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Abstract 

Milling is one of the most widely used processes in the manufacturing industry and 

demands machines with high productivity rates. In large machine tool applications, the 

cutting capability is mainly limited by the appearance of structural chatter vibrations. 

Chatter arises from the dynamic interaction of the machining system compliance with the 

cutting process. For the specific case of large-scale machine tools, the low frequency 

resonances have modal shapes that generate relative displacements in the machine 

joints. This thesis presents new approaches to minimize the appearance of chatter 

vibrations by targeting and understanding the machine tool compliance, in particular, 

from the feed drive of the machine tool. A detailed model of the double pinion and rack 

feed drive system and the master-slave coupling improves the large machine tools 

modeling. As the vibrations are measured by the axes feedback sensors, a new strategy 

for feed drive controller tuning allows increasing the chatter stability using a judicious 

selection of the servo parameters. Then, in-motion dynamic characterizations 

demonstrate the important influence of the nonlinear friction on the machine compliance 

and improve the chatter stability predictions. Finally, an operational method for 

characterizing both tool and workpiece side dynamics while performing a cutting 

operation is developed. All the contributions of the thesis have been validated 

experimentally and tend to consider the influence of the feed drives on the structural 

dynamics of large-scale machine tools. 
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Chapter 1  

 

Introduction 

1.1 BACKGROUND 

The current production environment demands powerful, precise, rigid and automatic 

machine tools. Historically, aeronautical and naval sectors have required the capabilities 

for machining large parts. Moreover, sectors such as renewable energy, railroad and 

electric power plants are currently demanding larger and more accurate parts. These 

machines demand precision engineering concepts to fulfill the challenging requirements 

of long travelling distances and high repeatability under heavy loads (Uriarte et al. [1]). 

The most frequent configuration of large-scale machines are the travelling column and 

gantry types (Figure 1.1), in which the workpiece is usually in a fixed position. The need 

for large machines is increasing and, as conventional ones, they present the continuous 

challenge of increasing the productivity, precision and high dynamics when large travel 

ranges and heavy loads are involved. 



Chapter 1 - Introduction 

2 

 

Figure 1.1 Large-scale machine tool from Soraluce. 

Founded in 1962, Soraluce is a worldwide leader in milling, boring and turning 

technologies in large machine tools. Soraluce is part of Danobatgroup, the machine tool 

division of Mondragon Corporation, which is one of the most prominent European holding 

companies. In order to respond to the required innovations to be a sector leader, 

Soraluce is involved in numerous R&D projects, both individually and in collaboration 

with other companies, technology centres and universities. 

Within the same group, Ideko is a technology centre specialized in industrial production 

and manufacturing technologies. Among the different research lines, the Dynamics and 

Control department addresses the resolution of vibratory problems in all types of 

industrial machinery from two different and complementary approaches. On one hand, 

the dynamic design of machines and drives. On the other hand, the diagnosis and 

subsequent implementation of specific developments to suppress chatter vibrations in 

machining processes. 

As a part of the NSERC Canadian Network for Research and Innovation in Machining 

Technology 2 (CANRIMT2), Danobatgroup and the Precision Controls Laboratory (PCL) 

from University of Waterloo have teamed up to conduct research in analyzing the 

influence of feed drive system dynamics on the structural response of large-scale 

machine tools. 
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1.2 THESIS OVERVIEW AND CONTRIBUTIONS 

Despite the constant developments carried out by machine tool builders, self-excited 

vibrations still limit productivity. These vibrations are also known as chatter and it is a 

well known phenomena among the machine tool industry. Regardless of recent 

developments, the chatter problem is and will continue being a crucial problem in 

machine tools and hence, the development of efficient chatter avoidance techniques and 

accurate chatter prediction models is an interesting and necessary task for the 

manufacturing industry. 

The design of a machine tool has become a complex process in recent years. Nowadays, 

machine tool designers tend to use Finite Element models to assist the design stage. 

However, one of the main limitations that significantly influences the accuracy of the 

model is the characterization of the machine joints. The machine tool builders tend to 

push the servo bandwidths to minimize the tracking errors. However, high gains can 

reduce the damping provided by the feed drives and hence affect the overall machine 

dynamics. 

Large-scale machine tools have low natural frequencies related to the machine structure 

between 10 and 50Hz. In certain cases, the shapes related to these resonances can 

generate relative displacements at the machine joints, not only influencing the overall 

machine tool behaviour, but also at the most important location, the cutting point. 

Establishing methods to consider their effect is essential to, first, understand the 

behaviour and interaction with the machine structure and, second, to develop more 

reliable models that can predict the machine tool system dynamics accurately and hence, 

the process stability limits. Figure 1.2 illustrates the research contributions, which are 

detailed below. 
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Figure 1.2 Research thesis contributions. 

C1: Modelling of an electronically preloaded rack and pinion feed drive system. 

When machining large workpieces, long travelling distances are required. Double 

pinion and rack feed drive systems are usually employed by large machine tool 

builders as the stiffness of this mechanism is not influenced by the axis stroke. To 

suppress the existing backlash between the pinion and rack interface, a master-

slave control configuration is implemented in the machine controller (CNC). This 

thesis presents time and frequency domain modelling approaches to analyze the 

master-slave control parameters influence on the machine tool operational 
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behavior. The models provide insights about this feed drive mechanism and 

accurately predict the observed experimental static and dynamic trends. 

C2:  Development of a new strategy for the feed drive control tuning considering 

machine dynamics and chatter stability. The standard feed drive motion 

controller tuning only pays attention to the motor side response captured by the 

machine controller. However, the commissioning procedure should be responsible 

to get the best behaviour at the cutting point and not only at the motor side. The 

proposed strategy has been successfully implemented on the industry standard  

P-PI cascade control structure achieving up to 44% damping increase on an 

industrial machine tool and 33% increase in machining productivity by avoiding 

chatter. 

C3:  Description of the influence of friction on the tool centre point dynamics. For 

the particular case of large-scale heavy-duty machining applications, where low 

frequency structural chatter vibrations limit the cutting capabilities, the influence of 

the damping generated in the machine joints can be a fundamental parameter for 

determining the machine tool damping and hence, the cutting capabilities. 

Experimental chatter tests demonstrate the strong influence of friction on the 

prediction of the stability lobes where deviations of 240% in the expected depth of 

cut have been obtained. 

C4: Development of a machining system dynamic characterization technique 

under operational conditions. Already established milling process stability 

prediction models can accurately predict the appearance of chatter vibrations. 

However, for certain cases, significant experimental deviations are experienced. 

The source of inaccuracies is usually attributed to process nonlinearities or errors 

associated to the dynamic parameters identification. The prediction of the process 

stability limit has been improved by using the proposed technique with respect to 

traditional impact hammer testing. 

The thesis is organized as follows: 

Chapter 2 presents a literature review and background information related to chatter 

vibrations, challenges in machine tool dynamics identification and how friction can affect 

them. A description of the feed drive system and its control is provided next, with a 
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detailed section about rack and pinion feed drives that are commonly installed in large 

machine tools. 

Chapter 3 describes the modelling of a double pinion and rack feed drive system 

(Contribution C1). Time and frequency domain models are introduced and the model 

parameters are extracted from experimental characterization tests. On one hand, the 

time domain model which considers the contact mechanics shows that the preload level 

can be tuned to handle high load forces generated during the cutting process to ensure 

a preloaded system. On the other hand, the frequency domain model based on Linear 

Fractional Transformation formalism concludes that the servo control parameters can 

affect the cutting point compliance, especially the proportional velocity loop gain. 

Chapter 4 presents a new feed drive control tuning strategy to enhance the damping 

properties at the cutting point (Contribution C2). The interaction of the machine tool 

dynamics and the servo control is described. Then a semi-analytical MIMO model is 

developed to predict the tool tip receptance under different control settings. Experimental 

tests demonstrate that chatter vibration can be avoided by a judicious selection of the 

control parameters. 

Chapter 5 introduces an analysis of the influence of friction on the nonlinear dynamics 

(Contribution C3). Experimental tests conducted in different industrial machines show 

the significant variation of the cutting point compliance in machine idle and in-motion 

conditions. A simulation model which considers machine tool dynamics, guideway 

friction, feed drive controller and motion commands is experimentally validated on a 

laboratory test bench. Experimental tests conducted on a large-scale machining centre 

demonstrate the motion effect and how this can lead to considerable chatter stability 

prediction errors. 

Chapter 6 introduces an alternative machining system dynamic characterization 

technique under operational conditions (Contribution C4). The Sweep Milling Force 

Excitation technique is firstly described, and an optimization of the process parameters 

is carried out by means of time domain simulations. Proposed methodology is validated 

through simulations and experimental tests in a ram-type milling machine. 

Finally, the conclusions and future works are presented in Chapter 7. 
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Chapter 2  

 

Literature review 

2.1  REGENERATIVE CHATTER IN MACHINE TOOLS 

The presence of self-excited vibrations during the machining process is a classical 

problem that limits the productivity. The avoidance of this kind of vibration is important, 

since its occurrence prevents the achievement of the required surface quality. It also 

increases tool wear and can also damage the machine tool components. Moreover, this 

problem appears in a wide range of machining operations, as shown in Figure 2.1. Self-

excited vibrations, also called chatter vibrations, constitute a complex phenomenon 

which involves different aspects, such as the cutting process parameters, selected tool 

geometry, workpiece material, and the dynamical properties of the machining system. 
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Figure 2.1 Chatter problem in numerous industrial machining applications [2]. 

New developments in the material employed by tool manufacturers allow for increasing 

the cutting conditions (feed and speed) and consequently the chip load. This, in 

combination with increased machine power, makes the chatter-free cutting conditions 

more demanding. In addition, the rising requirements in terms of geometrical precision 

and accuracy has led to the introduction of lower friction guideway systems, which result 

in machine tool structures with low damping ratios. 

2.1.1 Chatter origin 

After the first studies conducted by Taylor [3] in 1907, the regenerative effect was 

reported as the main cause of chatter vibrations by Tobias and Fishwick [4] and Tlusty 

and Polacek [5,6]. In 2001, Wiercigroch and Budak [7] described the existing different 

mechanisms that generate chatter. The regenerative chatter mechanism is based on the 

dynamic excitation of the system due to the cutting forces, and as a result a wavy surface 

is left on the workpiece. When the next tooth of the cutter cuts this wavy surface, it causes 

a new wavy pattern over the newly generated surface (Figure 2.2-left). Depending on 

the phase difference between the former and current pass, the resulting vibration may 

grow, based on the amount of damping in the system’s structure. If the process is 

repeated with successive teeth, a regenerative effect will be produced. Figure 2.2-right 

shows a schematic view of the regenerative mechanism. If no phase shift is presented 

between the prior and current wavy surface, the chip thickness remains constant and 

thus, the process is stable (top case). In contrary, for middle and bottom cases, there is 

a delay which results in a variable chip thickness and a consequently growing vibration. 
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Figure 2.2 Regenerative chatter effect [8] (left); Phase delay of waviness in a milling 

model (right). 

As reviewed by Munoa et al. [2] in 2016, the machining chatter appears when one or 

more vibration modes of the machining system are self-excited due to the cutting 

process. An exemplary representation of a machining system is shown in Figure 2.3, 

comprising the tool (1) which removes material from the workpiece (2). Sometimes the 

fixture (3), which holds the workpiece or even the machine itself (4), may not be stiff 

enough and can lead to regenerative chatter vibration. Depending on which component 

is the weak link, contributing most to chatter, different frequency ranges will be excited. 

For example, in the case of large masses like machine tool structure or large flexible 

fixture, the expected frequency range is from 20 to 200Hz, and from 500Hz to 10kHz for 

high frequency tooling-related chatter. 

 

Figure 2.3 Machining system components with potential contribution to chatter [2]. 
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2.1.2 Stability models 

In 1958, Tobias and Fishwick [4] suggested the use of stability charts in order to 

distinguish the stable and unstable machining conditions depending on the spindle speed 

and depth of cut. Later, in 1965 Merrit [9] presented the regenerative chatter problem as 

a feedback loop, which helped to clarify and to understand the underlying physics. 

However, almost all theoretical and experimental developments were focused on 

continuous cutting processes such as turning. For interrupted milling processes, the 

stability analysis is more complicated because of the discontinuous nature of the 

process. By the end of 1970, the initial value time domain simulations became popular 

as process nonlinearities such as contact loss between the cutter and workpiece due to 

severe vibration amplitude could be introduced [10]. This stability prediction model was 

extensively used for the following 20 years, providing detailed information about the 

cutting process. In 1995, Altintas and Budak [11] presented a semi-analytical method for 

chatter analysis in frequency domain based on previous works [12–14]. This method 

called single frequency or Zeroth Order Approximation (ZOA) is very fast, but in case of 

low immersion milling, the existence of additional stability lobes called double period 

chatter or flip bifurcation was found [15,16]. Three years later, they improved the model 

by considering multiple terms of the Fourier development of the directional matrix [17]. 

The existence of additional stability lobes was a trigger for time domain based method 

application, where the stability lobe is obtained by scanning different depth of cut and 

spindle speeds. Methods like Gamma-distribution [18], semi-discretization [19], full 

discretization [20], collocation method [21] or time domain finite element [22] have been 

reported in the literature to solve the milling operation mathematical model. 

In 2004, Altintas and Weck [23] reviewed the different stability models for several 

machining operations such as turning, milling, drilling and grinding operations. The 

stability lobe diagram is fed with four different inputs: the cutting coefficient describing 

the force, the dynamic parameters of the machining system, the process parameters and 

the tool geometry (Figure 2.4). Tool geometry and cutting conditions are inputs that are 

chosen by the process planners or machine operators. However, cutting coefficients and 

dynamic parameters of the machine structure depends on more variables, and they have 

to be obtained experimentally. 
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Figure 2.4 Procedure to obtain the stability lobe diagram [2]. 

Table 2.1 summarizes the advantages and disadvantages of each previously presented 

stability lobes computation. In the same manner, the prediction results for ZOA, Multi 

frequency and Semi-discretization methods are compared in Figure 2.5. 

Table 2.1: Stability prediction method comparison. 

Advantages Disadvantages 

Single frequency 

- Fast method - Nonlinearities not supported 

- Measured FRF direct input - Inaccuracies in interrupted cutting 

Multi frequency 

- Simulation speed and precision 

depends on number of harmonics 

selected 

- Nonlinearities not supported 

- Measured FRF direct input - Slower than single frequency 

Time domain 

- Very complex mill models can be 

handled 

- Modal parameter extraction from the 

FRF is needed 

- Robustness - Slower than single frequency 

Initial value time domain 

- Nonlinearities can be taken into account - Modal parameter extraction from the 

FRF is needed 

- Very accurate simulations - Time consuming 
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Figure 2.5 Comparison between stability models [2]. 

Considering the review of the state-of-the-art on the chatter stability limit prediction and 

the contributions presented in this thesis, the Zeroth Order Approximation method is 

used as it provides fast and accurate results for large radial immersion processes that 

are present in heavy-duty machining. For transient phenomena simulations, the initial 

value time domain method is used. 

2.2 CHALLENGES IN MACHINE TOOL DYNAMICS 

IDENTIFICATION 

An accurate machine dynamic characterization is essential to properly describe the 

dynamic response of the machine and predict its cutting stability (Figure 2.4). Brecher 

and Esser [24] concluded that the cutting coefficients describing the force and the 

dynamic parameters of the machining system were subjected to higher uncertainty. 

Later, Rasper et al [25] concluded that measured machine tool compliance was the 

principal source of inaccuracies in chatter stability predictions. 

The hammer test (also called impact testing) is the usual method for the dynamic 

characterisation of machine tools. It consists of exciting the structure by means of a 

dynamometric hammer and measuring the response by means of an accelerometer, 

velocimeter or any other displacement sensor. Different aspects such as poor signal to 

noise ratio, overload problems or differences of each impact force constitutes the main 

limitations of this method. Kim and Schmitz [26] reported statistical variations, calibration 

coefficients and misalignment of the impact force as the major contributors of the existing 

uncertainty. 
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The existing nonlinearities in a machine tool, such as friction at the mechanical interfaces 

(Trendafilova et al. [27]), rolling elements of translation carriages (De Moerlooze et al. 

[28]) or backlash in the mechanical joints (Trendafilova et al [29]), make the hammer 

excitation not well suited (Halvorsen et al. [30]). For these cases, an electrodynamic 

shaker should be considered where the generated force is controlled; however, this 

implementation is usually more complicated and time-consuming. 

The experimental dynamic characterization of the machine tool presents a certain degree 

of uncertainty (Munoa et al. [31]). Many effects rising under operational conditions have 

been reported as possible sources of error for dynamic identification (Rebelein et al. 

[32]). The machine tool is not a static passive structure, since it is controlled through 

electric drives. It can move, rotate or cut material and the possible side effects of these 

events are not considered when performing a classical hammer or shaker test. Table 2.2 

summarizes the main effects that have been reported in the literature which rise under 

operational conditions and results in deviations in the machine tool dynamics 

measurements. The academic community has developed alternative theoretical and 

experimental methods, which consider additional effects that influence the dynamic 

behaviour of the machine tool and cannot be captured by standard methods. 

Table 2.2: Machine tool factor affecting dynamic behaviour. 

Factor Effect on dynamics Reference 

Variable dynamics Diverse variations [33–44] 

Gyroscopic effect Increase of natural frequency [45–52] 

Bearing preload Increase of natural frequency [53–60] 

Control parameters Dynamic stiffness change [61–65] 

Friction in structural 

joints 

Increase of damping and change of 

stiffness 
[66–72] 

Tool-workpiece contact Increase of stiffness and damping [73–77] 

2.2.1 Inverse characterization methods 

One procedure to reduce all sources of inaccuracies (Table 2.2) is to identify the machine 

tool dynamic parameters from actual cutting tests. The main idea is to perform a set of 

cutting tests to identify the stability limit for different spindle speeds. Then, an inverse 

mathematical procedure is used to extract the main dynamic parameters based on the 
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limit depth of cut and chatter frequency identified in the stability limit. Ismail et al. [78] 

sculptured the experimental stability lobes on a workpiece by varying the spindle speed. 

Quintana et al. [79] performed a similar experiment on a roof-shaped workpiece. Later in 

2015, Grossi et al. [80] replicated the experiments presented in [78] but maintaining the 

feed per tooth constant. Using these procedures, the stability diagrams are obtained 

directly by means of cutting tests. Kruth et al [81] inversely extracted a tool tip FRF from 

chatter stability tests. In 2017, Grossi et al. [82] performed the inverse identification, 

where major influence of the spindle speed on the dynamics was reported (Figure 2.6) 

Postel et al. [83] performed a tool tip FRF prediction combining inverse stability and 

receptance coupling approaches, concluding that the spindle dynamics are also affected 

by the feed rate. Suzuki et al. [84] extended this approach by studying a spindle having 

symmetric modes in two orthogonal directions. In 2010, Kilic et al. [85] developed an 

analytical formulation for the case of two equal orthogonal modes. Özsahin et al. [86] 

developed a similar approach, concluding that tool tip FRF is affected by the spindle 

speed and cutting forces simultaneously. Recently, Eynian et al. [87] improved the 

inverse identification computation time by using two closed forms methods, which avoids 

the iterative resolution. 

This inverse methodology can even solve current deviations related to dynamic behavior 

which are not yet considered by standard theoretical machining stability prediction 

methods, such as the damping increase due to the so-called process damping effect. 

Budak and Tunc [88] proposed an analytical inverse stability solution where their major 

assumption was that the dynamic contact between the cutting tool flank face and the 

workpiece only alters the damping value. From this perspective, they used the ratio 

between experimentally identified and the theoretically expected stability limits. Later, 

they extended their approach to milling processes [89]. In their proposed approach, they 

used the ratio between the experimentally identified stability limits and the theoretical 

stability limits. 

Although the inverse methodology provides a very accurate dynamic characterization, 

the limitations of the method are significant. Extensive cutting tests must be conducted 

and the method is only valid for very simple dynamics, with one or two dominant modes. 
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Figure 2.6 Speed-varying FRF calculated by Grossi et al. [82]. 

2.2.2 Real cutting force excitation characterization methods 

The measurement of machine tool dynamics using real cutting forces as input excitation 

has also been reported in the literature. The response is obtained under operational 

conditions, thus nonlinear effects which are not considered under the standard idle 

hammer test are included in the measurement. 

Opitz and Weck [90] for milling and Minis et al. [91] for turning used specifically designed 

workpieces to generate a random-type excitation through cutting forces. Employing load 

sensors and accelerometers, the authors extracted the machine tool FRF, which resulted 

in different responses than the ones obtained by impact hammer testing. Effects such as 

preload or feed variations were identified as the main deviation causes. Liu et al. [92] 

extended these works by performing an experimental modal analysis. The cutting forces 

excite the machining system at the tooth passing frequency and its higher harmonics. 

Therefore, it becomes impossible to obtain the FRF for the frequencies that are not 

excited. Özsahin et al. [93] obtained the dynamic characteristics by two different 

approaches. First, employing randomly distributed workpiece geometry as in previous 

studies. Second, exciting the system at discrete frequency points at specific cutting 

speeds using a conventional workpiece. Li et al. [94] and Cai et al. [95] developed similar 

techniques to obtain dynamic parameters from a random cutting force excitation. They 

pre-machined a thin wall on a workpiece and performed cutting tests in order to apply a 

random excitation. Li et al. reported a damping decrease with respect to hammer test 

results. 
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Instead of using a random excitation, Iglesias et al. [96] proposed an identification 

technique called Swept Milling Force Excitation (SMFE) where the cutting forces were 

replicating a chirp excitation signal. The authors applied the technique on a milling 

machine and observed a considerable variation with respect to the hammer test FRF. 

They combined the measurements of three different cutting test to define a linearly 

independent system and obtain the different FRFs. Takagusi et al. [97] employed a 

similar approach in a turning machine, applying a varying speed cut over a sinusoidal 

workpiece pattern. They obtained FRFs with lower natural frequencies and compliances 

than what was measured with a classical impact hammer test (Figure 2.7). 

 

Figure 2.7 Operational scheme and resultant compliance [97]. 

For the particular case of heavy-duty rough milling operations, the chatter vibrations arise 

from the large flexible fixture holding the workpiece, from the flexible machine tool 

structure or, in certain cases, a combination of them. Chapter 6 presents an identification 

technique for the machining system dynamics (workpiece and tool side) under 

operational conditions that has not been reported in literature. As a result, the 

inaccuracies related to the dynamic parameters identification are minimized and hence, 

the computed process stability prediction is improved over the traditional impact hammer 

approach. In addition, an optimization of the identification process parameters is 

conducted and analytical expressions for optimal radial engagements are provided for 

the identification of a generalized 2D system. 

2.3 INFLUENCE OF FRICTION IN MACHINE TOOL DYNAMICS 

In machine tools, friction is considered one of the main sources of disturbance that 

causes positioning errors during motion, especially during velocity reversals where the 

direction of friction force changes. 
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The demand to build faster and more precise machines brought important advances to 

reduce the existing friction between parts with relative motions. Altintas et al. [98] 

summarized the different guiding systems typically used in machine tools (Figure 2.8). 

The first adopted solution is the so-called friction guides, which offer a combination of 

high load and impact capacity. At the same time, it provides a high structural damping 

as a result of the high friction. However, this feature directly restricts the precision of the 

driven machine due to the ‘stick-slip’ effect. To increase the speed and accuracy of the 

machine tool, rolling elements were developed. This solution maintains the load capacity 

of the previous solution but minimizes the friction effect. The easy modular integration in 

the machine together with its good operational characteristics, make this option the most 

used one in the machine tool sector. Hydrostatic, aerostatic or magnetic solutions are 

generally used in high precision applications that justify their additional costs. 

In 1970, Koenigsberger et al. [99] stated that the damping of the machine tool is mainly 

generated in the existing joints. This is because the structural material absorbs only a 

small fraction of the total dissipated energy. In this way, the damping of the assembled 

structure is about 30 to 50 times higher than the individual components. Later, in 2003, 

Zhang et al. [66] concluded that approximately 60% of the total dynamic stiffness and 

approximately 90% of the machine damping is originated at the machine joints. 

Therefore, the damping generated at the machine guiding system can be a fundamental 

parameter for determining the machine tool damping. 

 

 
 

Figure 2.8 Different machine tool guiding systems [98]. 

2.3.1 Friction modelling 

Friction is a result of a complex interaction between two contacting surfaces with relative 

motion. In 1994, Armstrong et al. [100] described the physics behind this phenomenon 

and summarized the different models and compensation techniques. The friction force 

can be described considering two main regimes: pre-sliding (also called sticking) and 
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sliding regimes (Figure 2.9). During the pre-sliding, the asperities of the surfaces in 

contact (at which micro-welds are hypothesized) act like springs which are being broken 

one by one and the friction force is displacement dependent until the sliding regime 

begins. As the sliding regime becomes dominant, solid to solid contact between the 

surfaces starts to disappear and the friction force depends on the sliding velocity. 

 

Figure 2.9 Representation of pre-sliding and sliding regimes. 

According to the general friction literature, there are two main groups for its 

characterization: static and dynamic models. In static friction models, the friction force is 

a function of the applied force and axis velocity. Coulomb or Stribeck [101] based models 

face modelling problems at very low speed and motion reversals due to undetermined 

friction force at zero-sliding speed [102]. The transition from positive to negative motion 

is always associated with small relative displacements between the two bodies before 

full slip is reached. Several researchers found that static friction models were not able to 

capture effects associated with frictional interaction such as pre-sliding displacement or 

frictional lag [103,104]. Hence, more advanced friction models were required. These 

models are known as dynamic models since they evaluate the friction forces not only 

based on the actual state of the contact but also based on the contact history by using 

an extra state variable. This variable represents the average deflection of the bristle that 

emulates the behaviour of the surface asperities during the contact interaction. The 

bristles may behave as springs during the sticking phase. LuGre [105] or GMS [106] 

models capture this behaviour but are more complex to identify and not always easy to 

use in dynamic simulations (Hagman [107]). 

When using friction models in time domain simulations, the discontinuity at very low 

speed of the static friction models often causes numerical stability problems. To avoid 

them, the shape of the friction force-velocity curve can be approximated by continuous 
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functions. Combined models using saturation or 𝑡𝑎𝑛ℎ functions can be implemented to 

create a smooth transition around the velocity reversal [108–110]. The main assumption 

is to consider zero friction force at zero-velocity; thus, friction force only exists in 

presence of relative motion. The 𝑡𝑎𝑛ℎ smoothly accommodates the transition to a full 

sliding regime for low-velocity increments. In 2007, Andersson et al. [108] compared their 

proposed continuous model against a dynamic model named Dankowicz [111], 

concluding that the model was well adapted for transient oscillating simulations. 

However, this model solely depends on the velocity, so the prediction of the final position 

is less accurate than with dynamic friction models (Figure 2.10). 

Even though friction has been extensively studied for accurate motion positioning 

[112,113], some works have been done regarding the friction influence on the dynamics 

and chatter stability prediction. 

 

Figure 2.10 Step response of the system with different friction models (based on 

Anderson et al. [108]). 

2.3.2 Friction influence on the cutting point compliance 

In 2014, Bianchi et al. [114] analysed the friction influence on the dynamic compliance 

of the machine tool at the cutting point. This is the first study that combines tool centre 

point frequency response function and frictional effects. The authors characterized the 

friction curve by means of LuGre [105] model and added it to their Finite Element model. 

However, no experimental tool tip compliance evidence was reported. Later, in 2016, 

Rebelein et al. [115] developed a virtual machine tool model that considers multiple 

damping sources. The authors extracted, modelled and validated the virtual 

characterization by impact testing. Their conducted analysis focused on the first 

resonance of a ball screw drive, where the friction effect was modelled by a combination 

of Leuven and enhanced Stribeck model. Based on this research, [32,116] extended the 
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model by adding feed drive servo controls and machine movements. They concluded 

that linear dissipation sources and nonlinear friction forces had the highest influence on 

the machine tool vibration characteristics. Analogously, for a certain feedrate level, the 

damping of the resonance remains constant. Comparing standstill and moving 

responses, the damping can vary up to 35%. However, as in the previous study, the main 

flexibility comes from the first resonance of the feed drive, so no extrapolation to the 

cutting point was conducted. 

Kossack et al. [117] simulated and measured the force related dynamics nonlinearity on 

a friction measuring machine. Similarly, Irino et al [118] modelled the nonlinear dynamic 

characteristics of the machine tool structure with respect to the excitation force level. The 

authors found the biggest dynamic variation in the ball screw–nut and guideway block-

rail interfaces. Apart from the force level nonlinearity, the machine dynamics are also 

modified by the axes feedrate. In 2020, Sato et al. [119] pointed out that existing friction 

in guiding and process level can modify the amplitude of the cutting forces and the 

dynamics of a ball screw driven table. Similarly, Oshita et al. [120] showed that the 

damping and stiffness properties of the guideways are modified in the radial and vertical 

directions when the axis is moving at different feedrates.  

Recently, Tunc and Gonul [68] showed the difference of the tool tip FRF of a robot with 

milling capabilities, under static and quasi-static conditions (Figure 2.11). The root cause 

of this variation has not been stated, but the authors attributed this effect to variations of 

gear dynamics at the joints such as frictional damping and stiffness. 

 

Figure 2.11 Static and quasi-static conditions (based on Tunc et al. [68]). 

As concluded in the literature, friction in the guiding system can affect the machine tool 

dynamics. However, the interaction between the machine structural response and the 

different elements that are present at the feed drive system, such as friction, control loops 
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and machine movements are not clearly studied in literature. Therefore, Chapter 5 

presents an analysis of the friction on the nonlinear dynamics of machine tools and its 

effect on chatter stability predictions. A theoretical model is experimentally validated on 

a laboratory single axis test bench. Experiments conducted in a machining centre show 

the strong influence of friction on the process stability predictions where deviation up to 

240% in the expected depth of cuts are obtained. 

