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ABSTRACT 10 

In the quest to model various phenomena, the foundational importance of parameter identifiability to 11 

sound statistical modelling may be less well appreciated than goodness of fit. Identifiability concerns the 12 

quality of objective information in data to facilitate estimation of a parameter, while non-identifiability 13 

means there are parameters in a model about which the data provide little or no information. In purely 14 

empirical models where parsimonious good fit is the chief concern, non-identifiability (or parameter 15 

redundancy) implies over-parameterization of the model. In contrast, non-identifiability implies under-16 

informativeness of available data in mechanistically derived models where parameters are interpreted as 17 

having strong practical meaning. This study explores illustrative examples of structural non-identifiability 18 

and its implications using mechanistically derived models (for repeated presence/absence analyses and 19 

dose-response of E. coli O157:H7 and norovirus) drawn from quantitative microbial risk assessment. 20 

Following algebraic proof of non-identifiability in these examples, profile likelihood analysis and Bayesian 21 

Markov Chain Monte Carlo with uniform priors are illustrated as tools to help detect model parameters 22 

that are not strongly identifiable. It is shown that identifiability should be considered during experimental 23 

design and ethics approval to ensure generated data can yield strong objective information about all 24 

mechanistic parameters of interest. When Bayesian methods are applied to a non-identifiable model, the 25 

subjective prior effectively fabricates information about any parameters about which the data carry no 26 

objective information. Finally, structural non-identifiability can lead to spurious models that fit data well 27 

but can yield severely flawed inferences and predictions when they are interpreted or used 28 

inappropriately. 29 

Key Words: parameter redundancy; quantitative microbial risk assessment (QMRA); dose-response; 30 

research ethics; Bayesian analysis 31 

SUMMARY 32 



When structurally non-identifiable, practically relevant model parameters are inherently inestimable. 33 

Overlooking this can favour spurious inferences informed too strongly by questionable assumptions. 34 



1. INTRODUCTION 35 

There is a well-known aphorism attributed to George Box that “all models are wrong but some are useful”. 36 

Quantitative microbial risk assessment (QMRA) (Haas, Rose, & Gerba, 2014) requires a degree of faith in 37 

the models upon which it depends because it concerns pathogens that are difficult to quantify accurately, 38 

infection processes that are difficult to explore in detail, and epidemiological consequences that are 39 

difficult to measure and attribute to specific exposure pathways. Moreover, QMRA can be riddled with 40 

many types of variability (e.g. temporal, spatial, person-to-person) and uncertainty (in parameter 41 

estimation and model form), concerns about representativeness, and assumptions that are difficult to 42 

validate. Nonetheless, there is continued growth in its use as a tool to motivate exploration and 43 

understanding of risks and to facilitate decision-making. 44 

QMRA integrally depends upon statistical modelling. A statistical model is a mathematical representation 45 

of a set of assumptions linking random variables (e.g. data not yet observed) and other variables that are 46 

non-random (e.g. model parameters, known variables, observed data). Identifiability and non-47 

identifiability (also called parameter redundancy) concern the capacity to obtain a unique estimate of a 48 

model parameter from data of a particular type. Formally, structural non-identifiability occurs when 49 

different sets of values of model parameters yield identical distributions of data (Silvey, 1975; Prakasa 50 

Rao, 1992), resulting in models that do not have unique maximum likelihood estimates. Prakasa Rao 51 

(1992) notes that “estimation of a parameter is not meaningful unless it is identifiable” while Kreutz, Raue, 52 

Kaschek, and Timmer (2013) note that non-identifiability means “the data provides no information about 53 

the respective parameter component”. 54 

While statistical models are widely used in scientific research, discussion of parameter identifiability is 55 

largely limited to formally-trained statisticians. Indeed, introductory probability and statistics text books 56 

(especially for engineers and scientists) generally do not feature identifiability, non-identifiability, 57 



parameter redundancy, or Fisher Information while some include model fitting material. Analysis of 58 

parameter identifiability has been extensively discussed in biostatistics (Catchpole & Morgan, 1997; Raue 59 

et al., 2009; Cole, Morgan, & Titterington, 2010; Little, Heidenreich, & Li, 2010; Kreutz et al., 2013, 60 

Maiwald et al., 2016). In contrast, it has rarely been addressed in relation to QMRA, with a few exceptions 61 

in which it has been highlighted but not extensively discussed (Schmidt, 2015; Brouwer, Weir, Eisenberg, 62 

Meza, & Eisenberg, 2017). The biostatistics literature on structural non-identifiability largely focuses upon 63 

parameters that are an unnecessary (redundant) addition to a model because they provide categorically 64 

no improvement in model fit. In contrast, this study focuses on the other side of the same proverbial coin: 65 

that non-identifiability of parameters can indicate under-informativeness of the type of data collected 66 

rather than over-parameterization of the model. When a model is mechanistically derived with 67 

parameters that have practically meaningful interpretations, arbitrary omission of any redundant 68 

parameter has no effect on model fit but can have grave consequences upon statistical inferences. 69 

Fig. 1 graphically illustrates the consequences of ignoring structural non-identifiability in model 70 

development. Here, parts of the model are exclusively supported by subjective beliefs (e.g. potentially 71 

inaccurate assumptions, informative Bayesian priors) rather than being principally founded in objective 72 

information (e.g. measured data, carefully controlled experimental conditions, rigorously justified 73 

assumptions). Data of the same type are fundamentally incapable of disproving flawed subjective beliefs 74 

about structurally non-identifiable parameters, and the resulting over-dependence on these beliefs can 75 

lead to incorrect scientific inferences. If a model form is appropriate, then future collection of more or 76 

better information would continue to support it, refine it, or build upon it with diminishing parameter 77 

uncertainty. If, on the other hand, the model form contains flawed subjective beliefs that cannot be 78 

challenged by objective information in the data, then future collection of better information could 79 

disprove part or all of the model leading to dramatic shifts in statistical inferences. The term ‘spurious 80 



model’ is used herein to describe scenarios in which weak parameter identifiability affords a model 81 

sufficient flexibility to contort itself to fit the data despite flawed subjective beliefs. 82 

This work provides a brief introduction to the topic of structural non-identifiability and the potential perils 83 

of ignoring it. This analysis is presented with examples from and application to QMRA but should be 84 

broadly relevant to statistical modelling in general. Comprehensive review of literature on identifiability 85 

and associated mathematical principles, or the important topic of practical non-identifiability (e.g. Raue 86 

et al., 2009), is beyond the scope of this work. Section 2 provides some practical examples of structural 87 

non-identifiability along with relatively simple algebraic proofs. Some applied approaches to evaluate 88 

parameter identifiability are addressed in Section 3. Section 4 demonstrates and discusses implications of 89 

structural non-identifiability in experimental design and the development and use of models. Finally, 90 

Section 5 synthesizes key concepts from this work into recommendations for developing objectively 91 

supported models. 92 

2. EXAMPLES OF STRUCTURAL NON-IDENTIFIABILITY IN QUANTITATIVE MICROBIAL RISK ASSESSSMENT 93 

Three examples of structural non-identifiability are drawn from exposure assessment and dose-response 94 

models that may be used in QMRA to aid protection of public health from waterborne or foodborne 95 

pathogens. They are further considered in Sections 3 and 4 to illustrate diagnosis and implications of 96 

structural non-identifiability. For each scenario, 1) the statistical model mechanistically linking observed 97 

data to parameters of interest is described, 2) the likelihood function that encapsulates all objective 98 

information in the data is provided, and 3) structural non-identifiability is algebraically proved. 99 

