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Abstract 

Chemical processes often involve scheduled/unscheduled changes in the operating conditions that may 

lead to non-zero mean non-Gaussian (e.g., uniform, multimodal) process uncertainties and 

measurement noises. Moreover, the distribution of the variables of a system subjected to process 

constraints may not often follow Gaussian distributions. It is essential that the state estimation schemes 

can properly capture the non-Gaussianity in the system to successfully monitor and control chemical 

plants. Kalman Filter (KF) and its extension, i.e., Extended Kalman Filter (EKF), are well-known 

model-driven state estimation schemes for unconstrained applications. The present thesis initially 

performed state estimation using this approach for an unconstrained large-scale gasifier that supports 

the efficiency and accuracy offered by KF. However, the underlying assumption considered in KF/EKF 

is that all state variables, input variables, process uncertainties, and measurement noises follow 

Gaussian distributions. The existing EKF-based approaches that consider constraints on the states 

and/or non-Gaussian uncertainties and noises requires significantly larger computational costs than 

those observed in EKF applications. The current research aims to introduce an efficient EKF-based 

scheme, referred to as constrained Abridged Gaussian Sum Extended Kalman Filter (constrained AGS-

EKF), that can generalize EKF to perform state estimation for constrained nonlinear applications 

featuring non-zero mean non-Gaussian distributions. Constrained AGS-EFK uses Gaussian mixture 

models to approximate the non-Gaussian distributions of the constrained states, process uncertainties, 

and measurement noises. In the present abridged Gaussian sum framework, the main characteristics of 

the overall Gaussian mixture models are used to represent the distributions of the corresponding non-

Gaussian variable. Constrained AGS-EKF includes new modifications in both prior and posterior 

estimation steps of the standard EKF to capture the non-zero mean distribution of the process 

uncertainties and measurement noises, respectively. These modified prior and posterior steps require 

the same computational costs as in EKF. Moreover, an intermediate step is considered in the 

constrained AGS-EKF framework that explicitly applies the constraints on the priori estimation of the 

distributions of the states. The additional computational costs to perform this intermediate step is 

relatively small when compared to the conventional approaches such as Gaussian Sum Filter (GSF). 

Note that the constrained AGS-EKF performs the modified EKF (consists of modified prior, 

intermediate, and posterior estimation steps) only once and thus, avoids additional computational costs 

and biased estimations often observed in GSFs. 



 

 vii 

Moving Horizon Estimation (MHE) is an optimization-based state estimation approach that provides 

the optimal estimations of the states. Although MHE increases the required computation costs when 

compared to EKF, MHE is best known for the constrained applications as it can take into account all 

the process constraints. This PhD thesis initially provided an error analysis that shows that EKF can 

provide accurate estimates if it is constantly initialized by a constrained estimation scheme such as 

MHE (even though EKF is unconstrained state estimator). Despite the benefits provided by MHE for 

constrained applications, this framework assumes that the distributions the process uncertainties and 

measurement noises are zero-mean Gaussian, known a priori, and remain unchanged throughout the 

operation, i.e., known time-independent distributions, which may not be accurate set of assumptions 

for the real-world applications. Performing a set of MHEs (one MHE per each Gaussian component in 

the mixture model) more likely become computationally taxing and hence, is discouraged. Instead, the 

abridged Gaussian sum approach introduced in this thesis for AGS-EKF framework can be used to 

improve the MHE performance for the applications involving non-Gaussian random noises and 

uncertainties. Thus, a new extended version of MHE, i.e., referred to as Extended Moving Horizon 

Estimation (EMHE), is presented that makes use of the Gaussian mixture models to capture the known 

time-dependent non-Gaussian distributions of the process uncertainties and measurement noises use of 

the abridged Gaussian sum approach. This framework updates the Gaussian mixture models to 

represent the new characteristics of the known time-dependent distribution of noises/uncertainties upon 

scheduled changes in the process operation. These updates require a relatively small additional CPU 

time; thus making it an attractive estimation scheme for online applications in chemical engineering. 

Similar to the standard MHE and despite the accuracy and efficiency offered by the EMHE scheme, 

the application of EMHE is limited to the scenarios where the changes in the distribution of noises and 

uncertainties are known a priori. However, the knowledge of the distributions of measurement noises 

or process uncertainties may not be available a priori if any unscheduled operating changes occur 

during the plant operation. Motivated by this aspect, a novel robust version of MHE, referred to as 

Robust Moving Horizon Estimation (RMHE), is introduced that improves the robustness and accuracy 

of the estimation by modelling online the unknown distributions of the measurement noises or process 

uncertainties. The RMHE problem involves additional constraints and decision variables than the 

standard MHE and EMHE problems to provide optimal Gaussian mixture models that represent the 

unknown distributions of the random noises or uncertainties along with the optimal estimated states. 

The additional constraints in the RMHE problem does not considerably increase the required 

computational costs that that needed in the standard MHE and consequently, both the present RMHE 
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and the standard MHE require somewhat similar CPU time on average to provide the point estimates. 

The methodologies developed through this PhD thesis offers efficient MHE-based and EKF-based 

frameworks that significantly improve the performance of these state estimation schemes for practical 

chemical engineering applications.  
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Introduction 

Online measurement technologies are not often available for key state variables that are critical for 

online monitoring and control of major industrial applications. Thus, it is essential to develop state 

estimation methods to provide online estimation of the unmeasured state variables for the purpose of 

online monitoring and control. Hence, developing techniques that can improve the performance (i.e., 

accuracy and computational efficiency) of the state estimation schemes for both model-driven and data-

driven approaches is a topic of interest that is receiving increasing attention in the field of process 

control and estimation. Kalman filters and moving horizon estimation (MHE) are the cornerstones of 

model-driven estimation schemes due to their efficiency and accuracy. High performance of MHE 

requires an accurate and efficient approximation of the arrival cost (AC) parameters as well as an 

appropriate assumption of the specifications of the process uncertainties and measurement noises. 

Similarly, proper initialization of the prior distribution of the process variables (states, process 

uncertainties, measurement noises) and the evaluation of the sensitivity (Jacobian) matrix of the process 

are the key steps in the Kalman filter and the extended Kalman filter (EKF) methods. Thus, the focus 

of this thesis is to develop novel methodologies to improve the EKF and MHE performances. The 

details on these methodologies are presented below. 

Kalman Filters are standard state estimation methods for linear and nonlinear dynamic systems. 

Extended Kalman filter1,2, unscented Kalman filter (UKF)3,4,5, the sampling-based group of filters 

referred to as particle filters (PFs)6,7,8 have been widely used to deal with the nonlinearity of the systems. 

Both UKF and PFs require additional computational costs when compared to EKF, which makes EKF 

a superior estimation scheme for large-scale applications. However, EKF requires online estimation of 

the sensitivity (Jacobian) matrix of the process, which may be a complex and computationally taxing 

task for such applications. This mathematical complexity along with the observability challenges and 

plant-model mismatch commonly associated with large-scale systems limits the application of KF/EKF 

for such processes. To the author’s knowledge, studiefs exploring the performance of KF/EKF for 

industrial processes featuring more than 200 states is quite limited in the open literature. Moreover, 

Kalman filter assumes that all the state variables, input variables, process uncertainties and the 

measurement noises are normally distributed and can be described using a Gaussian probability density 

function (PDF). However, most real-world state estimation problems involve nonlinear systems with 
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inequality constraints on the states, and process uncertainties (and measurement noises) that often 

follow non-zero mean non-Gaussian distributions, i.e., multi-modal, uniform, Gamma, etc9,10,11. Current 

approaches to improve Kalman filter performance for applications considering constrained states or 

zero-mean non-Gaussian noises and uncertainties often require online solution of optimization 

problems, implementation of sampling-based approaches or implementation of multiple EKFs 

(Gaussian sum filters (GSF)), which come at the cost of a significant increase in the computational 

effort10,12,13,14,15,16,17. Moreover, to the author’s knowledge, a study that considers EKF applications 

featuring non-zero mean non-Gaussian noises and uncertainties is not available in the literature. 

Therefore, an efficient EKF-based estimation scheme is required to fill-in this gap and improve the 

estimation of EKF for general chemical engineering applications, which are often subject to constraints 

and a general class of non-Gaussian uncertainties/noises18,19,20,21,22. 

For the constrained applications, MHE is a well-known state estimation scheme that solves an 

optimization problem involving all the process constraints23,24,25,26. The MHE problem aims to seek for 

the optimal estimated states by minimizing the historical errors present in the process. These errors 

consist of process uncertainties and measurement noises over a finite horizon previous sampling 

intervals (N) in addition to arrival cost. Arrival cost is a term presents in the objective function of the 

MHE problem that summarizes the past information of the process (from the initial time until (N-1)th 

sampling interval) that are discarded from the estimation horizon. A standard state estimation method 

is required to approximate the AC parameters online in order to achieve high performance in MHE. In 

addition to the popularity of EKF as a state estimation scheme, it is also a standard approach to 

approximate the AC parameters in the MHE framework.  The accuracy and efficiency of the AC 

estimator is a key to achieve high MHE performance. Initially, the main motivation of using EKF as 

the AC estimator in the MHE framework was the estimation accuracy and efficiency offered by EKF. 

However, the Gaussian assumption in EKF cannot hold under the scenarios involving constraints in the 

process model, which raises the question on the use of EKF as the AC estimator for constrained 

applications. Previous studies showed through small-scale examples that EKF coupled with MHE 

results in an inappropriate estimation, instability, or even failure in the estimation scheme. On the other 

hand, studies have shown that the main reason of the divergence in EKF is the lack of a proper 

initialization27; in fact, EKF is expected to fail under a poor initialization in the distribution of the 

states27,28. Given that EKF as the AC estimator is initialized by the state estimates provided by MHE, 

the poor initialization would no longer be a concern. To the extent of the author’s knowledge, no 

mathematical analysis has been presented that disqualify EKF as the AC estimator for the constrained 
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nonlinear applications. Motivated by this, investigating the performance of EKF coupled with MHE 

and the impact of this estimation approach on the closed-loop system is a gap in knowledge that is 

worth exploring as EKF efficiency makes this approach favorable for the purpose of online control. 

Moreover, the MHE problem has been designed to accommodate different distributions for the process 

uncertainties, measurement noises, and state variables. For instance, previous studies have illustrated 

the ability of MHE in handling bounded Gaussian noises 29,30,31. However, the standard MHE 

formulation assumes that process uncertainties and measurement noises follow zero-mean Gaussian 

distributions32,33. In the standard MHE scheme, these distributions are known a priori and remain 

unchanged throughout the process, while chemical processes often involve distributions of the process 

uncertainties and measurement noises that may change throughout the operation due to changes in the 

operating conditions, i.e., sessional changes or switching to different product grades. Note that the non-

Gaussianity and changes in the noises/uncertainties distributions can be known a priori under the 

scheduled events, i.e., a scheduled replacement of the measurement devices. To date, the performance 

of MHE under those conditions has not been investigated. Therefore, it is critical to improve MHE 

scheme to capture both non-Gaussianity and expected (scheduled) changes in the plant that may lead 

to changes in the distributions of the process uncertainty and measurement noises. On the other hand, 

these changes in the distribution of noises/uncertainties may happen due to the unscheduled events such 

as an unexpected measurement device failure. A more realistic scenario that is likely to happen in 

practice is that the distribution of the noises/uncertainties cannot be known a priori in the estimation 

scheme. Hence, it is also essential to develop an MHE-based framework that is robust against 

unexpected noises or uncertainties (with unknown non-Gaussian distributions) that may occur due to 

unexpected changes such as sensor failures or sudden changes in the operation of the plant. 

1.1 Research objectives: 

To address the issues mentioned above, the purpose of this thesis is to provide new insights on the 

capabilities of EKF and MHE and present novel techniques and developments that can improve the 

performance of these widely used estimation techniques in Chemical Engineering. To pursue this goal, 

the current PhD study focuses on the following research objectives: 

 Investigate the benefits and limitations of KF/EKF for large-scale systems involving a large number 

of states. 

 Develop an efficient scheme to improve EKF performance for general processes featuring non-

Gaussian states (i.e., constrained states) and non-zero mean non-Gaussian noises/ uncertainties. 
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 Assess the impact of EKF as the AC estimator in the MHE framework under open-loop and closed-

loop operation. 

 Develop a new MHE formulation that takes into account known non-Gaussian distributions of the 

uncertainties and noises, which can be updated online based on scheduled changes in the 

distribution of these random variables. 

 Develop a new robust framework to improve the MHE performance under scenarios considering 

unexpected noises (e.g., due to sudden measurement device failure) or process uncertainties (e.g., 

due to unscheduled changes in the operating conditions) that follow unknown non-Gaussian 

probability density functions.  

1.2 Expected contributions 

The work conducted in this PhD thesis is expected to result in the following contributions: 

 Provide insights on the KF/EKF abilities, limitations, and challenges in the state estimation and 

sensor location for an actual entrained-flow gasification system consisting of a large number of 

states (i.e., >200 states) under practical scenarios, i.e., plant-model mismatch, load-following, 

additive uncertainties. 

 Present a new modification to the standard EKF formulation that makes EKF capable of capturing 

non-zero mean Gaussian process uncertainty and measurement noise. The key contribution is that 

the new EKF developed in this thesis would require the same computational costs as the standard 

EKF while improving the accuracy in the estimation under the conditions mentioned above.   

 Present a novel state estimation framework, referred to as constrained Abridged Gaussian Sum 

Extended Kalman Filter (constrained AGS-EKF) to generalize EKF for constrained nonlinear 

systems under general non-Gaussian noises and uncertainties. AGSF-EKF not only reduces the 

computational costs incurred when using conventional estimation methods such as GSF and PF, 

but it also avoids biased estimations that may occur in the traditional approaches.   

 Provide new insights on the capabilities of EKF as the AC estimator (when coupled with MHE and 

NMPC) through conducting an error analysis as well as performing comprehensive 

implementations.   

 Present a novel extended version of MHE, referred to as Extended Moving Horizon Estimation 

(EMHE), that relaxes the zero-mean Gaussian assumption considered for the process uncertainties 

and measurement noises in the standard MHE. The key novelty in the proposed EMHE formulation 
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is that it requires the same computational costs as the standard MHE while improving the estimation 

under the operating scenarios describe before.  

 An EMHE-based estimation scheme is introduced to update online the characteristics of the non-

Gaussian distributions of the noises/uncertainties that may change due to scheduled changes in the 

operating conditions. Gaussian mixture models are introduced to the proposed estimation scheme 

to represent an accurate approximation of the known non-Gaussian densities of these random 

variables online, which requires a relatively small additional CPU time and hence the efficiency of 

the scheme. Note that EMHE focuses on applications where the distributions of the process 

uncertainties and measurement noises are known a priori over the entire operating horizon. 

 Present a novel robust estimation scheme, referred to as Robust Moving Horizon Estimation 

(RMHE) that uses EMHE and the Gaussian mixture model to improve the robustness of the MHE 

estimation in the presence of unexpected measurement noises or process uncertainties with 

unknown densities. The RMHE problem involves additional constraints and decision variables to 

find the optimal Gaussian mixture model to describe the unknown densities of the unexpected 

noises/uncertainties. The additional computational costs in the RMHE framework (compared to 

MHE) is not significant, hence is efficient. 

In summary, the research conducted in this thesis presents new estimation technologies that can be 

implemented to consider more realistic scenarios that occur during operation in chemical plants.  

1.3 Structure of the Thesis 

This PhD thesis is organized as follows: 

Chapter 2 presents a literature review on the application of EKF for the large-scale system, current 

constrained EKFs, GSFs, MHE and the common AC estimators used in the MHE framework, MHE 

for applications featuring time-dependent non-Gaussian measurement noises/ process uncertainties, 

and robust MHE methods. The gaps in knowledge that motivate this research are explicitly discussed 

in this chapter. 

Chapter 3 presents the application of KF/EKF for an actual entrained-flow gasification system. The 

challenges, features, and limitations of this estimation scheme for large-scale systems are highlighted 

and discussed in detail. The work presented in this chapter has been published in Control Engineering 

Practice34. 

Chapter 4 introduces abridged Gaussian sum extended Kalman filter (AGS-EKF) for applications 

involving non-Gaussian process uncertainties. A new modification in the prior estimation step of EKF 
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has been presented in this chapter that is critical to capture non-zero mean non-Gaussian process 

uncertainties. The work has been published in Computers & Chemical Engineering35.  

Chapter 5 presents a novel constrained AGS-EKF that improves estimation for a general constrained 

nonlinear application featuring non-Gaussian process uncertainties and measurement noises. This 

chapter provides the new modifications considered in the posterior estimation step (to capture non-

zero mean non-Gaussian measurement noises) and the intermediate estimation step that explicitly 

takes into account the constraints on the state variables. This work has been published in Industrial & 

Engineering Chemistry Research36. 

Chapter 6 provides a new insight on EKF capabilities as an AC estimator when coupled with MHE in 

both open-loop and closed-loop. This chapter compares the performance of open-loop and closed-loop 

in the case of using different AC estimators through extensive simulations and various practical 

scenarios. An error analysis is presented to make this study more comprehensive. This work has been 

published in the Industrial & Engineering Chemistry Research37. 

Chapter 7 presents the proposed Extended MHE (EMHE) that accommodates the known non-zero 

mean non-Gaussian distributions of the process uncertainties and measurement noises to the 

estimation scheme. The derivation of EMHE as well as the recursive estimation scheme to capture the 

scheduled changes in the distribution of the measurement noises/ process uncertainties online are 

discussed in detail. The underlying assumption in EMHE is that the non-Gaussian distribution of the 

noises/uncertainties are known a priori to the estimation scheme during the plant operation, which is 

a common assumption made when implementing MHE. This work has been published in AIChE 

Journal38. 

Chapter 8 introduces the Robust MHE (RMHE) formulation along with the underlying assumptions 

in this framework. The RMHE problem focuses on the scenarios that the non-Gaussian distributions 

of the process uncertainties or measurement noises are unknown a priori due to the unscheduled 

operational changes. The additional constraints in the MHE framework to model the unknown 

distributions of noises (or uncertainties), the performance, challenges, and limitations of the proposed 

RMHE are discussed in this chapter. This work has been published in Computers & Chemical 

Engineering39. 

Chapter 9 presents the concluding remarks and contributions achieved by the studies conducted in this 

research. This chapter also provides recommendations for potential future work in this area.    
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Literature Review 

Over the past decades, several new developments have been performed to the field of state estimation 

to improve the accuracy and efficiency of these approaches for real-world applications under practical 

but challenging scenarios that occur during plant operation. Although these modifications have been 

conducted for both model-driven and data-driven estimation schemes, the main focus of this thesis is 

on the core model-driven estimation schemes, i.e., KF/EKF and MHE, and their extensions. Numerous 

efforts involving accurate mathematical developments have been presented in the literature with the 

aim of improving the efficiency, accuracy, and robustness of both EKF and MHE frameworks. Each of 

these modifications have offered different levels of improvement in the conventional estimation 

schemes for the application at hand. Nevertheless, there are still gaps that limits the online monitoring 

and control of chemical plants under certain operating conditions. This chapter presents a literature 

review and the knowledge gaps that serve the motivation for the studies performed in this thesis. This 

chapter is organized as follows: section 2.1 provides a literature review on KF and EKF. Section 2.2 

provides an overview on Gaussian Sum Filter (GSF) that is an EKF-based approach to deal with non-

Gaussianity present in the process. An overview on MHE is presented in section 2.3. A summary of 

this chapter is presented in the end. 

2.1 An Overview on Kalman Filters  

Kalman filter (KF) is a standard approach to perform state estimation for unconstrained linear 

applications (linear process and measurement models) with zero-mean Gaussian process uncertainties 

and measurement noises40,41,42. The optimal estimated states provided by KF for such processes also 

follow Gaussian distributions. KF uses the linearized version of the true process models, i.e., the state-

space model, to provide a priori estimation of the distribution of the states. The sensitivity matrices 

present in the state-space model describe the relation between states and states, states and inputs, states 

and process uncertainties, states and measurements, and measurements and measurement noises. These 

sensitivity matrices remain unchanged throughout the process. Extended Kalman filter (EKF) is widely 

used as an efficient extended version of KF to perform state estimation for cases where the process 

and/or measurement models are described by unconstrained nonlinear functions while the process 

uncertainties and measurement noises follow zero-mean Gaussian distributions. To capture the 

nonlinearity of the dynamic systems, EKF updates the sensitivity matrices of the state-space model 
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based on the posterior estimations of the states at the last time interval43,44. The formal formulation of 

the KF/EKF is presented in chapter 3 (Equations (3-4) and (3-5)). Note that these updates in EKF 

increase the required computational costs to perform the point estimates when compared to KF. 

Nevertheless, the efficiency and accuracy offered by KF and EKF approaches has motivated the 

application of these scheme to perform state estimation for the unconstrained large-scale applications. 

An overview on this topic is presented in section 2.1.1. Moreover, section 2.1.2 provides an overview 

on the benefits and limitations offered by the existing developments in EKF aimed at improving this 

estimator for applications involving constrained states and/or non-Gaussian process uncertainties and 

measurement noises. 

2.1.1 KF/EKF and large-scale applications: 

In principle, unmeasured states can be inferred from historical data and causal relations between the 

states, which can be predicted from a dynamic process model and the available process measurements. 

Thus, an accurate dynamic process model that can predict the behaviour of the actual plant, combined 

with an adequate number of hardware sensors, are essential to achieve an accurate estimation of the 

unmeasured states. Efficient frameworks that investigate the minimum number of sensors required and 

their potential locations to assess the observability of the system are available45,46. As mentioned earlier, 

KF as well as its extensions, such as EKF have become standard tools in the industry and academia to 

estimate key process states that cannot be measured online47. For instance, literature presents studies 

performing KF/EKF based state estimations for large scale systems, e.g., a version of Tennessee 

Eastman process48,49, a reactive distillation process50, a real large-scale agriculture field51, heavy oil 

hydro processing reactors52, etc. 

In the case of large and intensive systems, state estimation turns out to be quite challenging due to high 

process nonlinearities and the limited number of sensors available for process measurement. The energy 

sector is a fairly good example for such a case because processes in this sector operate at harsh 

conditions and with a very limited number of sensors. Thus, assessing the observability of intensive 

systems such as a gasifier become challenging since they often involve a significantly large variety of 

states that cannot be measured online. In addition, the application of certain estimation methods such 

as EKF require online estimation of the sensitivity (Jacobian) matrix of the process, which may be 

computationally taxing, particularly for large-scale and complex applications. Consequently, the 

application of state estimation techniques in the energy sector is quite limited, e.g.,53,52,54,55. The main 
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interest of this research is to perform state estimation for a large-scale gasifier as a part of integrated 

gasification combined cycle (IGCC) plant. Thus, an overview on this topic is presented next.  

The interest in using coal-fired power generation systems, which provide almost 40% of worldwide 

power generation, has increased significantly over the last decade56. Nowadays, due to environmental 

concerns, process intensification, computer aided materials design and optimization of energy systems 

have become topics of interest to further improve the efficiency of these systems57,58,59,60,61,62. Available 

technologies for integrated gasification combined cycle (IGCC) are classified based on the available 

gasifier configurations since this is the main unit in IGCC. Further details on IGCC can be found 

elsewhere63. Gasification is a thermochemical process that converts heavy liquid and solid fuels into 

gaseous fuels that contain useful heating value64. The operating temperature (ranging from 400 °C to 

above 2000 °C)65,66 and pressure (from atmospheric pressure up to 70 bar)67,68,69, as well as the flow 

geometry and oxidation agent, can vary in different gasification units. Entrained-flow gasifiers are the 

most common commercial gasifiers due to their short residence time (up to 5 s) and high throughput 

and conversion when compared to other available technologies70. Finely pulverized coal is injected into 

the entrained flow gasifier to ensure a high carbon conversion. An undesirable side product in the 

gasification process is ash that forms a slag layer throughout the inner wall of the gasifier. Therefore, 

it is critical to keep the operating temperature and pressure higher than they would be in ash slagging 

conditions to allow for molten ash removal from the gasifier71. The operating temperature and pressure 

are up to and over 2000 °C and 15 bar, respectively, which may vary based on the feedstock 

composition, the flow regime within the gasifier, and the extent of mixing65,70.  

Based on the above, to avoid a loss of plant efficiency due to the formation of this slag, the slag 

thickness within the gasifier can be properly controlled by introducing limestone to the gasifier and by 

accurately monitoring and controlling the peak temperature within the gasifier. Therefore, online 

monitoring of the temperature and the slag thickness inside of the gasifier is essential to keep the 

efficiency of this unit at acceptable levels, particularly under operating conditions that often occur in 

gasification, such as load-following and co-firing66. However, measuring the slag thickness in real time 

is not feasible as the slag is porous and thin and reacts with refractory72. Moreover, very few types of 

thermocouples can provide online measurements for the extreme temperatures reached during 

operation73,74. Neither the usual thermocouples nor advanced temperature measurement devices, i.e., 

laser-based temperature sensors, can provide reliable online measurements of the corresponding wall 

temperatures at the critical locations within the gasifier for extended periods of operation. Moreover, 
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most of these thermocouples are still expensive thus imposing a high tax on the budget75,76. In addition, 

several techniques such as gas chromatography are commonly used to quantify different gas 

concentrations, i.e., CO, CO2, H2, and CH4 in industrial plants; however, none of these techniques are 

able to provide measurements of the species concentration in real-time. Thus, online estimation of the 

gasifier’s temperatures, slag thicknesses and species concentrations become critical for the safe and 

successful operation of this essential process in IGCC.  

Based on above, performing state estimation plays an important role in online monitoring and control 

of IGCC process. However, the application of state estimation techniques on IGCC plants (or some 

sections of IGCC) is still an open issue. Bhattacharyya and et al.77 employed an adaptive KF method 

for state estimation of an acid gas removal unit, which is a part of an IGCC plant with CO2 capture. The 

results showed that their proposed adaptive KF method improves the accuracy of the estimation. 

Carrasco and et al.78 applied EKF-based neural network training for the char reduction zone of a solid 

fuel gasification process. EKF was used to estimate the six weights in the neural network while using 

the output of the neural network model as the measurements in EKF framework. Their study considered 

6 states variables and did not include the wall temperature or the slag thickness in the estimation 

algorithm. In addition, that study assumed that the online measurements were available for all the states. 

Huang and et al. 79 used KF to estimate the distribution of the wall temperature for an entrained-flow 

gasifier at steady state and for different extents of slag penetration. In addition, a dynamic estimation 

of the slag thickness while considering a fixed inlet gas temperature was provided in that study. The 

highest temperature reported in that work is 1400°C. In that study, a mechanistic thermal model and a 

slag penetration model were proposed and validated using experimental data. States related to the 

reaction kinetics of the gasification process were not considered in that study. To this date, the 

application of a practical conventional method such as KF and EKF for an actual pilot-scale coal-fire 

gasification unit is lacking from the literature, which is worth exploring. 

2.1.2 EKF under Non-Gaussian densities 

State estimators aim to provide adequate estimates that can be used to properly initialize a control 

system such as model predictive controller (MPC); a poor initialization of any model-based controller 

may lead to a loss performance or unstable operation37,80,81,82. Although Kalman filters are well-known 

for unconstrained applications, these methods do not take into account the process constraints. This is 

because one of the key underlying assumptions in Kalman filters is that all variables in the system (i.e., 

states, inputs, process uncertainties, measurement noises) are assumed to follow Gaussian distributions. 
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However, this assumption may not hold in the presence of constraints on the states, process 

uncertainties and measurement noise signals. Rao et al. showed that the lack of knowledge of the 

process constraints in Kalman filter leads to biased/infeasible estimates83. Motivated by the crucial role 

of process constraints and given this shortcoming in conventional state estimation frameworks, the 

optimization-based state estimation schemes such as MHE, as well as the constrained versions of 

Kalman filters and sampling-based approaches (e.g., constrained PF) have been developed to improve 

the estimation performance and consequently, the control performance83,84. MHE as an optimization-

based estimation method takes into account all the constraints in the dynamic system, which is the main 

reason of its popularity in the field of estimation84. However, this method requires a relatively high 

computational costs and CPU time when compared to EKF. In addition, MHE considers that process 

uncertainties and measurement noises follow zero-mean Gaussian distributions. A detailed discussion 

on MHE is presented in section 2.3. A large number of studies have been conducted to develop Kalman 

filter-based approaches to improve the performance of this filter for real-world applications featuring 

constrained states and non-Gaussian noises/uncertainties. These modifications include a constrained 

version of well-known Kalman filters, i.e., constrained EKF14,85, constrained UKF86,87and constrained 

PF13,37,88 that have been proposed in the literature to overcome the nonlinearity caused by the bounded 

states and other process feasibility constraints in the system. In general, EKFs are the most 

computational efficient methods among the aforementioned filters. However, most of the existing 

constrained-EKF approaches often require to solve an additional/internal optimization problem to meet 

the constraints and bounds on the state variables14. This increases both the complexity and 

computational costs of the filters, which may limit the application of these approaches for large-scale 

constrained nonlinear chemical systems. Prakash et al. proposed an optimization-free constrained EKF 

framework that considers a truncated distribution of the state to explicitly take into account the 

constraints on the prior and posterior distributions of the estimated states89. The existing constrained-

EKFs and constrained-UKFs assume that the process uncertainty and measurement noise follow zero-

mean Gaussian distributions14,89,90; whereas, PFs have shown better performance for the case of non-

Gaussian distributed noises and uncertainties, with the main drawback of large computational 

demands91,92. 

In most of the engineering and science applications, dynamic processes are nonlinear, while the process 

uncertainties and measurement noise signals are represented by bounded Gaussian distributions or 

assumed to follow a non-Gaussian distribution, e.g., multi-modal, Gamma, etc. Several studies have 

proposed recursive algorithms to overcome the challenges of estimation for such systems10,12,15. Those 
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studies provided an appropriate estimation of the states when tested for engineering applications 

involving a very limited number of states, inputs and measurements. However, those algorithms involve 

second-order gradient information (second-order Taylor series expansion)10,12 and solving convex 

optimization problems10. Thus, the required computational costs to deal with the convex optimization 

problem as well as difficulties to evaluate the second-order information for large-scale systems may 

make these algorithms computationally intractable for practical processes.  

Previous studies have considered non-Gaussian distributions for the process uncertainties and 

measurement noises16,17. However, the Gaussian mixture models in their approach consist of zero-mean 

Gaussian distributions, which may not always be an adequate assumption, e.g., when the non-

Gaussianity is described by multi-modal, non-symmetric bounded Gaussian, uniform distributions. If 

the process uncertainty/measurement noise present in a process follows a non-zero mean distribution, 

the estimation scheme would require a modification to adopt non-zero mean process 

uncertainties/measurement noises to keep consistency with the process model and be able to provide 

accurate estimations. To the author’s knowledge, such modifications are absent from the literature.  

In addition to the existing developments on EKF discussed above, Gaussian sum filter (GSF) is an 

EKF-based framework introduced in the literature that aims to capture the non-Gaussianity in the 

process variables. As this approach shares some features that are relevant to the novel methodologies 

presented in this thesis, an overview on the features and limitations of this estimation scheme is 

presented next. 

2.2 An Overview on Gaussian Sum Filter (GSF) and Non-Gaussian Applications 

Gaussian sum filters (GSF) have been introduced by Sorenson et al.93 as a state estimation approach 

that withdraws the Gaussian assumption for the distributions of states, measurement noises, and process 

uncertainties. The main idea in GSF is that any non-Gaussian distribution can be approximated to a 

Gaussian mixture model, which consists of a proper finite number of Gaussian distributions, also 

referred to as Gaussian components93. Therefore, GSF performs a set of EKFs to provide the point 

estimates, i.e., one EKF to project ahead (in time) each of the Gaussian components in the Gaussian 

mixture model of the original non-Gaussian distribution94. In principle, GSF can be applied for a wide 

range of practical applications, regardless of the level of nonlinearity/non-Gaussianity of the probability 

density functions that describe the states, measurements, process uncertainties and measurement 

noises93. In practice, GSF and its extensions (i.e., Gaussian sum unscented Kalman filter (GS-UKF) 

and Gaussian sum particle filter (GS-PF)) have been proposed only for constrained linear/nonlinear 
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systems involving a relatively small number of state variables where the constraints on the states were 

not active17,95,96,97. Moreover, the application of GSF in the field of chemical engineering is quite 

limited. To the author’s knowledge, only two studies have considered performing state estimation using 

the Gaussian sum-based filters for chemical processes97,98. In those studies, the process uncertainties 

and the measurement noise signals are assumed to follow a Gaussian distribution. In general, the 

performance of GSFs for applications featuring non-zero mean non-Gaussian process uncertainties and 

measurement noises has not been reported by the literature. This limitation is more likely due to a few 

drawbacks associated with this method; for instance, 

I. The number of required EKFs in the set of GSF increases exponentially as the number of variables 

with non-Gaussian distributions increases99, which impacts the computational costs associated with 

this method.  

II. Performing individual EKFs based on solely one Gaussian component may result in biased 

estimations and/or divergence of EKF35. For instance, it can drive the system to its feasibility limits 

and eventually lead to instability or failure in the estimation scheme35. 

III. Previous studies have shown that the Gaussian components in the Gaussian mixture models may 

exhibit large covariance matrices, which lead to an inaccurate estimation in EKFs (UKFs/PFs) in 

the set of GSF (GS-UKF/GS-PF)100,101,102. 

To circumvent the limitation highlighted in item (III) above, Psiaki103 considered an upper limit for the 

covariance of the Gaussian components. This upper limit is user-defined, which can make its 

application challenging in practice. Their proposed approach also considers a re-approximation of the 

Gaussian mixture model in the case that the covariance of the Gaussian components violate their 

corresponding upper bounds103. As a result, that approach improves the GSF performance by 

eliminating the limitation outlined in item III. However, the limitations described in items (I) and (II) 

above remained unsolved. Moreover, in that framework, the constraints on the states were not involved 

in the re-approximation of the Gaussian mixture models103. 

Regarding the limitations indicated in items (I) and (II) above, no practical solution has been presented 

in the literature to address these issues for a general application involving constraints on the states of 

non-zero mean non-Gaussian measurement noises. Bhushan et al.97 presented a GSF-based approach 

(Unscented Gaussian sum filter (UGSF)) for constrained systems that requires the same computational 

costs as that needed by UKF, which is yet significantly higher than that required in EKF. Although 

UGSF was presented as a general method to deal with the constrained state estimation, their case studies 
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were tested under scenarios where the process was operating far from the feasibility limits, i.e., states 

were not close to their bounds. Moreover, one of the underlying assumptions in UFSG is that the noises 

and uncertainties follow a Gaussian distribution97. Therefore, there is a great incentive to develop tools 

that can address these aspects in EKF/KF estimation. 

2.3 An Overview on Moving Horizon Estimation 

Online optimization is becoming a standard tool for solving control and estimation problems due to the 

computational power that is becoming available for industrial applications. Contrary to standard EKF, 

optimization-based state estimation techniques are capable of solving complex constrained problems 

online. The full information estimator is an optimization-based state estimation framework that can 

takes into account the process constraints104,105. The full information estimator solves an optimization 

problem subject to equality and inequality process constraints and considering all past measurements 

from the initial time up to the current time step at each time interval. The goal of this optimization 

problem is to find the optimal estimated states so that it minimizes the errors in the process and 

measurement models. The successful solution to a full information estimator optimization problem is 

able to satisfy all the constraints and bounds on the estimated states and disturbances, which 

distinguishes full information estimators from conventional Kalman filters. However, since this method 

solves the problem over a growing time horizon, it is in general a computationally intractable approach 

to consider106. To overcome this obstacle, moving horizon estimation (MHE) has been proposed as an 

alternative algorithm to the full information problem for online applications107.  

MHE can be formulated as a constrained nonlinear optimization problem that contrary to the full 

information, takes into account a fixed-length horizon of 𝑁 past measurements and dynamic system 

updates. All the discarded previous measurements which are not included in the current horizon are 

summarized in a term referred to as the arrival cost (AC), which appears as a penalty term in the 

objective function. The moving horizon slides with time while partially accounting for the AC term28. 

Figure 2-1 shows the difference between the full information problem and MHE. Note that the formal 

optimization formulation of the MHE is presented in chapter 6 (Equation (6-1)). MHE aims to address 

the main limitation of the full information estimator, i.e. computational costs; hence, this method has 

received attention in recent years108,109,110,111,112,113,114,115.  
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Figure 2-1: Full information (red windows) problem vs MHE (blue windows) 

There are many factors that need to be considered when choosing the length of horizon (𝑁), e.g., 

computational budget, system observability and model accuracy. Higher estimation accuracy may be 

obtained by either long horizon lengths or determining accurate AC approximations108,116. An MHE 

with a long horizon length approximates to the full information estimation problem, and therefore can 

easily become computationally intractable, particularly for large-scale online applications. Therefore, 

one of the open issues in applying MHE method is how to estimate the AC to summarize 

comprehensively and accurately all the past information of the system.  

In addition to the importance of AC in the MHE performance, it is essential to provide proper models 

to the MHE formulation to accurately describe the distribution of the measurement noises and process 

uncertainties. Similar to EKF, both full information estimator and MHE consider that process 

uncertainties and measurement noises follow zero-mean Gaussian distributions, which may not be 

always a valid assumption. This thesis is focused on the techniques that can improve the MHE 

performance under cases involving non-Gaussian noises and uncertainties. 

Based on above, an inappropriate initialization of the three terms in the objective function of the MHE 

problem, i.e., AC, summation of the measurement noises, and summation of the process uncertainties, 

may result in biased state estimation. Thus, an overview on the impact of AC in the MHE performance 

is presented next. The gaps that motivated the research performed in this thesis (presented in chapter 

6) is outlined in section 2.3.1. Later, a literature review concerning the performance of MHE-based 

schemes while taking into account the non-Gaussianity in the distribution of noises and uncertainties is 

presented in section 2.3.2. 
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2.3.1 Arrival Cost Estimator in the Moving Horizon Estimation coupled with Nonlinear 

Model Predictive Control 

MHE is a well-known optimization-based estimation for the constrained application, as discussed 

above. The stability of MHE, the required CPU time, and the accuracy of its solution is highly 

dependent on the AC since it is needed to identify the initial states of the plant in the moving horizon 

framework. Explicit AC expressions can only be specified for unconstrained linear systems; thus, for 

most of the constrained nonlinear dynamic systems, it is essential to find ways to approximate the 

AC117. A poor approximation of the AC leads to the necessity of choosing a long estimation horizon to 

reduce the impact of AC on the MHE framework at the expense of additional computational costs108. 

However, the computational cost of full-information optimization problems becomes significant due to 

the increase in the estimation horizon and can limit the application of MHE as an online estimator for 

highly nonlinear large-scale systems118. This is particularly critical for MHE applications in closed-

loop control systems. Hence, the AC approximation has a critical role to reduce the computational costs 

in the MHE estimation and thus improve the performance of advanced process control systems such as 

nonlinear model predictive control (NMPC) 119. Note that NMPC as an optimization problem relies on 

the initialization provided by MHE. A proper initialization of the NMPC optimization problem is key 

to maintain closed-loop operation on target120. In addition to the requirement of the approximation of 

AC for the purpose of initializing the MHE, and consequently the NMPC problem, an AC estimator 

requires to receive a prior estimation of the states as well as the current control actions computed by 

the NMPC, respectively. That is, there exists an interaction between MHE and AC as well as NMPC 

and AC. Thus, the effect of AC approximation on the MHE performance, and therefore on the NMPC 

performance, becomes a topic of interest that has not been widely investigated in the literature.  

Efforts to improve AC approximations can be found in the literature. The most common approaches 

for approximating the AC are KF and EKF30. For instance, Rao et al. employed KF and Kalman 

Smoother methods to update the covariance matrix in the AC for a linear system that follows a Gaussian 

distribution121. As for unconstrained nonlinear systems, MHE may provide stable state estimates that 

are closer to the true states when EKF is used as the AC estimation method106. According to the 

literature, the stability conditions can be derived when an unconstrained nonlinear MHE framework is 

considered106,122. Since the errors in the AC approximation are propagated throughout the estimation 

horizon, EKF may exhibit instability. Moreover, the main assumption of EKF is that the conditional 

probability density of the states is normally distributed. Although process uncertainties and states of 
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the system may follow a normal distribution, the prior and posterior distributions may not be Gaussian 

in the presence of bounds on the states or other process variables (e.g., saturation limits in the 

manipulated variables). Furthermore, if a normally distributed random variable propagates through a 

nonlinear model, its distribution may not necessarily remain Gaussian88. On the other hand, according 

to the previous studies, EKF divergence is mainly due to the poor initialization in the distribution of 

the states27,28. Moreover, previous studies have shown that Kalman filter framework is an adequate 

estimation scheme for large-scale applications if proper initial guesses of states and a reliable 

mechanistic model are available34,123.Qu and Hahn117 employed the UKF method to update only the 

covariance matrix in the AC estimation. Although the performance of MHE improves slightly, the issue 

of inconsistency between the unconstrained UKF to provide the AC estimation for constrained MHE 

still remains an open issue. To circumvent this problem, the use of a constrained version of UKF, PF 

and cell filtering (CF) estimators has been proposed124. However, constrained UKF often results in 

suboptimal solutions at best. On the other hand, PF has been identified as a standard nonlinear state 

estimation method that can explicitly handle constrained state estimation problems (non-Gaussian state-

space models) and makes PF more attractive and practical than EKF for industrial applications125. Lang 

et al.126 developed a constrained PF (C-PF) that truncates or adjusts the suitable constrained distribution 

(prior or likelihood) to satisfy the process constraints, thus ensuring that the posterior distribution also 

satisfies constraints. However, that study did not solve the challenges of choosing the importance 

function in C-PF127. On the other hand, reports involving small-scale case studies revealed that among 

all the methods used in that study, CF is the most adequate choice for estimating the AC. However, the 

high computational cost associated with CF limits its application for industrial and/or complex 

systems124. Despite the limitations mentioned above, C-PF, and in particular EKF, remain as the most 

widely used filters to deal with nonlinear constrained state estimation problems. 

In the literature, only very few studies have assessed the impact of AC in the MHE framework88,124. For 

instance, López-Negrete et al.88 analyzed the benefits of using different sampling-based methods to 

estimate the AC parameters. Since particles are being propagated through the nonlinear system, the 

normally distributed assumption of the state estimation error in the EKF estimator can be dropped, as 

well as the difficulty associated with the calculation of the Jacobian matrix at each time interval. Those 

studies have only considered relatively simple case studies, e.g., an isothermal batch reactor (i.e., 

includes two states and one measurement), a non-isothermal Continuously Stirred Tank Reactor 

(CSTR) (i.e., involves three states and one measurement)88 and a synthetic univariate time-varying 
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nonlinear system (i.e., involves one state with a single measurement)124. In addition, studies addressing 

the effect of using different AC estimation methods for chemical systems under conditions that may 

rise during operation has not been reported, e.g., bounds on the process uncertainty. Moreover, studies 

assessing the impact of AC on the quality of the performance in closed-loop using advanced controllers 

such as NMPC are not available.  

2.3.2 Moving Horizon Estimation under Non-Gaussian Noises and Uncertainties 

As mentioned above, chemical plants often involve process uncertainties and measurement noises that 

follow non-zero mean non-Gaussian distributions. The studies on the MHE performance under the non-

Gaussian noises/uncertainties can be categorized into two major types, i.e., non-Gaussian 

noises/uncertainties with Type I-known priori distributions and with Type II- unknown distributions. A 

literature review for each type is presented next. 

2.3.2.1 Type I: MHE under noise/uncertainty with known non-Gaussian distribution 

Contrary to the underlying assumption in the standard MHE formulation32,33, random measurement 

noises and process uncertainties associated with the chemical processes often follow non-zero mean 

non-Gaussian distributions9,10,11. This inconsistency between the MHE framework and the actual 

process operating conditions may lead to an inaccurate estimation. Note that if the non-Gaussianity in 

the distribution of the noises is only due to bounds on the noises, i.e., noises follow truncated zero-

mean Gaussian distribution, standard MHE can accurately estimate the states because the Gaussian 

distribution assumption holds with meaningful statistics and therefore, the MHE formulation would 

take into account the bounds on the noises as constraints128,29,30,31,37,129. However, if the process 

uncertainties and measurement noises belong to a non-Gaussian density, i.e., uniform, multi-modal, 

etc., the Gaussian distribution assumption in the standard MHE framework is no longer valid. 

Therefore, a modification in the MHE framework is needed to overcome the challenges caused by 

presence of such random variables in the system. Studies investigating the effect of non-Gaussian 

process uncertainties and measurement noises (i.e., multi-modal, uniform, Gama, etc. distribution) on 

the MHE performance are scarce130,131. Bae and et al. showed that for humanoid state estimation 

involving non-Gaussian noises, standard MHE provides more accurate estimates than KF130. Yin and 

et al. presented a l-2 regularized MHE that involves an additional weighted l2-norm term to improve 

the estimation accuracy against outlier measurement noises131. That study showed a reduction in the 
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estimation error using their proposed MHE when compared to KF for an application involving non-

Gaussian noises, because of the robustness offered by the additional term. Nevertheless, their approach 

did not take into account the non-Gaussianity of the noises131.  

Moreover, the distribution of the process uncertainties and measurement noises may change over time 

from a known arbitrary distribution to another distribution, i.e., from a zero-mean Gaussian distribution 

to a non-zero mean non-Gaussian distribution. This may happen due to the scheduled changes in the 

operational conditions and set-points. Therefore, it is essential to make the MHE framework flexible to 

adjust the state estimation accordingly to the current distribution (i.e., the shape and the modelling 

characteristics of the distribution) of the random variables present in the process. Although the state-

space model used in the standard MHE and other state estimation algorithms considers process 

uncertainties and measurement noises that randomly changes at each sampling time, these random 

variables are assumed to belong to known distributions that remain unchanged throughout the process. 

For the remainder of this work, the distribution that remains unchanged during operation is referred to 

as time-independent distribution; likewise, the distribution that changes due to changes in the operation 

is referred to as time-dependent distribution. Studies in state estimation that consider scenarios with 

time-dependent distribution for the process uncertainty and measurement noise are limited21. Xu and et 

al. proposed a Fixed-point Iteration Gaussian Sum Filter to improve the estimation for the case of time-

dependent non-zero mean non-Gaussian distribution of measurement noise21. The performance of their 

approach has not been investigated for cases involving process uncertainties with time-dependent non-

Gaussian distributions. Moreover, similar to conventional Gaussian sum filter-based approaches, the 

approach proposed by Xu requires to perform several parallel filters21, i.e., one for each of the Gaussian 

component in the Gaussian mixture, which increase the computational load exponentially depending 

on the level of non-Gaussianity of the system. To the author’s knowledge, no study has considered 

online adaptation on the distribution of the process uncertainty (and measurement noise) within the 

context of the MHE framework. Also, MHE-based estimation schemes that explicitly take into account 

the non-Gaussian process uncertainties and measurement noises have not been reported in the literature. 

In general, non-Gaussian probability density functions can be approximated to a Gaussian mixture 

model, i.e., a summation of multiple Gaussian distributions. Thus, in theory, a similar procedure as in 

GSF may help to improve the MHE performance under non-Gaussian noises and uncertainties. While 

performing Gaussian sum to the MHE framework can improve the estimation accuracy for the 

applications involving the non-Gaussian distributed variables, this combination can become 
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computationally demanding. That is, performing a set of MHEs to evaluate the point estimates means 

solving a set of optimization problems thus making this approach computationally taxing for the 

purpose of online estimation and control. To the author’s knowledge, no study has considered the 

application of Gaussian sum (or Gaussian mixture models) in the context of the MHE framework.  

2.3.2.2 Type II: Robust MHE under unexpected noise/uncertainty with unknown distribution 

One of the underlying assumptions in the standard Moving Horizon Estimation (MHE) framework is 

that the process uncertainties and measurement noises can be described by zero-mean Gaussian 

distributions where the covariance matrix of their corresponding distributions are known a priori 3233. 

However, the process uncertainties’ densities may not follow their ordinary distribution during 

operation 1819; for instance, a sudden extreme weather condition may impose unexpected random 

process uncertainties and start to follow a non-Gaussian distribution (e.g., bimodal distribution). 

Likewise, the unexpected measurement noises caused by occasional failures of the measurement 

devices may lead to gross measurement noises, i.e., data outliers, drifting data, etc. 202122. The 

distribution of the corresponding process uncertainty (or measurement noise) may become non-

Gaussian upon these expected random variables interfere the operation, up until the effect of these 

operational changes vanishes. These aspects often arising in chemical plant operations motivate the 

need to develop robust MHE schemes. 

The conventional robust MHE schemes presented in literature have focused on replacing the ℓ2-norm 

function by either the Fair, Lorentzian, Logistic, Huber, and Welsch functions132,133,134,135,136 to increase 

the robustness of the state estimation against gross measurement noises137,138. Despite these changes in 

the MHE framework, the performance of those schemes for applications involving unexpected process 

uncertainties have not been investigated. Another MHE-based robust scheme has been presented in115 

that can handle outliers in the measurement noise for linear applications. That robust MHE framework 

performs a set of optimization problems based on a set of least-squares cost functions115. Each cost 

function considers that one of the measurements present in the horizon is contaminated by an outlier 

and needs to be left out from the state estimation115. The lowest cost function is retained to provide the 

point estimate and to propagate to the next time interval115. That approach requires a significant amount 

of computational effort to determine the point estimates when compared to the standard MHE, which 

may limit its application for nonlinear industrial-scale applications. Ji and et al.113 developed an MHE-

based framework that involves an additional max term to the standard MHE objective function to 

improve the robustness in the estimation. That work assumed that the process uncertainties and 
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measurement noises are bounded113. Moreover, robust MHE frameworks have been presented in30,139 

that involve an auxiliary nonlinear observer combined with the standard MHE framework (under the 

assumption of bounded process uncertainty). The deterministic observer is used to provide a confidence 

region and the reference estimates that limit the robust MHE to find optimal estimations within these 

confidence regions for nonlinear applications involving bounded uncertainties and noises30,139,140. Each 

of these robust MHE approaches have shown different level of success in improving the MHE 

performance. Nevertheless, the bounded distribution assumption on the random variables may not 

necessarily hold for real-world applications. In addition, the current robust MHE schemes share the 

same assumption that the distribution of the process uncertainties and measurement noises are known 

a priori, i.e., Gaussian zero-mean distribution with a known covariance matrix30,137,138,115,113,139. Hence, 

frameworks involving non-Gaussian noises or uncertainties with unknown densities are of practical 

interest in the context of state estimation. Gaussian mixture models are well-known for their ability to 

approximate arbitrary non-Gaussian distributions. Despite this attractive feature, the application of 

Gaussian mixture models to improve the accuracy and robustness in MHE estimation has not been 

investigated to the author’s knowledge. 

2.4 Summary 

In summary, this chapter presented a review on KF, EKF, and MHE, which are the core state estimation 

schemes for the research performed in this PhD thesis. Moreover, an overview on GSF was presented 

to provide an insight on this method. As discussed in this chapter, KF/EKF are efficient approaches to 

perform state estimation for unconstrained large-scale systems. Due to the observability and stability 

challenges associated with the energy sector, the performance of these state estimation schemes for 

unconstrained large-scale applications such as entrained-flow gasifier has not been evaluated to date. 

As for the applications featuring constrained states, non-Gaussian process uncertainties, and non-

Gaussian noises, an efficient (optimization-free and sampling-free) EKF-based framework that can 

provide appropriate estimations of the states is still an open issue in the field of state estimation. 

Based on the review conducted on MHE, the key to success when performing state estimation using 

this method is to provide accurate approximations of the arrival cost (AC), process uncertainties, and 

measurement noises. Based on the multiple contradicting studies presented in the literature on the 

reason as to why EKF tend to fail under certain scenarios (e.g., process constraints). An error analysis 

on the EKF performance under different estimation frameworks can provide new insights on the 

capabilities of  EKF as a single state estimator or when it is combined with a constrained estimation 
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scheme such as MHE. With regards to the role of process uncertainties and measurement noises in the 

MHE problem, the literature review revealed that this is a fairly new area in the context of MHE that is 

worth exploring. To the best of author’s knowledge, a development on MHE that makes this scheme 

suitable for the applications featuring non-Gaussian or/and unknown or/and time-dependent 

distributions of the process uncertainties or measurement noises are absent in the literature.   
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State estimation and sensor location for Entrained-Flow 

Gasification Systems using Kalman Filter 

Performing KF/EKF for large-scale systems poses challenges such as observability and computational 

complexities in the evaluation of the Jacobian matrix. Consequently, exploring the performance of this 

estimation scheme under practical scenarios occurring in large-scale power plants such as IGCC 

systems is a knowledge gap in the literature. This chapter presents the application of a practical method 

such as KF and EKF for an actual pilot-scale coal-fire gasification unit. The gasifier model employed 

in this study is a dynamic reduced-order model (ROM) of an actual pilot-scale entrained-flow gasifier 

unit, which includes 479 states describing the reaction kinetics and the mass, heat and momentum 

transport phenomena taking place inside this unit. To the author’s knowledge, the estimation of such a 

large-scale intensive system in the energy sector that involves that many states across a gasifier has not 

been attempted before, hence the novelty of this research. The estimation has been performed under 

different scenarios involving a different arrangement of the sensors available for online estimation of 

the states. In addition, the estimation for the pilot-scale gasification unit was also tested in the presence 

of additive uncertainty in the prior estimation, plant-model mismatch, and load-following, the latter 

being a typical operation often performed in IGCC gasification units. 

This chapter is organized as follows: the next section elaborates on the gasifier unit and the model used 

in this study to simulate the transient operation of this unit. Section 3.2 provides an overview of the 

Kalman filter estimation. Section 3.3 presents the results, detailed discussions, and underlying 

assumptions for each of the scenarios considered in this study. A summary of this chapter is presented 

in section 3.4. 