2.4 CONTROL OF MACHINE TOOL FEED DRIVES 

Industrial machine tools classically use a cascade control loop structure with current, 

velocity and position feedback loops as well as feedforward actions (Figure 2.12). As the 

control of machine tool feed drives has the particularity that the setpoints are known in 

advance and respect certain kinematical constraints in terms of velocity, acceleration 

and jerk, the velocity and acceleration calculated during the trajectory interpolation can 

be sent to the inner control loops to anticipate the movements with feedforward actions. 

The control structure is often referred as P-PI cascade control due to the fact that the 

position loop uses a proportional gain and the velocity loop is closed with a proportional 

gain and integral time. This control scheme offers good parameterisation and 

extensibility with good dynamic characteristics (Gross et al. [121] and Koren et al.[122]). 

In a standard numerically controlled machine, the axial position is measured by a linear 

scale and the velocity is obtained by numerically differentiating the measured position 

from the motor encoder or the linear scale.  

The current loop is the innermost loop and is tightly linked to the model of the motor. As 

the tuning of the PI gains is not affected by the mechanical modes of the machine, the 

parameters given by the motor manufacturer are usually satisfactory. In addition to the 

current loop, filters such as notch or low pass can be used to avoid the excitation of 

higher frequency content, giving the opportunity to boost the controller bandwidth. 
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Figure 2.12 General machine tool feed drive control scheme (Gross et al. [121]). 

Although the principal objective of the feed system is to drive the machine to the desired 

location, they can also be used for vibration control. This control is principally used for 

reducing vibrations caused by the inertial forces generated during the acceleration and 

deceleration of the machine. As the motion commands constitute a major source of 

excitation, several pre-filtering techniques and improvements in tool trajectory generation 

have been reported with the aim to avoid exciting the natural frequencies of the driven 

machine (Khoshdarregi et al. [123] and Erkorkmaz et al. [124]). Nonetheless, when 

external excitations are presented, such as cutting forces, only vibration modes that are 

controllable by the feed drives actuation direction and that are observable through the 

feedback sensors available in the machine can be damped. 

2.4.1 Damping increase using classical P-PI control loops 

The structural chatter vibration appearing in the low frequency range have modal shapes 

that can be observable by the feed drives feedback encoder system, therefore the motion 

controllers used in industrial application can significantly modify the cutting point dynamic 

behaviour. In 2008, Zirn [125] remarked the influence of the velocity proportional gain in 

the damping coefficient of the vibratory behaviour of the mechanical system. The author 

proposed a specific tuning method for this gain with the aim to maximize the damping 

coefficient that the feed drive controller can provided to the driven flexible system. In 

2012, Albertelli et al. [126] proposed a process stability oriented tuning method to 

maximize the disturbance rejection transfer function around the chatter frequency region. 

In 2013, Uriarte et al. [1] reviewed the design and engineering principles for large 
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machine tools. They described how the low structural natural frequency of the machine 

is usually the limitation for the behaviour of the servo axes. In large machines, the drives 

tend to have higher natural frequencies and therefore it is the vibration of the structure 

that limits the control loop gains and the achievable acceleration and jerk values. They 

discussed the regular servo tuning methods, which only pays attention to the motor side 

and neglects the tool centre point dynamics. Although the control loop will follow the CNC 

commands in the best possible way, it should be responsible to get the best behaviour 

at the tool centre point and not only at the motor side. Following this statement, Beudaert 

et al. [63] simulated in 2016 that a correct tuning of the controller could significantly 

impact the machining capabilities, especially when the tool centre point FRF is taken into 

account in the commissioning procedure. In a similar way, Lehotzky et al. [127] studied 

the effect of a proportional-derivative controller on the stability of a turning process. 

2.4.2 Damping increase by additional control loops 

The feed drive systems are normally located far from the tool and have a narrow 

bandwidth, especially in large machine tools applications. In order to extend the 

observability and add the main point of interest into the control scheme, Futami et al 

[128] studied for the first time in 1983 the use of an external acceleration sensor for 

actively suppressing the resonances of an industrial robot arm. Alter and Tsao [129] 

investigated in 1994 the use of an actively controlled linear motor to increase the turning 

process stability. Later in 1995, Chen and Tlusty [130] simulated the use of an additional 

acceleration loop to improve the machine dynamics. In 2005, Forster et al. [131] patented 

a method for attenuating chatter vibrations using a controllable force in both feed and 

transverse directions in a linear motor driven machine tool. At the same time, machine 

tool CNC manufacturers also worked to implement this kind of solution in their 

commercially available products. In 2009, Siemens [132] patented a solution called 

Advanced Position Control which enables to damp the mechanical vibrations for machine 

tool applications. On the other hand, Heidenhain [133,134] presented their Active Chatter 

Control solution for their CNC systems, which uses the machine’s own feed drives to 

remove the energy from the vibration. In 2014, Kakinuma et al. [135] proposed a band-

limited force control to actively suppress chatter vibrations in a desktop-sized turning 

machine. In 2015, Munoa et al. [136] presented a new technique for improving the cutting 

capabilities of the machine by injecting active damping through the feed drives using an 

external accelerometer (Figure 2.13-left). They experimentally showed that the proposed 

strategy can increase the productivity between 85 and 600% by suppressing the low-
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frequency structural chatter. In 2016, Beudaert et al. [137] analysed the limitations of 

adding the extra loop for chatter suppression, finding that non-collocated controller 

amplifies the counter phase mode, which prevents it from obtaining an optimum system. 

In 2017, Franco et al. [138] actively damped the structural resonance of a large vertical 

lathe machine adding damping signals in different control architecture set points (Figure 

2.13-right). In 2021, Dumanli et al. [139] presented a controller to mitigate high frequency 

chatter vibrations by shaping the stability lobes of a turning process. 

 

 

Figure 2.13 Active damping strategy implementation [136] (left); b) FRF compliance 

with active damping feedback introduced in different setpoints [138] (right). 

2.4.3 Non-conventional control techniques 

However, apart from standard control configurations or addition of extra loops, different 

control techniques are presented in the literature (Altintas et al. [98]). The use of pole 

placement control technique has also been reported in the literature. With this, the closed 

loop poles of the system are placed in pre-determined locations in the s-plane (Astrom 

et al. [140]). In 2013, Gordon and Erkorkmaz [141] concluded that this technique was 

simple and effective for positioning and actively damping vibrations of a ball screw drive 

(Figure 2.14-left). The Sliding Mode Controller has also been employed for feed drive 

control in different approaches to actively damp the natural vibrations of a ball screw 

[142–144] (Figure 2.14-right). Recently, Neubauer et al. [145] applied this control 

approach instead of the conventional P position controller. The authors obtained a 

considerable improvement of tracking and disturbance rejection performance on an 

industrial ball screw drive. 
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Figure 2.14 Pole location modification [141] (left); Sliding Mode Controller application 

[143] (right). 

As a result of their strong performance in tracking and disturbance rejection applications, 

Linear-Quadratic Regulators are often used in literature for active vibration control of 

machine tools. Al-Zaharnah [146] applied this controller for a turning model to maintain 

a constant relative position between tool and workpiece. Analogously, Van Brussel et al. 

[147] proposed the implementation of 𝐻∞ robust control to control feed drives, using the 

nominal position of the machine tool and adding the information of the dynamic variations 

in model uncertainties. The application of Generalized Predictive Control has been 

applied by Dumur et al. [148] in flexible feed drives to compensate for structural mode 

variations. However, the effects of external disturbances were not considered. Berners 

et al. [149] optimized a linear Model Predictive Controller as a closed loop position 

controller for feed drives based on a genetic algorithm. They obtained lower overshoot 

and contour deviations compared to a regular proportional controller. 

Additionally, Sun et al. [150,151] boosted the bandwidth (> 80%) of a standard cascaded 

controller by introducing changes in the control structure, adding either a second P 

velocity control loop (table velocity added to regular motor speed) or a derivative action 

to the regular position proportional gain. 

Although several publications have demonstrated that advanced control structures can 

outperform the classical P-PI configuration, the cascaded control loops give satisfactory 

results for the vast majority of machine tools applications. However, in literature, only 

simplified dynamics are considered during the existing commissioning approaches. 
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Therefore, Chapter 3 presents a frequency based MIMO model that couples the servo 

controller and machine dynamics to analyze the influence of each control parameter on 

the tool centre point compliance. Later, Chapter 4 presents a new strategy to achieve 

optimum vibration damping and improve the chatter stability via a servo controller tuning 

procedure which can be implemented in every regular industrial machine tool. 

2.5 VIRTUAL MACHINE TOOLS 

Finite Element modelling can provide valuable dynamic characteristics like natural 

frequencies and mode shapes during the machine design stage with reasonable 

accuracy. However, at this point, the damping properties are very difficult to estimate, 

due to the fact that machine joints are the main contributors (Munoa et al. [2]). 

Additionally, classical Finite Element modelling approaches exclusively considers 

mechanical components. For this reason, Altintas et al. [61] pointed out the importance 

of coupling the servo control loops to the structural dynamics. With this, the interactions 

between the mechanical structure and the controller during the design stage can be 

estimated. The authors summarized the most common approaches for coupled 

simulation, where two main groups are introduced (Figure 2.15). 

 

Figure 2.15 Different approaches for coupled simulation of structural dynamics and 

control loops [61]. 

For the so-called replacing models, an analogue model of the control scheme is added 

into the Finite Element model or the machine dynamics are added into the simulation of 

the control loop [152]. In the co-simulations, two independent simulation environments 
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(one for control loops and one for machine structure) are coupled via interfaces during 

the simulation [153]. Bartelt et al. [154] developed a new software architecture which 

synchronizes concurrent simulations performed in different environments to facilitate the 

employment of this technique. Matlab Simulink [155], Dymola [156] or Simcenter Amesim 

[157] software offers interfaces to generate the mechatronic model of the machine tools. 

Abdul-Kadir et al. [158] presented an extensive review on virtual manufacturing, 

concluding that even though there are already plenty of tools to analyse different aspects 

of machine tools and machining, they felt a lack of integration. 

The research community has been working in the development of more integrated virtual 

models. In 2004, Zaeh et al. [159] developed a Finite Element model of the feed drive 

system and simulated the performance of the axis control law under the influence of 

structural vibrations. In 2009, Vesely et al. [160] outlined the procedures and trends for 

the machine tool mechatronic modelling. Later, Neugebaur et al. [161] described the 

steps and a new compact form of mechatronic simulation for the determination of static 

and dynamic stiffness, obtaining good experimental validations. Recently in 2019, Zaeh 

et al. [116] improved the simulation model by introducing linear damping, nonlinear 

friction and motion commands. Following a similar approach, Wiesbauer et al. [62] 

validated their coupled model by using a tubular linear motor to measure FRFs during 

uniaxial carriage movements. Analogously, position-dependent dynamics can be 

evaluated by reduced-order substructure Finite Element models [162–164]. Apart from 

Finite Element modeling, multibody dynamic modelling is also presented in the literature. 

Huynh et al. [165] presented a methodology for developing a multibody dynamic model 

of a 5 axis machining centre. Similarly, in-process data from actual machine tools can be 

used for generating a digital twin (Wang et al. [166]). In 2009, Brecher et al. [167] 

reviewed the different solutions to relate machine-process interactions for different 

manufacturing processes, stating that to fully understand the manufacturing system (with 

respect to vibrations, deflections or thermal deformations) these interactions must be 

studied (Figure 2.16). Full Finite Element based process and machine modelling was 

presented by Schermann et al. [168] for a turning process. However, extremely long 

calculation times were required. A comprehensive representation of the machining 

process forces, process stability and machining results were obtained by Witt et al. [169] 

coupling a flexible multibody simulation and an analytical process model. 
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Figure 2.16 Overview of different approaches for machine-process coupled simulations 

[167]. 

These machine digital twins can be used for early stage machine redesigns (Neugebauer 

et al. [170]) or to virtually commission the control gains (Berkemer [171]). Following this 

goal, Kolar et al. [172] developed a virtual machine tool to increase the productivity by 

optimizing the control system interpolator settings. As described by Armendia et al. [173], 

virtual machine tool packages can interpret the G-code to check machine movements 

according to the programmed tool path and kinematics with the aim of training and 

process checking (i.e. collision avoidance [174]). Recently, Hänel et al. [175] presented 

a general model structure for digital twins applied to machining processes. 

Table 2.3 summarizes the different virtual machine tools proposed in the literature. 

Significant research efforts have been oriented to the modelling of ball screw feed drives 

but very few publications are dealing with rack and pinion feed drives. 
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Table 2.3: Virtual machine tool models presented in literature. 

Reference Friction model Purpose 
Control 
loops 

Machine 
dynamics 

Feed drive 
type  

Zaeh et al. [159] No Dynamics Yes FE Ball screw 

Zirn [125] Coulomb 
Dynamics 

Tracking 
Yes FE 

Linear 

drives 

Neugbauer et al.  [161] No Dynamics Yes FE Ball screw 

Neugbauer et al.  [170] No Dynamics Yes FE 

Ball 

screw/Linear 

motor/Rack 

and pinion 

Bianchi et al. [114] LuGre Dynamics Yes FE Ball screw 

Rebelein et al. [115] 

Leuven + 

enhanced 

Stribeck 

Dynamics No MB Ball screw 

Rebelein et al. [32] 

Leuven + 

enhanced 

Stribeck 

Dynamics Yes MB Ball screw 

Zaeh et al. [116] 

Leuven + 

enhanced 

Stribeck 

Dynamics Yes FE Ball screw 

Kolar et al. [172] No Tracking Yes FE Not defined 

Wang et al. [166] Stribeck Tracking Yes MB 
Ball screw/ 

Linear motor 

Sato et al. [119] 
Own model 

[176] 
Dynamics Yes MB Ball screw 

Huynh et al. [165] No Dynamics No MB Ball screw 

Wiesbauer et al. [62] LuGre Dynamics Yes FE Ball screw 

As indicated above, in order to generate the machine digital twin which considers the 

controller effect, friction characteristics and machine motion profiles, the modelling of the 

feed drive system is a mandatory step. Therefore, the next section describes the 

characteristics of each feed drive system. A deeper description of the rack and pinion 

feed drive mechanism employed in the large machine tool industry is provided later in 

Section 2.6. 
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2.5.1 Feed drive technologies 

Current machine tools are sophisticated mechatronic systems as reviewed by Altintas et 

al. [98]. The machine tool feed drive system is used for positioning the machine 

components carrying the tool and workpiece to the desired location. Hence, the machine 

positioning accuracy and dynamics will determine the quality of the produced part and 

the manufacturing productivity. Machine tool manufacturers typically implement one of 

three main kinds of feed drive systems: ball screw, linear motor or double pinion and 

rack, according to each machine’s operational requirements [98,177] (Figure 2.17). One 

of the main aspects to consider while choosing the feed drive system is the travelling 

distance of the axis, as it directly affects the cost and performance of the driven machine. 

The ball-screw drive is the most widespread system for travel distances not exceeding 

4-5 m [178], as it achieves the required precise positioning at a high efficiency to cost 

ratio. The second most industrially implemented feed drive type is the direct drive or so-

called linear motor solution. The main characteristic of this system is the lack of 

mechanical transmission elements; hence, backlash or wear problems are eliminated. 

However, the cost of this type of feed drive is high and therefore, linear motors are 

generally not used for heavy machines with long strokes. The third solution is the double 

pinion and rack system, typically installed in long travel applications exceeding 5 meters. 

By adding several racks together, very long strokes can be realized without modifying 

the stiffness of the system, which is independent of the travelled distance. Uriarte et al. 

[1] reviewed the engineering principles of large machine tools, concluding that this feed 

drive system should be installed in machines combining long travelling distances and 

high loads. 

   

Figure 2.17 Ball screw [179], linear motor [180] and rack and pinion feed drives [181]. 

The accuracy requirements of machine tools demand the use of drives where the 

backlash has been reduced to the largest possible extent. Even though the machine 

powertrain system is designed to minimize the clearance, the achievable precision and 

rigidity can be increased by generating a preload. The value of the preload force is an 

important property that greatly influences the quality of the feed motion, dynamical 
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operational behavior as well as the expected service life and energy consumption. As 

concluded by Altintas et al. [98], direct drives powered by linear motors have zero 

backlash; therefore, no preload is required. However, ball-screw and rack and pinion 

feed drive systems require a tensioning force to suppress the existing clearance. 

2.5.2 Ball screw drives 

For ball screw applications, the nut is usually preloaded to remove any axial clearance 

generated between the recirculating balls and the guiding slots of the screw (Figure 2.18-

left). As a result, the contact stiffness of the recirculating balls with the nut's thread is 

increased. The most popular solution among ball screw manufacturers for high 

demanding applications is to generate the preload by adjusting a spacer between two 

nuts, where the thickness of the spacer determines the generated preload force [182]. 

The existing clearance can be also minimized by using recirculating balls of slightly larger 

diameter than the available space. Despite its simplicity, this kind of preload is only valid 

when the required preload is small, as the recirculating balls undergo sliding at the 

contact points, which generates high wear and tear. Excessive preload increases the 

wear and heat generation. For that reason, the preload force is approximately limited to 

12% of the dynamic load capacity, where the regular value is set around 6-8% [178]. Verl 

et al. [183] proposed a novel design principle for ball screws, allowing a considerable 

reduction of the preloading and improving the operating characteristics by introducing a 

passive overload mechanism. 

 

 

Figure 2.18 Single and double-nut preload screw-nut interface [184] (left); Spring model 

of balls in screw-nut interface [185] (right). 

The direct identification of the ball screw preload is generally complex and expensive. 

However, the preload level of an assembled ball screw can be determined by measuring 

the drag torque at 100 rpm when no external loads are applied as described by the 
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standard DIN ISO 3408-3 [186]. Verl et al. [187] studied the correlation between the feed 

velocity and the effective preload through a preload sensing mechanism. They concluded 

that the pretension value changes depending on the velocity of the commanded feed 

motion. The variation at lower speeds can be neglected but it has to be taken into 

consideration for rapid motions. Following this idea, Zhou et al. [188] conducted an 

analysis of the difference between the estimated preload based on traditional formulas 

and experimentally measured values. The researchers designed and built a preload-

adjustable ball screw mechanism to examine the relationship between preload force and 

drag torque. They proposed and compared a new modelling approach for three different 

preload levels, obtaining a considerable prediction improvement. 

As a result of modifying the preload amount, the contact stiffness is also modified and 

hence, a variation of the system dynamics can be expected. Feng et al. [189] and Zhang 

et al. [190] show the influence of the preload on the natural frequencies of the feed drive 

system. In 2019, Ngueyn et al. [191] monitored the preload value by evaluating the 

natural frequency of the screw nut in the axial direction and Denkena et al. [192] by a 

sensor fusion approach. 

For the interface modelling, Zaeh et al. [159] derived the stiffness elements for the 

preloaded nut interface and coupled it to a FE model. The model contained the cross-

coupling effects of the axial and torsional directions. In 2009, Okwudire et al. [185] 

expanded Zaeh's formulation to also consider the effect of lateral stiffness. By doing so, 

the proposed model was able to capture additional cross-coupling terms between the 

deformations in the axial, lateral and torsional directions. Later in 2011, Okwudire [184] 

proposed an improved model for screw-nut interface (Figure 2.18-right), which 

considered the elastic deformations of the screw within the nut for accurate natural 

frequencies prediction. In 2018, Brecher et al. [193] introduced a calculation 

methodology to analyse the interaction of the load distribution and single rolling element 

contacts within a ball screw (Figure 2.19). The influence of the inner geometry on the 

system behaviour such as elastic deformation of the nut and spindle or load distribution 

can be determined by the proposed methodology. Also, the model allows a detailed 

analysis of the contact characteristics of the rolling elements. 
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Figure 2.19 Calculation model to identify rolling element contact characteristics [193]. 

The ball screw feed drive modelling has been well addressed in the literature with several 

test benches, machine tool measurements and model correlation. However, little 

attention has been devoted to the rack and pinion by the academic community. This 

reduced attention might be associated to the fact that rack and pinion drives are generally 

used for large machines that are not present in the university facilities. However, there 

is an industrial need to accurately model the complex rack and pinion feed drives. 

2.6 RACK AND PINION FEED DRIVES 

As described in Section 2.5.1, rack and pinion feed drives are employed in applications 

with long travelling distances. Apart from the machine tool field, this technology is used 

in different sectors such as automotive for the steering wheel, oil and gas for self-

elevation of the offshore platforms or for elevator design purposes (Figure 2.20). 

Additionally, the use of a single pinion and rack is also present in machine tools for 

secondary services like door opening-closing systems or for building lower cost 

machines in applications where the backlash effect can be neglected (e.g., laser cutting 

machines). 
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Figure 2.20 Use of rack and pinion feed drive in elevator industry (detail [194]). 

There are very few publications dealing exclusively with rack and pinion feed drives for 

machine tool application. Table 2.4 provides an exhaustive review of all relevant 

research publications. 

Table 2.4: Summary of rack and pinion research in the machine tool field. 

Feed drive Research topic Reference 

Double pinion and rack  

Backlash [125,195–199] 

Static/dynamic stiffness [65,200] 

Disturbance compensation [138] 

Single pinion and rack 

Design [201] 

Disturbance compensation [202,203] 

Single/double pinion and rack Monitoring [204] 

In 2006, Choi et al. [201] presented a design optimization of a single rack and pinion feed 

drive installed in a router machine. As a result, the feed drive vibration amplitude 

decreased by almost 50% with respect to the original design. Disturbance compensation 

minimization (such as process forces) has also been studied in literature. In 2021, 

Brenner et al. [202] developed an acceleration-based disturbance compensation method 
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for a single pinion and rack feed drive system by generating a torque computed from the 

difference between estimated and real table accelerations. By using the standard 

master-slave configuration, Franco et al. [138] actively damped the structural 

resonances of a vertical lathe. Similarly, friction-generated disturbance minimization has 

also been studied in literature (Karim et al. [203]). In 2016, Ehrmann et al. [204] showed 

the prospect of condition monitoring of rack and pinion drive systems to reduce 

unforeseen failures and machine stops. The authors concluded that there is a need for 

action for this specific feed drive mechanism. 

Additionally, the preload effect on static and dynamic stiffness has been addressed. In 

2015, Engelberth et al. [200] experimentally identified the variation of the feed drive 

system stiffness with respect to different preload values. The authors showed that in 

higher force range, the equivalent stiffness is approximately invariant to the commanded 

preload value (Figure 2.21-left). Inversely, Franco et al. [65] experimentally showed the 

machine tool dynamics variation for different preload values (Figure 2.21-right). 

 
 

Figure 2.21 Stiffness of a rack and pinion drive with different preloads [200] (left); Tool 

centre point compliance with different preloads [65] (right). 

However, the majority of the publications are focused on backlash compensation 

approaches or analysis (Table 2.4) as it is a major concern when using this feed drive 

system. The next section describes the different techniques presented in the literature to 

minimize this effect. 

2.6.1 Backlash suppression techniques 

For the particular case of the double pinion and rack feed drive model, the backlash is 

defined as the distance measured along the pitch line, that a gear needs to move until it 

engages with another gear that is fixed or immovable. As described by Smith et al. [205], 
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gear backlash is needed to provide running clearance, as well as to handle 

manufacturing tolerances or reduce factors such as heat generation, noise, unusual wear 

and possible overload that can end up generating a failure of the drive. In literature, two 

different approaches have been proposed to minimize the existing clearance by exerting 

a preload. 

Mechanical means 

On one hand, mechanical solutions have been proposed to tackle this existing clearance, 

such as the utilization of split pinions [206] (Figure 2.22-left) or mechanical assemblies 

[207]. Alternative approaches, such as hydraulic actuation, have been also proposed 

[208]. However, as concluded by Prodan et al. [199] this approach cannot completely 

eliminate the existing play between the two segments of the sliced gears. Similarly, 

industrial commercial solutions are also available using a single motor connected to a 

gearbox [181]. Variations of traditional rack and pinion mechanism are available in the 

market [209], called roller pinion solutions. Unlike traditional joints, the system is 

designed to run with interference which allows two rollers to remain preloaded at all times 

(Figure 2.22-right). Despite its cost-effectiveness, in these kinds of solutions, the existing 

preload value cannot be changed or adapted without a mechanical reconfiguration of the 

systems. 

 
  

Figure 2.22 Split pinion [206] (left); Existing variations of rack and pinion [209] (right). 

Control means 

On the other hand, in large machine tool applications, where a driven axis or load can 

exceed the maximum capabilities of standard servo motors, a parallelization of the drives 

increases the input torque. In addition, the second drive can be used to generate the 

pretension torque suppressing nonlinear vibrations that can be originated by backlash in 

combination with the axis feedback control (Zirn [125]). Current industrial trend is to use 

a double motor actuation where the preload is managed electronically by the machine's 

CNC controller. This approach helps simplify the mechanical design of the drive at the 
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cost of increasing the controller complexity, but nowadays industrial CNC manufacturers 

provide this control solution. 

In the absence of a separate linear encoder, the rotary encoder of one of the motors can 

be used to close the position loop for both drives. In this case, the corresponding motor 

becomes the master and the other one the slave motor. However, in high-end machine 

tools which offer additional linear scale feedback used to close the position loop, the 

overall control system assumes a symmetrical structure with only the motor designations 

to be called ‘master’ and ‘slave’ (Figure 2.23). 

To perform the electronical preload, the velocity control loop differs from other feed drives 

mechanisms as it follows a master-slave coupling. The master drive is completely 

position and velocity controlled, whereas the slave drive follows the velocity setpoint 

computed by the master position control loop. Engelberth et al. [200] summarized the 

different existing control structures for inducing a preload in double pinion and rack feed 

drives. The control scheme integrated in regular commercial CNCs is an extra PI type 

controller that is implemented to adjust the desired preload torque (Figure 2.23). This 

controller, which is usually called the torque equalization controller, generates an 

additional speed setpoint for each motor by considering the desired torque preload. This 

configuration also allows to use different motor powers, as it offers individual weighting 

factors to adapt the torque distribution. In the case of using two identical motors, these 

factors have to be equal (𝐾Tm = 𝐾Ts = 0.5). The desired preload can be defined in the 

CNC controller by modifying the parameter, called torque bias or tension torque (𝜏p), 

which is defined as a percentage of the motor rated torque. In 2008, Zirn [125] stated 

that a moderate integral time value could be defined to ensure the static pretension 

torque independently of the defined weighting factors. 

 

Figure 2.23 General master-slave configuration control structure [65]. 
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Although a clearance-free system is desirable, the increment of the preload level leads 

to a reduction of the maximum achievable acceleration. In 2013, Heidenhain [210] 

provided a CNC option called Motion-dependent Adaptation of Control parameters 

(MAC) which varies the tensioning torque for increasing the achievable acceleration. This 

tool provides a way to change machine parameter values depending on certain inputs 

such velocity, following error or motor acceleration. Later, Verl et al. [197] introduced an 

adaptive preload approach to adjust the preload value during the machine operation and 

increase the drive system’s energy efficiency. However, there is not a clear tuning rule 

stablished for preload commissioning. Zirn [125] defined a range between 10–30% of 

the motor rated torque whereas regular industrial values are established at 20-25% [210]. 

Verl et al. [197] concluded that only 4% level was enough to compensate the existing 

clearance. 

Variations of the industrial standard control schemes are also reported in the literature. 

Uchida et al. [195,196] presented two control scheme feedback modifications for 

backlash compensation, obtaining an improvement in the position accuracy of the 

system. Similarly, Jiang et al. [198] proposed the utilization of PID controllers to eliminate 

the gear clearance of a rotary table in a heavy-duty vertical lathe, obtaining an 

improvement of 56% in the position accuracy. 

2.6.2 Description of geared interface modelling 

Figure 2.24 shows the overall joint model extensively employed in the gear modelling 

community. The gears are coupled by a parallel connection of spring and damper 

elements, in addition to the nonlinear function describing the backlash effect. This 

modelling approach has also been employed in machine tool geared interface 

simulations. Zirn [125] modelled the contact area between a worm and worm wheel, 

where the spring-damper unit represented the combined tooth stiffness of the worm and 

worm wheel as well as the worm-bearing stiffness. Similarly, the same author proposed 

a double pinion and rack physical model following the same joint modelling. Later, 

Engelberth et al. [211] also followed this same modelling approach. 
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Figure 2.24 Single stage gear transmission model [212]. 

However, the literature offers very little resources about the double pinion and rack 

mechanism for the machine tool industry. Therefore, the rest of this literature review 

focuses on the general analysis of gear contact and gear box dynamics as it provides 

valuable information for the rack and pinion feed drive analysis. 

Mesh stiffness 

In 2014, Cooley and Parker [213] reviewed the dynamics and vibration research of 

planetary and epicyclic gears. The authors summarized the different tools that are 

available to analyse the transmission vibrations, such as Finite Element tools which can 

be used for high fidelity contact modelling and analysis [214]. However, accurate contact 

between the bodies requires long computational times. Lumped mass models can be 

employed which have shown good correlations with experimental tests and finite element 

simulations (Cooley and Parker [213]). 

The ability to accurately calculate the dynamic response depends to a large extent on 

how well the gear mesh is modelled. During the operation, as a result of the gear rotation, 

the contact conditions at the tooth mesh interface vary periodically (Figure 2.25). This 

results in a periodic stiffness variation at each gear mesh. According to Cooley and 

Parker [213], four different mesh stiffness models approaches are used in the literature: 

constant or fluctuating mesh stiffness models, fluctuating mesh stiffness with tooth 

contact loss and computational models. The first model approximates the real varying 

mesh stiffness into a constant value. This approach captures the system’s features 

correctly with a simple implementation and resolution comparing to the other models. 

