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Abstract

D
igital images of tumor tissue are important diagnostic and prognostic tools for
pathologists. Recent advancement in digital pathology has led to an abundance of
digitized histopathology slides, called whole-slide images. Computational analysis

of whole-slide images is a challenging task as they are generally gigapixel files, often one or
more gigabytes in size. However, these computational methods provide a unique opportu-
nity to improve the objectivity and accuracy of diagnostic interpretations in histopathology.
Recently, deep learning has been successful in characterizing images for vision-based ap-
plications in multiple domains. But its applications are relatively less explored in the
histopathology domain mostly due to the following two challenges. Firstly, there is diffi-
culty in scaling deep learning methods for processing large gigapixel histopathology images.
Secondly, there is a lack of diversified and labeled datasets due to privacy constraints as
well as workflow and technical challenges in healthcare sector. The main goal for this dis-
sertation is to explore and develop deep models to learn discriminative representations of
whole slide images while overcoming the existing challenges. A three-staged approach was
considered in this research. In the first stage, a framework called “Yottixel” is proposed.
It represents a whole-slide image as a set of multiple representative patches, called mo-
saic. The mosaic enables convenient processing and compact representation of an entire
high-resolution whole-slide image. Yottixel allows faster retrieval of similar whole-slide
images within a large archives of digital histopathology images. Such retrieval technology
enables pathologists to tap into the past diagnostic data on demand. Yottixel is validated
on the largest public archive of whole-slide images (The Cancer Genomic Atlas), achiev-
ing promising results. Yottixel is an unsupervised method that limits its performance on
specific tasks especially when the labeled (or partially labeled) dataset can be available.
In the second stage, multi-instance learning (MIL) is used to enhance the cancer subtype
prediction through weakly-supervised training. Three MIL methods have been proposed,
each improving upon the previous one. The first one is based on memory-based models,
the second uses attention-based models, and the third one uses graph neural networks. All
three methods are incorporated in Yottixel to classify entire whole-slide images with no
pixel-level annotations. Access to large-scale and diversified datasets is a primary driver
of the advancement and adoption of machine learning technologies. However, healthcare
has many restrictive rules around data sharing, limiting research and model development.
In the final stage, a federated learning scheme called “ProxyFL” is developed that enables
collaborative training of Yottixel among the multiple healthcare organizations without cen-
tralization of the sensitive medical data. The combined research in all the three stages of
the PhD has resulted into the development of a holistic and practical framework for learning
discriminative and compact representations of whole-slide images in digital pathology.
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Chapter 1

Introduction

Histopathology is the gold standard for diagnosing cancer and assessing its prognosis. One
of the major obstacles in reaching diagnostic consensus is observer variability. It is de-
scribed as the degree of variation between the diagnostic interpretations when a set of
cases are examined by two or more independent clinicians [3]. Cancer diagnoses tend to
be highly variable especially as the number of diagnostic criteria continues to evolve in
the era of modern medicine [4, 5]. The digitization of histopathology has created a unique
opportunity to improve the objectivity and accuracy of diagnostic interpretations through
machine learning, particularly deep learning [6]. In this context, a critical question ad-
dressed in this dissertation is—whether the fundamental challenge of diagnostic imaging
can be resolved using deep learning. Yottixel (a portmanteau for one-yotta-pixel), is an
assistive image search technology for histopathology images developed during this Ph.D.
research. It uses deep learning and other machine-learning methods to extract compact
and discriminative representations of high-resolution histopathology images. The compact
representations enable faster retrieval, and offer lower computational and storage overhead,
therefore more feasible in clinical settings. Compared to other computer-vision algorithms,
the image search offers an alternative way of building a computational consensus to assist
pathologists with “virtual peer review”. This PhD research is premised on a hypothesis
that the image search technology can potentially remedy the high intra-and inter-observer
variability in diagnosis through the search in a large archive of previously (and evidently)
diagnosed cases. In other words, an image search technology can assist pathologists by
allowing them to tap into the collective wisdom of pathologists that have previously (and
evidently) diagnosed similar cases. Learning compact representations of histopathology
images exhibits many challenges, especially because these images are gigapixel files, often
one or more gigabytes in size. Existing deep learning methods such as convolution neu-
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ral networks (CNNs) are insufficient to handle even a single histopathology image in its
original resolution. Furthermore, there is a lack of diversified histopathology datasets that
contain pixel-level annotations, or delineations, by experts. For this dissertation, a three
staged approach is adopted to develop a complete and practical framework for learning
discriminative representations of histopathology images. The three stages of PhD research
is as follows:

(i) Stage 1 explores ways to resolve the challenge of processing of gigapixel histopathol-
ogy images. Existing deep learning methods are unable to process these images in
their entirety. Yottixel, a proposed solution divides a histopathology image into a
set of representative patches (called mosaic). Representing a histopathology image
as a mosaic enables the incorporation of existing deep learning methods without the
requirement of massive computational and storage overhead.

(ii) Stage 2 explores strategies to incorporate label information of histopathology im-
ages to learn more discriminative representations. Generally, a label (e.g., a cancer
subtype) is associated with an entire histopathology image without access to any
regional- or pixel-level annotations. The problem at hand is to develop a super-
vised algorithm that operates on multiple instances (i.e., a mosaic) with a single
target label (a cancer subtype). The problem is different from traditional supervised
machine learning methods that operate on a single instance and its associated tar-
get label. The weak-supervision through multi-instance learning (MIL) is used for
training Yottixel using a mosaic, and a target label pairs.

(iii) Stage 3 explores federated learning (FL) as a distributed and collaborative learning
framework to train Yottixel across multiple hospitals while respecting patient privacy.
Slide preparation, fixation, and staining techniques utilized at histopathology labs,
among other things, cause significant variations in tissue slides. Because of these
variations, histopathology images must be integrated across numerous organizations
for achieving robustness in the deep models. However, such type of data integra-
tion is not possible in medical domain due to regulations and restrictions around
data sharing. Existing FL methods are not well-suited for institutionalized applica-
tions. Hence, a new scheme for FL is proposed called ProxyFL, especially curated
for institutional collaborations in training deep models.
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1.1 Motivation

The motivation for this PhD research necessitates from two different perspectives. First,
the innovation required in machine learning to overcome the challenges of processing and
representing the high-resolution histopathology images. Secondly, the feasibility and adop-
tion of machine learning methods in clinical setting. This research is conducted to maintain
the balance between these two, i.e., the clinical feasibility and adoption are as important
as the innovation in machine learning.

1.1.1 Machine Learning Motivations

Representation of Gigapixel Images. Traditional approaches to image analysis in-
volved handcrafted and domain-specific features to describe the color, shape, or texture
of images. However, handcrafted features are difficult to develop and to transfer to new
applications. Naturally, these approaches have been recently overtaken by deep learning.
Convolutional neural networks are powerful tools to characterize an image, and such they
have gained considerable success recently. However, most recent advances have focused on
processing rather small images (i.e., natural images) using deep learning. Extensions of
these methods are necessary to handle gigapixel histopathology images and to find subtle
differences in diagnostic interpretations.

Multiple Instance Learning. Dividing large images into small patches for making class
predictions is a common first step in accommodating gigapixel histopathology images.
Multiple instance learning (MIL) is a form of weakly supervised learning where training
instances are arranged in sets, called bags, and a label is provided for the entire bag. This
formulation is gaining interest histopathology domain [7, 8, 9] as it naturally fits various
problems and allows to leverage weakly labeled data. A more general MIL approach
that contains a full pipeline of processing – mosaicking, and classifying image data in
histopathology – is still missing in the literature, and subsequently in clinical utility.

Distributed, Collaborative, and Privacy-preserving Training. Tight rules gener-
ally govern data sharing in highly regulated industries such as healthcare. Institutions
in these disciplines are unable to openly aggregate and communicate their data, limiting
research and model development progress. More robust and accurate models would result
from sharing information between institutions while maintaining individual data privacy.
Federated learning is a learning technique that trains a model across multiple edge devices
without sharing the data. However, there is limited reach of federated learning algorithms
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for histopathology domain. A research in this area is still required to fill the gap in the
literature.

1.1.2 Motivations in Cancer Research

Diagnosis and Prognosis. Pathologists examine biopsy specimens to identify the pres-
ence of a tumor and to characterize multiple features in order to assess tumor aggressive-
ness. Improving the accuracy of diagnostic interpretations can reduce over-treatment of
benign lesions and under-treatment of malignant ones. The visual assessment by pathol-
ogist is a complex task that involves years of experiences, and sub-speciality expertise.
Machine learning can make these assessments more repeatable and objective through im-
age search. Searching for evidently diagnosed cases similar to a given new case can provide
insights to a pathologist into factors driving tumor progression.

Interpretation. Visualizing features and locating regions of tumor that most contributes
to a prediction can create a teaching mechanism for pathologists. Furthermore, it helps
in validating the decision making of a learning algorithm through a human expert. Al-
though for this dissertation, the focus is on H&E-stained histology datasets, the techniques
described in this work are not specific to this type of image modality.

1.2 Thesis Objectives and Contributions

The central objective of the thesis is to develop a learning framework for extracting com-
pact and discriminative representations of whole-slide images in digital pathology. These
representations can be used to develop specialized tools, such as image search for assisting
clinicians in histo-diagnosis. The experiments are designed to quantify the quality of the
representations in their abilities to search histopathology slides to fetch a slide with the
correct primary diagnosis in a large archive. To some extent, this thesis contributes to the
ambitious and long-term goal of biomedical community to integrate machine learning as
assisting technologies for diagnosis.

The three significant contributions of the thesis are as follows:

1. Yottixel, a framework for learning compact and discriminative representations of
whole-slide images (WSIs). The major novelty of Yottixel is the way it internally
represents WSIs. Each WSI is converted to a set of representative patches (mosaic)
that are then converted to “barcodes” for the compact and efficient retrieval and
storage. The details are discusses in Chapter 3.
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2. Three novel MIL methods to train Yottixel’s backbone deep network to extract more
discriminative features. The proposed MIL methods are based on weak supervision
on the existing WSI labels (such as anatomic sites and primary diagnoses). MIL
facilitates the training of deep models in the histopathology domain, since most of
the time regional- or pixel- level annotations are not available, expensive, or time-
consuming to obtain. The three proposed approaches are discussed in Chapter 4,
Chapter 5, Chapter 6 respectively.

3. ProxyFL, a proxy-based federated learning framework that enables distributed train-
ing of Yottixel across multiple institutions while protecting patient privacy. The
distributed and private training can facilitate deep learning research in healthcare,
especially histopathology since it can accelerate model training, imrpove model’s
performance without compromising regulations and privacy. A popular approach for
federated learning called FedAvg is discussed in Chapter 7. The ProxyFL is discussed
in Chapter 8.

1.3 Thesis Organization

The thesis is organized in nine Chapters and is structured as follows:

1. Chapter 2 introduces the necessary definitions, concepts, related work including vari-
ous current approaches for applications of machine learning in histopathology, multi-
instance learning, and federated/distributed machine learning.

2. Chapter 3 presents the proposed framework for representing and searching a histopathol-
ogy image — Yottixel.

3. Chapter 4, Chapter 5, Chapter 6 presents different weakly-supervised (multi-instance
learning) methods to enhance the discriminative capabilities of Yottixel for cancer
subtyping.

4. Chapter 7 and Chapter 8 present two federated learning methods for training Yottixel
distributively among multiple hospitals without explicitly sharing the private (local)
data.

5. A general conclusion is presented in Chapter 9.
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Chapter 2

Background and Related Work

As noted in Chapter 1, the main contribution of this dissertation is the design and devel-
opment of a representation learning framework for histopathology images, called Yottixel.
The PhD research is conducted in three stages—(i) laying the foundation of Yottixel, (ii)
enhancing Yottixel with weak-supervision through multi-instance learning, and (iii) adding
distributed learning capabilities to Yottixel through federated learning. This chapter cov-
ers the literature review of topics associated with understanding of Yottixel framework.
These topics are fundamentals of digital pathology, whole-slide images (WSIs), current
state of machine learning in histopathology (applications and challenges), some common
computation tools/libraries and open datasets used by researchers in the field of computa-
tional histopathology. Further, the multi-instance learning is described and its applications
in histopathology domain. After that, the federated learning and differential privacy are
explained with their recent applications in digital histopathology.

2.1 Digital Pathology

Digital pathology refers to digitization of traditional pathology routines. In this context,
an equivalent of light microscope is digital scanner, and for a tissue-containing glass slide
(biopsy sample) is a whole-slide image (WSI). A WSI is a digitized and self-contained
version of a glass slide (processed specimen in the laboratory) that can be viewed through
a specialized software system. The WSIs have been long recognized as a research and
education tool [10, 11] since its introduction in the early 1980s. However, only very recently
(after almost 35 years), the healthcare industry has indicated an increased levels of interest
in the total or partial adoption of WSIs for diagnostic purposes [12], attributed to recent
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advancements in image acquisition and user-interface technologies [13, 14], ans most likely
due to the effects of the COVID-19 pandemic (CITE).

2.1.1 WSI File and Format

The WSIs are often much larger than other typical modalities of medical images [10].
Generally speaking, resolution of the base layer of a WSI is more than 50, 000 × 50, 0000
pixels. Even with proprietary encryption and compression, an average size of a WSI file
is ≈ 1–4 GB. Unlike a conventional digital image file, which usually contains a single
static view, a WSI is composed of multiple layers of image-data arranged in a pyramid
structure [11, 15], as shown below. The bottom layer has the highest resolution whereas

Figure 2.1: A pyramid like arrangement of image data in a WSI file.

the top layer is usually a thumbnail of ordinary sized image (e.g., several hundred pixels
in each dimension). The magnification of 20× is the most commonly used as the base
layer [16, 17], with about 4 levels of reduction going up in the pyramid. Generally, each WSI
file contains various properties that are encoded in its headers, including the information
about the physical resolution covered per pixel known as MPP or (microns µ per pixel).
The 20× magnification is usually around 0.5 MPP, however it may be specified by the
scanner’s vendor. The magnification levels of 40×, 60×, and even 80× are available [18]
but the real-world usage of such high level of magnification is sporadic [17].
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2.2 Machine Learning for Digital Pathology

The rapid adoption of digital pathology has resulted in accumulation of large number of
WSIs. Many attempts have been made to analyze WSIs using digital image analysis based
on machine learning (ML) algorithms to assist with various tasks including diagnosis [19,
20, 21, 22]. Researchers in both image analysis and pathology fields recognize and promote
the importance of computer-driven analysis of pathology images [22]. Digital pathological
image analysis often uses general image recognition technology (e.g., facial recognition)
as a baseline [19]. However, since WSIs have unique properties, customized processing
techniques need to be designed.

ML techniques for digital pathology are divided into supervised learning, and unsuper-
vised learning. The goal of supervised learning is to infer a function that can map the
input images to their appropriate labels. The input for such methods could be either an
entire WSI or a regional WSI patch. The tasks related to supervised learning in digital
pathology can involve identifying the type of cancer, Gleason grading of a tumor, mortality
prediction, segmentation of areas of interest (e.g., tumor), and many others. On the other
hand, the goal of unsupervised learning, such as, clustering, image-based search, and di-
mensionality reduction, is to infer hidden structures and relationships from the unlabeled
data. Due to abundance of unlabeled data in histopathology, unsupervised learning may
be a natural choice in many clinical and research applications.

There are various challenges concerning WSIs processing through existing ML tech-
niques. However, ML offers many opportunities to improve objectivity and accuracy of
diagnostic interpretations in histopathology. These challenges and opportunities are dis-
cussed in the following subsection.

2.2.1 Challenges

Large dimensionality. WSIs are gigapixel digital images of extremely large dimensions.
Image sizes larger than 50,000 × 50,000 pixels are quite common in digital pathology.
However, AI models (e.g., deep networks) trained to classify natural images of animals,
objects and buildings, use much smaller sized images such as 250×250 pixels as an input.
Directly feeding WSIs to these AI models can easily exhaust resources of even the most
powerful GPU clusters1. Therefore, WSIs are commonly divided into smaller image regions
known as “patches” [19, 23]. Each patch is analyzed independently, and aggregated to-
gether into the final prediction. Different schemes could be used for aggregating the result,

1https://www.nvidia.com/en-us/geforce/graphics-cards/compare/
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sophisticated schemes such as Multi Instance Learning (MIL), or much simpler paradigms
such as majority voting.

Patching is a potential solution for not just AI models but also for general computer
vision methods. However, even for patches, one may need to downsample them in order
to be able to feed them into a deep network. A region smaller than 1.5 µm2 may not be
suitable for many diagnostic purposes [23], most of the time, at least 1000 × 1000 pixels
at 20× resolution is required to inspect minute visual clues. Downsampling these patches
may result in loss of crucial information. On the other hand, deep nets with larger input
sizes would need higher computational resources for their training and inference.

Multi magnification nature of histopathological images. Tissues are usually com-
posed of cells with distinct features [19]. Information regarding cell shape is captured at
higher magnification levels, whereas structural information is composed of multiple cells,
captured at lower magnification levels (see Figure 2.2) [24]. A pathologist diagnoses a
disease by investigating a tissue sample at various magnification levels to see both cellular
and structural (e.g., glandular) patterns. Strictly from a computer vision perspective, the
manifestations of visual patterns at different magnification levels are very distinct. The
image analysis for histopatholoigcal images can be improved by incorporating information
at multiple resolutions. This, however, would add to the complexity of building image anal-
ysis tools. Recent studies propose reinforcement-learning agents to automatically identify
the best magnification level for the given ML task [25]. The advantage of incorporating
different magnification levels is a new research topic, and is dependent on types of diseases
and tissues, and machine learning algorithms [24].

Figure 2.2: Illustration of patches from different magnification levels exhibit different visual
patterns. All patches are centered around the same coordinates (images re-scaled for
convenient visualization).

Lack of labeled data. Deep learning is highly successful when it is avail of large quantity
of labeled training images, but is often impeded when the data set is small. Unlike natural
images, crowd-sourced labeling of pathology images is usually not an option, as it requires
experts (i.e., pathologists) to manually delineate the region of interest (i.e., anomalies
or malignancies). Beside the time constraint, manual annotations often pose a financial
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bottleneck to a research organization. Even for the labeled datasets, majority of the time
labels are usually available at WSI or case-level, whereas the requirement of labels for
training a deep network is generally at patch-level. There two areas of machine learning
that can be applied to alleviate these problem. Firstly, few-shot learning can be used to
organize the training of a deep network with fewer samples. A few shot-learning framework
often employs some domain-related prior knowledge on a learning agent, thereby enabling
it to learn quicker with few samples [26]. For digital pathology, such prior knowledge could
include rotation invariance (rotating a WSI should result in the same label), and staining
invariance [27, 28]. Secondly, multi-instance learning can help in managing the problem of
the labels associated with WSI or case-level instead of the patch level. The multi-instance
learning enables the training with a bag of instances, instead of a single instance [29].

Lack of diversified dataset. The actual number of patterns derived from different can-
cers and malignancies from a visual perspective is nearly infinite [23]. A single (sub)type of
cancer can manisfest itself in various specific patterns. This extreme polymorphism makes
recognizing malignancy by image algorithms exceptionally challenging [23, 30]. Apart from
the variability from the tissue morphology perspective, even slide preparation site, among
other things, may cause significant variations. The sources of variation in WSIs include
different manufacturers of staining reagents, thickness of tissue sections, and scanner cali-
brations [19]. Learning without considerations of these variations can seriously affect the
performance of ML algorithms. Because of this variability, medical data must be inte-
grated across numerous organizations to increase the generalization of deep models. On
the other hand, medical data centralization involves regulatory constraints as well as work-
flow and technical challenges, such as managing and distributing the data. Because each
histopathology image is often a gigapixel file, the latter is very important in digital pathol-
ogy. There are a few diverse and large scale datasets, a fact that limits research and model
development progress. Federated learning is a distributed learning approach that allows
multi-institutional collaborations on decentralized data while protecting the data privacy
rules of each collaborator. Federated learning can enable histopathology labs to aggregate
and communicate their data resulting in robust and accurate models while maintaining
patient privacy.

2.2.2 Opportunities

Computer-assisted Diagnosis (CAD). CAD is an actively researched area in image
analysis for digital pathology. It involves assisting the physicians by automating some of
the basic tasks performed by a pathologist. CAD is a form of supervised learning, i.e.,
mapping WSIs to some label, such as recognizing a cancer subtype, classifying a tissue
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Figure 2.3: The general overview of CBIR systems for digital pathology. The selected
region for search could be the entire WSI as well.

sample as either begin or malignant, or estimating tumor grade. CAD may also lead to
the reduce variability in interpretations and prevent overlooking by investigating all pixels
within WSIs [19]. It may facilitate some of the “boringly” repeated and mundane tasks
performed by a pathologist thereby reducing human errors. Various diagnosis-related tasks
reported in literature include detection or segmentation of region of interest (ROI) such
as tumor region in a WSI [31], cancer staging [32], tissue segmentation [33], and nuclei
density estimation [34].

Content-based image retrieval (CBIR) for WSIs. In CBIR systems a search tool
takes an image as an input and returns similar images (shown in Figure 2.3) by macthing
it against other images in an indexed archive. Whilst CBIR systems of medical images
have been well researched [35, 36], only with the emergence of digital pathology and deep
learning has research begun to focus on image search and analysis in histopathology [37].
However, there are two major drawbacks of CBIR systems that limit their integration
into digital pathology. Firstly, most conventional CBIR proposals use basic image features
that capture low-level characteristics of an image such as color, edges, textures, or shapes.
This approach generally fails to capture high-level patterns corresponding to the semantic
content of histopathology images. Secondly, WSIs are gigapixel digital images. However,
most proposed CBIR technologies are designed for much smaller image dimensions (i.e.,
smaller than 300 × 300 pixels). In addition to the large dimensions, pathology images
exhibit an intractable level of variability in visual features that makes their identification,
compared with that of natural images, even more challenging.
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The majority of recent studies in computational pathology have reported the success
of supervised AI algorithms for classification and segmentation [38, 31]. This overrep-
resentation compared to other AI algorithms is related to the ease of design and in-lab
validation to generate highly accurate results. However, compared to other methods of
computer-vision algorithms, CBIR offers a new approach to computational pathology. To
facilitate image search, CBIR algorithms essentially describe the content of an image with
non-textual attributes, generally with a vector of real numbers known as a feature vector.
An AI agent could be trained to transform an image into a feature vector as its repre-
sentation. This learning process is known as representation learning. If a feature vector
encompasses the descriptive visual properties of an image, then searching for similar im-
ages becomes a nearest-neighbour matching problem. Images with similar content could
be retrieved based on a comparison of their feature vectors and not based on direct pixel
comparison, or indirectly through associated textual metadata. This is generally possible
if a feature vector encodes the semantic structures of an image invariant to scale, rotation,
translation, and even to some degree, to deformation [39]. Such rich and descriptive fea-
tures can numerically represent images for the purpose of identification, which is the core
task of any CBIR system.