3.1 Entrained-flow Slagging Gasifier 

The gasification unit is responsible for the transformation of the solid fuels into the so-called syngas 

gaseous fuel. As shown in Figure 3-1(a), solid fuel, oxygen, and steam enter into the gasifier. At the 

top of the gasifier, the fuel, steam and oxygen mix with each other, which leads to vaporization of the 

moisture content (H2O) and devolatilization of the volatile components within the solid fuel (e.g., 

hydrogen H2, tar, methane CH4, ethane C2H6, etc.). This process is called drying and pyrolysis (see 

Figure 3-1(b)). The solid residue remaining after this process is known as char, which contains carbon 

and ash. The major part of the ash content of the fuel melts and makes a liquid slag layer on the gasifier’s 
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refractory, which needs to be removed from the gasifier to avoid losing efficiency in the unit. The char 

and the combustible species within the volatile product react with oxygen. Figure 3-1(b) presents the 

homogeneous reactions within the unit (see Volatile and Combustion reaction section in Figure 3-1(b)). 

This set of reactions aim to provide the required energy for the four heterogeneous char gasification 

reactions to produce the syngas as well as the heat needed for the drying and pyrolysis. Moreover, two 

sulfur (homogeneous) reactions convert the sulfur content of the fuel into hydrogen sulfide (H2S). The 

product species of all the reactions are listed in Figure 3-1(b), including syngas (i.e., combination of 

CO and H2), which represents the main product used for power production. As shown in Figure 3-1(a), 

the syngas together with the remaining ash and molten slag represent the main outlet products obtained 

from this unit141. Table 3-1 presents the fuel composition and the nominal flowrate of these inlet streams 

as well as some of the main design parameters of the pilot-scale gasifier considered in this study. 

 

(a) 
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Figure 3-1: (a) Entrained-flow gasifier142; (b) reaction system of gasification process141 

      

Table 3-1: Operating conditions and design 

specifications for the pilot-scale gasifier72,142 

Parameter Value 

Inner diameter 0.21 m 

Length 2.20 m 

Operating pressure 15 bar 

Inlet H2 mole fraction 0.1883 

Inlet O2 mole fraction 0.4156 

Inlet CH4 mole fraction 0.0040 

Inlet CO mole fraction 0.0085 

Inlet H2O mole fraction 0.2166 

Inlet C2H6 mole fraction 0.0024 

Inlet CO2 mole fraction 0.0002 

Inlet Tar mole fraction 0.0029 

Inlet SO2 mole fraction 0 

Inlet COS mole fraction 0 

Inlet H2S mole fraction 0.0061 

Inlet N2 mole fraction 0.1545 

Inlet temperature of entering gas 461.904 K 

Inlet char flowrate 0.7839 mol/s 

Inlet particle temperature 390 K 

Inlet slag thickness 1e-05 m 

Nominal fuel flowrate into gasifier 41.2 kg/h 

Nominal oxygen flowrate 37.2 kg/h 

Nominal steam flowrate 10.7 kg/h 

 

(b) 
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The models currently available to represent the dynamic behaviour of compact entrained-flow 

gasification units are limited due to their complexity66. Although computational fluid dynamics (CFD) 

can be used to simulate the steady-state behaviour of the multi-phase transport phenomena of the 

gasification process as well as its reactions, this modelling approach would not be computationally 

efficient for the purpose of modelling the transient operation of the process143. Recently, multiple 

studies have revealed that a suitable and computationally attractive dynamic model for the gasification 

process can be obtained using one-dimensional reduced-order models (ROMs)144,145,146,147,148. In 

previous studies, Sahraei et al.72,142 developed a dynamic ROM for the pilot-scale unit considered in the 

present study in this chapter. That model was validated using both CFD simulation data and transient 

experimental data. Hence, the present study used that dynamic ROM as an adequate representation of 

the operation of the pilot-scale gasification unit. 

The dynamic ROM used in this work was designed based on the streamlines obtained from CFD 

simulations of the pilot-scale unit (Figure 3-2(a)) around a nominal operation condition specified in 

Table 3-1. The CFD data was used to design a reactor network model, which aims to capture the 

different flow zones taking place inside the gasification unit. As shown in Figure 3-2(b), the reactor 

network consists of three plug-flow reactors (PFRs) that model the laminar jet-flow configuration as 

well as two continuous stirred-tank reactors (CSTR) to capture the mixing flow regime of the pilot-

scale’s gasifier. As shown in Figure 3-2(b), the downstream zone (DSZ) is represented using a PFR, 

however, two PFRs and two CSTRs are required to express the jet expansion zones (JEZs) and external 

recirculation zones (ERZs), respectively 72.  

 

(a) 



 

 27 

 

Figure 3-2: (a): Reactor network model for the gasifier; (b). Streamlines of CFD 

simulation; JEZ: jet expansion zone; ERZ: external recirculation zone; DSZ: 

downstream zone 72 

The dynamic ROM consists of over 80 algebraic equations that represent operability constraints and 

empirical correlations that are needed to estimate some of the model parameters, e.g., heats of reaction, 

reaction rates, recirculation ratio, slag thickness, slag viscosity, etc. The partial differential equations 

(PDEs) representing the momentum, mass, and energy balances for the gasifier are listed in Table 3-2 

72,142. The momentum balance consists of 3 PDEs representing conservation equations for gas velocity, 

particle velocity, and particle number density. The particle number density is calculated throughout the 

reactor and over time as it changes due to particle deposition on the walls. The particle number density 

PDE is a critical equation in the calculation of the particle velocity and solving the momentum balance. 

The outcome of the momentum balance is used in the mass and heat balances where the particles 

devolatize and the solid residue is modeled as char. The mass and heat balances consist of 16 PDEs and 

involve mole fractions of all the species, mass, temperature, and slag thickness across the gasifier. 

Moreover, the CSTR model describing the behaviour in the ERZ zones (see Figure 3-2(b)) contains 15 

PDEs that describe the mass and heat balance conservation equations. As shown in Figure 3-2(b), the 

gasifier can be split into two sections, i.e., the top section and the DSZ section. In each zone, 14 nodes 

(each describing the behaviour of the process at a particular height in the gasifier) are considered. 

Accordingly, a set of 284 PDEs and more than 80 algebraic equations are solved simultaneously for the 

top section of the gasifier to evaluate the velocity, pressure, composition, slag thickness, and 

temperature profiles of the system at any time interval. Note that the notation for the model equations 

and the parameters of the model are presented in the nomenclature. Moreover, sub-model descriptions, 

i.e., slag modeling and the modified correlations such as the recirculation ratio of the reactor network 

correlation, can be found elsewhere72,142. Please note that 𝐴𝑐𝑠 represents the cross-sectional area within 

each reactor in the network. As described in Sahraei et al.142, the JEZ sections of the gasifier consider 

changes in 𝐴𝑐𝑠 at different heights (z) within the top section of the reactor, i.e., the cross-sectional area 

is determined as a function of the location in the gasifier. 

(b) 
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Table 3-2: Partial different equations, dynamic ROM 72,142 

Gas phase 

Velocity 𝜕(𝐴𝑐𝑠휀𝑔𝜌𝑔𝑢𝑔)

𝜕𝑡
= −

𝜕

𝜕𝑧
(𝐴𝑐𝑠휀𝑔𝜌𝑔𝑢𝑔

2) + 𝐴𝑐𝑠 (−
𝑑𝑝

𝑑𝑧
+ 휀𝑔𝜌𝑔𝑔 − 𝐹𝑔⟶𝑤𝑎𝑙𝑙

′ − 𝐹𝑔⟶𝑝
′ ) 

Molar 

composition 
𝜕(𝐴𝑐𝑠휀𝑔𝐶𝑡𝑜𝑡𝑎𝑙𝑥𝑖)

𝜕𝑡
=
𝜕

𝜕𝑧
(𝐴𝑐𝑠𝐷𝑔,𝑒𝑓𝑓

𝜕(휀𝑔𝐶𝑡𝑜𝑡𝑎𝑙𝑥𝑖)

𝜕𝑧
) −

𝜕(𝐴𝑐𝑠휀𝑔𝑢𝑔𝐶𝑡𝑜𝑡𝑎𝑙𝑥𝑖)

𝜕𝑧
+ 𝐴𝑐𝑠(𝑅ℎ𝑜𝑚 + 𝑅ℎ𝑒𝑡); 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝐻2, 𝑂2, 𝐶𝐻4, 𝐶𝑂, 𝐻2𝑂, 𝐶2𝐻6, 𝐶𝑂2, 𝑆𝑂2, 𝐶𝑂𝑆,𝐻2𝑆, 𝑁2  

Temperature 𝜕 (𝐴𝑐𝑠휀𝑔𝐶𝑡𝑜𝑡𝑎𝑙𝑐𝑃𝑔𝑇𝑔)

𝜕𝑡
= 

𝜕

𝜕𝑧
(𝐴𝑐𝑠𝑘𝑔,𝑒𝑓𝑓

𝜕𝑇𝑔

𝜕𝑧
) −

𝜕 (𝐴𝑐𝑠휀𝑔𝑢𝑔𝐶𝑡𝑜𝑡𝑎𝑙𝑐𝑃𝑔𝑇𝑔)

𝜕𝑧
+ 𝐴𝑐𝑠(𝑅ℎ𝑜𝑚𝐻𝑅) + 𝑄𝑐𝑜𝑛𝑣𝑔⟶𝑝

′ − 𝑄𝑐𝑜𝑛𝑣𝑔⟶𝑠𝑙𝑎𝑔
′  

Solid phase 

Velocity 𝜕(𝐴𝑐𝑠휀𝑝𝜌𝑝𝑢𝑝)

𝜕𝑡
= −

𝜕

𝜕𝑧
(𝐴𝑐𝑠휀𝑝𝜌𝑝𝑢𝑝

2) + 𝐴𝑐𝑠(휀𝑝𝜌𝑝𝑔 + 𝐹𝑔⟶𝑝
′ ) 

Mass flow 

rate 
𝜕(𝑀𝑠𝑜𝑙𝑖𝑑 𝑢𝑝⁄ )

𝜕𝑡
= −

𝜕𝑀𝑠𝑜𝑙𝑖𝑑
𝜕𝑧

+ 𝐴𝑐𝑠(𝑅ℎ𝑒𝑡) − 𝑚𝑠𝑙𝑎𝑔𝑔𝑖𝑛𝑔
′  

temperature 𝜕 (𝐴𝑐𝑠휀𝑝𝜌𝑠𝑜𝑙𝑖𝑑𝑐𝑃𝑝𝑇𝑝)

𝜕𝑡
= −

𝜕

𝜕𝑧
(𝐴𝑐𝑠휀𝑝𝑢𝑝𝜌𝑝𝑐𝑃𝑝𝑇𝑝) + 𝐴𝑐𝑠(𝑅ℎ𝑒𝑡𝐻𝑅) − 𝑄𝑐𝑜𝑛𝑣⟶𝑔

′ −𝑚𝑠𝑙𝑎𝑔𝑔𝑖𝑛𝑔
′ ℎ𝑝 

Particle 

number 

density 

𝜕(𝐴𝑐𝑠𝑁𝑝)

𝜕𝑡
=
𝜕

𝜕𝑧
(𝐴𝑐𝑠𝑁𝑝𝑢𝑝) +

𝑚𝑠𝑙𝑎𝑔𝑔𝑖𝑛𝑔
′

𝑚𝑝
 

Liquid phase 

Slag mass 
2𝜋𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟𝜌𝑠𝑙𝑎𝑔

𝜕(𝛿𝑠𝑙𝑎𝑔)

𝜕𝑡
= −

𝜕𝑚𝑠𝑙𝑎𝑔

𝜕𝑧
+ 𝑚𝑠𝑙𝑎𝑔𝑔𝑖𝑛𝑔

′  

Slag 

temperature 2𝜋𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟𝜌𝑠𝑙𝑎𝑔𝑐𝑃𝑠𝑙𝑎𝑔
𝜕(𝑇𝑠𝑙𝑎𝑔𝛿𝑠𝑙𝑎𝑔)

𝜕𝑡
= 

2𝜋𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟𝑘𝑠𝑙𝑎𝑔
𝜕

𝜕𝑧
(𝛿𝑠𝑙𝑎𝑔

𝜕𝑇𝑠𝑙𝑎𝑔

𝜕𝑧
) −

𝜕

𝜕𝑧
(𝑚𝑠𝑙𝑎𝑔𝑐𝑃𝑠𝑙𝑎𝑔𝑇𝑠𝑙𝑎𝑔) + 𝑄𝑐𝑜𝑛𝑣𝑔⟶𝑠𝑙𝑎𝑔

′

+ 𝑄𝑐𝑜𝑛𝑣𝑠𝑙𝑎𝑔⟶𝑠𝑢𝑟𝑟𝑜𝑛𝑑𝑖𝑛𝑔
′ +𝑚𝑠𝑙𝑎𝑔𝑔𝑖𝑛𝑔

′ 𝐻𝑝 

 

As shown in Figure 3-3, the dynamic ROM considers 14 uniformly distributed nodes across the axial 

domain for each section of the gasifier, i.e., the top section and DSZ section. Previous studies on this 

model have shown that 14 nodes are sufficient to accurately predict the operation of the gasification 

unit72. The distance between adjacent nodes is approximately 0.040 m. Note that these nodes are located 

in the JEZ1 and JEZ2 sections for the top section of the gasifier; the DSZ section of the gasifier is also 

divided into 14 nodes. Note that the JEZ1, JEZ2 and DSZ are modelled using PFRs as shown in Figure 

3-2(a). Each of these nodes represents a potential sensor location to monitor the state variables of this 

process in real-time. As mentioned above, the dynamic ROM discretizes all of the PDEs based on the 

node specification to predict the temporal evolution of each state variable at a particular height in the 

gasifier. Although the discretization of the PDEs using the nodes significantly increases the number of 
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differential equations to be solved by the model, and therefore the corresponding computational costs, 

this significantly improves the accuracy of the dynamic ROM to capture the dynamic and nonlinear 

behaviour of the gasification process within the gasifier. Figure 3-3 shows a schematic of the potential 

sensor locations of the state variables within the top section of the gasifier (denoted as JEZ1 and JEZ2 

in Figure 3-2). At each node, all of the mole fractions (e.g., H2, O2, CH4 etc.), char flow rate, slag 

thickness, and gas and solid temperatures are identified as states of the system and calculated from the 

dynamic ROM. That is, at every location in the axial domain of the gasifier, there are 16 state variables 

that describe the temporal evolution of the system. Moreover, the same state variables (except for the 

slag thickness) represent the behaviour of the ERZ sections of the gasifier. As the ERZ sections in the 

top section of the gasifier have been modeled using two CSTRs (see Figure 3-2(b)), the predictions of 

all 15 states are assumed to be constant within these zones. In addition, the DSZ of the gasifier also 

contains similar state variables and potential sensor locations to those considered for the top section. 

However, this section does not include any CSTR unit, as shown in Figure 3-2(b). 

 

Figure 3-3: A schematic of the potential location of sensors for the top section of the gasifier 

Based on the above, the total number of states is 239 and 240 for the top and bottom sections of the 

gasifier, respectively. Due to the size and complexity of the problem, the current study focuses on the 



 

 30 

top section of the gasifier because the most critical states relevant to the operation of this unit, namely 

the peak temperature and slag thickness, are located in this section.  

3.2 State Estimation (Kalman Filter)  

Given the complexity of the system considered in this study, it is critical to use an estimation tool that 

can predict the states accurately and in short simulation times so that it can be adequately used for 

online monitoring. However, in the case of large-scale applications such as the gasifier unit, high 

simulations costs are expected due to the complexity and high nonlinearity of the system. This study 

considers the use of KF (and EKF) as a practical tool that can provide online estimation of the key 

states in reasonable computational times. 

Consider a nonlinear model with states 𝒙, inputs 𝒖, and measurements 𝒚 can be described as follows: 

𝒙𝑘+1 = 𝑓(𝒙𝑘 , 𝒖𝑘) + 𝒘𝑘 (3-1) 

𝒚𝑘 = ℎ(𝒙𝑘 , 𝒖𝑘) + 𝒗𝑘 (3-2) 

𝔼[𝒘𝜍𝒘𝑘
𝑇] = {

𝑸,             𝜍 = 𝑘
0,             𝜍 ≠ 𝑘

  ;   𝔼[𝒗𝜍𝒗𝑘
𝑇] = {

𝑹,             𝜍 = 𝑘
0,             𝜍 ≠ 𝑘

 (3-3) 

𝒘 ∈ ℝ𝑛𝑥  , 𝒗 ∈ ℝ𝑛𝑦  , 𝒙 ∈ ℝ𝑛𝑥 , 𝒚 ∈ ℝ𝑛𝑦 , 𝒖 ∈ ℝ𝑛𝑢 , 𝑸 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑹 ∈ ℝ𝑛𝑦×𝑛𝑦 , 
𝑓: ℝ𝑛𝑥×𝑛𝑢 → ℝ𝑛𝑥  , ℎ: ℝ𝑛𝑥×𝑛𝑢 → ℝ𝑛𝑦 

 

where 𝑘 denotes the time constant. Moreover, 𝒘 and 𝒗 are mutually uncorrelated, zero-mean Gaussian 

random process uncertainties and measurement noise signals, respectively. 𝑸 and 𝑹 are diagonal 

covariance matrices for the process uncertainties and the measurement noise signals, respectively. Note 

that 𝔼[𝒘𝜍𝒙0
𝑇] = 0 for all 𝑘 where 𝒙0 denotes the vector of initial states. Moreover, the function 𝑓 

describes the process model, whereas the function ℎ represents the measurement model. For the 

nonlinear dynamic system presented in Equations (3-1)-(3-3), the formulation of the KF/EKF is as 

follows149: 

Prior estimation  

�̂�𝑘+1|𝑘 = 𝑓(�̂�𝑘|𝑘 , 𝒖𝑘) ≈ 𝑨𝑘+1�̂�𝑘|𝑘 + 𝑩𝑘+1𝒖𝑘 

𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨𝑘
𝑻 +𝑸 

where 𝑨𝑘=
𝜕𝑓(𝒙,𝒖)

𝜕𝒙
|

 
𝒙 = �̂�𝑘|𝑘 , 𝒖 = 𝒖𝑘 (3-4) 
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Posterior estimation 
 

𝑲𝑘+1 = 𝑷𝑘+1|𝑘𝑯𝑘+1
𝑇 /(𝑯𝑘+1𝑷𝑘+1|𝑘𝑯𝑘+1

𝑇 + 𝑹) 

�̂�𝑘+1|𝑘+1 = 

                �̂�𝑘+1|𝑘 +𝑲𝑘+1 (𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘 , 𝒖𝑘)) 

𝑷𝑘+1|𝑘+1 = (𝑰 − 𝑲𝑘+1𝑯𝑘+1)𝑷𝑘+1|𝑘 

where 𝑯𝑘=
𝜕ℎ(𝒙,𝒖)

𝜕𝑥
|

 
𝒙 = �̂�𝑘|𝑘 , 𝒖 = 𝒖𝑘 

(3-5) 

𝑷 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑨 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑩 ∈ ℝ𝑛𝑥×𝑛𝑢 , 𝑲 ∈ ℝ𝑛𝑥×𝑛𝑦 , 𝑯 ∈ ℝ𝑛𝑦×𝑛𝑥   

where the Jacobian matrix 𝑨 denotes the correlation between the system states; the sensitivity matrix 

𝑩 describes the correlation between the states and the inputs. This estimation scheme performs two 

major steps of estimation, namely the prior and the posterior estimation. The former is also known as 

the time update step as it projects the probability density function (PDF) of the states at the current time 

interval 𝑘 ahead to estimate the prior distribution of the states in the next time interval 𝑘 + 1, i.e., 

�̂�𝑘+1|𝑘 and 𝑷𝑘+1|𝑘. The last step evaluates the Kalman gain 𝑲 at the time interval 𝑘 + 1 and updates 

both the expected value �̂�𝑘+1|𝑘+1 and the covariance 𝑷𝑘+1|𝑘+1 of the posterior distribution. Note that 

in the current study, R and Q are assumed to be constant over time.  

KF uses a linear dynamic model with constant 𝑨 and 𝑩; these are evaluated only at the nominal value 

of the states (𝒙𝐧𝐨𝐦𝐢𝐧𝐚𝐥) and the inputs (𝒖𝐧𝐨𝐦𝐢𝐧𝐚𝐥). On the other hand, EKF updates both matrices 𝑨 and 

𝑩 at each time interval 𝑘 based on the latest inputs and posterior estimates. Thus, EKF requires 

additional computational effort to perform these updates, particularly for large-scale applications such 

as the pilot-scale gasifier unit. The main challenges in the estimation, as well as the outcome of 

performing KF and EKF for the pilot-scale gasification unit considered in this study, are discussed next. 

3.3 Results 

The current study performs state estimation using Kalman Filters for a pilot-scale gasifier under 

different scenarios, which aim to investigate the capability of this technique in the presence of additive 

uncertainty in the prior estimation, common changes in the input streams of the gasifier, and in the case 

of plant-model mismatch. In all of these scenarios, one of the main challenges of performing KF and 

EKF for the gasification unit is to adequately estimate matrices 𝑨 and 𝑩 in order to capture the dynamic 

behaviour of the process accurately. As the current case study includes 239 states, the Jacobian matrix 

𝑨 is a 239x239 square matrix whereas 𝑩 is a 239x81 matrix. The 81 inputs to the Kalman filter 

framework represent the characteristics of inlet streams (e.g., molar fractions for the species, 
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temperatures, slag thickness, and char flowrate), inlet flowrates (e.g., fuel, steam, and oxygen), and the 

velocity and pressure profiles. The numerical evaluation of the Jacobian matrix for such a large-scale 

system is computationally expensive. The required CPU time for the analytical evaluation of these 

matrices at the nominal operating condition is approximately 19.30 minutes. Once the analytical 

solution of the sensitivity matrices is available, the evaluation of the sensitivity matrices is relatively 

fast (~0.6 s). The analytical calculation of the 𝑨 and 𝑩 matrices has been conducted using the Python 

function lambdify. The dynamic ROM presented in the previous section was implemented in Python 

3.7. Similarly, all the computational experiments performed in this study were conducted using Python 

3.7 on a computer equipped with 32 GB RAM and Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz. Note 

that the linear state space model used in this study has been validated using the dynamic ROM for the 

gasifier. In this work, the dynamic ROM was considered as the true plant model of the gasification unit. 

Figures 3-4 (a)-(d) compare the predictions of the linear model to the states estimated by the dynamic 

ROM (denoted as “True State”) for temperature, slag thickness, H2 mole fraction, and the CO mole 

fraction at the 14th node (end of the top section). As shown in this figure, the linear state space model 

captures the transient operation of the gasification unit. Note that this validation was performed under 

the load-following condition (see section 3.3.2). 

  

  

(a) (b) 

(c) (d) 
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Figure 3-4: Accuracy of the linear state space model with respect to the true value of the states at the 14th 

node for (a) solid temperature; (b) slag thickness; (c) H2 model fraction; (d) CO mole fraction 

A key feature in the current work is associated with the specification of an adequate time interval in the 

state estimation framework such that the proposed dynamic model can be solved with sufficient 

accuracy and avoid numerical instabilities. That is, the time interval to extrapolate the linear model and 

estimate the prior distribution of states 𝒩(�̂�𝑘+1|𝑘 , 𝑷𝑘+1|𝑘) is key to KF accuracy. In addition, the 

gasifier unit considered in this study involves states that evolve at different scales, e.g., the mole fraction 

of H2 across the gasifier is on average six orders of magnitude smaller than the gasifier’s average 

temperature in the top section. To circumvent this issue, relatively small time steps, i.e., 1e-5 s, are 

needed to maintain numerical stability in the prediction of the prior distribution of the estimated states. 

Note that the sampling time interval of the actual system is one minute. That is, the prior estimation is 

updated at very small time steps (i.e., every 1e-5s) while the posterior estimation is updated once new 

measurements become available (i.e., every minute). Although the proposed approach to deal with the 

complexity of the current system increases the CPU costs, it allows the KF to maintain stable 

estimations of the prior states and covariance matrix.  

A few alternatives were considered to increase the time interval (1e-5s). The maximum absolute 

eigenvalue of the Jacobian matrix evaluated at the nominal point is 1.18582e+5. Note that the required 

time step in the prior KF estimation to maintain numerical stability is proportional to the inverse of the 

maximum absolute eigenvalue of the Jacobian matrix 150. Thus, the time-step considered in this study 

(1e-5s) is the largest time-step that can be considered to achieve numerical stability of the linear state 

space model. The Jacobian conditioning (currently at 4.4081e+11 at the nominal operating point) was 

also considered to improve the computational efficiency in estimation. One potential alternative to deal 

with the time scale problem was to normalize the system. However, even in the case of normalization, 

there is no guarantee that the normalized state-space linear model may not contain large eigenvalues or 

improve conditioning of the Jacobian matrix. Also, normalization may add additional numerical errors 

to the system that may result in numerical intractability. An alternative considered was to assume that 

states with fast dynamics would only be considered using their steady-state information, i.e., the 

dynamic behavior of those states would be neglected. To perform this task, all the states associated with 

large eigenvalues (>1,000) were removed from the linear state space model and only their steady-state 

information would be considered to update those states in the KF estimation. A total of 56 states were 

removed from the linear state space model and were only considered as steady-state inputs to the model. 

Most of the states with fast dynamics involved the mole fractions of H2, O2, CH4, CO along the axial 
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domain of the gasifier, which are important states that need to be estimated accurately for the purpose 

of monitoring and control of the gasification process. The resulting reduced linear state space model 

was used for prior estimation in the KF framework using larger time steps, i.e., 1e-3s and 1e-4s. Results 

from this implementation showed that the KF estimation diverged, mostly because the maximum 

absolute eigenvalue of the corresponding Jacobian matrix in the reduced linear state space model was 

still in the order of 1e+5. In addition, this study also considered other reduced linear state space models 

that involved different combinations between states with fast dynamics, e.g., two linear reduced state 

space models with total number of states 225 and 28. The 225 states-ROM involved all the states except 

the model fractions of H2, whereas the 28 states-ROM only involved the wall temperature and the slag 

thickness along the gasifier. The maximum eigenvalue in the 225 states-ROM and 28 states-ROM was 

1.18582e+5 and 1.0251e+4, respectively, which limit the use of time steps larger than 1e-5 s. As a 

result, the KF estimation also diverged when larger time-steps were used, mostly due to inaccurate prior 

estimations. These tests indicate that small time intervals are needed to maintain numerical stability of 

the linear state space model.  

Moreover, the number of states that can be measured online may be limited in an actual setting. The 

type of states that can be measured online as well as the location of the sensors inside the gasifier can 

affect the quality of the estimation, particularly in the case that the linear model does not capture the 

process behaviour due to the presence of process uncertainties, additive uncertainty in the prior 

estimation, or plant-model mismatch. To gain insight on the impact of sensor availability and their 

location within the gasifier, the present study analyzed the performance of the estimation under 

different numbers, types and locations of the sensors around the gasifier. Furthermore, this study 

assumed that the standard deviation of the process uncertainty associated with each of the plant states 

is 2% of the nominal steady-state values of the states, 𝒙𝐧𝐨𝐦𝐢𝐧𝐚𝐥 (see Table 3-1), whereas the standard 

deviation of the measurement noise is negligible and set to 1e-6𝒙𝐧𝐨𝐦𝐢𝐧𝐚𝐥. This study assumed that the 

dynamic ROM is the true plant and provides the true states of the gasification unit. Thus, the actual 

states of the system (i.e., Plant Outputs) are the outputs of the dynamic ROM (i.e., True States) 

complemented with the added process uncertainties. The additional underlying assumptions of each of 

the scenarios and the detailed discussion of the results are presented next. 

3.3.1 Scenario Ⅰ: Additive uncertainty in the prior estimation 

In order to analyze the impact of sensor location in the KF performance, this scenario aims to validate 

the estimation of KF under three different sets of the partial states considered as Case A, Case B, and 
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Case C. Table 3-3 shows the detailed information of the partial states known for each case, i.e., the 

types and locations of the measurable states. Note that 𝑇𝑔 and 𝑇𝑤 represent the temperature of the gas 

and the gasifier’s wall, respectively; Ci is the mole fraction of the species 𝑖 shown in Figure 3-1(b), and 

ST denotes the slag thickness. As mentioned above, having access to the measurements of the states 

within the gasifier is difficult due to the extreme operating conditions, particularly around the zone 

where the wall temperature is at its highest. As the peak temperature often takes place in the second-

highest node in the gasifier (see Figure 3-3), it is more likely that sensor hardware can only be employed 

far away from the peak temperature zone in the gasifier due to the extremely high temperatures 

(>2000°C). Thus, all of the states within the first 5 nodes are assumed to be unknown in all of the three 

cases. Moreover, Case A assumes that online measurements are available every minute for all of the 

states within the last 9 nodes (within the last 0.406 m of the top section) along the axial domain of the 

gasifier, i.e., the gas temperature, wall temperature (using thermocouples), concentration of all of the 

components (using gas chromatography), and the slag thickness (using viscosity-based correlations). 

Note that the viscosity is assumed to be measurable through the dynamic ROM model. The following 

equations describe the viscosity as a function of the silica ratio of slag and temperature of the slag layer 

(notations are provided in the nomenclature section)72: 

𝑆 =
𝑊𝑆𝑂2

𝑊𝑆𝑖𝑂2 +𝑊𝐹𝑒2𝑂3 +𝑊𝐶𝑎𝑂 +𝑊𝑀𝑔𝑂
 

(3-6) 

log(𝜇𝑠𝑙𝑎𝑔) = 4.468𝑆
2 + 1.2659(

104

𝑇
) − 8.44 

(3-7) 

𝑀𝑠𝑙𝑎𝑔 =
2𝜋𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟𝛿𝑠𝑙𝑎𝑔

3 𝜌𝑠𝑙𝑎𝑔
2 𝑔

3𝜇𝑠𝑙𝑎𝑔
 

(3-8) 

In addition, Case A assumes that all the states are measurable in the ERZ sections (CSTR). In other 

words, out of the 239 state variables of the system, only 80 of the states are assumed to be unknown in 

Case A. 

Based on above, Case A corresponds to an idealistic condition because access to online measurement 

of concentrations of species is not often performed in an actual setting. Case B assumes that only 9 

thermocouples can be placed in the last 9 nodes of the top section of the gasifier, reporting the 

temperature of the wall every minute. Note that Case B assumes that all of the concentrations are 

unknown; thus, 230 out of the 239 states are not measured in real time. According to the profile of the 

temperature and the molar fractions for the species, the variability of the states becomes larger in the 
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adjacent nodes to the hot spot of the gasifier. However, the changes in the true states in the last 8 nodes 

of the gasifier, which are far from the gasifier’s hot spot, are relatively small. Moreover, as mentioned 

in the chapter 2, the expenses associated with sensors impose a restriction on the number of sensors 

that can be located in the unit. Hence, Case C has been defined as a more realistic case that considers 

only three thermocouples that are located four nodes apart. Note that these three thermocouples provide 

the wall temperature and are located at nodes 6, 10 and 14 (i.e., 0.366 m, 0.203 m, and 0.040 m) away 

from the end of top section of the gasifier, respectively.  

Observability tests for Cases A-C have been performed using the linear state space model. A linear state 

space system is observable if and only if 151: 

𝑟𝑎𝑛𝑘(𝐻, 𝐴 − 𝜆𝑖𝐼) = 𝑛𝑥;               𝑖 = 1, 2, 3, … , 𝑛𝑥   (3-9) 

where 𝑛𝑥 is the number of states variables of the system and 𝜆𝑖 denotes the 𝑖th eigenvalue in the 

eigenvector. Moreover, the sensitivity matrix 𝑯 describes the correlation between the measurements 

and the system states. This observability test was satisfied for Cases A-C considered in this study. Note 

the time-dependent linear state-space model of the gasifier is not an explicit function of time, i.e., the 

system is time-invariant152. An observability analysis using the actual nonlinear model is part of the 

future work. 

Table 3-3: Sensors type and location in (a) Case A; (b) Case B; (c) Case C 

PFR 

Node 

Distance from top of 

the gasifier (m) 

Case A Case B Case C 

Tg Tw Ci ST Tg Tw Ci ST Tg Tw Ci ST 

6 0.244             

7 0.284             

8 0.325             

9 0.366             

10 0.406             

11 0.447             

12 0.488             

13 0.528             

14 0.569             

CSTR 0-0.61             

 

At each time point (i.e., every 1 min), a time-varying variable has been randomly chosen around 

±0.01𝒙𝐧𝐨𝐦𝐢𝐧𝐚𝐥 using a binomial distribution as shown in Figure 3-5. These time-varying random 

variables have been added to the prior estimation of states at time 𝑘 + 1 as a way to consider additive 

uncertainty in the linear model predictions. This was done to consider cases when there exist errors 
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(mismatch) in the numerical identification of linear state space models used for prior estimation 

purposes. Therefore, in the presence of both additive uncertainties to the prior estimation 

(1% of 𝒙𝐧𝐨𝐦𝐢𝐧𝐚𝐥) and process uncertainties (2% of 𝒙𝐧𝐨𝐦𝐢𝐧𝐚𝐥), the available measurements considered 

in the posterior estimation of the states may improve the accuracy of the state estimation.  

 

Figure 3-5: Distribution of additive uncertainty considered in the prior estimation in Scenario Ⅰ 

Figure 3-6(a) and 3-6(b) present the results of the KF for two of the most critical states in the 

gasification process, i.e., the peak temperature (wall temperature at the 2nd node) and the slag thickness 

at the 14th node of the top section of the gasifier, respectively. Note that the peak temperature cannot 

be measured for none of the Cases A-C. On the other hand, the slag thickness at the 14th node can only 

be measured online in Case A (see Figure 3-6(b)).The results presented in Figure 6 for the current 

scenario include the outcome of KF for Cases A-C, the output from the dynamic ROM with the added 

process uncertainties (denoted as “Plant Output”), and the true values of the states provided by the 

dynamic ROM without considering process uncertainties (denoted as “True State”). Note that in all 

three cases (Cases A-C), an initial condition that is different from the nominal steady-state condition 

has been considered to initialize the prior states in KF framework, i.e., 0.9*(the true steady-state value). 

Consequently, the system is expected to respond to this initialization and move the states from their 

initial values to their true (steady-state) values. Note that the system involves states with fast and slow 

dynamics, i.e., different time-scales. For instance, the wall temperature presents fast dynamics (see 

Figures 3-4(a) and 3-6(a)), whereas the slag thickness presents slow responses (see Figures 3-4(b) and 

3-6(b)). Thus, as shown in Figure 3-6(b), the estimation of the slag thickness at the last node of the top 

section is slowly approaching the true state in both Case B and Case C since the KF estimation mainly 

relies on the linear state space model. Moreover, note that Case A assumes that the online measurements 

are available for this particular state. This assumption for Case A aids KF to recover from the inaccurate 

initial condition in shorter times when compared to Cases B and C. Moreover, the small variations in 

the estimations for Case A is due to the small but random measurement noise and process uncertainty 
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associated with the measurements considered in Case A. On the other hand, the limited number of 

measurements considered in Cases B-C forces the estimation for this state to rely on the prior KF 

estimations, which do not capture the variation in the “Plant Output”. Nevertheless, based on Figure 3-

6, the results of Scenario Ⅰ show that KF provides estimations of the unknown states with similar 

accuracy for the three cases. This result is expected because the gasifier was assumed to be operating 

at the steady-state point around which the linear state space model was developed. Thus, KF can still 

rely on the linear state space model even though there are small process uncertainties and added noises 

considered in the prior estimation. The same conclusion can be drawn by calculating the mean square 

error (MSE) between the estimated states and the plant output. The MSE for all Cases A-C and for both 

slag thickness and peak temperature is approximately the same (3-4% different), which suggest that the 

quality of estimation using KF is adequate, even in Case C where three thermocouples are the only 

sensors available for monitoring the operation of the gasifier.  

 
 

Figure 3-6: KF performance in the presence of additive uncertainty in the prior estimation: (a) peak 

temperature inside the gasifier; (b) slag thickness located in the 14th node of the top section of the gasifier 

A comparison between KF and EKF was performed next. To maintain a successful EKF 

implementation for the pilot-scale gasifier, the Jacobian matrix 𝑨 needs to be updated more frequently 

than the actual sampling time of the plant so that it remains numerically stable. Therefore, the 

implementation of EKF under the assumptions mentioned for Case C has been considered. However, 

for this comparison, the new measurements from the process are assumed to become available every 

second instead of every minute. This was done with the sole purpose of reducing the computational 

costs in the EKF estimation. This assumption holds for both the EKF and the KF implementation. 

Figure 3-7(a) and 3-7(b) shows the performance of both estimation methods for the peak temperature 

and the slag thickness at the 4th node of the gasifier, respectively. Note that online measurements are 

not available for these two states in any of the Cases A-C. The estimation provided by both the EKF 

(a) 
(b) 
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and KF for the slag thickness is not accurate over the period of simulation considered for this 

comparison. This was expected as the slag thickness has slow dynamics, i.e., it takes several minutes 

to adjust to the dynamic changes in the model and reach to its steady-state condition, as shown in Figure 

3-6(b). Moreover, as shown in Figure 3-7(b), both EKF and KF present similar predictions for the slag 

thickness at the 4th node for the first few seconds. Note that this test has been performed considering 

that the time interval is 1 s, whereas the results presented in Figure 3-6 have been obtained using a 1 

min time interval. Thus, the combination of the small time scales and the slow slag thickness dynamics 

produces an overall slow dynamic response in this variable. The results presented in Figure 3-7 show 

that there is no improvement in the accuracy of the estimation provided by EKF when compared to the 

estimation from KF. However, due to the complexity and different time scales associated with the 

gasification unit, the computational time required by EKF to update matrices 𝑨 and 𝑩 at every time 

interval is approximately three orders of magnitude larger than that required by KF; this is mostly due 

to the large number of function evaluations that need to be performed (approximately 1e+5 function 

evaluations per 1 s of simulation).  Hence, the state estimation using EKF is computationally intractable 

while using the present gasification model. Methods that can circumvent the scaling of matrices 𝑨 and 

𝑩 may help in reducing the computational costs but this is beyond the scope of this work. Therefore, 

only KF estimation is considered for Scenario Ⅱ and Scenario Ⅲ. Note that this test has been performed 

only for 15 seconds of the simulation. Results may differ when larger simulation times using other 

means to perform the estimation can be employed. 

  

(a) 
(b) 
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Figure 3-7: A Comparison of the EKF performance and the KF performance for (a) peak temperature inside 

the gasifier; (b) slag thickness located in the 4th node of the top section of the gasifier; right-scale for the KF 

and EKF; left-scale for the Plant Output and True States 

3.3.2 Scenario Ⅱ: Load-following scenario 

This scenario aims to assess the capability of KF to deal with the dynamic behaviour of the system 

caused by significant changes to the inlet stream of the gasifier. One of the most common changes in 

the operating conditions of the gasifier occurs under load-following conditions. In an IGCC power 

plant, a load-following scenario is often applied to tune the operating conditions of the gasification 

process so that the power generation capacity of the IGCC power plant can be adjusted according to 

daily changes in the energy demands153. A load-following scenario consists of one or more ramp or step 

changes in the fuel flowrate to adjust the amount of syngas fed to the IGCC plant. To perform this test, 

several step changes have been considered to reduce the fuel flowrate from its nominal value (see Table 

3-1) up until it reached 60% of its nominal value. Step changes of a 10% change in magnitude with 

respect to the nominal fuel flowrate were applied every 5 minutes. Once the load was at 60% of the 

nominal flowrate reported in Table 3-1, the flowrate was increased with a rate of 10% every 5 minutes 

to return it to the nominal capacity of the power generation. Note that a single load-following cycle 

takes approximately 40 minutes. Moreover, it is important to mention that during the load-following 

scenario, both the steam and oxygen flowrates entering the gasifier are adjusted accordingly so that the 

ratio of fuel to steam and the ratio of fuel to oxygen remain constant to satisfy the thermal constraint of 

the gasifier refractory wall154. 

The results of the implementation of KF for Scenario Ⅱ are presented in Figure 3-8. As in Scenario Ⅰ, 

three cases have been considered for the present scenario to explore the impact of the number and the 

location of the sensors inside the gasifier. The results show that KF is capable of providing adequately 

accurate estimation of the unknown states in for Cases A-C. Figure 3-8(a) and Figure 3-8(b) represent 

the estimation of peak temperature and slag thickness at the 4th node, respectively. Note that these are 

the critical states for the purpose of monitoring the gasification unit in an IGCC power plant; these 

states are not measurable in any of the Cases A-C. Figure 3-8(a) shows that the accuracy of the state 

estimations provided by KF for the peak temperature in all three cases remains the same, despite the 

fact that Case A assumes a larger number of sensors in the plant than those considered by Case B and 

Case C. The MSE of the estimations for all Cases A-C are approximately the same (less than 5% 

different). These results show that the linear state space model properly represents the dynamics of the 

process so that the prior KF estimation of the peak temperature can be performed successfully, even 
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though there is a very limited number of sensors in the unit in Case C. In addition, according to Figure 

3-8(b), estimation of the slag thickness (at the 4th node) in Case B and Case C is smoother compared to 

Case A. That is, the MSE for the estimation of the slag thickness in Case A is 25% larger than the 

evaluated MSE in Case B as well as in Case C. As expected, in Case B and Case C, KF relies more on 

the prior estimation rather than on the posterior estimation due to the limited number of measurements, 

whereas KF has access to more sensors and consequently can rely on the posterior estimation for Case 

A. As prior estimation uses the linear model that excludes any process uncertainties or noises, the 

estimations obtained in Case A seem noisier when compared to Case B and Case C. That is the 

estimation provided by KF for the measurable states follow their plant outputs for this scenario. For 

instance, Figure 3-8(c) shows the KF performance for the slag thickness in the 14th node (the last node 

in the top section of the gasifier). As shown in this figure, the estimation provided by KF in Case A 

follows the measurements while there is a small error in the estimation of this state for Case B and Case 

C where the measurements of the slag thickness are not available. As a result, the estimation in Cases 

B and C mainly relies on the linear state space model and thus follows the “True States” rather than the 

“Plant Output”. 

  

 

(a) (b) 

(c) 



 

 42 

Figure 3-8: Estimations of unmeasurable states in the load-following condition for (a) peak temperature; (b) 

slag thickness at 4th node; (c) slag thickness at 14th node 

3.3.3 Scenario Ⅲ: KF performance under model structural error and load-following 

The current scenario aims to investigate the performance of KF in the presence of plant-model 

mismatch for the pilot-scale gasifier. Therefore, this scenario considers a mismatch between the 

linearized version of the gasifier model and the dynamic ROM under load-following conditions. One 

challenge on the implementation of the KF algorithm on the gasifier under load-following conditions 

is to evaluate the sensitivity B matrix such that the linear state space model shown in Equation (3-4) is 

able to simulate the dynamic behaviour of the system caused by changes in the inputs of the plant. 

Given the complexity of the current pilot-scale gasifier and the nonlinear correlation between the 

momentum, mass, and energy balances of the system, a reasonable evaluation of the sensitivity matrices 

of the system is needed to adequately capture the transient operation of the gasifier, as presented in 

scenario Ⅱ. However, in the presence of model mismatch, i.e., inaccurate 𝑨 and 𝑩 matrices, KF is 

expected to heavily rely on the sensors available for the posterior estimation.  

Based on the above, a similar load-following condition as described in Scenario Ⅱ has been considered 

with the exception that the momentum balance equations were not included in the evaluation of the 

sensitivity 𝑩 matrix. As a result, the linear state space model was not able to adequately capture the 

dynamic behaviour of the gasification process. As shown in Figures 3-9(a)-(c), the quality of the 

estimation for some of the unknown states in the vicinity of the peak temperature (located at the 4th 

node), i.e., hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2) mole fractions, improved 

for Case A compared to Case C (see Table 3-3). This is due to the correction step in the KF algorithm 

where the online measurements coming from the sensors improve the posterior estimation of the states. 

Therefore, the quality of the estimation of unknown states improves as more measurements become 

available (Case A). However, according to Figure 3-9(d)-(f), in the case of some of the other unknown 

states, i.e., the peak temperature of the gasifier’s inner wall, the slag thickness at the high temperature 

zone (at the 4th node), and the oxygen (O2) mole fraction at the 4th node, KF was not able to adequately 

track the true states. As it shown in Figures 3-9(d)-(f), KF was not able to estimate these states properly 

in either Case A or Case C, which highlights the significance of plant-model mismatch in the estimation 

framework considered for Scenario Ⅲ. Note that the KF estimation for Case C was able to track the 

changes in the actual peak temperature more closely than Case A, as shown in Figure 3-9(d). Note that 

Scenario Ⅲ was performed under a model structural error (i.e., some element in the 𝑩 matrix are 
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missing). This creates a plant-model mismatch in the linear state space model used in the KF 

framework. Due to this error, the prior estimation of the states provided by the linear state space model 

is not accurate and generates error at each time interval. Note that this error may vary for different states 

of the system, i.e., the missing elements in 𝑩 affect in a different way the prior estimation of the 

different states. As shown in Equation (3-5), the term “𝑲𝑘+1 (𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘 , 𝑘 + 1))” depends on 

the prior estimation and therefore propagates an error between the measurements and the inaccurate 

prior estimation (�̂�𝑘+1|𝑘). Although more measurements improve the KF estimation, as it is the case 

for the states shown in Figure 3-9(a), the propagation of this error in the posterior calculation does not 

improve the posterior estimation for some of the state variables such as the peak temperature, as shown 

in Figure 3-9(d). That is, the more states available in the function ℎ, the more errors that may be 

propagated through the posterior estimation due to the model structural error included in �̂�𝑘+1|𝑘. 

  

 
 

(a) (d) 

(b) 
(e) 
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Figure 3-9: Estimations of unmeasurable states in the presence of model mismatch for (a) H2 model fraction 

at 4th node; (b) CO mole fraction at 4th node; (c) CO2 mole fraction at 4th node; (d) peak temperature; (e) 

slag thickness at 4th node; (f) O2 mole fraction at 4th node 

Nevertheless, KF is expected to provide an accurate posterior estimation of the states for which online 

measurements are available. Figures 3-10(a)-(c), show the estimation results for wall temperature, slag 

thickness, and O2 mole fraction at the 8th node. Note that these three states are assumed to be measured 

online for Case A, while Case C does not consider online sensors for these states. As a result, there is 

a high-quality estimation provided in Case A, whereas the estimation in Case C was not able to recover 

from the poor prior estimation caused by the plant-model mismatch. Moreover, three thermocouples 

are responsible for reporting the online measurement of the wall temperature at the 6th, 10th, and 14th 

nodes in both Case A and Case C (see Table 3-3). Therefore, according to the results shown in Figures 

3-10(d)-(f), KF exhibited a reasonable recovery from the negative impact of model mismatch on the 

prior estimation of measurable states and provided an adequate estimation of the temperatures at these 

locations of the gasifier. Figures 3-10(d)-(f) shows that the estimation provided by KF in Case A and C 

are acceptable since they both follow the plant outputs. Note that the plant outputs shown in these plots 

correspond to those obtained for Case A. The plant outputs obtained for Case C are not shown for 

brevity but they exactly follow the estimations obtained for this case. In addition to the model structural 

error, both Case C and Case A include random process uncertainty and measurement noise thus making 

the plant outputs for each case slightly different. Note that measurements and the “Plant Outputs” are 

almost the same as this study assumed the measurement noise is very small. 

(c) (f) 
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Figure 3-10: Estimations of measurable states in Case A in the presence of model mismatch for (a) wall 

temperature at 8th node; (b) slag thickness at 8th node; (c) O2 mole fraction at 8th node; Estimations of 

measurable states in both Case A and Case C in the presence of model mismatch for (d) wall temperature at 

6th node; (e) wall temperature at 10th node; (f) wall temperature at 14th node 

 

3.4 Summary 

In this chapter, the performance of KF for a pilot-scale gasifier system was performed. The transient 

behaviour of a pilot-scale gasification unit is represented using a dynamic reduced order model (see 

section 3-1). This model consists of 479 state variables including molar fractions for the species, 

temperature, and slag thickness across the gasifier. The quality of the state estimation provided by KF 

(a) (d) 

(b) (e) 

(c) 
(f) 



 

 46 

has been evaluated under multiple arrangements of the number and the location of the sensors available 

for the top section of the gasifier. Also, the performance of KF for such a complex and highly nonlinear 

system has been explored under different scenarios. The outcome of Scenarios I and II showed that, if 

KF has access to an accurate linear state-space model, it is capable of providing acceptable state 

estimations for the gasification unit even in the presence of a realistic range of additive uncertainty in 

the prior estimation of the states. However, under Scenario III, KF was not able to provide acceptable 

state estimation for several states of the gasification system including the peak temperature. This was 

mostly due to the propagation of the error between the measurements and the inaccurate prior 

estimation provided by the linear state-space model corrupted with a model structural error. The poor 

performance of the KF under the plant-model mismatch scenario indicate the critical role of the 

mechanistic linear model in the KF framework. In addition, the current study assessed the impact of 

sensor location on KF performance, which is a critical factor when there is a significant plant-model 

mismatch. In general, the quality of the KF estimation can be improved as the number of sensors located 

within the process plant increases and an acceptable linear state space model is available. 

The results show that as long as KF is provided with an accurate mechanistic model, it is capable of 

estimating the unknown states for a large variety of changes in the gasifier’s inputs, even though online 

temperature sensors are only available in limited locations across the gasifier. Nevertheless, the 

estimation performed in this chapter was under the Gaussianity assumption typically considered in 

Kalman filters. The high performance of Kalman filter observed in the current study along with the 

proven track record in the literature for this approach is the main motivation to develop new KF-based 

schemes that can perform state estimation for general processes featuring constraints on the states, and 

non-Gaussian process uncertainties and measurement noises. 
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Abridged Gaussian Sum Extended Kalman Filter (AGS-EKF) 

Despite the outstanding capabilities of KF/EKF highlighted in the literature review (Chapter 2) and 

Chapter 3, the Gaussian assumption considered in this framework restricts the use of this approach for 

the non-Gaussian applications. The non-Gaussianity often appears in different variables in the industrial 

process plants and unit operations. This may happen due to the presence of bounds on the system’s 

variables (states, inputs, measurements, process uncertainties, measurement noises) to ensure feasibility 

of the process model, or/and due to the scheduled/unscheduled changes during the plant operation. 

Following these events, KF/EKF may lose performance.  

GSF is an EKF-based estimation scheme that is best known for the non-Gaussian applications. As 

shown in section 2.2, the development of GSFs for applications in which non-zero mean and non-

Gaussian process uncertainty is involved poses challenges that have not been widely explored in the 

open literature. In addition, GSF requires to perform a series of EKFs at every time interval in the online 

estimation scheme, i.e., one EKF for each of 𝑛𝑔 Gaussian components included in the Gaussian mixture 

where 𝑛𝑔 denotes the number of Gaussian components needed to form the Gaussian mixture model. 

Therefore, the required number of evaluations in GSF is at least 𝑛𝑔 times larger than in EKF. This may 

make GSF intensive for complex nonlinear dynamic chemical engineering systems that may include a 

large number of states to estimate.  

Based on the above, the non-Gaussian uncertainty scenario is lacking for online estimation by GSF and 

other constrained-EKF methods presented in the literature. Motivated by this fact, the focus of this 

chapter is on improving the estimation of EKF when the plant model is subject to process uncertainties 

with non-zero mean, non-Gaussian distributions. This chapter pursues the following objectives:  

 A modification to the standard EKF framework is developed to improve the accuracy in the 

estimation for systems that involve non-zero mean Gaussian process uncertainty. The modified 

EKF requires the same computational costs as the standard EKF. The modified EKF formulation 

will be used as a basis to design the estimation schemes used in this work to deal with non-zero 

mean non-Gaussian process uncertainties.  

 A new state estimation framework, referred to as Abridged Gaussian Sum Extended Kalman Filter 

(AGS-EKF) is presented. Contrary to the conventional estimation methods such as GSF, the 

proposed AGS-EKF does not consider different scenarios that limits the estimation scheme to draw 
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the process uncertainty variables only from one of the Gaussian components in the mixture. Instead, 

the proposed approach draws the process uncertainties from the overall Gaussian mixture involving 

all the Gaussian components. Thus, AGS-EKF does not required to perform a set of EKFs thus 

avoiding the additional computational costs incurred when using GSF. That is, AGS-EKF performs 

the modified EKF (mentioned above) only once to compute the estimation.  

 In addition, this study presents an adaptation of the conventional GSF, referred to as adaptive GSF 

(AGSF). This approach makes use of the overall point estimates as a priori information to improve 

the estimations provided by each of the EKFs in the set of GSF. Note that both GSF and AGSF use 

the modified EKF introduced in this work to handle systems with non-zero mean process 

uncertainties. 

 The performance of the Abridged GS-EKF, GSF, and Adaptive GSF have been assessed and 

compared using case studies emerging in the chemical engineering literature that have been widely 

used in the field of state estimation, i.e., an synthetic illustrative example 106, a gas-phase reactor 

3,84,97,98,155, the Williams-Otto reactor 156,157, and a wastewater treatment plant158,159,37. 

The next section presents the proposed framework for the adaptive GSF (AGSF) and AGS-EKF. 

Section 4.2 presents the results and detailed discussions on the performance of AGS-EKF, GSF, AGSF, 

and standard EKF for each of the case studies considered in this research. A chapter summary is 

presented in the end. 