In each example considered herein, structural non-identifiability of a set of parameters (represented by 100 

vector 𝜽) from a particular statistical model can be proved by finding a lower-dimensional function 𝝍(𝜽) 101 

such that the likelihood may be written as a function of 𝝍 without the parameters which 𝜽 comprises. For 102 

example, one parameter (𝜓) contains all the available information about two parameters (𝜌, 𝜆) in the 103 



structurally non-identifiable model considered in Section 2.1. Such structural non-identifiability results in 104 

a ridge in the likelihood function (Cole et al., 2010) along which there are many model fits that are equally 105 

and optimally supported by the available data. This is analogous to a system of equations from which the 106 

solution is indeterminate because (1) there are fewer equations than variables or (2) some of the 107 

equations do not carry independent information. A brief introduction to such structural non-identifiability 108 

is provided in the Supplementary content. Other comparatively complex mathematical approaches that 109 

involve determining the rank of the Hessian matrix or Fisher information matrix (Cole et al., 2010; Little 110 

et al., 2010) are not considered herein. 111 

2.1. Fitting a Concentration Distribution to a Set of Non-Repeated Presence/Absence Analyses 112 

Among the traditional culture-based methods for quantifying microorganisms, there is a long history of 113 

methods involving presence/absence analyses (McCrady, 1915; Cochran, 1950; Pouillot, Hoelzer, Chen, & 114 

Dennis, 2013). Assuming a homogeneous concentration of target microorganisms, random dispersion 115 

(e.g. no aggregation) of these microorganisms, and independence of aliquots drawn from the source, the 116 

number of these microorganisms in each aliquot should be Poisson-distributed (Student, 1907; Emelko, 117 

Schmidt, & Reilly, 2010). The mean of this Poisson distribution is the product of concentration (𝑐) and 118 

aliquot volume (𝑉), and an individual presence/absence analysis will be positive (𝑋 = 1) with probability 119 

1 − 𝑒−𝑐𝑉  if one or more culturable target microorganisms are present in the aliquot, and negative (𝑋 =120 

0) with probability 𝑒−𝑐𝑉  otherwise. This assumes perfect analytical recovery (i.e. no losses of culturable 121 

target microorganisms (Petterson, Dumoutier, Loret, & Ashbolt, 2009)) and specificity (i.e. no false-122 

positive detections) of the sample processing procedure. The resulting likelihood function for 123 

concentration given a measured volume and presence/absence result (represented by presence indicator 124 

variable 𝑋) may be expressed as Equation 1. 125 

 𝐿(𝑐; 𝑉, 𝑋) = (1 − 𝑒−𝑐𝑉)𝑋(𝑒−𝑐𝑉)1−𝑋, 𝑐 > 0 (1) 126 



A single presence/absence analysis is commonly regarded as yielding qualitative data because it does not 127 

allow estimation of the microbial concentration. A positive result may be interpreted as censored count 128 

data because one or more discrete microorganisms is needed for detection to occur while a negative 129 

result is essentially a count of zero (Chik, Schmidt, & Emelko, 2018). A negative result cannot prove 130 

absence in the source because low concentration, small aliquot volume, or imperfect analytical recovery 131 

can cause non-detects when target microorganisms are present. The likelihood function associated with 132 

a positive result is monotonic increasing towards a horizontal asymptote at 1 (because non-detects 133 

become practically impossible at high concentrations). It is explained in Section 3.1 that such a positive 134 

result (or group of repeated positive results) is an example of practical non-identifiability. A negative result 135 

is associated with a monotonic decreasing likelihood function (because a positive result becomes 136 

practically impossible at very low concentrations) with maximum likelihood at a concentration of zero. A 137 

suite of repeated presence/absence analyses from the same source, however, allows quantitative 138 

estimation (if there is at least one negative result) by the most probable number (MPN) method (Cochran, 139 

1950). It determines the value of concentration that maximizes the likelihood function shown in Equation 140 

2, in which subscript 𝑖 on the volume and presence/absence indicator denotes the 𝑖th of n aliquots. 141 

 𝐿(𝑐; {𝑉𝑖}, {𝑋𝑖}) = ∏ (1 − 𝑒−𝑐𝑉𝑖)𝑋𝑖 (𝑒−𝑐𝑉𝑖)1−𝑋𝑖𝑛
𝑖=1 , 𝑐 > 0 (2) 142 

If all model assumptions are valid, the maximum likelihood estimator of concentration will converge upon 143 

the true underlying concentration as more aliquots are analyzed due to the property of consistency 144 

(Silvey, 1975). Cochran (1950) noted that the precision of the most probable number method with a 145 

constant aliquot volume becomes poorer for aliquot volumes at which either positive or negative results 146 

become rare. The optimal aliquot volume—𝑉𝑜𝑝𝑡 ≅ 1.5936 𝑐⁄ , corresponding to a 79.68% probability of 147 

detection—can be evaluated using the Fisher information for the model in Equation 2 with constant 148 

aliquot volume as shown in the Supplementary Content. It is common knowledge that some experimental 149 



designs are inherently more informative about a model’s parameters than others (further addressed in 150 

Section 4.1), and this can be explored in a mathematically rigorous way using Fisher information. 151 

The exposure assessment module of QMRA often requires description of how concentrations vary over 152 

time (in water) or among portions (in food). Equation 2 can be modified to include a distribution for 153 

variation in concentration among samples as well as repeated presence/absence analyses for each sample 154 

(e.g. Pouillot et al., 2013; Schmidt, Pintar, Fazil, Flemming, et al., 2013). Suppose, hypothetically, that some 155 

researchers want to determine the average pathogen concentration for use in QMRA and assume that 156 

concentration varies according to a gamma distribution with shape parameter 𝜌 and scale parameter 𝜆. 157 

To reduce cost and the amount of sample processing, they are considering carrying out only one 158 

presence/absence analysis per sample (each with the same volume) rather than carrying out a full MPN 159 

analysis for each sample. Given 𝑐 ~ 𝑔𝑎𝑚𝑚𝑎(𝜌, 𝜆), the marginal probability of detection1 is 1 −160 

(𝑉𝜆 + 1)−𝜌. The likelihood function for the proposed experimental design and statistical model is shown 161 

in Equation 3 with subscript 𝑖 on the presence/absence indicator denoting the 𝑖th of n samples. 162 

 𝐿(𝜌, 𝜆; 𝑉, {𝑋𝑖}) = ∏ [1 − (𝑉𝜆 + 1)−𝜌]𝑋𝑖[(𝑉𝜆 + 1)−𝜌]1−𝑋𝑖𝑛
𝑖=1 , 𝜌 > 0, 𝜆 > 0 (3) 163 

This model is just a series of independent Bernoulli trials with equal probability of success (detection) 164 

𝜓(𝜌, 𝜆) = 1 − (𝑉𝜆 + 1)−𝜌. Accordingly, the number of detections obtained in n samples, 𝑆 = ∑ 𝑋𝑖
𝑛
𝑖=1 , is 165 

binomially distributed (𝑆 ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜓)). 𝑆 is a sufficient statistic for such a model (Silvey, 1975), 166 

meaning that it carries all the information available in the data {𝑋𝑖} for estimation of 𝜓. Critically, such an 167 

experimental design essentially yields only one datum (𝑆) from which estimation of two model parameters 168 

(𝜌,𝜆) is impossible—this is due to structural non-identifiability. Specifically, it is possible to estimate 𝜓, 169 

but collecting further data of this type can never enable estimation of both 𝜌 and 𝜆 (or mean 𝜇 = 𝜌𝜆 and 170 

 
1 If 𝑌 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑐𝑉) and 𝑐 ~ 𝑔𝑎𝑚𝑚𝑎(𝜌, 𝜆), then 𝑝𝑌(𝑦) = ∫ [

𝑒−𝑐𝑉(𝑐𝑉)𝑦

𝑦!
] [

1

Γ(𝜌)𝜆𝜌 𝑐𝜌−1𝑒−𝑐 𝜆⁄ ] 𝑑𝑐
∞

0
=

Γ(𝑦+𝜌)

y!Γ(𝜌)
(

𝑉𝜆

𝑉𝜆+1
)

𝑦

(
1

𝑉𝜆+1
)

