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Abstract

Falls in older adults are a critical public health problem worldwide and impact one in
three older adults at least once each year. In addition to physical consequences, e.g., hip
fracture and traumatic brain injury, falls can lead to negative mental health outcomes,
such as fear of falling and depression.

Fall risk assessment (FRA) is the initial step for fall prevention programs and interven-
tions. In particular, clinicians aim to understand what factors put older adults at high risk
of falling to inform the selection and timing of fall prevention interventions (e.g., strength-
ening programs). These risk factors are generally categorized as intrinsic or biological
(e.g., gait and balance disorders) and extrinsic or environmental (e.g., slippery surfaces).
While supervised FRAs, including performance-based (e.g., Timed up and Go) and instru-
mented methods (e.g., motion capture systems), capable of quantifying intrinsic risks have
advanced significantly, falls still remain a major priority in geriatric medicine and public
health. This can be due to the Hawthorne effect, the heterogeneous nature of older adults’
health, lifestyle, and behaviors, and the complex, multifactorial etiology of falls.

To address the limitation of supervised FRAs, a growing body of literature has focused
on wearable sensor-based methods for free-living (or ambulatory) FRA. These studies, re-
viewed in Chapter 2, investigated the relationships between free-living digital biomarkers
(FLDBs) extracted from wearable sensors data (generally, inertial data) and the frequency
of prospective/retrospective falls in older adults. However, many FLDBs exhibited incon-
sistent fall predictive powers across studies, indicating they may not be stable in distin-
guishing fall-prone individuals. Moreover, the relationships between falls and free-living
dynamic postural control measures, such as step width and the frequency of naturally-
occurring compensatory balance reactions (CBRs), have yet to be investigated in depth.
Considering controlled studies reported balance impairment as one of the strongest risk
factors for falls, the investigation of balance-related FLDBs may lead to more stable risk
assessments and provide new insights into fall prevention in older adults.

Although gait-related FLDBs extracted from inertial data can be impacted by both in-
trinsic and environmental factors, their respective impacts have not been differentiated by
the majority of free-living FRA methods. This may lead to the ambiguous interpretation of
the subsequent FLDBs, and less precise intervention strategies to prevent falls. A context-
aware free-living FRA would elucidate the interplay between intrinsic and environmental
risk factors and clarifies their respective impacts on fall predictive powers of FLDBs. This
may subsequently enable clinicians to target more specific intervention strategies includ-
ing environmental modification (e.g., eliminating tripping hazards) and/or rehabilitation
interventions (e.g., training to negotiate stairs/transitions).



This doctoral thesis aims to address the aforementioned research gaps by proposing
multiple machine learning frameworks and incorporating an egocentric camera along with
wearable inertial measurement units (IMUs). Chapter 3 discusses the development of
random forest models to differentiate between normal gait episodes and multidirectinoal
CBRs (e.g, slip-like, trip-like, sidestep) elicited by a perturbation treadmill in controlled
conditions in healthy young adults, where the CBR detection model achieved the overall
accuracy of ~ 96%. This chapter established the infrastructure for Chapter 4, where a
validation study was performed to detect older adults” CBRs under free-living conditions.
Random forest models were trained on independent /unseen datasets curated from multiple
sources, including perturbation treadmill CBRs. By investigating 11 fallers’” and older non-
fallers’ free-living criterion standard data, 8 naturally-occurring CBRs, i.e., 7 trips (self-
reported using a wrist-mounted voice-recorder) and 1 hit/bump (verified using egocentric
vision data) were localized in the corresponding trunk-mounted IMU data. A subset of
models differentiated between naturally-occurring CBRs and free-living activities with high
sensitivity (100%) and specificity (>99%) suggesting that accurate detection of naturally-
occurring CBRs is feasible. Moreover, to address the limitations of IMUs in terms of the
estimation of step width in free-living conditions, Chapter 5 presents a novel markerless
deep learning-based model to obtain gait patterns by localizing feet in the egocentric vision
data captured by a waist-mounted camera.

With the aim of improving the interpretability of gait-related FLDBs and investigat-
ing the impact of environment on older adults’ gait, Chapter 6 proposes a vision-based
framework to automatically detect the most common level walking surfaces. Using a belt-
mounted camera and IMUs worn by fallers and non-fallers (mean age 73.6 yrs), a unique
dataset was acquired (a subset of Multimodal Ambulatory Gait and Fall Risk Assessment
in the Wild (MAGFRA-W) dataset). A series of ConvNets were developed: EgoPlaceNet
categorizes frames into indoor and outdoor; and EgoTerrainNet (with outdoor and indoor
versions) detects the enclosed terrain type in patches. EgoPlaceNet detected outdoor and
indoor scenes in MAGFRA-W with 97.36% and 95.59% (leave-one-subject-out) accura-
cies, respectively. FEgoTerrainNet-Indoor and -Outdoor achieved high detection accura-
cies for pavement (87.63%), foliage (91.24%), gravel (95.12%), and high-friction materials
(95.02%), which indicate the models’ high generalizabiliy.

Overall, promising results encourage the integration of wearable cameras and machine
learning approaches to complement IMU-based free-living FRAs, towards stable context-
aware FLDBs for fall prevention in older adults. Implications for further research to
examine the relationships between naturally-occurring CBRs and fall risk, and clinical
applications are discussed.
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List of Abbreviations and Acronyms

ACC: Accelerometer or acceleration signal (depending on the context)

ADLs: Activities of daily living

AP: Antero-posterior

BoS: Base of support

CBR: Compensatory balance reaction

CO: Crossover (a CBR strategy)

CoM: Center of mass

ER: Elimination rate

FIVR: Free-living inertial and voice recorder (dataset)

FLDB: Free-living digital biomarker

FPV: First-person vision

FRA: Fall risk assessment

GT: Ground truth

Gyro: Gyroscope or Angular velocity signal (depending on the context)
HFM: High-friction materials

IMU: Inertial measurement unit

IMUFD: Inertial Measurement Unit Fall Detection (dataset)

IoU: Intersection-over-union

LHS: Left heel strike

LOSO: Leave-one-subject-out

LOTO: Leave-one-trial-out

LSTM: Long short term memory

MAE: Mean absolute error

MAGFRA-C: Multimodal Ambulatory Gait and Fall Risk Assessment in Clinic (dataset)
MAGFRA-W: Multimodal Ambulatory Gait and Fall Risk Assessment in the Wild (dataset)
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MGE: Micro gait event-based
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SS: Side step (a CBR strategy)
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Chapter 1

Introduction

It is estimated that 1 in 3 older adults (> 65 yrs) fall at least once each year [139, 60].
Falls are a major public health problem worldwide that can lead to serious physical (e.g.,

hip fractures, traumatic brain injuries) [188, 112] and/or psychological (depression and fear
of falling) [57, 143] consequences, and incur heavy expenses [111, 15]. Although falls are
considered in the class of preventable injuries [35], to date, there has been no method that

can precisely predict older adults’ falls.

Falls among older adults and people with neurodegenerative diseases have a complex
etiology, often resulting from multiple interacting factors [38, 9], which can be unique to
an individual’s characteristics, lifestyle, and the surrounding environment (see Fig. 1.1).
Intrinsic or biological risk factors are specific to the individual’s capabilities and health
status, and include chronic conditions such as Parkinson’s disease [107], dementia [165],
muscle weakness, and/or balance impairment [97]. Environmental (or extrinsic) risks in-
clude low-friction terrains, obstacles, uneven surfaces, and poor lighting conditions [20, 50].
Generally, gait and balance disorders and environmental hazards have been reported to be
the most important risk factors contributing to ~ 17% and ~ 31% of falls in older adults,
respectively [162]. These risk factors can be aggravated by social and behavioural risk fac-
tors such as loneliness and social isolation [18], anxiety [54], and depression [76]. Moreover,
exposure to high-risk activities, such as hurried activity beyond the limits of stability [107],
influences individual risk for falls. Considering the large number of potential risk factors,

!The content of this chapter is partly obtained from [122], which was co-authored by the present thesis’
author.



identifying individual risks in a multifactorial assessment approach is an essential first step
for best practice fall prevention interventions (Fig. 1.1).

By identifying the various risks specific to an individual, fall risk assessment (FRA) can
inform clinical decisions on the most appropriate preventive interventions to reduce the risk
for future fall events (Fig. 1.1). To date, commonly used FRA methods involve easy-to-
implement movement-based tasks with minimal equipment requirements, such as total time
to complete a timed-up-and-go (TUG) [115, 172] or Tinetti Test [189]. Based on a meta-
analysis, the diagnostic accuracy of TUG was poor to moderate for fall prediction in healthy
high-functioning older adults and the cut-off thresholds for TUG-based identification of
fallers were highly inconsistent within the included studies [167]. These limitations have led
to a methodological shift towards the use of more detailed assessments using instrumented
approaches.

As the adopted gold standard, electronic-based tools, such as three-dimensional motion
capture and instrumented walkways, can be used to offer detailed quantitative assessments.
Yet, these tools remain resource-intensive and fixed to specialized clinics/locations, offering
snapshots during scripted functional tasks. Additionally, extrinsic risk factors for falls can
be self-reported using diaries or voice-recorders [50], however, this often lacks accuracy and
adequately detailed descriptions. To systematically investigate the impact of environmen-
tal conditions on older adults’ tendency to fall, researchers have designed paradigms to
mimic challenging natural conditions in a laboratory setting. For example, minimum foot
clearance was measured in different lighting conditions in [55] to understand the nature
of trips on stairs in older adults, where, in contrast to young adults, the lack of precau-
tionary increase in older adults’ foot clearance under reduced lighting contributed to falls
on stairs. However, due to the Hawthorne effect, i.e., alteration of performance associated
with awareness of being observed, during controlled gait and balance tests [159], super-
vised FRA measures may not necessarily reflect naturalistic and multitasking behaviour
[32, 63, ]. For instance, a weak association (r = 0.333, p < 0.001) between natural
gait speed and in-laboratory gait speed was reported [134]. Similarly, free-living gait speed
and step regularity measures were significantly lower compared with in-lab usual walking
and tended to be more similar to in-lab dual-task walking [63]. Thus, novel free-living
FRAs to identify fallers based on their free-living behaviour in their natural daily living
environments could provide complementary information to supervised FRAs.

There have been a wide range of methods proposed to measure mobility behaviour in
out-of-lab conditions. Ambient sensors, such as radar [3%], passive infrared [91], third-
person video [158], and depth cameras [16, 26, 144, 1] have been investigated as a means to
extract gait parameters, detect falls, and track longitudinal changes in a person’s mobility
patterns. Although ambient sensors can provide valuable information on an older adults’
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Figure 1.1: Considering the multifactorial etiology of falls, and complex interactions be-
tween risk /protective factors (shown by grey arrows) at the individual level, different fall

risk assessment approaches (and instruments) have been proposed to examine exposure to
different risk factors.

risk of falls in an unobtrusive manner, especially in inpatient units [1 1], they have limi-
tations due to visual occlusions (e.g., furniture), inability to extract spatiotemporal data
when full-body view is unavailable, and tracking the same person in spaces with multiple
residents with similar body characteristics [180]. Moreover, they are restricted to the en-
vironments the sensors are installed in. In contrast, wearable sensors and their data have
greater utility beyond the living space where ambient sensor data is recorded, at the ex-
pense of additional burden in donning and maintaining devices. These technologies include



wearable inertial sensors (e.g., tri-axial accelerometers, gyroscopes and magnetometers),
in-shoe plantar pressure sensors [37, , 10] and wearable cameras [127, 92, 185].

Recent attention has focused on the examination of fall predictive powers of wear-
able sensor-based free-living digital biomarkers (FLDBs), such as total time walking/lying,
frequency-based (e.g., the amplitude of dominant frequency) and temporal (e.g., step time)
measures extracted from detected activity bouts (e.g., gait) and events (e.g., turns). Sev-
eral studies have shown that wearable-based FLDBs can either outperform or complement
clinical (supervised) FRA tests [33, , 201]. For instance, a machine learning-based
model developed on transition-based FLDBs outperformed its counterpart developed on
clinical test scores (e.g., TUG) in discriminating between older fallers and non-fallers [33].
However, there are no clear solutions for transparent deployment of wearables for free-living
FRA at this time due to the ongoing novel developments within the field. Furthermore,
the utility of existing free-living FRA methods to inform interventions remains limited.

Chapter 2 (peer-reviewed and published in Gait & Posture [122]) provides a detailed lit-
erature review, highlighting the research gaps in the proposed free-living FRA approaches.
This chapter explores journal papers investigating free-living data collected by wearable
sensors for a duration of at least 24 hours to identify fall-prone older adults. The search
yielded twenty-four studies, in which inertial measurement units (IMUs)? were the only
wearable system employed for FRA in the wild. This review highlighted that while early
free-living FRA approaches have demonstrated promise, many of the explored FLDBs ex-
hibited inconsistent fall predictive powers across studies, indicating that they may not be
stable in distinguishing fall-prone individuals. Moreover, inter-study inconsistencies were
observed in experimental design (e.g., sensor placement, duration of free-living data col-
lection), sample demographics (e.g., number of participants, neurological status), use of
processing hyperparameters (e.g., cut-off thresholds to define an ambulatory bout), and
definition /measurement of FLDBs (e.g., different central tendency measures), and domains.
Chapter 2 further provides recommendations towards the harmonisation and standardiza-
tion of outcomes for free-living FRA.

The literature review in Chapter 2 further highlighted that the relationships between
falls and free-living dynamic postural control measures, such as step width [103] and the
frequency of naturally-occurring compensatory balance reactions, have yet to be investi-
gated in depth [122]. Considering balance impairment as one of the strongest risk factors
for falls [190], the investigation of balance-related FLDBs may lead to more stable risk
assessments and provide new insights into fall prevention in older adults. This necessitates

2While IMUs refer to sensor systems that include tri-axial accelerometers, gyroscopes and magnetome-
ters, for simplicity, the present thesis may refer to an inertial sensor as IMU.
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Figure 1.2: Without detailed information of the mobility context, such as terrain charac-
teristics and obstacles, the ability to interpret free-living digital biomarkers (FLDBs) is
constrained. Therefore, understanding the possible interplay between intrinsic and extrin-
sic features (i.e., Environment x Intrinsic), and their impact on FLDBs requires further
investigation. This necessitates the development of context-aware fall risk assessment ap-
proaches.

the development of robust models to identify balance impairment in older adults under
free-living conditions. To address these research gaps, Chapter 3 describes a study in-
vestigating methods of detecting multidirectional CBRs using young adults’ in-lab data
captured over a perturbation treadmill (peer-reviewed and published in IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering [125]). Based on the findings of
the aforementioned study, Chapter 4 proposes another machine learning framework, which
was further validated using older adults’ free-living data encompassing naturally-occurring
CBRs. Moreover, to address the IMUs’ limitation to estimate step width [119], Chapter 5
presents a deep egocentric vision-based approach to estimate this gait parameter in pixels
(peer-reviewed and published in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops 2018 [127]).

Chapter 2 discussed another literature gap originating from the inability of IMUs in



terms of the provision of detailed contextual information on human-environment inter-
action. While IMU-based digital biomarkers have shown to be sensitive to intrinsic risk
factors (e.g., chronic motor impairment), they can be also impacted by different environ-
mental features (e.g., surfaces, slopes, stairs) [193, 95, | (see Fig. 1.2). However, the
majority of free-living FRA methods have not differentiated between the impacts of en-
vironmental and intrinsic factors. This may lead to the ambiguous interpretation of the
subsequent IMU-based FLDBs (see Fig. 1.2), and therefore, less precise intervention strate-
gies to prevent falls. For instance, depending on the mobility context, higher variability
in acceleration signal (e.g., a lower amplitude of the dominant frequency as a FLDB) in
the mediolateral direction captured by a lower back-mounted accelerometer during gait
could indicate a higher adaptability to the environment [201] (and potentially a lower risk
of falls), and/or could represent an abnormality in gait due to an intrinsic factor (and
potentially a higher risk of falls) [79].

With the aim of improving the interpretability of IMU-based FLDBs and investigating
the impact of environment on older adults’ gait, towards context-aware FLDBs, Chapter 6
proposes a deep vision-based framework to automatically detect the most common level
walking surfaces in indoor and outdoor environments. The framework was further validated
using older non-fallers and fallers’ free-living data. Chapter 7 summarizes the key contri-
butions of the thesis and discusses overarching themes arising from the aforementioned
studies.



Chapter 2

Fall risk assessment in the wild: A
critical Review of wearable sensor
use in free-living conditions

To address the imitations of supervised fall risk assessment (FRA) approaches, a grow-
ing body of literature has focused on wearable sensor-based methods for free-living FRA,
to ultimately reduce fall occurrence. These studies investigated the relationships between
wearable-based free-living digital biomarkers (FLDBs) and falls. This chapter reviews
journal papers investigating natural data collected by wearable sensors for a duration of at
least 24 hours to identify fall-prone older adults. After summarizing the key aspects of the
experimental protocols used to collect free-living data (e.g., sensor placement, duration of
free-living data collection, demographics), this chapter reviews sources of inconsistencies
between the proposed free-living FRA approaches. At the end, gaps in the literature were
highlighted and recommendations were provided to inform future work towards achieving
a harmonized free-living FRA model.

The next chapters of this thesis will address some of the research gaps highlighted in
the present chapter.

IThe content of this chapter is partly obtained from the following peer-reviewed research paper:
Nouredanesh, M., Godfrey, A., Howcroft, J., Lemaire, E. D., & Tung, J. (2021). Fall risk assessment
in the wild: A critical examination of wearable sensor use in free-living conditions. Gait & Posture, 85,
178-190



2.1 Search criteria

Three databases, Scopus, PubMed, and Google Scholar, were searched up to and includ-
ing September 2019 (2010 to 2019). Search terms were [“home” or “unsupervised” or
“real-world” or “community” or "ambulatory”] and [“fall” or “fall risk assessment”] and
[“elderly” or “senior” or “aged”] and [“wearable sensor” or ”accelerometers” or ”inertial”
or "wearable camera”]. Journal articles were included if they: 1) assessed the relationships
between falls and features extracted from free-living data, 2) collected data from wear-
ables used by older adults (or people with neurodegenerative diseases if compared with
older adults (>65 yrs) as controls) for a duration of at least 24 h per participant, and
3) primarily considered categorization of participants into faller and non-faller cohorts for
data analysis 2. After the initial title screen, abstracts were reviewed. Twenty six (n=26)
papers from databases met the inclusion criteria (Fig. 2.1). Multiple papers from two re-
search groups investigated the same/overlapping datasets or very similar sets of FLDBs:
(a) Hausdorff and colleagues examined datasets from healthy older adults [201, 81, 80, 78]
and PD older adults [203, 82], and (b) Pijnappels and colleagues investigated: b-1. fall risk
assessment in older adults (FARAO) dataset that was collected from >300 older adults
[195, 120, 77], and b-2. overlapping (but different) subsets of FARAO dataset to address
different research questions [155, , , 196]. Considering the high degree of overlap in
b-2, the most relevant, largest sample, and/or highly cited paper examining fall risk was
included for the purposes of this review [156] and [196] (see Figure 2.1). Therefore, the key
methodological /demographic information from n=24 papers was extracted and provided
in Tables 1-3 (the key aspects of [155] and [197] were highlighted in section 2.3) 3.

2.2 Results

2.2.1 Study characteristics

Tables 2.1 to 2.3 show the study designs for capturing free-living data, demographic infor-
mation, key methodological aspects, types of wearables, sensor anatomical location, general

2There were a group of papers [177, 86, 93, 19] that examined the associations between falls and intensity
of physical activities, such as falls per 100 hours walked or falls per individual physical activity exposure
time. For data analysis, these papers did not explicitly considered the categorization of participants into
faller and non-faller cohorts.

3This literature search was repeated in May 2021, and no further study was found to meet the inclusion
criteria.



description of outcome measures, and the length of free-living recording for all included
papers. The general procedure for wearable-based ambulatory FRA is shown in Fig. 2.2.

[“home” OR “unsupervised” OR “real-world” OR “community” OR "ambulatory"] AND [“fall” OR
“fall risk assessment”] AND [“elderly” OR “senior” OR “aged”] AND [“wearable sensor” OR
"accelerometers” OR "inertial” OR "wearable camera"]

Databases Scopus PubMed
Al results Additional filters:
= - no. 235 1091 subjects +65, human
2010<=Year<=2019-09-30 species, Conf Papers
1 l were excluded
Screened by title 79 63
Google
Scholar
Screened by abstract 16 7
and content \/
Duplicates removed 16
S b 10
26

More qualified papers
were identified from
google scholar.

A cluster of papers re-analyzed a part
of a larger dataset and investigated a
very similar set of FLDBs. Thus, 2
papers were excluded.

Figure 2.1: PRISMA flow chart of study design, illustrating search strategy results and
filters at each stage of the study selection process.
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In the reviewed studies, a range of inertial-based wearables were employed as described
in Table 2.3. Most studies used a single tri-axial accelerometer-based wearable, with a
minority using a uniaxial [107, 65] or combined tri-axial accelerometer and tri-axial gyro-
scope (e.g., [383, 99]). Typically, one inertial-based wearable was worn on the lower back,
including the pelvis, sacrum, and L3 to L5 vertebrae [$3, , , 31, , 81, 80, 78, ,

, , , 77], and midsagittal plane of the lower back [99]. Other wearable locations
included chest/sternum [17, 116, 168], middle of the thigh [65], upper-thigh [107] domi-
nant and nondominant hand/wrist [118]. In one study, multiple wearables were attached,
two on shoes and one at L5 [I10]. Free-living data were recorded from 24 hours [168] to
58 days (average over participants) in [17]. Most studies monitored community-dwelling
older adults without neurological disorders (i.e., OA in Table 2.2). However, a number of
studies also investigated differences between fallers and non-fallers in other populations:
PD [203, 82, 65, 31, |, dementia [168, 19], and varying frailty levels [116]. Addition-
ally, fallers were further categorized as single fallers and recurrent fallers in two papers

[107, 110}.

Studies performed analysis to understand the relationships between wearable-based
FLDBs and prospective falls [195, , , , , , 19], retrospective falls [83,

, 81, 80, , 82, 65, 31, , 16] and both [196, 99, |. In one study [107], falls
were also categorized with respect to the associated pre-fall events and allocated to one
of three categories: 1) transitions during changes of posture (e.g., turning, rising from
chair); 2) ambulation (e.g., everyday walking activities, including stair climbing) and 3)
advanced activities including complex high-risk motor tasks (e.g., skiing, hill walking).
Multivariate analysis or deep learning techniques were also applied to discriminate between
fallers and non-fallers [120, 77, 19] without corresponding univariate analysis to investigate
the individual FLDBs with respect to their predictive ability for falls.

2.2.2 Free-living activity/event detection

Detecting bouts of activity were critical step in extracting FLDBs. The detection of ambu-
latory bouts were most common [83, , 65, 99, 31, , 17, 16, , , , 81, 80, 78,

, , 77, , 107] followed by, sitting [195, : , 168], lying [195, : , 168],
sedentary (sitting and lying together) [65, 99] and standing [195, , 65, , 168]. Bout
of activity detection was the initial methodological step required for the extraction of
FLDBs from inertial sensor data (Fig. 2.2). Transitions between consecutive ambulatory
and sedentary bouts (i.e., walk-to-sit and sit-to-walk) were also quantified for insights to
FRA [33, , , , ]. Ambulatory bouts were further examined for detection of
discrete gait events (Fig. 2.2) such as initial and final contact within the gait cycle (e.g.,
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in [201, , , |, turns [99, |, and missteps [32]. Although the term ’misstep’
may mostly imply the involvement of intrinsic risk factors in the episodes of imbalance, in
this thesis, missteps, compensatory balance reactions, and near-falls were interchangeably
used, and were broadly defined as reactions to regain stability following a loss of balance.

Cut-off thresholds for identification of ambulatory bouts and turns

To identify an ambulatory bout, different minimum /maximum cut-off thresholds were de-
fined according to steps, time or a combination of both [31, 17, 16] (Table 2.3). For example,
Del Din et al. [31] referred to an ambulatory bout between 3 steps to 60s, 60-120s, and
longer than 120s as ’short’, 'medium’; and ’long’ walks, respectively. Alternatively, Brodie
et al. considered short walks as those <7 s and <8 s and longer than three steps in two
different studies [17, 16]. The minimum cut-off thresholds ranged from 1 step [107] to 120s
[31] and a minimum of three steps was the most frequent cut-off threshold used within the
reviewed studies from distinct datasets [31, 17, 106, , |. Discrete angular thresholds
were also used to identify turns. For instance, one study [! 0] examined those greater than
45° but elsewhere different turn resolutions, e.g. small (50-100°), medium (100-150°), and
large (150-200°) were taken into account [99], Table 2.3. The detected activity bouts and
events were later used independently for the extraction of FLDBs, which were statistically
analyzed with respect to falls (Fig. 2.2).

2.2.3 Conceptual models

As ambulatory bouts were the most investigated free-living activity for FRA, research
groups defined different conceptual FRA models to classify and interpret a range of gait-
based FLDBs. Each model consists of several domains, including a homogeneous group
of FLDBs usually in terms of their mathematical description (Fig. 2.3, models a [31], b
[17], ¢ [16], d [196], and e). Model e represents the merged domains from a set of research
papers [201, 81, 80, | as discussed in section 2.1. In Fig. 2.3-model e, complexity and
local dynamic stability measures reported in [31, 80] were categorized into the same class
because of their mathematical similarities (e.g., Lyapunov components [39]).

Broadly speaking, the reviewed literature examined the following features:

1. the ‘quantity’ of gait events or ambulatory bouts and their duration over days/weeks
[201, , 17, 10] also termed ‘macro’ (as discussed in 2.2.3) [107], [65], [31] and
‘amount of gait’ [195, 190],
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2. FLDBs that are obtained by performing a higher resolution analysis of the inertial sig-
nals or gait events, which include spatial (e.g. step length), temporal (step time), and
frequency-based (e.g. harmonic ratio) features. These features termed as ‘micro’ (re-
ferring to more detailed micro-structural characteristics of gait as discussed in 2.2.3)
[31, 65] [107] (Fig. 2.3 model a) or ‘quality’ of gait (e.g. in [201, 203, 195, 196, 17, 16]

(Fig. 2.3),

3. models of quantity/quality also extended to categorize turns [99, 110] and transition
features [83, 148].

As depicted in Fig. 2.3-model d [196], gait quality was represented by six domains,

each with its own set of FLDBs, such as: intensity (e.g., standard deviation, range); vari-
ability (e.g., autocorrelation, slope, and magnitude of the dominant frequency); smooth-
ness (e.g. index of harmonicity) and complexity (sample entropy). Alternatively, quality
was presented within quantity-intensity-exposure-quality models (Fig. 2.3, model b) and
quantity-intensity-quality (Fig. 2.3-model ¢) comprising of different predictors within three
domains (e.g., between-walk adaptability). Due to these inconsistencies associated with
the use of ‘quality’, here the general categorization of FLDBs into macro and micro is used
to describe quantity and quality of activities, respectively.

Macro/quantity FLDBs

Macro outcomes were generally described by duration or volume of an activity or the quan-
tity of daily occurrences. Commonly used macro FLDBs include the number of ambulatory

bouts [195, , , 65, 17] total steps within each bout [201, , , , 17], number
of daily turns [99, 110], number of daily compensatory balance reactions [32], and number
of transfers/transitions [83, , , , ]. In addition to the aforementioned linear
features, macro outcomes were utilized for non-linear analyses [107, 65, 31] (Fig. 2.3-model

a), including: 1. alpha («), which is a unit-less FLDB derived from the power distribution
of ambulatory bouts with respect to the cut-off thresholds and 2. within subject variability
of bout length (S2) obtained from a maximum likelihood technique as the distribution of
bout length.

For sedentary (lying and sitting) and standing bouts, only macro features were inves-
tigated within studies [195, , , 65, 99, , ], which includes: total standing
time [195, , , |, total sedentary time [195, , 99, ; |, lying, sitting, and
standing bout duration (mean, maximum, and 90th percentile) [110, |, standing and
sedentary bout duration variability [107], [65], number of sedentary and standing bouts
[65], and alpha measures for sedentary and standing bouts [65].
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(a) Macro-Micro model

Macro (Del Din et al. 2017, Hiorth et al. 2016 and Mactier et ‘ ‘
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Figure 2.3: Conceptual models proposed by researchers to categorize gait-related features

for fall risk assessment

Micro/quality FLDBs

Considering micro FLDBs that were investigated in studies, these features were categorized

into three main classes:

1. Micro gait event-based (MGE) FLDBs represent features requiring detection of gait
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f. Data-driven model by van Schooten et al. 2016
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Figure 2.4: Data-driven model proposed by van Schooten et al, 2016 to categorize FLDBs.
Only 8 relevant factors were taken into account (e.g., none of the FLDBs were loaded
into domains such as history of falls, so those domains were not taken into account). If
the FLDB is loaded into more than one domain (i.e., loading> 0.3 in the paper), top
three domains to which they indicate highest associations are indicated with integers (1
to 3). The numbers in parenthesis indicate the loading of the variable on varimax-rotated
principal components.

events from ambulatory bouts in order to be quantified. For example, turn duration
[99, 110] and step/stride length (e.g., examined in [195, 196, 31]) require detection
of a gait event, such as turn and foot contacts, respectively. Consequently, estab-
lished spatiotemporal gait parameters are generally considered as the MGE features,
including stance time, double support, step length. Turn-based MGEs were inves-
tigated in [99, 110], and they included mean turn velocity, peak turn velocity, turn
duration, variability of turn duration, mean turn angle, turn angle variability and
the logarithm of normalized jerk.

2. Micro ambulatory bout-based (MBB) outcomes include high-level temporal (e.g., root
mean square) and frequency-based (e.g., mean logarithmic rate of divergence) FLDBs
[201, 195, 196, 157] extracted from either the detected ambulatory bouts (based
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on the cut-off thresholds discussed in 2.2.2) or the subsequent epochs (discussed
later), regardless of the enclosed gait events. MBB predictors were either direction-
dependent features or based on signal vector magnitude. Directionally-dependent
FLDBs were extracted from antero-posterior (AP), mediolateral (ML), and vertical
(VT) accelerations (e.g. regularity measures in [201, ). A number of FLDBs
were extracted from the signal vector magnitude associated with the bout or epoch,
including regularity measure [157], phase-dependent generalized multiscale entropy
[77], and phase-dependent local dynamic stability [31]). To avoid possible sample
size-related bias, each axial/signal vector segment attributed to a macro bout was
split into fixed-size epochs for some studies. For example, bouts longer than 10
s and 60 s were split into the fixed 10 s [157] and 50 s [30] epochs, respectively,
and each epoch was used separately for the extraction of MBB outcomes. MBB
features are less intuitive compared to spatiotemporal gait FLDBs; and are assumed
to be indicative of different aspects of gait based on their mathematical description.
For instance, slope, width, and amplitude of the dominant frequency in acceleration
signals were linked to variability of gait domain [201, , , , ] and entropy
measures (e.g., sample entropy [196], multiscale and phase-dependant entropy [30],
[77]), were commonly extracted as potential markers of complexity domain (in [S0]
a lower entropy extracted from acceleration signals was linked to loss of complexity
and an increased regularity).