In literature, there are two main points of view for processing whole-slide images [40].
First one is called sub-setting methods which considers a small section of large pathology
image as essential part such that processing of small subset substantially reduces process-
ing time. Secondly, a tiling approach that breaks images into smaller and controllable
patches and tries to process them against each other [41] which naturally requires more
care in design and is more expensive in execution. However, tiling approach is a distinct
approach toward full automation. The majority of research works in literature prefers the
sub-setting method because of its advantage of speed and accuracy. However, it needs
expert knowledge and intervention to extract proper subsets. Mehta et al. [42] proposed
an offline CBIR system which utilizes sub-images rather than entire digital slide. Using
scale-invariant feature transform (SIFT) [43] to search for similar structures by indexing
each sub-image, experimental results suggested, when compared to manual search, 80%
accuracy for the top-5 results retrieved from the database that holds 50 IHC (immuno-
histochemistry) stained pathology images, consisting of 8 resolution levels. Akakin and
Gurcan [44] developed a multi-tiered CBIR system based on WSI, which is capable of clas-
sifying and retrieving digital slides using both multi-image query and images at slide-level.
Authors test proposed system on 1, 666 whole-slide images extracted from 57 follicular
lymphoma (FL) tissue slides containing three subtypes and 44 neuroblastoma (NB) tissue
slides comprised of 4 sub-types. Experimental results suggested 93% and 86% average clas-
sification accuracy for FL and NB diseases, respectively. More recently, Zhang et al. [45]
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developed an scalable CBIR method to cope with WSIs by using supervised kernel hashing
technique which compresses a 10,000-dimensional feature vector into only ten binary bits,
which is observed to preserve the concise representation of the image. These short binary
codes are then used to index all existing images for quick retrieval for of new query images.
The proposed framework is validated on breast histopathology data set comprised of 3,121
WSIs from 116 patients; experiments report accuracy levels of 88.1% for processing at a
speed of 10ms for all 800 testing images.

2.2.3 Common Tools and Datasets

Common Tools. The OpenSlide library offers a vendor-agnostic API for reading WSI
files [46]. QuPath is a powerful and extensible tool for viewing and analyzing WSIs [47].
The Openseadragon1 library provides an API to create custom GUI components for in-
teracting and displaying WSIs. Apart from that, standard data science, deep learning,
and imaging libraries stack for Python or any other computer language can be utilized for
building image analysis algorithms for WSIs.

Benchmark Datasets. Some public datasets used as benchmarks for testing ML
techniques are reported in Table 2.1. These datatsets are especially useful for testing
newer ML techniques where researchers may not be necessarily interested in developing
the entire processing pipeline for WSI analysis.

Dataset Name Image Size # Images Staining ML Application

KIMIA960 [48] 308×168 960 H&E, IHC Classification
BreakHis [49] 700×460 7909 H&E Classification
PCAM [27] 96×96 327,680 H&E Classification
BreastPathQ [50] - 2579 H&E Regression, Segmentation, MIL

Table 2.1: Various different datasets used as benchmark for testing ML techniques.

Public WSI Archives. Some public archives of WSIs along with their case- and
WSI-level metadata are reported in Table 2.2. The WSIs in the real clinical settings are
stored in the same way as these public archives, enabling ML researchers to validate their
algorithms in an environment similar to the real-world. However, these archives are difficult
to work with for validating new ML ideas. Processing an entire WSI requires developing
the complete pipeline of preprocessing, patching, and more.

1https://openseadragon.github.io/
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Dataset Name # WSI Staining Disease ML Applications

TCGA [51] ≈ 30,000 H&E Normal/Cancer Classification
GTEx [52] 25,380 H&E Normal -
TUPAC16 [53] 821 H&E Breast Cancer Classification
Camelyon17 [54] 1000 H&E Breast cancer Segmentation
KIMIA Path24 [55] 24 H&E/IHC Various Classification, Search

Table 2.2: Public archives of histopathology WSIs.

2.3 Multi-Instance Learning

In a typical supervised machine learning problem, every input instance is assigned to a
label. However, in many real-life applications a label might be associated with a set of
instances (called a bag). In such scenarios, a learning agent must observe all instances
in a set at once to learn its associated label. This type of learning is known as multiple
instance learning (MIL) or, learning from weakly annotated data. Whereas MIL has many
applications in medical imaging [56, 57], there is a growing interest for the usage of MIL
for histopathological image analysis [7, 58, 59]. This growing interest is mainly due to the
limitations of the regional or pixel-level WSI annotations. The majority of the available
WSI datasets have labels associated with either each patient (having multiple WSIs), or
with each WSI itself. For computational tractability, a WSI is usually dismantled into
multiple patches before processed by any ML technique. All these patches together are
assigned the same label, thus making MIL as natural candidate for image analysis of WSIs.

Problem formulation. In case of a MIL problem, instead of a single instance, there is
a bag containing multiple instances, X = {x1, x2, . . . , xK}, e.g., a set of patches in a WSI.
The instances in a bag are assumed to be “orderless”, i.e., arranging instances in a different
order should not affect the outcome of a learning technique. Furthermore, the number of
instances in each bag K could be different. Given this information, there are many different
tasks to be solved through MIL. For instance in binary classification, a single binary label
Y is associated with a bag X (WSI is “benign” or “malignant”). In this case, even if a
single instance in a bag is “1” then the whole bag is labeled as “1” (i.e., even if a single
patch is malignant then the entire WSI is malignant, otherwise benign). Now, assume that
there are labels associated with each instance yk ∈ [0, 1] for k = 1, . . . , K, even though
the instance-level labels remain unknown during the training process. We can re-write the
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MIL problem as follows,

Y =

{
0, iff

∑
k yk = 1

1, otherwise.

In order to train a MIL model for the binary classification, the idea is to use a weak classifier
hθ (weak because it does not make the final prediction) to classify each instance y

′

k = hθ(xk),
then the final prediction is computed by taking the maximum over all predictions, i.e.,

Y
′

= max
k
{y′

k} = max
k
{hθ(xk)}, (2.1)

to minimize the discrepancy between Y
′

and Y by perturbing the parameters θ of the
weak classifier hθ. The variable hθ can be a neural network, or any trainable technique.
To optimize the loss (2.1), a pressing caveat for gradient-based method is the vanishing
gradients in very deep networks due to the maximum operator. However, it can be solved
by using a “soft” approximation of maximum, such as softmax.

Now, a question arises: How can the MIL problem stated above be formulated for multi-
class labels, or for the representation learning of WSIs? Simply based on the intuition,
similar to the binary classification, the weak classifier hθ can be replaced with a feature
extractor (e.g., a deep network), and max could be replaced with some permutation-
invariant pooling operation. In fact, Zaheer et al. mathematically verified this intuition [60]
by stating the following theorem:

Theorem 1. A function f(x) operating on a set X = {x1,. . . ,xK} having elements from
a countable universe, is a valid set function, i.e., invariant to the permutation of instances
in X, if it can be decomposed to

f(x) = ρ

(∑
x∈X

ϕ(x)

)
, (2.2)

for any suitable transformations ϕ and ρ.

This theorem provides a general strategy to approximate any arbitrary set function f(x)
by decomposing it to (2.2).

Exchangeability. The exchangeability is an important topic from statistics that is
directly applicable in MIL. A sequence of random variables X = x1, . . . , xK , i.e. a bag
in MIL, is exchangeable if the joint probability of the distribution does not change on
permutation of indices 1, 2, . . . , K. Mathematically, if

P (x1, . . . , xn) = P (xπ(1), . . . , xπ(K))
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for a permutation function π, then the sequence X = x1, . . . , xK is exchangeable. Sim-
ilarly, a machine learning model (e.g., a deep network) is said to be exchangeable model
if the output of the model is invariant to the permutation of its inputs. Exchangeable
models can be of two types depending on the application, (i) permutation invariant, and
(ii) permutation equivariant.

A model represented by a function f : X → Y where X is a set, is said to be permutation
equivariant if permutation of input instances permutes the output labels with the same
permutation π. Mathematically, a permutation-equivariant model is represented as

f(xπ(1), xπ(2), . . . , xπ(n)) = [fπ(1), fπ(2), . . . , fπ(n)].

Similarly, a function is permutation-invariant if permutation of input instances does not
change the output of the model. Mathematically,

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n))

Exchangeability and MIL. With all the discussion so far, it can be inferred that an MIL
problem is a special case of exchangeability that involves training a permutation-invariant
exchangeable model. The Equation 2.2 from Theorem 1 can be used to develop a general
strategy for training such models, as follows:

1. Apply the transformation ϕ on all instances of a bag.

2. Aggregate the transformed instances using a permutation-invariant pooling operation
(e.g., sum), and

3. Apply the final transformation ρ on the combined instances transformed by ϕ. These
two transformations, ϕ and ρ, can be deep neural networks, thereby enabling the
end-to-end training of an MIL task.

MIL for histopathological image analysis. MIL is particularly useful for digital
pathology. The ground-truth labeling is expensive whereas labels are generally available
at WSI or case level as opposed to regional or pixel level (required by conventional tech-
niques). As a standard diagnostic protocol, a pathologist analyzes a given case and renders
a pathology report. A case often contains several tissue specimens (WSIs) from a single
patient. Therefore data produced from regular clinical practices, without any extra effort is
well suited in MIL framework. On average, a small-sized pathology laboratory processes ≈
60,000 cases per year [61], producing a vast amount of data, presenting an opportunity for
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MIL methods to exploit the fine-grained information with minimum efforts from human-
supervised annotations. Dismantling a WSI into smaller patches is a common practice
for processing it. These patches can be grouped as a bag for an MIL approach. Isle et
al. [58] used attention-based pooling with MIL to infer patches of higher importance, for
a disease classification task. It is interesting to note, the weak supervision of class labels
at the bag-level allowed their model to comprehend the “importance” of patches (instance
level). This opens many possibilities, a large amount of partially labeled training data
(already available), a MIL method can deduce instance-level attributes from a bag-level
supervision. This has potentials to discover hidden patterns of clinical importance [19].
Sudarshan et al. used MIL for histopathological breast cancer image classification [7]. A
permutation-invariant operator for MIL was introduced by Tomczak et al. and successfully
applied to digital pathology images [8].

2.4 Distributed and Private Machine Learning

2.4.1 Federated Learning (FL)

In contrast to conventional learning algorithms, federated learning (FL) algorithms learn
from decentralized data distributed across various client devices. In most examples of FL,
there is a centralized server which facilitates training a shared model and addresses critical
issues such as data privacy, security, access rights, and heterogeneity [62]. In FL, every
client locally trains a copy of the centralized model, represented by the model weights ω,
and reports its updates back to the server for aggregation across clients, without disclosing
local private data. Mathematically, FL can be formulated as

min
ω∈Rd

f(ω) with f(ω) =
1

n

n∑
i=1

fi(ω), (2.3)

where f(ω) represents the total loss function over n clients, and fi(ω) is the loss function
with respect to client i’s local data. The objective is to find weights ω that minimize the
overall loss. McMahan et al. [62] introduced federated averaging, or FedAvg (Algorithm
??), in which each client receives the current model ωt from the server, and computes
∇fi(ωt), the average gradient of the loss function over its local data. The gradients are used
to update each client’s model weights using stochastic gradient descent (SGD) as ωi

t+1 ←
ωt − η∇fi(ωt) using the learning rate η. Next, the central server receives the updated
weights ωi

t+1 from all participating clients and averages them to update the central model,
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ωt+1←
∑n

i=1
ni

n
ωi
t+1, where ni is the number of data points used by client i. To reduce the

communication costs, several local steps of SGD can be taken before communication and
aggregation, however, this affects the convergence properties of FedAvg [63].

Other methods for FL have also been proposed. Yurochkin et al. [64] proposed a
Bayesian framework for FL. Claici et al. [65] used KL divergence to fuse different models.
Much work has also been done to improve the robustness of FL algorithms. Pillutla et al.
[66] proposed a robust and secure aggregation oracle based on the geometric median using
a constant number of calls to a regular non-robust secure average oracle. Andrychow-
icz et al. [67] proposed a meta-learning approach to coordinate the learning process in
client/server distributed systems by using a recurrent neural network in the central server
to learn how to optimally aggregate the gradients from the client models. Li et al. [68]
proposed a new framework for robust FL where the central server learns to detect and
remove malicious updates using a spectral anomaly detection model, leading to targeted
defense. Most of the algorithms cannot be directly compared or benchmarked as they
address different problems in FL such as heterogeneity, privacy, or adversarial robustness.
FedAvg is most commonly used because of it’s scalability to large datasets and comparable
performance to other FL algorithms.

Federated learning (FL) in histopathology. FL is especially important for histopathol-
ogy as it facilitates collaboration among institutions without sharing private patient data.
Histopathology images are too large for centralized machine learning algorithms, dis-
tributed machine learning are more effective as they can share the processing cost among
multiple nodes. One prominent challenge when applying FL to medical images, and specif-
ically histopathology, is the problem of domain adaptation. Since hospitals have diverse
imaging methods and devices, images from a group of hospitals will be markedly differ-
ent, and machine learning methods risk overfitting to non-semantic differences between
them. Models trained using FL can suffer from serious performance drops when applied to
images from previously unseen hospitals [69]. Several recent works have explored applica-
tions of FL in histopathology, and grapple with this problem. Lu et al. [70] demonstrated
the feasibility and effectiveness of FL for a large-scale computational pathology studies.
FedDG proposed by Liu et al. [71] is a privacy-preserving solution to learn a generaliz-
able FL model through an effective continuous frequency space interpolation mechanism
across clients. Sharing frequency domain information enables the separation of semantic
information from noise in the original images. Li et al. [72] address the problem of domain
adaptation with a physics-driven generative approach to disentangle the information about
model and geometry from the imaging sensor.
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2.4.2 Differential Privacy

While FL attempts to protect privacy by keeping private data on client devices, it does
not provide a quantitative privacy guarantee. Updated model parameters are still sent
from the clients to a centralized server, and these can contain private information [73],
such that even individual data points can be reconstructed [74]. Differential privacy is
a formal framework for quantifying the privacy that a protocol provides [75]. The core
idea of DP is that privacy should be viewed as a resource, something that is used up as
information is extracted from a dataset. The goal of private data analysis is to extract
as much useful information as possible while consuming the least private content. To
formalize this concept, consider a database D, which is simply a set of datapoints, and a
probabilistic function M acting on databases, called a mechanism. The mechanism is said
to be (ϵ, δ)-differentially private if for all subsets of possible outputs S ⊆ Range(M), and
for all pairs of databases D and D′ that differ by one element,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ. (2.4)

When both ϵ and δ are small positive numbers, Equation 2.4 implies that the outcomes of
M will be almost unchanged in distribution if one data point is changed in the database.
In other words, adding one patient’s data to a differentially private study will, with high
probability, not affect the outcomes.

The advantage of DP is that it is quantitative. It yields a numerical guarantee on
the amount of privacy that can be expected, in the stochastic sense, where lower ϵ and δ
implies that the mechanism preserves more privacy. The framework also satisfies several
useful properties. When multiple DP-mechanisms are composed, the total operation is also
a DP-mechanism with well defined ϵ and δ[76]. Also, once the results of a DP-mechanism
are known, no amount of post-processing can change the (ϵ, δ) guarantee [77]. Hence,
while FL alone does not guarantee privacy, we can apply FL in conjunction with DP to
give rigorous bounds on the level of privacy afforded to clients and patients who participate
in the collaboration.

The simplest way to create a DP-mechanism is by adding Gaussian noise to the out-
comes of a deterministic function with bounded sensitivity [78]. This method can be used
in the context of training a machine learning model by clipping the norm of gradients to
bound them, then adding noise, a process called differentially private stochastic gradient
descent (DP-SGD) [79]. McMahan et al. [80] applied this at scale to FL.

Differential privacy for medical image analysis. Past works have noted the potential
solution DP provides for machine learning in the healthcare domain. Kaissis et al. [81]
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surveyed privacy-preservation techniques to be used in conjunction with machine learning,
which were then implemented for classifying chest X-rays and segmenting CT scans [82, 83].
In histopathology, Lu et al. [70] reported DP guarantees for a neural network classifier
trained with FL, following Li et al. [84]. Their treatment involved adding Gaussian noise to
trained model weights. However, neural networks weights do not have bounded sensitivity
making their differential privacy guarantee vacuous. A meaningful guarantee would require
clipping the model weights before adding noise, thereby restricting the sensitivity. The
more standard approach of DP-SGD, which clips gradient updates and adds noise, for use
in federated learning.

2.5 Summary

This chapter introduced the necessary definitions and concepts that readers should famil-
iarized themselves for understanding the content presented in later chapters. The next
chapter goes into details of Yottixel framework, that lays the foundation for representing
histopathology images through a mosaic (a set of patches). The Yottixel is validated on
the largest public archive of whole-slide images.
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Part I

Yottixel - A Framework for
Representing Histopathology Images

Yottixel is the proposed framework for creating compact and discriminative representations
of gigapixel whole-slide images. This is the first stage of the PhD research that lays the
foundation of a framework for processing the gigapixel histopathology images through
deep learning. Yottixel is validated on a content-based image retrieval task using one of
the largest public archive of whole-slide images—The Cancer Genomic Atlas (TCGA). The
results are encouraging and establish the baselines for methods developed later during the
PhD research.
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Chapter 3

Yottixel

3.1 Prologue

The content of this chapter is based on two articles published during the Ph.D. research:

A. S. Kalra, et al. Yottixel–an image search engine for large archives of histopathology
whole slide images. Medical Image Analysis 65 (2020)

B. S. Kalra, et al. Pan-cancer diagnostic consensus through searching archival histopathol-
ogy images using artificial intelligence. NPJ digital medicine 3.1 (2020).

This chapter discusses the details of a framework, called Yottixel, to extract compact
and discriminative representations of histopathology images. The validation study (Paper
B) of Yottixel has been accepted in Nature’s Partnered Journal, npj Digital Medicine and
has received considerable attention (cited 44 times as of March 16, 2022). The experiments,
and data collected for the Yottixel project have laid down a solid foundation to validate
other methods discussed in this dissertation.

3.2 Introduction

Yottixel is a portmanteau for one yotta pixel alluding to the big-data nature of pathol-
ogy images. It is a framework to extract compact and discriminative representations of
gigapixel histopathology images. The underlying technology behind Yottixel consists of a
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series of machine learning algorithms including clustering techniques, deep networks, and
gradient barcoding. The Yottixel represents a whole-slide image (WSI) by extracting the
set of representative patches called mosaic. The patches of mosaic are then converted into
a set of barcodes, a process that is both storage-friendly and computationally efficient.
This set of barcode is called “bunch of barcode”(BoB) that forms the representation of the
WSI. For validating Yottixel, WSIs from The Cancer Genome Atlas (TCGA) [51] reposi-
tory provided by the National Cancer Institute (NCI)/National Institutes of Health (NIH)
were used. Almost 30,000 WSI files of 25 primary anatomic sites and 32 cancer subtypes
were processed by dismantling these large slides into almost 20,000,000 image patches (also
called tiles) that were then individually indexed employing approximately 3,000,000 bar-
codes. The validation results proves the efficacy of Yottixel as a competitive image search
engine for digital pathology, achieving >90% accuracy for predicting the cancer sub-type
among some of the anatomical sites.

Design motivation. The Yottixel is designed while keeping few major observations in
mind. (i) Not many works have developed a representation learning and retrieval solutions
for entire high-resolution WSIs; the focus is generally on patch processing (for instance, [85,
86]). (ii) Much research has been dedicated to process labeled repositories where malignant
regions in WSI files have been delineated by trained pathologists (for instance, [87, 40]).
(iii) Many approaches index images with real-valued features, a requirement that would
be hard to meet in reality because of the storage and computational requirements [88, 89].
(iv) Some works use hashing for fast search to increase the feasibility of retrieval, but hash
codes may not easily facilitate data exchange among repositories (for instance, [90, 91]).
(v) Histopathology images contain several diversely shaped edges, intricate and irregular
structures, and high gradient changes that create an inconceivable complexity for most
computer vision algorithms [19, 23, 20].

3.3 Method

This section describes the design and implementation of Yottixel (Figure 3.1). This work
has two main practical contributions. First, we propose a method for representing an
entire WSI with a small set of patches, referred to as mosaic. The concept of mosaicking
is fundamental for the feasibility of processing such large images. Secondly, we construct
and test an end-to-end ensemble framework that indexes and retrieves WSIs based on their
content.

The distinguishing aspect of Yottixel is the utilization of barcodes for image represen-
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Figure 3.1: Overview of Yottixel’s indexing framework to generate the BoB index. Patch
selection generates the mosaic. Individual barcodes may be used for patch search. All
barcodes of any given scan can be used for searching WSI.

tation and characterization. A WSI is indexed by converting its associated mosaic to a
set of barcodes. This set of barcodes constitutes an index for the given WSI, referred to
as “bunch of barcodes” (BoB) index. The BoB index accelerates the retrieval process
and alleviates the computation and storage burden on the deployment infrastructure for
laboratories and clinics. Yottixel is a complete and functioning search engine for indexing
WSIs for CBIR systems with major emphasis on performance and scaling for laboratory
and hospital requirements.

Yottixel has two major phases of operation: (i) offline indexing and (ii) run-time search.
During the initial deployment of Yottixel, offline indexing consumes the maximum compu-
tation resources to index the available WSI files. Once a sufficient number of images are
indexed, the two phases are activated simultaneously. However, offline indexing is set to
run preemptively allowing runtime search to acquire higher precedence over the available
resources.