𝜌
 and 

𝑝𝑌(𝑦 > 0) = 1 − 𝑝𝑌(0) = 1 − (𝑉𝜆 + 1)−𝜌. 



standard deviation 𝜎 = 𝜌0.5𝜆) at the same time. Any of a spectrum of gamma distributions conforming to 171 

the maximum likelihood estimate 𝜓̂𝑀𝐿𝐸 = 1 − (𝜆𝑉 + 1)−𝜌 = 𝑆 𝑛⁄  is equally and optimally supported by 172 

the available data; thus, maximum likelihood can be obtained for any arbitrary value of 𝜌 by finding the 173 

corresponding value of 𝜆 (or vice versa) for which 𝜓̂𝑀𝐿𝐸 = 1 − (𝜆𝑉 + 1)−𝜌. Analysis of parameter 174 

identifiability during the experimental design stage would reveal that such a sampling plan is inherently 175 

incapable of providing the needed information. Accordingly, an unsuitable study design can be averted 176 

before time and resources are wasted collecting inadequately informative data. 177 

It becomes possible to fit such a two-parameter model for variability in concentration among samples to 178 

this type of data if there are presence/absence analyses using two or more sample volumes. This happens 179 

because the structural non-identifiability represented by 𝜓(𝜌, 𝜆) = 1 − (𝑉𝜆 + 1)−𝜌 requires a constant 180 

sample volume. When Equation 3 is modified slightly by varying the sample volumes, the full set of 181 

experimental data {𝑋𝑖 , 𝑉𝑖|𝑖 = 1,2, … 𝑛} can only be reduced to a set of sufficient statistics 182 

{𝑆𝑗|𝑗 = 1,2, … 𝑚} corresponding to the m unique sample volume values. The model’s parameters are 183 

identifiable, though perhaps not strongly so; estimates of 𝜌, 𝜆 may be much less precise than those 184 

obtained using a better experimental design, as illustrated in Section 4.1. 185 

2.2. Fitting an Exact Beta-Poisson Dose-Response Model to Data from a Single Dose Group 186 

The dose-response relationship for E. coli O157:H7 has been explored using data from a foodborne 187 

outbreak in a school in Japan (Teunis, Takumi, & Shinagawa, 2004). Stored samples of the contaminated 188 

food and the known amount of food allotted to each exposed pupil or teacher enabled quantification of 189 

exposure. Pupils and teachers are believed to have been exposed to mean doses of 31 and 35 colony 190 

forming units, respectively. In all, 208 of 828 pupils and 7 of 43 teachers became infected. Separate exact 191 

beta-Poisson models were fit to data from each group based upon a hypothesis that dose-response may 192 

differ between pupils and teachers. 193 



This model assumes that the number of pathogens consumed is Poisson-distributed with mean 𝑁 (mean 194 

dose), each pathogen consumed by a particular host has a probability 𝑟 of successfully replicating to 195 

initiate infection, and 𝑟 varies among subjects (Schmidt, Pintar, Fazil, & Topp, 2013; Nilsen & Wyller, 2016) 196 

according to the beta distribution 𝑟 ~ 𝑏𝑒𝑡𝑎(𝛼, 𝛽) with shape parameters 𝛼 and 𝛽. The resulting 197 

probability of infection is 𝑃 = 1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −𝑁), where 𝐹11 () is Kummer’s confluent 198 

hypergeometric function. The likelihood function for a set of subjects (e.g. pupils) exposed to equal mean 199 

doses is shown in Equation 4 with subscript 𝑖 on the infection status indicator (𝑋) denoting the 𝑖th of n 200 

exposed subjects. 201 

 𝐿(𝛼, 𝛽; 𝑁, {𝑋𝑖}) = ∏ [1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −𝑁) ]
𝑋𝑖

[ 𝐹11 (𝛼, 𝛼 + 𝛽; −𝑁)]
1−𝑋𝑖𝑛

𝑖=1 , 𝛼 > 0, 𝛽 > 0 (4) 202 

When all subjects are exposed to the same mean dose, this model is just a series of independent Bernoulli 203 

trials with equal probability of success (infection) 𝜓(𝛼, 𝛽) = 1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −𝑁). Accordingly, the 204 

number of infections obtained in n subjects, 𝑆 = ∑ 𝑋𝑖
𝑛
𝑖=1 , is binomially distributed (𝑆 ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜓)) 205 

and is a sufficient statistic for this model. Considering dose-response of pupils separately from teachers, 206 

this outbreak yields only one datum (𝑆) from which estimation of two model parameters (𝛼,𝛽) is 207 

impossible due to structural non-identifiability. Specifically, it is possible to estimate 𝜓, but collecting 208 

further data of this type can never enable estimation of both 𝛼 and 𝛽 at the same time. For the pupils, 209 

any of a spectrum of exact beta-Poisson models conforming to the maximum likelihood estimate 𝜓̂𝑀𝐿𝐸 =210 

1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −31) = 208 828⁄  has equal and optimal objective support from the available data. 211 

The resulting implications upon Bayesian parameter uncertainty analysis are addressed in Section 4.2. 212 

2.3. Fitting an Exponential Dose-Response Model with Uncontrolled Aggregation 213 

Structural non-identifiability was relatively easy to prove in the preceding examples because each 214 

experiment was just a series of independent Bernoulli trials with equal probability of success, which is 215 

insufficient information to fit a two-parameter model. Using variable volumes in the first example or 216 



testing several mean dose values in dose-response experiments resolves such non-identifiability by 217 

varying the probability of success among the Bernoulli trials. In a reanalysis of published norovirus dose-218 

response models, Schmidt (2015) explored an example of structural non-identifiability that occurs despite 219 

testing many values of the administered mean dose. 220 

In the aggregated exponential dose-response model, it is assumed that pathogens are aggregated to an 221 

unknown degree, the number of aggregates in a dose is Poisson-distributed, and the number of pathogens 222 

per aggregate is log-series distributed with parameter 𝑎. Additionally, it is assumed that each pathogen 223 

consumed by a particular host has probability 𝑟 of successfully replicating to initiate infection and that 𝑟 224 

is constant among hosts. The probability of infection (𝑃) is described by Equation 5. The resulting 225 

likelihood function is shown in Equation 6 with subscript 𝑖 on the infection status indicator (𝑋) and 226 

administered mean dose (𝑁) denoting the 𝑖th of n exposed subjects. 227 

 𝑃 = 1 − (
1−𝑎

1−𝑎+𝑎𝑟
)

𝑁(1−𝑎) 𝑎⁄
 (5) 228 

𝐿(𝑎, 𝑟; {𝑁𝑖}, {𝑋𝑖}) = ∏ [1 − (
1−𝑎

1−𝑎+𝑎𝑟
)

𝑁(1−𝑎) 𝑎⁄
]

𝑋𝑖

[(
1−𝑎

1−𝑎+𝑎𝑟
)

𝑁(1−𝑎) 𝑎⁄
]

1−𝑋𝑖
𝑛
𝑖=1 , 0 < 𝑎 < 1, 0 < 𝑟 ≤ 1 (6) 229 

With the substitution 𝑒−𝜓 = (
1−𝑎

1−𝑎+𝑎𝑟
)

(1−𝑎) 𝑎⁄
, Equation 5 simplifies to 𝑃 = 1 − 𝑒−𝜓𝑁. Accordingly, 230 

Equation 6 depends only upon 𝜓 and not upon the parameters of interest (𝑎, 𝑟), proving structural non-231 

identifiability. Specifically, it is possible to estimate 𝜓, but collecting further data of this type can never 232 

enable estimation of both 𝑎 and 𝑟 at the same time. Any of a spectrum of aggregated exponential dose-233 

response models conforming to the maximum likelihood estimate2 𝜓̂𝑀𝐿𝐸 =
1−𝑎

𝑎
𝑙𝑛 (1 +

𝑎𝑟

1−𝑎
) has equal 234 

and optimal support from the available data. This model is used in Section 4.3 along with simulated data 235 

to illustrate how structural non-identifiability can lead to spurious models that have good fit to the data 236 