4.1 Filters for non-Gaussian process uncertainty 

This section presents the proposed AGS-EKF approach and other estimations schemes used in this 

study to evaluate the performance of AGS-EKF. As mentioned in the introduction of this chapter, AGS-

EKF uses both a modified version of EKF and the Gaussian sum technique to improve the performance 

of EKF. Thus, this study first presents the modified EKF and the main features of Gaussian sum. To 

pursue this goal, section 4.1.1 presents a modification in the priori estimation step of EKF algorithm 

for the case of nonlinear applications with non-zero mean Gaussian process uncertainty. A brief review 

on Gaussian Sum is presented in section 4.1.2. Using the information provided in sections 4.1.1 and 

4.1.2, the GSF adopted to non-Gaussian process uncertainty scenarios and an adaptive version of GSF 

are presented in sections 4.1.3 and 4.1.4, respectively. Section 4.1.5 introduces the proposed estimation 

scheme, i.e., AGS-EKF. 
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4.1.1 Modified EKF for the application with non-zero mean Gaussian process 

uncertainty 

Considering the nonlinear model described by Equations (3-1)-(3-3), Equations (3-4) and (3-5) 

represent the standard EKF for a nonlinear system with zero-mean Gaussian process uncertainties as 

shown in Equation (3-3). A modification in the prior estimation step in EKF is needed for the case when 

the nonlinear system is subjected to non-zero mean, Gaussian random process uncertainties, i.e., 

𝝃𝑘~𝒩(𝝁,𝑸). A nonlinear process model involving non-zero mean process uncertainties 𝝃 can be 

described as follows: 

𝒙𝑘+1 = 𝑓(𝒙𝑘 , 𝒖𝑘 , 𝝃𝑘 , 𝑘) ≈ 𝑨𝑘𝒙𝑘 +𝑩𝑘𝒖𝑘 + 𝑮𝑘𝝃𝑘 

where 𝑮𝑘=
𝜕𝑓(𝒙,𝒖,𝝃)

𝜕𝝃
|

 
𝒙 = 𝒙𝑘 , 𝒖 = 𝒖𝑘, 𝝃 = 𝝃𝑘 

(4-1) 

𝔼[(𝝃𝜍 − 𝝁)(𝝃𝜍 − 𝝁)
𝑇] = {

𝑸,             𝜍 = 𝑘
𝟎,               𝜍 ≠ 𝑘

  ;        (4-2) 

𝝃 ∈ ℝ𝑛𝑤 , 𝒙 ∈ ℝ𝑛𝑥 , 𝒖 ∈ ℝ𝑛𝑢 , 𝑸 ∈ ℝ𝑛𝑤×𝑛𝑤 , 𝑮𝑘 ∈ ℝ
𝑛𝑥×𝑛𝑤 , 𝑓: ℝ𝑛𝑥×𝑛𝑢×𝑛𝑤 → ℝ𝑛𝑥 

where 𝑛𝑤 represents the number of process uncertainty variables considered in the system. Matrix 𝑮𝑘 

is the sensitivity matrix at time interval 𝑘 that relates the process uncertainties to the states of the system. 

The prior estimation of the states and their corresponding covariance matrix is as follows: 

�̂�𝑘+1|𝑘 = 𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 + 𝑮𝑘𝝁 

(4-3) 

𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨𝑘
𝑇 + 𝑮𝑘𝑸𝑮𝑘

𝑇
 

The measurement model in this system is same as the model presented in Equation (3-2). Likewise, the 

posterior estimation step in the modified EKF is given by Equation (3-5). Similar to the standard EKF, 

𝔼[𝝃𝜍𝒙0
𝑇] = 0 for all 𝑘.  

The current work presented in this chapter considers that each state variable of the system is associated 

with one process uncertainty variable. That is, 𝑛𝑤 = 𝑛𝑥 and matrix 𝑮𝑘 can be expressed by an identity 

matrix of proper dimensions, i.e., 𝑮𝑘 = 𝑰𝑛𝑥×𝑛𝑥. Given this assumption, Equation (4-3) can be 

simplified to Equation (4-4), as follows: 

�̂�𝑘+1|𝑘 = 𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 + 𝝁 (4-4) 
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𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨𝑘
𝑇 +𝑸 

Note that Equation (4-4) is a more general representation of Equation (3-4), i.e., Equation (4-4) reduces 

to Equation (3-4) when 𝝁 = 𝟎. The derivation of prior estimation presented in Equation (4-3) is 

presented next.  

Derivation of the prior estimation: The prior estimation of the states, i.e., the expected value of the 

prior PDF, can be expressed as follows:  

�̂�𝑘+1|𝑘 = 𝔼[𝑓(�̂�𝑘|𝑘 , 𝒖𝑘 , 𝝃𝑘)|𝒀𝑘]   (4-5) 

where: 𝒀𝑘 = [𝒚0, 𝒚1, … , 𝒚𝑘]  

Equation (4-5) can be re-written as follows: 

�̂�𝑘+1|𝑘 = 𝔼[𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 + 𝑮𝑘𝝃𝑘|𝒀𝑘]

=  𝑨𝑘𝔼[�̂�𝑘|𝑘|𝒀𝑘] + 𝑩𝑘𝔼[𝒖𝑘|𝒀𝑘] + 𝑮𝑘𝔼[𝝃𝑘|𝒀𝑘]  
(4-6) 

Sensitivity matrices 𝑨 and 𝑩 and 𝑮 are independent from the previous measurements. Moreover, input 

variables and process uncertainties are uncorrelated with the measurements. Hence �̂�𝑘+1|𝑘 is obtained 

as shown in Equation (4-3). To derive the prior covariance matrix 𝑷𝑘+1|𝑘, the expected value of the 

error in the estimation needs to be evaluated. Let 𝒆𝑘+1|𝑘 represent the prior estimation error: 

𝒆𝑘+1|𝑘 = 𝒙𝑘+1 − �̂�𝑘+1|𝑘 (4-7) 

By substituting Equations (4-1) and (4-6) in Equation (4-7), the prior estimation error is as follows:  

𝒆𝑘+1|𝑘 = 𝑨𝑘𝒙𝑘 + 𝑩𝑘𝒖𝑘 + 𝑮𝑘𝝃𝑘 − (𝑨𝑘�̂�𝑘|𝑘 +𝑩𝑘𝒖𝑘 + 𝑮𝑘𝝁) 

= 𝑨𝑘(𝒙𝑘 − �̂�𝑘|𝑘) + 𝑮𝑘(𝝃𝑘 − 𝝁)  
(4-8) 

Therefore, the prior estimation of the states covariance is as follows: 

𝑷𝑘+1|𝑘 = 𝔼[𝒆𝑘+1|𝑘𝒆
𝑇
𝑘+1|𝑘] 

= 𝔼[(𝑨𝑘(𝒙𝑘 − �̂�𝑘|𝑘) + 𝑮𝑘(𝝃𝑘 − 𝝁))(𝑨𝑘(𝒙𝑘 − �̂�𝑘|𝑘) + 𝑮𝑘(𝝃𝑘 − 𝝁))
𝑇] 

(4-9) 

Note that 𝒆𝑘|𝑘 = 𝒙𝑘 − �̂�𝑘|𝑘 is the posterior estimation error at time interval 𝑘. Therefore, the prior 

covariance at time interval 𝑘 + 1 is as follows: 
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𝑷𝑘+1|𝑘 = 

𝔼[(𝑨𝑘𝒆𝑘|𝑘 + 𝑮𝑘(𝝃𝑘 − 𝝁))(𝒆
𝑇
𝑘|𝑘𝑨

𝑇
𝑘 + (𝝃𝑘 − 𝝁)

𝑇𝑮𝑘
𝑇) ] 

= 𝔼[𝑨𝑘𝒆𝑘|𝑘𝒆
𝑇
𝑘|𝑘𝑨

𝑇
𝑘 + 𝑮𝑘(𝝃𝑘 − 𝝁)𝒆

𝑇
𝑘|𝑘𝑨

𝑇
𝑘 + 𝑨𝑘𝒆𝑘|𝑘(𝝃𝑘 − 𝝁)

𝑇𝑮𝑘
𝑇

+ 𝑮𝑘(𝝃𝑘 − 𝝁)(𝝃𝑘 − 𝝁)
𝑇𝑮𝑘

𝑇] 

(4-10) 

Since 𝔼[𝝃𝑘 − 𝝁] = 𝔼[𝝃𝑘] − 𝔼[𝝁] = 𝝁 − 𝝁 = 𝟎, and 𝔼[(𝝃𝑘 − 𝝁)(𝝃𝑘 − 𝝁)
𝑇] = 𝑸, Equation (4-10) can 

be simplified as a function of Jacobian matrix, posterior estimation of the covariance matrix at time 

interval 𝑘, and the covariance of the process uncertainty distribution, as given  

by Equation (4-3).  

4.1.2 Gaussian Mixture Model 

Based on the developments presented in the section 4.1.1, an efficient estimation scheme can be 

developed for nonlinear dynamic systems involving non-Gaussian process uncertainty. A key idea in 

this work is to assume that the non-Gaussian distribution can be approximated by a set of Gaussian 

distributions. To pursue this goal, this work considers a Gaussian mixture as an approximation of the 

non-Gaussian process uncertainty PDF.  

Gaussian mixture model is an attractive method that provides an accurate approximation for any 

arbitrary non-Gaussian PDF. The Gaussian mixture model framework has been widely used in the 

context of Bayesian estimation and monitoring for applications involving non-Gaussianity160,161,162,163. 

This model approximates the non-Gaussian density to a summation over 𝑛𝑔 Gaussian densities. In 

general, the number of required Gaussian components in the mixture (𝑛𝑔) increases as the level of non-

Gaussianity of the original distribution increases. For a vector-valued non-Gaussian variables 𝝕, the 

Gaussian mixture density can be evaluated as follows: 

𝑝(𝝕) = ∑ (𝜶𝑖 𝒩[𝝕; 𝜼𝑖 ,𝑴𝑖])
𝑛𝑔
𝑖=1 ; 

 𝜶𝑖 , 𝝕 ∈ ℝ𝑑; 𝜼𝑖 ∈ ℝ𝑑;𝑴𝑖 ∈ ℝ𝑑×𝑑         
(4-11) 

∑ 𝜶𝑖  
𝑛𝑔
𝑖=1 = 𝟏;    𝜶𝑖  ≥ 𝟎;     (4-12) 

where 𝜼𝑖 ,𝑴𝑖 are the mean vector and covariance matrix for the 𝑖th Gaussian component in the mixture. 

Moreover, symbol ⨀ expresses the element-wise multiplication. The symbol 𝑑 denotes the dimension 

of the Gaussian component distributions. Any random variable 𝝕 drawn from the original non-

Gaussian distribution has a chance (weight) of 𝜶𝑖 to belong to the 𝑖th Gaussian component in the 

Gaussian mixture model. Hence, 𝜶𝑖 is used in the Gaussian mixture model as the corresponding weights 
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for each Gaussian component in the model. These weights are normalized; thus, for each of the 𝑑 

variables, the summation of the weights over all the Gaussian components present in the mixture adds 

to the unity, as shown in constraint (4-12). In this study, the mean vector 𝜼𝑮𝑴 ∈ ℝ𝑑 and the covariance 

matrix 𝑴𝑮𝑴 ∈ ℝ𝑑×𝑑 of the Gaussian mixture models that approximate each of the non-Gaussian 

distributions of process uncertainties are considered in the proposed AGS-EKF framework. Note that 

the superscript 𝑮𝑴 stands for Gaussian mixture. Equation (4-13) presents the analytical evaluation of 

the mean vector and the covariance matrix of the Gaussian mixture model. 

𝜼𝑮𝑴 = ∑ 𝜶𝑖⨀𝜼𝑖
𝑛𝑔
𝑖=1   

𝑴𝑮𝑴 = ∑ 𝜶𝑖⨀𝑴𝑖𝑛𝑔
𝑖=1 + ∑ 𝜶𝑖⨀(𝜼𝑖 − 𝜼𝑮𝑴)(𝜼𝑖 − 𝜼𝑮𝑴)

𝑻𝑛𝑔
𝑖=1   

(4-13) 

For a known non-Gaussian distribution, 𝜼𝑖, 𝑴𝑖, and 𝜶𝑖 are parameters that should be specified 

accurately to ensure the accuracy of the Gaussian mixture model. This work considers the Expectation-

Maximization (EM) algorithm164 to estimate those parameters164,165,166,167. A brief description of the EM 

algorithm is presented in appendix A. 

4.1.3 An Adopted Gaussian Sum Filter (GSF) for Non-Gaussian Process Uncertainties 

All the components in the Gaussian mixture (i.e., Equations (4-11) and (4-12)) are non-zero mean 

Gaussian. Therefore, the modified EKF shown in Equation (4-4) can be used to estimate the prior states 

PDF with respect to each of the 𝑛𝑔 components in the Gaussian mixture model of the process 

uncertainties. As these components are independent, GSF runs a set of parallel EKFs considering the 

𝑖th component of the Gaussian mixture at every time interval, as shown in Equation (4-14). The posterior 

estimation for each component follows the standard EKF scheme, as in Equation (3-5). Based on the 

conventional formulation of GSF93,96, the adopted GSF approach is as follows: 

Prior estimation for the 𝑖th component   

�̂�𝑘+1|𝑘
𝑖 = 𝑨𝑘

𝑖 �̂�𝑘|𝑘
𝑖 + 𝑩𝑘

𝑖 𝒖𝑘
𝑖 + 𝝁𝑖 

𝑷𝑘+1|𝑘
𝑖 = 𝑨𝑘

𝑖 𝑷𝑘|𝑘
𝑖 𝑨𝑘

𝑇 +𝑸𝑖 
(4-14) 

Posterior estimation for the 𝑖th component 
 

𝑲𝑘+1
𝑖 = 𝑷𝑘+1|𝑘

𝑖 𝑯𝑘+1
𝑖 𝑻

/(𝑯𝑘+1
𝑖 𝑷𝑘+1|𝑘

𝑖 𝑯𝑘+1
𝑖 𝑻

+ 𝑹) 

�̂�𝑘+1|𝑘+1
𝑖 = 

                �̂�𝑘+1|𝑘
𝑖 +𝑲𝑘+1

𝑖 (𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘
𝑖 , 𝒖𝑘

𝑖 )) 

(4-15) 
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𝑷𝑘+1|𝑘+1
𝑖 = (𝑰 − 𝑲𝑘+1

𝑖 𝑯𝑘+1
𝑖 )𝑷𝑘+1|𝑘

𝑖  

Point estimate for the system states: 
 

�̂�𝑘+1|𝑘+1
𝑮𝑺𝑭 = ∑ 𝛽𝑖�̂�𝑘+1|𝑘+1

𝑖𝑛𝑔𝑡
𝑖=1      

(4-16) 

𝑷𝑘+1|𝑘+1
𝑮𝑺𝑭 = ∑ 𝛽𝑖 [𝑷𝑘+1|𝑘+1

𝑖 + (�̂�𝑘+1|𝑘+1
𝑖 − �̂�𝑘+1|𝑘+1

𝑮𝑺𝑭 )(�̂�𝑘+1|𝑘+1
𝑖 − �̂�𝑘+1|𝑘+1

𝑮𝑺𝑭 )
𝑇
]

𝑛𝑔𝑡
𝑖=1   

(4-17) 

∑ 𝛽𝑖  
𝑛𝑔𝑡
𝑖=1 = 1;    𝛽𝑖 = ∏ 𝛼𝑙

𝑖𝑝(𝑙)𝑛𝑥
𝑙=1 ;    𝛼𝑙

𝑖𝑝(𝑙)
, 𝛽𝑖  ≥ 0; ∀𝑖𝑝 = 1,… , 𝑛𝑔(𝑙)   

(4-18) 

Note that GSF performs a set of EKFs for all possible combinations of the Gaussian components in the 

Gaussian mixture models representing the process uncertainties. That is, for a system with 𝑛𝑥 process 

uncertainty variables, GSF requires a total number of EKFs given by 𝑛𝑔𝑡 = ∏ 𝑛𝑔(𝑙)
𝑛𝑥
𝑙=1 . Note that 

𝑛𝑔(𝑙) denotes the number of Gaussian components in the Gaussian mixture model corresponding to 

process uncertainty 𝑙. This means that GSF needs to consider all the possible combinations between the 

Gaussian components of each process uncertainty 𝑙. That is, GSF increases the required computational 

time by ∏ 𝑛𝑔(𝑙)
𝑛𝑥
𝑙=1  when compared to the standard EKF. Moreover, 𝛽𝑖  is the weight assigned to the 

𝑖th EKF in the set of GSF to represent the posterior estimation of the states at each time interval. In 

addition, 𝛼𝑙
𝑖𝑝(𝑙)

 represents the weight corresponding to the 𝑖𝑝th component in the Gaussian mixture 

model of the 𝑙th process uncertainty variable. 𝑖𝑝(𝑙) denotes that the index of the Gaussian component 

for each process uncertainty can be different at each instance 𝑖. Note that for the applications where all 

the process uncertainties involved in the process follow the same PDF, the number of instances required 

to run EKFs would reduce to the number of Gaussian components in the representative Gaussian 

mixture model of this PDF, i.e., 𝑛𝑔. 

4.1.4 An Adaptive Gaussian Sum Filter (AGSF) 

One limitation in GSF is that it runs individual EKFs based on a single Gaussian component in the 

Gaussian mixture. That is, the 𝑖th EKF in the set evaluates the prior estimation �̂�𝑘+1|𝑘
𝑖  and 𝑷𝑘+1|𝑘

𝑖  based 

on the posterior PDF that resulted from performing 𝑖th EKF from the previous time interval 𝑘, i.e., �̂�𝑘|𝑘
𝑖  

and 𝑷𝑘|𝑘
𝑖 . This may lead to an accumulative error and eventually to an inaccurate state estimation in 

GSF. In particular, when the process uncertainty distribution is highly nonlinear or multi-modal, 
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performing independent EKFs and assuming that the process uncertainties are obtained from one 

Gaussian density in the mixture might be a biased assumption and lead to inaccurate estimations. This 

issue can be prevented by updating the prior estimation for each 𝑖th EKF, based on the available 

information of the overall posterior density of the states at time 𝑘, i.e., �̂�𝑘|𝑘
𝑮𝑺𝑭 and 𝑷𝑘|𝑘

𝑮𝑺𝑭, given in 

Equations (4-16) and (4-17). This method is referred to as Adaptive Gaussian Sum Filter (AGSF). The 

prior estimation in AGSF is estimated as follows: 

Prior estimation for the 𝑖th component   

�̂�𝑘+1|𝑘
𝑖 = 𝑨𝑘

𝑖 �̂�𝑘|𝑘
𝑮𝑺𝑭 + 𝑩𝑘

𝑖 𝒖𝑘
𝑖 + 𝝁𝑖 

𝑷𝑘+1|𝑘
𝑖 = 𝑨𝑘

𝑖 𝑷𝑘|𝑘
𝑮𝑺𝑭𝑨𝑘

𝑇 +𝑸𝑖 
(4-19) 

The “Posterior estimation” and the “Point estimate for states” are similar to the GSF algorithm 

presented in Equations (4-15)-(4-18). 

4.1.5 Abridged Gaussian Sum Extended Kalman Filter (AGS-EKF) 

Using the characteristics of the Gaussian mixture model presented in Equation (4-13), the proposed 

Abridged Gaussian Sum Extended Kalman Filter (i.e., AGS-EKF), avoids performing 𝑛𝑔 individual 

EKFs. To pursue this goal, AGS-EKF assumes that the random process uncertainty variable 𝝕𝑘 that 

follows an arbitrary non-Gaussian distribution can be approximated by a probability density that has 

the mean value and the covariance matrix as in a representative Gaussian mixture with model 

parameters defined as in Equation (4-13). That is, 𝒘𝑘~𝒩(𝝁
𝑮𝑴, 𝑸𝑮𝑴) for all 𝑘. Thus, given the 

modified EKF for non-zero mean Gaussian distributed process uncertainty (see section 4.1.1), the 

proposed AGS-EKF framework can be formulated as follows: 

Prior estimation  

�̂�𝑘+1|𝑘 = 𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 + 𝝁
𝑮𝑴 

𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨𝑘
𝑇 +𝑸𝑮𝑴 

(4-20) 

Posterior estimation  

𝑲𝑘+1 = 𝑷𝑘+1|𝑘𝑯𝑘+1
𝑇 /(𝑯𝑘+1𝑷𝑘+1|𝑘𝑯𝑘+1

𝑇 + 𝑹) 

�̂�𝑘+1|𝑘+1 = 

                �̂�𝑘+1|𝑘 +𝑲𝑘+1 (𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘 , 𝒖𝑘)) 

(4-21) 
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𝑷𝑘+1|𝑘+1 = (𝑰 − 𝑲𝑘+1𝑯𝑘+1)𝑷𝑘+1|𝑘 

where �̂�𝑘|𝑘 ∈ ℝ
𝑛𝑥 is the posterior estimation of states at time interval 𝑘. The proposed approach offers 

the same number of calculations (i.e., required computational cost) as in standard EKF. As a result, 

AGS-EKF can be an efficient scheme to improve the EKF performance, in particular for practical 

applications in chemical engineering. The performance of the proposed approach is compared with 

GSF, AGSF and standard EKF performances in section 4.2. 

4.2 Computational Experiments 

The current study performs state estimation using the proposed AGS-EKF scheme introduced in section 

4.1.5. In this section, the performance of the proposed method is compared with the estimations 

provided by standard EKF, GSF, and AGSF presented in sections 3.2, 4.1.3, and 4.1.4, respectively. 

The mean squared error (MSE) has been used as the main metric to perform such comparisons. The 

MSE for the 𝑚th state using the 𝑛th state estimation method is defined as follows:  

𝑀𝑆𝐸𝑥𝑚
(𝑛)
=
1

𝑡𝑓
∑ (�̂�𝑘,𝑚

(𝑛)
− 𝑥𝑘,𝑚)

2𝑡𝑓
𝑘=0   (4-22) 

where 𝑘 is the time index; 𝑡𝑓  is the final time interval considered in the experiments; the subscript 𝑚 

is the index of state in the vector of states 𝒙, i.e., 𝑚 ∈ {1, 2, … , 𝑛𝑥}; superscript 𝑛 denotes the estimation 

method, i.e., 𝑛 ∈ {EKF, GSF, AGSF, 𝐴𝐺𝑆 − 𝐸𝐾𝐹}; �̂�𝑘,𝑚
(𝑛)

 and 𝑥𝑘,𝑚 are scalars that provide the estimated 

and true values for the 𝑚th state at each time interval 𝑘 using the estimation method 𝑛, respectively. 

The computational experiments were implemented in Python 3.7 on a computer running Microsoft 

Windows Server 2016 standard. The computer was equipped with 16 GB RAM and Intel(R) Core(TM) 

i7-9700K CPU @ 3.60GHz. The discretization of the nonlinear dynamic process models was performed 

using the backward method. The performance of the proposed AGS-EKF was tested for a motivating 

example, a gas-phase reactor, the Williams-Otto reactor, and a wastewater treatment plant (WTP). The 

results obtained for each of these case studies are presented next. 

4.2.1 A Second-order Mathematical Example 

The first case study considered in this work is a case study adopted from 106 that is subjected to a 

constraint on the process uncertainty. This case study was selected from the literature as it has been 

shown that the standard EKF could not provide an accurate estimation for the constrained linear 
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model106. Given that this case study is a linear model, the sensitivity matrices 𝑨𝑘 and 𝑩𝑘 remain 

constant throughout time. Consequently, the standard EKF formulation becomes equivalent to the 

standard KF. Likewise, GSF and AGS-EKF are performed assuming a KF. However, to keep 

consistency in this study, the discussion presented in this section uses the term EKF when making a 

reference to those estimator schemes. The case study is a dimensionless constrained linear system 

defined as follows: 

𝒙𝑘+1 = [
0.99 0.2
−0.1 0.3

] 𝒙𝑘 + [
0
1
]𝜛𝑘;   

𝑦𝑘 = [1 −3]𝒙𝑘 + 𝑣𝑘;      

(4-23) 

𝜛𝑘~𝒩(0, 𝑄);  𝑄 = 1; 𝑣𝑘~𝒩(0, 𝑅); 𝑅 = 0.01; 𝒙0 = [
𝑥10
𝑥20
] = [

0
0
]; 𝑷0 = 𝑰  

𝜛𝑘 ≥ 0 (4-24) 

where 𝜛 and 𝑣 are the process uncertainty and the measurement noise signal, respectively. Both states 

in the states vector 𝒙, i.e., 𝑥1 and 𝑥2, need to be estimated. Moreover, 𝑦 denotes the only measurement 

of this system. The covariance matrix for the initial states, i.e., 𝑷0, is an identity matrix. The time 

interval considered for this study is set to 1. As shown in Equation (4-24), the process uncertainties are 

non-negative, which makes the distribution of the process uncertainties Non-Gaussian with non-zero 

mean. The EM method presented in 164  was used to approximate the corresponding PDF of the process 

uncertainty. The Gaussian mixture provided by EM is as follows: 

𝑝(𝜛𝑘) = 0.21 𝒩[𝜛𝑘;  0.18, 0.01] + 0.44 𝒩[𝜛𝑘;  0.66, 0.08]
+ 0.35 𝒩[𝜛𝑘;  1.37, 0.36] 

(4-25) 

Note that the number of Gaussian components in the Gaussian mixture model is arbitrary and should 

be chosen based on the non-Gaussianity of the density. Figure 4-1 shows that the PDF obtained by the 

Gaussian mixture presented in Equation (4-25) is an acceptable representation of the actual bounded 

distribution of the process uncertainty. Adding more Gaussian functions does not seem to improve the 

representation of the non-Gaussian function. The preliminary tests have been performed to attain an 

adequate number of Gaussian components such that the Gaussian model mixture used in the state 

estimation schemes can represent the non-Gaussian process uncertainties, accurately. 
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Figure 4-1: Histogram for the true non-Gaussian process uncertainty and the Gaussian mixture approximation 

Figure 4-2 shows the state estimates provided by the estimation schemes presented in section 4.1 (and 

the standard EKF presented in section 3.2). As it shown in this figure, standard EKF was not be able to 

estimate the states accurately. On the other hand, the modified EKF formulation used in the GSF 

frameworks, i.e., GSF and AGSF, as well as the proposed AGS-EKF approach made a significant 

improvement in the accuracy of the estimation. In addition, the variability in the estimation of 𝑥1 

provided by AGS-EKF is smaller than that observed in AGSF. Table 4-1 presents the MSE in the 

estimation of 𝑥1 and 𝑥2 (i.e., 𝑀𝑆𝐸𝑥1
(𝑛)

 and 𝑀𝑆𝐸𝑥2
(𝑛)

) using the different estimation methods. As expected, 

standard EKF presents the largest errors in the estimation whereas the proposed approach (AGS-EKF) 

has the smallest MSE for 𝑥1, i.e., both GSF and AGSF resulted in an MSE for x1 that are 2% and 82% 

larger than that obtained for AGS-EKF, respectively. As for 𝑥2, AGS-EKF exhibits a similar 

performance to that obtained by GSF; however, the most accurate estimation is provided by AGSF, as 

shown in Table 4-1. These results show that the proposed AGS-EKF schemes leads to a significant 

improvement in the performance of the EKF for an illustrative example involving bounded process 

uncertainty. 
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Figure 4-2: Estimation results based on the state estimation approach 

. 

Table 4-1: MSE for 𝑥1 and 𝑥2 using different estimation schemes 

Estimation method (n) 
𝑀𝑆𝐸𝑥1

(𝑛)
 𝑀𝑆𝐸𝑥2

(𝑛)
 

Standard EKF 21.81 2.43 

GSF 0.97 0.89 

AGSF 1.78 0.56 

AGS-EKF 0.95 0.89 

 

4.2.2 Gas-phase Reactor 

As the second case study, a gas-phase reactor was considered that is a typical case study in the field of 

state estimation to show the performance of Kalman filters in the presence of nonlinear 

distributions3,84,97,98. In this process, an irreversible reaction, i.e., 𝐴
𝑘𝑟=16
→    𝐵, occurs in the Gas-phase 

reactor. The process is as follows: 

𝑑𝑝𝐴
𝑑𝑡

= −2𝑘𝑟𝑝𝐴
2 

𝑑𝑝𝐵
𝑑𝑡

= 𝑘𝑟𝑝𝐴
2 

𝑦𝑘 = [1 1][𝑝𝐴,𝑘 , 𝑝𝐵,𝑘]
𝑇
+ 𝑣𝑘;      

(4-26) 

𝑣𝑘~𝒩(0, 𝑅); 𝑅 = 0.01;  𝑝𝐴0 = 0.1; 𝑝𝐵0 = 4.5; 𝑷0 = 𝑰 
 

where states of the system, i.e., 𝑝𝐴 and 𝑝𝐵, are the partial pressures of species A and B, respectively. 

Accordingly, both states can only take non-negative values. The time interval considered in this study 

is 0.1s. In this work, the initial conditions of the states, process uncertainties and the measurement noise 

signal are defined a priori based on the expected operating region for this process. The process 

uncertainty associated with the partial pressure of reactant A is assumed to follow a multi-modal 

distribution, as presented in Figure 4-3(a). Hence, a Gaussian mixture model that consists of three 

Gaussian components is used to approximate this multi-modal distribution. Moreover, the process 
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uncertainty variable associated with 𝑝𝐵 is described with a Gamma distribution as shown in Figure 4-

3(b). In order to approximate this non-Gaussian distribution with a proper Gaussian mixture model, the 

EM algorithm has been used to find the characteristics of each of the two Gaussian components 

considered for this mixture. Similar to the illustrative example, preliminary tests were performed to 

obtain an adequate number of Gaussian components that are required in the Gaussian mixture models 

of each of the process uncertainties. 

  

Figure 4-3: Histogram for the true non-Gaussian distribution and the Gaussian mixture approximation of the 

process uncertainty associated with (a) 𝑝𝐴; (b) 𝑝𝐵 

For the process uncertainties shown in Figure 4-3, the characteristics of the Gaussian mixture model 

used in AGS-EKF algorithm are as follows:   

𝜇𝐴
𝐺𝑀 = ∑ 𝛼𝐴

𝑖 𝜇𝐴
𝑖3

𝑖=1 = −1.12𝑒 − 3  

𝜇𝐵
𝐺𝑀 = ∑ 𝛼𝐵

𝑖 𝜇𝐵
𝑖2

𝑖=1 = 2.03𝑒 − 2  

𝑉𝑎𝑟𝐴
𝐺𝑀 = ∑ 𝛼𝐴

𝑖𝑉𝑎𝑟𝐴
𝑖3

𝑖=1 + ∑ 𝛼𝐴
𝑖 (𝜇𝐴

𝑖 )
23

𝑖=1 − (∑ 𝛼𝐴
𝑖 𝜇𝐴
𝑖3

𝑖=1 )
2
= 5.65𝑒 − 5  

(4-27) 

𝑉𝑎𝑟𝐵
𝐺𝑀 = ∑ 𝛼𝐵

𝑖 𝑉𝑎𝑟𝐵
𝑖2

𝑖=1 + ∑ 𝛼𝐵
𝑖 (𝜇𝐵

𝑖 )
22

𝑖=1 − (∑ 𝛼𝐵
𝑖 𝜇𝐵
𝑖2

𝑖=1 )
2
= 9.44𝑒 − 4  

𝝁𝑮𝑴 = [𝜇𝐴
𝐺𝑀, 𝜇𝐵

𝐺𝑀]𝑇;       𝑸𝑮𝑴 = 𝑑𝑖𝑎𝑔([𝑉𝑎𝑟𝐴
𝐺𝑀, 𝑉𝑎𝑟𝐵

𝐺𝑀])  
 

Note that 𝑛𝑔 is 3 and 2, for the uncertainty in the states 𝑝𝐴 and 𝑝𝐵, respectively. On the other hand, 

GSF (and AGSF) algorithm runs six individual EKFs, i.e., there exists 6 different combinations of the 

Gaussian components in the Gaussian mixture models.  

Figure 4-4 highlights the results for the gas-phase reactor. The inner graphs in Figures 4-4(a) and 4-

4(b) show the actual scale of the states whereas the actual graphs present the same results for a limited 

scale of the states to highlight the differences in performance between the estimation schemes 

(b) (a) 
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considered in this work. As shown in this figure, the estimation provided by standard EKF deviates 

from the plant output. This inaccurate estimation was expected as standard EKF assumes that the 

process uncertainties follow Gaussian distribution, which cannot hold for the process uncertainties 

considered in this case study. Figure 4-4 also shows that the estimation provided by GSF is unstable. 

This is mostly because each EKF in the set of GSF only considers a small region of the actual non-

Gaussian distribution of the process uncertainties. As a result, there are some EKFs in the set of GSF 

that evolve in the infeasible region of this process, i.e., provide negative valued estimates for the partial 

pressures for the state 𝑝𝐴. The AGSF presented in section 4.1.4 improves the estimation of the GSF 

significantly, as it corrects the initialization of each of the EKFs in the set of AGSF at every time 

interval, based on the point estimation of the states at the previous time interval. However, AGSF still 

needs to perform the EKF six times, which is computationally expensive when compared to standard 

EKF. On the other hand, the proposed AGS-EKF scheme reduces the estimation error for 𝑝𝐴 and 𝑝𝐵 by 

two and four orders of magnitude, respectively, when compared to the standard EKF (see Table 4-2), 

while offers the same required number of calculations as needed in standard EKF. Table 4-2 

summarizes the estimation error for the various estimation schemes conducted to this study and further 

confirms that the proposed AGS-EKF provides acceptable estimates in short computational times. 

  

Figure 4-4: Estimation provided by various estimation schemes (a) 𝑝𝐴; (b) 𝑝𝐵 

…. 

Table 4-2: MSE for 𝑝𝐴 and 𝑝𝐵 using different estimation schemes 

Estimation method (n) 𝑀𝑆𝐸𝑝𝐴
(𝑛)

 𝑀𝑆𝐸𝑝𝐵
(𝑛)

 

Standard EKF 1.09e-3 1.35 

GSF 4.48e+11 8.48e+11 

AGSF 3.14e-5 3.47e-4 

(a) (b) 
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AGS-EKF 2.74e-5 4.3e-4 

The results presented above are based on the assumption that the initial guess in the estimation schemes 

is the same as the true value of the initial states. Note that the same observations obtained from Figure 

4-4 and Table 4-2 (considering �̂�0 = 𝒙0) hold if the state estimation schemes are initialized at a value 

different than the true states (�̂�0 ≠ 𝒙0). To confirm this observation, Figure 4-5 shows the state 

estimates provided using standard EKF, GSF, and AGS-EKF for the case that the initial estimate for 

each state is set to 95% of the true value of the corresponding initial state. As shown in this figure, the 

proposed AGS-EKF improves the estimation significantly when compared to standard EKF and GSF. 

Moreover, AGSF provides the same accurate estimates as given by AGS-EKF but at the expense of 

additional computational costs.   

  

Figure 4-5: Estimation provided by various estimation schemes when initial estimates are at 95% of the true 

initial states (a) 𝑝𝐴; (b) 𝑝𝐵 

4.2.3 Williams-Otto Reactor 

A case study featuring the Williams-Otto reactor156,157 is considered next. The Williams-Otto reactor is 

a highly nonlinear dynamic system that is widely used in control and state/parameter estimation 

studies168,169,170,171. Therefore, this model is a suitable candidate to test the performance of the proposed 

AGS-EKF framework. The following reactions take place inside the reactor: 

𝐴 + 𝐵
𝑘1
→ 𝐶 𝑘1 = 1.6599 × 10

6𝑒−6666.7/𝑇𝑅  𝑠−1 

𝐵 + 𝐶
𝑘2
→ 𝑃 + 𝐸 𝑘2 = 7.2117 × 10

8𝑒−8333.3/𝑇𝑅  𝑠−1 

𝐶 + 𝑃
𝑘3
→𝐺 𝑘3 = 2.6745 × 10

12𝑒−11111/𝑇𝑅  𝑠−1 

The dynamic model for the Williams-Otto reactor is as follows: 

(b) 
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𝑊
𝑑𝑋𝐴
𝑎𝑡

= 𝐹𝐴 − (𝐹𝐴 + 𝐹𝐵)𝑋𝐴 − 𝑟1 

(4-28) 

𝑊
𝑑𝑋𝐵
𝑎𝑡

= 𝐹𝐵 − (𝐹𝐴 + 𝐹𝐵)𝑋𝐵 − 𝑟1 − 𝑟2 

𝑊
𝑑𝑋𝐶
𝑎𝑡

= −(𝐹𝐴 + 𝐹𝐵)𝑋𝐶 + 2𝑟1 − 2𝑟2 − 𝑟3 

𝑊
𝑑𝑋𝐸
𝑎𝑡

= −(𝐹𝐴 + 𝐹𝐵)𝑋𝐸 + 𝑟2 

𝑊
𝑑𝑋𝐺
𝑎𝑡

= −(𝐹𝐴 + 𝐹𝐵)𝑋𝐺 + 1.5𝑟3 

𝑊
𝑑𝑋𝑃
𝑎𝑡

= −(𝐹𝐴 + 𝐹𝐵)𝑋𝑃 + 𝑟2 − 0.5𝑟3 

𝑟1 = 𝑘1𝑋𝐴𝑋𝐵𝑊;  𝑟2 = 𝑘2𝑋𝐵𝑋𝐶𝑊;  𝑟3 = 𝑘3𝑋𝐶𝑋𝑃𝑊 

where 𝑊 = 2104.7𝑘𝑔 is the mass hold up of the reactor, 𝑇𝑅 = 366.05 𝐾 is the temperature inside the 

reactor, and 𝐹𝐴 and 𝐹𝐵 are the mass flowrates of the reactants A and B, respectively. 𝐹𝐵 = 6.1 𝑘𝑔/𝑠, 

and 𝐹𝐴 is the main source of disturbances in the system and has a nominal value of 1.8 𝑘𝑔/𝑠. Hence, a 

random disturbance with unit standard deviation is imposed to 𝐹𝐴. The state variables for the system 

are 𝑋𝐴, 𝑋𝐵, 𝑋𝐶, 𝑋𝐸, 𝑋𝐺, and 𝑋𝑃, which are the mass fractions of the corresponding chemical 

components. Moreover, online measurements are assumed to be available for 𝑋𝐴, 𝑋𝐵, and 𝑋𝑃, whereas 

𝑋𝐶, 𝑋𝐸, and 𝑋𝐺 are the states that need to be estimated. Note that the linear observability for the states 

𝑋𝐴, 𝑋𝐵, and 𝑋𝑃 was confirmed. That is, the Jacobian matrix for this system around the initial operating 

point considered in this study has been evaluated and correspondingly, the observability matrix at that 

initial condition was calculated. The resulting linear observability matrix is a full rank matrix (not 

shown for brevity). In addition, the measurement noise signals are zero-mean random variables; their 

corresponding standard deviations are set to 10% of the nominal steady-state values of the states. The 

nominal values of the states are reported in Table B-1 in the Appendix B. The Williams-Otto reactor 

considered in this study involves random independent process uncertainties that follow a uniform 

distribution. Since the states of the system are mass fractions bounded in the interval [0,1], this case 

study assumes that the process uncertainties associated with each of states follow a single uniform 

distribution. Moreover, the time interval used to discretize the nonlinear problem is set to 1 s. Although 
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the Williams-Otto reactor model is subjected to bounds on the states, i.e., non-negative mass fractions, 

these feasibility constraints are not strictly enforced in the present estimation since the main interest of 

this research is to focus on the non-Gaussian process uncertainties. Nevertheless, the initial conditions 

of the states, the additive uncertainties, disturbances, and measurement noise signals are selected to 

ensure feasible operation of the Williams-Otto reactor. 

Figure 4-6 shows both the true and the approximated the process uncertainties associated with the state 

variables of the system. Part (a), (b), and (c) of this figure represent the Gaussian mixture model 

obtained by the EM when three, five, and ten Gaussian components were considered in the mixture, 

respectively. Preliminary tests have shown that a Gaussian mixture model featuring three Gaussian 

components is an adequate representation of the uniformed process uncertainties. Therefore, the 

Gaussian mixture model involving three components (i.e., Figure 4-6(a)) is used to accomplish this 

study. However, to make this study comprehensive, a brief discussion on the sensitivity of AGS-EKF 

to the other Gaussian mixture models shown in Figure 4-6 is presented at end of this section. 

   

Figure 4-6: Uniform probability density of the process uncertainties in the Williams-Otto reactor compared to 

the approximated density by Gaussian mixture model involving (a) three Gaussian components; (b) five 

Gaussian components; (c) ten Gaussian components 

Figures 4-7(a), (c), (e) compares the performance of AGS-EKF with standard EKF, GSF, AGSF, for 

estimating the states 𝑋𝐶, 𝑋𝐸, and 𝑋𝐺, respectively. Likewise, Figures 4-7(b), (d), (f) shows the estimates 

provided by each of the EKFs in the set of GSF and AGSF for 𝑋𝐶, 𝑋𝐸, and 𝑋𝐺, respectively. Note that 

GSF-G1, GSF-G2, and GSF-G3 represents the estimations provided by first, second, and third EKFs 

in the set of GSF, respectively. Likewise, AGSF-G1, AGSF-G2, and AGSF-G3 are the estimations 

resulting from performing the first, second, and third EKFs in the AGSF set, respectively. Moreover, 

Table 4-3 provides the corresponding MSE obtained for each estimation method. 

According to the results shown in Figure 4-7(a) and Table 4-3, AGS-EKF accomplished the estimation 

of 𝑋𝐶 at the smallest error compared to the rest of the estimation schemes. However, the error in the 

estimation of 𝑋𝐶 provided by standard EKF is relatively small. The acceptable performance of the 

(a) (b) (c) 
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standard EKF for 𝑋𝐶 is mostly due to the nature of the system since this state is highly related to the 

measurable states of the system. This can be verified by analyzing the value of the Kalman gain for this 

state 𝑋𝐶, which is in the order of 1e-4 and is relatively a large number when compared to the 

corresponding Kalman gain for the other state variables of the system (in the order of 1e-10). In general, 

the larger the Kalman gain, the more the estimation relies on the measurements and the less weight the 

method places on the process model (i.e., prior estimation). Thus, the standard EKF for 𝑋𝐶 is not 

expected to lose performance due to the lack of a priori knowledge of the proper distribution of the 

uncertainties since the estimation of 𝑋𝐶 highly depends on the available measurements in the system 

and not on the prior estimation. 

The Kalman gain is in the order of 1e-8 to 1e-10 for the other unknown states, i.e., 𝑋𝐸 and 𝑋𝐺, 

respectively; this implies that the estimation framework is very sensitive to the accuracy of the process 

model (i.e., prior estimation) and the provided Gaussian mixture for the process uncertainty variables. 

Therefore, the expectation is that under the uniform distribution of the process uncertainties (Figure 4-

6(a)), the state estimation using the standard EKF may fail to provide adequate estimates to the 

unknown states in the Williams-Otto reactor. Thus, the modified EKF estimation schemes introduced 

in section 4.1 can be used to improve the state estimation (i.e., GSF, AGSF, AGS-EKF). As expected, 

Figures 4-7(c) and 4-7(e) indicate that the estimations provided by standard EKF significantly deviates 

from the true states. This outcome can be quantified in terms of the corresponding MSE evaluated for 

each estimation scheme, as shown in Table 4-3. For instance, the error in the estimation of 𝑋𝐸 for the 

case of using the standard EKF as the estimator, i.e., 𝑀𝑆𝐸𝑋𝐸
(𝐸𝐾𝐹)

, is 8.2%, 8.3% and 8.4%higher than 

𝑀𝑆𝐸𝑋𝐸
(𝐺𝑆𝐹)

, 𝑀𝑆𝐸𝑋𝐸
(𝐴𝐺𝑆𝐹)

 and 𝑀𝑆𝐸𝑋𝐸
(𝐴𝐺𝑆−𝐸𝐾𝐹)

, respectively. The calculated MSE for GSF, AGSF, and 

AGS-EKF are similar with a tolerance of 0.1%. This outcome suggests that these three approaches have 

the same performance in the estimation of 𝑋𝐸 and 𝑋𝐺, while the required computational costs by the 

proposed approach (AGS-EKF) is three times smaller than that needed by GSF and AGSF. This is due 

to the fact that the proposed AGS-EKF needs to perform EKF only once whereas GSF and AGSF 

requires to perform EKF three times. As outlined above, the number of Gaussian components in the 

Gaussian mixture representing the process uncertainty density in this case study is set to 3; hence the 

corresponding reduction in the number of calculations performed by AGS-EKF.  

Note that for the mass fractions of components C, E and G, i.e., Figures 4-7(a), 4-7(c) and 4-7(e), AGSF 

improved the estimations of each of the EKFs in its set (when compared to GSF). The reason of this 

improvement can be explained by looking into the estimations provided by each of the EKFs in the set 
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of GSF and AGSF. As shown in Figures 4-7(b), 4-7(d), and 4-7(f), the third EKF in the GSF’s set 

(denoted as GSF-G3) provides negative valued estimations for the mass fractions for the chemical 

compositions, which is an infeasible estimation. Moreover, GSF-G1 resulted in estimations that are 

greater than 1 in the estimation of the states 𝑋𝐸 and 𝑋𝐺, which is an infeasible value for mass fraction. 

That is, the random uncertainties that are explicitly represented by the first and the third Gaussian 

component in the Gaussian mixture deviate the process to an infeasible region, hence the infeasible 

estimation resulted by GSF-G1 and GSF-G3. On the other hand, AGSF is able to reduce the effect of 

these infeasible estimates on the overall point estimates through a modification in the a priori 

information of the individual EKFs in the AGSF set. That is, in the AGSF framework, the infeasible 

estimations resulted by performing independent EKFs is corrected based on the available point 

estimation of the states at each time interval. Note that AGSF initializes the prior estimation step of all 

the EKFs in the set using the point estimates evaluated at the end of each time interval. This implies 

that AGSF offers useful features for the case where system operates far from the process constraints. 

Moreover, the proposed AGS-EKF approach avoids performing the state estimation under only the first 

or the last Gaussian component in the Gaussian mixture model of the process uncertainties. The first 

Gaussian component suggests that the process uncertainties in the system are only negative, similarly, 

the last Gaussian component in the mixture represents only the positive valued process uncertainties 

presented in the actual non-Gaussian distribution (see Figure 4-6). However, AGS-EKF eliminate these 

biased estimations by considering that the process uncertainties can be drawn randomly from the overall 

Gaussian mixture model.  

 

(a) 
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(b) 

(c) 

(d) 
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Figure 4-7: Estimation provided by various estimation schemes for mass fraction of the component (a), 

(b), 𝑋𝐶; (c), (d) 𝑋𝐸; (e), (f) 𝑋𝐺 

. 

 Table 4-3: MSE for 𝑋𝐶, 𝑋𝐸, and 𝑋𝐺using different estimation schemes 

Estimation method (n) 𝑀𝑆𝐸𝑋𝐵
(𝑛)

 𝑀𝑆𝐸𝑋𝐶
(𝑛)

 𝑀𝑆𝐸𝑋𝐸
(𝑛)

 𝑀𝑆𝐸𝑋𝐺
(𝑛)

 

Standard EKF 2.3e-4 1.5e-4 9.8e-2 1.6e-1 

GSF 1.3e-3 4.6e-5 3.3e-4 9.0e-3 

AGSF 1.5e-4 1.7e-5 8.2e-5 3.8e-4 

AGS-EKF 1.1e-4 1.7e-5 6.7e-5 3.7e-4 

(e) 

(f) 
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This observation suggests that for an unbounded state estimation similar to that considered in the 

current case study, GSF may not be a proper approach to estimate states that operate closely to their 

feasibility constraints. This issue can be addressed by considering a constrained estimation scheme for 

GSF, which is beyond the scope of the current work. Nevertheless, the proposed AGS-EKF approach 

provides accurate estimations to all states of the system. Therefore, this estimation scheme can perform 

closely to the actual process as they both are subjected to similar process uncertainties. In the current 

study, the required computational costs in GSF and AGSF are more than three times higher than that 

in AGS-EKF and standard EKF. Therefore, the proposed AGS-EKF scheme not only improves the 

accuracy of estimations of EKF, but also requires relatively lower computational costs (the same as 

needed in standard EKF) because it only performs EKF once. 

4.2.3.1 Sensitivity Analysis 

As mentioned earlier in this section, a sensitivity analysis has been conducted to investigate the required 

number of Gaussian components to obtain an adequate Gaussian mixture model as the approximation 

of the true non-Gaussian PDF of the process uncertainties. To perform this analysis, three Gaussian 

mixture models involving three, five and ten Gaussian components have been considered, as presented 

in Figures 4-6(a), 4-6(b), and 4-6(c), respectively. Figure 4-8 shows the performance of AGS-EKF 

under each of these assumptions. Here “𝑛𝑔 = 3”, “𝑛𝑔 = 5”, and “𝑛𝑔 = 10” denotes the estimated 

states using AGS-EKF subjected to Gaussian mixture model contains three, five and ten Gaussian 

components, respectively. Based on the results shown in Figure 4-8, the estimation error remains the 

same by a tolerance of 0.001%. Therefore, three Gaussian components provide an accurate enough 

approximation of the non-Gaussian process uncertainties in this study. Hence, this selection to perform 

the current case study using “𝑛𝑔 = 3” since additional Gaussian components increases computational 

costs without a significant improvement in the accuracy of the state estimation. 

   

Figure 4-8: Estimation provided by various estimation schemes for mass fraction of the component (a) 𝑋𝐶; 

(b) 𝑋𝐸; (c) 𝑋𝐺 

(a) (b) (c) 
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4.2.4 Wastewater Treatment Plant (WTP) 

To further investigate the performance of the proposed AGS-EKF scheme, an industrial-scale 

wastewater treatment plant located in Manresa, Spain, is considered next. Current WTPs involve 

Nitrification/Denitrification processes172,173, however, these processes have not been included in this 

case study for simplicity. Previous studies on WTP have shown that the standard EKF becomes unstable 

in the presence of the non-Gaussian process uncertainties37. Therefore, this system has been chosen to 

investigate the performance of AGS-EKF with respect to other estimation schemes presented in section 

4.1 and the standard EKF (see section 3.2) under these conditions. To pursue this goal, the WTP 

considered in this study is subject to random process uncertainties with asymmetric bimodal densities. 

Figure 4-9 illustrates a simplified flowsheet for the WTP considered in this study. In general, WTP 

aims to remove biodegradable pollutants (substrate) from the wastewater. This process is carried on in 

a bioreactor where substrate is converted to sludge and biomass. This process requires oxygen and 

biomass. Thus, an aeration turbine in the bioreactor is responsible for providing the required oxygen 

for this process, whereas a fresh biomass stream is entering the bioreactor to accomplish the reaction. 

The outlet stream of the bioreactor involving the activated sludge and biomass is sent to a decanter to 

settle down and remove the sludge from the treated water158.  

 

Figure 4-9: Wastewater treatment plant flowsheet  

This process involves six states that are the biomass concentration (𝑥𝑤), the organic substrate (𝑠𝑤) and 

the dissolved oxygen concentration (𝑐𝑤) inside the bioreactor, as well as the biomass concentration as 

the different layers in the decanter (i.e., 𝑥𝑑, 𝑥𝑏, 𝑥𝑟). Equation (4-29) represent the nonlinear model of 

WTP158.  
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𝑑𝑥𝑤
𝑑𝑡

= 𝜇𝑤𝑦𝑤
𝑥𝑤𝑠𝑤
𝑘𝑠 + 𝑠𝑤

− 𝑘𝑑
𝑥𝑤
 

𝑠𝑤
− 𝑘𝑐𝑥𝑤 +

𝑞

𝑉𝑟
(𝑥𝑖𝑟 − 𝑥𝑤) (4-29) 

𝑑𝑠𝑤
𝑑𝑡

= −𝜇𝑤
𝑥𝑤𝑠𝑤
𝑘𝑠 + 𝑠𝑤

+ 𝑓𝑑𝑘𝑑
𝑥𝑤
 

𝑠𝑤
+ 𝑓𝑑𝑘𝑐𝑥𝑤 +

𝑞

𝑉𝑟
(𝑠𝑖𝑟 − 𝑠𝑤)  

𝑑𝑥𝑑
𝑑𝑡

=
1

𝐴𝑑𝑙𝑑
(𝑞𝑖 − 𝑞𝑝)(𝑥𝑏 − 𝑥𝑑) −

1

𝑙𝑑
vsd  

𝑑𝑥𝑏
𝑑𝑡

=
1

𝐴𝑑𝑙𝑏
(𝑞𝑖 + 𝑞2 − 𝑞𝑝)(𝑥𝑤 − 𝑥𝑏) +

1

𝑙𝑏
(vsd − vsb)  

𝑑𝑥𝑟
𝑑𝑡
=

1

𝐴𝑑𝑙𝑟
𝑞2(𝑥𝑏 − 𝑥𝑟)(𝑥𝑏 − 𝑥𝑑) +

1

𝑙𝑟
vsb  

𝑑𝑐𝑤
𝑑𝑡

= 𝑓𝑘𝑘𝑙𝑎(𝑐𝑠 − 𝑐𝑤) − 𝑘01𝜇𝑤
𝑥𝑤𝑠𝑤
𝑘𝑠 + 𝑠𝑤

−
𝑞

𝑉𝑟
𝑐𝑤  

Model parameters for this process can be found elsewhere158. Online measurements are assumed to be 

available for 𝑠𝑤, 𝑐𝑤, and 𝑥𝑑. Note that the linear observability of system was confirmed, i.e., the 

observability matrix is full-rank (not shown for brevity). The Jacobian and sensitivity matrices required 

to form the observability matrix for WTP are presented in Appendix E. The random measurement noise 

signals follow zero-mean Gaussian distributions where the standard deviations are set to 10% of the 

nominal steady-state values of the states presented in Table B-2 in Appendix B. Moreover, a 1h 

sampling interval is considered for this process. Similar to the Williams-Otto reactor, WTP is subjected 

to feasibility constraints, i.e., non-negative concentrations, which has not been explicitly enforced 

during the present estimation. 

