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Abstract

A secret sharing scheme is a means of distributing information to a set of players such
that any authorized subset of players can recover a secret and any unauthorized subset does
not learn any information about the secret. In over forty years of research in secret sharing,
there has been an emergence of new models and extended capabilities of secret sharing
schemes. In this thesis, we study various models of secret sharing and present them in a
consistent manner to provide context for each definition. We discuss extended capabilities
of secret sharing schemes, including a comparison of methods for updating secrets via local
computations on shares and an analysis of approaches to reproducing/repairing shares. We
present an analysis of alternative adversarial settings which have been considered in the area
of secret sharing. In this work, we present a formalization of a deniability property which is
inherent to some classical secret sharing schemes. We provide new, game-based definitions
for different notions of verifiability and robustness. By using consistent terminology and
similar game-based definitions, we are able to demystify the subtle differences in each
notion raised in the literature.
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Chapter 1

Introduction

A secret sharing scheme is a means of distributing information to a set of players such that
any authorized subset of players can recover a secret and any unauthorized subset does
not learn any information about the secret. Secret sharing was proposed independently
by Blakley [19] and Shamir [133] in 1979. In over forty years of research on the topic of
secret sharing, we have witnessed the emergence of new models and extended capabilities
of secret sharing schemes.

Secret sharing has long been an important building block in the area of threshold cryp-
tography. This includes cryptographic algorithms where a threshold number of participants
are required to work together to perform some operation (such as decryption or creating
digital signatures). Using threshold schemes enables a distribution of trust among a set of
participants. With applications in multi-party computation and distributed data storage,
models of secret sharing have been adapted over time to facilitate new goals.

The newly proposed models of secret sharing include additional capabilities beyond
what was required in the original definitions of secret sharing. They also consider more
complex adversarial settings. Some models were proposed to apply to specific applications
whereas others were proposed as extensions of notions in different areas of work, such as
coding theory or distributed computation. Motivations for new models originating from
different areas of work has resulted in some overlapping and/or contradictory definitions.
At the same time, some work has adopted unnecessarily complex and cumbersome notation
which makes it difficult to compare new work with existing notions that achieve similar
goals. To address these problems, this thesis aims to provide context for these new models
by presenting and analyzing them in a cohesive manner.

This thesis includes an analysis of extended capabilities of secret sharing schemes and
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alternative adversarial settings. We organize previous work and bring attention to some
redundancies in the literature. We present new, readable, game-based definitions for many
of the notions which we discuss. These new definitions enable easier comparison of the
concepts which have been explored in the area of secret sharing. Our goal in this work is
to present models of secret sharing in a consistent manner to highlight the benefits and
drawbacks of each alternative model. This brings attention to potential directions of future
work and demystifies the subtle differences in closely related work. Throughout this work,
the key contributions are as follows:

• An analysis of extended capabilities of secret sharing schemes. This portion of the
thesis includes but is not limited to:

– A thorough review and comparison of methods of updating secrets without the
presence of a dealer.

– An analysis of methods for reproducing/repairing shares and a comparison of
each approach.

• An analysis of alternative adversarial settings which have been considered in the
literature. This portion of the thesis includes but is not limited to:

– Formal definitions of four notions of verifiability and a comparison of each ap-
proach.

– Formalization of a deniability property which is inherent to some classical secret
sharing schemes.

– Streamlined definitions of seven notions of robustness and a comparison of each
approach.

2



Chapter 2

Background

A secret sharing scheme is a cryptographic primitive for splitting a secret into some shares
and distributing the shares amongst a set of participants such that only an authorized
subset of participants can reconstruct the secret. Constructions for secret sharing schemes
were introduced independently in 1979 by Shamir [133] and Blakley [19]. Blakley’s con-
struction relies on finite geometries while Shamir’s scheme uses polynomial interpolation
to reconstruct secrets.

Secret sharing schemes were initially considered in an information-theoretic (or uncon-
ditionally secure) setting. This setting ensures that the security guarantees hold regardless
of the computational capabilities of the adversary. The goals of secret sharing schemes in
the information-theoretic setting are twofold: correctness and perfect privacy.

Correctness: Any authorized set of parties can reconstruct the secret.

Perfect Privacy: Any unauthorized set of parties learns no information about the secret
from their shares.

A majority of this thesis will be focused on threshold schemes. In a (k, n)-threshold
scheme, a dealer breaks a secret into n shares and distributes them amongst n participants
such that any k of the participants can collaborate to reconstruct the secret. Any coalition
of k − 1 participants learns no information about the secret. The prototypical example of
a threshold scheme in an information-theoretic setting is Shamir’s scheme [133].

Construction 2.0.1. [Shamir’s Secret Sharing Scheme [133]] We present a (k, n)-threshold
scheme to share a secret s ∈ Fq where q ≥ n+ 1. Here Fq is a finite field where q is a prime
or a prime power.
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Share: The dealer selects a random polynomial r(x) ∈ Fq[x] of degree k − 1 such that
r(0) = s. Each share is a coordinate si = (xi, yi), where the xi’s are distinct and
non-zero. The dealer gives share si to participant Pi for i = 1, . . . , n.

Recover: Given k shares, the participants use polynomial interpolation to reconstruct
r(x) and then evaluate the polynomial at x = 0 to recover the secret s.

�

In Shamir’s scheme, we make use of polynomial interpolation to reconstruct the secret.
In particular, we can use the Lagrange interpolation formula to reconstruct the polynomial.
Suppose we are working in a field Fq and are given k (not necessarily distinct) elements
in Fq, say a1, . . . , ak. Let x1, . . . , xk be distinct elements in Fq. Then there is a unique
polynomial A(x) ∈ Fq[x] with degree at most k − 1 such that A(xi) = ai for 1 ≤ i ≤ k.
The Langrange interpolation formula states that

A(x) =
k∑
j=1

aj
∏

1≤h≤k,h6=j

x− xh
xj − xh

.

When reconstructing secrets with Shamir’s scheme, we are typically concerned with the
evaluation of this polynomial at 0. In this case, it is sufficient to compute

s =
k∑
j=1

aj
∏

1≤h≤k,h6=j

xh
xh − xj

.

Now, if we define

bj =
∏

1≤h≤k,h6=j

xh
xh − xj

,

for 1 ≤ j ≤ k, then we can write s =
∑k

j=1 bjaj. These terms bj are called the Lagrange
coefficients and they are publicly known values.

Another popular construction of a classical secret sharing scheme is the additive secret
sharing scheme.

Construction 2.0.2. [Additive Secret Sharing Scheme] We present an (n, n)-threshold
scheme to share a secret s ∈ Zq amongst a set of n participants. Note that q does not have
to be prime.
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Share: The dealer selects n − 1 shares, say s1, . . . , sn−1, at random from Zq and sets
sn = s−

∑n−1
i=1 si. The dealer gives si to participant Pi for 1 ≤ i ≤ n.

Recover: To recover s, the participants take the sum of all the shares modulo q.

�

Typically, it is of interest to minimize the size of the shares relative to the size of the
secret, to reduce the amount of storage required for a given scheme. For a secret sharing
scheme in which S is the set of possible secrets and T is the set of possible shares, we
define the information rate to be ρ = log |T |/ log |S|. Here and in what follows, we use log
to denote log2. We say that a secret sharing scheme is ideal if it achieves perfect privacy
and has an information rate equal to one. That is, the size of the domain of shares is
exactly the size of the domain of the secret. Brickell [36] elaborates on ideal secret sharing
schemes.

Given that much of the work in the area of secret sharing has been done in an information-
theoretic setting, it is useful to review some basic concepts from information theory. In
the remainder of this section, we present some definitions from information theory that we
will use later on. Let X and Y be two random variables.

• The Shannon entropy of X is

H(X) = −
∑
x∈X

Pr[X = x] log Pr[X = x].

• The joint entropy H(X, Y ) of X and Y is

H(X, Y ) = −
∑
x∈X

∑
y∈Y

Pr[X = x, Y = y] log Pr[X = x, Y = y].

• The conditional entropy H(X | Y ) of X given Y is defined as

H(X | Y ) =
∑
y∈Y

Pr[Y = y]H(X | Y = y),

where

H(X | Y = y) = −
∑
x∈X

Pr[X = x | Y = y] log Pr[X = x | Y = y].
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For random variables X, Y , we have the following identity: H(Y | X) = H(X, Y ) −
H(X).

Let A be an access structure on the set of participants P and suppose {pS(s)}s∈S is a
probability distribution on the set of secrets S. A secret sharing scheme is a sharing of a
secret in S among participants in P such that for any qualified subset A ∈ A, H(S | A) = 0,
and for any non-qualified subset A 6∈ A, H(S | A) = H(S).

We also consider the dealer’s randomness of a secret sharing scheme Σ, given that
the probability distribution on the set of secrets S is ΠS = {pS(s)}s∈S . The dealer’s
randomness was defined in [24] to be

µ(A,ΠS ,Σ) = H(P1, . . . , Pn | S),

where Pi denotes participant i. That is, H(P1, . . . , Pn) is the entropy of the probability
space from which the shares to be given to the participants are taken.

The authors in [25] consider a secret sharing scheme with the minimum possible amount
of randomness for a given access structure A. This was defined to be

µ(A, q) = inf
Q,T

µ(A,ΠS ,Σ)

where Q is the space of all probability distributions on a set S of q secrets and T is the
space of all secret sharing schemes Σ for the access structure A. It was also shown in [25]
that for an access structure A on a set P , supposing the secret is chosen in S, if there
exists an independent sequence of participants of length m then

µ(A, |S|) ≥ m · log |S|.

6



Chapter 3

Extended Capabilities of Secret
Sharing Schemes

Since its introduction, there has been a large body of work in adapting secret sharing
schemes to scenarios where there is a desire for some distribution of trust. Throughout
this development, classical secret sharing schemes have been extended beyond the basic
properties of correctness and privacy. In this chapter, we discuss some of the most promi-
nent examples of extended capabilities of secret sharing schemes.

3.1 What’s in a secret?

In the previous chapter, we described secret sharing schemes where the secret may be
represented by a scalar value or coordinate. This format makes it possible to share items
such as cryptographic keys, passwords, and numerical values. In general, as long as the
data to be shared can be encoded to a value in a finite field, we can use the classical
constructions. For example, to share a large text file, one could use an encoding function
which divides the file into multiple pieces, each representable by a value in a reasonably-
sized finite field. Secret sharing has been extended to enable the sharing of more complex
structures and data types, including but not limited to multiple non-independent secrets
and functions.
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3.1.1 Multi-secret sharing

It is natural to consider a scenario in which one wishes to share multiple secrets, say
s1, . . . , sm. Suppose each secret corresponds to an access structure, A1, . . . ,Am, where
each Ai ⊂ 2P and 2P denotes the set of all subsets of P . This goal is addressed by
multi-secret sharing [87, 22]. Trivially, sharing multiple secrets can be accomplished by
instantiating m sharings of the secrets s1, . . . , sm, where each secret sharing is setup to
correspond to a particular access structure Ai. In this case, the size of the share would be
m times the size of a share corresponding to a single secret. The challenge in multi-secret
sharing schemes is to develop more efficient constructions which reduce the size of the
shares.

Example 3.1.1. [Sharing Three Secrets [22]] Consider a setting with 4 participants P =
{P1, P2, P3, P4} and three secrets S = {s1, s2, s3}, chosen uniformly and independently,
where si ∈ {0, 1} for all i. The construction will satisfy the following access structures,

• A1 = {{P1, P2}, {P2, P3}, {P2, P4}},

• A2 = {{P1, P3}, {P2, P3}, {P3, P4}},

• A3 = {{P1, P4}, {P2, P4}, {P3, P4}},

where A1 is the access structure for s1, A2 is the access structure for s2, and A3 is the access
structure for s3. Note that with these access structures, the set of participants {P2, P3, P4}
can recover all three secrets. The dealer chooses three bits a, b, c ∈ {0, 1}, uniformly and
independently at random, and distributes the shares as follows:

• P1 gets a⊕ b⊕ c,

• P2 gets a⊕ s1, b, c,

• P3 gets a, b⊕ s2, c, and

• P4 gets a, b, c⊕ s3.

In this construction, all shares make up ten bits of information, as opposed to the twelve
that would be used if three instantiations of a classical scheme were used. �
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3.1.2 Visual secret sharing

A visual secret sharing scheme for n participants encodes an image into n image shares
such that an authorized set of shares can be combined to recover the original image and
an unauthorized set reveals no information about the secret image. The basic idea consists
of printing images on transparent sheets called “transparencies” that can be stacked upon
one another to reveal the secret.

Naor and Shamir introduced the original concept of visual cryptography [113] and
provided a construction for black and white images. The idea is to construct binary
matrices (where ones represent black pixels and zeros represent white pixels) such that
shares of a white pixel, when stacked upon one another, have a smaller Hamming weight
than shares of a black pixel. A single share appears to be a random choice of a matrix. The
pixels with a larger Hamming weight will appear darker as the transparencies are stacked
on top of one another.

Example 3.1.2. [(2,2)-visual threshold scheme] For each pixel in the original image, we
expand the pixel into a share which contains 4 pixels. The shares are represented by one
of the following six matrices:{[

0 0
1 1

]
,

[
1 1
0 0

]
,

[
0 1
0 1

]
,

[
1 0
1 0

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]}
.

Notice that the first two matrices are complementary, as are the third and fourth, and the
final two. A white pixel is shared into two identical matrices from the list and a black
pixel is shared into two complementary matrices. A single share is then a random matrix
containing two black and two white pixels. When stacked upon one another, the matrices
either have a Hamming weight of two (representing white) or a Hamming weight of four
(representing black). �

Later work by Blundo, De Bonis, and De Santis [20] improved on the pixel expansion
of original constructions and provided constructions for coloured images. To generalize the
constructions to coloured images, we use matrices with subpixels in the set {0, 1, . . . , c},
where each value corresponds to a different colour. When stacking subpixels on top of one
another, if a sufficient number of the subpixels are of colour i, then it appears as colour
i; otherwise, the stacked pixels appear to be black. A pixel reconstructs to the colour i if
and only if there are sufficiently many subpixels of colour i.
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3.1.3 Function secret sharing and DPFs

Function secret sharing [30, 32] considers the problem of secret sharing a function between
multiple parties. This presents more complications than sharing a scalar value since it
introduces certain requirements between the shares. The most basic form of function
secret sharing is called distributed point functions (DPFs) [70].

Definition 3.1.1 (Distributed point function (DPF) [70]). A point function fx,y for x, y ∈
{0, 1}n, n ∈ N, evaluates to y on input x and to 0 on all other inputs. A distributed point
function is a family of functions such that, given fx,y, we can find functions fk0 and fk1
such that fk0(a) ⊕ fk1(a) = fx,y(a) on every input a, and individually, each fki reveals no
information about x and y.

Essentially, a DPF allows a dealer to split a point function into two function shares
that reveal nothing about the original function themselves. We note that this is not as
simple as secret sharing the values x and y via classical methods, since the corresponding
shares would not necessarily satisfy the requirement that fk0 ⊕ fk1 = fx,y

Construction 3.1.1. [Naive DPF] Let k0 be the truth table of a random function fk0 :
{0, 1}|x| → {0, 1}|y| and let k1 be the truth table of the function fk1 = fk0 ⊕ fx,y. This is
perfectly secure since k0 and k1 are random. The drawback of this construction is that the
size of k0 and the size of k1 is exponential in the size of the input. �

Gilboa and Ishai [70] provide a construction of a DPF with polynomial key size under
the assumption that a one-way function exists. This work is done in a computational
setting, since it requires the existence of a one-way function.

Function secret sharing is the natural generalization of DPFs to more than two share-
holders. A function secret sharing (FSS) scheme splits a function f : {0, 1}n → G, for some
group G, into p functions, f1, . . . , fp, such that

∑p
i=1 fi = f on every input, and any strict

subset of the keys reveals no information about f . The natural extension of the naive DPF
construction is to additively share the truth table of f . There exist more efficient con-
structions of function secret sharing in the computational setting based on pseudorandom
functions [30]. Function secret sharing and DPFs are particularly useful in constructing
private information retrieval schemes [47, 66].

3.2 Updating secrets

There has been ample previous work discussing constructions of secret sharing schemes in
which the shares corresponding to some secret, s, can be updated such that reconstruction
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using the new shares results in a related, but different secret s′. In other words, the
shareholders are able to reconstruct some s′ = f(s) for some function f . This is the basis
of multi-party computation. We demonstrate this property using Shamir’s scheme.

Example 3.2.1. [Updating a Secret in Shamir’s Scheme] The dealer selects a random
polynomial r(x) ∈ Zq[x] of degree k − 1 such that s = r(0) is the secret. Each share is
a coordinate vi = (xi, yi), where the xi’s are distinct and non-zero. Suppose the dealer
would like to update the secret to r(0) + c for some c ∈ Zq[x]. The dealer broadcasts c to
all shareholders. For each i = 1, . . . , n, shareholder Pi adds c to their share vi. Following
reconstruction, the new secret will be s′ = s+ c. �

There are several properties to note in the previous example. First, the dealer is involved
in updating the shares and the message that they broadcast reveals some information about
the original secret once the new secret is reconstructed. Additionally, the shareholders do
not have to collaborate in order to update their shares. These properties allude to the
various ways in which we can update secrets. In the following subsections, we describe
different methods used to update secrets. We also discuss some homomorphic properties
required to allow shareholders to compute functions on secrets via local updates to their
shares.

3.2.1 Updates with a dealer

One method of updating secrets involves a dealer sending a broadcast message to all par-
ticipants. Different broadcast messages can enable the reconstruction of different secrets.
We will discuss two types of secret sharing schemes which allow a dealer to update secrets
via a broadcast message: prepositioned schemes and fully dynamic schemes.

In a prepositioned scheme [134] the shareholders are unable to recover any secret after
the initial sharing. This is because the dealer withholds some information until a later
point in time. Once the dealer reveals additional information, the shareholders can then
recover a secret. The concept is related to updating secrets because the dealer can initially
share some information, decide which secret they would like to recover at a later point in
time, and broadcast some small amount of information corresponding to the secret they
have chosen. These updates may also correspond to different access structures. Consider
the following example, which adapts Shamir’s scheme to become a prepositioned scheme.

Example 3.2.2. [(k, n)-threshold prepositioned scheme [53]] The dealer selects a random
polynomial r(x) ∈ Zq[x] of degree k − 1 such that s = r(x0) is the secret. Note that x0
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may not equal 0. As in Shamir’s scheme, each share is a coordinate (xi, yi), where the xi’s
are distinct, non-zero, and not equal to x0. A threshold number of participants can recover
r(x) but do not know the value of the secret until they are given x0, which the dealer can
broadcast at a later time. �

In the prepositioned scheme described above, the dealer can broadcast multiple x-
coordinates corresponding to different secrets if they wish to do so, resulting in different
reconstructed secrets each time. A similar strategy is used in fully dynamic secret sharing
schemes [21]. In addition to allowing participants to reconstruct different secrets, fully
dynamic schemes enable different access structures to be activated, which we discuss later
in Section 3.4. Some fully dynamic schemes satisfy the same properties as prepositioned
schemes. Consider the following example of a fully dynamic scheme, in which the secrets
correspond to different access structures.

Example 3.2.3. [Fully dynamic scheme [21]] Let the set of participants be P = {P1, P2, P3}
and the set of possible secrets be a finite field Zq. Let s1, s2 ∈ Zq be two independently
chosen secrets, and A1 = {{P1, P2}}, A2 = {{P2, P3}} be the two access structures corre-
sponding to the secrets, respectively.

For i = 1, 2, 3, the dealer randomly selects ai ∈ Zq and sends ai to Pi. These are the
shares. To activate A1, the dealer computes b1 = a1 + a2 + s1 mod q and broadcasts b1 to
the shareholders. Similarly, to activate A2, the dealer computes b2 = a2 + a3 + s2 mod q
and broadcasts b2 to the shareholders. �

In the previous construction, suppose b1 is broadcast so that P1 and P2 reconstruct s1.
Later, the dealer may broadcast b2. Then, P1, who knows s1, can learn a2 and reconstruct
s2 with P3, even though {P1, P3} 6∈ A2. Therefore, a dealer must be careful to note whether
or not they are revealing additional information when broadcasting information.

3.2.2 Dealer-free updates

Now we consider a setting in which we no longer have a trusted dealer after the scheme
is initialized. Certain secret sharing schemes have homomorphic properties which enable
shareholders to modify their shares to obtain shares of an updated secret without recon-
structing the original secret. We will review some types of secret sharing schemes which
possess these properties, enabling shareholders to update the secret without the presence
of a dealer. Trivially, a single shareholder could act as a “dealer” and broadcast messages
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as previously discussed. In this section, we consider schemes where all shareholders have
equal responsibility.

A secret sharing scheme is said to be linear if the secret is an element from a finite field
and can be computed as a linear combination of any set of authorized shares (and some
independent random field elements). For example, in Shamir’s scheme the secret can be
written as a linear combination of the shares where the constant terms are the publicly
known Lagrange coefficients. Suppose a set of shareholders have shares corresponding to
a secret, a, shared via a (ka, n)-threshold scheme, and shares corresponding to a secret,
b, shared via a (kb, n)-threshold scheme. Let c be some publicly known value. With a
linear secret sharing scheme, it is easy to update the secret to the following values via local
computations on the shares:

• a + b: If every shareholder takes the sum of their two shares, the result is a sharing
of a+ b where the new threshold is max{ka, kb}.

• c · a: If every shareholder multiplies their share of a by c, the result is a sharing of
c · a and the threshold remains unchanged.