The second model considers the actual varying mesh stiffness characteristics. This 

variable stiffness can be approximated using periodic functions (Jingyue et al. [215]), 

rectangular (Walha et al. [216]) or trapezoidal (Litak et al. [217]) profiles. As a result, a 

more precise model is obtained where internal dynamic excitations are captured. The 
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third model is based on the previous one with the addition of the tooth contact loss, as a 

result of vibrations near resonances. The loss of contact is a strong nonlinearity where 

the mesh stiffness vanishes suddenly. This nonlinearity leads to classical softening type 

behaviour of the resonances in the frequency domain. Finally, utilising computational 

tools, the instantaneous contact conditions and mesh forces are calculated at each time 

step as the gear rotates kinematically. 

 

Figure 2.25 Finite Element model and total mesh stiffness evolution along the contact 

path (based on Sanchez et al. [218]). 

As in ball screw drives, where the interface (lead screw, recirculating balls, and nut) 

equivalent stiffness can be estimated analytically, the ISO 6336 standard establishes a 

uniformly accepted method for geared transmission wear and bending capacities 

computation. In the Tooth Contact Analysis (TCA), as a result of the gear tooth elasticity, 

their contact area is spread over an elliptic surface, and the centre of the contact ellipse 

is the theoretical point of contact (Figure 2.26). The instantaneous line contact of gear 

tooth surfaces exists only theoretically (under no gear misalignments or manufacturing 

errors).  

 

Figure 2.26 Contact stress and pressure using Finite Element simulations [219]. 
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The tooth contact area computation is not standardised, and the different commercially 

available software packages are validated by experimental measurements, finite 

element calculations and field experience. In 2004, Wang et al. [220] concluded that not 

only the rotation of the tooth influences the expected mesh stiffness, but also the applied 

load amplitude. Kiekbusch et al. [221] shown that as applied load increases, the mesh 

stiffness varies as a result of the Hertzian contact stiffness (Figure 2.27). In 2016, Xue 

et al. [222] reported that a variation of 23.5% of torsional mesh stiffness under 5 Nm and 

200 Nm of the applied load. Similarly, Mahr and Kissling [223] performed a comparison 

of the most used commercial software packages where they compared, among many 

other results, the tooth meshing stiffness. The authors concluded that a correlation factor 

should be applied to their Hertzian deformation contribution. 

 

Figure 2.27 Influence of the applied torque on body, tooth and contact stiffness [221]. 

The ISO 6336-1:2006 standard [224] provides analytical equations to compute an 

equivalent gear mesh stiffness. The mesh stiffness (𝑐γα) is the mean value of the stiffness 

considering all the teeth in mesh, as shown in Eq. (2.1). The stiffness value depends on 

two different parameters: the contact ratio (𝜀α) and the equivalent stiffness of a single 

tooth pair (𝑐′). 

𝑐γα = 𝑐
′(0.75𝜀α + 0.25) (2.1) 

The contact ratio represents the average number of teeth meshing at the same time. 

Having multiple teeth in contact means that the load is shared, which increases the 

average stiffness of the gear, obtaining lower deflection at the teeth. This parameter can 

be computed following well-known formulas [225]. The single stiffness parameter 

computation, however, requires a detailed step-by-step procedure. The main expression 

for its computation is shown in Eq. (2.2). The theoretical tooth pair single stiffness (𝑐th
′ ) 
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is adjusted by means of different weighting factors to adjust theoretical and experimental 

deviations. 

𝑐′ = 𝑐th
′  𝐶M 𝐶R 𝐶B 𝐶F  𝑐𝑜𝑠 𝛽 (2.2) 

The computed mesh stiffness (𝑐γα) can be multiplied by the face width of the tooth (𝑏) to 

obtain the prediction of the total mesh stiffness, Eq. (2.3). 

𝐾mesh = 𝑏𝑐γα (2.3) 

Gearbox dynamics 

The gearbox provides a torque multiplication at a cost of a speed reduction. The servo 

application demands, not only high torque with low added inertia, but also high precision 

and stiffness. The planetary gearbox meets these specifications with an addition of low 

maintenance and long operating life. This kind of gearbox consists of multiple planetary 

gears that revolve around a central sun gear while engaging with an internal gear and 

rotating on their axes. The continuous engagement of the planetary gears means that 

the load is shared by multiple teeth, which increases the torsional stiffness. This fact 

makes them an ideal selection for processes that involve frequent start and stop motions 

or changes in the rotational direction, which are common characteristics of servo 

applications. According to Cooley and Parker review [213], the planetary gears can have 

as little as three planets (which is the lowest number of planets to take advantage of the 

multiple load paths) or more than ten planets, which can be used in high power 

applications like aerospace engines (Figure 2.28). 

  

Figure 2.28 Airbus A320neo PW1100G-JM geared turbofan jet engine [226]. 
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In 1973, Cunliffe et al. [227] proposed a two degrees of freedom (torsional and 

transversal) lumped mass model under lineal and nonlinear mesh stiffness. The linear 

model was used to determine the natural frequencies and mode shapes. This work 

classified the mode shapes into overall, sun, radial, tangential and torsional modes. 

Later, in 1999, Lin and Parker [228] proposed a model to examine the mode shapes 

properties of a planetary gear with equal spacing. They proved that planetary gears have 

three types of vibrations modes, independent of the number of planet gears and system 

parameters. The three modes types are planet, rotational and translational (Figure 2.29). 

   

Figure 2.29 System modal shapes [228]. 

In 2013, Ericson and Parker [229] concluded that the modal shapes of the planetary 

gears could be divided into two different categories depending on the frequency range. 

At low frequencies, they are called fixture modes and at higher frequencies gear modes. 

Within the gear modes, the authors grouped the modes into three clusters consisting of 

translational, rotational and planet modes (with four or higher planets). The proposed 

clustering phenomena was experimentally validated. Later, the same authors conducted 

a research where these two frequency bands were detailed [230]. On one hand, the low-

frequency fixture modes (below 1500 Hz) are characterised by the deflection of fixture 

components such: shaft, inertias and entire planetary gear as a uniform body. On the 

other hand, high-frequency gear modes are predominantly characterised by the motion 

of individual planetary gear components, particularly of the planet gears. 

This section provided a deep analysis of the existing literature of the rack and pinion feed 

drive system in the machine tool field. The different backlash suppression techniques 

are summarized showing that control oriented techniques are more flexible in terms of 

commissioning than mechanical approaches. The literature in the machine tool field is 
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limited; therefore, the gear specialized academic community literature is also analyzed 

to provide a better understanding of the gear and rack interface. 

Chapter 3 presents a study of the different control parameters present in the widely used 

master-slave control configuration. A time domain model which considers the backlash 

alongside the stiffness of the drive train is presented. The proposed model can predict 

the observed experimental nonlinear stiffness behaviour for different electronic preload 

levels. Additionally, a generalized framework is presented to couple linearized machine 

tool dynamics with the master-slave control parameters. As a result, the influence of 

each control parameter on the cutting point compliance is predicted by a frequency 

based MIMO model. 

2.7 SUMMARY OF THE LITERATURE REVIEW 

This chapter has introduced the chatter vibration problem present in the machine tool 

industry and how it can be characterized through the stability models. One of the required 

inputs is the system compliance and the challenges that are faced during the 

identification process have been also described. Among the different difficulties, the 

friction present on the machine’s guiding system has been described. Existing alternative 

machine tool dynamics characterization techniques that minimize the stability limit 

deviations have been also discussed. Additionally, the different machine tool feed drive 

systems, its control and modelling approaches have been also summarized. This 

literature review has reflected some unsolved problems that are summarized below and 

tackled in the present thesis. 

While the stiffness, mechanics and backlash properties of ball screw drives have been 

extensively studied in literature, little work has been done regarding the double pinion 

and rack feed drive mechanism. This thesis presents, on one hand, a time domain 

modelling approach that considers the contact conditions and on the other hand, a 

generalized framework to couple the linearized machine tool dynamics with the master-

slave controller. With this, the influence of the control parameters effect on the tool centre 

point can be predicted. 

The feed drive control tuning has been widely studied in literature. For improving the 

machine tool accuracy, different compensation techniques or feedforward terms tuning 

guidelines are proposed. The increase of machine’s damping by means of non-

conventional control techniques is also described in literature. However, this kind of 
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control solutions are difficult to introduce in industry. Therefore, the industry standard 

 P-PI cascade controller is analyzed in this thesis. The commissioning of this control 

scheme has also been studied in literature; however, in earlier methods a single vibratory 

mode was considered and no experimental evidence of the influence of the control 

parameters on the cutting point compliance is reported in literature. This thesis presents 

a new feed drive control approach for avoiding chatter, which can be generalized for 

complex machine tool dynamics. 

The existing guideway friction has been modelled and studied in literature, especially for 

motion and control performance. However, little work has been done regarding the effect 

of guideway friction on the cutting point compliance. This thesis describes the interaction 

of machine tool structural dynamics, guideway friction, feed drive controls and motion 

commands and how this interaction affects the tool centre point compliance. By 

understanding this effect, the chatter stability limit can be predicted more accurately. 

The obtention of the machining system dynamics is a complex task, as different factors 

can alter the expected dynamics. Alternative system compliance identification 

techniques are present in literature, which by means of dedicated cutting tests try to 

identify the dynamics under real cutting conditions. This thesis introduces an alternative 

approach which significantly improves the signal to noise ratio of the obtained dynamics 

with respect to the state of the art approach. This is obtained by optimizing the tool radial 

engagement of the identification cutting tests which ensures a high quality excitation. 

Additionally, the quality of the spectra signals is improved by using the Welch’s method. 

With this, not only the effect of guideway friction or feed drive controller can be consider, 

but also the nonlinearity related to the excitation force, obtaining as a result, a better 

chatter stability limit prediction. 
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Chapter 3  

 

Analysis of an electronically 

preloaded rack and pinion drive 

3.1 INTRODUCTION 

In 2011, Altintas et al. [98] described the feed drive system types that are available for 

the different machine tool applications. For large heavy-duty machining operations, 

Uriarte et al. [1] concluded that the preloaded rack and pinion feed drive mechanism 

should be selected when large travelling distances and high loads are combined. As 

summarized in Sections 2.5 and 2.6, the accuracy requirements of modern machine tools 

demand the use of drives where the existing backlash is reduced to the largest possible 

extent. Therefore, an electronic preload is generated to suppress the existing clearance. 

The preload value greatly influences the quality of the feed motion, the dynamic 

operational behaviour as well as the expected service life and energy consumption. The 

current industrial trend is to use a double motor actuation following a master-slave control 

configuration, where the preload value is managed electronically by the machine CNC. 

In literature, there is no clear and systematic guideline for the preload commissioning. In 
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2008, Zirn [125] defined a range between 10-30% of the motor rated torque, whereas 

regular industrial values are established at 20-25% (Heidenhain [210]). In 2018, Verl et 

al. [197] concluded that only a 4% level was enough to compensate the existing 

clearance. 

So far, the double motor pinion and rack feed drive system has not extensively been 

targeted by the academic community and only a few publications can be found that study 

this feed drive technology. Furthermore, the existing documentation focuses mainly on 

energy and positioning improvements, neglecting its dynamic behavior and interaction 

with the machine. Therefore, this chapter presents two different approaches to analyze 

the master-slave control parameters of a double pinion and rack feed drive system on 

the operational behavior of a large-scale machine tool (Figure 3.1). On one hand, in large 

heavy-duty machine tools, the acceleration capabilities might not be limited by the 

commanded preload level. Hence, this chapter studies the effect of the defined 

electronical preload on the static stiffness behavior of the double pinion and rack 

mechanism. On the other hand, the influence of the master-slave control parameters on 

the cutting point compliance is analyzed. A frequency domain based response prediction 

approach is proposed using the Linear Fractional Transformation (LFT) technique which 

allows the coupling of the analytical definition of the P-PI servo controller scheme and 

the structural machine tool dynamics. 

 

Figure 3.1 Steps of the proposed approach. 
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3.2 TIME DOMAIN FEED DRIVE MODEL DEFINITION 

Figure 3.2 shows the double pinion and rack feed drive model presented in this chapter. 

The CNC generated trajectory (𝑥ref) is controlled by the proportional position control gain 

(𝐾v) which utilizes the driven load position, usually acquired by a linear encoder (𝑥load). 

The velocity reference (�̇�ref) is controlled by the master-slave control configuration where 

each motor has a proportional-integral (PI) controller (𝑃𝐼master and 𝑃𝐼slave), which 

employs each motor’s rotational velocity acquired by the rotary encoders already 

installed in the back of the motors (�̇�m and �̇�s). The desired preload level can be modified 

varying the parameter called torque bias or tension torque (𝜏p), which is defined by a 

percentage of the motor rated torque. The torque equalization controller (𝑃𝐼preload) 

generates an additional speed setpoint for each motor by considering the desired torque 

preload. This control configuration allows the utilization of motors with different powers, 

as it provides individual weighting factors to adapt the torque distribution (𝐾Tm and 𝐾Ts). 

If both motors are identical, the load must be shared proportionally by defining a value 

of 𝐾Tm = 𝐾Ts = 0.5. The generated torque commands for master and slave are denoted 

as 𝜏m and 𝜏s, respectively. Additionally, external disturbance forces (𝐹load) can be directly 

applied to the load. Next subsection describes the different components of this feed drive 

system. 

 

Figure 3.2 Double pinion and rack feed drive model. 

3.2.1 Electronic preload 

As a result of a commanded trajectory (𝑥ref), a reference torque (𝜏ref) is generated to 

achieve the desired displacement. For the standstill case (𝜏ref = 0 Nm), the net torque 

(𝜏net), which is the summation of each motor torque, must be zero otherwise the machine 

will move (Eq. (3.1)). As a result of the electronic preload, each motor in the standstill 
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case generates the desired preload torque level 𝜏p. Both master and slave torques (𝜏m 

and 𝜏s) have inverse polarity within the −2𝜏p < 𝜏ref < 2𝜏p interval, hence both pinions 

are in opposite flanks of the rack (Figure 3.3 zone ). A reference torque outside this 

interval induces a flank change of one of the pinions, which depends on the moving 

direction. In this case, both motor torques have the same polarity. Eq. (3.2) indicates the 

maximum net torque (𝜏net,max) that can be obtained under preload conditions. This shows 

that increasing the preload torque leads to a reduction in the achievable acceleration. 

𝜏net = 𝜏m + 𝜏s , where 

(3.1) 𝜏m = 
𝜏ref
2
+ 𝜏p 

𝜏s = 
𝜏ref
2
− 𝜏p 

𝜏net,max = 2(𝜏m,max − 𝜏p) (3.2) 

 

Figure 3.3 Electronic preload for backlash suppression [98]. 

3.2.2 Joint stiffness 

The power transmission of this feed drive mechanism is characterized by low revolutions 

and high torque. For this reason, additional gear steps are required to fulfill the torque 

requirements. Planetary gearboxes are usually installed as the continuous engagement 
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of multiple teeth increases the torsional stiffness [213]. As a result, each motor equivalent 

inertia can be computed following Eq.(3.3), where motor, gearbox and pinion inertias are 

jointly considered. Note, that as a result of employing a gearbox, the reduction factor 

(𝑖red) must be considered while computing the equivalent inertia. 

𝐽eq = (𝐽motor + 𝐽gearbox) + 
𝐽pinion

𝑖red
2  (3.3) 

Similarly, as described by Altintas et al. [98], the stiffness of this feed drive mechanism 

is dominated by the torsional stiffness of the motor coupling (𝑘coupling), installed gearbox 

(𝑘gearbox) and shaft (𝑘shaft), as well as the contact stiffness of the pinion and rack 

combination (𝑘p−r) (Eq.(3.4), Figure 3.4). In the proposed model, each motor is coupled 

to the load by a connection of a spring element (i.e., 𝑘m), which is an equivalent linear 

stiffness of the previous components. 

1

𝑘m
=

1

𝑘coupling
+

1

𝑘gearbox
+

1

𝑘shaft
+
1

𝑘p−r
 (3.4) 

 

Figure 3.4 Equivalent stiffness model. 

3.2.3 Joint backlash 

The equivalent backlash in the power transmission path can come from different sources, 

such as the motor-gearbox and pinion-rack joint interfaces, as well as a summation of 

existing clearances within the gearbox. This mechanical nonlinear behavior has been 

modeled by a dead zone approach which simplifies the exact physical model (Moradi et 

al. [231]). 𝐿z,m and 𝐿z,s are the existing equivalent backlash values (master and slave 

respectively) between load and motor positions (i.e., 𝑥load and 𝑥s). 
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With this, the different elements needed to simulate the model of Figure 3.2 are defined. 

Section 3.4 presents the experimental identification and validation of the proposed 

model. Analogously, next section describes the derivation of the proposed modelling 

MIMO approach for coupling the master-slave controller with the machine structural 

dynamics. 

3.3 FREQUENCY DOMAIN FEED DRIVE MODEL DEFINITION 

A frequency domain modeling approach based on experimental data is present in this 

research to predict the influence of the servo control on the driven machine tool 

dynamics. With this, all the complexity of the machine dynamics is implicitly contained in 

the measured data. As multiple actuators and sensors are used to drive the machine, a 

multivariable prediction model is required. The LFT technique is chosen to build the 

prediction model (Skogestad et al. [232]). This technique is convenient and powerful for 

MIMO cases since it allows decomposing the control system into open and closed loop 

signals to work independently with each part. The formulation is based on a generalised 

control scheme (Figure 3.5-a), where the block 𝐆 defines the open loop machine tool 

dynamics, and 𝐊fb the implemented feedback controller. The generalized controller 

obtains as inputs the measured variables (𝐪) to be able to generate the control signal 

(𝐩). 

It is important to mention that since linear system analysis is applied throughout, it is 

assumed that the magnitude of all inputs (motor torque, disturbance force, preload 

torque, velocity command, etc.) are bounded in a way to avoid major nonlinearities such 

as actuator saturation or disengagement/damage to the equipment. Thus, the machine 

tool preserves linear dynamic behaviour and bounded-input bounded-output (BIBO) 

condition is satisfied. 



Chapter 3 – Analysis of an electronically preloaded rack and pinion drive 

53 

 

Figure 3.5 a) Velocity controller LFT definition; b) Matrix frequency domain relationship 

detail. 

As shown in Eq. (3.5), the matrix 𝐆 is usually partitioned, so that the system is 

mathematically compatible with the signals generated by the matrixes or vectors 𝐰, 𝐳, 𝐩 

and 𝐪, Eq. (3.6). 

𝐆 = [
𝐆11 𝐆12
𝐆21 𝐆22

] (3.5) 

[
𝐳
𝐪] = 𝐆 [

𝐰
𝐩] , where 𝐩 = 𝐊𝐟𝐛𝐪 (3.6) 

The closed loop frequency domain response from the defined inputs (𝐰) to outputs (𝐳) is 

denoted by the lower LFT as defined in Eq. (3.7) by Skogestad et al. [232]. 

𝐅𝑙  (𝐆, 𝐊fb) = 𝐆11 + 𝐆12 𝐊fb(𝐈 − 𝐆22 𝐊fb )
−1𝐆21 (3.7) 

One of the most important properties of the LFT technique is that the interconnection 

between LFTs generates a new LFT. In this case, since the controller used is a cascaded 

P-PI controller, the closed velocity loop will serve as input to the position loop LFT. The 

following subsections explain the velocity and position controller definitions. 

3.3.1 Velocity control loop 

Taking into account the general master-slave control structure and the described LFT 

generalized block diagram (Figure 3.5-a), the inputs and outputs vectors can be selected 

to build the dynamical model. Bearing in mind that the final objective is to be able to 



Chapter 3 – Analysis of an electronically preloaded rack and pinion drive 

54 

couple the effect of the servo control parameters and the machine tool structural 

dynamics, the input and output vector variables have been selected as shown in Figure 

3.5-a. The exogenous input vector 𝐰 is composed of the disturbance force applied at the 

tool centre point of the machine, the velocity reference point and the pretension torque. 

The output vector 𝐳 contains the measurements from the linear encoder and the 

accelerometer at the tool centre point. On the other hand, the sensed output vector 

contains all the required variables to close the velocity loop: the velocity reference point, 

the pretension torque and velocity measurement from the rotary encoder of each motor. 

Lastly, the control signal vector is filled by the two torque commands for master and slave 

motors. Figure 3.5-b defines the required FRFs needed to perform the prediction. 

The three velocity PI controllers used in this control scheme are defined as follows. 

𝑃𝐼master = 𝐾p,master (1 +
1

𝑇i,master 𝑠
) (3.8) 

𝑃𝐼slave = 𝐾p,slave (1 +
1

𝑇i,slave 𝑠
) (3.9) 

𝑃𝐼preload = 𝐾p,preload (1 +
1

𝑇i,preload 𝑠
) (3.10) 

Using the velocity controller defined in Figure 3.2, the eight transfer functions to define 

analytically the velocity control matrix are computed. Below, the derived expressions for 

the master motor (Eq. (3.11)-(3.14)) are shown. 

𝜏m
�̇�ref

=
𝑃𝐼slave(𝑠)(2𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 1)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.11) 

𝜏m
𝜏p
=

𝑃𝐼slave(𝑠)𝑃𝐼preload(𝑠)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.12) 

𝜏m
�̇�m
= −

𝑃𝐼slave(𝑠)(𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 1)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.13) 

𝜏m
�̇�s
= −

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.14) 

Similar expressions are obtained for the slave motor, Eq. (3.15)-(3.18). 

𝜏𝑠
�̇�ref

=
𝑃𝐼master(𝑠)(2𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.15) 
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𝜏s
𝜏p
=

𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.16) 

𝜏s
�̇�m
= −

𝐾Ts𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠)

𝐾Ts𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.17) 

𝜏s
�̇�s
= −

𝑃𝐼master(𝑠)(𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1)

𝐾Tm𝑃𝐼master(𝑠)𝑃𝐼preload(𝑠) + 𝐾Ts𝑃𝐼preload(𝑠)𝑃𝐼slave(𝑠) + 1
 (3.18) 

The sampling frequency (8 kHz) of the velocity loop is taken into account during the 

controller discretization via Tustin’s method. All the mathematical calculations are 

programmed in complex vector operations. The next Eq. (3.19) gives the frequency 

domain relationship between the defined exogenous inputs and outputs (𝐳/𝐰) taking into 

account the previously defined velocity controller parameters 𝐊vel and the actual open 

loop machine tool structural dynamics 𝐆. 

(𝐆, 𝐊vel) = 𝐆11 + 𝐆12𝐊vel(𝐈 − 𝐆22𝐊vel)
−1𝐆21 (3.19) 

3.3.2 Position control loop 

Once the closed velocity loop is computed, the generated result matrix is directly used 

as an input for the closed position loop calculation (Figure 3.6). In this case, the controller 

matrix has been extensively simplified to just the position proportional gain. Like in the 

previous control loop, the existing sampling frequency (1 kHz) has been taken into 

account. 

 

Figure 3.6 a) Position controller LFT definition; b) Matrix frequency domain relationship 

detail. 
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Then, by means of Eq. (3.20), the FRF between the desired exogenous inputs and 

outputs (𝐳′/𝐰′) can be computed taking into account the position controller effect. The 

FRF between the tool centre point acceleration and the applied disturbance force at the 

same location is of particular importance, as this response should be equivalent to the 

one that can be obtained by performing a regular modal test with an impact hammer. 

(𝐑, 𝐊pos) = 𝐑11 + 𝐑12𝐊pos(𝐈 − 𝐑22𝐊pos)
−1𝐑21 (3.20) 

The frequency response of the feedback controllers can be analytically derived 

considering the gain values, which are known, and the control law structures. However, 

the main difficulty is in the acquisition of the actual machine tool’s open loop FRF matrix 

represented by matrix 𝐆. 

3.3.3 Pseudo-open loop extraction 

To be able to couple the analytically defined controller effect and machine tool structural 

dynamics, the response to excitation from both machine actuators is required. Usually, 

the machine feed drive actuators should be individually excited in order to characterize 

the response. However, as previously indicated, the master-slave controller couples both 

motors through the generated preload. This means that even if the excitation signal is 

carried out by a single motor, due to the torque equalization controller, the secondary 

motor also follows the excitation signal to get the desired torque bias. Hence, the 

response at a specific output point 𝑂 is affected by both motors’ excitation (𝜏m, 𝜏s). In the 

following equations, the general output 𝑂 can be replaced by any output of the matrix 𝐆 

(𝑥load, �̈�2,  �̇�m and  �̇�s). 

𝑂 = (
𝑂

𝜏m
) 𝜏m  +  (

𝑂

𝜏s
) 𝜏s (3.21) 

In order to be able to decouple the motor actuations and get the individual excitation 

response from each motor, the expressions in (3.22)-(3.23) can be used. The aim is to 

get at least two non-proportional measurements of the desired input (𝜏m, 𝜏s) and output 

(𝑂). These measurements can be obtained by modifying the velocity PI controller of each 

motor independently. This will generate a different torque command for each motor. As 

shown, the resolution of the system FRF composed of two or more experimental 

measurements with different controllers allows the open loop frequency response 

functions of the matrix 𝐆 to be obtained. 
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[
𝑂⏟
𝐾1
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𝐾2
]
1𝑥2
 

⏟      
𝐗

= [(
𝑂

 𝜏m
) (

𝑂

𝜏s 
)

⏟        
∀ 𝐾

 ]

1𝑥2 ⏟            
𝐆

[

𝜏m 𝜏m
𝜏s ⏟
𝐾1

𝜏s ⏟
𝐾2

]

2𝑥2 ⏟        
𝐔

 
(3.22) 

𝐗 =  𝐆𝐔 → 𝐆 =  𝐗𝑖𝑛𝑣 (𝐔) (3.23) 

Even though the procedure described above is valid for a general case, this method 

might fail due to the creation of an ill-conditioned system. Hence, this approach has not 

been implemented in this work. However, due to the machine topology, the following 

simplifications have been considered. Both motors are identical, they have the same 

weighting factors (𝐾Tm = 𝐾Ts = 0.5) and PI gains (𝑃𝐼master = 𝑃𝐼slave), so it is assumed 

that the same torque command is generated for both motors (𝜏m = 𝜏s). In addition to 

this, if the excitation signal is given as a velocity command through a compiled cycle in 

the CNC, the generated reference torque (𝜏ref) will be equally divided between both 

motors (𝜏m = 𝜏s = 𝜏ref 2⁄ ). This assumption is only valid when the static part of the torque 

command is removed, for example, for the selected excitation frequency band (25 to 100 

Hz) (Eq. (3.24)). 

𝑂 = (
𝑂

𝜏m
) 𝜏m  +  (

𝑂

𝜏s
) 𝜏s = (

𝑂

𝜏m
)
𝜏ref
2
+ (
𝑂

𝜏s
) 
𝜏ref
2
 =  ((

𝑂

𝜏m
) + (

𝑂

𝜏s
) )
𝜏ref
2

 (3.24) 

In addition, considering that the motors and sensors are symmetrically located with 

respect to the machine’s main resonance mode shape, the frequency response can be 

equalized (𝑂 𝜏m⁄ )  =  (𝑂 𝜏s⁄ ) (Eq. (3.25)). This assumption can be extrapolated to all 

measured outputs referred to in this research (𝑥load, �̈�2,  �̇�m and  �̇�s). 

𝑂 = ((
𝑂

𝜏m
) + (

𝑂

𝜏s
))
𝜏ref
2
 =  2 (

𝑂

𝜏m
)
𝜏ref
2
= (

𝑂

𝜏m
) 𝜏ref (3.25) 

With the previous hypotheses, it is assumed that pseudo-open loop frequency response 

functions can be obtained, even if both motors are simultaneously exciting the system. 

The experimental characterization and model validation is present in Section 3.5. The 

next section presents the experimental static characterization and validation of the 

described time domain model. 

3.4 STATIC CHARACTERIZATION AND MODEL VALIDATION 

The time domain model is implemented in a large-scale milling machine, where a double 

pinion and rack feed drive system is installed in the 𝑥 axis. In order to characterize each 
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motor independently, the existing coupling between the master and slave should be 

removed. A modification in the machine tool configuration parameters has been 

implemented, which enables closing both velocity and position loops with the desired 

motor encoder while disabling the other motor. At the same time, the linear scale still 

monitors the load position, and hence, the load position can be used for further analysis. 

3.4.1 Joint equivalent stiffness 

In order to perform a static stiffness analysis, the machine tool has been placed at the 

initial traveling distance. The force 𝐹load has been generated by imposing a stepped 

position trajectory through a CNC command while limiting the displacement against the 

mechanical rigid bumper (Figure 3.7). The load cell (Kistler 9212) has been placed 

between the carriage and the bumper. 

 

Figure 3.7 Machine tool component description in testing position. 

The experimental commanded maximum displacement has been chosen to obtain a 

force level of around 10kN, which for this tested machine is approximately 300 µm 

(Figure 3.8-a). The displacements can be synchronously acquired by the internal sensors 

through a dedicated software provided by the CNC manufacturer (i.e., TNCscope from 

Heidenhain). As a result of the applied 𝐹load, the generated deformation between the 

motor rotary encoder (𝑥m,s) and load displacement acquired by the linear encoder (𝑥load) 

can be computed. With this, an equivalent linear stiffness can be obtained which 

considers all the transmission components within the force path (Eq. (3.4)). As described 

above, the identification must be done individually one motor at a time, breaking the 

master-slave coupling. Figure 3.8-b shows the fitted equivalent stiffness on top of the 

experimental results obtained from the test shown in Figure 3.8-a, obtaining different 

values for each motor 𝑘m = 81 N/µm for the master and 𝑘s = 100 N/µm for the slave. The 
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inertias of the model are obtained from the supplier’s catalogues (𝐽motor =7500 e-6 kg/m2, 

𝐽gearbox = 948 e-6 kg/m2 on the motor side, 𝑖red = 28) and the pinion inertia has been 

neglected. The axis driven load inertia is obtained from the machine CAD drawing (𝑚load 

= 8500 kg). 

