4) be a pillar assignment of an interval system Z. Then 1) is
a proper partial colouring of I that colours every interval containing a pillar of P, and
furthermore if the pillar assignment is complete then 1 is a complete proper colouring of
the interval system I, and so x(Z) < x(P, =,v).

Next we analyze the endpoints of intervals assigned to a given pillar, and also the
endpoints of intervals with a given colour in a pillar assignment. These two lemmas are
used in the proof of our tailor-made Turan-type lemma in Section 3.3. An arch of a pillar
assignment (P, <,1)) is an open interval with endpoints in {0, 1} U P that contains no pillar
of P.

Lemma 3.2.2. Let (P, <X,%) be a pillar assignment of an interval system I, let K be an
arch of (P,=,1), and let Ty be the intervals of T with exactly one endpoint in K. Let
Upep ik p) be the partition of Tx where for each p € P, the intervals Ik ) are exactly the
intervals of L that are assigned to pillar p. Then there is a collection of disjoint intervals
{K, : p € P} contained in (0,1)\K such that for every p € P, the intervals of Ik p) have
an endpoint within I,.

Proof. Let K = (k~, k™). First observe that for each pillar p € P, the intervals of Zx p)
must all be contained in either (k7,1) or (0,k") depending on whether the pillar p is
contained in [k*,1) or (0,k7].

Now suppose for the sake of contradiction that no such collection of disjoint intervals
{K, : p € P} exist. Then there must exist two distinct pillars p,p" and distinct intervals
I, Iy € Liky), I' € Lk ) such that the endpoints ey, es.€’ of Iy, I, I’ respectively that
are contained in (0,1)\K are such that e; < € < eq, and either e; < ¢ < ey < k™, or
kT <e <e <es.

Suppose in the first case that e; < € < e; < k~. Then I"\K must contain p’, and
furthermore both I;\K and I\ K must contain p. Hence I;\K contains both p and p'.
As I is assigned to p, we see that p < p/. Then I’ does not contain p as I’ is assigned
to p/ and p < p/. But this contradicts the fact that I,\K C I'\K contains p. The second
case that kT < e; < € < ey is argued similarly and we conclude that such a collection of
disjoint intervals {K, : p € P} exists. O
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Lemma 3.2.3. Let (P, =X,%) be a pillar assignment of an interval system I, let K be an
arch of (P,=,1), and let Iy be the intervals of T with exactly one endpoint in K. Let
Upep T(kp) be the partition of Tx where for each p € P, the intervals Zix p) are exactly the
intervals of I that are assigned to pillar p. For each ¢ € Y(I), let Lk, be the intervals
of I that are coloured ¢ by 1. Then for each ¢ € (Z), there is a pillar p € P, such that

Lire) € Lixp)-

Proof. Suppose not, then there must exist intervals Iy, Is € Zx such that ¢(I;) = ¢([3) and
I, I, are assigned to distinct pillars py, p. In particular this means that ¢, (11) = ¢p,(I2)
as in the definition of the colouring ¢ = 1) (p<).

Without loss of generality, we may assume that p; < p,. Then the foundation F,, of
p2 must contain Iy, and so Fj,, contains K as well. Hence the foundation F},, contains an
endpoint of /;. But this now contradicts the choice of C), by the definition of the colouring

Y =(px). O

Next we define a notion for the degree of an interval J contained within an arch of a
pillar assignment (P, <,1) of some interval system Z. It is this notion of degree that our
tailor-made Turan-type lemma is based on.

For an interval J within an arch of a pillar assignment (P, <,) of an interval system
Z, the degree d(p <4 (J) of J is equal to the number of colours that intervals of 7 with an
endpoint in J receive from . As an example, for the pillar assignment (P, <,) depicted

in Figure 3.2, d(P,5,¢)(p3,p4) =5, and d(P,j,w)((ps,m), {p1,p2,p3}) =2+0+1=3. When
the pillar assignment is clear from context we often omit the subscript on the degrees.

A pillar assignment (P*, <* ¢*) extends a pillar assignment (P, <,v) if P C P*, every
pillar of P precedes every pillar of P*\ P in <* and (P*, 2*)|p = (P, <), and ¢* is a proper
partial colouring that extends 1. We remark that by definition, the last condition that
Y* extends 1 is implied by the conditions on (P*, <*), because for the interval system Z,
the colourings ¢ = v¢(p<) and ¥* = 9)(p+ <+ are determined solely by the totally ordered
pillars (P, <) and (P*, <*) respectively.

We require a divide and conquer lemma that under favourable conditions allows for a
certain extension of a pillar assignment that maintains a low total number of colours used
and low degree arches.

Lemma 3.2.4. Let (P, <,1) be a pillar assignment of an interval system T with w(Z) = w,
let K be an arch, let t be a positive integer, and let Q C K be a finite collection of pillars
such that dip<y)(J) < t for every interval J contained in K\Q. Then there is a pillar
assignment (P*, <* ¢*) extending (P, =,1) such that:
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e P*=PUQ,
o dipr <y (J) <t +wllogy(|Q| +1)] for every interval J C K\Q, and

o X(P*,=%,¢7) <max{x(P, =,9), dp=<u)(K) +wllog,(|Q] + 1)]}.

Proof. Firstly the result is trivially true if |@| = 0. So from here we argue inductively on
Q-

Let the endpoints of K be ¢y and g,, with ¢o < ¢, and n = |@Q| + 1. Then let the
elements of @ be {q1,...,¢,—1} where ¢ < --+ < ¢,_1. Consider the pillar assignment
(P, =<',4") extending (P, =<,1) that is obtained by adding the pillar Gpnsty immediately
after all the pillars of P in the total ordering (P, <).

Then with respect to the pillar assignment (P’, <’ 1), the interval K contains exactly
two arches; K7 = (qo, Q[nT—l‘I), and Ky = (q[nT—q ,qn). By considering the colouring %r"*lw =
2

Y(pr <) \V(p,<), We can observe that:

o dipr =iy (K1), dipr =) (Ks) < dip< iy (K) +w,
L X(Pl> ﬁ,ﬂ/f,) < maX{X(Pa 572/})7 d(P,jﬂ,Z)) (K> + w}? and

[ d(Plyj,»w/)(q'b Qi—l) S t + w fOl" eVery 7/ € [n]

Next note that with respect to the colouring, extending the pillar assignment (P’, <’, 1)
within each of the arches K; and K, is independent of the other. So we may apply the
result of the inductive hypothesis twice, once to the pillars {q, ... ,q"nT—l-‘_l} C K, and
then to the pillars {q[anlHl, ... Gn-1} C Ky, to obtain a new pillar assignment (P*, <* ¢*)
extending (P’, <’,7’) (and so also extending (P, =<,%)). Furthermore the resulting pillar
assignment (P*, <* 1*) is such that: P* = P’ U{q,... ,Q[nT—l'l_l} U {q"nT—l-‘_,’_l, R
P UQ, and for each i € [n],

-1 -1
dpe <) (Qi-1, i) ST+ w+w POg? (max { [n 2 —‘ e [n 2 —‘ })-‘

<t + wllogy(n)]
=t 4+ wllogy(|Q| + 1)1,
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and lastly,

( X(P/’ __</’ ¢/)
P ) <] A0+ o (£ m

oo o 57

Hence (P*,=*,4*) provides the desired pillar assignment. ]

Lemma 3.2.4 is enough for proving Theorem 1.2.1, but to obtain the improved bound of
19 for K -free circle graphs as in Theorem 1.2.3, we need slightly better bounds than those
given in Lemma 3.2.4. This can be obtained by adding the technical additional condition

that for every ¢ € @, there is an interval I, € Upe p L, that overlaps with every interval
inZ \ (Upep Ip> that contains ¢. Then in any pillar assignment (P*, <* 1*) extending

(P, <,1) such that P* = PUQ and for any ¢ € @), we would have that w(Z,) <w(Z)—1 =
w — 1. With this additional condition and observation, we may replace every occurrence of

o,

w” in the resulting bound (and in the proof) with “w —1”. Thus we obtain the following.

Lemma 3.2.5. Let (P, <,1) be a pillar assignment of an interval system T with w(Z) = w,
let K be an arch, let t be a positive integer, and let Q C K be a finite collection of pillars
such that dip=<4)(J) < t for every interval J contained in K\Q, and for every q € @,

there is an interval I, € Upepf that overlaps with every interval in T \ (U GPZ) that
contains q. Then there is a pillar assignment (P*, 2*,¢*) extending (P, <,) such that:

e P*=PUQ,
o dipr <y (J) <t + (w—1)[logy(|Q] + 1)] for every interval J C K\Q, and

o X(P*, =" ¢") < max{x(P, 2,v), dip=u)(K)+ (w—1)[log,y(|Q + 1)}

W,

Of course while going from “w” to “w — 17 is significant when w = 3, it is only a very
minor improvement when w is large.
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3.3 Extremal results

In this section we prove the Turdn-type lemma that is tailor-made for our notion of pillar
assignment and degree (Lemma 3.3.3). The purpose of this is to enable prudent usage of
Lemma 3.2.4 in the proof of Theorem 3.4.1, a strengthening of Theorem 1.2.1 that concerns
extending pillar assignments. The idea of Lemma 3.3.3 is based on a Turan-type theorem
of Capoyleas and Pach [11] for circle graphs. For an interval system Z and a collection of
disjoint intervals J, the Turan-type theorem of Capoyleas and Pach [11] bounds (in terms
of w(Z) and |J|) the number of pairs of distinct intervals Jy, Jo € J such that there is an
interval of Z with an endpoint in both J; and J5.

First we need to prove Theorem 3.3.2, a theorem in a similar style to that of the Erdés-
Szekeres theorem [39]. This result may be of independent interest. Indeed it can be shown
that Theorem 3.3.2 is equivalent to a tight version of the Turdn-type lemma used in [29],
so it can also be considered an exact permutation graph analogue of the aforementioned
Turdn-type theorem of Capoyleas and Pach [I1]. With a bit more care one can even
characterise the extremal examples.

Before stating and proving Theorem 3.3.2, we first require two definitions and a simple
lemma. Given some S C R% we define the strong dominance partial ordering <.,
of S to be the partial order such that u <4 v exactly when each coordinate of v is greater
than the corresponding coordinate of u (or v = v). Given two sets A and B, we let A x B
denote the Cartesian product {(a,b):a € A and b € B}, of A and B.

Lemma 3.3.1. Let a,b be positive integers, and let <44 be the strong dominance partial
ordering of [a] X [b]. Then the mazimum length of an antichain in ([a] x [b], <s) is equal
toa+b—1.

Proof. Let A be the antichain {(a,j) : j € [b]} U{(,b) : i € [a — 1]}, then |A| =a+b— 1.
For each integer k with 1 —b <k <a—1,let Cr = {(z,y) € [a] X [b] : * —y = k}. Then

Cip,...,Cq1 is a chain cover of [a] x [b] of size a + b — 1. An antichain contains at most
one element of every chain in a chain cover. Hence the maximum length of an antichain in
([a] x [b], Zsa) is equal to |A] = a+ b — 1 as required. O

Theorem 3.3.2. Let a,b,n be positive integers with n < a,b, and let <4 be the strong
dominance partial ordering of [a] x [b]. Let S C [a] x [b] be a set containing no chain of
length greater than n. Then |S| < n(a+b—n).

Proof. Let m be the maximum length of a chain contained in (S5, <44), and let A, ..., A,
be the antichain cover of S where A, = {(z,y) € S : I, (®,y) = k} for each k € [m].
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Then for each k € [m], and each (z,y) € Ay, there exists a chain C(, 4 of length k ending in
(x,y). This implies that x,y > k. So for each k € [m], the antichain Ay is contained in the
grid ([a]\[k —1]) x ([o]\[k —1]). Then by Lemma 3.3.1, |Ax| < (a—k+1)+(b—k+1)—1 =
a+b—2k+ 1 for every k € [m].

Lastly
S| =314 <Y (a+b—2k+1) =m(a+b—m) <n(a+b—n)
k=1 k=1

as desired. ]

The bound in this theorem is tight: one extremal example is {(z,y) € [a] X [b] : x <
n or y < n}, which contains no chain of length greater than n. The theorem can also be
generalised to higher dimensional grids with essentially the same proof. We anticipate that
Theorem 3.3.2 will likely also find further applications in improving yx-bounding functions
for other classes of geometric intersection graphs.

We now proceed with applying Theorem 3.3.2 to prove our tailor-made Turan-type
lemma.

Lemma 3.3.3. Let (P, =<,1) be a pillar assignment of an interval system T with w(Z) = w,
let K be an arch such that d(K) > w, and let J be a collection of disjoint open intervals
contained within K such that | J| > w. Then

> d(J) S w(d(K) +|T| - w).

Proof. Let Zx be the intervals of Z with exactly one endpoint in K. Let UpE p Lk p) be the
partition of Zx where for each p € P, the intervals Z(x ;) are exactly the intervals of Zx
that are assigned to pillar p. Let P’ be the set of pillars p € P such that Z x ;) is non-empty.
Then by Lemma 3.2.2 there is a collection of disjoint intervals {K), : p € P'} contained
in (0,1)\K such that for every p € P', the intervals of Zx,) have an endpoint within
K,. Let <k be the ordering of {K, : p € P’} so that K,, <x K, exactly when either
K, <K, <K,or K <K, <K, or K,, <K < K, . Since the intervals {K, :p € P'}
are pairwise disjoint, <k is a total ordering of {K, : p € P’'}. The key property of this
total order is that if p,p’ are distinct pillars of P’ with p < ¢/, and I, I’ € T are intervals
assigned to p and p’ respectively, then I overlaps with I’ if the endpoint of I in that is
contained in K precedes the endpoint of I, that is contained in K.
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Let C'" = 4 (Zk). For each c € (', let Z(k ) be the intervals of Tk that are coloured ¢ by
Y. By Lemma 3.2.3, for each ¢ € (', there exists a pillar p € P’ such that Zix ) € Z(xp),
and in particular every interval of Z(k ) has an endpoint in K. Now let <¢ be the total
ordering of C” such that for every ci,c; € €', we have that ¢; < ¢y exactly when either
there exists a pillar p € P’ such that Zix c,), Z(x,c,) € Z(xp), and ¢; < ¢a, or there exists
distinct pillars pi,p, € P’ such that Tk ..y € Zixp,), Lik,eo) © Lk p) and p1 <g pa. Let
f:C"— [d(K)] be the bijection such that f(c;) < f(cq) exactly when ¢; =¢ co.