The two techniques described above for updating shares are easily accomplished with
linear secret sharing schemes. The next function which naturally comes to mind is the
ability for the shareholders to obtain a sharing of the product a · b. Multiplication is
slightly more complex and not necessarily afforded by the properties of a linear secret
sharing scheme. For example, using Shamir’s scheme, the shareholders could multiply
their two shares together to obtain a share of a · b; however, the threshold value would also
increase and the resulting polynomial would not be random due to the fact that it can
be factored into two smaller polynomials. This has been pointed out in several previous
works [116, 13]. There are three main categories of approaches to obtaining the product
of secrets:

1. An interactive approach in the information-theoretic model.

2. A non-interactive approach in the information-theoretic model. Using this approach,
we either obtain a scheme in which multiplication or addition is simple, but not both.

3. A non-interactive approach in the computational model. Using this approach, we
can achieve both multiplication and addition of secrets.

First, we present an interactive protocol between shareholders to obtain a sharing of
a·b when using Shamir’s scheme. Despite the fact that the following protocol is well-known
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within cryptographic folklore, it appears to be difficult to find a self-contained description
of the protocol in the literature. Therefore, we present a concise description of the protocol
here, which is based on a combination of techniques that are described in [116]. We assume
the following properties about the participants:

• All shareholders are honest but curious, i.e., they do not deviate from the protocol
but may attempt to infer information from what they are given.

• At most k−1 shareholders can collude with one another and share information during
the execution of the protocol.

Construction 3.2.1. [Computing the product of two secrets in Shamir’s scheme] Let k, n
be integers such that n ≥ 2k− 1. Assume there are n shareholders and that there exists a
secure channel between any two players. Assume that the dealer is honest and only active
during the initialization step.

1. Initialization: The dealer uses two polynomials of degree k− 1, say f(x) and g(x),
to share two secrets, a and b. The corresponding shares are s1, . . . , sn and t1, . . . , tn.

2. Local multiplication: Each shareholder Pi receives shares si and ti from the dealer
and computes ui = si · ti. The old shares are now erased.

The values u1, . . . , un are shares of the secret a · b corresponding to the polynomial
h(x) = f(x) · g(x). Since h(x) has degree 2k − 2, we effectively have a (2k − 1, n)-
threshold scheme at this point; however, the sharing polynomial h(x) is not random.

3. Randomization: We now randomize the sharing polynomial h(x) without changing
the secret a·b. First, k of the players are chosen, say P1, . . . , Pk. Each of these players
independently creates shares of 0 using a polynomial of degree 2k−2 and distributes
the shares to all the players (including themselves) using secure channels. Each
player Pi then adds the k shares they received to their original share ui to create a
new share vi. All “old” shares are then erased. Now we have a secure sharing of a · b
for a (2k − 1, n)-threshold scheme.

4. Threshold reduction: We now apply a degree reduction technique to decrease the
threshold from 2k− 1 to k, using the “Lagrange method” described in Section 2.1 of
[116]. A set, ∆, of 2k−1 shareholders is chosen (at random). Each shareholder Pi ∈ ∆
selects a random polynomial wi(x) of degree at most k−1 such that wi(0) = vi. They
give wi(j) to participant Pj for 1 ≤ j ≤ n.
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The following public values are computed:

γ∆
i =

∏
j∈∆,j 6=i

j

j − i
for all i ∈ ∆.

Each player Pj erases their old shares and computes the new shares as follows:

φj =
∑
i∈∆

(γ∆
i × wi(j)).

�

In the randomization step, we require that k participants perform the resharing of new
values since we assumed that k − 1 participants may be sharing information with one
another. An alternative method of threshold reduction uses the Vandermonde method
[13], but it requires that all n participants generate and reshare values, as opposed to
the 2k − 1 in the Lagrange method above. All known methods of multiplying secrets via
computations on the shares for Shamir’s scheme require interaction between participants.

Now we discuss an alternative approach to multiplication of secrets which can be more
efficient for small parameters than the approach using Shamir’s scheme. As with the
previous approach, this protocol is interactive and unconditionally secure. Rather than
using Shamir’s scheme, this protocol uses replicated secret sharing [85]. The following
approach to obtaining the product of secrets is often used in multi-party computation
and applications in machine learning due to its improved efficiency [6, 144]. In particular,
we discuss how to obtain the product of two secrets for (2, 3)-threshold schemes. In a
(2, 3) replicated secret sharing scheme, each participant receives two shares from a (3, 3)
additive secret sharing scheme (recall the definition of additive secret sharing given in
Chapter 2). Given shares corresponding to two secrets, x and y, say (x1, x2) and (y1, y2), a
participant can locally compute the following combination of their shares: x1y1+x2y1+x1y2.
This is a share of x · y under a (3, 3) additive secret sharing scheme. Participants can
then interactively perform a threshold reduction by sending each other shares in such a
way that all participants end up with shares of x · y under a replicated (2, 3)-threshold
scheme. This approach can be generalized to larger parameters; however, there is the
drawback of having to store as many shares as the threshold number of shareholders. This
also implies that when performing additions of secrets, the computation requires a factor
of k times the local addition operations. Nonetheless, the multiplication procedure is
faster than using Shamir’s scheme because it does not require the polynomial interpolation
computations. The appropriate choice of which protocol to use depends on the parameters
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of the threshold scheme and the application’s constraints with respect to storage and
computational capabilities.

It is possible to obtain the product of secrets without interaction between participants
when working in the information-theoretic model; however, this requires a modification to
the secret sharing scheme which removes the ability to easily compute the sum of secrets.
Benaloh [14] provides a construction using discrete logarithms. The main observation is
that the sum of the shares of the discrete logarithms of the secrets are the shares of the
discrete log of the product of the secrets. In sharing the discrete log of the secret, we obtain
a protocol where the product of two secrets is easy computed by locally taking the sum of
shares. In general, discrete logarithms are difficult to compute so we must work modulo
some small prime p or by using a special form where discrete logs are easier to compute
[125, 2]. This does not affect the security of the scheme and it is still unconditionally
secure. The drawback of this approach is that the sum of secrets is no longer simple to
compute, since the scheme is not linear.

Naturally, it would be nice to have a protocol in which it is possible to compute the sum
and product of two secrets without interaction between participants. This is possible in the
computational model and discussed in recent work on so-called homomorphic secret sharing
(HSS) [31, 33]. Essentially, a secret sharing scheme is called homomorphic if it is possible
to perform local computations on shares (i.e., non-interactive protocols) which result in
shares that sum to a sum or product of secrets (or a more generic function of secrets).
The core idea of these constructions is to construct shares which have both additive and
multiplicative encodings. The sum of shares in the additive encoding results in shares of
the sum of the secrets. The sum of shares in the multiplicative encoding results in shares
of the product of the secrets. There also must exist operations which can be computed
locally on the shares that convert the shares between the two types of encodings. The
security of these schemes rely on computational assumptions [31, 34].

These four main approaches to obtaining the product of secrets without the presence
of a trusted dealer after initialization are summarized in Table 3.1.

Non-Interactive Multiplicative & Additive Unconditionally Secure
Shamir X X

Replicated SS X X
Benaloh X X

HSS X X

Table 3.1: Comparison of methods for obtaining the product of two secrets without a dealer
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3.3 Reproducibility

The next property we discuss is reproducibility: the ability to recompute lost or corrupted
shares. The term reproducibility and reproducible secret sharing was introduced in [11].
Given enough information, the dealer and/or the shareholders can reproduce lost shares.
When accomplished by the shareholders, the same property is often called repairability. In
this section, we discuss various methods of repairing/reproducing shares and use the terms
repairability and reproducibility interchangeably.

3.3.1 Reproducibility via the dealer

Classical constructions of secret sharing schemes are probabilistic, i.e., they generate fresh
randomness for each sharing. The security of the scheme relies on this property. Therefore,
to be able to reproduce shares in an information-theoretic setting, the dealer must retain
the randomness used in share construction or at least some information of equivalent
entropy. In adept secret sharing [11], Bellare, Dai, and Rogaway consider the problem
of reproducibility in a computational setting. By leveraging the properties of pseudo-
random functions, their construction requires that the dealer retain only a small amount
of randomness.

To reproduce every share in an information-theoretic setting, the dealer must store all
of the randomness and the secret. Intuitively, this is obvious because if a dealer could
reconstruct every share, they could also reconstruct the secret and the randomness. Thus,
the entropy values must be equivalent. More formally, recall the definition of dealer’s
randomness from Chapter 2: µ(A,ΠS ,Σ) = H(P1, . . . , Pn | S). We denote the dealer’s
randomness by H(R). We know that H(R) = H(P1, . . . , Pn | S) by definition, so we just
need to show that H(S) = H(P1, . . . , Pn | R) as well. As a reminder from Chapter 2, the
equation H(Y | X) = H(X, Y )−H(X) holds for random variables X, Y . Therefore,

H(P1, . . . , Pn | R)

= H(P1, . . . , Pn, R)−H(R)

= H(P1, . . . , Pn, R)−H(P1, . . . , Pn | S)

= H(P1, . . . , Pn, R)−H(P1, . . . , Pn,S) +H(S)

= H(P1, . . . , Pn) +H(R | P1, . . . , Pn)−H(P1, . . . , Pn)−H(S | P1, . . . , Pn) +H(S)

= H(R | P1, . . . , Pn)−H(S | P1, . . . , Pn) +H(S)

= 0− 0 +H(S) = H(S).
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This result is not surprising, but it allows us to conclude that, in order to reproduce
shares from some combination of the dealer’s randomness and the secret, all of the random-
ness and the secret must be stored. As demonstrated in [11], we can reduce the amount
of information that the dealer must store by working in the computational setting. This
form of reproducibility comes at the cost of diminished privacy for low-entropy secrets.

For example, to reproduce shares in Shamir’s scheme, the dealer can retain the poly-
nomial used to generate shares. Alternatively, they could hold something of equivalent
entropy such as the secret and the random values used to generate the polynomial. There
is also the possibility that the dealer has some combination of the shares and the random-
ness, which constitute equivalent entropy to holding the secret and the randomness. This
would equally enable them to restore all shares. Given any less information, they could
not regenerate all of the shares.

A dealer could store less information while still being able to reproduce some, but not
all, shares. Trivially, the dealer could store a subset of shares which would allow them to
reproduce those shares but not others. In Shamir’s scheme, they could construct a lower
degree polynomial to reduce the storage required. Naturally, storing enough shares to
reconstruct the secret (and the corresponding randomness) would allow for reconstruction
of all shares while storing fewer shares than the designated threshold only enables the
reproducibility of some shares.

3.3.2 Repairable threshold schemes

We now shift our focus to reproducibility by the shareholders. Consider a scenario in
which the dealer is no longer active after initialization of the scheme and a shareholder
has lost their share. Given a sufficient number of shares, a collection of shareholders can
reproduce other shares in an information-theoretic setting by using a repairable threshold
scheme (RTS) [105]. In an RTS, some threshold number of participants can combine the
information from their shares to repair other shares. The amount of information required
to repair a share must be equivalent to having the secret itself. If one could recover new
shares using some number of shares less than the threshold number required to reconstruct
the secret, then this would violate the security of the scheme.

Repairable threshold schemes, first considered in [76], allow a subset of shareholders
to reconstruct a lost share for another participant, without the involvement of the dealer.
This involves the introduction of a repair algorithm, in addition to the share and recover
algorithms. A (k, n, d)-repairable threshold scheme, or (k, n, d)-RTS, is a (k, n)-threshold
scheme which has a repair algorithm that allows a participant to reconstruct their share
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with the help from a set of d participants. We say that the RTS has universal repairability
if any subset of d players can repair another participant’s share. Otherwise, we say that
it has restricted repairability if some, but not all, subsets of d players can repair another
participant’s share. Combinatorial constructions of repairable threshold schemes were pre-
sented in [142] and later refined in [105]. We present an example based on combinatorial
designs.

Definition 3.3.1. An (m, d, λ)-balanced incomplete block design, or (m, d, λ)-BIBD, is a
pair (X,D) where X is a set of points, D is a collection of non-empty subsets, called blocks,
of X, and:

• |X| = m,

• each block in D contains exactly d points,

• every pair of distinct points is contained in exactly λ blocks.

Example 3.3.1. [A combinatorial repairable threshold scheme [142]] Construct a (5, 7)-
threshold scheme with shares v1, v2, . . . , v7. These are the subshares.

The subshares that each participant receives will be determined by a distribution design.
The distribution design will be a (7, 3, 1)-BIBD whose blocks are assigned to participants
as follows:

P1 = {1, 2, 3} P2 = {1, 4, 5} P3 = {1, 6, 7} P4 = {2, 4, 6}
P5 = {2, 5, 7} P6 = {3, 4, 7} P7 = {3, 5, 6}

Each vi is given to all participants having point i in their block from the distribution
design.

Any pair of participants has enough points to reconstruct the secret. This follows from
the properties of BIBDs. In particular, any two blocks intersect in at most one point, and
so two blocks must contain five distinct points. Since the threshold number of subshares
required to reconstruct the secret is five, it follows that any pair of participants can recon-
struct the secret. If a participant loses their share, there exist two other participants who
can provide each of their subshares. For example, if P3 loses their share, they can recover
v1 from P1 or P2, v6 from P4 or P7, and v7 from P5 or P6. Note that this scheme satisfies
a restricted repairability property since there exists some subset of three participants that
can repair Pi’s share, but not all subsets of size three are sufficient to repair Pi’s share. �
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3.3.3 Repairability from evolving schemes

Another approach to reproducing or repairing shares is with the use of evolving secret shar-
ing schemes [98]. An evolving secret sharing scheme considers a setting in which the access
structure changes over time. A special case of evolving secret sharing schemes considers
a dealer who knows the access structure of the secret sharing scheme but does not have
an upper bound on the number of participants. In other words, they may be required to
generate an infinite number of shares for a particular secret without changing the threshold
number of participants required to reconstruct the secret. Evolving schemes were moti-
vated by settings with an online dealer who remains active throughout the lifetime of the
secret.

Here we present an example of an evolving 2-threshold scheme based on prefix codes.
We use t to denote the time. At each increment of the time t, a new shareholder arrives
and may request a share from the dealer. Any two shareholders can reconstruct the secret.

Definition 3.3.2 (Prefix code [65]). For some set Q, a set of codewords C ⊆ Q∗ is a
prefix code if no codeword in C is the prefix of another codeword in C.

Construction 3.3.1. [Evolving 2-threshold scheme [98]] Let s ∈ {0, 1} be the secret and
let C : N → {0, 1}∗ be a prefix code for the integers, i.e., for any t1 6= t2 ∈ N, C(t1) is
not a prefix of C(t2). We write σ(t) to denote the length of C(t) for t ∈ N. Let w be an
infinite random binary string, generated as needed by the dealer. At time t ∈ N, assume
the dealer holds the prefix of the string w of length σ(t), denoted wσ(t). For simplicity, we
assume that σ(t) is monotonically increasing.

Share: The share of participant Pt (who arrives at time t) is the following:

• If s = 0 then Pt receives the share ut = wσ(t).

• If s = 1 then Pt receives the share ut = wσ(t) ⊕ C(t).

Recover: To reconstruct the secret, any two participants, say Pt1 and Pt2 , holding shares
ut1 and ut2 , respectively, where |ut1 | ≤ |ut2|, check if ut1 is a prefix of ut2 . If it is a
prefix then they output s = 0. Otherwise, they output s = 1.

�

The concepts used in evolving secret sharing can be used in settings where reproducibil-
ity is desirable. For example, if a participant loses their share, they may request a new
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one from the dealer. Rather than reproducing their original share, the dealer may use
an evolving secret sharing scheme and simply construct a new share for the participant.
Meanwhile, the threshold remains unchanged. It is important to note that using an evolv-
ing secret sharing scheme may be detrimental to the security of the scheme in the presence
of malicious parties. Suppose there is a single malicious shareholder. This shareholder can
pretend to have lost their share and request a new one from the dealer. The dealer complies
and constructs a new share with an evolving secret sharing scheme. The malicious share-
holder can repeatedly request a new share until they are able to single-handedly recover
the secret. Similar to our discussion on reproducibility via the dealer in the information-
theoretic setting, the evolving schemes described by Komargodski et al. [98] require that
the dealer holds the secret and all of the randomness.

3.3.4 Comparison of approaches to reproducibility

When a trusted dealer remains active throughout the lifetime of the secret, the simplest
approach to reproducibility is to have the dealer hold on to the secret and the randomness.
Then, the dealer can use this information at a later point in time to reproduce shares, as
needed. Although this is the most straightforward approach to reproducing shares, having
a single, active party hold all of the secret information leaves an obvious target. This may
defeat the purpose of distributing data in the first place. Such a strategy can appear to be
counterintuitive to the goal of secret sharing schemes to begin with. The same holds true
for reproducibility from evolving schemes, where we assume an online setting in which the
dealer holds all of the information for an extended period of time.

Repairable secret sharing schemes allow for reproducibility of shares in a distributed
manner, removing the requirement that a single party maintain all of the secret information.
If the dealer is no longer present after initialization, then they are no longer a vulnerability
of the system. Removing this risk can be preferable in settings where the goal is distribution
of trust. Although repairability protocols require more work than simply having a dealer
redistribute shares, there exist studies on efficient constructions of repairable threshold
schemes [95].

3.4 Alternative access structures

Most of the work we have discussed has focused on threshold access structures. That is,
the schemes require some threshold number of participants in order to reconstruct the
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secret. In this section, we review work that focuses on more general access structures and
modifications to classical access structures. This includes the following concepts:

General access structures: We may specify exactly which subsets of participants are
authorized sets and which are not.

Weighted and hierarchical schemes: Some participants have more authority or infor-
mation than others.

Dynamic access structures: The access structure may be updated over time.

Password-protected: In addition to an authorized set of participants, these schemes
require a password to reconstruct the secret.

3.4.1 General access structures

Let P denote the set of participants in a secret sharing scheme and let A ⊆ 2P denote the
designated access structure. That is, A is a set of subsets of P . Ito, Saito, and Nishizeki
[85] proved that there exists a perfect secret sharing scheme for any A as long as A is a
monotone access structure. An access structure A is said to be monotone if, for every
B ∈ A and B ⊆ C ⊆ P , we have that C ∈ A. In other words, if C is a set of participants
containing an authorized set of participants B, then C must also be an authorized set. To
construct schemes for general monotone access structures, Ito, Saito, and Nishizeki [85]
use a method that involves giving multiple shares to each participant, which is sometimes
called replicated secret sharing. In the remainder of this subsection, we will present a
construction satisfying a general monotone access structure, by Benaloh and Leichter [15].

Suppose A is a monotone set of subsets of P = {P1, . . . , Pn}. Let the set of possible
secrets be S = Zm for some integer m. Denote the secret by s ∈ S. First, we will construct
a monotone circuit that represents the access structure and then build a secret sharing
scheme based on the circuit. Let O be a monotone circuit (i.e., it has only and and or
gates) with inputs x1, . . . , xn corresponding to each participant Pi. We can represent such
a circuit with a Boolean formula containing ∧ and ∨ operators. In particular, we can use
the following Boolean formula: ∨B∈A (∧xi∈Bxi).

We proceed by assigning a value, f(w), to every wire w in the circuit. Assign the output
wire wout the value of the secret, s. We will iterate over gates in the circuit that have an
output defined but no defined input until every wire has some value assigned to it. For
some gate G with input wire w and output wire wG, we define f(w) as follows:
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• If G is an or gate, ∨, then define f(w) = f(wG) for every input wire w of G.

• If G is an and gate, ∧, then share the value f(wG) using the additive scheme described
in Construction 2.0.2 among the t input wires. That is, choose t− 1 elements of Zm
independently at random, say y1, . . . , yt−1, compute yt = f(wG) −

∑t−1
i=1 yi mod m,

and let f(wi) = yi for i = 1, . . . , t.

This completely determines the monotone circuit. The corresponding secret sharing
scheme simply consists of giving each participant Pi the list of values f(w) where w is an
input wire of the circuit which receives input xi.

Example 3.4.1. Suppose the access structure is A = {{P1, P2, P4}, {P2, P3}, {P1, P3}}
and the secret is 7 ∈ Z31. The corresponding Boolean formula is

(P1 ∧ P2 ∧ P4) ∨ (P2 ∧ P3) ∨ (P1 ∧ P3).

After iterating through all gates and assigning values to wires, the circuit looks something
like the following (where the random values chosen for input wires to ∧ gates may vary).

x1

x2

x4

x2

x3

x1

x3

∧

∧

∧

∨ 7

20
6

12

5
2

25
13

7

7

7

Figure 3.1: Example of a monotone circuit for a general access structure

Then, P1 receives (12, 25), P2 receives (20, 5), P3 receives (2, 13) and P4 receives (6).
Any authorized set can recover the secret and any unauthorized set learns no information
about the secret. �
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This construction, although applicable to any monotone access structure, is not par-
ticularly efficient. In the case of a (k, n)-threshold scheme, using the circuit construction
requires that we give each participant

(
n−1
k−1

)
elements of the group, as opposed to the single

element that is given in Shamir’s scheme. There is a significant body of work focused
on improving the efficiency of secret sharing schemes for different access structures. The
efficiency of a secret sharing scheme can be measured by the information rate, described in
Chapter 2, and there are many papers discussing bounds on the information rate of secret
sharing schemes [40, 96, 27, 139, 26]. To improve the efficiency of general constructions,
some work has shifted to a computational setting to achieve smaller shares [100] while oth-
ers focus on constructing schemes with an optimal information rate for particular access
structures [36, 86]. A bulk of this work has focused on graph access structures, where the
access structure is described by a graph such that a subset of participants can reconstruct
the secret only if they contain an edge in the graph [147, 23, 69, 9].

3.4.2 Weighted and hierarchical schemes

Consider a scenario in which certain participants have more authority than others. These
settings can be represented by weighted threshold schemes or hierarchical schemes.