3.3.1 Offline Indexing Phase

The crux of a search engine platform for a large archive of medical images of high di-
mensionality is its indexing. The structure of the index determines the speed, reliability,
and robustness of search results. Yottixel indexes a WSI by (i) computing its mosaic (a
representative set of patches) and then (ii) converting the mosaic to a BoB index. The
design choices of the indexing algorithm are influenced by real-world scenarios in a mid-
size pathology laboratory or clinic, where hundreds of thousands of WSI files are generated
every year. However, the computing and storage infrastructure are generally not sufficient
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for hosting a sophisticated image search engine on-site. The first-time indexing of large
existing archives cannot be implemented in most hospitals and laboratories because of
the requirement of high storage and computational resources amid a sluggish transition to
digital pathology that requires an expensive IT infrastructure. This will be particularly
apposite if the indexing technology is not designed with efficiency in mind.

STEP 1: Computing the mosaic. Yottixel receives a set of WSIs queued for indexing.
For each queued WSI, a representative set of patches, or mosaic is computed. Employing
a mosaic considerably reduces the computation burden. Instead of operating over an
entire WSI, all the subsequent image processing operations are applied on the mosaic of
WSI. The algorithm for creating a mosaic is outlined in Algorithm 2 (in Appendix A),
Lines 8–26. Firstly, a WSI is segmented into KCH different regions based on their colour
(staining) composition by using the k-means algorithm. The variable KCH is a parameter
set based on visual inspection of different WSIs. We found that a typical WSI exhibits not
more than nine visually distinct regions. Segmenting these regions captures the pattern
variability from a computer-vision perspective but may not have relevance strictly from a
histopathology point-of-view (we do not look at epithelium versus connective tissue, for
instance). The colour-based segmentation is outlined in Algorithm 2(in Appendix A) from
Lines 10–20. However, colour-based segmentation frequently resulted in the separation of
different tissue types within a WSI, such as blood stains from muscles, fat, and in some
cases, even cancerous regions. In a second stage of segmentation, a small percentage of
patches are randomly selected by preserving the spatial diversity from the colour-segmented
regions. Again, we used the k-means algorithm for grouping the patches based on their
location (Appendix A, Algorithm 2, Lines 21–26). Currently, this small percentage is fixed
to 5% as suggested by empirical evidence. However, ideally it should vary depending on
the complexity and variations within a given slide. The primary reason for doing k-means
clustering second time is to sample the different patches from the same group by taking
patches from diverse locations. One may use the random sampling, however it may result in
inconsistent results. Since k-means algorithm converges to a solution quite fast, it is more
appropriate than random sampling when applied to both color and location. The patches
are collected from all segmented regions constituting the mosaic of the given WSI (??).
Patch clustering may be performed at a lower resolution (e.g., 5× magnification) because a
higher resolution does not offer any superiority for many tasks performed on histopathlogy
whole slide images ([92, 93, 94]). With these settings, a typical mosaic obtained is ≈20
times smaller than the specimen area depicted in the WSI.

STEP 2: Creating the BoB index. The patches in a mosaic are converted to a set
of barcodes. These barcodes constitute the index for a single WSI file. The algorithm for
creating the BoB index from a given WSI is provided in 2, lines 27–35. First, a patch is con-
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Figure 3.2: Visual depiction of the MinMax algorithm used to convert a feature vector into
a barcode for single patch in a mosaic.

verted to a feature vector using the last convolution layer of the DenseNet [95]. We applied
the Global Average Pooling (GAP) over the feature maps from the last convolution layer
to extract a feature vector of size 1024. The network used for the feature extraction was
pre-trained on natural images from ImageNet dataset [?]. Although pre-trained networks
have learned from natural images, they still offer robust image characterization properties
for histopathology images [96]. We decided to use DenseNet after visually inspecting the
search results using features from the last average pooling layer of the VGG19 [?], Incep-
tion [97], and in-house trained and fine-tuned solutions [55, 96]. DenseNet allows capturing
more compound/complex patterns and structures within histopathology patches. This is
useful for many problems. One of the examples is searching for glomeruli in Kidney scans.
The glomeruli form complex structures that cannot be interpreted from simple features
like cellularity/fat. After feature extraction, we used the discrete differentiation (see Fig-
ure 3.2) to convert the feature vector to a binary representation called “barcode” which is
light-weight and enables a fast Hamming distance search. For an average WSI file of size
≈700 MB, the BoB index can be as small as ≈10 KB, i.e., 70, 000 smaller than the original
file.

STEP 3: Binarization using MinMax algorithm. Although deep features can be
used directly to measure the similarity between images via distance metrics such as ℓ2,
computational efficiency is a serious issue, especially for searches in large databases across
all primary sites (i.e., exhaustively searching k-nearest neighbors). Therefore, we employed
a binarization method to convert these features into binary codes. Binary features allow
for fast real-time search. During a run-time query, high-dimensional features are extracted
from the query image and converted to barcodes. We used accelerated CPU commands to
calculate the Hamming distance for the nearest neighbors queries. It has been stated that
the MinMax algorithm for binarization is particularly useful for the retrieval and indexing
of histopathology scans in terms of both speed and storage [98].
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The algorithm summary. The algorithm is summarized in Appendix A, §A.1.

3.3.2 Runtime Search Phase

Once a sufficiently large index is created, Yottixel provides users with an interactive inter-
face to perform search queries on their WSIs. There are two modes of searching—vertical
and horizontal. In the vertical search mode, image matching in the archive is confined to
the same anomotical site as the query patch/WSI for all patients, whereas in the horizontal
search, the entire index is searched across all anatomies for all patients.

In summary, Yottixel assigns “a bunch of barcodes” to each WSI to index an entire
digital slide. The BoB indexing enables Yottixel to search a large archive of histopathology
images very efficiently. The index can be easily shared among institutions if necessary. The
similarity in two BoBs are calculated by computing the median of minimums of Hamming
distances of all pairwise barcodes between the query BoB and the another (see Algorithm 3
in Appendix A).

3.4 Dataset

The publicly available dataset of 30,072 WSIs from the TCGA project [51] (Genomic Data
Commons GDC) was used to conduct the validation study of Yottixel. The total size of
data is ≈16 TB in the compressed form; thereby requiring a massive computational and
storage capacity to operate any algorithm on it.

The WSIs are tagged with a primary diagnosis. The 952 WSIs were removed due to
the following reasons—poor staining, low resolution, lack of all magnification levels in the
WSI pyramid, large presence of out-of-focus regions, and/or presence of unreadable regions
within an image. Most WSIs had a magnification of 20× or 40×, some at lower magni-
fications. In total, the 29,120 number of WSIs were processed at 20× magnification for
this study. The dataset contains 25 anatomic sites with 32 cancer subtypes. Ten tumor
types (brain, endocrine, gastrointestinal tract, gynecological, hematopoietic, liver/pancre-
aticobiliary, melanocytic, prostate/testis, pulmonary, urinary tract) had more than one
primary diagnoses. From the 29,120 WSIs, 26,564 specimens were neoplasms, and 2,556
were non-neoplastic (containing only normal tissue). A total of 17,425 files comprised of
frozen section digital slides, and 11,579 files were of permanent hematoxylin and eosin
(H&E) sections. For the remaining 116 WSIs, the tissue section preparation was unspeci-
fied. We did not remove manual pen markings from the slides when present. The TCGA
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codes for all 32 cancer subtypes are provided in Table A.2 (Appendix A). The TCGA
dataset has a number of shortcomings [99]. Many of the cases are of frozen section in
which tissue morphology may be compromised by frozen artifacts. Available cases may
also reflect research bias in institutional biorepository collections. Furthermore, WSIs are
distribution across the primary diagnosis is imbalanced (common for real-world datasets).
In spite of the shortcomings, the TCGA is the largest public dataset that can support a
pan-cancer validation of AI solutions for digital pathology.

3.5 Results and Experiments

Three major series of experiments were conducted to validate the Yoittixel search engine.
These experiment series have been designed after consultation with pathologists and re-
viewing the existing literature.

Parameters. A set of parameters for indexing was set empirically. The number of color
clusters kCH was set to 9. The percentage of patches pM to build the mosaic was set to 5%.
Clustering was performed in mc

x = 5× whereas indexing was performed in midx
x = 20×.

The patch size at low magnification was sl = 250 pixels (equivalent to 2mm) and sh = 1000
pixels (equivalent to 500µm).

Experiment series. For the first two series of experiments, the “accuracy” of image
search was calculated through “leave-one-patient-out” samplings. Whereas the literature
of computer vision focuses on top-n accuracy (if any one of the n search results is correct,
then the search is considered be to be successful), however for this experiment majority-n
accuracy was calculated (only if the majority among n search results were correct, the
search was considered correct). Specifically, “correct” means that the tumor type (hori-
zontal search) or tumor subtype within a specific diagnostic category (vertical search) was
recognized correctly and matched by the majority of identified and retrieved cases. In order
to avoid falsification of results through anatomic duplicates, we excluded all WSIs of the
patient when one of the WSIs was the query. In the last series of experiments, a study was
developed to validate the quality of Yottixel search results directly by the experts (three
pathologists).
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3.5.1 Horizontal Search: Cancer Type Recognition

The first series of experiments undertaken for all anatomic sites was horizontal search. The
query WSI is compared against all other cases in the repository, regardless of anatomic
site categorization. Of course, the primary anatomic site is generally known, and, in
many cases, the cancer type may also be known to the pathologist. Thus, the purpose of
the horizontal search (which is for either organ or cancer type recognition) is principally
a fundamental algorithmic validation that may also have applications like searching for
origin of malignancy in case of metastatic cancer. The results of the horizontal search
are depicted in Figure 3.3. All experiments were conducted via “leave-one-patient-out”
validation.

Observations. Provided there are sufficient number of patients, we observed that the
more we retrieve the more likely it was to achieve the right diagnosis. General top-n
accuracy that is common in the computer vision literature show high values but may not be
suitable in the medical domain as it considers the search to be a success if at least one of the
search results has the same cancer type as the query image. The majority vote among top n
search results appears to be much more conservative and perhaps more appropriate. With
some exceptions, a general trend is observable that the more images/patients are available
the higher the search- based consensus accuracy. The number of cases positively correlated
with the majority vote accuracy for both frozen sections and permanent diagnostic slides.

3.5.2 Vertical Search: Correctly Subtyping Cancer

In the second series of experiments, we performed vertical search. Given the primary site of
the query slide we confined the search only to WSIs from that organ. Hence, the goal of the
vertical search was to recognize the cancer subtype. For this purpose, only those primary
anatomic sites in the dataset with at least two possible subtypes were selected. Sample
retrievals are illustrated in Figure A.5. The results for “leave-one-patient-out” validation
are depicted in Figure 3.4 and Figure 3.5.
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Figure 3.3: Horizontal search for frozen sections (top) and permanent diagnostic slides
(bottom).
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Figure 3.4: Vertical search in frozen sections slides from anatomic sites with at least two
cancer subtypes.

Observations. For both frozen sections and permanent diagnostic slides we continue to see
a general trend whereby “the more patients the better”. With majority-vote accuracy values
reaching above 90% in many cases for both frozen and diagnostic slides shows that a search-
based computational consensus appear to be possible when a large number of evidently
diagnosed patients are available. In most cases, it appeared that taking the majority of the
top-7 search results provided the highest accuracy in most cases. However, the accuracy
dropped drastically for subtypes with a small number of patients as we retrieved more and
more images beyond 6 slides as the majority in such cases were taken from incorrect cases
(we do not filter any result; no threshold is used; hence, all search results are considered
as valid results). Based on all observations, it seems that there is a direct relationship
between the number of diagnosed WSIs in the dataset and achievable consensus accuracy.
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Figure 3.5: Vertical search in permanent diagnostic slides from anatomic sites with at least
two cancer subtypes.

For vertical search we calculated positive correlations of 0.5456 for frozen sections and
0.5974 for permanent diagnostic slides. This trend was more pronounced for horizontal
search with positive correlation of 0.7780 for frozen sections slides and 0.7201 for permanent
diagnostic slides.

3.5.3 Testing by Pathologists

We measured the effectiveness of search and retrieval through feedbacks of pathologists,
evaluating how well the search results align with the subjective perception of its end-
users. The Yottixel search results were evaluated by three pathologists and 4 non-experts
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Figure 3.6: Response frequency for each option among the top three search results. There
are more selections of Poor and Very poor for Q3 compared with Q1 and Q2.

(see Figure 3.6, Table A.1 in Appendix A). We created a web application to gather the
pathologist’s evaluations about the search results. The web application presented a user
with query images and their top three search results. The pathologists were not aware of
the order in which top-3 results were shown to them. For each session, there were total
of 48 queries presented to them. All pathologists answered the same questions, but we
reshuffled the questions and ordering in each session to counteract any biases.

For each query result, pathologists would provide their feedback from five discrete
values–Very Poor, Poor, Fair, Good, and Very Good. After gathering the data for the
study, we sorted the pathologists’ feedback in the original top-3 ordering, referring Q1, Q2,
and Q3 as the top 1st, 2nd, and 3rd result, respectively.

Observations. The general summary of the participant’s feedback is presented in Fig-
ure 3.6. Both expert and non-expert users, ranked Q1 more positively than Q3. It is
interesting to note that, on an average, non-expert users ranked a higher number of Very
Poor to Q1 compared with Q2 and Q3. However, this was not true for pathologists. The
trends for pathologists are very concrete and reflect positively on our approach. For in-
stance, Q1 has the highest number of Very Good compared with others, Q2 has higher
number of Very Good and Good than Q3. Similarly, Q3 has the highest number of Very

Poor.

3.6 Summary

This chapter discussed Yottixel, a framework for representing a whole-slide image as a
mosaic then eventually as a set of barcodes (BoB). One downside of Yottixel is that it is
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completely unsupervised even when the labels could be made available. These labels can
enable Yottixel in extracting more discriminative features. The next three chapters will
discuss three different weakly-supervised methods for training Yottixel’s backbone (feature
extractor).
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Part II

Weakly-Supervised Methods

Yottixel is an unsupervised framework. Its performance is governed by the quality of
features extracted from the underlying pre-trained backbones. Weakly supervised methods
allow training the Yottixel’s backbone model, thereby enhancing its performance for the
cancer subtype prediction. Multi-instance learning (MIL) approaches are used as a form of
weak-supervision. Three different MIL methods have been proposed that not only improve
the Yottixel for the cancer subtype classification, but also enable visualizing the patches
that are deemed important for the given prediction. The proposed methods do not require
extensive regional- or pixel-level information, and work with information usually available
along WSIs, such as anatomical site (i.e., the organ), and primary diagnosis.
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Chapter 4

Learning Permutation-invariant
Representations using Memory
Networks

4.1 Prologue

This chapter is based on the following paper published during this Ph.D. research:

A. S. Kalra, et al. Learning permutation-invariant representations using memory net-
works. European Conference on Computer Vision (ECCV) (2020).

Generally, a WSI is accompanied with information such as its anatomic site of origin and/or
the primary diagnosis. This information provides an opportunity to improve discriminative
capabilities of Yottixel’s backbone (feature extractor). As noted in the previous chapter
(Chapter 3), Yottixel represents a WSI as a set of patches called mosaic. Therefore, all
patches in mosaic are associated to a single label (e.g., primary diagnosis). Henceforth,
multi-instance learning (MIL) methods are required to train on such data. This chapter
proposes a MIL method called Memory-based Exchangeable Model (MEM).

Summary. Many real world tasks such as classification of digital histopathological images
and 3D object detection involve learning from a set of instances. In these cases, only a group
of instances or a set, collectively, contains meaningful information and therefore only the
sets have labels, and not individual data instances. In this chapter, a permutation invariant
neural network called Memory-based Exchangeable Model (MEM) for learning universal set
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Lung Adenocarcinoma (LUAD) Lung Squamous Cell Carcinoma (LUSC)

(a) Patch Extraction

Input Batch

Proposed

Model

Classification

(b) Set Classification

Figure 4.1: An exemplar application of learning permutation invariant representation for
disease classification of Whole-Slide Images (WSIs). (a) A set of patches are extracted from
each WSI of patients with lung cancer. (b) The sets of patches are fed to the proposed
model for classification of the sub-type of lung cancer—LUAD versus LUSC. The model
classifies on a per set basis. This form of learning is known as Multi Instance Learning
(MIL).

functions is proposed. The MEM model consists of memory units which embed an input
sequence to high-level features enabling it to learn inter-dependencies among instances
through a self-attention mechanism. MEM is evaluated on various toy datasets, point
cloud classification, and classification of whole slide images (WSIs) into two subtypes of
lung cancer—Lung Adenocarcinoma, and Lung Squamous Cell Carcinoma. A new dataset
of containing only lung slides are created from the dataset used in the last chapter. The
proposed approach achieves a competitive accuracy of 84.84% for classification of two sub-
types of lung cancer which is 15% improvement over Yottixel. The results on other datasets
are promising as well, and demonstrate the efficacy of the proposed model.

4.2 Introduction

Deep artificial neural networks have achieved impressive performance for representation
learning tasks. The majority of these deep architectures take a single instance as an input.
Recurrent Neural Networks (RNNs) are a popular approach to learn representations from
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sequential ordered instances. However, the lack of permutation invariance renders RNNs
ineffective for exchangeable or unordered sequences. We often need to learn representations
of unordered sequential data, or exchangeable sequences in many practical scenarios such
as Multiple Instance Learning (MIL). In the MIL scenario, a label is associated with a
set, instead of a single data instance. One of the application of MIL is classification of
high resolution histopathology images, called whole slide images (WSIs). Each WSI is a
gigapixel image with size ≈ 50,000 × 50,000 pixels. The labels are generally associated
with the entire WSI instead of patch, region, or pixel level. MIL algorithms can be used
to learn representations of these WSIs by disassembling them into multiple representative
patches as discussed in the last chapter.

MEM is a novel architecture for exchangeable sequences incorporating attention over
the instances to learn inter-dependencies. We use the results from Deep Sets [60] to con-
struct a permutation invariant model for learning set representations. The main contribu-
tion is a sequence-to-sequence permutation invariant layer called Memory Block. The
proposed model uses a series of connected memory block layers, to model complex depen-
dencies within an input set using a self attention mechanism. The model is validated using
a toy datasets and two real-world applications. The real world applications include, i) point
cloud classification, and ii) classification of WSI into two sub-type of lung cancers—Lung
Adenocarcinoma (LUAD)/ Lung Squamous Cell Carcinoma (LUSC) (see Figure 4.1).

4.3 Related Work

The majority of the related work and background topics are covered in Chapter 2, §2.3.
MEM is based on memory networks, an idea of using an external memory for relational
learning tasks was introduced by Weston et al. [100]. Later, an end-to-end trainable model
was proposed by Sukhbaatar et al. [101]. Memory networks enable learning of dependencies
among instances of a set by providing an explicit memory representation for each instance
in the sequence. The idea of self attention is popularized by [102], these models are known
as transformers, widely used in NLP applications. The proposed MEM model uses the
self-attention (similar to transformers) within memory vectors, aggregated using a pooling
operation (weighted averaging) to form a permutation-invariant representation (based on
Theorems 1 and 2 in Chapter 2, §2.3).
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Figure 4.2: X is an input sequence containing n number of f -dimensional vectors. (a)
The memory block is a sequence-to-sequence model that takes X and returns another
sequence X̂. The output X̂ is a permutation-invariant representation of X. A bijective
transformation model (an autoencoder) converts the input X to a permutation-equivariant
sequence C. The weighted sum of C is computed over different probability distributions
pi from memory units. The hyper-parameters of a memory block are i) dimensions of the
bijective transformation h, and ii) number of memory units m. (b) The memory unit
has Ai, an embedding matrix (trainable parameters) that transforms elements of X to a
d-dimensional space (memories). The output pi is a probability distribution over the input
X, also known as attention. The memory unit has a single hyper-parameter d, i.e. the
dimension of the embedding space. (* represents learnable parameters.)

4.4 Proposed Approach

This section discusses the motivations, components, and offers an analysis of the proposed
Memory-based Exchangeable Model (MEM) capable of learning permutation invariant
representation of sets and unordered sequences.

4.4.1 Motivation

In order to learn an efficient representation for a set of instances, it is important to focus on
instances which are “important” for a given task at hand, i.e., we need to attend to specific
instances more than other instances. We therefore use the memory network to learn an
attention mapping for each instance. Memory networks are conventionally used for NLP
for mapping questions posted in natural language to an answer [100, 101]. We exploit the
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idea of having memories which can learn key features shared by one or more instances.
Through these key features, the model can learn inter-dependencies using transformer style
self-attention mechanism. As inter-dependencies are learnt, a set can be condensed into a
compact vector such that a MLP can be used for a classification or regression learning.

4.4.2 Model Components

MEM is composed of four sequentially connected units: i) a feature extraction model, ii)
memory units, iii) memory blocks, and iv) fully connected layers to predict the output.

A memory block is the main component of MEM and learns a permutation invariant
representation of a given input sequence. Multiple memory blocks can be stacked together
for modeling complex relationships and dependencies in exchangeable data. The memory
block is made of memory units and a bijective transformation unit shown in Figure 4.2

Memory Unit. A memory unit transforms a given input sequence to an attention vector.
The higher attention value represents the higher “importance” of the corresponding element
of the input sequence. Essentially, it captures the relationships among different elements
of the input. Multiple memory units enable the memory block to capture many complex
dependencies and relationships among the elements. Each memory unit consists of an
embedding matrix Ai that transforms a f -dimensional input vector xj to a d-dimensional
memory vector uij, as follows:

uij = ρ(xjAi),

where ρ is some non-linearity. The memory vectors are stacked to form a matrix Ui =
[ui0, . . . , uin] of the shape (n × d). The relative degree of correlations among the memory
vectors are computed using cross-correlation followed by a column-wise softmax and then
taking a row-wise average, as follows:

Si = column-wise-softmax(UiU
T
i ),

pi = row-wise-average(Si),
(4.1)

The pi is the final output vector (1×n) from the ith memory unit Ui, as shown in Figure 4.2.
The purpose of memory unit is to embed feature vectors into another space that could cor-
respond to a distinct “attribute” or “characteristic” of instances. The cross correlation
or the calculated attention vector represents the instances which are highly suggestive of
those “attributes” or “characteristic”. We do not normalize memory vectors as magnitude
of these vectors may play an important role during the cross correlation.
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Memory Block. A memory block is a sequence-to-sequence model, i.e., it transforms a
given input sequence X = x1, . . . , xn to another representative sequence X̂ = x̂1, . . . , x̂m.
The output sequence is invariant to the element-wise permutations of the input sequence.
A memory block contains m number of memory units. In a memory block, each memory
unit takes a sequential data as an input and generates an attention vector. These atten-
tion vectors are subsequently used to compute the final output sequence. The schematic
diagram of a memory block is shown in Figure 4.2a.