Now let J = {/1,...,Jjz} where J; < --- < Jjz. Next let S be the set of all elements
(z,y) € [d(K)] x [|J|] such that there is an interval I of Z that is coloured f~'(z) by ¥,
and has an endpoint in J,. Note that [S| =), , d(J).

Suppose now for the sake of contradiction that

> d(J) > w(d(K) + |T| - w).

JeJg

Then by Theorem 3.3.2, there is a chain W contained in S of length at least w + 1. Since
this chain is contained in S, there must exist colours ¢; <¢ -+ <¢ ¢,41 contained in C’,
and integers 1 < x1 < -++ < xyy1 < |J| so that for each j € [w + 1], there is an interval
I; € Z with an endpoint e; contained in J,; and ¢ ([;) = ¢;. Since Jp, < -+ < Jo .., we
have that e; < --- < ey 1.

Let p1,...,p, € P’ be the collection of distinct pillars such that for some integers
0=ag<- <ap1 <a,=w1, we have that for each p;, the intervals Z,, = {I; : a,_1 <
j < a;} are all assigned to pillar p;. Note that p; <x -+ <g p, by the definition of the
total ordering (C’, <¢).

Then by Lemma 3.1.1 and the definition of the pillar assignment (P, =,), for each
i € [n], there exist pairwise overlapping intervals I; .,,...,I; that are all assigned to
the pillar p;, and all have an endpoint contained in [eq, ,11,€q4,]. Since p; <k -+ <k Pn,
and [e1, €4,] < -+ < [€q,_ 141, €wt1), We see that any two intervals of {I7,..., I}, } that are
assigned to distinct pillars also overlap. Hence the intervals I7,..., I} ; pairwise overlap,
a contradiction to the fact that w(Z) = w. O

3.4 Colouring circle graphs

By Lemma 3.2.1, the following theorem strengthens and so implies Theorem 1.2.1, that
every circle graph with clique number at most w has chromatic number at most 2w log, (w)+
2w log, (logy(w)) + 10w.
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Theorem 3.4.1. Let w > 2 be an integer, let G be a circle graph with cligue number
at most w, and let T be an interval system with overlap graph G. Let (P,=,v) be a
pillar assignment of I such that x(P,=,v) < 2wlogy(w) + 2wlogy(logy(w)) + 10w, and
d(K)(p=p) < wlogy(w) 4+ wlogy(logy(w)) + 6w for every arch K of (P,=,v). Then there
is a complete pillar assignment (P*, <*,19*) of I extending (P, <,v) with x(P*, <*,¢*) <
2w log, (w) 4 2w log, (logy(w)) + 10w.

Proof. The theorem is trivially true if (P,=<,%) is a complete pillar assignment, so we
proceed by induction on the number of intervals that are not coloured by 9 = 9(p <).

Let K be an arch of (P, <, ) that contains some interval I of Z. Then I is not coloured
by 1. Let ¢* be a pillar contained in I. Let ¢o = ¢(K). Now for each integer i > 1 in
increasing order, if the pillar ¢;_; was chosen and d(p< y)(gi—1,7(K)) > 2w, then we choose
the next pillar ¢; € K so that ¢; > ¢;—1 and d(p<y)(¢i-1,¢) = 2w. Note that such a ¢,
can always be chosen if d(p < y(gi—1,7(K)) > 2w as incrementally increasing some q > ¢;_
increases the degree of (¢;_1,¢) by at most 1. Let n be equal to the largest ¢ such that the
pillar ¢; is chosen, and let @ = {q1,...,¢n, ¢*}. Then d(p<y)(Gn-1,7(K)) > 2w.

Let J = {(90,q),---,(qu-1,7(K))}. Then >, ,d(J) > 2wn. So by Lemma 3.3.3,

2wn < Z d(J) <w(d(K)+n —w) < w(wlogy(w) + wlog,(logy(w)) + bw + n).

Hence n < wlog,(k)+wlogy(logy(w))+ 5w, and so |@Q] < logy(w) +w log, (logy(w)) + 5w + 1.
Then by Lemma 3.2.4 there is a pillar assignment (P, =<', ¢’) extending (P, <,) such
that P’ = P U@, and for every arch K’ of (P’, <',1') contained in K,
dipr <y (K') < 2w + w(logy(|Q| +1)]
< 3w + wlogy(wlogy(w) + wlogy (logy(w)) + 5w + 2)
< 3w + wlog, (8w logy(w))
= wlog,(w) + wlog,(logy(w)) + 6w,

and furthermore

X(P', =) < max {x(P, 2,), dpz)(K) +w[logy(IQ] + 1)}
< max {x(P, =, ¢), 2wlogy(w) + 2wlog,(logy(w)) + 10w}
= 2wlogy(w) + 2w log,(logy(w)) + 10w.

Hence (P’, =<', 4') satisfies the inductive hypothesis. Since ¢* € @ C P’, the interval
I is coloured by v’. As I is not coloured by 1, the number of intervals of Z that are not
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coloured by ) is strictly less than the number of intervals of Z that are not coloured by
1. Hence by induction there exists a complete pillar assignment (P*, <* 1*) extending
(P, =", ¢") (and thus (P, =,1)) with x(P*, =2*,¢*) < 2wlog,(w) + 2w log,(log,(w)) + 10w
as required. O

We remark that with more careful arguments it is possible to improve the lower order
terms slightly, but we are not aware of a way to improve the leading constant.

Let us briefly sketch how to obtain a O(n?) time algorithm for obtaining the colouring
given by the proof of Theorem 1.2.1 (once the clique number has already been determined,
which can be done in O(n?) time [17]).

Let ¢,...,q. be pillars added to the pillar assignment (P, =,%) as in the proof of
Theorem 3.4.1. With a bit more care, we can ensure that each new pillar will have at least
one interval assigned to it in the extended pillar assignment (P, <’,4'). Each new pillar
¢; can be found in O(n?) time since by incrementally increasing ¢, one at a time, a new
endpoint of the intervals of Z is included in the interval (¢;_1, ¢;), and for each new endpoint
we just need to check the colour (if it is coloured) it has already received from (P, =<, ).
The new pillars ¢y, ..., q. are added to the pillar assignment accordingly to a divided and
concur argument ordering (given by Lemma 3.2.4), which can be found in O(rlogr) time.
For each new pillar p in the order given by (P, <’), the intervals Z, assigned to p and the
colour palette C), can both be found in O(n?) time. The colouring of the intervals Z, is
given by Lemma 3.1.1, which is just a first fit colouring according to the ordering of Z,, given
by their leftmost endpoints. This can be done in O(|Z,|?) time. Putting this altogether,
the extended pillar assignment (P’, =<’ 1’) can be found from (P, =,%) in O(n*m) time,
where m is the number of intervals of Z coloured by (P, <',%’), but not (P, =<,1). This
gives a O(n3) time algorithm for obtaining the colouring given by Theorem 1.2.1.

The above sketch has been optimized for simplicity rather than efficiency. We sus-
pect that the arguments could be optimized to significantly improve the run time of the
algorithm.

3.5 Colouring Kj-free circle graphs

Now by specializing the proof of Theorem 3.4.1 to the case w = 3, and using Lemma 3.2.5
in place of Lemma 3.2.4, we prove the following which strengthens and so implies Theo-
rem 1.2.3, that every Ky-free circle graph is 19-colourable.
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Theorem 3.5.1. Let G be a circle graph with cligue number at most 3, and let T be an
interval system with overlap graph G. Let (P, =,1) be a pillar assignment of Z such that
X(P,=,¢) <19, and d(K)(p=,y) < 13 for every arch K of (P,=,v). Then there is a
complete pillar assignment (P*, <*,9*) of T extending (P, X,1) with x(P*, =<*,¢*) < 19.

Proof. As before, the theorem is trivially true if (P, <,) is a complete pillar assignment,
so we proceed by induction on the number of intervals that are not coloured by ¢ = ) p<).

Let K be an arch of (P, <, ) that contains some interval I of Z. Then [ is not coloured
by ¥. Let qo = ¢(K). Now for each integer ¢ > 1 in increasing order, if the pillar ¢;_; was
chosen and d(p < )(qi—1,7(K)) > 7, then we choose the next pillar ¢; € K so that ¢; > ¢;—1
and d(p<)(¢i—1,¢;) = 7. Let n be equal to the largest i such that the pillar ¢; is chosen,

and let @ = {q1,...,¢n}. Then dip<y)(gn-1,7(K)) > 7.
Let 7 = {(q0,q1), -, (@n-1,7(K))}. Then >, ,d(J) > Tn. So by Lemma 3.3.3,

Tn <Y d(J) < 3(d(K)+n—3) <30+ 3n.

Hence |Q|=n < 7.
Note that by the choice of ¢1, ..., gy, for every ¢ € @, there is an interval I, € Upep 7,

that overlaps with every interval in Z \ (Upe P Ip> that contains ¢q. So by Lemma 3.2.4

there is a pillar assignment (P’, <’ 1) extending (P, <,%) such that P’ = P U @, and for
every arch K’ of (P, =<’,4’) contained in K,

dipr <y (K') < T+ (3 = 1)[logy(|1Q| + 1)]
< 7+ 2[log,(8)]
— 13,

and furthermore

X(P', =) <max {x(P, =,%), dip<p(K)+ (3 —1)log,(|Q| + 1)1}
< max {x(P, =,v), 13+ 6}
=19.

Hence (P',=',¢') satisfies the inductive hypothesis. If ¢’ does not colour an in-
terval that is uncoloured by 1, then note that, by the choice of ), we would have
dpr < (Qos @1)s - - dpr <2 ) (@n—15 @n) s d(pr <1 9y (G, 7 (K)) < 7. In this case we could sim-
ply extend the pillar assignment (P, <’,4') by picking one extra pillar contained in the
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interval I, and the resulting pillar assignment would colour I and still satisfy the inductive
hypothesis. So we may assume that ¢/’ colours an interval that is uncoloured by 1. Hence
by induction there exists a complete pillar assignment (P*, <* ¢*) extending (P, =<', ¢’)
(and thus (P, <,1)) with x(P*, =<*,9*) < 19 as required. O

Despite this improvement to 19, we suspect that Theorem 1.2.3 is still far from best
possible. It is likely that more specialized arguments could significantly improve this bound.
Using the ideas of Ageev’s [1] construction, the best lower bound we have been able to
find is that there are Ky-free circle graphs with chromatic number at least 6. Although 6
seems closer to the correct answer, we make no conjecture on what the maximum chromatic
number of a Ky-free circle graph could be.

The proof of Theorem 1.2.3 can of course be made algorithmic in the same way as
Theorem 1.2.1.

3.6 Lower bound

In this section we give a simple construction to prove Theorem 1.2.2. We find it more
convenient to use a chord diagram representation of our circle graphs, rather than the
interval overlap representations that were used to prove Theorems 1.2.1 and 1.2.3 in the
previous sections. We allow chords to coincide and consider the chords to be open, so two
chords that share an endpoint only intersect if they share both their endpoints. By slightly
perturbing open chords so that no two share an endpoint and so that exactly the same
pairs intersect, it can be shown that circle graphs are exactly intersection graphs of open
chords on a circle where chords can coincide.

The construction is inspired by those given by Kostochka [67] for both circle graphs
and their complements, as well as his proof that the complements of circle graphs are y-
bounded. With essentially the same arguments, our construction also yields a new proof
that there are complements of circle graphs with clique number at most w and chromatic
number at least w(lnw — O(1)).

For positive integers w and n with n > 3w — 3 we define a chord diagram D,,,, as
follows. Let p1,q1,p2,qo, - - ., Pn, ¢n be points on a circle in cyclic clockwise order. Now for
each i € [n], and j € [w — 1], let C;; consist of exactly L%J coinciding open chords with

endpoints p;, gi+; (taking ¢ + j modulo n). Then let D, = Uie[n] Uje[w_l} Cij. For an
example, see Figure 3.3, which illustrates the chord diagram D7 g.
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Figure 3.3: The chord diagram of D;76. The thickness of the chords corresponds to the
number of chords that coincide.

Now we prove some bounds on the number of chords contained in D,, ,,, as well as the
size of the largest set of pairwise intersecting and pairwise disjoint chords in D, .

Lemma 3.6.1. The set of chords D, has size greater than nw(lnw — 2).

Proof. By definition,

n w-—1 w—1 w
CERVRURSE » »THE witc E ol
i€ln] j€w—1] i=1 j=1 e = LI

Then observe that:

w w w 1
nz {%J —nw > nz%} —2nw = an;—an > nwlnw — 2nw = nw(lnw — 2).
j=1 j=1 j=1

Hence the lemma follows. O]

Lemma 3.6.2. There are no w + 1 pairwise intersecting chords contained in D, .