 
2 This includes the exponential model 𝑃 = 1 − 𝑒−𝜑̂𝑀𝐿𝐸𝑁  obtained in the limit as 𝑎 → 0. 



but yield incorrect inferences and predictions. Considering norovirus dose-response in particular, Schmidt 237 

(2015) described how the aggregation parameters in the aggregated exact beta-Poisson model (Teunis et 238 

al., 2008) and aggregated fractional Poisson model (Messner, Berger, & Nappier, 2014) behave as tuning 239 

parameters and may lead to spurious models. 240 

Uncontrolled aggregation is a confounding factor in this experimental design that precludes estimation of 241 

parameter 𝑟. For such reasons, ensuring disaggregation has always been foundational in many aspects of 242 

quantitative microbiology (Eisenhart & Wilson, 1943). To avert wastefully administering pathogens to 243 

humans in order to collect inadequately informative data, dose-response experiments such as this should 244 

not be conducted if the pathogens are aggregated to an unknown degree. This invokes a need for review 245 

of experimental design by a qualified statistician as a condition for ethics approval of such experiments. 246 

3. APPROACHES TO SEARCH FOR STRUCTURAL NON-IDENTIFIABILITY IN A STATISTICAL MODEL 247 

Recognizing and algebraically proving structural non-identifiability in a statistical model given a particular 248 

set of data can be much more complicated than the simple examples shown in Section 2. This section 249 

provides two exploratory techniques to seek evidence of structural non-identifiability: assessment of 250 

profile likelihood and Bayesian analysis with uniform priors. These methods can also reveal practical non-251 

identifiability, which occurs when a model’s parameters are strictly identifiable from data of a particular 252 

type but the available data happen to lack strong information about a parameter. These approaches may 253 

be applied in two ways: 1) using simulated data during the experimental design stage or 2) exploring 254 

parameter identifiability while fitting a model to experimental data. The premise for using simulated data 255 

is that a large sample of data consistent with the planned experimental design should facilitate precise 256 

estimation of all parameters of the statistical model used to generate the data unless some parameters 257 

are structurally non-identifiable. 258 



Simulated data from an aggregated exponential with immunity dose-response model (Schmidt, 2015) are 259 

used to illustrate these approaches. This model (Equation 7) adds an immunity parameter (𝜙) to the 260 

aggregated exponential model (Equation 5) to represent a portion of the population of subjects who 261 

cannot be infected regardless of the dose to which they are exposed. Data (Table I) were simulated using 262 

arbitrary parameter values 𝜙 = 0.25 and 𝑟 = 0.1 as well as disaggregation of the administered pathogens 263 

(𝑎 → 0) as is typically assumed in most dose-response experiments. Parameters 𝑎,𝑟 are structurally non-264 

identifiable (as shown in Section 2.3) unless one or the other has a known or measured value, while 𝜙 is 265 

identifiable. To provide clear evidence of this structural non-identifiability, a large number of subjects was 266 

simulated for each of several mean dose values spanning the region where the probability of infection 267 

rises rapidly from zero to the maximum. In practice, however, the most informative administered doses 268 

are generally not known a priori and it is impractical to administer pathogens to large numbers of human 269 

volunteers. Dose-response experiments need to include some high mean doses yielding a maximal 270 

probability of infection to facilitate precise estimation of 𝜙 (Schmidt, 2015). 271 

 𝑃 = (1 − 𝜙) [1 − (
1−𝑎

1−𝑎+𝑎𝑟
)

𝑁(1−𝑎) 𝑎⁄
] (7) 272 

3.1. Profile Likelihood Analysis 273 

Structural non-identifiability is often manifested as a ridge in the likelihood surface along which 274 

alternative sets of parameter values have equal and optimal support from the data. Profile likelihood 275 

analysis (Raue et al., 2009; Kreutz et al., 2013) facilitates detection of such features in models with many 276 

parameters and an easily evaluated and optimized likelihood function. The profile likelihood for 277 

parameter 𝜃1 is obtained by maximizing the likelihood function at each of a suite of specified values of 𝜃1. 278 

For a two-parameter model, this approach resembles looking at the topography of an island from far 279 

offshore with views from the south and west corresponding to the profiles for the two parameters. A 280 



profile likelihood with a unique maximum is indicative of an identifiable parameter, while maximum 281 

likelihood along a plateau may be indicative of structural non-identifiability. 282 

Raue et al. (2009) also discuss ‘practical non-identifiability’, where weak information about a parameter 283 

that is technically identifiable leads to a profile likelihood that has a unique maximum but diminishes to a 284 

high plateau in one direction or the other. For example, the shape parameters of a beta distribution can 285 

be practically non-identifiable if the distribution's variance could plausibly be zero: the profile likelihood 286 

of each shape parameter would diminish to a high plateau for large parameter values (corresponding to 287 

vanishing variance). A key distinction is that practical non-identifiability can be progressively resolved by 288 

collecting more data. In contrast, structural non-identifiability can never be resolved by collecting more 289 

data unless the experimental design is changed to control or facilitate estimation of the otherwise non-290 

identifiable parameters. Repeated presence/absence analyses that are all positive (present) may be an 291 

unusual instance of practical non-identifiability. In this case, the concentration would otherwise be 292 

identifiable but the likelihood rises asymptotically towards unity at high concentrations. A unique 293 

maximum does not emerge until one negative (non-detect) result is obtained. 294 

Fig. 2 shows each profile likelihood of the aggregated exponential with immunity dose-response model fit 295 

to the Table I data. The mle function in the stats4 package of R (R Core Team, 2017) was used for 296 

optimization (see code in Supplementary Content). The immunity parameter (𝜙) has an identifiable 297 

maximum likelihood estimate (Fig. 2a). Due to the structural non-identifiability shown in Section 2.3, the 298 

degree of aggregation (transformed to the more practically meaningful mean aggregate size 𝜇 =299 

−𝑎 [(1 − 𝑎)𝑙𝑛(1 − 𝑎)]⁄ ) and host susceptibility among the non-immune (𝑟) each have a flat profile 300 

likelihood (Figs. 2b and 2c). Though structurally non-identifiable, these parameters are called ‘set 301 

identifiable’ because the maximum likelihood estimate of 𝜓 corresponds to ranges of possible values of 302 

the non-identifiable parameters that do not fully span the parameter space. In this example, the maximum 303 

likelihood estimate of 𝜓 corresponds to values of the mean aggregate size between 1 and 9.3 and values 304 



of the host susceptibility among the non-immune between 0.1074 and 1. Parameter values outside of 305 

these ranges are still plausible, but can only correspond to values of 𝜓 with smaller likelihood than its 306 

maximum likelihood estimate. The numerous data are strongly informative about 𝜓 (Fig. 2d), so the 307 

profile likelihood curves fall off sharply outside of the ranges corresponding to this set identifiability. 308 

3.2. Bayesian Markov Chain Monte Carlo Analysis with Uniform Priors 309 

Profile likelihood analysis may become i 310 

mpractical if the likelihood function cannot be explicitly evaluated or easily optimized, as often occurs in 311 

hierarchical statistical models. If independent uniform priors are used in Bayesian parameter uncertainty 312 

analysis, the posterior and likelihood will share the same shape for a particular parameterization and 313 

scatter plots of pairs of untransformed parameter values drawn from the posterior by Markov Chain 314 

Monte Carlo (MCMC) may reveal evidence of a ridge in the likelihood surface. Proper uniform priors (i.e. 315 

with fixed bounds) may be necessary to ensure a proper posterior, and MCMC convergence and mixing 316 

must be adequate to provide a representative sample from the posterior. 317 

An aggregated exponential with immunity model was fit to the Table I simulated dose-response data using 318 