In a weighted threshold scheme, each shareholder is assigned a positive weight and a
subset of shareholders can reconstruct the secret if and only if the sum of their weights
is greater than or equal to a certain threshold. There is a natural way of constructing
a weighted threshold scheme where the total weight required is some positive number k
from (k, n)-threshold schemes. Each participant is simply given a number of shares equal to
their assigned weight. This, however, is not the most efficient way of constructing weighted
threshold schemes. Beimel, Tassa, and Weinreb [10] characterize which weighted threshold
access structures are ideal, i.e., can be achieved with information rate equal to one, and
discuss how to construct them from a linear ideal secret sharing scheme.

Weighted threshold schemes can be considered a specialization of hierarchical threshold
schemes, which were introduced by Simmons [135]. In a hierarchical threshold scheme, the
participants are partitioned into a hierarchy of disjoint levels L1, . . . , Lm with corresponding
thresholds k1 > k2 > · · · > km. Then, a set of participants is an authorized set if and only if
it contains at least ki users from the ith level and above, for at least one i ∈ 1, . . . ,m. This
may also be called a disjunctive multilevel scheme. Similarly, in a conjunctive multilevel
scheme [145], a set of players is said to be authorized if and only if it contains at least
ki users from the ith level for all i ∈ 1, . . . ,m. Simmons [135] and Brickell [36] provide
constructions for disjunctive multilevel schemes based on finite geometries while Tassa [145]
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provides a construction for conjunctive multilevel schemes based on Birkhoff polynomial
interpolation.

Later, Nojoumian and Stinson [117] introduced sequential secret sharing, in which play-
ers still belong to different levels of authority but can only recover a secret belonging to
their own level. Also, there exists a master secret which can be revealed if all of the secrets
in higher levels are first recovered.

3.4.3 Updating the access structure

Consider an access structure that changes over time. Some desired changes to the access
structure may include adding/removing participants, adjusting thresholds, and adding/
removing authorized sets of participants. In this subsection, we discuss existing methods
for updating the access structure in secret sharing schemes.

Adding participants

It is not hard to imagine a scenario in which we would like to add a new player to a threshold
scheme. This can trivially be accomplished if the dealer is still active after initialization by
having the dealer generate a new share for the new participant. In the setting where the
dealer is no longer active after initialization, the shareholders can cooperate to generate a
share for a new participant without reconstructing the secret. This is called an enrollment
protocol or an admission protocol. For a (k, n)-threshold scheme, at least k players must
cooperate to generate a new share, resulting in a (k, n+ 1)-threshold scheme.

A number of enrollment/admission protocols have been introduced in past works which
were very computationally expensive [80, 114, 132]. Saxena, Tsudik, and Yi [131] presented
a more efficient non-interactive protocol for admitting new participants in a threshold
scheme which is computationally secure and based on bivariate polynomials. Nojoumian,
Stinson, and Grainger [118] presented an efficient, unconditionally secure enrollment pro-
tocol, assuming all participants correctly follow the protocol, to generate shares for new
participants under Shamir’s threshold scheme. This protocol is interactive and presented
below. It is interesting to note that, again, we can see a trade-off between non-interactivity
and unconditional security, akin to the trade-off discussed in Section 3.2.2.

Example 3.4.2. [Unconditionally Secure Enrollment Protocol [118]] The following as-
sumes that all participants follow the protocol honestly and that there exist pairwise secure
channels between participants.
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1. Each player Pi, for 1 ≤ i ≤ t, computes their Lagrange interpolation coefficient:

γi =
∏

1≤j≤t,i 6=j

k − j
i− j

where i, j, k are players’ ids.

2. Participant Pi multiplies their share ϕi by their Langrange interpolation coefficient
and splits the result into t portions:

ϕi × γi = ∂1i + ∂2i + · · ·+ ∂ti.

3. Players exchange ∂ji’s accordingly through pairwise channels. Pj adds the ∂ji’s to-
gether and sends the result to Pk:

σj =
t∑
i=1

∂ji.

4. Pk adds each of the σj values together to get their share ϕk:

ϕk =
t∑

j=1

σk.

The proof of security of this protocol can be found in [118]. �

An alternative approach to using an enrollment protocol is to use an evolving secret
sharing scheme. We briefly discussed evolving schemes in Section 3.3.3. Evolving secret
sharing, introduced by Komargodski et al. [98], considers the case where the set of share-
holders is not known in advance and could possibly be infinite. Evolving schemes are
motivated by an online setting in which the dealer remains active over a long period of
time and participants may arrive at any point. These schemes require that there is no
communication to the parties who have already received shares when a new participant
arrives. The initial paper presents constructions for k-threshold evolving schemes where k
is a fixed constant and the number of shareholders may be unbounded. This is not possible
in Shamir’s scheme, for example, since shares are an element of a finite field GF (q), and so
it is limited to at most q − 1 shares. In [99], evolving schemes are extended to a dynamic
threshold access structure, where the qualified sets are of increasing size as the number of
participants increases. They also present an extension which is robust, where the secret
can be recovered even with some invalid or corrupt shares. Later, [126] considered the
problem of evolving secret sharing with t essential participants, namely where a fixed set
of t participants are essential and may receive shares of constant size. Typically, the share
sizes (and consequently, the information rate) in these constructions are relatively large to
account for the potentially unbounded set of participants.

26



Removing participants

The ability to withstand the loss or removal of a participant in a threshold scheme has been
termed disenrollment capability [18]. The removal or loss of a participant means that their
share should become invalid. The remaining shares thus need to be modified so that the
invalid share can no longer be used. Otherwise, in the case of a (k, n)-threshold scheme, the
publication of a lost share would decrease the threshold to k−1. Blakley, Blakley, Chan, and
Massey [18] introduced the term disenrollment capability and considered systems in which
participants distribute information through insecure channels to modify the remaining
shares.

Charnes, Pieprzyk, and Safavi-Naini [43] present a disenrollment scheme in the compu-
tational setting based on Shamir’s scheme. Rather than having participants interact with
one another to remove a participant, this construction requires the existence of a combiner
participant. The combiner is responsible for maintaining random values which will be
used to update shares when a participant is removed. The combiner is also responsible for
reconstructing the secret using these random values.

Proactive secret sharing schemes [80] can also be used to remove participants. Proactive
secret sharing schemes update shares over time to prevent an adversary from learning the
secret from leaked shares over time. To remove a participant, the active participants can
update their shares via a proactive scheme and exclude the inactive participant from the
update so that the inactive participant does not receive a new, valid share. We discuss
proactive schemes in more detail in Section 4.4.1.

Threshold adjustments

In a (k, n)-threshold scheme, it may be desirable for the threshold parameter, k, to not
remain static over time. A decrease in mutual trust may result in a desire for a threshold
increase and an increase in mutual trust may result in a desire for a threshold decrease.
Schemes which allow the threshold parameter to be changed over time are sometimes
called threshold changeable secret sharing schemes. The ability to increase or decrease the
threshold parameter can be considered in several settings: with or without a dealer, and
with or without secure channels between participants. Threshold adjustments can trivially
be achieved in a setting where the dealer is present and there exist secure channels. This is
easily done by having the dealer issue new shares to all participants and having participants
discard their old shares. This solution, however, is inefficient and often impractical.

Consider a setting where shares have been distributed to participants under secure
channels, but these secure channels are no longer in use. Under the presence of the original
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dealer, threshold changes can be achieved by two general techniques, described in detail
by Martin et al. [110]:

• During the original initialization, the dealer gives each participant a secret key in
addition to their share. At a later point in time, the dealer can send new shares (cor-
responding to a different threshold) to participants, encrypted under their respective
secret key.

• During the original initialization, the dealer gives each participant shares for the
(k, n)-threshold scheme and for a (n+1, 2n)-threshold scheme. To change the thresh-
old parameter, they broadcast a specific number of shares of the second scheme that
effectively change the threshold parameter.

The dealer does not need to know upon initialization what the change in threshold will be,
but they do need to know that a change may be needed in order to properly set up the
scheme. Participants must be trusted to discard their old shares in the case of a threshold
increase.

Most of the work in this topic has considered a setting in which the dealer is no longer
present after initialization. In this case, participants can work together to change the
threshold. We now describe several known techniques for accomplishing these changes.
Martin summarizes the models that might be considered when dynamically changing
thresholds [107].

• The zero addition technique [116, 80] can be used for threshold increase. This involves
generating shares corresponding to a (k′, n)-threshold scheme, for some k′ > k, with
secret equal to 0 and then adding these shares to the original shares.

• The public evaluation technique [116] can be used to decrease the threshold. This
involves participants collectively generating a new share (as in enrollment protocols)
and then publishing this share so that the threshold is decreased.

• The resharing or redistribution technique [13, 55, 111, 116] can be used to increase
or decrease the threshold. This technique, demonstrated in the degree reduction step
of Construction 3.2.1, involves participants treating their own share as a secret and
resharing it among all other participants according to a new threshold value. This
technique often relies on the linearity of the secret sharing scheme so that reshared
values can be added together to obtain new shares.
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• In a setting without secure channels after initialization, a ramp scheme can be used
to allow for threshold increases, assuming that the participants honestly delete their
original shares after updating them [110]. In this construction, it must be known
ahead of time that a threshold change is desired.

• In an active adversary setting, techniques from verifiable secret sharing can be applied
when updating shares to prevent shareholders from corrupting the updates [116].

• In a non-interactive setting, only threshold increase can be accomplished (otherwise,
it would violate the privacy requirement of threshold schemes). Harn and Hsu [78]
suggest using bivariate polynomials for this purpose, where initial shares are polyno-
mials that are later evaluated to shares dependent on the desired threshold.

Updating general access structures

More generally, we might consider how changes can be dynamically made to general access
structures. One approach is to setup a secret sharing scheme in such a way that a specific
access structure can be activated at some point in time via a broadcast message to all
participants. This is called a prepositioned scheme. We previously discussed prepositioned
schemes in Section 3.2.1 as a way to enable multiple secrets to be recovered, but they can
also be used to activate particular access structures. This is demonstrated in Example
3.2.3. Fully dynamic schemes [21] often satisfy the properties of prepositioned schemes.
Additionally, the activated access structure may be changed over time. In other words,
at any particular time i, if an access structure A(i) has been enabled via some broadcast
message, then any set of participants not within the access structure should have no in-
formation about the corresponding secret si, even knowing the i − 1 previous broadcast
messages. These two approaches to updating the access structure require the presence of
the dealer.

Just like with threshold adjustments, we might consider how to update a general access
structure without the presence of the dealer. Desmedt and Jajodia’s [55] technique of share
redistribution which we discussed for threshold adjustment also applies to general access
structures. The main idea is the same: participants treat their shares as secrets and reshare
them among the other participants under the new access structure. The redistribution
technique of Desmedt and Jajodia requires that the underlying scheme is linear. This
enables the redistributed values to be combined into a single share. In particular, they
show how to perform share redistribution under Benaloh and Leichter’s scheme for general
access structures [15], a scheme which we discussed in Section 3.4.1.
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3.4.4 Password-protected secret sharing

Password-protected secret sharing (PPSS) [8], also sometimes called threshold password-
authenticated secret sharing (TPASS), introduces the additional requirement of a password
to the access structure. When storing data, simply encrypting data using a key derived
from some password is vulnerable to password leaks and dictionary attacks. By combining
password authentication with secret sharing, we can address a scenario in which a user can
secret share some data among n servers and protect it with a password p such that they
can later recover the data using p and some threshold number of honest servers. Further,
any coalition of servers less than the threshold number should learn nothing about the
data.

The initial construction of PPSS [8] relies on the decisional Diffie-Hellman (DDH)
assumption and non-interactive zero-knowledge proofs, and so it is in the computational
model. Later work made improvements on the number of rounds required [90, 91], removing
assumptions of secure channels and public keys [38], and improving robustness [1]. Each
of these constructions is considered in the computational model.

Password-protected secret sharing is similar in theory to hierarchical secret sharing
schemes, which we discussed in Section 3.4.2. We could conceive of a hierarchical scheme
with two levels (one for the user and one for the servers) where the user’s share and k
out of the n server shares are required to reconstruct the secret. One difference here
is that the password comes from some dictionary which is likely different than the set
of possible shares, since a password should be memorizable by a human. In addition, the
models considered in PPSS constructions are most similar to those considered in password-
authenticated key exchange protocols [12], where a client holding a password interacts with
one or more servers (in a public key setting) to establish shared keys.

3.5 Anonymity

Anonymous secret sharing schemes were first investigated in 1988 by Stinson and Vanstone
[140] and then further investigated in 1997 by Blundo and Stinson [28]. In anonymous
secret sharing, the secret can be reconstructed without knowledge of which participants
hold which shares. The shares are given to a trustworthy machine that does not know the
identities of the participants. The recover algorithm carried out by the trusted machine
ensures anonymity of the participants.

30



3.6 Relaxations

Thus far, we have described variations of secret sharing that have strengthened or extended
the classical definitions in some form or another. Going in the other direction, we can
consider how to relax the requirements of secret sharing schemes. Given that we initially
introduced secret sharing schemes as providing two properties, privacy and correctness, we
can consider how to relax one or the other.

3.6.1 Relaxing correctness

Relaxing the correctness requirement is accomplished by probabilistic secret sharing [51].
Recall the correctness requirement of a classical secret sharing scheme states that any
authorized set of participants can reconstruct the secret. In probabilistic secret sharing,
we relax this requirement to a property named α-correctness. A probabilistic scheme
ensures α-correctness if for any authorized subset of participants, they can reconstruct
the secret with probability greater than or equal to α. In the classical case, α = 1.
The privacy requirement does not change. We present an example from [51] for a (2, n)-
threshold scheme, although the construction actually applies to the case where the number
of shareholders is not limited (i.e., a (2,∞)-threshold scheme).

Example 3.6.1. [Probabilistic secret sharing scheme [51]] Let s ∈ {0, 1} be the secret and
Pi denote the ith shareholder.

Share: For the first participant, P1, their share is a random bit b1. For the remaining
participants Pi, i > 1, the shares are as follows:

• If the secret is s = 0 then the share is b1.

• If the secret is s = 1 then the share is a new random bit bi.

Recover: The reconstruction algorithm takes as input two bits, bi and bj, and outputs
bi ⊕ bj.

The paper proves that this is a (1+p)/2-probabilistic (2, n)-threshold scheme where (p, 1−p)
is the distribution of the secret bit. That is, the scheme achieves (1 +p)/2-correctness. �
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3.6.2 Relaxing privacy

Relaxing the privacy requirement can be accomplished in several different ways. In the clas-
sical, information-theoretic definition of secret sharing schemes, an adversary with infinite
computational resources learns no information about the secret given any unauthorized
set of shares. We can either relax the requirement that they learn no information or the
property that they have infinite computational resources.

Classical secret sharing schemes are said to be perfect since they satisfy the property
of perfect privacy, as discussed in Chapter 2. A non-perfect scheme may leak partial
information to any subset of participants. The following list outlines variations of non-
perfect secret sharing schemes. Jafari and Khazaei [89] expand on the relationships between
the following notions.

• Quasi-perfect: In quasi-perfect secret sharing [94], it is required that the percentage
of information leaked/missed is negligible. That is, any unauthorized set may learn a
negligible amount of information about the secret. Additionally, there is a negligible
probability that an authorized set cannot reconstruct the secret. So, this definition
relaxes both correctness and privacy requirements by some small amount, ε, in an
information-theoretic sense. In terms of entropy definitions, for an authorized set A
and a set of secrets S, H(S | A)/H(S) ≤ ε for some negligible ε.

• Almost perfect: In almost perfect secret sharing [93], some small amount of infor-
mation (in terms of entropy) can be leaked/missed. That is, for an authorized set A
and a set of secrets S, the entropy is H(S | A) ≤ ε. (Recall that in a perfect scheme,
H(S | A) = 0.)

• Partial: A partial secret sharing scheme [89] requires that the information gained
about the secret by any authorized set is strictly greater than the information gained
by any unauthorized set. That is, for an authorized set A, unauthorized set B, and
set of secrets S, we require that H(S | A) < H(S | B).

• Statistical privacy: A statistical privacy guarantee ensures that an adversary only
learns a limited amount of information from an unauthorized set of shares, as opposed
to no information at all (in an information-theoretic sense). They require that any
unauthorized set of parties can only distinguish between shares corresponding to two
different secrets with negligible probability.

On the other hand, we can consider an adversary in the computational setting. In
a computational setting, an adversary learns no information about the secret assuming
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they are computationally bounded. This relaxation allows for shorter shares and/or more
efficient constructions [100]. Most variations of secret sharing were initially considered in
the information-theoretic setting.

3.7 Summary

Recall from Chapter 2 that in a classic secret sharing scheme in the information-theoretic
setting, we have a dealer who distributes shares among a set of participants such that the
following two properties hold:

Correctness: Any authorized set of parties can reconstruct the secret.

Perfect Privacy: Any unauthorized set of parties learns no information about the secret
from their shares.

In this chapter, we analyzed how previous work has extended this basic primitive to
achieve new capabilities. The content of the secret itself (Section 3.1) and the structure of
authorized sets (Section 3.4) have been extended and generalized. The properties of privacy
and correctness have been relaxed to increase efficiency (Section 3.6). Also, additional
functionality has been included in the design to enable updating secrets (Section 3.2), to
enable updating access structures (Section 3.4.3), and to enable reproducibility of shares
(Section 3.3). In this chapter, we presented a protocol to compute the product of two
secrets in Shamir’s scheme, which appeared to be difficult to find in the literature, despite
being well known. This chapter also included a comparison and analysis of approaches
to updating secrets without the presence of the dealer and a comparison and analysis
of approaches to reproducing shares. We also observed that a trade-off between non-
interactivity and unconditional security appeared in protocols extending the functionality
of secret sharing schemes. In the next chapter, we continue our investigation of extensions
to the original definitions of secret sharing schemes as we explore alternative adversarial
settings.
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Chapter 4

Alternative Adversarial Settings

This chapter considers variations of secret sharing that address new adversarial settings. In
classical secret sharing schemes, we assumed that the dealer and the participants involved
all act honestly and follow the protocol. Such an assumption may not always hold in
practice, so it is interesting to consider alternative adversaries. Martin [108] presented an
interesting survey on the topic of adversarial settings entitled “Challenging the adversary
model in secret sharing scheme.”

In this chapter, we propose new game-theoretic definitions for a number of adversarial
settings. By using consistent terminology and definitions, we unify the notions presented
in previous works and clarify the differences between various concepts. We consider the
setting where the dealer may not be trusted, settings where shareholders may misbehave,
and settings where shares may be leaked. Previous studies on the topic of verifiability
often presented informal definitions or did not clearly demonstrate the differences in the
adversarial models considered. This resulted in some difficulty in distinguishing between
the security properties provided by different works that all claim to provide some form
of security against an untrusted dealer. These subtleties are clarified in this chapter.
Additionally, we formalize a notion of deniability, which prior to this work had not been
considered in the context of secret sharing.

4.1 Verifiability

In a setting where the dealer is not trusted, it is useful to be able to verify the validity
or the consistency of shares. This is the goal of verifiable secret sharing (VSS) [45]. VSS
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schemes enable honest parties to recover the secret even in the presence of a malicious
dealer who has corrupted some shares. Somewhat more formally, a scheme is verifiable if
upon receiving a share, a participant can test whether or not it is a valid share. Given
a set of valid shares which make up an authorized set, there exists a unique secret which
is output by the Recover algorithm. VSS is one of the most widely used modifications of
classical secret sharing schemes and is often employed in multi-party computation schemes.
There exist several definitions and models under which verifiability has been considered.
In this section, we analyze and compare the most prominent definitions of verifiability.
Martin [108] also provides a survey of various definitions of verifiable secret sharing. In
our work, we analyze the definitions in more detail and contribute new definitions using
adversarial games, to clarify the differences in approaches to verifiability. Throughout this
section, we consider (k, n)-threshold schemes.

A verifiable secret sharing scheme introduces a Verify algorithm which allows partic-
ipants to verify the validity of their shares before reconstruction. A VSS scheme is in-
teractive if the Verify algorithm requires that the shareholders interact with one another.
Otherwise, we say it is non-interactive. In what follows, we say that a set of shares is
consistent if for all authorized subsets of participants, A, who have verified and accepted
their shares, there exists a secret s′ such that every such subset A reconstructs the secret
s′. In other words, a set of shares is inconsistent if there exists two authorized subsets,
A1, A2, of participants that have verified their shares such that A1 reconstructs a secret s1

and A2 reconstructs a secret s2 6= s1.

4.1.1 Non-interactive VSS

The first scenario we consider is a (k, n)-threshold scheme where the players are all honest
but the dealer is malicious. In the following, we will use a non-interactive Verify algorithm,
meaning that the verification process involves shareholders running the Verify algorithm on
the information they have received from the dealer. This information can include shares and
publicly broadcasted information. It does not allow for interaction between shareholders.
This definition is useful in a scenario where participants cannot communicate with one
another but trust that the others are acting honestly. The following definition is a new
game-theoretic definition for non-interactive VSS which encompasses much of the previous
work in non-interactive VSS [121, 68].

The Non-Interactive Verifiability Game. Consider a probabilistic polynomial-time
adversary acting as the dealer. Let P denote the set of n (honest) shareholders and consider
a (k, n)-threshold scheme.
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Step 1. The adversary generates n (possibly invalid) shares and gives one share to each
participant P1, . . . , Pn ∈ P . The adversary designates two distinct sets of partici-
pants, say A1, A2, both of size k.

Step 2. All participants in A1 and A2 verify their shares using a non-interactive Verify
algorithm.

Step 3. If all shares are verified in step 2 then A1 reconstructs a secret s1 and A2 recon-
structs a secret s2.

The adversary wins if the set of shares is not consistent. That is, the following two prop-
erties must hold:

1. all parties in A1 and A2 have verified and accepted their shares, and

2. s1 6= s2.

