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Abstract

Road accidents cause thousands of injuries and losses of lives every year, ranking among
the top lifetime odds of death causes. More than 90% of the traffic accidents are caused by
human errors [1], including sight obstruction, failure to spot danger through inattention, speed-
ing, expectation errors, and other reasons. In recent years, driver monitoring systems (DMS)
have been rapidly studied and developed to be used in commercial vehicles to prevent human
error-caused car crashes. A DMS is a vehicle safety system that monitors driver’s attention and
warns if necessary. Such a system may contain multiple modules that detect the most accident-
related human factors, such as drowsiness and distractions. Typical DMS approaches seek
driver distraction cues either from vehicle acceleration and steering (vehicle-based approach),
driver physiological signals (physiological approach), or driver behaviours (behavioural-based
approach). Behavioural-based driver state monitoring has numerous advantages over vehicle-
based and physiological-based counterparts, including fast responsiveness and non-intrusiveness.
In addition, the recent breakthrough in deep learning enables high-level action and face recog-
nition, expanding driver monitoring coverage and improving model performance. This thesis
presents CareDMS, a behavioural approach-based driver monitoring system using deep learning
methods. CareDMS consists of driver anomaly detection and classification, gaze estimation, and
emotion recognition. Each approach is developed with state-of-the-art deep learning solutions to
address the shortcomings of the current DMS functionalities. Combined with a classic drowsi-
ness detection method, CareDMS thoroughly covers three major types of distractions: physical
(hands-off-steering wheel), visual (eyes-off-road ahead), and cognitive (minds-off-driving).

There are numerous challenges in behavioural-based driver state monitoring. Current driver
distraction detection methods either lack detailed distraction classification or unknown driver
anomalies generalization. This thesis introduces a novel two-phase proposal and classification
network architecture. It can suspect all forms of distracted driving and recognize driver actions
simultaneously, which provide downstream DMS important information for warning level cus-
tomization. Next, gaze estimation for driver monitoring is difficult as drivers tend to have severe
head movements while driving. This thesis proposes a video-based neural network that jointly
learns head pose and gaze dynamics together. The design significantly reduces per-head-pose
gaze estimation performance variance compared to benchmarks. Furthermore, emotional driving
such as road rage and sadness could seriously impact driving performance. However, individuals
have various emotional expressions, which makes vision-based emotion recognition a challeng-
ing task. This work proposes an efficient and versatile multimodal fusion module that effectively
fuses facial expression and human voice for emotion recognition. Visible advantages are demon-
strated compared to using a single modality. Finally, a driver state monitoring system, CareDMS,
is presented to convert the output of each functionality into a specific driver’s status measurement
and integrates various measurements into the driver’s level of alertness.
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Chapter 1

Introduction

According to the statistics from WHO [12], road traffic crashes cause approximately 1.3 million
lives lost and 20 to 50 million non-fatal injuries. A significant amount of the traffic accidents are
influenced by driver errors due to distractions and reduced activity [1]. Based on the statistics
from the National Highway Traffic Safety Administration (NHTSA), in the U.S in 2019, the
number of distraction-related crashes was 3142, representing 8.7% of the total fatal crashes [13].
In 2018, an estimated 400,000 injuries were due to distraction-affected crashes. In addition,
about 33,000 injured people were using a cell phone at the time of the crash [14].

Modern technologies have mainly focused on developing an Advanced Driving Assistance
System (ADAS) to reduce road accidents caused by human error. An ADAS is a group of elec-
tronic sensors and software that assist human drivers in seeing, driving, and parking. Based on
the amount of automation in the driving assistance system, ADAS can be categorized into five
levels [15]. Level 0 is entirely human-controlled driving where ADAS can only provide informa-
tion about the vehicle status for assistance, such as parking sensors and a blind-spot information
system. Level 1 and Level 2 are both human-centric driving, while Level 1 ADAS can take
control over one functionality (e.g., adaptive cruise control), whereas Level 2 ADAS takes mul-
tiple control simultaneously (e.g., highway assist and obstacle avoidance). Starting from Level
3, the amount of vehicle-controlled driving increases. Level 3 is known as conditional driving
automation, where the vehicles can decide when to accelerate past other vehicles based on envi-
ronmental detection. However, drivers must still keep alert to take control at any time if ADAS
encounters system failure or falls beyond Operational Design Domain (ODD). Level 4 ADAS
has a high level of autonomy and does not need human interference in most circumstances. For
instance, most local driver-less taxis are Level 4 since the operational location must be within
a specific range. Level 5 is known as full autonomy. The vehicle can drive itself anywhere at
any time. At the time of writing this thesis, most of the ADAS technologies equipped in modern
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personal vehicles are between Level 0 and Level 3. Thus, human drivers still play a dominant
role in transportation. Although scientists are making significant progress in Level 4 autonomous
driving technologies, building a safe and efficient human-centric ADAS is vital to pave the way
for vehicle-centric transportation in the near future.

One of the most commonly researched topics in ADAS is the driver monitoring system
(DMS), designed to monitor driver states to ensure safe driving. There are multiple reasons why
a DMS is essential in an ADAS. First, failure to spot danger through inattention is one of the lead-
ing causes for road accidents [1]. Common reasons include distractions by objects inside/outside
of the vehicle, reduced activity due to drowsiness and daydreaming, negative thoughts/emotions,
and other driver-subjective factors [1]. Thus, retrieving a driver’s attention or calming a driver
down is crucially important to ensure the safety of drivers, passengers, and other traffic partici-
pants. Second, while autonomous driving is progressing to a higher level of autonomy, a smooth
transition from high-level to lower autonomy is also critical for driving safety. Each level of au-
tonomy except Level 5 has its operational design domain that defines use case conditions where
the system is confident to function. When a condition is not met, such as encountering severe
weather or camera sensor occlusion, the vehicle hands control to human drivers or autonomy one
level-lower. This process must make sure the driver is in a suitable status to control the vehicle
safely. Otherwise, the vehicle must perform accordingly, such as slow down and eventually park
at the roadside. There have been several fatalities [16, 17] because a human driver could not re-
act on time when an autonomous driving system (Level 3) makes mistakes. Moreover, multiple
human driver reckless driving are reported [18, 19] when the autonomous driving feature is in
use. Unfortunately, many commercial vehicles fail to deliver reliable and thorough driver moni-
toring functions to complement their self-driving features, leaving the decision to take control of
driving to human drivers completely.

There are mainly three categories of driver monitoring approaches proposed in recent years:
vehicle-based approach [20, 21, 22], physiological approach [23, 24, 25], and behavioral ap-
proach [26, 27, 28]. A vehicle-based approach finds abnormal driving patterns through vehicle
components, including steering wheel movement, acceleration, braking, and other factors, Most
of these vehicle statuses can be acquired by IMU sensors mounted in the vehicle. The vehicle-
based approach can be non-intrusive to drivers but can only be detected when the consequence
of distracted driving has already shown in the vehicle trajectory. Therefore, a vehicle-based
approach cannot reflect a driver’s status immediately after a driver gets distracted in real-time
usage. The physiological approach attaches sensors to the drivers to detect human body signals
such as ECG, EEG, and skin temperature. Although these physiological signals could accurately
and timely estimate driver statuses, the attached sensors are intrusive and might even bring dis-
tractions to drivers [29]. Finally, the behavioural approach utilizes camera sensors to observe
and analyze a driver’s level of alertness. For instance, the percentage of eye closure (PERCLOS)
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estimates the eye closure rate within a specific time segment. A high PERCLOS value strongly
correlates with drowsiness. In addition, the percentage road center (PRC) calculates the time
proportion a driver fixates at the road ahead, thus is correlated to visual driver distractions. The
challenge of the behavioural approach is usually generalizations to driver appearances, including
age, race, with or without glasses or sunglasses. Further, various lighting conditions could also
affect computer vision model performance at night.

This thesis presents a behavioural approach-based solution capable of measuring a complete
set of driver statuses via accurate deep learning detection models. The main objective of this
thesis is twofold. First, there are numerous deep learning applications that can be utilized for
driver monitoring, including driver distraction detection [30, 4, 31], gaze estimation [5, 32, 9],
and emotion recognition [33, 34, 35]. Nonetheless, many of them are not particularly built for
complicated driving scenarios or still have room for performance improvement. In this work,
each proposed model is specifically designed to mitigate the weaknesses of the current DMS
functions, therefore optimized for driver monitoring use. Second, many previous works are pro-
posed as independent DMS modules, such as driver drowsiness detection and road rage detection.
There lacks a study that integrates these modules into a driver alertness assessment. This the-
sis aims to fill this gap by providing a comprehensive DMS functionality set and an integration
solution with detailed driver state measurements.

This thesis is structured as follows: Chapter 3 introduces a multimodal fusion module that
can effectively fuse any number of various neural networks and learn their feature correlation
towards the common goal. Building on this method, an audio-visual emotion recognition model
and a video-skeleton action recognition model are created. Both of them achieve state-of-the-art
performance in the benchmark datasets. Chapter 4 presents a driver anomaly detection and clas-
sification framework (DADCNet) using multimodal and multiview input. By using an efficient
allocation scheme of multi-channel input, DADCNet handles most of the "safe driving" samples
using a generalized and light network. Then, an enhanced network classifies filtered "anomalous
driving" samples into common physical distractions. DADCNet achieves on-par performance as
the benchmark with half parameters and FLOPS while reserving distraction classification ability.
Chapter 5 proposes a video-based gaze estimation pipeline focusing on head pose-invariant re-
gression and fast computation. This approach improves general gaze estimation precision by up
to 10% and reduces performance variance at different head poses. Finally, Chapter 6 talks about
how these methods are utilized to measure specific driver statuses in CareDMS. Concretely, the
emotion recognition model from Chapter 3 is utilized to monitor driver cognitive distractions due
to road rage or sadness. The estimated 3D gaze vector assesses any visual or cognitive distraction
because of reduced/increased fixation at the road ahead. The anomaly detection and classifica-
tion model identifies any secondary tasks performed while driving and gives an alert rating based
on the distraction activity and frequency. Chapter 6 discusses each specific measurement and
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gives a solution that maps the measurement values to an overall level of driver alertness on the
scale of 0 to 5, which benefits downstream warning system design.
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Chapter 2

Literature Review

A driver monitoring system (DMS) or an occupant monitoring system (OMS) is one of the es-
sential technologies in modern intelligent vehicle cabins. Such a system actively guarantees
the driver’s level of alertness is in a safe range and ensures the risk-free and comfort of drivers
and passengers on the go. Overall, a DMS analyzes multiple elements associated with road
accidents, such as physical distracted driving, driver fatigue, road rage, and abnormal vehicle
trajectory. Then, a DMS alerts the driver accordingly or performs proper actions to avoid any
potential car crash.

The driver’s level of alertness is assessed based on the detection of driver distractions. Driver
distraction is one internal state of driving behaviour, often categorized into visual (eyes-off-road),
cognitive (minds-off-driving), and physical (hands-off-driving-wheel) distractions [36]. The di-
rect measurement of the driver’s internal state comes from intrusive sensors to directly obtain
physiological signals such as Electroencephalography [37, 38, 39]. However, these intrusive
devices are currently cranky in the real-driving environment; thus, non-intrusive ones such as
interior cameras and eye trackers are much more common in the industry [40, 41].

Driver state monitoring has made significant progress in industries and academics. Based on
the three major types of driver distractions, this chapter dives into the literature’s most crucial
driver monitoring components, including physical distracted driving detection, driver fatigue
detection, gaze estimation, and emotion recognition. In addition, recent advances in multimodal
learning are reviewed to pave the way for the multimodal neural network methods introduced in
this thesis.
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2.1 Physical Distraction Detection

According to the statistics from the National Highway Traffic Safety Administration (NHTSA)
[14], an estimated number of 400,000 people were injured in distraction-affected crashes in 2018.
In addition, about 33,000 injured people were using cell phones at the time of the crash. There-
fore, detecting physical inattention behaviours such as texting or calling becomes essential in
modern driver monitoring systems. This section covers the primary methods for perception-
based physical distraction detection via utilizing interior cameras [40, 41].

The overall objective is to spot any concurrent secondary task while the driver is driving.
Using driver body posture to identify physical distracted driving is the main steam method. The
camera installed on the A-pillar can provide the driver’s upper body, and hand position [42].
The competing events to driving, such as phone-using, makeup, and talking to the passengers,
can be detected [30]. Authors in [43] compared various neural network architectures for activity
classification in an E2E fashion with the driver monitoring image sequences. The validation ac-
curacy in [43, 44] is relatively high due to the authors’ use leave-one-driver-out cross-validation
scheme. At the same time, most of the driver distraction detection makes the inference based
on the input image trained with data annotated based on video segments, which results in the
annotation contradiction between the frames themselves and the semantic meaning in terms of
a video segment[45, 46, 8]. [47] proposes a hybrid method for estimating driver workload. The
work uses an error reduction ratio to assess the correlation between measurements (e.g., vehicle
state variables, GPS, human body features) and driver workload. A support vector regression is
utilized to learn these relationships. [45] proposes a driver body posture dataset that contains ten
distraction classes and an ensemble of face detector of hand detector to predict the outcome. [48]
proposes to take advantage of temporal features of consecutive images which boost performance
in the same dataset in [45]. [49] proposes deep learning models for driver activity recognition,
but with additional classes for mirror checking. [50] analyzes the importance of driver features
(eyes, head, nose, etc.) for distracted driving detection and proposes a feed-forward neural net-
work using hand and body features.

Most of the recent works are multi-class action recognition models using deep learning. [46,
51, 52, 53] use 2D CNNs to perform image-level classification of commonly-seen distracting
behaviours on driver body images, such as texting, drinking, and adjusting radios. [54, 4, 31] use
3D CNNs or LSTMs to learn temporal features of driver body movements and predict the action
class of the current sequential input. The recently released driver behaviour dataset [8, 4, 55, 56]
start to provide synchronized multimodal data recorded in multiple viewpoints, which motivates
[4, 31] to learn a more comprehensive representation of the driver behaviours via multimodal
and multiview fusion, resulting in high robustness in detecting and classifying driving anomalies
in both daytime and nighttime.
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Treating driver distraction detection as a binary classification task or an action recognition
task has led to a few discussions [4, 31]. On the one hand, learning a set of commonly-seen
driver distraction behaviours gives a precise understanding of what the driver is doing. Moreover,
such a strategy offers the possibility of designing more advanced downstream driver monitoring
systems. For instance, "playing with a cellphone" is highly related to car accidents [14] and
should be treated more seriously than "drinking water". However, multi-class action recognition
is never an easy task. The trained model could be biased towards certain classes if a dataset
is unbalanced towards individual classes. Most importantly, the model may fail to detect an
unknown anomalous action when such data is received. On the other hand, models trained to
differentiate "safe driving" and "unsafe driving" generalizes better for open-set driver behaviours
[4] but lack an accurate understanding of the driver’s behaviours.

2.2 Driver Fatigue Detection

Driver fatigue is linked to driving performance decrements and higher accident risk [57]. The
main fatigue symptoms include eyelid closure [58], yawning [59], and slower reaction time [60].
Most of the related works focus on detecting the above patterns. Some early work utilized physi-
ological signals such as electrocardiogram (ECG) and electroencephalogram (EEG) and obtained
good results. [61] presents a neural network solution to detect heart rate variability (HRV) mea-
sured by ECG, which achieves 90% accuracy in the test data. [62] targets on learning patterns
from EEG, which can achieve 94% of accuracy in their test data.

With the breakthrough of deep learning, image recognition models are proposed to target
drowsiness detection by extracting human facial features. [63] deploys a real-time light-invariant
system using artificial neural networks to locate, track and analyze the face and the eyes to
compute drowsiness index. [64] learns visual cues of eyes and mouth to detect eye closure
duration (PERCLOS) and yawning. Viola-Jones algorithm is used to locate the driver and the
face subsequently. [65] is a deep learning solution that consists of a face detector, a nose detector,
a nose tracker, and a yawning detector. The study utilizes deep learning models for face and nose
localization and a Kalman filter for tracking the driver’s nose. High accuracy (92%) is achieved
with a 13% lesser false alarm rate than the previous SOTA model on the YawDD dataset [66].
Unlike previous works, which are mostly based on RGB, [67] uses infrared videos for detecting
eye state for the model also detect fatigue when driver wears glasses. The CNN model outputs
PERCLOS and blinking frequency and achieves similar performance (98%) on drivers who wear
glasses compared to those who do not (99%). One of the latest works [68] proposes a multi-
tasking CNN that encodes features from both eye and mouth into classifying PERCLOS and
FOM (yawning frequency of mouth). The model achieved 98%+ accuracy in YawdDD [66] and
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NthuDDD [69] dataset.