The histograms for the asymmetric bimodal PDF of the process uncertainties in WTP are presented in 

Figure 4-10. Moreover, the red lines in Figure 4-10 illustrate the Gaussian mixture provided by the EM 

algorithm, which approximate the true non-Gaussian densities. Preliminary tests have been conducted 

to find the proper number of required Gaussian components in the mixture model to achieve both 

efficiency and accuracy. The current Gaussian mixture model for each of the process uncertainty 

variables involves two Gaussian components. 
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Figure 4-10: Asymmetric bimodal probability density of the process uncertainties in WTP compared to the 

approximated density by Gaussian mixture model 

Based on the process uncertainties presented in Figure 4-10, GSF and AGSF needs to perform 64 EKFs 

(i.e., 26) at each time interval to provide the point estimates. Figure 4-11 highlights the estimation 

results for the unknown states in the WTP, i.e., 𝑥𝑤, 𝑥𝑏, and 𝑥𝑟. According to Figures 4-11(a), 4-11(b), 

and 4-11(c), standard EKF failed after at iteration 11 since this method considers zero-mean Gaussian 

PDFs for the process uncertainties while the actual process uncertainties in the system follow non-

Gaussian densities, as shown in Figure 4-10. That is, poor estimates were used to update the Jacobian 

matrix, which eventually made the Jacobian matrix unstable, i.e., positive eigenvalues. Consequently, 

the EKF framework became unstable and was unable to compute the estimates. Both AGSF and AGS-

EKF estimated the states accurately. As shown in Table 4-4, AGS-EKF improved the accuracy in the 

estimation of 𝑥𝑤, 𝑥𝑏, 𝑥𝑟, by several orders of magnitude when compared to standard EKF. Another 

feature that can be drawn from the results presented in Figure 4-11 and Table 4-4 is that GSF resulted 

into instability after 26 iterations. For instance, the evaluate of MSE in the case of GSF is in the order 

of 1e+9 and 1e+6 for 𝑥𝑏, and 𝑥𝑟, respectively. Similar to the discussion presented in section 3.3, the 

divergence of GSF occurs because this method performs individual EKFs, i.e., each EKF only uses one 

of combination of the Gaussian components in the process uncertainties mixture models. As a result, 

there are several EKFs in the set of GSF who perform state estimation using the process uncertainties 

drawn from the edge of the PDFs. These EKFs drive the system to the estimates into infeasibility region, 

which eventually leads to an infeasible point estimates and consequently a divergence in GSF. As in 

the case of the Williams-Otto reactor, AGSF uses the overall point estimate as a priori information to 

correct the biased estimations in GSF. Hence, AGSF results in acceptable estimates. Nevertheless, the 
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proposed AGS-EKF is not performing individual EKFs who operates under the extreme partition of the 

process uncertainty distribution, e.g., combination of the Gaussian components that only draws large 

negative random values from the non-Gaussian process uncertainties’ PDF. That is, AGS-EKF uses the 

characteristics of the overall non-Gaussian distribution of the process uncertainties and run the modified 

EKF in which random process uncertainties are drawn from the general Gaussian mixture model. Thus, 

AGS-EKF is able to provide an accurate estimation. For instance, according to Table 4-4, the error in 

the estimation of states 𝑥𝑏 and 𝑥𝑟 provided by AGS-EKF is reduced by 4 and 2 orders of magnitudes 

when compared to the GSF estimation scheme, respectively. 

 

 

 

(a) 

(b) 
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Figure 4-11: Estimation provided by various estimation schemes (a), (b), biomass concentration in the 

bioreactor 𝑥𝑤; (c), (d) biomass concentration in the second layer of the decantor 𝑥𝑏; (e), (f) biomass 

concentration in the bottom layer of the decantor 𝑥𝑟 

…. 

Table 4-4: MSE for 𝑥𝑤, 𝑥𝑏, and 𝑥𝑟 using different estimation schemes 

Estimation method (n) 𝑀𝑆𝐸𝑥𝑤
(𝑛)

 𝑀𝑆𝐸𝑥𝑏
(𝑛)

 𝑀𝑆𝐸𝑥𝑟
(𝑛)

 

Standard EKF 2.8e+5 5.7e+11 2.3e+12 

GSF 2.1e+4 2.0e+9 4.0e+6 

AGSF 1.4e+4 9.1e+4 6.4e+4 

AGS-EKF 3.4e+4 1.5e+5 6.2e+4 

The results presented above for the WTP are based on the assumption that the estimation schemes start 

from the true initial conditions. To further confirm the performance of the proposed estimation scheme, 

Figure 4-12 presents the state estimates provided by the estimation schemes when the initial guess 

provided to the estimators is 5% smaller than the true value of states at the initial time interval. As 

expected, the performance and outcomes observed for each state estimation scheme is similar to that 

obtained for the previous scenario shown in Figure 4-11, i.e., both the proposed AGS-EKF and AGSF 

improved significantly the estimation accuracy when compared to standard EKF and GSF. Note that 

AGSF is a computationally expensive scheme while AGS-EKF does not increase the computational 

costs thus making it a more attractive estimation method. 

(c) 
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.  

 

 

(b) 

(c) 

(a) 
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Figure 4-12: Estimation provided by various estimation schemes that are initilized by 95% of the true initial 

states (a), (b), biomass concentration in the bioreactor 𝑥𝑤; (c), (d) biomass concentration in the second layer 

of the decantor 𝑥𝑏; (e), (f) biomass concentration in the bottom layer of the decantor 𝑥𝑟 

The main advantage of the proposed AGS-EKF approach when compared to AGSF is that it only 

performs one EKF, regardless of how many Gaussian components are present in the Gaussian mixture 

models of the process uncertainties. On the other hand, the number of EKFs in the set of AGSF (and 

GSF) increases by both the number of Gaussian components in the mixture and the size of the process 

(number of states and consequently number of process uncertainties associated with the states). Table 

4-5 presents the averaged CPU time reported for one iteration of the state estimation using AGS-EKF, 

AGSF (and GSF), and standard EKF. The values reported represents the actual and normalized CPU 

times for each approach considering a parallelization in the GSF (and AGSF) simulation, i.e., EKFs in 

the set are performed in parallel for each time interval. The normalization is performed based on the 

average CPU time reported for the case of performing standard EKF. This table shows that the CPU 

time for the standard EKF and AGS-EKF are the same. The largest CPU time is for the case of AGSF 

(and GSF), which is 5 times larger than that reported for AGS-EKF (and standard EKF).  

Table 4-5: Averaged CPU time reported for different estimation schemes 

Estimation method Averaged (Normalized) CPU time  

Standard EKF 0.0011 s (1) 

GSF and AGSF 0.0055 s (5) 

AGS-EKF 0.0011 s (1) 

To generate the results presented in Table 4-5, the 8 cores of the computer used for this case study to 

parallelize the AGSF (and GSF) schemes. WTP involves six process uncertainty variables where each 

of these variables belong to a Gaussian mixture model that only requires two Gaussian components. 

Therefore, AGSF (and GSF) requires running 64 EKFs to estimate the states at each time interval. 

However, a larger set of EKFs would be required to perform AGSF (and GSF) for larger applications. 

For instance, if the Gaussian mixture models consists of two Gaussian components that describe the 

process uncertainties associated with the state of a large-scale model featuring 𝑛𝑥 states variables, then 

GSF would need to perform a set of 2𝑛𝑥 EKFs to provide the online estimation of the states. This may 

make the problem highly intensive, particularly when this approach is implemented online for closed-

loop applications. On the other hand, AGS-EKF may provide the similar accuracy as in AGSF at the 
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same required CUP time as in standard EKF thus making it quite attractive for online estimation and 

control. 

4.3 Summary 

This chapter presented a novel EKF-based state estimation scheme (AGS-EKF) for nonlinear 

applications where process uncertainties are non-zero mean and do not follow a Gaussian distribution. 

The proposed framework is a modified version of EKF to deal with non-zero mean process 

uncertainties. The modified EKF does not add any computational burden to the standard EKF. In the 

AGS-EKF framework, the non-Gaussian density of the process uncertainty is approximated by a 

Gaussian mixture model similar to GSF. However, AGS-EKF uses the main characteristics of the 

Gaussian mixture of the process uncertainties to perform only one EKF calculation and consequently 

is computationally attractive. In addition to the efficiency offered by AGS-EKF, this estimation scheme 

does not suffer from operating at the edge of feasibility region as it avoids running individual EKFs 

featuring only an extreme range of the process uncertainties. As a result, AGS-EKF manages to stay 

far away from the edge of the process and avoids biased estimations. This feature makes the AGS-EKF 

an attractive method for large applications subject to non-Gaussian process uncertainties. In addition to 

AGS-EKF, an adaptation in the GSF framework was introduced that can help to correct the biased 

estimations provided by some of the EKFs in the set of AGSF. Hence, AGSF improved the performance 

of GSFs. The performance of AGS-EKF compared to standard EKF, GSF, and AGSF is assessed by 

performing state estimation on four case studies involving non-Gaussian process uncertainties. The 

results showed that AGS-EKF is able to provide accurate estimations for the unknown states in 

nonlinear chemical engineering systems without increasing the computational demands thus making it 

attractive for online estimation and control applications. The AGS-EKF introduced in this chapter only 

focuses on the problem of state estimation under non-Gaussian uncertainties. An AGS-EKF state 

estimation framework featuring constraints on the state variables is presented in the next chapter. 
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Constrained Abridged Gaussian Sum Extended Kalman Filter 

As described in sections 2.2 and 2.3, an efficient development of EKF to deal with constraints on the 

states is absent from the literature. Moreover, the performance of the GSF, i.e., that is known as the 

EKF-based framework to capture the non-Gaussianity in process, have not been investigated for a 

general constrained nonlinear application with non-zero mean non-Gaussian process uncertainties/ 

measurement noises. As discussed above, the available EKF methods, and particularly GSFs, face the 

following limitations: (I) high computational costs, (II) biased and infeasible estimations, (III) large 

covariance matrices and consequently, inappropriate estimations. The AGS-EKF presented in the 

previous chapter avoids limitations (I)-(III), improves the estimation accuracy, and requires no 

additional costs than that needed in the standard EKF. However, the AGS-EKF method presents two 

major limitations: it cannot deal with non-Gaussian measurement noises or/and feasibility bounds on 

the states. 

This work fills a gap in the literature by presenting a generalized and efficient AGS-EKF-based state 

estimation scheme for nonlinear applications involving bounds on the states (i.e., states with non-

Gaussian probability density functions) and non-Gaussian measurement noises and process 

uncertainties. The proposed approach is referred from heretofore as constrained abridged Gaussian 

sum extended Kalman filter (constrained AGS-EKF). To deal with non-Gaussian measurement noises, 

new modifications in the posterior estimation step of the standard EKF formulation is considered to 

adopt non-zero mean measurement noises in the estimation scheme. The modified posterior estimation 

step requires the same computational costs as needed in the standard EKF framework. The proposed 

constrained AGS-EKF includes an additional step in between the prior estimation step and the posterior 

estimation step in the EKF scheme to satisfy the constraints on the states. In this intermediate step, the 

constrained AGS-EKF uses the prior distribution of the states (resulted by the prior estimation step in 

EKF) as well as the knowledge of the present constraints/bounds to approximate the non-Gaussian 

distribution of the states by a Gaussian mixture model. Then, the main characteristics of the Gaussian 

mixture model, i.e., mean-vector of the states and covariance matrix, are used as the estimation of the 

constrained prior distributions of the states to continue performing the posterior estimation step in EKF. 

The multivariate expectation-maximization (EM) method is used to approximate the Gaussian mixture 

models of the non-Gaussian densities of the states. Note that the constrained AGS-EKF assumes that 

the distribution of the process uncertainties and measurement noises are known a priori from historical 
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data or process heuristics, which is also the common assumption made in standard EKF. The 

performance of these estimation schemes for the case of unknown distributions of noise/uncertainty is 

beyond the scope of this work. 

The outline of this chapter is as follows: the proposed state estimation scheme for constrained AGS-

EKF is introduced in section 5.1. Later, the results obtained from the proposed approach on three typical 

chemical processes (i.e., a gas-phase reactor presented in Equation (4-26), the Williams-Otto reactor 

presented in Equation (4-28), and the styrene polymerization process featuring six states) is presented. 

Section 5.3 summarizes this chapter. 

5.1  Filters for constrained states and non-Gaussian uncertainties/ noises 

This section presents the proposed constrained Abridged Gaussian sum extended Kalman filter (AGS-

EKF). A modified version of EKF for the case that process uncertainty and measurement noise follow 

non-zero mean Gaussian distribution is presented first. The constrained AGS-EKF formulation is 

presented next. Both the EKF and GSF schemes are used in this work as benchmarks to investigate and 

compare the performance of the proposed constrained AGS-EKF method. Hence, section 5.1.3 provides 

a brief discussion on GSF adopted for applications with non-Gaussian states, noises, and uncertainties. 

5.1.1 Modified EKF for non-zero mean Gaussian process uncertainty and measurement 

noise 

General nonlinear systems with bounded states are the focus of this work. These systems can be 

modelled as follows: 

𝒙𝑘+1 = 𝑓(𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘 , 𝑘) (5-1) 

𝒚𝑘 = ℎ(𝒙𝑘 , 𝒖𝑘 , 𝒗𝑘 , 𝑘) (5-2) 

𝒙𝒍 ≤ 𝒙𝑘 ≤ 𝒙
𝒖 (5-3) 

𝒘 ∈ ℝ𝑛𝑤  , 𝒗 ∈ ℝ𝑛𝑣  , 𝒙𝒍, 𝒙𝒖, 𝒙 ∈ ℝ𝑛𝑥 , 𝒚 ∈ ℝ𝑛𝑦 , 𝒖 ∈ ℝ𝑛𝑢 , 

 𝑓: ℝ𝑛𝑥×𝑛𝑢×𝑛𝑤 → ℝ𝑛𝑥  , ℎ: ℝ𝑛𝑥×𝑛𝑢×𝑛𝑣 → ℝ𝑛𝑦 

where 𝒙𝒍 and 𝒙𝒖 denote the lower and upper bound on the state variables, respectively. Moreover, 

𝔼[𝒘𝜍𝒙0
𝑇] = 0 for all k where 𝒙0 is the vector of initial states. A common assumption is that the random 

process uncertainties (𝒘) and measurement noises (𝒗) are mutually uncorrelated, respectively. In this 

thesis, it is assumed that each measurement is corrupted with one unique random measurement noise 
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signal and each state of the system is associated with one random variable as its process uncertainty, 

which is a common assumption considered for chemical processes. Hence, 𝒙𝑘+1 = 𝑓(𝒙𝑘 , 𝒖𝑘) + 𝒘𝑘, 

𝒚𝑘 = ℎ(𝒙𝑘 , 𝒖𝑘) + 𝒗𝑘, 𝑛𝑣 = 𝑛𝑦 and 𝑛𝑤 = 𝑛𝑥. As a reminder, Equations (3-4)-(3-5) describe the prior 

and posterior estimation steps in the standard formulation of EKF for an unconstrained nonlinear system 

such as that described by Equations (5-1)-(5-2) with zero-mean Gaussian random variables, i.e., 

𝒘𝑘~𝒩(𝟎,𝑸) and 𝒗𝑘~𝒩(𝟎,𝑹).  

In order to take into account the non-Gaussian process uncertainties and measurement noises, first, the 

standard EKF formulation needs to be modified accordingly for the case that these random variables 

follow non-zero mean Gaussian distributions. In chapter 4, a modification in the prior step of the 

standard EKF has been introduced to adopt non-zero mean Gaussian process uncertainties (section 

4.1.1). Likewise, the current work considers a new modification in the posterior step of the standard 

EKF to capture non-zero mean Gaussian distribution of the measurement noises. That is, consider the 

unconstrained nonlinear system presented in Equations (5-1)-(5-2) in which 𝒘𝑘~𝒩(𝝁,𝑸) and 

𝒗𝑘~𝒩(𝝉, 𝑹). The modified EKF for applications involving non-zero mean Gaussian 

noises/uncertainties as follows: 

�̂�𝑘+1|𝑘 = 𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 + 𝝁 

 

 𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨𝑘
𝑻 +𝑸 

(5-4) 

𝑲𝑘+1 = 𝑷𝑘+1|𝑘𝑯𝑘+1
𝑇 /(𝑯𝑘+1𝑷𝑘+1|𝑘𝑯𝑘+1

𝑇 + 𝑹) 

�̂�𝑘+1|𝑘+1 = 

                �̂�𝑘+1|𝑘 +𝑲𝑘+1(𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘 , 𝒖𝑘) − 𝝉) 

𝑷𝑘+1|𝑘+1 = (𝑰 − 𝑲𝑘+1𝑯𝑘+1)𝑷𝑘+1|𝑘 

(5-5) 

[(𝒘𝜍 − 𝝁)(𝒘𝜍 − 𝝁)
𝑇] = {

𝑸,             𝜍 = 𝑘
𝟎,               𝜍 ≠ 𝑘

  ;  𝝁 ∈ ℝ𝑛𝑥 , 𝑸 ∈ ℝ𝑛𝑥×𝑛𝑥 

[(𝒗𝜍 − 𝝉)(𝒗𝜍 − 𝝉)
𝑇] = {

𝑹,             𝜍 = 𝑘
𝟎,               𝜍 ≠ 𝑘

    ;  𝝉 ∈ ℝ𝑛𝑦 , 𝑹 ∈ ℝ𝑛𝑦×𝑛𝑦  

(5-6) 

Note that the modified EKF presented in Equations (5-4)-(5-6) is a general case of standard EKF. That 

is, for the special case where 𝝉 = 𝟎 and 𝝁 = 𝟎, the modified EKF represents the same formulation as 

the standard EKF (Equations (3-4)-(3-5)). Moreover, the derivation of the prior estimation step, i.e., 
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Equation (5-4), can be found in section 4.1.1. The derivation of the posterior estimation, i.e., Equation 

(5-5), is presented next.  

Derivation of the posterior estimation: this derivation is a mathematical proof that the posterior 

estimation step in the constrained AGS-EKF framework (i.e., Equation (5-5)) should be used for 

applications where the measurement noises follow non-zero mean distributions. 

Consider a nonlinear dynamic model presented in Equations (5-1)-(5-2) associated with non-zero mean 

Gaussian measurement noises as described by Equation (5-6). For this system, the estimation of the 

measurements �̂�𝑘 is determined as follows: 

�̂�𝑘+1 = 𝔼[ℎ(�̂�𝑘+1|𝑘 , 𝒖𝑘 , 𝒗𝑘+1)|𝒀𝑘+1]  

= 𝑯𝑘+1𝔼[�̂�𝑘+1|𝑘|𝒀𝑘+1] + 𝑪𝑘+1𝔼[𝒖𝑘|𝒀𝑘+1] + 𝑫𝑘+1𝔼[𝒗𝑘+1|𝒀𝑘+1] 
(5-7) 

where 𝒀𝑘+1 = [𝒚0, 𝒚1, … , 𝒚𝑘+1] is the set of measurements from the initial sampling time to the current 

time interval 𝑘 + 1. Moreover, 𝑪𝑘 =
𝜕ℎ(𝒙,𝒖,𝒗)

𝜕𝒖
|

 
𝒙 = �̂�𝑘|𝑘 , 𝒖 = 𝒖𝑘 , 𝒗 = 𝒗𝑘 and 𝑫𝑘 =

𝜕ℎ(𝒙,𝒖,𝒗)

𝜕𝒗
|

 
𝒙 = �̂�𝑘|𝑘 , 𝒖 = 𝒖𝑘 , 𝒗 = 𝒗𝑘. The sensitivity matrices 𝑯, 𝑪 and 𝑫, as well as the measurement 

noises and inputs of the system, are independent from the historical measurements. The estimation of 

the measurements can be expressed as below: 

�̂�𝑘+1 = 𝑯𝑘+1�̂�𝑘+1|𝑘 + 𝑪𝑘+1𝒖𝑘 +𝑫𝑘+1𝝉 (5-8) 

The innovation, i.e., the difference between actual measurements (𝒚𝑘) and the estimated measurements 

(�̂�𝑘), can be evaluated based on Equations (5-2) and (5-8), that is: 

𝒚𝑘+1 − �̂�𝑘+1 = 𝑯𝑘+1𝒙𝑘+1 + 𝑪𝑘+1𝒖𝑘 +𝑫𝑘+1𝒗𝑘+1
− (𝑯𝑘+1�̂�𝑘+1|𝑘 + 𝑪𝑘+1𝒖𝑘 +𝑫𝑘+1𝝉)

= 𝑯𝑘+1(𝒙𝑘+1 − �̂�𝑘+1|𝑘) + 𝑫𝑘+1(𝒗𝑘+1 − 𝝉) 

(5-9) 

Given 𝒆𝑘+1|𝑘 = 𝒙𝑘+1 − �̂�𝑘+1|𝑘 is known as the prior state estimation error, Equation (5-9) can be re-

written as follows: 

𝒚𝑘+1 − �̂�𝑘+1 = 𝑯𝑘+1𝒆𝑘+1|𝑘 +𝑫𝑘+1(𝒗𝑘+1 − 𝝉) (5-10) 
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The estimation of the measurement’s covariance (𝑺) can be determined based on the innovation 

obtained by Equation (5-9). That is: 

𝑺𝑘+1 = 𝔼[(𝒚𝑘+1 − �̂�𝑘+1)(𝒚𝑘+1 − �̂�𝑘+1)
𝑇] 

= 𝔼 [(𝑯𝑘+1𝒆𝑘+1|𝑘 +𝑫𝑘+1(𝒗𝑘+1 − 𝝉)) (𝑯𝑘+1𝒆𝑘+1|𝑘 +𝑫𝑘+1(𝒗𝑘+1 − 𝝉))
𝑇
] 

= 𝔼 [(𝑯𝑘+1𝒆𝑘+1|𝑘 +𝑫𝑘+1(𝒗𝑘+1 − 𝝉)) (𝒆𝑘+1|𝑘
𝑇𝑯𝑘+1

𝑇 + (𝒗𝑘+1 − 𝝉)
𝑇𝑫𝑘+1

𝑇)] 

= 𝔼[𝑯𝑘+1𝒆𝑘+1|𝑘𝒆𝑘+1|𝑘
𝑇𝑯𝑘+1

𝑇] + 𝔼[𝑯𝑘+1𝒆𝑘+1|𝑘(𝒗𝑘+1 − 𝝉)
𝑇𝑫𝑘+1

𝑇] +

𝔼[𝑫𝑘+1(𝒗𝑘+1 − 𝝉)𝒆𝑘+1|𝑘
𝑇𝑯𝑘+1

𝑇] + 𝔼[𝑫𝑘+1(𝒗𝑘+1 − 𝝉)(𝒗𝑘+1 − 𝝉)
𝑇𝑫𝑘+1

𝑇]  

(5-11) 

where 𝑷𝑘+1|𝑘 = 𝔼[𝒆𝑘+1|𝑘𝒆𝑘+1|𝑘
𝑇] is the prior covariance matrix of the estimated states. According to 

Equation (5-6), 𝑹 = 𝔼[(𝒗𝑘+1 − 𝝉)(𝒗𝑘+1 − 𝝉)
𝑇] is the covariance matrix of the measurement noises. 

Moreover, the estimation errors are uncorrelated with the measurement noises, i.e., the second and third 

terms in the left-hand side of Equation (5-11) are equal to zero. Equation (5-11) can be simplified to 

Equation (5-12). 

𝑺𝑘+1 = 𝑫𝑘+1𝑷𝑘+1|𝑘𝑯𝑘+1
𝑇 +𝑫𝑘+1𝑹𝑫𝑘+1

𝑇 (5-12) 

To determine the Kalman gain matrix, the cross-covariance matrix (𝑪𝒐𝒗𝑘
𝑺−𝑴) between the state 

estimation error and the innovation needs to be evaluated first. Equation (5-13) express this cross-

covariance matrix, as below: 

𝑪𝒐𝒗𝑘
𝑺−𝑴 = 𝔼[(𝒆𝑘+1|𝑘)(𝒚𝑘+1 − �̂�𝑘+1)

𝑇] 

= 𝔼 [(𝒆𝑘+1|𝑘) (𝑯𝑘+1𝒆𝑘+1|𝑘 +𝑫𝑘+1(𝒗𝑘+1 − 𝝉))
𝑇
] 

= 𝔼[𝒆𝑘+1|𝑘(𝒆𝑘+1|𝑘
𝑇𝑯𝑘+1

𝑇 + (𝒗𝑘+1 − 𝝉)
𝑇𝑫𝑘+1

𝑇)] 

= 𝔼[𝒆𝑘+1|𝑘𝒆𝑘+1|𝑘
𝑇𝑯𝑘+1

𝑇 + 𝒆𝑘+1|𝑘(𝒗𝑘+1 − 𝝉)
𝑇𝑫𝑘+1

𝑇] 

(5-13) 

𝑪𝒐𝒗𝑘
𝑺−𝑴 = 𝑷𝑘+1|𝑘𝑯𝑘+1

𝑇 (5-14) 

In the end, Kalman gain of the modified EKF is determined based in Equations (5-12) and (5-14), that 

is: 
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𝑲𝑘+1 = 𝑷𝑘+1|𝑘𝑯𝑘+1
𝑇 𝑫𝑘+1𝑷𝑘+1|𝑘𝑯𝑘+1

𝑇 +𝑫𝑘+1𝑹𝑫𝑘+1
𝑇⁄  (5-15) 

Note that the sensitivity matrix 𝑫 is assumed to be an identity matrix with the proper dimension, i.e., 

𝑫 ∈ ℝ𝑛𝑦×𝑛𝑦. Therefore, Equation (5-15) is equivalent to the Kalman gain of standard EKF presented 

in Equation (3-5); the posterior estimation of the states can be evaluated based on this Kalman gain and 

the innovation presented in Equation (5-10), as shown in Equation (5-5). 

Note that derivations presented above and in section 4.1.1 represent the mathematical expressions that 

proves the need of Equations (5-5) and (5-4) for cases involving non-zero mean random 

noises/uncertainties.  

5.1.2 Constrained Abridged Gaussian Sum Extended Kalman Filter (Constrained AGS-

EKF) 

The proposed constrained abridged Gaussian sum extended Kalman filter (constrained AGS-EKF) is 

developed based on the modified EKF scheme presented in Equations (5-4)-(5-6) plus an additional 

intermediate step. Constrained AGS-EKF uses the mean-value and the covariance matrix of the overall 

Gaussian mixture models to approximate the non-Gaussian states (constrained/bounded states) as well 

as non-Gaussian measurement noises and process uncertainties. That is, the mean value and the 

covariance matrix of the states (�̂�𝑘+1|𝑘~𝒩(�̂�𝑘+1|𝑘
𝑮𝑴 , 𝑷𝑘+1|𝑘

𝑮𝑴 )), the process uncertainties 

(𝒗𝑘~𝒩(𝝉
𝑮𝑴, 𝑹𝑮𝑴)), and the measurement noises (𝒘𝑘~𝒩(𝝁

𝑮𝑴, 𝑸𝑮𝑴)) obtained from the Gaussian 

mixture models are used to represent the non-Gaussian densities of the states, process uncertainties and 

measurement noises in the constrained AGS-EKF framework. For clarity, Equations (5-16)-(5-18) are 

provided to describe the multivariate Gaussian mixture model of the states, as well as the univariate 

Gaussian mixture models of the process uncertainties and the measurement noises, respectively. Note 

that a system involving 𝑛𝑥 states (and process uncertainty variables) and 𝑛𝑦 measurements (and 

measurement noise variables) is considered in this study.   

𝑝(�̂�𝑘+1|𝑘) = ∑ (𝛼𝑠𝑖𝑠 𝒩[�̂�𝑘+1|𝑘;  �̂�𝑘+1|𝑘
𝑖𝑠 , 𝑷𝑘+1|𝑘

𝑖𝑠 ])
𝑛𝑔𝑠
𝑖𝑠=1 ;     ∀𝑘 (5-16) 

𝑝(𝑤𝑙𝑘) = ∑ (𝛼𝑝𝑙
𝑖𝑝
 𝒩[𝑤𝑙𝑘;  𝜇𝑙

𝑖𝑝
, 𝑄𝑙
𝑖𝑝
])

𝑛𝑔𝑝(𝑙)
𝑖𝑝=1 ;          ∀𝑘; ∀𝑙 = 1,…𝑛𝑥  (5-17) 

𝑝(𝑣𝑐𝑘) = ∑ (𝛼𝑚𝑐
𝑖𝑚 𝒩[𝑣𝑐𝑘;  𝜏𝑐

𝑖𝑚, 𝑅𝑐
𝑖𝑚])

𝑛𝑔𝑚(𝑐)
𝑖𝑚=1 ;  ∀𝑘; ∀𝑐 = 1,…𝑛𝑦  (5-18) 
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∑ 𝛼𝑠𝑖𝑠 
𝑛𝑔𝑠
𝑖𝑠=1 = 1;    𝛼𝑠𝑖𝑠  ≥ 0              ∀𝑘;  

∑ 𝛼𝑝𝑙
𝑖𝑝
 

𝑛𝑔𝑝(𝑙)
𝑖𝑝=1 = 1;    𝛼𝑝𝑙

𝑖𝑝
 ≥ 0          ∀𝑘; ∀𝑙 = 1,…𝑛𝑥 

∑ 𝛼𝑚𝑐
𝑖𝑚 

𝑛𝑔𝑚(𝑐)
𝑖𝑚=1 = 1;    𝛼𝑚𝑐

𝑖𝑚  ≥ 0    ∀𝑘; ∀𝑐 = 1,…𝑛𝑦 

𝜇𝑙 ∈ 𝝁, 𝜏𝑐 ∈ 𝝉, 𝑄𝑙 ∈ 𝑸, 𝑅𝑐 ∈ 𝑹 ;         ∀𝑘; ∀𝑐 = 1,…𝑛𝑥;  ∀𝑐 = 1,…𝑛𝑦 

 

where 𝑖𝑠, 𝑖𝑝, and 𝑖𝑚 denote the indexes for the Gaussian component in the Gaussian mixture model of 

states, process uncertainties, and measurement noises, respectively. Moreover, the scalar 𝑤𝑙𝑘 refers to 

the process uncertainty associated with the 𝑙th state variable at time interval 𝑘. The number of Gaussian 

components for the process uncertainties associated with 𝑙th state is 𝑛𝑔𝑝(𝑙). Likewise, scalar 𝑣𝑐𝑘 

denotes to the 𝑐th element of vector 𝒗𝑘, which represents the measurement noise associated with 𝑐th 

measurement at time interval 𝑘; 𝑛𝑔𝑚(𝑐) denotes the corresponding number of Gaussian components 

in the mixture. In Equation (5-16), �̂�𝑘+1|𝑘 is the vector of states obtained from the prior estimation step 

in constrained AGS-EKF, and 𝑛𝑔𝑠 represents the number of Gaussian components that form the 

multivariate Gaussian mixture model of the states. Moreover, 𝛼𝑠𝑖𝑠, 𝛼𝑚𝑐
𝑖𝑚, and 𝛼𝑝𝑙

𝑖𝑝
 are the weights 

assigned to the 𝑖𝑠th component in the Gaussian mixture model of states, 𝑖𝑚th component in the Gaussian 

mixture model of 𝑐th measurement noise, 𝑖𝑝th Gaussian component in the Gaussian mixture model of 

the 𝑙th process uncertainty variable, respectively. Typically, the distribution of the process uncertainties 

and measurement noises are assumed to remain unchanged throughout the process. In this case, the EM 

algorithm can be performed offline to evaluate the corresponding parameters of the Gaussian mixture 

models of these random variables. This means that Equations (5-17)-(5-18) are used only once (and 

prior to the state estimation) to approximate the Gaussian mixture model parameters for these random 

variables. That is, Equation (5-17) provides the process uncertainties’ specifications required in the 

priori estimation step, i.e., 𝝁𝑮𝑴 and 𝑸𝑮𝑴 (Equation (5-19)); likewise, Equation (5-18) provides 𝝉𝑮𝑴 

and 𝑹𝑮𝑴 to the posterior estimation step (Equation (5-21)). Note that 𝝁𝑮𝑴, 𝑸𝑮𝑴, 𝝉𝑮𝑴, and 𝑹𝑮𝑴 are 

assumed to remain constant during operation. However, the density of the constrained/ bounded states 

changes at every time interval throughout the operation. With this in mind, it is essential to update the 

parameters of the Gaussian mixture model (Equation (5-16)) that approximates the 

constrained/bounded distribution of the states once the prior estimation of the states is available. As a 

reminder, the prior estimation step assumes that the states follow unconstrained/unbounded Gaussian 

distributions, as shown in Equation (5-19). Thereby, Equation (5-20) applies the constraints on the prior 

distributions of states and consequently, the distributions are no longer Gaussian. That is, 𝑝(�̂�𝑘+1|𝑘) in 
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Equation (5-20) represents the non-Gaussian probability density function of states. Hence, the 

multivariate EM algorithm is implemented to approximate the constrained/bounded prior distribution 

of the states at each time interval, as shown in Equation (5-20). This intermediate step does not 

propagate the prior distribution of states (obtained by the prior estimation step) through time. The effect 

of bounds and constraints on the state variables of the system is taken into account by Equation (5-20), 

which provides the mean value and covariance of the constrained prior estimation of the states’ 

distribution, i.e., �̂�𝑘+1|𝑘
𝑮𝑴  and 𝑷𝑘+1|𝑘

𝑮𝑴 . Then, the constrained prior estimation of the states (�̂�𝑘+1|𝑘
𝑮𝑴  and 

𝑷𝑘+1|𝑘
𝑮𝑴 ) is used in the posterior step (Equation (5-21)) to estimate the posterior estimation of the states.  

Prior estimation step  

�̂�𝑘+1|𝑘 = 𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 + 𝝁
𝑮𝑴 

 𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨𝑘
𝑻 +𝑸𝑮𝑴 

(5-19) 

Intermediate step   

𝒙𝒍 ≤ �̂�𝑘+1|𝑘 ≤ 𝒙
𝒖 

(�̂�𝑘+1|𝑘
𝑖𝑠 , 𝑷𝑘+1|𝑘

𝑖𝑠 ) = 𝐸𝑀(𝑝(�̂�𝑘+1|𝑘), 𝑘) 

�̂�𝑘+1|𝑘
𝑮𝑴 = ∑ 𝛼𝑠𝑖𝑠�̂�𝑘+1|𝑘

𝑖𝑠𝑛𝑔𝑠
𝑖𝑠=1   

𝑷𝑘+1|𝑘
𝑮𝑴 = ∑ 𝛼𝑠𝑖𝑠𝑷𝑘+1|𝑘

𝑖𝑠𝑛𝑔𝑠
𝑖𝑠=1 +  

              ∑ 𝛼𝑠𝑖𝑠(�̂�𝑘+1|𝑘
𝑖𝑠 − �̂�𝑘+1|𝑘

𝑮𝑴 )(�̂�𝑘+1|𝑘
𝑖𝑠 − �̂�𝑘+1|𝑘

𝑮𝑴 )
𝑻𝑛𝑔𝑠

𝑖𝑠=1   

(5-20) 

Posterior estimation step 
 

𝑲𝑘+1 = 𝑷𝑘+1|𝑘
𝑮𝑴 𝑯𝑘+1

𝑇 /(𝑯𝑘+1𝑷𝑘+1|𝑘
𝑮𝑴 𝑯𝑘+1

𝑇 + 𝑹𝑮𝑴) 

�̂�𝑘+1|𝑘+1 = 

                �̂�𝑘+1|𝑘
𝑮𝑴 +𝑲𝑘+1(𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘

𝑮𝑴 , 𝒖𝑘) − 𝝉
𝑮𝑴) 

𝑷𝑘+1|𝑘+1 = (𝑰 − 𝑲𝑘+1𝑯𝑘+1)𝑷𝑘+1|𝑘
𝑮𝑴  

(5-21) 

where the 𝐸𝑀 function in Equation (5-20) is the multivariate EM algorithm; the specification of noises 

and uncertainties used in that EM algorithm are as follows: 
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[(𝒘𝜍 − 𝝁
𝑮𝑴)(𝒘𝜍 − 𝝁

𝑮𝑴)𝑇] = {
𝑸𝑮𝑴,             𝜍 = 𝑘
𝟎,                   𝜍 ≠ 𝑘

  ;  𝝁𝑮𝑴 ∈ ℝ𝑛𝑥 , 𝑸𝑮𝑴 ∈ ℝ𝑛𝑥×𝑛𝑥 

[(𝒗𝜍 − 𝝉
𝑮𝑴)(𝒗𝜍 − 𝝉

𝑮𝑴)𝑇] = {
𝑹𝑮𝑴,             𝜍 = 𝑘
𝟎,                   𝜍 ≠ 𝑘

    ; 𝝉𝑮𝑴 ∈ ℝ𝑛𝑦 , 𝑹𝑮𝑴 ∈ ℝ𝑛𝑦×𝑛𝑦  

(5-22) 

As shown in Equation (5-20), the proposed constrained AGS-EKF scheme involves performing the EM 

algorithm to complete the point estimation at each time interval 𝑘, which adds computational costs 

when compared to the standard EKF. Further details on the effect of this intermediate step on the CPU 

time of the constrained AGS-EKF scheme is presented at the end of section 5.2. Moreover, the proposed 

estimation scheme may not perform well for constrained multivariate systems in which the covariance 

matrix is very small. In those cases, the estimation of the multivariate Gaussian mixture models 

(intermediate step in Equation (5-20)) may become challenging as such a small covariance may cause 

numerical issues while evaluating the likelihood in the EM algorithm. 

5.1.3 Gaussian Sum Filter for (GSF) for general non-zero mean non-Gaussian 

applications 

In current chapter, the conventional GSF is used as a benchmark to compare the performance of the 

proposed constrained AGS-EKF method. Hence, this section provides a brief description on the 

Gaussian sum filter (GSF). In GSFs, Equations (5-16)-(5-18) are evaluated only once and at the 

beginning of the process, i.e., at 𝑘 = 0. That is, the mean value and covariance of Gaussian components 

in the Gaussian mixture models of the constrained initial states as well as non-Gaussian process 

uncertainties and measurement noises are evaluated offline and only at 𝑘 = 0. Equations (5-23)-(4-27) 

represents the formulation of GSF adopted to this study, i.e., nonlinear systems involving bounded 

states with non-Gaussian distributed process uncertainties and measurement noises. 

Prior estimation for the 𝑖th component   

�̂�𝑘+1|𝑘
𝑖 = 𝑨𝑘

𝑖 �̂�𝑘|𝑘
𝑖 + 𝑩𝑘

𝑖 𝒖𝑘
𝑖 + 𝝁𝑖 

𝑷𝑘+1|𝑘
𝑖 = 𝑨𝑘

𝑖 𝑷𝑘|𝑘
𝑖 𝑨𝑘

𝑇 +𝑸𝑖 
(5-23) 

Posterior estimation for the 𝑖th component  

𝑲𝑘+1
𝑖 = 𝑷𝑘+1|𝑘

𝑖 𝑯𝑘+1
𝑖 𝑻

/(𝑯𝑘+1
𝑖 𝑷𝑘+1|𝑘

𝑖 𝑯𝑘+1
𝑖 𝑻

+ 𝑹𝑖) 

�̂�𝑘+1|𝑘+1
𝑖 = 

(5-24) 
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                �̂�𝑘+1|𝑘
𝑖 +𝑲𝑘+1

𝑖 (𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘
𝑖 , 𝒖𝑘

𝑖 ) − 𝝉𝑖) 

𝑷𝑘+1|𝑘+1
𝑖 = (𝑰 − 𝑲𝑘+1

𝑖 𝑯𝑘+1
𝑖 )𝑷𝑘+1|𝑘

𝑖  

Point estimate for the system states: 
 

�̂�𝑘+1|𝑘+1
𝑮𝑺𝑭 = ∑ 𝛽𝑖�̂�𝑘+1|𝑘+1

𝑖𝑛𝑔𝑡
𝑖=1      (5-25) 

𝑷𝑘+1|𝑘+1
𝑮𝑺𝑭 = ∑ 𝛽𝑖 [𝑷𝑘+1|𝑘+1

𝑖 + (�̂�𝑘+1|𝑘+1
𝑖 − �̂�𝑘+1|𝑘+1

𝑮𝑺𝑭 )(�̂�𝑘+1|𝑘+1
𝑖 − �̂�𝑘+1|𝑘+1

𝑮𝑺𝑭 )
𝑇
]

𝑛𝑔𝑡
𝑖=1   (5-26) 

𝛽𝑖 = 𝛼𝑠𝑖𝑠∏ ∏ 𝛼𝑚𝑐
𝑖𝑚(𝑐)𝑛𝑦

𝑐=1 𝛼𝑝𝑙
𝑖𝑝(𝑙)𝑛𝑥

𝑙=1 Λ  (5-27) 

where: 

Λ =
1

(2𝜋)𝑛𝑦 2⁄ (𝑑𝑒𝑡(𝑹𝑖))
1 2⁄ × 𝑒𝑥𝑝 [−

1

2
(𝒚𝑘+1 − ℎ(�̂�𝑘+1|𝑘

𝑖 , 𝒖𝑘
𝑖 ) − 𝝉𝑖)

𝑇
𝑹𝑖
−1
(𝒚𝑘+1 −

ℎ(�̂�𝑘+1|𝑘
𝑖 , 𝒖𝑘

𝑖 ) − 𝝉𝑖)]    

∑ 𝛽𝑖  
𝑛𝑔𝑡
𝑖=1 = 1;   ∀𝑖𝑠 = 1,… , 𝑛𝑔𝑠; ∀𝑖𝑚 = 1,… , 𝑛𝑔𝑚(𝑐);  ∀𝑖𝑝 = 1,… , 𝑛𝑔𝑝(𝑙);        

𝛼𝑠𝑖𝑠, 𝛼𝑚𝑐
𝑖𝑚(𝑐)

, 𝛼𝑝𝑙
𝑖𝑝(𝑙)

, 𝛽𝑖  ≥ 0;   
 

where 𝑖𝑚(𝑐) in Equation (5-27) represents the 𝑖𝑚th Gaussian component in the Gaussian mixture model 

of the 𝑐th measurement noise variable; likewise, 𝑖𝑝(𝑙) denotes the 𝑖𝑝th Gaussian component in the 

corresponding Gaussian mixture model of the 𝑙th process uncertainty variable. That is, the 𝑖th EKF in 

the set of GSF was performed based on the mentioned components of each process uncertainty and 

measurement noise. Moreover, the term Λ in Equation (5-27) aims to correct the weights assigned to 

each EKFs based on the current available measurements. GSF performs individual EKFs for each 

possible combination of the Gaussian components that are present in the Gaussian mixture models of 

states, process uncertainties, and measurement noises. As a reminder, a multivariate Gaussian mixture 

model and two univariate Gaussian mixture models are required to approximate the 

constrained/bounded states, as well as non-Gaussian process uncertainties and measurement noises, 

respectively. The total number of unique combinations of the Gaussian components in these three 

mixtures is 𝑛𝑔𝑡 = 𝑛𝑔𝑠∏ ∏ 𝑛𝑔𝑚(𝑐)
𝑛𝑦
𝑐=1 𝑛𝑔𝑝(𝑙)𝑛𝑥

𝑙=1 . That is, GSF requires to run 𝑛𝑔𝑡 parallel EKFs to 

provide the point estimate of the state variables of the system. In addition, 𝛽𝑖  is a scalar number that 
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represents the weight assigned to the 𝑖th EKF in the set of GSF. This weight is determined based on 

𝛼𝑠𝑖𝑠, 𝛼𝑚𝑐
𝑖𝑚(𝑐)

, 𝛼𝑝𝑙
𝑖𝑝(𝑙)

.  

5.2 Computational Experiments 

The performance of the proposed constrained AGS-EKF scheme has been tested on three chemical 

engineering applications, which are presented in this section. In this work, the mean squared error 

(MSE) defined in Equation (4-22) is used to compare the proposed approach with the conventional GSF 

and standard EKF, where 𝑛 ∈ {EKF, GSF, constrained 𝐴𝐺𝑆 − 𝐸𝐾𝐹}. Similar to the previous chapters, 

in the computational experiments presented in this section, the output of the mechanistic process model 

complemented with additive process uncertainties represent the true value of the states (denoted as 

“Plant Output”). Note that the “Plant output” does not include the measurement noises. Pyomo 5.6 

(Python 3.7) has been used to implement the computational experiments. All the simulations have been 

performed on a computer running Microsoft Windows Server 2016 standard. The computer was 

equipped with 16 GB RAM and Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz. In current work, the 

backward method has been used to discretize the nonlinear dynamic process models. 

The proposed AGS-EKF framework is a deterministic-based estimation strategy; hence, comparing the 

performance of this method with stochastic (sampling)-based methods such as PF may not result in a 

direct and fair comparison since these methods rely on different mathematical principles. Instead, the 

present approach was compared with other deterministic-based estimation methods that can handle 

non-Gaussian distributions in the estimation such as GSF. To test the performance of the proposed 

constrained AGS-EKF three case studies have been considered, i.e., a gas-phase reactor, the Williams-

Otto reactor, and a styrene polymerization process (SPP). To show the impact of active constraints on 

the performance of the estimation schemes considered in this work, the gas-phase reactor has been used 

as an illustrative small-scale case study considering active/inactive constraints on the states combined 

with relatively small process uncertainties where both process uncertainties and measurement noises 

follow zero-mean Gaussian distributions. Note that larger process uncertainties may negatively impact 

the performance in the estimation.  Also, two chemical engineering case studies featuring Williams-

Otto reactor and a styrene polymerization process are used in this work to show the benefits offered by 

the proposed estimation scheme. For the Williams-Otto reactor, constraints are imposed on the state 

variables and subject to Gaussian process uncertainties and non-Gaussian measurement noises. 

Likewise, the polymerization process is a highly nonlinear system that was simulated under the 

assumptions of constrained states, non-Gaussian process uncertainties and measurement noises. 
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Therefore, each case study provides insights regarding the performance of the proposed estimation 

framework under different operating conditions often found in chemical plants. Note that the 

distributions of the process uncertainties and measurement noises considered in the present case studies 

were defined based on the expected values of the plant states around their nominal operating conditions. 

The distributions selected for each of the case studies are expected to capture the real operation in an 

industrial application. Each of these case studies and their results are presented next. 

5.2.1 Gas-phase Reactor 

The gas-phase reactor introduced in Equation (4-26) consisting of two states (the partial pressures of 

species A and B) and one measurement (the total partial pressure) is considered to show the 

performance of the constrained AGS-EKF. This system is a widely used example in the context of state 

estimation89,84,174. In addition to the process model described in Equation (4-26), a set of constraints are 

imposed on the states of the gas-phase reactor, as follows: 

𝑝𝑙 ≤ (𝑝𝐴, 𝑝𝐵) ≤ 𝑝
𝑢 (5-28) 

where 𝑝𝑙 and 𝑝𝑢 are the lower and upper bounds on the state variables (𝑝𝐴 and 𝑝𝐵), respectively. The 

additive process uncertainties (𝒘𝑘) and the single measurement noise signal (𝑣𝑘) in this system are 

assumed to follow zero-mean Gaussian distributions, i.e.,  

𝑣𝑘~𝒩(0, 𝑅); 𝑅 = 0.01;   

(5-29) 

𝒘𝑘~𝒩(0,𝑸); 𝑸 = 𝑑𝑖𝑎𝑔([1 × 10
−6, 1 × 10−6]);   

The time interval considered on this case study is 0.1 s. After conducting preliminary tests, three 

Gaussian components are considered to form the Gaussian mixture model that approximates the 

original constrained distribution of the states with an appropriate accuracy. Two scenarios have been 

considered for this case study. The first scenario (Scenario I) aims to assess the performance of all three 

estimation schemes (standard EKF, GSF, and constrained AGS-EKF) for the case that the constraints 

on the states are inactive. That is, this scenario considers that the process operates far from the 

infeasibility region, i.e., near the bounds on the states shown in Equation (5-28). Moreover, Scenario 

II is considered to evaluate the performance of the proposed constrained AGS-EKF compared to 

standard EKF and GSF for the case in which the constraints on the states are active. In both scenarios 

the true values of the states have been used to initialize the estimation schemes. The results obtained 

for each scenario are discussed next. 
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Scenario I: inactive constraints  

This scenario considers that 𝑝𝑙 = 0 and 𝑝𝑢 = 10. Figure 5-1 shows the estimations obtained with the 

standard EKF, conventional GSF, and the constrained AGS-EKF methods. As expected, the three 

estimation schemes performed well since all the constraints present in the system are inactive and 

consequently, an unconstrained approach such as the standard EKF can estimate the states accurately. 

Ideally, both GSF and constrained AGS-EKF are expected to have high performance in the presence of 

active/inactive constraints on the states. As shown in Figure 5-1, three of the approaches provide similar 

and accurate estimates after almost 60 s (600 iterations). Note that GSF begins with individual Gaussian 

components in the Gaussian mixture model of the initial states, which drive the system away in the first 

iteration. Then, due to the weight correction step in GSF, the estimator can recover from the initial 

deviation within the first 60 s of the operation. Nevertheless, the GSF performance improved over the 

time and converged. 

  

Figure 5-1: Estimation provided by EKF, GSF, and constrained AGS-EKF for (a) 𝑝𝐴; (b) 𝑝𝐵 given Scenario I 

Scenario II: active constraints 

In the present scenario, as an illustrate proof-of-concept of the present estimation framework, a tight 

bound on the state variables was considered, i.e., 𝑝𝑙 = 0.05 and 𝑝𝑢 = 10. These constraints were added 

to evaluate the performance of the proposed constrained AGS-EKF, GSF, and standard EKF when the 

process operates near the feasibility limits. Note that the low partial pressure constraint on reactant A 

could represent the hypothetical case that an input in the system operates at a saturation limit thus 

producing this hard constraint on 𝑝𝐴. Note that the mechanistic model for this process shown in 

Equations (4-28) and (5-28) does not include inputs to the system. 

(b) 

(a) 
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Figure 5-2 compares the estimations provided by the estimation schemes considered in this study. As 

expected, standard EKF was not able to take into account the constraints on the states and the estimates 

provided by EKF for 𝑝𝐴 violates the lower bound (Figure 5-2(a)). Consequently, the estimation 

provided for 𝑝𝐴 by standard EKF is not accurate either, as shown in Figure 5-2(b). Likewise, the 

estimations provided by GSF were inaccurate and violated from the lower bound on 𝑝𝐴. This is because 

GSF performs individual EKFs based in each Gaussian component in the Gaussian mixture model of 

the initial states. The Gaussian mixture approximates the distribution of the constrained states at the 

initial time. In this way, GSF guarantees that the distribution of the initial states is bounded properly. 

Then, GSF propagates each of the Gaussian components in the Gaussian mixture model of the initial 

states by performing individual EKFs. However, GSF cannot ensure that the states remain within their 

feasible limits because it does not explicitly take into account these constraints in their framework 

during the operation of the process. As shown in Figure 5-2(a), GSF is not able to maintain 𝑝𝐴 within 

their operational limits. Moreover, running individual EKFs may lead to biased/infeasible estimates; in 

particular for those EKFs that perform the estimation based on the Gaussian components describing the 

edges of the overall non-Gaussian distribution of the states, i.e., Gaussian components located at the 

extreme left or right side of the distribution. Note that Equation (5-27) in the GSF scheme is used to re-

evaluate the weights on each Gaussian component (each EKF in the set) to lower the effect of the biased 

estimations in the overall point estimates. For this case study though, this re-evaluation step set all the 

weights on the EKFs to zero, except for the one EKF with the weight equal to 1. As a result, GSF 

provides the point estimates based on the estimations provided by only one the EKFs, which makes the 

estimation biased as it does not consider other partitions of the distribution of the states.  

The proposed constrained AGS-EKF takes into account the constraints on the states since it 

approximates the constrained distribution of the states not only at the initial time, but also at each 

sampling interval k. As shown in Figure 5-2(a) the estimates resulting from the constrained AGS-EKF 

complies with the bounds on the states thus providing an accurate estimation for 𝑝𝐴. Moreover, the 

constrained AGS-EKF considers the overall distribution of states at any time interval and avoids both 

losing partial information and biased estimations observed in the case of using GSF. According to 

Figure 5-2(b), the constrained AGS-EKF can accurately estimate 𝑝𝐵. The estimation errors evaluated 

using different estimation schemes confirmed that the estimation accuracy improved significantly when 

the constrained AGS-EKF was used as the estimator. For instance, 𝑀𝑆𝐸𝑝𝐵
𝐸𝐾𝐹 (5.1e-4) and 𝑀𝑆𝐸𝑝𝐵

𝐺𝑆𝐹 

(4.69e-4) are two orders of magnitude larger than 𝑀𝑆𝐸𝑝𝐵
𝐴𝐺𝑆−𝐸𝐾𝐹 (3.19e-6).  
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Figure 5-2: Estimation provided by EKF, GSF, and constrained AGS-EKF for (a) 𝑝𝐴; (b) 𝑝𝐵 given Scenario 

II 

5.2.2 Williams-Otto Reactor 

To further investigate the performance of the proposed approach, the Williams-Otto reactor presented 

in Equation (4-28) has been considered. Note that the Williams-Otto reactor is regarded as a highly 

nonlinear dynamic system that is widely used in studies involving online control and state 

estimation171,170,169. According to section 4.2.3, the implementation of AGS-EKF for this process 

showed that this estimation scheme offers a promising performance for the unconstrained systems, with 

zero-mean Gaussian measurement noises, and in the presence of non-Gaussian process uncertainties35. 

The current work aims to examine the performance of the constrained AGS-EKF for the constrained 

Williams-Otto reactor in the presence of non-zero mean non-Gaussian measurement noises while the 

process uncertainties are assumed to follow zero-mean Gaussian distributions. For this goal, Equation 

(5-30) represents the bounds on the state variables, i.e., all the mass fractions have a lower bound of 

0.1 and an upper bound of 1. 