This definition of verifiability ensures that the shares distributed by the dealer are con-
sistent with one another. Since the Verify algorithm is non-interactive, such a scheme does
not address the potential of misbehaving shareholders (this will be discussed in Chap-
ter 5). Therefore, it is possible that a malicious shareholder could corrupt their share
before reconstruction. Feldman [68] and Pedersen [121] both provided constructions of
non-interactive VSS schemes. Feldman [68] presented the first non-interactive VSS scheme,
which relies on the existence of a hard-to-invert encryption scheme. The privacy guaran-
tee is computational while the verifiability guarantee is information-theoretic. Pedersen’s
non-interactive protocol [121] has an information-theoretic guarantee of privacy (it adapts
Shamir’s scheme) and a computational guarantee of verifiability. We present Pedersen’s
scheme as an example next.

Example 4.1.1. [Pedersen’s Non-Interactive VSS [121]] Let p, q be large primes such that
q divides p− 1. Let Gq be the finite subgroup of Z∗p of order q. Let g, h ∈ Gq. Suppose the
dealer wants to share a secret s ∈ Zq using a (k, n)-threshold scheme. In what follows, we
denote a commitment to some x ∈ Zq by E(x, y) = gxhy for some random y ∈ Zq.

1. Share: The dealer randomly chooses t ∈ Zq and publishes a commitment to s, given
by

E0 = E(s, t) = gsht.

The dealer selects a random polynomial u(x) ∈ Zq[x] of degree k−1 such that s = u(0)
is the secret. Denote this polynomial by u(x) = s+ u1x+ u2x

2 + · · ·+ uk−1x
k−1. Let

si = u(i), for i = 1, . . . , n.
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The dealer randomly selects another polynomial v(x) ∈ Zq[x] of degree k − 1, which
we denote v(x) = t+ v1x+ · · ·+ vk−1x

k−1. Let ti = v(i) for i = 1, 2, . . . , n.

The dealer publishes (i.e., broadcasts) a commitment Ei = E(ui, vi) for each i =
1, . . . , k − 1 and each participant receives the share (si, ti) via secure channel from
the dealer.

2. Verify: For participant Pi to verify their own share, Pi checks that

Ei = E(si, ti) =
k−1∏
j=0

Eij

j .

Given valid shares, both sides of the equation should evaluate to gsihti = gu(i)hv(i).

3. Recover: The recovery process is the same as in Shamir’s scheme. Given k shares,
participants can recover s using polynomial interpolation.

The security of this VSS scheme depends on the security of the commitment scheme, E. It
is a computational guarantee, given by the fact that E(s, t) reveals no information about
s unless an adversary can solve the discrete logarithm logg(h). This is proven in [121]. �

It is interesting to note that both Pedersen [121] and Feldman’s [68] non-interactive
constructions are in the computational setting. Pedersen [121] argued that it is impossible
to achieve non-interactivity in the information-theoretic setting. The proof provided by
Pedersen that this verifiability property cannot be achieved in a non-interactive manner
in the information-theoretic setting is missing a necessary assumption that n ≥ k + 1.
We provide a refined version of the proof next. This trade-off between non-interactivity
and unconditional security is reminiscent of the trade-off we discussed in Section 3.2.2 and
Section 3.4.3.

Theorem 4.1.1 ([121]). There does not exist a non-interactive (k, n)-threshold secret shar-
ing scheme in which no information about the secret is revealed and even an infinitely
powerful dealer cannot compute inconsistent shares, for n ≥ k + 1.

Proof. Let b denote the information broadcasted by the dealer in a non-interactive secret
sharing scheme. Assume that s1, . . . , sk, sk+1 is a set of valid shares corresponding to a
secret s. Let V (i, b, si) denote the verification predicate computed by Pi to verify their
share si. Given s1, . . . , sk−1, define

Sk(b) = {s′k | V (k, b, s′k)}.
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In words, Sk(b) denotes the set of possible valid shares for a participant Pk. Then, sk ∈
Sk(b) and s1, . . . , sk will reconstruct the secret s.

Suppose that there exists some s′k ∈ Sk(b) such that s1, . . . , sk−1, s
′
k reconstructs to a

secret s′ 6= s. Then, s1, . . . , sk−1, s
′
k, sk+1 is a set of inconsistent shares since s1, . . . , sk−1, s

′
k

reconstructs s′ while s1, . . . , sk−1, sk+1 reconstructs s.

This is impossible, since we required that even an all-powerful dealer cannot find in-
consistent shares. Therefore, it holds that, for all s′k ∈ Sk(b), the k shares, s1, . . . , sk−1, s

′
k,

reconstruct the secret s. But then P1, . . . , Pk−1 can find the secret s by guessing a secret
share sk ∈ Sk(b) and combining their shares to obtain s. This contradicts the privacy
requirement of the secret sharing scheme.

4.1.2 Unconditionally secure VSS

A disadvantage of non-interactive VSS is that it cannot detect if malicious shareholders
have corrupted their shares before reconstruction. If we allow interaction between partici-
pants, then honest participants can verify the validity of other participants’ shares before
reconstruction, thereby detecting any last-minute corruption of shares. Additionally, we
can then consider constructions in an information-theoretic model as opposed to a compu-
tational setting. The schemes may be perfectly secure both in terms of the privacy of the
secret sharing scheme and the verifiability. That is, any set of unauthorized shareholders
obtains no information about the secret and if an authorized set of participants verifies
their shares to be correct, then they all will be able to reconstruct the same secret value. In
this model, we assume that there exist private channels between each pair of participants.

For our definitions, we consider (k, n)-threshold secret sharing schemes which follow the
subsequent template. The two game-based definitions which follow are both new definitions
of unconditionally secure VSS. Later, we discuss how these definitions encompass previous
work in the unconditionally secure setting [141].

Unconditionally Secure Verifiable Secret Sharing Scheme Template

Step 1. A dealer generates n shares and gives one share to each participant P1, . . . , Pn ∈
P .

Step 2. Participants participate in an interactive Verify algorithm which outputs either 0
or 1, denoting failure or success of verification of shares, respectively. In the case of
success, the Verify algorithm also outputs a subset of players, say P0, to be used in
the next step.
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Step 3. If Step 2 succeeds, the participants in the set P0 perform a reconstruction, out-
putting a secret or ⊥, which denotes failure of reconstruction.

We consider two different scenarios. In the first, the dealer and a subset of shareholders is
malicious. In this scenario, the honest participants would like to verify that their shares
are consistent, enabling them to recover a consistent secret despite the presence of mali-
cious shareholders and a malicious dealer. The malicious participants attempt to thwart
reconstruction.

The Unconditionally Secure Verifiability Game with Malicious Dealer. Let P
denote the set of n shareholders and suppose there is an adversary that controls the dealer
and b − 1 of the participants. We assume that b − 1 < k. In Step 1 of the scheme, the
adversary generates n possibly invalid shares and distributes them among the participants.

The adversary wins the game if the verification in Step 2 (as described above) succeeds but
the reconstruction in Step 3 fails.

In the second scenario we consider, the dealer is honest and a subset of shareholders is
malicious. In this scenario, the honest participants would like to verify that their shares are
consistent and that they can recover the intended secret which was shared by the honest
dealer. The malicious participants try to ensure that an incorrect secret is reconstructed
or that no secret is reconstructed at all.

The Unconditionally Secure Verifiability Game with Honest Dealer. Let P de-
note the set of n shareholders, and suppose there is an adversary that controls b of the
participants. We assume that b < k. The honest dealer generates and distributes shares
corresponding to a secret s in Step 1.

The adversary wins the game if one the following cases occurs:

1. verification in Step 2 fails, or

2. verification in Step 2 succeeds and reconstruction in Step 3 fails, or

3. verification in Step 2 succeeds and Step 3 outputs a secret s1, where s1 6= s.

This definition differs from the non-interactive definition from Section 4.1.1 in a few
ways. In the unconditionally secure setting, the verification procedure must be interactive,
as we proved in Theorem 4.1.1. The adversary also has the ability to control some subset of
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shareholders in this model. Therefore, an unconditionally secure VSS scheme can protect
against malicious shareholders attempting to modify their shares before reconstruction.

Rabin and Ben-Or [127] present a construction of an unconditionally secure VSS scheme
using the idea of check vectors. Stinson and Wei [141] present another construction of an
unconditionally secure VSS scheme, based on symmetric polynomials, which we present
next.

Example 4.1.2. [Unconditionally Secure VSS [141]] Let P denote the set of n participants,
let S = GF (q) be the set of possible secrets, and let ω ∈ GF (q) be a primitive element.
Let s ∈ S be the secret. An adversary can control up to b of the participants (including
the dealer). The protocol is outlined in the following steps, where we assume that honest
participants follow the protocol as described. An adversary cannot win the unconditionally
secure verifiability game (with honest or malicious dealer) for this protocol, provided that
n ≥ k + 3b and k > b, where k is the threshold number of participants required to
reconstruct a secret.

1. Share: An honest dealer chooses a random symmetric polynomial in GF (q)[x, y]:

f(x, y) =
k−1∑
i=0

k−1∑
j=0

aijx
iyj,

where a00 = s and aij = aji for all i, j. For each m ∈ 1, . . . , n, the dealer sends
hm(x) = f(x, ωm) to Pm.

2. Verify: Each Pm sends hm(ω`) to P` for 1 ≤ ` ≤ n, ` 6= m. Each P` checks whether
hm(ω`) = h`(ω

m) for 1 ≤ m ≤ n, ` 6= m. If P` finds that hm(ω`) 6= h`(ω
m) then P`

broadcasts (`,m). (This indicates that P` does not accept the value hm(ω`).)

Each Pi computes a maximum subset Gi ⊆ {1, . . . , n} such that any ordered pair
(`,m) ∈ G × G is not broadcasted. This set Gi is computed based on publicly
broadcasted information and its size is uniquely determined. Different players may
compute different subsets Gi (all Gi’s will have the same size), so they should agree
on a particular set G before the following step. For example, the players could decide
ahead of time to choose whichever set is lexicographically least. If |G| ≥ n− b, then
Pi outputs veri = 1. Otherwise, Pi outputs veri = 0.

3. Recover: Each Pi sends hi(0) to each player Pm, where i ∈ G. Pm computes a
polynomial fm(0, y) such that fm(0, ωi) = hi(0) for at least n − 2b of the data they
received. This variation of error correction is to account for the fact that b malicious
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players may follow the protocol correctly up until sending hi(0). Pm computes and
outputs s′ = fm(0, 0). If Pm and the dealer are honest, then s′ = s.

�

The above construction occurs in the information-theoretic setting which imposes some
trade-offs on other aspects of the protocol. In particular, an information-theoretic verifiable
scheme can only tolerate an adversary if no three unauthorized subsets span the entire
participant set [13, 48].

Stinson and Wei [141] define unconditionally secure VSS to be those that satisfy the
following set of properties:

1. If an honest player rejects the shares during the verification process then every honest
player rejects the shares.

2. If the dealer is honest then all honest players verify and accept their shares.

3. If at least n − b players accept their shares then there exists an s′ ∈ S such that
the event that all honest Pi output s′ after reconstruction is fixed after sharing, and
s′ = s if the dealer is honest.

4. If |S| = q, s is chosen randomly from S, and the dealer is honest then any coalition
of at most k − 1 participants cannot guess at the end of Share the value of s with
probability greater than 1/q.

It is not hard to see that these properties are sufficient to guarantee that an adversary
cannot win either of the two unconditionally secure verifiability games. First, consider the
unconditionally secure verifiability game with a malicious dealer and assume the above
properties hold for a given scheme. An adversary who can win the game ensures that the
participants verify their shares in Step 2, while reconstruction fails in Step 3. This would
contradict property 3 in the list above which states that if at least n − b players accept
their shares then there exists a valid secret that the participants reconstruct.

Now consider the unconditionally secure verifiability game with an honest dealer. Again,
assume the above properties hold for a given scheme. Each win condition for the adversary
leads to a contradiction:

1. If verification in Step 2 fails, then this contradicts property 2 which states that if the
dealer is honest then verification succeeds.
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2. If verification succeeds but reconstruction fails, then this contradicts property 3 which
states that there exists a secret s′ which will be output after reconstruction.

3. If verification and reconstruction succeed but a secret not equal to s is reconstructed,
then this also contradicts property 3 which states that the reconstructed secret s′ = s
if the dealer is honest.

Therefore, these conditions imply that an adversary cannot win either the unconditionally
secure verifiability game with a malicious dealer or the unconditionally secure verifiability
game with an honest dealer.

4.1.3 Publicly verifiable VSS

Chor, Goldwasser, Micali, and Awerbush [45] were the first to introduce the notion of
VSS and they presented a scheme in the computational setting, relying on the difficulty
of integer factorization. In this construction, both the privacy and verifiability guarantees
are computational. Further, the construction has the property that it is publicly verifiable
[137]. That is, anyone can verify that shares have been distributed correctly. Essentially,
the shares are encrypted via some public-key encryption scheme so that the consistency
check can be performed on encrypted shares by entities not holding a share themselves.
Such a scheme is necessarily in the computational setting since it relies on the security of
the public-key encryption scheme.

A publicly verifiable scheme is relevant in a scenario where the dealer and some subset
of participants may be malicious. There is no assumption of secure channels between the
dealer and shareholders. We now present a new game-based definition of publicly verifiable
VSS. This definition is more formal than the informal model given in previous work [137].

The Public Verifiability Game. Consider a probabilistic polynomial-time adversary.
Let P denote the set of n shareholders and suppose each participant has a valid key pair
for asymmetric encryption. Consider a (k, n)-threshold scheme.

Step 1. The adversary generates n (possibly invalid) shares, say v1, . . . , vn. Each share is
encrypted using the public key of the respective shareholder. The encrypted share,
E(vi), is forwarded to Pi for i = 1, . . . , n. The adversary designates two distinct sets
of participants, say A1, A2, both of size k.
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Step 2. Any honest party verifies the encrypted shares for participants in A1 and A2 using
a public PubVerify algorithm.

Step 3. If all shares are verified in step 2 then A1 reconstructs a secret s1 and A2 recon-
structs a secret s2.

The adversary wins the game if the shares are not consistent, i.e., the following properties
hold:

1. all shares corresponding to participants in A1 and A2 are verified and accepted, and

2. s1 6= s2.

Publicly verifiable schemes are non-interactive as we have previously defined the term,
since they do not require interaction between shareholders. Since these schemes are non-
interactive and require public key encryption, they are necessarily in the computational
setting. The same argument as in Theorem 4.1.1 applies if we replace the shares that are
input into the verification procedure with encrypted shares (even if these were encrypted
using an unconditionally secure symmetric encryption scheme). The validity of shares can
be checked before reconstruction because the encrypted shares are publicly verifiable by
any party. This can prevent malicious shareholders from corrupting their shares before
reconstruction.

Benaloh [14] provided a construction of a publicly verifiable scheme. The scheme was
based on Shamir’s scheme, so the privacy guarantee is information-theoretic. The verifi-
ability guarantee is computational. Stadler [137] discusses publicly verifiable schemes in
more detail, providing an informal definition and several constructions based on discrete
logarithms. We present one of the constructions from Stadler [137] next.

Example 4.1.3. [Publicly Verifiable Secret Sharing [137]] Let P denote the set of n par-
ticipants and let p be a large prime such that q = (p − 1)/2 is also prime. Let G be a
group of order p and g be a generator such that computing discrete logarithms to the base
g is hard. Let h ∈ Z∗p be an element of order q. Let s ∈ Zp be the secret and let S = gs be
publicly known. We will construct a (k, n)-threshold scheme.

Share: A publicly known element xi ∈ Zp, xi 6= 0, is assigned to each participant Pi
for i = 1, . . . , n. Each participant chooses a secret key zi ∈ Zq and publishes their
public key yi = hzi (mod p). The dealer chooses random elements fj ∈ Zp for
j = 1, . . . , k − 1 and publishes Fj = gfj for each j.
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The dealer computes a share for each Pi:

si = s+
k−1∑
j=1

fjx
j
i (mod p).

The dealer encrypts si using the public key of Pi by randomly choosing some αi ∈ Zq
and calculating the pair

(Ai, Bi) = (hαi , s−1
i · yαi) (mod p).

The dealer sends (Ai, Bi) to participant Pi. The values Si = gsi are published so that
they can be publicly verified. To decrypt these shares, Pi can compute si = Azii /Bi

(mod p).

Verify: To verify their own share, participant Pi can check that

gsi = Si = S ·
k−1∑
j=1

F
xji
j .

For any other participant to verify that (Ai, Bi) is valid, i.e., that it is the encryption
of Si, they proceed with the following interaction with a prover (the dealer). The
prover will prove to the verifier that the discrete logarithm of Ai to the base h is
identical to the double discrete logarithm of SBii to the bases g and y.

Prover (Dealer) Verifier

repeat K times:

w ←$ Zq
th = hw (mod p)

tg = g(yw) c←$ {0, 1}

th, tg

c

r = w − c · α (mod q)
r

th
?
= hrAci (mod p)

tg
?
=

{
gy

r
if c = 0,

S
(Bi·yr)
i if c = 1
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Repeating thisK times ensures that the prover can successfully cheat with probability
at most 2−K . The protocol is proven to be perfectly zero-knowledge in the paper.

Reconstruct: Any group of at least k participants can compute the secret s using La-
grange’s interpolation formula.

�

4.1.4 Authenticity

The ability to verify the authenticity of shares is also included in adept secret sharing
(ADSS) [11]. The authors call this property authenticity or binding. The definition requires
that for a given share from an honest dealer, there is at most one secret s for which it might
be a share. In other words, a share acts as a commitment to a message. This property
also holds for verifiable schemes. A difference between VSS and authenticity in ADSS
is that the verification is built in to the Recover function in ADSS. There is no explicit
verification function in an ADSS scheme. In addition, there is no requirement for the dealer
to publicly broadcast any values. The previous definitions of VSS do not require that the
dealer broadcast any values, but initial constructions often used that strategy. The authors
present two different definitions of authenticity, the stronger of which we present next. We
present a simplified version of the authenticity game here, to enable comparison with the
other definitions we discussed. Although the original definition applies to general access
structures, we consider threshold schemes in our definition.

The Authenticity Game. [11] Consider a probabilistic polynomial-time adversary act-
ing as the dealer in a (k, n)-threshold scheme. The adversary generates two sets of n shares
S,S ′. The adversary wins the game if there exists authorized sets V ⊆ S and V ′ ⊆ S ′ (i.e.,
|V| ≥ k and |V ′| ≥ k) of verified shares (here, the verification is built into reconstruction)
such that V ∩ V ′ 6= ∅ and the reconstructed secrets, say s, s′ from V ,V ′ (respectively) are
not equal.

The requirement that V ∩ V ′ 6= ∅ ensures that the sets have some share in common
and, if the game cannot be won, that this share commits to a specific secret. For this
reason, a scheme which satisfies the authenticity property must be in the computational
setting. Otherwise, in the information theoretic setting, a single share corresponding to
a single secret would suggest that a single share is an authorized set (and this would
violate the requirement that k − 1 parties learn no information about the secret). This
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is because, given a single share that commits to a secret, an adversary with unbounded
computational resources can repeatedly guess the remaining k−1 shares and submit them
to the reconstruction algorithm until it outputs a valid secret. This is guaranteed to be
the correct secret because the original share commits to the correct secret.

The verification procedure must be non-interactive since it is built into the recon-
struction protocol. Therefore, it does not require interaction with the dealer or between
participants. These protocols are not publicly verifiable since verification can only occur
during reconstruction.

The paper which introduced authenticity [11] provides a construction of a transforma-
tion which takes a classical secret sharing scheme and outputs a scheme which also satisfies
authenticity. The rough idea of the construction is that the secret is encrypted into a ci-
phertext C which is placed into a public portion of each share. Then the encryption key,
K, which is derived from a hash of the input (here, the input includes the secret, random
information, a string representing an access structure, and possibly a tag), is secret shared
using the classical secret sharing scheme. The details involve the use of a pseudorandom
function. The verification occurs during reconstruction. Once the input information is re-
constructed, we check that the hash output of the reconstructed information is consistent
with the given shares. If an adversary could win the authenticity game, it would imply
that there exists a collision in the output of the hash function. This construction is said to
be much more efficient than previous constructions of verifiable schemes and does not re-
quire additional infrastructure changes, such as broadcast channels or interaction between
shareholders.

In addition to the authenticity game, the authors in [11] provide a game-based definition
of VSS to enable comparison between their new notion of authenticity and verifiability.
They define a deterministic algorithm Verify, which takes as input a share and outputs 0
or 1, denoting whether or not the share is valid. For a valid share, the algorithm should
output 1. A simplified version of the game is presented below.

The VSS Game. [11] Consider a probabilistic polynomial-time adversary.

Step 1. The adversary generates two sets of shares S,S ′.

Step 2. If Verify(S) = 1 for all S ∈ S ∪S ′ and both sets of shares contain authorized sets
then a secret s1 is reconstructed using the shares in S and a secret s2 is reconstructed
using the shares in S ′.

The adversary wins the game if s1 6= s2.
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The authors show that if an adversary cannot win the VSS game with non-negligible
probability then they cannot win the authenticity game with non-negligible probability, i.e.,
this definition of VSS implies authenticity. This general definition of VSS does not spec-
ify whether the Verify algorithm is interactive. Aside from this omission, it is essentially
the same as the non-interactive verifiability game which we presented in Section 4.1.1. It
does not account for potentially malicious shareholders modifying shares before reconstruc-
tion; however, this is intentional since that ability is encompassed by the error correction
property that is also discussed in the paper [11].

Since this VSS Game is essentially the same as the non-interactive verifiability game
that we defined in Section 4.1.1, Pedersen’s non-interactive scheme (Example 4.1.1) sat-
isfies this definition of verifiability. This implies that Pedersen’s scheme also provides
authenticity, as defined above. Although authenticity is a weaker notion than verifiability
as it has been previously defined, the provided construction is more efficient than previ-
ously suggested VSS schemes and does not make use of broadcast channels (a strategy
used in Pedersen’s scheme). In adept secret sharing, the verification of shares is built into
the reconstruction algorithm. Consequently, the reconstructed secret (valid or not) and
the entire set of submitted shares can be used to check validity, as opposed to previous
verifiable schemes which enable verification of single shares before reconstruction.