36



Proof. Let C' C D, , be a set of pairwise intersecting chords. Let P be the set of endpoints
of chords in C' that are contained in {pi,...p,}, and similarly for (). Then |P| = |Q)|
as a pair of open chords that share an endpoint only intersect if they share both their
endpoints. Furthermore after possibly rotating the chords of C' around the circle, we can
assume without loss of generality that P = {ps,,...,0q,} and @ = {q,...,q,} with

a; < ---<ag <b <---<by and that every chord of C has one of {pa,, G, },-- - {Pays @, }
as its endpoints. For each i € [f], there are exactly Lm = |3 | chords with

endpoints contained in {p,,, ¢, }. Therefore

L L 14
|C|§;L}ifazj gzlbifai gzl%:w.

Lemma 3.6.3. There is no set of n pairwise disjoint chords contained in D, .

Proof. Let S be a set of pairwise disjoint chords of D,, ,,. Now consider an auxiliary directed
graph G on vertex set {v1,...,v,} where there is an edge directed from v; to v; whenever
S contains a chord with endpoints p; and ¢;. First note that |S| = |E(G)| as all the chords
with endpoints p; and ¢; intersect.

Now observe that G is outerplanar, with the natural embedding of vy, ..., v, being on
the circle in clockwise order and all edges of G directed in the clockwise direction. In a
directed outerplanar graph with such an embedding, all cycles contain a directed path of
length 2 in the clockwise direction. However G has no directed path of length 2 as such
a path with internal vertex v; would imply that S contains a chord with an endpoint p;,
and another with the endpoint ¢;, a contradiction since all such chords of D, ,, intersect.
Hence G is a forest, and so |S| = |E(G)| < |V(G)| = n as required. O

We now prove Theorem 1.2.2, that for every positive integer k there is a circle graph
with clique number at most k and chromatic number at least k(Ink — 2).

Proof of Theorem 1.2.2. For a positive integer w, choose some n > 3w — 3. Let Gy, , be the
intersection graph of the chord diagram D, ,, so G, is a circle graph. By Lemma 3.6.2,
the graph G, has clique number at most w. By Lemma 3.6.1, |V(G,.)| > nw(lnw — 2),
and by Lemma 3.6.3, the stable sets of G,,,, all have size less than n. Hence x(G, ) >

W = w(lnw — 2) as desired. .
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Chapter 4

Vertex-minors

In this chapter we prove Theorem 1.3.1 that proper vertex-minor-closed classes of graphs
are y-bounded. Along the way we also prove Theorem 1.3.3 that they are also linearly
2-controlled. At the end of the chapter in Section 4.7, we will also discuss some of the
details of the proof of Theorem 1.3.2 that proper pivot-minor-closed classes of graphs are
x-bounded.

Let us recall the definitions of local complementation and vertex-minors. The action of
performing local complementation at a vertex v in a graph G replaces the induced subgraph
on N(v) by its complement Figure 1.2). The resulting graph is denoted by G x v. We say
that a graph H is a vertex-minor of a graph G if H can be obtained from G by a sequence
of vertex deletions and local complementations.

Something that is conceptually simpler than finding a given graph H as a vertex-minor
is finding an induced subdivision of H. In a graph H, the act of replacing an edge uw with
a vertex v adjacent to u and w only is known as subdividing the edge uw. A graph G is
a subdivision of a graph H if G can be obtained from H by a sequence of subdivisions.
If v is a vertex of degree two in a graph GG and v is adjacent to two non-adjacent vertices u
and w then we say that the graph obtained by removing the vertex v and adding an edge
between u and w is the graph obtained from G by smoothing the vertex v. Observe that
the graph obtained from G by smoothing a vertex v is (G * v) — v, and so in particular is
a vertex-minor of G. So more generally, by repeated smoothing of vertices, a graph H is
a vertex-minor of any subdivision of H. We let G* denote the graph obtained from G by
subdividing each edge k times.

Scott [91] conjectured that for every graph H, the graphs containing no induced sub-
division of H are x-bounded. This is known to be true when H is a tree [91], a cycle [20],

38



and generalizing both trees and cycles, a banana tree [95]. However Scott’s conjecture is
false in general; Pawlik et al. [35] proved that segment intersection graphs (which contain
no induced subdivision of K1) are not x-bounded. Theorem 1.3.1 recovers one possible
weakening of Scott’s conjecture.

To prove Theorem 1.3.1 we use the idea of p-controlled classes of graphs. Recall that
x?)(G) denotes the maximum chromatic number of an induced subgraph of G with radius
at most p, and we say that a class of graphs G is p-controlled if there exists a function f
such that x(G) < f(xY(@)) for all G € G.

With the idea of p-control in mind, one may naturally split the problem of proving that
a class of graphs G is y-bounded into subproblems. The first is to show that for some p > 2,
G is p-controlled. The next is to reduce control and show that G is 2-controlled. The final
subproblem is to make use of the fact that G is 2-controlled to prove y-boundedness. So
intuitively the strategy is essentially to first show that huge chromatic number is (at least
in this looser sense) a local property. From there we then argue that it is actually a more
and more local property until eventually getting down to the extremely local property of
containing a large clique. The framework of this strategy was first introduced by Scott [94].

For vertex-minors, the first step turns out to be the most challenging. In our proof of
Theorem 1.3.1 in [25], the first step was to prove that proper vertex-minor-closed classes
are (linearly) 9-controlled. For the second step we then applied a theorem of Chudnovsky,
Scott, and Seymour [21] to quickly reduce “9” down to “2”, although at the cost of not
retaining linearity. The proof of Theorem 1.3.1 in this thesis very roughly follows the
same framework as that in [25], but we incorporate some ideas that will be used to prove
Theorem 1.3.2 in [24]. This simplifies the proof somewhat with the most significant change
being that we prove 2-control directly. An advantage of this is that we are able to retain
linearity and thus prove Theorem 1.3.3 that vertex-minor-closed classes are linearly 2-
controlled. Let us remark that despite new ideas from [24] allowing us to simplify the proof
of Theorem 1.3.1, the proof of Theorem 1.3.2 that pivot-minor-closed classes of graphs are
x-bounded still remains significantly more complicated than that of Theorem 1.3.1 (see
Section 4.7 for further discussion on this).

In Section 4.1 we cover some necessary preliminaries and discuss simple universal graphs
for vertex-minors. Aiming to find particular universal graphs as vertex-minors is much
more convenient than aiming to find an arbitrary graph H as a vertex-minor. However,
there is a balance to be struck between how simple the universal graphs that we aim
to find are, and how easy they are to find as vertex-minors. In Section 4.2 we then
find more complicated universal graphs that are easier to find as vertex-minors. The
main result of this section (Theorem 4.2.7) is later used to finish off each of the steps
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in the p-control strategy. Sections 4.3-4.5 are then dedicated proving Theorem 1.3.3 that
vertex-minor-closed classes are (linearly) 2-controlled. Each these sections are very roughly
dedicated to finding different parts of the universal graphs that we seek. We will give a
more detailed overview of these sections at the end of Section 4.2, after we have introduced
these universal graphs. Then Section 4.6 handles the last step of the p-control strategy
by using Theorem 1.3.3 to finally prove Theorem 1.3.1 that vertex-minor-closed class of
graphs are y-bounded. After all this, in Section 4.7, we further discuss pivot-minors and
the proof of Theorem 1.3.2.

4.1 Preliminaries

Given two sets A and B, we let A — B denote the subset of A obtained by removing the
elements of AN B.

Given a vertex v of a graph G, we let N(v) denote its neighbourhood, which is the
set of vertices adjacent to v. More generally given a set A of vertices in a graph G, we let
N(A) be the set of vertices in V(G) — A that are adjacent to a vertex of A. If the graph is
not clear from context, we use Ng(v) or Ng(A). Given an integer ¢ > 0, we let N;(A) be
the set of vertices at distance exactly ¢ from A, and we let V;[A] be the set of vertices at
distance at most ¢ from A. We may denote the closed neighbourhood N,[A| by N[A].

We say that two sets of vertices A and B in a graph G are complete to each other if
for all a € A and b € B, we have ab € E(G). Similarly A and B are anti-complete if
for all @ € A and b € B, we have ab € FE(G). If for all b € B, there exists a vertex a € A
that is adjacent to b, then we say that A dominates B. For a simple example observe
that if v is a vertex of a graph G, then N;_;(v) dominates N;(v). Recall that for a positive
integer n, we let [n] denote the set {1,2,...,n}.

Given a set C of vertices on a graph G, we denote the induced subgraph of G on
vertex set C' by G[C]. For convenience we often use x(C) for x(G[C]). Given a set A of
vertices of a graph G, we let G — A be the graph obtained from G by deleting the vertices
A. Similarly for a set F' of edges of GG, we let G — F' be the graph obtained from G by
deleting the edges F'. For a set F' of edges in GG, the graph obtained from G by contracting
each edge of F' (and then removing any resulting loops or multiple edges) is denoted by
G/F. Given two disjoint sets A and B of vertices in a graph G, we let E(A, B) denote the
set of edges between A and B. For a set A of vertices in a graph G, we let E(A) denote
the set of edges between vertices of A.

For an edge uv of a graph G, let Vi = N(u) — N[v], Vo = N(v) — N[u], and V5 =
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Figure 4.1: The effect of pivoting an edge uwv.

N(u) N N(v). Pivoting the edge uv of G is the act of first complementing the edges
between each of the three pairs of vertex sets (Vi,V5), (Va,V3), and (Vi,V3), and then
swapping the vertex labels of u and v (see Figure 4.1). We denote this graph by G A uv.
A graph H is a pivot-minor of a graph G if H can be obtained from G by a sequence
of vertex deletions and pivots. Pivot-minors are closely related to vertex-minors; it can be
shown that G Auv = Gxuxvsxu=Gxvxuxv (see [33] for a proof). In particular, notice
that this implies that if H is a pivot-minor of GG, then H is also a vertex-minor of G. We
will use this fact repeatedly without reference.

For positive integers n,m, we let K, ,, denote the complete bipartite graph whose
vertices can be partitioned into two stable sets of size n and m that are complete to each
other. We prove a motivating lemma.

n
2

Lemma 4.1.1. The graph K}L( ) contains every n-vertex graph as a vertex-minor.

Proof. First observe that by smoothing and deleting vertices we may obtain K} as a vertex-
minor. Now given an n-vertex graph (G, we may associate its vertices with the non-
subdivision vertices of K!. Now for each pair of distinct vertices u and v of G we may do
one of two things. If wv is an edge of G then we may simply smooth the corresponding
degree-2 vertex of K. If uv is not an edge then we may just delete the corresponding
degree-2 vertex of K}. Doing this for each such pair u,v results in the desired vertex-
minor G. O

So K} ., provides suitable universal graphs for vertex-minors.
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4.2 Beyond K%m

In this section we extend Lemma 4.1.1 to find universal graphs that are easier to find
as vertex-minors. Lemma 4.2.2 will show that K} remains universal even when certain
additional edges are allowed to be added. Since K7, is a subdivision of K, ., these also
provide universal graphs for vertex-minors. Lemma 4.2.3 again shows that these graphs
are universal even when certain additional edges can be added to K} ,,. Lastly the main
result of this section (Theorem 4.2.7) unifies and slightly extends both Lemma 4.2.2 and
Lemma 4.2.3. This is the result that we will eventually use to conclude the proof of

Theorem 1.3.3 and Theorem 1.3.1.

All the proofs in section have a common theme of appropriately applying the multicolour
Ramsey theorem to reduce to key cases, and then proceeding with an appropriate sequence
of local completions and vertex deletions to obtain either K or K7  as a vertex-minor.
For positive integers t,n, we let R*(n;t) denote the t-colour Ramsey number of n.
In other words, the multicolour Ramsey theorem tells us that for every ¢-colouring of the
edges of K g«(ny), there is a monochromatic clique with n vertices.

We begin with taking Lemma 4.1.1 a step further by showing that K}l’m remains
universal even when certain additional edges are added. A graph G with vertex-set
{wr, . w Uy i€ [nl,j € [m]}U{z, ..., 2} is an interfered K if

e for each i € [n],j € [m], wyy;; € E(G) and y; j2; € E(G),
e all other edges of G are contained in {wyy; ; : i,k € [n],j € [m] with i < k}.

See Figure 4.2 for an example of an interfered K. %73.

Lemma 4.2.1. Let G be an interfered Kl*(
minor.

pig2m) om- Lhen G contains K} = as a pivot-

Proof. Consider an auxiliary complete graph A on vertex set [R*(n;2%™)]. For each 1 <
i < k < R*(n;2*™), colour the edge ik of A according to which of the 2m edges of
{wryij : j € [2m]} are in G. This is a 2?™-edge colouring of A. So by the multicolour
Ramsey theorem, there exists a N C [R*(n;2*™)] with |N| = n such that for all i, k, k" €
N and j € [2m] with i < k and ¢ < k', y; ; is adjacent to wy, if and only if y; ; is adjacent
to wyr.

If there is a M C [2m] with |M| = m such that for all i,k € N and j € M with i < k,
y;.; is not adjacent to wy, then we obtain K}L,m as an induced subgraph on the vertex set
{w;:ie NyU{y,;:ie N,je My U{z;:j€ M}.
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Figure 4.2: An interfered K3 3. Dashed lines indicate possible additional edges.

So, we may assume that there exists a M C [2m] with |[M| = m + 1 such that for
all i,k € N and j € M with i < k, y;; is adjacent to wy. Let N = {ay,...,a,} where
a; < ...< a, and choose some b € M. Now let

H=GA Way Yay b N\ WayYag,p N\ - * N Wa, Yay, b-

For each 1 < ¢ < n in order, on the vertex set {w,, : £ < k <n}U{y;,; :i € N,j €
M} U{z; : j € M\{b}}, pivoting the edge w,, Va4, » removes the edges between vertex sets
{Ya,; 1 J € M\{b}} and {w,, : ¢ < k <n}, and swaps the labels of w,, and y,;. Thus, the
induced subgraph of H on vertex set {y;p:i€ N} U{y;j:i€ N,je M\{b}}U{z;:j¢€
M\{b}} provides the desired pivot-minor of G. O

As a consequence of Lemma 4.1.1 and Lemma 4.2.1, we get the following.