OpenBUGS (version 3.2.3, rev 1012) to implement MCMC (see code in Supplementary Content). A uniform 319 

prior for each parameter (𝑈(0,1)), default updater algorithms, and generated initial values for the Markov 320 

Chain were used. The posterior distribution is represented with 10,000 iterations (specifically, every 321 

hundredth of one million iterations following a burn-in of 1,000 iterations). Convergence and mixing were 322 

visually assessed using three chains and history plots in OpenBUGS. 323 

The resulting 𝜙, 𝑟 (Fig. 3a) and 𝜙, 𝑎 (Fig. 3b) scatter plots indicate that the immunity parameter (𝜙) is 324 

strongly identifiable, with a 95% credible interval (0.1736 to 0.2845) encompassing the true value of 0.25. 325 

These plots suggest non-identifiability of the other parameters (𝑟, 𝑎) because there is a ridge in the 326 

posterior that spans much of the parameter space and the posterior density does not diminish in one 327 



direction. The 𝑎, 𝑟 scatter plot (Fig. 3c) provides compelling evidence of non-identifiability because a ridge 328 

(following the known structural non-identifiability characterized by 𝜓(𝑎, 𝑟) =
1−𝑎

𝑎
𝑙𝑛 (1 +

𝑎𝑟

1−𝑎
)) spans 329 

much of the parameter space without diminishing posterior density in either direction. Moreover, a mode 330 

would be expected near the actual values of the parameters used to generate the simulated data if these 331 

parameters were identifiable. 332 

4. IMPLICATIONS OF NON-IDENTIFIABILITY 333 

Structural non-identifiability is not just an obscure mathematical concept—it can have grave 334 

consequences when it is ignored in experimental design and the development and use of models. Here, 335 

the examples of structural non-identifiability shown in Section 2 are used to explore practical implications 336 

for experimental design, model fitting and parametric uncertainty analysis, and model-based inference. 337 

These implications may also apply in instances of weak parameter identifiability. 338 

4.1. Uninformative or Weakly Informative Data Should Be Avoided in Experimental Design 339 

It is generally understood that sensible experimental design is necessary to ensure experiments can yield 340 

scientifically useful results. If a particular theoretically derived model form is anticipated before 341 

conducting the experiment, variance decomposition (Schmidt, Emelko, & Thompson, 2014) can provide 342 

insight into strategies to improve the quality of information in experimental data. Alternatively, simulation 343 

studies may be a helpful precursor to carrying out an experiment. Here, simulation is used to illustrate 344 

how structural non-identifiability is a particular concern in experimental design because corresponding 345 

experiments provide no information to differentiate among a suite of model fits that would be equally 346 

supported by the data. It is essential for scientists to recognize experimental designs that can be 347 

foreknown to lead to structurally non-identifiable models before resources are wasted collecting 348 

inadequately informative data. This is particularly important if experiments require ethics approval: an 349 



experimental design that can be foreknown to provide inadequate information about important model 350 

parameters should not be approved. 351 

The models discussed in Section 2.1 are used to provide an illustrative comparison of experimental designs 352 

corresponding to identifiable, weakly identifiable, and structurally non-identifiable model parameters. 353 

Table II summarizes six considered scenarios. In each, variability of the pathogen concentrations was 354 

simulated using a gamma distribution with 𝜌 = 1.5625 and 𝜆 = 6.4 (corresponding to mean 𝜇 =355 

10 MPN/mL and standard deviation 𝜎 = 8 MPN/mL). The number of sampling events and the number 356 

of presence/absence analyses per sampling event (and their respective volumes) vary among scenarios. 357 

The second trio of scenarios adds data to the first trio to illustrate the effects of collecting further data 358 

with differing degrees of parameter identifiability. The data from each scenario were analyzed using 359 

OpenBUGS (as described in Section 3.2) to implement MCMC (see code in Supplementary Content). 360 

Uniform priors (between -1 and 2) were used for the base-10 logarithm of the mean and standard 361 

deviation of the gamma distribution, so scatter plots (Fig. 4) show the mean and standard deviation in 362 

logarithmic scale. 363 

In Fig. 4a, the MCMC sample from the posterior clusters to some extent around the true parameter values 364 

because the model is identifiable. Notably, the density of points from the MCMC sample does not tail off 365 

at low values of standard deviation. This pattern is consistent with practical non-identifiability and occurs 366 

because the small number of data available can still be plausibly explained by a constant concentration 367 

(or any trivially small value of the standard deviation). Fig. 4b is indicative of weaker parameter 368 

identifiability relative to Fig. 4a because there is a lesser degree of clustering of the MCMC sample from 369 

the posterior around the true parameter values. Additionally, even the larger number of data is unable to 370 

provide compelling evidence against a trivially small variance of the gamma distribution. Scenarios A2 and 371 

B2 have equal numbers of presence/absence analyses, but Scenario B2 involves more work (sampling 372 

events) to provide less useful information. It is known (from Section 2.1) that the model corresponding to 373 



Fig. 4c is structurally non-identifiable and that collecting further data of the same type improves the 374 

estimation of 𝜓(𝜌, 𝜆) = 1 − (𝑉𝜆 + 1)−𝜌 without ever allowing estimation of 𝜇 = 𝜌𝜆 and 𝜎 = 𝜌0.5𝜆. A 375 

simulation study such as this can help to choose a preferred experimental design before wasting resources 376 

on inadequately informative data. 377 

4.2. Bayesian Analyses of Structurally Non-Identifiable Models are Unduly Influenced by the Prior 378 

Given a particular model form, Bayesian analysis provides a framework to merge objective information 379 

from data (the likelihood) with subjective beliefs of the analyst (the prior) to provide a characterization of 380 

uncertainty in the model’s parameters given both sources of information (the posterior). The prior’s effect 381 

usually becomes progressively muted as more data strengthen the informativeness of the likelihood. 382 

Relatively uninformative priors also reduce the effect of subjective beliefs upon the posterior. This is 383 

generally desirable in science so that inferences are founded in defensible objective information rather 384 

than being too strongly influenced by subjective beliefs. When a model is structurally non-identifiable 385 

given the type of data available, it is imperative for the analyst to recognize and clearly concede that the 386 

data carry no objective information about some parameters and that posterior information about these 387 

parameters is determined by the prior alone. In this way, greater scientific insight can be facilitated by 388 

motivating more informative experimental work in the future or more rigorous exploration of key 389 

assumptions. Without due recognition of structural non-identifiability and its implications, it could be 390 

claimed that Bayesian methods were used injudiciously to model one’s way out of a confounded 391 

experiment or otherwise uninformative data. Bayesian analysis of non-identifiable models without a well-392 

justified informative prior can be biased because the prior effectively fabricates information missing from 393 

the data and creates an illusion of strong data-centric science. This is illustrated using the example from 394 

Section 2.2. 395 



Fitting the two-parameter exact beta-Poisson dose-response model to one datum (208 of 828 pupils at a 396 

mean dose of 31 E. coli O157:H7) leads to structural non-identifiability characterized by 𝜓̂𝑀𝐿𝐸 = 1 −397 

𝐹11 (𝛼, 𝛼 + 𝛽; −31) = 208 828⁄  (Fig. 5a). Thus, a spectrum of exact beta-Poisson models passing through 398 

the point (𝑁, 𝜓) = (31, 208 828⁄ ) are equally supported by the data (Fig. 5b). The set of such models is 399 

bounded by two extremes of the variance of 𝑟~𝑏𝑒𝑡𝑎(𝛼, 𝛽): the variance is minimized by the exponential 400 

model 𝑃 = 1 − 𝑒𝑥𝑝(−𝑟𝑁) where 𝑟 = 𝛼 (𝛼 + 𝛽)⁄  and is maximized by the fractional Poisson model 𝑃 =401 