4.1.5 Summary of verifiable schemes

Table 4.1 summarizes different constructions of VSS schemes and their respective properties
and guarantees. All of the included protocols provide security against a malicious dealer.

Non-Interactive
Publicly
Verifiable

Malicious
Shareholders

Unconditionally
Secure

CGMA [45] X X X
Benaloh [14] X X X
Feldman [68] X

Pedersen [121] X
Stadler [137] X X X
ADSS [11] X X

Stinson, Wei [141] X X
Rabin, Ben-Or [127] X X

Table 4.1: Properties of verifiable secret sharing schemes
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4.2 Rational and social secret sharing

4.2.1 Rational secret sharing

Later, in Chapter 5, we will discuss settings with cheating shareholders, where participants
are framed as good or bad actors. Rational secret sharing [77] considers a form of mis-
behaviour that differs from typical notions of cheating. Rather than some parties acting
maliciously, they consider rational individuals who can be expected to follow the protocol
if and only if doing so increases their expected utility. In this scenario, the reconstruction
of the secret can be considered in a game-theoretic sense. In particular, players aim to
maximize their utility, which is determined by the following two properties:

• Players prefer to learn the secret above all else.

• If they cannot learn the secret, players prefer that the fewest number of other players
learn the secret.

Rational secret sharing protocols require that it is optimal for participants to follow the
protocol honestly when following the two rules above. We present an example given in
[73].

Construction 4.2.1. [Rational secret sharing [73]] We construct a (k, n)-rational secret
sharing scheme. Let F be a finite field and S ⊂ F be the set of valid secrets.

Setup: The dealer prepares shares for a secret s ∈ S using Shamir’s (k, n)-threshold
scheme. Denote the shares si for i = 1, . . . n. The dealer also generates a signature
σi on each share si using a publicly known verification key PK. The dealer sends
(si, σi) to player Pi.

Reconstruction: The shareholders proceed as follows:

1. The k participating parties run a secure computation protocol [13] secure against
one malicious player. The protocol computes the following probabilistic func-
tionality:

• Each party inputs the values (si, σi) received from the dealer. The func-
tionality checks that each σi is a valid signature on si (with respect to the
public key PK), and aborts if this is not the case.
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• The k input shares reconstruct to a secret s. With probability β, the func-
tionality generates a fresh (k, n) Shamir sharing s′, and each player Pi re-
ceives corresponding shares s′i.

• With probability 1 − β, the functionality generates a fresh (k, n) Shamir
sharing of an invalid secret s̃ ∈ F \ S and each player Pi receives corre-
sponding shares si.

2. If cheating is detected in the secure computation protocol above (i.e., the secure
computation protocol is aborted), then parties terminate the overall protocol
without ever reconstructing the secret.

3. Next, each player Pi broadcasts the output s′i they received from the secure
computation protocol. To prevent players from broadcasting some modified
value, these shares should be authenticated in some way by the functionality
(one way to do this is by generating signatures of each share). If this enables
reconstruction of a secret s ∈ S, the protocol terminates and the true secret has
been reconstructed. If some player refused to broadcast their output share, then
parties terminate the protocol without reconstructing the secret. In any other
case, players erase the shares s′i and repeat the reconstruction process (using
(si, σi) as before).

An appropriate choice of β (depending on k and n) ensures that it is in each player’s best
interest to correctly follow the protocol. This will maximize their utility, given that they
prefer to learn the secret above all else, but otherwise prefer that the fewest number of
other players learn the secret. This utility function is specified and a formal game-theoretic
proof that the construction is a rational scheme is given in the paper. �

We note that this construction is only computationally secure because it uses public
key cryptography in the form of signatures. The original work by Halpern and Teague [77]
worked in an information-theoretic model and assumed the existence of private channels
between the players.

4.2.2 Social secret sharing

Under scenarios where players may misbehave it is interesting to introduce the concept of
reputations. Social secret sharing schemes were introduced by Nojoumian, Stinson, and
Grainger [118]. Informally, shares are allocated based on a player’s reputation and how
they interact with other participants. In social secret sharing, each participant has a level
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of importance and a reputation which must be balanced. These factors are balanced in an
additional stage which we call tuning. The tuning mechanism adjusts the weights of each
participant’s reputation based on their cooperation and past actions. Similar to proactive
secret sharing (which we discuss in detail in Section 4.4.1), participants renew their shares
in the tuning phase. The authors also provide a verifiable social secret sharing scheme,
which is secure against active adversaries.

A social secret sharing scheme involves assigning weights to participants which are
representative of their trust/reputation. These weights are accounted for in the following
ways:

• Participants may have initial trust values which determine the weight of the initial
share they receive. This is similar to weighted threshold schemes, which we discussed
in Section 3.4.2.

• Non-cooperative players’ reputation/trust values can be decreased if they do no co-
operate. If their weights fall below a threshold, such as zero, they may be removed
from the scheme.

• Cooperative players’ reputation/trust values can be increased over time. Also, new
players can be incorporated into the scheme with some initial trust value and given
shares via an enrollment scheme (Section 3.4.3).

• Shares are updated using proactive secret sharing (discussed in Section 4.4.1) accord-
ing to the new weights. Players update their shares and disenrolled players do not
receive any more shares. After this renewal, old shares become useless.

• Secret recovery is similar to weighted threshold schemes (Section 3.4.2) where a
coalition of players can recover the secret if their total reputation value is greater
than some threshold.

4.3 Deniability

There are some scenarios in which it may be beneficial to allow participants to perform
actions similar to cheating. We consider the concept of deniability: a privacy property of
cryptographic protocols that is desirable in cases where a user may want to deny performing
some action. Existing work on deniability has focused on deniable encryption [39] which
enables a sender of an encrypted message to deny having sent a message and deniable
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authentication [60, 57], in which a participant can verify the authenticity of a message at
the time it is received, but it cannot be proven to a judge after the action is performed.
In addition, deniable authenticated key exchange protocols have been considered, which
allow participants to deny having participated in a key exchange protocol [29, 106].

Deniable encryption and deniable authentication do not immediately translate to the
context of secret sharing, since we are not directly encrypting/decrypting message, ex-
changing keys, or authenticating messages. Nonetheless, we can conceive of some scenario
in which a participant is being coerced to reveal some information. Suppose Alice and
Bob participate in a secret sharing scheme. Say Alice is the dealer and Bob receives one
of the shares. Later, an adversary (or a judge), Eve, demands to see all the private infor-
mation: the secret, the random bits, and Bob’s share. In a classical secret sharing scheme,
Eve cannot necessarily prove that Bob participated in the secret sharing scheme since his
share may correspond to any secret. For example, using Shamir’s scheme, a single point
does not necessarily tell you anything about the corresponding polynomial/secret. Thus,
classical secret sharing schemes inherently provide some property of deniability. However,
this property does not necessarily hold for more complex variations of secret sharing. We
formalize a definition of deniable secret sharing and explore how it can be achieved.

The notion of deniability has been considered in other cryptographic contexts, but has
not been addressed in the area of secret sharing. Therefore, everything that follows in this
section is new work. To formalize the notion of deniability, we continue in our approach
to using game-based definitions.

4.3.1 Formalizing deniable secret sharing

Assume a (k, n)-Shamir threshold scheme. The shares are si = (xi, yi), where the xi’s are
distinct and non-zero, for i = 1, . . . , n. All the shares lie on a polynomial r(x) of degree
≤ k − 1 over a finite field Fq. The secret is r(0).

The Deniability Game. Fix k and two non-negative integers e and f .

Step 1. k + e “good shares” are given to the adversary. All these shares lie on the poly-
nomial r(x). Note that r(x) can be computed by interpolating any k of these good
shares.

Step 2. The adversary creates f new shares (“bad shares”) along with a new polynomial
p(x) such that p(0) 6= r(0). There are now a total of k + e + f shares. All of these
shares have distinct, non-zero x-coordinates.

51



The adversary wins the deniability game if the number of shares that lie on p(x) is greater
than or equal to the number of shares that lie on r(x). (In this case, the adversary can
plausibly claim to an adjudicator that the secret is p(0) rather than r(0).)

If the adversary can win this deniability game, we say that the threshold scheme is
(k, e, f)-deniable.

Theorem 4.3.1. If f ≤ e, then a (k, n)-threshold scheme is not (k, e, f)-deniable.

Proof. The proof follows from results in [143, 128]. Denote G = {i : yi = r(xi)} (the good
shares which lie on r(x)) and B = {i : yi = p(xi)} (the bad shares which lie on p(x)).
We know that |G ∩ B| ≤ k − 1 because p(x) 6= r(x). Then, if f ≤ e, it follows that
|G| = k + e > k + f − 1 ≥ |G ∩B|+ f ≥ |B|. Therefore, the number of shares that lie on
p(x) is less than the number of shares that lie on r(x).

Theorem 4.3.2. If f > e, then a (k, n)-threshold scheme is (k, e, f)-deniable.

Proof. We prove this by describing how the adversary can carry out a successful attack.
To illustrate the idea, assume f = e+ 1.

1. The adversary chooses k−1 of the k+ e good shares and constructs a bad share (the
bad share does not lie on r(x)).

2. These k shares are interpolated to obtain the polynomial p(x).

3. Then the adversary constructs e additional bad shares that all lie on p(x), by evalu-
ating p(x) at e new points.

4. The adversary presents the e+ 1 = f bad shares along with the polynomial p(x).

Note that r(x) and p(x) agree on k−1 points, namely on the k−1 good shares selected
in step 1 of the attack. So they cannot agree on any more points, and in particular,
r(0) 6= p(0).

The total number of shares that lie on r(x) is k+e (none of the bad shares lie on r(x)).
The total number of shares that lie on p(x) is also k+ e. Therefore the adversary wins the
deniability game.
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In the above game, we only allowed the adversary to construct new shares. The k + e
“original” shares cannot be modified. An alternative approach would be to allow the
adversary to modify shares as well as to construct new ones. We provide analysis of the
extended game below.

The Extended Deniability Game. Fix k, two non-negative integers e and f , and a
non-negative integer g ≤ k + e.

Step 1. k + e “good shares” are given to the adversary. All these shares lie on the poly-
nomial r(x). Note that r(x) can be computed by interpolating any k of these good
shares.

Step 2. The adversary modifies g of the k + e original shares such that they lie on a new
polynomial p(x) where p(0) 6= r(0).

Step 3. The adversary creates f new shares (“bad shares”) along the new polynomial
p(x) such that p(0) 6= r(0). There are now a total of k + e + f shares. All of these
shares have distinct, non-zero x-coordinates.

The adversary wins the deniability game if the number of shares that lie on p(x) is greater
than or equal to the number of shares that lie on r(x) and the number of shares that lie on
p(x) is at least k. (In this case, the adversary can plausibly claim to an adjudicator that
the secret is p(0) rather than r(0).)

If the adversary can win this deniability game, we say that the threshold scheme is
(k, e, f, g)-deniable.

Theorem 4.3.3. If 2g + f ≤ e, then a (k, n)-threshold scheme is not (k, e, f, g)-deniable.

Proof. The proof follows from results in [143, 128] and Theorem 4.3.2. Denote G = {i :
yi = r(xi)} (the good shares which lie on r(x)) and B = {i : yi = p(xi)} (the bad shares
which lie on p(x)). We know that |G ∩B| ≤ k − 1 because p(x) 6= r(x) are polynomials of
degree at most k− 1. If 2g+ f ≤ e, then it follows that |G| = k+ e− g > k− 1 + g+ f ≥
|G ∩ B| + g + f ≥ |B|. Therefore, the number of shares that lie on p(x) is less than the
number of shares that lie on r(x).

Theorem 4.3.4. If e ≥ g and 2g + f > e, then a (k, n)-threshold scheme is (k, e, f, g)-
deniable.

Proof. We prove this by describing how the adversary can carry out a successful attack.
To illustrate the idea, assume g + f − 1 = e− g and e ≥ g.
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1. The adversary chooses k−1 of the k+ e good shares and constructs a bad share (the
bad share does not lie on r(x)).

2. These k shares are interpolated to obtain the polynomial p(x).

3. Then the adversary constructs g + f − 1 additional shares that all lie on p(x), by
evaluating p(x) at e new points.

4. The adversary replaces g of the k + e good shares with the bad shares and presents
the remaining f along with the polynomial p(x).

Note that r(x) and p(x) agree on k−1 points, namely on the k−1 good shares selected
in step 1 of the attack. So they cannot agree on any more points, and in particular,
r(0) 6= p(0).

The total number of shares that lie on r(x) is k+e−g. We have that k+e−g ≥ k since
e ≥ g. The total number of shares that lie on p(x) is also k+e−g since k−1+f+g = k+e−g.
Therefore the adversary wins the deniability game.

The definitions we have presented describe a deniability property for secret sharing that
is analogous to deniable encryption. These arguments demonstrate that classical threshold
schemes inherently enable participants with control over a sufficient number of shares to
deny holding shares corresponding to a particular secret.

4.4 Leakage Protection

In this section, we consider a scenario in which an adversary may obtain leaked information
on shares. This could include leaked shares or leaked parts of shares. Proactive secret
sharing and leakage resilient secret sharing address these vulnerabilities, respectively. In
what follows, we elaborate on the threat models, definitions, and some examples.

4.4.1 Proactive secret sharing

Classical secret sharing schemes are vulnerable to adversaries who can gradually compro-
mise shares over time. If the sensitive information is long-lived then we may require more
protection to prevent adversaries from learning shares over a period of time. Proactive
secret sharing [80] allows us to periodically renew shares without changing the secret. Old

54



shares become obsolete after their respective time period, making them unusable to an
adversary who may have compromised the share at some point in time.

In proactive secret sharing, the lifetime of a secret is split into periods of time and at the
beginning of each period of time, the shareholders update their shares via an interactive
protocol. The dealer is only required for the initialization phase and is not required for
any updates. In the case of a (k, n)-threshold scheme, an adversary must compromise k
shares in a short period of time in order to recover the secret. We present an example
of a proactive secret sharing scheme from Herzberg et al. [80]. This work exists in the
computational setting, but later work addressed proactive secret sharing in an information-
theoretic setting [141].

Example 4.4.1. [Proactive secret sharing scheme [80]]

Share: A dealer shares a secret s ∈ Zq using Shamir’s (k, n)-threshold scheme. Let xi =
f(i) denote the share belonging to participant Pi for i = 1, . . . , n, where f is some
polynomial of degree k − 1.

Renewal: We denote the shares for some time period t by x
(t)
i and the corresponding

polynomial by f (t). Each Pi picks k − 1 random numbers {δim}m∈{1...k} from Zq.
These numbers define a polynomial δi(z) = δi1z+ · · ·+δi(k−1)z

k−1 with constant term
0. Pi sends uij = δi(j) (mod q) to Pj across a secure channel for j ∈ {1, . . . , n} \ {i}.
Each Pi computes their new share x

(t)
i = x

(t−1)
i +

∑n
j=1 uji (mod q) and erases all the

variables used except the current share x
(t)
i . These new shares correspond to the sum

of polynomials with constant term 0 and f which has constant term s.

Reconstruct: Reconstruction is accomplished using polynomial interpolation, as in Shamir’s
scheme.

This protocol is secure against a passive adversary who may learn secret information avail-
able to up to k − 1 corrupted servers but who follows the protocol. �

The original work on proactive secret sharing provides a construction for share renewal
in the presence of active adversaries. They also provide mechanisms to detect corrupted
(or lost) shares and are able to restore the correct share if necessary. The authors describe
a method for a share to be recovered, analogous to repairable secret sharing, which we
discussed in Section 3.3.2.
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4.4.2 Leakage resilient secret sharing

In addition to accounting for the possibility of shares being leaked over time, we can
consider adversaries who obtain some bounded amount of leakage from each share. Rather
than obtaining the entire share, the adversary may receive a portion of a share. A leakage
resilient secret sharing scheme is one in which the adversary learns no information about
the secret despite having some bounded amount of leakage from every share. The concept
was introduced in two independent works [74, 16] and explored further in [136, 101].

We present a new game-based definition in an information-theoretic setting which sim-
plifies the original definition of leakage resilient secret sharing given by Goyal and Kumar
[74].

The (ε,F)-Leakage Resilience Game. Assume a (k, n)-threshold scheme. Let F =
{f1, . . . , fn} be a set of functions that take as input a share. F is the set of leakage
functions.

Step 1. An honest dealer generates n shares for a secret s, denoted s1, . . . , sn, and n shares
for a secret s̃, denoted s̃1, . . . , s̃n.

Step 2. The adversary obtains fi(si) and fi(s̃i) for each i = 1, . . . , n.

The adversary wins the F -leakage resilience game if they can distinguish between the shares
of s and s̃ with probability greater than ε. If the adversary cannot win the leakage resilience
game, except with negligible probability, we say that the scheme is ε-leakage resilient with
respect to F .

This is a very generic definition, but it encompasses the intuition behind leakage resilient
schemes. Suppose, for example, that F contained a set of functions where k − 1 functions
were the identity function and the remaining functions returned 0 for every input. Then
the game would reduce to the privacy property of a (k, n)-threshold scheme. On the other
hand, we can consider more complex leakage scenarios. For example, each fi could output
the least significant µ bits of a share, where the size of the share is larger than µ. An
adversary in this setting may obtain limited information on each share and ideally, learn
no additional information on the secret.

A reasonable goal in leakage resilient schemes is to achieve what is called local leakage
resilience.
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Definition 4.4.1 (Local Leakage Function Family [136]). Let S1 × S2 × · · · × Sn be the
domain of shares for a secret sharing scheme and suppose we consider (k, n)-threshold
schemes. The corresponding local leakage function family is

Fk,µ = {fK,τ : K ⊂ [n], |K| ≤ k − 1, τi : Si 7→ {0, 1}µ}

where fK,τ on input (s1, . . . , sn) outputs si for every i ∈ K and outputs τi(si) otherwise.
That is, an adversary obtaining the output of this function receives at most k − 1 shares
in plaintext and for every other share, they receive µ bits of information derived from the
share.

Example 4.4.2. Recall the additive secret sharing scheme from Construction 2.0.2. An
attack is described in [16] demonstrating that over finite fields of small characteristic,
such as F2κ , the additive scheme does not provide local leakage resilience. Suppose shares
s1, . . . , sn are generated using the additive scheme for a secret s ∈ F2κ . Consider the case
where the adversary receives the least significant bit of each share si for i = 1, . . . , n.
Adding them up, the adversary can reconstruct the least significant bit of the secret s. A
similar attack for Shamir’s scheme over a field of small characteristic is given in [16]. �

The authors of [16] also demonstrate that when the underlying field is of a large prime
order and the number of parties is sufficiently large, both the additive secret sharing scheme
and Shamir’s scheme are secure against local leakage attacks. Informally, they show that
for a prime p, there exists a constant cp < 1 such that, for sufficiently large n, the additive
secret sharing scheme over Fp is locally leakage resilient when b(log p)/4c bits are leaked
from every share. In fact, they prove that the local leakage resilience property holds for
any linear secret sharing scheme constructed from a linear code with appropriately chosen
parameters.

4.5 Summary

In this chapter, we began our investigation of alternative adversarial settings for secret
sharing schemes. In a setting where the dealer is not trusted, it is beneficial to use schemes
which provide some form of verifiability. We found in our analysis that much of the work
in verifiable secret sharing used slightly different adversarial models without clearly illus-
trating their differences. At the same time, some adversarial models were never formally
defined. We corrected these omissions in the literature by presenting game-based defini-
tions of verifiability in a unified manner. We also discussed protections against leakage
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in secret sharing schemes and provided a new game-based definition for leakage resilient
schemes.

In contrast to verifying that participants are correctly participating in a protocol, we
noted that it is sometimes of interest to allow participants to deny having participated in a
secret sharing. This spurred the formalization of deniability in the context of secret sharing.
We provided formal definitions of deniability and analyzed how they can be achieved.

We briefly addressed the potential of misbehaving shareholders in the concepts of ra-
tional and social secret sharing. In the following chapter, we discuss this setting in more
depth. In particular, we analyze notions of robustness which aim to protect against differ-
ent forms of cheating participants.
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Chapter 5

Notions of Robustness

Classical secret sharing assumed a threat model in which the shareholders were honest.
These assumptions were first challenged by Tompa and Woll [146]. They consider the
presence of malicious shareholders who submit potentially corrupted shares to the recon-
struction mechanism. Consider, for example, a Shamir threshold scheme and suppose some
participant submits a value different than the share they were given. This attack simulta-
neously prevents the honest participants from learning the secret and allows the adversary
to obtain the correct secret without being detected. Following the introduction of this
attack, there have been several works studying potential notions of robustness that can be
used to prevent such attacks.

In this chapter, we review several notions related to robustness in secret sharing. In
particular, we investigate settings in which the shareholders may be dishonest, but the
dealer is honest. Thus, our review does not encompass verifiable secret sharing, which
considers the presence of a dishonest/malicious dealer. The goal is to present a unified
framework for various notions of robustness in secret sharing schemes. The literature
in the area of secret sharing which assumes the presence of dishonest shareholders has
grown to encompass several different notions, some of which overlap in motivations and
constructions. We aim to clarify the commonalities and differences of each notion in this
section. Further, we make use of a unified manner of defining these notions so that they
are easier to compare to one another.

In summary, in the setting of unconditionally secure threshold schemes where the dealer
is assumed to be honest, we explore the many methods of thwarting cheating participants:

Making cheating impossible. Invalid shares do not inhibit the reconstruction of the
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correct secret. This is the goal of robust secret sharing, error decodable secret sharing,
error correction, and non-malleability.