Lemma 4.2.2. For every positive integer n, there exists a pair of positive integers q, h
such that every interfered K;’h contains every n-vertex graph as a vertex-minor.

Now we will examine supergraphs of Kﬁvm that retain the property of being universal
graphs for vertex-minors. For the rest of this section we will assume that V(K2 ) =
{wy,...;,w,} U{z;; 1 € n|,j € [m]}U{y,; 1€ n|,j€[m]}U{z,...,2,} where for
each i € [n],j € [m], wix; ;, i Vi j, Yij% € E(Kflm)

A graph G is an interfered K72  if it contains K7, as a subgraph (with vertex set
as above), and all other edges of G are contained in the union of the two sets
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Figure 4.3: An interfered K3 ,. Dashed lines indicate possible additional edges.

1. Ep ={y;jwi i,k € [n],j € [m] with ¢ < k}, and

2. By =A{yijxr i,k €nl, j,7 € [m] with i < k}.

We call the edges of E(G) N Er the tip edges of G, and the edges of E(G) N E); the
middle edges of G. See Figure 4.3 for an example of an interfered K3 5. These are also
universal graphs for vertex-minors.

Lemma 4.2.3. For every positive integer n, there exists a pair of positive integers q,h
such that every interfered K, ;h contains every n-vertex graph as a vertex-minor.

To prove Lemma, 4.2.3 we will aim to find K? ) or K! () as a pivot-minor by clearing
o\ 2 5\ 2

out the additional edges in each of the two sets added to some K7, to create G. Let us
first take care of the tip edges.

Lemma 4.2.4. Let G be an interfered K3, 3 Then G contains an interfered

K2 as a pivot-minor that has no tip edges.

n,m

n—2;2m+1) m41°

Proof. By the multicolour Ramsey theorem, there exists a N C [R*(3n — 2;2™"1)] with
|N| = 3n — 2 such that for all 4,4, k, k" € N and j € [m + 1] with i < k and i’ < k', y;; is
adjacent to wy, if and only if yy ; is adjacent to wy .
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If there is no b € [m + 1] such that for all i, &’ € N with ¢ < k, y; is adjacent to wy,
then G contains an interfered K 5?”7277” 41 without any tip edges as an induced subgraph on
the vertex set {w; : i € N} U{x;; :i e N,je m+1}U{y;: i€ N,jem+1]}U
{zj:j € Im+1]}.

So we may assume that there exists a b € [m + 1] such that for all 7, k" € N with i <k,
yip 1s adjacent to wy. Without loss of generality, we may assume that b = m + 1. Let
N ={ay,...,a3, o} where a; < ... < az, 2. Now let

H=GA Yas,m+1Was A Yas,m+1Wag ARV Yazp_a,m+1Wasz, 3-

Note that for each 1 < ¢ < n — 1 in order, two consequences of pivoting the edge
Yas_y,m+1Was, 1S the removal of the edges between vertex sets {ya,,_,; : 7 € [m]} and
{w,, : 3¢ <i < 3n — 2}, and a possible alteration of the edges between {y,,, ,;: 7 € [m]}
and {z,,;:30 <i<3n—2,5 € [m]}. These pivots alter the induced subgraph H' of H
on vertex set {Wgy,; , 11 € [N} U{xay ,; 11 € [n|,5 € M|} U{Yay ;%€ [n],5€[m}U
{z; : j € [m]} in no other way. Thus, H' provides the desired pivot-minor of G. O

It now just remains to eliminate the middle edges. These are trickier to remove. Let
G be an interfered K2, and let H be a bipartite graph on vertex set {yi,...,ym} U

{z1,..., 2} We say that a graph G is an H-interfered K72 if G is an interfered K7
without any tip edges, and for all i,k € [n| and 7,5 € [m] with ¢ < k, y;; is adjacent
to x; in G if and only if y; is adjacent to x5 in H. We apply the multicolour Ramsey

theorem to find a H-interfered K7 = for some H.

Lemma 4.2.5. Let G be an interfered K;*(namg) . without any tip edges. Then G contains

a H-interfered Kim as an induced subgraph for some bipartite graph H on verter set
{1, Ym P U{z1, ... 20}

Proof. Consider an auxiliary complete graph on vertex set [R*(n; 2m2)], for each pair 1 <
i < k < R*(n; 2’”2), we colour the edge ik according to the bipartite subgraph of G with
vertex set {y;; : j € [m]} U{zk; : j/ € [m]}. The lemma now follows by applying the
multicolour Ramsey theorem. O]

It is not always possible to eliminate the middle edges as we may hope, however in this
case we can still find a K}L’m as a pivot-minor. So for the next step we aim to find either
K}Zm or Kg}m as a pivot-minor. Our application of the multicolour Ramsey theorem in
the proof of the following lemma is essentially the same as using a Ramsey theorem for

ordered bipartite graphs.
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Lemma 4.2.6. Let G be a H-interfered K3

41,27 (3m—2:4) with m > 2. Then G contains
either K\,

m or K2 as a pivot-minor.

Proof. Consider an auxiliary complete graph A on vertex set [2R*(3m—2;4)]. For each pair
1 <j<t<[2R*(3m—2;4)] we colour the edge j¢ of A one of four colours corresponding to
whether or not y;z, is an edge of H and whether or not y,x; is an edge of H. Furthermore
we colour the vertices v of A one of two colours corresponding to whether or not y,z,
is an edge of H. By pigeon-hole principle, there exists a B C [2R*(3m — 2;4)] with
|B| = R*(3m — 2;4) so that either y,z, is an edge of H for every v € B, or y,z, is not an
edge of H for every v € B. By the multicolour Ramsey theorem, there exists a D C B
with |D| = 3m — 2 such that for every j,5'¢, ¢ € D with j < (¢ and j' < ', y;x, is an edge
of H if and only if yzy is an edge of H, and y,x; is an edge of H if and only if yyx; is
an edge of H. So after possibly relabelling vertices (so that D is mapped to [3m — 2] with
either the same or reversed ordering), we obtain an induced subgraph G’ of G that is a
H'-interfered K3, ., 5,,_, where either

(1) for every i € [3m — 2|, Ny/(y;) = {z;}, in which case we say that H' is a coupled
matching, or

(2) for every i € [3m — 2|, Ny/(y;) = {x1,...23n_2}, in which case we say that H' is
complete, or

(3) foreveryi € [3m—2], Ny (y;) = {x1,...x;}, in which case we say that H' is a coupled
half-graph, or

(4) for every i € [3m — 2], Ng:/(y;) = 0, in which case we say that H' is anti-complete,
or

(5) for every i € [3m — 2|, Ng/(y;) = {x1, ... x3m_2}\{x;}, in which case we say that H' is
a anti-coupled matching, or

(6) for every ¢ € [3m — 2], Ng/(y;) = {x1,...2;-1}, in which case we say that H' is a
uncoupled half-graph.

We must now handle these six cases. Case (4) that H' is anti-complete is trivial, since in
this case G' is isomorphic to K3, 5,,_,. Case (1) is also straightforward since then G’ con-
tains an induced subgraph isomorphic to K ?}n,gm_2 (with vertices wa, ..., W3pi1, Y11, - - - Y1,3m—2
forming the vertices degree at least three). By using pivot-minors, we can essentially reduce
cases (2) and (6) to case (4), and cases (3) and (5) to case (1).

46



Claim 4.2.6.1. If H' is either complete or a anti-coupled matching, then G’ contains a
H*-interfered KZ+1,3m74 as a piwot-minor where H* is either anti-complete or a coupled
matching respectively.

Proof. Let
1 !
G" = G" N Y2,3m—2%33m—3 N\ Y5 3m—26,3m—3 /\ -+ N Y3n—1,3m—2T3n,3m—3-

Note that for each 1 < ¢ < n in order, a consequence of pivoting the edge ys¢—1 3m—273¢,3m—3
is that the edges between {ys;_2; : j € [3m — 4]} and {z5,_2; : 3¢ < < 3n+1,j € [3m—4]}
are complemented. Let G* be the induced subgraph of G” on vertices {ws;_5 : i € [n + 1]}U
{(L’gi_QJ‘ RS [n + 1],] S [Sm - 4]}U{y3,'_27j S [n + 1],] € [STTL - 4]}U{Z] j c [3m - 4]}
The pivots alter the induced subgraph G* in no other way. Thus, G* provides the desired
pivot-minor of G'. O

. . . ] . ! . 2 . . .
So in particular, if H" is complete, then G' contains K, 3,, 4 as a pivot-minor, and if

H' is a anti-coupled matching, then as before, G’ contains K}L73m74 as a pivot-minor. This
handles cases (2) and (5) respectively.

Claim 4.2.6.2. If H' is either a coupled or uncoupled half-graph, then G' contains a H*-
interfered Kﬁﬂ,m as a piwot-minor where H* 1s either a coupled matching, or anticomplete
respectively.

Proof. Let

Gy = G' — {wq, w3, ws, we, . . ., Wan_1, W3y }
— {29, 23, 25, 26y - - - » Z3n—15 Z3n}
—A{xsi23j-1:i € n+1],j€m—1]}
—{x3i03; 1€ n+1],5 € [m—1]}
—{ysi—23j1:1€n+1],5 € [m—1]}
—{ysi—23; 1€ [n+1],5 € [m—1]}

For each 1 </ <n —1 in order, let

Gy = (Gy_y Nyse—1,3%302 N Yse—1,6%305 N\ - AN Y30-1,3m—33¢,3m—4)
—{x;; i€ {30—-1,30},5 € [3m — 2|}
—{yi; 1€ {30—-1,30},5 € [3m — 2]}.
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Figure 4.4: A (3,3)-frame. Dashed lines indicate possible additional edges. The vertices
and certain edges incident to them are coloured differently for each of N[z1], N|[zs], N|z3].

Observe that for fixed ¢, for each 1 < r < m—1 in order, pivoting the edge ys¢—1 3,Z3¢,3,—1
of Gj_; removes all the edges between the two vertex sets {ysr_23j—2 : 7 < j < m} U
{yse—135 :r < j<m-—1}and {z;; : 3¢ <i<3n+1, 1<j<3r}nV(G,_,). So
for each j € [m], if H' is coupled half-graph, then Ng:(ys—23j-2) = {32352, 2352} U
{mizj—2 3 <i < 3n+ 1}, otherwise if H' is a uncoupled half-graph, then N (y3¢-2,35-2) =
{Z3r-2,3j—2, 23j—2}. So we see that G},_, provides the desired pivot-minor of G'. O

As before, if H' is a coupled half-graph, then G’ contains K}L,m as a pivot-minor, and
if H' is a uncoupled half-graph, then G’ contains K., ,, as a pivot-minor. This handles
cases (3) and (6) respectively, thus completing the proof. O

Since K7, contains K, as a vertex-minor, Lemma 4.2.3 now follows from applying
Lemma 4.2.4, Lemma 4.2.5, Lemma 4.2.6, and Lemma 4.1.1 in order.

We say that a graph G’ is a (g, h)-frame if there is a graph G that is an interfered
K;h and a X C [¢q] such that G’ can be obtained from G by first contracting the edges
w;x; j such that ¢ € X and j € [h], and then possibly adding edges to each of the induced
subgraphs on vertex sets N(z1),...,N(z). See Figure 4.4 for an example of a (3, 3)-frame.
In particular, compare Figure 4.4 with Figures 4.2 and 4.3, and observe that (g, h)-frames
generalise both the notion of an interfered K, and the notion of an interfered K7,.
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The following is the main result of this section, it unifies and slightly extends both
Lemma 4.2.2 and Lemma 4.2.3.

Theorem 4.2.7. For every positive integer n, there exists a pair of positive integers q,h
such that every (g, h)-frame contains every n-vertex graph as a vertez-minor.

Proof. Let qi,h; be as in Lemma 4.2.2, and let ¢, hy be as in Lemma 4.2.3. Let ¢ =
¢1 + g2 — 1. Then let h = max{hy, ho} and ¢ = R*(¢'; 2h).

By the multicolour Ramsey theorem, there exists some @) C [g] with |Q| = ¢ such
that for each j € [h], {y;; : i € Q} is either a clique or a stable set. By possibly locally
complementing on vertices of {2, : j € [h]}, we may assume that each is a stable set. Then
by pigeon-hole principle, we may find either an interfered K (:]ll,hl or an interfered K gzm as
an induced subgraph (and so as a vertex-minor after the possible local complementations).

The result then follows by Lemma 4.2.2 and Lemma 4.2.3 respectively. O

To prove Theorem 1.3.3, by Theorem 4.2.7 it now suffices to show that if y?(G) is
bounded and x(G) is sufficiently huge, then G contains a large (¢, h)-frame as a vertex-
minor. This is what Sections 4.3—4.5 are dedicate to. Once we have Theorem 1.3.3, in
Section 4.6 we then prove Theorem 1.3.1 that proper vertex-minor-closed class of graphs are
x-bounded. We finish this section with a sketch of the strategy for proving Theorem 1.3.3
and give a overview of these next three sections.

Roughly speaking, a (¢, h)-frame has two halves. The “bottom” half consists connected
components on vertex sets N[zi],..., N[zp], where for each 1 < j < h, the induced sub-
graph on vertex set N[z;] has a spanning star with centre z;. The “top” half consists is
the subgraph obtained by removing vertices zi,...,2,. This is a collection of stars and
1-subdivided stars with centres wi,...,w; and possible additional edges between these
subgraphs. It is not too difficult to find either half individually, even as induced subgraphs
rather than as vertex-minors. However, in order to create our (g, h)-frame vertex-minor,
we need to the find top half in such a way that it is “compatible” with the bottom half
that we then find later.