0.1 ≤ 𝑋𝐴, 𝑋𝐵, 𝑋𝐶 , 𝑋𝐸 , 𝑋𝐺 , 𝑋𝑃 ≤ 1 (5-30) 

These bounds are considered to investigate the performance of the proposed constrained AGS-EKF, 

GSF, and standard EKF for the cases in which the process operates near the feasibility region. The 

random variables present in the system, i.e., process uncertainties and measurement noises, are 

represented by mutually independent probability distributions. The random process uncertainty 

associated with each state follow a zero-mean Gaussian distribution with 1% of the steady-state value 

of the corresponding state as its standard deviation. The nominal values for the initial states are provided 

in Table 5-1. 

(b) (a) 
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Table 5-1: Base case values of states for the Williams-Otto reactor 

Process Variables Base case value 

𝑋𝐴 0.100 

𝑋𝐵 0.399 

𝑋𝐶 0.150 

𝑋𝐸 0.141 

𝑋𝐺 0.110 

𝑋𝑃 0.105 

As mentioned in section 4.2.3, online measurements are assumed to be available for the mass fractions 

of the reactants A and B as well as the product P, i.e., 𝑋𝐴, 𝑋𝐵 and 𝑋𝑃. The unknown states of this system 

are 𝑋𝐶, 𝑋𝐸, and 𝑋𝐺. To make this study more realistic, the available measurements are assumed to be 

corrupted with non-zero mean non-Gaussian measurement noises, as shown in Figure 5-3. The 

procedure to identify the required number of Gaussian components in the Gaussian mixture model 

consists of a one-to-one increase in the number Gaussian components until a Gaussian mixture model 

that captures the main features of the actual non-Gaussian density is detected. Note that this test is 

performed offline (i.e., prior to the implementation of the proposed framework). The key metrics used 

to determine the suitability of the number of Gaussian components are quality in the representation of 

the non-Gaussian distribution, quality in the state estimation and the overall computational effort. In 

general, adding Gaussian components improves the representation of the Gaussian mixture model 

thereby improving the overall state estimation at the expense of additional computational costs needed 

to evaluate the point estimates in the estimation scheme. Note that performing these tests are problem 

specific. However, this test is not intensive since the non-Gaussian density of the noises/uncertainties 

is assumed to be known a priori. For instance, if the distribution is multi-modal, an appropriate choice 

is to set the Gaussian components to the number of modes in the non-Gaussian density. According to 

the author’s own experience, three Gaussian components may be an appropriate choice to describe 

bounded Gaussian distributions. A detailed analysis on this topic was presented in section 4.2.3.1. 

Based on above, five, two, and three Gaussian components are needed to form Gaussian mixture models 

representing the distributions of measurement noises associated with 𝑋𝐴, 𝑋𝐵, 𝑋𝑃, respectively. The 

results of the tests performed to make this set of assumption has not been presented here for simplicity.  
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Figure 5-3: Histogram of the non-Gaussian measurement noises present in the Williams-Otto reactor and the 

approximated density by Gaussian mixture model for (a) 𝑋𝐴; (b) 𝑋𝐵; (c) 𝑋𝑃 

The initial condition used to perform state estimations was assumed to be 5% larger than the true values 

of corresponding initial state. The performance of each estimation scheme is presented in Figure 5-4. 

This figure highlights the results for the unknown states, i.e., 𝑋𝐶, 𝑋𝐸, 𝑋𝐺, as well as the measurable 

state 𝑋𝑃. Moreover, Table 5-2 reports the MSE in the state estimates provided by the estimation 

schemes considered in this work. As shown in Figure 5-4(a), the standard EKF failed to estimate 𝑋𝐶 

accurately because standard EKF does not consider the non-Gaussianity assumption for the 

measurement noises and the lower bound on this state. For the same reasons, the estimation error for 

the other two unknown states is relatively large in the case of using standard EKF, as shown in Figure 

5-4(b)-(c). The estimations provided by GSF for the three unknown states are not accurate either. 

Similar to the discussion presented for the first case study (see section 5.2.1-Scenario II), GSF is not 

able to comply with the constraints on the states for the Williams-Otto reactor because it does not 

explicitly take into account the bounds on the states at each time interval 𝑘. In addition, biased 

estimations are expected in GSF as it performs individual EKFs that led to constraint violations in some 

of the EKFs. Although the re-evaluation of the weights assigned to each EKF in the GSF framework 

helps to overcome the latter issue, GSF scheme discarded all the EKFs in the set from the estimation 

scheme except for one, which makes the estimation biased. Figures 5-4(a)-(c) illustrates that the 

proposed constrained AGS-EKF estimation scheme exhibits an acceptable performance. This is 

because the constrained AGS-EKF takes into account the constraints on the states, explicitly, to modify 

the prior estimation of the states’ distribution based on Equation (5-20). By approximating the 

constrained priori distribution of the states to a multi-variate Gaussian mixture model at each time 

interval, the constrained AGS-EKF is able to satisfy the bounds on the states thereby improving the 

estimation of the states significantly. The MSE reported in Table 5-2 supports these observations. For 

instance, the error in the estimation for 𝑋𝐶 offered by the proposed constrained AGS-EKF is three 

orders of magnitude smaller than that obtained by performing standard EKF and GSF, as shown in 

(a) (b) (c) 
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Table 5-2. Moreover, both Figure 5-4(d) and Table 5-2 show that GSF and standard EKF provided 

smaller errors in the estimation of the measurable state 𝑋𝑃, when compared to the constrained AGS-

EKF. This is due to the non-Gaussian measurement noises considered in the system. As the noises are 

small, the estimation scheme often tends to follow the online measurements rather than the plant 

outputs. As shown in Figure 5-4(d), the estimation provided by the constrained AGS-EKF closely 

follows the measurements whereas the standard EKF and GSF rely on the process model and tend to 

follow the plant outputs. This is because the constrained AGS-EKF uses the overall univariate Gaussian 

mixture models that approximate the corresponding non-Gaussian distributions of the measurement 

noises. Hence, the proposed approach avoids the Gaussian assumption as in EKF, and it does not 

eliminate any partition of the Gaussian mixture models of the noises as it is performed in the GSF 

scheme. Thus, constrained AGS-EKF has access to the reliable measurements with accurate 

information on the noises’ distributions, and as a result, relies on the available measurements for 𝑋𝑃, 

and use that information to estimate the unknown states. Furthermore, Table 5-2 also shows that the 

estimations obtained by the different estimation schemes for the other two measurable states (𝑋𝐴, and 

𝑋𝐵) are similar, i.e., there is an approximately ~0.009% and ~0.4% difference in between the 

estimation errors obtained using various estimation schemes for 𝑋𝐴 and 𝑋𝐵, respectively. 

  

  

(b) 
(a) 

(c) (d) 
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Figure 5-4: Estimation provided by EKF, GSF, and constrained AGS-EKF for (a) 𝑋𝐶; (b) 𝑋𝐸; (c) 𝑋𝐺; (d) 𝑋𝑃 

.. 

 

Table 5-2: MSE for 𝑋𝐴, 𝑋𝐵, 𝑋𝐶, 𝑋𝐸, 𝑋𝐺, and 𝑋𝑃using different estimation schemes 

Estimation method (n) 𝑀𝑆𝐸𝑋𝐴
(𝑛)

 𝑀𝑆𝐸𝑋𝐵
(𝑛)

 𝑀𝑆𝐸𝑋𝐶
(𝑛)

 𝑀𝑆𝐸𝑋𝐸
(𝑛)

 𝑀𝑆𝐸𝑋𝐺
(𝑛)

 𝑀𝑆𝐸𝑋𝑃
(𝑛)

 

Standard EKF 8.62e-5 4.04e-2 4.73e-3 1.97e-2 8.11e-2 3.58e-5 

GSF 1.26e-5 3.48e-2 5.15e-3 2.87e-2 6.42e-2 2.26e-5 

Constrained AGS-EKF 9.65e-5 3.86e-2 1.41e-6 4.05e-4 1.59e-3 1.13e-4 

 

5.2.3 Styrene Polymerization Process 

 Styrene polymerization process is a constrained complex nonlinear dynamic process featuring a 

continuous manufacturing of styrene. Due to its inherent complexity and nonlinearity, this 

polymerization reactor makes an attractive case study for the current work. Note that the styrene 

polymerization system has been used to show the performance of state estimation approaches presented 

in the literature including GSF-based estimation schemes98,86,175,176. The dynamic model for this process 

is as follows: 

𝑑𝐶𝑖
𝑎𝑡
= −(

𝐹𝑡
𝑉
+ 𝑘𝑖)𝐶𝑖 +

𝐹𝑖𝐶𝑖𝑖
𝑉

 

(5-31) 

𝑑𝐶𝑠
𝑎𝑡
= −

𝐹𝑡𝐶𝑠
𝑉
+
𝐹𝑖𝐶𝑠𝑖 + 𝐹𝑚𝐶𝑠𝑚

𝑉
 

𝑑𝐶𝑚
𝑎𝑡

= −𝑘𝑝𝐶𝑚𝑃 +
𝐹𝑚𝐶𝑚𝑚 − 𝐹𝑡𝐶𝑚

𝑉
 

𝑑𝜆1
𝑎𝑡
= −

𝐹𝑡𝜆1
𝑉
+ ((𝑘𝑓𝑚𝐶𝑚 + 𝑘𝑡𝑑𝑃 + 𝑘𝑓𝑠𝐶𝑠)(2𝛼 − 2𝛼

2) + 𝑘𝑡𝑐𝑃)
𝑃𝑀𝑛
(1 − 𝛼)

 

𝑑𝑀𝑛
𝑎𝑡

= {((𝑘𝑓𝑚𝐶𝑚 + 𝑘𝑡𝑑𝑃 + 𝑘𝑓𝑠𝐶𝑠)(2𝛼 − 2𝛼
2) + 𝑘𝑡𝑐𝑃)𝑀𝑛

− ((𝑘𝑓𝑚𝐶𝑚 + 𝑘𝑡𝑑𝑃 + 𝑘𝑓𝑠𝐶𝑠)𝛼 + 0.5𝑘𝑡𝑐𝑃)𝑀𝑛(1 − 𝛼)}
𝑃𝑀𝑛

𝜆1(1 − 𝛼)
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𝑑𝑀𝑤
𝑎𝑡

= {((𝑘𝑓𝑚𝐶𝑚 + 𝑘𝑡𝑑𝑃 + 𝑘𝑓𝑠𝐶𝑠)(𝛼
3 − 3𝛼2 + 4𝛼) + +𝑘𝑡𝑐𝑃(𝛼 + 2))𝑀𝑛

− ((𝑘𝑓𝑚𝐶𝑚 + 𝑘𝑡𝑑𝑃 + 𝑘𝑓𝑠𝐶𝑠)(2𝛼 − 2𝛼
2) + 𝑘𝑡𝑐𝑃)𝑀𝑛(1

− 𝛼)}
𝑃𝑀𝑛

𝜆1(1 − 𝛼)
2
 

where, 

𝑃 = √2𝑓𝐶𝑖𝑘𝑖 𝑘𝑡⁄  ; 𝐹𝑡 = 𝐹𝑖 + 𝐹𝑚; 

𝑘𝑖 = 0.693 (60 × 10
((𝐴𝑖 𝑇⁄ )+𝐵𝑖))⁄ ; 𝑘𝑝 = 𝐴𝑝𝑒𝑥𝑝 (

−𝐸𝑝

𝑅𝑇
) ; 𝑘𝑓𝑚 = 𝐴𝑓𝑚𝑒𝑥𝑝 (

−𝐸𝑓𝑚

𝑅𝑇
); 

𝑘𝑓𝑠 = 𝐴𝑓𝑠𝑒𝑥𝑝 (
−𝐸𝑓𝑠

𝑅𝑇
) ; 𝑘𝑡 = 𝐴𝑡𝑒𝑥𝑝 (

−𝐸𝑡

𝑅𝑇
); 𝑘𝑡𝑑 = 0.15𝑘𝑡 ; 𝑘𝑡𝑐 = 0.85𝑘𝑡 

Note that the description and the nominal value for all model parameters are presented elsewhere86,175. 

The styrene polymerization process presented in Equation (5-31) has six state variables, namely the 

initiator 𝐶𝑖, solvent 𝐶𝑠 and monomer 𝐶𝑚 concentrations inside the polymerization reactor, the first 

moment of dead polymer molecular weight 𝜆1, the number average molecular weight 𝑀𝑛, and the 

weight average molecular weight 𝑀𝑤. The online measurements assumed to be available for process 

are 𝐶𝑖, 𝑀𝑛, and 𝑀𝑤. The remaining three states need to be estimated. The linear observability matrix 

for this setting is full-rank; thus, the system is observable around the initial operating condition 

considered for this case study. The sampling interval for this process is set to 1 s. The process 

uncertainties and measurement noises are randomly chosen from their corresponding non-Gaussian 

distributions. The process uncertainties (and the measurement noises) are mutually independent. The 

non-Gaussian distribution of the process uncertainty/measurement noise associated with each state is 

presented in Figure 5-5. Each non-Gaussian distribution has been approximated to a Gaussian mixture 

model (red solid line in Figure 5-5) using an adequate number of Gaussian components. Moreover, the 

feasibility bounds on the states of the system as well as the nominal values of the initial states are 

presented in Table 5-3. Note that the state bounds listed in Table 5-3 are considered in the current work 

with the sole purpose to assess and illustrate the performance and benefits of the proposed constrained 

AGS-EKF on a highly complex and nonlinear system. These bounds are not expected to represent the 

actual operation of this process. Similar to the previous case studies, GSF has considered three Gaussian 

components in multivariate Gaussian mixture model to represent an adequate approximation of the 

bounded distribution of the initial state variables. All of the estimation schemes have been initialized 
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by considering 95% of the true initial states (95% of the values reported in “base-case value” column 

heading in Table 5-3). 

      

      

      

Figure 5-5: Histogram for the original non-Gaussian distribution and the corresponding Gaussian mixture 

model of the process uncertainties and the measurement noises in styrene polymerization process 

..  

Table 5-3: Initial condition and bounds on the states  

Process Variable Base case value98 Lower bound Upper bound 

𝐶𝑖 (kmol/m3) 1.9854e-3 0.001 1 

𝐶𝑠 (kmol/m3) 5.475 0 15 

𝐶𝑚 (kmol/m3) 1.9408 0 3 

𝜆1(kg/m3) 1.7e+2 0.01 500 

𝑀𝑛 (kmol/m3) 4.5e+3 100 25000 

𝑀𝑤 (kg2/kmol.m3) 7.0e+3 100 40000 

(a) (b) (c) 

(d) 
(e) (f) 

(g) (h) 
(i) 
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Figure 5-6(a)-(c) shows the results obtained for 𝐶𝑖 and 𝐶𝑚, and  𝜆1, respectively, which are the states 

with active constraints during operation. Figure 5-6(d) presents the estimation obtained for an unknown 

state (𝐶𝑠) that is far from its upper bound limit. Moreover, Table 5-4 compares the estimation errors 

obtained from each estimation scheme. According to Figure 5-6(a), the estimation provided by GSF 

violated from the lower bound on 𝐶𝑖; this is because GSF does not consider the bounds on the states at 

every time interval 𝑘. The standard EKF satisfies this constraint as the online measurement is available 

for this state and the estimator relies on this measurement. However, the error in the estimation obtained 

for 𝐶𝑖 using standard EKF is larger than that resulted by performing the constrained AGS-EKF, as 

shown in Table 5-4. Both Figure 5-6(a) and Table 5-4 confirm that the constrained AGS-EKF offers 

the highest estimation accuracy for 𝐶𝑖 among the estimation schemes considered in this study. That is, 

𝑀𝑆𝐸𝐶𝑖
(𝐴𝐺𝑆−𝐸𝐾𝐹)

/𝑀𝑆𝐸𝐶𝑖
(𝐸𝐾𝐹)

 and 𝑀𝑆𝐸𝐶𝑖
(𝐴𝐺𝑆−𝐸𝐾𝐹)

/𝑀𝑆𝐸𝐶𝑖
(𝐺𝑆𝐹)

 are approximately 0.09 and 0.49, 

respectively, which shows the improvement achieved by the proposed estimation scheme. The 

estimates for the state 𝐶𝑖 satisfied the lower bound on this state as the constrained AGS-EKF explicitly 

takes into account the constraints on the states at each sampling interval by re-approximating the 

constrained prior estimation of the states’ distribution. As for the states 𝐶𝑚 and 𝜆1, the online 

measurements were not available; hence, the estimates provided by standard EKF for 𝐶𝑚 and 𝜆1 were 

not able to follow the plant outputs, as shown in Figures 5-6(b) and 5-6(c). Moreover, the first 

estimation provided by GSF is associated with a large error for 𝐶𝑚 and 𝜆1. Similar to the discussion 

presented for Scenario I in section 5.2.1, this is because GSF starts from a Gaussian mixture model of 

the bounded states at the initial time interval. The first point estimates are determined by propagating 

these Gaussian components of the initial states for one time interval, which does not check for the active 

constraints on the states. The weight correction step in the GSF framework was not able to resolve this 

issue and made all the weights equals to zero expect for only one of the EKFs in the set. Following this 

event, the initial estimation error coupled with the fact that GSF does not consider constraints in the 

formulation led to inaccurate estimations for 𝐶𝑚 and 𝜆1, which are biased and do not comply with the 

bounds on these states. Note that the similar observations have been made in the estimations provided 

by GSF in section 5.2.1 (Scenario II) and section 5.2.2 for applications featuring active constraints on 

the states. Nevertheless, the constrained AGS-EKF scheme satisfied the bounds on 𝐶𝑚  and 𝜆1 and 

provided appropriate estimations for these states, as shown in Figures 5-6(b) and 5-6(c), respectively. 

According to Table 5-4, the constrained AGS-EKF decreased the estimation error of 𝐶𝑚 by two orders 

of magnitude when compared to the error resulted by standard EKF and GSF. Likewise, performing 
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the constrained AGS-EKF reduced the estimation error by two and one orders of magnitude than that 

resulted by performing GSF and the standard EKF, respectively. As for the unmeasurable state 𝐶𝑠, 

Figure 5-6(d) shows that the standard EKF was not able to provide proper estimates for this state due 

to the absence of information about the non-Gaussian process uncertainties in the standard EKF 

framework, whereas both GSF and the constrained AGS-EKF provided appropriate estimations for 𝐶𝑠. 

As shown in Figure 5-6(d), GSF can provide proper estimations for states that are far from the 

constraints, which is similar to the performance of GSF observed in Scenario I in section 5.2.1. Table 

5-4 also shows that the constrained AGS-EKF reduced the estimation error for all the other states by at 

least one order of magnitude in comparison to the MSE evaluated for standard EKF and GSF. Note that 

the estimates provided by the estimation schemes for the unmeasurable states are smooth (Figures 5-

6(b)-(d)). In all the estimation schemes, the prior estimation is performed based on the plant model that 

considers no noise/uncertainties (in both EKF and the modified EKF formulation). That is, the estimates 

to the unknown states often seem to be smooth and free of noise. The stronger correlation between the 

states and the measurements makes the state estimates noisier. For instance, the estimates provided by 

the schemes for the measurable state 𝐶𝑖 (see Figure 5-6(a)) are associated with noises as the estimation 

is strongly affected by the noisy measurements present in the posterior estimation step.  

 

 

 

  

(b) (a) 

(c) 

(d) 
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Figure 5-6: Estimation provided by EKF, GSF, and constrained AGS-EKF for (a) 𝐶𝑖; (b) 𝐶𝑚; (c) 𝜆1; (b) 𝐶𝑠 

..   

Table 5-4: MSE for 𝐶𝐴, 𝐶𝑠, 𝐶𝑚, 𝜆1, 𝑀𝑛, and 𝑀𝑤using different estimation schemes 

Estimation method (n) 𝑀𝑆𝐸𝐶𝑖
(𝑛)

 𝑀𝑆𝐸𝐶𝑠
(𝑛)

 𝑀𝑆𝐸𝐶𝑚
(𝑛)

 𝑀𝑆𝐸𝜆1
(𝑛)

 𝑀𝑆𝐸𝑀𝑛
(𝑛)

 𝑀𝑆𝐸𝑀𝑤
(𝑛)

 

Standard EKF 1.98e-8 1.39e+1 1.11 5.56e+3 9.530e+4 2.52e+5 

GSF 3.93e-9 3.33 1.95 1.14e+4 4.45e+6 7.82e+4 

Constrained AGS-EKF 1.94e-9 3.54 4.16e-2 7.29e+2 1.97e+4 1.37e+3 

Note that the results presented in this section are based on the bounds considered in the current work, 

which are not the bounds reported on the actual styrene polymerization process. In fact, the bounds on 

the process are significantly wider than those considered in this scenario and consequently, the actual 

process may operate differently. Initially, this study performed the estimation using the original setting 

of the process and observed that all three estimation schemes perform adequately when the constraints 

on the states are not active (which is the case in the actual setting of this process). Hence, the outcomes 

of this study can be used as proof-of-concept of the present estimation framework when active 

constraints are present in complex nonlinear systems subject to non-Gaussian distributions. Note that 

the number of Gaussian components in the multivariate Gaussian mixture of the states is three. Each 

univariate Gaussian mixture model for the corresponding process uncertainty consists of two Gaussian 

components. Three Gaussian components are present in the Gaussian mixture model of each 

measurement noise signal. Given this set of assumptions and based on the discussion presented in 

section 5.1.3, the number of EKFs in the set of GSF is 5,184 (i.e., 3 × (26 × 33)). Thus, it is expected 

to observe a significant increase in the CPU time for the case of performing GSF in comparison to 

standard EKF. On the other hand, the proposed AGS-EKF performs EKF only once at each time interval 

and does not update the Gaussian mixture model of the process uncertainties and measurement noises. 

However, the intermediate step in the constrained AGS-EKF framework involves running the EM 

algorithm at each time interval 𝑘 (Equation (5-20)), which leads to an increase in the required CPU 

time when compared to standard EKF. Nevertheless, the additional CPU time required in the 

constrained AGS-EKF is not expected to be significant as the EM algorithm is a computationally 

efficient approach, i.e., 1.74 s on average per sampling interval. The modifications conducted to the 

prior and posterior estimation steps in the constrained AGS-EKF does not add any computational costs 

than that required in the standard EKF. This means that the difference between the CPU time reported 

by performing the standard EKF and the constrained AGS-EKF schemes represents the CPU time 
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required to perform the EM algorithm in the intermediate estimation step. Table 5-5 reports the 

averaged CPU time for point estimate using various estimation schemes. As expected, performing 

5,184 parallel EKFs in the set of GSF leads to a significantly larger CPU time than that required for 

the proposed constrained AGS-EKF and standard EKF. According to Table 5-5, the constrained AGS-

EKF increases the average CPU time by one order of magnitude in comparison with standard EKF. 

Nevertheless, the proposed estimation scheme decreased the required CPU time by one order of 

magnitude than that required by GSF for this polymerization process. 

Table 5-5: Computational costs reported for different estimation schemes 

Estimation method Averaged CPU time per sampling interval  

Standard EKF 0.14 s  

GSF 12.52 s  

AGS-EKF 2.72 s  

 

5.3 Summary 

This chapter introduced a novel EKF-based estimation scheme referred to as Constrained Abridged 

Gaussian sum extended Kalman filter (constrained AGS-EKF). This framework aims to improve the 

state estimation for general applications involving bounds on the states, non-zero non-Gaussian process 

uncertainties and measurement noises. Note that the distribution of a constrained state is more likely 

non-Gaussian and may follow arbitrary probability distribution functions. In the constrained AGS-EKF 

framework, Gaussian mixture models are used to represent an adequate approximation of the original 

non-Gaussian distributions of states/uncertainties/noises. The proposed framework performs a 

modified version of EKF based on the main characteristics of the overall Gaussian mixture models to 

capture the non-Gaussianity present in the process. These adaptations involve changes in the prior and 

posterior estimation steps to capture the non-Gaussianity of the uncertainties and noises, as well as 

considering an additional intermediate step in the EKF framework to take into account the constrains 

on the states. The latter requires additional computational costs than that in the standard EKF as this 

intermediate step perform the EM algorithm to approximate the Gaussian mixture model of the 

constrained estimates states online. Note that the additional averaged CPU time required to perform the 

point estimates using the constrained AGS-EKF is not significant when compared to the case of using 

conventional GSFs. Moreover, the proposed approach avoids biased estimations as observed in the 
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GSFs. The results obtained from the constrained AGS-EKF, GSF and the standard EKF show that the 

constrained AGS-EKF method improved the estimation accuracy significantly. This improvement 

holds under different scenarios, i.e., active/inactive constraints on the states, for the chemical 

engineering case studies considered in this work. Another standard state estimation scheme that can 

successfully take into account the process constraints is moving horizon estimation (MHE). The next 

chapters of the thesis focus on addressing the knowledge gaps mentioned in chapter 2 in the context of 

the MHE framework. 
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Assessing the Impact of EKF as the Arrival Cost estimator in 

Moving Horizon Estimation under Nonlinear Model Predictive 

Control 

The aim of this chapter is to assess the impact of arrival cost (AC) on an NMPC-MHE closed-loop 

framework for industrial and complex applications under scenarios that may occur during operation. In 

particular, this study assesses the capability of EKF (when compared to Constrained Particle Filter (C-

PF)) as the AC estimator engaged with MHE under the cases that EKF may fail as an individual state 

estimator. Previous studies have shown that EKF may fail to provide an accurate estimation of the states 

for the constrained nonlinear systems. Considering this fact, this study aims to point out the potential 

of EKF as AC estimator coupled with MHE and NMPC to perform online estimation and control of 

large and challenging processes. To address this point, an error analysis on the performance of EKF as 

AC estimator is presented to gain insight on the convergence of this method as AC estimator in the 

MHE-NMPC closed-loop scheme. In addition, this work investigates the effect of key operational 

factors such as plant sizes and non-symmetric bounded probability distributions on the process 

uncertainty. Multiple aspects such as computational costs, accuracy in the estimation and closed-loop 

performance under a wide variety of scenarios have been used to gain new insights on the effect of 

EKF as an AC estimator. To pursue these objectives, an industrial Wastewater Treatment Plant (WTP) 

and a High Impact Polystyrene (HIPS) process, which has been identified as a challenging (open-loop 

unstable) industrial process, have been considered. Although multiple studies have individually 

assessed the controllability and estimation of WTP177,178,179,180, studies focusing on the operation of 

WTP using an MHE-NMPC closed-loop framework are lacking. Moreover, multiple studies have 

proposed optimal open-loop control schemes for HIPS181,182,183; to the author’s knowledge, this is the 

first study that presents an MHE-NMPC closed-loop framework for this challenging process. 

Note that this research was performed prior to the AGS-EKF and constrained AGS-EKF. Hence, the 

standard EKF has been considered as the AC-estimator in the MHE framework. The structure of this 

chapter is organized as follows: section 6.1 presents the closed-loop framework to assess the impact of 

AC approximation. Section 6.2 presents the computational experiments preformed in this research for 

two case studies, i.e., WTP and HIPS, under different scenarios. Moreover, an error analysis section 
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that provides insights on the performance of EKF as AC estimator is presented at the end of this section. 

Chapter summary is presented at the end. 

6.1 Closed-loop framework 

An adequate state estimation technique can provide a good approximation to the arrival cost (AC) and 

therefore improve the estimation in the MHE framework. This can also lead to a reduction in the length 

of the horizon 𝑁, and therefore a reduction in CPU costs, which are attractive features for online control 

of large-scale applications when engaged with an NMPC framework. Providing an accurate initial 

condition is key to attain good closed-loop performance. Thus, an acceptable AC approximation can 

help MHE to provide fast and accurate estimations to NMPC. Figure 6-1 illustrates the feedback control 

system considered in this study. At every time step 𝑘, the plant updates the state output vector 𝒙𝑘  

(subject to process uncertainties 𝒘𝑘) using the past optimal control actions obtained from the NMPC. 

The sensors in the plant update the measurement output vector 𝒚𝑘, which may include measurement 

noise 𝒗𝑘. Then, MHE is engaged and used to provide the estimations of unmeasurable states �̂�𝑘, which 

are then used as the initial condition in NMPC to compute the control actions for the next time interval. 

An estimator such as EKF or C-PF needs to be coupled with the MHE framework to provide the 

approximation of the AC parameters, i.e., expected value (�̅�𝑘−𝑁) and covariance matrix(𝑷𝑘−𝑁) of the 

approximated AC distribution for the states. 𝑘 − 𝑁 is the initial time interval in the finite estimation 

horizon window (𝑁) considered in the MHE framework. As shown in Figure 6-1, the AC estimator 

uses the outcome of MHE at (𝑘 − 𝑁 − 1)𝑡ℎtime interval (denoted by �̂�𝑘−𝑁−1) as the prior estimation 

of AC to estimate �̅�𝑘−𝑁. The AC approximation method estimates the covariance of the AC distribution 

𝑷𝑘−𝑁 in a recursive form, i.e., 𝑷𝑘−𝑁 is estimated from the AC calculations performed in the previous 

time interval (i.e., 𝑘 − 𝑁 − 1). For instance, the posterior covariance computed by EKF is used in MHE 

as the approximation of AC parameter 𝑷𝑘−𝑁. As the time updates to 𝑘 + 1, approximation of the AC 

covariance 𝑷𝑘−𝑁+1will be performed using 𝑷𝑘−𝑁 obtained by the AC estimator at the 𝐾 − 𝑁 time 

interval. Note that �̂�𝑘−𝑁−1 represents the MHE estimation, which includes the measured and unknown 

states. Once the NMPC receives the initial condition �̂�𝑘, it uses this information to find the next optimal 

control actions that minimizes the offset between the controlled variables and their reference set points 

𝒚𝒓𝒆𝒇 over a prediction horizon (𝐿). The new control actions 𝒖𝑘 are implemented in the plant to complete 

the feedback control loop sequence. This algorithm is implemented in the same fashion at subsequent 

time intervals. In addition to the closed-loop framework shown in Figure 6-1, NMPC coupled with EKF 
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as the state estimation method (i.e., with no MHE involved) is often used in the literature53,54. Hence, 

this approach will also be considered in this work for comparison purposes (see sections 6.2.1.2 and 

6.2.2.1). 

 

Figure 6-1: Block diagram of closed-loop feedback control 

In the current study, both EKF and C-PF are considered first to evaluate an approximation of AC 

distribution. EKF is known as the most common AC approximation method due to its simplicity and 

reliability. However, for large-scale or complex nonlinear applications featuring bounded disturbances 

and constraints on the control and manipulate variables, a standard estimator such as EKF may not be 

expected to provide good approximations since the assumption of a normal distribution for the system’s 

states may no longer hold. In the latter cases, C-PF may be expected to provide a better approximation 

of the AC parameters than the EKF, and therefore improve NMPC performance. In general, C-PF is 

the most popular approach in the literature to deal with non-Gaussian distributions that appears in the 

presence of bounds on the states and process uncertainties in the system. In particular, the literature 

often recommends to use C-PF for the case of non-symmetric bounded distribution 

uncertainties50,84,126,174. Based on the above, both EKF and C-PF are initially considered to assess the 

impact of AC estimation in the closed-loop framework of a large-scale system. The detailed reviews 

on C-PF algorithms can be found elsewhere27,184,185,186. The MHE and NMPC formulations considered 

in this work are presented next. 
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6.1.1 Moving Horizon Estimation (MHE) 

MHE aims to find estimates for the unknown states at the current time interval k by minimizing the 

summation of the ℓ2-norm of process uncertainty and measurement noises over a finite time horizon 𝑁 

in the presence of process constraints, e.g., bounds on the states, inputs and disturbances entering the 

plant. The general formulation of the MHE is as follows29,187: 

min
{𝒙𝑗,𝒘𝑗}𝑗=𝑘−𝑁

𝑘−1
∑ ‖𝒘𝑗‖𝑸−1

2
𝑘−1

𝑗=𝑘−𝑁

+ ∑ ‖𝒗𝑗‖𝑹−1
2

𝑘

𝑗=𝑘−𝑁+1

+ 𝜑𝑘−𝑁 

s.t.                                  

𝒙𝑗+1 = 𝑓(𝒙𝑗 , 𝒖𝑗) + 𝒘𝑗  ;                 ∀𝑗 = 𝑘 − 𝑁,…𝑘 − 1  

𝒚𝑗 = ℎ(𝒙𝑗 , 𝒖𝑗) + 𝒗𝑗  ;                   ∀𝑗 = 𝑘 − 𝑁 + 1,…𝑘 

𝑔(𝒙𝑗 , 𝒖𝑗 , 𝒘𝑗 , 𝒚𝑗) ≤ 0;                 ∀𝑗 = 𝑘 − 𝑁,…𝑘 

𝒙𝒍 ≤ 𝒙𝑗 ≤ 𝒙
𝒖 ;                              ∀𝑗 = 𝑘 − 𝑁,…𝑘 

(6-1) 

where: 

𝒘 ∈ ℝ𝑛𝑥  , 𝒗 ∈ ℝ𝑛𝑦  , 𝒙𝒍, 𝒙𝒖, 𝒙 ∈ ℝ𝑛𝑥  , 𝒚 ∈ ℝ𝑛𝑦 , 𝒖 ∈ ℝ𝑛𝑢 , 𝑸 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑹 ∈ ℝ𝑛𝑦×𝑛𝑦 , 

𝑓: ℝ𝑛𝑥×𝑛𝑢 → ℝ𝑛𝑥  , ℎ: ℝ𝑛𝑥×𝑛𝑢 → ℝ𝑛𝑦  , 𝑔: ℝ𝑛𝑥×𝑛𝑢×𝑛𝑥×𝑛𝑦 → ℝ𝑛𝑔    

As shown in problem (6-1), 𝑘 denotes the current time interval, 𝑁 is the length of horizon, 𝑸 and 𝑹 are 

the covariance matrices of process uncertainties and measurement noises, respectively; 𝒘, 𝒗, 𝒙, 𝒚, and 

𝒖 represent vectors that describe the process uncertainty, measurement noise, states, outputs, and inputs 

in the system, respectively. The index 𝑗 is the time interval within the time horizon 𝑁. Note that 𝑘 is 

the current time interval of the plant and is different from the time interval 𝑗, which denote past time 

intervals in the MHE framework. The function 𝑓 is the process model whereas ℎ is a model that 

describes the dependency of the online measurements with respect to the state variables. Moreover, 𝑔 

represents the inequality constraints in the system, excluding the bounds on the states and the inputs. 

The lower and upper bounds on the states and inputs are denoted by the vectors 𝒙𝒍, 𝒖𝒍, 𝒙𝒖, and 𝒖𝒖, 

respectively. The penalty term 𝜑𝑘−𝑁 in problem (6-1) provides the AC estimated at time 𝑘 − 𝑁. This 

term considers the past information of the system that was not considered in the current horizon of the 

MHE problem. This term is defined as follows: 
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𝜑𝑘−𝑁 = ‖𝒙𝑘−𝑁 − �̅�𝑘−𝑁‖𝑷𝑘−𝑁
−1
2  (6-2) 

where �̅�𝑘−𝑁 and 𝑷𝑘−𝑁 denote the expected value and covariance matrix of the approximated posterior 

distribution of the states at the time interval 𝑘 − 𝑁. Both �̅�𝑘−𝑁 and 𝑷𝑘−𝑁 are approximated using only 

the measurements available at 𝑘 − 𝑁, i.e., 𝒚𝑘−𝑁, and the past information of the system available at 

time 𝑘 − 𝑁 − 1 (i.e., �̂�𝑘−𝑁−1 and 𝑷𝑘−𝑁−1). �̂�𝑘−𝑁−1 is the filtered state estimate obtained from MHE 

whereas 𝑷𝑘−𝑁−1is the outcome of the AC approximation method estimated at the time interval 𝑘 − 1. 

Note that 𝑘 − 𝑁 is the starting time point in the finite horizon window. The estimated states obtained 

from the MHE problem at the current time �̂�𝑘 represent the initial condition in the NMPC formulation. 

6.1.2 Nonlinear Model Predictive Control (NMPC) 

NMPC aims to find the optimal control actions at the current time interval 𝒖𝑘. As shown in problem 

(6-3), the optimal control actions are obtained from the minimization of the least squares errors between 

the predicted output variables and their corresponding set points, together with the magnitude of the 

changes made in the manipulated variables188. The general MPC framework is as follows189: 

min
{𝒙′𝑧}𝑧=𝑘+1

𝑘+𝐿

,{𝒖𝑧}𝑧=𝑘
𝑘+𝐶−1

 

∑ (𝒚′𝑧 − 𝒚𝒓𝒆𝒇)
𝑇
𝑸𝒐𝒖𝒕(𝒚′𝑧 − 𝒚𝒓𝒆𝒇)

𝑘+𝐿

𝑧=𝑘+1
+∑ Δ𝒖𝑧

𝑇𝑸𝒊𝒏Δ𝒖𝑧
𝑘+𝐶−1

𝑧=𝑘
  

s.t. 

𝒙′𝑧+1 = 𝑓(𝒙′𝑧, 𝒖𝑧)     ∀𝑧 = 𝑘,…𝑘 + 𝐿 − 1 

𝒚′𝑧 = ℎ(𝒙′𝑧, 𝒖𝑧)         ∀𝑧 = 𝑘,…𝑘 + 𝐿 

𝑔(𝒙′𝑧, 𝒖𝑧, 𝒚′𝑧) ≤ 0,    ∀𝑧 = 𝑘,…𝑘 + 𝐿 

𝒙𝒍 ≤ 𝒙′𝑧 ≤ 𝒙
𝒖,            ∀𝑧 = 𝑘,…𝑘 + 𝐿 

𝒖𝒍 ≤ 𝒖𝑧 ≤ 𝒖
𝒖,            ∀𝑧 = 𝑘,…𝑘 + 𝐿 

𝒖𝑧 = 𝒖𝑧−1,                   ∀𝑧 = 𝑘 + 𝐶,…𝑘 + 𝐿 

Δ𝒖𝑧 = 𝒖𝑧 − 𝒖𝑧−1,       ∀𝑧 = 𝑘,…𝑘 + 𝐿 

𝒙′𝑧 = �̂�𝑘 ,                       ∀𝑧 = 𝑘 

(6-3) 

where: 

𝒙′ ∈ ℝ𝑛𝑥  , 𝒚′ ∈ ℝ𝑛𝑦 , 𝒖 ∈ ℝ𝑛𝑢 , 𝑸𝒊𝒏 ∈ ℝ
𝑛𝑢×𝑛𝑢  , 𝑸𝒐𝒖𝒕 ∈ ℝ

𝑛𝑦×𝑛𝑦 , 𝒙𝒍, 𝒙𝒖 ∈ ℝ𝑛𝑥 , 𝒖𝒍 , 𝒖𝒑 ∈ ℝ𝑛𝑢 , 
𝑓: ℝ𝑛𝑥×𝑛𝑢 → ℝ𝑛𝑥  , ℎ: ℝ𝑛𝑥×𝑛𝑢 → ℝ𝑛𝑦  , 𝑔: ℝ𝑛𝑥×𝑛𝑢×𝑛𝑦 → ℝ𝑛𝑔 

As shown in problem (6-2), 𝒙 
′ and 𝒚 

′ denote the vectors of predicted states and outputs of the system 

at the 𝑧th time interval; 𝑸𝒐𝒖𝒕
  and 𝑸𝒊𝒏

  are the matrices of the weights on the controlled and manipulated 

variables, respectively. The scalars 𝐿 and 𝐶 are the prediction and control horizon, respectively; 𝒙′𝑧 =

�̂�𝑘 provides the initial condition of the NMPC problem, which describes the connection between the 

MHE (�̂�𝑘) and NMPC (𝒙′𝑧). Note that index 𝑧 in Equation (6-3) is the time interval in the prediction 
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horizon, i.e., starting from current time interval 𝑘 to the future time 𝑘 + 𝐿; on the other hand, the index 

𝑗 in Equation (6-1) denotes the time interval within the estimation horizon, i.e., starting from historical 

time interval 𝑘 − 𝑁 to the current time interval 𝑘. Moreover, for the case when the prediction horizon 

𝐿 is longer than the control horizon 𝐶, the constraint 𝒖𝑧 = 𝒖𝑧−1 in Equation (6-3) ensures that the 

manipulated variables (MV) remain constant and equal to the last value in the control horizon until the 

end of the prediction horizon. In addition, 𝒖𝑘−1 is the known control action evaluated by NMPC at the 

previous time interval, i.e., 𝑘 − 1. 

6.2 Computational Experiments 

This section presents the results obtained for implementing the closed-loop framework shown in Figure 

6-1 for each of the case studies considered in this chapter. The computational experiments were 

conducted using Pyomo 5.2 (and Python 3.6) on a computer running Microsoft Windows Server 2016 

standard. The computer was equipped with 96 GB RAM and Intel(R) Xeon(R) CPU E5-2620 v4 @ 

2.10 GHz 2.10 GHz (2 processors). The direct transcription approach was used to solve both the NMPC 

and MHE formulations at each time step 𝑘. This method discretizes the nonlinear differential equations 

into a set of nonlinear algebraic equations thus transforming the dynamic optimization problem into a 

large-scale nonlinear optimization problem (NLP)190. Both the NMPC and MHE formulations were 

solved using the interior-point method, which is an efficient method used to solve large-scale NLP191. 

The backward method was used to discretize the nonlinear dynamic process model. A normalized sum 

of squared error (SSE) of MHE has been used in this work to compare the performance of the different 

AC estimation methods considered in this work. The SSE for the mth state using the nth AC estimation 

method is as follows: 

𝑆𝑆𝐸𝑚
(𝑛)
=∑(�̂�𝑘,𝑚

(𝑛)
− 𝑥𝑘,𝑚)

2
𝑡𝑓

𝑘=0

 (6-4) 

As a reminder, 𝑘 is the current time index and 𝑡𝑓 is the final time horizon considered in the experiments; 

𝑚 denotes the index of state in the vector of states 𝒙, i.e., 𝑚 ∈ {1, 2, … , 𝑛𝑥}, where 𝑛𝑥 is the number of 

state variables; �̂�𝑘,𝑚
(𝑛)

and 𝑥𝑘,𝑚 are scalars that provide the estimated and true values for the 𝑚th state at 

each instant 𝑘, respectively; �̂�𝑘,𝑚
(𝑛)

 is obtained from MHE using the 𝑛th AC approximation method. The 

normalized SSE for state 𝑚 is defined as follows: 
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𝑆𝑆�̂�𝑚
(𝑛)
=
𝑆𝑆𝐸𝑚

(𝑛)

𝑆𝑆𝐸𝑚𝑚𝑎𝑥
 ;    𝑆𝑆𝐸𝑚𝑚𝑎𝑥 = max  𝑆𝑆𝐸𝑚

(𝑛)
 (6-5) 

where 𝑆𝑆𝐸𝑚𝑚𝑎𝑥 represents the largest SSE for 𝑚th state, which is obtained from the different AC 

estimation methods considered in this work. The results of this study for WTP and HIPS are presented 

in sections 6.2.1 and 6.2.2, respectively. Section 6.2.3 presents an error analysis conducted in this work 

to analyze the results obtained from the case studies. 

6.2.1 Wastewater Treatment Plant (WTP) 

The WTP model presented in section 4.2.4. (see Equation (4-29)) is considered as the first case study 

to test the closed-loop framework presented in section 6.1. As a reminder, this plant considers four 

input variables (𝑞𝑖, 𝑞𝑝, 𝑓𝑘, and 𝑞2) and six state variables (𝑥𝑤, 𝑠𝑤, 𝑥𝑑, 𝑥𝑏, 𝑥𝑟, and 𝑐𝑤). Table B-2 in 

Appendix B lists the nominal steady-state value of the states and model parameters for this process. 

The key states to control in this process are the biomass concentration inside the bioreactor (𝑥𝑤), the 

organic substrate (𝑠𝑤) and the dissolved oxygen concentration in the bioreactor (𝑐𝑤). In the current 

study, the WTP presented in Equation (4-29) is subjected to the following process constraints: 

𝑠𝑤(𝑡) ≤ 100 (6-6) 

0.01 ≤
𝑞𝑝(𝑡)

𝑞2(𝑡)
≤ 0.2 (6-7) 

Constraint (6-6) ensures that the water disposed to the river is not beyond the maximum allowed limit 

set by the municipality whereas constraint (6-7) ensures that the recycle/purge ratio is maintained within 

acceptable limits to maintain a profitable operation.  

In general, WTP require considerable amounts of energy to maintain appropriate recycle ratios and 

supply sufficient oxygen to the bioreactor. Also, WTP are often subject to external perturbations (e.g., 

changes in the influent) that will impact the operability of the plant (e.g., the amount of pollutants 

disposed to natural effluents) and therefore the process economics172,192. Moreover, it has been widely 

recognized that key operating variables in WTP cannot be accurately measured online180 for various 

reasons (e.g., significant measurement error) thereby adding an additional layer of complexity to the 

operational tasks required for this process. In addition, WTPs are difficult to obtain192 and more likely 

may not completely capture the dynamic operation of this process; hence, WTPs are subject to process 

uncertainties (i.e., plant-model mismatch) that will eventually diminish the performance of these plants 

in closed-loop. To the author’s knowledge, optimal model-based control and state estimation strategies 
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that consider bounded process uncertainty like that presented in this work has not been reported for this 

process, even though they can be effective to maintain the feasible operation of this plant within 

acceptable economic targets. 

The goal of this case study is to investigate the impact of some of the most widely known AC 

approximation methods, i.e., EKF and C-PF, during closed-loop operation of an industrial-scale system 

such as the WTP. As mentioned in chapter 4, this case study considers that the online measurements 

available are the concentration of biomass at upper layer of decanter (𝑥𝑑), substrate (𝑠𝑤) and oxygen 

(𝑐𝑤). The controlled variables (CV) considered in the NMPC are 𝑥𝑤 and 𝑠𝑤 and 𝑐𝑤 whereas the 

manipulated variables (MV) are 𝑞𝑝, 𝑓𝑘, and 𝑞2. The rest of the assumption are presented in Appendix 

C. 

All state estimators rely on both plant measurements and the plant model; out of these two sets of 

information, the focus of the estimator will be to follow more reliable sources of information. The larger 

the covariance of a distribution with respect to other distributions, the lower the reliability of that 

particular distribution. Hence, this study considers that the process measurements are assumed to follow 

a normal distribution with a standard deviation (𝜎𝑚𝑒𝑎𝑠) set to 10% of the nominal steady-state values 

of the states (see Table B.2). Moreover, 𝜎𝑢𝑛𝑐 denotes the standard deviation of the process uncertainty 

associated with each of the plant states, which has been set to 5% of the nominal steady-state values of 

the states (see Table B-2 in Appendix B). Under this set of assumptions, MHE and AC estimators tend 

to rely more on the plant model rather than the measurements; hence, the effect of bounded process 

uncertainties are expected to have a more significant impact on the state estimation. Note that estimates 

for 𝜎𝑚𝑒𝑎𝑠 and 𝜎𝑢𝑛𝑐 can be obtained from a real setting using process heuristics or historical plant data. 

Multiple scenarios under different conditions have been considered to perform this analysis. Table 6-1 

summarizes the scenarios considered in this work. Scenario Ⅰ and Scenario Ⅱ explore the effects of 

different bounded distribution on the process uncertainties. As shown in Figure 6-2, both symmetric 

and non-symmetric bounded distributions are considered in the plant model for the individual process 

uncertainties associated with each of the WTP’s state variables. Scenario Ⅰ assumes a symmetric 

bounded distribution in the range of (−2𝜎𝑢𝑛𝑐 , 2 𝜎𝑢𝑛𝑐) whereas Scenario Ⅱ considers a non-symmetric 

bounded distribution in the range of (−2𝜎𝑢𝑛𝑐 , 0.6𝜎𝑢𝑛𝑐). Scenario Ⅲ investigates the role of AC 

estimation using different plant designs. The response time of the system is highly related to the plant’s 

design. For instance, larger vessel sizes may lead to higher settling times. Hence, the response time is 

a key parameter to adjust both the estimation (𝑁) and prediction (𝐿) horizons in a closed-loop 
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framework. As the time constant of the process increases, longer estimation and prediction horizons in 

the MHE and NMPC frameworks may be required to perform a better estimation and control for this 

type of processes, which would also affect the online computational costs. For instance, if MHE does 

not consider a long enough estimation horizon for this processes with large time constants, the true state 

dynamics may be interpreted as measurement noise and process uncertainties due to the slow changes 

in the system, e.g., a process that is slowly drifting away from a nominal operating point. Hence, this 

condition may eventually lead to an inaccurate estimation of the states due the inability of the MHE to 

differentiate between process/measurement noise and actual process dynamics. A longer estimation 

horizon provides MHE with a larger set of measurements and process constraints that helps MHE to 

accurately capture the evolution of the system and therefore provide accurate state estimations at the 

expense of higher computational costs. Alternatively, the AC approximation becomes more important 

for those cases since it directly affects the MHE performance in the closed-loop framework. 

Consequently, an accurate initialization of NMPC problem becomes more crucial as the response time 

of the process plant increases. To analyze this effect, Scenario Ⅲ considers four instances featuring 

two different plant designs, each under bounded symmetric and non-symmetric distributions in the 

process uncertainty, respectively. As shown in Table 6-1, Scenario Ⅲ.A and Scenario III.B assume a -

20% and +20% change in the capacity of the WTP’s decanter under a symmetric process uncertainty, 

respectively, whereas Scenarios III.C and Scenario III.D perform the same test under non-symmetric 

distributions for process uncertainties. The process uncertainty considered for Scenario III’s instances 

are the same used for Scenarios I-II (see Figure 6-2). Note that a test involving open-loop estimation 

under these scenarios was performed and is presented in Appendix C. 

For each scenario, the closed-loop scheme was performed using six different approximations of the 

mean and covariance of the AC distribution 𝒩(�̅�𝑘−𝑁, 𝑷𝑘−𝑁) featuring true states (TS), EKF and C-PF, 

i.e., 𝑛 ∈ {TS, 0.5TS, EKF, C − PF, EKFexpc, C − PFexpc}. Table 6-2 shows the detailed information of 

each of these instances. In the case that 𝑛 = {𝐸𝐾𝐹} or 𝑛 = {𝐶 − 𝑃𝐹}, the posterior distribution 

provided by their corresponding estimator at time 𝑘 − 𝑁 has been used explicitly as the approximation 

of both AC parameters (�̅�𝑘−𝑁 and 𝑷𝑘−𝑁). Note that 𝑷𝑘−𝑁 is estimated using 𝑷𝑘−𝑁−1 obtained from 

the corresponding AC estimation method at the time interval 𝑘 − 1 of the closed-loop framework. For 

the rest of the cases, i.e., 𝑛 ∈ {TS, 0.5TS, EKFexpc, C − PFexpc}, a matrix 1 × 10−10𝐈, where I is an 

identity matrix of proper dimensions, has been considered as the covariance matrix of AC distribution 

(𝑷𝑘−𝑁). Statistically, a small covariance matrix is an indication of a narrow normal distribution; hence, 
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the expected values obtained from this distribution have a high probability to be the true states. Thus, 

based on Equations (6-1)-(6-2), a smaller 𝑷𝑘−𝑁 leads to a higher weight on AC in the objective function 

of the MHE framework, which is expected to drive the estimated states at time step 𝑘 − 𝑁 (�̂�𝑘−𝑁) to 

be closer to the expected state of the AC (�̅�𝑘−𝑁). In the case of EKFexpc (C − PFexpc), the expected 

value estimated by EKF (C-PF) has been assigned to �̅�𝑘−𝑁. When 𝑛 = {TS}, the true states have been 

explicitly used as the mean value of AC distribution �̅�𝑘−𝑁; whereas in the case of 𝑛 = {0.5TS}, a -50% 

of true state values is used as the expected states �̅�𝑘−𝑁. Both TS and 0.5TS have been used in this work 

as benchmark AC estimation methods, i.e., TS represents the ideal case (full access to the true states) 

whereas 0.5TS presents a case of a poor AC estimation of the states �̅�𝑘−𝑁. Each of the scenarios Ⅰ-III 

was repeated six times based on the 𝑛 AC approximation methods considered in this work. The results 

reported in this study are focused on the estimation of biomass concentration (𝑥𝑤) for WTP since this 

is the most critical state for monitoring and controlling this process.  