2.3 Emotion Recognition

Emotion monitoring is considered an important module for both drivers and occupants. Accord-
ing to a study from [70], the risk of an accident that is affected by negative emotions (anger,
sadness) is 14%. Surprisingly, this is only 6% lower than mobile phone dialling (20%), which
is believed to have a significant impact on performing the driving task. A direct consequence
of driving with negative emotions is aggressive driving. According to NHTSA [71], aggressive
driving is perceived as one of the more significant problems of day driving nowadays. A study of
aggressive driving [72] suggests that congestion is highly correlated to higher levels of stress and
more aggressive behaviours such as purposeful tailgating, swearing or yelling at others, and horn
honking. Emotion recognition research has been conducted to reduce road rage in the past years.
Vehicle intelligent systems can be customized to react adequately towards in-cabin negative emo-
tions, such as playing relaxing music or letting autonomous driving take control. This section
briefly reviews existing emotion recognition algorithms and discusses how the technology helps
in an in-cabin environment.

Traditional emotion recognition systems have explored various approaches such as facial
expressions, gestures, and physiological signals [73]. Physiological signals originate from the
Autonomous Nervous System (ANS) activity and thus cannot be triggered by any conscious
or intentional control. Suppressing emotions or social masking is therefore impossible through
physiological signals [74]. Electrocardiography (ECG) is a powerful diagnostic tool that assesses
the functionality of the heart and has also been used for emotion recognition [34]. Galvanic Skin
Response (GSR) is a continuous measurement of electrical parameters of human skin [33]. GSR
signal amplitude is associated with stress, excitement, engagement, frustration, and anger. Thus,
it has been used for emotion recognition [75].

Emotion recognition through physiological signals is still considered intrusive, especially
when a person is driving. Facial expressions and body posture remain promising approaches
in the field, especially with the recent advances in computer vision and machine learning [33].
Multiple works [76, 35, 77] proposed models that exploit relations between emotions and body
posture. [76] extracts body posture features and predicts the emotional state via similarity dis-
tance. [35] proposed a sequential model that learns features from the location and the orientation
of joints within the tracked skeleton to infer emotion status. Predicting emotions based on fa-
cial expression is so far the most popular approach. [78, 79] propose to use near-infrared video
sequences to estimate facial expression recognition, which shows robustness concerning illumi-
nation changes. [80] learns region-specific appearance features by dividing the facial region into
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domain-specific local regions. [81] proposes a system that learns to recognize action units (AUs)
which is strongly correlated to facial movement cues when specific emotions are aroused. Some
works combine facial expressions with body or hand postures. [82] uses multimodal classifiers
on facial expression and body and hand posture to estimate emotional state. [77] proposes a
similar multimodal system and demonstrates that hand and body postures can improve emotion
recognition rate compared to facial expression only.

2.4 Gaze Estimation

Gaze estimation is the task of predicting where a person is looking at given the person’s full face
[83]. In the automotive industry, ADAS technology often uses 3D gaze estimation and head pose
estimation to recognize any signs of distractions [84]. For example, drivers who experience an
increase of cognitive demand tend to concentrate their gaze on the road ahead but attend less
in speedometer and mirrors, which may cause unintentional blindness and loss of situational
awareness [84]. Via gaze estimation, a DMS can calculate the percentage road center (percent-
age of fixations that fall within the road center area [85]), which correlates with driver cognitive
distraction. Another common type of distraction is visual distractions, such as "texting on the
phone". Similarly, such distracted driving behaviours can also be assessed if the estimated gaze
frequently concentrates on non-driving-related areas. Gaze estimation methods are mainly cate-
gorized into model-based and appearance-based. The model-based approach adapts a geometric
eye model on high-resolution images and estimates the eye characteristics of a particular user
through person-specific calibration [86, 87]. On the other hand, appearance-based methods only
rely on a remote camera (e.g. webcam) to capture the human face and a mapping function from
the input image to the gaze vector. Although the setup is much simpler than model-based ap-
proaches, robust feature extraction of the eye is needed to have reliable performance, such as
histograms of oriented gradients (HOG) [88] and deep learning [89]. Data-intensive training is
also required to overcome generalization towards different scenarios. [90] proposed an adaptive
linear regression method to reduce required training samples and improve robustness to slight
head motions. [91] adapts a CNN feature extractor and a random forest regression for gaze
estimation in a natural environment. [92] tackles pose invariant gaze estimation by using a 3D
Morphable Model to obtain a 3D reconstruction of the face from the original image, extract HOG
features and regress gaze vector using random forest.

Due to less rigid requirements in image quality and face locations, appearance-based meth-
ods can adapt to unconstrained environments, thus being found in common applications such as
driver monitoring and human-computer interactions. The main challenge in these applications
is generalization towards the diverse individuals and various head poses. Recent works adapt
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deep learning-based feature extraction that shows multiple advantages compared to traditional
appearance-based methods [93]. [94] applies spatial attention weights to face input to highlight
important regions and adapt different illumination conditions. [32] proposes a real-world multi-
person dataset and a face normalization technique to improve neural network feature learning,
which is enhanced in [89]. [95] proposes a video-based solution that regresses the gaze direc-
tion from a sequence of consecutive face images. [9] proposes a gaze estimation dataset with
extreme head poses, and conducts cross-dataset evaluation between multiple head pose-various
gaze estimation dataset [5, 9, 96, 97, 32].

The main objective of gaze estimation in advanced driving assistance systems (ADAS) is to
identify visual distraction, which is considered among the leading causes [84] of road accidents.
Besides being person and head pose-independent, a gaze estimation model in a driving cabin
should also adapt different lighting conditions, sunglasses, and eyeglass reflections. Given these
challenges, gaze estimation from eye features becomes even more difficult. There are numerous
works [98, 99, 100, 101] that consider estimating head pose rather than gaze for driver monitor-
ing. However, such a system could fail to report any cognitive distraction when drivers are too
concentrated on the road ahead without looking at mirrors because the head movements between
these regions are very subtle. On the other hand, multiple works [102, 103] propose to use gaze
region classification for driver monitoring as the driver’s gaze zone provides sufficient informa-
tion about the driver’s mental state. Nonetheless, these models may not give accurate results if
the camera placement is different from the one used in the dataset.

2.5 Other DMS applications

There are other implementations that ensure both the driver and passengers have a safe and
comfortable trip. For example, recent ride-share services bring people more convenience and
provide drivers more jobs; nonetheless, increasing in-car violence and harassment cases have
also induced passenger safety concerns. Violence detection [104, 105, 106, 107] is the detection
of violent behaviours such as sexual harassment, brutality, and robbery using modalities such as
video, audio, or language. In addition, seat belt detection [108, 109] monitors whether driver
and passenger wear a seat belt. Dog or baby detection using object detection [110, 111] ensures
airbags and in-vehicle environment (e.g. air condition) are adjusted in real-time to make them
comfortable while minimizing the impact of traffic accidents.
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2.6 Multimodal Learning

Multimodal learning has been explored in numerous machine learning applications such as
audio-visual speech recognition [112], action recognition [113], and video question answering
[114], where each modality contains useful information from a different perspective. Although
these tasks can benefit from the complementary relationship in multimodal data, different modal-
ities are represented in diverse fashions, making it challenging to grasp their complex correla-
tions.

Studies in multimodal machine learning are mainly categorized into three fusion strategies:
early fusion, intermediate fusion, and late fusion. Early fusion explicitly exploits the cross-modal
correlation by joining each modality’s representation at the feature level, which is then used to
predict the final outcome. The fusion is typically operated after the feature extractor for each
modality, where techniques such as Compact Bilinear Pooling (CBP) [115, 116] and Canonical
Correlation Analysis (CCA) [117, 118] are used to exploit the covariation between modalities.
Unfortunately, modalities usually have different natures causing unaligned spatial and temporal
dimensions. This creates obstacles in capturing the latent interrelationships in the low-level fea-
ture space [119]. On the other hand, late fusion fuses the decision from each modality into a final
decision using a simple mechanism such as voting [120] and averaging [121]. Since little train-
ing is required, a multimodal system can be promptly deployed by utilizing pretrained unimodal
weights, unlike early fusion methods. However, decision-level fusion neglects the crossmodal
correlation between the low-level features in modalities, resulting in limited improvement com-
pared to the unimodal models. The intermediate fusion method joins features in the middle of
the network, where some feature processing is done for the raw features from the feature extrac-
tors. Recent intermediate multimodal fusion networks [3, 122, 123] exploit the modality-wise
relationships at different stages of the network, which has shown impressive results. However,
there are still a limited number of works that can effectively capture cross-modal dynamics in an
efficient way by using pretrained weights while introducing minimal parameters.

Early Fusion: The majority of works in early fusion integrate features immediately after they
are extracted from each modality, whereas occasionally studies perform fusion at the input level,
such as [124]. A simple solution for early fusion is feature concatenation after they are trans-
formed to the same length, followed by fully connected layers. Many early fusion works use
CCA to exploit cross-modality correlations. [125] applies CCA to improve the performance
in speaker identification using visual and audio modalities. [126] proposes deep CCA to learn
complex nonlinear transformations between modalities, which inspired multimodal applications
such as [117]. Bilinear pooling is another early fusion method that fuses modalities by cal-
culating their outer product. However, the generated high dimensional feature vectors are very
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computationally expensive for subsequent analysis. Compact bilinear pooling [127] significantly
mitigates the curse of dimensionality problem [123] through a novel kernelized analysis while
keeping the same discriminative power as the full bilinear representation.

Late Fusion: Late fusion merges the decision values from each unimodal model into an unified
decision using fusion mechanisms such as averaging [121], voting [120] and weighted sum [128].
In contrast to early fusion, late fusion embraces the end-to-end learning between each modality
and the given task. It allows for more flexibility as it can still train or make predictions when
one or more modalities are missing. Nevertheless, late fusion lacks the exploration of lower-
level correlations between the modalities. Therefore, when it comes to a disagreement between
modalities, a simple mechanism acting only on decisions might be too simplified. There are also
more complex late fusion approaches that exploit modality-wise synergies. For example, [129]
proposes a multiplicative combination layer that promotes the training of strong modalities per
sample and tolerates mistakes made by other modalities.

Intermediate Fusion: Intermediate fusion exploits feature correlations after some level of pro-
cessing, therefore the fusion takes place in the middle between the feature extractor and the de-
cision layer. For instance, [130] applies principle component analysis on the extracted features
for each modality, and further processes them respectively before feature concatenation. Recent
works continue to improve modality feature alignment to give stronger joint features. Central-
Net [122] coordinates features of each modality by performing a weighted sum of modalities in
a central branch at different levels of the network. EmbraceNet [131] prevents dependency on
data of specific modalities and increases robustness to missing data through learning crossmodal
correlations by combining selected features from each modality using a multinomial distribu-
tion. [3] utilizes the squeeze and excitation module from SENet [132] to enable slow modality
fusion by channel-wise feature recalibration at different stages of the network. Our work aims to
effectively fuse features of modalities while maintaining efficiency.

2.7 DMS in the Industry

Industry-wise, many car manufactures implemented certain driver monitoring functionalities in
their latest vehicle models. For example, in 2018, Volvo launched Driver Alert Control (DAC)
to draw the driver’s attention back when erratic driving is detected. The technology uses a dash-
board camera to detect fatigue and a vehicle camera to detect lane lines and side markings so that
abnormal driving trajectory can be noticed [133]. Mercedes-Benz introduced a similar function
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called Attention Assist [134]. Their approach assesses the intricacies of a driver’s driving habit
and analyzes the driver’s steering behaviours to detect signs of driver fatigue. Honda also adapts
a vehicle-based driver monitoring approach [135]. Based on the driver’s steering frequency and
severity, the system maps the driver’s attention to four levels and alerts the driver when the level
drops to two.
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Chapter 3

MSAF: Multimodal Split Attention Fusion

Multimodal learning mimics the reasoning process of the human multi-sensory system, which is
used to perceive the surrounding world. While making a prediction, the human brain tends to re-
late crucial cues from multiple sources of information. This chapter proposes a novel lightweight
multimodal fusion module that learns to emphasize more contributive features across all modal-
ities. Specifically, the proposed Multimodal Split Attention Fusion (MSAF) module splits each
modality into channel-wise equal feature blocks and creates a joint representation that is used to
generate soft attention for each channel across the feature blocks. Further, the MSAF module
is designed to be compatible with features of various spatial dimensions and sequence lengths,
suitable for both CNNs and RNNs. Thus, MSAF can be easily added to fuse features of any
unimodal networks and utilize existing pretrained unimodal model weights. To demonstrate the
effectiveness of the MSAF fusion module, two multimodal networks with MSAF are designed for
emotion recognition and action recognition tasks. Overall, MSAF-based multimodal networks
achieves competitive results in both tasks and outperform other application-specific networks
and multimodal fusion benchmarks.

3.1 MSAF

This section proposes a lightweight fusion module, MSAF, taking inspiration from the split-
attention block in ResNeSt [136]. The split-attention mechanism explores cross-channel re-
lationships by dividing the feature-map into several groups and applying attention across the
groups based on the global contextual information. This method extends split-attention for mul-
timodal applications in the proposed MSAF module to explore inter- and intra-modality relation-
ships while maintaining a compact multimodal context. The MSAF module splits the features
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of each modality channel-wise into equal-sized feature blocks, which are globally summarized
by a channel descriptor. The descriptor then learns to emphasize the important feature blocks
by generating attention values. Subsequently, the enhanced feature blocks are rejoined for each
modality, resulting in an optimized feature space with an understanding of the multimodal con-
text. Further, the MSAF module is compatible with features of any shape as it operates only
on the channel dimension. Thus, MSAF can be added between layers of any CNN or RNN
architecture.

The formulation of the multimodal fusion problem in an MSAF module is listed as follows.
Let M be the number of modalities and the feature map of modality m ∈ {1, 2, · · · ,M} be
Fm ∈ IRN1×N2×···×NK×Cm . Here, K is the number of spatial dimensions of modality m and Cm

is the number of channels in modality m. Generally, an MSAF module takes the feature maps
{F1, · · · , FM} and generates optimized feature maps {F̂1, · · · , F̂M} activated by the correspond-
ing per channel block-wise attention. An MSAF module consists of three operations: 1) split, 2)
join, and 3) highlight, which are summarized in Figure 3.1. The three steps are explicated below.

Split: A MSAF module starts by splitting each feature map channel-wise into equal-channel
feature blocks where the number of channels in each block is C. Please note that the set of the
feature blocks that belong to modality m as Bm, where |Bm| = ⌈Cm/C⌉,m ∈ {1, · · · ,M}, Bi

m

being the ith feature block in Bm, i ∈ {1, · · · , |Bm|}. When Cm is not a multiple of C, the last
block is padded with zeros in the missing channels.

Join: The join operation is a crucial step in learning the multimodal global context used to
generate per channel block-wise attention. MSAF joins the blocks that belong to modality m
into a shared representation Dm, by calculating the element-wise sum Sm over Bm, followed by
global average pooling on the spatial dimensions:

Dm(c) =
1∏K

i=1Ni

∑
(n1,··· ,nK)

Sm(n1, n2, · · · , nK , c) (3.1)

Each channel descriptor is now a feature vector of the common length C that summarizes the
feature blocks within a modality. To obtain multimodal contextual information, MSAF calcu-
lates the element-wise sum of the per modality descriptors {D1, · · · , DM} to form a multimodal
channel descriptor G. MSAF captures the channel-wise dependencies by a fully connected layer
with a reduction factor r followed by a batch normalization layer and a ReLU activation function.
The transformation maps G to the joint representation Z ∈ IRC′

, C ′ = ⌊C/r⌋ which helps with
generalization for complex models.