. Micro-transitions: similar to MBB predictors, these FLDBs consist of high-level tem-
poral (e.g., peak velocity, range) or frequency-based (e.g. entropy) outcomes, which
were either direction dependent (i.e., roll, pitch, yaw [33, ]), or extracted from
the signal vector magnitude (e.g. jerk [118]) attributed to sit-to-walk (or stand) and
walk (or stand)-to-sit transitions.

2.2.4 Data-driven models

One study presented a data-driven model by performing factor analysis to systematically
categorize FLDBs into independent domains. In [195] principal component analysis was
performed on 75 outcomes including: macro (e.g., median number of strides in one ambula-
tory bout); MGE (e.g., stride time, stride length variability); MBB (e.g., mean logarithmic
rate of divergence), and several questionnaire-based and test outcomes (e.g., inability to
use public transportation, ability to ascend/descend stairs). Although principal compo-
nent analysis revealed 18 domains, wearable-based FLDBs were only loaded into 8 classes
(considering their 3 highest weights that exceeded 0.3) as shown in Fig. 2.4-model f.
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2.3 Discussion

To date, inertial sensors using primarily acceleration signals, have been the preferred ap-
proach used to identify fallers based on their natural free-living behaviour over prolonged
periods. These systems have demonstrated adequate capabilities to monitor and detect
free-living activities, e.g., gait [33, , 65, , 17, 16, , , 65, 31, 81, 80, 78, ,

, 77, , ], lying [195, , , ] and gait events such as turns [99, ]. How-
ever, it was observed that similar FLDBs that were examined by different studies indicated
different levels of fall predictive ability, which can be due to the different experimental pro-
tocols used to collect free-living data (e.g. sensor placement, duration of free-living data
collection, demographics), different mathematical/statistical methods, and algorithms used
to define/detect activities (e.g., different cut-off thresholds). Due to these inconsistencies,
developing conclusive interpretations of existing evidence remains limited. In the next
subsections, the potential sources of inconsistency in methodology and categorization of
FLDBs into domains are discussed. Following the sources of inconsistency, recommen-

dations are provided towards harmonization of free-living FRA methods to advance the
field.

2.3.1 Inconsistencies in free-living FRA models
Similar FLDBs, different predictive power for falls

Inconsistency in ambulatory bout and turn cut-off thresholds Considering the
initial step in processing free-living inertial-based signals is detecting bouts, the observed
variability in defining ambulatory bout thresholds is a large source of inconsistency, poten-
tially affecting the fall predictive ability of the extracted bout-based FLDBs. For instance,
walking duration and the number of ambulatory bouts (two FLDBs) obtained from bouts
longer than 3 s (i.e., 3 s as the minimum cut-off threshold) showed no associations with falls
[31]. However, by changing the minimum cut-off threshold to 120 s, these same FLDBs
(i.e., walking duration, number of bouts) showed a statistically significant predictive ability
for falls [31]. Another example of inconsistent results arising from bout definition differ-
ences was variability in bout length. Using the definition of bouts >3 s yielded significant
association with falls; whereas variability in bouts > 120 s was not significantly associated
[31]. Similarly, while exposure to short duration walks < 7's [17] and < 8 s [10]) was signif-
icantly associated with falls, exposure from walks shorter than 60 s was not discriminative

(p ~0.1) [17].
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It was also observed that discretizing angular cut-off thresholds can impact fall predic-
tive power of turn-related FLDBs. For instance, although no relationship between the total
number of daily turns (considering turns with different resolutions) and falls was reported
[99, |, after dividing them into three separate angular levels, the quantity of turns in
each resolution turned out to be significantly lower for prospective fallers [99]. As only
two studies were concerned with turns [99, 110]), the effects of varying cut-off threshold
to determine bouts and/or events and subsequent impact on fall predictive ability remains
underexamined.

Central tendency measures to estimate FLDBs To extract FLDBs from free-living
data, measures of central tendency used to calculate predictors were inconsistent between
studies. The different statistical methods resulted in inter- and intra-study inconsistencies
in terms of fall predictive values for similar FLDBs. For instance, mode of step time

variability in [17] was significantly associated with falls; while the mean estimation did
not indicate any relationship. In addition to medians, in [1506] extremes of FLDBs were
estimated (i.e., the 10th and 90th percentiles of gait characteristics) over 10s epochs/bouts;
whereas in [195] only the medians of MBB FLDBs (e.g., entropy, amplitude of the dominant
frequency) were reported. For instance, compared to median values, a stronger association
was reported for some of the extreme estimations and falls [156]. Similarly, macro gait
features such as ambulatory bout duration, mean [31, , ], maximum [201, , ,

, 168], 90th percentiles [116], and medians [201, 203, 195, 196, 17] were reported. Overall,

the lack of consistency limits the capacity to compare across studies and synthesize the
evidence.

Free-living data collection protocols Across the reviewed studies, inconsistent data
collection protocols may play a key role in fall predictive ability of FLDBs. Specifically,
length of data collection, sampling frequency, and location of wearable sensor were incon-
sistent across studies. Although eight days of free-living data was reported to be sufficient
for the identification of fall-prone individuals [17], only one day of free-living data per par-
ticipant was investigated in [1 16, 168]. In [197] up to five days was reported to be required
for the estimation of median duration of locomotion bouts; while a minimum of two days
of free-living data resulted an inter class correlation greater than 0.7 for most activities
(sitting, standing and shuffling, except for lying). Sampling frequency was inconsistently
used within the studies, ranging from 10 Hz in [107] to 100 Hz in [118] (see Table 2.3).
Considering the impact of sampling frequency on the wearable unit battery life [191], the
identification of the optimal sampling frequency requires further investigation. Moreover,
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estimates of gait characteristics may suffer from errors due to discrepancies in accelerome-
ter location [154]. Although lab-based data suggest that inertial-based wearables mounted
on shins can outperform other anatomical locations [117] for detection of fallers, no study
has considered this location for the collection of free-living data with lower back as the
most frequently used location for sensor placement. To date there is no consensus about
the most robust location for free-living FRA, which requires further exploration.

Inconsistencies in the proposed free-living FRA models

Efforts to develop an FRA model based on predictors generated from wearables is needed to
interpret FLDBs related to fall risk. These interpretations are critical to understanding the
underlying causes or factors indicating risks and informing interventions for clinicians. In
contrast, black-box models (e.g., deep models) that estimate risk without interpretive value
are less useful. The reviewed studies with models demonstrated considerable inconsistency,
likely reflective of the on-going advancement in the field.

As discussed in 2.2.3, quality was found to be the most inconsistently used term with
discrepancies in definition and application. There were many inconsistent terminologies
observed across a range of domains and FLDBs within the examined models. For instance,
harmonic ratio was an indicator of gait smoothness in conceptual model e and an indicator
of symmetry in model d (instead, index of harmonicity was the measure of smoothness in
model d). In some cases, different terminologies were used to describe the same FLDB. For
example, endurance and exposure were defined by the same calculation in [17, 16], albeit
described in different domains in models b and ¢, respectively (Fig. 2.3). In another case,
the term ‘vigour’ was used to describe a domain (Fig. 2.4) [195] and defined as a FLDB
(root mean square of vertical angular velocity) in models b and ¢ [17, 10].

In contrast to conceptual models (e.g., Fig. 2.3, models d and ¢), where all of the AP,
ML, VT, and vector-based components of the same MBB FLDB where considered under
the same domain (e.g., harmonic ratio in ML, AP, and VT were considered under gait
smoothness), different anatomical directions of some of the MBB FLDBs were loaded onto
independent domains in data-driven model f (Fig. 2.4). Many of the FLDBs extracted from
ML acceleration were loaded into a distinct domain called "ML balance’ (e.g., harmonic
ratio in ML direction was loaded into ML balance, while the other two components were
considered under quality). Similarly, index of harmonicity in AP direction was loaded
into vigour; although the other two directions were loaded into quality. It is clear the
proposed models are a work in progress as the field is continually advancing. The existing
inconsistencies highlighted in the current review suggest the need for deeper discussion to
harmonize interpretive models.
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2.3.2 Less-investigated FLDBs and domains

There are a number of FLDBs and domains that have not been well-investigated in the
context of free-living FRA. For instance, none of the free-living FRA studies included in
this chapter investigated foot clearance measures (e.g. maximal heel clearance, minimum
toe clearance, and their variability) or Micro FLDBs attributed to postural control [103] (or
base of support [63]) domain. In addition to step width and its variability (investigated in
factor analyses by [103, 68]), other features such as the frequency of compensatory balance
reactions [32], and the number of steps to recover balance in a misstep, are likely to be
linked to this domain. Controlled laboratory evidence supports the view that impaired
ability to execute compensatory balance reactions is associated to a higher risk of falling
[109]. However, only a few studies [178, 18, 82] have examined the links between falls and
the frequency of naturally-occurring CBRs. Among them, only one was instrumented [32],
and therefore, included in this literature review. The latter reported a strong association
between suspected missteps and retrospective falls in PD populations. Moreover, step
width variability has shown to be linked to a fall history in older adults [13]. However,
no study was found exploring step width (and its variability) in fallers and non-fallers in
free-living condition. This requires to be investigated in future studies. Other domains
and FLDBs that have not been investigated in the free-living context, include, but not
limited to: arm symmetry measures during gait [09], foot strike angle measures [1 2], micro
transition and micro standing measures [27], which are recommended to be investigated in
future studies.

2.3.3 Recommendations for harmonization and clinical implica-
tions

Precise activity recognition algorithms

One possible reason for inconsistencies in fall predictive power of FLDBs is the use of black-
box thresholds in activity recognition algorithms [52, 7] in some of the studies, resulting in
a low specificity and clarity to analyze free-living activities. For instance, studies included
here were only concerned with general types of activities, such as ambulation, standing,
sitting, and lying. A subset of studies differentiated between patterns of gait, such as
ascending/descending stairs, or fast walking. For instance, [150] excluded locomotion bouts
suspected to contain running episodes as they caused severe outliers in FLDB estimations
for some of the participants. Additionally, turns and compensatory balance reactions
were not excluded from ambulatory bouts before the extraction of MBB features. For
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instance, the misstep detection method in [32] revealed a number of suspected missteps
from 5-second ambulatory bouts. However, in a subsequent study [203], MBB features
were extracted from the same dataset without excluding those suspected missteps, which
may have affected the fall predictive values of the MBB features.

Multimodal approaches, such as a combination of IMUs, surface electromyography [130],
electroencephalogram [30], heart rate variability and ECG [21] and pressure-sensitive shoe-
insoles [34, , 10] may increase the specificity of activity recognition algorithms, and
therefore, to improve the sensitivity of FLDBs to identify fallers. As an example, using
a force sensing insole equipped with an IMU and a barometric sensor, a framework to
discriminate between level walking and stairs patterns of gait was developed and evaluated
[11]. State-of-the-art algorithms, such as long-short term memory and deep convolutional
neural networks have achieved near-human accuracy levels in detection of a broad range of
activities from multimodal public datasets [138], which can be employed as a replacement
to threshold-based methods to detect a broader range of natural activities. Only one
study [120] investigated the use of deep learning models to identify fallers based on their
preprocessed 10-second walking patterns; where deep models slightly outperformed the
baseline approach based on the biomechanical FLDBs as discussed in [195].

Interpreting FLDBs by acquiring contextual information

In [193] it was shown that the mobility measures are affected by the environmental features
(e.g., sidewalk slopes and crossings) and it was hypothesized that individuals would adapt
to challenging environments by decreasing gait speed, increasing cadence, and shortening
stride length. Moreover, a higher variability in ML direction, e.g., a lower amplitude of
the dominant frequency, could indicate a higher adaptability to the environment [201].
However, the intrinsic meaning of these measures and terminologies (e.g., adaptability) in
different anatomical directions and contexts remains unclear, inertial sensors do not provide
sufficient information on human-environment interaction. Although applying cutting-edge
algorithms (as discussed in 2.3.3) can boost the interpretation of context (e.g. stair climb-
ing, walking downhill), the validity of these algorithms in complicated free-living scenarios
needs to be carefully examined (also refer to the last column in Table 2.3, which shows the
algorithms used in included studies were not mostly validated in free-living conditions).

In [133] time-stamped self-reporting (voice recordings) was along with IMU data to
increase the interpretability of IMU data and to locate compensatory balance reactions
(slips, trips, stumbles) collected in 4 weeks. However, such a tool may also suffer from sub-
jectivity and under-reporting. On the other hand, egocentric first-person video, acquired
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via body-worn cameras have been used as a gold standard [52] for the purpose of vali-
dating IMU-based algorithms or identification of specific events or environmental features
[32, 62, ]. First person video captures more contextually relevant information on the
properties of the environment compared to IMU alone. This includes, but is not limited
to, varying slope and surface navigation as well as static and dynamic objects (e.g. obsta-
cles, pedestrians) that influence mobility behaviour. As an alternative to frame-by-frame
investigation (visual inspection) of first person video data, algorithms are in development
to automatically detect extrinsic risk factors from first person video data. For instance,
image processing (e.g., Gabor Barcodes) techniques have shown promising performance in
automatic detection of environmental fall-related hazards, including slope changes (e.g.,
stairs, curbs, ramps) and different surfaces (e.g., gravel, grass, concrete) [128]. By aug-
menting IMU approaches with egocentric videos, more insight can be readily gained from
specific motoric activity. For example, gait data pertaining to micro/quality gait (from an
IMU) within a new residential environment under low-level lighting conditions (video) or
within crowded open spaces during daylight offer different challenges for fallers. Combined
IMU and video approaches may allow healthcare professionals to target individualised
approaches for rehabilitation strategies, ensuring safer navigation and reduced falls.

An all-inclusive data-driven model

As discussed in 2.3.1, different hyperparameters, such as ambulatory bout length, central
tendency measures, and data collection protocols, such as the length of free-living data
and sampling frequency, can impact fall predictive power of FLDBs. However, there is not
sufficient evidence indicating the optimal values for these hyperparameters to achieve the
highest predictive values specific to each FLDB. Moreover, many FLDBs were not inves-
tigated in any of the previous data-driven models (e.g., Fig. 2.4-model f and controlled
models such as [103]). Therefore, debate continues about their real identity in terms of
their allocation to free-living domains. The aforementioned gaps in the literature indicate a
need to obtain a standardized model to define discrete independent domains by performing
factor analysis on a comprehensive range of wearable-based FLDBs derived from a broad
range of video-validated activity bouts. This comprehensive set may also include similar
FLDBs but different in terms of hyperparameters (e.g., ambulatory bout lengths, turn cut-
off thresholds, and central tendency measures). It is also feasible to simulate shorter /longer
collection periods, and sampling rates (by up- and down-sampling signals) and examine
FLDBs’ sensitivity with respect to these factors. Performing factor analysis on the afore-
mentioned comprehensive set of features (including those discussed in 2.3.2) altered based
on different hyperparameters would permit deeper insights on developing more structured
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free-living models and provides more information on the differences between laboratory
and free-living features in prediction of falls.

2.4 Conclusion

Overall, free-living FRA using wearables is a promising avenue for fall prevention; however,
due to the high level of heterogeneity in the use of wearables; e.g., sensor location, diverse
cohorts, stratified employment (e.g., 1 vs 7 days), definition of free-living domains, and the
selection of free-living bout resolutions, the evidence for the relationships between FLDBs
and falls remains inconclusive. Moreover, many FLDBs were specific to research groups and
were not systematically investigated in an all-inclusive factor analysis. Therefore, achieving
a data-driven model is necessary to systematically identify the FLDBs, bout resolutions,
and domains with the highest predictive values for falls to eventually address intervention
programs and prevent older adults from falling. Publishing well-annotated video-validated
free-living datasets to support harmonization efforts is strongly recommended.
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Table 2.1: Study designs for capturing free-living data. ACC: accelerometer, Gyro: gyroscope, FLDB: free-living digital biomarker.

Study Free-living data-log du-  Type of activities Modality (ies) Sensor placement
ration
Weiss  (2013) [201]; 3 days Gait DynaPort MoveMoni- At the L5 level
Thlen (2015, 2016a, tor
2016b) [31, 80, 78]
Tluz (2014) [32] 3 days Missteps during gait DynaPort Hybrid  Lower back(L4-5)
(ACC+Gyro)
Weiss (2014) [203] 3 days Gait
Tluz (2015) [83] 3 days Sit-to-walk and walk-to-sit transitions ACC+Gyro (one unit)  Lower back
Rispens (2015a) [157] 2 weeks Amount of physical (in-)activity and quality of =~ DynaPort MoveMoni- Around the waist and
daily-life gait tor set along the lumbar
spine
van Schooten (2015a) 8 days Amount of physical (in-)activity DynaPort MoveMoni-  Dorsally on the trunk
[196] tor at L5
Rispens (2015b) [156] 1 week Amount of physical (in-)activity and quality of
daily-life gait
van Schooten (2016) 1 week Bouts of locomotion, sitting, lying, standing
[195]
Nait Aicha (2018) [120] only gait in Nait Aicha (2018) [120] and Thlen =~ DynaPort MoveMoni- At the L5 level
and Thlen (2018) [77] (2018) [77 tor
Brodie (2015) [17] Mean 58 Activities during walking hours were moni- Philips (Senior Mobil-  Sternum Level
days/participant: tored, only gait was investigated ity Monitor) pendant

Fallers: 44.0(29.0)
days, NFs: 67.0(29.0)
days

(ACC+Barometer)

Brodie (2017) [16]

7 days (>6hr data per
day)

Activities during walking hours were moni-
tored, only gait was investigated

Philips (Senior Mobil-
ity Monitor) pendant
(ACC+HBarometer)

Sternum Level

Mancini (2016) [110]

~10 hours/day for 7
days

Turning mobility

3 IMUs(APDM Opal)

One on belt (L5), 2 on
shoes

Leach (2018) [99] 5-9 days Turns and gait Android smartphone  Midsagittal plane of
(ACC+Gyro) and  the lower back
uFALL app

Mohler (2016) [116] 48 hours Walking, sitting, standing, lying and postural ~PAMSys BioSensic Into a T-shirt with a

transitions (all time except while showering) device pocket at ster-
num level

Pozaic (2016) [143] 7 days Sit-to-stand transitions (focus of the study) Bosch  sensor tech  One attached to wrist
Gmbh (ACC, Gyro,
magnetometer)

Mactier (2015) [107] 7 days Gait activPAL (uniaxial ~ Upper thigh
ACC)

Hiorth (2016) [65] 7 days (at least 4 days) activPAL Middle of thigh

1) Volume, 2) pattern, 3) accumulation, 4)
variability of sedentary behavior (sitting,
lying), standing, and ambulatory bouts
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Del Din (2017) [31] 7 days Macro- and micro-gait parameters Axivity AX3 Lower back

(spatiotemporal)

Schwenk (2014) [168] 24hours Walking, sitting, standing, Physilog Attached to the chest
lying (2ACC+1Gyro) (pocket)

Gietzelt (2014) [19] 7 days after each visit One SHIMMER sensor

(4 visits in 8 months)

Table 2.2: Demographic data, Fs: fallers, NFs: non-fallers, OA: community-dwelling older adults, PD: people with Parkinson’s disease,
f: female, m: male, FLDB: free-living digital biomarker.

Specific disease  Number of participants, Age, female:male Categorization of fallers and non-fallers based on

Study (Yes/No)

Prospective falls Retrospective falls
Weiss  (2013) [201]; No NFs: 39, 78.77(4.39)y, Fs:32, 77.86(5.09)y, fs: 12 participants re- > 2 falls one year prior
Thlen (2015, 2016a, fs: 64.10% 65.62% ported > 2 falls 6 to measurements
2016b) [81, 80, 78] months following the

experiment *
Weiss (2014) [203] All PD NF's: 67(40 to 85y) Fs: 40(40 to 85y) 1 year follow-up(each  >1 fall prior year

month returned) °, 14
NFs turned to Fs

Tluz (2014) [82] All PD NFs+Fs:40, 62.16(10.02)y, Fs:9, f:m=8:32 N/A > 2 falls in the past 6
months
Tluz (2015) [83] No NFs: 38, 78.65(4.35), Fs: 33, 77.89(4.99), f: No >2 falls in the previous
f: 63.15% 66.66% year
Rispens (2015a) [157] No 110 (Fs+NFs),78.4(7.8)y, fim= 77:33 No >2 falls in the previous

year; 1.2(1.6) falls in 12
months prior the mea-

surements
van Schooten (2015a) No Retrospective-NF's: Retrospective-Fs: 60, > 1 Falls in 6 months Falls in the preceding 6
[196] 109, Prospective-NFs:  Prospective-Fs: 59 follow-up months
110
NFs+Fs: 169, 75.4(6.8)y, f: 52.1%
Rispens (2015b) [156] No NFs: 132, 75.1(6.6)y, f: Fs: 70, 75.6(6.1)y, f: > 1 falls 6 months Used in models but
50% 53% follow-up FLDBs were ana-

lyzed with respect to
prospective falls

4Statistical analysis was done with respect to retrospective falls only
SStatistical analysis for FLDBs was only done with respect to retrospective falls; but separate survival analysis/Cox regres-
sion was perfomed for prospective falls
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van Schooten (2016)¢ No
[195]

Nait Aicha (2018) [120]

Thlen (2018) [77]

Complete data for 294/319 participants were
analyzed. Total 294 participants: 75.3(6.8)y,
f: 50.8%, 48.8% had > 1 falls in past year,
25.2% had > 2 falls in past year

101/296  participants
had > 1 fall (34.1%),
m: 74.1%

Total NFs: 199;
Matched  NFs  for
Single-Fs:  75.9(6.7)y,
f: 51%;  Matched
NFs for Recurrent-Fs:
75.2(6.4)y, f: 48.8%

Single-Fs: 58,
76.1(6.8)y, f: = 51%;
Recurrent-Fs (2<

falls): 46, 75.5(6.7)y, f:
48.8%

Initially 6 months, ex-
tended to 12 months if
willing to continue

6 months follow-up

> 1 and > 2 falls in
past year

Brodie (2015) [17] No NFs: 11, 84.0(7.9)y, Fs: 7, 82.2(5.9)y, No >1 falls in the past 12
f:m="7:0 fim="T:4 months
Brodie (2017) [16] No NFs: 63, 75.8(7.3)y, Fs: 33, 74.9(8.5)y, sex: No > 1 fall in prior 12
sex: 0.48(0.50) (consid-  0.81(0.39) (considering months
ering f=1 and m=0) f=1 and m=0)
Mancini (2016) [110] No NFs: 16, 83.9(7.0)y, Recurrent-Fs: 7, 6 months following the  N>2 falls in the previ-
fim=3:13 88.4(8.8)y, fim=2:5; 7 day recording, 7/35 ous year
Single-Fs=12, f:m=8:4, experienced one or
86.0(7.0)y more fall
Leach (2018) [99] No Retrospective-NF's: Retrospective-Fs = 6 > 2 falls in 12 months > 2 falls in 12 months

154
Prospective-NF's = 153

Prospective-Fs = 7

Mohler (2016) [116] Non-frail, pre- Non-frail NFs: 23, 74.7 Non-frail Fs: 20, Falls in the 6 months N/A
frail (6.7)y, fs: 19 74.4(6.6)y, fs: 17 after the initial
and frail Pre-frail NFs: 38, Pre-frail Fs: 19, baseline study visit
79.7(8.5)y, fs:28 79.4(8.8)y, fs:15
Frail NFs: 10, Frail Fs: 9, 80.9(9.8)y,
86.6(5.9)y, fs:7 fs:9
Pozaic (2016) [113] No NFs: 123, 72.4(5.6)y, fs  Fs: 13, 74.2(5.3)y, fsin > 1 fall in one month N/A
in NFs:57.7% Fs:69.2% follow-up
(overall 21 falls, 4 par-
ticipants >2 falls)
Mactier (2015) [107] Al PD (no NFs: 70, 67.5(60.6- Single-Fs: 17, 72.2 12 months N/A
healthy  con-  75.0)y, ms: 65.7% (64.1-75.7)y, ms:
trol) 76.5% Recurrent-Fs:

6Fall risk assessment in older adults (FARAQO) dataset

24, 69.3 (61.5-74.5)y,
ms: 75%; Based on
pre-fall events: (a)
Ambulation-Fs: 17,
64.6 (57.7-72.1)y, ms:
70.6% (b)
Transition-Fs: 14, 73.0
(67.7-78.2)y, ms:85.7%
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Hiorth et al.
[65]

(2016)

All PD

NFs: 28

Fs: 20

N/A

6 months fall history

Del Din (2017) [31]

OA and PD

OA-NFs: 50,
PD-NFs:15; For all
NF's: 69.05(7.67)y f:
56%

OA-Fs: 122,
PD-Fs:155; For all Fs:
73.33(6.78)y, f: 42%

N/A

>2falls past 6 months,
NFs: not fallen in at
least 18 months

Schwenk (2014) [168]

People with de-

NFs: 49, 81.8(5.9)y, m:

Fs: 28, 82.0(7.1)y, m:

3-months follow-up

mentia 34.7% 21.4%
Gietzelt (2014) [19] People with de- At the beginning 40 Fs+NFs (fs: 20), A prospective cohort study with 3 phases: short-term
mentia 76.0(8.3)y, Fs=13 (n=8 fell once, n=2 fell 2 (start to month 2): n=38(2 drop-outs (DOs) , 6 falls,

times, n=1 fell 4 times, n=2 fell 5 times, 12

drop-outs

18 missing dataset, (month 2-4): n=33 (5 DOs), 11
falls, 2 missing dataset, (month4-6): 30 (3 DOs): 8
falls, 5 missing dataset, (month 6-8):n=28 (2 DOs), 1
fall, 11 missing dataset.

Table 2.3: Bout of walking and activity definitions. ACC: accelerometer, Gyro: gyroscope, 3D: three-dimensional. FLDB: free-living
digital biomarker, OA: older adults, VT: vertical, AP: antero-posterior, F: faller, NF: non-faller.

Study Bout of activities/walking definition and Specific con- | signal Sampling] Validation

straints identifying rate

bout

Weiss (2013) | Ambulatory bouts> 60s were taken into account for FLDB | ACC(3D) 100Hz In Weiss (2013) [201] it was mentioned that
[201]; Weiss (2014) | extraction (dissected to 60-second intervals, e.g., in [201]). the validated methods discussed in papers by
[203], Thlen(2015, | The bouts were identified based on two filters: 1. a signal Weiss (2011), Moe-Nolssen (2004) and Yack
2016a,2016b) magnitude area (SMA) threshold-based activity detection (1993) were used to quantify different aspects
[81, 80, 78] monitor, 2. a threshold of the energy in the frequency of gait. Validation in free-living conditions:

domain (windows with energy <0.05 were excluded). In N/A.

Thlen (2016) [30] ambulatory bouts >60s were divided into

50-second epochs for the extraction of entropy/complexity

features.
Tluz (2014) [32] 5-second windows (running window of 5s) with 2-15 steps | ACC(3D), 100Hz To develop the algorithm 29 missteps (nego-

were detected and considered for FLDB extraction Gyro(3D) tiating obstacles while walking) were captured

in a laboratory setting and more than 60 hours
of data were recorded. Their rule-based algo-
rithm achieved a 93.1% hit ratio and 98.6%
specificity on this dataset.
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Tluz (2015) 53]

Detection of the subject’s gross activity (e.g., gait, sitting)
was performed based on the local mean of the acceleration
signals (e.g., negative values for local mean of the verti-
cal acceleration signal indicate lying; while positive values
may correspond to: gait, standing, or sitting), with ad-
ditional criteria applied to increase the robustness of the
detection. The transitions were identified after detection
of sitting and gait episodes.

ACC (3D),
Gyro (3D)

100 Hz

Validation in free-living conditions: N/A.

Rispens
[157

(2015a)

Locomotion episodes > 10s, each episode was split into
10-second epochs (to avoid sample-size related bias)

ACC(3D)

100Hz

Validation in free-living conditions: N/A.

van Schooten
(2015a) [196] and
van Schooten
(2016) [195] and
Rispens  (2015b)
[156], Nait Aicha
(2018) [39]

Thlen (2018) [77]

Locomotion episodes > 10s, each episode was split into
10-second epochs (to avoid sample-size related bias), suffi-
cient quantity of gait bouts (> 50s) per participants were
included in analysis. In Rispens(2015b) [156] locomotion
bouts with suspected running events were discarded.

First, ambulatory bouts>3s were identified by a commer-
cially available activity detection algorithm. Then, 3D
ACC signals attributed to ambulatory bouts>30s were in-
cluded for the analysis. The included ambulatory bouts
were split into equal-sized 30-second epochs to provide a
consistent sample size to estimate entropy measures. The
epochs were further checked (visually) and non-walking ac-
tivity bouts were excluded. Inclusion criteria for walking
epochs were: (a) distinct impact peaks in VT and/or AP
component of the ACC signal, (b) distinct cyclical ACC
pattern in VT and/or AP component(s), and (c) criteria
(a) and (b) were satisfied for at least 80% of the epochs,
where max 20% was considered for gait initiation, turning
or transitional micro-breaks.

ACC(3D)

100Hz

Bouts of non-wearing, locomotion, sitting, ly-
ing and standing were identified using manu-
facturer’s algorithm (Dijkstra et al.) Valida-
tion in free-living conditions: N/A.

The aforementioned inclusion criteria were
based on the visual inspection of fast, normal
and slow walking pattern discussed in a ’vali-
dation’ study for activity detection in OA by
Bourke et al., (2017).

Brodie (2015) [17]

Ambulatory bouts were defined by consecutive heel strikes
identified by vertical acceleration peaks in the level 4 and
5 Daubechies 5th-order wavelet decomposition. Daily-life
gait quantity was quantified by: (a) Steps per day from
ambulatory bouts>3 steps), (b) Walks per day (of ambula-
tory bout>8 steps), (c) Steps per walk (mean of walks>8
steps). For intensity and quality analyses: ambulatory
bout>7 steps and for exposure analysis ambulatory bout
<7s and <60s were taken into account.

ACC(3D)

50Hz
(25Hz
baromete
not

used)

-

Validation in free-living conditions: N/A.

Brodie (2017) [16]

Walks were defined by 3 consecutive heel strike peaks less
than 3s apart. Short walk exposure was calculated by the
percentage of walking duration <8s.

ACC(3D)

50Hz
(25Hz
baromete]
not

used)

Ir-

Validation in free-living conditions: N/A.
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Mancini

[110]

(2016)

Ambulatory bouts longer or equal to 10s were first de-
tected using 3D angular velocity signals and then were
further investigated for the detection of turns, 0.5s<turn-
Duration<10s and 45° <turn angles. Turn angles were
obtained by integrating the angular rate of the lumbar
sensor about the VT axis.

3D angular
velocity
signals

128 Hz

In El-Gohary (2013), compared to Motion
Analysis and video, the algorithm maintained
a sensitivity of 0.90 and 0.76 and a specificity
of 0.75 and 0.65, respectively. The turn detec-
tion algorithm was further applied to data col-
lected in the home from 12 PD and 18 control
participants and the algorithm successfully de-
tects turn characteristics.

Leach (2018) [99]

Turn type and angular range of turn include 50-100°, 100-
150° and 150-200° (analyzed only if happened during gait
with 0.5-5s duration). The turn detection algorithm was
based on the angular rotational rate of the pelvis about
the VT axis.

ACC(3D)
+
Gyro(3D)

N/A

The turn detection algorithm was validated in
El-Gohary (2013) as above.

Mohler (2016) [116]

Walking bouts >5s and > 3 steps were taken into account
(based on Tosizadeh(2015))

ACC(3D)

N/A

Validation in free-living conditions: N/A.