The final output sequence X̂ of a memory block is computed as a weighted sum of C
with the probability distributions p1, . . . , pm from all the m memory units where C is a
bijective transformation of X learned using an autoencoder. Each memory block has its
own autoencoder model to learn the bijective mapping. The ith element x̂i of the output
sequence X̂ is computed as matrix multiplication of pi and C, as follows:

x̂i = piC,

where, pi is the output of ith memory unit given by (4.1).

The bijective transformation from X 7→ C enables equivariant correspondence between
the elements of the two sequences X & X̂, and maps two different elements in the input
sequence to different elements in the output sequence. It must be noted that bijective
transformation is permutation equivariant not invariant. The reconstruction maintains
one-to-one mapping between X and C. The final output sequence from a memory block
is permutation invariant as it uses matrix multiplication between pi (attention) and C.

4.4.3 Model Architecture

1. Each element of a given input sequence X = x1, . . . , xn is passed through a feature
extraction model to produce a sequence of feature vectors F = f1, . . . , fn.

2. The feature sequence F is then passed through a memory block to obtain another
sequence X̂ which is a permutation-invariant representation of the input sequence.
The number of elements in the sequence X̂ depends on the number of memory unit
in the memory block layer.

3. Multiple memory blocks can be stacked in series. The output from the last memory
block is either vectorized or pooled, which is subsequently passed to a MLP layer for
classification or regression.
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Figure 4.3: The overall architecture of the proposed Memory-based Exchangeable Model
(MEM). The input to the model is a sequence, for e.g., a sequence of images or vectors.
Each element of the input sequence X is passed through (a) feature extractor (CNN or
MLP) to extract a sequence of feature vectors F , which is passed to (c) sequentially con-
nected memory blocks. A memory block outputs another sequence which is a permutation-
invariant representation of the input sequence. The output from the last memory block is
vectorized and given to (c) MLP layers for classification/regression.

4.4.4 Analysis

This section discusses the mathematical properties of our model. We use theorems from
Deep Sets [60] to prove that our model is permutation invariant and universal approxima-
tor for arbitrary set functions.

Property 1. Memory units are permutation equivariant.

Consider an input sequence X = x1 . . . xn. Since, for each memory unit,

Ui = [ρ(xoAi), ρ(x1Ai), . . . , ρ(xnAi)]

By Equation (??), Ui is permutation equivariant and thus Si in (4.1) is permutation equiv-
ariant. Finally, the attention vector pi is calculated by averaging all rows, therefore the
final output of memory unit pi is permutation equivariant.

Property 2. Memory Blocks are permutation invariant.

A memory block layer consisting of m memory units generates a sequence X̂ = x̂1, . . . , x̂m

where x̂i can be written as:
x̂i = piC

Since both C and pi are permutation equivariant, therefore, x̂i, which is calculated by
matrix multiplication of pi and C, is permutation invariant.
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Sum of Even Prime Counting Unique Maximum of Gaussian
Methods Digits Sum Images Set Clustering

Accuracy MAE Accuracy Accuracy MAE Accuracy MAE NLL
FF + MEM + MB1 (ours) 0.9367 ± 0.0016 0.2516 ± 0.0105 0.9438 ± 0.0043 0.7108 ± 0.0084 0.3931 ± 0.0080 0.9326 ± 0.0036 0.1449 ± 0.0068 1.348
FF + MEM + Mean (ours) 0.9355 ± 0.0015 0.2437 ± 0.0087 0.7208 ± 0.0217 0.4264 ± 0.0062 0.9525 ± 0.0109 0.9445 ± 0.0035 0.1073 ± 0.0067 1.523
FF + MEM + Max (ours) 0.9431 ± 0.0020 0.2295 ± 0.0098 0.9361 ± 0.0060 0.6888 ± 0.0066 0.4140 ± 0.0079 0.9498 ± 0.0022 0.1086 ± 0.0060 1.388
FF + MEM + Dotprod (ours) 0.8411 ± 0.0045 0.3932 ± 0.0065 0.9450 ± 0.0086 0.7284 ± 0.0055 0.3664 ± 0.0037 0.9517 ± 0.0041 0.0999 ± 0.0097 1.363
FF + MEM + Sum (ours) 0.9353 ± 0.0022 0.2739 ± 0.0081 0.6652 ± 0.0389 0.3138 ± 0.0094 1.3696 ± 0.0151 0.9430 ± 0.0031 0.1318 ± 0.0058 1.611
FF + Mean (DS) 0.9159 ± 0.0019 0.2958 ± 0.0049 0.5280 ± 0.0078 0.3140 ± 0.0071 1.2169 ± 0.0136 0.3223 ± 0.0075 1.0029 ± 0.0155 2.182
FF + Max (DS) 0.6291 ± 0.0047 1.3292 ± 0.0211 0.9257 ± 0.0033 0.7088 ± 0.0060 0.3933 ± 0.0059 0.9585 ± 0.0012 0.0742 ± 0.0032 1.608
FF + Dotprod (DS) 0.1503 ± 0.0015 1.8015 ± 0.0016 0.9224 ± 0.0028 0.7254 ± 0.0063 0.3726 ± 0.0054 0.9548 ± 0.0017 0.1355 ± 0.0027 8.538
FF + Sum (DS) 0.6333 ± 0.0043 0.5763 ± 0.0069 0.5264 ± 0.0050 0.2982 ± 0.0042 1.3415 ± 0.0169 0.3344 ± 0.0038 0.9645 ± 0.0111 12.05

Table 4.1: Results on the toy datasets for different configurations of MEM and feature
pooling. It must be noted that for Maximum of Set, the configuration FF + Max (DS)
achieves the best accuracy but it may predict the output perfectly by learning the identity
function therefore we highlighted second best configuration FF + Dotprod (DS) as well.

4.5 Experiments

We performed two series of experiments comparing MEM against the simple pooling op-
erations proposed by Deep Sets [60]. In the first series of experiments, we established the
learning ability of the proposed model using toy datasets. For the second series, we used
two real-world dataset, i) classification of subtypes of lung cancer against the largest public
dataset of histopathology whole slide images (WSIs) [103], and ii) 3-D object classification
using Point Cloud Dataset [104].

Model Comparison. We compared the performance of MEM against Deep Sets [60].
We use same the feature extractor for both Deep Sets and MEM, and experimented with
different choices of pooling operations—max, mean, dot product, and sum. MEM also
has a special pooling “mb1”, which is a memory block with a single memory unit in
the last hidden layer. Therefore, we tested 9 different models for each experiment—five
configurations of our model, and four configurations of Deep Sets. We tried to achieve the
best performance by varying the hyper-parameters for each of the configuration of both
MEM and Deep Sets. We found that MEM had higher learning capacity, therefore higher
number of parameters resulted in better accuracy for MEM but not necessarily for Deep
Set. We denote the common feature extractor as FF and Deep Sets as DS in the discussion
below. The other approaches that are compared have been appropriately cited.

4.5.1 Toy Datasets

To demonstrate the advantage of MEM over simple pooling operations, we consider four
toy problems, involving regression and classification over sets. We constructed these toy
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Figure 4.4: Comparison of MEM and feature pooling on a regression problem involving
finding the sum of even digits within a set of MNIST images. Each point corresponds to
the best configurations for the two models.

datasets using the MNIST dataset.

Sum of Even Digits. Sum of even digits is a regression problem over the set of images
containing handwritten digits from MNIST. For a given set of images X = {x1, . . . , xn},
the goal is to find the sum of all even digits. We used the Mean Absolute Error (MAE).
We split the MNIST dataset into 70-30% training, and testing data-sets, respectively. We
sampled 100,000 sets of 2 to 10 images from the training data. For testing, we sampled
10,000 sets of images containing m number of images per set where m ∈ [2, 10]. Figure 4.4
shows the performance of MEM against simple pooling operations with respect to the
number of images in the set.

Prime Sum. Prime Sum is a classification problem over a set of MNIST images. A set
is labeled positive if it contains any two digits such that their sum is a prime number. We
constructed the dataset by randomly sampling five images from the MNIST dataset. We
constructed the training data with 20,000 sets randomly sampled from the training data
of MNIST. For testing, we randomly sampled 5,000 sets from the testing data of MNIST.
The results are reported in the second column of Table 4.1 that shows the robustness of
memory block.

Maximum of a Set. Maximum of a set is a regression problem to predict the highest
digit present in a set of images from MNIST. We constructed a set of five images by ran-
domly selecting samples from MNIST dataset. The label for each set is the largest number
present in the set. For example, images of {2, 5, 3, 3, 6} is labeled as 6. We constructed
20,000 training sets and for testing we randomly sampled 5,000. The detailed comparison

44



of accuracy and MAE between different models is given in the second last column of Ta-
ble 4.1. We found that FF+Max learns the identity mapping and thus results in a very high
accuracy. In all the training sessions, we consistently obtained the training accuracy of
100% for the FF+Max configuration, whereas MEM generalizes better than the Deep Sets.

Counting Unique Images. Counting unique images is a regression problem over a
set. This task involves counting unique objects in a set of images from fashion MNIST
dataset [105]. We constructed the training data by selecting a set, as follows:

1. Let n be the number of total images and u be the number of unique image in the set.

2. Randomly select an integer n between 2 and 10.

3. Randomly select another integer u between 1 and n.

4. Select u number of unique objects from fashion-MNIST training data.

5. Then add n-u number of randomly selected objects selected in the previous step.

The task is to count unique objects u in a given set. The results are shown in the third
column of Table 4.1.

Amortized Gaussian Clustering. Amortized Gaussian clustering is a regression
problem that involves estimating the parameters of a population of Mixture of Gaussian
(MoG). Similar to Set Transformer [106], we test our model’s ability to learn parameters
of a Gaussian Mixture with k components such that the likelihood of the observed samples
is maximum. This is in contrast to the EM algorithm which updates parameters of the
mixture recursively until the stopping criterion is satisfied. Instead, we use MEM to
directly predict parameters of a MoG i.e. f(x; θ) = {π(x), (µ(x), σ(x))kj=1}. For simplicity
we sample from MoG with only four components. The Generative process for each training
dataset is as follows

1. Mean of each Gaussian is selected from a uniform distribution i.e. µk
j=1 ∼ Unif(0, 8).

2. Select a cluster for each instance in the set, i.e.,

π ∼ Dir([1, 1]T ); zi ∼ Categorical(π)

3. Generate data from an univariate Gaussian ∼ N (µzi , 0.3).

We created a dataset of 20,000 sets each consisting of 500 points sampled from different
MoGs. Results in Table 4.1 show that MEM is significantly better than Deep Sets.
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4.5.2 Real World Datasets

To show the robustness and scalability of the model for the real-world problems, we have
validated MEM on two larger datasets. Firstly, we tested our model on a point cloud
dataset for predicting the object type from the set of 3D coordinates. Secondly, we used the
largest public repository of histopathology images (TCGA) [103] to differentiate between
two main sub-types of lung cancer. Without any significant effort in extracting histolog-
ically relevant features and fine-tuning, we achieved a remarkable accuracy of 84.84% on
5-fold validation.

4.5.2a. Point Cloud Classification

We evaluated MEM on a more complex classification task using ModelNet40 [104] point
cloud dataset. The dataset consists of 40 different objects or classes embedded in a three
dimensional space as points. We produce point-clouds with 100 points (x, y, z-coordinates)
each from the mesh representation of objects using the point-cloud library’s sampling rou-
tine [107]1. We compare the performance against various other models reported in Ta-
ble 4.2. We experimented with different configurations of our model and found that
FF+MB1 works best for 100 points cloud classification. We achieves the classification
accuracy of 85.21% using 100 points. Our model performs better than Deep Sets and Set
Transformer for the same number of instances, showing the effectiveness of having attention
from memories.

4.5.2b. Lung Cancer Subtype Classification

Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) are two
main types of non-small cell lung cancer (NSCLC) that account for 65-70% of all lung
cancers [112]. Classifying patients accurately is important for prognosis and therapy de-
cisions. Automated classification of these two main subtypes of NSCLC is a crucial step
to build computerized decision support and triaging systems. We present a two-staged
method to differentiate LUAD and LUSC for whole slide images, short WSIs, that are
very large images. Firstly, we implement a method to systematically sample patches/tiles
from WSIs. Next, we extract image features from these patches using Densenet [95]. We
then use MEM to learn the representation of a set of patches for each WSI.

1We obtained the training and test datasets from Zaheer et al. [60]
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Configuration Instance Size Accuracy
3DShapeNet [104] 303 0.77
Deep set [60] 100 0.8200
VoxNet [108] 322 0.8310
3D GAN [109] 643 0.833
Set Transformer [106] 100 0.8454
Set Transformer [106] 1000 0.8915
Deep set [60] 5000 0.9
MVCNN [110] 164 × 164 × 12 0.901
Set Transformer [106] 5000 0.9040
VRN Ensemble [111] 323 0.9554
FF + MEM + MB1 (Ours) 100 0.8521

Table 4.2: Test accuracy for the point cloud classification on different instance sizes using
various methods. MEM with configuration FF + MEM + MB1 achieves 85.21% accuracy
for the instance size of 100 which is best compared to others.

To the best of our knowledge, this is the first ever study conducted on all the lung cancer
slides in TCGA dataset (comprising of 2 TB of data consisting of 2.5 million patches of
size 1000×1000 pixels). All research works in literature use a subset of the WSIs with
their own test-train split instead of cross validation, making it difficult to compare against
them. However, we have achieved greater than or similar to all existing research works
without utilizing any expert’s opinions (pathologists) or domain-specific techniques. We
used 2,580 WSIs from TCGA public repository [103] with 1,249, and 1,331 slides for LUAD
and LUSC, respectively. We process each WSI as follows.

1. Tissue Extraction. Every WSI contains a bright background that generally
contains irrelevant (non-tissue) pixel information. We removed non-tissue regions
using color thresholds.

2. Selecting Representative Patches. Segmented tissue is then divided into
patches. All the patches are then grouped into a pre-set number of categories (classes)
via a clustering method. A 10% of all clustered patches are uniformly randomly se-
lected distributed within each class to assemble representative patches. Six of these
representative patches for each class (LUAD and LUSC) is shown in Figure 4.5.

3. Feature Set. A set of features for each WSI is created by converting its represen-
tative patches into image features. We use DenseNet [95] as the feature extraction
model. There are a different number of feature vectors for each WSI.
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(a) Lung Adenocarcinoma (b) Lung Squamous Cell Carcinoma

Figure 4.5: The patches extracted from two WSIs of patients with (a) LUAD and (b)
LUSC. Each slide roughly contains 500 patches.

The results are shown in Table 4.3. We achieved the maximum accuracy of 84.84% with
FF + MEM + Sum configuration. It is difficult to compare our approach against other
approaches in literature due to non-standardization of the dataset. Coudray et al. [92] used
the TCGA dataset with around 1,634 slides to classify LUAD and LUSC. They achieved
AUC of 0.947 using patches at 20×. We achieved a similar AUC of 0.94 for one of the folds
and average AUC of 0.91. In fact, without any training they achieved the similar accuracy
as our model (around 85%). It is important to note that we did not do any fine-tuning
or utilize any form of input from an expert/pathologist. Instead, we extracted diverse
patches and let the model learn to differentiate between two sub-types by “attending”
relevant ones. Another study by Jaber et al. [113] uses cell density maps, achieving an
accuracy of 83.33% and AUC of 0.9068. However, they used much smaller portion of the
TCGA, i.e., 338 TCGA diagnostic WSIs (164 LUAD and 174 LUSC) were used to train,
and 150 (71 LUAD and 79 LUSC).

4.6 Summary

This chapter introduced a Memory-based Exchangeable Model (MEM) for learning per-
mutation invariant representations. The proposed method uses attention mechanisms over
“memories” (higher order features) for modeling complicated interactions among elements
of a set. It is proven that the model is universal approximation of set functions. One
limitation of the approach is that “attention” is not individually computed for a patch. It
hard to visualize the patches that deemed important for the prediction providing limited
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Methods Accuracy
Coudray et al. [92] 0.85
Jabber et al. [113] 0.8333
Khosravi et al. [114] 0.83
Yu et al. [115] 0.75
FF + MEM + Sum (ours) 0.8484 ± 0.0210
FF + MEM + Mean (ours) 0.8465 ± 0.0225
FF + MEM + MB1 (ours) 0.8457 ± 0.0219
FF + MEM + Dotprod (ours) 0.6345 ± 0.0739
FF + sum (DS) 0.5159 ± 0.0120
FF + mean (DS) 0.7777 ± 0.0273
FF + dotprod (DS) 0.4112 ± 0.0121

Table 4.3: Accuracy for LUAD vs LUSC classification for various methods. For our ex-
periments, we conducted comprehensive 5-fold cross validation accuracy whereas other
methods have used non-standardized test set.

interoperability. In the next chapter, improve the interpretations of a model by explicitly
learning an “attention” value for each mosaic’s patch.
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Chapter 5

Pay Attention with Focus: A Novel
Learning Scheme for Classification of
Whole Slide Images

5.1 Prologue

This chapter is based on the following paper published during this Ph.D. research:

A. S. Kalra, et al. Pay Attention with Focus: A Novel Learning Scheme for Classifica-
tion of Whole Slide Images. International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI) (2021)

Chapter 4 introduced a new method to predict through mosaic data obtained from Yottixel.
However, the limitation of the method was to infer the “importance” of each patch for the
final classification. In this chapter, an attention-based models are used to find the relative
contribution of each patch towards the final predictions. The attention-based model can
be inferred across all patches of a WSI to find regions of interest (ROIs). These ROIs can
be determined autonomously by the deep network.

Summary. The feature extractor backbone of Yottixel is fine-tuned using hierarchical tar-
get labels of WSIs, i.e., anatomic site and primary diagnosis. The set of encoded patch-level
features from a WSI is then used to compute the primary diagnosis probability through the
proposed Pay Attention with Focus scheme, an attention-weighted averaging of predicted
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probabilities for all patches of a mosaic modulated by a trainable focal factor. Experimen-
tal results show that the proposed method can be as robust, and effective as the previously
proposed MEM model (Chapter 4), however, with an advantage of being more transparent,
explainable, computationally efficient.

5.2 Background

The majority of literature has been well discussed in Chapter 2. The proposed method
utilizes an idea of training with multi-target labels arranged in hierarchy. A WSI usually
contains at least two target labels, anatomic site, and primary diagnosis that are arranged
in a hierarchy. The simplest way to deal with multi-label classification with k labels is to
treat this as k independent binary classification. Although this approach may be helpful,
it does not capture label dependencies. This limitation can degrade the performance in
many applications where there is strong dependency among labels, for example, in WSI
classification. To address this limitation, two different approaches, i.e., transformation and
algorithm adaption methods, have been proposed [116]. In transformation-based methods,
multi-label data is converted to new single label data to apply regular single-label classifi-
cation. On the other hand, in the adaptation-based category, this is attempted to modify
the basic single-label algorithm to handle multi-label data [117]. The FocAtt falls into the
adaption-based category for handling the multi-target labels.

5.3 Method

There are two stages in the proposed method (i) bag preparation, and (ii) multi-instance
learning with FocAtt-MIL. In the first stage, representative patches (called mosaic) are
extracted from a WSI using Yottixel. The mosaic’s patches are encoded to a set of feature
vectors (called bag) using a deep network. The feature extraction model can be a pre-
trained network, or can be fined-tuned to increase its effectiveness as shown in Figure 5.1.
In the second stage, the proposed MIL technique (called FocAtt-MIL) is trained to predict
the primary diagnosis for a given bag (a WSI). The schematic for the second stage is shown
in Figure 5.2.
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Figure 5.1: Training a Feature Extractor. A feature extractor is trained with hierar-
chical target labels of a WSI. (a) A set of representative WSI patches (called mosaic) is
extracted [2]. (b) The patches are used to fine-tune a deep network; each patch is assigned
the parent WSI’s labels, i.e., anatomic site and primary diagnosis.

5.3.1 Model Components

Bag Preparation. Yottixel’s patch selection method is used to extract the representative
patches from a WSI, called mosaic. The mosaic is transformed into a bag X = {x1, . . . , xn},
where xi is the feature vector of ith patch, obtained through a deep network (a feature
extractor). The Figure 5.2 shows the bag preparation stage, the frozen network f(x)
represents a non-trainable deep network used as a feature extractor.

Fine-tune a Feature Extractor using Hierarchical Labels. In MIL, robust features
enable weak learners to make better predictions thus improving the final aggregated pre-
diction. A WSI is generally associated with the following two labels—anatomic site and
primary diagnosis. These two labels are arranged in hierarchy as shown in Figure 5.1. Con-
sider, yas and ypd represent anatomic site and primary diagnosis respectively. Then, instead
of predicting these labels independently, we predict P (yas), and P (ypd|yas). The conditional
probability P (ypd|yas) helps in modelling the dependent relationship. Using Bayes theo-
rem, we get, P (yas|ypd) = P (ypd|yas)P (yas)/P (ypd), where P (yas|ypd) = 1, because of the
dependence. We simplify P (ypd) = P (ypd|yas)P (yas), and compute cross entropy losses for
the predictions of both yas and ypd. We equally weight both the losses towards the final
loss of the network.

WSI Context Learning. A single vector representation of a WSI (or a bag X) is
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Figure 5.2: Classification of WSIs with FocAtt-MIL. The two-stage method for the
classification of WSI. (a) The mosaic of a WSI is converted to a bag X containing a set
of feature vectors {x1, . . . , xn}. (b) The feature vectors in a bag X are transformed to
the primary diagnosis probability through FocAtt-MIL. The prediction probability pi is
computed for an individual feature vector xi. A WSI context gX is computed for the entire
bag X using (5.1). The WSI context gX is used to compute the attention value ai and the
focal factor γ. The final prediction is computed using (5.2).

computed as,
gX = ϕ(θ(x1), . . . , θ(xn)), (5.1)

where, θ is a neural network and ϕ is a pooling function, such as sum, mean, and max. It
has been proven in [118] that (5.1) can approximate any set function. The vector gX is
used by the attention module and the focal network.