Instead of aiming to find the stars or 1-subdivided stars of the top half of our (g, h)-frame
directly as induced subgraphs, we will use vertex-minors. The advantage of this is that we
can instead aim to find as an induced subgraph a more general structure where each star
or 1-subdivided star can instead be a more general tree-like structure with many leaves.
With such a induced graph, we can then use vertex-minors to “simulate” a contraction-like
operation on these trees to reduce them down to 1-subdivided stars as we desired for the
top half of our (g, h)-frame. So, Section 4.3 is dedicated to proving a lemma that will allow
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us to find these tree-like structures (see Lemma 4.3.6). Then, Section 4.4 is dedicated
to proving a technical lemma that will allow us to suitably simulate this contraction-like
operation on at least one of these tree-like structures (see Lemma 4.4.4).

Lastly, in Section 4.5, we put everything together. The section starts by using the fact
that x?(G) is bounded and (@) is huge to find an induced subgraph that both contains
what will become the bottom half of our (g, h)-frame, but also contains a suitable structure
from which will be able build the compatible top half (see Lemma 4.5.3). After this we then
use the results of Sections 4.3 and 4.4 to extract our tree-like structures that we need for
the top half of the (¢, h)-frame, and then to carefully “contract” them down one at a time.
Putting it all together, this will finally complete our (¢, h)-frame and prove Theorem 1.3.3
that proper vertex-minor-closed classes of graphs are (linearly) 2-controlled.

4.3 Large induced bloated trees

This section is devoted to the analysis of large induced tree-like structures. From these
structures we shall later obtain the “top” half of the (g, h)-frame vertex-minor that we
seek.

If T is a tree then we say that a vertex of degree at most 1 is a leaf and that a vertex
of degree at least 3 is a branching vertex. The degree sum of an n-vertex tree is 2n — 2,
therefore if a tree has ¢ > 1 leaves, then it has at most ¢ — 2 branching vertices. Likewise,
a tree with b > 1 branching vertices has at least b + 2 leaves. We use these two facts
repeatedly without reference.

We call maximal cliques (with respect to vertex inclusion) of size at least three big
cliques, or big k-cliques when we wish to refer to their size. We say that a graph G is
a bloated tree if

e cvery edge is contained in at most one big clique,
e the vertices of every big clique of size k£ > 3 have degree at most k, and

e the graph obtained by contracting each big clique is a tree.

Note that a bloated tree is not necessarily a tree, but all trees are bloated trees. An
alternative definition for bloated trees is that they are block graphs such that for each
k > 3, the vertices that are contained in the big k-cliques have degree at most k. We say
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that a vertex of a bloated tree is a leaf if it has degree at most 1. A vertex of a bloated
tree is branching if it has degree at least 3 and is not contained in a triangle.

Erdés, Saks and Sés [38] proved that for each r > 3, there exists an increasing function
tr : N — N such that lim,,_, t,(n) = oo, and every connected K,-free graph with at least
n vertices contains an induced tree on at least t,.(n) vertices.

We require a version for bloated trees, and for convenience we may make this in-
dependent of the clique number. We do not attempt to optimize the bounds. Letting
f(1)=1,f(2) =2, and f(n) = max{r : t;*(r) < n} for n > 3, we see that f is increasing
and lim,, ., f(n) = oco. Since a clique is itself a bloated tree, we obtain the following
version of the theorem of Erdés, Saks and Sés [38].

Theorem 4.3.1 (Erdés, Saks and Sés [33]). There exists an increasing function f : N — N
such that lim,_,.. f(n) = oo, and if G is a connected graph on at least n vertices, then it
contains an induced bloated tree T on at least f(n) vertices.

We further require a suitable version of Theorem 4.3.1 in which we seek an induced
bloated tree containing many vertices from a (much larger) set of distinguished vertices.
First we need a lemma on cut vertices and bridges in maximal induced bloated trees of
a graph. A vertex v of a connected graph G is a cut vertex if G — v is disconnected.
Similarly, an edge e of a connected graph G is a bridge if G — e is disconnected.

Lemma 4.3.2. Let G be a connected graph and T a mazimal induced bloated tree of G. If
u and v are adjacent vertices that have degree two in T, and both u and v are cut vertices
in G, then uv 1s a bridge of G.

Proof. As u is a cut vertex of G and has degree two in the maximal induced bloated tree
T, we observe that, G —u must have exactly two connected components. In particular the
two vertices that u is adjacent to in 7" are in separate connected components of G — u. So
u is not contained in a big clique of T'. Similarly for v.

Suppose that uv is not a bridge. Then there exists an induced cycle C' of G containing
the edge uv. No vertex of C'— {u, v} is adjacent to any vertex of T'— {u, v} as this would
contradict the fact that both G — v and G — v have exactly two connected components.
Consider the vertex w of C' which is adjacent to u and distinct from v. Then as v and v
are cut vertices, we see that u and possibly v are the only vertices of T' that are adjacent
to w in G. This contradicts the maximality of the induced bloated tree T" as we may add
the vertex w. We conclude that uv is a bridge of G. O
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Theorem 4.3.3. There exists an increasing function g : N — N such that lim,_,., g(n) =
0o, and if G is a connected graph and S is a non-empty subset of its vertices, then G
contains an induced bloated tree with at least g(|S|) vertices of S.

Proof. Let f be as in Theorem 4.3.1, and let g(n) = [15 f(n)]. We will show that g satisfies
the conclusion of the theorem.

Consider the graph G’ obtained from G by repeating the following two operations until
neither can be done.

e If v is not a vertex of S and not a cut vertex, then delete v.

e If v is not a vertex of S and v has degree 2 in G with both incident edges being
bridges, then contract an edge incident to v.

Observe that any induced bloated tree of G’ corresponds to an induced bloated tree of
G that contains the same vertices from S. Hence we just need to find an induced bloated
tree of G' that contains at least & f(|S|) vertices of S. By definition of f, we can find a
maximal induced bloated tree T" of G' with at least f(|V(G")|) > f(|S]) vertices. We will
show that |V(T") N S| > 5|V (1))

Let:

e / be equal to the number of leaves of T”,

b be equal to the number of branching vertices of T”,

x be equal to the number of big cliques X of 7" having at least three vertices with a
neighbour contained in V(7") — X,

y be equal to the number of big cliques X of 7" having exactly two vertices with a
neighbour contained in V(7") — X, and

z be equal to the number of big cliques X of T’ having exactly one vertex with a
neighbour contained in V(7") — X.

Every vertex v of G’ that does not belong to S is a cut vertex of G’. So by the
maximality of 7", the set S contains every leaf of 7" and every vertex contained in a big
clique X of T that has no neighbour in V(7") — X. If 7" is a clique then V(T") C S, so
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we may assume that ¢ 4+ z > 2. So the set W of leaves, branching vertices and vertices
contained in big cliques of 7" must contain at least ¢ 4+ y + 2z vertices of S.

For each big clique X of 7", let Px be a path on the vertices of X that have a neighbour
contained in V(7") — X. Now let 7" be the tree obtained from 7" by replacing each big
clique X with the path Px. If X is a big clique of 7" that has exactly one vertex with a
neighbour contained in V(7") — X, then this vertex is a leaf of 7”. Otherwise if X is a big
clique of 7" that has at least two vertices with a neighbour contained in V' (7")— X, then two
of these vertices have degree 2 in 7", while the others are all branching vertices of 7. Hence
T" has {+ z leaves and therefore at most £+ z — 2 branching vertices. It further follows that
T" has at most 3(£+ z —b— 2) vertices v contained in a big clique X of 7" such that v and
at least two other vertices of X have a neighbour contained in V(7") — X. So the number
of vertices that are not contained in S, but are contained in a big clique of 7" is at most
3({4+2z—b—2)+2y+=z. Therefore |W -S| < b+3({+2—b—2)4+2y+2z = 3(+2y+42—2b—6.

Since £ + y + 2z < |W N S|, we get that |[W — S| < 3|W N S|. Hence |W| < 4|WNS|.

Now let P be the connected components of 7" — W. Clearly every graph contained in

P is a path. Also by considering the tree obtained from 7" by contracting each big clique,
we observe that b+x < ¢+ z — 2. Therefore |P| </{+b+x+y+2z—1<20+y+2z—3.

If > pep [V(P)] < 4(20 +y + 2z — 3), then we have that
V(T <4WNS|+4204+y+22—3) <12[WNS| <12]V(T)NS|.
Hence we may assume that ), [V(P)| > 4(20 +y + 2z — 3).

Consider one such path P € P. Suppose that P contains three consecutive vertices
u,v,w that are all not contained in S. Then wu,v,w would all be cut vertices of G’. By
Lemma 4.3.2, both uv and vw must be bridges of 7’. Hence by the maximality of 7",
v has degree 2 in G'. But now this contradicts the choice of G’, so we may conclude
that P contains no three consecutive vertices that are all not contained in S. Hence

V(P)n S| = [P,

Then summing over all P € P, we get that

Z\V(P)msmz:@—(zuywz—g)

PeP PeP
V(P V(P
>Z| (3)|—Z| (4)|
PeP PeP
o V(P
_; 12
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So it follows that

V()

|V(T/)msy:\Wm5\+2|v(p)mg|>@+ZIVl(JQ.D)I a

Pep Pep

as desired. ]

Next we aim to prune bloated trees with many leaves to obtain a smaller bloated tree,
still with many leaves, but without near branching vertices or big cliques.

The following lemma is due to Esperet and de Joannis de Verclos [11].

Lemma 4.3.4 (Esperet and de Joannis de Verclos [11]). Every tree T' with at least ¢ leaves
has a subtree which contains at least /€ of the leaves of T and has no adjacent branching
vertices.

Proof. We will prove a stronger statement on rooted trees. For a rooted tree T', let fo(T)
be the largest number of leaves of T" in a subtree of 7" that includes the root vertex and
all its children without having adjacent branching vertices. Similarly for a rooted tree T,
let f1(T) be equal to the largest number of leaves of T" in a subtree of T that contains the
root, vertex and at most one of its children without having adjacent branching vertices.

We will prove that fo(T") - f1(T") > ¢, which clearly implies the lemma. If 7" has height
either 0 or 1 then the result is clear. So we may assume that 7" has height at least 2. We
proceed by induction on the height of T'. Let T, ..., T} be the subtrees obtained by taking
a child of the root of T', rooting at this vertex and then taking all its descendants. Then

fo(T) > S8 A(Ty) and f1(T) > max{fo(T;) : 5 € {1,...,k}}. Hence

fo(T) - fi(T) > Z(fl(m - fo(T3)) > €.

as required. N

Lemma 4.3.5. Let T be a bloated tree with { leaves. Then T contains an induced bloated
1 . . . .

tree T' that has at least {1 leaves and whose branching vertices and big cliques are all at

distance at least 4 from every other branching vertex or big clique of T".

Proof. First note that if a vertex of a big clique of size k has degree k — 1, then we may
just delete the vertex. So we may assume that 7" has no such vertex.
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Next we reduce the problem to trees. We may contract each big clique of T into a
single vertex to obtain a tree T*. Now by reversing this operation we observe that such
a desired subtree of T™ corresponds to such a desired induced subgraph of 7. Hence we
may assume that 7" is a tree. We need only consider the distance between two branching
vertices in T" as there are no big cliques in a tree.

By Lemma 4.3.4, the tree T contains an induced subtree T, with at least v/¢ leaves and
with no adjacent branching vertices. Now by considering the graph obtained by smoothing
degree-2 vertices of T, and applying Lemma 4.3.4 again, we may find a subtree 7" of T5
and so of T with at least ¢1 leaves and with no pair of branching vertices at a distance of
less than 4 from each other. O]

Next we combine the previous few lemmas so that we may find our desired bloated
trees, this is the main result of this section.

Lemma 4.3.6. For every positive integer £, there exists a positive integer ¢’ such that
every connected graph G with a set S of V' distinguished vertices of degree 1 contains an
induced bloated tree T with ¢ leaves, all contained in S, and whose branching vertices and
big cliques are all at distance at least 4 from each other.

Proof. By Theorem 4.3.3, there exists some positive integer ¢’ such that every connected
graph G with a set S of ¢’ distinguished vertices of degree 1 contains an induced bloated tree
T' with ¢* leaves, all contained in S. Now by Lemma 4.3.5, there is an induced subgraph
T of T' that is a bloated tree with ¢ leaves all contained in S and whose big cliques and
branching vertices are all at distance at least 4 from each other as required. O

4.4 Vertex-minors and induced bloated trees

In this section we will be concerned with using vertex-minors to simulate an edge contraction-
like operation on bloated trees.

The next lemma will allow us to eliminate the big cliques from these bloated trees.

Lemma 4.4.1. Let ¢ be a degree-k vertex of a graph G contained in a big k-clique C' such
that its single neighbour d that is not contained in C' is adjacent to no vertex of C\{c}.
Then (G — E(C — ¢))/cd is a vertex-minor of G.

Proof. Simply consider G * ¢ — c. m
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A bloated star is a bloated tree consisting only of its leaves and a single big clique.
We call a bloated tree T' shrinkable if it is not a bloated star and the branching vertices
and big cliques of T" are all at distance at least 4 from each other. In a similar but much
simpler manner, we say that a tree T"is shrinking if it has no pair of adjacent branching
vertices. The next step is to modify shrinkable bloated trees into shrinking trees.

Lemma 4.4.2. Let T be a shrinkable bloated tree and let L be the set of leaves of T.
Then there is a sequence of local complementations and vertex deletions on the vertex set
V(T) — L so that the resulting vertez-minor T" is a shrinking tree whose set of leaves is L.

Proof. Firstly by appropriately removing vertices of 7' — L we can assume that no big
clique contains a vertex with no neighbour outside the big clique.