Pozaic (2016) [143]

N/A

ACC(3D)

100Hz

Particular trigger events (such as rotation of
the wrist above a predefined threshold), as
well as periodical or motionless/dormancy sit-
uations after these events. An ACC-based arm
swing detector was used for the detection of
the walking phase. Methods was validated in
a pilot study with 28 OA (65-90y), who per-
formed eight different types of the sit-to-stand
transitions in a controlled environment (i.e.
camera-supervised lab) as part of the protocol
that simulated activities of daily living. The
algorithm showed 71.4% precision for the non-
dominant hand and 67.9% precision for the
dominant hand.

Mactier

[107]

(2015)

Windows of 15s were used and walking episodes of >one
step were taken into account for FLDB extraction. Total
number of steps in ambulatory bouts of<20 steps, 20-100
steps and > 100 steps were also taken into account.

ACC(ID)

10Hz

Previous work in OA against other accelerom-
eter and video recordings in people with
rheumatoid arthritis during simulation of ADL
in the laboratory. It was mentioned that the
validated activePAL can identify postures (e.g.
sitting, lying, standing).

Hiorth (2016) [65]

Ambularory bouts<10 strides, 10-50 strides and >50
strides were taken into account.

ACC(1D)

20Hz

Validation in free-living conditions: N/A.

Del Din (2017) [31]

All ambulatory bouts >3 steps (minimum bout length)
were taken into account for the analysis. For for micro-
gait FLDBs, ambulatory bout> 10s were taken into ac-
count. For macro-gait FLDBs, ambulatory bouts> 3steps
(short), Ambulatory bout> 60s (medium) and Ambula-
tory bout>120s (large) were considered. A threshold of
2.5s was set for the maximum resting period between con-
secutive ambulatory bouts

ACC(3D)

100Hz

The ambulatory bout detection algorithm was
validated in a study with wearable cameras
(Hickey et al., 2017). Characteristics of gait
were selected based upon a model of gait val-
idated both in OA and in people with PD in
two distinct studies.

Gietzelt (2014) [19]

Ambulatory bouts of > 20 s were taken into account.

ACC(3D)

N/A

Validation in free-living conditions: N/A.
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Schwenk
[168]

(2014)

A walking period was defined as an interval with at least
3 successive steps as described in the validation study of
the Physilog. Activities with < 3 steps were considered
as standing (e.g. working in the kitchen and moving < 3
steps).

Two ACCs
and one
Gyro

N/A

It was mentioned that the algorithm was sen-
sitive (87-99%) and specific (87-99.7%) for de-
tection of the physical activity pattern in dif-
ferent samples of OA and patients. Validation
in free-living conditions: N/A.




Chapter 3

Automated detection of
multidirectional compensatory
balance reactions: Insights from
controlled studies

As discussed in Chapter 2, earlier studies have explored the relationships between IMU-
based free-living digital biomarkers (FLDBs) and the frequency of prospective or retrospec-

tive falls in older adults. These FLDBs include macro (e.g., quantity of: steps [116] and
turns [110]) and micro (e.g., spatiotempral measures such as step time [31], or frequency
measures [195] including index of harmonicity). However, many of these FLDBs, which

were mostly dependent on the detection of steps, exhibited inconsistent fall predictive
powers across studies, indicating that they may not be stable in distinguishing fall-prone
individuals. Moreover, Chapter 2 highlighted that the relationships between falls and
free-living dynamic postural control measures have yet to be investigated in depth [122].
Considering balance impairment as one of the strongest risk factors for falls [190], the in-
vestigation of balance-related FLDBs may lead to more stable risk assessments and provide
new insights into fall prevention in older adults. As an alternative to the step-dependent

!The content of this chapter is mainly obtained from the following peer-reviewed research paper:
Nouredanesh, M., Gordt, K., Schwenk, M., & Tung, J. (2019). Automated detection of multidirectional
compensatory balance reactions: A step towards tracking naturally occurring near falls. IEEE transactions
on Neural Systems and Rehabilitation Engineering, 28(2), 478-487
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approaches, monitoring the frequency and characteristics of naturally-occurring compen-
satory balance reactions (CBRs) has been suggested as a promising direction. This ne-
cessitates the development of robust models to detect older adults” CBRs under free-living
conditions.

The present chapter discuses proof-of-concept testing for CBR detection in 9 young,
healthy adults, and establishes the infrastructure for Chapter 4, where methods for the
detection of older adults’ naturally-occurring CBRs are investigated.

3.0.1 Compensatory Balance Reactions (CBRs)

CBRs, also known as missteps, near-falls, or reactive balance responses, are reactions to
recover stability following a loss of balance. In anterior-posterior (AP) direction, CBRs
are often elicited from slips and trips. During slips, which occur mainly due to the loss of
traction on a low-friction surface or because of wearing an inappropriate footwear [205, 91],
a person’s base of support (BoS) is displaced in the forward direction relative to the center

of mass (CoM) [100]. A trip also occurs when the CoM moves beyond the BoS, and is
typically caused by a collision between the swing foot and an obstacle (e.g., curbs, power
cords) [165]. In [18], tripping was reported to be the most common cause of near-falls

in Parkinson’s disease (PD) fallers. There are two general strategies as responses to trips
[13]: 1) elevating, which is caused by a perturbation (impact from an obstacle) during early
swing phase (i.e., 5-25% of stride duration in normal walking [160]) and 2) lowering, which
is caused by a perturbation during late swing (i.e, 55-75% of stride duration in normal
walking [160]). For the first strategy, the leading (swing) leg is lifted over the obstacle
while the support leg creates the push-off reaction after the passive reaction [170, 13].
During the lowering strategy, the swing leg rapidly touches the ground in front of the
obstacle. The trailing leg is swung forward after clearing the obstacle and positioned in
front of the body to recover stability [170]. In mid swing (30-50% of stride duration in
normal walking), either strategy may occur [166, 13]. In Fig. 3.1, C2, C5, C6, and C9
represent the aforementioned reactions in AP direction.

Moreover, frontal plane instability and lateral balance impairments have shown to be
an important risk factor for falls in older adults [64]. Comparing reactive responses to
perturbations in frontal and sagittal plane, McIntosh et al. showed that lateral support
surface perturbations are the most challenging to postural control in older adults [113],
as accumulating evidence indicates impaired mediolateral (ML) stability requires active
control in contrast to more passively stable antero-posterior (AP) stability [67, 131]. Addi-
tionally, physical consequences of falls (e.g., hip fractures) are more likely to be associated
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with falls in lateral direction [I15]. These CBRs generally include: 1) the sidestep (SS)
or lateral ankle strategy (Fig. 3.1-C4 and C7), which comprises of a medial or lateral
movement of the foot [67], and 2) crossover step (CO) strategy, in which the stepping foot
crosses in front of the stance foot [07] (Fig. 3.1, C3 and C8).
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Figure 3.1: Types of compensatory balance responses (CBR), black and grey areas repre-
sent the actual and expected foot contacts, respectively Row 1 depicts reactions elicited
by forward perturbation (slip-like reaction), rows 2 and 3 show reactions elicited by lateral
perturbation: right foot loaded at perturbation (arrow), eliciting a left foot side step (SS),
left foot loaded at perturbation (arrow), eliciting right foot crossover (CO) step, forward
CBR. Row 4 presents the trip-like reaction induced by backward perturbation. Note that
C1 includes normal gait segments and not presented in this figure. C: Class.
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3.0.2 Prior CBR detection studies

While controlled laboratory evidence supports the view that impaired ability to execute
CBRs is linked to a higher risk of falling [109], there are only a few studies focusing on
the detection of CBRs [130), , , 6, , 82,24, 90]. In [0], a support vector machine
model was developed based on the features (e.g., mean, variance of signals) extracted from
seven IMUs mounted on the ankles, thighs, sternum, waist, and head. This approach used
a dataset (e.g., 150 simulated CBRs including recovery from tripping, missteps, collisions
with pedestrians, and incorrect transfers) collected from healthy, young participants in
controlled conditions. Although the model distinguished the simulated near-falls from
activities of daily living (ADLs) with 100% sensitivity and specificity, as naturally-occurring
CBRs are likely to exhibit faster coordinated responses [109] than volitional stepping efforts,
the generalizability of the proposed method to detect CBRs occurring involuntarily with
no attention needs to be examined (addressed in Chapter 4).

In another controlled study [24], a total of 100 stumbles (in 45 minutes of walking) were
induced in 9 participants by placing wooden barriers at random times during gait. During
this process, the participants were blindfolded and listened to music through headphones.
The anomaly detection algorithm developed using the chest-mounted accelerometer data
resulted in 0.2% false alarm rate. In another study, trip-like stumbles were elicited on a
treadmill by winding/unwinding a stiff robe attached to the ankles at different phases of
gait [90]. The subsequent wavelet-based detection algorithm further identified stumbles
from treadmill walking with a specificity of 99.9% and a sensitivity of 98.4% [90].

A threshold-based algorithm for the detection of tripping events, induced by placing ob-
stacles on a treadmill, was proposed by Weiss et al. [201], which achieved ~ 85% sensitivity
and specificity. Another study from the same research group investigated a rule-based al-
gorithm to detect missteps in 40 individuals with PD while negotiating obstacles [32]. The
method achieved 93.1% hit ratio and 98.6% specificity when applied to controlled /in-lab
data [32]. When applied to three days of free-living IMU data, the quantity of ’suspected’
missteps was reported to be positively (p = 0.010) associated with retrospective falls in
people with PD. This supports the findings of a paper by Srygley et al. [I78], where the
quantity of self-reported missteps was shown to be positively associated with the frequency
of prospective falls in older adults (relative risk 3.89). In contrast, Gazibara et al. [18]
showed that self-reported near-falls in the first 6 months were not associated with falling in
the latter 6 months of follow-up in people with PD. Considering the aforementioned find-

2The term ’suspected’ for this FLDB reflects the lack of criterion (gold) standard data to reliably
validate the employed threshold-based CBR detection approach in free-living conditions (this will be
further discussed in Chapter 4).
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ings, further research on the validity of CBR detection methods needs to be undertaken to
reliably examine the associations between the frequency of naturally-occurring CBRs and
falls.

To address the lack of existing methods for the automated detection of lateral CBRs,
Nouredanesh et al. developed machine learning-based models to detect CO and SS re-
actions using signals captured by three wearable IMUs (on the sternum, right shank and
thigh), and surface electromyography (sEMG) sensors (mounted on biceps femoris, gas-
trocnemius, tibialis anterior, rectus femoris) [130]. The models detected CBRs (CO+SS)
elicited by lateral perturbations with the leave-one-subject-out (LOSO) cross-validation ac-
curacies of 99.21% and 83.95% using IMU and sEMG sensor streams, respectively. While
lateral CBR detection was strong using IMU signals, observed errors indicated difficulty
distinguishing between SS and CO stepping reactions. These findings indicate wearable
sEMG sensors may provide complementary information, particularly when CBR move-
ments are small or attenuated [130]. However, considering the additional setup and vari-
ability associated with skin preparation and electrode placement, coupled with marginal
improvement in detection accuracy, the present thesis considers IMU-based signals only.

3.0.3 The proposed CBR detection models

To develop a robust machine learning-based CBR detection framework, it is important to
train the model on a relatively large dataset. However, acquiring large sets of naturally-
occurring CBRs is logistically challenging as they are relatively rare events [133, 24]. For
instance, only 46 self-reported CBRs were reported by three older non-fallers in 107 person-
day of data in [133]. As an alternative, in the present study, a perturbation treadmill (PT)
was hypothesized to be a reproducible and safe option for eliciting multidirectional CBRs
(PT-CBRs here). Therefore, the present chapter discusses the development of machine
learning models, i.e., random forest (RF) to automatically distinguish between:

1. PT-CBRs and normal gait (NG) episodes captured on the treadmill (i.e., PT-NGs),
2. different types of PT-CBRs.

Eight classes of PT-CBRs were considered and induced by delivering mechanical pertur-
bations in the following 4 directions: 1,2) left and right (inducing CO and SS strategies),
3) forward (inducing trip-like reactions), and 4) backward (evoking slip-like responses);
at right and left stance conditions (4 directions X 2 stance conditions = 8 classes), see
Fig. 3.1. Five wearable IMUs were placed on participants’ waist (pelvis) and bilaterally on

35



their ankles and thighs. Therefore, the classification results using a multi-IMU approach
was discussed in sections 3.1.4 and 3.2.1). Moreover, the impact of individual sensor lo-
cation on the CBR detection results was investigated in sections 3.1.4 and 3.2.2. For the
development and assessment of the aforementioned models, the leave-one-trial-out (LOTO)
cross-validation approach was considered.

To further assess the generalizability of the proposed CBR detection framework:

1. the LOSO cross-validation approach was used to assess the framework’s robustness
against inter-participant differences (discussed in 3.1.4 and 3.2.3), and

2. an independently captured dataset, i.e., the "Inertial Measurement Unit Fall Detec-
tion” (IMUFD) [6, 5], was employed as the test dataset, to assess the framework’s
generalizability to never-seen data.

The IMUFD dataset, which was the only relevant publicly available dataset at the
time of the experiment, represents common real-life fall scenarios observed in long-term
care facilities [5] and contains different types of simulated CBRs (S-CBRs), as discussed
in 3.0.2. The procedure for this generalizability assessment as well as the test results are
provided in sections 3.1.4 and 3.2.4, respectively.

3.1 Materials and methods

3.1.1 Participants and protocol

Nine healthy young participants (mean age = 26 years) wore five IMUs (Opal model,
APDM Inc., Portland). Two APDM IMUs were mounted bilaterally on the ankles below
treadmill IMUs (see Fig. 3.2), two at the center of anterior side of the thighs, and one at
the pelvis. Six channels were collected at fs appy = 128 Hz by each IMU unit: 3 channels
of acceleration (vertical: X™* points downward, medial-lateral: Y* points left, anterior
posterior: Z* points forward, see Fig. 3.2, and angular velocity in three directions: yaw,
pitch and roll) resulting in overall 30 (=5 (sensors)x6 (channels)) signal streams for each
participant. Accelerometers and gyroscopes were set to operating ranges of +16g and
+2000 deg/s, respectively. To trigger perturbations at the correct phase of gait, two
treadmill IMUs comprising of 1D accelerometer and 1D gyroscope were placed bilaterally
on the participants’ shanks (=1 c¢cm above the APDM units, see Fig. 3.2). These sensors
were used to record the timing and type of the mechanical impulses induced by the treadmill
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over the course of the experiment. These treadmill IMUs captured data at the sampling
frequencies of 50 Hz for two participants (ID1, ID2) and 37 Hz for the rest (ID3-9). In order
to synchronize the treadmill and APDM IMUs, three knocks were exerted simultaneously
on all sensors prior to stepping onto the running treadmill.

Figure 3.2: Axes and placement of treadmill and APDM IMUs on the shanks. Treadmill
sensors were placed above the APDMs and used to annotate data. In addition to these
units, 3 additional APDM IMUs were mounted on pelvis, right and left thigh.

While wearing a full-body harness to prevent falls, participants walked on a perturba-
tion treadmill (BalanceTutor, Meditouch) at the constant speed of 1.11 m/s [125]. Left
and right perturbations were induced by automatically moving the treadmill surface in
ML-direction (12.8 cm and 1.5 ms~2). Forward and backward perturbations were induced
by acceleration and deceleration of the belt. To present forward perturbations, the belt
speed accelerated to 2.5 ms~! and subsequently decelerated to 1.1 ms~!. The backward
perturbation was presented by deceleration of the belt speed to 0 ms™! and subsequent

acceleration to 1.1 ms™!.

Perturbations were delivered in two separate phases, during single support of the: 1)
right, and 2) left leg. For each phase, 80 perturbations were delivered with 20 in each
direction. Overall, participants received 160 perturbations resulted in eight different classes
of PT-CBRs (see Fig. 3.1).

Treadmill IMU signals were upsampled to 128 Hz after data collection to allow for
synchronization. All data were processed using MATLAB (R2016b, MathWorks Inc). The
study has received ethics clearance and was reviewed and approved by the Medical Faculty,
Tiibingen University, Germany (No: 266/2016MP2).
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3.1.2 Signal segmentation for feature extraction

This section describes the process and rationale for selecting time windows for feature
extraction. Defining the time window of Wigper,s,0,0,5 corresponding to the jt* perturbed
or normal gait trial (Label = {PT — CBR,PT — NG}) from all 30 Signaly, streams
(S = {Shankgignt, Thighrignt, Pelvis, Shankpe s, Thighpest, M = {ACC, Gyro}, and a =
{ML,AP,VT}) (ML: mediolateral, AP: antero-posterior, VT: vertical), plays a critical role
in the quality of the features to be extracted from, and consequently, the performance of
the proposed CBR detection models. Specifically, the segment onset time and width are
parameters to be selected.

Based on the findings reported in [129, , ], the peaks observed in signal vector
amplitude (SVA) of acceleration at the sternum is a reliable signal-based indicator of CBR
onset in response to lateral perturbations (see Appendix A). In the current study, the pelvis
(waist) sensor is close to the CoM and was hypothesized to be comparable to the sternum
sensor (e.g., considering the findings of [33]) for the task of CBR detection. A custom
graphic user interface (GUI) was designed to: 1) synchronize treadmill and APDM IMU
signals on different clock and sampling rates, 2) segment and 3) annotate the segments
by plotting the SV Apeyis acc signal along with other 30 signals. To identify the onset of
the j PT-CBR, i.e. indpr_cpr,;, the samples close to the peak SVA of the pelvis (i.e.
close to argmax(SV Apeivis acc,;)) were manually selected if the type was medial-lateral or
forward. For backward PT-CBRs, a clear plateau in SV Apeis acc signal was observed,
and a point in that plateau was selected to further identify the backward PT-CBR.

The segments attributed to a PT-CBR event needs to be sufficiently wide to encompass
important transitional information attributed to the mechanical and postural adjustments

evoked after a perturbation. In previous studies, segment widths of 1 s [129], 2.5 s [(], and
5 s [32] were utilized to detect different types of CBRs. Considering older adults require
more steps to regain balance following perturbation [67], a relatively large window size

may be necessary to capture multiple steps. On the other hand, an overly wide window
may suppress prominent changes encoded by the statistical features (e.g., mean, variance).
To find the optimal width, published timings of EMG reflex activities during corrective
reactions and normal gait in proximal and distal muscles for different types of CBRs were
examined in Appendix A. In the current study, the average duration from the onset of a
mechanical impulse to treadmill’s steady state for all perturbations was /4.5 s.

Considering all of the aforementioned criteria, a segment width of 300 samples (= 2.34 s)
before and after of each recorded perturbation onset were selected to create the j* PT-CBR
epoch: Wer_cBR,S,Ma,j = [mdPT—CBR,j — 300, indPT—C’BR,j + 300] (Width(WPT—CBR)Z
601 samples or ~ 4.69 s). This window was also hypothesized to be sufficiently wide to
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compensate for possible errors in annotations (i.e., wide enough to contain the specified
PT-CBR with a high probability). PT-NG epochs were extracted from the ’steady state’
intervals between the two consecutive PT-CBRs. The j* steady state interval includes the
samples € [indpr_cpr,; + 1000 , indpr_cprj+1 — 500]. The PT-NGs were then identified
based on the argmaz(SV Agiecady—interval, Pevis,j) it that interval and similar to the PT-CBR
epochs, the same width of 601 samples was taken into account.

The first set of data (perturbations during right leg stance) of participant number 4 and
normal gait epochs from participant number 7 (perturbations during left leg stance), were
excluded due to the poor synchronization of treadmill and APDM IMU signals and shorter
width of the steady state intervals, respectively. Moreover, the data recorded before the
second perturbation were excluded for all participants to include more steady patterns.
Overall, 1,335 PT-CBR and 1,222 PT-NG segments were annotated (711 and 624 PT-
CBRs were elicited during single support of the left and right legs, respectively). The
segments were detrended to compensate for the changes in orientation or placement of the
sensor as they may be tilted or shifted slightly during trials.

3.1.3 Feature extraction

Extraction of discriminative features from acquired IMU segments is an important step in
our machine learning-based approach for recognition of CBR patterns. Overall, 295 linear
acceleration- and angular velocity-based features were extracted from Wraper s 4cc,q,; and
W iabet,s,Gyro,a,i, Tespectively, forming a Xiaposs7x205 matrix.  While filtering the input
signals may impact the ability of the subsequent features to detect CBRs?, assessing the
impact of different filtering options requires further investigation and is out of the scope of
the present study. In accordance with our previous research works [129, ], the present
study considered raw inertial signals for feature extraction.

Acceleration based features The intensity, range, dynamics, and shape of accelera-
tion signals were measured using the following features extracted for each time window of
Wiabel,s,acC 0,5 1) maximum peak maz(|Wiape,s,4cc,aj]) (absolute value), 2) root mean
square (RMS), 3) mean(|Wpape,s,4cc,a,j]) (absolute value), 4) variance var(Wiaper,s,AcCa,5)+
5) skewness, 6) kurtosis, 7) the maximum of the acceleration derivative (jerk)
max(|dWaper s,4cca,;/dt]) (absolute value), 8) mean jerk mean(|dWipaper,s.acc.ai/dt|)
(absolute value), 9) variance of jerk wvar(dWiaper,s.accaj/dt), 10) maximum

3As an example, in [126] the impacts of different filtering hyperparameters on the performance of
sEMG-based CBR. detection models were examined.
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amplitude of the total acceleration max(SV ALabersacc), SV Arwesacc; =

</ Wi was.acear; ™ Wiaers.acomr; + Wiaa,s.acovr,)s 11) Shannon entropy, 12) Seg-
ment’s integral, 13) amplitude of the dominant frequency (periodogram PSD) and 14) the
dominant frequency in the segment (7w).

Angular velocity-based features The following features for each time window seg-
ment Wiaper,s,Gyroa,; Were extracted: 1) maximum peak max(|Wiaper,s,Gyroa,;]) (absolute
value), 2) mean(|Wiape,s,.Gyroa;|) (absolute value), 3) variance var(Wiaber,s.cyroa.;),
4) maximum of the angular velocity derivative max(|dWaper,s.cyroaj/dt]) (abso-
lute value), 5) mean of the angular velocity derivative mean(|dWaper,s.Gyro.aj/dt|)
(absolute value), 6) variance of the derivative var(dWiaper,s.cyroa,i/dt), 7)
maximum of total rotational rate max(SV ArLabers.cyro)s SV ALabelsGyro; =

2 2 2 2
\/WLabel,S,Gyro,AP,j + WLabel,S,Gyro,ML,j + WLabel,S,Gyro,VT,j [ ]’ and 8) Shannon entropy.

3.1.4 Machine learning models

In previous work on a similar classification problem examining multiple machine learning
techniques [126][130], RF method (bootstrap-aggregated decision trees) [15] outperformed
other classic methods (e.g. support vector machines, neural networks) for the task of CBR
detection. Considering RFs permit parallel processing and demonstrates good robustness
against nonlinear relationships and imbalanced datasets, this approach was selected for
the current study. Based on the initial tests on Xjnp2s57x205, the classification error
plateaus when the parameters were set to 100 (RFigy) grown trees. For consistency, the
same parameters were used for all models, although optimal values could be obtained for
each model separately. MATLAB defaults were used for other parameters including the
minimum number of observations per tree leaf (i.e. 1 for classification) and number of
variables to select at random for each decision split (i.e. square root of the number of
variables for classification).

CBR detection and type identification models

Here, the CBR detection model is a binary classifier which aims to discriminate PT-CBRs
from PT-NGs (Model 1). Model 2 further specifies the direction of the PT-CBRs (i.e.
b-class classification) regardless of their timing with respect to the phase of gait (e.g.
swing or stance phases of the leading leg). Additionally, considering the possibility of
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developing a two-level sequential classifier (following the CBR detection model), Model 3
was only trained on the PT-CBR data to identify their type (i.e. 8-class classification
problem). Model 4 is a 9-class classifier (i.e., 8 classes of PT-CBRs and PT-NGs) which
detects the CBRs during gait and identifies their type. The training dataset for Model
4 was imbalanced, with more PT-NG samples (majority class) than the minority PT-
CBR type classes. Although imbalanced, the data used in this model resemble every-day
real-life data in which the frequency of naturally-occurring CBRs is expected to be lower
than ambulatory bouts. Under this model, using accuracy as a performance metric can be
misleading as performance may be skewed by correctly classifying the majority class even if
it wrongly classifies the minority class. Therefore, F} (= 2 Zﬁzl(%) ﬁiiﬁ%iiﬁiﬁﬁiiﬁﬁﬁi% score
would be more meaningful to assess the performance of this model, where Precision. =

True—Positives _ True—Positives _
True— Positives+False— Negatives and R@CCL”C ~  True—Positives+False— Positives’ 5 =9 (number of

classes), n. refers to the number of samples in class ¢ = {NG, Cy, ..., Cy}, and N = 2,557.
To compare the performance of model trained using a (smaller) balanced dataset, Model
5 was trained by randomly selected exemplars of PT-NG and all PT-CBR types. For all
of the models, a LOTO cross-validation (i.e. 2557-fold cross-validation: 2,557 times of
training using 2,556 trials for training, one trial for testing) was used.

Sensor location evaluation

To identify the individual sensor location with the highest performance for CBR detection
(binary classification) problem, 5 different RF}oy models were implemented. In each proce-
dure, the model was developed based on the 59 features attributed to an individual IMU,
ie. Xgossrxse (pelvis (Model 6), Shankpggn: (Model 7), Thighgine (Model 8), Shanky. s
(Model 9), Thighes (Model 10), see table 3.2). Models 11 and 12 were also developed
based on the combination of features obtained from both shanks (118 features) and thighs
(118 features) senors (see Table 3.2). LOTO cross-validation was taken into account to
assess the performance of these models.

Assessment of inter-participant generalizability: leave-one-subject-out (LOSO)
cross-validation

To assess the model generalizability across different individuals, a LOSO cross-validation
evaluation approach was performed. For each RFo, model, the data matrix belonging to
one participant is considered as a test dataset, while the data belonging to the remaining
participants is used to train the model. The training/testing process was repeated 10 times
and the mean classification error is reported. Nyp in 295x N;p matrix of Dres (Table 3.2)
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denotes the total number of epochs obtained for each participant separately. Results for
participant No. 4 are not included due to missing data.

Detection generalizability on IMUFD dataset

To evaluate the generalizability of the Model developed on all PT-CBR and PT-NG data
(=Model 1), the IMUFD dataset acquired and published by Aziz et al was taken into
account [5]. In the IMUFD dataset, 10 actors simulated 5 types of CBRs (i.e. S-CBRs): 1)
slips, 2) trips, 3) incorrect transfer while rising from sitting to standing, 4) misstep while
walking, and 5) hit and bump by another person, which were shown to be common CBR
incidents by analyzing videos captured in longterm care facilities (3 trials per actor per
category, overall 150 S-CBR segments). The simulated ADLs include eight categories (3
trials per actor per category, overall 240 epochs): 1) walking (30 epochs overall), 2) standing
quietly, 3) rising from sitting, 4) descending from standing to sitting, 5) descending from
standing to lying, 6) picking up an object from the ground, 7) ascending and 8) descending
stairs. The 30 walking trials included in the dataset were treated separately (i.e S-NG
subset), along with the remaining 210 ADLs (i.e. S-ADL subset).

Since the employed sensor type, locations (pelvisewaist, [33]) and the sampling rate
(fs =128 Hz) were comparable to the experimental design discussed in the present
chapter, similar procedures for signal preprocessing, segmentation and feature extrac-
tion were employed using the data of all 5 sensor modalities. Overall, 195 S-ADL, 135
S-CBR, and 30 S-NG segments were included, which satisfied the following criterion:
0 < [argmax(SV Apervis. acc) — 300] or [argmax(SV Apervis.acc) +300] < width(Ws—_apr).
Note that the sequences in IMUFD dataset had an approximate width of 1,900 samples.
The S-CBR and/or some of the S-ADL events attributed to one participant was not consid-
ered for the analysis due to processing issues at the time of the experiment. The segments
were detrended to compensate for the changes in orientation.

3.2 Results

3.2.1 Overall classification accuracy
Confusion matrices and accuracies for all trained models are tabulated in Table 3.1. In

general, Model 1 (CBR detection) demonstrated high overall accuracy (96.60%, LOTO) in
distinguishing multidirectional PT-CBRs from PT-NG patterns. Representing 5- and 8-
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class problems, Models 2 and 3 demonstrated diminishing accuracies (88.15% and 74.46%,
LOTO). While Model 4 displayed a satisfactory accuracy (80.64%, LOTO) for the 9-class
classification problem (all CBR classes and NG), Model 5 trained on a more balanced
dataset demonstrated 74.59% overall accuracy for the same classification problem.

3.2.2 Sensor location evaluation

Table 3.2 reports the effect of sensor location on CBR detection accuracy (binary classifica-
tion). A single IMU placed on participants’ pelvis outperformed all other sensor locations
(94.70% vs = 91% mean accuracy) for the purpose of CBR detection. No significant differ-
ence was found between the performance of Model 6 (pelvis sensor only) and multi-sensor
models of: 11 (93.78%, right and left shank sensors) and 12 (94.02%, right and left thigh
sensors).

3.2.3 Inter-participant generalizability

Results of the LOSO cross-validation are shown for each participant in Table 3.2. Note
that the model for participant number 4 was not developed due to an incomplete data
set (missing perturbed gait during right leg stance). The models developed for different
participants showed various performance (accuracy range: 67.7-97.7%). This resulted in a
lower mean LOSO detection accuracy of 83.18% compared with Model 1 (96.60%).

3.2.4 Detection generalizability evaluation (IMUFD dataset)

To assess different aspects of the framework’s generalizability to unseen data Models i-
iii were developed (see Table 3.3). Model (i), for which the training and test datasets
were completely independent, the sensitivity of 100% was achieved (i.e., all S-CBRs were
detected correctly); however, the S-NGs were poorly identified. The differences between
the PT-NG and S-NG segments was hypothesized to be the underlying reason (discussed
in 3.3).

To address the aforementioned hypothesis, 50% of S-NGs were added to the PT dataset
to form the training dataset for Model ii (see Table 3.3). This resulted in 100% specificity
and sensitivity, supporting the aforementioned hypothesis.

Moreover, Model 17 was developed to examine the framework’s capability to differen-
tiate between CBRs from all other activities. For this model, the sensitivity dropped from
100% to 84.15%. These results are further discussed in section 3.3.
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For each RFoy model (in Models i-iii, Table 3.3 ), the training procedure was repeated
10 times. MATLAB randperm was used to randomly select a proportion of the IMUFD
data (e.g., 50%) that was subsequently added to the training set for Models ii and iii.

Table 3.1: Confusion matrices for different trained models. To obtain these models,
leave-one-trial-out cross-validation (Training data set: 295 x 2556, Testing dataset: 295 x 1)
and RF1g9 method were used.