Z = WZG+ bZ (3.2)

15



Figure 3.1: Breakdown of the MSAF module with steps, split, join and highlight, numbered on
the left.

16



where WZ ∈ IRC′×C , bZ ∈ IRC′
. As advised in [3] and evident in the experiments, a reduction

factor of 4 is ideal for two modalities. As the number of modalities increase, It is recommended
to decrease the reduction factor to accommodate mores features in the joint representation.

Highlight: The multimodal channel descriptor contains generalized but rich knowledge of the
global context. In this step, for a block Bi

m, MSAF generates the corresponding logits U i
m by

applying a linear transformation on Z: U i
m = W i

mZ+bim. It then obtains the block-wise attention
weights Ai

m using the softmax activation: Ai
m = exp(U i

m)∑M
k

∑|Bk|
j exp(Uj

k)
, where W i

m ∈ IRC×C′
and

bim ∈ IRC are weights and bias of the corresponding fully connected layer.

Since soft attention values are dependent on the total number of feature blocks, features may
be over-suppressed. The effect is more apparent in complex tasks which results in insufficient
information for accurate predictions. Thus, a hyperparameter λ ∈ [0, 1] is presented to control
the suppression power of MSAF. Intuitively, λ can be understood as a regularizer for the lowest
attention of a split. An optimized feature block B̂i

m is obtained using attention signals Ai
m and λ:

B̂i
m = [λ+ (1− λ)× Ai

m]⊙Bi
m (3.3)

Finally, the feature blocks belonging to modality m are merged by channel-wise concatenation
to produce F̂m = [B̂1

m, B̂
2
m, · · · , B̂m

|Bm|
].

To lessen the dependencies on certain strong feature blocks and ease overfitting, a dropout
method for the feature blocks is proposed called BlockDropout. BlockDropout generates a binary
mask that randomly drops feature blocks from the set of all feature blocks from each modality
B, and applies the same mask on the block’s attention. Let the dropout probability p ∈ [0, 1),
First, MSAF draws |B| samples from a Bernoulli distribution with the probability of success
(1 − p), resulting in a binary mask for dropping out the feature blocks. Subsequently, the mask
is scaled by 1

1−p
and is applied to the generated attention vectors. This is not to be confused

with DropBlock [137] which is used in ResNeSt to regularize convolutional layers by randomly
masking out local block regions in the feature map. Whereas BlockDropout is applied to feature
blocks after the first step of MSAF which are split in the channel dimension.

3.2 Applications

In this section, MSAF module is applied to fuse unimodal networks in two applications. The
following subsections describe each unimodal network and the configuration for the MSAF mod-
ules.
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3.2.1 Emotion Recognition

Multimodal emotion recognition (MER) is a classification task that categorizes human emotions
using multiple interacting signals. Although numerous works have utilized more complex modal-
ities such as EEG [138] and body gesture [139], video and audio remain as dominant modalities
used for this task. Thus, a multimodal network is designed to fuse a 3D CNN for video and a
1D CNN for audio using MSAF. Video data has dependencies on both spatial and temporal di-
mensions, therefore requiring a network with 3D kernels to learn both the facial expression and
its movement. Considering both network performance and training efficiency, this work chooses
the 3D ResNeXt50 network [140] as suggested by [141] with cardinality set to 32. For the audio
modality, recent works [142, 143] have demonstrated the effectiveness of deep learning based
methods built on Mel-frequency cepstral coefficients (MFCC) features. A simple 1D CNN is
designed for the MFCC features and fuse the two modalities via two MSAF modules as shown
in Figure 3.2. The MSAF configuration consists of two MSAF modules with 16 and 32 channels
per block and BlockDropout with p = 0.2. Finally, the logits of both networks are summed,
followed by a softmax function.

3.2.2 Action Recognition

With the development of depth cameras, depth and skeleton data have become crucial modalities
in the action recognition task along with RGB videos. Multiple works such as [3, 144, 145] have
achieved competitive performance using RGB videos associated with skeleton sequences. This
section follows [3] which utilizes I3D [2] for the video data, and HCN [146] for the skeleton
stream. As illustrated in Figure 3.3, two MSAF modules are deployed: one at an intermediate
level in both networks and the other one for high-level feature recalibration. The HCN framework
proposes two strategies to be scalable to multi-person scenarios. The first type stacks the joints
from all persons and feeds them as the network’s input in an early fusion style. The second
type adapts late fusion that passes the inputs of multiple persons through the same subnetwork,
whose Conv6 channel-wise concatenates or element-wise maximizes the group of features of
persons. The latter generalizes better to various numbers of persons than the other, which needs
a predefined maximum number of persons. [3] follows the multi-person late fusion strategy and
utilizes their first fusion module on one of the two persons universally. This work takes a different
approach by considering all available individuals in a sample because either can send important
signals during a multi-person interaction. The first MSAF module has 64 channels per block and
is inserted between the second last Inception layer in I3D and the Conv5 outputs of each person.
The second MSAF has 256 channels per block and is positioned between the last Inception layer
in I3D and the FC7 layer in HCN. A suppression power of λ = 0.5 is used for both modules.
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Figure 3.2: Proposed architecture for emotion recognition
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Finally, the logits of both networks are averaged followed by a softmax function.

Figure 3.3: Proposed architecture for action recognition. “Inc." denotes an inception module
from [2]

3.3 Evaluation

This section discusses the dataset choice, data preprocessing and training details for each appli-
cation. Further, MSAF-based networks are evaluated and compared with other state-of-the-art
works. Validation set accuracy was used to select the optimal hyperparameters for benchmarks
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and the proposed method in the tables. To verify the effectiveness of MSAF and the proposed
hyperparameters, this section includes an ablation study for each task and analysis of the mod-
ule complexity, computation cost and visualization of attention signals. The experiments were
conducted using a single Nvidia 2080 Ti GPU in Ubuntu 20.04 with Python 3.6 and PyTorch
1.7.1.

3.3.1 Emotion Recognition

Data Preparation: Many emotion recognition datasets contain both facial expression and au-
dio signals, including [147, 148]. This work chose the Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS) [147] dataset due to its high quality in both video and audio
recording and the sufficient number of video clips. RAVDESS contains 1440 videos of short
speech from 24 actors (12 males, 12 females), performed under the emotion they are told to act
upon. Eight emotions are included in the dataset: neutral, calm, happy, sad, angry, fearful, dis-
gust and surprised. Thirty consecutive images from each video are extracted as the model input.
The 2D facial landmarks are provided for each image to crop the face area and then resize to
(224, 224). Random crop, horizontal flip, and normalization were used for data augmentation.
The first 0.5 seconds are cropped for the audio modality since the first 0.5 seconds usually con-
tain no sound. The next 2.45 seconds of audio is taken for all clips for consistency. As suggested
by [149], this work extracted the first 13 MFCC features for each cropped audio clip. Evaluation-
wise, a six fold cross-validation based on the actors is adopted for the RAVDESS dataset. The
24 actors are split in a 5:1 ratio for the training and testing sets. Since the gender of the actors is
indicated by even or odd actor IDs, the genders are kept evenly distributed by rotating through 4
consecutive actor IDs as the testing set for each fold.

Training-wise, the unimodal models are fine-tuned for each fold on RAVDESS. Both uni-
modal and multimodal training used the Adam optimizer [150] with a constant learning rate of
10−3. The final accuracy reported is the average accuracy over the six folds.

This task implemented multiple recent multimodal fusion algorithms as the benchmarks, cat-
egorized as follows: 1) simple feature concatenation followed by fully connected layers based
on [151] and MCBP [115] as two early fusion methods, 2) MMTM [3] as the state-of-the-art
intermediate fusion method, 3) averaging, multiplication are two standard late fusion methods;
multiplicative layer [129] is a late fusion method that adds a down-weighting factor to CE loss
to suppress weaker modalities.

Results: Table 3.1 presents the accuracy of the proposed method in comparison with the im-
plemented benchmarks. The MSAF-based network surpasses unimodal baselines by over 10%
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Model Fusion Stage Accuracy #Params
3D ResNeXt50 (Vis.) - 62.99 25.88 M
1D CNN (Aud.) - 56.53 0.03 M
Averaging Late 68.82 25.92 M
Multiplicative β=0.3 Late 70.35 25.92 M
Multiplication Late 70.56 25.92 M
Concat + FC Early 71.04 26.87 M
MCBP Early 71.32 51.03 M
MMTM Inter. 73.12 31.97 M
MSAF Inter. 74.86 25.94 M

Table 3.1: Comparison between multimodal fusion benchmarks and the MSAF-based fusion
model on RAVDESS.

verifying the importance of multimodal fusion. Early fusion methods did not exceed standard
late fusion benchmarks by a significant number, indicating the challenge of finding cross-modal
correlations between the complex video network and the 1D audio model in the early stages. As
expected, intermediate fusion methods outperformed late and early methods as they can high-
light features while they are developed to identify areas of focus in each modality. The MSAF
multimodal model outperforms the top performer MMTM by 1.74% while using 19% fewer
parameters. Compared to the unimodal models, the MSAF network only introduced 30K param-
eters in the fusion module.

3.3.2 Action Recognition

Data Preparation: NTU RGB+D [152] is a large-scale human action recognition dataset. It
contains 60 action classes and 56,880 video samples associated with 3D skeleton data. Cross-
Subject (CS) and Cross-View (CV) are two recommended protocols. CS splits the training set
and testing set by the subject IDs, whereas CV splits the samples based on different camera
views. Recent methods [153, 145, 154] have achieved decent CV accuracies; however, CS still
remains a more challenging evaluation method based on the reported performance compared to
the CV counterpart. The CS evaluation is adopted, which splits the 40 subjects based on the
specified rule. For data preprocessing, video frames are extracted at 32 FPS. The same data
augmentation approach [3] is used in this study.

The Adam optimizer with a base learning rate of 10−3 and a weight decay of 10−4 is used. The
learning rate is reduced to 10−4 at epoch 5, where the loss is near saturation in the experiment.

The multimodal fusion benchmarks for action recognition based on RGB videos and skele-
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Model RGB Model Acc. (CS)
Inf. ResNet50 (RGB) - 83.91
I3D (RGB) - 85.63
HCN (Skeleton) - 85.24
SGM-Net* - 89.10
CentralNet⋄ Inf. ResNet50 89.36
MFAS* Inf. ResNet50 90.04
MMTM* Inf. ResNet50 90.11
PoseMap* - 91.71
MMTM* I3D 91.99
MSAF Inf. ResNet50 90.63
MSAF I3D 92.24

Table 3.2: Comparison between multimodal fusion benchmarks and the MSAF-based fusion
model on the NTU RGB+D Cross-Subject protocol. * from original papers and ⋄ from [3]. The
standard error for Inflated ResNet50 and I3D over 5 runs is 0.04 and 0.03 respectively.

tons are summarized as follows: 1) SGM-Net [144] proposed a skeleton guidance block to en-
hance RGB features, 2) CentralNet [122] adds a central branch that learns the weighted sum
of the skeleton and RGB features at various locations, 3) MFAS [155] is a generic search al-
gorithm that finds an optimal architecture for a given dataset, 4) PoseMap [145] uses CNNs
to process pose estimation maps and skeletons independently with late fusion for final predic-
tion, 5) MMTM [3] recalibrates features at different stages achieving state-of-the-art in RGB and
skeleton fusion.

Results: Table 3.2 reports the accuracy of the proposed MSAF network in comparison with
other action recognition models using RGB videos and skeletons. To compare with the state-of-
the-art intermediate fusion methods, MSAF is also applied to fuse Inflated ResNet50 [156] and
HCN. It outperforms all intermediate fusion methods and application-specific models, achiev-
ing the state-of-the-art performance in RGB+pose action recognition in the NTU RGB+D CS
protocol.

3.4 Ablation Study

To obtain the configurations used for each application, this chapter includes the ablation study
on all two datasets with the following hyperparameters: the number of channels in a block C,
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Dataset C λ BlockDropout Acc.

RAVDESS

8, 16 71.01
16, 32 72.99
32, 64 73.40
32, 64 ✓ 72.29
16, 32 ✓ 74.86
16, 32 0.25 ✓ 74.37

NTU

32, 128 91.04
64, 256 91.56
126, 512 91.05
64, 256 0.25 92.00
64, 256 0.5 92.24
64, 256 0.5 ✓ 92.12

Table 3.3: Ablation study of MSAF module hyperparameters.

Early Intermediate Late Acc. (CS)
✓ 91.93

✓ 92.08
✓ 92.11

✓ ✓ 91.81
✓ ✓ 91.88

✓ ✓ 92.24
✓ ✓ ✓ 91.88

Table 3.4: Ablation study of the placement of MSAF modules in early, intermediate and late
feature levels on NTU RGB+D.

attention regularizer λ (default value is 0), and BlockDropout (with p = 0.2). Table 3.3 reports
the accuracy of the configurations building up to the best configuration. In general, the optimal
number of channels in a block, C, for each dataset can be derived from min {C1, · · · , CM}/2,
which serves as a good starting point when tuning C for other applications. Hyperparameter λ
plays an important role in NTU by avoiding over-suppression of features for more complex tasks.
BlockDropout is essential to the performance in RAVDESS but not NTU, as dropout tends to be
more effective on smaller datasets to prevent overfitting.

An essential factor for effective feature fusion is the location of a MSAF module in a multi-
modal network architecture. On the one hand, placing a MSAF module at an earlier part of the
network can help unimodal models learn to correlate raw features of each other. On the other
hand, using MSAF to fuse high-level features generates a more apparent bias towards specific

24



Figure 3.4: Number of parameters comparison between an MSAF module and an MMTM [3]
module. Each module receives two modalities with the same channel number indicated by the
x-axis.

unimodal patterns as the high-level features are more tailored to the task. To analyze the effect of
MSAF in different fusion locations on model performance, three positions are defined to place
MSAF in the action recognition network (I3D + HCN). In the early location, a MSAF receives
the concatenated Conv4 features from the two actors in HCN and the third last Inception layer of
I3D. The intermediate location is between the Conv5 layer of HCN and the second last Inception
layer of I3D. Finally, the late location is at the last I3D Inception layer and the FC7 layer of HCN.
C is set to min {C1, · · · , CM}/2 while the other parameters are kept the same. The multimodal
network with different combinations of the above fusion locations are trained. The results are
reported in Table 3.4.

The combination of intermediate and late fusion achieves the best result among all seven
experiments. Interestingly, all experiments that involve early fusion yield similar performance at
around 91.9%. Further, deploying MSAF in all three locations does not perform better than using
only intermediate and late fusion. This is because the low-level features at the early position are
still underdeveloped to show enough correlation for effective fusion, which results in sub-optimal
performance. In summary, multimodal fusion using MSAF is the most effective when applied to
a combination of intermediate and high-level features.

Reflecting on the objective to design an effective fusion module that is also lightweight,
an analysis of the number of parameters of the MSAF module is conducted. Ideally, the fu-
sion module should introduce minimal parameters to the unimodal networks combined despite
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Figure 3.5: Visualization of attention values from the second MSAF module averaged for each
emotion in the RAVDESS dataset and summed modality-wise (V=video, A=audio). The atten-
tion value range is between 0 and 1.
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Figure 3.6: Comparison between attention values of 2 MSAF modules in RAVDESS. Blocks
14-16 belong to the audio modality and part of the video modality is shown due to size. The
attention value range is between 0 and 1.

the feature map size of the modalities. The split and join steps in MSAF ensure the joint fea-
ture space depends on the channel number of the feature blocks instead of the channel of the
modalities. Therefore, the number of parameters is significantly reduced. Figure 3.4 shows the
number of parameters comparison between MSAF and MMTM [3]. Two example modalities
with shape (4, #Channels, 3, 128, 128) are used for both methods, where #Channels is in-
dicated on the x-axis. The reduction factor for MSAF is set to 4 for both modules. C is set to
min {C1, · · · , CM}/2. As shown, MSAF utilizes parameters more efficiently, reaching a max-
imum of 330K parameters. In terms of computational cost, the number of FLOPs for MSAF
is similar to the number of parameters of MMTM 1. For instance, when #Channels is 64 and
1024, MSAF has 10.4K and 2.6M FLOPs, whereas MMTM has 131.6K and 33.6M FLOPs,
respectively.