Table 6-1: Characteristics of Scenarios considered in this study 

Id 
Plant Design Bounded distribution of process uncertainties 

Fixed -20% +20% Symmetric Non-symmetric 

Scenario Ⅰ      

Scenario Ⅱ      

Scenario Ⅲ.A      

Scenario Ⅲ.B      

Scenario Ⅲ.C      

Scenario Ⅲ.D      

    

  

(a) (b) 
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Figure 6-2: (a) Bounded symmetric distribution for process uncertainty: (−2𝜎𝑢𝑛𝑐 , 2 𝜎𝑢𝑛𝑐); (b) Bounded non-

symmetric distribution for process uncertainty: (−2𝜎𝑢𝑛𝑐 , 0.6 𝜎𝑢𝑛𝑐) 

 

Table 6-2: Characteristic of AC estimation methods considered in this study 

AC estimation method (𝑛) Approximation of AC distribution 

EKF 𝒩(�̂�𝑘−𝑁
𝑬𝑲𝑭 , 𝑷𝑘−𝑁

𝑬𝑲𝑭) 

C-PF 𝒩(�̂�𝑘−𝑁
𝑪−𝑷𝑭, 𝑷𝑘−𝑁

𝑪−𝑷𝑭) 

EKFexpc 𝒩(�̂�𝑘−𝑁
𝑬𝑲𝑭 , 1 × 10−10𝐈) 

C-PFexpc 𝒩(�̂�𝑘−𝑁
𝑪−𝑷𝑭, 1 × 10−10𝐈) 

TS 𝒩(𝒙𝑘−𝑵
𝑻𝑺 , 1 × 10−10𝐈) 

0.5TS 𝒩(𝒙𝑘−𝑁
𝟎.𝟓𝑻𝑺, 1 × 10−10𝐈) 

 

6.2.1.1 WTP: Closed-loop operation: Scenarios I-III 

Figure 6-3 presents the performance of the NMPC, MHE and AC estimators during closed-loop 

operation for Scenarios Ⅰ and Ⅱ (see Table 6-1). As shown in this Figure, both scenarios showed poor 

performance in the absence of an acceptable AC estimation method in the MHE formulation (i.e., 0.5TS 

in Figure 6-3). For instance, in the case of 0.5TS as the AC approximation method, a 96% difference 

between 𝑆𝑆�̂�𝑥𝑤
(0.5𝑇𝑆)

 and 𝑆𝑆�̂�𝑥𝑤
(𝑇𝑆)

 was observed for Scenario Ⅱ. On the other hand, the biomass 

concentration is close to its target values when a suitable EKF or C-PF is used to approximate the AC 

parameters. However, as shown in Figures 6-3(a) and 6-3(d), changing the AC approximation method 

did not seem to have a significant effect in closed-loop for Scenarios Ⅰ-Ⅱ, i.e., the difference between 

𝑆𝑆�̂�𝑥𝑤
(𝐸𝐾𝐹)

 and 𝑆𝑆�̂�𝑥𝑤
(𝐶−𝑃𝐹)

 is less than 0.3% in Scenario Ⅱ. This insensitivity of the control system 

to the AC approximation method can be explained by inspecting Figures 6-3(b) and 6-3(e), which 

illustrate the estimation of the biomass (obtained from MHE) in closed-loop for Scenario Ⅰ and Ⅱ, 

respectively. These figures show that, regardless of the type of bounded distributions, the MHE 

performance remains almost the same when C-PF or EKF is used as the AC estimation method. 

According to Figures 6-3(c) and 6-3(f), the AC estimation provided by EKF is slightly better than that 

obtained from C-PF (~0.2%); however, this can be attributed to either noises in the system (e.g., 

measurement noise) or round-off errors. Based on the above, both EKF and C-PF are able to provide 
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an accurate enough AC approximation. As the result, both MHE and NMPC show a similar 

performance using either EKF or C-PF as the AC approximation method. 

  

  

  

Figure 6-3: Impact of using different AC estimators on the control and estimation (MHE) of biomass in the 

closed-loop system (a), (b), (c) Scenario Ⅰ; (d), (e), (f) Scenario Ⅱ 

Figure 6-4 shows the control actions implemented on the recycle flowrate 𝑞2 under the different AC 

estimation methods. As shown in this figure, the control actions for 𝑞2 are very similar when EKF, C-

PF and TS are used as the AC estimation methods; hence, similar control actions are expected from 

these methods. Note that the control actions reported for 0.5TS are far from the benchmark, i.e., the 

true state estimation method (TS), which highlights the importance of using a good AC approximation 

method in the MHE-NMPC closed-loop framework. Moreover, the results shown in Figure 6-4 indicate 

(a) (d) 

(b) (e) 

(c) (f) 
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that the MVs are moving aggressively, particularly under Scenario I. In practice, a low-order filter can 

be used to filter out the noisy signal before passing the control actions to the process plant.  

  

Figure 6-4: Original plant design: Recycle flow that leaves the decanter 𝑞
2
 (𝑚3 𝐿⁄ ) (a) scenario Ⅰ; (b) 

scenario Ⅱ 

Figure 6-5 highlights the results of closed-loop operation in the presence of symmetric bounded 

uncertainties for different plant designs (Scenarios III.A and III.B). Similar to the results obtained for 

Scenario Ⅰ and II (closed-loop operation), the results obtained for Scenarios III.A and III.B confirm the 

importance of using an adequate AC estimation method in the closed-loop framework. As shown in 

Figures 6-5(a) and 6-5(d), NMPC failed to take a proper action when 0.5TS was used as the AC 

estimation method. Note that 𝑆𝑆�̂�𝑥𝑤
(0.5𝑇𝑆)

 is higher than 𝑆𝑆�̂�𝑥𝑤
(𝑇𝑆)

 by 44% and 83% for Scenario Ⅲ.A 

and Scenario Ⅲ.B, respectively. Similar to the open-loop scenarios, the closed-loop results suggest that 

a more reliable AC approximation method becomes critical when the size of the plant (and the response 

time) increases. Nevertheless, a somewhat similar 𝑆𝑆�̂�𝑥𝑤
(𝐸𝐾𝐹)

 and 𝑆𝑆�̂�𝑥𝑤
(𝐶−𝑃𝐹)

 (0.17) was recorded 

for Scenario Ⅲ.A and Scenario Ⅲ.B, hence, a similar closed-loop performance was observed from both 

AC approximation methods, as shown in Figures 6-5(a) and 6-5(d). This result was expected since the 

MHE performance for both instances remained the same, as shown in Figures 6-5(b) and 6-5(e). As 

depicted in Figures 6-5(c) and 6-5(f), C-PF did not improve the accuracy to the approximated 

distribution of AC.  

(a) (b) 
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Figure 6-5: Impact of using different AC estimators on the control and estimation (MHE) of biomass in the 

closed-loop system (a), (b), (c) Scenario Ⅲ.A; (d), (e), (f) Scenario Ⅲ.B 

Figure 6-6 shows the results for Scenarios Ⅲ.C and Ⅲ.D (see Table 6-1). As in Scenarios III.A and 

III.B. The 𝑆𝑆�̂�𝑥𝑤
(0.5𝑇𝑆)

 obtained for Scenario Ⅲ.C is 57% smaller than that reported for Scenario Ⅲ.D; 

these suggests that larger equipment sizes may require more accurate AC estimation methods during 

closed-loop operation. Nevertheless, the results presented in Figure 6-6 show a slight improvement 

when C-PF is used as the AC estimation method. For instance, 𝑆𝑆�̂�𝑥𝑤
(𝐶−𝑃𝐹)

 is 1% and 19% smaller 

than the 𝑆𝑆�̂�𝑥𝑤
(𝐸𝐾𝐹)

 obtained for Scenario Ⅲ.C and Ⅲ.D, respectively. This suggests that, as the size 

of the plant increases, the closed-loop becomes more sensitive to the AC method and C-PF can handle 

(a) 

(b) (e) 

(c) (f) 

(d) 
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non-symmetric bounded uncertainties better compared to EKF. Although using C-PF in the AC 

estimation improves the overall performance of the control-loop system, this estimation method 

required an additional 12% and 17% in the averaged CPU costs for Scenarios Ⅲ.C and Ⅲ.D, 

respectively. On the other hand, EKF is able to provide reasonable estimates for the AC estimation in 

shorter CPU times, which is essential to ensure an economically feasible and safe operation of the WTP 

in closed-loop.  

  

  

  

Figure 6-6: Impact of using different AC estimators on the control and estimation (MHE) of biomass in the 

closed-loop system (a), (b), (c) scenario Ⅲ.C; (d), (e), (f) scenario Ⅲ.D 

The scenarios discussed above assume that the NMPC does not have access to the actual measurements. 

This is essential for the correct initialization of the NMPC framework. Thus, the control system relies 

(a) (d) 

(b) (e) 

(c) (f) 
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on the state estimator (i.e., MHE). As the result, there is no a direct connection between the plant and 

the NMPC, whereas there is an explicit connection between the MHE and plant (see Figure 6-1). Hence, 

the offset between the set point and the biomass estimation provided by MHE is smaller than the offset 

between the set point and the plant output for biomass. This issue can be seen in the scenarios presented 

above for the closed-loop operation. This problem can be resolved by designing a robust NMPC that 

takes process uncertainty into account in the NMPC formulation. In addition, adding integrating states 

to WTP may reduce this offset by inducing integral action in the NMPC. This may be achieved by 

considering nonstationary disturbances as augmented states to the WTP55,56. However, this is beyond 

the scope of this work. Note that the offset between estimation and set points is smaller compared to 

the offset between CVs and the set points. 

6.2.1.2 WTP: EKF for state estimation vs EKF for AC estimation 

The results presented above have shown that EKF can approximate the AC parameters even in the 

presence of bounded constraints, as shown in Scenario Ⅰ and Scenario Ⅱ above. Although EKF is 

expected to face difficulties when the Gaussian assumption approximation cannot hold, this is still an 

acceptable AC estimator as it can provide an accurate approximation of AC in short computational 

times. The closed-loop considered in section 6.2.1.1 follows the standard framework shown in Figure 

6-1. This section considers two additional closed-loop strategies (CL) that are used here to provide 

insights regarding the efficiency of EKF as an AC estimator in the MHE-NMPC closed-loop framework 

involving nonlinear constrains such as bounds on the process uncertainties. To pursue this goal, two 

closed-loop strategies (CL) involving different features have been considered; these strategies are as 

follows: 

CL1) As shown in Figure 6-7(a), this closed-loop strategy considers EKF as the only state estimation 

technique (i.e., without the MHE framework).  

CL2) EKF is used as the AC estimator while EKF is working independent of MHE, i.e., the prior 

estimation of AC is provided by EKF itself and not by MHE framework, as shown in Figure 6-7(b). 

These two tests, i.e., CL1 and CL2, have been compared to the base case control strategy (BC) used in 

this work described in section 6.1 and depicted in Figure 6-1. In the base case (BC) framework, EKF is 

used to estimate AC presented in MHE within a standard framework, where the prior estimation of the 

states in EKF is provided by MHE.  
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Figure 6-7: Block diagrams: (a) CL1, (b) CL2 

The closed-loop frameworks described for CL1 and CL2 have been tested using Scenario Ⅰ and Scenario 

Ⅱ described above. As shown in Figures 6-8(a)-(b), CL1 test does not lead to instability in the control 

or estimation in the presence of symmetric bounded process uncertainties (Scenario Ⅰ). This result was 

expected as the constraint imposed on the probability distribution of the process uncertainties is 

symmetric and fairly wide, i.e., it closely approximates to a Gaussian distribution. Although the 

distributions of process uncertainties are not precisely Gaussian (see Figure 6-2(a)), EKF will not 

severely suffer from the absence of this bounds as the distributions of the process uncertainties are not 

far from a Gaussian distribution. Nevertheless, using MHE improves the accuracy of the state 

estimation and closed-loop performance as MHE considers the bounds and operational constraints for 

the WTP. As shown in Figure 6-8(b), the relative error in the AC approximation is reduced by 

approximately 30% in the base case (BC) closed-loop strategy compared to the case when EKF is used 

as an independent AC estimator (CL2). Figures 6-8(c)-(d) present a more realistic scenario in which 

process uncertainties may follow a non-symmetric probability distribution function. As shown in these 

figures, CL1 (which explicitly relies on EKF estimations) may lead to instability in the presence of non-

symmetric process uncertainties (Scenario Ⅱ). As shown in Figure 6-8(d), the estimation provided by 

EKF in CL1 becomes unstable as the estimation error is propagated over time, i.e., at time 24 hr (24th 

iteration) EKF failed to provide an estimation since the numerical solver diverged due to the large 

estimation error. An error analysis is presented in section 6.2.3 to further investigate the cause of this 

divergence. As shown in Figure 6-8(c), these unstable estimations caused by EKF in CL1 eventually 

resulted in an unstable closed-loop operation. Moreover, the approximation of AC using only EKF 

(b) 

(a) 
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estimations (CL2) also becomes unstable (see Figure 6-8(d)) and eventually leads to closed-loop 

instability due to an inadequate initialization of NMPC, i.e., poor estimation of the states, as shown in 

Figure 6-8(c). On the other hand, the base case (BC) control strategy offers a stable and accurate 

estimation of both AC and states in closed-loop, which is consistent with the results presented in section 

6.2.1.1 (Scenarios Ⅰ-Ⅲ). Based on the above, the estimation error caused by the absence of operational 

constraints and bounds in the EKF algorithm may propagate over time and may lead to inaccurate 

unstable estimations depending on the nonlinearity of the distributions considered for process 

uncertainty and measurements. However, the current results show that this estimation error for the EKF 

under nonlinear distributions may not propagate significantly if engaged with MHE since this 

framework is able to provide the EKF with a proper initialization at every time interval.  

  

  

Figure 6-8: Control and estimation of biomass in the closed-loop system based on the role of EKF in the 

framework under (a), (b) Scenario Ⅰ; (c), (d) Scenario Ⅱ 

 

6.2.2 High Impact Polystyrene Process (HIPS) 

Based on the outcomes obtained from the previous case study, EKF provided an acceptable 

approximation of AC for an industrial-scale system even in the presence of non-symmetric bounded 

(a) (c) 

(b) (d) 
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process uncertainties. Hence, this section further investigates the potential of EKF as the AC estimator 

on a challenging control and estimation problem such as an industrial HIPS system. 

In this system, the non-isothermal polymerization process takes place in a CSTR with highly sensitive 

nonlinear reaction kinetics. The key states to control are the monomer concentration and the reactor 

temperature to maintain stability and obtain different grades of polystyrene conversion based on the 

product demands. Equation (6-8) represents the dynamic model of the HIPS, including the rate of 

initiator, monomer, butadiene, radicals, branched radicals concentrations (i.e., 𝐶𝑖, 𝐶𝑚, 𝐶𝑏, 𝐶𝑟, and 𝐶𝑏𝑟), 

reactor temperature (𝑇), jacket temperature (𝑇𝑗), Zeroth moment dead polymer (𝜇𝑟
0), zeroth moment of 

the chain-length distribution for growing polymer chains with a terminal butadiene unit (𝜇𝑏
0). Equations 

(6-9)-(6-10) show the constraints considered for this process, i.e., bounds on the monomer 

concentration and reactor temperature, respectively. 

𝑑𝐶𝑖
𝑑𝑡
=
𝑄𝑖𝐶𝑖

𝑓
− 𝑄𝐶𝑖
𝑉

− 𝑘𝑑𝐶𝑖 
(6-8) 

𝑑𝐶𝑚
𝑑𝑡

=
𝑄(𝐶𝑚

𝑓
− 𝐶𝑚)

𝑉
− 𝐾𝑃𝐶𝑚(𝜇𝑟

0 + 𝜇𝑏
0) 

𝑑𝐶𝑏
𝑑𝑡

=
𝑄(𝐶𝑏

𝑓
− 𝐶𝑏)

𝑉
− 𝐶𝑏(𝐾𝑖2𝐶𝑟 + 𝐾𝑓𝑠𝜇𝑟

0 + 𝐾𝑓𝑏𝜇𝑏
0) 

𝑑𝐶𝑟
𝑑𝑡
= 2𝑒𝑓𝐾𝑑𝐶𝑖 − 𝐶𝑟(𝐾𝑖1𝐶𝑚 + 𝐾𝑖2𝐶𝑏) 

𝑑𝐶𝑏𝑟
𝑑𝑡

= 𝐶𝑏[𝐾𝑖2𝐶𝑟 + 𝐾𝑓𝑏(𝜇𝑟
0 + 𝜇𝑏

0)] − 𝐶𝑏𝑟[𝐾𝑖3𝐶𝑚 + 𝐾𝑡(𝜇𝑟
0 + 𝜇𝑏

0 + 𝐶𝑏𝑟)] 

𝑑𝑇

𝑑𝑡
=
𝑄(𝑇𝑓 − 𝑇)

𝑉
+
Δ𝐻𝑟𝐾𝑃𝐶𝑚(𝜇𝑟

0 + 𝜇𝑏
0)

𝜌𝑠𝐶𝑝𝑠
−
𝑈𝐴𝐻(𝑇 − 𝑇𝑗)

𝜌𝑠𝐶𝑝𝑠𝑉
 

𝑑𝑇𝑗

𝑑𝑡
=
𝑄𝑐𝑤(𝑇𝑗

𝑓
− 𝑇𝑗)

𝑉𝑐
+
𝑈𝐴(𝑇 − 𝑇𝑗)

𝜌𝑝𝑠𝑤𝐶𝑝𝑐𝑤𝑉𝑐
 

𝑑𝜇𝑏
0

𝑑𝑡
= 𝐾𝑖3𝐶𝑏𝑟𝐶𝑚 − [𝐾𝑃𝐶𝑚 + 𝐾𝑡(𝜇𝑟

0 + 𝜇𝑏
0 + 𝐶𝑏𝑟) + 𝐾𝑓𝑠𝐶𝑚 + 𝐾𝑓𝑏𝐶𝑏]𝜇𝑏

0 + 𝐾𝑃𝐶𝑚𝜇𝑏
0 
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𝑑𝜇𝑟
0

𝑑𝑡
= 2𝐾𝑖0𝐶𝑚

3 + 𝐾𝑖1𝐶𝑟𝐶𝑚 + 𝐶𝑚𝐾𝑓𝑠(𝜇𝑟
0 + 𝜇𝑏

0)

− [𝐾𝑃𝐶𝑚 + 𝐾𝑡(𝜇𝑟
0 + 𝜇𝑏

0 + 𝐶𝑏𝑟) + 𝐾𝑓𝑠𝐶𝑚 + 𝐾𝑓𝑏𝐶𝑏]𝜇𝑟
0 + 𝐾𝑃𝐶𝑚𝜇𝑟

0 

5.0 ≤ 𝐶𝑚(𝑡) ≤ 7.5 (mol/L) (6-9) 

330 ≤ 𝑇(𝑡) ≤ 240  (K) (6-10) 

Tables D-1 in Appendix D lists the nominal state values and model parameter values adopted for this 

case study. The kinetic parameters can be found elsewhere181,183. Note that the scaled mechanistic 

model is used in this study as the state variables differ by orders of magnitude. HIPS includes 3 input 

variables: the initiator, outlet and the cooling water flow rates (i.e., 𝑄𝑖, 𝑄, and 𝑄𝑐𝑤) and 9 states 

variables (i.e., 𝐶𝑖, 𝐶𝑚, 𝐶𝑏, 𝐶𝑟, 𝐶𝑏𝑟, 𝑇, 𝑇𝑗, 𝜇𝑟
0, and 𝜇𝑏

0). The goal of this case study is to show the 

competence of EKF as the AC estimator for challenging cases such as the HIPS process.  

Previous studies have shown that this process is challenging to control since it exhibits a complex 

dynamic behaviour181,182,193. For instance, HIPS is an open-loop unstable system that involves multiple 

state variables that evolve at different time scales thus making this process quite challenging. In addition 

to the well-known challenges in terms of controlling an unstable system, developing a control strategy 

that considers an online state estimation scheme makes the closed-loop framework more challenging, 

e.g., in the case of unstable systems, a reliable estimation of the states becomes critical to achieve 

stability and good NMPC performance. That is, small deviations in the initial state estimation provided 

to the NMPC can lead to inadequate control actions that can eventually lead to errors in the state 

estimation and in due course to a loss in closed-loop performance. Thus, both MHE and NMPC schemes 

rely on the accuracy of the AC estimation. As indicated above, a closed-loop framework involving 

NMPC and MHE for this challenging process has not been reported. 

As in the case of the WTP, process uncertainties have been explicitly considered in the plant model and 

MHE to account for plant-model mismatch thus making the present closed-loop HIPS implementation 

more realistic. The performance of closed-loop operation of the HIPS was investigated under Scenario 

Ⅱ, i.e., fixed plant design and non-symmetric bounded distribution for the process uncertainties. This 

study assumes that the online measurements are available for the concentration of butadiene (𝐶𝑏), 

radicals (𝐶𝑟), branched radicals (𝐶𝑏𝑟), reactor temperature (𝑇), and zeroth moment of the chain-length 

distribution for growing polymer chains with a terminal butadiene unit (𝜇𝑏
0). Although online access to 

some of the key states such as 𝐶𝑟 and 𝜇𝑏
0 may not be available in practice, these assumptions have been 
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made to simplify the analysis. Future works involve the development of new approaches that can 

remove this requirement. Moreover, the process measurements in this study follow a normal 

distribution with a standard deviation (𝜎𝑚𝑒𝑎𝑠) set to 5% of the nominal scaled steady-state values of 

the states (see Table D-1). Moreover, 𝜎𝑢𝑛𝑐 is set to 0.01% of the nominal scaled values of the states 

and is assumed to follow non-symmetric bounded distribution, i.e., Scenario Ⅱ. Note that NMPC 

considers two CVs (i.e., 𝐶𝑚 and 𝑇) and two MVs (i.e., 𝑄, and 𝑄𝑐𝑤). Moreover, similar to the WTP, 

EKF as the AC estimator evaluates the posterior estimation of the states at time 𝑘 − 𝑁, i.e., �̂�𝑘−𝑁
𝑬𝑲𝑭 , based 

on the estimated states calculated from MHE at the time step k-N-1 (�̂�𝑘−𝑁−1). Then, the posterior 

estimation �̂�𝑘−𝑁
𝑬𝑲𝑭  is assigned as the approximation of the mean value in AC distribution (�̅�𝑘−𝑁). The 

covariance matrix for AC has been set to 1% of the nominal values of the scaled steady-state values of 

the states presented in Table D-1 of the appendix. The remaining underlying assumptions to perform 

this study are presented in Appendix D.   

Three different approximations of AC have been considered featuring true states (TS) and EKF, i.e., 

𝑛 ∈ {TS, 0.5TS, EKF}. Table 6-3 provides the AC distribution for each of these instances. As shown in 

Table 6-3, in the case of 𝑛 = {EKF}, the posterior estimation of the states provided by EKF was used 

as the approximation of the mean value (�̅�𝑘−𝑁) in the AC distribution at time 𝑘 − 𝑁. Moreover, the AC 

covariance matrix, i.e., 𝑷𝑘−𝑁, is obtained from the scaled values of the states (denoted as 𝑺𝑪𝑽 ∈ ℝ𝑛𝑥 

in Table 6-3) at the nominal operating point. Similar to WTP, 𝑛 = {TS} and 𝑛 = {0.5TS} represent the 

benchmark AC estimation methods, i.e., these two instances use explicitly the true value of the state 

and a -50% of the true value of the states as the approximation of the mean value of AC distribution 

�̅�𝑘−𝑁, respectively. 

Table 6-3: Characteristic of AC estimation methods, HIPS 

AC estimation method (n) Approximation of AC distribution 

EKF 𝒩(�̂�𝑘−𝑁
𝑬𝑲𝑭 , 𝑺𝑪𝑽 × 10−2𝐈) 

TS 𝒩(𝒙𝑘−𝑁
𝑻𝑺 , 𝑺𝑪𝑽 × 10−2𝐈) 

0.5TS 𝒩(𝒙𝑘−𝑁
𝟎.𝟓𝑻𝑺, 𝑺𝑪𝑽 × 10−2𝐈) 

 

The results shown in this section are for both 𝐶𝑚 and 𝑇 as they are the most critical states for the purpose 

of monitoring and controlling the HIPS process182. In addition, the plant output and the estimation 

results for the jacket temperature (𝑇𝑗) are shown to represent the performance of closed-loop for an 

unknown state that is not part of the set of controlled variables (CV). Figure 6-9 depicts the outcomes 
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for this case study. Similar to the results drawn from the WTP case study, the poor control and 

estimation provided by closed-loop in the case of 0.5TS highlights the need to provide a proper 

approximation of AC to MHE. On average, the 𝑆𝑆�̂�𝐶𝑚
(𝑇𝑆)

, 𝑆𝑆�̂�𝑇
(𝑇𝑆)

, 𝑆𝑆�̂�𝑇𝑗
(𝑇𝑆)

decreased by 99% compared 

to 𝑆𝑆�̂�𝐶𝑚
(0.5𝑇𝑆)

, 𝑆𝑆�̂�𝑇
(0.5𝑇𝑆)

, 𝑆𝑆�̂�𝑇𝑗
(0.5𝑇𝑆)

 for 𝐶𝑚 and 𝑇 and 𝑇𝑗, respectively. Moreover, Figures 6-9(a) and 

6-9(d) depict an adequate control in the case of using EKF as the AC estimator for both 𝐶𝑚 and 𝑇. As 

shown in Figures 6-9(b), 6-9(e), and 6-9(h), MHE provided adequate estimations of 𝐶𝑚, 𝑇 and 𝑇𝑗 where 

EKF was employed as the AC approximation method. Note that 𝐶𝑚 and 𝑇𝑗  are unknown states, whereas 

online measurements are assumed to be available for 𝑇. According to these results, the MHE state 

estimation can provide acceptable estimations during transitions between the product grades and at each 

of the corresponding product grades. The results show that 𝑆𝑆�̂�𝑇𝑗
(𝐸𝐾𝐹)

 and 𝑆𝑆�̂�𝑇
(𝐸𝐾𝐹)

are only 2% higher 

than those observed for 𝑆𝑆�̂�𝑇𝑗
(𝑇𝑆)

 and 𝑆𝑆�̂�𝑇
(𝑇𝑆)

, respectively. Note that in the case of monomer 

concentration, 𝑆𝑆�̂�𝐶𝑚
(𝐸𝐾𝐹)

is only 0.2% larger than 𝑆𝑆�̂�𝐶𝑚
(𝑇𝑆)

. Moreover, the good performance of EKF as 

the AC estimator can be observed from Figure 6-9(c), 6-9(f), and 6-9(i) when compared to the case of 

using TS as the AC estimator. A similar quality of the closed-loop performance was observed for the 

remaining unknown state variables and are not shown for brevity. For instance, Figure 6-9(g) shows an 

acceptable tracking performance of the jacketed temperature (𝑇𝑗) when 𝑛 = {EKF}.  

   

    

(a) 

(b) (e) 

(d) 

(h) 

(g) 
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Figure 6-9: Impact of using different AC estimators on (a), (b), (c) control and estimation (MHE) of monomer 

concentration; (d), (e), (f) control and estimation of reactor temperature; (g), (h), (i) plant output and estimation of 

jacket temperature 

 

6.2.2.1 HIPS: EKF for state estimation vs EKF for AC estimation 

The results presented above have shown the reliability of EKF as the AC approximation method even 

though the EKF algorithm cannot explicitly take into account process constraints (i.e., Equations (6-9)-

(6-10)) and non-symmetric bounded distribution on the process uncertainties, as considered in Scenario 

Ⅱ. The aim of this section is to further investigate the performance of EKF as an AC estimator for this 

case study under different closed-loop configurations while using Scenario II. Similar to the WTP, 

three control strategies involving EKF were considered, i.e., CL1, CL2 and BC (see descriptions in 

section 6.2.1.2). As shown in Figures 6-10(a) and 6-10(c), control scheme CL1 (which uses EKF as the 

state estimator) failed to provide an acceptable initial condition to NMPC, which led to poor control 

for both 𝐶𝑚 and 𝑇. Moreover, Figures 6-10(b) and 6-10(d) show that NMPC failed to compute 

acceptable control actions for the manipulated variables for control scheme CL2. Similar to the 

discussion presented in section 6.2.1.2, this is due to the error propagation in EKF framework, which 

is also observed in the estimation provided by MHE for CL2 (see Figures 6-10(b) and 6-10(d)). 

Nevertheless, Figures 6-10(a)-6-10(d) present good control and estimation for the BC scheme. Since 

EKF in BC receives an acceptable initial condition that takes into account the process constraints (i.e., 

�̂�𝑘−𝑁−1 provided by MHE), EKF is able to provide an acceptable posterior estimation of the AC 

distribution.  

(c) (f) (i) 
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Figure 6-10: Control and estimation results in the closed-loop system based on the role of EKF in the 

framework for (a), (b) of monomer concentration; (c), (d) reactor temperature; 

Note that errors in the EKF estimation will only be propagated for just one time interval. That is, given 

that the prior distribution at every time interval 𝑘 is the output of MHE, which considers the constraints 

and bounds in the process, the estimation error caused by the lack of knowledge about the constraints 

in the EKF formulation only propagates one iteration, which based on the above, will more likely 

represent an adequate estimation of the states as AC in MHE. Thus, even though the EKF algorithm by 

itself may lead to instability in the presence of bounded nonlinear constraints by propagating the 

estimation error over time, this algorithm is an adequate AC estimator in the MHE framework. This 

observation agrees with the results presented in sections 6.2.1.2. An error analysis of the EKF 

framework is presented next to further clarify this insight. 

6.2.3 Error Analysis 

This section presents an analysis on the error in the estimation of the states in the EKF framework. 

Considering a general nonlinear model Equations (3-1)-(3-3), the priori and posterior estimation step 

in the standard EKF are indicated in Equations (3-4) and (3-5), respectively. Note that 𝒖 is assumed to 

remain piecewise constant in between time intervals. The error in the estimation (i.e., 𝒆𝑘|𝑘) can be 

defined as follows:  

(a) (c) 

(b) (d) 
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𝒆𝑘|𝑘 = 𝒙𝑘 − �̂�𝑘|𝑘
𝑬𝑲𝑭 (6-11) 

Introducing �̂�𝑘|𝑘−1
𝑬𝑲𝑭  into Equation (6-11) gives: 

𝒆𝑘|𝑘 = (𝒙𝑘 − �̂�𝑘|𝑘−1
𝑬𝑲𝑭 )  − (�̂�𝑘|𝑘

𝑬𝑲𝑭 − �̂�𝑘|𝑘−1
𝑬𝑲𝑭 ) (6-12) 

By substituting Equations (3-1) and (3-4) for 𝒙𝑘 and �̂�𝑘|𝑘−1
𝑬𝑲𝑭 , respectively, the term (𝒙𝑘 − �̂�𝑘|𝑘−1

𝑬𝑲𝑭 ) can 

be evaluated as follows: 

𝒙𝑘 − �̂�𝑘|𝑘−1
𝑬𝑲𝑭 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝑘 − 1) + 𝒘𝑘−1 − 𝑓(�̂�𝑘−1|𝑘−1, 𝒖𝑘−1, 𝑘 − 1) (6-13) 

Thus, by substituting Equation (3-5) for (�̂�𝑘|𝑘
𝑬𝑲𝑭 − �̂�𝑘|𝑘−1

𝑬𝑲𝑭 ), the estimation error is as follows: 

𝒆𝑘|𝑘 = ( 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝑘 − 1) − 𝑓(�̂�𝑘−1|𝑘−1, 𝒖𝑘−1, 𝑘 − 1) + 𝒘𝑘−1)

− 𝑲𝑘 (𝒚𝑘 − ℎ (�̂�𝑘|𝑘−1
(𝑬𝑲𝑭)

, 𝒖𝑘 , 𝑘)) 
(6-14) 

where 𝒚𝑘 is defined by Equation (3-2). Thus, Equation (6-14) can be simplified as follows: 

𝒆𝑘|𝑘 = ( 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝑘 − 1) − 𝑓(�̂�𝑘−1|𝑘−1, 𝒖𝑘−1, 𝑘 − 1) + 𝒘𝑘−1)

− 𝑲𝑘 (ℎ(𝒙𝑘, 𝒖𝑘 , 𝑘) − ℎ (�̂�𝑘|𝑘−1
(𝑬𝑲𝑭)

, 𝒖𝑘 , 𝑘) + 𝒗𝑘) 
(6-15) 

According to the first order Euler Taylor series expansions:   

𝑓(𝒙𝑘, 𝒖𝑘, 𝑘) − 𝑓(�̂�𝑘−1|𝑘−1, 𝒖𝑘−1, 𝑘 − 1) ≈ 𝑨𝑘−1(𝒙𝑘−1 − �̂�𝑘−1|𝑘−1
𝑬𝑲𝑭 ) (6-16) 

ℎ(𝒙𝑘, 𝒖𝑘 , 𝑘) − ℎ (�̂�𝑘|𝑘−1
(𝑬𝑲𝑭)

, 𝒖𝑘 , 𝑘) ≈ 𝑯𝑘(𝒙𝑘 − �̂�𝑘|𝑘−1
𝑬𝑲𝑭 ) (6-17) 

Thus, the estimation of error is as follows: 

𝒆𝑘|𝑘 = 𝑨𝑘−1(𝒙𝑘−1 − �̂�𝑘−1|𝑘−1
𝑬𝑲𝑭 ) + 𝒘𝑘−1 −𝑲𝑘𝑯𝑘(𝒙𝑘 − �̂�𝑘|𝑘−1

𝑬𝑲𝑭 )−𝑲𝑘𝒗𝑘 (6-18) 

where 𝒙𝑘−1 − �̂�𝑘−1|𝑘−1
𝑬𝑲𝑭  is the estimation error at time interval 𝑘 − 1, i.e., 𝒆𝑘−1|𝑘−1. Thus, given (6-13) 

and (6-18), the error is as follows:  

𝒆𝑘|𝑘 = 𝑨𝑘−1(𝑰 − 𝑲𝑘𝑯𝑘)𝒆𝑘−1|𝑘−1 + (𝑰 − 𝑲𝑘𝑯𝑘)𝒘𝑘−1−𝑲𝑘𝒗𝑘 (6-19) 

This equation can be re-written as follows: 

𝒆𝑘|𝑘 = 𝚷𝑘𝒆𝑘−1|𝑘−1 +𝝍𝑘𝒘𝑘−1−𝑲𝑘𝒗𝑘 (6-20) 

where 𝚷 and 𝝍, i.e., error factor and process uncertainty factor, are defined as follows: 
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𝚷𝑘 = 𝑨𝑘−1(𝑰 − 𝑲𝑘𝑯𝑘) 

𝝍𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘) 

(6-21) 

The error function shown in Equation (6-20) can be used to analyze the results of this study for both 

WTP and HIPS. As mentioned in sections 6.2.1.2 and 6.2.2.1, EKF in BC can be an acceptable AC 

estimator while it fails to provide an accurate estimation of states in CL2. This can be explained through 

the term 𝒆𝑘−1|𝑘−1 in Equation (6-20), that is a poor initialization provided by EKF in CL2 framework 

suggests a relatively large 𝒆𝑘−1|𝑘−1 that may increase and propagate the error significantly at each 

iteration step. On the other hand, 𝒆𝑘−1|𝑘−1 in BC remains small and bounded (as shown in Figures (6-

8) and (6-10) and reported by their corresponding 𝑆𝑆�̂�𝑚
(𝑛)

). The sources of these errors can be identified 

by inspecting the evolution of 𝚷 and 𝝍 for each case study presented in sections 6.2.1.2 and 6.2.2.1. 

Figures 6-11(a)-(b) compares the average eigenvalue of 𝚷 for CL2 and BC in WTP. The same 

comparison is made in Figures 6-11(c)-(d) for the HIPS process. According to Figures 6-11(a) and 6-

11(c), the average eigenvalue of the error factor 𝚷, remains bounded throughout the closed-loop 

simulation; whereas Figures 6-11(b) and 6-11(d) show that the average eigenvalue of 𝚷 becomes 

unbounded after a few iterations.  

  

  

(a) (c) 

(b) (d) 
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Figure 6-11: Average eigenvalue of 𝚷 factor in the case of CL2 and BC framework for (a), (b) WTP; (c), (d) 

HIPS; 

The same tests have been performed for 𝝍. The results showed that the average eigenvalue for this 

factor remain bounded (not shown for brevity), which is an indication that this factor does not have a 

major role in the failure of EKF in CL2. Therefore, the behaviour of the eigenvalues in the error factor 

𝚷 can be identified by evaluating the eigenvalues of the Jacobian matrix for control schemes BC and 

CL2 at each time interval. In the control scheme CL2, the Jacobian matrix is updated at every time 

interval 𝑘 based on the posterior estimation of the states at the past time interval, i.e., �̂�𝑘−1|𝑘−1
𝑬𝑲𝑭 . 

Therefore, as the estimation error 𝒆𝑘−1|𝑘−1 propagates over time, the effect of inaccurate estimations 

of �̂�𝑘−1|𝑘−1
𝑬𝑲𝑭  provided to the Jacobian matrix becomes more significant. After several time intervals, the 

effect of the error may become large and produce unbounded eigenvalues in the sensitivity matrices, 

which eventually results in an unstable operation for the control scheme CL2. This behaviour agrees 

with the results presented for WTP and HIPS in sections 6.2.1.2 and 6.2.2.1, respectively. 

6.3 Summary 

This study showed that an AC approximation method is an essential component in the MHE framework 

to attain an acceptable closed-loop performance. Nevertheless, as long as a standard state estimation 

method is used to approximate the AC distribution and is engaged with MHE, open-loop and closed-

loop operation (even in the presence of nonlinear process constraints) are expected to operate 

adequately, i.e., the states estimates are expected to follow the plant states and therefore become good 

educated initial guesses for the NMPC framework. This research showed that while EKF is an 

unconstrained state estimation scheme, this estimation method is an efficient AC estimator and 

expected to provide an adequate optimization-based estimation and control of industrial and/or complex 

systems that operate in closed-loop using MHE and NMPC. This is because EKF is provided with a 

proper initialization when coupled with a constrained state estimation scheme such as MHE. Moreover, 

the error analysis on the EKF performance was conducted to this work that provided insights on the 

performance of EKF as AC estimator for constrained applications. Base on this analysis, the estimation 

error for EKF as the AC estimator when couples with MHE remains bounded. This insight supports the 

capability of EKF as the AC estimator. This suggests that more computationally expensive filters such 

as C-PF may not be required as AC estimators since they may not seem to improve the quality of the 

MHE estimation when compared to a more computationally efficient estimation method such as EKF. 
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The outcomes of this research was validated for industrial scale systems that exhibit complex dynamics 

and unstable open-loop operation, and under a variety of restrictions on the process uncertainties, 

measurement noises, feasibility constraints and different plant designs.  

In addition to the arrival cost, the MHE performance highly relies on accurate identification of the 

measurement noises and process uncertainties present in the system. Thus, it is essential to provide 

accurate models to the MHE scheme that describe the density of these random variables properly. This 

motivates the studies presented in the next two chapters of this thesis. 
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Extended Moving Horizon Estimation (EMHE)  

In order to achieve a high performance estimation while using the MHE framework, it is essential to 

identify models that can adequately capture the behaviour of the three major components of the 

objective function in the MHE problem, i.e., arrival cost (AC), process uncertainties, and measurement 

noises. While the previous chapter focused on assessing the importance of the AC in the MHE 

framework, this chapter aims to improve the MHE performance by improving the models representing 

the process uncertainties and measurement noises.  A common assumption when using MHE is to 

consider that the distribution of the process uncertainties and measurement noises can be described by 

zero-mean Gaussian distributions with known covariance matrices. However, most of the real-world 

applications featuring noises/uncertainties that follow non-Gaussian distributions. A review of the 

literature presented in section 2.3.2 reveals that no study has considered an efficient modification on 

the standard MHE formulation to capture the non-Gaussianity of noises/uncertainties. Moreover, there 

might be scheduled changes occurring in the plant that may lead to a change in the density of the process 

uncertainties and measurement noises. As a reminder, in this work, the distribution that changes due to 

changes in the operational conditions is referred to as time-dependent distribution. Likewise, the 

distribution that remains unchanged during operation is referred to as time-independent distribution. 

As these changes in the plant operation are scheduled, the new distribution of the noises/uncertainties 

are known a priori to the MHE framework. However, a development on the MHE-based estimation 

schemes that can capture the changes in the distribution of the noises/uncertainties online is lacking 

from the literature. 

Chapters 4 and 5 have presented a novel efficient scheme to use Gaussian mixture models to the state 

estimation framework (i.e., referred to as AGS-EKF) to capture the non-Gaussianity of the process 

uncertainties and measurement noises. Motivated by the previous works on AGS-EKF, the present 

work aims to make use of the Gaussian mixture models to improve the performance of MHE for the 

applications involving non-Gaussian process uncertainties/ measurement noises. Note that similar to 

the common assumption made when performing model-based state estimation schemes (e.g., MHE, 

EKF, etc.) the current work focuses on applications where the distributions of the process uncertainties 

and measurement noises are known a priori over the operating time. Such probability distributions can 

be obtained from historical data or process heuristics. The main contributions of this work are as 

follows: 
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 A novel extended version of MHE is developed. The scheme, referred to as Extended Moving 

Horizon Estimation (EMHE), relaxes the zero-mean Gaussian assumption considered for the 

process uncertainties and measurement noises in the standard MHE. In the proposed Extended 

MHE, the objective function is modified to consider non-zero mean Gaussian distributions for the 

noisy variables. Later in this chapter, it is shown that the standard MHE is a special case of EMHE. 

Also, the proposed EMHE is not expected to increase the computational load compared to the 

standard MHE, thus making the proposed approach computationally attractive. 

 The non-Gaussian distributions for the process uncertainties and measurement noises are 

approximated using Gaussian mixture models. Given that the distributions of these random 

variables are assumed to be known a priori, the corresponding Gaussian mixture models can be 

estimated offline. Thus, this step does not increase the CPU time in the online estimation scheme. 

The proposed EMHE uses the mean value and covariance matrix of the overall Gaussian mixture 

model to approximate the non-Gaussian distribution of the process uncertainty/ measurement 

noises. These main characteristics of the corresponding Gaussian mixture models are introduced to 

the EMHE objective function, which helps to reduce the estimation error for such applications in 

comparison to the standard MHE. Note that the use of Gaussian mixture model in MHE framework 

has not been reported in the literature. 

 The estimation scheme based on the proposed EMHE offers the opportunity to perform an online 

adaptation on the time-dependent known distributions (Gaussian/Non-Gaussian) of the process 

uncertainties and measurement noises. This is a practical feature for those processes that are subject 

to significant changes in the distribution of noises and uncertainties due to changes in their 

operating conditions, e.g., seasonal changes during operation. For this purpose, EMHE allows the 

estimation scheme to re-approximate the corresponding Gaussian mixture models of the process 

uncertainties and measurement noises upon any changes in their corresponding distributions. Note 

that expectation-maximization (EM) algorithm is an efficient method used to re-approximate these 

Gaussian mixture models. The additional computational costs needed to re-approximate the 

Gaussian mixture models highly depends on the frequency at which the scheduled change in 

operation happens in the plant, i.e., how often the density function of the noise/uncertainty changes. 

The higher the frequency at which these events take place in a system, the more often the Gaussian 

mixture models need to be recalculated thus increasing the CPU costs. Nevertheless, it is expected 

that such changes would not occur within short time intervals in an actual industrial setting. Note 
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that computer parallelization techniques can be adopted to simultaneously update the Gaussian 

mixture models of the noises/uncertainties, thus reducing the CPU costs.  

Note that the mean value of the overall Gaussian mixture models of the corresponding non-zero mean 

non-Gaussian noises/uncertainties may also have a non-zero mean. Thus, the aforementioned 

modification in the MHE framework is required such that the non-zero mean and the covariance matrix 

of the Gaussian mixture models can be adopted within the MHE formulation. That is, the main interest 

of the modification considered in EMHE (i.e., relaxing the zero-mean assumption) is only to describe 

systems with non-zero mean Gaussian mixture models. 

This chapter is organized as follows: section 7.1 presents the proposed Extended MHE (EMHE). 

Section 7.2 describes the scheme required to perform recursive state estimation for applications 

featuring process uncertainties and measurement noises that follow time-dependent distributions, i.e., 

the density of these random variables changes throughout the process. The computational experiments 

conducted to this work are presented in section 7.3, which includes three chemical engineering 

processes to investigate benefits offered by the proposed method in both open-loop and closed-loop 

when compared to standard MHE. Section 7.4 presents the chapter summary. 

7.1 Extended Moving Horizon Estimation (EMHE) 

The proposed Extended MHE aims to improve the MHE performance for the applications in which 

process uncertainties or/and measurement noises follow known non-zero mean Gaussian distributions. 

This chapter considers a nonlinear dynamic system given by Equations (3-1)-(3-2). MHE is a special 

case of the full information problem where the length of estimation horizon (𝑁) is fixed and finite. In 

general, the standard full information problem (and correspondingly, standard MHE) assumes that the 

process uncertainties (𝒘) and measurement noises (𝒗) are mutually uncorrelated and follow the zero-

mean Gaussian distributions with diagonal covariance matrices 𝑸 and 𝑹, respectively, i.e. 

𝔼[𝒘𝜍𝒘𝑘
𝑇] = {

𝑸,             𝜍 = 𝑘
𝟎,             𝜍 ≠ 𝑘

  ;   𝔼[𝒗𝜍𝒗𝑘
𝑇] = {

𝑹,             𝜍 = 𝑘
𝟎,             𝜍 ≠ 𝑘

 

(7-1) 

𝒘 ∈ ℝ𝑛𝑥 , 𝒗 ∈ ℝ𝑛𝑦 , 𝑸 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑹 ∈ ℝ𝑛𝑦×𝑛𝑦 

Moreover, 𝔼[𝒘𝜍𝒙0
𝑇] = 0 for all 𝑘 where 𝒙0 represents the vector of initial states. The full information 

problem provides the optimal estimations of the state variables. That is, the optimal estimation is 

determined by maximizing the posterior PDF of the states over the estimation horizon. The full 
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information problem for the nonlinear model presented in Equations (3-1), (3-2), and (7-1) is 

formulated as follows194: 

{�̂�0|𝑘 , … , �̂�𝑘|𝑘} ∶= 𝑎𝑟𝑔 max
{𝒙𝑗}𝑗=0

𝑘
𝑝(𝑿0

𝑘|𝒀0
𝑘) (7-2) 

where 𝑝 denotes the probability density function, �̂� represents the optimal estimates, 𝒀0
𝑘 =

{𝒚0, 𝒚1, … , 𝒚𝑘} and 𝑿0
𝑘 = {𝒙0, 𝒙1, … , 𝒙𝑘} represents the set of the measurements and the states of the 

systems, respectively. Given the underlying assumptions in the full information problem, i.e., the states 

follow a first order Markov process, the process uncertainties and the measurement noises are 

independent, and the available measurements are mutually independent, Equation (7-2) can be rewritten 

as follows: 

{�̂�0|𝑘 , … , �̂�𝑘|𝑘} ∶= 𝑎𝑟𝑔 max
{𝒙𝑗,𝒘𝑗}𝑗=0

𝑘
log 𝑝 (𝒙0) + ∑ log 𝑝 (𝒗𝑗)

𝑘
𝑗=0 + ∑ log 𝑝 (𝒘𝑗)

𝑘−1
𝑗=0   (7-3) 

The details of the derivation of the Equation (7-3) from Equations (3-1),(3-2),(7-2) can be found 

elsewhere194. Given 𝒙0~𝒩(�̂�0|0, 𝑷0), 𝒘𝑘~𝒩(𝟎,𝑸), and 𝒗𝑘~𝒩(𝟎,𝑹), Equation (7-3) can be 

expressed as follows: 

{�̂�0|𝑘 , … , �̂�𝑘|𝑘} ∶= 𝑎𝑟𝑔 min
{𝒙𝑗,𝒘𝑗}𝑗=0

𝑘
‖𝒙0 − �̂�0|0‖𝑷0−1

2
+∑‖𝒘𝑗‖𝑸−1

2
𝑘−1

𝑗=0

+∑‖𝒗𝑗‖𝑹−1
2

𝑘

𝑗=0

   (7-4) 

From Equation (7-4), i.e., the objective function of the general full information formulation, the 

standard MHE formulation can be derived. That is, MHE considers only the last 𝑁 measurements to 

perform the estimation. In the standard MHE formulation, as shown in Equations (6-1)-(6-2), a penalty 

term 𝜑𝑘−𝑁, referred to as the arrival cost, is introduced to represent a metric of the past information 

that is discarded from the finite estimation horizon in the MHE scheme. 

The proposed EMHE relaxes the zero-mean assumption for the uncertainties and noises in the nonlinear 

system and complies with the assumptions mentioned above. That is, the PDF of the non-zero mean 

Gaussian process uncertainties and measurement noises can be described by 𝒘𝑘~𝒩(𝝁,𝑸) and 

𝒗𝑘~𝒩(𝝉, 𝑹), respectively. Thus, the full information objective function in Equation (7-3) for the 

nonlinear system (i.e., Equations (3-1)-(3-2)) can be rewritten as follows: 
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{�̂�0|𝑘 , … , �̂�𝑘|𝑘} ∶= 𝑎𝑟𝑔 min
{𝒙𝑗,𝒘𝑗}𝑗=0

𝑘
‖𝒙0 − �̂�0|0‖𝑷0−1

2
+∑ ‖𝒘𝑗 − 𝝁‖𝑸−1

2𝑘−1

𝑗=0
+

∑ ‖𝒗𝑗 − 𝝉‖𝑹−1
2𝑘

𝑗=0
  

(7-5) 

Consequently, the proposed EMHE formulation can be derived from Equation (7-5) as follows: 

min
{𝒙𝑗,𝒘𝑗}𝑗=𝑘−𝑁

𝑘−1
∑ ‖𝒘𝑗 − 𝝁‖𝑸−1

2𝑘−1

𝑗=𝑘−𝑁
+∑ ‖𝒗𝑗 − 𝝉‖𝑹−1

2𝑘

𝑗=𝑘−𝑁+1
+ 𝜑𝑘−𝑁  

s.t.                                  

𝒙𝑗+1 = 𝑓(𝒙𝑗 , 𝒖𝑗) + 𝒘𝑗  ;              ∀𝑗 = 𝑘 − 𝑁,…𝑘 − 1  

𝒚𝑗 = ℎ(𝒙𝑗 , 𝒖𝑗) + 𝒗𝑗  ;                   ∀𝑗 = 𝑘 − 𝑁 + 1,…𝑘 

𝑔(𝒙𝑗 , 𝒖𝑗 , 𝒘𝑗 , 𝒚𝑗) ≤ 0;                ∀𝑗 = 𝑘 − 𝑁,…𝑘 

𝒙𝒍 ≤ 𝒙𝑗 ≤ 𝒙
𝒖 ;                              ∀𝑗 = 𝑘 − 𝑁,…𝑘    

where: 

𝝁 ∈ ℝ𝑛𝑥  , 𝝉 ∈ ℝ𝑛𝑦 

(7-6) 

 

 

 

 

 

 

 

 

Note that the standard MHE is a special case of the proposed EMHE. That is, if process uncertainties 

and measurement noises belong to zero-mean Gaussian distributions, then, 𝝁 = 𝟎 and 𝝉 = 𝟎; hence, 

Equation (7-6) is equivalent to the standard MHE formulation presented in Equation (6-1).  

This modification in the MHE formulation presented in Equation (7-6) allows EMHE to adopt 

uncertainties and noises that follow non-zero mean Gaussian distributions to the state estimation 

framework at no additional computational costs. Moreover, EMHE combined with the Gaussian 

mixture models can outperform standard MHE for applications involving non-zero mean non-Gaussian 

process uncertainties and measurement noises. To pursue this goal, the proposed EMHE uses the mean 

value and covariance of the Gaussian mixture models, as a suitable approximation of the non-zero mean 

non-Gaussian process uncertainties and measurement noises present in the process. This EMHE-based 

state estimation scheme is presented next. 

7.2 State estimation scheme: time-dependent non-Gaussian distributions 

This section presents the state estimation scheme proposed in this study to deal with systems involving 

non-Gaussianity and time-dependency of the densities of the random noises and uncertainties. The non-

Gaussian random variables present in the process can be described by the main characteristics of their 
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corresponding Gaussian mixture models, as shown in Equation (4-13). Substituting the mean vector 

and covariance of the Gaussian mixture models, i.e., 𝒘𝑘~𝒩(𝝁
𝑮𝑴, 𝑸𝑮𝑴) and 𝒗𝑘~𝒩(𝝉

𝑮𝑴, 𝑹𝑮𝑴), in 

the proposed EMHE formulation shown in Equation (7-6) can introduce an adequate approximation of 

the non-Gaussian process uncertainties and measurement noises to the state estimation. The Gaussian 

mixture models can be updated online once the system moves to operating conditions where the noises’ 

densities change, i.e., on cases when the distribution of the noises are time-dependent.  