Model 1: CBR detection

Accuracy: 96.60% Fjscore = 0.9660
NG CBRs  Total

NG 0.9714 0.0286 1222

CBRs 0.0390 0.9610 1,335

Model 2: Detection and type identification of specific recovery strategies to perturbations
in left, right, forward (trip-like), and backward(slip-like) during gait, 5-class classification.
Accuracy: 88.15%, Fiscore = 0.8761

NG FWD Left Right Reverse Total

NG 0.9885 0.0033 0.0033 0.0025 0.0025 1222
FWD 0.05633 0.8669 0.0444 0.0325  0.0030 338
Left 0.1416 0.0324 0.7227 0.0885  0.0147 339

Right 0.2087 0.0654 0.1277 0.5888  0.0093 321
Reverse 0.0267 0 0.0089 0.0178  0.9466 337

Model 3: identification of eight specific recovery strategies to perturbations in left,
right, forward (trip-like), and backward(slip-like)
Accuracy: 74.46%, Fiscore = 0.7441

C2 C3 C4 Ch C6 c7 C8 C9 Total
C2 - 0.8291 0.0380 0.0633 0 0.0506 0.0063 0.0063 0.0063 | 158
C3 - 0.0881 0.6981 0.1069 0 0.0126  0.0755 0.0189 0 159
C4 - 0.1000 0.1067 0.6867  0.0067  0.0067 0.0133 0.0733 0.0067 | 150
C5 - 0.0064 0.0127 0.0191  0.7197 0 0 0 0.2420 | 157
C6 - 0.0444 0 0 0 0.8111 0.0722 0.0556 0.0167 | 180
c7 - 0 0.0722  0.0056  0.0056  0.0722 0.7111 0.1111 0.0222 | 180
C8 - 0.0058 0.0292 0.0702 0 0.0468 0.1170 0.6959 0.0351 | 171
C9 - 0 0 0 0.1611 0 0.0167 0.0278 0.7944 | 180

Model 4: CBR detection + type identification (9-class classification)
Accuracy: 80.64%, F; score: 0.7934

NG C2 C3 C4 Ch C6 c7 C8 C9 Total
NG 0.9935 0.0016 0.0016 0.0016 0 0.0008 0 0 0.0008 | 1222
C2 0.1013  0.7595 0 0.0506 0 0.0759 0.0127 0 0 158
C3 0.2013 0.0377 0.6164 0.0566 0 0.0063 0.0629 0.0189 0 159
C4 0.3467 0.0667 0.1133 0.3733 0 0.0133 0.0133 0.0733 0 150
Ch 0.0382 0 0.0064 0 0.7006 0 0 0 0.2548 | 157
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C6 0.0611  0.0444 0 0 0 0.8111 0.0389 0.0333 0.0111 | 180

C7 0.1833 0 0.0944 0 0.0056  0.0667 0.5556 0.0722 0.0222 | 180
C8 0.2807 0.0117 0.0292 0.0643 0 0.0526 0.0526 0.4854 0.0234 | 171
C9 0.0167 0 0 0.0056  0.1778 0 0.0167 0.0333 0.7500 | 180

Model 5: CBR detection + type identification with more balanced dataset (9-class classification),
only 200 epochs of NG were randomly selected out of the total 1,222 NGs
Accuracy: 74.59%, Fiscore = 0.7431

NG C2 C3 C4 C5 C6 c7 C8 C9 Total
NG 0.9300 0.0100 0.0050 0.0250  0.0050  0.0050 0.0050 0.0050 0.0100 | 200
C2 0.0380 0.7911 0.0127 0.0443 0 0.0949 0 0.0127  0.0063 | 158
C3 0.0692 0.0440 0.7107 0.0629 0 0 0.0755 0.0377 0 159
C4 0.0733 0.0667 0.1400 0.6467  0.0067 0 0.0067 0.0533 0.0067 | 150
C5 0.0318 0 0 0.0064  0.6943 0 0 0 0.2675 | 157
C6 0.0111  0.0611 0 0 0 0.8111 0.0667 0.0389 0.0111 | 180
Cc7 0.0889 0 0.0722 0 0.0056  0.0722 0.6333 0.1000 0.0278 | 180
C8 0.1053 0.0058 0.0351 0.0468 0 0.0585 0.0936 0.6257 0.0292 | 171
C9 0.0056 0 0 0 0.1333 0 0.0056 0.0333 0.8222 | 180

Table 3.2: The effect of sensor location and between-participant generalizability evaluation
on overall accuracy. Results for binary classification using the RFpp method. Note: results
for participant No. 4 are not included due to missing data.

Data CBR detection during gait
Binary classification
5 IMUs (LOTO) 295x2557 96.60
Modality location evaluation (LOTO)
Pelvis (Model 6) 59% 2557 Model 6: 94.70
Right Shank (Model 7) 59% 2557 91.06
Right Thigh (Model 8) 59% 2557 91.04
Left Shank (Model 9) 59x 2557 91.00
Left Thigh (Model 10) 59 %2557 91.12
Right + Left Shank (Model 11) 118 %2557 93.78
Right + Left Thigh (Model 12) 118x2557 94.02
13: LOSO cross-validation: mean accuracy 83.18%
ID 1 205%311: Drpegy 95.51
ID 2 295%310: Drpest 76.10
ID 3 295%311: Dresy 91.42
ID 5 295%312: Drest 67.70
ID 6 295%313: Drest 81.00
ID 7 205%219: Drpegy 85.27
ID 8 205%314: Drpegy 70.72
ID 9 295%310: Drest 97.74
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Table 3.3: Testing the gernarlizability of the PT-CBR detection model to detect other
types of CBRs during activities of daily living (using IMUFD dataset [5]). All models
are binary classifiers and the results reflect the average of 10 times of training/testing. In
models ii and iii, for each of the 10 steps, a percentage of IMUFD data was randomly
added to PT data by performing random permutation.

Training set Test set Accuracy Sensitivity Specificity
Model (i):

PT-NGs + PT-CBRs all S-CBRs + all S-NGs 82.00 100 10.00
Model (ii):

PT-NGs + PT-CBRs + all S-CBRs + 50% of S- 100 100 100
50% of S-NGs NGs

Model (iii):

PT-NGs + PT-CBRs + all S-CBRs + 50% of S- 90.97 84.15 99.20
50% of S-ADLs + 50% of ADLs+ 50% of S-NGs

S-NGs

3.3 Conclusion and future work

This chapter discussed the development of a machine learning based framework, to dis-
tinguish between multidirectional CBRs and normal walking episodes. In general, testing
demonstrated high accuracy (96.60%) in distinguishing CBRs from normal walking pat-
terns (a binary classification approach) and satisfactory accuracy (80.64%, F score =0.79)
in distinguishing between multiple classes of CBRs and normal gait (a 9-class classification
approach).

Overall, the detection of slip- and trip-like corrective reactions (C2, C5, C6, C9) was
more accurate than the detection of CBRs in ML direction (C3, C4, C7, C8). As shown
in the confusion matrix for model 2 (Table 3.1), the PT-CBRs elicited in left (C4, C8)
or right (C3, C7) directions were either confused with each other or with normal gait
episodes. For instance, 8.8% and 14.1% of the left PT-CBRs categorized as right and
PT-NGs, respectively. In a more specific analysis, where the phase of gait is considered,
18.33-34.67% of ML, PT-CBRs (C3, C4, C7, C8) were confused with PT-NGs, while 1.67-
10.13% of AP PT-CBRs (C2, C5, C6, C9) were misclassified as PT-NGs (confusion matrix
for Model 4, Table 3.1).

Applying a more balanced dataset partially mitigated these errors. For instance, in
Model 4, C8 showed 28.07% misclassification rate as PT-NG; which dropped to 10.53%
in Model 5. By visual inspection of IMU signals, ML PT-CBRs were less distinguishable
compared to their AP counterparts, and more similar to PT-NG signals. These are in
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line with our previously reported findings [130], where SS and CO CBRs were frequently
confused with each other. The inferior CBR detection performance in the ML direction in
the present study may be also attributable to the lower intensities of the ML perturbations,
as well as the possible adaptation gained during the data collection protocol.

Examining the effect of sensor location yielded a clear benefit of using the pelvis sensor
(94.7%), which outperformed other sensor locations (~ 91% for other locations) for the task
of CBR detection (this finding informed Chapter 4). Considering the sternum and pelvis are
both close to the CoM, this supports previous findings of [130], where the sternum sensor
outperformed shank and thigh sensors in CBR detection. Moreover, the CBR detection
accuracy attributed to the pelvis sensor was slightly higher than the accuracies obtained
from both shanks (93.78% accuracy) and both thighs (94.02% accuracy) (see Table 3.2),
while slightly lower compared to the 5-IMU model (Model 1: 96.60% accuracy).

Table 3.2 shows that for some participants (e.g. ID2, ID5, ID8), the LOSO accuracies
were considerably lower. This can be attributed to the differences between these individu-
als’ characteristics compared to the other 6 participants (> 80% accuracy), which requires
further investigation. To improve the average LOSO accuracy, and thus, the generalizabil-
ity of the CBR detection framework, a larger dataset captured from people with varying
intrinsic characteristics (e.g., body mass index, leg length, age, and height) and gait pattern
is suggested.

By assessing the generalizability of the binary CBR detection model (trained on PT-
CBR data) to an independent /unseen dataset, it was observed that while unseen CBRs in
the IMUFD datasets were all detectable, the normal gait segments in the same dataset were
not accurately detected resulting in a low specificity. By comparing the results of Models
¢ and ¢, it can be concluded that the inclusion of less constrained walking episodes, e.g.,
overground, in the training set can improve the overall framework’s performance. All PT-
NG segments include steady state gait with constant speed. On the other hand, S-NGs
episodes in the IMUFD dataset were collected under fewer constraints, and are likely to
include a broader range of walking behaviors and patterns (e.g., gait initiation and/or
termination). The possibility of differentiating between CBRs from all other ADLs was
further tested in Model i1, for which the accuracy regressed to 85.9%. This poor result
can be attributed to the similarities between the kinematic characteristics of PT-CBRs
and S-ADLs, which increased the false alarm generation rate. To improve the robustness
of the CBR detection framework against the generation of false alarms, future datasets are
recommended to include a broad spectrum of gait patterns as well as other ADLs. The
latter is an important consideration in Chapter 4.

A clear limitation of the present chapter is the use of controlled data acquired from
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healthy, young adults to develop CBR detection models. Previous research conducted in
controlled conditions [67] showed that older adults correct perturbations less accurately,
with a higher variability, and more steps to regain balance. Similarly, in another controlled
study, older participants slipped longer and faster [102]. Supporting the long-term vision
for ambulatory assessment of fall risk by tracking naturally-occurring CBRs in older adults,
this study aimed to inform the optimization of sensor location as well as hyperparameters
(e.g., segment length); and assess the utility of a perturbation treadmill paradigm in terms
of the provision of appropriate and sufficiently large training datasets to develop generaliz-
able and robust CBR detection models. The findings of this chapter form the infrastructure
for Chapter 4, where older adults’ free-living data were employed.
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Chapter 4

Automated Detection of Older
Adults’ Naturally-Occurring
Compensatory Balance Reactions:
Translation from Laboratory to
Free-living Conditions

Among the studies that met the inclusion criteria for the review process in Chapter 2,
only one study explored missteps or compensatory balance reactions (CBRs) [32], where
the quantity of ’suspected’ missteps detected in 3 days of IMU recordings was reported to
be strongly associated with retrospective falls in people with Parkinson’s disease (PD). The
thresholds used in the aforementioned CBR detection approach were mostly determined
based on trial and error [82]. Surprisingly, the highest number of suspected missteps
was 1,007 within 4,148 gait windows (window length: 5 s, ~5.7 hours of gait), while the
lowest number of suspected missteps was 4 within 95 gait windows (or 7.8 minutes of
gait). The high rates of false positives was attributed to the presence of high amplitudes
in the vertical (VT) acceleration signal and more inconsistent gait patterns compared to

!The content of this chapter is mainly obtained from the following unpublished research work (journal
submission and currently under review): Nouredanesh, M., Ojeda, L., Alexander, N. B., Godfrey,
A., Schwenk, S., Melek, W., & Tung, J.. ”Automated Detection of Older Adults’ Naturally-Occurring
Compensatory Balance Reactions: Translation from Laboratory to Free-living Conditions”
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controlled conditions [82]. As discussed in Chapter 3, the term ’suspected’ for this free-lving
digital biomarker (FLDB) highlights the lack of criterion (gold) standard data to reliably
validate the employed threshold-based CBR detection approach in free-living conditions.

Moreover, as discussed in Chapter 3, there have been machine learning-based CBR
detection methods, developed based on surface electromyography (sEMG) [120, ] or
IMU [129, 6, | features, where the IMU-based models presented a more satisfactory
performance compared to the SEMG-based ones [130]. The majority of the proposed models
were developed (trained and tested) using healthy young participants’ data collected in
controlled conditions, and achieved high detection accuracies. However, their translation
to detect older adults’ naturally-occurring CBRs has remained uninvestigated. Considering
the aforementioned findings, further research on the validity of CBR detection models needs
to be undertaken to reliably examine the associations between the frequency of naturally-
occurring CBRs, as a stand-alone FLDB, and falls in older populations.

Performing a validation study in the context of CBR detection is logistically challenging.
Compared to other gait events such as steps and turns, naturally-occurring CBRs are rare
events and hard to capture. For instance, only 46 CBRs (trips) were self-reported by three
older adults in 107 person-day of data [134]. Therefore, prolonged acquisition of criterion
standard data (e.g., egocentric vision) along with IMU data from older adults is required
to capture naturally-occurring CBRs. The integration of criterion standard data allows
precise identification/localization of CBR onsets in the corresponding IMU data, and may
provide information on the circumstances leading to false alarms. This information can
subsequently be used to assess the performance of the IMU-based CBR detection models.

This chapter proposes one of the first machine learning-based framework for the detec-
tion of multidirectional CBRs, which has been validated using fallers’ and older non-fallers’
free-living or out-of-lab data. The key considerations for model development and validation
have been discussed in subsection 4.0.1.

4.0.1 Key considerations for models’ training and validation

Previous studies conducted in controlled conditions have suggested that a single IMU
placed on participants’ trunk (e.g., sternum [130], waist [6]) or pelvis [125] (discussed in
Chapter 3) outperforms all other sensor locations, including ankles and thighs, for the
purpose of CBR detection. Moreover, as discussed in Chapter 3, the use of IMUs mounted
on pelvis and bilaterally on ankles and thighs (5 total IMUs) resulted in slightly higher
CBR detection accuracies compared to a single waist-mounted IMU (96.6% vs 94.7%) [125].
The marginal improvement in accuracy shown with multi-IMU methods coupled with the
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need to minimize obtrusiveness indicate the potential for a single sensor location suitable
for prolonged field studies. Therefore, the data of a trunk-mounted IMU were considered
in the present study.

Although CBRs happen more often during gait [59], a CBR detection model dependent
on a gait detection algorithm (e.g., [59, 82]) may exhibit a limited performance in some
scenarios (please refer to section 4.3 for a more detailed description). Thus, differentiation
between CBRs from all other activities of daily living was hypothesized to be a superior
approach and considered in the present chapter.

Alternate methods of acquiring and applying training and test datasets were considered
in the study design. Previously, hold-out, k-fold, and leave-one-subject-out [59, , ]
cross-validation approaches were considered for CBR model development and performance
assessment. Similar to our previously published research works [127, | and as briefly
discussed in Chapter 3, in the present study it was hypothesized that machine learning
models trained on a dataset independent of the test dataset would exhibit more realistic
results in terms of generalization to unseen data (although lower accuracies are expected
to be obtained [125], see Table 3.3 and 3.2.3 in the previous chapter). Moreover, this
approach facilitates managing the distribution of samples in the training dataset, which
is otherwise very challenging. In addition to their rarity, a major challenge in examin-
ing naturally-occurring CBRs is the varying occurrence frequencies for different types of
CBRs. For instance, trips were reported to be the most common CBR type in PD fallers
[18]. Therefore, compared to the other CBR types, they are potentially easier to be cap-
tured in order to form a training dataset. While the investigation of CBRs in sagittal plane
has attracted more attention from the researchers (e.g., in [59, 131]), the ability to detect
different CBR types, including those in the frontal plane, may provide a more compre-
hensive insight into older adults’ balance impairment [125]. To address this, datasets from
multiple sources, including from controlled conditions, can be curated to form a sufficiently
large training dataset with adequate samples over different CBR classes. The latter is a
necessary step enabling the subsequent machine learning models to learn specific inertial
patterns attributed to different CBR types (e.g., crossover, sidestep, slip-like). The findings
of Chapter 3 [125] indicated that a perturbation treadmill (PT) is a safe and reproducible
option to elicit multidirectional CBRs (PT-CBRs). Additionally, it was hypothesized that
the incorporation of PT and over-ground walking data as well as other activities in the
training dataset can augment the performance of the subsequent CBR detection models
[125] (see 3.3). To address the aforementioned points, two models were developed:

1. Model 1 was trained using an open access benchmark dataset, i.e., the Inertial Mea-
surement Unit Fall Detection (referred to as the IMUFD’) dataset [5], which includes
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young adults’ simulated CBR and non-CBR events (simulated activities of daily liv-
ing), as discussed in Chapter 3,

2. Model 2’s training dataset was formed by adding an equal number of CBR and non-
CBR events from (a) the PT dataset (young adults’ data) [125] and (b) one older
adult’s out-of-lab activities’ data from Multimodal Ambulatory Gait and Fall Risk
Assessment in the wild (MAGFRA-W) dataset, to the IMUFD dataset.

While the incorporation of the aforementioned training datasets comes with multiple ad-
vantages, previous research showed that CBR detection models developed based on con-
trolled data may generate high rates of false positives when applied to unseen/free-living
data [125, 82]. In contrast to falls, which result in coming to rest inadvertently on the
ground, CBRs are often accompanied by subtle changes in posture, and subsequently, may
be confused with other activities of daily living [125]. Considering that the majority of
samples in the training datasets for Models 1 and 2 were acquired from controlled data, sev-
eral criteria were considered to automatically compensate for the prominent discrepancies
between the training and validation/test datasets, when required (detailed in section 4.1.4).

The dataset used to validate the proposed framework includes a subset of 11 fallers’
and older non-fallers” multimodal data from a) Free-living IMU and Voice Recorder (FIVR)
and b) MAGFRA-W datasets, which encompasses 8 naturally-occurring CBRs. The CBRs
were verified using criterion standard data (e.g., egocentric vision, Fig. 4.1). Using this
independent validation/test dataset, the models’ performance was further assessed by in-
vestigating their:

e generalizability to detect naturally-occurring CBRs executed by older adults with
different characteristics (e.g., history of falls, with walking aids),

e robustness against false alarms generation in different indoor and outdoor contexts.

The translation results to detect naturally-occurring CBRs are discussed in sections in
section 4.2. The future directions and clinical implications of the framework are further
highlighted in section 4.3.
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4.1 Methods and Procedures

4.1.1 Datasets and Multi-institutional studies

Previous research showed excellent agreement between spatiotemporal measures estimated
from L5- (of the lumbar spine) and waist-mounted (right hip) accelerometers [33]. There-
fore, despite discrepancies in the exact anatomical location of the trunk-mounted IMU
across the multi-institutional datasets, inertial data collected from pelvis-, lower back-
(L5-), and waist-mounted IMUs, i.e., trunk-mounted, were considered comparable for the
task of CBR detection model development in this study. While multiple IMUs were used
to collect data in the studies discussed here, data recorded by trunk-mounted IMUs were
considered to develop CBR detection models.

IMUFD

The IMUFD dataset includes 150 CBRs and 240 non-CBR epochs simulated by 10 healthy
young participants between 22 and 32 yrs [5]. Five types of CBRs (commonly observed in
videos recorded in long-term care facilities) were simulated: 1) trips, 2) slips, 3) hit and
bump (by another person), 4) incorrect transfer while rising from sitting to standing, and
5) misstep during gait. The simulated non-CBR epochs include the following activities:
1) walking, 2,3) ascending and descending stairs, 4) standing, 5) sitting to standing, 6)
standing to sitting, 7) standing to lying, and 8) picking up an object from the ground.
Only data from the waist-mounted IMU (APDM Opal, Portland, USA), were considered
in the study (sampling frequency of f; =128 Hz, triaxial accelerometers range: 46 g;
triaxial gyroscope, range: £1500 deg/s).

PT dataset

In [125], nine healthy young participants (mean age = 26 yrs) wore five IMUs (Opal
model, APDM Inc., accelerometers and gyroscopes were set to operating ranges of +£16g
and £2000 deg/s, respectively) at the pelvis, and bilaterally on thighs and ankles. While
wearing a full-body harness to prevent falls, participants walked on a perturbation treadmill
(BalanceTutor, Meditouch) at the constant speed of 1.11m/s. Perturbations in 4 directions
(right, left, backward, forward) were induced during the right or left leg stance phases (in 2
separate 20-minutes sets). This process resulted in eight different classes of PT-CBRs, such
as sidestep, crossover, slip-like, trip-like (80 PT-CBRs/set for each participant, overall 160
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PT-CBRs/participant). Here, the pelvis-mounted IMU data recorded from 6 participants
were considered for model development.

The study has received ethics clearance and was reviewed and approved by the Medical
Faculty, Tiibingen University, Germany (No: 266/2016MP2).

FIVR dataset

In order to capture real world CBRs, participants wore a wrist-mounted voice recorder and
4 body-worn IMUs (Opal, APDM Inc., Portland, USA; f; =128 Hz, +16 g acceleration,
+2000 deg/s angular rate) during waking hours on the wrist, feet, and lower back [50]. As
detailed elsewhere [56], 5 participants (4 males, 76.2+5.4 yrs, with a history of >2 falls
in the past 6 months) were instructed to self-report any CBR (defined as an event where
balance control was lost momentarily, but recovered, including slips, trips, stumbles or
missteps) using the voice-recorder immediately after the event occurrence. Here, the self-
reported trips (either the participant used the word ’trip’ or the explained contexts that
were consistent with a trip such as ’stubbed foot’ or ’caught foot on’) were considered. A
pose estimation algorithm was used to verify the presence of CBRs within the recorded IMU
data and spot their onsets. To address this, location of the feet, as well as lower back and
wrist orientation data were combined to create a three-dimensional animation representing
the estimated body motion [132]. Overall, 7 CBRs (all trips), with ~ 10 minutes before
and after of each event (overall 140 minutes of data) were taken into account for model
validation (see FIVR D1 to D7 in Figures 4.3 to 4.6, D: dataset).

The study reviewed and approved by the University of Michigan Institutional Review
Board (HUMO00073568).

MAGFRA-W dataset

The MAGFRA-W dataset includes data collected by multiple wearable IMUs (Axivity,
Newcastle upon-Tyne, UK; acceleration range: +8 g, angular velocity range: +500 deg/s,
fs =100 Hz) as well as a waist-mounted camera (GoPro Hero 5 Session or Hero 6 Black
camera, 30fps, wide view) in out-of-lab environments. Data collection was performed in (a)
public environments within Northumbria University, during which older adults navigated
through different indoor and/or outdoor environments while walking alongside a researcher,
or (b) older adults” homes (indoor) or their neighbourhood (outdoor) for ~1-2 hours with
no researcher in attendance. Outdoor data collection was performed during daylight hours.
The camera was centered at each older adults’ waist by means of a belt attachment and was
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set up to capture top-down views of feet and the regions around them, with no calibration
or a strictly reproducible placement procedure on camera’s angle with respect to the frontal
plane. In the present study, the L5-mounted IMU data collected from 7 participants (mean
age: 73.46 yrs, 1 male, 3 fallers based on the number of self-reported falls in the previous
12 months) were processed. One participant’s age was below 65 yrs, however, as the person
was a recurrent faller, the associated data were considered for further analysis. One older
adult’s data (female, 80 yrs, non-faller) were used for model training (see 4.1.3) and 6
participants’ data were considered for models’ validation (see 4.1.4, Fig. 4.7 and 4.8).
MAGFRA-W D3 and MAGFRA-W D5 include inertial data collected in two participants’
homes and neighbourhoods. Two participants (e.g., in MAGFRA-W D6) used walking
aids during the data collection.

The project received ethics approval (reference number: 17589) from Northumbria Uni-
versity Research Ethics Committee, Newcastle upon Tyne, UK. All participants gave writ-
ten informed consent before participating in the study.

4.1.2 Signal preprocessing

The AX6 data in the MAGFRA-W dataset showed inconsistency with the other 3 APDM-
captured datasets (IMUFD, FIVR, and PT) in terms of the units and sampling frequency.
Therefore, unit conversion as well as signal upsampling (100 to 128 Hz, using MATLAB in-
terpolation method "pchip’) were performed to obtain comparable data within all dataseets.

For each of the simulated CBR and non-CBR trials in the IMUD dataset (with an
approximate width of 15s/trial), each of the 6 acceleration and angular velocity signals
was detrended (removing the DC offset) separately. Similarly, for the PT dataset, as the
orientation of IMUs did not significantly change over the course of data collection, all six
acceleration (ACC) and angular velocity (Gyro) signals corresponding to each set were
detrended separately. However, for FIVR and MAGFRA-W datasets, as the orientation
of the trunk-mounted IMU during free-living activities changes significantly, instead of
detrending the full-length signals acquired for each participant, non-overlapping sliding
windows (SWs) with the length of 15 s (in accordance with the IMUFD segments) were
applied to each of the six ACC and Gyro signals, and the overlapping data were detrended
separately. All data were processed using MATLAB (R2019a, MathWorks Inc).
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4.1.3 Model training

In this section, the procedure for data preprocessing and segmentation is discussed for each
dataset. Overall, to form the training datasets, 227, 60 and 60 non-CBR and 148, 120 and
0 CBR signal segments were extracted from the IMUFD, PT and MAGFRA-W inertial
data, respectively (overall 17 individuals). The subsequent segments were further used for
feature extraction (see 4.1.3) and preparation of the training datasets (i.e., feature matrices
X) for Models 1 and 2.

Data segmentation

Based on the findings reported in [1206, , 129] and Chapter 3 [125], in the signal vector
amplitude of acceleration signal (SV Acc) recorded by a trunk-mounted accelerometer,
the peaks, i.e., argmax(SV Aacc), can be reliable signal-based indicators of CBR onsets in
response to perturbations. Moreover, based on the available evidence and criteria discussed
in Chapter 3 [125], a segment width of ~ 4.69 (= 601 samples at f; = 128 Hz) created by
cropping ~ 2.34s (or 300 samples with f; = 128 Hz) before and after of the correspond-
ing argmax(SV Aacc) in all 6 ACC and Gyro signals is sufficiently wide to encompass
important transitional information attributed to the mechanical and postural adjustments
evoked after a perturbation. Here, each CBR and non-CBR segment is a 6 x 601 matrix
(6: number of signals).

IMUFD signal segmentation After calculation of the SVA signal and detection of
argmaz(SV Aacc) for each trial in IMUFD (section 4.1.1), 227 non-CBR and 148 CBR
segments were considered for feature extraction to form the training datasets for models 1
and 2.

PT signal segmentation Considering the possible adaptation happening over the
coarse of data collection (80 CBRs/set for each participant as discussed in 4.1.1) [108],
only the first 10 CBRs elicited in each set were considered, resulting in 120 PT-CBRs
(6 participantsx2 sets (right and left leg stance phases)x|[2 (trip-like)+ 2 (slip-like)+2
(crossover)+2 (sidestep)]). The i* PT-CBR segment was created by cropping 300 samples
before and after of the sample corresponding to argmaxz(SV Aacc,i) in all of the 6 signals.
Additionally, 60 non-CBR segments were extracted from the ’steady state’ normal over-
treadmill walking intervals between the two consecutive PT-CBRs (as discussed elsewhere
[125]). These segments were further considered for feature extraction (discussed in 4.1.3)
to form the training dataset for Model 2.
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MAGFRA-W signal segmentation One participant’s (female, 80 yrs) data from the
MAGFRA-W dataset were used to prepare the training dataset for Model 2. This par-
ticipant’s data were confirmed to be free of any CBR events by manual inspection of the
egocentric vision data. A non-overlapping SW with the the length of 58, i.e., SWav 4 ,cc .
was applied to the SV Ascc signal attributed to this participant. In each SWsya,.c s,
the index corresponding to the peak, i.e., argmazr(SWsva,ccs, ), is identified, and 300
samples before and after of this point in all 6 signals form the segment. Overall, 60
non-overlapping non-CBR segments were selected and considered for feature extraction
(discussed in 4.1.3) to form the training dataset for Model 2.

Feature extraction

Extraction of discriminative features from the IMU segments is a necessary step in the
proposed machine learning-based approach for the recognition of CBR patterns. In contrast
to the CBR detection models proposed in [125], for which each of the 6 ACC and Gyro axes
was considered independently for feature extraction, for each of the CBR and non-CBR
segments, only 2 signals: 1) SV Ascc and 2) the SVA of angular velocity signals (SV Agyro),
were taken into account (see section 4.3). The following 20 features were extracted from
the SV Aace and SV Agyr, components of each segment: 1) maximum peak, 2) root mean
square (RMS), 3) mean, 4) variance, 5) skewness, 6) kurtosis, 7) number of peaks, 8)
maximum autocorrelation, 9) integral, 10) the Shannon entropy, 11) amplitude of the
dominant frequency (periodogram PSD), 12) the dominant frequency in the segment, 13)
maximum of signal derivative, 14) mean of the signal derivative, 15) variance of the signal
derivative 16) skewnes of the signal derivative, 17) kurtosis of the signal derivative, 18)
RMS of the signal derivative, 19) integral of the signal derivative, and 20) the Shannon
entropy of signal derivative. In addition to the aforementioned features, argmaz(SV Agyro)
in each segment was considered, resulting in 41 (=2 x 20 + 1) features for each window.
These features were previously taken into account for the development of CBR detection
models [125, 6, 130].

Training procedure

In our previous work on a similar classification problem to detect CBRs, multiple ma-
chine learning techniques were examined [126][130][125], where the random forest (RF)
method (bootstrap-aggregated decision trees) [15] outperformed other classic approaches
(e.g., support vector machines, artificial neural networks). Considering RFs permit parallel
processing and demonstrates robustness against nonlinear relationships, and considering
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the size of the training dataset (small for the development of deep learning models), RF
models were investigated.

The training datasets for Models 1 and 2 were formed by concatenating the feature
vectors extracted from the 1) IMUFD segments (a X37544; matrix), and 2) IMUFD, PT,
and MAGFRA-W segments (a Xg15x41 matrix). Based on the initial tests, an RF model
with 19 trees (RF)9) showed satisfactory results on all validation datasets, while more
number of trees resulted in excessive sensitivity to classify a considerable proportion of local
peaks as a CBR (likely due to overfitting). To indicate that the results are not impacted
by the inherent model randomness, another metric, i.e. ’confidence score’ was defined.
This metric considers the predictions of 50 RFg’s models trained on the corresponding
datasets for Models 1 and 2 (discussed in section 4.1.4). MATLAB defaults were used
for other parameters including the minimum number of observations per tree leaf (i.e., 1
for classification) and number of variables to select at random for each decision split (i.e.,
square root of the number of variables for classification).

4.1.4 Models validation based on free-living data
Validation/test dataset

FIVR dataset Data discussed in 4.1.1 were considered to validate the proposed CBR
detection models. In each of the 7 FIVR datasets, the confirmed CBR is located in the
centre of the timeseries, i.e., t € 600 + 3 s, in FIVR D1 to D7, as shown in Figures 4.3 to
Fig. 4.6.

MAGFRA-W dataset By visual inspection of the recorded egocentric vision data in
the MAGFRA-W dataset, only 1 naturally-occurring (hit/bump) CBR was identified (see
Fig. 4.1 and Fig. 4.6-MAGFRA-W D1, in which the CBR event happened at ~ t = 631
s). The participant (older non-faller) hit a light pole and lifted right leg forward. The
multimodal data attributed to this participant captured different movement patterns such
as level walking on different surfaces, turns, the use of elevator, stair descending, and
obstacle avoidance (see Fig. 4.2).