To further understand the MSAF module and its effectiveness, the averaged attention signals
per emotion are produced on the RAVDESS dataset. Figure 3.5 shows the attention signals from
the second MSAF module and sums the attention values for the blocks of the same modality.
The video modality has higher attention weights when summed together since it has more blocks
and is the stronger modality. However, it is noticeable that for some emotions such as happy,

1The FLOPS calculation is derived locally by utilizing this PyTorch FLOPS estimation
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several channels in the audio modality have similar weights as the video modality. This shows
that the MSAF module is able to optimize how the modalities are used together depending on
the emotion.

Next, the attention signals from the first MSAF module versus the second MSAF module is
examined. In Figure 3.6, the first MSAF module gives blocks of each modality similar levels
of attention since the features are lower-level whereas the second MSAF module learns that the
audio modality has fewer blocks and gives them higher attention values compared to the video
modality blocks.

3.5 Conclusion

This chapter presents a lightweight multimodal fusion module, MSAF, that learns to exploit the
complementary relationships between the modalities and highlight features for optimal multi-
modal learning. MSAF enables easy deployment of high-performance multimodal models due to
its compatibility with diverse types of neural networks. Two multimodal networks with MSAF
were implemented for emotion recognition and action recognition. The experiments demon-
strated the module’s ability to coordinate various modalities through competitive evaluation re-
sults in both tasks.
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Chapter 4

Driver Anomaly Detection via Conditional
Proposal and Classification Network

Detecting driver inattentive behaviours is crucial for ensuring driving safety in a driver mon-
itoring system (DMS). Recent works either treat driver distraction detection as a multi-class
action recognition problem or a binary anomaly detection problem. The former approach aims
to classify a fixed set of action classes. Although specific distraction classes can be predicted,
this approach is inflexible to detect unknown driver anomalies. The latter approach mixes all
distraction behaviours into one class: anomalous driving. Because the objective focuses on find-
ing the difference between safe and distracted driving, this approach has better generalization
in detecting unknown driver distractions. However, a detailed classification of the distraction
is missing from the predictions, meaning the downstream DMS can only treat all distractions
with the same severity. This work proposes a two-phase anomaly proposal and classification
framework (DADCNet) robust for open-set anomalies while maintaining high-level distraction
understanding. DADCNet makes efficient allocation of multimodal and multiview inputs. The
anomaly proposal network first utilizes a subset of the available modalities and views to suggest
suspicious anomalous driving behaviour. Then, the classification network employs more features
to verify the anomaly proposal and classify the proposed distraction actions. Through extensive
experiments in the DAD [4] and the 3MDAD [8] dataset, the proposed approach significantly
reduces the total amount of computation during inference time while maintaining high anomaly
detection sensitivity and robust performance in classifying common driver distractions.
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4.1 DADCNet

This work employs a simple idea that not all multimodal and multiview features are necessary
to distinguish easy "safe driving" and "anomalous driving" samples. The question is: Is there
any simple visual cue that serves as a hint of distraction? Based on this concept, this chap-
ter proposes a video-based framework for simultaneous driver anomaly detection and distraction
behaviour classification with the efficient allocation of multimodal and multiview inputs. First, a
simple network that uses only a subset of the available inputs is trained to propose any suspicious
anomalies. Then, a classification network with more comprehensive input sets rebut any false
"anomalous driving" from the proposal network or proceed with distraction classification. This
design makes sure the simple proposal network efficiently handles most of the easy "normal driv-
ing" cases. Considering that a driver performs "safe driving" for the majority of the time, most of
the network feed-forward computation can be saved. In contrast, the more powerful classifica-
tion network analyzes only "anomalous driving" samples (true positives) or those hard "normal
driving" samples (false positives). A mutual learning scheme is introduced for the networks
in the framework to ensure the model maintains the same discrimination power as fully-loaded
multimodal and multiview networks while keeping computation low. Specifically, a mimicry
loss is utilized to dynamically transfer knowledge from the classification network (teacher) to
the proposal network (student).

4.1.1 Problem Formation

The formulation of the driver anomaly detection and classification problem is stated as follows.
Let A be the anomaly driving class set. Let D = {Dn}

⋃
A be the class set for driver be-

haviour classification, where Dn is "normal driving". Let E = {En, Ea} be the class set for
driver anomaly detection, where En and Ea mean "normal driving" and "anomalous driving"
respectively.

Let M and V be the set of modalities and views available. There are N samples of image
sequences S = {Sv

m|Sv
m ∈ IR(L,C,H,W )}, where L is the length of the image sequence, C,H,W

are the channel, height and width of the image tensor respectively, m ∈ M and v ∈ V are the
chosen modality and view for the data source. The corresponding classification ground truth is
set as Ycls = {yicls ∈ D}Ni=1. The anomaly detection ground truth is then generated by Ypps =
{Cvt(i) ∈ E}Ni=1

Cvt(i) =

{
Ea yicls ∈ A

En otherwise
(4.1)
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The objective is to estimate the driver normal driving probability ppps ∈ IR2 and classify any
driver distractions pcls ∈ IR|D|.

Figure 4.1: DADCNet. {Front, Top} views and {IR, Depth} modalities from the DAD dataset
[4] are used to demonstrate the network inference pipeline. The notion ⊕ is the sum fusion. ⊗
stands for the conditioned mask generated by the proposal network. The solid line represents
model feed-forward. The dashed line referred to the proposal condition. The dotted line rep-
resents the mimicry loss between the classification head and the proposal head. The anomaly
detection network first extracts spatial and temporal features of front IR and front depth input
for anomaly proposal. The predicted normal driving probability pEn

pps is then compared to the
threshold τ , which conditionally activates the classification network for extracting top IR and
top depth features. The joint representation of all inputs is then used to predict the probability of
each anomaly class and normal driving. Finally, a rebuttal operation is carried out upon network-
wise anomaly detection disagreement.

4.1.2 Anomaly Proposal and Classification

Based on the above scheme, a CNN-RNN based anomaly detection and classification network
(DADCNet) is proposed tailored for efficient multimodal and multiview inference. Fig 4.1 il-
lustrates the components of the framework and the inference pipelines. The primary network
components are:

Spatial Feature Encoder: F v
m is a 2D spatial feature encoder for sequential input Sv

m of
modality m and view v. The weights between different views or modalities are not shared as
each input source has distinct field of interests. F v

m takes Sv
m and outputs raw spatial features

f v
m ∈ IR(L,e), where e is the length of the spatial feature vector.
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Temporal Feature Encoder: Gv
m is a view-specific and modality-specific temporal feature

encoder for learning temporal dynamics of spatial features. Throughout the conducted experi-
ments, a biLSTM of hidden size 128 is used. The number of layers is set to 1. Gv

m takes f v
m and

outputs temporal features gvm ∈ IR(L,256).

Fusion: An early sum fusion is performed throughout the experiments. Early fusion usually
combines features immediately after they are extracted. Such techniques have the advantage of
learning low-level modality-wise or view-wise correlation and interactions [119]. Both proposal
and classification create a joint representation by fusing allocated view features and modality
features. Then, each joint feature is passed to the corresponding network head. In the proposal
network, the fused feature ˆgpps =

∑
m∈Mpps

∑
v∈Vpps

gvm. Similarly, the classification network
joins the corresponding features ˆgcls =

∑
m∈Mcls

∑
v∈Vcls

gvm.

Head: Two networks heads Hpps and Hcls for proposal and classification individually trans-
forms ˆgpps and ˆgcls into the specific probabilities ppps, pcls. Each consists of a linear transforma-
tion layer and a softmax function.

The training has the following three objectives: 1. The proposal branch misses as least
"anomalous driving" samples as possible while accurately predicting "normal driving" to main-
tain low false-alarm and high efficiency; 2. The classification branch can discriminate "false
positives", i.e., "safe driving" samples proposed as "anomalous driving" by the proposal branch;
3. The classification branch keeps good accuracy in the categorical classification of distraction
classes. Based on the above goals, the proposal and classification are trained simultaneously to
enhance communication between separate modalities and views. The focal loss [157] with class
weights is used to train each task, where each weight is set individually for a specific dataset.
The proposal loss is derived by the following:

Lpps = −αpps(1− ppps)
γppsyppslog(ppps) (4.2)

where ppps is the softmax normalized probabilities of class {En, Ea} with corresponding ground
truth ypps. αpps is the weight assigned to the proposal classes. γpps is the focal term introduced in
[157]. Similarly, the classification loss is derived by the following:

Lcls = −αcls(1− pcls)
γclsyclslog(pcls) (4.3)

Since the goal of the classification branch is to categorize multiple driver distraction be-
haviours, the input to the classification branch is set to a broader group of views and modalities
to maximize the model’s discrimination power. Because the classification branch grasps more
visual features from multimodal and multiview input, the classification branch can be treated
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as a teacher model with enhanced behaviour understanding capability that’s co-training with its
student model (proposal branch). Inspired by [158], the loss function adds a mimicry loss term
to align the predicted probabilities of the proposal branch and the reformed classification pre-
dictions so that the teacher model’s knowledge learned by a broader feature set can improve the
anomaly detection ability of the simpler proposal branch. The classification probability distri-
bution is transferred to binary normal/abnormal probabilities by summing the probability of all
anomalous driving classes and keeping the "normal driving" class untouched.

pEcls = [pEn
cls , p

Ea
cls ] = [pDn

cls ,
∑
a∈A

pacls] (4.4)

Lmimicry =
∑
e∈E

pecls log
pecls
pepps

(4.5)

The mimicry loss calculates the Kullback-Leibler distance from pEcls to ppps as the expectation
of the logarithmic difference between the two probabilities taken from pEcls. During training, the
proposal network and the classification each learns the corresponding labels while the proposal
network also tries to match the predicted probabilities from its classification peer.

It is worth noting that most misclassified "normal driving" samples are hard samples for the
proposal network. If the classification network treats each anomalous driving class and "normal
driving" equivalently, this could be unideal for false positives correction and mimicry probability
alignment because pEa

cls has a higher weight than pEn
cls . Thus, a binary focal loss function is added

to pEcls to induce more focus to the "normal driving" class.

Lcls→pps = −αpps(1− pEcls)
γppsyppslog(p

E
cls) (4.6)

Lmimicry =
∑
e∈E

pecls log
pecls
pepps

+ Lcls→pps (4.7)

The combined loss for co-training proposal and classification is the sum of the three individ-
ual losses:

L = Lpps + Lcls + Lmimicry (4.8)

Finally, a parameter τ is introduced as the threshold for anomaly proposal. Concretely, the
proposal network proposes an anomaly if pEn

pps < τ . The classification network then takes in the
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corresponding inputs and rebut the prediction or generate a distraction class. The rebuttal process
is describe as follows:

pEn
pps =

{
pEn
cls pEn

pps < τ

pEn
pps otherwise

(4.9)

4.2 Evaluation

4.2.1 Dataset

Two video-based driver action dataset DAD [4] and 3MDAD [8] are chosen to conduct the eval-
uations. DAD [4] is a large-scale dataset that contains infrared and depth modalities from top
and front viewpoints. The top sensor has a clear view of the driver’s hand during the driving
task, while the front sensor captures the driver’s body and face. Both sensors offer high-quality
IR and depth modalities. The training set contains eight common distractions and normal driving
recordings, while the test set includes additional anomalous actions to evaluate a model’s gener-
alization to unknown anomalies. The test set contains 550 minutes of normal driving videos and
100 mins anomalous driving videos recorded by 25 subjects.

3MDAD [8] is another multimodal and multiview dataset that offers synchronized multi-
modal (RGB, depth, and infrared) data. The body-facing camera is mounted above the front pas-
senger window for recording the driver’s body movement from the side-way. The front-facing
camera is mounted on the dashboard similar to DAD [4]. The dataset contains both daytime and
nighttime driving sessions. RGB and depth channels are available in the daytime, whereas the
infrared images replace the RGB modality in the nighttime. The dataset includes "safe driving"
and 15 common distraction activities performed by 50 drivers in the daytime and 19 drivers at
night.

4.2.2 Training

Focal loss is used as the main loss to train proposal and classification network simultaneously.
The weight (α) for each class is individually calculated for each dataset. For anomaly detection
in DAD, αpps is set to the square root of the inverse of the class frequency for both datasets as
the direct inverse could suppress the training of the stronger class by too much. For anomaly
classification, αcls is set to the log of the inverse of the class frequency. The 3MDAD dataset

34



contains an overall balanced class distribution. Thus, αpps is set to the square root of the inverse
of data frequency.

The sample size is (112, 112) for both datasets and the sequence length is 16. The models
train a total of 30 epochs using batch size 32. The optimizer is adamW [159] with a learning
rate of 0.0001. An exponential learning rate scheduler is deployed to reduce the learning rate
for every epoch. The same data augmentation methods is adapted from [4] to train on DAD and
3MDAD.

The main metric for anomaly detection evaluation is the area under the curve (AUC) since it
provides a calibration-free measure of detection performance [4]. In action classification, cate-
gorical accuracy is used. Please note that the "normal driving" class is also in the classification
evaluation alongside other close-set anomalies for more comprehensive insights.

The anomaly detection assessment is based on the official video data reserved for evalua-
tion in the DAD dataset. DADCNet is trained on the data of all 25 participants and test on the
36 videos performed by six validation subjects. Since the test data does not contain distrac-
tion classes, an additional 5-fold cross-validation on the training data is conducted to measure
anomaly detection and classification.

The 3MDAD dataset does not reserve any data for testing. Thus, this work performs 5-fold
cross-validation on the night driving video data to evaluate proposal and classification perfor-
mance. A random eight subjects from both daytime and nighttime driving sessions are chosen
to conduct a more rigid experiment. The RGB images from daytime are converted to grayscale
and are mixed with IR images from nighttime for both training and testing. In order to form a
continuous driving session composed of normal and abnormal driving for each subject, an eleva-
tor algorithm (see Appendix A) is utilized to go through the frames in the normal driving video
and create an entry to an abnormal driving frame. The entry creation is based on if the current
frame has the highest SIFT matching score as an abnormal driving frame. This technique creates
a long testing video composed of "normal driving" and 15 distracted driving without looking too
different between two concatenation frames. The 16 classes are further divided into closed-set
and open-set. The closed-set classes (9 in total) stay equivalent to the closed-set class in DAD
[4]. The remaining seven classes are treated as open-set anomalous classes. The training and
evaluation code are written in PyTorch 1.9.0 and Python 3.8 and run on an Nvidia RTX 2080 Ti
GPU.

4.2.3 Results

Table 4.1 shows the results using different combinations of modalities and views for the pro-
posal and classification tasks on DAD. The values reported in each row with classification view
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Table 4.1: Evaluation on the DAD[4] test set. Best AUC is reported.

Pps View Cls View Pps. Acc. (%) AUC

Top(D) - 83.52 0.8869
Top(IR) - 85.74 0.8932
Top(DIR) - 86.40 0.9117
Top(D) Top+Front(D) 89.06 0.9468
Top(IR) Top+Front(IR) 84.31 0.9097
Top(DIR) Top+Front(DIR) 87.60 0.9407

Front(D) - 78.51 0.8564
Front(IR) - 81.04 0.8753
Front(DIR) - 82.69 0.8875
Front(D) Top+Front(D) 90.83 0.9507
Front(IR) Top+Front(IR) 88.13 0.9338
Front(DIR) Top+Front(DIR) 85.79 0.9216

Top+Front(D) - 88.53 0.9405
Top+Front(IR) - 85.48 0.9163
Top+Front(DIR) - 87.32 0.9311
Top+Front(D) Top+Front(DIR) 88.52 0.9324
Top+Front(IR) Top+Front(DIR) 85.94 0.9328
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Table 4.2: Averaged 5-fold cross validation evaluation on both DAD[4] and 3MDAD [8] dataset
night driving data.