Share verification. Invalid shares are identified and discarded. Similar strategies are
used in cheater identification and cheater detection.

Discouraging cheaters from sending invalid shares. This strategy is effective if cheat-
ing participants gain no advantage over honest participants, i.e., sending invalid
shares results in the recovery of an invalid secret. This is explored in cheating-immune
secret sharing and fairness schemes.

5.1 Robust secret sharing

We review the notion of robust secret sharing suggested by Tompa and Woll [146]. This
was the first paper to challenge the adversarial model of classical secret sharing. The work
was motivated by the potential of malicious shareholders in a secret sharing scheme. In the
following scenario, we assume that the dealer is an honest participant, but the participants
who receive shares may act maliciously. The definition which follows is a new game-based
definition, although it is fairly obvious to derive from the description given by Tompa and
Woll [146].

The Robustness Game. Assume a (k, n)-threshold scheme. The secret is s. Fix a
non-negative integer 1 ≤ t < k. We assume all secrets are equally probable.

Step 1. t of the n shares are given to the adversary.

Step 2. The adversary modifies the t shares to create new “bad shares”.

Step 3. A secret s′ is reconstructed using the t “bad shares” and k − t of the original
“good shares”. The adversary may choose which of the “good shares” are used in
reconstruction. The adversary wins the robustness game if the reconstructed secret
s′ is a valid secret and s′ 6= s.

Typically, we let t = k− 1. Then, if the adversary can only win this game with some small
probability ε > 0 (this is the cheating probability), we say that the threshold scheme is
ε-robust.
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Remark 5.1.1. When we say the adversary “may choose which of the ‘good shares’ are
used in reconstruction,” this does not mean that the adversary gets to see the value of
the share. The intention is that the adversary is able to select some identifiers denoting
which shares to use in reconstruction. For example, in Shamir’s scheme, it is sufficient
to allow the adversary to select certain x-coordinates corresponding to shares. Knowing
these x-coordinates allows the adversary to use their knowledge of publicly known Lagrange
coefficients to perform attacks which would otherwise be impossible if they had no control
over which shares were used during reconstruction. This is demonstrated in Theorem 5.1.1.

The game-based definition of robustness which we have proposed is equivalent to the
concept of robustness defined by Tompa and Woll [146]. They also demonstrate that
Shamir’s scheme is not robust.

Theorem 5.1.1. A (k, n)-Shamir threshold scheme is not robust.

Proof. We prove this by describing how the adversary can carry out a successful attack
by modifying only a single share. Suppose the shares v1, . . . , vk are used to reconstruct a
polynomial.

The true secret, s, can be written as s =
∑k

i=1 aivi where the ai’s denote the Lagrange
coefficients and the vi’s are the good shares, for i = 1, . . . , k.

Assume that the adversary modifies a single share v1 by adding some δ. That is, upon
reconstruction, the adversary submits v′1 = v1 + δ.

The reconstructed secret will be

s′ = a1v
′
1 +

k∑
i=2

aivi = s+ a1δ.

The reconstructed secret is valid since there are no restrictions on the secrets in Shamir’s
original scheme. As long as δ 6= 0, we have s′ 6= s, so the adversary wins the game.

There exist many constructions of robust secret sharing schemes. One approach, sug-
gested by Ogata and Kurosawa [120] is to use difference sets.

Definition 5.1.1 ([138]). Suppose (G,+) is a finite group of order v with identity element
0. Let ` and λ be positive integers such that 2 ≤ ` < v. A (v, `, λ)-difference set in (G,+)
is a subset D ⊂ G such that
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• |D| = `,

• the multiset [x − y : x, y ∈ D, x 6= y] contains every element in G \ {0} exactly λ
times.

Example 5.1.1. A (15, 7, 3)-difference set in (Z15,+) is {0, 1, 2, 4, 5, 8, 10}. �

It is known that a ( q
i+2−1
q−1

, q
i+1−1
q−1

, q
i−1
q−1

)-difference set exists whenever q is a prime power

and i is a positive integer [92].

Construction 5.1.1. Let P be a set of n players. Let D be a (v, `, 1)-difference set in
(Zv,+) where v = `(`− 1) + 1 and `− 1 is a prime or a prime power. Let the secret space
be D. For a given secret s ∈ D, the share and recover algorithms are as follows.

• Share: Select k − 1 values r1, r2, . . . , rk−1 uniformly at random from Zv and let
f ∈ Zv[x] be the polynomial defined by

f(x) = rk−1x
k−1 + rk−2x

k−1 + · · ·+ r1x+ s.

Give player i the share vi = f(i) for all i ∈ {1, . . . , n}.

• Recover: A collection of k players perform polynomial interpolation to recover a
value s̃. If s̃ ∈ D, they accept s̃ as the secret. Otherwise, they output ⊥.

�

In this construction, the set of possible secrets is the difference set D. Thus, given a
secret space of size ` = |D|, one can define a public bijection between the secret messages
and the elements in the difference set. This bijection can then be used before sharing the
secret to ensure that it is an element of the set D and after reconstruction to obtain the
corresponding secret.

Theorem 5.1.2. The proposed construction is a 1/`-robust (k, n)-threshold scheme.

Proof. We just show that the above construction satisfies 1/`-robustness. The fact it is a
(k, n)-threshold scheme follows immediately from recognizing that it is a straightforward
modification of Shamir’s scheme.

Recall that we can write the true secret s as s =
∑k

i=1 aivi where the ai’s denote the
Lagrange coefficients and the vi’s denote the good shares used in reconstruction.
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Suppose the adversary modifies a single share by adding some value δ. That is, they
modify v1 and submit v′1 = v1 + δ instead. Then, the reconstructed secret would be

s′ = a1v
′
1 +

k∑
i=2

aivi = s+ a1δ.

Note that it is possible for the adversary to modify more than one share. They may
choose to add values δ1, . . . , δk−1 to some set of k− 1 shares under their control. This does
not, however, increase their probability of winning the game, as the result is essentially
the same. The reconstructed secret would simply be the sum of the secret and a linear
combination of the δi’s. Therefore, for simplicity in this proof, we assume the adversary
only modifies a single share.

Now, by the definition of a difference set, there exists a unique pair x1, x2 ∈ D such
that x2 − x1 = a1δ. Therefore, the adversary wins if and only if s = x1, for some s′ = x2.
Since we assume that all secrets are equally as probably, the probability that this occurs
is 1/|D| = 1/`. So the proposed construction is 1/`-robust.

Ogata and Kurosawa [120] discuss bounds on the probability of an adversary success-
fully cheating in robust schemes. In doing so, they observe that the adversary gains no
advantage by modifying more than a single share. Suppose the set of secrets is S, the
true secret is s, and the adversary controls k− 1 shares denoted by v1, . . . , vk−1. For every
s′ ∈ S where s′ 6= s, there exists at least one possible share v′1 such that replacing v1 with
v′1 in the reconstruction algorithm results in s′ being reconstructed. This follows from the
privacy property that requires that the k−1 shares yield no information on the value of the
secret. Therefore, an adversary gains no advantage from modifying the remaining k − 2
shares, because they can achieve any desired change by modifying a single share. This
property holds for perfect secret sharing schemes. It is interesting to consider whether or
not this holds when we consider other notions of robustness.

From the attack by Tompa and Woll, we can also observe that in a classical threshold
scheme, it is sometimes possible for adversaries to determine the original secret after re-
construction in addition to corrupting the original secret. We can extend the definition of
robustness to consider this possibility. This requires two simple changes to the robustness
game.

• The adversary is given the identities of the good shares which will be used in recon-
struction (in addition to the information provided in the original game).
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• The adversary wins the game if, in addition to the requirements of the original
robustness game, they can uniquely determine the original secret s.

If the adversary can only win this robustness game with some small probability ε > 0, the
threshold scheme may also be called ε-robust.

Robust secret sharing was first suggested in the computational setting by Krawcyzk
[100]. The primary goal of this paper was to reduce the size of shares via relaxing the
information-theoretic requirements to computational requirements. No formal definitions
or proofs were provided on the topic of robustness. Follow-up work by Bellare and Ro-
gaway [129] examined robust computational secret sharing (RCSS) more formally. The
requirements of RCSS are similar to those that we have presented above, i.e., the ideas
suggested by Tompa and Woll. The main difference is that Tompa and Woll work in an
information-theoretic setting while Krawcyzk, and later Bellare and Rogaway, consider the
computational setting.

5.2 Error decodability

Error decodable secret sharing was proposed by Kurosawa [102]. A secret sharing scheme
is error decodable if it is possible to recover the correct secret from the set of all shares
even if some of the shares are corrupted by an adversary.

As before, we are considering a scenario in which the dealer is honest. The motivation
for this notion is the possibility that some shares may be corrupted during transmis-
sion/communication. Thus, we want to be able to recover the secret correctly from a set of
potentially noisy shares. This can be modelled in a similar way to the robustness definition,
where some shareholders are dishonest. Whether a share is intentionally or unintentionally
corrupted does not have much of an effect on the definitions. Here, however, the technique
is slightly different than that of robust secret sharing. Error decodable schemes typically
require additional shares, above what is strictly required of the threshold scheme, in order
to perform error correction. So, the definition of error decodability takes into account all
n shares when reconstructing, using the redundancy to make it possible to recover the
original secret. Next, we propose a new game-based definition for error decodable secret
sharing, based on the ideas from Kurosawa [102].

The Error Decodability Game. Assume a (k, n)-threshold scheme. The secret is
s. Fix a non-negative integer 1 ≤ t < k.
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Step 1. t of the n total shares are given to the adversary.

Step 2. The adversary modifies the t shares to create new “bad shares”.

Step 3. An error decoding algorithm takes as input the n shares and outputs a secret s′

or outputs ⊥ if it fails.

The adversary wins the error decodability game if s′ 6= s or the error decoding algorithm
fails.

Typically, we let t = k − 1. If the adversary cannot win this game, we say that the
threshold scheme is error decodable.

Remark 5.2.1. This definition can be generalized to any access structure (other than
threshold schemes). In any case, we give the adversary an unauthorized set of shares which
they may corrupt. The win condition does not change.

The definitions of robustness and error decodability are equivalent aside from Step 3.
In Step 3, n shares are used to reconstruct a secret in the error decodability game whereas
k shares are used in the robustness game, defined in Section 5.1. Also, the adversary can
win if the error decoding algorithm fails, which is not a possibility in the robustness game
since the reconstruction algorithm only takes as input k shares. Using our game-based
definitions of robustness and error decodability, we can observe that if a (k, n)-threshold
scheme is robust, it must also be error decodable.

Certain threshold schemes inherently achieve the property of error decodability. This
can be observed by recognizing the relationship between a (k, n)-threshold scheme and
Reed-Solomon codes [112].

Definition 5.2.1 (Reed-Solomon Codes). Let q be a prime power and n a positive integer
with n ≤ q + 1. Let α1, . . . , αn be distinct elements in the finite field GF (q) ∪ {∞}. Let C
be the length n code over GF (q) defined by setting

C = {f(α1), . . . , f(αn) | f ∈ GF (q)[x], deg f < k}

where f(∞) is the coefficient of xk−1 in f . Then C is an [n, k, n − k + 1] Reed-Solomon
code.

Theorem 5.2.1. [112] A (k, n)-threshold scheme is error decodable if and only if n− k ≥
2(k − 1).
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Proof. Suppose that a secret vector is in the set GF (q)k. Then the possible shares make up
a [n, k, n− k + 1] Reed-Solomon code. The minimum distance of a Reed-Solomon code is
n−k+ 1, so if n−k ≥ 2e then the code can be used to correct e errors. Therefore, given a
vector of shares corresponding to participants of a (k, n)-threshold scheme, we can recover
the corresponding secret if up to e shares have been corrupted. Thus, a [n, k, n − k + 1]
Reed-Solomon code can correct k − 1 errors if and only if n− k ≥ 2(k − 1). This implies
that a (k, n)-threshold is error decodable, i.e., we can recover from k− 1 corrupted shares,
if and only if n− k ≥ 2(k − 1), that is, n ≥ 3k − 2.

We present Kurosawa’s construction [102] of an error decodable secret sharing scheme.
First, we review some preliminary definitions. Let P be a set of n participants and let 2P

denote the set of all subsets of P . A collection Σ ⊆ 2P is said to be a monotone access
structure if Σ contains all sets A′ ∈ 2P such that A ⊆ A′ for some A ∈ Σ. A secret sharing
scheme realizing an access structure Σ is a secret sharing algorithm where the subsets in
Σ are the authorized sets and subsets in the complement of Σ are the unauthorized sets.
We denote the complement of Σ as Σc.

Kurosawa’s scheme is based on linear secret sharing schemes. For any monotone access
structure Σ, we can construct a corresponding linear secret sharing scheme. Let M =
{~m1, . . . , ~m`} be an `× d matrix over a finite field GF (q)d and φ : {1, . . . , `} → {1, . . . , n},
a labelling function where ` ≥ d, n. We say that (M,φ) is a linear secret sharing scheme
realizing Σ if the vector (1, 0, . . . , 0) ∈ span{~mi | φ(i) ∈ B} if and only if B ∈ Σ.

Construction 5.2.1. [Linear Secret Sharing Scheme [84]] Let (M,φ) be as defined above.
Let S = GF (q) denote the secret space.

• Share: For a secret s ∈ S, the dealer chooses a random vector ~r ∈ Sd−1 and computes

v = M ×
(
s
~r

)
= (v1, . . . , v`)

T . (5.1)

Then, the dealer computes a vector of shares (u1, . . . , un) where ui = {vj | φ(j) = i}.
The dealer gives ui to participant Pi for i = 1, . . . , n.

• Recover: For a set of participants A,if A is an authorized set then there exists
αj ∈ GF (q) such that

∑
{j|φ(j)∈A} αj ~mj = (1, 0, . . . , 0). Then,

∑
{j|φ(j)∈A} αjvj = s,

so the participants of A can recover the secret s.

�
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Kurosawa uses this linear secret sharing scheme as a building block in constructing an
error decodable scheme. He demonstrates that a perfect secret sharing scheme is error
decodable if and only if the access structure, Σ, satisfies the condition Q3 [102].

Definition 5.2.2. A monotone access structure Σ for a set of participants P satisfies Q3

if B1 ∪B2 ∪B3 6= P for any B1, B2, B3 ∈ Σc.

Example 5.2.1. Consider a (2, 6)-threshold scheme corresponding to a set of six partici-
pants P . The unauthorized sets, Σc, consist of all subsets of one or fewer participants in
P . Thus, for any B1, B2, B3 ∈ Σc, B1 ∪ B2 ∪ B3 contains at most three participants in P ,
so the threshold scheme satisfies Q3.

On the other hand, if we take a (3, 6)-threshold scheme, the Q3 property does not hold
since there exist three subsets of two participants such that their union is the set of all
participants.

In fact, a (k, n)-threshold scheme satisfies property Q3 if and only if n > 3(k − 1).
This is the same property that is required to construct an error decodable scheme from a
threshold scheme in Theorem 5.2.1. �

Construction 5.2.2. [Kurosawa’s Error Decodable Scheme [102]] Let P be a set of n
players. Let the secret space be denoted by S = GF (q). Let (M,φ) be the linear secret
sharing scheme realizing an access structure Σ which satisfies Q3.

For a secret s ∈ S, the share, recover, and error decoding algorithms are as follows.

• Share: The linear secret sharing scheme (M,φ) is used to generate a share vector
(v1, . . . , v`) for the secret s according to Equation (5.1). For i = 1, . . . , `, the dealer
treats vi as a secret and generates a new share vector ~ui using the scheme (M,φ).
Then vi is allocated to participant φ(i) and ~uij is allocated to participant φ(j) for each

j = 1, . . . , `. That is, participant m receives the share
⋃`
i=1{~uij | φ(j) = m} ∪ {vj |

φ(j) = m}.

• Recover: Recover is easily accomplished by running the reconstruction algorithm
of Construction 5.2.1 to recover each vk and then repeating to recover s.

• Error Decoding: For i = 1, . . . , `, the participant holding vi generates the share
vector of vi using (M,φ) and compares with the share vectors (that is, ~ui) held by the
other participants. If the vectors differ in positions corresponding to some authorized
set, then the share vi is deemed to be corrupt. If the set of users with corrupted shares
is in some unauthorized set in Σc, then the remaining participants use their shares
to reconstruct s. Otherwise, the output is ⊥.
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Essentially, the second sharing step ensures that the validity of the initial sharing step
can be checked. This construction requires larger share sizes due to the additional values
that each participant must hold. Later work suggested a more efficient error decodable
scheme with smaller share sizes [109]. More recent work considered how to construct
error decodable schemes in a setting with an asynchronous communication model where
messages may be arbitrarily delayed [46].

Error decodable secret sharing is closely related to one-round perfectly-secure message
transmission (PSMT). Perfectly-secure message transmission [58] considers a model in
which there are two users, Alice and Bob, connected by some number of distinct communi-
cation channels, some of which may be controlled by an adversary. Alice sends information
to Bob over some communication channels which may be controlled by the adversary. A
one-round PSMT scheme allows Alice to send a message to Bob in such a way that the
adversary learns no information about the message by eavesdropping on the channels that
they control and the adversary cannot prevent Bob from recovering the message. PSMT
schemes were first introduced for threshold adversarial structures where the adversary may
control a specified number of channels [58].

Definition 5.2.3. A one-round (n, k)-PSMT scheme is an algorithm permitting a sender
to transmit a message s to a receiver over n channels such that:

• the receiver can recover s even if an adversary modifies the information from up to t
channels;

• an adversary eavesdropping on up to t channels learns no information about s.

The introductory work demonstrated that a (n, k)-PSMT scheme exists if and only
if n ≥ 3k + 1 [58]. Desmedt, Wand, and Burmester investigated PSMT schemes secure
against arbitrary monotone adversary structures [56]. Martin, Paterson, and Stinson stud-
ied the relationship between one-round PSMT schemes and error decodable secret sharing
schemes [109]. They show that a Γ-error decodable secret sharing scheme realizing an
access structure Σ (the adversary structure in this case is the set Γ) implies a (Γ,Σc)-
PSMT scheme, where Γ denotes the subsets of channels an adversary may actively control
and Σc denotes the subsets of channels an adversary may passively observe. However, the
opposite direction does not hold. A (Γ,Σc)-PSMT scheme cannot be transformed into a
Γ-error decodable secret sharing scheme. Kurosawa provides a construction of a one-round
PSMT protocol based on error-decodable secret sharing [102] and later work by Choudhury
provides a construction of one-round PSMT in an asynchronous setting [46].
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5.3 Cheating immunity

Cheating-immune secret sharing was suggested by Pieprzyk and Zhang [124] as an alter-
native method of handling cheating participants. The dealer is assumed to be honest and
participants may cheat during reconstruction by submitting an incorrect share. A scheme
is said to be cheating-immune if the cheating participants have no advantage over the hon-
est participants in determining the true secret.

The Cheating Immunity Game. Assume an (n, n)-threshold scheme. The secret is
s, a value in the finite field GF (pr) where p is prime and r is a positive integer. Also,
assume secrets are distributed uniformly at random. Fix 1 ≤ t < n.

Step 1. t of the n total shares are given to the adversary.

Step 2. The adversary modifies the t shares to create new “bad shares”.

Step 3. A secret s′ is reconstructed using all n shares and all parties learn the recon-
structed secret s′.

We say that the probability of successful cheating is the probability that the adver-
sary can guess the true secret, s, given the t bad shares used in reconstruction, the
t original shares given to the adversary before they were modified, and the recon-
structed secret s′. If s′ 6= s and the probability of successful cheating is greater than
pr (which is the probability an honest participant guesses the correct secret), then
the adversary wins.

If the adversary cannot win this game, we say that the threshold scheme is t-cheating-
immune. If t = 1, we say that the scheme is cheating-immune. Most examples in the
literature examine the case where t = 1.

The goal of cheating-immune secret sharing is different than that of robust secret sharing
because rather than attempting to prevent cheating, we aim to discourage cheating. In
this setting, participants may cheat; however, the resulting reconstructed share should not
reveal more information to the cheaters than it does to the honest participants. Consider,
for example, Shamir’s threshold scheme. We demonstrated in Theorem 5.1.1 that Shamir’s
threshold scheme is not robust. It is easy to see from the same proof that a (k, n)-Shamir
threshold scheme is also not cheating-immune. Given that a cheating adversary submits
a corrupt share v′1 = v1 + δ, the reconstructed secret becomes s′ = s + a1δ where a1 is
some publicly known Lagrange coefficient. The cheating participant in this case learns the
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original secret s = s′ − a1δ while the honest participants only learn the incorrect secret.
Thus, we have observed the following result.

Theorem 5.3.1. An (n, n)-Shamir threshold scheme is not cheating-immune.

In fact, D’Arco, Kishimoto, and Stinson show that any perfect secret sharing scheme
cannot be cheating-immune [50].

Now we present a secret sharing scheme from [50] that is cheating-immune. Recall that
we are working in the finite field GF (pr). Let b+

p a denote the sum of dp/2e elements equal
to a and b−p a denote the sum of bp/2c elements equal to a for some a ∈ GF (pt). For a = 1
(the identity), we just write b+

p or b−p . For example, if p = 3 and a = 1 then b+
p = 2 and

b−p = 1. To present our cheating-immune scheme, we will use a defining function. That is,
a function f : GF (pr)n → GF (pr) which associates each n-tuple of shares with a secret in
GF (pr).

Definition 5.3.1. A function f : GF (pr)n → GF (pr) is balanced if, for each K ∈ GF (pr),
it holds that

|{x ∈ GF (pr)n | f(x) = K}| = pr(n−1).

That is, each value f(x) ∈ GF (pr) has the same number of pre-images x.