Data from 5 more participants (Fig. 4.7 and 4.8) were examined to asses the models’
robustness across varying contexts during which the models could generate false alarms.
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(c)

Figure 4.1: One CBR was observed in an older adult’s egocentric vision data (MAGFRA-
W D1). The participant hit a light pole and lifted right leg forward.

Regions of interest

The validation dataset was segmented similar to the method described in section 4.1.3.
To avoid confusion, data segments extracted from the validation datasets are referred to
as the 'regions of interest’” (ROIs). A SWsya,,.,, Was applied to the IMU data in the
FIVR and MAGFRA-W datasets, after removing ~10 s from the start and end of each
dataset. ROI; (a 6 x 601 matrix) includes all samples € [indror, — 300, indgor, + 300]
from all 6 ACC and Gyro signals, indror, = argmar(SWsva,ces,,), Where j denotes
the ROI’s number in the corresponding dataset. If the distance between the peaks in
the adjacent ROIs was less than 300 samples, i.e., |indror,,, — indror;| < 300, the ROI
corresponding to the smaller peak was disregarded as a considerable proportion (> 50%)
of this ROI (including the peak) is being automatically included in the ROT attributed to
the peak with higher amplitude. This ROI elimination approach can play an important
role in large-scale free-living studies, as it reduces the overall processing time by decreasing
the number of data points being examined by the CBR detection models.

Possibly-noisy ROIs Preliminary results (Appendix B) indicated that all CBRs were
detectable either by Model 1 or 2; with the exception of 1 CBR event depicted in FIVR
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D2 (Fig. 4.3). The models’ inability to capture this CBR event was surprising as the
peak corresponding to the CBR’s onset in SV A cc was higher than the other detected
CBR events (see Fig. 4.3 to Fig. 4.6). Moreover, high rates of false positives were initially
observed in FIVR D2 (Fig. 4.3) and FIVR D6 (Fig. 4.5) as shown in Appendix B.

As mentioned in subsection 4.0.1, the reasons behind the aforementioned false nega-
tive and positive observations can be attributed to the differences between the training
and validation/test datasets, more specifically due to the differences: 1) between young
healthy and older adults’ performance, and 2) between free-living and controlled data (e.g.,
treadmill vs. free-living walking).

Hof et al. [07] reported that older adults corrected perturbations with higher vari-
ability, less accurately, regained balance with more steps and higher attentional demand.
However, all CBRs in the IMUFD and PT datasets were collected from young healthy
adults. Therefore, age-related difference are likely to play a role in translating models
trained on these datasets to detect older adults” CBR onsets. Moreover, while previous
research showed that gait speed could impact compensatory stepping characteristics [11],
all multidirectional PT-CBRs were elicited while participants were walking with a constant
speed on the treadmill.

Moreover, previous research have highlighted differences between in-lab and free-living

gait [32, 63, 17, | as well as discrepancies between older and young adults’ gait [33].
Compared to controlled gait, acceleration signals attributed to free-living gait represent
lower regularity [03]), more diverse range, e.g., in the antero-posterior (AP) [155] and
VT [32, | axes, which may result in the generation of false positives. Treadmill and
overground walking patterns were also reported to be different in terms of smoothness
and rhythmicity [98], and some of the digital biomarkers extracted from older adults’
treadmill and free-living gait data were significantly different [155]. However, a considerable

proportion of the training datasets for Models 1 and 2 include young adults’ data collected
under controlled conditions. In contrast, the validation datasets captured walking patterns
from older adults in diverse contexts (e.g., while walking on an uneven surface covered by
gravels), with various gait speeds, different walking bout lengths (e.g., short, long), and
contains gait events such as turns.

Considering the aforementioned points, as both CBR and non-CBR data acquired under
controlled conditions typically demonstrate more regular and smoother acceleration signals
compared to free-living data, it was hypothesized that by detecting and filtering/smoothing
'possibly noisy’ ROIs in free-living data, inconsistencies between the training and valida-
tion datasets can be compensated, and subsequently, the overall performance of the CBR
detection models can be improved.

60



As mentioned earlier, gait speed impacts compensatory stepping characteristics [11].
Based on knowledge that walking speed was strongly correlated with range in ACCyr
and ACCyp signals [195], and considering that both ACCyr and ACC4p demonstrated
significantly higher ranges during free-living gait compared to their in-lab counterparts
[155] (with little-to-no difference was reported in mediolateral direction), it was hypoth-
esized that the range in AP and V directions can be used to define the 'possibly-noisy’
condition for a ROI. Therefore, while defining this condition warrants a deeper investi-
gation of controlled and free-living data, here, a ’possibly-noisy’ condition is met, if the
range in ACCup or ACCyr in a window (with the length of ¢ = 2.32s) before or after
of the ROI is above a certain threshold (f4p =8.55m/s* and 6y7 =11.36 m/s?). These
hyperparameters/thresholds were obtained based on the results reported in [195], in which
free-living data were collected from more than three hundred older adults (including fallers
and non-fallers) using a lower back-mounted IMU. Window size, ¢, was obtained based
on the average stride frequency in older adults’ free-living data (¢ =2xaverage stride
time= 2 x 1/0.86Hz = 2.32 s). Based on the same study, 8.55 m/s* and 11.36 m/s* were
the average range values for ACCyp and ACCyr signals during gait, respectively [195].
These parameters for the identification of possibly-noisy conditions were selected based on
the assumption that CBRs are more likely to occur during gait. If the windows before and
after a ROI overlap with non-gait regions (e.g., sedentary), the possibly-noisy condition is
less likely to be met for the ROI.

To compensate for inter-dataset differences, we hypothesized that applying a low-pass
butterworth filter with the cut-off frequency of 10 Hz and order of 1 to the possibly-
noisy ROIs would make the underlying acceleration signals smoother, while it can preserve
important kinematic information related to CBRs and other activities. Subsequently, for
each detected possibly-noisy ROI, all 6 ACC and Gyro signals were filtered and then the
SV Asce and SV Agyr, signals were recalculated. The ROI remained unchanged (no filter
was applied), if the possibly-noisy condition was not met.

Feature extraction from ROIs For each ROI, either low-pass filtered or unchanged,
the 41 features discussed in 4.1.3 were extracted.

ROT’s confidence score For each ROI, the average of outputs (1: CBR, 0: non-CBR)
from 50 RFig’s in each model was defined as the ROI’s confidence score. Subsequently, a

ROI encompasses a CBR if its corresponding confidence score is > 0.9 (i.e., at least 45 out
of 50 RFy’s in Model 1 or 2 classified the ROI as a CBR).
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4.2 Results

From 8 verified free-living CBR events, 4 and 6 CBRs were correctly detected (confidence
score>0.9) by Models 1 and 2, respectively (see Table 4.1). Model 1 was unable to detect 4
valid CBRs: 1) FIVR D1 (confidence score: 0.00), 2) FIVR D4 (confidence score: 0.24), 3)
FIVR D5 (confidence score: 0.12), and 4) MAGFRA-W D1 (confidence score: 0.54), and
achieved the sensitivity of 50.00%. CBRsin FIVR D1 and FIVR D5 were correctly classified
by 29 and 19 out of the 50 RFi¢’s in Model 2, respectively, however, their corresponding
confidence scores did not exceed the threshold of 0.9 (i.e., considered as false negatives).
Therefore, Model 2 achieved 75.00% sensitivity. From a total of 4,047 non-CBR ROIs
tested (extracted from all 12 datasets), 8 and 7 false positives were generated by Models
1 and 2, respectively. Subsequently, Models 1 and 2 achieved the overall specificities of
99.80% and 99.82%, respectively.

Among 50 trained RFjg’s in Model 2, 5 models detected all 8 CBRs. However, no
subset of RF19’s in Model 1 was able to detect all 8 CBRs (e.g., confidence score of 0.00
was achieved for the CBR in FIVR D5). To probe further, Model 2" was considered by
including this subset of 5 RFjg’s in Model 2. Model 2’, which achieved 100% sensitivity,
was applied to all 12 validation datasets to examine its robustness against generating false
positives (Table 4.1). This model generated 13 false positives yielding the overall specificity
of 99.80%.

By comparing the preliminary CBR detection results in Appendix B (obtained for 8
datasets: FIVR D1-D7 and MAGFRA-W D1) with the corresponding results in Table 4.1,
it was observed that detecting and filtering the possibly-noisy ROIs improved the overall
models’ performance. For these 8 datasets, the overall sensitivity and specificity of Model
1 increased from 37.50% and 98.71% to 50.00% and 99.87%, respectively. Similarly, the
sensitivity and specificity of Model 2 increased from 62.50% and 95.82% to 75.00% and
99.74%, respectively. While a reduction in the quantity of false positives was observed
for FIVR D2 (Model 2: 27 to 0) and FIVR D6 (Model 1: 13 to 1; Model 2: 34 to
2), the results for some datasets including FIVR D1 and FIVR D5 did not change after
applying the possibly-noisy condition. Before considering this condition, the CBR in FIVR
D2 (Fig. 4.3) was not detectable by the models, however, it was successfully detected by
Models 1 and 2, when its corresponding ROI, identified as possibly noisy, was filtered. The
corresponding ROI to the CBR in FIVR D6 also met the criteria for being counted as
possibly-noisy, and was still detectable by the models after being filtered.

While an equal number of 236 SWs were extracted from each of the FIVR datasets,
different numbers of ROIs were reported across these datasets (Table 4.1) due to the
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integration of the ROI elimination approach. This resulted in ~16.3% reduction in the
total number of ROIs for FIVR D1 to D7, while saving the ROIs corresponding to the
CBR events.

To visualize the range of contexts captured, sample multimodal data for one participant
(MAGFRA-W D2, older non-faller), who walked on different indoor and outdoor surfaces
(e.g., stairs, gravel, grass, transitions), are included in Fig. 4.7. The only context leading to
the false positive (shown in Fig. 4.7-upper panel) was a sudden change in walking direction
on carpet (indoor environment). Moreover, Fig. 4.2 represents an anticipatory pattern,
obstacle avoidance, which could generate false positives according to previous studies’
reports [382]. While this event could have been confused with sidestep and crossover CBRs,
the models did not generate false positives (see MAGFRA-W D1 in Fig. 4.6). There were
several peaks with higher SV A 4o amplitudes than the spotted CBRs’, e.g., in Fig. 4.4-
FIVR D4 and Fig. 4.5-FIVR D5, for which the models did not generate false positives,
indicating their robustness against such signal features. Several data points with high
amplitudes can be seen in MAGFRA-W D4 and D6 (Fig. 4.8), for which Models 2 and 2’
did not generate false positives.

oA

Figure 4.2: Obstacle avoidance, anticipatory reactions with similar patterns to sidestep
and crossover CBRs. The detection models (correctly) rejected this event as a CBR.
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Figure 4.3: CBR detection Models 1, 2, and 2" were applied to the FIVR datasets (the
CBR events are located at 600+£3 s).

4.3 Discussion

This study presented one of the first CBR detection frameworks validated using criterion
standard data (including egocentric vision) captured from older adults under free-living
conditions. The validation/test dataset were captured from 11 fallers and older non-fallers
with different levels of mobility impairment while interacting with different indoor and
outdoor environments. The mobility patterns considered in the validation dataset include
various walking speeds, turns, ascending/descending stairs, transitions, and anticipatory
reactions (e.g., obstacle avoidance). Considering our previous research [127, 125], we hy-
pothesized that models trained on a dataset independent of the validation/test dataset
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Figure 4.4: CBR detection Models 1, 2, and 2" were applied to the FIVR datasets (the
CBR events are located at 600£3 s).

could represent more realistic performance in terms of generalization to complex free-living
data captured from individuals with different characteristics. Moreover, the integration of
PT-induced CBRs was hypothesized to provide satisfactory proxies for the lack of available
data of multidirectional naturally-occurring CBRs in the target older adult populations to
form a sufficiently large training dataset. Therefore, Model 1 was trained on an open ac-
cess dataset (IMUFD), and Model 2 was trained on a curated dataset from young adults’
(IMUFD, 120 PT-CBRs, and 60 non-CBR events from PT) and one older adult’s (60
non-CBR events from MAGFRA-W) data (i.e., 120 PT-CBR and 120 non-CBR events
were added to IMUFD). A condition was further defined to automatically detect possibly-
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Figure 4.5: CBR detection Models 1, 2, and 2" were applied to three FIVR datasets (the
CBR events are located at 600£3 s) and one older adult’s data from the MAGFRA-W
dataset (the CBR event is located at t=631 s).

noisy signal segments to further compensate for the prominent discrepancies between the
training and validation/test datasets. Model 2 showed a higher sensitivity compared to
Model 1 (75% vs 50%) and generated slightly fewer false positives (7 vs 8). From the 50
trained RFig’s in Model 2, 5 models (formed Model 2’) detected all 8 CBRs, indicating
that an optimized subset of RF’s can be found to achieve a high sensitivity (100% here)
in the detection of CBRs. This model was more prone to generating false positives (over-
all specificity: 99.67%) compared to Models 1 (overall specificity: 99.80%) and 2 (overall
specificity: 99.82%). However, considering its lower processing time (= x1/10 of Model 2)
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Figure 4.6: CBR detection Models 1, 2, and 2’ were applied to three FIVR datasets (the
CBR events are located at 600£3 s) and one older adult’s data from the MAGFRA-W
dataset (the CBR event is located at t=631 s).

and higher sensitivity, Model 2’ can be considered superior to Models 1 and 2, and thus,
suitable for being tested in larger-scale studies.

The higher sensitivity of Model 2 (and 2’), compared to Model 1, is due to the in-
clusion of PT-CBRs as well as one older adult’s out-of-lab data in the training dataset.
The simulated CBRs performed by participants in the IMUFD [6] mostly include anticipa-
tory adjustments preceding voluntary movements [125]. However, as reactive responses to
unanticipated threats to dynamic equilibrium during gait, CBRs must be rapidly executed
often without anticipatory adjustments to provide stability in the face of environmen-
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Table 4.1: Test results obtained after applying the models on the extracted regions of inter-
est (ROIs) from the validation datasets. FP: false positive, SN: Sensitivity, SP: specificity.

Model 1 Model 2 Model 2’
#ROIs || SN SP #FP || SN SP #FP || SN SP  #FpP
FIVR D1 190 0.00 100 0 0.00 99.47 1 100  99.47 1
FIVR D2 203 100 100 0 100 100 0 100 100 0
FIVR D3 197 100 100 0 100 100 0 100 100 0
FIVR D4 198 0.00 99.49 1 100 99.49 1 100 99.49 1
FIVR D5 200 0.00 100 0 0.00 100 0 100 100 0
FIVR D6 201 100 99.50 1 100 99.00 2 100  97.00 6
FIVR D7 194 100 100 0 100 100 0 100 98.96 2
MAGFRA-W D1 173 0.00 100 0 100 100 0 100 100 0
MAGFRA-W D2 65 N/A 98.46 1 N/A 98.46 1 N/A 98.46 1
MAGFRA-W D3 1100 N/A  99.72 3 N/A 99.81 2 N/A 99.81 2
MAGFRA-W D4 205 N/A 100 0 N/A 100 0 N/A 100 0
MAGFRA-W D5 990 N/A 100 0 N/A 100 0 N/A 100 0
MAGFRA-W D6 139 N/A 98.56 2 N/A 100 0 N/A 100 0
tal challenges, and are performed automatically with no attention [67, |. Considering

the reproduciblity and safety of the PT approach, as well as the findings of the present
study, this approach is suggested to be used to collect larger-scale multidirectional PT-CBR
datasets elicited in different gait speeds, to boost the generalizability of the proposed mod-
els. Collecting larger training datasets would subsequently facilitate the development of
deep learning models, which may outperform the random forest models and the engineered
features discussed in the present study [125].

By exploring the findings of previous research works, which examined differences be-
tween free-living and controlled digital biomarkers, hyperparameters (e.g., ¢, V and AP
range) were considered to automatically detect possibly-noisy ROIs in the validation
dataset. Although confirming the suitability of these hyperparameters for the detection of
highly irregular ROIs requires a deeper investigation, they led to promising results in the
present study. The results obtained after applying a 10-Hz low-pass filter to the detected
possibly-noisy ROIs indicated that these signal segments can become smoother and po-
tentially, more comparable to the training dataset, while important kinematic information
in their underlying CBRs (e.g., in FIVR D6 and D2) can be preserved. Subsequently, an
increase in the overall models’ sensitivity and specificity was observed.

Among all datasets, FIVR D6 generated the highest rate of false positives. Even after
the consideration of the possibly-noisy condition, 6 out of the total 13 false positives
generated by Model 2’ were attributed to this dataset. We attribute this high rate of
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Figure 4.7: Multimodal data collected form one older adult. Upper panel: the detrended
signal vector amplitude of trunk-mounted acceleration signals and the false positives gen-
erated by the Models. Lower panel: sample frames captured by a waist-mounted camera
showing different indoor and outdoor walking surfaces: grass, gravel, ascending stairs,
pavement, descending stairs, and transitions between different surfaces.
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false positives to the significant differences between the movement task(s) in this dataset
(walking in a construction site, which resulted in high amplitudes) and training dataset.
By incorporating a more inclusive training dataset, the models’ performance is expected
to be improved.

Although the collection of older adults’ free-living non-CBR events is not as challenging
as capturing their naturally-occurring CBRs, only 60 samples from one older adult’s out-
of-lab activities were considered in the training dataset for Model 2 (and 2’) so the balance
between the number of CBR and non-CBR events could be maintained. Considering a more
inclusive training dataset consisting of different individuals’” non-CBR and CBR events

69



captured in various conditions may also bypass the requirement for detecting possibly-
noisy ROIs. This will be investigated in our future studies.

Due to the challenges associated with the collection of naturally-occurring CBRs, only
8 CBRs were verified and investigated in the present study. Further research is required
to deeper assess the performance of the proposed framework (machine learning mod-
els, possibly-noisy condition, ROI elimination approach) for the detection of naturally-
occurring CBRs in larger scale studies. Overall, considering the large range of free-living
movement patterns captured in the validation/test dataset and considering state-of-the-art
models may not generalize well to new users whose data have not been used in the training
process [179], the proposed framework exhibited a satisfactory performance.

No requirement for gait detection Previous work suggested a two-step approach for
CBR detection, which require gait detection as the first step [32, 59]. However, CBRs
may not necessarily occur during walking (e.g., incorrect transfer while rising from sitting
to standing). Moreover, poor performance of an employed gait detection approach may
decrease the overall sensitivity of the subsequent CBR detection model. For instance, while
short walking bouts constitute a considerable proportion of daily walking bouts in older
adults [17], they can be missed/disregarded by commonly used gait detection algorithms
[122]. The majority of gait detection algorithms rely on the identification of heel strike
events in the acceleration signals. However, when it comes to free-living conditions, these
events may not always be identified by distinctive peaks [62], due to reduced gait speed
[175] and different variations of gait patterns (e.g., scuffling, dragging of the feet [171])
happening frequently during activities such as household cleaning [62]. This may lead to
misidentification of gait events and potentially reduce the sensitivity of CBR detection
models. As opposed to detection during gait only, distinguishing CBRs from all activities
of daily living, as proposed here, may outperform models focused solely on detection of
during-gait CBRs.

Robustness against sensor orientation misconfigurations Previous research
showed that the protocol for free-living data collection, in terms of sensor placement (loca-
tion or orientation) may not be followed by the participants. For example, in [131], 15.6%
of participants who wore accelerometers for seven days did not follow the protocol for at
least one day, resulting in prospective miscalculaions of physical activity by more than
20%. Considering the aforementioned point, and since the data in the present study were
acquired from multiple studies with different data collection protocols, while detection of
noisy context is dependent on the acceleration range in V and AP directions, the consid-
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eration of SV Acc and SV Agyro, rather than all 6 axes, could generally decrease the risk
of misclassification that can possibly be caused by sensor misalignment in the long run.

Clinical applications The clinical applications of the proposed approach are further
discussed in Chapter 7.

4.4 Conclusion and future work

The findings of the present chapter suggest that accurate detection of older adults’
naturally-occurring CBRs is feasible. Future research will focus on applying the proposed
CBR detection framework to large-scale free-living IMU datasets collected from older fall-
ers and non-fallers in a longitudinal manner to examine and understand the associations
between falls and CBR-related FLDBs (e.g., direction, duration, number of steps to recover
balance).

In the present study, the contextual information acquired either by the voice-recorder
or wearable camera played a critical role in improving the interpretability of the results.
Without detailed information of the mobility context, such as terrain characteristics and
obstacles, interpreting the outputs of the proposed CBR detection framework would have
remained constrained. For instance, for FIVR-D6, the high rates of false positives was
attributed to the irregular inertial patterns induced by walking in a construction site.
Moreover, the egocentric vision data captured in MAGFRA-W provided rich contextual
information about the factors leading to CBRs (e.g., a light pole, Fig. 4.1) as well as
the contexts associated with generating false positives (e.g., a sudden change in walking
direction, Fig. 4.7). By identifying contexts associated with verified CBRs, risky features of
the environment can be detected and targeted for intervention. Therefore, the development
of automated egocentric vision-based methods to detect walking surfaces (e.g., irregular
gravel-covered) is discussed in Chapter 6. Moreover, Chapter 5 examines the feasibility of
detecting CBRs, by tracking feet in the video data acquired by a wearable camera alone.
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Figure 4.8: CBR detection Models 1, 2, and 2’ were applied to 4 older adults’ inertial data
from MAGFRA-W dataset. The investigation of egocentric vision data confirmed that
there was no CBR event in these datasets.
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Chapter 5

FootChaser: A proposed egocentric
motion-aware gait assessment tool

Chapter 2 explored free-living fall risk assessment (FRA) approaches that employed
wearable IMUs to identify activity bouts and extract gait-related free-living digital
biomarkers (FLDBs). Among the explored FLDBs, only 3 types of spatial FLDBs, i.e.

step/stride length, step/stride length variability [195, , 31], and step length asymmetry
[31], were investigated. Although controlled studies have shown that step width variability
has a high predictive power for falls in older adults [13], this measure has not been inves-

tigated in any of the free-living FRA studies. While body-worn IMUs have demonstrated
excellent capabilities to measure temporal gait parameters, a critical drawback associated
with the use of IMUs is inaccurate estimation of key spatial parameters, in particular, step
width [119]. In addition to drift effects, this measurement limitation is largely attributed to
a relative lack of motion in the frontal plane during gait, resulting in small IMU excitation
and low signal-to-noise ratio.

As discussed in Chapters 2 (2.3.3) and 4, egocentric or first-person vision (FPV) data,
acquired via body-worn cameras, can be used as criterion (gold) standard data, outper-
forming IMUs in terms of the provision of rich contextual information®. Bearing in mind

IThe content of this chapter is mainly obtained from the following published and peer-reviewed research
paper: Nouredanesh, Mina, Aaron W. Li, Alan Godfrey, Jesse Hoey, and James Tung. ”Chasing Feet
in the Wild: A Proposed Egocentric Motion-Aware Gait Assessment Tool.” In European Conference on
Computer Vision, pp. 176-192. Springer, Cham, 2018.

2 As discussed in Chapter 6 and Appendix C
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a waist-worn camera pointed down and ahead of the user, FPV data may also outperform
IMUs by offering strong spatial signals (e.g., in the frontal plane) through capturing the
wearer’s feet locations in the camera’s field of view. To address this, previous research ex-
amined the utility of a smartphone-based camera mounted on the waist and foot markers to
quantify gait characteristics [92]. However, the requirement for placing additional markers
on the feet can be considered as a limitation of the aforementioned method, suggesting the
development of markerless approaches.

In the present chapter, an automated and markerless framework, i.e., FootChaser, is
proposed to localize feet in 2D coordinates of video frames captured by a belt-mounted
camera. In comparison to head- and chest-mounted camera views, we proposed that a
waist-level view would offer the best view for three reasons. First, waist-level FPV data
offer a consistent view of the legs and feet even when turning. In contrast, head- or chest-
mounted views tend to rotate in anticipation of turns or changes in attention, which reduces
the available views of the feet. Second, a waist-level view affords greater resolution of the
feet than views higher on the body. Finally, camera egomotion is hypothesized to provide
a rich source of temporal information to segment body parts [105].

The FootChaser framework (see Fig. 5.3) comprises of two deep models:

1. the FootRegionProposer, a ConvNet that proposes regions (or bounding boxes) in
RGB frames with high probability of containing feet (based on feet/shoes global
appearance), and

2. the LocomoNet, a ConvNet sensitive to the periodic gait patterns, which further
examines the temporal content in the stacks of optical flow corresponding to the
proposed regions by the FootRegionProposer. This model is primarily used to filter
out false positives generated by the FootRegionProposer to further locate the accurate
feet regions among the bounding boxes.

Please note that the proposed FootChaser framework aims to generate pizel-wise foot
placement outputs towards the eventual goal of estimating spatial parameters (e.g., step
width). The transformation between pixel outputs to distances, likely using 2D metrology
approaches, is beyond the scope of the current study and will be examined in subsequent
works.
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5.1 Related work

While there have been third-person vision (TPV) based research efforts utilizing smart-
phone or ambient camera video to assess gait (e.g., [114, 16, 26]) and estimate pose (e.g.,
[53, 23, 75, , 42]), the challenges and signal features associated with FPV are distinct.
There are several factors that impact the performance and development of the proposed
framework: 1) occlusion or extreme illumination conditions, 2) similar objects/terrain
patterns to the feet (e.g., other people’s feet), and 3) motion blur from fast movements.
To inform the chosen methodologies, i.e. camera type and location, this section reviews
previous studies that used FPV and addressed the aforementioned challenges.

There are relatively few previous works aiming to extract spatial gait parameters using
FPV. An interesting and novel approach was using a walker-mounted depth and/or color

camera to estimate 3D pose of lower limbs, mainly in frontal plane [110, 73, ]. To
achieve this, Ng et al. [121] used general appearance model (texture and colour cues)
within a Bayesian probabilistic framework. In [73], a Kinect (depth) sensor along with

two RGB cameras were placed on a moving walker, and the 3D pose was formulated as a
particle filtering problem with a hidden Markov model. The key limitation of these works
is the dependency on a stable platform (i.e., walker) to afford consistent views of the lower
limbs and monitor pose over time, which is not generalizable to individuals that do not
require a walking aid for ambulations.

The possibility of using one or several body-mounted cameras is investigated for 3D

full body [171, 87, ] and upper limb (arms and hands) [160, | pose estimation.
In [171, 87], outward-looking body-mounted cameras along with optimization approaches
were used to estimate 3D body pose. In [I71] more than ten cameras were attached

to all the person’s joints, and structure from motion approach was used to localize the
cameras, estimate the joint angles and reconstruct human motion. The main limitation
of the proposed method is the obtrusive multi-camera setup and intensive computational
load required to infer pose in a video sequence. To alleviate the main weaknesses of [171],
Jiang et al. [37] developed a model based on synchronized egocentric videos captured by
a chest-mounted camera and a Kinect sensor. The 3D body pose model employs camera
egomotion and contextual cues to infer body pose, without direct views of the key body
parts (i.e., legs, feet) desired for gait assessment. Moreover, the videos were restricted
to relatively static activities (i.e., sitting, standing). Such restrictions and the failure to
examine more complex (i.e., dynamic) scenarios limits the applicability is the important
limitation of of their approach to the gait assessment problem.

In contrast to the previous studies, [152] and [200] utilized body-related visual cues
(outside-in/top-down view) provided by fisheye cameras attached to a bike helmet and
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baseball cap, respectively. In [206], a ConvNet for 3D body pose estimation was developed
to address limitations in its former version [152], including dependency on 3D actor model
initialization and inability to run in real-time. Although the authors compensated for the
distortion imposed by the fisheye lens, estimation of the lower body 2D heatmaps (ankles,
knees, hip, and toes) was less accurate due to the strong perspective distortion (i.e., a large
upper body and small lower body).

The closest approach in spirit to the proposed approach is a hybrid method which
combines both global object appearance (spatial network) and motion patterns (temporal
network) in a two-stream ConvNets structure. This approach was inspired by Simonyan
and Zisserman [173], in which a ConvNet was trained by stacks of optical flow for the
task of TPV-based activity recognition. Similar architecture is also employed in FPV-
based methods to recognize different activities [105, |. To capture long-term sequential
information from FPV data, recurrent neural network/long-short term memory (LSTM)
was used by Abebe et al. [2, ] where stacked spectrograms generated over temporal
windows from mean grid-optical-flow vectors were used to represent motion [170].

Modeling temporal information in the regions enclosed by bounding boxes in consecu-
tive frames is investigated in previous TPV-based studies [, 187]. In [35] an object-centric
motion compensation scheme was implemented by training CNNs as regressors to estimate
the shift of the person from the center of the bounding box. These shifts were further
applied to the image stack (a rectified spatiotemporal volume) so that the subject remains
centered. More related to the proposed LocomoNet approach is the work by Brattoli et
al. [11], in which a fully connected network was trained to analyze the grasping behavior
of rats over time. Based on optical flow (temporal) data of both initial positives (paw
regions) and random negatives cropped from other regions, temporal representation was
learned to detect paws.

5.2 The FootChaser framework

As an alternative to inferring gait parameters from 3D pose estimates, we hypothesized
that tracking the centers of the person’s feet in 2D plane of walking over time could provide
accurate spatial estimates. The scope of this study is to localize feet by incorporating both
temporal and spatial data achieved from FPV data.

Let I; be the " frame in a video sequence with the length N, captured by a belt-
mounted camera with an outside-in top-down view (i = {1,2--- N}). The manually anno-
tated ground truth (GT) data is in the form of bounding boxes GTy; = [x], y¢], w§T, hG]]
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Figure 5.1: Egocentric camera-based gait assessment overview. Panels a,b,c,d,e represent
different phases of gait captured by a belt-mounted camera. The x and y location of the
right foot (red bounding boxes) and left foot (green boxes) over consecutive frames (CoM:
center of mass). Rows f and g depict lateral sidestep and lateral crossover compensatory
balance reactions, respectively. These reactions are important behaviours related to fall
risk. Note the transformation between pixel-wise box coordinates to distances is not cov-
ered in the current study.

indicate the camera wearer’s feet (f = {left,right}) in 2D 1080 x 1920 coordinate system
of each frame (see Fig. 5.1), where 2 and y denote the center (C]) (Fig. 5.3), and w and
h represent the width and height of the bounding box(es), respectively. The goal of the
FootChaser framework is to detect and localize the center of each foot (if presents in the
frame) in the form Py, = [z}, y7;, wf,;, hf,] during the gait. In an ideal case, the error
measure (E) will be minimized for z (E(a:?;f,x? ;) and y (E(yT, 7)) trajectories and
the underlying area should be the same for the Ps and GT's, i.e, the intersection over union
(IoU) measure will be maximized (IoU = 1). The predicted x (= frontal axis) and y (&
sagittal axis) trajectories can be used to estimate pixel-wise step width and step length
gait parameters, respectively.

To investigate the feasibility of pixel-wise step by—step gait parameter extraction, the
x%ft, mght data are plotted in Fig. 5.2. While y&%, 7 and ymght were examined for measure-
ment of step length, the main focus of this study is on step width estimation. We observed
that (a) the trajectories roughly resemble the center of pressure (CoP) data captured by
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forceplates, (b) the local maxima and minimuma seem to be correlated with right heel
strike (RH Ss) and left heel strike (LHSs), respectively (further investigation is required
using gold-standard gait analysis methods, e.g., Vicon), and (¢) GT data can be divided
into frames with one foot (GT — One), and both feet (GT — Two).