(1 − 𝜙)(1 − 𝑒𝑥𝑝(−𝑁)) with immunity parameter 𝜙 = 𝛽 (𝛼 + 𝛽)⁄ . Notably, the latter model makes the 402 

questionable assertion that 75% of pupils would be immune to any dose of E. coli O157:H7. There is a 27-403 

fold (1.43-log)3 difference in low-dose risks between these extremes, so it is important to consider 404 

whether or not Bayesian analysis can reliably aid model fitting and inferences in this scenario. 405 

Teunis et al. (2004) recognized that “the data still only represent a single point in a dose-response 406 

relation”, but nonetheless undertook a Bayesian analysis to draw inferences about the exact beta-Poisson 407 

model’s two parameters without noting the inevitable structural non-identifiability this causes. They used 408 

“prior specifications that allow an extremely wide range of parameter values, whereby they may be 409 

assumed noninformative”: a uniform prior (uniform(0,1)) on 𝑢 = 𝛼 (𝛼 + 𝛽)⁄  and a broad normal prior 410 

(normal(0,10)4) on 𝑣 = 𝑙𝑜𝑔10(𝛼 + 𝛽). MCMC was then used to characterize uncertainty in the dose-411 

response relationship and to assert that the 90% posterior probability of infection of a pupil exposed to 412 

just one E. coli O157:H7 is between 0.072 and 0.274. Additionally, a posterior mode at (𝛼, 𝛽) =413 

 
3 One extreme is the fractional Poisson model with 𝜙 = 1 − 𝜓 ≅ 0.2512, while the other extreme is the exponential 
model with 𝑟 = − 𝑙𝑛(1 − 𝜓) 31⁄ ≅ 0.009332. The low-dose (𝑁 ≪ 1) linear approximations for dose-response are 
𝑑

𝑑𝑁
|

𝑁≪1
(1 − 620 828⁄ ) × (1 − 𝑒𝑥𝑝(−𝑁)) ≅ 0.2512 and 

𝑑

𝑑𝑁
|

𝑁≪1
1 − 𝑒𝑥𝑝(−0.009332 × 𝑁) ≅ 0.009332. 

𝑙𝑜𝑔10(0.2512 0.009332⁄ ) ≅ 1.43 
4 It is assumed herein that this normal prior has a variance of 10 because the notation “normal(0,10)” is ambiguous. 



(0.0844,1.442)5 was presented as the exact beta-Poisson dose-response relation for pathogenic E. coli in 414 

children. 415 

Critically, there is no such thing as a “noninformative” prior in Bayesian analysis; there are only relatively 416 

uninformative priors, and even these become informative when applied to a structurally non-identifiable 417 

model. In cases of structural non-identifiability, a sufficiently broad prior will provide good coverage of 418 

the spectrum of model fits equally and optimally supported by the data. However, any differences in 419 

posterior density along the non-identifiability relationship (e.g. 𝜓(𝛼, 𝛽) = 1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −31)), as 420 

illustrated in Fig. 6, would be determined exclusively by the prior (i.e. with categorically no support from 421 

the data). An MCMC sample from the posterior for pupils (with adequate convergence/mixing) should 422 

consist only of points close to the curve 𝜓̂𝑀𝐿𝐸 = 1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −31) = 208 828⁄  because 𝜓̂𝑀𝐿𝐸 is 423 

estimated with good precision from results for 828 pupils, but any preference to a specific part of the 424 

curve is determined by the informative prior alone. 425 

Given information that 208 of 828 pupils became infected at a mean dose of 31 E. coli O157:H7, the data 426 

provide categorically no objective information to draw inferences about the probability of infection at 427 

other mean doses. A one-parameter model can be fit, but goodness of fit cannot be tested because the 428 

data carry zero degrees of freedom6. A two-parameter model cannot be fit without assuming the value of 429 

one parameter or using a strongly informative prior, and goodness of fit cannot be tested because the 430 

data carry no degrees of freedom. Many QMRA researchers (e.g. Messner et al., 2014) have raised 431 

concerns about low-dose extrapolation (drawing inferences outside the range of tested mean doses) even 432 

for models with tested goodness of fit. In this case, using the model determined from the posterior mode 433 

 
5 Actually, the posterior mode is (𝛼, 𝛽) = (0.071,0.929), as determined by the intersection of maximal ridges in the 

prior and likelihood along 𝑣 = 0 (or 𝛼 + 𝛽 = 1) and 1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −31) = 208 828⁄ , respectively. 
6 In dose-response experiments, the degrees of freedom are the number of dose values tested minus the number 
of free parameters. 



is even more dubious because it not only extrapolates beyond the mean dose encountered in the outbreak 434 

but also uses a subjectively derived model for which it is impossible to test goodness of fit. Therefore, 435 

these E. coli dose-response models are not useful for QMRA relative to published models objectively 436 

supported by data from which goodness of fit can be tested. 437 

4.3. Non-Identifiability Facilitates Spurious Model Fit 438 

Ideally, abundant data allow both precise estimation of a model’s parameters and testing the model’s 439 

goodness of fit. Theoretically derived models include many assumptions, and informative data can provide 440 

evidence of an invalid assumption through poor model fit. The less informative the data are, the easier it 441 

is for a model incorporating an inappropriate assumption to have adequate fit. Conversely, adding more 442 

parameters to a model than the data can support can improve the fit of a model incorporating a flawed 443 

assumption. In the extreme of structural non-identifiability, a value of one of the non-identifiable 444 

parameters can be chosen almost at random7 and the model will obligingly contort itself to fit this 445 

assumption with no loss of fit. This effectively deprives the data of their ability to speak through poor fit 446 

if an inappropriate value of a non-identifiable (or weakly identifiable) parameter is assumed. This may 447 

have little consequence if the model is regarded as only an empirical fit applicable in essentially the same 448 

conditions, but is immensely problematic if the model is used to make mechanistic inferences or applied 449 

under substantially different conditions. The result is a spurious model that fits the data well while 450 

misrepresenting the relationship between specific parameters and the data. 451 

The dose-response data in Table I (simulated with 𝜙 = 0.25, 𝑎 → 0 and 𝑟 = 0.1) can be used to illustrate 452 

how structural non-identifiability can result in misleading models that have great fit to the data. Maximum 453 

 
7 This can happen unintentionally if algorithms for maximum likelihood estimation yield incorrect or misleading 
results. Relatively flat likelihood functions are prone to computational error in optimization, and many algorithms 
will not indicate that the likelihood has a non-unique maximum (structural non-identifiability). The Solver function 
in Microsoft ExcelTM, for example, yields different maximum likelihood estimates for different starting points (using 
either the GRG Nonlinear or Evolutionary method) if parameters are structurally non-identifiable. 



likelihood fits of several special cases of the aggregated exponential with immunity model to the data are 454 

compared (Table III), particularly with and without assuming that the pathogens were disaggregated in 455 

the simulations. When the degree of aggregation is known, the data are too informative for the model to 456 

contort itself to provide good fit to a flawed assumption. Accordingly, the exponential with immunity 457 

model (the right one with respect to how the simulated data were generated) fits the data 1017 times 458 

better than the fractional Poisson model, soundly rejecting the flawed assumption that 𝑟 = 1. When the 459 

degree of aggregation is not known, the data cannot enable concurrent estimation of parameters 𝑎 and 460 

𝑟 due to structural non-identifiability. Thus, for almost any assumed value of one of these parameters 461 

(subject to the constraints of set identifiability discussed in Section 3.1), the model is readily able to 462 

contort itself to achieve great fit. 463 

The aggregated fractional Poisson model has a spurious fit in this example that could mislead the analyst 464 

into believing that these pathogens were aggregated with a mean cluster size of 9.312 when they were 465 

actually disaggregated. Additionally, the analyst is left with no evidence against the false assumption that 466 