Before continuing, we introduce some notation. Let δ ∈ GF (pr)n be a vector repre-
senting cheaters where the non-zero elements represent the change in the true shares. Let
HW denote the Hamming weight of a vector. Given two vectors, x and δ, let x+

δ denote
the vector such that x+

j = xj if δj 6= 0 and x+
j = 0 otherwise. Conversely, let x−j denote

the vector such that x−j = xj if δj = 0 and x−j = 0 otherwise. That is, if δ represents the
cheaters then x−j is the vector containing the shares of honest participants not modified by
cheaters and zeros in the place of modified shares. Similarly, x+

j is the vector containing
the shares of participants which are modified by cheaters before modification and zeros in
the place of the unmodified shares. Finally, we write τ 4 δ if τj 6= 0 implies δj 6= 0.

Definition 5.3.2 ([122]). A function h of degree two is said to have the property B(k) if,
for any δ ∈ GF (pr)n with 1 ≤ HW (δ) ≤ k and for any τ 4 δ, the function h(x−δ + δ +
τ)− h(x−δ + τ) is a non-constant affine function.

Example 5.3.1. Let p = n = 3 and k = 1. Let µ(3,3) : GF (3)3 → GF (3) be defined as
follows:

µ(3,3)(x1, x2, x3) = x1 + x1x2 + 2x2x3 + x3x1 + 2x2
1.

Then, the property B(1) requires that for any δ ∈ GF (3)3 with HW (δ) = 1 and for any
τ 4 δ, the function µ(3,3)(x

−
δ + δ+ τ)−µ(3,3)(x

−
δ + τ) is a non-constant affine function. We

can see that this holds:
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δ τ µ(3,3)(x
−
δ + δ + τ)− µ(3,3)(x

−
δ + τ)

(1, 0, 0) (0, 0, 0) x2 + x3

(1, 0, 0) (1, 0, 0) 1 + x2 + x3

(1, 0, 0) (2, 0, 0) 2 + x2 + x3

(0, 1, 0) (0, 0, 0) x1 + 2x3

(0, 1, 0) (0, 1, 0) x1 + 2x3

(0, 1, 0) (0, 2, 0) x1 + 2x3

(0, 0, 1) (0, 0, 0) x1 + 2x2

(0, 0, 1) (0, 0, 1) x1 + 2x2

(0, 0, 1) (0, 0, 2) x1 + 2x2

�

This function can be generalized as follows.

Definition 5.3.3. Let n ≥ 2k+ 1. We define µn,p : GF (pr)n → GF (pr) to be the function

µn,p = x1 +

bn/2c∑
i=1

(
b−p x[2i−1](n)x[2i](n) + b+

p x[2i](n)x[2i+1](n)

)
+

{
b−p xnx1 + b+

p x
2
1 if n is odd,

0 otherwise,

where [i](n) denotes the integer j such that 1 ≤ j ≤ n and j ≡ i mod n.

Lemma 5.3.2 ([122]). Let f1, f2 be functions over GF (pr)n1 and GF (pr)n2, respectively.
Let f(x) = f1(y) + f2(z) where x = (y, z), y ∈ GF (pr)n1, and z ∈ GF (pt)n2. Then:

1. f is balanced if f1 or f2 is balanced.

2. f satisfies B(k) if both f1 and f2 satisfy B(k).

It has been shown that µn,p is balanced and satisfies the property B(k) [50]. Let
χ2k+1 = µ2k+1,p. Using the lemma above, the following results hold.

Lemma 5.3.3 ([122]). Let χ4k+2(x1, . . . , x4k+2) = χ2k+1(x1, . . . , x2k+1)+χ2k+1(x2k+2, . . . , x4k+2).
Then χ4k+2 satisfies B(k) and is balanced.

Theorem 5.3.4 (Cheating-Immune Scheme [122]). Let k,m be positive integers with m ≥
k + 1 and let n1, . . . , nm ∈ {4k + 1, 4k + 2} such that n = n1 + · · · + nm. Let f(x) =
χn1(x1) + · · ·χnm(xm), for x = (x1, . . . , xm) and for i = 1, . . . ,m, xi ∈ GF (pt)ni. If each
χni is constructed according to Definition 5.3.3 or Lemma 5.3.3 and χn1 , . . . , χnm have
mutually disjoint variables, then the secret sharing scheme with defining function f(x) is
k-cheating-immune.
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This construction is evidently complex so we provide some intuition for how this con-
clusion was reached. From a cheating participant’s perspective, determining the original
secret using the defining function, their knowledge of their share, and the reconstructed
secret, is equivalent to solving a system of equations. The property B(k), accompanied
by the balanced property, ensures that this system of equations has as many solutions as
possible, giving the cheating participant no advantage in guessing the secret. Thus, con-
structing a cheating-immune scheme comes down to determining a defining function which
satisfies said properties.

Cheating immunity differs from robustness and error decodability in that it is not
attempting to prevent cheating so much as discourage cheating. Consequently, the focus is
no longer on whether or not the reconstructed secret is not equal to the original secret. In
fact, we expect that the reconstructed secret will be different from the original. We are not
concerned with the scenario where the reconstructed secret is equal to the original secret,
because both honest and cheating participants learn the same amount of information.
The notion of cheating immunity shifts the focus to the remaining threat that exists if a
different value is reconstructed: whether or not the cheating participants can still learn the
original secret. Error decodability and robustness imply cheating immunity because if an
adversary cannot modify the reconstructed secret by cheating, then there is no advantage
to be gained from the reconstructed secret.

5.4 Cheater identification

The notions of robustness which we have considered thus far prevent malicious sharehold-
ers from corrupting the secret; however, they do not necessarily enable honest shareholders
to establish which participants are “cheating”. This concept is called cheater identification
and was first suggested by McEliece and Sarwate [112]. We present a game-based defini-
tion similar to the game defined by Obana for cheater-identifiable threshold schemes [119].

The Cheater Identification Game. Assume a (k, n)-threshold scheme. The secret
is s. Fix non-negative integers 1 ≤ t < k and 1 ≤ m ≤ n.

Step 1. t of the n total shares are given to the adversary.

Step 2. The adversary modifies the t shares to create new “bad shares”.

Step 3. A cheater identification algorithm is run on the t bad shares and m − t good
shares. The adversary may choose which good shares are used but cannot modify
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the shares. The cheater identification algorithm outputs a set L consisting of the set
of shares identified as cheaters.

The adversary wins the cheater identification game if none of the t bad shares are
included in the set L.

If the adversary cannot win the cheater identification game, except with negligible
probability, we say that the scheme is a t-cheater identifiable (k, n)-threshold scheme.

The first secret sharing schemes capable of identifying cheaters were presented indepen-
dently by Rabin and Ben-Or [127] and Brickell and Stinson [37]. Later work by Carpentieri
[41] improved upon the Rabin and Ben-Or construction by decreasing the size of the shares.
It has been show that in order to achieve cheater identification, we must have t < k/2 [103].
The typical strategy for cheater identifiable schemes is to include additional information
with each share distributed among the participants, which can be used to verify the valid-
ity of the participant’s share. Brickell and Stinson [37] provide a construction of a cheater
identifiable scheme which is based on Blakley’s threshold scheme [19]. We review Blakley’s
scheme now.

Construction 5.4.1. [Blakley’s Scheme [19]] Let P be the set of n participants. Let V
be a k-dimensional vector space over GF (q). Fix a publicly known line ` ∈ V . Then the
secret space, S, is the set of q points on the line `.

• Share: For a secret s ∈ S, the dealer constructs a random (k − 1)-dimensional
subspace H that meets ` at a point. Let Hs = H + s. The dealer selects n distinct,
random points, {s1, . . . , sn}, on Hs such that no j of them lie in a (j−2)-dimensional
Euclidean subspace or translate of a subspace (in other words, the no j of the points
lie on a flat) for j ≤ k. The dealer gives si to participant Pi for each i = 1, . . . , n.

• Recover: Any k participants can use their points to uniquely determine Hs. Then
Hs ∩ ` = s, so they can recover the secret.

�

To make Blakley’s scheme cheater identifiable, the new construction has the dealer
distribute additional information to the participants.

Construction 5.4.2. [Cheater Identifiable Scheme [37]] Let P be the set of n participants.
Let V be a k-dimensional vector space over GF (q). Fix a publicly known line ` ∈ V . Then
the secret space, S, is the set of q points on the line `.
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• Share: For a secret s ∈ S, the dealer follows the share algorithm from Blakley’s
scheme. Also, the dealer constructs n random (k−1)-dimensional subspaces, denoted
Hi, such that the intersection of H with j − 1 of the Hi’s is a subspace of dimension
k − j for j ≤ k. In addition to the point si, the dealer also gives to participant Pi
the n− 1 parallel hyperplanes Hij = Hi + sj, j = 1, . . . , n, j 6= i.

• Recover: The recover algorithm is the same as in Blakley’s scheme.

• Cheater Identification: A single honest participant, Pi, can check the validity of
the share belonging to another participant, Pj. To do so, Pi simply verifies that the
share sj lies on Hij.

�

The additional information given to participants allows them to rule out some possible
secrets. In particular, k−1 participants can rule out up to 1+

(
n−k+1
k−1

)
points as the secret;

however, assuming q >> n, this causes no issues in practice. The remaining possible secrets
are equally likely. Suppose that participant P1 is honest and participant P2 tries to cheat
by suggesting that their share is s′2 6= s2. P2 cannot choose s′2 to be a point on ` or a point
on the hyperplane through s1 parallel to `, since it would be obvious that they were lying.
Also, they will not choose a point on Hs, since that would not affect the secret. P2 only
succeeds in cheating if there is a hyperplane H ′12 containing s2 and s′2 equal to H12. There
are q − 1 possibilities for H12, all equally likely to contain s′2, thus the probability that P2

succeeds in cheating is 1/(q−1). Otherwise, the honest participant P1 can identify P2 as a
cheating participant. Suppose n− 1 participants collude and cheat. They are most likely
to be successful if they leave k− 2 shares unchanged and lie about the remaining n− k+ 1
shares. Then the probability that the honest participant, P1, cannot identify at least one
cheater (that is, the cheating parties succeed) is at most (n− k + 1)/(q − 1).

Example 5.4.1. Consider a (2, 3)-threshold scheme over GF (q) for some large prime q.
Let ` be the x-axis containing the points (b, 0), b ∈ GF (q), and let s1 = (1, 5). Suppose P1

also receives the lines H12 = (1 + a,−1 − a) and H13 = (4 + a, 8 − a), a ∈ GF (q). Note
that these are parallel lines. Then P1 can rule out the points where H12 and H13 intersect
`, i.e. (0, 0) and (12, 0). Also, P1 knows that the secret cannot be H11 ∩ `, so they can rule
out (6, 0). The key could be any of the remaining q− 3 points on the x-axis. Suppose that
P2 receives the share s2 = (−2, 2). Then P1 and P2 can determine that the secret must be
(−4, 0). �

The construction above enables participants to independently verify whether or not
another participant’s share is valid. Additionally, the cheater identification can occur
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Construction
# honest shares required
for cheater identification

Time of
cheater identification

Brickell and Stinson [37] 1 Before reconstruction
Rabin and Ben-Or [127] 1 Before reconstruction

Carpentieri [41] 1 Before reconstruction
Kurosawa, Obana, Ogata [103] k Before reconstruction

Obana [119] k − bk−1
3
c During reconstruction

Bellare, Dai, Rogaway [11] k During reconstruction

Table 5.1: Properties of cheater identifiable secret sharing schemes

separately from reconstruction. This differs from other cheater identifiable schemes which
may require honest participants to combine their information to verify the validity of
other shares or may perform cheater identification in conjunction with reconstruction. The
general game-based definition of cheater identification that we have suggested encompasses
each of these cases. In the case where a single participant may verify a single share
corresponding to another participant, we can set t = 1 and m = 2. In the case where
cheater identification occurs during reconstruction, we can require m ≥ k. The flexibility
of the definition makes it possible to apply to each of the cheater-identifiable schemes in
Table 5.1 with varying properties.

Table 5.1 also includes a construction from Bellare, Dai, and Rogaway [11]. Later, in
Section 5.6, we provide more details on the property of error correction provided by this
construction. Here, it is relevant to note that this error correction property encompasses
cheater identification. Essentially, the reconstruction algorithm outputs valid shares in
addition to the recovered secret. This approach inherently provides cheater identification.
Since this functionality is built into reconstruction, an authorized set of participants is
required in order to perform reconstruction. In the case of a (k, n)-threshold scheme, this
is k honest shares.

Cheater identification differs from the previous notions of robustness we have discussed
since it includes an additional step to check for cheating participants. This notion is
stronger than the definition of robustness since it prevents an invalid secret from being
reconstructed and it identifies participants holding incorrect shares. Although the con-
structions of cheater identifiable schemes are typically less space efficient than standard
robust schemes (due to the additional information that is distributed to participants), it
enables honest participants to remove potentially malicious participants from the protocol.
This can be useful in cases where one is concerned about the presence of cheating par-
ticipants and has the ability to remove participants and restart a secret sharing protocol.
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Cheater identification schemes generally do not overlap with error decodable schemes, since
the goal is not to reconstruct in the presence of corrupted shares, rather it is to identify
and remove the corrupted shares. Given this difference, cheater identifiable schemes can
often tolerate more cheating participants than an error decodable scheme.

5.4.1 Identification vs detection

A notion similar to cheater identification is cheater detection. Where the concept of cheater
identification is clearly defined as the requirement to be able to identify which participants
submitted modified shares, cheater detection is a somewhat ambiguous term. Some papers
use the term cheater detection to refer to a scenario where we want to detect that some
share has been modified from its original state [79, 120]. This is essentially the same
as the definition of robust secret sharing. If an adversary can “cheat” by submitting a
modified share that results in a different secret being reconstructed, without being detected,
then the scheme is not robust. Other papers which discuss cheater detection also enable
honest participants to identify which shares belong to cheaters [37, 82]. The term “cheater
detection” is used in both scenarios, so it is important to note which papers intend to
satisfy robustness and which intend to satisfy cheater identification.

5.5 Fairness

The notion of fairness originated from multi-party computation schemes [71], where the
property means that no player receives the output of a multi-party computation unless all
players receive the output. This idea can be extended to secret sharing schemes, where
the property suggests that no player participating in reconstruction receives the correct
reconstructed secret unless all players do. This can be considered a notion of robustness
since it requires that an adversary only receives the secret if the honest players also receive
the correct secret. The following game-based definition is aligned with the definition given
by Laih and Lee [104].

The Fairness Game. Assume a (k, n)-threshold scheme. The secret is s. Fix a non-
negative integer 1 ≤ t < k/2.

Step 1. t of the n total shares are given to the adversary.

Step 2. The adversary modifies the t shares to create new “bad shares”.
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Step 3. A secret s′ is reconstructed using k shares, including the adversary’s t shares. The
k − t “good shares” to be used in reconstruction may be chosen by the adversary.

If the probability that the adversary learns the correct secret, s, is greater than the
probability that an honest participant learns the correct secret, then the adversary
wins the fairness game.

If the adversary cannot win the fairness game (except with negligible probability), we
say that the scheme is a t-fair (k, n)-threshold scheme.

Constructions of fairness schemes from Laih and Lee [104] and later Hwang and Chang
[81] made use of cheater identifiable schemes, which we discussed in Section 5.4.

Construction 5.5.1. [Threshold Scheme with Fairness [81]] We assume the existence
of a t-cheater identifiable threshold scheme where cheater identification occurs before re-
construction and only requires 1 honest share. For example, any of [37, 127, 41]. The
following construction is based on Shamir’s secret sharing scheme, so it makes sense to
apply a cheater identification protocol like the one defined by Carpentieri [41].

We present a construction of a (k, n)-threshold scheme with t-fairness. Let s ∈ Zp be
the secret, for some large prime p.

Share: 1. The dealer randomly chooses an integer a0 ∈ Zp and computes b0 = a0 ⊕ s.
2. The dealer generates a random polynomial f(x) = a0 + a1x + · · · ak−1x

k−1 of
degree k − 1 and a random polynomial g(x) = b0 + b1x + · · · + bt−k−1x

t−k−1 of
degree t− k − 1, both in Zp[x].

3. The dealer gives participant Pi the pair (f(i), g(i)).

Recover: Denote each participant’s share by (di1, di2), for i = 1, . . . , n.

1. k participants combine the first half of their shares di1.

2. The honest participants run a cheater identification protocol on the initial shares
to identify any invalid shares. If all shares are valid, continue. Otherwise, abort
the reconstruction process.

3. The k participants provide the second half of their shares di2.

4. The honest participants run a cheater identification protocol on the second set
of shares to identify any invalid shares. The participants identify t − k valid
shares to be used in the next step.
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5. Using the k valid shares from Step 1, the participants recover f(x) using La-
grange interpolation. Using the t − k valid shares identified in Step 4, the
participants recover g(x) using Lagrange interpolation.

6. Participants compute the secret s = f(0)⊕ g(0).

The paper [81] proves that this is a t-fair (k, n)-threshold scheme, i.e., that an adversary
cannot win the fairness game. �

It is not hard to see that Shamir’s scheme does not ensure the fairness property. This
is one of the points made by Tompa and Woll [146] when they introduced the concept
of robustness: the idea that dishonest participants can learn the secret even if an invalid
secret is recovered. The justification that Shamir’s threshold scheme is not fair is the same
as the justification that it is not cheating-immune, given in Section 5.3. So, we have the
following result.

Theorem 5.5.1. A (k, n)-Shamir threshold scheme is not fair.

The concept of fairness is very similar to that of cheating immunity, in the sense that
the goal is to construct schemes where cheating participants do not have advantages over
honest participants. The differences are that cheating-immune schemes apply to (n, n)-
threshold schemes with up to n − 1 cheaters and fairness schemes apply to more general
(k, n)-threshold schemes with only t < k/2 cheaters. Cheating-immune schemes require
more shares in reconstruction (to account for the possibility of more cheating participants).

Additionally, we can observe that if a scheme is robust, then it must also be fair.
Suppose we have a robust scheme in which an adversary can win the fairness game. This
suggests that the adversary is able to modify t shares in such a way that the honest
participants do not learn the correct secret. This implies that the reconstructed secret
s′ 6= s, contradicting the fact that the scheme is robust. Therefore, robustness implies
fairness.

5.6 Error correction

Error correction was suggested as a property of the recently proposed adept secret shar-
ing [11], alongside privacy and authenticity properties. In addition to guaranteeing that
the recovery of the secret succeeds, it also identifies valid shares when there is a unique
explanation as to which shares imply the secret. Essentially, it combines the concepts of
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robustness and cheater identification. The original work presents the definitions in a com-
putational setting, but it is fairly straightforward to consider the idea of error correction
in an information theoretic setting.

In defining the error correction property, the authors formalize which information is
included in the Recover algorithm. Rather than simply taking as input some set of shares,
the algorithm also requires some “known” information. That is, the message-recovery al-
gorithm is of the form: Recover: Known × Shares → Msg × Rand × Shares ∪ {⊥}. The
Known information includes either an access structure that the recovering party knows to
be operative or it is the subset of the shares given to Recover that are known to be valid.
Then, the algorithm outputs a message, the shares used to reconstruct the message, and
the randomness. If the algorithm cannot recover the message, ⊥ is output. The following
definition is an adapted version of the game-based definition from the original paper [11],
where we have restricted to the threshold case.

The Error Correction Game. Assume a (k, n)-threshold scheme. The secret is s.
Fix some t, such that 1 ≤ t ≤ n.

Step 1. The adversary creates/modifies t shares and chooses some corresponding Known
information.

Step 2. The t shares and the Known information are input into the Recover algorithm,
which outputs a triple (M,R,V) or ⊥, where M is a message, R the randomness,
and V the set of shares used to recover M.

Step 3. An Explanation algorithm is run on the Known information and the input shares.
For all possible subsets of the input shares, the algorithm determines all triples
(M,R,V) that may be returned from running Recover on the shares and the corre-
sponding access structure. If all message and randomness pairs, (M,R), are equal
and there is a valid set of shares V containing all others, the algorithm returns this
unique triple (M,R,V). Otherwise, it outputs ⊥ if no such valid set exists.

The adversary wins the game if the outputs of Explanation and Recover algorithms
are different.

If the adversary can never win the error correction game, this is called perfect error
correction. The goal of the adversary is to force the Recover algorithm to recover something
wrong, i.e., something that does not align with the unique explanation.
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The authors prove that error correction implies robustness [11]. Let us consider an
example to demonstrate how this definition is stronger than robustness. The main dif-
ference between error correction and robustness is that in addition to preventing recovery
when there is no authorized set of shares, error correction also prevents recovery if there
is more than one possible explanation for which shares were corrupted. Additionally, the
expanded capabilities of the Recover algorithm as defined in adept secret sharing allow for
more possibilities. Take, for example, a (2, 4)-threshold scheme constructed according to
Construction 5.1.1. We already know that this is robust. However, consider an adversary
attacking this scheme under the error correction game. Suppose the adversary modifies
two shares, a→ ã and b→ b̃, such that they correspond to a different, valid secret. Then,
if the Recover algorithm was given all four shares, including ã and b̃, there would be no
way to determine which secret is the correct value to recover. The Recover algorithm may
return one of the two valid secrets, while the Explanation algorithm would return ⊥. So,
the construction does not provide error correction.

To ensure error correction, the following modification to the Recover algorithm is sug-
gested by [11].

Construction 5.6.1. [Recover with Error Correction [11]]

• Given a set S of shares and some Known information (an access structure or some
set of valid shares), determine all possible subsets of S that contains the valid shares
or satisfy the access structure defined by Known. Denote these by S1, . . . ,Sw.

• For each Si, for i = 1, . . . , w, run the Recover algorithm on Si and Known.