 

Figure 3.8 Experimental identification of individual master and slave static stiffnesses. 

3.4.2 Joint equivalent backlash 

In order to identify the existing equivalent backlash, as in the previous identification step, 

the master-slave coupling must be removed by operating each motor separately. In 

addition, for this case no force load is exerted to the machine and a back and forth 

movement of 1 mm is commanded. Figure 3.9 shows the identified position difference 

between each motor rotary encoder and load displacement (𝑥m,s and 𝑥load). Here, as 

previously defined, the identified equivalent backlash is a summation of the existing one 

within the transmission. The contribution identification of each element is complex. As a 

rule of thumb, during gearbox design, the value of the backlash can be assumed to be 

0.04 of the tooth module (Margielewicz et al. [212]). The identified equivalent backlash 

for the master and slave motors are 314 and 363 µm, respectively. 
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Figure 3.9 Experimental equivalent backlash identification. 

Using the experimentally identified stiffness and backlash, the electronically preloaded 

rack and pinion feed drive model, previously shown in Figure 3.2, is validated in the next 

section. 

3.4.3 Model validation 

At the same location where the identification has been conducted, the machine control 

configuration is set to the original master-slave coupling as described in Figure 3.2. As 

in the previous case, while the machine load movement is constrained, a CNC position 

command of 300 µm is commanded achieving approximately 20 kN of 𝐹load. Figure 3.10 

summarizes the comparison between the experimental and simulated time domain 

results during static stiffness tests for different preload levels. Figure 3.10-a shows the 

obtained displacements (𝑥load,  𝑥s and 𝑥m) during the load and unload stages. Load 

displacement is very close to the commanded one since the position loop is closed with 

this signal. On the contrary, it is not the same for the displacements acquired from both 

motors. On one hand, analyzing the slave motor first, at maximum load it can be seen 

that the acquired displacement reaches an amplitude of approximately 400 µm, which 

matches the simulated result. On the other hand, the master motor displacement is 

significantly higher than the other two signals. In addition, there is an abrupt jump when 

the rack and pinion contacts are changing configuration from  to  of Figure 3.3. The 

force level needed to change the configuration depends on the commanded preload 

level. This effect can be explained considering Figure 3.10-b, where the time domain 

torque value of each motor is shown throughout the test. At a certain point, the amplitude 

of 𝐹load is high enough to compensate the commanded preload torque; therefore, the 

existing torque in one of the motors becomes zero. This means that the electronic 

preload is lost at that moment. As indicated in Figure 3.3, as the force level continues to 
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increase, the pinion rotates and meshes with another flank of the rack. Note that the 

transition between interval  and  or  depends on the load direction, hence the 

observed effect on the master motor will happen in the slave motor if the load is applied 

in the opposite direction. This pinion rotation coming from the flank change is captured 

by the master motor rotary encoder. Hence, it suffers much higher displacement than 

the slave encoder (Figure 3.10-a). This can also be seen in the polarity of the measured 

torques (Figure 3.10-b). 

 

Figure 3.10 Model validation through time domain responses. 

Four different preload levels have been proposed to analyze this effect (𝜏p = 4, 10, 20 

and 25%). As expected, both experimental and simulated results indicate that the 

preload losing point varies with respect to the commanded preload level. Figure 3.11-a 

shows the relative displacement of the master motor for the four analyzed preload levels 

based on the data shown in Figure 3.10-a. There is a significant variation in the force 

level which generates the pinion contact loss between 4% and the other three levels, 

going from 1100 N up to 5300 N or 6600 N. In the same way, as load increases and, 

hence, the pinion tooth contacts again, the linear behavior is recovered until the tested 

maximum force. A reciprocity can be seen between unload and load stages. Finally, it 

can be concluded that the relative displacement between the loss and contact recovery 

points is determined by the backlash value (Figure 3.11-a). As a coupled system, the 
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slave motor is susceptible to this effect since a change of 5 µm in the relative 

displacement is observed when losing the preload (Figure 3.11-b). This means that all 

of the 𝐹load, which should be partially shared, is transmitted only through the slave motor, 

so the stiffness decreases, generating the excess displacement shown in Figure 3.11-b. 

 

Figure 3.11 Master and slave motors stiffness model validation. 

Equivalent stiffness variation analysis 

From the relative displacements shown in Figure 3.11-a&b, the equivalent stiffness 

variation is computed following Eq. (3.26) (only 𝑘m has been used in the equation but it 

is also valid for the slave motor). 

𝑘m =
∆𝐹Load
∆𝛿m

= 
0.5(𝐹Load(𝑡 + 1) − 𝐹Load(𝑡))

𝛿m(𝑡 + 1) − 𝛿m(𝑡)
 (3.26) 
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It is supposed that 𝐹load is transmitted uniformly between the two motors in full contact 

conditions. However, the contact condition between the pinion and the rack (𝑘p−r) when 

conducting the bottom-up characterization process can modify the extracted equivalent 

linear stiffness values (𝑘m and 𝑘𝑠). The DIN ISO 6336 standard [224] provides analytical 

equations to obtain the equivalent mesh stiffness (𝑐γα) while considering the influence of 

the teeth in mesh, which depends on the single tooth pair contact (𝑐′) and the contact 

ratio (𝜀𝛼) (Eq. (3.27)). Eq. (3.28) shows the expression to compute the single tooth pair 

stiffness according to the ISO standard, which for the studied feed drive mechanism is 

𝑐′ = 13.75 (N/mm)/µm. Similarly, the existing contact ratio is 𝜀𝛼 = 1.48, which means that 

48% of the time two pairs of teeth are in contact, which increases the equivalent mesh 

stiffness (𝑐γα). 

𝑐γα = 𝑐
′(0.75𝜀𝛼 + 0.25) (3.27) 

𝑐′ = 𝑐th
′ CMCBCRCF cos 𝛽 (3.28) 

In order to provide some variability analysis created by the contact ratio modification 

while the characterization test is performed, two bounds have been established. The 

lower bound considers that a single pair of teeth are in the mesh and the upper bound 

two pairs of teeth, 𝜀𝛼 = 1 and 2 respectively. By introducing these values into Eq. (3.27) 

and multiplying it by the width of the tooth gear (40 mm), the equivalent mesh stiffnesses 

are obtained and 𝑘p−r varies from 550 to 962 N/µm. By adding these stiffness bounds 

into the total extracted equivalent stiffness (Eq. (3.4)) a variation of 7.4 and 9.5% for 

master and slave motors has been obtained, which is shaded in Figure 3.12-a&b. Figure 

3.12-a shows the computed stiffness variation for the master motor under 25% preload 

levels (the other cases have been discarded for visualization purposes). It can be seen 

that by increasing the 𝐹load amplitude, the obtained stiffness goes down to 0 N/µm. 

However, as the load increases it converges to the identified value of 81 N/µm. During 

the unload stage, the same trend as in loading conditions is followed. The simulation 

results illustrate a similar behavior to the experimental results. Analyzing the slave motor 

behavior under 25% of preload (Figure 3.12-b), at low disturbance forces the obtained 

stiffness is about 100 N/µm. Then, due to the contact loss of the master motor, the 

stiffness decreases by half as the entire force load is supported only by the slave motor. 

Next, when the contact is recovered, high stiffness transient zone is faced as a result of 
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the low relative displacement. However, the equivalent stiffness slowly converges to the 

expected initial value of around 100 N/µm. 

 

Figure 3.12 a) Master; b) Slave motor static stiffness variations. 

Additionally, the experimental distribution of the torque is not proportionally shared, even 

though the same elements are employed in master and slave motors (Figure 3.10-b). 

This fact can cause prediction deviations of the preload loss force amplitude since it 

starts at the moment when one of the motor torques become zero. Similarly, the 

experimental equivalent backlash might not suit perfectly the employed dead zone 

model. However, the experimental results are very well captured by the proposed rack 

and pinion feed drive system model. 

Static stiffness analysis at the machine ram 

The identified effect not only appears by exerting the force at the column, but also if the 

load is applied close to the cutting point (i.e., the machine ram, Figure 3.13). Note that 

the maximum load force amplitude has been decreased to 10 kN to avoid any element 

breakage. 
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Figure 3.13 Machine setup description. 

Figure 3.14 shows different experimental measurements of relative displacements. For 

the master and slave motors, the relative displacement is calculated between their 

respective motor encoder and linear encoder. For the ram measurement, the relative 

displacement is between the linear encoder and the ram displacement acquired with an 

inductive sensor. The ram tip stiffness is relatively linear with the force level and is not 

affected by the rack and pinion preload value. As a result of closing the position loop with 

the linear encoder, the backlash effect is limited and only appears at the feed drive level. 

However, the axis clearance modifies the linearity of the feed drive mechanism and might 

generate an increment of the tracking or following errors. 

Additionally, considering the commissioned preload level in conjunction with the linear-

rotary conversion factor (𝐾𝑡𝑟), the expected load force, in which the preload is lost, can 

be predicted. Within the identified bounds, the existence of preload (granted linearity) is 

ensured. A similar pattern is followed for the three analyzed cases, where the main 

differences appear at the preload losing point, which occurs at values ranging from 

±1050 N to ±5300 N. 
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Figure 3.14 Experimental ram, master and slave motors static stiffness response. 

The proposed time domain model can predict the displacements and torque commands 

accurately. Additionally, the nonlinear experimental feed drive system’s static stiffness 

behaviour can be captured and explained. The commanded electronic preload plays a 

substantial role in defining the preload suppression in presence of static disturbances. 

The next section presents the dynamic characterization and the experimental validation 

of the proposed MIMO model to couple the master-slave control scheme and the 

machine tool dynamics. 

3.5 DYNAMIC CHARACTERIZATION AND MODEL VALIDATION 

For the dynamic analysis, a heavy-duty vertical turning centre that can perform turning 

and milling operations is selected (Figure 3.15). The machine has two axes: the 
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horizontal 𝑥 axis is driven by the double pinion and rack, and the vertical 𝑧 axis driven by 

a ball screw drive. Note that the master-slave control scheme used for the horizontal axis 

is the same as the previously described one in Section 3.2. 

 

Figure 3.15 Analyzed heavy-duty vertical turning centre. 

An experimental modal analysis is conducted to analyse the dynamic behaviour of the 

machine. An instrumented impact hammer (PCB 086D20) is used to excite the structure 

at the tool tip, and a triaxial accelerometer (PCB 356A16) is moved along several points 

of the machine structure to measure the acceleration response. Figure 3.16-a shows the 

main modal shape of the machine ram, with the ram placed at its maximum overhang 

(1500 mm). The identified main resonance is at 35 Hz with a damping ratio of 2.6%. 

As the mode is coming from the whole carriage rocking movement and the ram bending, 

a disturbance applied at the tool centre point modifies the sensor readings. Figure 3.16-

b shows the CNC internal variable readings when an impact at the tool centre point is 

applied. As external perturbations are observable through the feedback encoders, the 

control actuation force will be directly affected as shown in the commanded torque. This 

indicates that this particular mode shape is controllable and observable through the feed 

drive feedback system. Hence, the control parameters can affect the machine dynamic 

characteristics. 
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Figure 3.16 a) Experimental ram mode shape; b) Velocity and torque CNC internal 

variable response to a tool tip disturbance. 

3.5.1 Machine pseudo-open loop extraction 

In order to predict the effect of the control parameters on the dynamics of the machine, 

the first step is to characterize both the controller and the open loop response of the 

machine assembly. The controller can be characterized by the schemes that the CNC 

manufacturers provide in their documentation. The dynamic characterization of the 

machine, however, involves difficulties, such as nonlinearities due to friction or machine 

joints. In addition, the machine dynamics can significantly vary depending on the cutting 

position. Similarly, the dynamic behavior of the machine changes significantly with and 

without electrical power. Therefore, obtaining the response without the controller effect 

cannot be achieved by means of a nonpowered frequency response. In fact, this leads 

to a very significant nonlinear behavior in presence of the joint backlash, which is 

suppressed by the electronic preloads. For this reason, a fixed preload value of 10% has 

been applied during the proceeding tests. However, the invariance of this control 

parameter would lead to use of the assumptions that have been described previously in 

Section 3.3.3. 

A dedicated compiled cycle has been developed to allow the addition of external 

commands to position, velocity and torque reference points. This offers the possibility to 

inject a specified signal into the machine and excite it through the existing feed drive 

actuators. The machine tool is equipped with a SIEMENS 840D Solution Line CNC which 

offers a data logger tool called ServoTrace. In addition, a fast analogue to digital switch 
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converter is installed to be able to measure both tool tip acceleration and applied 

disturbance force. This implies that internal and external variables are acquired 

synchronously at the same sampling frequency of 500 Hz. The disturbance is applied 

through a medium-size shaker which delivers up to 100N force (GW-V20/PA100E). The 

force used to dynamically excite the machine is measured by means of a load cell (PCB 

208C02) placed at the shaker’s stinger. At the same time, the tool tip acceleration is 

measured by an industrial accelerometer (PCB 603C01). As the mathematical model 

derived in Section 3.3 is based on complex vector operations, the quality of the FRFs 

used to build the model is of vital importance. For that reason, the use of the shaker 

rather than the dynamometric impact hammer is considered. With this, and the 

ServoTrace tool mentioned earlier, the matrix 𝐆 that defines the open loop MIMO FRF 

for the machine, for a certain position, can be measured through excitation via the two 

kinds of input sources: the disturbance force at the cutting point 𝐹dis and the motor 

torques (𝜏m, 𝜏s). 

Tool centre point force disturbance side characterization 

As previously discussed, the machine dynamical behavior is different with and without 

electrical power, especially due to the variation of the preload. For that reason, in this 

research the machine has been powered up, but the control parameters have been set 

to low values (𝐾v = 1 (m/min)/mm, 𝑇i = 50 ms and 𝐾p = 0.05 Nms/rad) to minimize the 

influence of the control actuation force while maintaining the preload of 10%. On the 

other hand, in order to increase the signal quality and minimize the uncertainty, the 

experiment is conducted four times, obtaining as a result an average response with a 

successful signal coherence check. Figure 3.17-a shows the complete (four sections of 

20 s) acquired time domain data for the disturbance force and tool tip acceleration. The 

exerted force amplitude of the electromagnetic actuator located at the tool tip decay 

almost linearly with the excitation frequency. At the beginning of the excitation (25 Hz), 

the force amplitude is close to 70 N, and as a result of the actuator’s response 

characteristics, at 100 Hz the force has decreased to 60 N (Figure 3.17-b). However, 

under the assumption of a linear system, this does not generate major problems. The 

time domain acquired data shows the dynamic behavior of the tested machine, where 

two clear amplifications are present at 5.8 s and 6.3 s. The two rotary and linear 

encoders’ data are synchronously registered in order to generate the FRFs that are 

shown in Figure 3.17-c. As expected from the experimental analysis and time domain 

data, the main two natural frequencies are located at 32 Hz and 35 Hz. Moreover, the 
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frequency domain magnitude difference of roughly ten between the cutting point (Figure 

3.17-c top) and linear scale (Figure 3.17-c centre) sensors can be explained by the mode 

shape shown in Figure 3.16-a. 

 

Figure 3.17 a, b) Time domain force and acceleration signals; c) Computed FRFs 

The data represented in Figure 3.17-c is used to fill the first column of the 𝐆 matrix (Figure 

3.14-b). 

Feed drive actuation response characterization 

Similarly to the previous subsection, the acquired time domain signals are shown in 

Figure 3.18. As the excitation signal has been placed outside the velocity feedback loop, 

it can be seen in Figure 3.18-a that the torque commands are sensitive to the structural 

vibrations. In addition to this, as a result of the master-slave coupling configuration, both 

commanded torques are of inverse sign to successfully suppress the existing backlash. 

The static value is ±7 Nm as the preload value is set to 10% of the motor rated torque 

(70 Nm). The excitation chirp signal is added to this static value. Figure 3.18-b shows 

the acquired data for both rotary encoders and cutting point acceleration during the 

excitation process. The machine tool structural resonance at 35 Hz generates an anti-

resonance at the same frequency in both rotary encoders as seen in Figure 3.18-c. 
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Moreover, this is how the machine tool natural frequency interacts with the specified 

servo controller. This resonance manifests itself as an anti-resonance in the encoder 

feedback. Furthermore, when commissioning the velocity loop, the implemented control 

parameters affect the characteristics of the resonance on the machine tool tip side, and 

its reflection back to the control loop as anti-resonance. 

 

Figure 3.18 Time domain signals of: a) Torque commands; b-c) Rotary encoders and 

tool tip acceleration. 

Figure 3.19 shows the computed frequency responses from both actuators to the linear 

scale, tool tip displacement and both rotary encoders (𝑥load, 𝑥2,  �̇�m and  �̇�s). Those 

frequency response functions are obtained directly from the experiment realized with 

both motors acting simultaneously on the system. These pseudo-open loop responses 

are used in the matrix 𝐆 under the hypotheses that the motors and the velocity controllers 

are identical. The figure validates the hypotheses as the responses are practically similar 

up to 40 Hz. Furthermore, the complexity of the responses shows the advantage of 

deriving the model in the frequency domain rather than performing the curve fittings 

needed for time domain analyses. Analyzing the frequency response magnitudes in 

detail, the previously commented order of magnitude difference between the linear scale 

and tool tip accelerometer is present. Additionally, the commented resonance at 35 Hz 
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in the accelerometer generates an anti-resonance (or motor-locked frequency) in both 

rotary encoders. 

 

Figure 3.19 Computed FRFs from machine side actuation. 

With the tested tension torque of 10%, the time domain amplitude difference between 

the torque commands (𝜏m, 𝜏s) is ±0.5 Nm, or an 88% of equivalence. At the same time, 

the frequency response function between both torque commands have shown a +0% 

and -15% amplitude difference with respect to the ideal ratio of 1:1 within the frequency 

range of interest. These assumptions demonstrate the capabilities and limitations of the 

developed simulation model, as the velocity PI controller gains for each motor cannot be 

modified independently. Also, the followed measurement methodology cannot be 

generalized to all machine configurations, for example to machines having different 

motors and different weighting factors for the preload. Nonetheless, in the case of the 

studied machine tool, the practically obtained FRFs via dual motor excitation can still be 

used. Future research will address these points and investigate decoupling of individual 

single-input FRFs from experimental multi-input frequency response data. 

The frequency domain signals that are shown in Figure 3.19 are used in the 𝐆 matrix as 

pseudo-open loop responses. With the experimental characterization presented in this 

section, the analytical effect of the implemented controller can be coupled with the 

machine tool dynamics. 
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3.5.2 Model validation 

This section shows the predicted and experimental tool centre point closed loop 

responses for velocity proportional (𝐾p), integral time (𝑇i) and position proportional (𝐾v) 

gain variations. In the subsequent comparisons, the value of the studied control 

parameter has been modified, defining as invariant the other two remaining parameters. 

Note, as previously commented, the commanded preload value is fixed at 10%. In 

addition, the same parameterization has been defined for both servomotor velocity 

controllers (𝑃𝐼master = 𝑃𝐼slave). 

Velocity proportional gain 

The influence of the proportional velocity loop gain on the machine tool structural 

dynamics has been described previously in Section 2.4. This particular gain alters the 

mechanical pole location; thus, both the natural frequency and damping ratio vary. Figure 

3.20 shows the comparison of the machine tool closed loop FRF at the tool centre point 

for different values of the tested control parameter value. In this example, the remaining 

feedback gains are tuned to conservative values that would typically be found in a 

production environment (𝐾v= 1 (m/min)/mm and 𝑇i= 10 ms). The model can predict the 

tendency to increase the tool tip compliance when the proportional velocity gains are 

increased. In addition, the resonance of 32 Hz is not significantly modified with the 

variation of this gain. 

 

Figure 3.20 a) Experimental; b) Predicted closed loop tool centre point dynamics. 
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In order to see the effect of the velocity proportional gain on the machine tool compliance, 

the modal parameters for the 35 Hz mode are extracted. Table 3.1 shows how the natural 

frequency is slightly modified, but the damping ratio can be modified up to 20% for this 

machine. 

Table 3.1: Modal parameters for different velocity proportional gain values. 

𝑲𝐩 (Nms/rad) 
Natural 

frequency (Hz) 

Damping 

ratio (%) 

Modal stiffness 

(N/µm) 
Modal mass (kg) 

0.5 35.7 3.2 24.3 483 

1 35.7 3 24.7 492 

2.5 35.6 2.7 24.4 486 

5 35.9 2.6 24.4 479 

Velocity integral time and position proportional gain 

Figure 3.21-a shows the velocity integral time effect at the tool tip. As it can be seen in 

both experimental and predicted frequency responses, this gain does not modify the 

machine tool dynamic behaviour significantly. For this test, the proportional velocity and 

position gains were respectively fixed to 2.5 Nms/rad and 1 (m/min)/mm. Figure 3.21-b 

shows the position proportional gain effect. As in the previous case, the position loop 

gain does not change the tool tip dynamic response significantly, at least for the tested 

machine tool. 
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Figure 3.21 Experimental and predicted dynamics for velocity integral time and position 

proportional gain. 

These conducted tests validate the frequency domain based MIMO model and the 

hypotheses carried out in Section 3.3.3, as it captures the experimentally observed tool 

centre point dynamic behaviour for different control parameter variations. 

3.6 CONCLUSIONS 

This chapter has analyzed the influence of the master-slave control parameters on the 

static and dynamic behavior of two different large machine tools. When applying a static 

disturbance force, it has been found that the pinion flank contact transition is not fast 

enough to be neglected. As a result, the commissioned preload level not only affects the 

acceleration capacity of the driven machine, but also the equivalent stiffness linear 
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behavior of the feed drive system. The proposed model provides significant insights 

about this feed drive mechanism as it is able to accurately predict the observed 

experimental trends. Conducted tests show that increasing the preload level through the 

electronic preload does not vary the master or slave equivalent stiffness values. For large 

heavy-duty machine tools, where the acceleration capabilities of the drive might not be 

the limitation, the preload level can be tuned to handle the high load forces generated 

during the cutting process ensuring a preload and, hence, linearity. 

The dynamic analysis has shown the influence of the machine tool dynamics at the servo 

feedback sensor readings. The response amplitude is determined by the dynamic 

characteristics of the machine (experimentally obtained by modal analysis) and the 

location of the feedback sensors. A MIMO model for coupling the servo controller effect 

and machine tool structural dynamics has been developed. The machine tool dynamic 

behavior has been characterized from external disturbances by means of a shaker and 

the machine’s own actuators, through a dedicated compiled cycle implemented in the 

industrial CNC. The frequency domain based model has been successfully validated by 

comparing the predicted machine closed loop frequency responses to the experimental 

ones. The proportional velocity loop gain is the most critical parameter that influences 

the tool centre point compliance. The integral time gain and the proportional position loop 

gain have minor influence. 
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Chapter 4  

 

Feed drive control tuning for 

machining chatter avoidance 

4.1 INTRODUCTION 

The tuning of feed drive control parameters can significantly influence the performance 

of a machine tool in terms of motion accuracy and cutting stability (Altintas et al. [98]). 

For motion accuracy, high feedback control bandwidth and feedforward actions are 

required (Matsubara et al. [233]). However, as reviewed in Section 2.4, the vibratory 

modes that interact with the servo loop constitute a major limitation in the way of 

increasing the feedback control bandwidth. 

CNC systems provide frequency response (Bode) plots of the feed drive response via 

the position feedback sensors. Relying solely on this information, however, leads to 

maximizing the measured positioning bandwidth and accuracy via high gain controller 

tuning, which can deteriorate the dynamic stiffness at the most important location, the 

cutting point (Uriarte et al. [1]). Assessing the influence of the cascade control system 
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parameters, shown in Figure 4.1, the velocity loop proportional gain 𝐾p has the highest 

impact on the damping contributed by the feed drive (Zirn [125]). Simulation studies have 

been performed to identify the optimum settings for 𝐾p, 𝐾v (position loop gain) and 𝑇i 

(velocity loop integration time constant), to improve the chatter stability limit (Beudaert et 

al. [63], Albertelli et al. [126]). However, these studies, and nearly all the others proposed 

in literature, have considered only a simplified lumped-mass feed drive model that 

captures just one vibration mode. The response of real machine tools is generally far 

more complex, rendering the effectiveness of these earlier guidelines or designs 

suboptimal in practice. 

 

Figure 4.1 Feed drive system model. 

This chapter introduces a new and comprehensive strategy to achieve optimum vibration 

damping and chatter stability augmentation via servo controller tuning, that is applicable 

to the generalized high order dynamics encountered in machine tool feed drives and their 

structural assemblies. The proposed strategy takes into account the servo feedback 

response and predicted tool tip compliance, and follows a hybrid approach synergistically 

combining model-based analysis, such as root locus, with data-driven design in the 

frequency domain. The resulting control parameters can be directly implemented on 

existing industrial CNC machine tools without requiring any extra sensors like 

accelerometers (Munoa et al. [136], Zatarain et al. [234], Sencer et al. [235]) or control 

law modification (Kakinuma et al. [135], Sun et al. [151], Erkorkmaz et al. [236]). 

 

Figure 4.2 Steps for feed drive control tuning for chatter avoidance. 
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4.2 FEED DRIVE CONTROL TUNING WITH STRUCTURAL 

FLEXIBILITY 

Machine tool feed drives are controlled using a cascade structure with current, velocity 

and position feedback loops, as well as feedforward actions. Feedforward control 

enhances the command following accuracy, but has no influence on the disturbance (i.e., 

cutting process forces) response. Thus, it is kept outside the scope of this thesis. The 

bandwidth of the current loop is in the order of hundreds of hertz. In the context of 

structural chatter vibrations, which in large machine tool applications classically occur at 

20-100 Hz (Munoa et al. [2]), the current loop can thus be modelled as a constant gain 

preceding the motor torque/force constant 𝐾a. 

In large machine tools (such as gantry or travelling column type machine structure), the 

stiffness of the motion delivery chain from the feed drive actuator to the measurement 

point, which is typically a linear encoder, is much larger than the stiffness of the remaining 

mechanical assembly towards the cutting point. Thus, in modelling such a feed drive 

system via lumped mass elements, for simplicity, it can be assumed that the position and 

velocity control feedback are taken from the first mass 𝑀mot. 

The next subsection describes state-of-the-art servo controller tuning for its industrial 

deployment based on two degrees of freedom models. 

4.2.1 State-of-the-art servo controller tuning 

The cascaded control configuration used in almost every industrial machine presents the 

advantage of step-by-step loop commissioning from innermost to outermost control loop. 

As indicated in Section 2.4, the velocity loop PI type controller is first commissioned. The 

first parameter to tune is the velocity proportional gain (𝐾p), which strongly influences the 

velocity closed loop bandwidth (𝑓bw). For optimal gain computation, the integral time 

action (𝑇i) should be deactivated (Gross et al. [121]). As a result of removing the integral 

action, the order of the system decreases, obtaining a first order characteristic equation 

(Eq. (4.1)). The expression for computing the velocity proportional gain which depends 

on the axis total mass (represented by 𝑀total) and velocity closed-loop bandwidth is 

shown in Eq. (4.2). 

�̇�mot
�̇�ref

=
1

𝜏𝑠 +  1
 , where 𝜏 = 𝑀total 𝐾p⁄  (4.1) 
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𝐾𝑝 =  2𝜋𝑀total 𝑓bw (4.2) 

Once this value is computed, the integral action can then be calculated. However, the 

extra pole added by this parameter brings a second order transfer function, which 

induces a vibratory behaviour. Gross et al. [121] followed a method called double ratio 

for getting the maximum damping at the velocity closed loop. A generalized transfer 

function is described in Eq. (4.3). For a closed loop case, the numerator coefficients 

(𝑏0⋯ 𝑏m) determine the response characteristics and amplitude response of the zeros. 

On the other hand, the denominator coefficients (𝑎0⋯ 𝑎n) describe the damping and 

stability (poles) of the system. 

𝑡𝑓 (𝑠) =
𝑏0 + 𝑏1𝑠 + …  + 𝑏m𝑠

m 

𝑎0 + 𝑎1𝑠 +  … + 𝑎n𝑠
n

 (4.3) 

As described by Gross et al. [121] an optimum damping response can be achieved by 

forming the coefficient ratios ((𝑎n 𝑎n−1⁄ ), (𝑎n−1 𝑎n−2⁄ ),…, (𝑎1 𝑎0⁄ )) and defining the 

proportion of two adjacent ratios as 0.5 (Eq. (4.4)). This value provides a good command 

and disturbance response behaviour without performing extensive calculations. 

𝑎n
𝑎n−1
𝑎n−1
𝑎n−2

  =  
𝑎n 𝑎n−2
(𝑎n−1)

2
= 0.5 (4.4) 

Eq. (4.5) shows the closed velocity loop transfer function, which can be re-arranged in 

form of coefficient ratios as shown in Eq. (4.6). By applying the relation of 0.5 to the 

adjacent ratios Eq. (4.7) is obtained. 

�̇�mot
�̇�ref

=

𝐾p
𝑇i 𝑀total

(𝑇i𝑠 + 1)

𝑠2 +
𝐾p
𝑀total

𝑠 +
𝐾p

𝑇i 𝑀total
 

 (4.5) 

𝑎2
𝑎1
  =  

1

𝐾p
𝑀total

 and  
𝑎1
𝑎0
  =  

𝐾p
𝑀total
𝐾p

𝑇i 𝑀total

 (4.6) 

𝑎2
𝑎1
𝑎1
𝑎0

  =  
𝑎2𝑎0
𝑎1
2
=

𝐾p
𝑇i 𝑀total
𝐾p
2

𝑀total
2

=
𝑀total
𝑇i 𝐾p

=
1

2
   (4.7) 

Combining Eq. (4.2) and (4.7), the expression for the integral time calculation is obtained. 
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𝑇i  =
1

π 𝑓bw 
 (4.8) 

Following Eq. (4.2) and (4.8) the velocity loop proportional and integral time gains can 

be computed according to the desired bandwidth 𝑓bw. As a result of the relationship 

between the two gains, the pole related to the integral time is located at 70% of damping. 