𝑟 = 1 because the aggregation parameter behaved wholly as a tuning parameter to compensate for the 467 

incorrect assumption. Empirically, this model shares the form 𝑃(𝑁) = 0.7782 × (1 − 𝑒𝑥𝑝(−0.1074𝑁)) 468 

with any instance of the structurally non-identifiable aggregated exponential with immunity model 469 

featuring 𝜓̂𝑀𝐿𝐸 =
1−𝑎

𝑎
𝑙𝑛 (1 +

𝑎𝑟

1−𝑎
) = 0.1074. There is no harm in applying it as a partially mechanistic 470 

model under essentially the same conditions, which effectively treats parameter 𝜓 as the combined effect 471 

of unknown parameters 𝑎 and 𝑟. Substantial bias can arise, however, if 𝜓̂𝑀𝐿𝐸 = 0.1074 is misinterpreted 472 

(e.g. as a mean aggregate size of 9.312 in this example) or misapplied (e.g. to a scenario in which the 473 

parameters it comprises have changed such that the numerical value of parameter 𝜓 has changed but the 474 

modeller cannot know it). Dose-response models in QMRA are often described as semi-mechanistic, yet 475 

it is common to remove the aggregation parameter from norovirus dose-response models to represent 476 

disaggregated viruses in environmental waters (United States Environmental Protection Agency, 2014; 477 



World Health Organization, 2016). This is contrary to empirical or semi-mechanistic treatment of the fitted 478 

models and requires all mechanistic assumptions in the model to be valid. 479 

For example, the aggregated fractional Poisson model 𝑃(𝑁) = 0.7782 × (1 − 𝑒𝑥𝑝(− 𝑁 9.312⁄ )) has a 480 

good empirical fit to the Table I data (a log-likelihood of -18.71). Regarding it as mechanistically valid by 481 

removing the fitted aggregation parameter accepts the assumption 𝑟 = 1 as true and justifies the poor 482 

empirical fit (a log-likelihood of -75.50) of the resulting fractional Poisson model 𝑃(𝑁) = 0.7782 × (1 −483 

𝑒𝑥𝑝(−𝑁)) as a consequence of pathogen aggregation with a mean aggregate size of 9.312. This model is 484 

spurious because the data were actually generated with no aggregation and 𝑟 = 0.1, and it over-states 485 

low-dose risks by 0.97 orders of magnitude (a factor of 9.312). Additional examples of spurious or 486 

misapplied dose-response models compromising risk inferences are provided in the Supplementary 487 

Content. These types of misrepresentations of dose-response can have grave consequences upon 488 

decision-making in the water industry and beyond, and demonstrate that critical thinking regarding dose-489 

response models needs to go well beyond the basic goal of good model fit. Additionally, future 490 

experimental work could disprove a spurious model, leading to dramatic shifts in statistical inferences. 491 

This example raises questions about injudicious use of the Akaike information criterion (AIC) and the 492 

likelihood ratio test for model selection. The AIC is calculated as 𝐴𝐼𝐶 = −2 × 𝑙𝑛(𝐿𝑚𝑎𝑥) + 2𝑘, where 𝐿𝑚𝑎𝑥  493 

is the maximum likelihood and 𝑘 is the number of free parameters in the model. Due to structural non-494 

identifiability, the aggregated fractional Poisson (𝑘 = 2) and aggregated exponential with immunity (𝑘 =495 

3) models share a maximum log-likelihood of -18.71. These models have AICs of 41.42 and 43.42, 496 

respectively, so the spurious aggregated fractional Poisson model is preferred. Likewise, a likelihood ratio 497 

test will favour the spurious aggregated fractional Poisson model because the more generalized 498 

aggregated exponential with immunity model provides no improvement in fit. In each case, any model 499 

with an arbitrarily fixed value of one of the non-identifiable parameters would be chosen. Once again, this 500 



is acceptable if the model is used only as an empirical fit to the data in essentially the same conditions, 501 

but is scientifically unsound in the case of a theoretically derived model with practically meaningful 502 

parameters. In these cases, it is misguided to base model selection on fit alone. Modellers need to 503 

recognize that sometimes a generalized model with more plausible assumptions is more appropriate, 504 

even if structural non-identifiability precludes determination of fitted parameter values. 505 

Bayesian analysis of a spurious model is also problematic, as Fig. 7 shows for the spurious aggregated 506 

fractional Poisson model. Although the immunity parameter is estimated with good accuracy, the mean 507 

aggregate size is not. The MCMC sample from the posterior (generated using OpenBUGS as described 508 

above) asserts that the 95% credible interval for the mean aggregate size is 6.5–14.2. This misleading 509 

conclusion arises from the aggregation parameter behaving wholly as a tuning parameter to compensate 510 

for an incorrect assumed value of the host susceptibility among the non-immune (𝑟 = 1). The more non-511 

identifiable or weakly identifiable parameters a model has, the harder it is to root out incorrect 512 

assumptions because there are more parameters behaving as tuning parameters to facilitate good fit. 513 

5. RECOMMENDATIONS FOR DEVELOPING OBJECTIVELY SUPPORTED MODELS 514 

Although the topic of parameter identifiability is familiar to most formally trained statisticians, this work 515 

exemplifies the need for better awareness of non-identifiability among applied modellers, particularly in 516 

the context of quantitative microbial risk assessment. Moreover, this work highlights the potentially 517 

serious implications of ignoring non-identifiability in the design and approval of experiments, model-518 

fitting, and model-based inference, particularly in relatively mechanistic models where parameters have 519 

important practical meaning rather than just being a means to achieve goodness-of-fit. 520 

Evaluating identifiability of parameters in a mechanistic model (either algebraically or by simulation) 521 

before an experiment is carried out can help to preempt wasteful experimental work that is inherently 522 

incapable of yielding adequately informative data. This may be particularly necessary for experiments 523 



requiring ethics approval. With simulated or experimental data, structural non-identifiability can be 524 

explored using profile likelihood analysis or Bayesian analysis with uniform priors. Bayesian analyses of 525 

models featuring structurally non-identifiable parameters (e.g. for E. coli O157:H7) should be viewed with 526 

skepticism because they mask data that are otherwise too uninformative for statistical inference with a 527 

subjective prior, and this can lead to bias. Although eliminating a redundant parameter may be sensible 528 

in strictly empirical modelling, doing so injudiciously in a theoretically derived model (by assuming a value 529 

of a practically meaningful parameter without rigorous justification) leads to spurious models that have 530 

great fit but provide misleading mechanistic inferences. Sometimes a model deemed over-parameterized 531 

by the Akaike information criterion or a likelihood ratio test has more realistic assumptions. Conversely, 532 

almost any flawed assumption can be fit by adding more parameters to a model than the data can inform. 533 

Thus, modelling must not be done haphazardly by focusing upon model fit alone, but must be done 534 

prudently with careful consideration of all assumptions and recognition of structural non-identifiability 535 

and its important implications. Given these major implications of structural non-identifiability upon 536 

applied statistical modelling in mechanistic scenarios, the topic and its implications should at least be 537 

noted in any probability and statistics text book featuring basic model fitting material such as goodness 538 

of fit tests and the Akaike Information Criterion. 539 
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Fig. 1. A model that is not completely supported by a firm foundation of reliable objective information may depend too heavily 

upon subjective beliefs and can lead to incorrect scientific inferences. In such cases, collection of better data in the future could 

disprove flawed subjective assumptions underpinning the model. 