• If Recover always fails to find a message, return ⊥. If Recover returns two different
sets of triples (M,R,V), (M′,R′,V ′) of a message, randomness, and valid set of
shares, where V ′ 6⊂ V (or vice versa), then return ⊥. In this case, there are two
different plausible scenarios. Otherwise, return the unique message, randomness
pair, and the corresponding largest set of valid shares, (M,R,V).

�

This construction can be applied to any recover algorithm which returns not only the
secret, but also the randomness and corresponding valid shares.
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5.7 Non-malleability

Non-malleability in the context of encryption refers to the property that given a ciphertext,
it is impossible to generate a different ciphertext such that the respective plaintexts are
related [57]. This concept has been extended to other cryptographic protocols, such as
commitment schemes and zero-knowledge proofs. While the literature has agreed upon a
definition of non-malleability in the context of encryption protocols, the same cannot be
said for non-malleability of secret sharing schemes.

5.7.1 Existing definitions of non-malleable secret sharing

The first mention of non-malleable secret sharing was in a 2006 PhD thesis by Kenthapadi
[97] and in a corresponding paper on distributed noise generation [59]. The authors refer
to non-malleable verifiable secret sharing as an extension of verifiable secret sharing (VSS).
Although they do not provide a formal definition or construction of non-malleable VSS,
the papers provide a brief, high-level definition. The authors state that:

“A non-malleable VSS scheme ensures that the values shared by a non-faulty
processor are completely independent of the values shared by the other proces-
sors; even exact copying is prevented.” [97, 59]

Here, values refers to shares corresponding to some secret. When the authors write
that “exact copying is prevented,” they intend to prevent two shares from being equal
to one another. This is to address a scenario in which a malicious party views a valid
share and replaces a share intended for another participant with the valid share that they
had previously seen. If the shares were independent in the usual sense of the word, then
it should be possible that two shares be equal to one another. Thus, this definition is
somewhat ambiguous. Furthermore, constructions of verifiable secret sharing, discussed in
Section 4.1, already ensure that a valid share intended for one participant cannot be sent
to another and still be verified. This is because the Verify algorithm typically takes as
input the identity of the shareholder. It is unclear whether this requirement that copying
be prevented provides any additional security above that which is already provided in
VSS schemes. One difference between this definition of non-malleable VSS and some VSS
schemes is that the definition of non-malleable VSS does not assume private channels
between participants. This property is not inherent to all verifiable schemes, as some
models of verifiable secret sharing also assume that there do not exist private channels
between participants [45].
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The suggested construction in [97] to achieve non-malleable VSS from a VSS scheme
appends public keys to shares and then encrypts the share and public key using a non-
malleable encryption scheme [57]. For example, suppose participant Pi is sending a share
to participant Pj. Then, Pi appends to the beginning of their share the public keys corre-
sponding to Pi and Pj, and encrypts this message using Pj’s public key.

The work by Kenthapadi, in particular the followup paper on distributed noise gen-
eration [59], is well-known. However, this is not the only line of work that discusses
non-malleability in the context of secret sharing. In 2008, a paper in the area of secure
multi-party computation [83] provided a new definition of non-malleable secret sharing.
They consider the setting of a (2, 2)-threshold scheme and say that the scheme is non-
malleable if an adversary cannot win the following game.

The IPS Malleability Game.

Step 1. In a (2, 2)-threshold scheme, two shares, a and b, are generated for some secret s.

Step 2. The adversary modifies a single share a→ ã.

Step 3. The reconstruction algorithm takes as input ã and b. The adversary wins if ã 6= a
and the reconstruction algorithm outputs some valid secret s′.

If the adversary can win the above game with at most probability ε, they say that the
scheme is ε-non-malleable. Later work studying fairness in secure computation used the
same definition of non-malleable secret sharing [72, 71, 17], as did a paper on universal
composability [130]. It has been noted that this definition of non-malleability can be
achieved using AMD codes in the same way that they had previously been used to provide
robustness [71, 49].

Definition 5.7.1 ((Strong) AMD code [49]). Let G be an additive abelian group of size n
and A = {A1, . . . ,Am} be m pairwise disjoint k-subsets of G. Then (G,A) is an (n,m, k)-
AMD code if an adversary cannot win the following game with non-negligible probability.

1. A source i ∈ {1, . . . ,m} is chosen and given to the adversary.

2. The adversary chooses a value ∆ ∈ G \ {0}.

3. The source is encoded by choosing g uniformly at random from Ai.

4. The adversary wins if and only if g + ∆ ∈ Aj for some j 6= i.
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By secret sharing the encoding of a secret instead of the secret itself, we can achieve
robustness [49] and IPS non-malleability [83, 71]. This definition of non-malleability is very
similar to the definition we provided for robust secret sharing. Aside from the fact that it
is restricted to the case of (2, 2)-threshold schemes (although this is easily generalized), the
only remaining difference is that the IPS Malleability game checks if the inputted share
ã 6= a rather than checking whether the reconstructed secret s′ 6= s. This is a slightly
stronger definition, given that if the reconstructed secret s′ 6= s, this implies that the
inputted shares must differ. On the other hand, different shares do not necessarily imply a
different reconstructed secret. The motivation for this second definition of non-malleable
secret sharing is unclear. The original paper discusses how such a scheme prevents cheating
participants from modifying their shares without being detected, but it is unclear if there
is an advantage to be had by an adversary who modifies their shares in a way that does
not change the reconstructed secret.

The above two definitions of non-malleable secret sharing do not agree with one another.
To make matters more complicated, there is a third line of work which refers to non-
malleable secret sharing that provides another definition, different from the first two. This
work began in 2010 with the introduction of non-malleable codes [63, 64]. In coding
theory, non-malleable codes can be considered as a relaxation of error-correcting and error-
detecting codes. The previously discussed AMD codes are an example of error-detecting
codes. At a high level, non-malleable codes are codes that when decoded, either return the
original message or a message independent of and unrelated to the original message. To
precisely define non-malleability, it must be done with respect to some family of tampering
functions, which determine what it means for messages to be independent or unrelated.

Follow-up work noted that non-malleable codes in the split-state model could be con-
sidered a secret sharing scheme [61, 5, 4]. The split-state model [62, 52] describes a setting
where a codeword consists of two parts which are stored on two separate memory parts
that can be tampered with independently. Any such code is equivalent to a (2, 2)-threshold
scheme where the encoding mechanism is the sharing function, the decoding mechanism is
the reconstruction function, and the two parts of the codeword are the shares. These can
be called 2-out-of-2 non-malleable secret sharing schemes. A main difference between these
non-malleable schemes and previous notions of robustness is the concept of independent
tampering. For example, in a 2-out-of-2 scheme, it is equivalent to assuming that two dif-
ferent adversaries each receive a share that they can modify, but they cannot communicate
with one another.

Dziembowski, Kazana, and Obremski [61] constructed a non-malleable code for single
bit messages in the split-state model (equivalent to a non-malleable (2, 2)-threshold scheme
for single bit messages). In their construction, both shares lie in a sufficiently large n-
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dimensional vector space Fn. To encode (or secret share) 0, we choose a random pair of
orthogonal vectors L and R, i.e., 〈L,R〉 = 0. To encode (or secret share) 1, we choose
a random pair of non-orthogonal vectors L and R, i.e., 〈L,R〉 6= 0. To achieve non-
malleability in this setting, the adversary must not be able to independently tamper with
the shares L and R to produce a different output message than the original with probability
greater than 1/2. The proof of non-malleability is quite involved and so we refer readers
to the original paper for more details [61].

Later, Aggarwal, Dodis, and Lovett presented the first non-malleable code in the split-
state model for multi-bit messages [5]. To do so, they construct a non-malleable code
with respect to the family of affine functions in a finite field of prime order p, Fp. Then,
the scheme consists of first encoding the secret using this non-malleable code, and then
splitting the encoded secret into two shares, L and R, such that the inner product of L
and R is equal to the encoding.

Extending this line of work, Goyal and Kumar initiated a more formal study of this
notion of non-malleable secret sharing [74]. In this work, they presented (t, n)-threshold
schemes satisfying this notion of non-malleability based on non-malleable codes. They
provide formal definitions for non-malleable secret sharing that are generalized versions
of non-malleable codes in the split-state model. Most, but not all, of the recent work
which refers to non-malleable secret sharing is based on these definitions. The initial study
focused on threshold schemes while later work provided constructions for general access
structures [75, 7, 3]. These constructions worked in an information-theoretic model and
aimed to satisfy statistical privacy and statistical non-malleability. This definition of non-
malleable secret sharing has also been extended to the computational setting [67, 35] and
it has been combined with the idea of leakage resilience [67, 62].

Using Goyal and Kumar’s definition of non-malleability, it is easy to see that a secret
sharing scheme which is non-malleable cannot be linear. In a linear secret sharing scheme,
briefly discussed in Section 3.2.2, local computations on the shares have meaningful effects
on the reconstructed secret. This directly contradicts the intentions of non-malleable secret
sharing schemes.

5.7.2 Redefining non-malleable secret sharing

We propose a novel game-based definition of non-malleability. The goal of this defini-
tion is to encompass the idea of non-malleability, as it is typically used in cryptographic
literature [57], in the most straightforward manner. This definition is motivated by the
definitions presented by Goyal and Kumar [74], but rather than deriving definitions from
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coding theory, we present them from a more cryptographic perspective. Goyal and Kumar
discuss non-malleability with respect to “families of tampering functions.” In contrast, we
define non-malleability with respect to a symmetric relation ∼. With this notation, we can
provide more fine-grained constructions of non-malleable schemes, secure with respect to
specific relations. The schemes we discuss satisfy perfect privacy and non-malleability as
opposed to statistical privacy and statistical non-malleability.

The ∼-Malleability Game. Assume a (k, n)-threshold scheme. The secret is s. Fix
some t, 1 ≤ t < k, and a symmetric relation ∼ over the set of valid secrets.

Step 1. t of the n total shares are given to the adversary.

Step 2. The adversary modifies the t shares to create new “bad shares”.

Step 3. A secret s′ is reconstructed using k shares, t of which are the “bad shares”. The
good shares used during reconstruction may be chosen (but not modified) by the
adversary.

The adversary wins the ∼-malleability game if the reconstructed secret s′ is a valid
secret such that s′ 6= s and s′ ∼ s.

If the adversary cannot win the non-malleability game, except with negligible proba-
bility, we say that the scheme is t-non-malleable with respect to ∼.

We note that if we let ∼ denote any relationship between two different values in the
set of secrets, i.e., we let ∼ be 6=, then the only requirement for the adversary to win is
that s′ 6= s. Then, this definition is equivalent to the definition of robust secret sharing.
It follows from this observation that if a (k, n)-threshold scheme is robust, it is also non-
malleable.

Consider, for example, a Shamir threshold scheme. We showed in Section 5.1 that
a (k, n)-Shamir threshold scheme is not robust. Although non-malleability is a weaker
requirement, we can demonstrate that a (k, n)-Shamir threshold scheme is also not non-
malleable, i.e., it is malleable, for a given relation ∼.

Theorem 5.7.1. A (k, n)-Shamir threshold scheme is malleable with respect to the relation
∼ where a ∼ b if a = b+ c for some pre-specified c.

Proof. We prove this by describing how the adversary can carry out a successful attack
by modifying only a single share. Suppose the shares v1, . . . , vk are used to reconstruct a
polynomial.
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The true secret, s, can be written as s =
∑k

i=1 aivi where ai denotes the Lagrange
coefficients and vi are the good shares for i = 1, . . . , k.

Assume that the adversary modifies a single share v1 by adding some δ. That is, upon
reconstruction, the adversary submits v′1 = v1 + δ.

The reconstructed secret will be

s′ = a1v
′
1 +

k∑
i=2

aivi = s+ a1δ.

Since the Lagrange coefficient a1 is publicly known, the adversary can choose δ such
that a1δ = c for a given c. Then, the reconstructed secret will satisfy s′ = s+ c, i.e., s′ ∼ s,
and the adversary wins the game.

The above malleability game considers the case where an adversary can modify multiple
shares. Previous work distinguished this from the case where an adversary can indepen-
dently tamper with up to n shares. That is, they cannot use information from one share
to inform how they tamper with another share. Note that in the original game, t < k,
whereas in the following game where the adversary is restricted to independent tampering,
we can have t ≤ n.

The ∼-Malleability Game with Independent Tampering. Assume a (k, n)-threshold
scheme. The secret is s. Fix 1 ≤ t ≤ n and a symmetric relation ∼ over the set of valid
secrets.

Step 1. t of the n total shares are given to t non-communicating adversaries, i.e., each
receives one share.

Step 2. t non-communicating adversaries each receive a share and modify their share to
create new “bad shares”.

Step 3. A secret s′ is reconstructed using k shares. If k ≥ t then choose t of the “bad
shares” to reconstruct. If k < t then reconstruct using the t “bad shares” and k − t
“good shares”. The good shares used during reconstruction may be chosen (but not
modified) by an adversary.

The adversary wins the ∼-malleability game if the reconstructed secret s′ is a valid
secret such that s′ 6= s and s′ ∼ s.
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The construction of a non-malleable code in the split-state model which we discussed
in the previous subsection, from Aggarwal, Dodis, and Lovett [5], fulfills this definition
of non-malleability with independent tampering for (2, 2)-threshold schemes. Here, the
scheme is non-malleable with independent tampering with respect to the relation ∼, where
∼ includes any affine relationship in the finite field. More general constructions of t-out-ofn
non-malleable secret sharing schemes with independent tampering are given in the work
by Goyal and Kumar [74]. These constructions are somewhat complex and rely on several
building blocks, such as leakage resilient schemes (discussed in Section 4.4.2), so we do not
include them here.

5.7.3 Comparison with related notions

Non-malleability can be considered a notion of robustness because it concerns itself with
the presence of cheating participants. It is a weaker notion than the concept of robustness
considered by Krawcyzk [100] and Tompa and Woll [146]. Robust secret sharing schemes
are able to detect that an error has occurred and potentially correct the error. In a non-
malleable scheme, an error may or may not be detected and/or corrected. Instead, it
only ensures that if an error occurs that is not able to be corrected, then the output is
independent of the true secret. The idea is also similar to cheating immunity, which is the
topic of Section 5.3. Suppose we choose ∼ in such a way that it contains all relationships
which reveal any additional information about the true secret. Then, a scheme which is
non-malleable with respect to ∼ would also be cheating-immune, since the adversaries gain
no advantage from their knowledge of the relationship ∼.

Non-malleability differs from the previous notions we have considered in that it con-
siders independent tampering: a setting in which an adversary can independently modify
up to n shares but cannot combine the information gathered from each share. This threat
is unique to the literature on non-malleable schemes. A similar, but different setting is
considered in leakage-resilient schemes (Section 4.4.2), where the adversary may obtain
information from all n shares. This setting is different because, although the adversary
obtains some leaked information, they do not have the ability to modify the shares.
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Chapter 6

Conclusion and Discussion

In addition to surveying work which has extended models of secret sharing, here is a
summary of the most important conclusions and new contributions of the previous chapters:

• (Chapter 3: Reproducibility) Section 3.3 includes a comprehensive presentation of
the approaches to reproducibility/repairability of shares which may be achieved with
or without a dealer. We compare each approach and observe that repairability on
the part of the shareholders removes the potential attack vector of a dealer holding
all of the information.

• (Chapter 3: Relaxations) Most alternative models of secret sharing were initially
considered in the information-theoretic setting. Table 6.1 summarizes some variations
of secret sharing schemes that have been covered in this survey and examples of
where they have been studied in the computational model and/or the information-
theoretic model. Constructions that provide statistical privacy are listed under the
information-theoretic model because they still consider an adversary with unbounded
computational power.

• (Chapters 3 and 4: Trade-offs) In Section 3.2.2, Section 3.4.3, and Section 4.1.1 we
noticed a similar trade-off between non-interactivity and unconditional security. It
appears that in several scenarios, relaxing the privacy requirement to the computa-
tional setting enables us to construct protocols for additional functionalities that are
non-interactive. This is an interesting relationship to explore in other areas of work.

• (Chapter 4: Verifiability) There exist several different models of verifiability that
have been used in previous work. We present a comprehensive comparison of each
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Non-Malleability

Error Correction Robustness Fairness

Cheating Immunity

Cheater Identification Error Decodability

Similar Goals

Figure 6.1: Summary of relationships between notions of robustness

notion of verifiability and the differences in the models used. This includes more
formal definitions of some models than have been given in previous works.

• (Chapter 4: Deniability) There is an inherent deniability property afforded by clas-
sical secret sharing schemes which allows shareholders to deny having shares corre-
sponding to a particular secret. We have formalized this property and demonstrated
how it applies to classical threshold schemes.

• (Chapter 5) There exist many notions of robustness which only differ slightly in their
goals and/or definitions. Chapter 5 presents comparable game-based definitions of
each of these notions. Figure 6.1 summarizes the relationship between each notion.

• (Chapter 5: Non-Malleability) Non-malleable secret sharing has been defined in three
different lines of work and the definitions in the literature do not agree with one
another. We present a critique of some of the definitions in previous work and a new
game-based definition motivated by one of the three lines of work.

Comparing notions of robustness. To elaborate on Figure 6.1, we observe that the no-
tion of error correction [11] is the strongest of the notions of robustness we have considered.
It encompasses both robustness and cheater identification and formalizes the intuition that
the reconstruction process does the best job possible with the information that is presented
to it. Error correction is also achievable for general access structures whereas robustness
is difficult to achieve without assuming an honest majority of participants.
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Variation Section Information-Theoretic Computational
Adept SS Sections 4.1 and 5.6 X[11]

Anonymous SS Section 3.5 X[140, 28]
Cheating-immune SS Section 5.3 X[123, 124]
Error-decodable SS Section 5.2 X[102, 109]

Evolving SS Section 3.3.3 X[98, 99]
Fully dynamic SS Section 3.2.1 X[21] X[148]

Function SS Section 3.1.3 X[30]
Leakage-resilient SS Section 4.4.2 X[74, 16]
Multi-secret sharing Section 3.1.1 X[22, 88] X[54]
Non-malleable SS Section 5.7 X[74] X[67]

Password-protected SS Section 3.4.4 X[8, 90, 38]
Proactive SS Section 4.4.1 X[141, 115] X[80]

Probabilistic SS Section 3.6.1 X[51]
Rational SS Section 4.2.1 X[77] X[73]

Repairable SS Section 3.3.2 X[142, 105]
Robust SS Section 5.1 X[44, 42] X[100, 129]
Social SS Section 4.2.2 X[118]

Verifiable SS Section 4.1 X[127, 141] X[14, 68, 121]
Visual SS Section 3.1.2 X[20, 113]

Table 6.1: Variations of secret sharing schemes and examples of relevant studies in an
information-theoretic and/or computational setting.

We also observed that robustness implies error decodability, non-malleability, cheating
immunity, and fairness. Given these relationships and the fact that there exist efficient
constructions of robust secret sharing schemes, the benefits of robust secret sharing schemes
become even more clear. On the other hand, the benefits of constructions specific to error
decodability, non-malleability, cheating immunity, and fairness are less obvious since the
goals of these notions are already accomplished by robust schemes.

Comparing notions of verifiability. In contrast to the notions of robustness, which
are largely interchangeable with one another, the notions of verifiability offer significant dif-
ferences from one another. Each definition of verifiability which we discussed in Section 4.1
protected against malicious dealers; however, aside from this similarity, they achieved dif-
ferent goals and required different constructions. The exception to this is the property of
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authenticity, which is very closely related to the original definition of non-interactive veri-
fiability. The non-interactive verifiability property implies authenticity. Also, authenticity
is slightly more restrictive in the sense that it requires that each share commit to a unique
secret. Although this allows for some efficient constructions, it also excludes any construc-
tions in an information-theoretic setting. The paper proposing authenticity [11] claims
that the authenticity definition is more widely applicable since it does not require the use
of broadcast channels; however, the original definition of non-interactive verifiability did
not in and of itself require the use of broadcast channels (despite the fact that some early
constructions made use of them).

On overlapping terms. Another observation of note is the overuse of terms defining
models of secret sharing. For example, aside from the collection of notions of robust-
ness, there are two different definitions of robustness itself (one slightly stronger than the
other). We have also reviewed four different concepts of verifiability and observed that
non-malleability was defined in three different, contradictory ways. This demonstrates
the importance of thorough literature reviews and accessible writing. We have laid the
groundwork to make it possible to notice the differences between each of the notions we
have covered. That being said, the original publications of these notions are more of-
ten than not defined in very different ways. This makes it difficult to know for certain
whether one is defining a redundant notion. Ideally, future work in this area will con-
sider the breadth of available models of secret sharing before introducing supposedly novel
definitions.

Combining capabilities and models. One advantage of adept secret sharing [11] is
its ability to easily combine several different properties (error correction, authenticity, and
reproducibility). This has also been achieved in multi-party computation protocols which
are secure against malicious participants. These protocols typically combine the ability
to update secrets with verifiability or robustness. Additionally, as we pointed out in Sec-
tion 3.6.2, many models of secret sharing have been considered in a computational setting
which typically allows for more efficient schemes or smaller share sizes. Taking a combina-
tion of properties can be trivial in some cases and more complex in others. For example, the
deniability property inherent to some classical schemes is contradictory to many notions
of robustness and verifiability. It is interesting to consider which combinations of extended
capabilities and alternative adversarial models have not been previously considered in the
literature and which combinations may be useful in practice.
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On definitions. With this thesis, we have aimed to define models of secret sharing in
such a way that they are more readable and easy to understand. We have stripped away
some superfluous notation of previous work to highlight the main goals and differences of
each model. Ideally, these more accessible definitions, presented in a unified way, will pre-
vent the consideration of overlapping, contradictory, and/or unnecessarily complex models
of secret sharing in future work. We use consistent terminology throughout this thesis
and present most of the variations of secret sharing schemes using similar game-based def-
initions, for consistency. We hope that this thesis highlights the advantages of existing
models and helps bring context to some of the more recent contributions in the field.
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