Since T' is not a bloated star, every big clique has a vertex whose neighbour outside
the big clique is not a leaf. Now we obtain the desired vertex-minor 7" of T' by applying
Lemma 4.4.1 to such a vertex of each big clique. O

With this we may now simulate a contraction-like operation on shrinkable bloated trees.

Lemma 4.4.3. Let T be a shrinkable bloated tree and let L be the set of leaves of T.
Then there is a sequence of local complementations and vertex deletions on the vertexr set
V(T) — L so that the resulting vertex-minor S is a star whose set of leaves is L.

Proof. Firstly by Lemma 4.4.2, we may instead assume that T is a shrinking tree.
If |V(T') — L| <1 then the result follows. Suppose for the sake of contradiction that T’
is a counter-example with |V(T") — L| minimum, we may assume that |V (T) — L| > 3.
Suppose first that there exists a vertex v of degree 2 which has a neighbour of degree

at most 2. Then smoothing v contradicts |V (T) — L| being minimum.

So there must exist a vertex v of T' of degree 2 with neighbours v and w such that
both v and w are branching vertices of T'. Then (7' A uv) —u — v is the graph obtained by
contracting the edges wv and vw. This again contradicts |V (T') — L| being minimum and
so completes the proof. O

The following technical lemma is the main result of this section.

Lemma 4.4.4. For every positive integer €, there exists a integer £ > { with the following

property. Let F' be a graph and let S C V(F) be a stable set such that |S| > ¢ and
S C Ni(v) for some vertex v € V(F') and positive integer t. Then either:
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1. there exists a vertex w € Ny_1(v) with at least £ neighbours in S, or

2. there is a subset L C S with |L| = £ such that there is a sequence of local complemen-
tations on vertex set N;_1[v]\N (L) and vertex deletions of vertices in F such that
the resulting vertex-minor T of F' is a 1-subdivided star whose set of leaves is L.

Proof. Let ¢} be as in Lemma 4.3.6 for £ + 1. Let ¢, = ¢ (¢ — 1), ¢4 = R(¢5, ¢ + 1) (where
R(l,,£+1) is the Ramsey number; any graph on at least R(¢;, {4 1) vertices contain either
a stable of size £;, or a clique of size £ + 1), and lastly let ¢ = ¢5(¢ — 1).

We may assume that every vertex of N, _;(v) has at most £ — 1 neighbours in S, since
otherwise the lemma would immediately follow. So, since N;_1(v) dominates S, there exist
subsets S5 € S and X3 C N,_;(v) with |S3] = | X3| = ¢4 such that each vertex of S3 has
exactly one neighbour in X3, and each vertex of X3 has exactly one neighbour in S5. Note
that this implies that ¢t > 2.

Suppose that X3 contains a clique C with |C| = ¢+ 1. Let w € C and L = N(C\{u})N
Ss. Then F[L U C] * u would provide the desired vertex-minor. So we may assume that
X3 contains no clique of size £ + 1. Then by Ramsey’s theorem, X contains a stable set

Note that N;_s[v] is anti-complete to Sy. If there is a vertex w € N;_o(v) with at
least ¢ neighbours in X5, then we would find our desired 1-subdivided star as an induced
subgraph. So we may assume that no vertex of N;_5(v) has more than ¢ — 1 neighbours
in Xy. Since |X5| > ¢ — 1, this means that ¢t > 3. As before, since N;_5(v) dominates Xo,
there exists subsets S; C S, X7 C X, and J C N;_o(v) with |S;| = | X;| = ¢} such that
each vertex of X; has exactly one neighbour in each of S; and J, and each vertex of S}
and J has exactly one neighbour in Xj.

Now we apply Lemma 4.3.6 to the induced subgraph F[N, 3[v] U J U Xj] to find a
X C X; with |X| = ¢+1 and an induced bloated tree T" of F[N;_3[v]UJU X;] with leaves
X and whose branching vertices and big cliques are all at distance at least 4 from each
other.

If T is not a bloated star, then the result now follows from Lemma 4.4.3 (with L =
N(X\{z}) N Sy for some z € X). In the remaining case that T is a bloated star, let
C ={c1,...,cor1} beits big clique. Let x be the vertex of X that is adjacent to cyyq, and
let L =N(X\{x})NS;. Then the desired vertex-minor is obtained from F[LU (X\{z})U
C] * cg41 by smoothing each of the vertices c1, ..., cp. m
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Figure 4.5: A length-2 mixed-multicover of a set C'. Dashed lines indicate possible addi-
tional edges between sets of vertices.

4.5 Linear 2-control

In this section we prove Theorem 1.3.3 that proper vertex-minor-closed classes of graphs
are linearly 2-controlled.

Let G be a graph. We call a collection £ = (L° L',... L*=1) of vertex sets a t-cover
of aset C' C V(G) if:

e the subsets LO, L', ... L*71 C C V(G) are pairwise disjoint,

|Lo| =1,

for each 7 € [t — 1], L'"! dominates L, and L'~ dominates C,

for each i,j € [t — 1)U {0} with |i — j| > 2, L' is anti-complete to L/,

for each i € [t — 1], L;_; is anti-complete to C, and
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e the sets L°, L', ..., L'~2 are non-empty.

The length of a t-cover £L = (L° L', ... L'™1) is equal to t. We refer to £ as simply a
cover when the length is not important. The last condition that the sets L°, L', ..., L2
are non-empty is implied by the previous conditions in the case that C' or L!~! is non-empty.
Instead of simply requiring that C' is non-empty, we use this more technical condition for
the convenience of later examining induced subgraphs with vertices removed from the sets
C and L'! (see for example Lemma 4.5.3 and the preceding definition of a (r, ¢, h)-frame).

We say that two covers £; = (LY, L},..., L¥™") and L;= (L?, le-, . ,L;jfl) are disjoint
if the two sets UZ:_Ol Lf and U’,?;Ol Lf are disjoint. We say that a collection of pairwise
disjoint covers (£; : ¢ € [g]) of a set C' is a mized-multicover of a set C C V(G) if for
each i,7 € [g], with i < j, the set of vertices UZ’;(? Lk is anti-complete to Ufj:_ol L? where
t; and t; are the lengths of £; and L£; respectively. The length of a mixed-multicover
(L; i € [q]) is equal to q. See Figure 4.5 for an illustration of a mixed-multicover of length
2. If the length of every cover of a mixed-multicover is equal to ¢, then we say that the
mixed-multicover is a t-multicover.

We start by showing that for graphs with large chromatic number, we can find long
mixed-multicovers of a set C' with large chromatic number. This is just a typical levelling
argument which has become a standard tool for tackling y-boundedness problems. For
instance, Gyarfds [70] uses essentially the same levelling technique in his proof that circle
graphs are y-bounded.

Lemma 4.5.1. Let q, ¢ be non-negative integers. Then every graph G satisfying x(G) > 2%c
contains a length-q mized-multicover (L; : i € [q]) of a set C C V(G), with x(C) > c.

Proof. For ¢ = 0, the result is vacuously true. We proceed inductively on ¢q. Then by the
inductive hypothesis, G contains a length-(¢ — 1) mixed-multicover (£;:i € [¢ — 1]) of a
set C', with x(C’) > 2c.

Let v be a vertex of G[C'] in a component with chromatic number greater than 2c.
For each non-negative integer i, let Lfl be the set of vertices at distance exactly ¢ from
v in G[C']. Then there must exist a non-negative integer ¢, such that y(L%) > ¢, since
otherwise we could obtain a 2c-colouring of the component of G[C’] by using a set of ¢
colours for the vertices at an odd distance from v in G[C'], and a second set of ¢ colours
for the vertices at an even distance from v in G[C"].

Then let C' = Ly, and let £, = (LY, Ly, ... ,Li™"). Then (L; :i € [q]) is a length-g
mixed-multicover of the set C' with x(C) > ¢ as desired. O
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A tick of a mixed-multicover (L; : i € [g]) of a set C' of vertices in a graph G, is a set
Z ={z,y1,...,y,} of vertices such that

e 7 is disjoint from (£; : 7 € [q]) and C,

{3/17~--7yq} g N<Z)7

z is anti-complete to C' and the vertices of (L£; : i € [q]),

for each i € [g], y; has at least one neighbour in L2 (where t; is the length of the
cover L;), and

e for each i € [q], y; is anti-complete to C, and all neighbours of y; contained in the
mixed-multicover (£; : i € [g]) are contained in L{ > J_, (U;’;_Ol Li)

Ticks will form the “bottom” half of the (g, h)-frame vertex-minor that we seek. So we
need to be able to find many disjoint and anti-complete ticks.

Lemma 4.5.2. Let q,h,c,k be non-negative integers. Then every graph G satisfying
XP(G) <k, and x(G) > 29(c + (¢ + 1)hr) contains a length-q mized-multicover (L; : i € [q])
of a set C C V(G) with x(C) > ¢, such that (L; : i € [q]) has h disjoint and anti-complete
ticks Z, ..., Zy,.

Proof. For h = 0, the result follows by Lemma 4.5.1. So we proceed inductively on h. By
the inductive hypothesis, G contains a length-¢ mixed-multicover (£, : i € [g]) of a set C”,
with x(C") > ¢+ (¢ + 1)k, and such that (£; : i € [¢]) has h — 1 disjoint and anti-complete
ticks Z1, ..., Zn_1.

Let z be a vertex of C". For each i € [q], let y; , be a vertex of Lfifl that is adjacent to
z (where t; is the length of the cover £;). Let Z, = {z,y1,...,y,}, and let C = C"\ Ny[Z].
Since x¥(G) < K, we have that x(C) > x(C") — |Z|x = x(C") — (¢ + 1)k > ¢. Note that
Zy, is disjoint and anti-complete to Zy, ..., Z,_1, so it just remains to remove vertices of
the mixed-multicover (£; : 7 € [¢]) of C, so that Z, becomes a tick. To do so, we simply
remove the vertices of |J;_, L~ that have a neighbour in Zj,. ]

For non-negative integers r, ¢, h where r < ¢, we say that a graph G is a (r, g, h)-frame
if:

e (G contains a length-¢ mixed-multicover (£; : i € [¢]) (of an empty set) with A disjoint
and anti-complete ticks Zy = {z1,v11, .-, 291}s - Zn = {2n, Yihs- - 2gn}, and G
contains no other vertices,
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Figure 4.6: An example of a (2,3, 3)-frame. Dashed lines indicate possible extra edges.
The three ticks (and some possible additional edges incident to their vertices) are each
coloured differently. The cover £, is as in case 2, and L is as in case 1.

e for each i € [r], L' is empty (where t; is the length of the cover £;), and
e for cach i € [r], either

1. the cover £; has length ¢; = 2, with LY = {w;}, or

2. the cover £; has length t; = 3, and G[LYUL}] is a star with centre w;, and leaves
{xi1,...,xin}, such that N(x;;) N {vi1,...,yin} = {yi,} for each j € [h].

See Figure 4.6 for an example of a (2,3, 3)-frame. In particular, notice that a (g, q, h)-
frame is exactly a (g, h)-frame (as in Theorem 4.2.7, compare Figure 4.6 to Figure 4.4).
By Lemma 4.5.2, we have the following.

Lemma 4.5.3. Let g, h be non-negative integers. Then every graph G satisfying x'? (G) <
K, and xX(G) > 29(q + 1)hk contains a (0,q, h)-frame as an induced subgraph.

Before proceeding, we need a quick notational definition. For two sets A, B, we let
AAB = (AUB)\(ANB). For a graph G and a subgraph H, we let GAH denote the graph
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obtained from G by replacing the edges of the induced subgraph on vertex set V(H), with
the edge set E(G[V(H)])AE(H).

Next we aim to show that if ¢/, h’ are sufficiently large, then every (0,q’,h’)-frame
contains a (¢, h)-frame as a vertex-minor. We use the following lemma to facilitate the
inductive argument.

Lemma 4.5.4. Let r,q,h be non-negative integers with r < q. Then there exist positive
integers q',h' such that every (r,q',h')-frame contains a (r + 1,q, h)-frame as a vertex-
minor.

Th

Proof. Let ¢ () = h, and for each i € [2(2>] in reverse order, let ¢;_; be as in the
2

conclusion of Lemma 4.4.4 for ¢;. Let ¢ = ¢ + 2(3) — 1 and W = ly. Now let G be a
(r,q,h)-frame. As in the definition of a (r, ¢, h')-frame, let (L£; : i € [¢']) be the length-¢’
mixed-multicover, and let Z, ..., Zp be its ticks. We label the vertices of (£; : i € [r]) and
Z4, ..., Zy as in the above definition of a (r,¢’, h')-frame. For each i € [¢], let ¢; be the
length of the cover £;. For every Q) C [¢/] and H C [W],let You ={v:i;j: i€ Q,j € H}.

If there exists an integer i € [2<T2h)] such that L% 7 contains a vertex w,,; with at least
h neighbours in {y; 1, ...,y }, then we would obtain a (r + 1, ¢, h)-frame as an induced

subgraph. So we may assume that no such integer ¢ exists.
rh
2

For each 7 € [2( )], let F; =G [Y{rﬂ'},[h'} Z;ré_2 LF..|. Note that Lemma 4.4.4 can be

applied to F; since for each 0 < 75 <t,.,; —1, Lf; ,; is the set of vertices that are at distance

exactly j in F; from (the single vertex of) L?,,. By applying Lemma 4.4.4 to each of the

induced subgraphs F},..., F () in order, there exist subsets H* = H () cC..-.CH C
2 2

[1/] such that for each i € [Q(T;)], we have that

® ‘HZ’ = gifl, and

e in the induced subgraph F;, there is a sequence of local complementations on the
vertex set (U’,j;‘{2 LY ) \N(Yr4iy,1,) and vertex deletions of vertices in Fj, so that

the resulting vertex-minor of Fj is a 1-subdivided star whose set of leaves is Y, 14y m, -

We can focus solely on H*. By further removing extra vertices as necessary, for each

rh
1€ [2( 2 )], in the induced subgraph F;, there is a sequence of local complementations on the
vertex set C; = ( 225_2 Lk +i> \N (Y{r4iy,m+) and vertex deletions of vertices in Fj, so that

the resulting vertex-minor 7; of F; is a 1-subdivided star whose set of leaves is Y{, 44} mr+.
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For some i € [2(? )], we wish to carry out the sequence of local complementations
and vertex deletions given above in such a way that afterwards we can then obtain a (r 4
1, g, h)-frame as an induced subgraph (so as a vertex-minor after the local complementions).
However performing these local complementations may unintentionally alter the rest of G
in a problematic way. We need that our (now smaller and fewer) ticks remain anti-complete.