Dataset Pps. View Cls. View Cls. Acc. (%) AUC

DAD

Front(D) Top+Front(D) 91.96 0.9663
Front(IR) Top+Front(IR) 93.03 0.9682
Top(D) Top+Front(D) 91.96 0.9662
Top(IR) Top+Front(IR) 94.10 0.9763
Front(DIR) Top+Front(DIR) 89.61 0.9797
Top(DIR) Top+Front(DIR) 91.04 0.9636

3MDAD

Front(D) Side+Front(D) 66.71 0.9351
Front(IR) Side+Front(IR) 75.51 0.9563
Side(D) Side+Front(D) 67.35 0.9173
Side(IR) Side+Front(IR) 77.08 0.9536
Front(DIR) Side+Front(DIR) 76.62 0.9670
Side(DIR) Side+Front(DIR) 75.82 0.9683

are achieved by the τ with the highest AUC. The improvement from the two views is visible
compared to a single viewpoint. However, the improvement from two modalities for the same
viewpoint is insignificant. Anomaly detection performance is enhanced thanks to the aid of the
classification branch. In addition, the depth modality generally achieves better anomaly detection
results than the infrared modality in multiview settings. The front depth proposal with front +
top depth classification has achieved the highest anomaly detection performance (0.9507 AUC).
Further, using more than one view/modality for the proposed task does not boost the AUC by
any noticeable margin.

The anomaly detection and classification performance is evaluated in the 5-fold cross-validation
on both datasets. Training and testing contain all anomaly classes, so there is no open-set recog-
nition involved. Table 4.2 illustrates the fold-wise averaged classification accuracy and AUC.
In DAD, it is obvious that the infrared modality generally achieves better performance than its
depth counterpart. Thanks to its additional visual details, the improvement is especially visible
in the classification task (94.1% vs. 91.96%).

The same trend also shows in 3MDAD. Overall, the infrared modality performs better than
depth in both anomaly detection and classification. However, the classification accuracy is gen-
erally much lower than the values of DAD due to limited training data in the night driving session
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(about 1/100 of the DAD training samples per fold). It is also worth noting that the side view
typically performs better than the front view, likely because of its broader coverage for anoma-
lies like "adjusting radios", which can be challenging for relying on the front camera alone. The
model trained with fully loaded classification views and side-view proposal network obtains the
highest AUC (0.9683%).

4.3 Ablation Study

4.3.1 Anomaly Detection and Classification

Table 4.3 shows a detailed ablation study of the model’s specific performance in detecting closed
and open set anomalies, classifications, and overall robustness at the different thresholds. In the
DAD dataset, the view combination that yields the best AUC at Table 4.1 is chosen. Although
models using all-input classification view (Top+Front(DIR)) do not achieve the best results, the
study also chooses the best-performing configuration to investigate its capability. In both con-
figurations, the proposal network maintains good accuracy in detecting "normal driving". In the
Front (D) proposal view configuration, the anomaly detection accuracy stays at 86% and 75%
for closed set and open set classes, respectively. However, the anomaly detection accuracy is
10% less in the Top(DIR) proposal view configuration, which is the main reason for its lower
AUC. Furthermore, the classification accuracy is not applicable as DAD [4] does not provide
class labels in their test set.

In the 3MDAD dataset, the two chosen configurations achieved the highest AUC and classi-
fication accuracy in the 5-fold cross-validation reported in Table 4.2. Both configurations have
around 75% accuracy in "normal driving" detection and 98% in closed-set anomaly detection.
The main performance difference between these two models falls in the generalization in open-
set anomalies. Using infrared multiview features detects open-set anomalies better than using
both infrared and depth. The classification of the closed-set anomalies has an accuracy of 87% in
the IR-only model and an accuracy of 92% in its IR+Depth counterpart, which indicates multi-
modal features have more robust discrimination of closed-set anomalies but worse generalization
in unknown anomalies.

The mutual learning technique using mimicry loss aims to shrink the performance gap in
anomaly detection between the proposal and the classification network. Table 4.3 compares re-
sults trained with or without the mimicry loss using the same model. The AUC of τ = 0.5, 0.75, 1
is reported. The mimicry loss consistently raises the best AUC as well as the mean AUC among
the three thresholds. Considering the decreasing variance, it is easy to conclude that the mimicry
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loss boosts the anomaly detection performance and successfully enhances the proposal network’s
independence at a low threshold.

The ablation study also includes the results using averaging low pass filtering to prevent
fluctuation of anomaly proposal probabilities [4]. Specifically, the proposal probability at the
current frame and the last k probabilities are averaged to smooth the predictions. Overall, k = 6
achieves the best results in DAD. k = 2 makes the most visible improvement in 3MDAD due to
lower FPS per sample. Table 4.3 shows a noticeable increase in AUC values and other specific
proposal metrics over the three thresholds. Prediction smoothing also decreases the performance
gap between different τs proved by lower variance.

Besides precise anomaly driving detection, the classification network also shows robustness
in recognizing closed-set distraction actions. A confusion matrix is generated by the model with
the anomaly detection capacity on the 3MDAD dataset. Most of the closed set anomalies (2/3)
have above 85% accuracy, and only one ("talking to a passenger") falls under 80%, which is
often confused with "reaching behind".

An interesting analysis is how the classification model reacts to unknown anomalies not in-
cluded in the training data. In Section 4.2.2, seven distraction classes in the 3MDAD training data
are taken out as open-set distractions. In the classification assessment of these open-set distrac-
tion data in the test set, most predicted probabilities are spread among 2 or 3 similar closed-set
classes. For instance, "smoking" is usually detected as "drinking using right hand" (32%) or
"talking phone using right hand" (40%). It is also worth mentioning that the classification net-
work classified few open-set anomalies as "normal driving".

4.3.2 Efficiency and Parameters

Improving multimodal and multiview model efficiency is one of the main goals of this work.
An analysis is provided in Fig 4.2 for investigating the relationships between anomaly detection
performance, FLOPs, and the number of parameters. Compared to anomaly proposal-only net-
works, concurrent anomaly classification training tasks can boost anomaly detection using the
same modalities and views. In comparisons with models without mimicry loss training and pre-
diction smoothing, the proposed mutual learning method (red points) considerably brings down
the computation while substantially improving the proposal performance, especially for low τs.

Meanwhile, the DAD benchmark models [4] (3D ResNet18) is compared with DADCNet.
The benchmark is an anomaly detection-only method trained using contrastive learning, whereas
DADCNet has additional distraction classification ability. DADCNet implements a 2D ResNet-
18 and a BiLSTM design with fewer parameters than 3D ResNet18 but more FLOPs per sequen-
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Figure 4.2: Efficiency Plot. Blue points are DAD [4] 3D-ResNet18 benchmarks. The smaller
one is trained with Front+Top(Depth), and the bigger one is trained with Front+Top(Depth+IR).
Green and red points represent DADCNets trained with proposal and classification using
Front+Top(Depth). Yellow points are proposal-only networks, where the smaller one employs
Top(IR) as it reports the highest AUC in Table 4.1. FLOPs for proposal+classification models
are estimated in real-time based on how many times the classification network is actually used.
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tial inputs theoretically. However, the task-wise resource allocation and the conditional model in-
ference design effectively optimize the computation. This advantage allows DADCNet to achieve
on par anomaly detection performance as the benchmarks with better efficiency. In summary,
DADCNet achieves even better performance (0.966 vs. 0.963) with 64% fewer parameters and
11.9% more FLOPs than the benchmark using the same modalities and views (Front+Top(D)).
Compared to the benchmark that uses Front+Top(DIR) input, DADCNet (Front+Top(D)) stays
closely (0.966 vs 0.967) in anomaly detection, with 84% less parameters and 43.2% FLOPs
reduction.

4.4 Conclusion

This work introduces a two-phase framework for driver anomaly detection and classification.
First, driver anomaly detection and high-level distraction action recognition were combined with
balanced performance and efficiency. Second, by allocating different modalities and views in-
put to different tasks, the proposed framework showed competitive performance in intensive
distracted driving scenarios with less computational effort.

The concept of two-phase detection and classification framework can be polished further by
introducing additional modalities. For instance, the audios in the car can indicate any phone
calling or chat with passengers; a light-weight eye gaze tracker suggests any eyes-off-road be-
haviours. The classification branch can then be activated, seeking high-level understanding from
multiview and multimodal visual input. One potential future work is to study what signals
can precisely differentiate everyday driving and distracted driving while remaining light-weight.
Moreover, multimodal fusion that balances effectiveness and efficiency can be explored as more
diverse modalities are introduced to the framework.
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Chapter 5

Efficient Head Pose Invariant Gaze
Estimation

A driver monitoring system (DMS) often utilizes gaze estimation to evaluate a driver’s mental
alertness. Recent appearance-based gaze estimation methods for human-computer interactions
usually assume ideal scenarios, such as sufficient lighting and subtle head movement. However,
these assumptions could lead to a sub-optimal performance in the much complex driving sce-
narios, where drivers tend to have severe head poses. This work focuses on the need for gaze
estimation models in driver monitoring and presents a spatial-temporal network emphasizing
model efficiency and head pose-independent gaze estimation. The proposed method learns con-
cise head pose dynamics jointly with gaze features. Through extensive 3D gaze vector regression
evaluation, this technique reduces gaze estimation performance variance at different head poses
by up to 37%. Furthermore, gaze region classification training is conducted to investigate the
possibility of not relying on precise gaze directions for driver monitoring use. Overall, the pro-
posed approach achieves 8% improvements on EYEDIAP [5] and 10% on ETH-XGaze [9] with
52% less parameters and 56% less FLOPS compared to benchmarks.

5.1 Gaze Estimation Framework

This chapter introduces an efficient CNN-RNN based gaze estimation framework that learns
spatial-temporal facial features to adapt eye-blinking, eyeball and head movements. Two pipelines
(baseline, head pose-invariant) are built on the framework, each with optimized data prepro-
cessing that improves gaze estimation robustness. First, compared to the previous methods
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with direct input manipulations using detected facial landmarks (e.g. face normalization [89],
eye cropping[95]), both approaches adapt simple face cropping as the only preprocessing step
to reduce excessive dependency on facial landmark detection. The baseline approach uses a
landmark-free design and takes in a cropped face image sequence as input. Since landmark pre-
diction is unnecessary, the baseline pipeline can infer faster than landmark-dependent solutions
on GPU and CPU. The second pipeline aims to reduce gaze estimation error introduced by severe
head pose via utilizing additional landmark detection to calculate frame-by-frame 3D head pose.
Unlike previous methods, the sequential 3D head pose is utilized as an additional input with the
cropped face images. As a result, the temporal relationships between 2D face features and head
pose information are jointly exploited. Joining a concise head pose vector efficiently passes head
pose awareness to the gaze estimation model, allowing for higher tolerance in landmark errors
than methods that rely heavily on facial landmarks in their preprocessing steps.

The formulation of the sequential gaze estimation problems is stated as follows. Let I =
{I1, · · · , IS} be a set of consecutive images, where S is the length of the image sequence. The
goal of this work is to estimate the 3D gaze vector g = {g1, · · · , gS}, where gi ∈ IR3.

Figure 5.1: Two pipelines of the propose gaze estimation framework. The top pipeline is the
baseline approach that only requires face detection for preprocessing. The bottom pipeline is
the head pose-invariant approach that requires landmark detection and additional steps in gaze
estimation model. The demonstration images are drawn from the EYEDIAP [5] dataset.
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5.1.1 Preprocessing

Current methods have dominantly used facial landmarks detected from third-party facial land-
mark detection algorithms (e.g. Dlib [10]) to preprocess face images before estimating the gaze.
The landmarks often have a critical impact in the current state of the art models, such as face nor-
malization [32, 89, 9], face cropping [32, 95, 89, 9], and eye cropping [95]. This work provides a
generalized framework and two extended solutions that vary in dependency, preprocessing, and
gaze estimation network. The differences between these two solutions allow the examination of
the influence of the facial landmarks on gaze estimation precision and pipeline efficiency. In a
nutshell, the first method (baseline) focuses on real-time capability, thus uses a landmark-free
design. The dependency of the baseline approach is face detection, whose bounding box output
is used to crop the face region in the preprocessing steps. The cropping effectively removes the
background noise from the original image and helps the gaze estimation network focus on facial
details. The second method (head pose-invariant) focuses on gaze estimation performance in
various head poses. It employs a landmark detection model and utilizes its 68 facial landmarks
output to boost gaze estimation precision. The preprocessing of the second approach is identical
to baseline (face cropping), except that landmark detection is performed on the cropped face.
Then, the head pose is estimated from the landmarks via tagging key points in a generic 3D face
model and key points in the 2D image. This generates a normalized 3D head pose vector of each
image in the input sequence H = {H1, · · · , HS}, where Hi ∈ IR3.

To further reduce the negative impact of unstable face detection, this work employs sequential
consistent cropping (SCC) to enhance the robustness of downstream face cropping. Generally,
given sequential input I = {I1, · · · , IS} and facial bounding boxes B = {B1, · · · , BS} found
by a face detector, the union bounding box BU of all bounding boxes is taken, i.e. generate a
bounding box that contains the bounding box of each image in the input sequence. Then, all
frames in the sequence share the BU as the final bounding box. This strategy minimizes the in-
fluence of a failed face detection within a sequence, which improves face cropping consistency.
However, SCC has one assumption: the subject of interest does not perform severe spatial move-
ments within the input sequence. Otherwise, an extra non-face area in the cropped images could
be introduced for subsequent feature extraction.

5.1.2 Gaze Estimation

The two different preprocessing methods come with separate subsequent gaze estimation net-
works. Following cropped face sequential input, a 2D CNN is applied to extract spatial features
f = {f1, · · · , fS} and learn the temporal features h = {h1, · · · , hS} of gaze movements via a
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bidirectional LSTM. Finally, the temporal features are passed to a fully connected layer followed
by a tanh activation function to get the 3D gaze vectors g.

The head pose-invariant solution does head pose estimation alongside sequential face crop-
ping in the preprocessing. First, the temporal features of the cropped faces is extracted similar
to the baseline approach. The head pose is concatenated with the face features to form a head
pose-aware representation. Then, another bidirectional LSTM is inserted to learn the dynamics
of the combined features. Lastly, a fully connected layer transforms the sequential features into
the 3D gaze vector. The additional head pose features help the model correlate gaze and head
movements both spatially and temporally, improving gaze estimation robustness at various head
poses.

5.2 Evaluation

5.2.1 Dataset

The condition of choosing gaze estimation datasets is based on three important factors. First, the
dataset needs to be video-based given the temporal feature emphasis of this work; second, rich
subject diversity is required as the proposed model targets drivers of different genders, ages, and
races; third, the gaze data has various head poses given high frequency a driver perform head
movement while driving. Following these objectives, EYEDIAP [5] and XGaze [9] are chosen
as the main dataset of evaluation.

EYEDIAP [5] provides a standard database for gaze estimation using a front-facing RGB
camera. A Kinect camera records the video-based RGB data in 25 FPS. Among 94 sessions
recorded by 16 participants, half are recorded with moving head pose (translation and rotation),
where the participants gaze at the visual target. EYEDIAP provides numerous visual targets to
record gazes at different scenarios (discrete, continuous, 3D floating). The evaluation of this
work mainly focuses on the M (moving head pose) under FT (3D floating target) scenario, where
a 4cm-diameter ball is hanging from a thin thread attached to a stick that’s moving within a 3D
region between the camera and the participant. Generally speaking, this is the closest scenario to
driver behaviours while driving.

ETH-XGaze [9] is a large-scale gaze estimation dataset collected using 18 digital SLR cam-
eras of different angles. Besides extremely high image quality, the data are recorded by 110
participants with diverse gender, age, and ethnicity. The 18-camera setup provides gaze ground
truth from different head poses, with a maximum head pose of ±80◦. In addition, the author
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gives official train-test splits, where 80 participants are used for training, 15 for within-dataset
testing, and the remaining 15 for person-specific evaluation.

5.2.2 Training

The data augmentation methods are specified differently for each dataset. The EYEDIAP [5]
dataset provides frame-by-frame head pose parameters using Interactive Closest Points (ICP) but
no face bounding box. To keep consistent with other benchmarks, the chosen facial landmark
detection dependency [160] stays the same as RecurrentGaze [95] but is only used for cropping
the face region of each frame. Further, bounding box augmentation is performed by randomly
shifting the bounding box by [-10, 10] pixels before resizing to (224, 224). In addition, brightness
augmentation is applied on the image in the range of [-30, 30]. Finally, the image data is min-max
normalized in each channel. The data filtering strategy that removes abnormal data in EYEDIAP
[5] stays the same as [95].