The FocAtt-MIL Approach. The FocAtt-MIL is a permutation-invariant model that
learns to predict a target label (primary diagnosis) ypd from a bag X (a WSI). The approach
is composed of four major components (Figure 5.2):

1. Prediction MLP. A prediction pi is computed for each item xi in the bag X, using a
trainable deep network called Prediction MLP.

2. WSI Context. It a deep network that computes a single vector representing an entire
bag X using (5.1).

3. Attention Module. The attention module is composed of two networks, a transfor-
mation network T , and the Attention Network. The attention module takes the ith

patch xi ∈ X, and the WSI context gX to compute an attention value ai ∈ [0, 1] for
that patch.
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4. Focal Network. Another deep network that uses WSI context gX to compute a focal
factor γ (a vector) that modulates the final prediction. The length of γ is same as
the number of discrete values in the target label, thus allowing the per dimension
modulation.

The Final Prediction. The final output from the FocAtt-MIL is computed by aggre-
gating individual attention-weighted predictions modulated by the learned focal factor, as
follows

y(j) =
n∑

i=1

pi(j)
γ(j)ai. (5.2)

The pi, and γ in (5.2) are both vectors. The y is converted to a probability distribution
by dividing with sum(y).

5.4 Experiments

We evaluated the proposed approach for two different WSI classification tasks. All exper-
iments are conducted with 4 Nvidia V100 GPUs (32 GB vRAM each). The code has been
written using the Tensorflow library [119].

5.4.1 LUAD vs LUSC Classification

For this task, we utilized the dataset created in the study proposed in the last chapter. We
establish the efficacy of FocAtt-MIL to differentiate between LUAD and LUSC. Similar to
the last chapter, we obtained mosaic for each WSI using Yottixel (Chapter 3), and subse-
quently converted the mosaic to a bag X of features using a pre-trained DenseNet [95]. We

Table 5.1: Performance comparison for LUAD/LUSC classification via transfer learning.

Algorithm Accuracy

Coudray et al. [92] 0.85
MEM (Chapter 4) 0.85
Khosravi et al. [114] 0.83
Yu et al. [115] 0.75
FocAtt-MIL (proposed method) 0.88
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did not fine-tune the feature extraction model for this task in order have a fair comparison
against MEM (Chapter 4) and other approaches. We trained the FocAtt-MIL to classify
bags between the two sub-types of lung cancer. We achieved the accuracy of 88% on test
WSIs (AUC of 0.92). The accuracy has been reported in Table 5.1.

We conducted an ablation study to understand the effect of different model parame-
ters. Removing the WSI context gX from the attention module, resulted in 4% reduction
of the accuracy. Excluding the focal factor γ and the global context gX from the final pre-
diction, resulted in 6% reduction in the accuracy. The ablation suggests that the model’s
performance is the most optimal by (i) incorporating the WSI context gX in the attention
computation, and (ii) allowing the focal factor to modulate the final aggregated prediction.

We used the attention module of the trained model to visualize the attention heat-
map on the unseen WSIs (Figure 5.3). The visual inspection of these two WSIs reveals
that the model made its decision based on regions containing malignant tissue and ignored
non-cancerous regions. In the LUSC WSI (right), regions with squamous formations are
deemed the most important ones. For the LUAD WSI (left), the salient regions are solely
coming from the malignant area, implying that the model differentiates between normal
lung alveolar tissue and LUAD. Therefore, one could say that attention heatmaps are
histopathologically meaningful. For LUAD samples, regions where contrast makes cancer-
ous glandular structures easier to recognize. However, this phenomenon cannot be seen
in LUSC samples, as the model is responsive to regions that are completely composed of
malignant squamous carcinoma.

5.4.2 Pan-cancer Analysis

In the second experiment series, we evaluated the approach against a large-scale pan-cancer
classification of WSIs. The dataset used for this task has been proposed by Riasatian et
al. [120]. It comprises more than 7 TB data, consisting of 7,097 training, and 744 test
WSIs, distributed across 24 different anatomic sites, and 30 different primary diagnoses.
All WSIs in the dataset are taken from a public repository of WSIs, TCGA [51]. We
obtained a mosaic for each WSI, and then applied a cellularity filter [120] to further reduce
the number of patches in each mosaic. Subsequently, we obtained 242,202 patches for
training WSIs and 116,088 patches for testing WSIs. Each patch is of the size 1000×1000,
but we resized them to 256×256 pixels.

We used three different feature extractors to validate the FocAtt-MIL. We pre-
pared a separate “bag” for each feature extractor. These three feature extractors are:
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Figure 5.3: Attention Visualization. The attention values augmented on the two ex-
emplar WSIs. Left Image (LUAD): Regions of the highest importance come from
the cancerous regions while sparing normal lung tissue, fibrosis, and mucin deposition.
Additionally, by inspecting important regions at a higher magnification, it is noticeable
that the malignant glandular formations border with non-malignant areas. Right Image
(LUSC): Regions that are considered to be important for classification are composed of
malignant squamous cells. However, unlike LUAD, the attention model seems to be re-
sponsive to regions with solid malignant structures.

DenseNet (DN) [95], KimiaNet [120], and the fine-tuned DenseNet (FDN). We fined-tuned
the DenseNet on training patches using weak labels obtained from their respective WSIs.
The weakly labelled fine-tuning has shown to be effective [120]. In our case, the weak
labels are anatomic site, and primary diagnosis, arranged in a hierarchy. This hierarchical
arrangement of labels is incorporated during the training using the approach outlined ear-
lier in the Section 8.4. For the fine-tuning, we used Adam optimizer [121] and a learning
rate of 10−5 were used for 20 epochs.

We trained the FocAtt-MIL model with the same architecture for all the three dif-
ferent bags. We tested three different configurations of FocAtt-MIL, i.e., FocAtt-MIL-DN,
FocAtt-MIL-KimiaNet, and FocAtt-MIL-FDN. For all the three configurations, we used
the SGD optimizer with a learning rate of 0.01, weight decay of 10−6, and momentum of
0.9. We applied gradient clipping of 0.01 and dropout between layers to prevent the explod-
ing gradients. We trained models for 45 epochs. ?? shows the validation loss and accuracy
while training the three different configurations. It is evident that FocAtt-MIL-FDN is
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outperforming from the very early epochs. It is interesting to note that, both FocAtt-MIL-
FDN, and FocAtt-MIL-KimiaNet (feature extractors specialized for histopathology) seems
to have converged to an optimal validation accuracy around 20-25 epochs.

The 30 unique primary diagnoses in the dataset can be further grouped into 13 tumor
types. The type of tumour is generally known at the inference time, and the objective is to
predict the cancer sub-type. To validate the efficacy of our model, we computed the
cancer sub-type classification (i.e., primary diagnosis) accuracy for the given tumour type.
This type of classification is called vertical classification. The vertical classification results
are reported in Table 5.21. The results show that FocAtt-MIL can elevate the accuracy of
pre-trained features; DenseNet features have shown to under-perform compared to Kimi-
aNet features [120, 122]. However, within the proposed FocAtt-MIL scheme, DenseNet
features become quite competitive. This applies to the fine-tuned DenseNet (FocAtt-MIL-
FDN) as well, whose results are on par with the highly customized KimiaNet features when
used within the FocAtt-MIL framework.

5.5 Summary

This chapter introduced a MIL method with three-fold contributions (i) a novel attention-
based MIL approach for the classification of WSIs, (ii) fine-tuning a feature extractor
model using multiple and hierarchically arranged target labels of WSIs, and (iii) inferring
the insights of the model’s decision making by visualizing attention values. The limitation
of a method is that it does not have capacity to model complex relationships within the
patches of mosaic. Even though, it performed equivalent to MEM (Chapter 4), the next
natural step is to combine strengths of both approaches into one method. A single method
that can model complex relationship among patches, and allow attention inference. The
next chapter discuss one such approach developed during the Ph.D.

1For abbreviations GBM, LGG, ACC,..., see Appendix A
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Table 5.2: Pan-cancer vertical classification accuracy of FocAtt-MIL for features from
regular DenseNet (FocAtt-MIL-DN), KimiaNet (FocAtt-MIL-KimiaNet), and DenseNet
fine-tuned with hierarchical labels (FocAtt-MIL-FDN).

Tumor Type Primary Diagnosis
FocatAtt-
MIL-DN

FocAtt-
MIL-
KimiaNet

FocAtt-
MIL-FDN

Brain
GBM 0.9714 0.9429 0.8571
LGG 0.6410 0.7692 0.8205

Endocrine
ACC 0.6667 0.6667 0.6667
PCPG 1.0000 1.0000 1.0000
THCA 0.9608 1.0000 1.0000

Gastrointestinal tract

COAD 0.6875 0.4375 0.5000
ESCA 0.5000 0.8571 0.5714
READ 0.0833 0.5000 0.6667
STAD 0.8333 0.7333 0.8333

Gynaecological
CESC 0.8824 0.9412 0.7647
OV 0.5000 0.8000 1.0000
UCS 0.6667 1.0000 0.3333

Liver, pancreaticobiliary
CHOL 0.2500 0.0000 0.5000
LIHC 0.8857 0.9143 0.8571
PAAD 1.0000 0.7500 0.8333

Melanocytic malignancies
SKCM 0.9167 0.8750 0.9167
UVM 1.0000 0.2500 1.0000

Prostate/testis
PRAD 1.0000 0.9500 1.0000
TGCT 1.0000 1.0000 1.0000

Pulmonary
LUAD 0.5789 0.8158 0.8947
LUSC 0.9302 0.6977 0.7442
MESO 0.6000 1.0000 1.0000

Urinary tract

BLCA 0.9118 1.0000 0.8529
KICH 0.5455 0.6364 0.7273
KIRC 0.9200 0.9000 0.9600
KIRP 0.5714 0.6786 0.7143
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Chapter 6

Representation Learning of
Histopathology Images using Graph
Neural Networks

6.1 Prologue

This chapter is based on the following paper published during this Ph.D. research:

A. M. Adnan, S. Kalra, et al. Representation learning of histopathology images using
graph neural networks. Conference on Computer Vision and Pattern Recognition
Workshops (CVPR-W) (2020)

Two MIL-based methods (Chapter 4 and Chapter 5) for classification of have been
discussed. MEM (Chapter 4) enables capturing inter-dependence among patches, where
as FocAtt (Chapter 5) allows to capture importance of individual patch. This chapter
proposes a solution based on graph neural network that provides the strength of both the
previously proposed approaches.

Summary. The proposed method models a WSI as a fully-connected graph, where each
node represents a patch, and it is connected to every other node within the graph (full
connected). The inter-relationship among nodes (adjacency matrix), and “attention” or
importance of each node is learned during the training phase. The graph pooling opera-
tions is used to automatically infer patches with higher relevance. The performance of the
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approach is validated for discriminating two sub-types of lung cancers, Lung Adenocarci-
noma (LUAD) & Lung Squamous Cell Carcinoma (LUSC), achieving 88.8% and AUC of
0.89. This is the best results achieved so far for the LUSC/LUAD classification among the
three proposed MIL approaches.

6.2 Background

This section covers the important topics related to graph neural networks that have been
utilized for development of the proposed approach.

6.2.1 Deep Learning with Graphs

Graph Representation. A graph can be fully represented by its node list V and ad-
jacency matrix A. Graphs can model many types of relations and processes in physical,
biological, social, and information systems. A connection between two nodes Vi and Vj is
represented using an edge weighted by aij.

Graph Convolution Neural Networks (GCNNs). GCNNs generalize the operation
of convolution from grid data to graph data. A GCNN takes a graph as an input and
transforms it into another graph as the output. Each feature node in the output graph is
computed by aggregating features of the corresponding nodes and their neighboring nodes
in the input graph. Like CNNs, GCNNs can stack multiple layers to extract high-level
node representations. Depending upon the method for aggregating features, GCNNs can
be divided into two categories, namely spectral-based and spatial-based. Spectral-based
approaches define graph convolutions by introducing filters from the perspective of graph
signal processing. Spectral convolutions are defined as the multiplication of a node sig-
nal by a kernel. This is similar to the way convolutions operate on an image, where
a pixel value is multiplied by a kernel value. Spatial-based approaches formulate graph
convolutions as aggregating feature information from neighbors. Spatial graph convolution
learns the aggregation function, which is permutation invariant to the ordering of the node.

ChebNet. It was introduced by Defferrard et al. [123]. Spectral convolutions on graphs
are defined as the multiplication of a signal x ∈ RN (a scalar for every node) with a filter
g(θ) = diag(θ) parameterized by θ ∈ RN in the Fourier domain, i.e.,

gθ ⊛ x = UgθU
Tx,
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where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −
D− 1

2AD− 1
2 . This equation is computationally expensive to calculate as multiplication

with the eigenvector matrix U is O(N2). Hammond et al. [124] suggested that that gθ can
be well-approximated by a truncated expansion in terms of Chebyshev polynomials Tk(x),
i.e,

gθ′(Λ) ≈
K∑
k=0

θ′Tk(Λ).

Figure 6.1: Transforming a WSI to a fully-connected graph. A WSI is represented
as a graph with its nodes corresponding to distinct patches from the WSI. A node feature
(a blue block beside each node) is extracted by feeding the associated patch through a deep
network. A single context vector, summarizing the entire graph is computed by pooling all
the node features. The context vector is concatenated with each node feature, subsequently
fed into adjacent learning block. The adjacent learning block uses a series of dense layers
and cross-correlation to calculate the adjacency matrix. The computed adjacency matrix
is used to produce the final fully-connected graph. In the figure, the thickness of the edge
connecting two nodes corresponds to the value in the adjacency matrix.

The kernels used in ChebNet are made of Chebyshev polynomials of the diagonal matrix
of Laplacian eigenvalues. ChebNet uses kernel made of Chebyshev polynomials. Cheby-
shev polynomials are a type of orthogonal polynomials with properties that make them
very good at tasks like approximating functions.

GraphSAGE. It was introduced by Hamilton et al. [125]. GraphSAGE learns aggregation
functions that can induce the embedding of a new node given its features and neighborhood.
This is called inductive learning. GraphSAGE is a framework for inductive representation
learning on large graphs that can generate low-dimensional vector representations for nodes
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and is especially useful for graphs that have rich node attribute information. It is much
faster to create embeddings for new nodes with GraphSAGE.

Graph Pooling Layers. Similar to CNNs, pooling layers in GNNs downsample node
features by pooling operation. We experimented with Global Attention Pooling, Mean
Pooling, Max Pooling, and Sum Pooling. Global Attention Pooling [126] was introduced
by Li et al. and uses soft attention mechanism to decide which nodes are relevant to the
current graph-level task and gives the pooled feature vector from all the nodes.

6.2.2 Set Representation

Universal Approximator for Sets. We use results from Deep Sets [60] to get the global
context of the set of patches representing WSI. Zaheer et al. proved in [60] that any set
can be approximated by ρ

∑
(ϕ(x)) where ρ and ϕ are some function, and x is the element

in the set to be approximated.

6.3 Method

The proposed method for representing a WSI has two stages, i) sampling important patches
and modeling them into a fully-connected graph, and ii) converting the fully-connected
graph into a vector representation for classification or regression purposes. These two
stages can be learned end-to-end in a single training loop. The major novelty of our
method is the learning of the adjacency matrix that defines the connections within nodes.
The overall proposed method is shown in Figure 6.1 and Figure 6.2. The method can be
summarized as follows.

1. The important patches are sampled from a WSI using a color-based method described
in [127]. A pre-trained CNN is used to extract features from all the sampled patches.

2. The given WSI is then modeled as a fully-connected graph. Each node is connected
to every other node based on the adjacency matrix. The adjacency matrix is learned
end-to-end using Adjacency Learning Layer.

3. The graph is then passed through a Graph Convolution Network followed by a graph
pooling layer to produce the final vector representation for the given WSI.
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The main advantage of the method is that it processes entire WSIs. The final vector
representation of a WSI can be used for various tasks—classification (prediction cancer
type), search (KNN search), or regression (tumor grading, survival prediction) and others.

6.3.1 Model Components

Patch Selection and Feature Extraction. We used the Yottixel method for patch
selection proposed in Chapter 3. Every WSI contains a bright background that generally
contains irrelevant (non-tissue) pixel information. We removed non-tissue regions using
color thresholds. Segmented tissue is then divided into patches. All patches are grouped
into a pre-set number of categories (classes) via a clustering method. A portion of all clus-
tered patches (e.g., 10%) are randomly selected within each class. Each patch obtained
after patch selection is fed into a pre-trained DenseNet [95] for feature extraction. We fur-
ther feed these features to trainable fully connected layers and obtain final feature vectors
each of dimension 1024 representing patches.

Graph Representation of WSI. We propose a novel method for learning WSI repre-
sentation using GCNNs. Each WSI is converted to a fully-connected graph, which has the
following two components.

1. Nodes V : Each patch feature vector represents a node in the graph. The feature for
each node is the same as the feature extracted for the corresponding patch.

2. Adjacency Matrix A: Patch features are used to learn the A via adjacency learning
layer.

Adjacency Learning Layer. Connections between nodes V are expressed in the form of
the adjacency matrix A. Our model learns the adjacency matrix in an end-to-end fashion
in contrast to the method proposed in [128] that thresholds the ℓ2 distance on pre-computed
features. Our proposed method also uses global information about the patches while cal-
culating the adjacency matrix. The idea behind using the global context is that connection
between two same nodes/patches can differ for different WSIs; therefore, elements in the
adjacency matrix should depend not only on the relation between two patches but also on
the global context of all the patches.
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Figure 6.2: Classification of a graph representing a WSI. A fully connected graph rep-
resenting a WSI is fed through a graph convolution layer to transform it into another fully-
connected graph. After a series of transformations, the nodes of the final fully-connected
graph are aggregated to a single condensed vector, which is fed to an MLP for classification
purposes.

1. Let W be a WSI and w1, w2, . . . wn be its patches. Each patch wi is passed through
a feature extraction layer to obtain corresponding feature representation xi.

2. We use the theorem by Zaheer et al. [60] to obtain the global context from the
features xi. Feature vectors from all patches in the given WSI are pooled using a
pooling function ϕ to get the global context vector c. Mathematically,

c = ϕ(x1, x2, . . . , xn). (6.1)

Zaheer et al. showed that such a function can be used as an universal set approxi-
mator.

3. The global context vector c is then concatenated to each feature vector xi to obtain
concatenated feature vector x′

i which is passed through MLP layers to obtain new
feature vector x∗

i · x∗
i are the new features that contain information about the patch

as well as the global context.

4. Features x∗
i are stacked together to form a feature matrix X∗ and passed through a

cross-correlation layer to obtain adjacency matrix denoted by A
n×n

where each element

aij in A shows the degree of correlation between the patches wi and wj. We use aij
to represent the edge weights between different nodes in the fully connected graph
representation of a given WSI.

Graph Convolution Layers. Once we implemented the graph representation of the
WSI, we experimented with two types of GCNN: ChebNets and GraphSAGE Convolution,
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which are spectral and spatial methods, respectively. Each hidden layer in GCNN mod-
els the interaction between nodes and transforms the feature into another feature space.
Finally, we have a graph pooling layer that transforms node features into a single vector
representation. Thus, a WSI can now be represented by a condensed vector, which can be
further used to do other tasks such as classification, image retrieval, etc.

6.3.2 Method Summary

Our proposed method can be used in any MIL framework. The general algorithm for
solving MIL problems is as follows:

1. Consider each instance as a node and its corresponding feature as the node features.

2. The global context of the bag of instances is learned to calculate the adjacency matrix
A.

3. A fully connected graph is constructed with each instance as a node and aij in A
representing the edge weight between Vi and Vj.

4. Graph convolution network is used to learn the representation of the graph, which is
passed through a graph pooling layer to get a single feature vector representing the
bag of instances.

5. The single feature vector from the graph can be used for classification or other learn-
ing tasks.

6.4 Experiments

We evaluated the performance of our model on two datasets i) a popular benchmark dataset
for MIL called MUSK1 [129], and ii) LUAD vs LUSC dataset (introduced in Chapter 4).
Our proposed method achieved a state-of-the-art accuracy of 92.6% on the MUSK1 dataset.
We further used our model to discriminate between two sub-types of lung cancer—Lung
Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC).

We used PyTorch Geometric library to implement graph convolution networks [130].
We used pre-trained DenseNet [95] to extract features from histopathology patches. We
further feed DenseNet features through three dense layers with dropout (p = 0.5).
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6.4.1 Toy Dataset - MUSK1 Dataset

It has 47 positive bags and 45 negative bags. Instances within a bag are different con-
formations of a molecule. The task is to predict whether new molecules will be musks
or non-musks. We performed 10 fold cross-validation five times with different random
seeds. We compared our approach with various other works in literature, as reported
in Table 6.1. The miGraph [9] is based on kernel learning on graphs converted from the
bag of instances. The latter two algorithms, MI-Net [131], and Attention-MIL [58], are
based on DNN and use either pooling or attention mechanism to derive the bag embedding.

Algorithm Accuracy
mi-Graph [9] 0.889
MI-Net [131] 0.887
MI-Net with DS [131] 0.894
Attention-MIL [58] 0.892
Attention-MIL with gating [58] 0.900
Ming Tu et al. [128] 0.917
Proposed Method 0.926

Table 6.1: Evaluation on MUSK1. The method achieved the highest among other MIL
methods in literature.

6.4.2 LUAD vs LUSC Classification

We used the same dataset containing lung slides that has been used for this research as
utilized in the last two chapters. We obtained the features through Yottixel (Chapter 3).
We trained our model to classify bags as two cancer subtypes. The highest 5-fold clas-
sification AUC score achieved was 0.92, and the average AUC across all folds was 0.89.
We performed cross-validation across different patients, i.e., training was performed using
WSIs from a totally different set of patients than the testing. The results are reported
in Table 6.2. We achieved state-of-the-art accuracy using the transfer learning scheme. In
other words, we extracted patch features from an existing pre-trained network, and the
feature extractor was not re-trained or fine-tuned during the training process. The Fig-
ure 6.5 shows the receiver operating curve (ROC) for one of the folds.
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Figure 6.3: Inferring the attention values of the learned model. Six patches from two WSIs
diagnosed with LUSC and LUAD, respectively. The six patches are selected, such that the
first three (top row) are highly “attended” by the network, whereas the last three (bottom
row) least attended. The first patch in the upper row is the most attended patch (more
important) and the first patch in the lower row in the least attended patch (less important).