In most of the GT'— T'wo frames, a small portion of the trailing foot is observable (see
Fig. 5.1), and is irrelevant for extraction of gait parameters. Considering shape distortions
affect detection results, it was hypothesized that the ConvNet is more likely to detect the
other foot rather than the less-visible one similar to the findings of Huang et al. [71] and
Rozamtsev et al. [I61]. In other words, in the frames with two GT, the network often
locates the center of the foot that is required for the extraction of gait parameters.

Considering these cues, it was surmised that tracking each foot separately is unnecessary

and frames with only one predicted foot center can be used to extract step width. Specifi-

cally, (C~2"¢) obtained from the FootChaser (P—One = [z} "¢ y[=om¢ wl=one pP=one)),
regardless of the foot type f. As the key signals for the calculation of spatiotemporal gait
parameters (e.g., LHS and RHS points), these can be observed from the " ~°"¢ and y*"~om¢

trajectories.

To achieve feet localization, the present proposes a two-stage FootChaser framework
comprised of two ConvNets: 1) FootRegionProposer and 2) LocomoNet. The FootRe-
gionProposer proposes n € N bounding boxes as 'proposed foot regions’, or PFR;;,
j = {1,...,n} in the /" frame. As there may be several false positives in the proposed
regions, it was hypothesized that the FootRegionProposer results may be boosted by ap-
plying another ConvNet, called LocomoNet, trained to be sensitive to the periodic/specific
movement patterns embedded in the user’s feet regions during gait. In other words, the
LocomoNet is expected to filter out false positives by selecting the most confident regions.
After applying the LocomoNet on PF R;;, only the frames with a single PFR are used for
step width estimation (see Fig. 5.2).

5.2.1 FootRegionProposer

The FootRegionProposer is a ConvNet fine-tuned to propose PFRs in a frame. The ;™
proposed region is in the form of a bounding box PFR;; = [z, Yji, Wji, I, where x;;,
Yji, W, and h;; denote the center coordinates, and width and height of the box, respec-
tively (see sample PF Rs marked by red rectangles in Fig. 5.3). The training procedure for
the LocomoNet is discussed in subsection 5.3.2. As noted above, there are several factors
that may challenge the performance of the FootRegionProposer: 1) occlusion or extreme
illumination conditions can increase the number of false negatives, 2) objects or terrain
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Figure 5.2: Sample bounding box X-coordinate time series data from dataset 2. Ground
truth (GT) data for left (green) and right (red) feet, and FootChaser predictions with 1
identified region (blue). The expected x location of left heel strike (LHS) and right heel
strike (RHS) are marked (further investigation is required using gold-standard gait analysis

methods, e.g., Vicon). Periods with 2 identified feet (GT-Two) are indicated by dotted
boxes.

similar to the feet (i.e., noise, see Fig. 5.4-c), and 3) motion blur from fast movements. In
addition to incorporating a fast and precise object localization/detection ConvNet (e.g.,
faster R-CNN [151], or YOLO [150]), a second ConvNet was applied to the FootRegion-
Proposer output to filter false PF Rs (subsection 5.2.2).

5.2.2 LocomoNet: Learning from gait patterns

To reduce the number of proposed false positives (i.e., false PFRs) by FootRegionProposer
Network (towards the goal of 'one’ true PFR), the dynamic temporal structure of the
PFR;; will be further examined by the proposed LocomoNet ConvNet. Inspired by Si-
monyan and Zisserman’s work [173], the present study considered examining optical flow
features to deliver bounding boxes with higher confidence of representing feet.
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Figure 5.3: The FootChaser framework. First, the FootRegionProposer proposes n € N
PFR;; bounding boxes (red boxes), j = {1,2,...,n}) in the i"* frame. Multiple regions
proposed are examined by LocomoNet to filter out false positives. After obtaining the stacks
of optical flow volume OFYV; (V and U are vertical and horizontal 2D flow components)
from the [i — L/2,1 4+ L/2 — 1] frames (L denotes the depth/length of stack), LocomoNet
inputs are obtained by cropping fixed size regions centered at the center of each PFR;;,
i.e., (xj;,9,:), which creates the optical flow volumes from PFRs (OFV — PFR;;). Final
FootChaser outputs reflect frames with a single proposed region (CiP —one).
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Figure 5.4: Sample frames reflecting high inter- and intra-class variability in terms of:
1) intense illuminations conditions and shadows (row 1-a,b), 2) different phases of gait,
3) different walking surfaces, e.g., color, texture (each column corresponds to a specific
environment and walking surface), and 4) motion blur during crossover and side-step com-
pensatory reactions (row 3-a,b).

The horizontal U = {Uy, Uy, ...,Un_1} and vertical optical flow V' = {V;, Vs,..., Vy_1}
can be calculated separately for each two consecutive frames in the video sequence (the
height and width of the U and V components are equal to the frame’s 2D dimension,
i.e., 1080 x 1920). Considering a fixed length of L consecutive frames, the optical flow
volume OFV; = {U;_r/2, Vi—r2:---,Uiyrj2-1, Viyrj2—1} is obtained for the ith frame. In
order to represent the temporal information of PFR;;, a fixed (W, x H.) region centered
at (z;4,y;:) is cropped from OF'V;, which ends up to a (2L x W, x H,) volume of interest
(OFV — PFR;;) corresponding to that proposal (see Fig. 5.3). Each of these volumes are
fed into the LocomoNet for filtering. The training procedure for LocomoNet is discussed in
subsection 5.3.3. After applying the LocomoNet, if the output frame has only one remaining
PFR, the center of that PFR;; will be saved in the center vector (C~°"). Otherwise,
the corresponding component will be replaced by NaN and will not be considered in the
evaluation.



5.3 Experiments

5.3.1 Dataset

Sufficiently large datasets are challenging to collect, often the primary bottleneck for deep
learning. However, there are no publicly available datasets specific to our needs, i.e.,
large dataset captured by a belt-mounted camera including the images/videos of feet from
different people with a considerable diversity in appearance (e.g., shoes with different colors,
shape, barefoot, socks) and movement (i.e., gait). To facilitate training, the ConvNet was
fine-tuned [137] based on real images with normal optics from large scale datasets, which
also was hypothesized to boost the generalizability of the network. Therfore, the ConvNet
was fine-tuned on Footwear (footgear) subcategory images (=~ 1300 images with bounding
boxes, and 446 images of shoes from top-down view with and without bounding boxes,
and we added the bounding boxes manually) from the ImageNet 2011 [163] dataset. Such
images resemble more realistic appearance of one’s footwear from different views (compared
to alternatives such as UT-Zap50K [209]).

Three healthy young adults participated and the FPV data were collected using a GoPro
Hero 5 Session camera centered on participants’ belt (30 fps, 1080x1920), with no specific
calibration and setup. Overall, 5 datasets (including 2 separate datasets from 2 participants
in different environments) were captured in five different indoor (tiles, carpet) and outdoor
environments (bricks, grass/muddy), resulting in 4505 (= 5 x N, N = 901) total frames
(Fig. 5.4 shows samples from the dataset). Frames were annotated by drawing bounding
boxes around the right and left shoes (in PASCAL VOC format), using the Labellmg tool

[194].

In addition to the normal walking sequences, in two datasets, simulated compensatory
balance reactions (CBRs: lateral sidestep, crossover stepping) during gait were also col-
lected (see Fig. 5.4-row 3 columns a,b for sets 1 and 2, and the GT plot for dataset 2 in
Fig. 5.6). CBRs (near falls) are reactions to recover stability following a loss of balance (see
Fig. 5.1-panels f and g), characterized by rapid step movements (or reaching) to widen the
base of support. CBRs also introduce more challenge to our dataset as the corresponding
FPV data is usually blurry (i.e., fast foot displacement) (see Fig. 5.4) and the field of view
may be occluded.
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5.3.2 FootRegionProposer Training

There are several models that can be taken into account for FootRegionProposer, including
Single Shot MultiBox Detector (SSD) [101], faster R-CNN [151], R-FCN [28]. In [71], it is
shown that SSD models typically have (very) poor performance on small objects, e.g. the
relatively small feet regions in our experimenrs. Among related approaches, YOLO [150]
shows state-of-the-art results in terms of speed and accuracy.

To implement the FootRegionProposer, the original YOLO version 2 in [150] was em-
ployed. The pre-trained weights on the large-scale ImageNet dataset were used for network
initialization, which was then fine-tuned on ImageNet shoe sub-category. The ConvNet was
further fine-tuned on images of shoes that are captured in realistic scenes from a top-down
view. All of the network inputs were resized to K x 3 x 832 x 832, where K = 64 was the
batch size (mini-batch size: 32). Moreover, the stochastic gradient descent with momentum
was used as optimization method, with an initial learning rate of v = 0.001, momentum:
0.9, and decay rate of 0.0005 (at steps 100 and 25,000) selected using a Nvidia Titan
X GPU. To further address the problem of limited data, the data was augmented (i.e.,
random crops and rotation) to improve the generalization of the network.

5.3.3 LocomoNet training

Although YOLO is very fast, it often suffers from a high number of false positives. The
goal of the LocomoNet is to improve FootChaser performance by reducing the number
of false proposals. The LocomoNet output maps each OFV to one of the two possible
classes. Similar to [170, : ], the TVL1 optical flow algorithm [210] is chosen, here
with OpenCV GPU implementation. Moreover, similar to [173, , ], the stack length
of L =10 (i.e., 20 input modality channels for LocomoNet) is selected, and crop size is set
to W, = H, = 224.

Based on our experiments, a 224 x 224 region and the stack length of L = 10 provided
sufficient temporal information for foot regions during gait. Moreover, off-the-frame crops
were handled by shifting the 224 x 224 box in the opposite direction in place of resizing to
retain the aspect ratio. To train the LocomoNet, 300 positive (shoe/foot regions) volumes
were extracted for left and right feet in each of the 5 datasets, resulting in a total of 3000
(=2 x 300 x 5) true positive volumes. An equal number of negative volumes (i.e. 3000)
were also randomly cropped from the non-shoe regions from the consecutive frames, with
a constraint of JoU ~ 0 with the shoe regions at the i** frame, the past and next frames
in the volume were not constrained to allow for a more realistic evaluation.
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(a) (b (c)
Figure 5.5: Example FootRegionProposer results (PFRs) for three frames marked by red

boxes. Correct foot regions were identified by the FootRegionProposer; however, false
positives were also proposed. After applying the LocomoNet, some false positives were
filtered out (marked with (x)). In (a) and (c) false positive(s) are successfully removed,
(b) shows a case of intense illumination and shadows challenging LocomoNet, resulting two
false positives that were not filtered out.

The approach proposed in [199], where the authors demonstrated the possibility of
pre-training temporal nets with ImageNet model, was applied in the current study. After
extracting optical flow fields and discretizing the fields into [0, 255], the authors averaged
the ImageNet model filters of first layer across the channel to account for the difference in
input channel number for temporal and spatial nets (20 vs. 3), then copied the average
results 20 times as the initialization of temporal nets. Considering such an approach, a
motion stream ConvNet (ResNet-101 [01] architecture) pre-trained on video information in
UCF101 dataset was used, with stochastic gradient descent and cross entropy loss. Batch
size, initial learning rate, and momentum were set to K = 64, 0.01, and 0.9, respectively.

5.4 Results

1) Model generalizability. To evaluate the extent to which subject-related movement
patterns in different environments can be handled by LocomoNet, a leave-one-dataset-
out (LODO) cross-validation was performed. To achieve this, a LocomoNety, (Np =
{1,2,...5}) model was trained using the whole dataset except Np dataset (i.e., 4800 volumes
for training) and tested on the dataset Np (i.e., 1200 volumes for testing), and repeated
5 times. The following LODO accuracies were obtained for our 5 datasets: 1: 92.41%,
2: 91.16%, 3: 98.33%, 4: 83.83%, and 5: 96.25%. The high accuracies indicate the
generalizability of LocomoNet to discriminate foot-related OF'V — PF R in unseen datasets.
The following average IoU scores were obtained for each set: 1: 0.7626, 2: 0.7304, 3: 0.3794,
4: 0.7155, and 5: 0.5235. Considering an [oU threshold of 0.5 is typically used in object
detection evaluation to determine whether detection is positive (oU of true positive> 0.5)
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Table 5.1: Number of proposed foot regions (Nprpg n, ) and elimination rate (ER) in dif-
ferent intersection-over-union (IoU) intervals indicating LocomoNet ability to remove false
positives by dataset. Nprpr n, dramatically reduced after applying the LocomoNet. ERy
is the weighted average of elimination rate, IoU > 0.5 and < 0.5, representing the true
and false positives, respectively [11].)

ToU
0.1 0.2 0.3 0.4 0.5 06 07 08 09 1
Nprr,1 1219 36 7 4 11 22 114 218 312 110
Nprr.2 654 10 2 3 10 26 122 282 277 76
NprRr3 781 0 4 12 13 35 89 156 116 15
NprRr.4 1225 2 2 1 6 31 119 293 294 36
Nprrps 229 18 17 27 55 106 188 195 83 10
Nprrr— 4108 66 32 47 95 220 632 1144 1082 247
ER1 73.83 55.55 42.85 0.00 0.00 4.54 4.38 825 7.05 1.81
ER2 92.20 100.00 0.00 0.00 10 11.53 13.11 17.37 13.35 10.52
ER3 97.18 100.00 0.00 8.33 7.69 571 0.00 1.28 3.44 6.66
ER4 83.91 50.00 100 100.00 16.66 35.48 31.93 27.30 26.87 19.44
ER5 83.40 7777 0.00 0.00 0.00 0.00 372 4.61 8.43 20.00
ERt 83.25 68.18 15.62 2.14 3.15 7.72 9.82 13.81 13.77 8.09

[11], we interpret that the generalizability of the model except for Np = 3, is satisfactory.
The lower performance of the network on dataset 3 was attributed to the patterns of
walking surface (tiles with different sizes, see Fig. 5.4-c).

2) The number of proposed regions with [oU < 0.2 (false positives) dra-
matically reduced after applying the LocomoNet on PFRs. To assess the false
positive removal performance of the LocomoNety,, in this study, elimination rate metric

__ Number of filtered PFRs in a specific IoU interval _
was defined as ERND "~ Total number of PFRs in a specific IoU interval x 100’ ([OU—ATG(Z(GT N

P)/Area(GTUP)). As shown in Table 5.1, the PFRs in a low IoU score range (€ [0, 0.2)),
representing false positives, were removed with a high rate (e.g., in ToUjg 1) with 83.25%
reduction). The relatively low true positive removal score (i.e., in IToUjg g1y with 8.09%
reduction) reflects satisfactory performance of LocomoNet in retaining the true positives
(refer to Fig. 5.2 for some failure and success cases).

3) FootChaser prediction trajectories closely match ground truth trajec-
tories. The performance of the FootChaser in tracing the GT data can be assessed
by measuring 1) the individual JoU scores, and 2) the pixel-wise distance (error, E)
between the predicted foot center and its corresponding point in G'T" data, i.e. as dis-
cussed in section 5.2, by comparing the predicted P — One bounding boxes with G'T" — one
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Table 5.2: Mean absolute error (MAE) results for the GT' — One region in absolute pixels
and as a fraction of image resolution. MAE = 1/N Y |GT — One, s; — P — One, |, where
a = {z,y}, f = {left,right}, N = length(GT — One). MAE/R as a fraction of image
resolution (R), where: R,=1920, R, = 1080.

MAE (pixel) MAE/R

Dataset Tref:t TRight YLeft YRight TLeft TRight YLeft YRight
D; 41.68 87.50 55.66 54.81 0.021 0.045 0.051 0.050
Do 32.90 44.00 54.29 55.94 0.017 0.022 0.050 0.051
Ds 125.74 194.85 75.19 154.46 0.065 0.101 0.069 0.143
Dy 64.40 62.57 76.11 74.11 0.059 0.070 0.057 0.068
Dy 99.31 37.68 101.52 92.04 0.051 0.019 0.094 0.085

Table 5.3: Mean absolute error (MAE) for GT' — T'wo regions in absolute pixels and as a
fraction of resolution (MAE/R), where (R:) R,=1920, R, = 1080..

MAE (pixel) ~ MAE/R

Dataset x Y x Y
D, 58.11 84.00 0.030 0.077
Do 36.12 80.44 0.018 0.074
Ds 121.47 117.78 0.063 0.109
Dy 103.55 94.90 0.053 0.087
D5 25.28 101.52 0.013 0.094
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(E(at=9me qCT=0n¢) q = {x,y}), where mean absolute error (MAE) is taken into account
as the error metric £ (see Table 5.2). For GT — Two (e.g., the black dotted parts in
Fig. 5.2), the performance was evaluated by comparing the al ~“" with the nearest GT
point regardless of the foot type (Table 5.3 displays the results). At first glance, this may
appear to be a weak metric. However, as discussed in section 5.2 and depicted in Fig. 5.6
and 5.2, in GT —Two data the FootChaser is biased toward proposing regions correspond-
ing to the nearly-full-view feet (rather than partially-observable ones). In this application,
the observed bias to larger objects is a strength as it predicts the center of the foot required
for the extraction of spatiotemporal gait parameters. This can be attributed to the fact
that the FootRegionProposer is trained on ImageNet dataset that mainly includes the full-
view images of feet. Moreover, this is in line with the findings of [161, 74], where a higher
performance was reported for the detection of bigger objects in videos. Considering these
points, the error criteria for GT" — T'wo regions seem to be a satisfactory representation of
performance.

In addition to the relatively low error rates (< 10% for the x trajectories), as presented
in Fig. 5.6, the framework also predicted many of the points at the timings of CBRs (spikes).
Therefore, these trajectories can be a promising avenue for the detection of CBRs. High F
values for D3 (Tables 5.2 and 5.3) also support the low IoU rate achieved for that dataset
(due to the patterns of the walking surface).

5.5 Conclusion and future work

As the main contribution, this study investigated the feasibility of incorporating a body-
mounted camera data to develop automated markerless models, towards assessing gait in
natural environments. The FootChaser prediction trajectories closely match the ground
truth trajectories in x and y directions, suggesting that the pixel-wise estimation of step
width as well as the detection of abnormal events such as CBRs using FPV data alone are
feasible. Although the usability of the proposed framework requires a deeper investigation,
the findings of the present study advance our long-term objective to extract meaningful
and stable FLDBs, to complement existing IMU-based methods.

In order to validate the performance of the proposed FootChaser framework for the
estimation of step width in older adults, Muldimodal Gait and Fall Risk Assessment in
Clinic (MAGFRA-C) dataset [1 2] was prepared (not presented in this thesis). This dataset
includes criterion (gold) standard measures recorded by Vicon motion capture system.
Older adults walked over a treadmill while wearing a waist-mounted egocentric camera
(GoPro), and multiple IMU devices (AX6, Axivity, Newcastle upon-Tyne, UK), affixed
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Figure 5.6: Time series plot of X coordinate center of the most confident proposed foot
regions (PFR, blue) predicted by the FootChaser framework for dataset 2. Ground truth
(GT) for the left and right feet are plotted in green and red, respectively. Spikes represent
compensatory balance reactions (CBRs) performed by the participant.
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to both wrists, lower-back, both legs, head, pelvis, and the camera). Vicon markers were
placed on the feet (center) and on IMUs. Outside of the scope of the current thesis, future
research will compare the pixel-wise outputs of FootChaser with the x and y coordinates
of feet centers recorded by the Vicon system. Therefore, using these data, another model
can be developed to directly convert the pixel-wise results of the FootChaser into the
commonly-used distance units (e.g., m or cm).

Given massive amounts of unlabeled FPV data that aim to be collected during
longer-term studies, approaches need to be developed that can robustly handle significant
diversity in movement patterns (e.g., rhythm, speed), different populations (e.g., older
fallers), and varying clothing and footwear appearance. To address these aspects, similar
to [23], we aim to personalize both of the FootRegionProposer and LocomoNet ConvNets
and introduce an adaptive pipeline (i.e., AdaFootChaser) in our future work.
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Chapter 6

Egocentric vision-based detection of
surfaces: Towards context-aware
free-living digital biomarkers for gait
and fall risk assessment

As discussed in Chapters 1 and 2, although IMU-based free-living digital biomarkers
(FLDBs) can be impacted by both intrinsic and environmental features [193, 32, ],
their respective impacts on FLDBs’ fall predictive powers have not been differentiated
[122]. For instance, higher variability in acceleration signal (measured by the amplitude
of the dominant frequency in the mediolateral direction, as a FLDB) during gait could
indicate appropriate adaptation to the environment [201] (and potentially a lower risk of
falls) and/or exhibit gait impairment (and potentially a higher risk of falls) [20]. Similarly,
frequent missteps detected in free-living IMU data can be an indicator of impaired dynamic
balance control (and a higher risk for falls [$2]) and/or false alarms generated by anticipa-
tory locomotion adjustment while walking on an irregular terrain (e.g., construction site as
discussed in the previous chapter, see section 4.4). This ambiguity in interpretation leads
to less precise intervention strategies to prevent falls.

!The content of this chapter is mainly obtained from the following unpublished research work (journal
submission and currently in the review process): Nouredanesh, M., Godfrey, A., Powell, D., & Tung,
J. 7Egocentric vision-based detection of surfaces: Towards context-aware free-living digital biomarkers for
gait and fall risk assessment”
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A context-aware free-living FRA would elucidate the interplay between intrinsic and
environmental risk factors and clarifies their respective impacts on fall predictive powers
of FLDBs. This would subsequently enable clinicians to target more specific interven-
tion strategies including environmental modification (e.g., securing carpets and eliminating
tripping hazards) and/or rehabilitation interventions (e.g., training to negotiate stairs and
transitions). Ideally, a context-aware free-living FRA method would be capable of exam-
ining the relationships between the frequency of falls, FLDBs, and different environmental
fall-related features such as presence of dynamic obstacles (e.g., pedestrians, pets), unsta-
ble furniture, lighting condition, and terrain types. As a step towards this longer-term
goal, the focus of the present chapter is to develop an automated method to differentiate
between different walking surfaces commonly observed in everyday environments.

6.1 Related research

A wrist-mounted voice recorder was previously utilized to capture contextual information
following misstep events (trips) [56], which could be limited to observations made by the
user and may lack spatial and temporal resolution. To objectively identify terrain types,
several studies examined the feasibility of using wearable IMU data recorded during gait
[58, 71, 72]. For instance, machine learning models achieved 89% accuracy (10-fold cross-
validation) to detect six different terrains including soil and concrete using two IMUs in [58].
These studies investigated datasets mostly sampled from young participants in controlled
conditions (i.e., walking repetitively over a few surface types with constant properties), and
primarily reported machine learning models’ holdout or k-fold cross-validation measures.
However, cross-validation approaches such as leave-one-subject-out (LOSO) or models’
assessment using independent test and training datasets represent a more reliable picture
of models’ robustness against inter-participant differences and generalizability to unseen

data [125, ]. Appendix C reports the drastic difference between the k-fold and LOSO
results of machine learning models implemented using the same IMU data (open access
dataset [101]) to differentiate between the walking patterns over stairs, gravel, grass, and

flat /even surfaces.

Egocentric or first person vision (FPV) data recorded by wearable cameras affords the
ability to provide rich contextual information more readily than IMU-based data alone
[127]. In [185], seven days of data were collected from fallers and controls during daily ac-
tivities using ankle-mounted IMUs and a neck-mounted camera. Subsequently, the frames
attributed to walking bouts were investigated and annotated manually. The most frequent
terrain type manually identified for all participants were outdoors on pavement, indoors
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on carpet and polished or hardwood flooring. Other terrain observations included grass,
gravel, and multiple environments. However, the manual identification of walking surfaces,
especially in large-scale free-living studies, is a laborious and inefficient process. To advance
the field of free-living FRA and gait assessment, there exists a need to develop automated
vision-based methods for terrain type specification.

Automated vision-based methods for terrain type identification have been investigated
in other fields of assistive technology and robotics. For instance, in [3] head-mounted cam-
era data were used for adaptive control of legged (humanoid) robot’s posture and dynamic
stability on different terrains. Engineered features such as intensity level distribution,
complex wavelet transform, and local binary pattern were extracted and a support vector
machine model was developed to categorize 1,000 training images to three classes: (a)
hard (e.g., tarmac, bricks, rough metal); (b) soft (e.g., grass, soil, gravels, snow, mud);
and (c) unwalkable (static and moving obstructions). Although useful, this approach may
not provide sufficient descriptive information to inform FRA. For instance, while snow,
gravel and grass were considered into the same class, they would be expected to induce
different patterns of gait. A relatively high accuracy of 82% was achieved when the model
was applied to a 40-second video. However, this approach’s high computational cost was
considered a limitation. Elsewhere, to control a powered prosthetic leg, a camera and IMU
were mounted on the prosthetic and the relationship between image sharpness and accel-
eration was considered to trigger the camera [36]. Twenty minutes of data were collected
from 5 able-bodied participants walking over 6 different types of terrain (asphalt, carpet,
cobblestone, grass, mulch, and tile). Using a bag of word approach (SURF), an average
classification accuracy of 86% was achieved based on 5-fold cross-validation. Deep learning
approaches have shown strong potential to outperform engineered and bag-of-word-based
approaches from many aspects, particularly inference time and accuracy [169, |. By
integrating both order-less texture details and local spatial information, a Deep Encoding
Pooling Network model was developed [207]. The model was trained on the images in
Ground Terrain in Outdoor Scenes (GTOS) dataset [203], and tested on GTOS-mobile
dataset. The former contains 30,000 images across 40 outdoor terrain classes captured by
a camera mounted on a mobile exploration robot with a fixed distance between the camera
and the ground. GTOS-mobile data was captured by a mobile phone and with more flexible
viewpoint, still relatively close to the ground. Although promising results were achieved,
due to low intra-class diversity, limited viewpoint, and restriction to outdoor terrains, the
GTOS(-mobile) models may not be generalizable to address the problem of terrain identi-
fication in complex everyday environments. More relevant to the context of FRA, data of
a chest-mounted camera and Gabor Barcodes [128] were used to automatically detect 17
environmental fall-related features such as slope changes (e.g., ramps) and surfaces (e.g.,
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gravel, grass). Although high (88.5%) accuracy was achieved, the incorporated dataset was
restricted to young adults, limited to public environments lacking at-home data. Moreover,
only k-fold cross-validation results were reported.

To address the previous research works’ limitations, this paper employs a unique
dataset, i.e., Multimodal Ambulatory Gait and Fall Risk Assessment in the Wild
(MAGFRA-W), collected from older non-fallers and fallers in out-of-lab conditions and
presents a vision-based deep framework to classify level walking surfaces (see Fig. 6.1). To
maximize the framework’s generalizability and minimize its dependence on sample size, an
independent training dataset with high intra-class variance was formed by curating data
from relevant datasets, such as GTOS (section 6.2.3). The curated dataset includes the
following 8 classes (a) outdoor: pavement, foliage/grass, gravel, soil, and snow /slush and
(b) indoor: high-friction materials, tiles, hardwood flooring. Subsequently, the framework’s
generalizability to older adults’ data and its robustness against inter-participant differences
were assessed (e.g., using LOSO cross-validation). The proposed framework provides one of
the first investigations into the contextualization of free-living gait and fall risk assessment
in older adults.

6.2 Materials and Methods

6.2.1 Recruitment and data collection

The project received ethics approval (reference number: 17589) from Northumbria Univer-
sity Research Ethics Committee, Newcastle upon Tyne, UK. All participants gave written
informed consent before participating in the study.

Using wearable IMUs, cameras, and a motion capture system, a unique dataset, Multi-
modal Ambulatory Gait and Fall Risk Assessment (MAGFRA), was collected from fallers
and older non-fallers in laboratory/clinic (MAGFRA-C) and/or in the wild (MAGFRA-W)
[124]. In the present study, FPV data from nine participants (2 males, 7 females, mean age
~T73.6 yrs, 3 fallers based on the number of self-reported falls in the previous 12 months)
from MAGFRA-W dataset were used. Participants are referred to as 'P’ (P1 to P9) in this
chapter (see Table 6.1). One participant’s age was below 65 yrs, but as the person was a
recurrent faller, the associated data were considered for further analysis.

Considering our previous findings [128, |, it was hypothesized that a waist-level
camera would offer a greater resolution of the feet and texture of surfaces than views
higher on the body (e.g., a chest-level camera) for the purpose of informing free-living
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Figure 6.1: The proposed framework consists of two models: (a) EgoPlaceNet, which classifies scenes
(one 1080 x 1080 region for each frame cropped randomly either from right or left corner, the blue square)
into indoor and outdoor, and (b) EgoTerrainNet, with Indoor and Outdoor versions, which classifies two
453%x453 (red squares) and 1080x 1080 patches based on the enclosed terrain type.

FRA. Moreover, as discussed in Chapter 5), waist level views offer a consistent view of the
feet even during sharp turns [127]. In contrast, head- and leg-mounted views tend to rotate
in anticipation of turns or shift in attention, which reduces views of the feet and the terrain
underneath and increases risk of motion blur [3, 36]. Thus, video data were collected using
a GoPro Hero 5 Session or Hero 6 Black camera (30 fps, 1920x1080, wide view, except
for P2 and P3 as marked by x in tables, see section 6.2.2), centered at each participant’s
waist by means of a belt attachment. The camera was set up to capture top-down views of
feet and the regions around them, with no calibration or a strictly reproducible placement
procedure on camera’s angle with respect to the frontal plane.

Data collection was performed in (a) public environments within Northumbria Univer-
sity, during which participants had to navigate through different indoor and/or outdoor
environments while walking alongside a researcher (the walking paths were not predefined
for participants to allow capturing different environmental features), or (b) participants’
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homes or their neighbourhood (for P2, P3, P6 and P8) for between 1-2 hours with no
researcher in attendance. Data collection in outdoor environments was performed during
daylight hours. Two participants used a cane/stick during the data collection. P3 and P6
were living in the same home as marked by f in tables.

Table 6.1: The distribution of annotated crops/frames over different classes. * : camera
was unintentionally mounted upside-down by the participants or was set to take photos
(not videos) resulted in smaller sample size, T : Participants living in the same home, HFM:
high-friction materials.

Outdoor Terrain Patches Indoor Terrains Patches In/Out frames

Pavement|Foliage|Gravel |Soil||[HFM| Tile Wood Outdoor|Indoor

Py 5101 153 0 |39 (2078|444 0 2884 | 1284
Py - - - - || 106 | O 0 0 106
P 51 8 0 3 || 60 | 16 0 51 71
Py 3351 45 0 0 ||1674| 611 0 1724 | 1197
Py 1945 107 | 258 | 0 |[1523|343 0 1250 | 960
2 78 29 0 0 || 261 | 241 0 232 319
P; 2053 159 | 351 | 0 ||1079|226 47 1283 | 714
Pq 6239 151 0 0|l 427 | O 312 3451 | 767
Py 0 0 0 0 || 987 | 351 0 0 681
Total| 18818 652 | 609 |42 ||8195|2232 359 10875 | 6099

6.2.2 Preprocessing

Gait/ambulatory bout definition is highly inconsistent in the literature, but is often de-
fined as any walking >3 steps [122]. In the MAGFRA-W dataset, FPV data attributed
to level walking bouts >3 steps (stairs ascending/descending episodes were excluded) were
taken into account for annotation. FPV data collected during short pauses/stances be-
tween longer walks were not necessarily excluded. Frames attributed to the identified gait
bouts were sampled at 6 Hz using MATLAB R2019b. Compared to 1/15 Hz in previous
work [185], this sampling rate was appropriate to capture changes in environment during
gait. FPV data for P2 and P3 (marked by * in tables) were accidentally collected with a
lower sampling rate (resulting in a smaller quantity of annotated images, Table 6.1) and a
higher resolution. Therefore, the subsequent frames were resized to align with the rest of
data. Additionally, P2, P3 and P6 wore the camera upside-down (marked by = in tables).
Subsequently, a rotation was applied to permit comparisons with other data.
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All sampled frames and image patches used for models development are in the RGB
color space (e.g., 3x1920x1080), however, for simplicity, 3%’ is removed here when de-
scribing the dimensions.