The ETH-XGaze [9] dataset provides cropped face images and 3D head pose for each frame,
which allows this work to train both solutions. The data augmentation strategy is kept the same
as the original benchmark [9], which only involves image normalization for each RGB channel.

The details of the training configuration are specified as follows. In both datasets, the sample
size is set to (224, 224). The sequence length is set to 8. Both models train a total of 30 epochs
using batch size 16. The optimizer is Adam [150] with a learning rate 0.0001. Further, an
exponential learning rate scheduler is deployed to reduce the learning rate per epoch. Three
spatial encoder backbones: MobileNetV2[161], ResNet18, and ResNet50 [162] are trained in
Table 5.2 5.3 5.4 to evaluate performance variance introduced by model complexity.

The metric to evaluate the proposed models on the EYEDIAP [5] follows [95]. Specifically,
the 4-fold and the 16-fold cross validation over 16 subjects in moving head pose FT scenario.
For the ETH-XGaze [9] dataset, the official within-dataset evaluation is conducted.

5.2.3 Results

3D Gaze Regression

Table 5.1 shows the 16-fold cross-validation of the proposed model (ResNet50 backbone) in
comparison with other benchmarks for the EYEDIAP [5] dataset. For easier distinction, the
baseline approach and the head pose-invariant approach are denoted as Gaze and Gaze|Head
in all tables, respectively. Compared to gaze estimation directly using head pose, the baseline
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Table 5.2: ETH-XGaze [9] within-dataset evaluation.

Approach Model #Param Angular Error

ETH-XGaze [9] ResNet50 25.6M 4.70

Gaze
MobileNet 3.7M 4.81
ResNet18 11.8M 4.37
ResNet50 25.7M 4.33

Gaze|Head
MobileNet 4.1M 4.64
ResNet18 12.2M 4.23
ResNet50 26.1M 4.32

approach shows a clear advantage (66.8%) in the average angular error over 16 subjects, illus-
trating the importance of having a standalone gaze estimation model. MPIIGaze [32] is one of
the first state-of-the-art deep appearance-based gaze estimation methods. In comparison, Gaze
and Gaze|Head exhibits around 15.1% 21.9% improvements, respectively. RecurrentGaze [95]
is a multimodal method (cropped face, cropped eyes, landmarks) that exploits temporal features
for gaze estimation. The baseline model Gaze shows on-par performance but with less depen-
dency on landmarks. Gaze|Head approach takes advantage of the 3D head pose estimated by the
landmarks and shows another 8% lower angular error.

Table 5.2 reports the performance of the proposed models with different backbone spatial
encoders. The ETH-XGaze benchmark is an image-based network with face normalization pre-
processing using an estimated head pose. In the within-dataset evaluation, the baseline model
shows similar performance (4.81) when a MobileNetV2 [161] is used as the backbone com-
pared to the ResNet50-backed benchmark (4.7). The gaze angular error is further lowered when
more complex models are used, 4.37 for ResNet18 [162] and 4.33 for ResNet50 [162]. The
gap between the two ResNets is also considerably small compared to the lightest MobileNetV2.
Furthermore, under the proposed Gaze|Head approach, there exists an average of 2.3% preci-
sion improvement compared to the Gaze counterpart. The best performing model achieves 4.23
angular error, equivalent to 10% more accurate gaze estimation with 52% fewer parameters in
comparison with the XGaze benchmark.

Table 5.3 shows an ablation study to examine the impact of model complexity as well as
the advantage of head pose-invariant gaze estimation. The study uses 4-fold cross-validation
(12 subjects for training, 4 for validating) on the EYEDIAP FT scenario data. The baseline
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Table 5.3: Ablation Study. 4-fold cross validation on the EYEDIAP[5] for the FT scenario. Head
Pose stands for whether the data recording in the dataset contains S : stable or M : moving head
pose.

Model Approach Head Pose #Param Angular Error
Head Gaze

MobileNet Gaze S 3.7M - 6.732
ResNet18 Gaze S 11.8M - 6.322
ResNet50 Gaze S 25.7M - 6.354

MobileNet

Gaze M 3.7M - 8.019
Head M 3.7M 5.262 -
Gaze+Head M 5.1M 5.089 8.098
Gaze|Head M 4.1M - 7.764

ResNet18

Gaze M 11.8M - 7.500
Head M 11.8M 4.706 -
Gaze+Head M 12.5M 5.009 7.769
Gaze|Head M 12.2M - 7.206

ResNet50

Gaze M 25.7M - 6.949
Head M 25.7M 4.235 -
Gaze+Head M 28.0M 4.800 7.073
Gaze|Head M 26.1M - 6.636

approach is first trained on the stable head pose data, which shows a similar trend as Table 5.2.
Both results show that ResNet18 and ResNet50 have similar performance despite a significant
difference in model complexities. The performance gap between each model in the stable head
pose (6.73, 6.32, 6.35) is considerably smaller than those in the moving head pose (8.0, 7.5, 6.9).
This further proves that gaze estimation among varied head poses is more challenging than with
slight head movements and could benefit from more complicated models. In addition, head pose
estimation for the moving head pose scenario is evaluated by treating the complimentary head
pose information as ground truth. As expected, the angular error is much lower than that of gaze,
suggesting that estimating head pose could be more straightforward due to the larger region of
interests.

Enhancing gaze estimation precision at various head pose is one of the main objectives in this
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work. Besides Gaze|Head, a common multitasking strategy is adopted to enhance model aware-
ness of varied head poses in the feature extractor. Concretely, the multitasking approach uses the
same spatial backbone and deploys an additional bidirectional LSTM (same configuration) for
head pose estimation. Nonetheless, no noticeable improvement is found in either gaze estimation
or head pose estimation. On the other hand, Gaze|Head inserts the sequential 3D head pose to
face features and learns the dynamics of joint representation, resulting in an extra 3% reduction
in gaze angular error.

Gaze Region Classification

Figure 5.2: Analysis of gaze angular error

Gaze region classification is the task of categorizing which region a human subject is look-
ing at. Unlike most of the human-computer interaction tasks that need precise gaze positions,
knowing what region a driver is looking at (e.g. road ahead, radio section, or passengers) is
often sufficient for keeping the driver safe [102]. Compared to regular head pose-invariant gaze
estimation, gaze region classification is often conducted on driver-related studies, where image
data are often recorded in real-world driving scenarios [102, 103] and are labelled accordingly
by driver observation behaviours. However, few studies conduct gaze region classification on
a regular gaze estimation dataset, where subject gaze could flow at tightly connected regions.
Therefore, an additional study is performed to explore the efficacy of such a method in a regular
lab-recorded gaze estimation dataset (EYEDIAP [5]). Specifically, the 3D gaze vector ground
truth is converted to 2D bins based on the gaze’s location, which transfers the regression vector
to classification labels.
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This assessment defines two factors to transfer 3D gaze vector ground truth to regions. For
gaze vector g = (x, y, z) ∈ IR3, let bx and by be the list of split points for each axis. This creates
(|bx| + 1) × (|by| + 1) 2D regions based on the x and y axis of the 3D gaze vector. In addition,
let t be a tolerance parameter so that gaze fell in (b− t, b+ t), b ∈ {bx, by} is given a soft label to
increase model generalization. This assessment sets bx = [−0.1, 0.1], by = [−0.1, 0.1], t = 0.05
to divide all gaze vectors into 9 regions, as illustrated in Figure 5.4.

Table 5.4 shows the classification accuracy of the chosen three backbone models. Each model
is trained with three loss functions. cls. refers to classification loss using cross entropy. reg.
refers to regression loss (Average Euclidean Loss) whose predicted 3D vectors are converted to
gazing region class. Finally, reg. + cls. are a weighted sum of two losses (reg. + 0.2 × cls.) in
a multitasking manner, whose classification branch is used to report the results. Overall, models
with regression loss-guided training yield higher accuracy than the classification loss-guided
counterparts. When a hybrid loss is used (classification + regression), the accuracy is the highest
across all three models.

Table 5.4: EYEDIAP gaze region classification

Model Loss Acc. (%)

MobileNetV2
cls. 74.4
reg. 73.8
reg. + cls. 74.9

ResNet18
cls. 75.6
reg. 76.4
reg. + cls. 76.8

ResNet50
cls. 75.9
reg. 77.1
reg. + cls. 77.4
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Figure 5.3: Average gaze angular error comparison between Gaze and Gaze|Head reported per
region.
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5.3 Discussion

5.3.1 Head Pose Invariant Gaze Estimation

The head pose could lead to a dramatically different visual appearance of the human eyes. Severe
head poses may also cause serious occlusion in one of the two eyes, making gaze estimation even
more challenging. Two plots are created to investigate the relationships between gaze estimation
model performance and gaze vector ground truth or head pose ground truth, reported in Figure
5.2. The gaze predictions are made by the baseline model (Gaze) with a ResNet50 backbone in
the 4-fold cross-validation training. The left plot shows where the model makes errors for various
gaze points. As anticipated, the precision declines (blue to purple) when the gaze angle becomes
extremely harsh. Nonetheless, the gaze error stays lower than 7.5 in typical eyeball rotations. On
the right-hand side, the axis of the plot is replaced with the head poses (x, y-axis) ground truth.
The region where the proposed model makes a minor angular error (<= 7.5) is smaller than the
left plot. Most of the high-error predictions happen when the subjects raise their heads compared
to lower heads. One of the reasons for this phenomenon is that EYEDIAP [5] place their camera
slightly below the subject’s head, causing the head pose in the camera coordinate system to lean
more downward than they do. Given that human eyes are located at the upper half of the face,
gaze estimation for +y head poses is more challenging than in -y because the eyeballs can be
hard to read, especially when the subject is looking upward.

A major motivation of the proposed Gaze|Head approach is to encode concise head pose
information to gaze feature learning so that the network learns to adapt various eye appearances
to the current head rotation. Fig 5.3 illustrates a comparison between the baseline approach
(Gaze) and the head pose-aware approach (Gaze|Head) in terms of gaze estimation performance
under different head pose zones. Similar to the findings in Fig 5.2, the baseline approach (blue)
made a higher error (10◦ on average) at upward head poses, while the error is almost 40% (4◦) less
for downward head tilt. When Gaze|Head (orange) is deployed, the precision is visibly improved,
especially for an upward head pose. Overall, compared to Gaze, the Gaze|Head approach reduces
the averaged 9-region angular error mean by 7% from 7.98 to 7.41, and decrease the variance by
36% from 2.73 to 1.75.

5.3.2 Pipeline Efficiency

Table 5.5 shows a detailed run-time comparison among the two proposed methods using differ-
ent backbone models. Please note that the reported run-time is the sum of the whole pipeline,
including input read, dependency computation, and gaze estimation model inference. The com-
putation is completed by an RTX 2080 Ti GPU and an AMD Ryzen 7 3700X CPU. The input
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Table 5.5: Run-time in frame per second (FPS). FPS(D) and FPS(C) refers to the FPS of the
dependency and the whole pipeline, respectively. The required face detection and face landmark
detection models are from Dlib [10], where ∗ stands for CNN-based face detection, † stands for
HOG-based face detection.

Model #Param GFLOPS Approach FPS(D) FPS(C)

MobileNet 3.7M 0.33

Gaze∗ 168.0 90.6
Gaze† 35.8 33.3
Gaze|Head∗ 117.2 64.8
Gaze|Head† 32.8 30.6

ResNet18 11.8M 1.83

Gaze∗ 168.0 124.2
Gaze† 35.8 33.4
Gaze|Head∗ 117.2 83.1
Gaze|Head† 32.8 30.8

ResNet50 25.7M 4.14

Gaze∗ 168.0 60.7
Gaze† 35.8 33.1
Gaze|Head∗ 117.2 47.9
Gaze|Head† 32.8 31.0

size is (224, 224), with sequence length set to 8. Dlib [10] is chosen as the dependency as it
is one of the most commonly used face recognition libraries with face detection and landmark
detection capability. Dlib provides a CNN-based and a HOG feature-based face detector. The
former runs faster on GPU and can benefit from batch processing. The latter yields more accu-
rate face detection results but does not benefit from GPU concurrent processing. The landmark
detection model (ensemble regression trees) takes the face bounding box and gets 68 points. For
comprehension, a run-time comparison is conducted on both types of face detection models.

Overall, both Gaze∗ and Gaze|Head∗ runs significantly faster than Gaze† and Gaze|Head†
given CNN-based face detection advantage. Gaze|Head is generally 20% to 30% slower than
Gaze because of the additional landmark detection. Among three gaze estimation backbones,
the ResNet18 achieves the fastest run-time at 124 FPS. MobileNet does not surpass ResNet18
due to its depth-wise separable convolutions, which are not directly supported in GPU firmware
(cuDNN) [163], therefore ranks between ResNet18 and ResNet50.
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Figure 5.4: Analysis of gaze region classification
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5.3.3 Gaze Region Classification

This study conducts a gaze region classification assessment that categorizes which region a sub-
ject is gazing at. Fig 5.4 shows how the proposed model performs in 9 predefined regions in
the EYEDIAP dataset. It is noticeable that most of the misclassification occurs at the border
area between two adjacent regions. This suggests that small regions (e.g. center) could get mis-
classified more often than large regions (e.g. lower left). In driving scenarios, gaze regions of
large areas, such as "road ahead" and "radio section", could be easily classified. However, small
regions such as "left mirror" and "rear-view mirror" are likely to be mixed with "road ahead".
These misclassifications could be critical for cognitive distraction detection if drivers focus on
the road ahead for too long but attend less in mirrors. However, a specific dataset is required to
evaluate if such a method handles small regions well because driver body movements and head
pose also have crucial cues for region classification. Thus, a more thorough evaluation is left as
future work.

5.4 Conclusion

This chapter presented a CNN-RNN framework tailored for efficient and robust gaze estimation
and two solutions built on the spatial-temporal framework. The baseline approach achieved on-
par performance as benchmarks while reducing dependencies on the additional facial landmarks.
The head pose-invariant approach concisely utilizes facial landmarks, and further boosts gaze es-
timation precision by 3% - 8%. Comprehensive experiments were conducted on two datasets and
found that the head pose-invariant approach could effectively shrink the model performance gap
at different head poses, especially at more challenging conditions. Furthermore, a gaze region
classification assessment was performed using a gaze vector regression dataset. The insights of
the potential advantage and drawbacks of such method in real-world usage were investigated.
Finally, this work systematically analyzed the pipeline efficiency among various dependencies,
gaze estimation approaches, and backbone networks. A more thorough evaluation of real-world
driving activities is left as future work.
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Chapter 6

CareDMS

This chapter presents CareDMS, a driver monitoring system that is built based on the work pre-
sented in the previous chapters. CareDMS detects three types of common distractions using four
measurements of driver statuses. This chapter contains three components: 1). explanation: which
driver statuses are monitored and what measurements are used to estimate each driver status 2).
justification: how previous-introduced computer vision algorithms are integrated into measure-
ment calculation through parameters; 3). discussion: a thorough discussion regarding exception
handling and an estimate of the ideal hardware requirements, including camera placement and
computing hardware.

6.1 CareDMS

CareDMS is a comprehensive, robust, and efficient driver monitoring system based on deep
learning and computer vision. CareDMS is a behavioural approach built on multimodal and
multiview cameras sensors. Via state-of-the-art face recognition and action recognition algo-
rithms, CareDMS covers a comprehensive set of driver distractions to ensure driver’s alertness
level meets safe driving standards:

• Visual Distraction: Also known as "eyes-off-road" distracted driving behaviours, CareDMS
checks if a driver is looking at somewhere else that’s non-related to the driving tasks. This
monitoring prevents potential driver errors due to fixating at trivial regions for too long or
too frequent.
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• Physical Distraction: Although literature [164, 84] often interchange "physical distrac-
tion" and "hands-off-steering wheel" as the same type of distraction, CareDMS detects
any general abnormal activities during driving, including typical hands-off-steering wheel
behaviours and high-level understanding of driver distractions so that activities associated
with higher risks could be treated more seriously.