During the machining process, the disturbances should be tackled as fast as possible, 

therefore an overshoot of up to 3dB is generally accepted in the velocity loop. In contrast, 

in the outer position loop an overshoot cannot exist, as it will be reflected in the geometry 

of the machined workpiece. Eq. (4.9) shows the closed position loop approximation to a 

second order transfer function (which considers 𝑇i = ∞). By using a damping value of 1, 

the relationships of Eq. (4.10) can be obtained by the equivalence of the classical second 

order response. By combining them the Eq. (4.11) is obtained. 

𝑥mot
𝑥ref

= 

𝐾v𝐾p
𝑀total

𝑠2 +
𝐾p
𝑀total

𝑠 +
𝐾v𝐾p
𝑀total

 (4.9) 

𝜔0
2 =

𝐾v𝐾p

𝑀total
 

(4.10) 

𝜔0
2 = (

𝐾p

2𝑀total
)
2

 

𝐾v =
𝐾p

4𝑀total
 (4.11) 

By re-arranging Eq. (4.2) and (4.11), the proportional position loop gain value is 

calculated by means of Eq. (4.12). 

𝐾v = 
𝜋 𝑓bw
2

 (4.12) 

As a result, by applying Eq. (4.2), (4.8) and (4.12), the three main cascaded control 

structure parameters (𝐾p, 𝑇i and 𝐾v) can be computed by selecting the desired closed 

velocity bandwidth frequency (𝑓bw). The obtained parameter values will have a maximum 

3dB and 0dB magnitude in closed velocity and position loops. However, the selection of 

the closed velocity bandwidth is not trivial and not only affects the motion performance, 

but can also extensively modify the cutting point dynamics. To analyse this interaction, 

the next subsection describes a two degree of freedom system where different 

bandwidths are applied. 
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4.2.2 Industrial tuning guidelines 

It should be mentioned that there is not an exact tuning guideline for servo control loop 

commissioning, since there are different tuning criteria and the most suitable one should 

be selected depending on the initial situation and the objective of the controlled system. 

In 2001, Schafers et al. [237] (Siemens) proposed a limitation of the position proportional 

gain to approximately one tenth of the lowest natural frequency of the axis for cases 

where the resonance lies below 100 Hz with a position controller sampling time of 1 ms. 

Later in 2003, Schafers et al. [238] limited the maximum velocity gain to ensure a 

maximum amplitude on the closed velocity bode plot to 5dB. Lee et al. [239] (Heidenhain 

and Mazak) presented a practical servo tuning method for improving the contouring 

accuracy, by limiting the position loop gain such that the gain of the open-loop transfer 

function of the position feedback becomes -6dB at the mechanical resonance. 

Automatic tuning routines are also proposed in the literature. In 2005, Rodríguez de 

Yurre et al. [240] (Tekniker and Fagor) presented an autotuning procedure to identify the 

optimal control parameters, which achieves the maximum possible damping of the 

mechanical pole. A function called Advanced Gain Search was presented by Wakana 

[241] (Mitsubishi Electric), in which by performing coarse and fine simulations, the tuning 

routine offers different parameter combinations considering the settling time and 

overshoot amount. Additionally, the original response used for controller commissioning 

can be extensively altered by the workpiece mass. Some machine tool builders provides 

CNC routines to optimize the servo control and maintain the surface quality finish 

eliminating the possible noise and vibrations (Servonavi [242] from Okuma). 

4.2.3 Two degrees of freedom system 

The analysis of a two Degrees Of Freedom (DOF) lumped mass feed drive system 

reveals the underlying motivation behind the tuning guidelines in Uriarte et al. [1] and 

Beudaert et al. [63]. For a flexible feed drive model with a single mode, two characteristic 

frequencies are presented. First, the so-called motor locked or quenching frequency (𝑓t), 

where load side vibratory dynamics cancel out motor side displacement (𝑥mot). Eq. (4.13) 

shows how machine tool resonances interact with the servo dynamics. Second, the 

resonance frequency (𝑓r) that is generated by the combination of the coupling stiffness 

(𝑘) and the two mass values (𝑀mot ,𝑀tip) (Eq. (4.14)). 
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𝑓t =
1

2𝜋
 √

𝑘

𝑀tip
 

(4.13) 

𝑓r =
1

2π
 √𝑘 (

1

𝑀mot
+
1

𝑀tip
) (4.14) 

The model parameters can be identified by performing a curve fitting from the measured 

open loop response between the motor force (𝐹mot) and motor displacement (𝑥mot). The 

analytical open loop frequency response expression is described by Eq. (4.15), where 

viscous friction, coupling stiffness and damping are represented by 𝜎, 𝑘 and 𝑐, 

respectively. Electromagnetic servo actuators present a characteristic phase lag (Gross 

et al. [121]) that can be approximated by a time delay 𝜏ol. 

𝑋mot
𝐹mot

=
(𝑀tip𝑠

2 + 𝑐𝑠 + 𝑘)𝑒−𝜏ol𝑠

(𝑀mot𝑀tip𝑠
4 + (𝑐(𝑀mot +𝑀tip) + 𝜎𝑀tip)𝑠

3 + (𝑘(𝑀mot +𝑀tip) + 𝜎𝑐)𝑠
2 + 𝜎𝑘𝑠)

 
(4.15) 

Figure 4.3-a presents the experimental setup used for the development and validation of 

the proposed approach. It consists of a single axis driven by an ETEL ILM06-06-3RB-

A20C linear motor with an added flexure carrying the workpiece on top of the slider. With 

the aim of having complete observability and controllability from the feed drive control 

system, the flexure acts as a single degree of freedom in the displacement direction. The 

current loop is closed by the ETEL controller, meanwhile the position, velocity, and the 

command reference are managed by a dSPACE DS1005PPC controller. 

 

Figure 4.3 a) Experimental setup description; b) Experimental and fitted FRF. 

The two DOF lumped mass model parameters can be obtained by fitting (via Eq. (4.15)) 

the experimental open loop compliance measurement shown in Figure 4.3-b. The 
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identified parameters are as follows: 𝑀mot = 24.9 kg, 𝑀tip = 9.5 kg, 𝑘 = 1.98 N/µm,  

𝑐 = 104 Ns/m, 𝜎 = 792 kg/s and 𝜏ol = 0.75 ms. 

Using the previously described state-of-the-art controller tuning (Section 4.2.1) and the 

identified parameters above, three different controller tunings are considered based on 

the closed velocity loop bandwidth: low (𝑓bw= 15 Hz), high (𝑓bw= 87 Hz) and optimum 

(𝑓bw= 58 Hz = 80% 𝑓t). The latter achieves optimum damping by adjusting the terms 𝐾p, 

𝑇i, and 𝐾v according to Uriarte et al. [1] and Beudaert et al. [63]. Figure 4.4-a shows the 

closed loop velocity response (�̇�mot �̇�ref⁄ ), which can be measured through the 

machine’s CNC, and the response at the second mass (�̇�tip �̇�ref ⁄ ), which is not explicitly 

considered when applying mainstream industrial tuning methods. The lack of information 

related to the cutting point can lead to high gain tuning, thereby disallowing the servo 

system to improve the overall structural damping. For example, in Figure 4.4-a, the motor 

encoder magnitude drops at 𝑓t corresponds to a tip amplification. 
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Figure 4.4 Analysis of a two degree of freedom flexible feed drive model. 

For chatter characterization, it is important to analyse the compliance relating the tool tip 

displacement (𝑥tip) to the applied external force (𝐹tip). Figure 4.4-b shows that the high 

bandwidth configuration amplifies the structural resonance, which affects the cutting 

point dynamics in a detrimental manner. The optimally tuned velocity controller achieves 

the largest reduction in the tool tip compliance. 

The interaction of the servo controller and machine tool structural dynamics can be 

analysed through the root locus technique (Figure 4.4-c&d), which displays the closed 

loop system pole locations as the controller gain is varied. The extracted delay term has 

infinite number of roots, which in continuous time LTI models can be approximated as a 

rational function by Padé approximation, Eq. (4.16). Where 𝑠 is the Laplace operator, 
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𝑎0, 𝑎1⋯𝑎L are the constants and L is the approximation order. It is very important to 

compare the experimental and approximate responses to choose the correct 

approximation order. 

𝑒−𝜏𝑠 ≈ 𝑃d(𝑠) =
𝑎0 − 𝑎1𝑠 + ⋯(−1)

L𝑎L𝑠
L

𝑎0 + 𝑎1𝑠 + ⋯𝑎L𝑠
L

 
(4.16) 

The velocity loop locus starts at the poles of the open loop system (𝐾p = 0) and ends at 

the zeros as 𝐾p → ∞ . As shown in Figure 4.4-b, when 𝐾p = 0, the system has no static 

stiffness, and an anti-resonance appears at 𝑓a = √𝑘 𝑀mot⁄ . When 𝐾p → ∞, 𝑀mot is 

completely fixed due to the high stiffness of the controller, and the system behaves like 

a single suspended mass with a resonance frequency 𝑓t. Between those extreme cases, 

the velocity controller can modify the apparent structural frequency and increase the 

damping of the machine. The position loop gain 𝐾v, on the other hand, has only a 

secondary impact on the structural dynamics. The locus of the position loop starts at the 

pole locations left by the velocity controller. In general, the achievable 𝐾v values that 

maintain system stability do not allow for a significant modification of the system dynamic 

response. 

The current state-of-the-art controller tuning method based on the two DOF can, 

however, generate sub-optimal results when applied to feed drive and structural 

assemblies with higher order dynamics. 

4.2.4 Three degrees of freedom system 

A three DOF model is derived according to Figure 4.1. As deriving an analytical equation 

for (𝑋mot 𝐹mot⁄ ) in a single transfer function expression is time consuming, this task is 

shortened using the State-Space approach (Eq.(4.17)-(4.19)). 
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𝑥mot⏟
𝑦

= [1 0 0 0 0 0]⏟              
𝐶

 𝑥 

(4.18) 

𝑋mot

𝐹mot
= 𝐶 (𝑠𝐼 −  𝐴)−1𝐵 (4.19) 

In the case that the structural model becomes three degrees of freedom. Considering a 

3 degree of freedom system representation of a different machine tool feed drive 

assembly, with parameters as summarized in Table 4.1, the root locus changes 

considerably, as shown in Figure 4.5-a. For example, two controller parameter sets can 

be considered. Controller setting 𝐶1 applies the guidelines of Uriarte et al. [1] and 

Beudaert et al. [63], and yields the tool tip compliance shown in green in Figure 4.5-b. 

Controller setting 𝐶2, however, achieves further improvement by additional adjustment 

of the P-PI gains via root locus analysis, as shown in Figure 4.5-a. The damping 

increment leads to a lower amplitude in the receptance response. It is important to 

mention that high order open loop dynamics lead to significantly more complex 

interactions between the control parameters and the resulting closed loop pole locations. 

Table 4.1: System parameters for a three degrees of freedom feed drive system. 

Name 𝒇𝐛𝐰 (Hz) 𝑲𝐩 (N/(m/s)) 𝑻𝐢 (ms) 𝑲𝐯 ((m/min)/mm) 

𝐶1 56 62000 7.1 4.2 

𝐶2 112 124000 7.1 0.9 

Model parameters: 𝑀mot = 80 kg, 𝑀2= 130 kg, 𝑀tip=10.8 kg, 

𝑘1=22 N/μm, 𝑘2=1.75 N/μm, 𝑐1= 1069 N/(m/s), 𝑐2= 86.7 N/(m/s) 

 

Figure 4.5 Analysis of a three degrees of freedom flexible feed drive model. 
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This academic analysis of three degrees of freedom system shows that the controller 

tuning guidelines presented in the literature might not be valid as they are based on the 

two degrees of freedom approximation. Hence, a more general controller tuning 

approach that considers complex machine tool dynamics is required. 

4.3 MODELLING AND CONTROL FOR GENERAL MACHINE 

TOOL DYNAMICS 

This section presents two complementary approaches to analyse and adjust the 

interactions between the controller and machine tool dynamics (Figure 4.6). Frequency 

domain operations via direct measurements allow the prediction of the motor side 

response (Steps 1-3) and the tool tip receptance (Steps 4-5). Then, fitting a model to the 

open loop mobility enables the root locus technique to be used in maximizing the 

damping of closed loop poles (Step 6). The proceeding analyses are based on the control 

structure in Figure 4.1. Also as mentioned in Section 3.3 the inputs are assumed to be 

bounded to justify linear analysis. 

 

Figure 4.6 Overview of proposed strategy. 

4.3.1 Frequency response prediction at the motor side 

Open loop mobility estimation: A closed velocity loop (denoted: ′clp′) FRF is acquired 

via machine CNC (�̇�mot/�̇�ref), and the servo mobility open loop response (denoted: ′ol′) 

is computed with Eq. (4.20) at each frequency 𝜔. Extra dynamics, due to unknown filters 

or the current loop, are also implicitly included in the extracted open loop response. 

𝐻 �̇�mot,𝐹mot
 ol =

(�̇�mot �̇�ref⁄ )clp

 𝐾p (1 +  
1
𝑇i 𝑗𝜔

 ) (1 −  (�̇�mot �̇�ref⁄ )clp)
 (4.20) 
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Control law influence at motor side: Rearranging Eq. (4.20), the closed loop velocity 

response can be predicted for any value of 𝐾p and 𝑇i using frequency domain operations, 

and under the assumption of linearity (Eq. (4.21)). 

(
�̇�mot
�̇�ref

)
clp

=
 𝐻 �̇�mot,𝐹mot
 ol  𝐾p (1 +  

1
𝑇i 𝑗𝜔

 )

 1 +  𝐻 �̇�mot,𝐹mot
 𝑜𝑙  𝐾𝑝 (1 + 

1
𝑇i 𝑗𝜔

 )
 (4.21) 

The closed position loop Bode (𝑥mot/𝑥ref) is predicted by Eq. (4.22). The effect of the 

sampling rate should be considered to successfully predict the phase response. The 

value of the pure delay 𝜏cl corresponds to twice the position loop sampling period. 

(
𝑥mot
𝑥ref

)
clp

=
𝐾v (�̇�mot �̇�ref⁄ )clp 

𝑗𝜔 +  𝐾v (�̇�mot �̇�ref⁄ )clp
𝑒−𝜏cl 𝑗𝜔 (4.22) 

4.3.2 MIMO model for machine tool cutting point FRF prediction 

The machine tool structure coupled with the servo controller can be represented as a 

multi-input multi-output (MIMO) system, as shown in Figure 4.7. The considered inputs 

are 𝐹tip and 𝐹mot, which are the process related force at the tool tip, and motor actuation 

force, respectively. The outputs are: 𝑥tip, the displacement at the tool tip (i.e., 

performance point of interest); and 𝑥mot, the displacement measured by the servo 

feedback (e.g., the linear encoder). Using the Linear Fractional Transformation 

technique, Eq. (4.23) predicts the closed loop compliance at the tool tip 𝐻 𝑥tip,𝐹tip
 clp

 under 

the influence of the controller. The closed loop dynamics depend on the open loop 

responses, the P-PI controller 𝐾 in Eq. (4.24), which is known, and the open loop 

response 𝐻 𝑥mot,𝐹mot
 ol  obtained by integrating Eq. (4.20) with respect to time. 

 

Figure 4.7 Linear Fractional Transformation scheme for tool tip compliance prediction. 
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𝐻 𝑥tip,𝐹tip
 clp

= 𝐻 𝑥tip,𝐹tip
 ol + 𝐻𝑥tip,𝐹mot

 ol  𝐾(1 −  𝐻 𝑥mot,𝐹mot
 ol  𝐾)

−1
𝐻 𝑥mot,𝐹tip
 ol  (4.23) 

𝐾(𝑗𝜔) = − ( 𝑗𝜔 +  𝐾v)𝐾p (1 +  
1

𝑇i 𝑗𝜔
 ) (4.24) 

The challenge in industrial machine tools is to obtain the open loop measurements at the 

cutting point. It is critical to use only closed loop data, because the dynamic response 

can vary significantly due to factors like counterweight compensation or mechanical 

brakes when the servo controller is not activated. This problem is solved by two different 

approaches based on Eq. (4.23). On one hand, the first approach predicts new controller 

effect based on an approximated 𝐻 𝑥tip,𝐹tip
 ol  and transmission dynamics identification. The 

second approach, however, estimates the direct term 𝐻 𝑥tip,𝐹tip
 ol  and the cross terms 

product 𝐻𝑥tip,𝐹mot
 ol ∙ 𝐻 𝑥mot,𝐹tip

 ol  from closed loop measurements. 

Approach #1 

Control law influence at tool tip: While the servo feedback loops (position, velocity and 

current) are active, the tool tip receptance FRF 𝐻 𝑥tip,𝐹tip
 clp,K0  is measured by impact hammer 

testing, under very low controller settings to approximate the acquired response to an 

open loop (𝐾0). At the same time, by sensing the displacement at the feedback location, 

the cross dynamic compliance (𝐻 𝑥mot,𝐹tip
 ol,K0 ) can be acquired. As both locations of interest 

are recorded, the displacement ratio between 𝑥mot and 𝑥tip can be characterized by the 

transmission dynamics (𝑇 = 𝑥tip 𝑥mot⁄ ). Note, that the transmissibility parameter is not 

constant if it is acquired from load side excitation, as the response changes for different 

controllers. However, while the system is excited through the machine’s feed drive 

system, this function remains independent from the defined controller. 

Using the experimental frequency domain data gathered in the previous step, new 

controller gains can be proposed and their effect on the tool tip compliance can be 

predicted via Eq. (4.25). 

𝐻 𝑥tip,𝐹tip
 clp,Prd

≈ 𝐻 𝑥tip,𝐹tip
 clp,𝐾0 + (𝐻 𝑥mot,𝐹mot

 ol  𝑇) ⏟          

𝐻𝑥tip,𝐹mot
 ol

𝐾(1 − 𝐻 𝑥mot,𝐹mot
 ol 𝐾)

−1
𝐻 𝑥mot,𝐹tip
 ol,𝐾0  

(4.25) 
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Approach #2 

Control law influence at tool tip: While servo feedback loops (position, velocity and 

current) are active, the tool tip receptance FRF 𝐻 𝑥tip,𝐹tip
 clp,𝐾i  is measured by impact hammer 

testing, under at least two different controller settings (𝐾1 and 𝐾2) that produce different 

responses. Using the data sets 𝐻 𝑥tip,𝐹tip
 clp,𝐾i  for different controllers 𝐾i, the unknown terms 

can be solved, frequency-by-frequency, by constructing and solving a set of linear 

equations (Eq. (4.26)). Here, the normalization by 𝐻 𝑥tip,𝐹tip
 clp,𝐾𝑖  improves numerical 

conditioning. 

[
 
 
 
 
 
 
 
 

1

𝐻 𝑥tip,𝐹tip
 clp,𝐾1

𝐾1

𝐻 𝑥tip,𝐹tip
 clp,𝐾1 (1 − 𝐻𝑥mot𝐹mot

ol 𝐾1)

1

𝐻 𝑥tip,𝐹tip
 clp,𝐾2

𝐾2

𝐻 𝑥tip,𝐹tip
 clp,𝐾2 (1 − 𝐻𝑥mot𝐹mot

ol 𝐾2)

⋮ ⋮
1

𝐻 𝑥tip,𝐹tip
 clp,𝐾𝑛

𝐾𝑛

𝐻 𝑥tip,𝐹tip
 clp,𝐾𝑛 (1 − 𝐻𝑥mot𝐹mot

ol 𝐾𝑛)]
 
 
 
 
 
 
 
 

∙ [
𝐻 𝑥tip,𝐹tip
 ol

𝐻𝑥tip,𝐹mot
 ol ∙ 𝐻 𝑥mot,𝐹tip

 𝑜𝑙
]

⏟              
𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠 𝑡𝑜 𝑏𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

= [

1
1
⋮
1

] (4.26) 

While a minimum of two measurements are required, further data can be added to 

enhance the estimation accuracy of 𝐻 𝑥tip,𝐹tip
 ol  and 𝐻𝑥tip,𝐹mot

 ol ∙ 𝐻 𝑥mot,𝐹tip
 ol . Then, new 

controller gains can be proposed and their effect on the tool tip compliance can be 

accurately predicted via Eq. (4.23). This methodology was successfully validated, as 

shown in Figure 4.8, in predicting the tool tip compliance in the laboratory setup moving 

at 500 mm/min. The implemented controllers (𝐾1 and 𝐾2) for Eq. (4.26) resolution 

constitute two boundaries for prediction accuracy. The prediction accuracy of different 

proposed control bandwidths between these two boundaries is very high (cyan and green 

colours). However, when predicting responses outside this boundary, the prediction 

accuracy decreases although the trend is correctly captured (yellow). 
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Figure 4.8 Experimental tool tip compliance prediction. 

Similarly, it should be noted that since the blue and red functions (𝐾1 and 𝐾2) have been 

used for solving the system, the prediction error is zero for both responses. Additionally, 

the experimental unknown function 𝐻 𝑥tip,𝐹tip
 ol  is very similar to the one previously shown 

in Figure 4.4-b (𝐾p = 0). With this, the proposed MIMO model for model-free tool tip 

compliance prediction is validated. 

4.3.3 Model based servo dynamics analysis 

The root locus method provides valuable insight into the influence of controller gains on 

the damping of the structural modes. This model-based approach, however, requires an 

accurate analytical representation of 𝐻 �̇�mot,𝐹mot
 ol  to be identified a priori. 

Root locus analysis by servo dynamics identification: The multiplicative pole-zero 

model presented by Suzuki et al. [243] has been extended for machine tool feed drive 

systems, by adding rigid body and delay dynamics, as shown in Eq. (4.27). Compared 

to the classical modal parameter model, this formulation simplifies the fitting of the 

complex dynamics encountered in feed drive systems and their structural assemblies. 

Both the resonances and anti-resonances can be estimated independently. Correct 

fitting of the anti-resonances in �̂� �̇�mot,𝐹mot
 ol  is especially important, as they generally 

correspond to tool tip compliance resonances. In Eq. (4.27), first the rigid body dynamics 

are adjusted to capture the low frequency response. Then, resonances and anti-

resonances are fitted one by one. Finally, the delay term (𝜏ol) enables further matching 

of the phase. 
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�̂� �̇�mot,𝐹mot
 ol =

𝑒−𝜏ol𝑠⏞  
𝐷𝑒𝑙𝑎𝑦 𝐸𝑓𝑓𝑒𝑐𝑡

𝑚total𝑠 +  𝜎
 

⏟        
𝑅𝑖𝑔𝑖𝑑 𝐵𝑜𝑑𝑦 
𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

∏(
𝜔p,𝑖
2

𝜔z,𝑖
2 ·

𝑠2 + 2𝜁z,𝑖𝜔z,𝑖𝑠 + 𝜔z,𝑖
2

𝑠2 + 2𝜁p,𝑖𝜔p,𝑖𝑠 + 𝜔p,𝑖
2 )

𝑖 = 𝑛

𝑖 = 1⏟                      
𝑉𝑖𝑏𝑟𝑎𝑡𝑜𝑟𝑦 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

 (4.27) 

Once an accurate model is obtained, the velocity and position control loop root loci 

enable the selection of the optimum parameters (𝐾v
∗, 𝐾p

∗, 𝑇i
∗) that maximize the damping 

of the closed loop poles. 

Overall, the new methodology proposed in this work generalizes successfully to high 

order feed drive dynamics, thus achieving a major improvement over earlier methods 

(Uriarte et al. [1] and Beudaert et al. [63]). It can also be applied with control structures 

other than P-PI, such as loop shaping (Munoa et al. [136]), pole placement (Erkorkmaz 

et al. [236]), or optimal control (Sencer et al. [235]). 

4.4 EXPERIMENTAL DYNAMIC VALIDATION ON A RAM TYPE 

MILLING MACHINE 

The modelling and tuning strategy presented in Section 4.3 has been validated on a ram 

type milling machine controlled by a Siemens 840D Powerline CNC, shown in Figure 

4.9-a. The ram bending at 60 Hz is the principal mode that limits the cutting stability. The 

mode shape obtained by an experimental modal analysis indicates that the tool tip 

vibrates mainly in the 𝑥-direction, and that the base of the column, where the linear motor 

is actuating, also has a relative displacement for this mode (Figure 4.9-b). 

Two controller settings are selected to demonstrate the accuracy of the proposed 

modelling approach. The controller named high is designed to achieve the highest 

bandwidth on the motor side. The controller named optimum damping is adjusted 

following the methodology of Section 4.3 to maximize the structural mode damping. To 

build the model, the closed velocity loop Bode plot was obtained via the standard 

functions in the Siemens CNC. As shown in Figure 4.9-c, the experimental servo mobility 

response is accurately estimated up to 100 Hz using Eq. (4.27). The orange shaded area 

in the phase response emphasizes that the delay term has a strong influence above  

40 Hz. 
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Figure 4.9 Machine tool a) Cutting point detail; b) Main modal shape; c) open loop 

curve fitting. 

The prediction of the tool tip compliance is performed by the two different approaches of 

Section 4.3.2. For the first one, the transmission dynamics between 𝑥tip and 𝑥mot are 

experimentally identified. As previously indicated, the transmissibility function remains 

invariant when the machine tool is excited through the feed drive actuator, 𝐹mot. Figure 

4.10-a shows the time and frequency domain accelerometer response placed at the 

machine column next to the linear encoder (�̈�mot) and tool tip (�̈�tip). 
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Figure 4.10 Transmission dynamics from motor excitation. 

As the machine is excited by the standard routines for velocity and position bode plots 

computation, the acquired signal shows a discrete frequency excitation (Figure 4.10-a). 

Therefore, in order to dismiss the frequencies without excitation and remove associated 

noise, an intermediate signal processing step is required for peak location. Then, as 

shown in Figure 4.10-b the motion relationship between 𝑥tip and 𝑥mot can be computed. 

No matter the selected controller bandwidth, the obtained function shape will remain 

constant. Figure 4.11-a shows the tool tip compliance prediction by using the first 

approach. Note, that for this machine axis, the feed influence has little effect, hence, the 

tool tip dynamics are obtained in idle conditions. 
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Figure 4.11 Tool tip dynamics prediction with the two different proposed approaches. 

Figure 4.11-b shows the prediction following the second approach, where two tool tip 

compliances were measured by impact hammer tests, using relatively high and low 

control gains to obtain different responses. The zoomed view verifies that the frequency 

domain operations using the direct measurements indeed enable higher accuracy 

prediction of the effect of control parameters on the tool tip compliance. 

Finally, the fitted model of the open loop mobility (Figure 4.9-c) is used to estimate the 

closed velocity and position loop Bode plots in Figure 4.12. The very accurate predictions 

demonstrate that the model parameters are well adjusted and that the root locus 

analyses (Figure 4.13) are reliable. 
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Figure 4.12 General view of velocity and position loop the root locus plot. 

Figure 4.13-a shows the general root locus plot of the velocity loop, where different pole 

sources can be observed. For example, controller poles are present at very low 

frequencies. Those are particularly important for rapid motion trajectory commands when 

the pole is located at low damping values. Then, machine tool mechanical poles which 

can induce chatter vibrations are present in the critical frequency range. And finally, the 

delay poles of the Padé approximation appear at higher frequencies. Three nearby 

modes are close to the chatter frequency (Figure 4.13-b). In that zone, the shape of the 

root locus is also affected by the other modes which influence the pole-zero connection 

paths and directions. Compared to the high bandwidth controller, the optimum damping 

controller increases the damping ratio of the most critical mode by 44% as highlighted in 

blue in Figure 4.13-d. However, the bandwidth reduction deteriorates the motion 

performance and can increase by up to ten times the contouring error as analyzed in 

Section 4.6. In the studied critical frequency range, the machine tool poles show a high 

sensitivity with respect to the proportional velocity loop gain, as a little variation can 

quickly alter the achievable damping (Figure 4.13-b). On the other hand, in the position 

loop any proposed value of 𝐾v will always degrade the achievable damping. In addition, 

by increasing the 𝐾p gain, the machine can reach the stability limit as the real part of the 

pole around 72Hz can become positive. However, in contrast to the proportional velocity 

loop, the sensitivity is small and relatively high 𝐾v values (such as 8 s-1) are very far from 

reaching the imaginary axis. This explains why the proportional position loops do not 

modify the tool tip compliance. 
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Figure 4.13 Velocity and position loops analysis. 

4.5 CHATTER STABILITY PREDICTION AND EXPERIMENTAL 

VALIDATION 

Direct and cross tool tip compliances have been measured by impact hammer testing to 

compare the theoretical chatter stability achieved with both controllers following the 

approach proposed by Altintas et al. [11]. The cutting process parameters are defined in 

Table 4.2. 
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Table 4.2: Cutting process parameters for chatter stability tests. 

Cutting tool 

Reference WALTER F4042 B16.040.Z04.15 

Diameter, 𝐷 40 mm 

Number of teeth, 𝑍 4 

Inserts reference WKP35S ADMT160608R-F56 

Lead angle, 𝜅 90º 

Cutting conditions 

Feed per tooth 0.2 mm/ 𝑍 

Radial engagement 32 mm (down-milling)  

Workpiece material F1140 Steel (C45) 

Cutting coefficients  

Specific tangential, 𝐾tc 1885 N mm2⁄  

Specific radial, 𝐾rc 749   N mm2⁄  

The stability lobe predictions are experimentally validated, verifying up to 33% 

productivity improvement. From the eleven tested spindle speeds, only one case showed 

an unpredicted reduction of stability, which is worth further study. Nevertheless, as seen 

in Figure 4.14-a, a general improvement is achieved in the chatter stability through the 

application of the proposed new strategy in tuning the P-PI cascade control loops. In 

addition to this, the overall vibration severity decreased considerably in all the conducted 

tests. Figure 4.14-b shows the vibration spectra comparison for the two different cutting 

conditions with the selected controllers, where the optimally tuned one successfully 

avoids the chatter appearance. As a result, Figure 4.14-c shows the workpiece surface 

finish for the Test B at 1100rpm and a depth of cut of 2mm. 
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Figure 4.14 Experimental chatter stability tests. 