6.4.3 Model Inference

One of the primary obstacles for real-world application of deep learning models in computer-
aided diagnosis is the black-box nature of the deep neural networks. Since our proposed
architecture uses Global Attention Pooling [126], we can visualize the importance that
our network gives to each patch for making the final prediction. Such visualization can
provide more insight to pathologists regarding the model’s internal decision making. The
global attention pooling layer learns to map patches to “attention” values. The higher
attention values signify that the model focuses more on those patches. We visualize the
patches with high and low attention values in Figure 6.3. One of the practical applications
of our approach would be for triaging. As new cases are queued for an expert’s analy-
sis, the CAD system could highlight the regions of interests and sort the cases based on
the diagnostic urgency. We observe that patches with higher attention values generally
contain more nuclei. As morphological features of nuclei are vitals for making diagnostic
decisions [132], it is interesting to note this property is learned on its own by the network.
Figure 6.4 shows the t-SNE plot of features vectors for some of the WSIs. It shows the clear
distinction between the two cancer subtypes, further favoring the robustness of our method.
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Algorithm AUC
Coudray et al. [92] 0.85
Khosravi et al. [114] 0.83
Yu et al. [115] 0.75
MEM (Chapter 4) 0.85
FocAtt (Chapter 5) 0.87
Proposed method 0.89

Table 6.2: Performance of various methods for LUAD/LUSC predictions using transfer
learning. Our results report the average of 5-fold accuracy values.

Figure 6.4: t-SNE visualization of feature vectors extracted after the Graph Pooling layer
from different WSIs. The two distinct clusters for LUAD and LUSC demonstrate the
efficacy of the proposed model for disease characterization in WSIs. The overlap of two
clusters contain WSIs that are morphologically and visually similar.

6.4.4 Ablation Study

We tested our method with various different configurations for the TCGA dataset. We
used two layers in Graph Convolution Network—ChebNet and SAGE Convolution. We
found that ChebNet outperforms SAGE Convolution and also results in better general-
ization. Furthermore, we experimented with different numbers of filters in ChebNet, and
also different pooling layers—global attention, mean, max, and sum pooling. We feed the
pooled representation to two fully connected Dense layers to get the final classification
between LUAD and LUSC. All the different permutations of various parameters result in
32 different configurations, the results for all these configurations are provided in Table 6.3.
It should be noted that the results reported in the previous sections are based on Cheb-7
with mean pooling.
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Figure 6.5: The ROC curve of prediction.

configuration mean attention max add

Cheb-7 0.8889 0.8853 0.7891 0.4929
Cheb 3 BN 0.8771 0.8635 0.8471 0.5018
Cheb 5 0.8762 0.8830 0.8750 0.5082
Cheb 3 0.8752 0.8735 0.8702 0.5090
Cheb 5 BN 0.8596 0.8542 0.7179 0.4707
Cheb 7 BN 0.7239 0.6306 0.5618 0.4930
SAGE CONV BN 0.6866 0.5848 0.6281 0.5787
SAGE CONV 0.5784 0.6489 0.5389 0.5690

Table 6.3: Comparison of different network architecture and pooling method (attention,
mean, max and sum pooling). BN stands for BatchNormalization [1], Cheb stands for
Chebnet with corresponding filter size and SAGE stands for SAGE Convolution. The
best performing configuration is Cheb-7 with mean pooling.

6.5 Summary

This chapter proposed a technique for representing a WSI as a fully-connected graph. The
graph convolution networks are used to extract the features for classifying the lung WSIs
into LUAD/LUSC. The results suggests that the proposed method achieves the better
performance compared to the other two MIL approaches proposed in the last two chapters.
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Furthermore, the proposed method is explainable and transparent. The potential of weak
supervision for Yottixel is limited due to two factors (i) the computational and storage
overhead, and (ii) restrictions around integration of medical data from diversified sources.
The next part of thesis discusses the methods overcome these challenges. The proposed
methods allow scaling Yottixel training over distributed nodes while maintaining patients’
privacy.
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Part III

Distributed & Privacy-Preserving
Methods

Training of Yottixel is limited due the restricted scaling and access to the diversified dataset.
Training Yottixel quickly becomes cumbersome and impractical as dataset grows bigger.
This challenge necessitates to scale the training of Yottixel over distributed computers.
However, algorithms dealing with medical data cannot be easily distributed due to confi-
dentiality and privacy concerns around sharing medical data. Histopathology data cannot
be aggregated and communicated across multiple institutions limiting research and model
development progress. More robust and accurate models would result from sharing infor-
mation among institutions while maintaining individual data privacy. Federated learning is
a distributed learning system that allows multi-institutional collaborations on decentralized
data while protecting the data privacy of each collaborator. The next two chapters discuss
two different federated learning methods as reliable frameworks for distributed training of
Yottixel on the decentralized data (protecting the privacy of each collaborator).
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Chapter 7

Federated Averaging (FedAvg) for
Histopathology Image Analysis

7.1 Prologue

This chapter is based on the following paper published during this Ph.D. research:

A. M. Adnan, S. Kalra, et al. Federated learning and differential privacy for medical
image analysis. Nature Scientific Reports (2022)

Thus far, we have developed methodology for extracting patches (Chapter 3) from
whole-slide images, and using weak-supervision methods to train Yottixel’s deep networks
(Chapter 4, Chapter 5, Chapter 6). However, the major limitation of Yottixel are (i)
computational and storage overhead during training, and (ii) accesibility of diversified
dataset. This chapter introduces a case-study on distributed training of Yottixel through
federated learning that allows preserving the data privacy of involved participants, while
scaling the training over distributed nodes. The distributed training enables sharing the
resources efficiently among distributed participants thus enables efficient scaling.

Summary. This chapter conducts a case study of applying a differentially private fed-
erated learning framework for analysis of histopathology images. The most popular and
common federated leaning scheme called FedAvg (Federated Averaging) has been utilized.
The effects of IID and non-IID distributions along with the number of healthcare providers,
i.e., hospitals and clinics, and the individual dataset sizes, using The Cancer Genome Atlas
(TCGA) dataset, a public repository, to simulate a distributed environment. The empirical
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comparison of the performance of private, distributed training to conventional training and
demonstrate that distributed training can achieve similar performance with strong privacy
guarantees. The effect of different source domains for histopathology images by evaluating
the performance using external validation is also studied. The work indicates that differ-
entially private federated learning is a viable and reliable framework for the collaborative
development of machine learning models in medical image analysis.

7.2 Introduction & Background

Deep learning models are data-intensive, i.e., they often require millions of training exam-
ples to learn effectively. Medical images may contain confidential and sensitive information
about patients that often cannot be shared outside the institutions of their origin, espe-
cially when complete de-identification cannot be guaranteed. The European General Data
Protection Regulation (GDPR) and the United States Health Insurance Portability and
Accountability Act (HIPAA) enforce guidelines and regulations for storing and exchanging
personally identifiable data and health data. Ethical guidelines also encourage respecting
privacy, that is, the ability to retain complete control and secrecy about one’s personal
information [81]. As a result, large archives of medical data from various consortia remain
widely untapped sources of information. For instance, histopathology images cannot be
collected and shared in large quantities due to the aforementioned regulations, as well as
due to data size constraints given their high resolution and gigapixel nature. Without suffi-
cient and diverse datasets, deep models trained on histopathology images from one hospital
may fail to generalize well on data from a different hospital (out-of-distribution) [133, 69].
The existence of bias or the lack of diversity in images from a single institution brings
about the need for a collaborative approach which does not require data centralization.
One way to overcome this problem is by collaborative data sharing (CDS) or federated
learning among different hospitals [134].

This chapter explores federated learning (FL) as a collaborative learning paradigm, in
which models can be trained across several institutions without explicitly sharing patient
data. The readers can refer to Chapter 2, §2.4 for more discussion on FL and differential
privacy. This chapter shows that using federated learning with additional privacy preser-
vation techniques can improve the performance of histopathology image analysis compared
to training without collaboration. The benefits, drawbacks, potential weaknesses, as well
as technical implementation considerations are discussed. Finally, lung cancer images from
The Cancer Genome Atlas (TCGA) dataset [103] is to construct a simulated environment
of several institutions to validate our approach.
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7.3 Method

The proposed method (local to each client) consists of two steps, bag preparation and
Multiple-Instance Learning (MIL). In the first step, representative patches called mosaic
are extracted from a full-resolution WSI using Yottixel’s approach (Chapter 3). In the
second step, we formulate the representation learning of WSIs as a set learning problem
by applying a MEM model Chapter 4. The MEM model is locally trained through DP-
SGD to provide quantitative privacy bounds, and the local MEM models are centrally
aggregated through FedAvg. In this section, we discuss the bag preparation step and MIL.
An overview of the proposed method is visualized in ??.

7.3.1 Model Components

Bag Preparation. A patch selection method of Yottixel is used to extract representative
patches (called mosaics) from each WSI. A sample WSI and its mosaic is illustrated in ??.
The steps involved in creations of a mosaic are: (i) removal of non-tissue regions using
colour thresholding; (ii) grouping the remaining tissue-containing patches into a pre-set
number of categories through a clustering algorithm; and (iii) randomly selecting a portion
of all clustered patches (e.g., 10%) within each cluster, yielding a mosaic. The mosaic is
transformed into a bag X = {x1, . . . , xn} for MIL, where xi is the feature vector of the
ith patch, obtained through a pre-trained feature extractor network. We use a DenseNet
model for the feature extractor [95]. Each patch in the mosaic has size 1000 × 1000 pixels
at 20x magnification (0.5 mpp resolution). The complete approach for patch-extraction is
discussed in Chapter 3.

MIL Method. The MEM model is used (Chapter 4) as a weak-supervision to extract
feature vectors from mosaic. MEM consists of memory units composed within a memory
block. A memory block is the main component of MEM and produces a permutation
invariant representation from a input sequence. Multiple memory blocks can be stacked
together for modeling complex relationships and dependencies in set data. The memory
block is made of memory units and a bijective transformation (details in Chapter 4).

7.4 Experiments and Discussion

We validated the performance of FL for the classification of histopathology images using a
simulated distributed environment and also using real-world hospital data. Previous studies
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have mostly experimented with a fixed number of clients having similar distributions of
data [81, 70, 135]. Since real-world data is not necessarily IID, it is important to study
the effect of non-IID data on the performance of FL, specifically FedAvg. Furthermore,
we provide a privacy analysis of the method through the differential privacy framework,
suggesting that FL can outperform non-collaborative training while maintaining a strong
privacy guarantee.

In the first experiment series, we vary the number of clients, with each client repre-
senting one hospital. To make our simulated environment better approach the non-IID
real-world data, each client can have a different number of patients and a different dis-
tribution of cancer sub-types. In the second experiment series, we calculate the privacy
bound of differentially private FL using real-world hospital data. We used the available
attributes in TCGA to divide the dataset across the tissue origin site (hospital) and created
four client datasets as shown in Table 7.4.

7.4.1 Dataset

We obtained 2,580 hematoxylin and eosin (H&E) stained WSIs of lung cancer from TCGA [51],
comprising about 2 TB of data. The images were split into two groups of 1,806 training,
and 774 testing samples WSIs (see Chapter 4). We transformed each raw image into a mo-
saic (see Chapter 3), and then into a bag of features X using a pre-trained DenseNet [95].
From the data, we carried out two experiment series by varying the parameters of FedAvg,
or by varying the data distributions across clients. These experiment series are discussed
as follows.

7.4.2 Experiment Series 1 - Effect of Number of Clients and Data
Distributions

We studied the effect of IID and non-IID distributions on the performance of FedAvg
by randomly dividing the training images without replacement among different clients
(hospitals). We also varied the number of clients (n) while keeping the total number of
images fixed. IID data is generated by uniformly dividing each cancer sub-type, i.e. LUAD
and LUSC, among different clients. For each cancer sub-type, a probability distribution is
created by assigning a random value to each client and then dividing it by the total sum.
Subsequently, images are divided among different clients by sampling from the probability
distribution. FL achieves superior performance for both IID and non-IID distributions
of data compared to non-collaborative training. FL performs comparably to centralized

75



Accuracy

Data Distribution Number of Clients n Without FL With FL Centralized

IID

4 0.731± 0.03 0.824± 0.02

0.848± 0.02
8 0.620± 0.06 0.780± 0.05
16 0.570± 0.03 0.726± 0.06
32 0.527± 0.02 0.641± 0.09

Non IID

4 0.682± 0.10 0.824± 0.01

0.848± 0.02
8 0.561± 0.08 0.823± 0.05
16 0.524± 0.03 0.750± 0.06
32 0.520± 0.03 0.550± 0.20

Table 7.1: Evaluation on different data distributions. Centralized accuracy denotes the
accuracy when the data is centralized. The accuracy without FL is the mean and stan-
dard deviation of accuracy values across multiple clients without any collaboration. The
accuracy with FL is the mean and standard deviation of the central model trained at the
end of FL evaluated on each client dataset.

training for reasonably sized datasets (n = 4, 8). Interestingly, FL can achieve slightly
better accuracy when trained on a non-IID data distribution. Results are summarized
in Table 7.1 and Figure 7.1. The number of training samples for each client model is in
Figure B.1 (Appendix B).

We compared the performance with and without FedAvg for each setting. In total we
tested 16 experimental settings in Table 7.1. In each of the experiments, the server model
trained using FedAvg outperformed the models trained using local client datasets, showing
the advantage of collaboration. As the total dataset is divided into smaller partitions
for more clients, both client and server model performances deteriorate. We used SGD
optimizer with learning rate = 0.01. The local epoch for each client was set to 1 and
the server model was trained for 250 communication rounds. We visualize the relative
improvement of FedAvg in Table 7.1.

7.4.3 Experiment Series 2 - Real-World Dataset

In this experiment, we use Differential Private Federated Learning (DP-FL) to ensure data
privacy. Differential Privacy (DP) was not considered in experiment series 1 since the
objective was to study the effects of data size, distribution, and the number of clients
on the performance of distributed learning/federated learning in general. In the second
experiment series, we considered the effect of distributional differences from different source
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Figure 7.1: Comparison of the mean accuracy across clients versus the accuracy of the
central model trained with FL for the fabricated clients (not the real hospitals). The
accuracy is computed on two types of data distribution settings across clients—IID and
Non-IID.

hospitals, and a requirement to preserve privacy. Histopathology images can differ greatly,
among others depending on the staining and imaging protocols of the source hospital.
We selected seven hospitals from the TCGA dataset, four to act as clients in FL, and an
additional three to provide externally collected data for model robustness testing. The
distribution of images by hospital is described in Table 7.4. For each of the four clients, we
divided their available images in an 80 : 20 ratio for training and internal testing datasets,
respectively. Then we combined the images from the remaining three hospitals into a single
external validation dataset to study the effects of distributions shifts on FedAvg.

In this experiment, we use Differential Private Federated Learning (DP-FL) to ensure
data privacy. Differential Privacy (DP) was not considered in experiment series 1 since the
objective was to study the effects of data size, distribution, and the number of clients on
the performance of distributed learning/federated learning in general. In experiment series
2, we compared the performance of privacy-preserving FL training with both centralized
training and non-collaborative training. In the FL training, the four hospitals act as clients
collaborating to train one central model. Performance is evaluated on each client’s internal
test set, as well as the external validation set. For comparison, we train a single model on
the combined (centralized) training datasets which gives an upper bound on what could
be achieved in the absence of privacy regulations. Finally, in the non-collaborative setting
each client hospital trains their own model on only their own training dataset. We used
DP-SGD to train the FL and combined models and computed the privacy guarantees (ϵ, δ)
using a Rényi DP accountant [136]. It was observed that the MEM model was sensitive to
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Gradient Clipping Noise Multiplier Privacy Budget (ϵ) Test Accuracy External Accuracy

1.0 4 2.90 0.815 0.740
1.5 4 3.26 0.759 0.719
2.0 4 3.89 0.765 0.732
1.0 6.0 2.34 0.832 0.737
1.0 2.0 10.01 0.782 0.748

Table 7.2: Ablation Study of DP hyperparameters (gradient clipping and noise multiplier)

Non-collaborative Training DP-FL Training FL Training Combined Training

Source Hospital Test External Test External Test External Test External

International Genomics Consortium 0.654 0.631

0.823 ± 0.01 0.707 ± 0.01 0.823 ± 0.01 0.741 ± 0.01 0.839 ±0.01 0.768 ± 0.003
Indivumed 0.648 0.556
Asterand 0.709 0.701
John Hopkins 0.681 0.600

Table 7.3: Evaluation of collaborative and non-collaborative learning on Test and External
Datasets using DP-SGD, achieving privacy parameter ϵ = 2.90 for δ = 0.0001. For FL
and Combined training we report the mean accuracy and standard deviation across the
client’s test datasets. On the external dataset we ran the experiments using three random
initialization, and report the mean accuracy and standard deviation across them.

DP-SGD hyper parameters. We used a vectorized Adam optimizer[137] with the following
hyper-parameter values[79]: epochs = 180, training set size = 705, batch size = 32, gradient
clipping norm = 1.0, Gaussian noise standard deviation = 4.0, number of microbatches =
32, learning rate = 2× 10−5. Ablation study is provided in the Table 7.2.

As shown in Table 7.3, FL training achieves strong privacy bounds (ϵ = 2.90 at
δ = 0.0001) with better performance than non-collaborative training, comparable to cen-
tralized training. This demonstrates that FL could be effectively used in clinical settings
to ensure data privacy with no significant degradation in performance. Results are shown
in Table 7.3. FedAvg achieves comparable performance to centralized training without
explicitly sharing private data with strong privacy guarantees. Due to distribution shifts,
accuracy decreases on external validation for both Federated Learning and centralized
training. Therefore, we experimentally demonstrate the Federated Learning can be used
for medical image analysis in real-world setting without explicitly sharing data, while
achieving similar performance to centralized training with data sharing.
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Dataset Type Source Hospital (Clients) LUAD Images LUSC Images Total

Train/Test

International Genomics Consortium 189 78 267
Indivumed 94 117 211
Asterand 90 117 207
Johns Hopkins 121 78 199

External
Christiana Healthcare 169 54 223
Roswell Park 35 75 110
Princess Margaret Hospital (Canada) 0 52 52

Table 7.4: Source hospitals for test/train and external dataset and their data distribution.

7.5 Summary

There are two major limitations of Fedvg (i) assumption of a central entity during the train-
ing, and (ii) no personalization for individual client. The FedAvg requires a central entity
for managing training states, and aggregating gradients, however a central entity is difficult
to assign in the collaborations among hospitals or medical institutions. Furthermore, the
incentive for the collaboration is the improvement of model’s performance on the local test
data (local to the participating hospital). However, in the case of FedAvg, one a single
global model is learned which may not provide personalized improvement for individual
participants. The research in the chapter suggests that private federated learning achieves
a comparable result compared to conventional centralized training, and hence it could be
considered for distributed training on medical data. But further improvements are required
to overcome the discussed limitations. These limitations are resolved through a scheme
proposed in the next chapter, called ProxyFL or a Proxy-based Federated Learning.
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Chapter 8

ProxyFL: Decentralized Federated
Learning through Proxy Model
Sharing

8.1 Prologue

This chapter is based on the following paper published during this Ph.D. research:

A. S. Kalra, et al. ProxyFL: Decentralized Federated Learning through Proxy Model
Sharing. Under Review (March 2022)

The last chapter presented a case-study on a federated learning method (FedAvg)
for analysis of histopathology images. The experiments suggests that private federated
learning achieves a comparable result compared to conventional centralized training, and
hence it could be considered for distributed training on medical data. However, there are
two major limitations of the FedAvg (i) assumption of a central entity during the training,
and (ii) no personalization for individual client. To resolve these limitations, a decentralized
version of federated learning is proposed in this chapter (i.e., no central entity and only
peer-to-peer communication).

Summary. This chapter introduces a communication-efficient scheme for decentralized
federated learning called ProxyFL, or proxy-based federated learning. Each participant
in ProxyFL maintains two models, a private model, and a publicly shared proxy model
designed to protect the participant’s privacy. Proxy models allow efficient information
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Client 1

Client 2Client 3

Proxy Model
Exchange

Figure 8.1: ProxyFL is a communication-efficient, decentralized federated learning method
where each client (e.g., hospital) maintains a private model, a proxy model, and private
data. During distributed training, the client communicates with others only by exchanging
their proxy model which enables data and model autonomy. After training, a client’s
private model can be used for inference.

exchange among participants using the PushSum method without the need of a central-
ized server. The proposed method eliminates a significant drawback of canonical federated
learning by allowing model heterogeneity; each participant can have a private model with
any architecture. Furthermore, the proposed protocol for communication by proxy leads to
stronger privacy guarantees using differential privacy analysis. Experiments on popular im-
age datasets, and a pan-cancer diagnostic problem using over 30,000 high-quality gigapixel
histology whole slide images, show that ProxyFL can outperform existing alternatives with
much less communication overhead and stronger privacy.

8.2 Introduction

FedAvg (FL) is a distributed learning framework that was designed to train a model on
data that could not be centralized [?]. It trains a model in a distributed manner directly
on client devices where data is generated, and gradient updates are communicated back
to the centralized server for aggregation. However, the canonical FL setting is not suited
to the multi-institutional collaboration problem, as it involves a centralized third party
that controls a single model. Considering a collaboration between hospitals, creating one
central model may be undesirable. Each hospital may seek autonomy over its own model
for regulatory compliance and tailoring to its own specialty.
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While it is often claimed that FL provides improved privacy since raw data never
leaves the client’s device [?], it does not provide the guarantee of security that regulated
institutions require. FL involves each client sending unaudited gradient updates to the
central server, which is problematic since deep neural networks are capable of memorizing
individual training examples, which may completely breach the client’s privacy [138].