• Cognitive Distraction: CareDMS seeks regular "minds-off-road" signs from the driver’s
face to determine if a driver is focusing on the driving task despite not being visually or
physically distracted.

This section presents each functionality in CareDMS and specifies which distraction it mon-
itors through what metrics. Each functionality is briefly reviewed in terms of motivation and
building blocks of the proposed deep learning framework. Finally, the distraction measurements
for each specific driver status is formulated. The calculation of the driver’s level of alertness
is derived based on the score of each measurement. The formulation of driver state monitor-
ing using CareDMS is stated as follows: Let V be the number of camera sensors mounted
inside the vehicle. Each camera has M modalities. There are MV streams real-time images
I = {Ivm|Ivm ∈ IR(C,H,W )}Mm=1

V
v=1, where C,H,W are the channel, height and width of the im-

age, m ∈ M and v ∈ V are the chosen modality and camera view. CareDMS takes in I and
output LA.

6.1.1 Driver Anomaly Detection and Classification

The purpose of driver anomaly detection and classification is to monitor any physical distrac-
tion activities a driver might do while driving. Physical distractions may decrease driving per-
formance and cause slow reaction time. Typical distracted behaviours include calling or texting
on the phone, frequently talking to passengers, reaching behind, and multiple typical distract-
ing tasks. A driver action recognition module is added to identify potential abnormal driving
behaviours to give proper warnings.

Chapter 4 proposes a video-based driver anomaly detection and classification framework
(DADCNet). Previous methods treat driver distraction detection either as an anomaly detection
task (normal driving or abnormal driving) or a distraction classification task (normal driving,
calling, texting, etc.). The former has better generalization in pinpointing unknown abnormal
driving behaviours used in the dataset, whereas the latter approach better understands the dis-
traction behaviours. The DADCNet combines the advantage of both approaches by training both
tasks with an efficient allocation scheme of multimodal/multiview sources. Overall, DADCNet
achieves comparable performance in driver anomaly detection as benchmark [4] while adding
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Table 6.1: Driver distraction class and associated odds of crash/near-crash from [11]

ID Name Odds of Crash/Near-crash

E1 Talking on the phone-left
9

E2 Talking on the phone-right

E3 Messaging left
23.2

E4 Messaging right

E5 Talking with passengers 0.5

E6 Reaching behind 2.8

E7 Adjusting radio 2.3

E8 Drinking 1.6

the ability of distraction classification and reducing model size and FLOPS. The advantage in
computation makes DADCNet run efficiently in real life and capable of proposing suspicious
distracted driving and understanding the specific distracted driving behaviours. To summarize,
DADCNet utilizes multimodal (infrared and depth) and multiview (front and top) input provided
by a large driver dataset, thus is robust to lighting-invariant conditions (both day and night) and
drivers with different looks.

The ideal input of DADCNet is multimodal (IR + Depth) and multiview (top + front) im-
age sequences for maximum anomaly proposal and classification performance. DADCNet takes
in L consecutive frames of driver’s driving behaviour and analyzes the level of alertness. The
minimum video input FPS is 10 for effective sequential learning. Thus, the total time a sequen-
tial input spans is L/FPS. The output is the current driver anomaly detection probability: pEn

pps

and driver distraction class distribution for 8 common distractions pEa
cls = [pE1

cls, · · · , p
E8
cls]. The

definition of each distraction class are specified in Table 6.1.

The goal is to derive a measurement for driver physical distractions that represents levels
of severity based on the distraction time, frequency, and activities. Different types of physical
distractions have various crash risks. [11] thoroughly examine the relationship between driver
distraction and driving errors and report the odds of crash/near-crash to common distraction
activities (cognitive, visual, physical). Briefly, "text message" has the highest odds of crash
(23.2), followed by "talking on a mobile phone" (1.3-9.0) and "moving object in the vehicle"
(8.8). To proceed with measurement, a weight parameter α is introduced using the odds of
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crash [11] for each distraction class in Table 6.1. Let percentage physical distraction (PPDc
t )

be the proportion of a certain type of distraction c within a predefined time-span t. Further, the
measurement value is adjusted according to the type of distraction activity using the class weight.
The formulation is derived as follows:

PPDc
t =

nc

FPS × t
× (1 +

αc

100
) (6.1)

PPDc
t =

{
PPDc

t if PPDc
t ≤ 1

1 Otherwise
(6.2)

PPDt =
∑
c∈A

PPDc
t (6.3)

where nc is the frame count of positive classification for distraction class c ∈ A. A is the set of
all distraction classes. t is the time segment length in second. αc is the distraction class weight.

6.1.2 Driver Gaze Estimation

Driver gaze estimation is the task of predicting the driver gaze direction. Such algorithms could
face various challenging situations, including different lighting conditions, severe head poses,
and various driver appearances. The purpose of having a robust gaze estimation model in a DMS
is to detect any potential signs of visual distraction and cognitive distraction in any situation.

Chapter 5 presents a spatial-temporal framework and two pipelines that utilize different de-
pendencies, preprocessing, and gaze estimation models. Both networks take image sequences
to benefit from face features in the time dimension, such as eyeball movements, head move-
ments, and eye blinking. The first approach (baseline) focuses on pipeline efficiency and relies
on simple face cropping to preprocess raw input. The second approach enhances gaze estimation
performance at various head poses and shows visible improvement in severe head rotation and
tilt. Overall, the proposed network achieves competitive performance in two benchmark datasets
[5, 9] and can achieve up to 120 FPS in an RTX 2080 Ti. Moreover, its head pose-invariant
characteristic and light computation make it suitable for the driver gaze estimation task.

Similar to DADCNet, the gaze estimation network takes in an image sequence as input. Both
the baseline solution and the head pose-invariant solution require a face detection model for
face localization and cropping, whereas the latter approach also runs facial landmark detection
and calculates a 3D head pose. The output of both methods is a 3D gaze vector in the camera
coordinate system. CareDMS runs a head pose-aware solution by default, given its enhanced
gaze estimation ability and relatively fast inference speed.
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With the 3D gaze vector, the measurements should indicate possible visual distraction and
cognitive distraction. Percentage road center (PRC) is one of the most prominent measures that
detect increased cognitive demand and signs of visual distraction [84]. The measure calculates
the percentage of fixations that fall in a defined road center within a period. Concretely, PRC
ensures that the time drivers fixate at the road center should fall in a reasonable range. A high
PRC means a decrease in checking the surrounding environment and may raise the possibility
of road accidents due to human error. A low PRC could suggest a sign of visual distraction as
drivers fixate on non-driving related areas too frequently in a short time. The definition of road
center differs in literature. This study takes the definition from [85], which considers the road
center as a circular region of 16◦ diameter centred on the driver’s gaze angle. [7] classifies PRC
larger than 92% as a cognitive distraction and PRC lower than 58% as a visual distraction in a
1-min epoch. These parameters are adapted as a starting point in CareDMS. The PRC calculation
can be formulated as follows:

PRCt =
nrc

FPS × t
(6.4)

where nrc is the frame count that the driver gaze that falls in the road center region. t is the
time segment in second.

6.1.3 Emotion Recognition

Researchers in [165] surveyed 1500 college students and found male drivers tend to be more
angered because of slow driving and police presence, while female drivers get angrier for illegal
behaviours. They conclude in their research that knowing drivers’ anger could help in reducing
traffic accidents. In a study conducted by [166], a group of participants were triggered to have
emotions by remembering past emotional events. When they drive on a driving simulator, drivers
with sadness make more driving mistakes than neutral drivers. The impact of negative driver
emotions on the driving task is significant. DMS with emotion recognition functionality can help
drivers calm down or assist in other ways when such emotions are detected. Emotional driving
is categorized as a cognitive distraction in this thesis.

Chapter 3 creates an emotion recognition model with the proposed MSAF multimodal fu-
sion module and achieves competitive results using video + audio compared to using video
data only. The emotion recognition evaluation proves that human emotions could be estimated
from facial expressions and human voices. Furthermore, with audiovisual emotion recognition
through MSAF multimodal fusion, 75% categorical classification accuracy is achieved in an
eight-emotion dataset (four positives, four negatives).
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The emotion recognition model takes in a 30-frame length image sequence and 2.45 second
associated audio clip and outputs one of neutral, calm, happy, sad, angry, fearful, disgust, and
surprised.

There are multiple works [167, 168, 169, 170] that study the relationships between driver
intentions and emotions. However, to the best of the author’s knowledge, few works in literature
introduce any measurement to quantify recognized emotions into levels of cognitive distractions.
This study introduces a similar strategy to the measurement of physical and visual distractions
using percentage negative emotions (PNEt). PNEt calculates the negative emotional driving
proportion detected in a period of time t.

PNEt =
nne

FPS × t
(6.5)

where nne is the frame count for negative driver emotions. t is the time segment in second.

6.1.4 Fatigue Detection

Cognitive fatigue is closely related to vigilance decrement [171]. In a study conducted by [172],
16-23% of the highway car crash in southwest and midland England were caused by sleepiness or
fatigue. 33% of road fatalities in Australia were caused by drowsiness driving [173]. CareDMS
includes a fatigue detection algorithm to recognize signs of driver fatigue to give necessary warn-
ings.

CareDMS adapts percentage of eyelid closure over time(PERCLOS) as the main drowsi-
ness detection measurement. The measurement ensures driver eye closure rate maintains in a
healthy range and is used in multiple fatigue detection works [174, 175, 176, 177]. First, facial
landmark detection is performed similar to 6.1.2. Among the 68 landmark points, each eye’s
left, right, top, and bottom points are used to calculate the average eye aspect ratio between two
eyes. By definition, eye closure is positive if the aspect ratio is smaller than threshold th. The
two main thresholds for calculating PERCLOS are 70% and 80% [84]. This study uses 80%
by default. The calculation of PERCLOS80 is then defined as follows:

EAR =
pr − pl
pt − pb

(6.6)

PERCLOSt =
nec

FPS × t
(6.7)

where pr, pl, pt, pb are the right, left, top, bottom landmark points in a 2D image. nec is the
count of averaged left-right eye closure (EAR > 80) frames. t is the time segment in second.
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6.1.5 Level of Alertness

The previous section introduces four functionalities that CareDMS contains. Each functionality
measures one or two types of distraction and forms into the proportion of distracted driving in
the past t seconds. The goal is to combine all measurements scores into a single value that sug-
gests the driver’s current level of alertness LA. The design of LA concentrates on the following
concepts: 1). Any distraction could lead to traffic accidents. Therefore, it is crucial to make sure
the detection of one category of distraction can gain enough attention even though the other two
types are not detected. For instance, a driver is performing safe driving physically and gazes
at the road ahead. However, the fatigue detection module frequently identifies a low eye aspect
ratio. Thus the level of driver alertness should be reported relatively low due to the severity of
drowsiness driving even though the driver is not experiencing any physical or visual distraction;
2). Continuous distracted driving should be recognized. Any distraction that lasts for a continu-
ous amount of time should be pointed out, such as eyes-off-road longer than safe threshold time
at a specific level of autonomy. Meanwhile, this could help the DMS realize any emergency issue
that causes the driver’s sudden continuous distraction; 3). Frequent distracted driving should be
recognized. For example, if a driver stares at a cell phone message for only half a second but
frequently checks phones for the next one minute, such behaviour should be noticed.

Most of the existing measurements follow a 1-minute time segment to evaluate the driver’s
alertness. For instance, PERCLOS70 and PERCLOS80 measure if the subject eyes remain
at least 70% or 80% closed during a one-minute period [84]. [7] obtained their PRC experiment
results using a one-minute epoch. CareDMS adapts the same one-minute epoch as it is sensitive
to frequent distractions. However, the 1-minute epoch might not suit the continuous distraction
detection objective. To put in an extreme continuous distraction case, assume a driver maintains
an average PRC (75%) and begins to gaze at non-road center areas due to a medical emergency.
It will take 13.6 seconds for the one-minute PRC to drop to 58% (visual distraction threshold).
Thus, this study argues that a shorter epoch should also be used to complement the one-minute
distraction detection.

Based on the above objectives, CareDMS calculates the level of alertness in different time
epochs to match various DMS sensitivities, similar to the drowsiness detection system proposed
by [6]. For instance, a study by [178] suggests that trips longer than 80 minutes may cause driver
fatigue. Therefore, a higher DMS sensitivity may benefit driver safety when a trip over 80 min-
utes is detected. [179] find that fatigue-involved incidents happen more during commute driving
and late-night driving. Road rage is associated with traffic congestion [165], which happens
more often in urban driving. Thus, tuning the DMS sensitivity based on transportation factors
(e.g. locations, speed, traffic situations, weather, ADAS autonomy levels) can undoubtedly im-
prove driving safety and the system’s comfort.
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Next, a general mapping from each measurement to a score of 0 to 5 is provided. 0 means the
most severe for the measured driver status, and 5 means the safest driver condition. The equations
illustration and the points of interest that are used to estimate the equations are reported in Figure
6.1.

Figure 6.1: Measurement-score mapping. All four graphs follow the logic of marking score two
as a split point between advisory warning and full warning. Multiple points of interest are used
to fit the curves. For PERCLOS, the study from [6] is adapted, which rings advisory tone for
8% PERCLOS and full warning for 12% PERCLOS. For PRC, CareDMS adapts [7] that
treats PRC ≤ 0.58 as visual distraction and PRC > 0.92 as cognitive distraction. To the best
of the author’s knowledge, PPD and PNE have not been investigated in the literature. Thus,
two mappings are fit to an exponential curve. The 5% PPD or PNE (3 seconds in 1 minute)
maps to a score of 4. The 20% PPD or PNE (12 seconds in 1 minute) maps to a score of 2.

ScoretPRC = 5× e−35×(PRCt−0.75)2 (6.8)
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ScoretPERCLOS =
27

240×PERCLOSt
(6.9)

ScoretPPD =
5

26.5×PPDt
(6.10)

ScoretPNE =
5

26.5×PNEt
(6.11)

A downstream DMS can utilize any of the four scores to customize warning levels to alert
drivers from distracted driving. In addition, the DMS sensitivity settings can be adjusted by
tuning the time epoch t. Finally, the final score (LA) that summarizes the driver’s overall status
while maintaining the attention to each score is derived. The minimum value of four scores
is taken as an overview of the driver’s status so that the driver must meet all four standards.
CareDMS also provides two sensitivity settings for highway driving and urban driving based on
studies [7, 6, 179, 165, 178, 84] in the literature. However, due to the scope of this thesis, the
complete evaluation of the two settings is left as future work.

LAurban = min(Scoret=15
PNE, Score

t=15
PPD,

Scoret=60
PERCLOS, Score

t=60
PRC)

(6.12)

LAhighway = min(Scoret=60
PNE, Score

t=60
PPD,

Scoret=15
PERCLOS, Score

t=60
PRC)

(6.13)

6.2 Discussion

This section discussed CareDMS from multiple aspects. First, how CareDMS tackled common
pain points in general driver state monitoring was reviewed, including its comprehensiveness in
detecting various types of distractions, robustness in both day and night driving scenarios, and
efficiency as a deep learning-based system. Second, the potential tuning approach for future
usage of the proposed functionalities was discussed. In particular, the possible edge cases and
the proper exception handling are considered, respectively.
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6.2.1 Comprehensiveness, Robustness and Efficiency

The proposed functionalities used in CareDMS (except the fatigue detection module) have two
design objectives: 1). robust to complicated environments and driver diversity; 2). relatively
efficient run-time on the basis of deep learning. In the proposed emotion recognition model, the
introduced MSAF fusion module is utilized to efficiently join audio and visual features, improv-
ing 8-class emotion recognition from 63% (visual-only) to 75% (visual-audio) accuracy. The
increased parameters MSAF-based model used is almost the same as late-fusion methods (e.g.
weighted sum). This is 5-million fewer parameters compared to the previous state-of-the-art
fusion-based method [3]. The audio-visual model can correlate human voice and facial expres-
sion associated with anger or sadness and accurately pinpoint potential emotions. Further, the
driver anomaly detection and classification model is trained with IR images, dozens of individ-
uals of various races, genders, and ages. It generalizes unseen anomalies while maintaining its
behavioural understanding ability, which is essential to add weight to more severe distractions
(e.g. texting on the phone). The gaze estimation pipeline is designed with fast run-time and
uncompromising precision even with severe driver head pose. Combined with fatigue detection,
this thesis creates a comprehensive driver monitoring package that covers multiple driver sta-
tus measurements, which gives a modern DMS sufficient information about the driver’s current
alertness.