4.6 TRACKING PERFORMANCE ANALYSIS 

As a result of the previous analysis, lower control bandwidths are desirable to obtain the 

maximum allowable structural damping, prioritizing the process stability rather than 
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machined part accuracy. On the other hand, the higher bandwidth tuning approach, 

which follows the usual industrial tuning guidelines, improves the motion performance. 

From the previous industrial implementation, the velocity and position bandwidths have 

been reduced from 25 to 9Hz and 20 to 6Hz respectively. Even though optimum damping 

controller is designed for heavy duty roughing operations, where the dimensional 

accuracy of the part is not a big concern yet, the decrease of the control dynamics 

weakens the precision of the manufactured part. 

Figure 4.15 shows the feed drive system model that has been used to simulate the 

contour errors. The position reference is modified by balancing filters (also called 

symmetry filters) available to improve the performance of the velocity feedforward action 

(𝐾ffv = 1). The Siemens 840D CNC offers the possibility to use a first order transfer 

function as a balancing filter (where the optimum time constant, corresponding to the 

considered machine dynamics, is selected as 𝜏BF = 1ms). To avoid introducing 

synchronization errors, the 𝑦-axis (vertical axis) is considered to have matching 

dynamics with the 𝑥-axis in the simulations. The closed velocity loop dynamics are the 

ones illustrated in Figure 4.12-a. 

 

Figure 4.15 Feed drive system model for motion performance analysis. 

Table 4.3 summarizes the contour and tracking error results (see also Figure 4.16). On 

average, the contour errors have been increased by a factor of 10, and the tracking errors 

by a factor of 6. Hence, the obtained machined part accuracy is reduced. However, as 

structural chatter vibrations are usually faced during roughing operations and accuracy 

is especially important for the finishing passes, two different controller sets can be 

implemented by the machine tool builder in their CNC applications. The first one, 

providing the optimal damping for initial heavy duty roughing operations, and then the 

higher bandwidth setting, which provides a better contouring accuracy for the finishing 
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operations. With this, the machine user can benefit from the advantages of both tuning 

approaches. 

Table 4.3: Tool path motion error summary. 

 Contour Error Tracking Error 

 Max. Rms Max. Rms 

Opt. damping (µm) 110.5 23.8 212.9 75.5 

High BW (µm) 9.4 2.42 31.7 12.1 

Difference (ratio) 11.7 9.8 6.7 6.2 

 

Figure 4.16 Simulated tool path results. 

4.7 CONCLUSIONS 

This chapter has presented a new strategy for feed drive controller tuning, to enhance 

the damping properties at the cutting point. The interaction of the servo controller with 

the machine tool’s generalized high-order dynamics has been studied through the root 

locus technique. A semi-analytical MIMO model has been developed to accurately 
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predict the tool tip receptance under different control settings. Experimental validations 

show that optimum tuning can increase the machine’s chatter stability. To avoid reducing 

the final machining accuracy, different control tunings can be used for roughing and 

finishing operations. 
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Chapter 5  

 

Influence of friction on the nonlinear 

dynamics of machine tools 

5.1 INTRODUCTION 

In large machine tools, where structural dynamics significantly influences the cutting 

capabilities, inaccurate machine dynamic characterization leads to poor stability 

predictions. In such machines, the critical resonances are usually related to the major 

structural assemblies (typically in the low frequency range between 15 to 200 Hz) which 

can generate relative motion at the machine joints. Most research considers the dynamic 

response of machine tools in idle conditions. However, there is evidence showing that 

the dynamics can vary during the cutting process (see Sections 2.2 and 2.3). 

This chapter aims at demonstrating for the first time that friction has an important 

influence on the structural dynamics of large-scale machine tools at near the machining 

point. Experimental evidence obtained from several machines indicate that the dynamics 

variations between the in-motion and idle conditions are quite common. However, up to 
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now, the underlying cause of this was not studied. In this chapter, a fundamental study 

that considers the influence of nonlinear friction, structural dynamics, feed drive control 

loops and the machine movements is experimentally validated on a laboratory test 

bench. A mechanical equivalence of the feed drive controller is provided, as well as an 

analysis of three different static friction models for predicting the transient behaviour. 

Finally, a machining centre is analyzed in detail to show the effect of the axis velocity on 

the cutting point compliance and its influence on the chatter stability prediction. 

 

Figure 5.1 Steps for the analysis of the guideway friction on TCP compliance. 

5.2 IDLE AND IN-MOTION FRFS EXPERIMENTAL DIFFERENCES 

The influence of the axis velocity on the cutting point compliance has been measured on 

seven different machine tools, including two large portal milling machines, three ram type 

milling machines, one turning machine, and also a robot equipped with a milling spindle 

(Figure 5.2). For all the measurements, each cartesian axes 𝑥𝑦𝑧 are commanded with a 

back-and-forth movement with the same axis velocity; hence the tool centre point 

performs a 3-axis linear interpolation trajectory. The axis displacements are lower than 

40 mm, so the dynamic compliance modification is not strongly related to the posture 

variation. All the measurements presented in this section have been obtained from 

impact hammer tests performed after the axis inversion to avoid axis reversal and 

transient effects. Additionally, the measurements do not show a significant influence of 

the axis travelling direction on the tool tip dynamics, hence this effect is discarded here. 

For confidentiality reasons, the magnitude value is not displayed. 
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Figure 5.2 Graphical summary of the tested machine configurations 

Milling robot: The first analyzed machine is a Stäubli robot with a milling spindle head. 

Figure 5.3-a summarizes the nine direct and cross compliances for the three cartesian 

directions. Initially, each joint of the robot is braked generating a highly undamped 

response. However, just by energizing the joints and hence, giving authority to each joint 

controller, the initial damping values for the resonance increase. When the joints are 

moving, the response is damped even further. Figure 5.3-b shows the Φ𝑧𝑧 direct 

compliance for different feedrates, where the initial 12 Hz resonance is significantly 

modified by the control interaction (with vs. without brake) and due to the feed command. 
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Figure 5.3 Idle and in-motion FRF for a robotic milling machine. 

Turret of a horizontal turning machine: Figure 5.4 shows the direct compliance of the 

longitudinal axes of a horizontal lathe driven by a ball screw drive and that uses friction 

guides with Turcite®. The FRF is significantly affected by the movement both in the main 

resonance at 95Hz and in the low frequency range (<50Hz). 

 

Figure 5.4 Idle and moving FRF for a horizontal lathe. 
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Moving column milling machine: Three different moving column machine tools have 

been dynamically characterized. The horizontal 𝑥 axis is driven by a double pinion and 

rack feed drive system. The vertical and ram axes (𝑦 and 𝑧 respectively) are driven by 

ball screw feed drives. The vertical axis has a hydro-pneumatic accumulator for the 

weight compensation. As a result of the large ram overhang, the most flexible directions 

are in 𝑥 and 𝑦, where usually ram bending resonances govern the dynamic response. 

Figure 5.5-a shows the nine direct and cross FRFs in idle and moving conditions. The 

vertical direct compliance (Φ𝑦𝑦) is significantly modified. This frequency modification also 

affects Φ𝑥𝑦 and Φ𝑦𝑥 cross compliances as the main resonance encounters a damping 

increase. Figure 5.5-b shows a second moving column type machine tool, which follows 

a similar trend as the previous machine. The most significant compliance variation is 

faced in the direct vertical FRF (Φ𝑦𝑦). Additionally, as a result of the feed influence, a 

major increment in damping is generated in the Φ𝑥𝑦, Φ𝑦𝑥, Φ𝑦𝑧 and Φ𝑧𝑦 cross FRFs. 
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Figure 5.5 a) First; b) second analyzed moving column milling machine. 

Figure 5.6-a shows the dynamic characteristics of the third moving column milling 

machine. As in previous machines, the direct vertical compliance (Φ𝑦𝑦) suffers the 

biggest variation. Cross FRFs (Φ𝑥𝑦, Φ𝑦𝑥 and Φ𝑦𝑧) decrease their main resonance 

amplitude as a result of the Φ𝑦𝑦 compliance modification. Figure 5.6-b shows a more 

detailed analysis conducted at different axis velocities. By providing a small velocity 

command such as 25 mm/min, the initial idle compliance is modified both in amplitude 
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and frequency. Then, by increasing the feed command the compliance varies up to a 

certain limit where the variation is small (250 to 500 mm/min) or remains similar (500 to 

1000 mm/min). 

 

Figure 5.6 Third analyzed moving column milling machine. 

Portal milling machine: Two different gantry type portal milling machines have been 

analyzed. For portal milling machines, the 𝑥 axis is driven by a gantry master slave 

configuration, where each machine leg has a double pinion and rack feed drive system. 

Meanwhile, the 𝑦 axis is powered by a double pinion and rack and vertical 𝑧 axis by a 

ball screw drive. 

The first studied machine tool dynamics are summarized in Figure 5.7. As a result of the 

motion, the main resonance amplitude in Φxx decreases drastically. In addition, the 
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secondary resonance gains importance as its magnitude and frequency characteristics 

are altered. Similar effects can be observed in the Φ𝑦𝑦 compliance. In fact, the main 

resonance of the machine in idle and in-motion conditions is totally different, both in 

frequency and damping. 

 

Figure 5.7 First analyzed portal milling machine. 

In the second portal milling machine, the 𝑥 axis is independent from the other two axes, 

as a moving table with turning capabilities has been installed. Therefore, the motion of 

the ram is only in vertical and transverse directions (𝑦 and 𝑧). Figure 5.8-a shows the 

nine FRFs of the ram tip, where the frequency of the main resonance decreases while 

achieving a considerable amplitude reduction (60%) in Φ𝑥𝑥 compliance. It is important to 

note that Φ𝑥𝑥 is significantly affected even if there is no feed in 𝑥 direction. Figure 5.8-b 

illustrates the evolution of the dynamic compliance for different feeds, where initial idle 

characteristics converge to a different in-motion invariant frequency response. 
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Figure 5.8 Second analyzed portal milling machine. 

The experimental evidence presented in this section show that the axis motion can have 

a very significant influence on the cutting point dynamics, changing both the natural 

frequency and damping of the main machine tool modes. The identification of this 

phenomena can be crucial for different aspects such as model-based active damping 

techniques, process planning using stability lobes and Finite Element models correlation. 

This effect has been reported in very few publications (Zaeh et al. [116], Sato et al. [119] 

and Tunc et al. [68]) and has not been explained in detail, especially considering the 

nonzero axis velocity case, up to now. 
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5.3 FUNDAMENTAL STUDY 

The fundamental explanation of the dynamics modification observed in the previous 

section is developed using a simple two mass model that considers the feedback control 

loops and the axis friction. 

5.3.1 Model description 

A single degree of freedom flexible structure mounted on a linear motor is used to model 

and validate the effect of friction on the dynamic response. Figure 5.9 presents the 

schematic model that considers friction forces 𝐹friction and the classical control loops to 

generate the drive force 𝐹control from the linear encoder position and velocity feedback 

measurement (𝑥mot and �̇�mot). Additionally, a disturbance force 𝐹tip can be applied on 

the flexible structure as well as a motion command to the feed drive system through 𝑥ref. 

Multiple feed commands are analyzed, resulting in different forces generated by the 

controller and friction, and  their implications on the tool tip dynamic compliance is 

simulated (𝑥tip/𝐹tip). 

 

Figure 5.9 Proposed mechatronic simulation model to analyze the influence of 

guideway friction on the tool tip dynamics. 

Structural dynamics 

This simplified flexible test bench can be dynamically characterized as a two degree-of-

freedom system. The driven load or vibrating structure is represented by 𝑀tip and the 

carriage by 𝑀mot. Eq. (5.1) shows the analytical expression of the open loop system 

response (𝑋mot 𝐹control⁄ ol
) with stiffness and damping of the mechanical flexure 

characterized by 𝑘2 and 𝑐2 respectively. 𝜏𝑜𝑙 is a delay corresponding to a phase drop 
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due to the sampling rate and the linear motor response. The expression also considers 

the viscous friction term 𝜎 which modifies the response in the low frequency range. 

However, for this research, the effect of viscous friction is not used in this expression, as 

it is modelled in the friction characteristics described in the next section Eq. (5.2). 

𝑋mot

𝐹control

ol

=
(𝑀tip𝑠

2 + 𝑐2𝑠 + 𝑘2)𝑒
−𝜏ol𝑠

𝑀mot𝑀tip𝑠
4 + (𝑐2(𝑀mot +𝑀tip) + 𝜎𝑀tip)𝑠

3 + (𝑘2(𝑀mot +𝑀tip) + 𝜎𝑐2)𝑠
2 + 𝜎𝑘2𝑠

 
(5.1) 

Friction characteristics 

As indicated in Section 2.3, friction is a result of a complex interaction between two 

contacting surfaces with a relative motion. Complex dynamic models (such as LuGre or 

GMS) capture the friction characteristics at small relative displacements before full slip 

regime is reached. However, these models are difficult to identify and not always easy 

to use in dynamic simulations (Andersson et al. [108] and Hagman [107]). The 

discontinuity at very low speeds associated with static friction models can be overcome 

by implementing continuous velocity-based functions. The Andersson 𝑡𝑎𝑛ℎ type model 

of Eq. (5.2) is used here as it smoothly accommodates the transition to a full sliding 

regime for low-velocity increments; and it is well adapted for transient oscillating 

simulations (Andersson et al. [108]). 𝐹c and 𝐹s correspond respectively to the Coulomb 

and static frictions while 𝜎 is the viscous friction coefficient. The coefficient 𝑘tanh 

determines how fast the friction force changes near pre- and sliding portions. 𝑣s is the 

sliding speed coefficient and 𝛿 is the velocity shape factor, which is equal to 1. 

𝐹friction = [ 𝐹c + (𝐹s − 𝐹c)𝑒𝑥𝑝
− ( 

|�̇�mot|
𝑣s

 )
 𝛿

 ] 𝑡𝑎𝑛ℎ (𝑘tanh �̇�mot) + 𝜎 �̇�mot (5.2) 

Pennestri et al. [244] compared eight different friction models in terms of computational 

efficiency concluding that continuous velocity-based friction models demonstrated to be 

sensitive to the selected Ordinary Differential Equation (ODE) solver. Furthermore, they 

recommended the use of a stiff solver, such as ode15s, as it considerably improves the 

computational efficiency and accuracy. For that reason, in preparing the simulation 

MATLAB’s variable step ode15s solver is selected to get a fast and accurate simulation. 

Quasi-FRF 

The concept of FRF is only mathematically valid for linear systems and the term quasi-

FRF is preferred for nonlinear systems (Farago et al. [245]). In this work, the quasi-FRF 
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is obtained using the traditional impact hammer testing approach, where an 

accelerometer measures the flexure vibration (�̈�tip) and an impact hammer generates 

the force (𝐹tip). Both excitation and response time domain signals are synchronously 

acquired, and each frequency domain response spectrum is computed by FFT analysis. 

Eq. (5.3) shows the quasi-FRF computation by the division of the cross-spectrum over 

input’s auto-spectrum (Ewins [246]). 

Φquasi(𝜔) =
𝑆xtip,Ftip  (𝜔)

𝑆Ftip,Ftip  (𝜔)
 (5.3) 

For simulations, the impact hammer force has been characterized as a Dirac delta 

function. With this, the machining system nonlinear sensitivity to different force excitation 

levels (𝐹tip) or different feedrate commands (�̇�ref) can be studied. 

5.3.2 Test bench validation 

Figure 5.10-a presents the single-axis linear motor (ETEL ILM06-060) with an added 

flexure oriented in the feed direction that is used to validate the proposed models. 

Identification of mechanical parameters 

The model parameters have been extracted from an experimental open loop response 

measurement (𝑥mot 𝐹mot⁄ ol
) (Figure 5.10-b). A pseudo-random binary sequence input 

has been applied to the experimental setup while the axis was moving at 500 mm/min. 

As a result, the setup stays on the sliding friction regime; hence, only viscous friction 

component affects this measurement. In addition, the excitation force has been selected 

not to generate motion reversals. The natural frequency of the flexure  

𝑓t = 61.3 Hz corresponds to the so-called motor-locked frequency. This load side 

resonance corresponds to an anti-resonance of the motor open loop response as load 

side vibrations cancel out the displacement of the motor mass. Due to the combination 

of inertias and stiffness, a resonance is generated at 𝑓r = 75 Hz. The extracted model 

parameters are summarized as follows; 𝑀mot = 23.1 kg, 𝑀tip = 11.3 kg, 𝑘 = 1.68 N/µm, 

𝑐 = 104 Ns/m, 𝜎 = 1250 kg/s and 𝜏ol = 0.75 ms. However, as previously said, the viscous 

friction term effect (𝜎) will be considered within the externally coupled friction model. 
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Figure 5.10 a) Experimental setup; b) Experimental and fitted open loop response. 

Identification of friction parameters 

The friction force characteristics are identified by running the test bench at different 

steady-state sliding feeds and computing the average of the motor force. Figure 5.11-a 

shows the experimental and computed mean values of motor force for continuous 

displacements performed at 25 and 1500 mm/min. Figure 5.11-b shows the fitted friction 

model on top of the experimental characterized points. The extracted model parameters, 

which have been obtained by the minimization of the RMS error, are as follows: Coulomb 

sliding friction (𝐹c) = (44.2+, 38.7-) N, maximal static friction (𝐹s) = (84+, 88-) N, sliding 

speed coefficient (𝑣s) = (387.4+, 421-) mm/min, viscous friction coefficient (𝜎) = (0.0028+, 

0.0025-) Nmin/mm, model constant (𝑘tanh) = (0.25+, 0.25-) min/mm and the velocity 

shape factor (𝛿) = (1+, 1-). Note that the identified parameters vary depending on the 

motion direction (as in Erkorkmaz et al. [247]). 
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Figure 5.11 Friction a) Experimental identification; b) Model fitting. 

Simulation and validation of tool centre point compliance variation 

The experimental and simulated quasi-FRF are obtained considering impact hammer 

testing. The simulated excitation amplitude has been selected according to experimental 

impact tests performed on the test bench flexure with a PCB 086C03 hammer and a soft 

rubber tip. The nonlinearity related to the impact force is negligible compared to the 

influence of the feed drive dynamics. 

Figure 5.12-a shows the cutting point quasi-FRFs simulation and experimental 

compliances for different axis feeds and 25 N excitation force. For the idle machine case 

(�̇�ref = 0 mm/min), the dynamic compliance shows a poorly damped resonance coming 

from the flexure at 61.3 Hz. As the commanded feed increases, the in-motion FRF varies 

significantly, both in amplitude and frequency, up to a certain feedrate level  

(�̇�ref ≈ 500 mm/min), where the dynamic response remains ‘invariant’. This modification 

is a result of the interaction of the servo controller and friction forces for different feedrate 

commands. This can be further explained following Figure 5.12-b: 

• For idle case (�̇�ref = 0 mm/min), as the reference feedrate is zero, the servo 

controller force is negligible compared to the friction force (𝐹friction >> 𝐹control). 
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• As the reference feed increases, so does the servo controller force, generating 

interactions between the control and friction forces (𝐹friction ≈ 𝐹control). 

• Above a certain feed (�̇�ref ≈ 500 mm/min), the servo controller force becomes 

dominant; therefore, the system response become more linear (i.e., less 

amplitude dependent) and the dynamic compliance remains ‘invariant’ 

(𝐹friction << 𝐹control). Therefore, the effect of the selected servo bandwidth (𝑓bw) 

on the obtained dynamic response can be observed. 

 

Figure 5.12 a) Simulated and experimental idle and in-motion FRFs; b) Simulation 

variation of different force sources for different axis feeds. 

This single axis laboratory setup has provided clear experimental evidence of the friction 

influence on the cutting point dynamics and validates the proposed modelling 

approaches with experimental results that match the simulations. The next section goes 

further in the analysis of the interaction of control and friction dynamics. 

5.4 CONTROL AND FRICTION INTERACTIONS 

Based on the conclusions previously obtained, the effect of the control parameters on 

the tool tip dynamics can be clearly identified when the axis is moving. In this section, 

the influence of the control parameters on the tool tip compliance is presented with an 
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equivalent mechanical model. In addition, different friction models have been compared 

to analyse the idle and in-motion FRF prediction capabilities. 

5.4.1 Effect of the control parameters on cutting point dynamics 

Figure 5.13 shows the equivalence between the control feedback model and a purely 

mechanical model of two degrees of freedom. The controller is the classical P-PI 

controller implemented in machine tool CNCs, which utilizes proportional and integral 

actions (𝐾p and 𝑇i) in the velocity loop whereas a single proportional gain in the position 

loop (𝐾v) is used. The controller force (𝐹control) depends on the feedback sensor reading 

𝑥mot as shown in Eq. (5.4). 

 

Figure 5.13 Equivalent mechatronic feed drive model. 

𝐹control = (𝑠 + 𝐾v)𝐾p (1 +
1

𝑇i𝑠
) (𝑥ref − 𝑥mot) (5.4) 

As indicated in Chapter 4, the selected controller bandwidth can extensively modify the 

tool tip compliance. Eq. (5.5) shows the tool centre point compliance under the effect of 

selected control parameters. Additionally, the viscous friction term (𝜎) has been added 

to the equation. 

𝒙𝐭𝐢𝐩

𝑭𝐭𝐢𝐩
=

(𝒔 +𝑲𝐯)𝑲𝐩 (𝟏 +
𝟏
𝑻𝐢𝒔
) +𝒎𝟏𝒔

𝟐 + 𝒄𝟐𝒔 + 𝒌𝟐

(𝒎𝟐𝒔
𝟐 + 𝒄𝟐𝒔 + 𝒌𝟐)(𝒔 + 𝑲𝐯)𝑲𝐩 (𝟏 +

𝟏
𝑻𝐢𝒔
) +𝒎𝟏𝒎𝟐𝒔

𝟒 + (𝒎𝟏𝒄𝟐 +𝒎𝟐(𝝈 + 𝒄𝟐))𝒔
𝟑 + ((𝒎𝟏+𝒎𝟐)𝒌𝟐 + 𝝈𝒄𝟐)𝒔

𝟐 + 𝝈𝒌𝟐𝒔
 

 (5.5) 

The tool tip compliance response for the two degrees of freedom mechanical model of 

Figure 5.13-b is described in Eq. (5.6), where controller provided force has been replaced 

by equivalent stiffness and damping elements. 
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𝑥tip

𝐹tip
= 

1

(𝑚2𝑠
2 + 𝑐2𝑠 + 𝑘2) −

(𝑐2𝑠 + 𝑘2)
2

(𝑚1𝑠
2 + (𝑐1 + 𝑐2)𝑠 + 𝑘1 + 𝑘2)

 
(5.6) 

The integral action feedback term does not have a mechanical equivalent. It gives an 

infinite static stiffness to the drive at low frequency and creates a control pole at low 

frequency, whose damping depends on the integral time (𝑇i) and commissioned 

proportional velocity loop gain (𝐾p). If the integral action is neglected (𝑇i ≈ ∞), the control 

loops can be substituted with an equivalent stiffness and damping, as shown in Figure 

5.13-b and Eq. (5.8). The damping is provided by the proportional velocity gain whereas 

the stiffness corresponds to the product of the position and velocity loop gains. 

𝐹control = −(𝐾p𝑠 + 𝐾p𝐾v)𝑥mot with 𝑇i ≈ ∞ (5.7) 

𝑐1 = 𝐾p 

(5.8) 

𝑘1 = 𝐾p𝐾v 

Figure 5.14 shows that the control loops modify the dynamic compliance between two 

asymptotic cases. The first one with zero stiffness (𝑘1 = 𝐾p = 0), which is an equivalent 

of an open loop response. As a result, no static stiffness is present in the system; hence, 

an antiresonance is present at 𝑓a = √𝑘2 𝑚1⁄ . Additionally, a resonance is located at 

𝑓r = √𝑘2(1 𝑚1⁄ + 1 𝑚2⁄ ). The second asymptotic case corresponds to 𝐾p → ∞, 𝑚1 is 

completely fixed due to the high controller stiffness and the two degrees of freedom 

model behaves like a single suspended mass with a resonance frequency at 

𝑓t = √𝑘2 𝑚2⁄ . Between these extreme cases, the controller can be tuned to improve the 

dynamic response as shown in Chapter 4. Note that the equivalent mechanical model 

offers a satisfactory approximation as long as the integral time gain is set to a large value 

or the main frequencies of the system are far from the integral action range. 
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Figure 5.14 Cutting point compliance prediction with the two different models. 

5.4.2 Influence of friction model on the quasi-FRF 

To analyse the effect of the friction model on the dynamics, three different friction model 

configurations are shown in Figure 5.15-a. In the first configuration, only viscous friction 

component is considered (𝜎). Then, the second configuration neglects the Stribeck effect 

by considering Coulomb and viscous friction effects. This model can be obtained through 

Eq. (5.2) by equalizing the maximal static (𝐹s) and Coulomb sliding (𝐹c) friction values. 

The last proposed friction model configuration is the previously employed Andersson 

type friction model. 

Figure 5.15-b-d summarizes the cutting point dynamics with the different proposed 

friction models. Figure 5.15-b shows the compliance results using the viscous friction 

component, which cannot capture the effect of machine idle conditions. This is because 

the controller generated force, even though being in idle conditions, is much more 

dominant than the friction generated force. Similar results are obtained when friction 

characteristics are not added into the simulation. Then, by using the combined viscous 

and Coulomb model, machine idle, in-motion and ‘invariant’ dynamics can be predicted. 

However, certain amplitude deviations exist compared to the ones obtained with the 

Andersson friction model, which has been experimentally validated earlier (Figure 5.12-

a). 
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Figure 5.15 Friction models and quasi-FRF simulations. 

Using the Andersson type friction model, the transition between idle and in-motion 

‘invariant’ quasi-FRF can be simulated accordingly to the experimental results. However, 

the Coulomb with viscous friction model can give a reasonable approximation with minor 

modelling effort as well, albeit with less accurate prediction of the compliance peak. 

5.5 EXPERIMENTAL VALIDATION 

Figure 5.16-a shows the DS630 machining centre where the effect of friction on the tool 

centre point dynamics is studied. The horizontal 𝑥 axis is powered up by a linear motor 

and 𝑦 and 𝑧 axes with ball screw drives. The difference between idle and in-motion 

dynamics in the 𝑥 axis is not very relevant. However, the vertical axis demonstrates the 

effect of nonlinear friction on tool tip compliance. In this machine, the dynamics vary with 

the selected ram height. Consequently, the travelling distance for the dynamics 

characterisation is limited to 40 mm to minimize the posture dependent influence on both 

FRF measurements, and the cutting process stability results. Figure 5.16-b shows the 

direct and cross tool tip FRFs demonstrating that the in-motion dynamics variations 

cannot be attributed to the posture variation. 
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Figure 5.16 a) DS630 machine tool; b) Direct and cross-dynamics at the tool centre 

point. 

An experimental modal analysis has been conducted in idle conditions. Four main 

vibratory modes have been identified. The first one at 34 Hz corresponds to machine 

column rocking with respect to the 𝑥 axis (Figure 5.17-a). The modal displacement has 

projections in 𝑦 and 𝑧 directions and is barely observable in the 𝑥 axis. In contrast, the 

second mode at 50 Hz is a pure ram bending mode in the 𝑥-𝑧 plane (Figure 5.17-b). The 

third mode at 52 Hz is a summation of a translational mode of the vertical feed drive 

system and ram bending in the 𝑦-𝑧 plane (Figure 5.17-c). Finally, the fourth mode at 57 

Hz has a similar modal shape to the second one at 50 Hz. 
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Figure 5.17 Experimental modal analysis. 

5.5.1 Quasi-FRF 

Figure 5.18 shows the vertical 𝑦 axis direct ram compliance measurements in idle and 

in-motion conditions for different axis velocities acquired by impact hammer tests. All 

impact tests presented in this section have been realized with a PCB 086D20 impact 

hammer and a PCB 356A17 triaxial accelerometer. The impact hammer allows 

performing a rapid measurement of the machine dynamics with only four impact tests of 

few seconds each. The good coherence indicator value confirms the quality of the 

measurements. 

The initial idle dynamic response varies significantly under the effect of the axis feedrate. 

The amplitude of the first natural frequency located at 34 Hz increases, while the 

amplitude of the next natural frequency at 52 Hz is significantly modified passing from a 

resonance-like response to one line an anti-resonance. As a result of the amplitude 

change, a new natural frequency which is not seen in the idle FRF appears at 42Hz. A 

very similar effect is observed at 66 Hz, where the amplitude strongly increases once a 

feed of 80 mm/min is reached. 
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Figure 5.18 Experimental 𝑦 axis compliance measured with impact hammer. 

The in-motion ‘invariant’ FRF is reached at approximately 250 mm/min. However, the 

effect of the commanded axis velocity on the compliance is noticeable at very low speeds 

(20 mm/min). It can be observed that a smooth transition from idle to in-motion ‘invariant’ 

FRF exists. These measurements give a very clear demonstration of the influence of the 

axis feed on the structural dynamics, where initial dynamic behavior (idle conditions) and 

in-process dynamics (>250 mm/min) are totally different. 