Table 7-1 presents the step-by-step procedure required to provide the point estimates using the proposed 

estimation scheme. As shown in this table, Equations (7-7)-(7-12) are used to evaluate the state 

estimation at each time interval. The notation used in these equations is provided below. Steps I and II 

in Table 7-1 (i.e., Equations (7-7)-(7-10)) use a priori knowledge of the process uncertainties and 

measurement noises at the current time interval 𝑘 to approximate time-dependent distributions with 

adequate Gaussian mixture models. Note that this work considers that the random variables present in 

the system are independent from each other. Thus, in Step I, Equations (7-7),(7-8) perform the 

univariate EM algorithm based on a priori knowledge of the process uncertainties and measurement 

noises at the current time interval 𝑘 to approximate the parameters of Gaussian components in the 

Gaussian mixture model of each process uncertainty/measurement noise. The main entries to the EM 

algorithm (denoted as the 𝐸𝑀 function in Equations (7-7) and (7-8)) are the densities of the non-

Gaussian process uncertainties and measurement noises at the current time interval 𝑘, which are 

described with a large number of samples. This information is used at each time interval to update the 

parameters of the corresponding Gaussian mixture model. In Step II, the overall mean value and 

covariance of each Gaussian mixture model are obtained from Equations (7-9) and (7-10). Step III 

provides the mean vector and covariance matrix of the process uncertainties and measurement noises 

based on the characteristics of the process uncertainties and noises obtained from Step II. Note that the 

notation used to represent the mean vector and covariance of the corresponding Gaussian mixture 

models of these time-dependent distributions of the process uncertainties at the current time interval 

(𝑘) are 𝝁𝑘
𝑮𝑴 and 𝑸𝑘

𝑮𝑴, respectively. Likewise, 𝝉𝑘
𝑮𝑴 and 𝑹𝑘

𝑮𝑴 denote the mean vector and covariance 

matrix to approximate the time-dependent distributions of the measurement noises at the current time 

interval 𝑘. As shown in Step IV, this information (i.e., 𝝁𝑘
𝑮𝑴, 𝑸𝑘

𝑮𝑴, 𝝉𝑘
𝑮𝑴, and 𝑹𝑘

𝑮𝑴) represents the main 

inputs to perform the state estimation at each time interval 𝑘 using the EMHE framework, as per 

Equation (7-12).  
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Table 7-1: EMHE-based state estimation algorithm under time-dependent non-Gaussian distribution of 

noises/uncertainties 

At each time interval 𝑘: 

Step I: Update Gaussian components based on the current PDFs, i.e., 𝑝(𝑤𝑙𝑘) and 𝑝(𝑣𝑐𝑘) 

(𝜇𝑙
𝑖𝑝

𝑘
, 𝑄𝑙
𝑖𝑝

𝑘
, 𝛼𝑝𝑙

𝑖𝑝

𝑘
) = 𝐸𝑀(𝑝(𝑤𝑙𝑘), 𝑘); 𝑤𝑙𝑘 ∈ 𝒘𝒌;   ∀𝑘; ∀𝑙 = 1,…𝑛𝑥  (7-7) 

(𝜏𝑐
𝑖𝑚
𝑘
, 𝑅𝑐
𝑖𝑚
𝑘
, 𝛼𝑚𝑐

𝑖𝑚
𝑘
) = 𝐸𝑀(𝑝(𝑣𝑐𝑘), 𝑘); 𝑣𝑐𝑘 ∈ 𝒗𝒌;   ∀𝑘; ∀𝑐 = 1,…𝑛𝑦 (7-8) 

Step II: Update the characteristics of Gaussian mixture models 

𝜇𝑙
𝐺𝑀

𝑘
= ∑ 𝛼𝑝𝑙

𝑖𝑝

𝑘
𝜇𝑙
𝑖𝑝

𝑘

𝑛𝑔𝑝(𝑙)
𝑖𝑝=1   

𝑄𝑙
𝐺𝑀

𝑘
= ∑ 𝛼𝑝𝑙

𝑖𝑝

𝑘
𝑄𝑙
𝑖𝑝

𝑘

𝑛𝑔𝑝(𝑙)
𝑖𝑝=1 + ∑ 𝛼𝑝𝑙

𝑖𝑝

𝑘
(𝜇𝑙
𝑖𝑝

𝑘
− 𝜇𝑙

𝐺𝑀
𝑘
) (𝜇𝑙

𝑖𝑝

𝑘
− 𝜇𝑙

𝐺𝑀
𝑘
)
𝑻𝑛𝑔𝑝(𝑙)

𝑖𝑝=1    

∑ 𝛼𝑝𝑙
𝑖𝑝
 

𝑛𝑔𝑝(𝑙)
𝑖𝑝=1 = 1;    𝛼𝑝𝑙

𝑖𝑝
 ≥ 0          ∀𝑘; ∀𝑙 = 1,…𝑛𝑥 

(7-9) 

𝜏𝑐
𝐺𝑀

𝑘
= ∑ 𝛼𝑚𝑐

𝑖𝑚
𝑘
𝜏𝑐
𝑖𝑚
𝑘

𝑛𝑔𝑚(𝑐)
𝑖𝑚=1   

𝑅𝑐
𝐺𝑀

𝑘
= ∑ 𝛼𝑚𝑐

𝑖𝑚
𝑘
𝑅𝑐
𝑖𝑚
𝑘

𝑛𝑔𝑚(𝑐)

𝑖𝑚=1

+ ∑ 𝛼𝑚𝑐
𝑖𝑚
𝑘
(𝜏𝑐
𝑖𝑚
𝑘
− 𝜏𝑐

𝐺𝑀
𝑘
)(𝜏𝑐

𝑖𝑚
𝑘
− 𝜏𝑐

𝐺𝑀
𝑘
)
𝑻

𝑛𝑔𝑚(𝑐)

𝑖𝑚=1

 

∑ 𝛼𝑚𝑐
𝑖𝑚 

𝑛𝑔𝑚(𝑐)
𝑖𝑚=1 = 1;    𝛼𝑚𝑐

𝑖𝑚  ≥ 0    ∀𝑘; ∀𝑐 = 1,…𝑛𝑦 

(7-10) 

Step III: Update the mean-vectors and covariance matrices 

𝝁𝑘
𝑮𝑴  = {𝜇𝑙

𝐺𝑀
𝑘
}
𝑙=1

𝑙=𝑛𝑥
;  𝑸𝑘

𝑮𝑴  = 𝑑𝑖𝑎𝑔 ([𝑄𝑙
𝑖𝑝

𝑘
]
𝑙=1

𝑙=𝑛𝑥
);        ∀𝑘 

𝝉𝑘
𝑮𝑴  = {𝜏𝑐

𝐺𝑀
𝑘
}
𝑐=0

𝑐=𝑛𝑦
;  𝑹𝑘

𝑮𝑴  = 𝑑𝑖𝑎𝑔 ([𝑅𝑐
𝑖𝑚
𝑘
]
𝑐=1

𝑐=𝑛𝑦
);       ∀𝑘 

(7-11) 

Step IV: Perform the estimation using the proposed EMHE  

min
{𝒙𝑗,𝒘𝑗}𝑗=𝑘−𝑁

𝑘−1
∑ ‖𝒘𝑗 − 𝝁𝑘

𝑮𝑴‖
𝑸𝑘
𝑮𝑴−1
2𝑘−1

𝑗=𝑘−𝑁
+∑ ‖𝒗𝑗 − 𝝉𝑘

𝑮𝑴 ‖
𝑹𝑘
𝑮𝑴−1
2𝑘

𝑗=𝑘−𝑁+1
+ 𝜑𝑘−𝑁  

s.t.                                  

𝒙𝑗+1 = 𝑓(𝒙𝑗 , 𝒖𝑗) + 𝒘𝑗  ;              ∀𝑗 = 𝑘 − 𝑁,…𝑘 − 1  

(7-12) 
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𝒚𝑗 = ℎ(𝒙𝑗 , 𝒖𝑗) + 𝒗𝑗  ;                   ∀𝑗 = 𝑘 − 𝑁 + 1,…𝑘 

𝑔(𝒙𝑗 , 𝒖𝑗 , 𝒘𝑗 , 𝒚𝑗) ≤ 0;                 ∀𝑗 = 𝑘 − 𝑁,…𝑘 

𝒙𝒍 ≤ 𝒙𝑗 ≤ 𝒙
𝒖 ;                              ∀𝑗 = 𝑘 − 𝑁,…𝑘    

𝝁𝑘
𝑮𝑴 ∈ ℝ𝑛𝑥  , 𝝉𝑘

𝑮𝑴 ∈ ℝ𝑛𝑦; 𝑸𝑘
𝑮𝑴 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑹𝑘

𝑮𝑴 ∈ ℝ𝑛𝑦×𝑛𝑦 

As shown in Table 7-1, 𝑛𝑥 and 𝑛𝑦 are the number of state variables and measurements in the system, 

respectively. As presented in section 5.1.2, scalar 𝑣𝑐𝑘 refers to the 𝑐th element of vector 𝒗𝑘, which 

represents the measurement noise associated with 𝑐th measurement at time interval 𝑘; scalar 𝑤𝑙𝑘 refers 

to the 𝑙th element of vector 𝒘𝑘. 𝑖𝑝, and 𝑖𝑚 denote the indexes for the Gaussian component in the 

Gaussian mixture model of process uncertainties and measurement noises, respectively. For 

instance, 𝛼𝑚𝑐
𝑖𝑚 is the weight assigned to the 𝑖𝑚th component in the Gaussian mixture model of 𝑐th 

measurement noise, whereas 𝛼𝑝𝑙
𝑖𝑝

 is the corresponding weight for the 𝑖𝑝th Gaussian component in the 

Gaussian mixture model of the 𝑙th process uncertainty variable, respectively; likewise, 𝑛𝑔𝑝(𝑙) and 

𝑛𝑔𝑚(𝑐) are scalars that denote the number of Gaussian components in the corresponding mixture 

model of the 𝑙th process uncertainty and 𝑐th measurement noise, respectively. The function 𝐸𝑀 in 

Equations (7-7)-(7-8) represents the univariate expectation-maximization method. Note that similar to 

the standard MHE, the EMHE problem is expected to present the optimal estimations of the unknown 

states that satisfy all the process constraints. That is, from a mathematical point of view, the estimations 

provided by both the standard MHE and EMHE are expected to remain within the feasibility region of 

the process. In practice, however, the estimates resulting from EMHE and the standard MHE may 

become infeasible for the actual process if there is significant plan-model mismatch. 

Remark 1: To simplify the analysis, the distribution of the noises within the estimation horizon are 

assumed to be the same as the distribution of the noises at the current time interval 𝑘, i.e., 

{𝒘𝑖}𝑖=𝑘−𝑁
𝑘

~𝒩(𝝁𝑘
𝑮𝑴, 𝑸𝑘

𝑮𝑴) and {𝒗𝑖}𝑖=𝑘−𝑁
𝑘

~𝒩(𝝉𝑘
𝑮𝑴, 𝑸𝑘

𝑮𝑴). Nevertheless, the proposed approach can 

be extended to cases when this assumption is relaxed. In that case, Equation (7-11) in Step III needs to 

be modified to keep track of all the historical distributions of the noises/uncertainties within the 

estimation horizon. This can be done by considering an additional dimension in the matrix of the mean 

values and covariance, e.g., 𝝁[𝑘−𝑁:𝑘]
𝑮𝑴 = [{𝜇𝑙

𝐺𝑀
𝑘−𝑁

}
𝑙=1

𝑙=𝑛𝑥
, … . . , {𝜇𝑙

𝐺𝑀
𝑘
}
𝑙=1

𝑙=𝑛𝑥
]. Note that the subscripts for 

these terms in objective function in Equation (7-12) would need to change from 𝑘 to 𝑗, i.e., 
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min
{𝒙𝑗,𝒘𝑗}𝑗=𝑘−𝑁

𝑘−1
∑‖𝒘𝑗 − 𝝁𝑗

𝑮𝑴‖
𝑸𝑗
𝑮𝑴−1
2

𝑘−1

𝑗=𝑘−𝑁

+ ∑ ‖𝒗𝑗 − 𝝉𝑗
𝑮𝑴 ‖

𝑹𝑗
𝑮𝑴−1
2

𝑘

𝑗=𝑘−𝑁+1

+ 𝜑𝑘−𝑁 

(7-12A) 

Remark 2: For the scenarios where the distributions of the process uncertainties and measurement 

noises are assumed to remain constant during operation (i.e., time-independent distributions), the inputs 

to the EMHE framework would not change. That is, the estimation scheme does not require to perform 

Steps I-III at each time interval. For instance, the scenario featuring time-independent non-zero mean 

Gaussian distributed random noises, i.e., 𝒘𝑘~𝒩(𝝁,𝑸) and 𝒗𝑘~𝒩(𝝉, 𝑹), is a special case of the 

estimation scheme presented in Table 7-1 in which 𝝁𝑘
𝑮𝑴 = 𝝁,𝑸𝑘

𝑮𝑴 = 𝑸, 𝝉𝑘
𝑮𝑴 = 𝝉, and 𝑹𝑘

𝑮𝑴 = 𝑹. 

Likewise, the scenario involving time-independent zero-mean Gaussian distributions, i.e., 

𝒘𝑘~𝒩(𝟎,𝑸) and 𝒗𝑘~𝒩(𝟎,𝑹), is a special case of estimation scheme presented above in which 

𝝁𝑮𝑴𝑘 = 𝟎,𝑸
𝑮𝑴

𝑘 = 𝑸, 𝝉
𝑮𝑴

𝑘 = 𝟎, and 𝑹𝑮𝑴𝑘 = 𝑹. 

Remark 3: The current study assumes that changes in the operation are scheduled in advance and 

therefore, the corresponding probability densities of the measurement noises and process uncertainties 

are known a priori. The proposed EMHE scheme is expected to converge in the estimation as long as 

an adequate representation of the non-Gaussian distributions is provided using Gaussian mixture 

models. However, when unexpected events happen in the plant, e.g., drastic changes in the operating 

conditions or equipment malfunction, the process uncertainties and the measurement noises may 

drastically drift from their original distributions. Under that scenario, the a priori knowledge of the 

non-Gaussian distributions may no longer be valid and thus, the corresponding Gaussian mixture 

models may no longer provide an accurate approximation of the noises/ uncertainties in the system. 

Consequently, the present EMHE-scheme may lose performance or diverge as this framework heavily 

relies on the accuracy of these Gaussian mixture models. Future research studies (presented in chapter 

8) would focus on this limitation and provide robust moving horizon schemes that can accommodate 

unknown densities in the measurement noises or process uncertainties. 

Remark 4: In the present work, the process uncertainties (and measurement noises) associated with 

each state variable are mutually independent and consequently, each process uncertainty variable 

(measurement noise variable) is approximated to a univariate Gaussian mixture model, as shown in 

Table 7-1 (Equations (7-7)-(7-11)). Nevertheless, the present EMHE estimation scheme can be readily 

extended to consider applications featuring multivariate distributions of the process uncertainties/ 

measurement noises, i.e., correlated process uncertainties or measurement noises. Under those 
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scenarios, the EMHE scheme makes use of multivariate Gaussian mixture models, i.e., Equations (7-

13A)-( 7-13D), as a substitute to univariate Gaussian mixture models shown in Equations (7-7)-(7-11).  

(𝝁𝑘
𝑖𝑝
, 𝑸𝑘
𝑖𝑝
, 𝛼𝑝𝑘

𝑖𝑝
) = 𝐸𝑀(𝑝(𝒘𝑘), 𝑘);     ∀𝑘  (7-13A) 

(𝝉𝑘
𝑖𝑚, 𝑹𝑘

𝑖𝑚, 𝛼𝑚𝑘
𝑖𝑚) = 𝐸𝑀(𝑝(𝒗𝑘), 𝑘);   ∀𝑘  (7-13B) 

𝝁𝑘
𝑮𝑴 = ∑ 𝛼𝑝𝑘

𝑖𝑝
𝝁𝑘
𝑖𝑝𝑛𝑔𝑝

𝑖𝑝=1   

𝑸𝑘
𝑮𝑴 = ∑ 𝛼𝑝𝑘

𝑖𝑝
𝑸𝑘
𝑖𝑝𝑛𝑔𝑝

𝑖𝑝=1 + ∑ 𝛼𝑝𝑘
𝑖𝑝
(𝝁𝑘
𝑖𝑝
− 𝝁𝑘

𝑮𝑴)(𝝁𝑘
𝑖𝑝
− 𝝁𝑘

𝑮𝑴)
𝑻𝑛𝑔𝑝

𝑖𝑝=1    

∑ 𝛼𝑝𝑙
𝑖𝑝
 

𝑛𝑔𝑝
𝑖𝑝=1 = 1;    𝛼𝑝𝑙

𝑖𝑝
 ≥ 0          ∀𝑘 

(7-13C) 

𝝉𝑘
𝑮𝑴  = ∑ 𝛼𝑚𝑘

𝑖𝑚𝝉𝑘
𝑖𝑚𝑛𝑔𝑚

𝑖𝑚=1   

 𝑹𝑘
𝑮𝑴 = ∑ 𝛼𝑚𝑘

𝑖𝑚𝑹𝑘
𝑖𝑚

𝑛𝑔𝑚

𝑖𝑚=1

+ ∑ 𝛼𝑚𝑘
𝑖𝑚(𝝉𝑘

𝑖𝑚 − 𝝉𝑘
𝑮𝑴)(𝝉𝑘

𝑖𝑚 − 𝝉𝑘
𝑮𝑴)

𝑻

𝑛𝑔𝑚

𝑖𝑚=1

 

∑ 𝛼𝑚 
𝑖𝑚 

𝑛𝑔𝑚
𝑖𝑚=1 = 1;    𝛼𝑚 

𝑖𝑚  ≥ 0    ∀𝑘  

(7-13D) 

Note that Step III in the EMHE-based estimation algorithm is not required when random 

noises/uncertainties follow multivariate distributions. Moreover, Step IV (Equation (7-12)) remains 

unchanged under both correlated and uncorrelated noises scenarios. 

Remark 5: Preliminary tests showed that the arrival cost exhibits similar effects in the performance of 

the EMHE scheme to those observed for the standard MHE (tests not shown for brevity). Longer 

estimation horizons improve the estimation but also increase the CPU time. Conversely, short 

estimation horizons reduce the CPU time to perform the point estimates, but it may impact the 

convergence of the state estimation scheme because the performance of both EMHE and standard MHE 

heavily relies on the accuracy offered by the arrival cost estimator (see chapter 6). As the present work 

is focused on the effect of noises/uncertainties in the state estimation schemes, a sufficiently long 

estimation horizon has been considered for each case study, which tends to minimize the impact of the 

arrival cost term in the standard MHE and EMHE schemes. Nevertheless, the proposed EMHE 

approach is expected to offer a similar performance if an appropriate arrival cost estimator is available. 

7.3 Computational Experiments 

This section presents the results of performing the proposed EMHE for three chemical engineering case 

studies, i.e., a Gas-phase reactor, an industrial-scale wastewater treatment plant (WTP), and a network 

of continuous-stirred tank reactors (CSTRs). This study used the mean squared error (MSE) defined in 

Equation (4-22) as the main metric to analyze the performance of the proposed EMHE scheme in open-
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loop. Note that in the current chapter 𝑛 ∈ {MHE, EMHE}. As mentioned in the previous chapters, this 

study considered the output of the mechanistic plant model (associated with the additive process 

uncertainties), i.e., “Plant Output”, as the true value of states. Moreover, Equation (7-14) represents 

MSE used to evaluate the performance of the system in closed-loop using the 𝑛th estimation scheme. 

𝑀𝑆𝐸𝑥𝑚
(𝑛)
=
1

𝑡𝑓
∑ (𝑥𝑘,𝑚 − 𝑦𝑟𝑒𝑓𝑘,𝑚

)
2𝑡𝑓

𝑘=0   (7-14) 

where 𝑦𝑟𝑒𝑓𝑘,𝑚
 represents the set-points for the 𝑚th state (controlled variable) at 𝑘th time interval. The 

computational experiments were performed in Pyomo 5.2 (and Python 3.6) on a computer running 

Microsoft Windows Server 2016 standard. The computer specification is 96 GB RAM and Intel(R) 

Xeon(R) CPU E5-2620 v4 @ 2.10 GHz 2.10 GHz (2 processors). The backward method was used to 

discretize the nonlinear dynamic process models. Interior-point method was used to solve the 

optimization problems, i.e., MHE, EMHE, and NMPC. Note that the true distributions of the 

uncertainties/ noises for each case study were defined as a function (i.e., percentage) of the nominal 

steady-state value of their corresponding state variables. This was done to test the performance of the 

proposed estimation framework under operating conditions that are likely to occur in an actual 

industrial setting. Hence, multiple scenarios involving Gaussian and non-Gaussian densities for simple 

systems, and those involving complex highly nonlinear processes often found in industrial settings, are 

presented in this section. The results obtained for each of the case studies are presented next. 

7.3.1 Gas-phase Reactor 

The proposed EMHE was used to perform state estimation in a gas-phase reactor presented in Equation 

(4-26), except that the assumptions for the process uncertainties and the measurement noise is different 

than that shown in Equation (4-26). That is, the current study considers that the process uncertainties 

and the measurement noise present in this process follow the non-Gaussian distributions shown in 

Figure 7-1. As shown in this figure, the process uncertainties considered in this study follow uniform 

distributions while the random measurement noise is assumed to follow a multi-modal distribution 

(with three modes). The red plot in this figure represents the Gaussian mixture model provided by the 

EM algorithm that approximates each of the non-Gaussian distributions. Each of the Gaussian mixture 

models involves three Gaussian components, which have been chosen offline after performing multiple 

tests to achieve an acceptable level of accuracy of the mixture model without an unnecessary increase 

in the Gaussian components. 
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Figure 7-1: Histogram for the true non-Gaussian distribution and the Gaussian mixture approximation of (a) 

the process uncertainty associated with 𝑝𝐴; (b) process uncertainty associated with 𝑝𝐵; (b) measurement noise  

For comparison purposes, the performance of the standard MHE, i.e., Equation (6-1), was also 

considered for this case study. In this case, zero-mean Gaussian process uncertainties and measurement 

noise with the following specifications are considered: 

 𝑣𝑘~𝒩(0, 𝑅); 𝑅 = 0.0169; 𝑤𝑘~𝒩(0, 𝑄); 𝑄 = 𝑑𝑖𝑎𝑔{9.0 × 10
−6, 2.5 × 10−3} (7-15) 

To make a fair comparison, preliminary tests were performed to adjust the covariance matrices for these 

random variables in the interest of obtaining the highest estimation accuracy using the standard MHE. 

The initial guess used to perform the estimation is assumed to be 10% larger than the true initial states, 

i.e., 1.1 × 𝑝𝐴0 and 1.1 × 𝑝𝐵0. Both of these states are unknown and need to be estimated online, i.e., 

the total pressure (𝑦𝑘) is the only available measurement. The sampling interval considered for the gas-

phase reactor is 0.1s. The length of estimation horizon is chosen to be 10, which is long enough to 

minimize the effect of the arrival cost and help to focus only on the effect of the noises in the estimation 

accuracy. 

Figure 7-2 presents the estimates provided by both MHE and EMHE in open-loop. As shown in this 

figure, the proposed EMHE was able to reduce the estimation error significantly when compared to the 

standard MHE. The MSE for each state is reported in Table 7-2. According to this table, the estimation 

error in the case of using the EMHE scheme is reduced by two orders of magnitude than that reported 

for the case of using standard MHE. This improvement in the state estimation offered by EMHE is 

because the Gaussian mixture models of the non-zero mean non-Gaussian noises (and uncertainties) 

have been considered in the EMHE objective function; therefore, the mismatch between the process 

and the estimation scheme is smaller than that observed in the standard MHE. The current case study 

assumed that the distribution of the process uncertainties and measurement noises were time-

independent, i.e., the corresponding Gaussian mixture models remain unchanged throughout the 

(a) (b) (c) 
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operation. As a result, the EMHE scheme only requires performing the EM algorithm once (i.e., at the 

beginning of the estimation), which can be performed offline to avoid any additional CPU time in the 

estimation scheme. The improvement in the estimation accuracy achieved by performing the proposed 

EMHE is attractive as it comes at no additional computational costs.  

  

Figure 7-2: Estimation provided by standard MHE and EMHE under open-loop operation: (a) 𝑝𝐴; (b) 𝑝𝐵 

. 

Table 7-2: MSE for 𝑝𝐴 and 𝑝𝐵 using different estimation schemes under open-loop 

operation 

Estimation method (n) 𝑀𝑆𝐸𝑝𝐴
(𝑛)

 𝑀𝑆𝐸𝑝𝐵
(𝑛)

 

MHE 1.26 1.68 

EMHE 0.04 0.05 

 

7.3.2 Wastewater Treatment Plant (WTP) 

The second case study considers an industrial-scale wastewater treatment plant (WTP) presented in 

Equations (4-29),(6-6),(6-7). Ass mentioned in section 4.2.4, WTPs are often exposed to the external 

perturbations that may affect the operability of this process192. Moreover, it is difficult to develop a 

mechanistic model that can completely capture the dynamics192. Thus, WTPs are often associated with 

process uncertainties and is essential to approximate these uncertainties properly and introduce to the 

estimation scheme. Moreover, due to the complexities mentioned above, the distribution of the process 

uncertainties and consequently the distribution of the states are more likely to follow a non-Gaussian 

behaviour. Hence, WTP is a good candidate for the goal of assessing the performance of the proposed 

estimation scheme. Similar to the assumptions mentioned in sections 4.2.4 and 6.2.1, online 

(b) (a) 
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measurements are available for 𝑥𝑑, 𝑠𝑤, and 𝑐𝑤 whereas 𝑥𝑤, 𝑥𝑏, and 𝑥𝑟 represent the unknown states 

for this plant. The sampling time of this process is 1 hr. Figure 7-3 presents the distributions of the 

process uncertainty and measurement noises considered for this process. As shown in this figure, the 

process uncertainties associated with states 𝑥𝑤, 𝑥𝑟, and 𝑐𝑤, as well as the corresponding measurement 

noises to states 𝑠𝑤 and 𝑥𝑑 are assumed to follow uniform distributions; whereas bimodal densities were 

considered to represent the remaining process uncertainty and measurement noise variables present in 

the system. As mentioned above, these assumptions were made to test the performance of the proposed 

estimation scheme under practical scenarios involving noises and uncertainties with arbitrary non-

Gaussian densities, which are expected to be observed in practice. These distributions were assumed to 

remain constant during operation, i.e., time-independent non-zero mean non-Gaussian noises. The 

histogram represents the non-Gaussian random variables whereas the red solid lines are the Gaussian 

mixture model for each distribution. Note that the number of Gaussian components varies for each 

distribution based on the level of non-Gaussianity. Also note that all the process uncertainties and 

measurement noises are mutually independent. Thus, each process uncertainty (and each measurement 

noise) follows a unique non-Gaussian distribution that is different from the distribution of the other 

uncertainties and noises. Univariate EM has been performed to approximate the parameters of the 

corresponding Gaussian mixture models of these process uncertainties and measurement noises.  

   

   

(a) (b) (c) 

(d) (e) (f) 
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Figure 7-3: Histogram for the true non-Gaussian distribution and the Gaussian mixture approximation of the 

process uncertainties and the measurement noises in WTP 

As in the previous case study, preliminary tests were performed to select the specifications of the noises 

and uncertainties in the favour of the standard MHE. The standard deviation of the process uncertainty 

associated with each state is set to 5% of the nominal steady-state value of the corresponding state. 

Similarly, the standard deviation for the measurement noises associated with each of the states is set to 

5% of their nominal steady-state values. The steady-state information used as the initial condition for 

WTP is presented in Table B-2 in Appendix B. The Gaussian mixture models presented in Figure 7-3 

represent the distribution of measurement noises and process uncertainties in EMHE framework. One 

of the main interests in state estimation is to provide accurate estimates of the states in closed-loop for 

the purpose of online control. Motivated by this, both open-loop and closed-loop scenarios have been 

considered for WTP. 

7.3.2.1 Scenario I: WTP in open-loop 

The preliminary tests on the standard MHE for WTP featuring zero-mean Gaussian measurement noises 

and process uncertainties have shown that 10hr (i.e., 10 time intervals) is an appropriate choice for the 

length of estimation horizon to obtain an appropriate estimation for WTP without considering the 

arrival cost term. Both state estimation schemes consider that the initial guesses for the estimated states 

are 90% of the actual initial conditions of the state variables of WTP. Figure 7-4 shows the estimations 

provided by EMHE and MHE for the unknown states 𝑥𝑤, 𝑥𝑏, and 𝑥𝑟 under the non-Gaussian random 

variables presented in Figure 7-3. As shown in Figure 7-4, the estimation improves significantly when 

EMHE is used as the estimation scheme in open-loop. According to Table 7-3, the relative estimation 

error, i.e., 𝑀𝑆𝐸𝑥𝑤
(E𝑀𝐻𝐸)

𝑀𝑆𝐸𝑥𝑤
(𝑀𝐻𝐸)

⁄ , is reduced by 20% for 𝑥𝑤 in the case of using EMHE. Similarly, 

the relative estimation error for 𝑥𝑟, i.e., 𝑀𝑆𝐸𝑥𝑟
(E𝑀𝐻𝐸)

𝑀𝑆𝐸𝑥𝑟
(𝑀𝐻𝐸)

⁄ , is decreased by 32% when EMHE is 

(g) (h) (i) 
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used as the estimation scheme. Note that the estimation error for online measured states, i.e., 𝑠𝑤, 𝑥𝑑, 

and 𝑐𝑤, are almost the same using both estimation schemes. 

 
 

 

Figure 7-4: Estimation provided by standard MHE and EMHE for (a) 𝑥𝑤; (b) 𝑥𝑏; (b) 𝑥𝑟 

. 

Table 7-3: MSE for 𝑥𝑤, 𝑥𝑏 ,and 𝑥𝑟 using different estimation schemes 

Estimation method (n) 𝑀𝑆𝐸𝑥𝑤
(𝑛)

 𝑀𝑆𝐸𝑥𝑏
(𝑛)

 𝑀𝑆𝐸𝑥𝑟
(𝑛)

 

MHE 4.66e4 3.39e4 2.61e5 

EMHE 1.50e4 1.78e4 5.22e4 

 

7.3.2.2 Scenario II: WTP in closed-loop using NMPC 

NMPC has been engaged to this work to show the performance of the WTP in closed-loop using both 

EMHE and MHE. That is, the closed-loop framework shown in Figure 6-1 is used in the current 

scenario. As shown in this figure, an estimation scheme is necessary to provide the initial conditions to 

the NMPC problem at each time interval. Moreover, NMPC provides the optimal control actions to 

both process plant and the state estimator at each time interval. A detailed description on this closed-

(b) (a) 

(c) 
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loop framework can be found in section 6.1. The general formulation of NMPC is presented in Equation 

(6-3). In addition to the assumptions mentioned above for this case study, the prediction and control 

horizons in the NMPC framework are set to 10 hr and 5 hr, respectively. These assumptions have been 

previously tested to ensure acceptable NMPC performance for the WTP. As mentioned in the previous 

chapters, the key states for the purpose of controlling the system are the concentration of biomass, 

substrate and oxygen inside the bioreactor, i.e., 𝑥𝑤, 𝑠𝑤, and 𝑐𝑤, respectively; the weight of these 

controlled variables are set to 1, 200, 1, in the NMPC framework, respectively. The manipulated 

variables are the turbine speed (𝑓𝑘), the flowrate of the decanter outlet (𝑞2) and the purge flowrate (𝑞𝑝). 

These flowrates are mainly responsible to control the biomass and substrate concentrations, whereas 𝑓𝑘 

is used to keep the oxygen concentration on target. Bounds on the manipulated variables are presented 

in Table B-2 in appendix B. Figure 7-5 highlights the results obtained by performing estimation and 

control using both frameworks. Moreover, Table 7-4 represents the estimation error, i.e., the error 

between the plant output and the estimated states evaluated based on Equation (4-22), as well as the 

control error, i.e., the error between the plant output and the set-point calculated based on Equation (7-

14), for the controlled variables 𝑥𝑤 and 𝑠𝑤. According to Figure 7-5(a), the closed-loop performance 

for the controlled variable 𝑠𝑤 is the same from both schemes, i.e., using MHE and EMHE as the 

estimation scheme in the closed-loop framework. That is, the error between the plant output and the 

set-point for 𝑠𝑤, i.e., Equation (7-14), is the same with a tolerance of 0.4% as reported in Table 7-4.  

Figure 7-5(b) presents the results for biomass concentration inside the bioreactor (𝑥𝑤), which is one of 

the most critical states for this system for which online measurements are not available. The estimation 

error, i.e., the error between the estimation and the plant output for 𝑥𝑤, , resulted in the case of using 

EMHE is approximately 70% of the estimation error when using the standard MHE  (see Table 7-4). 

According to Table 7-4, the relative error in the closed-loop control, i.e., the error between the plant 

output and the set-point for 𝑥𝑤, is approximately 59% smaller when EMHE was used in the feedback 

control framework. The results for remaining states have not been presented for brevity. As shown in 

Figure 7-5(c)-(d), the manipulated variables 𝑞2 and 𝑞𝑝 reach their saturation limits (i.e., bounds) at 

specific time intervals, regardless of the estimation scheme. During these time intervals, NMPC is 

computing the exact same control actions to the plant, regardless of the estimation method (i.e., standard 

MHE or EMHE); this leads to observe similar plant outputs from both methods. Nevertheless, the plant 

output is closer to its set-point in the case of using EMHE when the constraints on the manipulated 

variables are not active. This observation holds even though the estimates provided by standard MHE 

are closer to the set-point than the estimates provided by EMHE. This is because the main connection 
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in closed-loop is between the state estimation scheme and NMPC, as shown in Figure 6-1 (see section 

6.1). Therefore, NMPC focuses on finding the optimal control actions that keep the estimation of the 

controlled variables at their target. These control actions are sent to the plant. With this in mind, the 

smaller error between the estimations and the set-points does not necessary lead to better control of the 

plant as the estimations may not be accurate representatives of the plant outputs. Thus, the errors 

between the estimations and both the plant output and the set-points need to be reduced to improve the 

closed-loop operation. As shown in both Scenario I and Scenario II, the proposed EMHE framework 

provides more accurate estimations of the plant outputs than those provided by standard MHE, which 

consequently leads to better set-point tracking performance.  

  

  

Figure 7-5: Impact of using MHE and EMHE in closed-loop: (a) estimation and plant output for 𝑠𝑤; (b) 

estimation and plant output for 𝑥𝑤; (c) control actions for 𝑞2; (d) control actions for 𝑞𝑝 

… 

Table 7-4: MSE in the estimation and control for 𝑥𝑤 and 𝑠𝑤 using different estimation schemes under 

closed-loop 

Estimation method (n) 

Estimation error (Equation (4-22)) Control error (Equation (7-14)) 

𝑀𝑆𝐸𝑥𝑤
(𝑛)

 𝑀𝑆𝐸𝑠𝑤
(𝑛)

 𝑀𝑆𝐸𝑥𝑤
(𝑛)

 𝑀𝑆𝐸𝑠𝑤
(𝑛)

 

(b) (a) 

(c) (d) 
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MHE 4.31e+4 9.87 1.43e+5 53.50 

EMHE 3.02e+4 5.38 8.47e+4 53.76 

 

7.3.3 A series of Continuous-stirred Tank Reactors (CSTR) 

The EMHE scheme proposed in section 7.2 is applied on a chemical process involving two connected 

continuous-stirred tank reactors (CSRT) in series. This series of CSTRs has been used in the literature 

for robust MHE and control applications140,195,196. Figure 7-6 shows a flowsheet of this process. The 

symbols 𝐹,𝑇, and 𝐶 denotes the flowrate, temperature, and concentration of the corresponding stream 

in Figure 7-6, respectively. Three parallel reactions take place at each CSTR, i.e., 𝐴
𝑘10
→ 𝐵, 𝐴

𝑘20
→ 𝐶 and 

𝐴
𝑘30
→ 𝐷. The goal is to produce C while B and D are by-products. The unreacted A at the outlet stream 

of the second CSTR is partially recycled to the first CSTR at a flowrate 𝐹𝑟, temperature of 𝑇2 and with 

the concentration of 𝐶𝐴2. Each CSTR is equipped with a jacket to control the temperature of the reactor 

by adding (removing) heat to (from) the reactor.  

 

Figure 7-6: Series of CSTRs flowsheet 

The states of the system are the temperature and concentration of species A inside each CSTR, i.e., 

𝑇1, 𝐶𝐴1, 𝑇2, and 𝐶𝐴2. The process for this system can be modelled as follows140,195,196: 

𝑑𝑇1

𝑑𝑡
=
𝐹0

𝑉1
(𝑇0 − 𝑇1) +

𝐹𝑟

𝑉1
(𝑇2 − 𝑇1) − ∑

Δ𝐻𝑖

𝜌𝑐𝑝
𝑘𝑖0𝑒

−𝐸𝑖
𝑅𝑇1𝐶𝐴1

3
𝑖=1 +

𝑄1

𝜌𝑐𝑝𝑉1
  

(7-16) 

𝑑𝐶𝐴1
𝑑𝑡
=
𝐹0

𝑉1
(𝐶𝐴0 − 𝐶𝐴1) +

𝐹𝑟

𝑉1
(𝐶𝐴2 − 𝐶𝐴1) − ∑ 𝑘𝑖0𝑒

−𝐸𝑖
𝑅𝑇1𝐶𝐴1

3
𝑖=1   
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𝑑𝑇2

𝑑𝑡
=
𝐹1

𝑉2
(𝑇1 − 𝑇2) +

𝐹3

𝑉2
(𝑇03 − 𝑇2) − ∑

Δ𝐻𝑖

𝜌𝑐𝑝
𝑘𝑖0𝑒

−𝐸𝑖
𝑅𝑇2𝐶𝐴2

3
𝑖=1 +

𝑄2

𝜌𝑐𝑝𝑉2
  

𝑑𝐶𝐴2
𝑑𝑡
=
𝐹1

𝑉2
(𝐶𝐴1 − 𝐶𝐴2) +

𝐹3

𝑉2
(𝐶𝐴03 − 𝐶𝐴2) − ∑ 𝑘𝑖0𝑒

−𝐸𝑖
𝑅𝑇2𝐶𝐴2

3
𝑖=1   

𝑥0 = [𝑇1
𝑠, 𝐶𝐴1

𝑠 , 𝑇2
𝑠, 𝐶𝐴2

𝑠 ]𝑇 = [457.943 K, 1.770 kmol 𝑚3⁄ , 415.459 𝐾, 1.752 kmol 𝑚3⁄ ]𝑇 

The model parameters for this system have been previously reported140,195,196. Note that the superscript 

s in Equation (7-16) denotes the steady-state value of the corresponding state. The process has three 

steady-states and only one of these steady-states is unstable. That is, using the unstable steady-state as 

the initial condition in open-loop also leads to instability in the state estimation, which is the interest of 

this work (𝑥0 in Equation (7-16)). The current study performed the state estimation using both EMHE 

and standard MHE in closed-loop using the framework presented in Figure 6-1 (section 6.1). Online 

measurements are assumed to be available for temperatures 𝑇1 and 𝑇2. The time interval considered for 

this case study is 0.1 hr. All four state variables are considered controlled variables in the NMPC 

framework. To simplify the analysis, an equal weight set to the unity was used in the NMPC framework 

for all the controlled variables. The manipulated variables are the inlet concentration of A entering the 

CSTRs, i.e., 𝐶𝐴0 and 𝐶𝐴03, and the heat inputs, i.e., 𝑄1 and 𝑄2. A ramp change has been considered in 

the set-points of each of the controlled variables 𝐶𝐴1 and 𝐶𝐴2, which are expected to move the operation 

of this process from 1.75 kmol/m3 to 1.0 kmol/m3 for  both 𝐶𝐴1 and 𝐶𝐴2. In this present case study, the 

process uncertainties are assumed to follow time-dependent non-Gaussian distributions. That is, the 

distributions of the process noises are initially assumed to follow a uniform distribution as shown in 

Figure 7-7 (a)-(d). The characteristics of these distributions are assumed to change during the transition 

time (i.e., the ramp change in the set-point of 𝐶𝐴1 and 𝐶𝐴2). The bimodal distributions shown in Figure 

7-7(e)-(h) represent the distribution of the process uncertainties associated with the states of the system 

during the transition time. Once the system reaches a new steady-state operating condition, the process 

uncertainties are assumed to follow a new uniform distribution that is different from their initial 

densities, as shown in Figure 7-7(i)-(l). Note that the red solid lines in Figure 7-7 denote the 

corresponding Gaussian mixture model to each non-Gaussian distribution, which have been identified 

using the EM method. Note that the Gaussian mixture models for the initial distributions of the random 

noises/uncertainties (shown in Figures 7-7(a)-(d)) were evaluated offline; whereas the re-

approximations of the Gaussian mixture models presented in Figures 7-7(e)-(h) and Figures 7-7(i)-(l) 

were performed online upon the set-point changes during the process operation. That is, the proposed 
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estimation scheme performed the EM-algorithm twice to update the characteristics of the noises and 

uncertainties distributions online. The averaged CPU time required to execute the EM algorithm for the 

non-Gaussian distributions shown in Figures 7-7(e)-(h) and Figures 7-7(i)-(l) is 0.14 s and 0.71 s, 

respectively. Thus, the additional CPU time required in the proposed estimation scheme to provide the 

point estimates is relatively low, i.e., the CPU time for this scenario increased by 0.0043s on average 

per sampling interval when compared to the standard MHE. This result justifies the selection of the EM 

algorithm in the proposed framework since the additional CPU time needed to update the Gaussian 

mixture models was not significant. Note however that the CPU time required to perform EM algorithm 

increases by increasing the number of Gaussian components in the mixture. As indicated above, 

computer parallelization techniques can be implemented to reduce the computational costs associated 

with this calculation. 

To simplify the analysis, the measurement noises are assumed to be randomly chosen from time-

independent zero-mean Gaussian distributions. The standard deviation of the measurement noise 

associated with each measurement is set to 0.5% of the true steady-state value of the corresponding 

state. 

   

   

(a) (e) (i) 

(b) (f) (j) 
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Figure 7-7: Histogram for the true non-Gaussian distribution and the Gaussian mixture approximation of the 

process uncertainties in CSTRs for (a)-(d) before the ramp; (e)-(h) during the ramp; (i)-(l) after the ramp  

Note that in the standard MHE scheme, the standard deviation for the process uncertainty associated 

with each state is set to 1% of the nominal steady-state value of the corresponding states.  The closed-

loop framework shown in Figure 6-1 is implemented for the series of CSTRs. Figure 7-8 compares the 

estimations and plant outputs obtained by performing both standard MHE and the proposed EMHE 

scheme whereas Figure 7-9 illustrates the control actions obtained from the closed-loop operation. As 

shown in Figure 7-8, the estimation provided by standard MHE fluctuates around its set-point. A similar 

behaviour can be observed in the control actions shown in Figure 7-9 for the case of using standard 

MHE in the closed-loop framework. The fluctuations in the estimations resulted in an inappropriate 

initialization of NMPC problem at each time interval. Moreover, noisy control actions are sent to the 

process, which deviates the process plant from their set-points. Hence, NMPC was not capable of 

keeping the controlled variables at their targets under the standard MHE framework. On the other hand, 

the proposed EMHE scheme is capable of adopting the non-Gaussian distributions of the process 

uncertainties throughout the operation of the process, which resulted in a significant improvement in 

the state estimation. The proposed EMHE scheme was not only able to capture the non-Gaussianity of 

the process uncertainties adequately, but it was also able to capture the changes in these distributions 

during the closed-loop operation. Obviously, the acceptable estimates provided by EMHE led to a 

proper initialization of NMPC and therefore an acceptable operation of this process in closed-loop. 

Note that large peaks observed in the estimates provided by MHE between the time interval 15 and 20 

(c

) 

(g) (k) 

(d) 
(h) (l) 
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are due to the random noises observed in the plant. Several tests were conducted to confirm the latter 

and are not shown here for brevity. 

  

  

Figure 7-8: Estimation and plant output obtained using MHE and EMHE in the closed-loop for (a) 𝑇1; (b) 

𝐶𝐴1;(c) 𝑇2; (d) 𝐶𝐴2  

… 

  

(b) (a) 

(c) (d) 

(b) (a) 
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Figure 7-9: Control actions obtained by considering MHE and EMHE in the closed-loop for (a) 𝑄1; (b) 𝑄2;(c) 

𝐶𝐴0; (d) 𝐶𝐴03 

 

7.4 Summary 

This study presents a novel modification to the conventional MHE framework, namely the extended 

MHE (EMHE) scheme, for applications where the process uncertainties and measurement noises follow 

non-zero mean non-Gaussian distributions that may change online due to issues with measurement 

devices or changes in the operating conditions, e.g., seasonal changes or switching to another grade of 

the product. In the proposed EMHE framework, the non-Gaussian densities are approximated by 

Gaussian mixture models, which are used to specify the EMHE objective function. As a result, EMHE 

can take into account a proper approximation of the process uncertainties and measurement noises 

thereby improving the accuracy in the estimation when compared to standard MHE. Moreover, the 

proposed EMHE scheme provides the opportunity to adopt online possible changes in the distribution 

of the process uncertainties and measurement noises, i.e., time-dependent distributions. EMHE was 

developed neglecting the zero-mean Gaussian distribution assumption for the noises/uncertainties 

considered in standard MHE formulation derivation. Thus, EMHE is a more comprehensive version of 

the standard MHE. EMHE improves the state estimation by considering multiple Gaussian mixture 

models aimed at providing an accurate representation of nonlinear probability distribution functions for 

process uncertainty and measurement noises. Moreover, the approximation of the non-Gaussian 

distributions to Gaussian mixture models are performed offline and therefore, the optimization problem 

in EMHE does not increase significantly the computational costs than those required by the standard 

MHE formulation.  

The current chapter assumed that the changes in the distribution of the measurement noises and process 

uncertainties are scheduled a priori and thereby, the distribution of the noises/uncertainties are known 

(c) (d) 
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a priori when performing the state estimation. The next chapter presents a novel development on the 

MHE framework that relaxes this assumption, i.e., the distribution of these random variables is 

unknown due to the unscheduled changes in the plant operation. 
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Robust Moving Horizon Estimation (RMHE) 

The MHE-based estimation schemes often assume that the distribution of the process uncertainties and 

measurement noises are known a priori and can be described by zero-mean Gaussian densities, which 

may not be a valid assumption for real-world applications. In scenarios featuring scheduled operation 

changes, the EMHE scheme introduced in Chapter 7 can be used to capture the known non-zero mean 

non-Gaussian distribution of the random variables present in the process. That is, EMHE performs an 

external method such as Expectation-Maximization (EM) algorithm outside of the EMHE formulation 

to evaluate the Gaussian mixture models of the known distributions of the process uncertainties and 

measurement noises. Thus, EMHE does not consider additional constraints or decision variables than 

those used in the standard MHE formulation. However, in the case that these changes happen suddenly 

in the plant (e.g., drastic disturbances entering the plant, equipment malfunction or failures in plant 

devices), the distributions of the non-Gaussian measurement noises or process uncertainties are 

unknown to the estimation scheme thus losing the ability to have access to accurate estimations of the 

plant states during this critical point in the operation. Hence, a robust estimation scheme is required to 

approximate these unknown non-Gaussian distributions appropriately in favor of a higher estimation 

accuracy. Moreover, to the author’s knowledge, studies considering a robust MHE-based estimation 

scheme for applications involving process uncertainties or measurement noises that their distributions 

are non-Gaussian and unknown to the state estimation framework are absent from the literature (see 

section 2.3.2). 

In the present chapter, a novel robust MHE framework, i.e., referred to as Robust Moving Horizon 

Estimation (RMHE), is introduced to improve the state estimation when the process uncertainties or 

measurement noises follow unknown non-Gaussian distributions, e.g., when the changes in the plant 

operation are not schedule in advance. The proposed RMHE uses the EMHE developed in chapter 7 as 

basis to capture possible non-zero mean measurement noises or process uncertainties, which requires 

the same computational costs as in the standard MHE. The RMHE framework includes the Gaussian 

mixture models explicitly to the optimization problem to find the optimal estimated states as well as 

optimal approximation of the unknown distributions of the measurement noises (or process 

uncertainties). In the RMHE scheme, the unexpected (i.e., unknown) random process uncertainties or 

the measurement noises are modelled using Gaussian mixture models, which would consist of two 

types of Gaussian components. During normal operation, all the expected random noises and process 
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uncertainties are considered to follow a Gaussian component in the mixture, which is the same as the 

known Gaussian distributions considered in the standard MHE. For the remainder of this study, this 

Gaussian component is referred to as the core-Gaussian component. Alternatively, the unexpected 

(unknown) random noises or process uncertainties that would most likely not follow the core-Gaussian 

component during sudden changes in the operation are assumed to follow one of the remaining 

Gaussian components in the mixture; these are referred to as perimeter-Gaussian components. The 

mean value and the covariance matrix of each perimeter-Gaussian component are considered as the 

tuning parameters in the RMHE framework. In addition, the weights assigned to each Gaussian 

component are also unknown variables estimated online by the proposed RMHE scheme based on the 

unexpected random noises or uncertainties taking place in the process at the current estimation horizon.   

As discussed above, RMHE deals with applications where the Gaussian mixture models of the process 

uncertainties (or measurement noises) are unknown to the estimation scheme a priori. To overcome 

this challenge, the proposed RMHE considers additional constraints and decision variables than those 

considered in the EMHE and standard MHE formulations. These additional constraints and decision 

variables are considered to model these unknown Gaussian mixture models explicitly in the RMHE 

formulation. Hence, the RMHE framework does not use any external method such as EM algorithm as 

in EMHE to evaluate the Gaussian mixture models, i.e., the evaluation of the optimal Gaussian mixture 

models is performed online and within the RMHE framework. The proposed RMHE requires somewhat 

the same computational costs as in the standard MHE thus making this estimation scheme attractive for 

large-scale applications.  

This chapter is organized as follows: Section 8.1 introduces the proposed RMHE framework. Section 

8.2 presents the computational experiments conducted to this work considering two chemical 

engineering processes featuring unexpected measurement noises or process uncertainties. A summary 

of this chapter is presented at the end. 

8.1 Robust Moving Horizon Estimation (RMHE) Framework  

This section describes the proposed robust moving horizon estimation (RMHE) formulation using the 

expressions and concepts presented in the previous section. The proposed RHME aims to improve the 

state estimation for those applications affected by unexpected/unplanned process uncertainties or 

measurement noises. As mentioned earlier, RMHE aims to model the unknown distribution of each 

process uncertainty or measurement noise variable with a general Gaussian mixture model consisting 
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of a finite number of Gaussian components (𝑛𝑔𝑟) involving core and perimeter components. A core-

Gaussian component represents the distributions that measurement noises (or process uncertainties) are 

expected to follow under the normal plant operation, i.e., the core-Gaussian component has the same 

mean-value and covariance matrix as the known Gaussian distribution considered in the standard MHE. 

The remaining Gaussian components present in the Gaussian mixture model are referred to as 

perimeter-Gaussian components and are used to describe the unknown uncertainty or noise distributions 

during sudden changes in the operation. The main objective of the RMHE formulation is to find the 

optimal state estimates and Gaussian mixture models that minimize the errors in the estimation due to 

process uncertainties and measurement noises over a user-defined estimation horizon (𝑁). The 

proposed RMHE formulation is developed based on the EMHE (see Equation (7-1)) and the main 

characteristics of the Gaussian mixture model of the noises or uncertainties described in Equations (4-

11)-(4-13). The RMHE formulation is as follows: 

min
{𝒙𝑗,𝒘𝑗}𝑗=𝑘−𝑁

𝑘−1 ,

{𝜶𝒎𝑟,𝜶𝒑𝑟}𝑟=1
𝑛𝑔𝑟

∑ ‖𝒘𝑗 − 𝝁𝑘
𝑮𝑴‖

𝑸𝑘
𝑮𝑴−1
2𝑘−1

𝑗=𝑘−𝑁
+∑ ‖𝒗𝑗 − 𝝉𝑘

𝑮𝑴 ‖
𝑹𝑘
𝑮𝑴−1
2𝑘

𝑗=𝑘−𝑁+1
+ 𝜑𝑘−𝑁   

(8-1) 

s.t.                                  

𝒙𝑗+1 = 𝑓(𝒙𝑗 , 𝒖𝑗) + 𝒘𝑗  ;              ∀𝑗 = 𝑘 − 𝑁,…𝑘 − 1   

𝒚𝑗 = ℎ(𝒙𝑗 , 𝒖𝑗) + 𝒗𝑗  ;                   ∀𝑗 = 𝑘 − 𝑁 + 1,…𝑘 

𝑔(𝒙𝑗 , 𝒖𝑗 , 𝒘𝑗 , 𝒚𝑗) ≤ 0;                 ∀𝑗 = 𝑘 − 𝑁,…𝑘 

𝒙𝒍 ≤ 𝒙𝑗 ≤ 𝒙
𝒖 ;                              ∀𝑗 = 𝑘 − 𝑁,…𝑘    

(8-2) 

𝝁𝑘
𝑮𝑴 = {

∑ 𝜶𝒑𝑘
𝑟⨀𝝁𝑘

𝑟𝑛𝑔𝑟
𝑟=1 ,          Υ𝑝𝑢 = 1 

𝝁𝑘
1 ,                                Υ𝑝𝑢 = 0

  

𝑸𝑘
𝑮𝑴 = {

∑ 𝜶𝒑𝑘
𝑟⨀𝑸𝑘

𝑟𝑛𝑔𝑟
𝑟=1 + ∑ 𝜶𝒑𝑘

𝑟⨀(𝝁𝑘
𝑟 − 𝝁𝑘

𝑮𝑴)(𝝁𝑘
𝑟 − 𝝁𝑘

𝑮𝑴)
𝑻𝑛𝑔𝑟

𝑟=1 ,             Υ𝑝𝑢 = 1

𝑸𝑘
1 ,                                                                                                                Υ𝑝𝑢 = 0

   

𝜶𝒑𝑘
1 = 𝟏,       Υ𝑝𝑢 = 0; 

∑ 𝜶𝒑𝑘
𝑟  

𝑛𝑔𝑟
𝑟=1 = 𝟏;    ∀Υ𝑝𝑢;  

𝟎 ≤ 𝜶𝒑𝑘
𝑟  ≤ 𝟏;      ∀Υ𝑝𝑢; ∀𝑟 = 1,2, … , 𝑛𝑔𝑟 

(8-3) 

𝝉𝑘
𝑮𝑴 = {

∑ 𝜶𝒎𝑘
𝑟⨀𝝉𝑘

𝑟𝑛𝑔𝑟
𝑟=1 ,        Υ𝑚𝑛 = 1 

𝝉𝑘
1 ,                                Υ𝑚𝑛 = 0 

  
(8-4) 



 

 159 

𝑹𝑘
𝑮𝑴 = {

∑𝜶𝒎𝑘
𝑟⨀𝑹𝑘

𝑟

𝑛𝑔𝑟

𝑟=1

+∑𝜶𝒎𝑘
𝑟⨀(𝝉𝑘

𝑟 − 𝝉𝑘
𝑮𝑴)(𝝉𝑘

𝑟 − 𝝉𝑘
𝑮𝑴)

𝑻

𝑛𝑔𝑟

𝑟=1

,        Υ𝑚𝑛 = 1 

𝑹𝑘
1 ,                                                                                                     Υ𝑚𝑛 = 0 

 

𝜶𝒎𝑘
1 = 𝟏,       Υ𝑚𝑛 = 0; 

∑ 𝜶𝒎𝑘
𝑟  

𝑛𝑔𝑟
𝑟=1 = 𝟏;    ∀Υ𝑚𝑛;    

𝟎 ≤ 𝜶𝒎𝑘
𝑟  ≤ 𝟏;   ∀Υ𝑚𝑛; ∀𝑟 = 1,2, … , 𝑛𝑔𝑟     

where: 

𝝁𝑘
𝑮𝑴, 𝝁𝑘

𝑟 , 𝜶𝒑𝑘
𝑟 ∈ ℝ𝑛𝑥  , 𝝉𝑘

𝑮𝑴, 𝝉𝑘
𝑟 , 𝜶𝒎𝑘

𝑟 ∈ ℝ𝑛𝑦; 𝑸𝑘
𝑮𝑴, 𝑸𝑘

𝑟 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑹𝑘
𝑮𝑴, 𝑹𝑘

𝑟 ∈ ℝ𝑛𝑦×𝑛𝑦 

where 𝑟 denotes the index of the Gaussian component in the Gaussian mixture model. As shown in 

Equations (8-1)-(8-4), in addition to the known core-Gaussian distribution that the process uncertainties 

and noises are expected to follow during the normal plant operation, i.e., 𝒩(𝝁1, 𝑸1) and 𝒩(𝝉1, 𝑹1), 

the proposed formulation consider additional perimeter-Gaussian distributions that can properly 

capture the unexpected random uncertainties or noises, i.e., 𝒩(𝝁𝑟 , 𝑸𝑟) or 𝒩(𝝉𝑟 , 𝑹𝑟) where 𝑟 ∈

{2,3, …𝑛𝑔𝑟}. Moreover, the chances that the random process uncertainties (or measurement noises) 

present in the system follow the core-Gaussian distribution is given by 𝜶𝒑1 (or 𝜶𝒎1), respectively. If 

the system works under normal plant operation, i.e., with random noises and uncertainties that follow 

the core-Gaussian component, then the RMHE optimization formulation shown in Equation (8-1) 

would set the weights on the core-Gaussian component to values closer to one while the weights for 

the perimeter-Gaussian components in the mixture are expected to be close to zero. Note that in the 

MHE and RMHE schemes, the only explicit connection between plant and the estimation scheme is 

through the measurement algebraic equation shown in Equation (8-2) (i.e., 𝒚𝑗 = ℎ(𝒙𝑗 , 𝒖𝑗) + 𝒗𝑗). That 

is, 𝒗𝑗 is the main resource that both schemes rely on to recognize the presence of unexpected noises or 

uncertainties affecting the operation. Accordingly, this limits the application of the proposed RMHE to 

cases involving either unexpected measurement noises or unexpected process uncertainties. With this 

in mind, the present approach assumes that the condition that causes a significant deviation from a 

normal plant operation is detected before activation of the proposed framework. In the case that this 

condition is not detected, the RMHE is expected to perform similar to a standard MHE. While the 

present approach cannot handle both conditions simultaneously, the proposed RMHE framework is 

flexible and can switch from one unexpected condition to another, e.g., switch from unexpected process 

uncertainties to unexpected measurement noises and vice versa. To account for this condition, a binary 
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parameter (Υ𝜚 ) in Equation (8-5) is considered and used as an input parameter to the RMHE 

formulation. This parameter restricts the robustness framework to perform estimation under unexpected 

behaviour in process uncertainties (Υ𝑝𝑢 = 1 and Υ𝑚𝑛 = 0) or measurement noises (Υ𝑚𝑛 = 1 and Υ𝑝𝑢 =

0), i.e., 

Υ𝜚 ∈ {0,1} , ∀𝜚 ∈ {𝑚𝑛, 𝑝𝑢};       ∑ Υ𝜚 = 1𝜚∈{𝑚𝑛,𝑝𝑢} ; (8-5) 

Note that Υ𝑝𝑢 and Υ𝑚𝑛 are user-defined parameters that are inputs to the RMHE framework as shown 

in Equations (8-1)-(8-4). Similarly, the number of Gaussian components present in the Gaussian 

mixture model (𝑛𝑔𝑟) is a tuning parameter in the RMHE scheme that must be specified a priori.  