6.2.3 Considerations for the framework’s structure and annota-
tion of MAGFRA-W data

Two-layer framework vs end-to-end approach

Depending on the phase of gait and camera angle with respect to the frontal plane, a portion
of the frames captured by a waist-mounted camera can be obscured by lower extremities
and/or hands (see Fig. 6.2, Fig. 6.4, and Fig. 6.5). For instance, in Fig. 6.5-narrow outdoor
path, a considerable portion of the frame is covered by participants’ blue jeans. In this
case, it can be hypothesized that the color of pants/clothing may impact the prediction of
an end-to-end model when the full frame, rather than its specific regions, is fed as input.

To address this, frames were investigated to identify robust regions in terms of the
provision of terrain-related visual features. Two 453x453 patches cropped at (267,0) and
(1200,0) in 1920x1080 frames (Fig. 6.1) showed minimal overlap with upper and lower
extremities during walking, which were initially considered as representatives of surfaces
underneath the participants’ left and right feet, respectively. These two patches were
primarily cropped from all frames attributed to gait bouts.

From visual inspection of cropped patches, it was observed that 453x453 regions at-
tributed to different indoor and outdoor surfaces can resemble each other closely in terms
of colour and texture (Fig. 6.2), which may lead to a low classification accuracy. Moreover,
it was noticed that due to the higher complexity of indoor scenes (compared to outdoor
scenes), there could be a higher likelihood of overlap between the two 453x453 indoor
patches with objects occluding views of the terrain such as walls or furniture. Thus, two
larger 1080% 1080 regions cropped at (0,0) and (840,0) (Fig. 6.1 and Fig. 6.4) were con-
sidered as better representatives of indoor terrains. The smaller outdoor and larger indoor
patches were also more similar to the images in GTOS and Material in Context (MINC)
[8]) datasets, respectively, which were further considered to form an independent training
dataset (dicsussed in subsection 6.2.3).

The aforementioned points necessitated the development of a two-layer framework,
rather than an end-to-end approach (8-class classification considereing all terrain types),
to first categorize frames based on their location into indoor and outdoor classes. The
first-layer’s (i.e., FgoPlaceNet model) prediction further determines the frames’ regions
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that need to be cropped and fed into the second layer (i.e., EgoTerrainNet-Outdoor or
-Indoor models) for terrain type identification (see Fig. 6.1).

Annotation of MAGFRA-W FPYV data

Using MATLAB R2019b, 453x453 and 1080x 1080 regions were cropped from outdoor (at
(267,0) and (1200,0)) and indoor frames (at (0,0), (840,0))), respectively. Outdoor crops
were annotated as: (a) pavement (e.g., outdoor tiles, bricks, asphalt and cement), (b)
gravel/stone (including pebble, shale), (c) soil, (d) grass/foliage; and the indoor patches
were grouped as (a) high friction materials (including carpet, fabric, laminate flooring, gym
surfaces), (b) indoor tiles, and (c¢) wood (Fig. 6.4 and Table 6.1). Less than two patches
were annotated for frames that either considerably overlapped with non-terrain materials
(e.g., walls), had fully occluded field of view, or with unknown terrain type due to poor
lighting (=~ 7% and 11% of outdoor and indoor patches remained unlabeled, respectively).

Assessing and augmenting models’ generalizability

As discussed in section 6.1, high accuracies obtained from holdout and k-fold approaches
may not necessarily indicate model’s generalizability and robustness against environmental
and/or inter-individual differences. Moreover, while MAGFRA-W data possesses high
intra-class variance (see Fig. 6.4), surfaces may differ significantly from one older adult’s
home to another (e.g., carpet comes in a wide range of colours, patterns, and textures).
As collecting a sufficient sample to capture this heterogeneity across older adults’ everyday
environments may not be feasible, similar to Chapter 5 [127], it was hypothesized that
curating a training dataset from other (sufficiently similar) databases could increase intra-
class variance, in terms of textures, colours, geometry, lighting conditions and clutter,
and reduce the possible propensity to sample size bias. Subsequently, the framework’s
generalizability to unseen datasets could be improved. The procedure for curating the
training dataset is discussed in subsection 6.2.3.

The LOSO cross-validation approach (which was used in Chapter 4) was considered
as the next best to evaluate the framework’s generalizability and robustness against inter-
participant variance, for which the MAGFRA-W dataset alone was used for training.
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Figure 6.2: Patches cropped from right or left parts of sample frames: (a) laminate flooring (high-friction
material), (b) asphalt, (c¢) carpet (high-friction material), (d) partial view of furniture. Although the type
of the walking surfaces are different, the 453 x 453 patches are very similar in terms of color and texture.
FEgoPlaceNet was adopted to classify frames into outdoor and indoor before terrain type identification to
improve the framework’s performance.

Independent training dataset A separate dataset was curated from other resources
including public datasets: MINC-2500 (or MINC here) [3], GTOS datasets [208, 207]?,
and HUJI EgoSeg (or 'EgoSeg’ here) [116, 117]3, 4. These datasets complement each other
to address identification of various terrain types observed under free-living conditions®.
For instance, while the MINC-2500 dataset does not contain images of asphalt, there
are asphalt and stone asphalt classes in GTOS (which includes outdoor terrain patches
only). Moreover, although there are 2,500 images of carpet, wood and tiles in MINC-2500,
only a small proportion resemble the images that could be taken from a top-down view.
Considering a large proportion of images in MINC-2500 are irrelevant to MAGFRA-W
(e.g. furniture, or cabinet in class 'wood’), only relevant images from MINC-2500 were
selected (e.g., 445/2500 from wood as hardwood flooring, see Table 6.2).

2Xue, J., Zhang, H., Dana, K., & Nishino, K. (2016). Differential Angular Imaging for Material
Recognition. arXiv e-prints, arXiv-1612.

3Poleg, Y., Ephrat, A., Peleg, S., & Arora, C. (2016, March). Compact cnn for indexing egocentric
videos. In 2016 IEEE winter conference on applications of computer vision (WACV) (pp. 1-9). IEEE.

“Poleg, Y., Arora, C., & Peleg, S. (2014). Temporal segmentation of egocentric videos. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2537-2544).

5Appendix D shows the preliminary test results of EgoTerrainNet-Outdoor and -Indoor fine-tuned on
(a) a subset of GTOS and (b) all 2,500 images of 'wood’, ’carpet’, and ’tiles’ in MINC-2500, when applied
to MAGFRA-W. The results suggest that one dataset alone may not result in generalizable models.
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As mentioned in section 6.1, images in GTOS were collected while the camera-ground
distance is much smaller than the height of the waist-mounted camera. This field of view
resulted in very low complexity and intra-class variance in GTOS (e.g., pedestrian’s feet
were observed in the image) compared to the higher view in MAGFRA-W and may reduce
the prospects for generalizability to everyday terrains. Although there are 40 different
classes of outdoor terrains in GTOS, differentiating between each may not provide rele-
vant additional information for gait assessment and free-living FRA. For example, separate
GTOS classes of asphalt, cement, or pavement bricks may not result in substantially differ-
ent walking patterns. Thus for the purpose of this study, images from the relevant classes
were combined.

To further address the limitations of MINC-2500 and GTOS, the suitability of several
FPV-based datasets (e.g. EPIC-Kitchens 2018 [29]) was examined. Among public FPV
datasets, EgoSeg was considered a suitable candidate, as the camera wearers walked in
diverse outdoor environments. EgoSeg video data were collected from a head-mounted
GoPro Hero3+ camera during a range of activities (e.g., walking, riding bus, driving).
After resizing 720p frames to 1920x 1080, patches of 453 x453 were cropped from the lower-
central, right, and left parts of the resized frames. Considering head-mounted cameras may
not provide a consistent view of terrain, only a handful were annotated and included.

As GTOS and MINC-2500 datasets contain no images of snow/slush-covered terrains,
a smartphone at waist level was used to capture videos of slush- or snow-covered terrains
by the authors. Patches (453x453) were cropped from the right and left corners of the
frames and added to the training dataset. Although this snow/slush class may not have
representatives in the test dataset (MAGFRA-W), snow-covered terrains are frequently
observed in regions with low average yearly temperature, impact gait patterns and are a
potential risk factor for falls. Therefore, adding this class would improve the framework’s
relevance and generalizability.

Overall, 3,651 and 5,773 image patches were extracted from the aforementioned datasets
to form training datasets for indoor and outdoor surfaces, respectively. The distribution of
patches extracted from different datasets as well as sample patches for snow/slush has been
shown in Table 6.2. The open access image/FPV datasets discussed here can be accessed
and viewed from their corresponding data repositories.
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Table 6.2: Training dataset, the relevant images, mostly from top-down view, were either
extracted from available datasets, MINC-2500, GTOS and EgoSeg, or collected by the

authors.

| Total |IMINC-2500|GTOS(-Mobile) |EgoSeg| Author
Outdoor
Pavement  (Asphalt|1503 250 (brick) [591 (brick+ asphalt+ ce- 662
/Brick/Cement) ment+ stone asphalt +

stone cement)

Foliage/Grass 1382 0 1227 (turf+leaf+grass) 155 0
Gravel /Stone 1266 0 1266 (pebble+shale) 0 0
Snow 323 0 0 0 323
Soil 1299 1230 69 0
Indoor
High-friction materials|2184 (e.g., fabric and 2184 |- - -

carpet (top-down

view))
Wood (top-down view)|445 445 - - -
Indoor tiles (top-down|1018 810 - 208 -
view)

Snow/Slush

~

\

n

Figure 6.3: Sample patches representing class 'slippery/snow’, the data was captured from
a smartphone from waist level.



High-friction materials

Tiles _
Outdoor

Figure 6.4: Sample patches from MAGFRA-W dataset. Outdoor patches were cropped at (267,0) and
(1200,0) from the 1920 x 1080 outdoor frames during gait. 1080 x 1080 regions were cropped from upper
left and right corners for indoor scenes. These dimensions were carefully selected to be compatible with
the datasets used to train EgoTerrainNet-Outdoor and -Indoor.

6.2.4 Pre-trained ConvNets

Considering the size of the curated training dataset and MAGFRA-W (also used for train-
ing in the LOSO approach), training a deep ConvNet from scratch was not feasible. There-
fore, the transfer learning approach [137] was considered. This subsection discusses the
criteria for selecting the backbone models (ConvNet pre-trained on a large-scale dataset)
for EgoPlaceNet and EgoTerrainNet.

For applications in prosthestics and exoskeleton, the real-time detection of environmen-
tal features is a critical part of the control loop. While on-device detection of environmental
features is not necessary for the purpose of FRA, this allows processing of frames with-
out the need for storing videos, and may subsequently mitigate privacy and ethical issues
associated with FPV data use. By benchmark analysis of state-of-the-art deep neural
network architectures (in terms of accuracy, size of the learnable parameters, memory
usage, computational complexity using the floating-point operations, and inference time),
SqueezeNets, MobileNets, ResNet-18, GoogLeNet, and AlexNet achieved optimal real-time
performance, while no significant relationship between model complexity and recognition
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accuracy was reported [12]. Building upon the idea of depth-wise separable convolution
from MobileNetV1 [70], MobileNetV2 pushed the state of the art for mobile image clas-
sification [164] using the inverted residual with linear bottleneck as a novel layer module.
This resulted in faster and more accurate performance while using ~ 30% fewer param-
eters compared to MobileNetV1. Therefore, MobileNetV2 pretrained on ImageNet [163]
was considered as the initial candidate for backbone models in our study.

In contrast to ImageNet categories, where indoor and outdoor scenes were not sepa-
rated, images in Places365 dataset [212] were categorized into indoor and outdoor macro-
classes (e.g., indoor and outdoor categories for ice skating rink) and the models were trained
on millions of scene photographs. Therefore, deep networks trained on this dataset have
learned different feature representations for a wide range of indoor and outdoor images com-
pared to ImageNet, and hypothesized to be a better candidate for FgoPlaceNet. Among the
available pre-trained deep models on Places365 dataset®7, e.g., AlexNet (over 60 million
parameters for 227 x 227 images, 8 layers, [90]), GoogLeNet (/12 times fewer parameters
compared to AlexNet, 22 layers [183]) model was considered as the backbone model for
EgoPlaceNet. Fine-tuning procedures for all models are discussed in section 6.2.5.

6.2.5 Experiments

The first classifier, EgoPlaceNet considers full FPV frames to determine their location (in-
doors vs outdoors) in a binary classification problem. As discussed in subsection 6.2.4,
GoogLeNet pre-trained on Places365 was selected as the backbone for EgoPlaceNet. To
maintain 1:1 aspect ratio for each of the indoor (6,099) and outdoor (10,875) frame (Ta-
ble 6.1), a 1080x 1080 region was randomly cropped either from the top right or top left
corners of the down sampled 1920x1080 frames (1 crop for each frame), Fig. 6.1, blue
squares .

To assess the generalizability of FgoPlaceNet at different levels, two different train-
ing procedures were considered. In FEgoPlaceNet.vl, the GoogleNet pre-trained on
Places365, was fine-tuned on indoor and outdoor images in the curated training dataset (de-
scribed in 6.2.3). Secondly, LOSO cross-validation (EgoPlaceNet.LOSO,,, n ={1,...,9})
was performed to investigate robustness against inter-participant variations, where the
GooglLeNet-Places365 was fine-tuned based on the dataset acquired from 8 participants,
and tested on the remaining data from one participant. The GooglLeNet-Places365 models
were fine-tuned by freezing the weights of 10 earlier layers in the network.

Shttps://github.com/CSAILVision /places365
"https://www.mathworks.com/help/deeplearning/ref/googlenet.html
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For EgoTerrainNet-Outdoor and -Indoor versions, MobileNetV2’s were fine-tuned using
the curated training dataset discussed in 6.2.3, by replacing the last fully connected layer
and the final classification layer of the network.

Depending on the model (i.e., EgoPlaceNet.LOSO,,, EgoPlaceNet.v1, EgoTerrainNet-
Outdoor, EgoTerrainNet-Indoor) the relevant training dataset (e.g., indoor or outdoor,
as discussed in section 6.2.3, or remaining 8 Ps for FgoPlaceNet.LOSO,,) was randomly
divided into training (70%) and validation (30%) with images resized to 224x224. Exper-
iments were performed on a workstation (Intel(R) Core (TM)i7-6700, 3.4GHz with Nvidia
GeForce GTX 750 Ti), with MATLAB R2019b. The mini-batch sizes of K = 10 and K =
64 were used (due to the limited memory), for FgoPlaceNet and EgoTerrainNet, respec-
tively. Epochs were set to 8; however, the training procedure was terminated manually in
some cases if no change was observed in validation loss/accuracy (validation patience was
set to 20).

The initial learning rate of v = 0.01 for EgoTerrainNet-Outdoor and -Indoor and
v = 3e-4 for EgoPlaceNet models resulted in the best validation accuracies. Stochastic
gradient descent with momentum was considered as the optimization method. Moreover,
the following hyperparameters were employed: momentum: 0.9, .2 Regularization: 1le-4,
gradient threshold method: L2 norm, and decay rate of 0.0005. To further address the
problem of a small dataset, improve the generalization of the network, data were augmented
by including random crops, translation, rotation € [—20 + 20] deg (accounting for changes
in camera orientation during gait) and vertical reflection/flip over y axis. Considering the
viewpoints of images in the training dataset as well as data captured by a belt-mounted
camera, horizontal reflection was not considered for augmentation.

6.3 Results

During the training process, the validation accuracies of 93.97%, 98.19% (mean over par-
ticipants), 99.23%, and 85.26% were achieved for EgoPlaceNet.vl, EgoPlaceNet.LOSO,,
EgoTerrainNet-Outdoor and Ego TerrainNet-Indoor, respectively.

The EgoPlaceNet.v1 resulted in (mean-over-participant) test accuracies of 91.14% and
78.04% (Table 6.3) for the detection of outdoor and indoor scenes in MAGFRA-W, re-
spectively. However, these rose to 97.36% and 95.59% when LOSO cross-validation was
performed (9 models, EgoPlaceNet.LOSO,,).

Confusion matrices and per-class detection accuracies for each participant were exam-
ined separately to better assess the impact of inter-participant differences, colour of cloth-
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ing, camera placement, and environmental features on models’ performance (Table 6.4).
Therefore, although the distribution of image patches over classes were different for par-
ticipants, due to the aforementioned points, the mean-over-participant detection accuracy
for each class was considered as a more suitable metric compared to overall detection accu-
racy for each class (e.g., total true positives from all participants for class 'pavement’/total
number of patches labeled as "pavement’ from all participants).

Table 6.3: Results for EgoPlaceNet: 1. validation accuracy of 93.97 was obtained
for EgoPlaceNet.v1, which was fine-tuned on the selected training dataset from MINC-
2500+EgoSeg+GTOS, tested on MAGFRA-W. 2. for participant n EgoPlaceNet-LOSO,,
was trained on the data from the other 8 participants and tested on the data from n.

EgoPlaceNet.vl EgoPlaceNet-LOSO,,
Out In LOSO,. Out In
P 9126  78.12 98.32 99.10 99.92
Ps - 90.57 98.35 - 100
P;1(84.31  88.73 98.70 94.74 98.59
Py (9954  72.60 98.33 99.83 98.16
Ps (7728  77.81 98.07 98.16 99.69
Pg 93.53  77.12 99.08 95.69 83.39
P; (99.22  53.64 97.68 99.84 94.12
Ps (9290  84.22 99.61 94.20 99.74
Py - 79.59 95.58 - 86.78
mean|91.14  78.04 98.19 97.36 95.59

EgoTerrainNet-Outdoor exhibited satisfactory performance (mean-over-participant
accuracies) for the identification of pavement (87.63%), grass/foliage (91.24%), and
stone/gravel (95.12%). However, it failed to detect soil (Table 6.4). EgoTerrainNet-Indoor
detected high-friction materials including carpet and laminate flooring with a high ac-
curacy (mean over participants: 95.02%). However, the mean-over-participant accuracies
drastically decreased to 71.15% and 64.76% for tiles and wood, respectively. While tile iden-
tification accuracy was high in most participants (P1: 88.51%, P4: 94.93%, P5: 90.96%,
P7: 88.05%, P9: 92.88%), the results of P3 (0%) and P6 (42.74%) decreased the mean
accuracy for tile detection. It was interesting as the color of tiles in P3’ and P6’s home
was grey, and similar to some sample patches from other participants’ data (see Fig. 6.4
and 6.5). Similarly, wood identification achieved a high and low accuracies for P7 (93.62%)
and P8 (35.90%), respectively.
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6.3.1 Deeper analysis of lower accuracies

Results marked by A in Table 6.4 are further discussed in this subsection.

First, pavement is mainly confused with soil (e.g., in P8) and snow (e.g., P1). In P1’s
data, the 453x453 patches overlapped with regions of pavement with white paintings/street
signs (Fig. 6.5), which could be confused with snow. Moreover, many images in asphalt and
soil classes in the curated training dataset EgoTerrainNet-Outdoor (section 6.2.3) share
similar visual features such as colour and texture, which partially explains the aforemen-
tioned confusion.

Samples in soil were mainly confused with grass/foliage in P1. In P1’s data, soil was
frequently mixed with or covered by grass/foliage (Fig. 6.5). Considering the lack of a
standard definition for the annotation of patches, either grass/foliage or soil may have
been assigned to those patches, which may explain the subsequent results.

The camera’s field of view during free-living data collection in P3’s and P6’s home
was heavily occluded by participants’ clothing (e.g., blue pants/jeans). In addition to
covering the tiles texture, the participants’ clothing likely confused EgoTerrainNet-Indoor
to classify tiles as high-friction material (e.g., fabric/carpet) (see Fig. 6.5). The images
were also blurry in many cases (Fig. 6.5), concealing the texture of tiles in the subsequent
images.

The lower wood detection accuracy for P8, compared to P7, could be attributed to poor
lighting conditions in the former’s home (Fig. 6.5). The image patches attributed to 'wood’
for this participant were mainly categorized as high-friction materials, likely because the
texture of wood was not differentiable in the subsequent 1080x 1080 patches due to poor
lighting condition.

Table 6.4: Confusion Matrices at participant level: for EgoTerrainNet-Outdoor and -Indoor,
MobileNetV2’s pre-trained on ImageNet dataset were fine-tuned. The validation accuracies
for -Outdoor and -Indoor versions were 99.23 and 85.26, respectively. x : camera was
unintentionally mounted upside-down by the participants or was set to take photos (not
videos), 1 : Participants living in the same home, HFM: high-friction materials, A: cases
that are discussed in 6.3.1

Outdoor Indoor
Pavement|Foliage|Gravel |Soil|Snow|Accuracy HFM|Tile|Wood|Accuracy
P, ||Pavement| 4446 4 0 3 1648 87.16 ||HFM|1962| 52 | 64 94.42
Foliage 34 113 0 0| 6 | 73.86% | Tile | 31 [393| 20 88.51
Gravel 0 0 0 0 0 - Wood| 0 0 0 -

105



Soil 16 21 0 |2] o0 | 5138 -

P; ||Pavement - - - - - - HFEM| 103 | 0 3 97.17
Foliage - - - - - - Tile | O 0 0 -
Gravel - - - - - - Wood| 0 0 0 -

Soil - - - - - -

Ps1||Pavement 47 3 1 0 0 92.16 ||HFM| 58 | 0O 2 96.67
Foliage 1 7 0 0 0 87.50 Tile | 15 | 0 1 04
Gravel 0 0 0 0 0 - Wood| 0 0 0 -

Soil 3 0 0 0] 0 04 -

P, ||Pavement| 3010 5 5 42| 289 | 89.82 ||[HFM|1607| 34| 33 96.00
Foliage 0 45 0 0 0 100 Tile | 29 [580| 2 94.93
Gravel 0 0 0 0 0 - Wood| 0 0 0 -

Soil 0 0 0 0 0 -

P ||Pavement| 1769 0 17 2 | 157 | 90.95 ||HFM|1500| 16 7 98.49
Foliage 0 107 0 0 0 100 Tile | 30 |312| 1 90.96
Gravel 8 0 249 | 0 1 96.51 |[|[Wood| 0 0 0 -

Soil 0 0 0 0 0 -

Pg* Pavement 63 0 0 0| 15 80.77 ||HFM| 256 | O 5 98.08
Foliage 1 26 0 2 0 89.66 Tile | 131 [103| 7 42.74%
Gravel 0 0 0 0 0 - Wood| 0 0 0 -

Soil 0 0 0 0 0 -

P; ||Pavement| 1731 11 48 2 | 261 | 84.32 ||[HFM|1023| 12 | 44 94.81
Foliage 9 150 0 0 0 94.34 Tile | 19 [199| 8 88.05
Gravel 21 1 329 | 0 0 93.73 ||Wood| 3 0| 44 93.62

Soil 0 0 0 0 0 -

P ||Pavement| 5506 228 5 1329|171 | 88.25 ||HFM| 357 | 5 65 83.61
Foliage 4 141 6 0] 0 93.38 Tile | O 0 0 -
Gravel 0 0 0 0 0 - Wood| 183 | 17 | 112 | 35.90%

Soil 0 0 0 0 0 -

Py ||Pavement - - - - - - HFEM| 947 | 31 9 95.95
Foliage - - - - Tile | 25 [326] O 92.88
Gravel - - - - - - Wood| 0 0 0 -

Soil - - - - - -

6.4 Discussion/Conclusion

This paper proposes an egocentric vision-based framework to automatically detect indoor
and outdoor level walking surfaces. To the best of the authors’ knowledge, this work is the
first to present a deep learning-based model tested on older adults’ everyday FPV data
towards the development of a context-aware free-living FRA.
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Figure 6.5: Sample frames/patches illustrating conditions challenging the performance of the
proposed framework.

The MAGFRA-W dataset offers a considerable diversity in terms of terrain types, feet
appearance (e.g., shoes with different colours, barefoot, socks, slippers), and gait patterns
(e.g., using walking aids) leading to more ecologically valid classification results compared
with data collected in controlled conditions. After investigating the participants’” FPV
data and other relevant public datasets, a two-layer structure was considered superior to
an end-to-end approach for terrain type identification. Subsequently, the training and test
datasets were prepared according to this hypothesis. Overall, it can be concluded that
aggregating FgoPlaceNet trained on outdoor-indoor images captured by a belt-mounted
camera, followed by EgoTerrainNets trained on an independent dataset leads to the best
terrain identification performance in terms of accuracy and generalizability.

To train and test FgoPlaceNet and FEqgoTerrainNets, several approaches could have been
considered: (a) holdout and k-fold cross-validation, (b) LOSO using MAGFRA-W, or (c)
using MAGFRA-W as the test dataset and incorporating an independent (but sufficiently
similar) training dataset for fine-tuning deep models. Considering that the discrepancy be-
tween the distributions of training and test datasets in approach (c) avoids the generation
of unrealistically high accuracies, we considered this option to be superior. Furthermore,
option (c) is aligned with previous research work presented in Chapter 5 [127] and rep-
resents a pragmatic picture of the proposed framework’s generalizability. Option (b) was
considered as the next best to evaluate the framework’s robustness against inter-participant
differences.

To form an independent training set for approach (c), relevant images (or frames)
from different datasets (e.g., MINC-2500, EgoSeg, and GTOS) were selected. The sub-
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sequent fine-tuned ConvNets on this dataset, i.e., FgoTerrainNet-Outdoor and -Indoor,
were applied to specific regions of outdoor (453 x 453) and indoor (1080 x 1080) frames.
Promising results exhibited the models’ generalizability to detecting a broad range of ter-
rains. Although the sample size for the curated dataset was relatively small (9,424 images
overall), the results indicate that this dataset captured a high variations of texture, colour,
and shape in everyday scenes, which bypasses the requirement for prolonged data collec-
tion from a large cohort of older adults to form a heterogeneous training dataset. This
approach also outperformed the models that were solely fine-tuned on one dataset (e.g.,
GTOS or MINC-2500, as shown in Appendix D).

EgoPlaceNet.vl achieved 91.14% and 78.04% detection accuracies for outdoor and in-
door scenes, respectively. The relatively poor performance of this binary classifier supports
the hypothesis that an end-to-end approach, i.e., an 8-class classification problem (more
complex compared to the binary classification) may not exhibit a robust performance if
option (c) is considered. On the other hand, high EgoPlaceNet.LOSO,, accuracies (>95%
for both indoor and outdoor scenes, Table 6.3) confirm the models’ robustness against
variations in participants’ characteristics, camera view and partial occlusions (e.g., lower
extremities, walking aids).

High detection accuracies were consistently observed for pavement, gravel, foliage/grass,
and high-friction materials for all participants. Among the outdoor terrain types, soil had
the lowest detection accuracy as well as a low per-class quantity in MAGFRA-W (only
42 samples, see Table 6.1). Additionally, no sample of snow was found in the MAGFRA-
W dataset. These points necessitate further investigation of FEgoTerrainNet-Outdoor’s
performance using a more inclusive test dataset in future studies. Moreover, while tiles
(in different patterns and colors such as grey, white, see Fig. 6.4) in public environments
were detected with high accuracies (P1, P4-5, P7, P9; ranging from =~ 88% to ~ 95%),
in-home tiles (mostly grey) captured in P3’s and P6’s home were mainly confused with
high-friction materials. The same trend was observed for 'wood’, which was detected with
93.62% and 35.90% accuracies for P7 (public environment) and P8 (in-home), respectively.
As detection of wood and indoor tiles require capturing fine details of terrain textures,
partially-obscured views as well as blurry and /or dark images due to dim lighting conditions
in in-home settings were considered as the primary reasons for this inferior performance. A
similar phenomenon was observed in other studies [39, 195], where image blur/noise led to
a considerable drop in classification accuracies. Methods have been proposed to exclude or
skip blurry images [30, 3], at the expense of heavier computational demand. Other works
have suggested that classification performance of deep architectures could be improved by
fine-tuning the models on blurry images [193]. In [35], authors jointly trained a deblurrer
combined with a high-level computer vision network. Therefore, the integration of similar
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pipelines into the proposed framework in the present study may augment the performance
of EgoTerrainNet-Indoor.

The backbone deep models considered here (i.e., MobileNetV2 and GoogLeNet pre-
trained on ImageNet and Places365 datasets, respectively) were selected based on multiple
criteria and previous comparison studies (discussed in subsection 6.2.4), and exhibited sat-
isfactory performance in terms of detection accuracy. Further investigation using larger-
scale datasets is required to identify the optimal deep architecture addressing terrain type
identification in the wild.

While the collection of FPV data in controlled conditions facilitates the process of
image annotation by providing high quality and consistent data, the complex nature of
everyday scenes captured in the MAGFRA-W dataset challenged the process of image
patch annotation. First, a subset of image patches (7% and 11% of the extracted outdoor
and indoor patches, respectively) remained unlabelled due to their significant overlap with
non-terrain materials such as walls, dim lighting conditions, or obscured views. Therefore,
although the accuracies for FgoPlaceNet and EgoTerrainNet were calculated separately,
the overall framework’s accuracy (the sequential approach) could not be reported. The
addition of class 'others’ [3] in the training dataset could have been considered to address
this limitation, however, the preparation of relevant samples collected from the top-down
view to form this class was out of the scope of the present study. Secondly, in addition to
mix surfaces (e.g., soil and grass in Fig. 6.5), transitions between different locations and
surfaces (see Fig. 6.5) challenged the annotation of ground truth data. For example, while
only one label was attributed to each 1080 x 1080 patch, in Fig. 6.5 (right panel) each
foot is placed on a different surface. Subsequently, both tiles and high-friction materials
could be considered as valid labels for the patch. Such a discrepancy in the annotations
could introduce errors to the reported results. This issue occurred less frequently during the
annotation of outdoor patches, as due to their smaller size (compared to indoor patches) the
enclosed outdoor terrain type was generally more consistent. Considering a belt-mounted
camera’s field of view, a separate 453x453 region was expected to represent the terrain
type around each foot in outdoor scenes. However, there were exceptions. For instance
in Fig. 6.5, a participant is walking on a narrow ’brick-covered’ (€pavement) surface, and
the right and left patches partially overlap with foliage, which is irrelevant to the walking
surface type. In Chapter 5 [127], the FootChaser framework was proposed to localize feet
in the video data captured from a belt-mounted camera for the purpose of gait assessment.
Therefore, rather than cropping frames’ fixed regions (considered in the present study), the
integration of FootChaser model into the proposed framework is expected to allow cropping
more specific regions (with varying sizes) of frames in the proximity of each localized foot.
This may permit a more accurate identification of walking surfaces.
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Considering the preliminary results of [202] and Appendix C (discussed LOSO results)
regarding the feasibility of stair walking detection in older adults using IMU data, the
present study focused on vision-based detection of level walking surfaces. In our future
work, other details of the walking surfaces will be considered. For instance in P4’s mul-
timodal data (IMU and FPV), 1 naturally-occurring (hit/bump) misstep was identified,
during which a light pole was considered as the environmental fall risk. Therefore, algo-
rithms to detect such a static obstacle, as well as other tripping hazards including dynamic
obstacles (pedestrians and pets, Fig. 6.4) and cracks in pavement [211] will be considered
to provide complementary information on the properties of environment, towards a com-
prehensive context-aware free-living gait and fall risk assessment method. Moreover, the
performance of a terrain identification model developed on a multimodal dataset will be
examined.