5.5.2 Friction characteristics identification 

The characterization of the 𝑦 axis friction is performed by running the axis at different 

sliding speeds and monitoring the motor current. Figure 5.19 shows the experimental 

and the fitted friction curves using the previously described Andersson type model of Eq. 

(5.2). A good approximation of the feed in which the in-motion ‘invariant’ FRF is reached 

can be obtained from the friction curve. Indeed, it corresponds to the point where the 

viscous linear friction is dominant (≈ 250 mm/min). The noticeable discrepancy between 

the perceived ‘friction characteristics’ for positive and negative velocity cases can be 

caused by the effect of gravity and the counterweight installed in this vertical axis. The 

feed direction was been modified to analyze if this asymmetric characteristic creates a 

motion direction dependent tool tip compliance, concluding that little effect is generated 

on this machine. 
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Figure 5.19 DS630 vertical axis friction characteristics. 

5.5.3 Influence of the excitation force level 

When dealing with nonlinear dynamics, it is well known that the excitation type can have 

a significant influence on the measured FRFs (Ewins [246]). Apart from the excitation 

type, the excitation level should also be controlled to obtain robust results. In general, 

electromagnetic shakers are the preferred option to measure nonlinear structure 

responses. However, the analyses conducted in this research involve machine 

movements at different feeds which cannot be handled with traditional hanging shakers. 

For that reason, an inertial actuator based on a linear motor and attached to the moving 

structure is used (Figure 5.20). A Bosch ML3P03-B_BW linear motor generates a 

controlled force by accelerating an inertial mass. 

The so-called sine stream excitation signal is selected to perform a frequency sweep 

from 20 to 80 Hz with steps of 0.25 Hz. Each frequency is maintained for 5 oscillation 

cycles and two sinewaves are fitted to the input force and output acceleration to obtain 

the FRF at each known frequency. The magnitude and phase are computed using the 

ratio between the sinewave amplitudes and their phase shift. Figure 5.21 presents the 

inertial force obtained from an accelerometer mounted on the inertial mass and the 

output response. As a coherence indicator, the R-squared goodness-of-fit is provided. 
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Figure 5.20 Inertial actuator mounted on the moving ram. 

 
Figure 5.21 Excitation force and measured acceleration signals for FRF computation. 
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Three different force amplitudes have been applied with the linear motor to analyse the 

response linearity related to the force level at different axis velocities. Figure 5.22 shows 

a large influence of the excitation amplitude on the measured responses in machine idle 

conditions. However, the response is progressive, as higher excitation force levels lead 

to the observation of lower amplitudes at the main resonance. The same trend with 

higher influence is observed for the 5 mm/min in-motion FRF. As the feed increases, a 

linearization can be observed, as the dynamic responses obtained with different 

excitation force levels are very similar (40 and 100 mm/min). For those and higher axis 

velocities, the servo control force is relatively larger than the friction force, so a linearized 

behaviour is reached and the in-motion FRF is independent from the perturbation level. 

 

Figure 5.22 Force and axis velocity linearity analysis. 

Experimental characterisations made on two different machines show that the impact 

hammer is a good tool to analyse the effect of friction of the dynamics. Indeed, when the 

machine is moving the force level nonlinearity is not dominant. 

5.5.4 Idle vs in-motion time domain response 

To give further evidence of the strong modification of the machine dynamics due to the 

axis feed, the machine ram is perturbed with a constant force sinewave of  

80 N at the main natural frequencies using the inertial actuator. Figure 5.23 shows the 

acceleration response of the machine ram for the three conducted tests, starting from 
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idle condition, performing a 𝑦-axis movement at a constant feed of 500 mm/min and 

finishing at idle condition again. As expected from the evolution of the quasi-FRF, the 

response at 33 Hz has a small amplitude variation. However, at 52 Hz, the vibration 

amplitude decreases by 75 % as a result of the quasi-FRF magnitude drop. In contrast, 

at 66 Hz, the initial vibration amplitude increases as a result of the resonance created at 

that particular frequency. 

 

Figure 5.23 Sinewave response at characteristic frequencies in idle and in-motion 

conditions. 

5.5.5 Influence of the control parameters 

Another important novelty of this work is the demonstration that the real contribution of 

the control feedback on tool centre point dynamics can mostly be seen once the 
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linearized axis feed regime is achieved. Figure 5.24 shows the effect of the variation of 

the proportional velocity gain on tool tip compliance characterized with the inertial 

actuator. Although the proportional velocity gain is modified, the effect at idle conditions 

is minor comparing to the one measured at 300 mm/min. 

 

Figure 5.24 Servo control bandwidth effect. 

These experimental results demonstrate that the commanded axis velocity plays a 

significant role in the cutting point dynamics. The next section shows how the machining 

stability predictions can be improved by comparing the chatter stability predictions 

obtained from the idle and in-motion ‘invariant’ FRF. 

5.5.6 Chatter stability analysis 

By using the frequency responses indicated in Figure 5.16-b the chatter stability 

predictions are computed following the approach presented by Altintas et al. [11]. The 

measurements are obtained with traditional impact hammer approach. A minor cross-

coupling effect is present in 𝑥 direction as a result of the axis motion in 𝑦 axis. 

Additionally, the cross dynamics Φxy and Φyx have relatively small amplitudes compared 

to the direct terms. 

The cutting process parameters for chatter stability tests are summarized in Table 5.1. 𝑧 

direction is very stiff and a tool with a lead angle of 90 degree is used so a 2D stability 
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model is applied. The feed per tooth of 0.2 mm/𝑍 ensures that even for the lowest spindle 

speed of 400 rpm, the axis velocity is higher than the in-motion ‘invariant’ feed of 250 

mm/min. 

Table 5.1: Cutting process parameters for chatter stability tests 

Cutting tool 

Reference WALTER F4042 B16.040.Z04.15 

Diameter, 𝐷 40 mm 

Number of teeth, 𝑍 4 

Inserts reference WKP35S ADMT160608R-F56 

Lead angle, 𝜅 90º 

Cutting conditions 

Feed per tooth, 𝑓𝑍 0.2 mm/𝑍 

Radial engagement, 𝑎e 32 mm (down-milling)  

Workpiece material F1140 Steel (C45) 

Cutting coefficients  

Specific tangential, 𝐾tc 1885 N mm2⁄  

Specific radial, 𝐾rc 749  N mm2⁄  

Figure 5.25-a shows the experimental stability lobes on top of the theoretical predictions. 

It can be concluded that the dynamic variation related to the axis position has very small 

impact on the process stability. Using the in-motion FRF at 500 mm/min, the critical depth 

of cut increases by 53 % (from 1.5 to 2.3 mm). The cutting tests confirm that the 

experimental stability is closer to the prediction that uses the in-motion dynamics. This 

can also be seen in the chatter frequency predictions, where up to 6 Hz difference can 

be measured. Figure 5.25-b indicates the experimental vibration spectra for 1000 rpm 

cutting conditions in which the depth of cut and chatter frequency have a significant 

deviation from the expected ones by using idle dynamics (240 % and 8 % respectively). 
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Figure 5.25 Cutting process stability results. 

This experimental validation shows that better process stability predictions are obtained 

using in-motion FRFs instead of idle FRFs. Although the stability prediction is clearly 

improved, modelling improvements are needed to further improve the accuracy of the 

predicted stability limit between 1250 and 1500rpm. 

5.6 CONCLUSIONS 

This chapter shows that the feed drive axis movements highly influence the structural 

dynamic compliance of large machine tools near the cutting point. The measurements 

conducted on seven machine tools demonstrate that this is a widespread phenomenon, 

and it has not received sufficient attention in earlier research. This work clearly explains 

the influence of friction and control loops on the dynamics. A two-mass model, coupled 

with the Anderson friction model and servo controller dynamics accurately predicts the 

dynamics variations measured on a laboratory setup, comprising a flexure mounted on 

a linear drive. Another important contribution of this chapter is that the effect of the control 

loops on the dynamics is seen mostly when the axis is moving. Hence, this finding will 
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help when adjusting the control loops to improve the dynamics of the structural modes 

affected by the feed drives, especially in the contexts of machining disturbance force 

response. After the theorical understanding of the influence of friction on the structural 

dynamics, a detailed analysis of a three-axis milling centre is used to demonstrate the 

main results on an industrial machine. The nonlinearities related to the excitation force 

and axis feed were analysed, and it was concluded that the axis feed has a much greater 

impact on the dynamics. Finally, it was shown that chatter stability prediction is improved 

when in-motion FRFs are considered, as demonstrated by the cutting tests. 
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Chapter 6  

 

Operational machining system 

dynamics identification by Sweep 

Milling Force Excitation 

6.1 INTRODUCTION 

As introduced in Section 2.1, the presence of regenerative chatter vibrations is a classical 

problem that limits the machine tool productivity. Chatter occurs when one or more 

vibratory modes of the machining system are self-excited during the cutting process 

(Munoa et al. [2]). Stability lobe diagrams can be used for the prediction and prevention 

of this unwanted phenomenon. To obtain these diagrams, four different inputs are 

required: tool geometry, process-related data, material cutting coefficients and dynamic 

characteristics of the machining system. However, as a result of the challenges in the 

machine tool dynamics identification (described in Section 2.2) this chapter proposes a 

combined identification of the machining system dynamics under operational conditions 

which can capture any nonlinearities that are not identified in traditional characterization 
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methods (Figure 6.1). Temporal simulations of the milling force excitation allow for 

optimization of the process parameters used for the characterization of the dynamics. To 

switch from time to frequency domain, a new signal processing methodology is applied 

using Welch’s method. Hence, high-quality FRFs are obtained. The mathematical 

derivations to compute the coherence of each identified FRF is also provided. In addition, 

the effect of a poor-conditioned set of identification cutting tests is experimentally 

identified. For the particular case of heavy-duty rough milling operations, the common 

chatter vibrations arise from the large flexible fixture holding the workpiece or from the 

machine tool structure. They are both experimentally measured with the proposed 

method in a 3-axis machining centre. The obtained machining system dynamics are 

compared to impact hammer results and validated through experimental chatter stability 

tests. 

 

Figure 6.1 Proposed methodology. 

6.2 SWEEP MILLING FORCE EXCITATION (SMFE) FOR 

MACHINING SYSTEM RECEPTANCE IDENTIFICATION 

The main objective of this work is to identify the receptance of the machining system for 

chatter stability prediction by means of cutting force sweep. In this section, the required 

mathematical and dynamic concepts are described. 

6.2.1 Milling cutting process 

In the milling cutting process, a rotating tool with one or multiple teeth 𝑍 removes material 

in the commanded feed direction. Figure 6.2-a shows a schematic face milling cutting 

operation where the spindle speed is denoted 𝑁, the feed per tooth 𝑓𝑍, the axial depth of 

cut 𝑎p, the tool radial engagement 𝑎e, and 𝜙𝑗 is the immersion angle of the tooth 𝑗. As 

shown in Figure 6.2-b, the generated cutting forces of each tooth 𝑗 are decomposed into 
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tangential (𝐹𝑡,𝑗), radial (𝐹𝑟,𝑗) and axial (𝐹𝑎,𝑗) directions, and their orientations depend on 

the lead angle of the tool 𝜅. 

 

Figure 6.2 a) Face milling cutting operation schematic; b) Cutting forces directions;  

c) Chip thickness. 

For the particular case of regular equally spaced inserted face milling operation, the 

engagement can be defined by the chip thickness ℎ(𝜙) which can be decomposed into 

dynamic and stationary components (Eq. (6.1)). The difference between the wavy 

surfaces left by the previous and successive tooth produces a dynamic variation of the 

chip thickness ℎd(𝜙). Therefore, this dynamic component is the result of the relative 

motion between tool (𝐫t) and workpiece (𝐫w) in current 𝐫(𝑡) = [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡)]T and 

previous time instant 𝐫(𝑡 − 𝜏). Where 𝜏 is the period between two successive teeth, which 

is the tooth passing period in this regular case, that is 𝜏 = 60 𝑁 · 𝑍⁄ . The vibrations are 

defined in the machine (𝑥𝑦𝑧) coordinate system, while chip thickness for a given tooth 𝑗 

is oriented along the vector 𝐮(𝜙𝑗) at the angular position 𝜙𝑗 (Eq. (6.1)) (Figure 6.2-c). 

ℎ(𝜙𝑗)  =  ℎs(𝜙𝑗) + ℎd(𝜙𝑗)  

(6.1) 

where , ℎs(𝜙)  =  𝑓𝑍 sin 𝜙 sin 𝜅  

ℎd(𝑡)  =  𝐮
T(𝜙𝑗(𝑡)) Δ𝐫(𝑡), and 

𝐮(𝜙) = [sin𝜙 sin 𝜅 cos𝜙 sin 𝜅 −cos 𝜅]T 
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The static chip thickness ℎs is a function of the feed per tooth 𝑓𝑍  as well as the lead angle 

𝜅 and the position angle 𝜙 of each 𝑗 tooth as 𝜙𝑗(𝑡) = Ω 𝑡 +
𝑗−1

𝑍
2 π, where Ω =

2π𝑁

60
. The 

relative regenerative term and the local normal vector have the form 

Δ𝐫(𝑡) = 𝐫t(𝑡) − 𝐫t(𝑡 − 𝜏) − (𝐫w(𝑡) − 𝐫w(𝑡 − 𝜏)) (6.2) 

In machining processes, it is usual to model the cutting forces as a function of the chip 

thickness and to consider proportional cutting coefficients. Eq. (6.3) defines the 

employed cutting force expression, which represents a linear force model while 

considering the edge rubbing influence (Amarego et al. [248]). The cutting force is 

decomposed as a sum of shear forces (subscript c) as a result of the material’s shear 

process, and edge forces (subscript e) to represent the friction between the tool edge 

and the workpiece surface (𝑆e). 

𝐅𝑡𝑟𝑎,𝑗(𝑡) ≔ [

𝐹𝑡,𝑗(𝑡)

𝐹𝑟,𝑗(𝑡)

𝐹𝑎,𝑗(𝑡)

] = ([

𝐾𝑡c
𝐾𝑟c
𝐾𝑎c

] ℎ (𝜙𝑗(𝑡)) + [

𝐾𝑡e
𝐾𝑟e
𝐾𝑎e

] 𝑆e)𝑔 (𝜙𝑗(𝑡)) ,   (6.3) 

where 𝑔(𝜙) is the screen function determining whether the tooth is engaged or not by 

considering the entry (𝜙en) and exit angles (𝜙ex). 

𝑔(𝜙)   = {
 1 𝜙en < 𝜙 mod 2π < 𝜙ex

 0 otherwise  
    (6.4) 

The cutting forces on the tooth 𝐅𝑡𝑟𝑎,𝑗 can be projected onto (𝑥𝑦𝑧) cartesian axes following 

Eq. (6.5). With this, by adding the contribution of all teeth Z, the total forces can be 

obtained. 

𝐅(𝑡) = ∑[

−cos𝜙𝑗(𝑡) − sin 𝜙𝑗(𝑡) sin 𝜅 − sin 𝜙𝑗(𝑡) cos 𝜅

sin𝜙𝑗(𝑡) −cos𝜙𝑗(𝑡) sin 𝜅 −cos𝜙𝑗(𝑡) cos 𝜅

0 cos 𝜅 − sin 𝜅

] 𝐅𝑡𝑟𝑎,𝑗(𝑡)

𝑍

𝑗=1

.   (6.5) 

6.2.2 Machining system receptance FRF 

The response 𝐫(𝜔) and the force excitation 𝐅(𝜔) relationship can be defined by means 

of the Frequency Response Function (FRF) 𝚽(𝜔) assuming linear or sufficiently 

perturbed nonlinear dynamics. Considering a universal milling machine and workpiece 

defined in Cartesian directions, a generalized FRF matrix can have up to nine unknowns 

at tool/workpiece single spatial point of excitation (Eq. (6.6)). For the case of the tool, 
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this frequency domain dynamics relation is represented by 𝚽tt(𝜔); while for the 

workpiece it is denoted 𝚽ww(𝜔) (Eq. (6.7)-(6.8)). 

𝑥t = Φ𝑥𝑥
tt (𝜔)𝐹𝑥

t +Φ𝑥𝑦
tt (𝜔)𝐹𝑦

t +Φ𝑥𝑧
tt (𝜔)𝐹𝑧

t

𝑦t = Φ𝑦𝑥
tt (𝜔)𝐹𝑥

t +Φ𝑦𝑦
tt (𝜔)𝐹𝑦

t +Φ𝑦𝑧
tt (𝜔)𝐹𝑧

t

𝑧t = Φ𝑧𝑥
tt (𝜔)𝐹𝑥

t +Φ𝑧𝑦
tt (𝜔)𝐹𝑦

t +Φ𝑧𝑧
tt (𝜔)𝐹𝑧

t

 (6.6) 

𝐫t: = [ 
 𝑥t 
 𝑦t 

 𝑧t
 ], 𝐅t: = [

 𝐹𝑥
t 

 𝐹𝑦
t 

 𝐹𝑧
t

 ] with 𝚽tt(𝜔): =  [

Φ𝑥𝑥
tt (𝜔) Φ𝑥𝑦

tt (𝜔) Φ𝑥𝑧
tt (𝜔) 

Φ𝑦𝑥
tt (𝜔) Φ𝑦𝑦

tt (𝜔) Φ𝑦𝑧
tt (𝜔) 

Φ𝑧𝑥
tt (𝜔) Φ𝑧𝑦

tt (𝜔) Φ𝑧𝑧
tt (𝜔) 

]  (6.7) 

𝐫w: = [ 
 𝑥w 
 𝑦w 
 𝑧w
 ], 𝐅w: = [

 𝐹𝑥
w 

 𝐹𝑦
w 

 𝐹𝑧
w

 ] with 𝚽ww(𝜔): = [

Φ𝑥𝑥
ww(𝜔) Φ𝑥𝑦

ww(𝜔) Φ𝑥𝑧
ww(𝜔) 

Φ𝑦𝑥
ww(𝜔) Φ𝑦𝑦

ww(𝜔) Φ𝑦𝑧
ww(𝜔) 

Φ𝑧𝑥
ww(𝜔) Φ𝑧𝑦

ww(𝜔) Φ𝑧𝑧
ww(𝜔) 

]  (6.8) 

Note that from the Newton’s reaction principle, the excitation forces 𝐅t and 𝐅w will be 

equal in magnitude and in opposite direction during the cutting process (𝐅t = −𝐅w). As 

described by Iglesias et al. [96], in certain machine architectures the tool and workpiece 

side dynamics can be coupled. In these cases, the cross dynamics 𝚽tw and 𝚽wt should 

be considered as presented in Eq. (6.9). 

𝐫t(𝜔) = 𝚽tt(𝜔) 𝐅t(𝜔) + 𝚽tw(𝜔) 𝐅w(𝜔) and 𝐫w(𝜔) = 𝚽ww(𝜔) 𝐅w(𝜔) + 𝚽wt(𝜔) 𝐅t(𝜔) (6.9) 

It is assumed that the cross FRFs are equal due to the reciprocity principle (𝚽tw = 𝚽wt). 

Hence, the relative displacement between the tool and the workpiece 𝐫(𝜔) is given by 

Eq. (6.10). 

𝐫(𝜔) = 𝐫t(𝜔) − 𝐫w(𝜔) with 𝐅t(𝜔) = −𝐅w(𝜔) 

(6.10) 
𝐫(𝜔) = (𝚽tt(𝜔) − 𝚽tw(𝜔))𝐅t(𝜔) + (𝚽ww(𝜔) − 𝚽wt(𝜔))𝐅t(𝜔) 

Finally, as proposed by Iglesias et al. [249], the chatter stability can be analysed 

considering the machining system resultant FRF 𝚽 (𝜔) of Eq. (6.11). 

𝚽 (𝜔)  = 𝚽tt(𝜔) +𝚽ww(𝜔) − 2𝚽tw(𝜔) (6.11) 

By performing the machining system dynamics identification through the Sweep Milling 

Force Excitation proposed in this article, the coupling effect between tool and workpiece 

sides are jointly considered because the excitation is applied to both sides 

simultaneously. Hence, 𝚽 tt
SMFE(𝜔) =  (𝚽tt(𝜔) − 𝚽tw(𝜔)) and 𝚽 ww

SMFE(𝜔) =  (𝚽ww(𝜔) −

𝚽wt(𝜔)). However, while characterizing the system with traditional methods such as 
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impact hammer testing, the coupling effect should be considered as shown in Eq. (6.11). 

In the rest of the paper, the superscript “SMFE” is omitted to simplify the notations. 

6.2.3 Sweep Milling Force Excitation 

As described above (Eq. (6.6)-(6.8)), up to nine unknowns are presented for both the 

tool and workpiece dynamics (Φ𝑥𝑥
tt …Φ𝑧𝑧

tt (𝜔) and Φ𝑥𝑥
ww…Φ𝑧𝑧

ww(𝜔)), meaning that the 

mathematical description of the characterisation methodology must provide at least nine 

independent algebraic equations in the frequency domain for solvability. Iglesias et al. 

[96] proposed the utilization of three different cutting operations such as up-, down- and 

central-milling to generate independent equations from the measurement of the triaxial 

excitation and triaxial vibration responses. For simplicity, further explanations will be 

centred for tool side identification taking the FRF 𝚽tt(𝜔) as the base for the mathematical 

derivations. 

In a regular cutting process, the spindle rotates at the commanded speed 𝑁. For the 

particular case of the Sweep Milling Force Excitation, the milling tool rotating speed is 

continuously varied in such a way that the tooth passing frequency sweeps over the 

frequency range of interest (Figure 6.3-a). In addition to this, to maintain the force level 

constant, the feedrate is also continuously modified to obtain a constant feed per tooth 

𝑓𝑍. In this regard, it is important to emphasize that in this measurement only the static 

component of the chip thickness is utilized, any transient vibration dies out and during 

the sweep measurement stable stationary cutting should be granted with a chatter free 

cutting process. Figure 6.3-b shows the evolution of the chip thickness of a single tooth 

which generates a kind of chirp excitation. Similarly, Figure 6.3-c shows the frequency 

domain response of the chip thickness for the specific time range of Detail A and B. In 

addition, the averaged frequency response of the whole chip thickness modification is 

overlayed showing that the excitation signal covers a large frequency band. 
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Figure 6.3 a) Spindle speed modification; b) Chip thickness of a single tooth through a 

simulated SMFE process; c) Chip thickness frequency domain response. 

Apart from the spindle speed frequency sweep, the following guidelines should be 

considered to realize a proper dynamics identification using this operational technique: 

Cutting zone selection: the machine dynamics variation between starting and ending 

positions should be considered. This is particularly important for ram type machines or 

robots that can have significant dynamics variations in the workspace. Moreover, the 
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chosen axis movements for the SMFE tests are important to analyse non-linearities 

related to backlash or friction effects that can be motion dependent. 

Workpiece selection: a material with good machinability is necessary to correctly 

perform the identification cutting tests as the cutting conditions should vary significantly 

to cover a large frequency range. Additionally, the size of the workpiece will be limited 

by the size of the employed dynamometric plate. 

Cutting tool selection: it is recommended the utilization of a low number of inserts for 

the identification process (𝑍 = 1 or 2) to generate powerful harmonics and increase the 

signal to noise ratio. Finally, the tool diameter should be selected accordingly with the 

size of the workpiece and cutting conditions considering the frequency sweep rate. 

6.2.4 Machining system FRF identification by SMFE 

The acquired multi-directional responses generated by the multi-directional cutting 

forces result in a multi-input and multi-output (MIMO) system. Minis et al. [91] proposed 

a strategy to relate the various spatial force inputs to a single one (e.g. 𝐹𝑥
t) creating a set 

of equations only containing a single autospectrum 𝑆𝐹𝑥,𝐹𝑥
 t  and the cross-spectra of the 

different inputs to the selected single force. The autospectrum is 𝑆𝐹𝑥,𝐹𝑥
 t (𝜔):=

𝐹𝑥
t(𝜔)̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑥

t(𝜔) with 𝐹𝑥
t(𝜔)̅̅ ̅̅ ̅̅ ̅̅  the complex conjugate of  𝐹𝑥

t(𝜔). The cross-spectra of the 

different inputs to the selected single force is 𝑆𝐾,𝐹𝑥(𝜔):= 𝐾(𝜔)̅̅ ̅̅ ̅̅ ̅ 𝐹𝑥
t(𝜔) (where 𝐾(𝜔) is the 

force or relative displacement in 𝑥, 𝑦, 𝑧 directions). The latter definition can describe 

cross-spectra of responses to the selected single input force as 𝑆𝑟,𝐹𝑥
 t  (𝑟 = 𝑥, 𝑦, 𝑧) or the 

cross-spectra between other force inputs and the selected one 𝑆𝐹,𝐹𝑥
 t  (𝐹 = 𝐹𝑦, 𝐹𝑧). These 

spectrum definitions satisfy the dynamics response related to the tool (𝑡) (Eq. (6.12)). 

Considering the excitation type, this paper proposes the application of Welch’s method 

[250] for the spectra calculations. 

𝐒𝑟,𝐹𝑥
t (𝜔) = 𝚽tt(𝜔) 𝑺𝐹,𝐹𝑥

t (𝜔) where 

(6.12) 
𝐒𝑟,𝐹𝑥
t (𝜔): = [

𝑆𝑥,𝐹𝑥
t (𝜔)

𝑆𝑦,𝐹𝑥
t (𝜔)

𝑆𝑧,𝐹𝑥
t (𝜔)

] and 𝑺𝐹,𝐹𝑥
t (𝜔): = [

𝑆𝐹𝑥,𝐹𝑥
t (𝜔)

𝑆𝐹𝑦,𝐹𝑥
t (𝜔)

𝑆𝐹𝑧,𝐹𝑥
t (𝜔)

]. 

In order to establish a well-posed mathematical system, the following equation (Eq. 

(6.13)) is obtained by augmenting the expression of Eq. (6.12) by adding the three 

different cutting strategies (down-milling (DM), up-milling (UM), and central-milling (CM)). 
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Then, the machining system direct and cross dynamics responses of 𝚽tt are computed 

frequency-by-frequency in the following manner: 

𝐒𝑟,𝐹𝑥
t (𝜔) = 𝚽tt(𝜔) 𝑺𝐹,𝐹𝑥

t (𝜔) where 

(6.13) 
𝐒𝑟,𝐹𝑥
t ≔ [𝑺𝑟,𝐹𝑥

t,DM 𝑺𝑟,𝐹𝑥
t,UM 𝑺𝑟,𝐹𝑥

t,CM] and 𝐒𝐹,𝐹𝑥
t ≔ [𝑺𝐹,𝐹𝑥

t,DM 𝑺𝐹,𝐹𝑥
t,UM 𝑺𝐹,𝐹𝑥

t,CM] with 

𝚽tt(𝜔)  = 𝐒𝑟,𝐹𝑥
t (𝜔) (𝐒𝐹,𝐹𝑥

t (𝜔))
−1

 

Figure 6.4 summarizes the new alternative approach for the identification of the machine 

tool dynamics. With respect to the current state of the art approach, the proposed one 

achieves two major improvements. On one hand, the signal to noise ratio is significantly 

improved by using the Welch’s method for the spectra computations. This is particularly 

important for the cross terms (such as Φ𝑥𝑦
tt (𝜔)), as the amplitude of these responses are 

usually lower than the direct terms. Additionally, in cases where multiple machine 

resonances are closed in frequency or even coupled, the minimization of the signal noise 

is necessary for the identification of the dynamics. On the other hand, as the quality of 

the identified dynamics are high, just a single set of characterization tests is mandatory. 

Whereas the state of the art approach, several identification cutting tests are required to 

improve the signal to noise ratio. 

 

Figure 6.4 Proposed methodology for machining system dynamics identification. 

6.2.5 Coherence and quality check 

As it can be seen in Eq. (6.13), the determination of the tool dynamics 𝚽tt is computed 

using measured cross-spectra related to the response 𝐒𝑟,𝐹𝑥
t  and the input force 𝑺𝐹,𝐹𝑥

t . 

The input force cross-spectra can be predicted preliminarily by suitable process model 

without performing the actual test. In this sense, it has a great importance to ensure that 

the inverse of 𝑺𝐹,𝐹𝑥
t  exists, frequency-by-frequency, as its determinant should be kept 

away from zero. If the inverse is considered in Singular Value Decomposition (SVD) 

manner as a function of the excitation frequency 𝜔, the excitation auto/cross-spectra 

matrix can be decomposed as: 
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𝐒𝐹,𝐹𝑥
t (𝜔): = ∑ 𝜈𝑘(𝜔)𝐮𝑘

3
𝑘=1 (𝜔)𝐯𝑘

H(𝜔) consequently 

(6.14) 
(𝐒𝐹,𝐹𝑥
t (𝜔))

−1

= ∑
1

𝜈𝑘(𝜔)
𝐯𝑘

3
𝑘=1 (𝜔)𝐮𝑘

H(𝜔), with 𝜈𝑘(𝜔) > 0 

When performing an inverse operation, the condition number of the excitation matrix can 

be introduced as 𝐶 ≔ 𝜈max/𝜈min (𝜈max and 𝜈min being respectively the largest and 

smallest singular values of 𝑺𝐹,𝐹𝑥
t ). This condition number is high if the force spectra matrix 

is numerically hard to invert. Consequently, the selected cutting operations are not 

suitable for the required dynamic characterization and the overall measurement process 

is ill-posed. The experimentally obtained condition number (𝐶exp), which depends on the 

selected cutting tests and on the machine dynamics, gives an indication on the quality of 

the identification procedure. 

The problem conditioning greatly depends on the cutting operations that are selected. 

Hence, an initial theoretical condition number (𝐶th) is used in Section 6.3 to ensure that 

the cutting tests are well selected and generate independent excitations. This theoretical 

condition number is computed from cutting force simulations that do not consider the 

machine dynamics. This preliminary analysis gives valuable information because a poor 

value of 𝐶th would result in a poor experimental condition number (𝐶exp). 