In contrast, meaningful and quantitative guarantees of privacy are provided by the
differential privacy (DP) framework [75]. In DP, access to a database is only permitted
through randomized queries in a way that obscures the presence of individual data points.
More formally, let D represent a set of data points, and M a probabilistic function, or
mechanism, acting on databases. We say that the mechanism is (ϵ, δ)-differentially private
if for all subsets of possible outputs S ⊂ Range(M), and for all pairs of databases D and
D′ that differ by one element,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ. (8.1)

The spirit of this definition is that when one individual’s data is added or removed from the
database, the outcomes of a private mechanism should be largely unchanged in distribution.
This will hold when ϵ and δ are small positive numbers. In this case an adversary would not
be able to learn about the individual’s data by observing the mechanism’s output, hence,
privacy is preserved. DP mechanisms satisfy several useful properties, including strong
guarantees of privacy under composition, and post-processing [77, 76]. These properties
make DP a suitable solution for ensuring data privacy in a collaborative FL setting.

In this chapter, we propose proxy-based federated learning, or ProxyFL, for decentral-
ized collaboration between institutions which enables training of high-performance and
robust models, without sacrificing data privacy or communication efficiency. The contri-
butions are: (i) a method for decentralized FL in multi-institutional collaborations that is
adapted to heterogeneous data sources, and preserves model autonomy for each participant;
(ii) incorporation of DP for rigorous privacy guarantees; (iii) analysis and improvement of
the communication overhead required to collaborate.

8.3 Related Work

Decentralized FL for highly regulated domains. Unlike centralized FL [?, 139] where
federated clients coordinate to train a centralized model that can be utilized by everyone
as a service, decentralized FL is more suitable for multi-institutional collaborations due to
regulatory constraints. The main challenge of decentralized FL is to develop a protocol
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that allows information passing in a peer-to-peer manner. Gossip protocols [140] can be
used for efficient communication and information sharing [141, 142]. There are different
forms of information being exchanged in the literature, including model weights [143, 144],
knowledge representations [145] or model outputs [146, 147]. However, unlike our method,
none of these protocols provides a guarantee of privacy for participants, and therefore
cannot be used safely in highly regulated domains.

Mutual learning. Each client in our ProxyFL has two models that serve different pur-
poses. They are trained using a DP variant of deep mutual learning (DML) [148] which
is an approach for mutual knowledge transfer. DML compares favourably to knowledge
distillation between a pre-trained teacher and a typically smaller student [149] since it
allows training both models simultaneously from scratch, and provides beneficial informa-
tion to both models. Federated Mutual Learning (FML) [150] introduces a meme model
that resembles our proxy model, which is also trained mutually with each client’s private
model, but is aggregated at a central server. However, FML is not well-suited to the multi-
institutional collaboration setting as it is centralized and provides no privacy guarantee to
clients.

Differential privacy in FL. Although raw data never leaves client devices, FL is still sus-
ceptible to breaches of privacy [74, 73]. DP has been combined with FL to train centralized
models with a guarantee of privacy for all clients that participate [80]. By ensuring that
gradient updates are not overly reliant on the information in any single training example,
gradients can be aggregated centrally with a DP guarantee [151]. We take inspiration from
these ideas for ProxyFL.

Computational pathology. The main application domain considered in this work is
computational pathology. Various articles have emphasized the need for privacy-preserving
FL when facing large-scale computational pathology workloads. [152] and [153] used FL
for medical image augmentation and segmentation. Their method used a centralized server
to aggregate selective weight updates that were treated in a DP framework, but they did
not account for the total privacy budget expended over the training procedure. [84] and
[?] built medical image classification models with FL, and added noise to model weights
for privacy. However, model weights have unbounded sensitivity, so no meaningful DP
guarantee is achieved with these techniques.

8.4 Method - ProxyFL

ProxyFL, or proxy-based federated learning is our proposed approach for decentralized
federated learning. It is designed for multi-institutional collaborations in highly-regulated
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domains, and as such incorporates quantitative privacy guarantees with efficient commu-
nication.

8.4.1 Problem Formulation & Overview

We consider the decentralized FL setting involving a set of clients K, each with a local
data distribution Dk,∀k ∈ K. Every client maintains a private model fϕk

: X → Y with
parameters ϕk, where X ,Y are the input/output spaces respectively. In this work, we
assume that all private models have the same input/output specifications, but may have
different structures1. The goal is to train the private models collectively so that each
generalizes well on the joint data distribution.

There are three major challenges in this setting: (i) The clients may not want to reveal
their private model’s structure and parameters to others. Revealing model structure can
expose proprietary information, increase the risk of adversarial attacks [154], and can leak
private information about the local datasets [155]. (ii) In addition to model heterogeneity,
the clients may not want to rely on a third party to manage a shared model, which precludes
centralized model averaging schemes. (iii) Information sharing must be efficient, robust,
and peer-to-peer. To address the above challenges, we introduce an additional proxy model
hθk : X → Y for each client with parameters θk. It serves as an interface between the
client and the outside world. As part of the communication protocol, all clients agree on
a common proxy model architecture for compatibility.

In every round of ProxyFL, each client trains its private and proxy models jointly so
that they can benefit from one another. With differentially private training, the proxy can
extract useful information from private data, ready to be shared with other clients without
violating privacy constraints. Then, each client sends its proxy to its out-neighbors and
receives new proxies from its in-neighbors according to a communication graph, specified
by an adjacency matrix P and de-biasing weights w. Finally, each client aggregates the
proxies they received, and replaces their current proxy. The overall procedure is shown in
Figure 8.1 and Algorithm 1. We discuss each step in detail in the subsequent subsections.

8.4.2 Training Objectives

For concreteness, we consider classification tasks. To train the private and proxy models
at the start of each round of training, we apply a variant of DML [148]. Specifically, when

1This can be further relaxed by including client-specific input/output adaptation layers.
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Algorithm 1 ProxyFL

Require: Proxy parameters θ
(0)
k , private parameters ϕ

(0)
k , de-biasing weight w

(0)
k for client

k, DML weights α, β∈(0, 1), learning rate η > 0, adjacency matrix P (t)

1: for each round t = 0, . . . , T − 1 at client k ∈ K do
2: for each local optimization step do
3: Sample mini-batch Bk = {(xi, yi)}Bi=1 from Dk

4: Update local proxy and private models:

θ
(t)
k ← θ

(t)
k − η∇̃L̂θk(Bk) # DP update

ϕ
(t)
k ← ϕ

(t)
k − η∇L̂ϕk

(Bk) # non-DP update

5: end for
6: ϕ

(t+1)
k ← ϕ

(t)
k

7: Send
(
P

(t)
k′,kθ

(t)
k , P

(t)
k′,kw

(t)
k

)
to out-neighbors;

receive
(
P

(t)
k,k′θ

(t)
k′ , P

(t)
k,k′w

(t)
k′

)
from in-neighbors

8: Update local proxy θ
(t+1)
k ←

∑
k′ P

(t)
k,k′θ

(t)
k′

9: Update de-bias weight w
(t+1)
k ←

∑
k′ P

(t)
k,k′w

(t)
k′

10: De-bias θ
(t+1)
k ← θ

(t+1)
k /w

(t+1)
k

11: end for
12: return θ

(T )
k , ϕ

(T )
k

training the private model for client k, in addition to the cross-entropy loss (CE)

LCE(fϕk
) := E(x,y)∼Dk

CE[fϕk
(x)∥y], (8.2)

DML adds a KL divergence loss (KL)

LKL(fϕk
;hθk) := E(x,y)∼Dk

KL[fϕk
(x)∥hθk(x)], (8.3)

so that the private model can also learn from the current proxy model. The objective for
learning the private model is given by

Lϕk
:= (1− α) · LCE(fϕk

) + α · LKL(fϕk
;hθk), (8.4)

where α ∈ (0, 1) balances between the two losses. The objective for the proxy model is
similarly defined as

Lθk := (1− β) · LCE(hθk) + β · LKL(hθk ; fϕk
). (8.5)
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where β ∈ (0, 1). As in DML, we alternate stochastic gradient steps between the private
and proxy models.

In our context, mini-batches are sampled from the client’s private dataset. Releasing
the proxy model to other clients risks revealing that private information. Therefore, each
client uses differentially private stochastic gradient descent (DP-SGD) [151] when training
the proxy (but not the private model). Let Bk = {(xi, yi)}Bi=1 denote a mini-batch sampled

from Dk. The stochastic gradient is ∇L̂ϕk
(Bk) := 1

B

∑B
i=1 g

(i)
ϕk

where

g
(i)
ϕk

:= (1− α)∇ϕk
CE[fϕk

(xi)∥yi]
+ α∇ϕk

KL[fϕk
(xi)∥hθk(xi)].

(8.6)

∇L̂θk(Bk) and g
(i)
θk

are similarly defined for the proxy. To perform DP training for the
proxy, the per-example gradient is clipped, then aggregated over the mini-batch, and finally
Gaussian noise is added [151]:

g
(i)
θk

:= g
(i)
θk

/ max
(

1, ∥g(i)
θk
∥2/C

)
,

∇̃L̂θk(Bk) := 1
B

(∑B
i=1g

(i)
θk

+N (0, σ2C2I)
)
,

(8.7)

where C>0 is the clipping threshold and σ>0 is the noise level (see Lines 2–5 in 1).

8.4.3 Privacy Guarantee

The proxy model is the only entity that a client reveals, so each client must ensure this
sharing does not compromise the privacy of their data. Since arbitrary post-processing on
a DP-mechanism does not weaken its (ϵ, δ) guarantee [77], it is safe to release the proxy as
long as it was trained via a DP-mechanism. DP-SGD as defined in Equation 8.7 is based
on the Gaussian mechanism [78] which meets the requirement of Equation 8.1 by adding
Gaussian noise to the outputs of a function f with bounded sensitivity C in L2 norm,

M(x) = f(x) +N (0, σ2C2I). (8.8)

DP-SGD simply takes f(x) to be the stochastic gradient update, with clipping to ensure
bounded sensitivity.

Every application of the DP-SGD step incurs a privacy cost related to the clipping
threshold C, and noise level σ. A strong bound on the total privacy cost over many applica-
tions of DP-SGD is obtained by using the framework of Rényi differential privacy [136, 156]
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to track privacy under compositions of DP-SGD, then convert the result to the language
of (ϵ, δ)-DP as in Equation 8.1 [157].

Finally, privacy guarantees are tracked on a per-client basis. In a multi-institutional
collaboration, every client has an obligation to protect the privacy of the data it has
collected. Hence, each client individually tracks the parameters (ϵ, δ) for its own proxy
model training, and can drop out of the protocol when its prespecified privacy budget is
reached. Throughout the chapter we specify δ based on the dataset size, and compute ϵ.

8.4.4 Communication Efficiency & Robustness

The proxies serve as interfaces for information transfer and must be locally aggregated in
a way that facilitates efficient learning among clients. One may use a central parameter
server to compute the average of the proxies, similar to [150]. However, this will incur a
communication cost that grows linearly in the number of clients, and is not decentralized.
We propose to apply the PushSum scheme [140, 142] to exchange proxies among clients.

Let Θ(t) ∈ R|K|×dθ represent the stacked proxies at round t, where the rows are the
proxy parameters θ

(t)
k ,∀k ∈ K. We use P (t) ∈ R|K|×|K| to denote the weighted adjacency

matrix representing the graph topology at round t, where P
(t)
k,k′ ̸= 0 indicates that client k

receives the proxy from client k′. Note that P (t) needs to be column-stochastic, but need
not be symmetric (bidirectional communication) nor time-invariant (across rounds). Such
a P (t) will ensure efficient communication when it is sparse. The communication can also
handle asymmetrical connections such as different upload/download speeds, and can adapt
to clients joining or dropping out since it is time-varying.

With these notations, every round of communication can be concisely written as Θ(t+1) =
P (t)Θ(t). Under certain mixing conditions [158], it can be shown that limT→∞

∏T
t=0 P

(t) =
π1⊤, where π is the limiting distribution of the Markov chain and 1 is a vector of all ones.
Suppose for now that there is no training for the proxies between rounds, i.e., updates
to the proxies are due to communication and replacement only. In the limit, θk will con-
verge to θ

(∞)
k = πk

∑
k′∈K θ

(0)
k′ . To mimic model averaging (i.e., computing 1

|K|
∑

k′∈K θ
(0)
k′ ),

the bias introduced by πk must be corrected. This can be achieved by having the clients
maintain another set of weights w ∈ R|K| with initial values w(0) = 1. By communicating
w(t+1) = P (t)w(t), we can see that w(∞) = π1⊤w(0) = |K|π. As a result, the de-biased

average is given by θ
(∞)
k /w

(∞)
k = 1

|K|
∑

k′∈K θ
(0)
k′ .

Finally, recall that the proxies are trained locally in each round. Instead of running the
communication to convergence for proxy averaging, we alternate between training (Lines
2–5 in 1) and communicating (Lines 7–10) proxies, similar to [159].
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Client # Slides
Training Test Total

C1: University of Pittsburgh 1,310 562 1,872
C2: Indivumed 1,004 431 1,435
C3: Asterand 818 351 1,169
C3: MSKCC 798 342 1,140

Total 5,616

Table 8.1: Distribution of WSIs across 4 different participating clients. The total of 5,616
WSIs accounts for around 6 TB of imaging data.

8.5 Experiments

8.5.1 Dataset

In this experiment, we evaluated ProxyFL on a multi-origin real-world dataset. We consid-
ered the largest public archive of whole-slide images (WSIs), namely The Cancer Genome
Atlas (TCGA) [103]. TCGA provides about 30,000 H&E stained WSIs originating from
various institutions, distributed across multiple primary diagnoses. The client data for this
study was derived from TCGA by splitting it across four major institutions: i) University
of Pittsburgh, ii) Indivumed, iii) Asterand, and iv) Memorial Sloan Kettering Cancer Cen-
ter (MSKCC). The data splits for each participating client are described in Table 8.1. The
total data size is around 6 TB for all hospitals.

WSI pre-processing & model setup. Each WSI is an extremely large image (more
than 50,000 x 50,000 pixels with a size often much larger than several hundred MBs), and
cannot be directly processed by a CNN. In order to classify a WSI, we divided it into a
small number of representative patches called a mosaic, using the techniques from [2]. The
mosaic patches were then converted into feature vectors using a pre-trained DenseNet [95].
Each WSI corresponds to a set of features; these sets are then used for training a classifier
based on the DeepSet architecture [60]. In the context of ProxyFL, both the private and
proxy models are DeepSet-based.

8.5.2 Results

Experimental setup. The experiments were conducted using four V100 GPUs. Three
FL methods were compared: ProxyFL, FML, and FedAvg. In each scenario, training was
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Client Privacy Guarantees
(C = 0.7, δ = 10−4)

Strong (σ = 1.4) Weak (σ = 0.7)

C1 ϵ = 1.56 ϵ = 4.52
C2 ϵ = 1.81 ϵ = 5.31
C3 ϵ = 2.04 ϵ = 6.02
C4 ϵ = 2.07 ϵ = 6.11

(c) Privacy Guarantees
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Figure 8.2: Performance of ProxyFL, FML, and FedAvg on the histopathology dataset
involving four hospitals. The mean accuracy and standard deviation of clients on both
internal and external data is recorded at the end of each round for two DP settings, and
is presented in (a) and (b) respectively. Three random seeds were used. As expected,
stronger privacy results in the lower overall accuracy for the internal dataset, but ProxyFL
and FML show commensurate changes. Privacy gurantees for each method are listed in
(c), computed based on the training set sizes in Table 8.1. The communication time per
client for 150 rounds of training is shown in (d). FedAvg has less efficient communication
because it exchanges the larger private model whereas ProxyFL and FML exchange the
lightweight proxy models.
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conducted for 50 rounds with a mini-batch size of 16. All methods were tested with two DP
settings, one with strong privacy σ = 1.4, and the other with comparatively weak privacy
σ = 0.7, both with C = 0.7. The client-level privacy guarantees for the two DP settings
are provided in Figure 8.2c, computed based on the training set sizes in Table 8.1. FedAvg
and the proxy models used the DP-SGD optimizer with learning rate 0.01, whereas the
private models used the Adam with learning rate 0.001. For ProxyFL and FML the private
models are used to compute the accuracy values, whereas the central model is used in the
case of FedAvg.

Performance was computed based on two test datasets – internal and external. Both
datasets are local to the clients. Internal test data is sampled from the same distribution
as the client’s private training data, whereas external test data comes from other clients
involved in the federated training, and hence a different institution entirely2. The 32
unique primary diagnoses in the dataset can be further grouped into 13 tumor types3. The
tumor type of a WSI is generally known at inference time, so the objective is to predict the
cancer sub-type. We evaluated our method by its accuracy of classifying a cancer sub-type
(primary diagnosis) of a WSI given that its tumor type is already known.

Discussion. The sub-type classification results for internal and external data on two
different DP settings (strong and weak privacy) for each method are reported in Figure 8.2a
and Figure 8.2b. ProxyFL achieves overall higher accuracy compared to FML and FedAvg
on the internal test data for both privacy settings. For the external test data, all three
methods perform similar to each other with FedAvg slightly ahead when using stronger
privacy. ProxyFL has noticeably better convergence compared to FML as shown by the
lower variance in both privacy settings. When strong privacy is used, the FedAvg central
model has converged by around the 25th round showing no improvement in the performance
across both test datasets. Both ProxyFL and FML are more communication efficient than
FedAvg because they exchange lightweight proxy models rather than the larger private
models (Figure 8.2d), but ProxyFL has the lowest communication overhead due to using
fewer model exchanges.

2For the external test data, we only use examples with a primary diagnosis present in the client’s local
data. If access to this type of external data is not possible due to privacy concerns, model performance
could be validated on public external data.

3Tumor types are from Tables 3 and 4 of [122].

90



8.6 Summary

This chapter proposed a novel decentralized federated learning scheme, ProxyFL, for multi-
institutional collaborations without revealing participants’ private data. ProxyFL pre-
serves data and model privacy, and provides a decentralized and communication-efficient
mechanism for distributed training. Experiments suggest that ProxyFL is competitive
compared to other baselines in terms of model accuracy, communication efficiency, and
privacy preservation. ProxyFL makes Yottixel a collaborative, and holistic framework for
analysis and representation of histopathology images.
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Chapter 9

Conclusions & Future Work

The goal of this research was to develop a representation learning framework for histopathol-
ogy images that enables image searching in a large archive (with a reasonable speed and
accuracy). The major challenge in processing pathology images is their extremely high
dimensionality, often one or more gigabytes in size. In this regard, in Chapter 3, the chal-
lenge of processing the large dimensionality was addressed through a proposed framework,
Yottixel— that systematically divided a large histopathology image into a set of representa-
tive patches, called mosaic. Chapter 4, Chapter 5, Chapter 6, contributed towards resolv-
ing a major shortcoming of Yottixel by incorporating different ways of weak-supervision to
train the feature extraction backbone of Yottixel. The weak-supervision in form of multi-
instance learning enabled Yottixel to compute more discriminative representations thereby
improving its performance in cancer sub-type classification. As Yottixel became a train-
able approach, in the last two chapters (Chapter 7, Chapter 8), methods were developed to
enable private and distributed training of Yottixel through federated learning. The private
and distribute training allows us to integrate diverse medical datasets. Furthermore, it en-
ables scaling Yottixel capabilities over multiple hospitals. In this final chapter of the thesis,
main contributions are summarized and some promising directions for future research in
the field of representation of histopathology images are put forward.

9.1 Highlights of Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• Representing a histopathology image as a set of representative patches.
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Chapter 3 discussed a method, called Yottixel that resolved a challenge of processing
gigapixel histopathology images by dividing them into a mosaic of patches. Ex-
isting deep learning methods are unable to process these images in their entirety.
Yottixel divides a histopathology image into a set of representative patches (called
mosaic) which enables the incorporation of existing deep learning methods without
the requirement of massive computational and storage overhead. The initial concept
of Yottixel was completely unsupervised, and achieved good retrieval accuracy in a
large archive of whole-slide images.

• Incorporating slide-level label information for more discriminative fea-
tures. Chapter 4, Chapter 5, Chapter 6 proposed three different multi-instance
learning methods to incorporate label information of histopathology images to learn
more discriminative representations. Generally, a label (e.g., a cancer subtype) is
associated with an entire histopathology image without access to any regional- or
pixel-level annotations. The problem at hand is different from traditional supervised
machine learning that operates on a single instance and its associated target label.
The weak-supervision through multi-instance learning (MIL) is used for training Yot-
tixel using a mosaic, and a target label pairs (cancer sub-type). Three different MIL
methods have been proposed that not only improve the Yottixel for the cancer sub-
type classification, but also enable visualizing the patches that are deemed important
for the given prediction.

• Private and distributed training of Yottixel. Yottixel can be trained through
weakly-supervised, multi-instance learning based approaches. However, its function-
ality is limited due the restricted scaling of its training and the access to the diver-
sified dataset. Training Yottixel on a large dataset is a time-consuming task, and it
becomes quickly cumbersome and impractical as dataset grows in size. Chapter 7,
Chapter 8 represent two different federated learning (FL) methods as a paradigm
for distributed and collaborative learning framework to train Yottixel across multi-
ple hospitals while respecting patient privacy. The experimental results suggest that
private federated learning achieves a comparable result compared to conventional cen-
tralized training, and hence it could be considered for distributed training on medical
data. Furthermore, a new scheme for FL is proposed called ProxyFL (Chapter 8),
especially curated for institutional collaborations in training deep models.
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9.1.1 Limitations

The experimental results demonstrated that the proposed methods produce discriminative
representations of histopathology images. However, there are some limitations accompa-
nied with these methods which should be considered.

• Yottixel. One of the major limitations of Yottixel is its inability to learn to produce
mosaic patches. The mosaic patches are obtained in an completely unsupervised
manner. Sometime, thge mosaic of a histopathology image misses important regions
thus adversely affecting the final representation. Performance of Yottixel is heavily
dependent on its hyperparameters, however Chapter 3 provides good default values
that have been determined empirically.

• ProxyFL. The work focused on the privacy aspects of the ProxyFL protocol, but
not on its security. We have assumed that all clients collaborate in good faith. It
provides limited handling of malicious participants. The participants may not have
malicious intent, however their local data distribution may be very different from
other clients, comprising the model’s performance for others.