6.2.2 Exception Handling

Driver Anomaly Detection and Classification

There are two possible exceptions to this task. First, false positives (i.e. driver safely driving,
DADCNet predicts anomaly driving and gives its classification of distractions). In Chapter 4, a
probability smoothing technique is used to smooth the fluctuation of the binary anomaly classifi-
cations. Thus, occasional false positives are supposed to be prevented. However, if the situation
persists, the driver’s normal driving behaviour might be off at the moment (e.g. not the most
typical safe driving). System-wise, the downstream user interface could reset the PPD score
and suggest the driver refine driving posture. Second, false negatives (i.e. driver distracted, but
DADCNet predicts normal driving). DADCNet is a threshold-controlled network that controls
when the more robust network (classification branch) should verify the proposed anomaly driv-
ing or classify the distractions. One can adjust the threshold, i.e. how confident the proposal
network’s prediction should be to call the classification network, by analyzing the prediction
conflict between the proposal network and the classification network.
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Gaze Estimation and Fatigue Detection

The gaze estimation pipeline is designed and trained to be head pose-invariant. However, off-
regression of the gaze vector could still happen when a driver has severe head movements. Both
gaze estimation and fatigue detection performance could be influenced if there is consistent cam-
era/face occlusion. Similar to DADCNet, the system should warn drivers of any abnormal gaze
movement and allow the driver to temporarily turn off both models until camera/face occlusion
is removed. The position of the camera and the modality also significantly impact the quality of
the two algorithms. The hardware and sensor requirements will be listed in 6.2.3. Furthermore,
both gaze estimation and fatigue detection depend on face detection and facial landmark detec-
tion. If the dependency detects no face at some frame, one can take the face bounding box from
the previous frames because the face location differences can be neglected within a short period.
However, if face detection fails consistently, DMS warnings shall be given to the driver since the
gaze estimation result will not be accurate.

Emotion Recognition

Like driver anomaly detection, the audio-visual emotion recognition model may misclassify the
current neutral emotion as negative or vice versa. In particular, the model may be biased towards
a specific emotion given a driver’s look despite being trained in a subject-independent dataset.
Future applications could tune the class weights so that the biased prediction can be refined in
post-processing. A downstream DMS can indirectly implant system feedback towards negative
emotions into music instead of warnings. Combined with the current time (commute time or
night time), traffic situations, and detected emotions, intelligent feedback can positively affect
the driver while minimizing the impact of an emotion misclassification.

6.2.3 Hardware Requirements

To support lighting-independent driver monitoring, infrared and depth multimodal cameras are
ideal for best performance. The ideal placement of the camera sensors is shown in Figure 6.2.
Three cameras are required. The front-facing camera (#2) stream is utilized for fatigue detection,
gaze estimation, and emotion recognition, where the full-frontal face is captured. The ideal
mounting location is on the dashboard. However, there might be slight occlusion from the driving
wheel due to different car interiors. Thus, some placement tuning is necessary for clear face
input. The central camera (#1) and the top-view camera (#3) send the image stream to the driver
anomaly detection module. The central camera faces the driver to record driving behaviours.
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Figure 6.2: Ideal camera sensors placement.
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The top-view camera is mounted on the ceiling to ensure a clear view of hands movements. The
FPS of each camera should be higher than 30 for a 720P resolution. Hardware-wise, intelligent
vehicle regulation-level CPU and GPU are necessary for each model to meet run-time needs.
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Chapter 7

Conclusion and Future Work

This thesis proposed a behavioural approach-based driver monitoring system using state-of-the-
art deep learning and computer vision methods. Targeted on the challenges of detecting each
driver status, three deep learning driver monitoring functionalities were developed. First, a multi-
modal learning fusion module MSAF was proposed, which can fuse neural networks designed for
different modalities but the same application. An audio-visual emotion recognition model built
on MSAF was presented and showed state-of-the-art emotion recognition ability on the bench-
mark dataset. Second, a driver anomaly detection and classification framework (DADCNet) was
proposed. DADCNet benefits from efficient multimodal (IR + depth) and multiview (front +
top) input allocation and achieved competitive performance using much fewer parameters and
FLOPS. Most importantly, DADCNet is capable of generalizing unknown driver anomalies and
classifying known distractions simultaneously. This advantage offers downstream DMS suffi-
cient information about the driver, thus helping design a user-friendly warning scheme. Third, a
fast, video-based, head pose-invariant gaze estimation framework was presented. The introduced
framework utilizes facial landmarks in a non-destructive way and jointly learns head pose and
gaze dynamics. The proposed method outperformed benchmark methods in multiple datasets and
observed a 36% decrease in per-head pose gaze estimation variance compared to the baseline ap-
proach. All of the above mentioned driver monitoring functionalities support video input, thus
learn spatial temporal dynamics rather than static states of the driver. These models are trained or
can easily adapt lighting-invariant modalities such as infrared and depth. Finally, CareDMS was
introduced, composing of all function modules from the previous chapters and a fatigue detec-
tion algorithm using facial landmarks. CareDMS transforms each model’s output into a specific
driver status measurement and produces the driver’s level of alertness on a scale from 0 to 5.
Overall, CareDMS covers the most common types of driver distractions: physical distraction,
visual distraction, and cognitive distraction.
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The findings learned from this work can be broken down into multiple perspectives. First, the
quality and the scale of the data are crucial for obtaining a generalized and robust deep learning
model. They are particularly important for tasks that involve unbound patterns, such as personal
habits in behaving an action or an emotion. Meanwhile, data cleaning and feature engineering
are essential for training efficiency and model performance. Second, introducing multimodal and
multiview input may benefit complicated visual tasks. The evaluation in emotion recognition,
action recognition, and driver anomaly detection can illustrate this finding. Thus, a crucial matter
to consider for any task is if there exists other modalities that also strongly correlate to the
objective. Third, learning temporal features helps enhance model performance in movement-
related tasks. Chapter 5 demonstrated the video-based model advantage over previous image-
based method in gaze vector regression, while Chapter 3 and 4 showed competitive performance
in using video data for action classification tasks. In addition, the modalities are not limited
to data directly from sensors. Predictions from another algorithm can also be used as input for
exploiting data-label relationships, such as facial landmarks.

The driver monitoring system presented in this thesis has a wide converge in driver status
monitoring. However, there are numerous future works left to do. The future works are outlined
according to two main objectives: 1). Practicality: how can this thesis be transformed into a
commercial vehicle-ready driver monitoring system? 2). Technicality: what other approaches
can be investigated in the future to work better? This chapter summarizes all future works as
follows.

• Model generalization in real-life driving: So far, each model is trained, evaluated, and
investigated on the benchmark dataset used by the literature. The model designs targeted
previous methods’ weaknesses in driver monitoring and witnessed the effectiveness in mit-
igating each pain point; however, a thorough evaluation of each functionality in real-life
driving scenarios is still necessary. The future assessments are grouped based on the func-
tionalities and list them as follows:

– Emotion Recognition: There is a diverse population of drivers with possible natu-
ral looks towards a specific emotion. The purpose of driver emotion recognition is
to precisely identify the subtle facial expression changes with high tolerance in fa-
cial appearance variance. Chapter 3 presented an emotion recognition work using
videos and audio and showed that human emotions have a high correlation with both
modalities. Despite significant improvement illustrated in the dataset, this work did
not evaluate muted video data. In other words, if a driver shows anger on the face
but prefers to stay quiet, the MSAF-based emotion recognition model’s performance
is unidentified. Similarly, if the driver is arguing with passengers in the car while
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not facing the front-facing camera, how the model reacts is also worth investigat-
ing. Another problem with the proposed model is the multi-speaker environment.
The proposed solution assumes the audio source comes from the driver, whereas the
audio could be from radios or the passengers. A more intelligent method could be
investigated with the support of multi-speaker voice separation. Another future as-
sessment is "emotion recognition in the wild". The introduced emotion recognition
model assumed frontal face look and was trained on 24 human subjects’ data. How-
ever, the population of human drivers is enormous. An "emotion recognition in the
wild" training and evaluation is crucial for a stable and accurate recognition perfor-
mance. Thus, a massive driver emotion in the wild dataset should be conducted in
the future to put this algorithm in practice. Finally, driver personalization is a po-
tential approach to improve emotion recognition efficacy in a personal vehicle. As
previously mentioned, the feedback from a DMS (e.g., play different types of music)
towards certain emotions may have an implicit impact on the driver’s mood. It is
worth investigating self-adapting AI solutions that learn how an individual expresses
his/her emotion while driving to give the most precise feedback. A possible concept
is to let a deep learning model group face visual features using unsupervised learning
and correlate driving styles (e.g., aggressive or conservative) with facial expression
clusters.

– Driver Anomaly Detection and Classification: Similar to emotion recognition, the
generalization evaluation of the proposed method is at high priority. Concretely, it is
essential to verify how the model performs when the camera placements are differ-
ent from the placement in the dataset, how the detection and classification workflow
cooperates when an open-set anomalous driving happens in real-life, and how to ob-
tain a balanced detection threshold value that is both resource-efficient and sensitive
to anomalous driving. From a technical perspective, new loss functions can also be
attempted to maximize the model’s class discrimination ability, such as contrastive
loss [180]

– Gaze Estimation: Due to the lack of an infrared gaze estimation dataset, the method
introduced in Chapter 5 was trained with RGB images. However, the ideal modality
is infrared due to its lighting-invariant characteristic. Although RGB images can be
grayscaled to mimic the IR look, a thorough evaluation of the model’s performance in
IR input is required. In addition, the gaze estimation pipeline utilizes face and land-
mark detection. The reliability of these dependencies in real-life driving scenarios
can affect the downstream gaze estimation performance. Thus, a complete pipeline
assessment regarding driver appearance, lighting, dependency stability is left as fu-
ture work. A study of DMS reaction when facial landmarks are not available is also
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worth investigating to ensure driving safety and comfort.

• Measurement generalization in real-life driving: The measurements of driver status
used in this thesis were derived through related studies from the literature or by ourselves
without strict experiments and assessment. A systematic evaluation of each measurement
and its performance in real-life driving is necessary to ensure its effectiveness. Further-
more, a mapping was created to link driver status measurements and the overall level of
alertness. What kind of warnings are most suitable to draw the driver’s attention back is
worth investigating.

– Measurement practicality: The measurements of driver statuses introduced in Chap-
ter 6 were either adopted from empirical data in the literature or proposed as a similar
concept in the existing calculations. The assessment of how these measurements re-
flect the driver status in real life is left as future work. One potential measurement
improvement is the PRC (percentage road center). In urban driving, this measurement
may fail to differentiate when a driver observes pedestrians (normal observation) and
a driver is visually distracted by an ad (distraction). A potential solution is to analyze
the vehicle’s current speed and the fixation duration of the driver’s gaze. These fac-
tors may exploit the difference between visual distractions and normal observation,
thus improving the PRC measurement. Furthermore, with the current model perfor-
mance, a detailed evaluation of the measurement-to-alertness mapping is required to
validate its suitability and sensitivity balance. Driver personalization could also be
investigated as the measurement thresholds may suit people differently. For instance,
younger drivers have higher odds [14, 13] of road accidents, whereas older drivers
may not benefit from DMS with high sensitivity.
With the proposed ability to tune DMS sensitivity, a new DMS solution that sup-
ports L0 to L3 autonomous driving shall be studied. These studies could investigate
how to optimize measurement sensitivities based on the using ADAS features, driver
statuses, traffic, and vehicle autonomy reduction requests (self-driving feature not
confident to drive).

– DMS feedbacks: When a distraction is detected, proper feedback from the DMS
should effectively alert the driver at a suitable level. These system feedbacks (visual,
auditory, and physical) should properly balance intrusiveness and the effectiveness of
retrieving the driver’s attention. The combination of driver monitoring accuracy and
feedback is essential to build a trustworthy DMS that is practical in real-life usage.

This thesis aims to use AI to deliver drivers and passengers a safe trip to wherever they go.
The fast-developing ADAS and autonomous driving technologies help human societies take a
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step closer to risk-free transportation. This thesis stands on the shoulders of giants in the research
community and sends sincere respect to every related work cited in the literature. The author of
this thesis hopes this work shares new ideas and insights to the driver monitoring community
in both academics and industries. Finally, the author sends sincere condolences to individuals
deceased due to road accidents.
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Appendix A

Elevator Video Concatenation

This supplementary material introduces a video concatenation method used in Chapter 4 for
converting the 3MDAD [8] (an distraction classification dataset) into an anomaly detection and
classification dataset. The purpose of creating such a dataset is that many of the classification-
focused datasets are composed of separate small videos only to evaluate classification models.
These available labels do not meet the evaluation requirements as the proposed method (DADC-
Net) tries to find where an anomaly begins in a continuous data stream and classify the anomaly
from that point. Thus, the goal is to merge safe driving and anomalous driving clips into a long
video that comprehends the whole set of driving scenarios. A vanilla method can concatenate all
small videos into one regardless of whether the frames of concatenation reserve any reasonable
temporal relationship. However, this could result in inaccurate reflection of the model perfor-
mance where temporal feature extraction is a crucial aspect for robust anomaly detection. To
mitigate such drawbacks, SIFT feature matching is used to find an entry from video A to video
B so that the transition could look more natural to reserve the video consistency. This technique
assumes the main subject (i.e. driver) does not have any considerable change in appearance
(change of cloth or identity) or sudden movement (from presence to absence), thus fits better in
driver action-related dataset where the location of a driver is usually fixed.

The algorithms below illustrate the general pipeline of the video dataset conversion technique
used to create the synthetic 3MDAD dataset. Overall, it finds an entry in each abnormal driving
video that looks like a safe driving video the most. This entry is usually at the beginning of the
abnormal driving video clip, for instance, when a driver grabs a phone and starts calling. Then,
an elevator algorithm transitions from a "safe driving" video to an "abnormal driving" video at
its entry until all entries are concatenated to some "safe driving" frame.
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Algorithm 1: CreatingEntries
Input : vn = [f i

n], i = 1, 2, · · · . A list of frames in normal driving video
Input : vA = [vai ], i = 1, 2, · · · . A list of anomalous driving videos, where each video

is a list of frames.
Output: A list of entries tuple, where each element is an entry from vn to vai ∈ vA

1 entries = [ ]
2 for i← 0 to |vA| do
3 maxScore = 0
4 entryn = 0
5 entrya = 0
6 for j ← 0 to |vai| do
7 for k ← 0 to |vn| do
8 score = SIFTMatching(fk

n , f
j
ai
)

9 if score > maxScore then
10 maxScore = score
11 entryn = k
12 entrya = j

13 else
14 continue
15 end if
16 end for
17 end for
18 entries.update({entryn : {i : entrya}})
19 end for
20 return entries
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Algorithm 2: ElevatorVideoConcatenation
Input : vn = [f i

n], i = 1, 2, · · · . A list of frames in normal driving video
Input : vA = [vai ], i = 1, 2, · · · . A list of anomalous driving videos, where each video

is a list of frames.
Output: A list of entries tuple, where each element is an entry from vn to vai ∈ vA

1 entries = CreatingEntries(vn, vA)
2 frames = [ ]
3 curr = 0
4 reverse = False
5 while entries is not empty do
6 frames.append(vcurrn )
7 if entries.find(vcurrn ) then
8 entrya = entries[vcurrn ]
9 a = entrya.Key

10 ea = entrya.V alue
11 frames.append(vaA[ea :])
12 frames.append(vaA.reverse[: ea])
13 entries.pop(a)

14 else
15 end if
16 if reverse then
17 curr− = 1
18 else
19 curr+ = 1
20 end if
21 if curr == |vn| then
22 reverse = True
23 else if curr == 0 then
24 reverse = False
25 else
26 pass
27 end if
28 end while
29 return frames
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