 



  

  
Fig. 2. The profile likelihood determined from fitting an aggregated exponential with immunity dose-response model to the Table 

1 data is shown for a) the immunity parameter (𝜙), b) the mean aggregate size 𝜇 = −𝑎 [(1 − 𝑎)𝑙𝑛(1 − 𝑎)]⁄ , c) the non-immune 

host susceptibility parameter (𝑟), and d) the parameter 𝜓(𝑎, 𝑟) =
1−𝑎

𝑎
𝑙𝑛 (1 +

𝑎𝑟

1−𝑎
). Parameters 𝜙, 𝜓 are identifiable with 

maximum likelihood estimates as shown (0.22176 and 0.10738, respectively). Parameters 𝜇, 𝑟 are structurally non-identifiable, 

with plateaus across only a portion of the parameter space (i.e. 1 ≤ 𝜇 ≤ 9.3 and 0.1074 ≤ 𝑟 ≤ 1) illustrating set identifiability. 

a) b) 
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Fig. 3. Scatter plots obtained by MCMC are shown for a) 𝜙, 𝑟, b) 𝜙, 𝑎, and c) 𝑎, 𝑟 based upon Bayesian analysis of the aggregated 

exponential with immunity dose-response model using uniform priors and the simulated data in Table 1. These plots are 

illustrative of the appearance of structural non-identifiability in MCMC results. The actual values of the parameters used to 

generate the simulated data are shown, as well as the structural non-identifiability characterized by 𝜓(𝑎, 𝑟) =
1−𝑎

𝑎
𝑙𝑛 (1 +

𝑎𝑟

1−𝑎
). 

The identifiability of 𝜙 (i.e. clustering about a unique value of 𝜙 that is close to its actual value) and set identifiability of 𝑎, 𝑟 (i.e. 

0 ≤ 𝑎 ≤ 0.9731 and 0.1074 ≤ 𝑟 ≤ 1) are evident in these scatter plots. 
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Fig. 4. Scatter plots show the mean (𝜇) and standard deviation (𝜎) of a gamma distribution for temporal concentration variability 

estimated from various types of presence/absence data. Three alternative experimental designs are considered as outlined in 

Table 2: a) five or ten samples each having three 1 mL aliquots, three 0.1 mL aliquots, and three 0.01 mL aliquots; b) 45 or 90 

samples each with just one aliquot of varying volume (1 mL, 0.1 mL, or 0.01 mL); and c) 45 or 90 samples each with just one 

aliquot of 0.1 mL. The first experimental design is relatively informative (converging upon the actual values of the model’s 

parameters with relatively few data), the second is weakly informative (an inefficient experimental design requiring more data 

to converge upon the actual values of the models parameters), and the third is structurally non-identifiable (an inappropriate 

experimental design from which it is fundamentally impossible to estimate the model’s parameters regardless of how many data 

of this type are collected). The structural non-identifiability characterized by 𝜓(𝜌, 𝜆) = 1 − (𝑉𝜆 + 1)−𝜌 is shown. 



 

 
Fig. 5. Structural non-identifiability (a) results from fitting an exact beta-Poisson model to just the outbreak-based result that 208 

of 828 pupils exposed to a mean dose of 31 E. coli O157:H7 became infected. A spectrum of models (b) passing through the point 

with a mean dose of 31 E. coli and a probability of infection of 208/828 are all equally supported by the data. The exponential 

and fractional Poisson dose-response models are extreme limiting cases of this spectrum (one with no immunity and constant 

host susceptibility, the other with immunity and complete susceptibility of non-immune hosts). Determining the optimal fit of 

the exact beta-Poisson dose-response model requires additional data (i.e. results for another value of the mean dose) or 

subjective information such as an assumed value of one of the parameters or an informative Bayesian prior. 

b) 

a) 



 

Fig. 6. The relative weighting of points along the structural non-identifiability curve 1 − 𝐹11 (𝛼, 𝛼 + 𝛽; −31) = 208 828⁄ , given 

only the outbreak-based result that 208 of 828 pupils exposed to a mean dose of 31 E. coli O157:H7 became infected and the 

purportedly noninformative priors 𝛼 (𝛼 + 𝛽)~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)⁄  and 𝑙𝑜𝑔(𝛼 + 𝛽)~𝑛𝑜𝑟𝑚𝑎𝑙(0,10), is shown. Also shown are the 

regions where the exact beta-Poisson model converges upon a fractional Poisson model (with 𝜙 = 0.2512) or an exponential 

model (with 𝑟 = 0.009332). The available data provide categorically no information to facilitate estimation of either 𝛼 or 𝛽 due 

to structural non-identifiability, and the apparent information illustrated in this plot arises exclusively from the informative prior. 



 

Fig. 7. The scatter plot obtained by MCMC is shown for Bayesian analysis of the aggregated fractional Poisson dose-response 

model using uniform priors and the simulated data in Table 1. The model fit is spurious because the region of interest of the 

posterior surface is shifted far away from the true parameters. This occurs because aggregation (represented by the mean 

aggregate size 𝜇) and host susceptibility of the non-immune are structurally non-identifiable in the more general aggregated 

exponential with immunity dose-response model. Thus, the aggregation parameter behaves as a tuning parameter to allow the 

model to contort itself to fit the data despite an erroneous assumed value of the host susceptibility parameter (e.g. 𝑟 = 1). 



Table 1. Simulated Aggregated Exponential with Immunity Dose-Response Data 

Mean 

Dose 

Actual Probability 

of Infection1 

Number of 

Subjects 

Number 

Infected 

Percent 

Infected 

1 0.071372 50 7 14% 

3 0.194386 50 8 16% 

10 0.474090 50 27 54% 

30 0.712660 50 34 68% 

100 0.749966 50 41 82% 

300 0.750000 50 40 80% 

1000 0.750000 50 37 74% 

3000 0.750000 50 40 80% 

1 Calculated using (𝜙 = 0.25, 𝑎 → 0, 𝑟 = 0.1) 



Table 2. Alternative Experimental Designs of Simulated Presence/Absence Data 

Scenario 
Sampling 

Events 
Experimental Design Notes 

A1 5 
3x1 mL, 3x0.1 mL, 3x0.01 mL 

for each sampling event 
Parameters identifiable 

B1 45 
One analysis (1 mL, 0.1 mL, or 0.01 mL) 

for each sampling event 
Parameters weakly identifiable 

C1 45 
One analysis (0.1mL) 

for each sampling event 
Parameters structurally non-identifiable 

A2 10 
3x1 mL, 3x0.1 mL, 3x0.01 mL 

for each sampling event 

Parameters identifiable 

Includes data from scenario A1 

B2 90 
One analysis (1 mL, 0.1 mL, or 0.01 mL) 

for each sampling event 

Parameters weakly identifiable 

Includes data from scenario B1 

C2 90 
One analysis (0.1 mL) 

for each sampling event 

Parameters structurally non-identifiable 

Includes data from scenario C1 

 



Table 3. Alternative Models Fit to Table 1 Dose-Response Data 

Model Name 
Immunity 

(𝝓) 

Aggregation 

(𝒂) 

Host Susceptibility 

(𝒓) 
Fitted Model 

log- 

Likelihood 

Fractional 

Poisson 
36.46% 

disaggregated1 

(known) 
1 (assumed) 

𝑃(𝑁) = 0.6354 × 

(1 − 𝑒𝑥𝑝(−𝑁)) 
-58.03 

Exponential 

with Immunity 
22.18% 

disaggregated1 

(known) 
0.1074 

𝑃(𝑁) = 0.7782 × 

(1 − 𝑒𝑥𝑝(−0.1074𝑁)) 
-18.71 

Aggregated 

Fractional 

Poisson 

22.18% 
0.970395 

(𝜇=9.312)2 
1 (assumed) 

𝑃(𝑁) = 0.7782 × 

(1 − 𝑒𝑥𝑝(− 𝑁 9.312⁄ )) 
-18.71 

Aggregated 

Exponential 

with Immunity 

22.18% Non-identifiable: 𝜓̂𝑀𝐿𝐸 =
1−𝑎

𝑎
𝑙𝑛 (1 +

𝑎𝑟

1−𝑎
) = 0.1074 -18.71 

1 The special case of disaggregated microorganisms in the family of aggregated exponential with immunity dose-response models 

is mathematically represented by a limit as 𝑎 → 0 

2 𝜇 = −𝑎 [(1 − 𝑎)𝑙𝑛(1 − 𝑎)]⁄  

 