9.2 Future Work

The proposed methods in this thesis open several new directions for future work. Below,
the main topics are described.

9.2.1 Reinforcement Learning for Mosaic Extraction

The mosaic of a whole-slide image is extracted in a completely unsupervised manner as
described in Chapter 3. It uses color, and spatial clustering to extract the mosaic. The
extracted mosaic becomes an independent representation of a given histopathology image,
and it is kept disengaged from the weakly supervised learning methods presented in the
Chapter 4, Chapter 5, Chapter 6. If the diagnostically relevant patches are missing in the
mosaic, the learning approach will suffer in performance or will overfit on non-generalizing
or irrelevant features. An important future direction to expand Yottixel would be develop
a trainable mosaic extraction method. A mosaic extraction approach that can be tied into
the end-to-end learning. In the other words, the weakly supervised methods are not only
able to enhance the feature extraction capabilities of Yottixel but also alter the mosaic
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extraction policy. In this context, reinforcement learning (RL) is a relevant avenue to ex-
plore. Qaiser & Rajpoot have proposed a RL-based method for automated scoring of IHC
stained HER2 slides of breast cancer [160]. Unlike fully supervised models that process all
the regions of a given input image, the proposed model treats IHC scoring as a sequential
selection task and effectively localizes diagnostically relevant regions by deciding “where
to see”. The proposed model carries the potential to solve other histology image analysis
problems where it is difficult to get precise pixel-level annotations. A similar approach may
also eventually assist the pathologist in automated localization and classification of poten-
tial ROIs in both H&E and IHC stained histology images. In RL, a reward function guides
the learning, an learning agent performs the actions that maximize the future rewards from
the system. In case of Yottixel, reward function can be modeled as the “correct” retrievals
(the same cancer sub-type).

9.2.2 Multi-Modal Deep Learning

In Chapter 4, Chapter 5, and Chapter 6, methods were developed to enhance the Yottixel
features through the weakly supervised training on the primary diagnosis labels associ-
ated with histopathology images. In Chapter 5, a fine-tuning method was developed that
utilized the hierarchical relationship among anatomical site and primary diagnosis. We
notice that exposing more data, their relationships to a deep model results in the better
performance. A histopathology image has vast amount of data associated to it, the most
important one is the pathology report that summarizes the opinion of a given case by an
expert. A relevant future direction would be exploring methods for unification of different
data modalities, such as pathology reports, genome sequence data, clinical data for training
the Yottixel. Nevertheless, data from different modalities potentially have complementary
information since they reflect the same patient (case) from different perspectives and may
influence each other (i.e., the gene alternation may induce the cell morphologic changes
in tumor regions [161]). Therefore, a method that can process the misaligned informa-
tion from multiple modalities—image, text, gene data, tabular clinical data, can make full
use of the potential complementary information to generalize well on a given task. The
attention-based multi-instance learning as developed in this thesis are weakly supervised
learning approaches that effectively learns to distinguish between unrelated patches and
discriminative patches. At present, MIL is mainly based on the guidance of the knowledge
from the imaging modality alone [161] and overlooks useful supplementary knowledge from
real scenarios to guide the instance-level attention. It’s worth exploring how to borrow use-
ful knowledge from another modality (i.e., genome/exome data, or pathologists’ reports
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data) to guide the MIL in imaging modality to optimally distribute the instance-level at-
tention. One such method in literature is MMMI learning [161] to overcome the challenges
of fusing histopathological images and tabular clinical data to predict breast cancer. A
strategy for multimodal data integration with application to biomarkers identification in
spinocerebellar ataxia is presented in [162].

9.2.3 Semi-Supervised Deep Learning

The most recent success of deep learning is in the area of supervised learning and is made
possible by data sets with millions of labeled images [163, 164]. While unsupervised feature
learning is an active area of research, its use in a classification model does not yet compare
with supervised feature learning. This is particularly unfortunate in medical applications
for which gathering that much finely-annotated data is cost and time prohibitive. In the
case of histopathology, there is a great deal of unlabeled data available, making unsuper-
vised or semi-supervised feature learning attractive. This thesis explored weakly-supervised
methods where each input instance would have some indirect relationship to the output
or target label. In the case of the problem explored in this thesis, multiple input instances
were associated to a single target or output label. A class of weakly supervised methods
called multi-instance learning (MIL) was utilized to approach the given problem. How-
ever, many times, labels are simply not available for given whole-slide images, perhaps
these images are created as a part of digitization effort from an institution or images are
in public domain where label information was never released. With limited annotation,
deep learning model training often covers only a limited fraction of the histopathology
data space. There could exist considerable discrepancy (in appearance) between the la-
beled and unlabeled sets. Thus, the trained deep models are at risk of over-fitting and do
not generalize well to unseen data. To allow better generalization, an array of methods
based on semi-supervised learning (SSL) are utilized. The assumption is that unlabeled
images are commonly from the original data distribution and contain useful information.
In practice, there is often a large amount of unlabeled data available which are free to use.
Some powerful SSL methods used the feature distribution of unlabeled images to reduce
the need for labeling. For example, images are projected to low-dimensional feature space
and pseudo-labels are assigned to unlabeld images based on clustering features [165]. In
[166], images were intentionally perturbed to explore the decision boundary for adversarial
training. These methods can be incorporated in Yottixel training to take advantage of
large quantity of unlabeled data in histopathology.
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9.2.4 Personalized Federated Learning

Chapter 8 discussed a framework for institutionalized federated learning in highly regu-
lated domains, such as medicine. The proposed method eliminates a significant drawback
of canonical federated learning by allowing — (i) model heterogeneity; each participant
can have a private model with any architecture, and (ii) independence from a central
entity; decentralization of federated learning. However, a major limitation of ProxyFL
was limited objective personalization for involved participants. In federated learning, each
participant has different objective, and different distribution of the local dataset. For ex-
ample, among participating hospitals, some hospitals may specialize in lung diseases and
would only expect their models to improve their performance on lung-related cases. The
performance improvement over general cases may not be significant for these hospitals.
Recently, achieving the idea of personalization in federated learning has gained lot of at-
tention [167, 168, 169]. The personalized federated learning is under-explored not just
in histopathology domain, but in the entire medical imaging domain. A future direction
would be to extend ProxyFL to achieve the goal of personalized federated learning.
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Appendix A

Addition content for Chapter 3.

A.1 Yottixel Algorithm Overview

Yottixel framework incorporates clustering, transfer learning, and barcodes. In general,
before any search is performed, all images in the repository have to be “indexed”, i.e.,
every WSI is catalogued utilizing a “bunch of barcodes” (BoB indexing). These barcodes
are stored for later use and generally not visible to users. This process contains several
steps (Figure A.1):

1. Tissue Extraction. Every WSI contains a bright (white) background that gener-
ally contains irrelevant (non-tissue) pixel information. In order to process the tissue,
we need to segment the tissue region(s) and generate a black and white image (binary
mask) that provides the location of all tissue pixels as “1” (white). Such a binary
mask is depicted in the top row of Figure A.1.

2. Mosaicking. Segmented tissue now gets patched (divided into patches/tiles).
These patches have a fixed size at a fixed magnification (e.g., 500×500 µm2 at 20×
scan resolution). All patches of the WSI get grouped into a pre-set number of cate-
gories (classes) via a clustering method (we used k-means algorithm). A clustering
algorithm is an unsupervised method that automatically groups WSI patches into
clusters (i.e., groups) that contain similar tissue patterns. A small percentage (5%-
20%) of all clustered patches are selected uniformly distributed within each class to
assemble a mosaic. This mosaic represents the entire tissue region within the WSI.
A sample mosaic consisting of 4 patches is depicted in the second row of Figure A.1.
Most WSIs we processed had a mosaic with around 70-100 patches.
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3. Feature Mining. All patches of the mosaic of each WSI are now pushed through
pre-trained artificial neural networks (generally trained with natural images using
datasets such as ImageNet [170]). The output of the network is ignored and the
last pooling layers or the first connected layers are generally used as “features” to
represent each mosaic patch. There could be approximately 1000-4000 features. The
third row of Figure A.1 shows this process where the features (colored squares) are
passed on to the next stage, namely BoB indexing.

4. Bunch of Barcodes. All feature vectors of each mosaic are subsequently converted
into binary vectors using the MinMax algorithm [171]. This bunch of barcodes is the
final index information for every query/input WSI that will be stored in the Yottixel
index for future or immediate search. This is illustrated at the bottom of Figure A.1.

A.2 Yottixel Extended Results

Visualization of Search Results. Examining best, average, and worst cases for diag-
nostic slides, we randomly selected 3,000 slides and visualized them using the T-distributed
Stochastic Neighbor Embedding (t-SNE) method [172] (see Figure A.4). From this visual-
ization we can observe that several subtype groups have been correctly extracted through
search (see groups a to f ). We can also observe the presence of outliers (e.g., DLBC in
groups a and b). The outliers may be a product of the resolution of these scans, at least
in part. At 20x magnification, for example, recognizing a diffuse large B-cell lymphoma
(DLBC) from other large cell, undifferentiated non-hematopoietic tumors may not always
be immediately possible for pathologists. This typically requires serial sections examined
at multiple magnifications with ancillary studies such as immunohistochemistry.

The challenge of validating histologic similarity. One of the major benefits of using
classification methods is that they can easily be validated; every image belongs to a class
or not, a binary concept that can be conveniently quantified by counting the number of
correctly/incorrectly categorized cases. It should be noted that through treating the image
search as a classifier, we have not only used the primary diagnosis for “objective” evaluation
of search results but also we are most likely ignoring some performance aspects of image
search as search is a technology inherently suitable for looking at border cases and fuzziness
of histologic similarity. The concept of similarity in image search is intrinsically a gradual
concept (i.e., cannot be answered with a simple yes/no in many cases) and mostly a matter
of degree (very similar, quite dissimilar, etc.). Additionally, the similarity (or dissimilarity)
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between images is generally calculated using a distance metric/measure (in our case the
Hamming distance [173]). The histologic similarity as perceived by pathologists may not
correspond to tests where we used distance as a classification criterion. In other words,
the classification-based tests that we run may be too harsh for search results and ignorant
toward anatomic similarities among different organs.

One of the possible ways of examining the performance of the search is to look at the
heatmap [174] of the confusion matrix. The values to construct the heatmap can be derived
from the relative frequency of every subtype among the top 10 search results for a given
subtype. A perfect heatmap would exhibit a pronounced diagonal with other cells being
insignificant. Figure A.2 shows the generated heatmap for all diagnostic subtypes in the
dataset. The ordering of subtypes along the y-axis was done manually. It should be noted
that our matching heatmap is not symmetrical like a correlation-based heatmap.

Analysis of the heatmap. The pronounced diagonal in Figure A.2 shows that most dis-
ease subtypes have been correctly classified as they were very frequently retrieved among
the top 10 horizontal search results. We find that MESO is a difficult diagnosis with al-
most absent diagonal values. READ and COAD build a confusion region of 4 squares; they
are confused with each other frequently. The same observation can be made for LUAD
and LUSC. The vertical values for LUAD and LUSC also show that they are present in
many other searches, for instance, when we search for UESC, HNSC and ESCA. Of note,
the observational analysis of the heatmap alone may be limited. If we cluster (group) the
search result frequencies and construct the dendrograms for the relationships in order to
create an advanced heatmap, we might more easily discover the benefits of the search (see
??). We observe that some relations, that otherwise are considered misclassifications are
actually histologically meaningful. Such as, LGG and GBM are both glial tumors of the
central nervous system, rectum and colon cancer are gland forming tumors of the colon,
and both uterine and ovarian carcinoma are grouped under gynecological. The errors (i.e.,
misclassifications) identified were still within the general grouping that the tumor origi-
nated from. Hence, from an image search perspective, it suggests that is it good at being
close to the site of origin when it makes “classification” errors.

Chord diagram of image search. We used a chord diagram to further explore retrieved
results. A chord diagram is the graphic display of the inter-relationships between numbers
in a matrix. The numbers are arranged radially around a circle with the relationships
between the data points generally visualized as arcs connecting the numbers/labels. In
Figure A.3a, the chord diagram of horizontal search(cancer type recognition) for 11,579
permanent diagnostic slides of the TCGA dataset is illustrated. It can be observed that
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certain tumors derived from the same organ are related (e.g. LGG and GBM, UCEC
and CESC, and Kidney RCC and KIRP). Even tumors from different anatomic locations
appear to match (e.g. GBM and sarcoma). This may be attributed to the fact that such
high-grade tumors likely display similar morphologic findings.
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Algorithm 2 Pseudo-code for creating the index or bunch of barcodes (BoB) for
a given WSI I

1: Set kCH (number of color clusters)
2: Set pM (percentage of patches to build the mosaic)
3: Set mc

x (clustering magnification)
4: Set midx

x (indexing magnification)
5: Set patch sizes sl/sh in low/high magnifications
6: procedure Create Index(I)
7: ▷ Extract the tissue regions
8: T ← TissueSegmentation(I)
9: ▷ Select a low magnification within the WSI pyramid

10: Imc
x
← SelectMagnification(I,mc

x)
11: ▷ Perform dense patching for patch size sl × sl
12: P ← DensePatching(Imc

x
, sl)

13: ▷ Isolate patches containing tissue regions
14: PT ← T ∩ P
15: for i ∈ [1, Len(PT )] do
16: ▷ Calculate the histogram of ith patch
17: HPT

[i, :]← RGBHistogram(PT [i])
18: end for
19: ▷ Perform k-means clustering on histograms
20: C1, C2, ..., CkCH

← KMeans(HPT
, kCH)

21: for i ∈ [1, kCH ] do
22: ▷ Cluster the location of patches in Ci

23: CiM ← KMeans(HPT
(i, :), pM × |Ci|)

24: ▷ Construct the Mosaic
25: M ← CiM

26: end for
27: BoBI ← Empty array to store BoB index for I
28: for j ∈ [1, length(M)] do
29: ▷ Get a patch ( sh × sh) at midx

x magnification
30: Pmidx

x
[j]← GetPatch(I,M [j])

31: ▷ Extract the feature from a deep network
32: F ← DeepNet(Pmidx

x
[j])

33: ▷ Convert the feature to a barcode
34: B ← MinMaxBarcode(F )
35: Append B to a BoB array BoBI

36: end for
37: Return BoBI

38: end procedure
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Prostate Specimen Extracted Tissue Region (white)

CONVOLUTION
SUBSAMPLING

CONVOLUTION
SUBSAMPLING

Bunch of Barcodes

Mosaic

Yottixel Index

Feature Mining

BoB Indexing

Features

Figure A.1: Yottixel Image Search Engine: Whole-slide images are segmented first to ex-
tract the tissue region by excluding the background (top block). A mosaic of representative
patches (tiles) is assembled through grouping of all patches of the tissue region using an
unsupervised clustering algorithm (second block from the top). All patches of the mosaic
are fed into a pre-trained artificial neural network for feature mining (third block from the
top). Finally, a bunch of barcodes is generated and added to the index of all WSI files in
the archive (bottom block).
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Algorithm 3 Distance between two given WSIs Iq and I

1: procedure Scan Distance(Iq, I)
2: DI ← ∅
3: for bIq ∈ Iq.bob do
4: Hmin ←∞
5: for bI ∈ I.bob do
6: d← getHammingDistance(bI , bIq)
7: if d < Hmin then
8: Hmin ← d
9: end if
10: end for
11: DI = DI ∪ {Hmin}
12: end for
13: D ← findMedian(DI)
14: return D
15: end procedure
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Figure A.2: Heatmap of re-scaled relative frequency of matched (red) and mismatched
(pale) search results for each diagnosis from permanent diagnostic slides. Re-scaling of
frequencies was done through dividing each frequency by the total number of slides for
each subtype.
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Figure A.3: Chord diagram of horizontal image search for diagnostic slides of the TCGA
dataset (a). Sample relations for brain (LGG and GBM), pulmonary (LAUD, LUSC and
MESO) and gynecological (UCEC, UCS and CESC). The chord diagram can be interac-
tively viewed online: https://bit.ly/2k6g3k1.
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Figure A.4: T-distributed Stochastic Neighbor Embedding (t-SNE) visualization of pair-
wise distances of 3000 randomly selected diagnostic slides from six different primary sites.
Six different cluster formation can be seen, labelled with alphabets. The random slides
from the majority cancer sub-type within each of the assigned areas are shown in Samples
box (gray background). The outliers (not belonging to the majority cancer sub-type or the
primary site) are shown in the Outliers box (red outline).
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Figure A.5: Sample retrievals for cancer subtype categorization through majority votes.
The top four slides are of permanent diagnostic slides whereas the bottom three slides are
of frozen section slides. The misclassified and successful queries are marked with red and
green boundaries, respectively. (for abbreviations see Table A.2)
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Q1 Q2 Q3

# ρsp MOS dℓ1 MOS dℓ1 MOS dℓ1

1. -1.00 3.33 72.0 4.33 76 4.67 77
2. NA 4.67 55.0 4.67 58 4.67 59
3. -1.00 2.00 68.0 2.33 71 3.67 72
4. -0.50 4.00 68.0 4.67 77 4.33 80
5. -1.00 4.00 81.0 4.67 86 4.67 86
6. -0.50 3.67 62.0 4.67 63 4.33 71
7. -0.87 4.00 73.0 4.33 75 4.33 77
8. NA 4.67 66.0 4.67 67 4.67 69
9. -0.87 3.33 76.0 4.00 77 4.00 79
10. 1.00 4.00 102.0 3.33 104 2.67 105
11. 0.87 3.33 70.0 3.33 80 3.00 81
12. -0.87 4.00 51.0 4.67 52 4.67 55
13. NA 4.33 74.0 4.67 74 4.67 74
14. 0.87 4.67 58.0 4.67 65 4.33 69
15. 0.00 3.00 77.0 2.67 78 4.33 78
16. 1.00 5.00 87.0 4.33 93 1.33 97
17. -0.50 4.67 62.0 5.00 62 5.00 64
18. 0.87 5.00 91.0 4.67 95 4.33 95
19. -1.00 4.00 68.0 4.67 73 5.00 75
20. 0.50 4.00 71.0 3.33 76 3.67 79
21. 0.50 5.00 70.0 3.33 71 4.00 78
22. 1.00 5.00 58.0 3.00 74 2.00 77
23. 0.00 4.33 79.0 4.67 83 3.33 83
24. 1.00 5.00 57.0 4.33 60 1.67 77
25. -0.50 4.67 66.0 4.00 78 5.00 79
26. -0.87 4.00 55.0 4.33 55 5.00 60
27. 0.87 4.33 72.0 3.33 73 3.33 75
28. 1.00 5.00 77.0 4.00 79 3.00 82
29. 1.00 4.67 50.0 4.33 70 4.00 74
30. 0.00 4.33 75.0 4.00 76 4.67 76
31. 1.00 4.67 65.0 4.33 70 4.00 76
32. 1.00 5.00 85.0 4.33 90 4.00 91
33. 0.87 5.00 58.0 4.67 62 4.67 65
34. -0.87 3.00 76.0 3.00 81 4.67 83
35. 0.87 4.67 75.0 4.67 78 4.33 79
36. NA 5.00 52.0 5.00 56 5.00 56
37. NA 5.00 60.0 5.00 61 5.00 62
38. 1.00 4.67 71.0 3.33 76 3.00 83
39. NA 5.00 65.0 5.00 69 5.00 71
40. NA 4.33 67.0 4.33 68 4.33 68
41. 0.50 3.67 77.0 4.33 77 3.67 82
42. 0.87 4.33 89.0 3.67 96 2.67 96
43. -0.87 4.33 58.0 4.33 63 4.67 68
44. 0.50 5.00 83.0 4.33 94 4.67 100
45. 0.87 5.00 54.0 4.67 60 4.67 62
46. 0.87 3.67 74.0 2.00 75 2.00 76
47. NA 4.67 57.0 4.67 60 4.67 60
48. -1.00 3.33 60.0 3.67 63 4.00 68∑

0.16 ± 0.76 4.30 ± 0.96 4.13 ± 1.05 4.028 ± 1.21

Table A.1: Mean-Opinion-Score (MOS) of three pathologists for top three search results.
MOS is “a numerical measure of the human-judged overall quality of an event or expe-
rience”. Shades of green represent positive responses (in favour of Yottixel) and shades
of red represent negative responses (against Yottixel). Rank coefficient ρsp represents the
rank correlation of the MOS with respect to the internal ranking of Yottixel based on the
Hamming distance.
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TCGA Code Primary Diagnosis #Patients

ACC Adrenocortical Carcinoma 86
BLCA Bladder Urothelial Carcinoma 410
BRCA Breast Invasive Carcinoma 1097
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 304
CHOL Cholangiocarcinoma 51
COAD Colon Adenocarcinoma 459
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48
ESCA Esophageal Carcinoma 185
GBM Glioblastoma Multiforme 604
HNSC Head and Neck Squamous Cell Carcinoma 473
KICH Kidney Chromophobe 112
KIRC Kidney Renal Clear Cell Carcinoma 537
KIRP Kidney Renal Papillary Cell Carcinoma 290
LGG Brain Lower Grade Glioma 513
LIHC Liver Hepatocellular Carcinoma 376
LUAD Lung Adenocarcinoma 522
LUSC Lung Squamous Cell Carcinoma 504
MESO Mesothelioma 86
OV Ovarian Serous Cystadenocarcinoma 590
PAAD Pancreatic Adenocarcinoma 185
PCPG Pheochromocytoma and Paraganglioma 179
PRAD Prostate Adenocarcinoma 499
READ Rectum Adenocarcinoma 170
SARC Sarcoma 261
SKCM Skin Cutaneous Melanoma 469
STAD Stomach Adenocarcinoma 442
TGCT Testicular Germ Cell Tumors 150
THCA Thyroid Carcinoma 507
THYM Thymoma 124
UCEC Uterine Corpus Endometrial Carcinoma 558
UCS Uterine Carcinosarcoma 57
UVM Uveal Melanoma 80

Table A.2: The TCGA codes (in alphabetical order) of all 33 primary diagnoses and
corresponding number of evidently diagnosed patients in the dataset (TCGA = The Cancer
Genome Atlas)
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Appendix B

Additional content for Chapter 7.
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B.1 FedAvg Extended Results
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Figure B.1: Visualisation of IID and non-IID distribution of data among client models
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