As for conventional FRF diagnostics, an in-process coherence function is introduced in 

Eq. (6.15) as proposed in [251]. 

𝛾𝑖, 𝐹𝑖
2  (𝜔) =

∑ (𝑆𝑖,𝐹𝑖
 t  (𝜔) )

𝑙
(𝑆𝑖,𝐹𝑖
 t  (𝜔))

𝑙

𝑀
𝑙=1  

∑ (𝑆𝐹𝑖𝐹𝑖
 t  (𝜔))

𝑙

(𝑆𝑖,𝑖
 t  (𝜔))

𝑙

𝑀
𝑙=1

, where 𝑖 ∈ {𝑥, 𝑦, 𝑧} (6.15) 

The coherence 𝛾𝑖, 𝐹𝑖
2  shows the correlation between the excitation and system response 

for multiple measurement passes or performing calculations on multiple periodograms 

(𝑙 = 1, 2,… ,𝑀). The coherence amplitude decreases significantly when force (input) and 

response (output) data are uncorrelated, for example due to high sensor noise or an 

insufficient forced excitation. 

Even though the presented approach is relatively simple and fast to execute, a certain 

degree of knowledge before performing the identification cutting tests is required to 

obtain a successful outcome. Next section analyses the effect of the radial engagement 

value for each cutting operation to ensure a well-posed mathematical problem using the 

described milling model. 
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6.3 PARAMETERS OPTIMIZATION FOR THE MACHINE TOOL 

DYNAMICS IDENTIFICATION PROCESS 

In this section, the process parameters are optimized to minimize the theoretical 

condition number (𝐶th). Then, the full simulation of the Sweep Milling Force Excitation 

methodology demonstrates the validity of the proposed approach. 

6.3.1 Numerical stability analysis 

At least two (2D case) or three (3D case) different cutting tests must be performed to 

solve the linear system (Eq. (6.7)&(6.8)). A low radial engagement 𝑎e is desired to have 

an interrupted cutting process with high energy harmonics to provide a strong excitation. 

The study presented in this section describes the 𝑎e cutting parameter’s effect on the 

numerical conditioning by an iterative time domain simulation (Figure 6.5). For each 

simulated 𝑎e (which varies from 0 to 100% of the tool diameter), the singular values of 

the force spectrum matrix and its condition number are computed (similar to Eq. (6.14)). 

Since the harmonics of the stationary cutting force only depends on the spindle speed, 

it is enough to determine the condition number for a single spindle speed. Moreover, it 

is important to remark that the machine dynamics are not considered at this point as the 

optimization focuses on the proper selection of the excitation signals, hence the 

theoretical condition number 𝐶th is calculated. Table 6.1 summarizes the simulation 

model parameters employed in this section. 

 

Figure 6.5 Iterative time domain simulation scheme. 
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Table 6.1: Simulation model parameters. 

Cutting tool 

Diameter, 𝐷 80 mm 

Number of teeth, 𝑍 1 

Spindle speed, 𝑁 200 rpm 

Lead angle, 𝜅  90º 

Cutting coefficients  

Specific tangential, 𝐾tc 1889  N mm2⁄  

Specific radial, 𝐾rc 806    N mm2⁄  

Specific axial, 𝐾ac 291    N mm2⁄  

Edge tangential, 𝐾te 63      N mm⁄  

Edge radial, 𝐾re 114     N mm⁄  

Edge axial, 𝐾ae -3        N mm⁄  

Figure 6.6 summarizes the obtained numerical conditioning results for different 

combinations of cutting operations. The results indicated in Figure 6.6-a-c are for the 

particular case of using the same type of cutting operation twice for the identification of 

a two-dimensional system. In the diagonal the same forces are generated; hence, the 

illustrated inverse of the condition number is minimal (which gives poorer matrix 

conditioning) as the set of equations is not independent. Similarly, this study shows that 

the experimental identification is numerically viable and could be conducted by repeating 

the same cutting operation with different radial engagements. 
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Figure 6.6 Identification cutting tests condition number by a-c) repeating; d-f) combining 

the cutting operations. 

To improve the numerical conditioning, a combination of different cutting operations is 

preferred (Figure 6.6-d-f). Even though the global optimum for the characterization is not 

located on the diagonal, it is preferable to keep the same radial engagement for both 

cutting tests to generate equivalent identification force amplitudes. Indeed, the possible 

non-linearities inherent to the machining system can perturb the measurements if the 

excitation force varies significantly. Thus, similar excitation amplitudes are 

recommended to analyse the behaviour of the identified system with respect to the 

excitation level. Therefore, in the rest of the paper, the dynamic system identification will 

be conducted with equal radial engagements in all cutting tests. 
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Considering the need to have equal engagement values an analysis is carried out to 

localize the optimal radial engagement value. Following the iterative process presented 

in Figure 6.5, Figure 6.7-a shows the condition number analysis considering up- and 

down-milling cutting operations for a 2D case with a tool lead angle of 90º. Similarly, 

Figure 6.7-b shows the result for a full 3D case where three cutting operations are 

needed with a tool lead angle of 45º to excite 𝑥, 𝑦 and 𝑧 directions. For both cases, a 

similar pattern can be seen for a single or two teeth cutter. At extremely low 𝑎e values 

(less than 5% of the tool diameter), the inverse of the condition number is low. However, 

the trend improves for the range between 5 to 30% of the tool diameter. Therefore, the 

experimental dynamic identification should be conducted within these bounds. In 

addition, a local optimum condition is presented at 12 and 16% of tool diameter 

respectively. This analysis concludes that not only low radial engagement values are 

necessary for creating powerful harmonic content but also to ensure a well-conditioned 

system that leads to appropriate results. In addition, Figure 6.7-b indicates three different 

cutting conditions (variation of 𝑍 and 𝑎e) that have been used to show the effect of the 

condition number in the identified system dynamics. 

 

Figure 6.7 Numerical stability analysis for a) 2D; b) 3D cases. 

To generalize this identification methodology and simplify its future deployment, some 

analytical expressions have been obtained. Note, that for these equations, a 

simplification has been made by not considering the edge force cutting coefficients that 

has a secondary impact. Hence, just by knowing the cutting force ratio (𝐾r = 𝐾rc 𝐾tc⁄ ) 

and the number of teeth of the selected tool, the optimal radial engagement value can 

be computed. The performed numerical simulations have been approximated by rational 

polynomials. Note that, as in the previous cases, only the 1st harmonic has been 

considered to compute the condition number associated with the excitation. 
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Figure 6.8-a shows the evolution of the optimal radial engagement with respect to the 

selected number of teeth and cutting force ratios for the case where both down- and up-

milling operations have equal radial engagements. For the recommended number of 

inserts, the maximum radial engagement is between 12% and 35% of the selected tool 

diameter depending on the cutting force ratio. Additionally, the approximated analytical 

expression for the case of two inserts in provided in Eq.(6.16). 

As previously shown in Figure 6.6, there is a global optimum location, which might not 

be located at the diagonal, where the numerical conditioning achieves its maximum 

value. Figure 6.8-b shows the evolution of this global optimum position determined by 

the different radial engagement values for up- and down-milling operations for 𝑍 = 1 and 

2. For this case, as the cutting force ratio increases, both radial engagements values 

diverge. As in previous case, Eq. (6.17) provides an approximated analytical expression 

for the two insert case. 

 

Figure 6.8 Optimal 𝑎𝑒 considering cutting force ratio and number of teeth a) diagonal 

local optima; b) global optimum case. 

(𝑎𝑒
∗UM&DM)

𝑍=2
= 
21.65𝐾r

2 − 15.75𝐾r + 3.557

𝐾r
2 − 0.5749 + 0.118

 (6.16) 

(𝑎𝑒
∗UM, 𝑎𝑒

∗DM)
𝑍=2

= (
14.24𝐾r

2 − 17.26𝐾r + 25.25

𝐾r
2 − 1.439𝐾r + 1.173

,
23.81𝐾r

2 − 30.67𝐾r + 16.58

𝐾r
2 − 1.049𝐾r + 0.7809

) (6.17) 

Finally, the optimum cutting tests are selected and the steps described in Section 6.2.4 

-0 can be followed to obtain the system receptance and its associated measurement 

quality. 
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6.3.2 Simulation of the Sweep Milling Force Excitation 

Once the optimal radial engagement has been identified, this section combines both 

Sweep Milling Frequency Excitation and a milling simulation model to virtually define the 

set of cutting conditions used for later experimental dynamic identification. In addition, to 

close the gap between simulation and real workshop environments, a statistical 

modelling of the accelerometer sensor noise has been included. Note that this sensor 

noise is acquired in machine idle conditions with no spindle rotation. 

Figure 6.9-a shows an experimental time domain data set recorded for each cartesian 

axis at the machine ram. All the random information of a variable is contained in its 

Probability Density Function (PDF), as shown in Figure 6.9-b. For this case, the PDF 

follows a Gaussian normal distribution (𝑝 = 𝒩(𝑚𝑥 , 𝑣𝑥
2)) that can be defined by the mean 

(𝑚𝑥) and variance (𝑣𝑥
2) parameters (Eq. (6.18)) for the particular case of 𝑥 direction). 

Synthetic accelerometer noise can be added on top of the ideal noise-free data from the 

simulation environment. 

𝑝(𝑥) =  
1

√2𝜋𝑣𝑥
𝑒𝑥𝑝 (−

(𝑥 − 𝑚𝑥)
2

2𝑣𝑥
2

)  (6.18) 

Similarly, machine tool dynamics need to be included in the simulation model to perform 

the identification and validation of the mathematical development described in Section 

6.2. Table 6.2 shows the defined machine dynamic parameters, in which a variety of 

natural frequencies have been selected. In addition, a very small cross projection has 

been added to challenge the identification process, as the cross terms can extensively 

modify the process stability predictions. Usually, the cross terms of the dynamics 

response have a much lower amplitude than the direct terms, meaning that the signal to 

noise ratio is lower and hence the quality of the prediction can be poorer. 
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Figure 6.9 Probability Density Function fitting of experimental accelerometer data. 

Table 6.2: Tool and machine dynamic parameters definition for the simulation model 

Cutting tool 

Diameter, 𝐷 80 mm 

Number of teeth, 𝑍 2 

Spindle speed, 𝑁 600-1500 rpm 

Lead angle, 𝜅 45º 

Dynamic Parameters 

𝑖 1 2 3 

𝑓𝑛,𝑖 (Hz) 33.4 57.4 58.6 

𝜁𝑖 (%) 6.1 8.2 2.9 

𝑘𝑖 (𝑁 𝜇𝑚⁄ ) 45.5 32.1 36.7 

Orientation (-0.05, 0.62, 0.77) (0.02, 0.99, -0.02) (0.99, 0, 0.01) 
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Figure 6.10 shows the simulated results of tool vibration for the three cutting operations 

on the left side. By applying the spindle speed variation shown in Figure 6.3-a, amplitude 

variations can be observed due to the existence of resonance excitations. Similarly, the 

forces obtained throughout the characterization process are shown on the right side of 

Figure 6.10. It can be seen how the force amplitude varies, as a result of the existing 

vibration which modifies the chip thickness. 

 

Figure 6.10 Simulated time domain acceleration and cutting forces for 𝑎𝑒 = 12 mm. 

Once the time domain data is obtained, the steps described in Section 6.2 can be 

followed for the system dynamics identification. Figure 6.11 shows two different cases 

(non-optimal and optimal 𝑎e) on top of the analytical response. It can be observed that 

for direct compliances, which have higher amplitudes, both proposed values can 

correctly identify the system dynamics. However, for the cross responses (i.e., Φ𝑥𝑧
tt ), 

where the amplitude is considerably smaller, the quality of the estimated response has 

decreased as a result of the poor conditioning (Figure 6.11-b). In fact, significant 

prediction error can be seen at one of the main modes at 58 Hz. For machines that have 
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more complex dynamics, the mere fact of having external disturbances can change the 

response significantly. 

 

Figure 6.11 Tool side identification validation. 

After the theoretical demonstration and validation of the proposed guidelines, the sweep 

milling dynamics identification method is applied to measure the dynamics of an 

industrial machine tool. 

6.4 EXPERIMENTAL IMPLEMENTATION ON A RAM-TYPE 

MILLING MACHINE 

This section shows the experimental implementation of the proposed methodology and 

analyses the differences between the classical impact hammer measurements and the 

Sweep Milling Force Excitation results. 

6.4.1 Experimental setup description and characterization 

The proposed characterization technique has been tested on a ram-type milling machine 

controlled by a Siemens 840D Powerline CNC shown in Figure 6.12-a. The workpiece 
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made of F-1140 C45E steel is attached to a Kistler dynamometric plate (9255B) which 

records the forces 𝐅(𝑡) = 𝐅t(𝑡) = −𝐅w(𝑡) during the identification process. Six single axis 

industrial accelerometers (IMI 602D01) acquire the time domain vibration response from 

the workpiece �̈�w(𝑡) and the tool �̈�t(𝑡). Since the limiting factor for roughing operations is 

related to low-frequency structural modes and that the sensor cannot be located on the 

rotating tool, the accelerometers are placed as close as possible to the cutting point on 

the spindle. With this, the obtained dynamic responses can be used for further analysis 

such as chatter stability lobes computation. 

The selected tool for the full dynamics identification process is an 80 mm diameter tool 

from Sandvik (R245-080Q27-12M) with 2 inserts (R245-12 T3 M-PM 4230) and a lead 

angle of 𝜅 = 45º. Three independent cutting operations are required to solve the nine 

FRFs as explained previously (Figure 6.12-b). To perform the experimental sweep milling 

test, the spindle speed varies from 300 to 1500 rpm in 65 s and the feedrate override is 

continuously modified during the cutting test (300 to 60 mm/min) to keep a constant feed 

per tooth (0.1 mm/𝑍). With a Siemens 840D CNC, this modification is implemented using 

the $AA_OVR synchronous action [252]. The sweep milling test has also been performed 

on a Heidenhain TNC640 CNC but a modification of the PLC by the machine tool builder 

is required. Figure 6.12-c shows 𝑥 direction force spectrogram during the central-milling 

characterization cutting test. The feed is oriented in 𝑥 direction for the identification tests 

as the machine dynamics is not affected by the 𝑥 axis position. Moreover, the chatter 

stability verifications are also performed in that direction to use the machine in the same 

operating conditions. 

 

Figure 6.12 a) Experimental setup description; b) Cutting test outline; c) 𝐹𝑥  spectrogram. 
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6.4.2 Characterized machining system dynamics analysis 

Figure 6.13 shows the obtained experimental dynamics of the machining system. To be 

used as a reference, the response measured with an impact hammer is added to the 

figure. In addition, to analyse the influence of the excitation force on the identified 

dynamics, three different depth of cuts are proposed (𝑎p = 1, 2 and 3 mm). 

Generally speaking, the overall quality of the responses are good and closely resembles 

the response obtained with the hammer, in spite of the dynamic complexity of the tested 

machine. Focusing on the tool side response (Figure 6.13-a), it can be seen that just by 

applying 1 mm of depth of cut, the principal mode around 60 Hz in Φ𝑥𝑥
tt  increases its 

damping by 26% (going from 2.3% to 2.9% of damping ratio) with respect to the hammer 

response, as indicated in Table 6.3. By increasing the characterization force by a factor 

of two and three (𝑎p = 2 and 3 mm) it can be observed that the identified damping ratios 

converge to 3.2%. This effect could be explained by the machine tool joints contact 

interaction, as once a certain force level is reached the response remains relatively 

constant. 

Analysing the workpiece side (Figure 6.13-b), and comparing it to the tool side, it has 

higher dynamic stiffness overall. Hence, the process stability limitation source comes 

from the tool side. However, checking the most flexible response (Φ𝑥𝑥
ww), a 50% damping 

decrement in the main mode around 60 Hz (decreasing the damping ratio from 5.3% to 

2.7%) can be observed with respect to the hammer response. In addition, increasing the 

excitation force does not generate a change in the identified damping ratios. 

Table 6.3: Identified damping ratios of the mode at 60Hz for 𝑥-direction using different 

approaches. 

Identification approach Tool side (%) Workpiece side (%) 

Impact hammer 2.3 5.3 

SMFE 1mm 2.9 2.7 

SMFE 2mm 3.2 2.7 

SMFE 3mm 3.2 2.7 
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Figure 6.13 Tool side and workpiece side experimental dynamic characterization result. 

Figure 6.14 shows the coherence indicator obtained for Φ𝑥𝑥
tt  and Φ𝑦𝑦

tt . As in the previous 

case, the coherence obtained through impact hammer tests is shown to be used as a 

reference. The existence of three different coherences, one for each milling operation, 

during the SMFE process shows the difficulties faced for each operation during the 
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identification process. For example, the up-milling operation achieves a good coherence 

in Φ𝑥𝑥
tt , but not as good in Φ𝑦𝑦

tt  especially at 63 Hz. For both FRFs, when there is an 

antiresonance or a zero, the coherence indicator decreases. At low frequencies, the 

measurement is valid starting from the frequency at which the excitation starts (5 Hz). 

 

Figure 6.14 Coherence sample. 

Figure 6.15-a shows the experimental influence of the condition number in the tool side 

characterization, where two identification conditions have been compared. On one hand, 

two teeth and a radial engagement of 12 mm (𝑎e local optima) is used. On the other 

hand, six teeth and an engagement of 20 mm (25% 𝑎e), where the excitation condition 

number is high (see Figure 6.7). As a result of the badly conditioned system, the identified 

responses are noisy and of poor quality. The computed coherence response for Φ𝑦𝑦
tt  is 

shown in Figure 6.15-b, where a lower coherence value is achieved especially in the low-

frequency range (20 to 50 Hz). However, focusing on the frequency of the main 

resonance, the coherence indicator shows a value close to one, but the obtained 

dynamics significantly differ from the expected ones. This experimentally shows the 

effect of a well-conditioned set of cutting tests, for that reason, the condition number 

(𝐶exp) of the inversely identified dynamics should be also checked (Figure 6.15-c). 
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Figure 6.15 Condition number influence in experimental tool side dynamics 

characterization. 

Finally, Figure 6.16 shows a comparison of the measurement quality between the current 

state of the art and the proposed approach. As commented earlier, the obtained 

improvement in the signal to noise ratio is essential to clearly identify the dynamics of 

the cross terms i.e. Φ𝑥𝑦
tt . 

 

Figure 6.16 Machine tool dynamic identification with state of the art and proposed 

approaches comparison. 
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6.4.3 Machining system dynamics validation through 

experimental chatter stability tests 

By using the direct and cross-measured FRFs, the machining system resultant 

compliance 𝚽 is computed and employed to obtain the theoretical chatter stability lobes 

following the approach proposed by Altintas et al. [11] (Eq. (6.11)). Here, the classical 

Zeroth Order Approximation stability model is used considering that the measured 

frequency responses are a secant type of linearisation around the operating condition. 

The cutting process parameters for chatter stability tests are summarized in Table 6.4. 

Table 6.4: Cutting process parameters for chatter stability tests. 

Cutting tool 

Reference WALTER F4042 B16.040.Z04.15 

Diameter, 𝐷 40 mm 

Number of teeth, 𝑍 4 

Inserts reference WKP35S ADMT160608R-F56 

Lead angle, 𝜅 90º 

Cutting conditions 

Feed per tooth, 𝑓𝑍 0.4 mm/𝑍 

Radial engagement, 𝑎e 32 mm (down-milling)  

Cutting coefficients  

Specific tangential, 𝐾tc 1885 N mm2⁄  

Specific radial, 𝐾rc 749   N mm2⁄  

Specific axial, 𝐾ac -370  N mm2⁄  

Figure 6.17-a shows the theoretical and experimental comparison of the stability lobes. 

Important differences can be observed between the predictions obtained from the impact 

hammer and the method proposed in this paper (especially the responses characterized 

with a depth of cut 𝑎p= 2 and 3 mm). The minimum stability limit increases from 1.6 to 

2.4 mm. The experimental cutting tests at 1500 rpm demonstrate that the real stability 

limit is 50% higher than what is predicted from the hammer tests (see Detail A in Figure 

6.17-b). Similarly, it is relevant to highlight the difference at higher speeds (> 1500 rpm), 

where the predictions made using the FRFs obtained with the impact hammer always 

underestimate the experimental stability limit. Detail B in Figure 6.17-b shows that the 

experimental stability is 66% higher than expected from the impact hammer test. In the 

absence of a significant change in the identified FRF frequencies, the chatter frequencies 
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can be accurately predicted with both characterization methods. However, with the 

proposed technique a slight improvement can be obtained. With these tests, the 

proposed machining system identification process is validated. 

Analysing the stability predictions obtained by the proposed operational methodology, it 

is important to notice that slight changes in the measured FRF can generate significant 

differences in the stability limit predictions. This is especially remarkable comparing the 

stability limit predicted using a depth of cut of 1 mm with 2 and 3 mm during the SMFE 

characterization. Those differences highlight the importance of taking into account the 

nonlinearities in the frequency response measurements and subsequent stability limit 

predictions. 

 

Figure 6.17 a) Experimental chatter stability results; b) Vibration spectra. 

6.5 CONCLUSIONS 

This chapter has presented a new technique for machining system dynamics 

identification under operational conditions. The three-axis process forces are acquired 
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by a dynamometric plate and the tool and workpiece responses are measured with 

accelerometers. Time domain simulations allow for optimization of the cutting 

parameters to ensure a well-conditioned set of experiments. Approximated analytical 

expressions to compute the optimal radial engagement values for a two dimensional 

problem have been provided. The proposed methodology has been validated through 

simulations and experimental tests in a ram-type milling machine. Different force 

excitation levels have been applied to analyse existing nonlinearities in both tool and 

workpiece sides. Variations in damping have been observed (+26% and -43% with 

respect to the hammer identified dynamics), while small changes have been measured 

in the natural frequency values. The condition number influence in experimental tests 

has been demonstrated. Dynamic compliances have been experimentally validated 

through chatter stability tests, where discrepancies between the experimental and 

predicted stability can be explained. 
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Chapter 7  

 

Conclusions and further work 

7.1 CONCLUSIONS 

The productivity of the milling manufacturing process is limited by the apparition of self-

excited vibrations, also known as chatter. Despite the academic effort conducted in 

recent years in understanding and modeling this effect, there are still many unknown 

factors and conditions that play a role in its onset. In applications involving large machine 

tools, the critical resonance is usually associated to the complete machine structure 

which can generate a relative motion at the machine joints. This thesis has presented a 

comprehensive study of the interaction between the feed drive elements and the 

structural behaviour of the driven machine. The four main scientific contributions are as 

follows: 

Contribution 1: the effect of the master-slave control parameters on the machine tool’s 

static and dynamic behavior is presented in Chapter 3. When applying static 

disturbances at the cutting point, the pinion flank contact transition is not fast enough to 

be neglected. Therefore, the preload level can be tuned to handle the load forces 
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generated during the cutting process ensuring a preloaded system. Additionally, the 

dynamic analysis concluded that the derived frequency based MIMO model can predict 

the experimental behaviors. By performing the model identification from the cutting point 

and the feed drive side, the interaction between the servo feedback system and the 

machine tool dynamics is described. 

Contribution 2: a new strategy for the feed drive controller tuning considering machine 

dynamics and chatter stability has been introduced in Chapter 4. The tool tip compliance 

is minimized and the vibration mode giving rise to machine structural chatter vibrations 

is damped. This results in a higher chatter stability, and therefore an increased 

productivity as demonstrated experimentally. The proposed strategy can successfully 

handle complex machine tool dynamics. A new MIMO frequency domain estimation and 

analysis method is introduced for accurately predicting the influence of the servo 

dynamics on the tool tip compliance. In addition, an efficient and accurate model 

identification method is introduced. The proposed strategy is the first of its kind which 

makes comprehensive use of the root locus method to analyse the influence of multiple 

vibration modes in machine tool feed drive controller design. The proposed approach 

has been successfully implemented on the industry standard P-PI position-velocity 

cascade control structure. In experiments, the new strategy has achieved up to 44% 

damping increase on an industrial machine tool, and 33% increase in machining 

productivity by avoiding chatter. 

Contribution 3: the influence of friction on the nonlinear tool centre point dynamics is 

described in Chapter 5. Measurements conducted in several industrial machines 

demonstrate that it is a common effect present in different machine tool configurations 

and feed drive systems. By using a two-mass model, the interaction of the structural 

dynamics, feed drive controller, friction characteristics and motion commands is clearly 

explained. Another important conclusion is that the effect of the feed drive controller can 

be mostly seen while the axis moves. A detailed analysis in a ram-type machining centre 

demonstrates the main results. The excitation force and axis feed related nonlinearities 

have been studied concluding that the latter one had greater impact on the dynamics. 

When in-motion FRFs are considered, the chatter stability predictions can be 

considerably improved compared to idle responses which faced prediction errors up to 

240% in depth of cut and 8% in frequency. 
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Contribution 4: a new technique for identifying the machining system dynamics under 

operational conditions has been proposed in Chapter 6. The cutting process forces and 

the structural response of both tool and workpiece sides are synchronously acquired. 

With this, the gap between in-process and characterization conditions is closed, 

capturing nonlinear effects that can barely be extracted with traditional methods. 

Additionally, the influence of the tool radial engagement on the conditioning of the 

excitation matrix has been studied. Simulated and experimentally observed results prove 

the importance of selecting adequate cutting parameters during the identification. In 

order to generalize the proposed approach and aid its future deployment, analytical 

expressions for a 2D system have been provided. The end result is an improvement of 

the predicted chatter stability lobes with respect to traditional impact hammer approach. 

Experimental deviations of 50% in the absolute stability limit and up to 66% in higher 

spindle speeds have been faced. 

As summarized above, this thesis has studied the influence of rack and pinion motion 

transmission, feed drive controller tuning, and guideway friction on the tool centre point 

structural compliance in large-scale machine tools. It is important to recognize that in 

addition to accounting for these factors, the source of parametric and dynamic 

uncertainty needs to be considered in a broader generalization of this work. The 

operational identification and measurement method proposed as Contribution 4 would 

be a good candidate to support future studies which aim to gauge the influence of such 

uncertainties. 

7.2 FURTHER WORK 

Based on the results and experience gained through this thesis, the following new 

research tasks are proposed below. 

Future work related to double pinion and rack feed drive system: 

• A virtual mechatronic model that combines the presented rack and pinion model 

of this thesis and the complex machine tool structure coming from Finite Element 

modeling could be created. This model could be used to optimize the drive 

selection and the machine tool design. The identification of the characteristic 

frequencies of the double pinion and rack feed drive system is an interesting 

outcome that can be used during the machine tool design stage. 



Chapter 7 – Conclusions and further work 

166 

• Implications of commanding a low electronical preload on tracking or following 

errors and its effect on the machined workpiece can be studied. More generally, 

the preload level selection and the preload controller tuning are still open 

research topics. 

• The lumped mass and stiffness approach developed in this thesis has been 

successfully applied to a double pinion and rack feed drive system, as an 

alternate method two pinions can be preloaded against one another with a spring 

and connected to a single motor, referred to as an ‘anti-backlash gear’. The 

methodology of Chapter 3 can be extended to this case as well. 

Future work related to machine tool feed drive servo commissioning: 

• The control tuning methodology introduced in Chapter 4 has been tested on a 

linear drive, where a single encoder is used by the feedback system. However, 

for ball screw and double pinion and rack feed drive systems, it is common to use 

two different encoders for closing the different loops. Hence, the equations 

developed in the thesis should be extended to include the intermediate dynamics 

between the two encoders. 

• With the identified transmission dynamics between the feedback encoder system 

and cutting point, in combination with the accurately identified velocity and 

position bode plots, tracking and contour error simulations can be conducted. 

Hence, the control tuning could consider both the chatter stability and accuracy 

requirements with a holistic machine model. 

• As machining chatter appearance can be avoided by selecting an adequate servo 

controller, it is appealing to develop an easy-to-use control tuning procedure that 

can be used by large machine tool manufacturers during the heavy-duty roughing 

operation. This procedure should combine bode plot analyses with tool tip 

dynamic compliance measurements. 

Future work related to the influence of friction on the machine tool dynamics: 

• The addition of friction characteristics to complex machine dynamics through a 

development of a virtual machine tool is proposed. With this, the fundamental 

study conducted in this thesis can be generalized to more complex machine tool 

structures. 
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• Friction and servo control loop effects could be considered with adequate 

hypotheses and simplifications to improve machine tool modelling within 

commercial Finite Element simulation software. This could be used for predicting 

the idle and invariant in-motion tool tip compliance during the design stage. 

• The utilization of the root locus technique could provide additional knowledge of 

the effect of feed motion on the structural dynamics. This technique can clarify 

both damping and frequency variations of the critical resonances. 

• It would be interesting to analyse if active damping controllers tunned in idle 

conditions would perform well for in-motion machine conditions. New tuning 

routines that consider the dynamics variations should be developed - this is 

especially important when model based controllers are employed. 

• Knowing the influence of the friction and control parameters on the tool tip 

dynamics, the machine tool design could be optimized to maximize the damping 

provided by the feed drives for the most problematic structural mode shapes. 

Moreover, the guiding system technological choices could be revised having in 

mind the detrimental influence of the friction on the idle machine dynamics. 

• Chatter stability simulations considering the nonlinear influence of friction could 

be realized. Including control and friction effects in the simulation, the stability 

limit prediction accuracy should improve. Moreover, the cutting feed direction 

could be optimized to benefit from the improved in-motion dynamics of the 

machine. 

Future work related to in-process machining system dynamic characterization: 

• The milling cutting forces can be accurately predicted by time domain 

simulations. It is proposed to replace the expensive dynamometric plate for 

measuring the experimental milling forces with synthetic simulated data. 

Following an iterative resolution, it might be possible to identify the unknown 

system dynamics. 
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