Overall, encouraging results suggest that the integration of wearable cameras as well
as deep learning approaches can provide objective information on the properties of walk-
ing surfaces, towards context-aware FLDBs for gait and fall risk assessment in the wild.
Considering IMU data were collected along with FPV data in MAGFRA-W, the impact of
environmental features on the fall predictive power of IMU-based gait-related FLDBs will
be investigated in our future works.
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Chapter 7

Conclusion

Older adults’ falls are highly complicated phenomena with a multifactorial etiology. To
address the limitations of laboratory-based or supervised fall risk assessment (FRA) ap-
proaches, a growing body of literature has focused on the development of wearable sensor-
based methods for free-living FRA to assess older adults’ activities in their natural en-
vironments. These studies investigated the relationships between wearable sensor-based
free-living digital biomarkers (FLDBs) and falls. However, there are no clear solutions for
transparent deployment of wearables for free-living FRA at this time due to the ongoing
novel developments within the field. To highlight the gaps in the literature, Chapter 2
provided a detailed review of investigated free-living FRA approaches. The subsequent
chapters of this thesis addressed priority research gaps by proposing multiple machine
learning-based frameworks towards a more stable and contezt-aware free-living FRA ap-
proach advancing fall prevention in older adults. In this final chapter, key themes investi-
gated in this thesis are discussed.

7.1 Validation studies in older adults

Performing validation studies using older adults’ free-living data to assess the performance
of the proposed machine learning-based frameworks can be considered as one of the key
strengths of the present research work. Specially, the majority of machine learning models
were either developed by integrating a training dataset independently collected from the
test/validation dataset (i.e., curated training dataset from multiple sources) or were tested
using leave-one-subject-out cross-validation approach. As discussed in multiple chapters,

111



these approaches outperform other cross-validation/testing methods such as k-fold, and
exhibit more realistic results in terms of generalization to unseen data/users.

Chapter 4 presented one of the first validation studies of machine learning models to de-
tect older adults’ naturally-occurring compensatory balance reactions (CBRs). Compared
to steps, CBRs are rare events. Therefore, prolonged collection of criterion standard data
(along with IMU data) was required to validate model’s performance in free-living condi-
tions. By investigating 11 fallers’ and older non-fallers’ free-living criterion standard data,
8 naturally-occurring CBRs (i.e., 7 trips and 1 hit/bump) were localized in the correspond-
ing trunk-mounted IMU data. Random forest models were trained on independent/unseen
datasets curated from multiple sources, including in-lab data captured by a perturbation
treadmill (discussed in Chapter 3). Subsequently, the models’ translation/generalization
to older adults’ out-of-lab data were assessed. A subset of models differentiated between
naturally-occurring CBRs and free-living activities with high sensitivity (100%) and speci-
ficity (>99%). The findings suggest that accurate detection of naturally-occurring CBRs
is feasible.

With the aim of improving the interpretability of gait-related FLDBs and investigating
the impact of environment on older adults’ gait, Chapter 6 discussed a deep vision-based
framework proposed to automatically detect the most common level walking surfaces. The
proposed framework provides one of the first investigations into the contextualization of
free-living gait and FRA in older adults. Using a belt-mounted camera and IMUs worn
by fallers and older non-fallers (mean age 73.6 yrs), a unique dataset (i.e., Multimodal
Gait and Fall Risk Assessment in the Wild (MAGFRA-W)) was acquired. The frames and
image patches attributed to nine participants’ gait were annotated: (a) outdoor terrains:
pavement (asphalt, cement, bricks, outdoor tiles), gravel, foliage/grass, soil, snow/slush;
and (b) indoor terrains: high-friction materials (e.g., carpet, laminated floor), wood, and
tiles. A series of ConvNets were developed: FgoPlaceNet categorizes frames into indoor
and outdoor; and FEgoTerrainNet (with outdoor and indoor versions) detects the enclosed
terrain type in patches. EgoPlaceNet detected outdoor and indoor scenes in MAGFRA-W
with 97.36% and 95.59% (leave-one-subject-out) accuracies, respectively. EgoTerrainNet-
Indoor and -Outdoor (MobileNetV2’s fine-tuned on the curated dataset) achieved high
detection accuracies for pavement (87.63%), foliage (91.24%), gravel (95.12%), and high-
friction materials (95.02%), which indicate the models’ high generalizabiliy. The combina-
tion of applying data acquired directly from older adults (i.e., MAGFRA-W) and utilizing
independent training and test datasets (e.g., leave-one-subject-out) directly supports the
feasibility and reliability evaluations for use with the target population.

In order to validate the performance of FootChaser framework discussed in Chapter 5
for the estimation of step width in older adults, Muldimodal Gait and Fall Risk Assessment
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in Clinic (MAGFRA-C) dataset [121] was prepared (not presented in this thesis). This
dataset includes criterion (gold) standard measures recorded by Vicon motion capture
system. Older adults walked over a treadmill while wearing a waist-mounted egocentric
camera (GoPro), and multiple IMU devices (Axivity, Newcastle upon-Tyne, UK), affixed
to both wrists, lower-back, both legs, head, pelvis, and the camera. Vicon markers were
also placed on the feet (center) and on IMUs. Outside of the scope of the current thesis,
future research will compare the pixel-wise outputs of FootChaser with the x and y coor-
dinates of feet centers recorded by the Vicon system, and other spatial gait measures that
can be estimated from the IMUs. Considering that the initial version of the FootChaser
model yielded pixel-wise outputs of feet centers, to develop spatial estimates with clinical
values to be interpreted by physicians, our future research will focus on the development
of FootChaser.v2, which will output standard distance units (e.g. m or cm). Moreover,
by comparing the IMU-based estimations with criterion standard data, the feasibility of
developing machine learning models to estimate step width using IMU data alone can be
investigated.

7.2 Clinical and translational implications

Considering the promising results of the machine learning based frameworks proposed in
this thesis, subsequent research will focus on applying the described models to large-scale
multimodal datasets collected from older fallers and non-fallers in a longitudinal manner,
towards a deeper understanding of falls etiology. This would allow further investigation
of: 1. the associations between falls and CBR-related FLDBs (e.g., direction, duration,
number of steps to recover balance) and 2. the associations between falls, different fea-
tures of environment, and FLDBs (i.e., context-aware FLDBs). The proposed multimodal
approach can be used to elucidate the interplay between intrinsic and environmental risk
factors and clarifies their respective impacts on fall predictive powers of FLDBs, which
would subsequently inform the on-going development of clinical use of wearables for FRA.
The egocentric vision data captured in MAGFRA-W dataset provided rich contextual in-
formation about the factors leading to CBRs (e.g., a light pole, Fig. 4.1) and false alarms
(e.g., a sudden change in walking direction, Fig. 4.7). By identifying contexts associated
with verified CBRs, risky features of the environment can be detected. Thus, by taking
appropriate actions such as the modification of environment (e.g., removing obstacles, se-
curing fall areas) as well as rehabilitation interventions (e.g., training to negotiate stairs
and transitions), future falls are hypothesized to be prevented (see Fig. 7.1).

Moreover, there are a number of perturbation training interventions currently being
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Figure 7.1: The proposed multimodal approach can be used to elucidate the interplay
between intrinsic and environmental risk factors and clarifies their respective impacts on
fall predictive powers of free-living digital biomarkers (FLDBs), which may subsequently
enable clinicians to target more specific intervention strategies.
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developed and tested in clinical settings [153, , |. However, the transfer of balance
recovery skills gained during these in-clinic programs to everyday scenarios has not been
well-investigated. The methods proposed in Chapter 4 may be applied to track responsive-
ness to these programs by providing objective information on the timing and frequency of
naturally-occurring reactive responses induced by real-life perturbations.

7.3 Systematic investigation of FLDBs’ and domains’
fall sensitivities

7.3.1 The integration of different sensor modalities for fall risk
assessment

Due to the complex and interconnected etiology of older adults’ falls, any single model
developed based on any single type of data can touch only a small part of the entire
knowledge regarding this important public health problem (see Fig. 1.1). To date, social
& behavioural health scientists, movement disorder researchers, and imaging researchers
investigate the fall predictive power of biomarkers that are specific to their domains, often
in isolation from other potential risk/protective factors. In addition to all FLDBs discussed
in this thesis, social and behavioural factors such as level of education [51], loneliness and
social isolation [18], anxiety [54], depression [70] and diet [106] have been reported to be
linked to falls. More recently, a genome-wide association study examined genetic basis of
falling risk susceptibility, where three novel fall-associated loci were identified [192]. An-
other 2020 study indicated that falls in people with Parkinson’s disease may arise from
altered cortical processing of body spatial orientation, can possibly be predicted by abnor-
mal cortical metabolism [34]. Thus, integrating meaningful biomarkers from different data
types, including clinical measures, free-living (using both ambient and wearable sensors)
and other data types could be a promising avenue for the early identification of individuals
with high propensity for falls. Addressing this research problem requires interdisciplinary
collaboration between researchers from different disciplines.

At the time of performing the literature review on free-living FRA approaches [122],
inertial sensors were the only wearable system employed for collecting older adults’ data for
the duration of at least 24 hours to address solutions for fall risk assessment. This thesis
aimed to target some of the limitations of IMUs; e.g., in the estimation of step width [119],
by integrating a body-mounted camera. While the results of Chapter 6 and Appendix C
indicate that egocentric vision data potentially outperform IMUs for the provision of con-
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textual data, incorporating an additional sensor modality along with a trunk-mounted IMU
may inhibit older adults from following the protocol in larger-scale field studies, and nega-
tively impact the usability of the framework, due to ethical concerns. To mitigate privacy
and ethical issues associated with egocentric vision data use, although on-device detection
of environmental features is not necessary for the purpose of FRA, Chapter 6 considered
methods to allow processing of frames without the need for storing videos. In addition to
improving the specificity of activity recognition algorithms (discussed in 2.3.3), integrat-
ing other sensor types and multimodal approaches may provide solutions with minimal
obtrusiveness to identify different properties of environment.

7.3.2 An all-inclusive data-driven model, towards standardiza-
tion for fall risk assessment in older adults

Chapter 2 provides a broad range of FLDBs that have been investigated by different
research groups to identify measures with highest predictive powers for falls. Moreover,
this thesis aimed to investigate novel FLDBs (e.g., pixel-wise step width, CBR-related
measures) that can be linked to falls. Considering free-living FRA is an active research
area, including generation of new markers, the critical question that remains unanswered
is which FLDBs and free-living domains have the highest predictive powers for future
falls. As indicated in Chapter 2, synthesizing evolving evidence is challenged by high inter-
study inconsistencies. Furthermore, the utility of existing free-living FRA methods to
inform interventions remains limited, largely due to challenges interpreting unconventional
metrics of free-living behaviour (e.g., entropy, index of harmonicity) [123]. Addressing
the aforementioned points is important, as continuous monitoring of the key FLDBs and
domains (with high predictive powers for falls) during the targeted intervention programs
could track an individual’s responsiveness to the intervention, and ultimately reduce fall
frequency.

The aforementioned gaps in the literature indicate a need to obtain a standardized
model to systematically reveal the independent domains of free-living behavior. This can
be investigated by performing factor analysis on a comprehensive range of wearable-based
FLDBs (including the CBR-related measures) derived from a broad range of video-validated
activity bouts or context-aware FLDBs. This comprehensive set may also include similar
FLDBs but different in terms of hyperparameters (e.g., ambulatory bout lengths, turn cut-
off thresholds, and central tendency measures) as discussed in Chapter 2. The forthcoming

!This subsection is obtained from [122]
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standardized model can improve the capabilities of free-living FRAs by identifying the most
important FLDBs and domains that are linked to falls, and eventually address interven-
tion programs targeting behaviours that correspond to identified domains and ultimately
prevent older adults from falling.

While a deeper discussion on developing better models by including established lab-
based models of fall risk is beyond the scope of the current thesis, efforts towards a more
comprehensive fall risk model leveraging both laboratory and free-living sources of evi-
dence are on-going. Such efforts will better inform pragmatic efforts for which gait and
other functional movements may be useful to identify surrogate markers of incipient pathol-
ogy, inform diagnostic algorithms, track disease progression, and measure the efficacy of
interventions [122].
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Appendix A

sEMG responses to different perturbation

types

Table A.1: Biomedical principles and sSEMG responses to different perturbation types.
BFEM, RFEM, TA, GAS, and GMED refer to biceps femoris, rectus femoris,
tibialis anterior, gastrocnemius, and gluteus medius muscles, respectively.

Study CBR type Methodology Onset of perturbation Reaction and Latency
[22] Slip Oily vinyl tile increased knee flexion and hip extension moment (leading
foot) 25% — 45% of stance (190-350ms after heel contact)
[43, 166] Trip (elevating 5-25% of stride dura- BFEM (flex the swing leg) 64 msec after impact
strategy) tion
RFEM (extend the knee to touch down beyond the obsta-
cle) 154 msec
TA (ankle dorsiflexion) 75msec after impact
[43, 166] Trip (lowering 55-75% of stride dura- RFE (push-off) 62msec
strategy) tion

BFEM (87msec)
TA and Soleus (ankle dorsiflexion) by 60 msec
Soleus (ankle plantar flexion for push-off) 110 msec




44!

[43, 166] Trip (both lowering

and elevating)

30-50% of stride dura-

tion

Treadmill decelera-
tion

deceleration evoked a bilateral TA activation; acceleration
evoked an ipsilateral gastrocnemius (GAS) and contralat-
eral TA activation (latency in either condition and on both
sides was 65-75 ms, duration about 150 ms)

[37] Stumbles treadmill, random acceleration was compensated for by a strong ipsilateral
short impulses (ac- GAS and contralateral TA activation, and deceleration by
celeration and de- a bilateral TA activation. In both muscles the responses
celeration) appeared with a latency of about 70 msec and lasted for

about 150 msec.

[165] releasing obstacles|its early swing phase mean latencies of 76 ms in both the ipsilateral BFEM and
(using electromag- RFEM. During the perturbed swing, increased flexion in
net) to block the the knee occurred to lift the foot over the obstacle.
forward  swinging
foot

[67] Lateral perturba- full body stability is recovered in a maximum duration of

tion one stride (Ts¢rige 21.13s) in response to a lateral pertur-
bation

[66] Lateral perturba- medium response from GMED (100-150ms)

tion

long responses from GMED (170-250ms)
late action (270-1,000 ms) after a perturbation

12 different direc-
tions

EMG responses of erector spinae, GMED, tensor fascia lata,
RFEM, vastus medialis, BFEM, medial GAS, soleus, per-
oneus, and TA during self-selected speed walking occur 100-
ms after the onset of the perturbation exerted in 12 different
directions

[129,

126] Lateral

crossover
and sidestep

pushes to shoulder

the index corresponding to the maximum value
of the total acceleration (ACC) at the sternum
(argmaX<SVAACC7Sternum)7 SVAACC7Sternum =
VACC?,, + ACCZ + ACC%,) is a reliable indicator
of the onset of a CBR event.




Appendix B

The preliminary test results obtained
for Models 1 and 2 before detecting
and filtering the possibly-noisy ROlIs.

Table B.1: The preliminary test results obtained for Models 1 and 2 before detecting and
filtering the possibly-noisy ROIs.

Model 1 Model 2
#ROIs Sensitivity Specificity #FP’s Sensitivity Specificity #FP’s

FIVR D1 190 0.00 100 0 0.00 99.47 1
FIVR D2 203 0.00 99.00 2 0.00 86.63 27
FIVR D3 197 100 100 0 100 99.48 1
FIVR D4 198 0.00 98.98 2 100 98.98 2
FIVR D5 200 0.00 100 0 0.00 100 0
FIVR D6 201 100 93.50 13 100 83.00 34
FIVR D7 194 100 100 0 100 100 0
MAGFRA- 173 0.00 98.26 3 100 100 0
W D1

H3 out of 8 detected 20 H5 out of 8 detected 65
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Appendix C

Does a Single Trunk-Mounted IMU
Provide Sufficient Information on the
Properties of Walking Surfaces In the
Wild? (A preliminary investigation)

A preliminary study was conducted to examine k-fold and leave-one-subject-out
(LOSO) cross-validation performance of: 1) a binary IMU-based classifier to differentiate
between stairs and level walking, and 2) a three-class IMU-based classifier to distinguish
between three level surfaces (i.e., grass, stone, and flat/even), using an open access dataset
[104] as described below. The generalizability of the terrain identification model(s) with
the satisfactory LOSO performance was further assessed by conducting a case series us-
ing two older adults’ (OAs) data from the Multimodal Ambulatory Gait and Fall Risk
Assessment in the Wild (MAGFRA-W) dataset [124].
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C.1 Material and Methods

C.1.1 Dataset

Young healthy adults

An open access dataset of 30 young healthy adults (15 males, 15 females, age = 23.5+4.2
yrs), who wore six IMUs (MTw Awinda, Xsens, Enschede, Netherlands) with a sampling
frequency of 100 Hz (160 m/s?, 2000 deg/s) was considered here [104]. The participants
walked over nine outdoor surfaces: grade (up-, down-, and cross-slopes), level (paved, stone,
grass), and stairs (material: cement, up and down), at self-selected speed. All participants
walked over/through the same environment 6 times resulting in 180 trials per environment
(16.444.2 s per trial). In the present study, the inertial data collected by a lower back-
mounted IMU during 540 level walking (flat/even, stone, grass) and 360 stair negotiation
(up and down) trials were considered.

While data captured from multiple IMUs or a single IMU placed on other anatomi-
cal locations (e.g., right thigh) may lead to superior terrain classification accuracies [72],
considering trunk has been the most common anatomical location for IMU placement for
free-living gait and fall risk assessment in the literature [122], and to achieve a less obtru-
sive setup for longitudinal studies, data collected from a single trunk-mounted IMU were
considered for investigation.

OAs (for case series)

To assess the generalizability of the terrain identification models developed using young
adults’ data to OAs’ data, a subset of MAGFRA-W dataset was taken into account. The
out-of-lab data considered here were collected by a lower back-mounted IMU (Axivity,
Newcastle upon-Tyne, UK; £8 g, 500 rad/s and 100 Hz) as well as a waist-mounted Go-
Pro camera (GoPro Hero 5, 30fps, wide view) in public environments within Northumbria
University, during which OAs navigated through different indoor and/or outdoor environ-
ments while walking alongside a researcher. The camera (providing gold /criterion standard
data here) was centered at each OA’s waist by means of a belt attachment to capture top-
down views of feet and the regions around them. The subset considered here includes 2
OAs’ data (mean age ~76 yrs), who walked over multiple surfaces.

The project received ethics approval (reference number: 17589, approval date: 4-Oct-
2019) from Northumbria University Research Ethics Committee, Newcastle upon Tyne,
UK. All participants gave written informed consent before participating in the study.
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C.1.2 Data preprocessing and feature extraction

All data were processed using MATLAB R2021. Unit conversion was performed to obtain
comparable inertial data within both datasets. For each trial selected from the young
adults” dataset, each of the 6 acceleration (ACC') and angular velocity (Gyro) signals was
detrended (DC offset removal) separately. To compensate for possible orientation changes
for the trunk-mounted IMU during longer data collection in the MAGFRA-W dataset,
instead of detrending the full-length signals acquired for each participant, sliding windows
with the length of 15s were applied to each signal and the overlapping data were detrended
separately. Afterwards, each detrended signal in both datasets was filtered using a low-
pass butterworth filter with the cut-off frequency and order of 6 Hz and 2, respectively (as
suggested in [101]).

From each of the 540 level walking and 360 stair walking trials in young adults dataset,
a 5-second epoch (a 6x600 matrix) was cropped from the six detrended and filtered signals
and considered for feature extraction. A similar process was taken into account for the
analysis of OAs’ data as discussed in section C.1.3.

Previous research showed that compliance for free-living data collection, in terms of sen-
sor placement (location and/or orientation) may be challenging for participants. In [181],
15.6% of participants who wore accelerometers for seven days did not follow the protocol
for > 1 day(s) resulting in miscalculations of physical activity. Considering the goal of
surface identification in free-living longitudinal studies, and since the data investigated in
the present study were acquired from two sources with different data collection protocols,
signal vector amplitude of the acceleration (SV Ascc) and angular velocity (SV Agyro) sig-
nals, rather than all 6 axes, were employed to generally compensate for potential sensor
misalignment. Thus, for each epoch, only 2 signals (i.e., SV Asce, SV Agryro) Were taken
into account.

The following 20 features were extracted from the SV A cc and SV Agy,, components of
each segment (in accordance with the features considered in our previous works [125, 130]):
1) range, 2) root mean square (RMS), 3) mean, 4) variance, 5) skewness, 6) kurtosis, 7)
number of peaks, 8) maximum autocorrelation, 9) integral, 10) the Shannon entropy, 11)
amplitude of the dominant frequency (periodogram PSD), 12) the dominant frequency in
the segment, 13) maximum of signal derivative, 14) mean of the signal derivative, 15)
variance of the signal derivative 16) skewness of the signal derivative, 17) kurtosis of the
signal derivative, 18) RMS of the signal derivative, 19) integral of the signal derivative,
and 20) the Shannon entropy of signal derivative.
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C.1.3 Experiments

A random forest (RF) model structure was chosen due to parallel processing and demon-
strated robustness against nonlinear relationships. Here, RF models were developed to
address 1) stair vs level walking differentiation (binary classification, dataset: Xggox4o
matrix), and 2) flat/even vs grass vs stone differentiation (3-class classification, dataset:
X540%40 Matrix).

Based on initial tests, an RF model with 19 trees (RF}9) showed satisfactory results on
all validation datasets. MATLAB defaults were used for other parameters of the classifier.

For models’ performance assessment, 10-fold, leave-one-trial-out (LOTO), and LOSO
cross-validation measures were reported. The LOSO measures represent the average of
results across all participants. For the binary classifier, samples corresponding to stairs were
considered as "positives’, and the subsequent cross-validation metrics were obtained based
on this consideration. For the three-class classifier, per-class accuracies were reported.

Validation based on OAs’ data

A sliding window with the the length of 5 s and stride of 3 s was applied to the SV A 4c¢ and
the corresponding SV Agyr, signals attributed to two older participants. This resulted in
123 and 88 segments from participants A and B, respectively. Each segment was considered
for feature extraction (as discussed in C.1.2).

RF}9 models were trained using all samples from young adult’s dataset (e.g., 540 level
walking and 360 stair walking samples to train the binary classifier). To indicate that
the results are not impacted by the inherent model’s randomness, a 'confidence score’ was
defined. For each segment, the average of outputs (e.g., 1: Stair, 0: Level) from 20 RFiq’s
was defined as the segment’s confidence score. Subsequently, a segment is considered as
'stair walking’ if its confidence score is >0.9 (i.e., at least 18 out of 20 RF}9 models classified
the segment as stair). The centers of these segments are highlighted by circles in Fig. C.1.

C.2 Results

Using young adults’ data and LOTO cross-validation, the accuracy of 100% was achieved
for the binary classifier (stair walking vs level walking). Moreover, walking patterns over
flat/even, grass-, and stone-covered surfaces were detected with the LOTO accuracies of
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Figure C.1: Participant A and participant B walked over multiple surfaces. The starts and
ends of stair walking episodes were annotated (Al to A3, and Bl to B4). The center of
each 5-second sliding window with the confidence score > 0.9 was highlighted by a circle.
Sample (S) frames corresponding to each stair walking activity is provided under each plot.

99.44%, 100% and 99.44%, respectively, with an overall 3-class classification accuracy:
99.63%).
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The 10-fold cross-validations accuracies of 99.56% and 96.11% were achieved for the
binary (stair vs level walking) and three-class (flat/even vs grass vs stone) classifiers,
respectively.

For the binary classifer, the mean LOSO sensitivity, specificity, and accuracy of 81.11%,
88.15%, and 85.33% were obtained, respectively. However, for the three-class classifier,
the mean LOSO accuracy dropped to 40.56% (flat/even: 46.11%, stone: 33.89%, grass:
41.67%).

The unsatisfactory LOSO performance of the 3-class classifer indicates the poor gener-
alizability of the model even to the individuals within the same population (young adults).
Thus, considering the classifier’s anticipated poor performance when applied to OAs’ data,
only the stair detection model with promising performance was considered for further ex-
amination in the OA cases. To address this, the starts and ends of stair walking episodes
were annotated (possible errora +2 s) using the criterion standard data (sample frames
as well as the annotations are provided in Fig. C.1). Al (descending), A3 (ascending) and
B1 (descending) show stair walking patterns captured over the same staircase (indoor, 2
subsequent staircases, each with 10 steps, a short episode of level walking on the floor-
ing area between the staircases was recorded). In Fig. C.1, A2 (2 steps, outdoor), B2 (3
steps, outdoor), B3 (4 steps, indoor), and B4 (6 steps, indoor) show walking patterns over
different indoor and outdoor steps/staircases with diverse materials (e.g., bricks).

For participant A, the stair negotiation episodes of A1, A2, and A3 were detected (the
predictions with confidence scores > 0.9 overlapped with the ground truth data as shown in
Fig C.1). For Participant B, the stair negotiation episodes were partially detected (partial
overlap between the predictions and ground truth, Bl was not detected). Multiple false
positives were generated for both cases (circles out of the stair negotiation annotations in

Fig. C.1).

C.3 Conclusions

Using a single trunk-mounted IMU data and random forest models, the feasibility of de-
tecting different walking surfaces was discussed. Using young adults’ data, high (> 96%)
10-fold and LOTO cross-validation accuracies were obtained for both binary (stair vs gait
walking) and three-class (flat/even, grass, gravel) classifiers. However, the LOSO cross-
validation accuracies dropped to 85.33% and less than 50% for the binary and three-class
classifiers, respectively. The considerable difference between the k-fold and LOSO cross-
validation results highlights that k-fold measures may not reliably represent model’s ro-
bustness against inter-participant differences that impact gait-related inertial data.
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The binary classifier’s satisfactory LOSO performance may be an indicator of the
model’s robustness against inter-participant differences (at least within the same popu-
lation) suggesting that accurate differentiation between stair and level walking episodes
using a trunk-mounted IMU data alone could be feasible. To further assess the gener-
alizability of the stair walking detection model to other populations (OAs) and unseen
environments (stairs with different materials and properties, e.g., riser, height and width,
as well as indoor level walking surfaces) a case series was performed using 2 OAs’ data, for
which mixed results were achieved. On the other hand, the inferior LOSO cross-validation
results for the three-class classifer (differentiation between level walking surfaces) indicated
that the IMU-based models may not be robust enough against inter-participant differences
associated with gait patterns. Thus, the integration of other sensor modalities may improve
differentiation between different level walking surfaces.
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eql

Appendix D

Preliminary terrain type identification
results using MINC-2500 and GTOS

datasets

Table D.1: For EgoTerrainNet-Outdoor, MobileNetV2 was fine-tuned on images only from GTOS(-mobile) rel-
evant classes with a relatively balanced distribution (pavement including asphalt, cement, stone-asphalt: 1309,
Grass/Foliage including leaf, grass, dry leaf, turf: 1226, Soil: 1230, Gravel (pebble/Shale): 1266). For Ego TerrainNet-
Indoor, all 2,500 images in "Wood’, "Carpet’ and 'Tiles’ from MINC-2500 dataset were used to fine-tune the Mo-
bileNetV2. The validation accuracies of 99.20 and 87.56 for the outdoor and indoor versions were obtained, respec-

tively. Confusion Matrices represent test results on MAGFRA-W datasets.

Outdoor Indoor
Pavement|Foliage|Gravel | Soil |Snow | Num| Acc HFM|Tile|Wood| Num/|Accuracy
Py |Pavement|| 4161 1 19 1920 0 |5101 (81.57|HFM || 568 |161| 1349 | 2078 | 27.33
Foliage 89 11 0 53 | 0 | 153 | 7.18| Tile || 12 |402| 30 | 444 | 90.54
Gravel 0 0 0 0 0 0 0 |Wood|| 0 0 0 0 -
Soil 20 4 0 51 0 39 [38.46
P |Pavement - - - - - - - |HFM|| 98 1 7 106 92.45
Foliage - - - - - - - |Tiles|| 0 0 0 0 -
Gravel - - - - - - - |Wood|| 0 0 0 0 -




24}

Soil

Ps;|Pavement 47 3 1 0 0 51 |92.16|HFM || 48 | 2 10 60 80
Foliage 1 7 0 0 0 8 |87.50| Tiles || 13 | 1 2 16 6.25
Gravel 0 0 0 0 0 0 0 |Wood|| 0 0 0 0 -

Soil 3 0 0 0 0 3 0

P,|Pavement 1671 2 6 [1672| 0 |3351|49.86|HFM || 788 |223| 663 |1674| 47.07
Foliage 14 23 0 8 0 45 |51.11| Tiles || 1 |584| 26 | 611 | 95.58
Gravel 0 0 0 0 0 0 0 |Wood|| 0 0 0 0 -

Soil 0 0 0 0 0 0 0

P5|Pavement 1592 9 14 [330| 0 |1945|81.85|HFM || 1037 | 30 | 456 |1523| 68.08
Foliage 28 51 0 28 | 0 | 107 |47.66| Tiles || 28 |295| 20 | 343 | 86.00
Gravel 12 6 240 0 0 | 258 |93.02|Wood|| 0 0 0 0 -

Soil 0 0 0 0 0 0 0

Ps|Pavement 74 2 2 0 0 78 |94.87/HFM || 234 | 3 | 24 | 261 | 89.65
Foliage 21 8 0 0 0 29 |27.58| Tiles || 76 |132| 33 | 241 | 54.77
Gravel 0 0 0 0 0 0 0 |Wood|| 0 0 0 0 -

Soil 0 0 0 0 0 0 0

P;|Pavement 1804 54 36 [159| 0 |2053|87.87|HFM || 455 | 91 | 533 |1079| 42.16
Foliage 74 61 0 24 | 0 | 159 |38.36| Tiles || 6 |212| 8 226 | 93.80
Gravel 33 9 309 0 0 | 351 |88.03|Wood|| 0 2 | 45 47 95.74

Soil 0 0 0 0 0 0 0

Pg|Pavement| 4956 200 0 [1083] 0 |6239(79.43|HFM || 243 | 93 | 91 | 427 | 56.90
Foliage 12 139 0 0 0 | 151 |92.05| Tiles || O 0 0 0 0
Gravel 0 0 0 0 0 0 0 |Wood|| 83 | 51| 178 | 312 | 57.05

Soil 0 0 0 0 0 0 0

Py|Pavement - - - - - - - |HFM| 604 |130| 253 | 987 | 61.19
Foliage - - - - - - |Tiles| 2 |342| 7 351 | 97.43
Gravel - - - - - - - |Wood|| 0 0 0 0 -

Soil
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