Suppose we carry out this sequence of local complementations and vertex deletions

for some i € [2@ )] to obtain a vertex-minor G; of G. Let w,; be the branching vertex
of the resulting 1-subdivided star 7;. For each j € H;, let z,4;; be the vertex of the
1-subdivided star neighbouring w,; and y,,; ;. Let X,; = {z,4;; :j € H*}, and note
that £ = ({wr4}, Xoqi, Yptiy,m+) would be a 3-cover (of an empty set). Now, since the
neighbourhood (in G) of C; outside V(F;) is contained in Yj4;_1p, and no vertex of
C; neighbours a vertex of Y{,1; g+, the induced subgraphs G\ (V(F;) U Yj4q p\u+) and
G\(V(Fi) U Yjqimpa+) of G may differ only on the vertex set Y}, ;1] 5+. Furthermore,
if an edge e € (E(G;)\E(G))\E(T;) of G; has at most one endpoint in Y} y;_1),;n, then it
must have one endpoint in Y}, ;1) n/, and one endpoint in {w,4; }UX,1; = V(T;)\Yirpiy, -
Therefore, if G;[Y}y) 5+ = G[Y}),m+], then we could obtain a (r+1, ¢, h)-frame as an induced
subgraph of G; (and thus as a vertex-minor of G). So we may assume otherwise. Let
D; = G[Y[T},H*]AGiD/[T], m+]. We may assume that D; is not edge-less, since otherwise G
would contain a (r + 1, ¢, h)-frame as a vertex-minor as discussed.

Note that |Y}) g+| = rh. So by pigeonhole principle, there exists a pair 7,i* € [2<T2h)]
with ¢ < ¢* such that D; = D;=. Let G* be the vertex-minor of GG obtained by performing
the sequence of local complementations and vertex deletions used to obtain GG;, and then af-
terwords performing the sequence of local complementations and vertex deletions that were

used to obtain Gy-. Then observe that G*\ <U}?:+8_2 L’jH) = <GZ\ ( a2 Lfﬂ-)) AD,;.
In particular, G*[Y,u+] = G[Yp,u-]AD+AD; = G[Y}) -] since D+ = D;. So then G*
contains an induced (r + 1,q, h)-frame, and thus G contains a (r + 1, ¢, h)-frame as a
vertex-minor as desired. ]

By repeatedly applying Lemma 4.5.4, and then applying Lemma 4.5.3, we obtain the
following.

Lemma 4.5.5. For every pair q, h of non-negative integers, there exists a positive integer
c such that every graph G satisfying X' (G) < k, and x(G) > ck contains a (g, h)-frame
as a verter-minor.

Theorem 1.3.3 now follows immediately from Lemma 4.5.5 and Theorem 4.2.7.
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4.6 Vertex-minor y-boundedness

In this section we prove that if a vertex-minor-closed class of graphs G is 2-controlled then
G is x-bounded. As all proper vertex-minor-closed classes of graphs are 2-controlled by
Theorem 1.3.3, this implies the main result of this chapter, Theorem 1.3.1, that proper
vertex-minor-closed classes of graphs are y-bounded. Let us remark that this happens to
be the simpler part of the p-control strategy for vertex-minors and that this does not rely
on any results from Sections 4.3—4.5 (although some of the arguments in this section are
similar to parts of Section 4.5).

Instead of using mixed-multicovers as in the proof of Theorem 1.3.3, in this section we
are now able to find and use 2-multicovers, since we can assume that our class of graphs is
2-controlled. We find it convenient to reintroduce 2-multicovers in a slightly different (but
equivalent) way.

Let G be a graph, and X,C C V(G) such that X has a total ordering <. For each
r € X, let N, C N(x). We say that (N, : x € X) is a 2-multicover® of C if:

e the sets X,C, (N, : x € X) are disjoint,

the set X is stable,

the set X is anti-complete to C,

for each x € X, N, dominates C, and

for distinct z,y € X, with <y, the vertex x is anti-complete to NN,,.

The length of a 2-multicover is equal to |X|. A 2-multicover is stable if for each
xr € X, the set N, is stable. A 2-multicover (N, : x € X’) of a set C' is contained in a
2-multicover (N, :z € X) of aset C'if " C C, X' C X, and N, C N, for each z € X'.

We begin now by finding a long stable 2-multicover of a set with large chromatic number.
This is very similar to a standard levelling argument.

Lemma 4.6.1. Let ¢,l, 7,w be non-negative integers and let G be a 2-controlled class of
graphs that is closed under taking induced subgraphs such that x(G) < 7 for all G € G

'Our definition of a 2-multicover is the same as that of [21]. What is called a multicover in [20] is
slightly different to what we call a 2-multicover since we need not require that x is anti-complete to IV,
when z > y.
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with w(G) < w. Then there exists a positive integer ¢ such that every graph G € G with
X(G) > ¢ and w(G) < w contains a length-{ stable 2-multicover of a set C' C V(G) with
>c

x(C)

Proof. We fix ¢, 7,w. The result is trivial for £ = 0, so we proceed inductively assuming
the result holds for £ — 1. Let ¢{ be an integer such that every graph G € G with x(G) > ¢
and w(G) < w contains a length-(¢ — 1) stable 2-multicover of a set C” with chromatic
number at least ¢. Now let ¢ be such that every graph G € G with x(G) > ¢ contains a
vertex y with x(Na[y]) > 7 + 7¢. It remains to show that ¢ satisfies the conclusion of the
lemma.

Let G be a graph in G with x(G) > ¢ and w(G) < w. Let y be a vertex of G such that
G[Ns]y]] has chromatic number at least 7 + 7¢f. Then x(N(y)) < 7, so x(Na(y)) > 7¢}.
Let N, be a stable subset of N(y) such that x(N(N,) N Na(y)) > ¢. So by the inductive
hypothesis, there exists a set C' contained in N(N,) N Na(y) with x(C) > ¢ and a stable
2-multicover (N, : @’ € X’) of length £ — 1 in G[N(N,) N Ny(y)] of the set C.

Let X = X’ U{y} and let < be the total ordering on X where y is the first vertex and
the restriction to X’ is <’. Then (N, : z € X) provides the desired stable 2-multicover of
C. O

Next we define a tick of a 2-multicover, the definition is essentially the same as that
of a mixed-multicover. Let G be a graph containing a 2-multicover (N, : xz € X) of a set
C CV(G). A tick of (N, :xz € X), Cisaset Z = {2z} U{y, : v € X} of vertices such
that

Z is disjoint from C'U X (J,.x Na,

{y, 10 € X} C N(z2),

z is anti-complete to C' U X |, oy Ve,

for each x € X, vy, is adjacent to z, and

o for each x € X, y, is anti-complete to CU {2’ € X : 2’ <z} ,cx Na-

Note that if a graph G contains a length-¢ 2-multicover (of a possibly empty set) with
disjoint and anti-complete ticks Zi, ..., Z,, then G contains an interfered (g, h)-frame as
an induced subgraph.
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The proof of the next lemma follows that of a lemma of Chudnovsky, Scott and Sey-
mour [20, 2.1]. Indeed, despite our different definition of a (2-)multicover, the proof is
essentially the same.

Lemma 4.6.2. For all positive integers c,l, 7,7, w such that 7 < w, there exists a pair of
positive integers c;, ; with the following property. Let G be a graph with w(G) < w, such
that x(H) < 7 for every induced subgraph H of G with w(H) < w. Let (N, : z € X) be a
length-(; stable 2-multicover in G of a set C' such that x(C) > ¢; and w (U,cx No) < J.
Then (N, : x € X) contains a length-{; stable 2-multicover (N, : x € X') of a set C" C C
with x(C") > ¢, such that (N. : x € X') has a tick Z.

Proof. Let £y = 1, and for each 1 < i < w in order, let ; = wl? ;{. Let ¢y = ¢, and for
02 e
each 1 < ¢ < w in order, let ¢; = (ci_14( )+ é?_lfT)w(ggéi ) Fw(l+7).
i—1

Let A C C be a clique with |A] = w, such a clique exists since x(C') > 7. Let Cy =
2 e _
C\N[A]. Then x(Co) > X(C) —|A|(1+7) = x(C) —w(1+7) > (4l 2" 42 r)w( 7).

J
20
For each x € X and v € Cy, let n,, be a vertex of N, that is adjacent to v. JSi;ICG
w(G) = w = |A|, for each z € X and v € Cy, there is a vertex a,, € A that is non-adjacent
to 7,. So for each v € Cp, there exists X, € X with |X,| = [X|/|A| = [X|/w = £2_,¢
and some a, € A, such that n,, is non-adjacent to a, for every z € X,. For every a € A
and Y C X with Y| = E?_lé, let C,y be the set of vertices v € Cy such that a, = a

and X, = Y. This defines a partition of Cy, so there exists a z € A and X; C X with
2
j—1

| X1| = £3_,¢ such that x(C.x,) > X(Co)/w(efj ) > cj4( 2 4 (207, Let C = C x, .

For each z € X7, let y, € N, be a vertex adjacent to z, and let N = N, \{y,}. Let

2_ e

Co = C\\N({yx : © € X1}), then x(C2) > x(C1) — |Xa|T > x(C1) — €_1 7 > cal73").
Note that (N} : z € X;) is a 2-multicover of Cy and that (N} : z € X’) is contained in
(N, :z € X).

Suppose now that j = 1. Then let X' = X, and let C' = Cy. Clearly | X'| = |X;| =

2

020 = ¢ and x(C") = x(Cy) > 004(232) = c4(2) > ¢. Then (N} : 2z € X’) is a 2-multicover of
C', and Z = {z} U{y, : © € X'} provides the desired tick of (N} : x € X’). So we may
now assume that j > 1, and we proceed inductively.

For each v € Cy, let fi(v) be the auxiliary graph on vertex set X; such that for
each pair of distinct vertices x,2’ € X; with = < 2/, x is adjacent to 2’ in fi(v) if y, is
adjacent to n,s,. Similarly, for each v € Cy, let fo(v) be the auxiliary graph on vertex
set X7 such that for each pair of distinct vertices z, 2" € X; with x < 2/, = is adjacent
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to 2’ in fo(v) if y,» is adjacent to n,,. Then there exists some pair of graphs H; and Hy
on the vertex set X; such that f;'(Hy) N f; '(Hy) € Cy has chromatic number at least

W(©)/405) = (o) /473 > ;1. Let Cy = FOV(HY) O £y ().

Suppose that H; contains a vertex x € X; such that = has at least £;_; neighbours 2’ in
Hy with x < 2. Let X’ be the set of neighbours 2’ of z in H with x < 2. Then | X'| > ¢;_4
and in G, y, is complete to N, = {ng, : v € Cs} for each ' € X'. Now w({U,cx Ni) < J,
so by the inductive hypothesis, (N : x € X) (and thus (N, : z € X)) contains a length-
¢ stable 2-multicover (N, : x € X') of a set C C C3 C " with x(C) > ¢, such that
(N. : 2 € X') has a tick Z. Hence we may assume that H; contains no vertex z € X; such
that = has at least ¢;_; neighbours 2’ in H with « < 2’. So H; is ({;_; — 1)-degenerate,

and therefore ¢;_;-colourable. Similarly, we may assume that H, is £;_;-colourable.

Let H be the graph with vertex set X; and edge set F(H;) U E(H,). Since H; and
Hj are {;_;-colourable, H is E?_l—colourable. So there exists a stable set X’ C X; of H
with |X'| = |X1|/6;_, = L. Then Z = {2} U{y, : € X'} is a tick of the 2-multicover
(N} :2z e X') of C = Cj as required. O

As discussed before Lemma 4.6.2, if a graph G contains a length-¢g 2-multicover (of a
possibly empty set) with disjoint and anti-complete ticks Zi,...,Z,, then G contains a
(q, h)-frame as an induced subgraph. So by applying Lemma 4.6.2 a total of h times and
Lemma 4.6.1 once, we obtain the following.

Lemma 4.6.3. Let g, h,7,w be non-negative integers and let G be a 2-controlled class of
graphs that is closed under taking induced subgraphs such that x(G) < T for all G € G
with w(G) < w. Then there exists a positive integer ¢ such that every graph G € G with
X(G) > ¢ and w(G) < w contains a (g, h)-frame as an induced subgraph.

With Lemma 4.6.3 and Theorem 4.2.7 in hand, we can now do a simple induction to
show that 2-controlled vertex-minor-closed classes of graphs are y-bounded.

Lemma 4.6.4. Every vertex-minor-closed class of graphs that is 2-controlled is also x-
bounded.

Proof. Let G be a 2-controlled vertex-minor-closed class of graphs and suppose for the
sake of contradiction that G is not xy-bounded. Then there exists a minimum integer w > 2
such that the graphs G € G with w(G) < w have unbounded chromatic number. Let
7 > 0 be such that x(H) < 7 for all H € G with w(H) < w. Let J be some graph not
contained in G (J exists as the class of all graphs is not 2-controlled). Then let ¢, h be as
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in Theorem 4.2.7, for n = |V(J)|. Let ¢ be as in Lemma 4.6.3 for ¢, h,7,w. Let G € G
be a graph with x(G) > ¢ and w(G) < w. Then by Theorem 4.2.7 and Lemma 4.6.3, G
contains J as a vertex-minor, a contradiction. O

Now the main result of this chapter, Theorem 1.3.1, (which states that proper vertex-
minor-closed classes of graphs are y-bounded) follows immediately from Theorem 1.3.3
and Lemma 4.6.4. While we have not kept track of the cumbersome bounds obtainable
from the proof of Theorem 1.3.1, we remark that for a fixed vertex-minor-closed class of
graphs, the resulting y-bounding function would be a triply exponential function.

It is possible to adapt the proof of Theorem 1.3.1 to not require the notion of 2-control.
Note that Lemma 4.5.2 is essentially the only time we used the fact that Y@ (G) < &.
Instead we could find these ticks by arguing inductively on the clique number in a very
similar manner to that of the proof of Lemma 4.6.2. The only difference is that the sets
L, . .. ,LZ‘Z’ need not be stable. The consequence of this if we follow the same proof is
that the resulting ticks are not necessarily anti-complete; in the end, there could be edges
between the vertices of {y;1,...,y;n} for each i € [¢]. However this can then be cleaned
up at the end by repeatedly applying Ramsey’s theorem. So in the end, the proof ends up
being very similar. Doing so would also come at the loss of not obtaining Theorem 1.3.3
along the way. Thus there is not so much to gain from proving Theorem 1.3.1 directly in
this way.

4.7 Pivot-minors

In this section we further discuss pivot-minors and the recent proof of the conjecture of
Choi, Kwon and Oum [18] that pivot-minor-closed classes are y-bounded (Theorem 1.3.2).
In particular, we will discuss some of the difference in the proofs of Theorem 1.3.1 and
Theorem 1.3.2. The full proof of Theorem 1.3.2 will appear in an upcoming paper [24].

As briefly discussed in Section 1.3, one viable strategy to proving Theorem 1.3.1 could
have been to first prove a general structure theorem for vertex-minor-closed classes of
graphs. There has been significant progress towards such a structure theorem [51,77] and
we expect that it will also yield a proof of the polynomial x-boundedness conjecture [(5]
for vertex-minors.

Roughly speaking, it is conjectured that the graphs in any proper vertex-minor-closed
class of graphs are obtained by piecing (slightly perturbed) circle graphs together in a
prescribed way [77]. One might hope to prove a similar structural characterization for
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pivot-minor-closed classes, from which y-boundedness would presumably follow. However,
even compared to vertex-minors, this is a much more intimidating prospect. Pivot-minors
generalize vertex-minors, and so circle graphs also provide a fundamental class of graphs
which would be a building block in such a structure theorem. However pivot-minors have
at least two additional fundamental classes, indicating a far more complex structure. These
are bipartite graphs and line graphs.

Via their fundamental graphs, minors of binary matroids are essentially captured by
pivot-minors of bipartite graphs [9,83]. So a structure theorem even just for bipartite
graphs without a bipartite pivot-minor H would already imply a structure theorem for
binary matroids as in the matroid minors project of Geelen, Gerards, and Whittle [50] (and
thus also the graph minor structure theorem of Robertson and Seymour [91]). Although
line graphs are not closed under pivot-minors, surprisingly their closure under pivot-minors
is not the class of all graphs [32] (unlike for vertex-minors). Oum [32] characterized these
graphs as being exactly the fundamental graphs of graphic delta-matroids. Not much is
known about graphic delta-matroids, but a structure theorem for pivot-minors would have
to include as a special case a graphic delta-matroids minor structure theorem. On top of
all this, a general structure theorem for pivot-minors would then need to simultaneously
capture the structure of graphic delta-matroids, binary matroids and vertex-minors. This
is indeed an intimating task.

Bipartite graphs are trivially y-bounded and circle graphs [50] and graphs of bounded
rank-width [31] are both of course x-bounded. Using Vizing’s theorem [106] and the
graphical delta-matroid characterization of Oum [32], it is possible to show that the class
of pivot-minors of line graphs is y-bounded with a y-bounding function of 2w + 1. So all
four of these fundamental classes of graphs for pivot-minors are polynomially y-bounded.

Of course one can also ask if proper pivot-minor-closed classes are polynomially x-
bounded, and this is conjectured by Kim and Oum [(4]. Although results for the funda-
mental pivot-minor-closed classes provide significant support for this conjecture, we see no
reasonable approach to proving polynomial y-boundedness without the use of a structure
theorem for pivot-minors. The starting point towards a structure theorem for pivot-minors
would be Oum’s [32] conjectured grid theorem, which states that for every bipartite circle
graph H, the graphs containing no H pivot-minor have bounded rank-width. This con-
jecture would generalize the grid theorem for vertex-minors [51] and binary matroids [19]
(and thus graph minors [90]). By the theorem of Bonamy and Pilipczuk [6] that classes
with bounded rank-width are polynomially y-bounded, Oum’s [32] conjecture would also
imply polynomial y-boundedness for proper pivot-minor-closed classes not containing all
bipartite circle graphs.
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Let us now turn our attention to Theorem 1.3.2 and its proof resolving the conjecture
of Choi, Kwon and Oum [18] that pivot-minor-closed classes are y-bounded.

As with Theorem 1.3.1, we use the strategy set out by the notion of p-control to prove
Theorem 1.3.2. Again the most challenging step turns out to be proving that proper pivot-
minor-closed classes of graphs are p-controlled for some p > 2. Unlike with Theorem 1.3.1,
we are unable to prove 2-control directly for pivot-minors. Instead, what turns out to be
most convenient is to begin by proving that proper pivot-minor-closed classes of graphs
are 19-controlled.

For vertex-minors we had the nice beginning class of universal graphs of K, and more
conveniently K}L,m. These graphs are no longer universal for pivot-minors since they are
contained in the class of bipartite graphs. Unlike with vertex-minors, we cannot use pivot-
minors to smooth degree-2 vertices in a graph, although if u and v are adjacent degree-2
vertices, then pivoting on uv and then deleting v and v is the same as smoothing both
u and v at once. So the parity of paths matter for pivot-minors. The simplest universal
graphs we can use (and which we aim for) is K2, and more generally any graph obtainable
by subdividing each edge of K,, at least twice, and an even number of times. Such graphs
are called odd K,, subdivisions.

A 2-multicover (N, : z € X) of a set C' C V(G) is said to be strongly independent
if for every distinct x,y € X, z is anti-complete to N,. Scott and Seymour [96] showed
that under the additional assumptions in Lemma 4.6.2, one can find either K¢ or K® as an
induced subgraph of a large enough strongly independent 2-multicover of a set C' with x(C')
sufficiently large. Essentially the idea is to begin by finding n ticks as in Lemma 4.6.2. The
centres of the ticks will form the branching vertices of the odd K, subdivision. To build
up the odd paths between the branching vertices, we need to find and extract from the
2-multicover odd length paths between distinct z,y € X. Again, by arguing inductively
on w (U$€X Nm) as in Lemma 4.6.2, this can be done by showing that in a maximal clique
B C C, there are two vertices u, v € B such that there is a vertex a € N, adjacent to u but
not v, and a vertex b € N, adjacent to v but not u. The length of the odd path between the
centres of two ticks then just depends on whether a and b are adjacent or not. This covers
the case that we can find a large strongly independent 2-multicover. However if we begin
with a (much larger) 2-multicover, then we can clean out the extra edges with pivoting to
obtain a (smaller) strongly independent 2-multicover. The proof of this is similar to that
of Lemma 4.6.2 and can be found in [25].

The step for reducing 19-control down to 2-control proceeds similarly to the analogous
step for induced subdivisions proven by Chudnovsky, Scott, and Seymour [21]. Instead of
starting with a 2-multicover, we start with a p-multicover of C'. We begin similarly as in
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the previous step. We start by finding and extracting (something close to) “ticks” of the
p-multicover. The centres of the ticks will again form the vertices of (something close to)
an odd K, subdivision. Just as before, we then need to find odd paths between the centres
of these ticks. For this we can use the same trick of considering a maximum clique in C'.
Actually it is a bit easier than finding odd paths, with pivot-minors it is okay if there are
certain extra edges between vertices of each individual odd path.

Now let us return to the most challenging step that proper pivot-minor-closed classes
of graphs are 19-controlled. A key difference here to the proof of Theorem 1.3.3 is that
Lemma 4.4.3 does not hold since we cannot use pivot-minors to eliminate big cliques of
a bloated tree. We also cannot control the parity of path lengths, so the analogue of
Lemma 4.4.3 for pivot-minors requires two extra possible outcomes; a 1-subdivided star,
or a bloated star. The difference between finding a star or a 1-subdivided star is not too
significant, but a bloated star is very different. For instance if we find a star, then we may
hope for it to eventually form a branching vertex of the odd K, subdivision pivot-minor
that we seek. But clearly a bloated star is not suitable for this. On the other hand, a
bloated star is perfect for controlling the parity of a path going through it, since we can
pivot on an edge of a triangle that shares another edge with the path. So bloated stars are
well suited for building odd paths of the odd K,, subdivision that we seek.

In the proof of Theorem 1.3.3, the ticks we found (in Lemma 4.5.2) could also (roughly)
act as the branching vertices in a odd K,, subdivision. If the covers that we “contract”
become bloated stars rather than stars or 1-subdivided stars, then it turns out that we
can find our odd K, subdivision pivot-minor. Here, (roughly speaking) the centres of
the ticks make up the branching vertices, and we use the bloated stars to obtain the odd
paths between them. But then if instead we found stars (or 1-subdivided stars) at the
“contraction” step, then we have no way of using them to create the odd paths that we
need. So it would seem that if M* is our mixed-multicover of a C' with large chromatic
number, then we want to extract something other than ticks from C'. There are other
structures that we could extract that work better with when the “contraction” step gives
stars (or 1-subdivided stars) rather than bloated stars. However the tricky part is that we
need something that works well with all the possible cases from the “contraction” step on
M* simultaneously.

The answer to what structure we should extract turns out to be very close to the
structure as a whole that we have in Lemma 4.5.2. We want to extract lots of long mixed-
multicovers M; within C, each with many ticks of their own. Actually we need slightly
more out of these ticks, in particular each will have one “long leg” going back to the
first cover of M;. See Figure 4.7 for a rough illustration of this. With this, we have
two opportunities to find our K? pivot-minor, once from each of these extracted mixed-
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Figure 4.7: A mixed-multicover M* of a collection of disjoint and anti-complete mixed-
multicovers My, My, Ms3. Each of the mixed-multicovers My, My, M3 has one tick for
each cover in M*. Unlike in Lemma 4.5.2, each tick of M; has one “long leg” going back
to the first cover of M,.

multicovers, and if we failed within each of these extracted structures, once again from the
original mixed-multicover.

If in one of these additional mixed-multicovers M, that we extracted, the “contraction”
step gives the case of bloated stars, then within that long mixed-cover we find our pivot-
minor using the ticks and bloated stars as before. Then in the other case of stars or 1-
subdivided stars, the extracted mixed-multicover can be used in one of two ways depending
on the result of the “contraction” step on the main mixed-multicover M*. One choice is
doing (part of) the “contraction” step on M;, then one of these stars (or 1-subdivided
stars) can be used to create a branching vertex of the odd K, subdivision that we aim for.
The other choice lets us create odd paths for the odd K,, subdivision we aim for. Here we
can find a (not necessarily induced) odd path between any two ticks of M; by using the
first cover of M; and the “long leg” of one of the two ticks. With some pivoting this can
be used to make one of the odd paths of the odd K,, subdivision. With these two available
options, (very roughly) the extracted mixed-multicovers can then be pieced together with
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whatever outcome we get from the “contraction” step on the main mixed-multicover M*
to obtain our odd K, subdivision pivot-minor.

Now the issue becomes being able to find lots of different long mixed-multicovers with-
out having any edges between them. For this we need to find subsets Z;,..., 2, C C that
are far away from each other (in GG), and which each induce subgraphs with large chromatic
number. In other words, under the assumption that ) (G) is bounded and x(C) is huge,
we need to find distant subgraphs with large chromatic number. Scott and Seymour [95]
proved such a statement for graphs without a given induced subdivision and we adapt their
ideas to prove an analogue for pivot-minors.

Let us remark on two special cases of Theorem 1.3.2 that end up being significantly
easier. The first is the triangle-free case of y-boundedness, in other words proving that
the triangle-free graphs in a proper pivot-minor-closed class of graphs have bounded chro-
matic number. The main reason for this is that the bloated trees we find in Lemma 4.3.6
are actually just trees since they are triangle-free. Thus there are no cliques to elimi-
nate, and so this excludes the bloated stars case from the “contraction” step, letting us
concentrate solely on the star and 1-subdivided star cases. Unfortunately as shown in a
recent breakthrough of Carbonero, Hompe, Moore, and Spirkl [15], the triangle-free case
of x-boundedness does not imply y-boundedness itself.

The other significantly easier case is that our proper pivot-minor-closed class of graphs
does not contain the class of line graphs. In other words, the case of H-pivot-minor-free
graphs for some line graph H. This special case already generalizes Theorem 1.3.1 since
the closure of line graphs under vertex-minors is the class of all graphs. For pivot-minors,
the line graphs of subdivisions of K,, are universal for the class of line graphs. So instead
of only aiming to find an odd K, subdivision, we can also aim for the line graph of a
subdivision of K,,. The advantage of this is that bloated stars can be used for constructing
the “branching cliques” of the line graph of a subdivision of K.
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