Note that improving the approximation of the unknown non-Gaussian distributions using an adequate 

𝑛𝑔𝑟 as well as the perimeter-Gaussian components’ specifications, i.e., 𝝁𝑟 , 𝑸𝑟 , 𝝉𝑟 , 𝑹𝑟 where 𝑟 ∈

{2,3, …𝑛𝑔𝑟}, are expected to improve the estimation accuracy. Nevertheless, a reasonable set of 

assumptions for these parameters may lead to accurate estimations in the proposed RMHE; those 

assumptions can be obtained from historical plant data or from process heuristics. Moreover, the present 

study assumes that 𝝁1 = 𝝉1 = 𝟎, (i.e., zero-mean core-Gaussian components). Nevertheless, the 

proposed RMHE is expected to perform well for cases involving non-zero mean core-Gaussian 

components. Moreover, the current study assumes that the process uncertainties or measurement noises 

associated with each state are uncorrelated. Nonetheless, the present RMHE approach can be easily 

extended to cases involving multivariate distributions of the noises or uncertainties, i.e., correlated 

process uncertainties (or measurement noises). For those cases, the RMHE scheme needs to make use 

of multivariate Gaussian mixture models as a substitute to the univariate Gaussian mixture models 

shown in Equations (4-11)-(4-13). That is, the vector-valued of weights shown in the univariate of 

Gaussian mixture model of uncorrelated process uncertainties, i.e., 𝜶𝒑𝑘
𝑟  in Equation (8-3), have to be 

replaced by a scalar 𝛼𝑝𝑘
𝑟 to represent the weight of the 𝑟th Gaussian component in the corresponding 

multivariate Gaussian mixture model. Consequently, the vectors 𝟏 and 𝟎 shown in Equation (8-3) also 

have to be replaced by the scalars 1 and 0, respectively. Similar modifications must be made in Equation 

(8-4) when correlated measurement noises are considered, i.e., 𝜶𝒎𝑘
𝑟  and vectors 1 and 0 need to be 

replaced by 𝛼𝑚𝑘
𝑟  (i.e., a scalar) and 1and 0, respectively, to consider a multi-variate Gaussian mixture 

model. 

Remark 1: Note that the RMHE problem would not reduce to the EMHE problem even when the 

distributions of both process uncertainties and measurement noises are non-Gaussian and known a 

priori. Both EMHE and RMHE use Gaussian mixture models to capture non-Gaussianity in the 
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distributions of the process uncertainties and measurement noises. However, performing EMHE under 

the known non-Gaussian distributions assumption is likely to offer slightly more accurate estimates 

than those obtained by the RMHE under the unknown non-Gaussian distributions assumption. This 

expectation is because EMHE uses the EM algorithm that uses a large number of samples drawn from 

the non-Gaussian distributions to provide the corresponding Gaussian mixture models; in contrast, 

RMHE only has access to 𝑁 (length of estimation horizon) number of samples, i.e., the random process 

uncertainties (or measurement noises) in the current estimation horizon, to find the optimal Gaussian 

mixture models of the non-Gaussian process uncertainties (or measurement noises). 

Remark 2: In general, under the closed-loop operation, the state estimation schemes are responsible to 

provide initial conditions to advanced control schemes (e.g., model predictive controller (MPC)). 

Robust and accurate estimates imply a better initialization of the control scheme thus improving the 

online monitoring and control of the system. As the standard MPC problem is not able to capture the 

process uncertainties and measurement noises, the proposed RMHE can be combined with the 

developments of MPC presented in 197,198 to provide a feed-back control system that is robust against 

noises and uncertainties. Note that RMHE is expected to improve the overall closed-loop performance 

and will be explored in future studies. 

8.2 Computational experiments 

Two case studies arising in the chemical engineering that are often used in the context of state 

estimation have been considered in this study to investigate the performance of the proposed RMHE 

when compared to the standard MHE. This work uses the mean squared error (MSE) shown in Equation 

(4-22) as the metric to quantify the performance of the estimation schemes, i.e., 𝑛 ∈ {MHE, RMHE}. 

The simulations were conducted using Pyomo 5.2 in Python 3.6 on a computer running Microsoft 

Windows Server 2016 standard. The computer was equipped with 96 GB RAM and Intel(R) Xeon(R) 

CPU E5-2620 v4 @ 2.10 GHz 2.10 GHz (2 processors). The backward method has been used to 

discretize the nonlinear dynamic models of the systems. Two case studies considered in this process 

involve an actual wastewater treatment plant (WTP) and a network of continuous-stirred tank reactors 

(CSTRs) and separator. Each of these processes, the assumptions made in the estimation analysis and 

the results are presented next. 
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8.2.1 Wastewater Treatment Plant (WTP) 

The WTP described by Equation (4-29) have been widely used in the field of state estimation and 

control172,173. As mentioned earlier, WTP processes are often subjected to external perturbations and 

therefore are difficult to model properly192. Developing a mechanistic model that can completely 

represents the dynamic of the process is challenging192. When these highly nonlinear processes are 

subjected to external perturbations, the process uncertainties and measurement noises present in the 

system are less likely to follow their expected probability density functions. Consequently, it is quiet 

challenging to properly model these random variables for WTP. In addition, as shown in section 6.2.1, 

an inappropriate modelling of the uncertainties and noises may lead to a poor MHE performance for 

WTP. As RMHE aims to improve the estimation robustness by modelling these unexpected random 

variables, WTP may benefit from this state estimation approach. Motivated by this, an industrial-scale 

WTP is considered in this work to implement RMHE for practical scenarios concerning unexpected 

measurement noises during operation. Similar to the previous chapters, online measurements are 

available for the biomass concentration in the upper layer of the decanter (𝑥𝑑), as well as the substrate 

(𝑠𝑤) and the dissolved oxygen (𝑐𝑤) concentrations inside the bioreactor; also, 𝑥𝑤, 𝑥𝑏, and 𝑥𝑟 are 

assumed to be unknown states for this plant. The observability of the system was confirmed by checking 

the observability matrix to be full rank. The sampling time for this system is set to 1 hr. As the main 

goal in this work is to show the effect of unexpected noises/uncertainties on the state estimation, the 

length of estimation horizon (𝑁) is set to a relatively large number (𝑁 = 10) so that reduces the effect 

of arrival cost and focus on the effect of the noises and uncertainties on the estimation scheme. The 

mechanistic model of WTP is initialized using the nominal steady-state condition presented in Table 

B-2 (Appendix B). All the state estimation schemes are initialized assuming that the states are 5% away 

from their true value. During normal operation, the process uncertainty associated with each state is 

assumed to follow a zero-mean Gaussian distribution with a 5% of the nominal steady-state value of 

the corresponding state as its standard deviation. Similarly, the measurement noise associated with each 

state is expected to follow a zero-mean Gaussian distribution with a standard deviation that is set to 

10% of the nominal steady-state value of the corresponding state. These assumptions hold in all the 

scenarios performed for WTP that describe the characteristics of the distribution of the process 

uncertainties and measurement noises in both the standard MHE and the core-Gaussian component in 

RMHE (i.e., assuming normal plant operation). The different scenarios considered to test the 

performance of the proposed RMHE formulation are presented next. 
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8.2.1.1 Scenario I: Measurement device failure 

To illustrate the benefits of this approach, this scenario considers a failure in the measurement devices 

at the 50th sampling time that lasts for 50th sampling intervals. This failure in the hardware sensors leads 

to unexpectedly random measurement noises during this time. The random noises associated with each 

of the measurable states over the simulation time are depicted in Figure 8-1.  

   

Figure 8-1: True random measurement noises associated with each measurement  

Given these outliers in the measurement noises, let’s set Υ𝑚𝑛 = 1 in the RMHE formulation. As 

discussed in section 8.1, the number of perimeter-Gaussian components as well as the mean value and 

covariance matrix for each of these perimeter-Gaussian components are tuning parameters in the 

present RMHE framework. These parameters need to be chosen based on historical information 

available for the process plant. The simplest assumption is to consider that there is only one perimeter-

Gaussian component in the mixture of the RMHE framework (i.e., 𝑛𝑔𝑟 = 2) that exhibits the same 

covariance matrix as the core-Gaussian component, i.e., 𝑹1 = 𝑹2. Note that the noises are assumed to 

be uncorrelated, i.e., 𝑹1 = 𝑹2 = 𝑑𝑖𝑎𝑔([𝑠𝑡𝑑1, 𝑠𝑡𝑑2, … 𝑠𝑡𝑑𝑚, 𝑠𝑡𝑑𝑛𝑦]); 𝒔𝒕𝒅 =

[𝑠𝑡𝑑1, 𝑠𝑡𝑑2, … 𝑠𝑡𝑑𝑚, 𝑠𝑡𝑑𝑛𝑦]. As for the mean value, two instances are considered, i.e., 𝝉+ and 𝝉−. These 

two instances are used to explore the RMHE performance when compared to the standard MHE 

performance. That is, 𝝉+=+6 ∗ 𝒔𝒕𝒅 and 𝝉− = −6 ∗ 𝒔𝒕𝒅. Figure 8-2 depicts a schematic of the core-

Gaussian component together with the perimeter-Gaussian component considered for each of these 

instances.  

(a) 
(b) (c) 



 

 164 

 

 

Figure 8-2: Gaussian components considered in RMHE (𝑛𝑔𝑟 = 2). The weights on the core-Gaussian and 

the perimeter-Gaussian are set to 0.5 for instances (a) 𝝉+ and (b) 𝝉− 

Figure 8-3 presents the estimations of the unknown states provided by different estimation schemes, 

i.e., the standard MHE and RMHE using 𝝉− and 𝝉+. Moreover, Table 8-1 represents the MSE obtained 

for the state variables using the estimation methods mentioned above. As shown in Table 8-1, the 

estimation error has been evaluated for four time periods, i.e., during normal operation (0-50hr), during 

measurement equipment failure (50hr-100hr), during the transition time (100hr-150hr), and after 

equipment failure (150hr-200hr). As shown in Figure 8-3 and Table 8-1, these three periods of 

operation are denoted as Part Ⅰ, Part Ⅱ, Part Ⅲ, and Part Ⅳ, respectively. During Part Ⅲ, it is assumed 

that the equipment was fixed but the effect of unexpected noises still lasts in the process and unexpected 

noises are still involved within the estimation horizon. According to Figure 8-3, the proposed RMHE 

and the standard MHE provided similar estimations for the first 50 sampling intervals (Part Ⅰ) on which 

all the measurement devices are assumed to be working properly; hence, the a priori knowledge of the 

distribution of the measurement noises is valid. Likewise, the RMHE and standard MHE seem to have 

as good of a performance in the last 50hr of the operation (Part Ⅳ) in which the measurement devices 

were fixed and random noises are assumed to be back to normal (i.e., 150-200th sampling time). 

According to Table 8-1, the estimation error reported for RMHE and standard MHE are relatively the 

(b) 

(a) 
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same, i.e., 
𝑀𝑆𝐸𝑥𝑤

(𝑀𝐻𝐸)

𝑀𝑆𝐸𝑥𝑤
(𝑅𝑀𝐻𝐸) ≈ 0.95. During the device failure time, i.e., 50th-100th sampling time (Part Ⅱ), the 

estimates provided by the standard MHE significantly deviate from the actual plant states, as shown in 

Figure 8-3. This is because the device failure led to large measurement noises that no longer follow the 

known zero-mean Gaussian distribution. On the other hand, the proposed RMHE was able to increase 

the robustness in the estimation and consequently, improved the estimation accuracy during the 

devices’ failure period (Part Ⅱ) when compared to the standard MHE. This improvement in the 

estimation accuracy is quantified in Table 8-1 (Part Ⅱ). For instance, the 𝑀𝑆𝐸𝑥𝑟
(𝑅𝑀𝐻𝐸)

was reduced by 

an order of magnitude when compared to 𝑀𝑆𝐸𝑥𝑟
(𝑀𝐻𝐸)

. Note that during the transition time (Part Ⅲ) and 

for the first 10 time intervals, RMHE improves the estimations when compared to the standard EKF, 

as shown in Figure 8-3 and Table 8-1. This is because the unexpected noises that are present in the 

process before repairing the equipment are still involved in the estimation horizon of both RMHE and 

standard RMHE. Evidently, both state estimation schemes provide similar performance after the effect 

of unexpected noises in the estimation horizon vanish, which is similar to Part I and Part Ⅳ. 

  

 

Figure 8-3: Estimation provided by the standard MHE, RMHE with 𝑛𝑔𝑟 = 2 under the unexpected 

measurement noise scenario for unknown state (a) 𝑥𝑤; (b) 𝑥𝑏; (c) 𝑥𝑟 

.. 

(b) (a) 

(c) 



 

 166 

Table 8-1: MSE for unknown states 𝑥𝑤, 𝑥𝑏, 𝑥𝑟 using different estimation schemes at various simulation time 

Sampling 

time (hr) 

Part Ⅰ: Before device failure 

(0-50) 

Part Ⅱ: During device failure 

(50-100) 

Part Ⅲ: During transition 

(100-150) 

Part Ⅳ: After device failure 

(150-200) 

Estimation 

method 

(n) 
𝑀𝑆𝐸𝑥𝑤

(𝑛)
 𝑀𝑆𝐸𝑥𝑏

(𝑛)
 𝑀𝑆𝐸𝑥𝑟

(𝑛)
 𝑀𝑆𝐸𝑥𝑤

(𝑛)
 𝑀𝑆𝐸𝑥𝑏

(𝑛)
 𝑀𝑆𝐸𝑥𝑟

(𝑛)
 𝑀𝑆𝐸𝑥𝑤

(𝑛)
 𝑀𝑆𝐸𝑥𝑏

(𝑛)
 𝑀𝑆𝐸𝑥𝑟

(𝑛)
 𝑀𝑆𝐸𝑥𝑤

(𝑛)
 𝑀𝑆𝐸𝑥𝑏

(𝑛)
 𝑀𝑆𝐸𝑥𝑟

(𝑛)
 

Standard 

MHE 
2.29e+4 4.90e+3 6.70e+04 6.36e+5 2.91e+5 2.18e+6 2.44e+4 2.65e+4 2.11e+5 5.72e+4 8.90e+4 1.56e+5 

RMHE 

(𝝉+) 
2.06e+4 6.14e+3 8.04e+04 1.86e+5 1.02e+5 8.61e+5 1.84e+4 1.32e+4 1.89e+5 5.71e+4 9.49e+4 1.79e+5 

RMHE 

(𝝉−) 
2.40e+4 1.28e+4 1.14e+05 1.42e+5 1.40e+5 6.61e+5 3.60e+4 4.38e+4 3.85e+5 7.62e+4 1.38e+4 2.31e+5 

These observations can be further explained through the weights (𝜶𝒎𝑟) presented in Figure 8-4 for 

each of the instances (i.e., 𝝉− and 𝝉+). In the case of normal plant operation (i.e., Part Ⅰ and Ⅳ), the 

RMHE should approximate the Gaussian mixture to model to be similar to the known zero-mean 

Gaussian distribution of the noises (i.e., core-Gaussian component in the mixture). As shown in Figure 

8-4, the value of weight for the core-Gaussian component is close to 1 at the beginning and at the end 

of these operations (i.e., Part Ⅰ and Part Ⅳ) where the measurement devices are assumed to be working 

properly, as shown in Figure 8-1. Hence, measurement noises are expected to follow the known 

Gaussian distribution (the core-Gaussian component) during these periods.  

Since the number of Gaussian components in the mixture is set to 2 (i.e., zero mean core-Gaussian and 

non-zero mean perimeter-Gaussian), the weight associated with the core-Gaussian must be close to 1 

such that the mean value of the overall Gaussian mixture model is close to zero (see Equations (8-1)-

(8-4)). Note that a weight close to the unity on the core-Gaussian component suggests that the 

specifications of the measurement noises’ distributions are similar in both RMHE and the standard 

MHE, which results in RMHE estimations similar to that obtained by the standard MHE. Note that 

during normal operation, the weights for the core-Gaussian component are not expected to be exactly 

1 since the perimeter-Gaussian component slightly overlaps with the core component. Moreover, Figure 

8-4 shows that the weight on the perimeter-Gaussian component increased during the devices’ 

malfunction at the 50th sampling interval (Part Ⅱ), i.e., the RMHE scheme reduced the weight of the 

core-Gaussian component to capture the unexpected random noises present in the process. The weight 

corresponding to the core-Gaussian component was increased to about 1 once the measurement devices 
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were fixed (Parts Ⅲ and Ⅳ). These changes in the weights assigned to each Gaussian component in 

the mixture is a good indication that the unexpected noises have been properly identified by the RMHE 

scheme. This result also shows that the Gaussian mixture model considered in this framework is able 

to provide an appropriate approximation of the distribution of the unexpected noises to the state 

estimation scheme.  

  

 

Figure 8-4: Optimal weights (𝜶𝒎𝑟) provided by the RMHE framework with 𝑛𝑔𝑟 = 2 corresponded to the 

core-Gaussian component for the measurement noise associated with (a) 𝑠𝑤; (b) 𝑥𝑑; (c) 𝑐𝑤 

8.2.1.2 Scenario II: Effect of the length of the estimation horizon 

This scenario provides insight on the effect of the length of estimation horizon (𝑁) on the RMHE 

performance. This scenario performed the state estimation using both RMHE and standard MHE 

considering different length of estimation horizons (𝑁 ∈ {10,50}). Figure 8-5 presents the results of 

performing this scenario. Figures 8-5(a)-(c) presents the estimates provided by the standard MHE and 

RMHE instances for 𝑁 = 50 whereas Figures 8-5(d)-(f) directly compares the effect of increasing the 

length of estimation horizon on the RMHE performance using two different time horizons. As is the 

case when 𝑁 = 10 (i.e., Scenario I in section 8.2.1.1), the results presented in Figures 8-5(a)-(c) shows 

that the proposed RMHE improves the estimation significantly when compared to the standard MHE. 

(b) (a) 

(c) 
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For instance, the estimation error for 𝑥𝑤 in the case of using RMHE has been reduced by one order of 

magnitude than that obtained from the standard MHE. Nevertheless, the accuracy in the estimation 

improved as the length of the estimation horizon was increased. This was expected as RMHE is a robust 

version of the standard MHE; hence, increasing the length of the horizon is expected to lead to an 

improvement in the estimation accuracy at the cost of increasing the computational costs. Moreover, a 

longer horizon in the RMHE framework results in a larger number of measurement noise samples 

considered in the formulation, thus leading to a more accurate Gaussian mixture model approximation. 

Nevertheless, this is a trade-off between the accuracy in the estimation and computational costs, as in 

the standard MHE scheme. 

  

  

  

(d) (a) 

(b) (e) 

(c) (f) 
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Figure 8-5: Estimations for the unknown states (a)-(c) provided by different estimation schemes considering 

𝑁 = 50; (d)-(f) provided by RMHE (𝝉+) for both 𝑁 = 50 and N=10 

8.2.1.3 Scenario III: effect of number of perimeter-Gaussian components  

This scenario investigates the RMHE performance using a different number of Gaussian components 

(𝑛𝑔𝑟). In this scenario, 𝑛𝑔𝑟 is set to 3 whereas the assumptions made for Scenario I (section 8.2.1.1) 

were also considered here. Since it is unknown a priori that measurement noises during the equipment 

failure are positive or negative, setting 𝑛𝑔𝑟 = 3 is a reasonable assumption. That is, one perimeter-

Gaussian component on each side of the core-Gaussian component is considered in the Gaussian 

mixture model of the measurement noise. The mean value for the perimeter-Gaussian components is 

set to positive and negative values that are six times larger than the standard deviation, i.e., both 

perimeter-Gaussian components shown in Figure 8-2(a) and Figure 8-2(b) are considered in the mixture 

model of the noises considered in this scenario. For simplicity, the same standard deviation is 

considered for all the Gaussian components in the mixture as in the core-Gaussian component, i.e., 

𝑹𝑘
1 = 𝑹𝑘

2 = 𝑹𝑘
3 . Given these assumptions, the RMHE framework adapted for Scenario III is as follows: 

min
{𝒙𝑗,𝒘𝑗}𝑗=𝑘−𝑁

𝑘−1 ,

{𝜶𝒎𝑟,𝜶𝒑𝑟}𝑟=1
3

∑ ‖𝒘𝑗‖𝑸𝑘
1−1
2𝑘−1

𝑗=𝑘−𝑁
+∑ ‖𝒗𝑗 − 𝝉𝑘

𝑮𝑴 ‖
𝑹𝑘
𝑮𝑴−1
2𝑘

𝑗=𝑘−𝑁+1
+ 𝜑𝑘−𝑁   

(8-6) 

s.t. 

𝑊𝑇𝑃 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4 − 29)   

(8-7) 

𝒚𝑗 = [𝑠𝑤𝑗 , 𝑥𝑑𝑗 , 𝑐𝑤𝑗]
𝑇 + 𝒗𝑗  ;                   ∀𝑗 = 𝑘 − 𝑁 + 1,…𝑘 

where: 𝒘𝑗~𝒩(𝟎,𝑸
1) and 𝒗𝑗~𝒩(𝝉𝑗

𝑮𝑴, 𝑹𝑗
𝑮𝑴);      ∀𝑗 = 𝑘 − 𝑁 + 1,…𝑘 

𝝉𝑘
𝑮𝑴 = 𝜶𝒎𝑘

2𝝉𝑘
− + 𝜶𝒎𝑘

1(𝟎) + 𝜶𝒎𝑘
3𝝉𝑘
+;                 where: 𝝉𝑘

+ = −𝝉𝑘
− 

𝑹𝑘
𝑮𝑴 = 𝑹𝑘

1 + (𝜶𝒎𝑘
2 + 𝜶𝒎𝑘

3)𝑬2;                                 

where: 𝑬2 = (𝝉𝑘
+ − 𝝉𝑘

𝑮𝑴)(𝝉𝑘
+ − 𝝉𝑘

𝑮𝑴)
𝑻
= (𝝉𝑘

− − 𝝉𝑘
𝑮𝑴)(𝝉𝑘

− − 𝝉𝑘
𝑮𝑴)

𝑻
 

∑ 𝜶𝒎𝑘
𝑟  3

𝑟=1 = 𝟏;     

𝟎 ≤ 𝜶𝒎𝑘
𝑟  ≤ 𝟏   ; ∀𝑟 = 1,2,3    

(8-8) 
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where Equation (8-7) represents the corresponding models for process model (WTP model), 

measurements, the process uncertainties and measurement noises. Note that all the WTP equations 

included in Equation (8-7) consider additive process uncertainties 𝒘𝑗. The estimations provided by the 

different estimation schemes considering 𝑁 = 10 as well as the weights on the Gaussian components 

provided by RMHE are depicted in Figure 8-6. Similar to Scenario I, the proposed RMHE improved 

the estimation when compared to the standard MHE, as shown in Figures 8-6(a)-(c). For instance, the 

estimation error for 𝑥𝑏 was reduced by one order of magnitude in the case of RMHE when compared 

to that obtained by the standard MHE. However, the weights assigned on the core-Gaussian component 

remained unchanged (and set to zero) throughout the process, as shown in Figures 8-6(d)-(f); the 

weights on the perimeter-Gaussian components remain at about 0.5 throughout the process. The weight 

on the core-Gaussian component was expected to be close the unity under the normal plant operation, 

as observed in Scenario I (i.e., Parts I and Ⅳ). This condition occurred because the RMHE aims to find 

the optimal Gaussian mixture model that has zero mean, i.e., 𝝉𝑘
𝑮𝑴 = 𝟎. To pursue this goal, the RMHE 

framework must set 𝜶𝒎𝑘
1 ≥ 0 and 𝜶𝒎𝑘

2 = 𝜶𝒎𝑘
3 = (𝟏 − 𝜶𝒎𝑘

1)/2, as shown in Equation (8-8). On the 

other hand, the RMHE formulation aims to minimize the sum of weighted noises and uncertainties over 

the estimation horizon, as shown in Equation (8-6). Considering 𝝉𝑘
𝑮𝑴 = 𝟎, the larger 𝑹𝑘

𝑮𝑴 the smaller 

the objective function. This means that the RMHE formulation should find the optimum value of the 

weight of each component that maximizes 𝑹𝑘
𝑮𝑴. Since (𝜶𝒎𝑘

2 + 𝜶𝒎𝑘
3)𝑬2 in Equation (8-8) is a positive 

term, the weights on the perimeter-Gaussian components should be non-zero to maximize 𝑹𝑘
𝑮𝑴. 

Therefore, given Equation (8-8) and 𝜶𝒎𝑘
2 = 𝜶𝒎𝑘

3 = (𝟏 − 𝜶𝒎𝑘
1)/2, RMHE returns 𝜶𝒎𝑘

2 ≈ 𝜶𝒎𝑘
3 ≈

𝟎. 𝟓 and 𝜶𝒎𝑘
1 ≈ 𝟎, just as depicted in Figure 8-6 when performing Scenario III. Note that a similar 

behavior is expected for 𝑛𝑔𝑟 ≥ 3, regardless of the choice for the mean value and covariance of the 

perimeter-Gaussian components. As an MHE-based estimation scheme, the proposed RMHE 

framework also aims to minimize the errors in the process by maximizing the weights on these errors 

that are in fact the covariance matrices. Note that unnecessary large standard deviations in the noises 

may lead to inaccurate estimates during normal plant operation. This can be point out as the limitation 

of the proposed approach, i.e., even though it is possible to set 𝑛𝑔𝑟 to any positive integer number, the 

best choice to avoid biased estimation (because of the large covariance matrices) is to consider only 

one additional perimeter-Gaussian component. 
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Figure 8-6: (a)-(c) Estimations for the unknown states provided by different estimation schemes considering 

𝑁 = 10 and 𝑛𝑔𝑟 = 3; (d)-(f) optimal weights provided by RMHE considering 𝑛𝑔𝑟 = 3 

Nevertheless, the RMHE scheme performs well and avoid unnecessary large covariance matrices in the 

case of 𝑛𝑔𝑟 = 2, because the RMHE problem requires to satisfy 𝝉𝑘
𝑮𝑴 = 𝟎 for the normal operating 

condition, and thus, the only choice is to consider 𝜶𝒎𝑘
1 ≈ 𝟏. Based on the results presented in this 

section, it is recommended to choose 𝑛𝑔𝑟 = 2 as the proposed RMHE framework can successfully 

improve the estimation and avoid biased estimations under this assumption. 

Moreover, as mentioned in section 8.1, the additional constraints considered in the RMHE problem 

(Equations. (8-3) and (8-4)), does not increase considerably the computational costs when compared to 

(d) (a) 

(b) (e) 

(c) (f) 
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the standard MHE. For instance, given 𝑁 = 10 considered in Scenario I and Scenario III, the averaged 

CPU time required to provide the point estimates is: 0.22 s for the MHE, 0.24 s for the RMHE (𝑛𝑔𝑟 =

2) and 0.25 s for the RMHE (𝑛𝑔𝑟 = 3). While increasing 𝑛𝑔𝑟 also increases the number of additional 

constraints and decision variables in the RMHE problem, the value of 𝑛𝑔𝑟 does not considerably affect 

the required CPU time to perform the online state estimation while using this method. 

Note that the current case study considered unknown distributions for the noises due to unscheduled 

equipment malfunction. Thus, EMHE would not have any a priori knowledge of non-Gaussianity or 

possible changes in the distributions. That leaves the EMHE problem with the only choice of 

considering the same assumption considered in the standard MHE for these distributions, i.e., known 

zero-mean Gaussian distribution. As mentioned in Chapter 7, the EMHE problem is equivalent to the 

standard MHE problem if the both process uncertainties and measurement noises are assumed to follow 

zero-mean Gaussian distributions. Thus, the standard MHE and EMHE are expected to provide the 

same performance for the scenarios considered for the WTP. 

8.2.2 Network of continuous-stirred tank reactors (CSTRs) and separator 

To further confirm the RMHE performance for the scenarios involving unexpected random variables, 

a second case study involving a larger number of states than that considered in the WTP has been used 

to test the RMHE performance. This case study considers a network of two CSTRs in series with a 

separator. This process has been used in to test previous state estimation and robust MHE schemes129,199. 

Figure 8-7 shows a flowsheet of the process. A second order reaction, i.e., 𝐴
𝑘𝑟
→𝐵, takes place on each 

CSTR; 𝑘𝑟 denotes the reaction rate constant. The network includes nine states, which are the 

temperature and the concentration of the species A and B on each CSTR and the separator. The 

subscript 1,2,3 refers to the corresponding state inside the first CSTR, second CSTR, and the separator, 

respectively. A recycle stream is used to send back unreacted species collected in the separator to the 

first CSTR. 
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Figure 8-7: Network of CSTRs and separator flowsheet 

The mechanistic model that represents this process is as follows129,199: 

𝑑𝑇1
𝑑𝑡
=
𝐹10
𝑉1
(𝑇10 − 𝑇1) +

𝐹𝑟
𝑉1
(𝑇3 − 𝑇1) +

−Δ𝐻

𝜌𝐶𝑝
𝑘𝑒

−𝐸
𝑅𝑇1𝐶𝐴1

2 +
𝑄1
𝜌𝐶𝑝𝑉1

 

(8-9) 

𝑑𝐶𝐴1
𝑑𝑡

=
𝐹10
𝑉1
(𝐶𝐴10 − 𝐶𝐴1) +

𝐹𝑟
𝑉1
(𝐶𝐴𝑟 − 𝐶𝐴1) − 𝑘𝑒

−𝐸
𝑅𝑇1𝐶𝐴1

2  

𝑑𝐶𝐵1
𝑑𝑡

=
−𝐹10
𝑉1

𝐶𝐵1 +
𝐹𝑟
𝑉1
(𝐶𝐵𝑟 − 𝐶𝐵1) + 𝑘𝑒

−𝐸
𝑅𝑇1𝐶𝐴1

2  

𝑑𝑇2
𝑑𝑡
=
𝐹1
𝑉2
(𝑇1 − 𝑇2) +

𝐹20
𝑉2
(𝑇20 − 𝑇2) +

−Δ𝐻

𝜌𝐶𝑝
𝑘𝑒

−𝐸
𝑅𝑇2𝐶𝐴2

2 +
𝑄2
𝜌𝐶𝑝𝑉2

 

𝑑𝐶𝐴2
𝑑𝑡

=
𝐹1
𝑉2
(𝐶𝐴1 − 𝐶𝐴2) +

𝐹20
𝑉2
(𝐶𝐴20 − 𝐶𝐴2) − 𝑘𝑒

−𝐸
𝑅𝑇2𝐶𝐴2

2  

𝑑𝐶𝐵2
𝑑𝑡

=
𝐹1
𝑉2
(𝐶𝐵1 − 𝐶𝐵2) −

𝐹20
𝑉2
𝐶𝐵2 + 𝑘𝑒

−𝐸
𝑅𝑇2𝐶𝐴2

2  

𝑑𝑇3
𝑑𝑡
=
𝐹2
𝑉3
(𝑇2 − 𝑇3) +

−Δ𝐻𝑣𝑎𝑝𝐹𝑟𝑚

𝜌𝐶𝑝𝑉3
+

𝑄2
𝜌𝐶𝑝𝑉3

 

𝑑𝐶𝐴3
𝑑𝑡

=
𝐹2
𝑉3
(𝐶𝐴2 − 𝐶𝐴3) −

𝐹𝑟
𝑉3
(𝐶𝐴𝑟 − 𝐶𝐴3) 

𝑑𝐶𝐵3
𝑑𝑡

=
𝐹2
𝑉3
(𝐶𝐵2 − 𝐶𝐵3) −

𝐹𝑟
𝑉3
(𝐶𝐵𝑟 − 𝐶𝐵3) 
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where 

𝐶𝐶3 = (𝜌 − 𝐶𝐴3𝑀𝐴 − 𝐶𝐵3𝑀𝐵) 𝑀𝐶⁄  

𝐶𝜄𝑟 =
𝛼𝜄𝜌𝐶𝜄3

𝛼𝐴𝐶𝐴3𝑀𝐴 + 𝛼𝐵𝐶𝐵3𝑀𝐵 + 𝛼𝐶𝐶𝐶3𝑀𝐶
 ,              𝜄 = 𝐴, 𝐵, 𝐶 

𝐹𝑟𝑚 = 𝐹𝑟(𝐶𝐴𝑟 + 𝐶𝐵𝑟 + 𝐶𝐶𝑟) 

The nominal values for all the model parameters can be found elsewhere129,199. The current study 

assumes that online measurements are only available for the temperature in the vessels, i.e., 𝑇1, 𝑇2, and 

𝑇3; the remaining six states representing the concentrations, i.e., 𝐶𝐴1, 𝐶𝐴2, 𝐶𝐴3, 𝐶𝐵1, 𝐶𝐵2, and 𝐶𝐵3, are 

the unknown states considered for this process. The linear observability matrix for this system was 

evaluated using the Jacobian matrix of this system (see appendix E) identified around the nominal 

steady-state condition for the states. The linear observability matrix was full rank; hence, the 

observability of the system around the nominal steady-state condition considered in this work was 

confirmed. The sampling time for this process is 0.01 hr. Similar to the WTP case study, to further 

focus on the effect of unexpected operating condition on the state estimation, the length of the time 

horizon was set to a relatively large value to reduce the effect of the arrival cost in the estimation. 

According to the preliminary tests performed for this case study, setting the horizon length to 𝑁 = 30 

is sufficient to reduce the effect of the arrival cost in the estimation. The steady-state values of the states 

reported in Table B-3 in Appendix B have been used as the true plant states at the beginning of the 

operation. The states in the standard MHE and RMHE schemes have been initialized assuming that 

they are 5% away from the true plant states. Under the normal plant operation, the process uncertainties 

follow zero-mean Gaussian distributions where the standard deviation for the process uncertainty 

associated with each state is assumed to be 1% of the nominal steady-state value of the corresponding 

state. Likewise, measurement noise is expected to follow zero-mean Gaussian distribution with a 

standard deviation set to 0.001% of the nominal steady-state value of the corresponding measured state 

(i.e., 𝑇1, 𝑇2, and 𝑇3). Note that these specifications describe the distribution of the noises/uncertainties 

in the standard MHE as well as the core-Gaussian component in RMHE framework.  

For this case study, a scenario involving unexpected process uncertainties has been considered to show 

the performance of the proposed RMHE in comparison with the standard MHE. That is, due to the 

external disturbances (zero mean with 0.001 standard deviation) imposed on the concentration species 
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A in the feed stream at the initial time of the operation, the process uncertainties present in the system 

are assumed to follow a bimodal distribution, as shown in Figure 8-8. The distribution of the unexpected 

process uncertainties present in the system is denoted as “True Density”, whereas the zero-mean 

Gaussian distribution considered in the standard MHE is depicted as the “MHE Density” in Figure 8-

8. Note that in practice, the true distributions are not available since they are unexpected and unknown 

to both users and estimation schemes; hence, the Gaussian mixture model cannot be evaluated prior to 

the state estimation. Since a priori knowledge of the non-Gaussianity present in the process 

uncertainties’ densities is not available, the reasonable assumption when performing EMHE is to 

consider the same zero-mean Gaussian distributions to describe the process uncertainties as that 

considered in the standard MHE. Similar to the discussion presented for the first case study, under this 

assumption, the EMHE problem would reduce to the standard MHE problem and therefore, both MHE 

and EMHE are expected to provide the same estimations. 

   

   

   

Figure 8-8: Histogram for the true distribution of the unexpected process uncertainties and the corresponding 

zero-mean Gaussian distribution considered in the standard MHE 

(a) (b) (c) 

(d) (e) (f) 

(g) 

(h) 
(i) 
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Moreover, the EMHE scheme was tested assuming an ideal scenario where the non-Gaussian 

distributions of the process uncertainties are known a priori. This was done with the sole purpose of 

comparing the performance of EMHE (under known non-Gaussian uncertainties) with RMHE (under 

unknown non-Gaussian uncertainties). In this ideal scenario, the Gaussian mixture models consisting 

of two Gaussian components were approximated to the non-Gaussian distributions presented in Figure 

8-8. Given the ideal assumption considered in this instance, i.e., known non-Gaussian process 

uncertainties, the EM algorithm was performed offline (prior to the state estimation) to provide the 

mean-value and the covariance matrix of the overall Gaussian mixture models to perform EMHE. 

As the unexpected random variables affecting the plant operation is the process uncertainty, Υ𝑝𝑢 = 1 in 

the RMHE formulation, as shown in Equation (8-5). Two instances considering 𝑛𝑔𝑟 = 2 and 𝑛𝑔𝑟 = 3 

are considered to further investigate effect of this tuning parameter while using a different case study. 

The covariance matrix for the perimeter-Gaussian components is the same as the core-Gaussian 

component covariance matrix. As for the mean value of the perimeter-Gaussian component in the 

𝑛𝑔𝑟 = 2 instance, the current study considered that 𝝁+ = +6 ∗ 𝒔𝒕𝒅𝒑. Note that 𝒔𝒕𝒅𝒑 =

[𝑠𝑡𝑑𝑝1, 𝑠𝑡𝑑𝑝2, … , 𝑠𝑡𝑑𝑝𝑛𝑥] and 𝑸𝑟 = 𝑑𝑖𝑎𝑔([𝑠𝑡𝑑𝑝1, 𝑠𝑡𝑑𝑝2, … 𝑠𝑡𝑑𝑝𝑚, 𝑠𝑡𝑑𝑝𝑛𝑥]). Moreover, the mean 

value for the perimeter-Gaussian components in 𝑛𝑔𝑟 = 3 is set to 𝝁+ = +6 ∗ 𝒔𝒕𝒅𝒑 and 𝝁− = −6 ∗

𝒔𝒕𝒅𝒑. 

Figure 8-9 illustrates the estimations obtained for the unknown states by performing the standard MHE 

(EMHE under zero-mean Gaussian process uncertainties), ideal EMHE under known non-Gaussian 

distributions, and  the two RMHE instances (i.e., 𝑛𝑔𝑟 ∈ {2,3}). Table 8-2 compares the estimation 

errors obtained from each estimation scheme. As shown in Figure 8-9 and Table 8-2, the RMHE with 

two Gaussian components (𝑛𝑔𝑟 = 2) was able to improve the estimation accuracy significantly; for 

example, the estimation error for the state 𝐶𝐴1 was reduced by 94% in the case of using RMHE (𝑛𝑔𝑟 =

2) when compared to the standard MHE. The weights on the core-Gaussian and the perimeter-Gaussian 

components are around 0.5 over this unexpected operating condition. This result is expected as the true 

non-Gaussian uncertainties presented in Figure 8-8 suggest that these random variables follow bimodal 

distributions. According to Figure 8-9, the RMHE (𝑛𝑔𝑟 = 3) was not able to improve the robustness 

of the estimation scheme significantly. The estimation error reported in Table 8-2 for this instance is as 

large as the error in the estimates provided by the standard MHE. This happens because the RMHE 

formulation focuses on maximizing the standard deviation of the process uncertainties when 𝑛𝑔𝑟 ≥ 3, 
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which lead to unnecessary large covariance matrices and consequently, biased estimates, as discussed 

in Scenario III for the WTP (see section 8.2.1.3). Thus, it is recommended to perform the proposed 

RMHE considering 𝑛𝑔𝑟 = 2 to improve the estimation accuracy and avoid biased estimates.  

Moreover, according to Figure 8-9 and Table 8-2, the estimations provided by the RMHE (𝑛𝑔𝑟 = 2) 

considering unknown process uncertainties are only slightly different from the estimates provided by 

the ideal EMHE (EMHE under known non-Gaussian process uncertainties). For instance, the estimation 

error for 𝐶𝐵1 in the case of performing RMHE and the ideal EMHE are quite similar (i.e., with a small 

difference of ~0.004), as shown in Table 8-2. As mentioned in Remark 1 (see section 8.1), the 

difference in the performance of these schemes is due to the difference in the Gaussian mixture models 

evaluated in the ideal EMHE instance and RMHE (𝑛𝑔𝑟 = 2) to describe the process uncertainties. The 

similar responses observed by these two instances supports the high performance of the proposed 

RMHE scheme and the fact that this approach is capable of modelling online the unknown non-

Gaussian process uncertainties. Moreover, the true densities presented in Figure 8-8 are considered to 

remain unchanged throughout the operation. Thus, EMHE does not require to update the Gaussian 

mixture models online. On the other hand, RMHE provides the optimal Gaussian mixture models online 

and at each time interval to describe the densities of the last recent 𝑁 process uncertainties. That is, the 

Gaussian mixture models of the process uncertainties changes at every time interval when performing 

RMHE.  

  

(d) (a) 
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Figure 8-9: Estimation provided by the standard MHE, ideal EMHE (with known distributions), RMHE with 

𝑛𝑔𝑟 = 2 and 𝑛𝑔𝑟 = 3 for (a) 𝐶𝐴1; (b) 𝐶𝐴2; (c) 𝐶𝐴3; (d) 𝐶𝐵1; (e) 𝐶𝐵2; (f) 𝐶𝐵3 

… 

Table 8-2: MSE for estimated states using different estimation schemes 

Estimation 

method (n) 
𝑀𝑆𝐸𝐶𝐴1

(𝑛)
 𝑀𝑆𝐸𝐶𝐵1

(𝑛)
 𝑀𝑆𝐸𝐶𝐴2

(𝑛)
 𝑀𝑆𝐸𝐶𝐵2

(𝑛)
 𝑀𝑆𝐸𝐶𝐴3

(𝑛)
 𝑀𝑆𝐸𝐶𝐵3

(𝑛)
 

Standard 

MHE (same 

as EMHE) 

1.44 0.283 1.36 7.34 1.34 14.02 

EMHE 

(under 

known 

distributions) 

0.06 0.005 0.05 0.59 0.13 0.93 

RMHE 

(𝑛𝑔𝑟 = 2) 
0.07 0.001 0.02 0.44 0.05 0.39 

RMHE 

(𝑛𝑔𝑟 = 3) 
0.87 0.204 1.05 5.66 1.13 11.75 

As mentioned earlier in section 8.1, the proposed RMHE is an efficient estimation framework since it 

does not increase the computational costs considerably. For instance, the averaged CPU time required 

(b) (e) 

(c) (f) 
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by the standard MHE to provide the point estimate for the present case study was 0.66 s whereas the 

proposed RMHE only required 0.87 s on average to perform estimation for one time interval. 

8.3 Summary 

This chapter presented a novel MHE-based robust estimation scheme, referred to as Robust Moving 

Horizon Estimation (RMHE) to improve the accuracy in the estimation for practical scenarios when 

the distribution of the process uncertainties or measurement noises are not known a priori and follow 

a non-Gaussian behaviour. The proposed RMHE considers additional constraints and decision variables 

than in the standard MHE framework, which are needed to approximate the distributions of the 

uncertainties/noises to Gaussian mixture models online. Although the additional constraints and 

decision variables considered in the RMHE problem increases the computational effort than that 

required by the standard MHE scheme, the required CPU time in RMHE is not significantly larger than 

that in MHE. Therefore, RMHE offers an efficient scheme that increases the robustness of the 

estimation with respect to the unexpected noises/uncertainties occurring in the process. The 

computational experiments conducted in this work showed that the proposed RMHE offers a similar 

performance as that obtained in the standard MHE in the case of nominal plant operation in which both 

process uncertainties and measurement noises follow zero-mean Gaussian distributions. 
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Conclusions and Recommendations 

In this PhD thesis, novel methodologies for conventional and advanced state estimation schemes were 

developed and tested under operating scenarios that are expected to occur in practice. The key idea is 

to use the abridged Gaussian sum approach introduced in this thesis to represent the general class of 

non-Gaussian distribution of constrained states, process uncertainties, measurement noises. Hence, 

innovations have been introduced in the standard mathematical formulations of extended Kalman filter 

(EKF) and moving horizon estimation (MHE) to provide efficient state estimation schemes to capture 

non-Gaussianity involved in real-world processes. The key knowledge gaps are explained next 

followed by the novelties and contributions proposed to address the challenges identified in this area. 

Both EKF and MHE schemes assume that the process uncertainties and measurement noises follow 

zero-mean Gaussian distributions; however, constrained nonlinear dynamic models involving non-zero 

mean non-Gaussian process uncertainties and measurement noises are better suited to capture the actual 

behavior of key chemical engineering systems. Studies considering such random uncertainties/ random 

noises in the EKF framework are lacking from the literature. Moreover, current constrained-EKF 

approaches for applications featuring constrained states are not computationally efficient because they 

often require online solution of optimization problems, implementation of sampling-based approaches 

or implementation of multiple EKFs (Gaussian sum filters).  

Similarly, studies on MHE considering non-zero mean non-Gaussian distributions for process 

uncertainties and measurement noises are scarce in the literature. Moreover, the distribution of the 

random noises/uncertainties may change during the plant operation due to the scheduled or/and 

unscheduled changes occurring in the process plant. The current MHE-based schemes are not able to 

capture time-dependent known distributions for process uncertainties and measurement noises, while 

this is crucial for the scenarios involving the scheduled operating condition changes. Under the 

unscheduled operating condition changes, assuming that the distributions of the noises/uncertainties 

are known a priori may no longer hold. However, a robust MHE scheme that performs state estimation 

considering unknown non-Gaussian distributions for the process uncertainties or measurement noises 

is not available.   

This PhD thesis sought to contribute addressing the knowledge gaps described above and improving 

widely used model-driven state estimation methods such as KF/EKF and MHE. The major outcomes 

and insights gained from this work are outlined next.  
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 This study investigated the challenges of state estimation for a large-scale gasification system using 

KF. An actual pilot-scale entrained-flow gasifier involving more than 200 states was considered. 

A plant-model mismatch, additive uncertainty in the prior estimation, and load-following scenarios 

have been considered. The results from this study showed that KF is capable of estimating the 

unknown states for a large variety of changes in the gasifier’s inputs, even though online 

temperature sensors are only available in limited locations across the gasifier. However, the success 

of KF directly depends on the accuracy of the linear dynamic model that is used for the prior 

estimation of the states. The outcome of this study revealed that, as long as an accurate linear state 

space model of the process is available, KF can be employed as a practical tool for the purpose of 

online state estimation for large-scale applications.  

 A novel approach referred to as Abridged Gaussian Sum-Extended Kalman Filter (AGS-EKF), and 

its extension referred to as constrained AGS-EKF, were developed to improve EKF performance 

for constrained nonlinear systems with non-Gaussian process uncertainties and measurement 

noises. The methods employ Gaussian mixture models to approximate non-Gaussian distributions 

present in the process, i.e., constrained states, non-Gaussian uncertainties and noises. The prior and 

posterior estimation steps in EKF are modified to capture non-Gaussian process uncertainties and 

measurement noises, respectively. An intermediate step is considered where the constraints are 

explicitly applied on the states, i.e., the non-Gaussian distribution of the prior states are 

approximated using Gaussian mixture models. While the modifications in the prior and posterior 

estimation step do not require any additional computational costs than those needed in the standard 

EKF, the intermediate estimation step requires additional CPU time to approximate the 

corresponding Gaussian mixture model of the states. Despite this additional cost, the constrained 

AGS-EKF is an efficient approach as the additional costs are not significant when compared to 

conventional GSFs. The proposed approach avoids projecting the Gaussian components in the 

mixture individually; accordingly, this estimation scheme resolves the issue of extensive 

computational burdens and biased estimates often observed in the GSF scheme. Supported by the 

computational experiments conducted to this work, the proposed constrained AGS-EKF scheme is 

computationally efficient and provides appropriate estimates for applications involving constraints 

on states, non-Gaussian process uncertainties and measurement noises. 

 The performance of EKF as an arrival cost (AC) estimator for industrial and/or complex 

applications under both open-loop and closed-loop conditions was also investigated in this PhD 

thesis. The results showed that EKF provides adequate performance as AC estimator in the presence 
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of process constraints if it is properly initialized using a model-based estimation framework such 

as MHE, which can explicitly account for process constraints. Hence, EKF is an efficient and 

suitable AC estimator (even under non-symmetric bounded distributions in the process uncertainty) 

to maintain the operation of large and challenging systems in closed-loop using an MHE-NMPC 

framework. An error analysis on the convergence of the EKF-based AC estimator was performed. 

According to this error analysis, even though the estimation error in EKF scheme becomes 

unbounded in the presence of nonlinear process constraints in the system, the estimation error for 

EKF as the AC estimator remains bounded. The bounded estimation error for EKF in the closed-

loop NMPC-MHE framework confirms the reliability of EKF to approximate the AC distribution. 

 An extended version of MHE (EMHE) was developed to improve the estimation in the presence of 

general non-Gaussian process uncertainties and measurement noises. The EMHE problem requires 

the same computational costs as the standard MHE problem. To capture the non-Gaussian densities 

of noises/uncertainties, Gaussian mixture models are used in the EMHE scheme. The proposed 

EMHE-based estimation scheme can be updated online when the distributions of the 

noises/uncertainties change due to sudden or seasonal changes in the process operating conditions. 

Although the re-approximation of the Gaussian mixture models to adapt corresponding changes in 

the noises/uncertainties requires additional computation costs, the averaged CPU time of the 

proposed estimation scheme does not increase considerably. Thus, EMHE is an efficient state 

estimation scheme for the purpose of online monitoring and control of practical applications.  

Numerical studies showed that EMHE was able to capture both non-Gaussianity and scheduled 

changes in the distributions of the noises/uncertainties, which resulted in significant improvements 

in the estimation and online control.  

 A novel robust MHE (RMHE) scheme that approximates the unknown non-Gaussian distributions 

of the random uncertainties/noises using an optimal Gaussian mixture model that is updated online 

was also developed in this thesis. The proposed RMHE includes a Gaussian mixture model 

explicitly into the MHE formulation to model the unknown non-Gaussian distribution of these 

random variables affecting the process. Therefore, the RMHE not only provides the optimal 

estimation of the states, but also returns an optimal Gaussian mixture model for each measurement 

noise (or process uncertainty) in the nonlinear dynamical system. The RMHE formulation involves 

additional constraints that represent the mean value and covariance matrix of the Gaussian mixture 

model of the noise/uncertainty. The computational experiments used to test the performance of 

these estimation framework revealed that the additional constraints and decision variables included 



 

 183 

in RMHE do not significantly increase the required computational effort when compared to the 

standard MHE problem. Thus, the proposed RMHE is an efficient version of the MHE that offers 

robustness in the state estimation without a significant increase in the computational costs. 

9.1 Recommendations for Future Research 

The insights gained through this thesis have opened new research avenues that can be potentially 

considered for future work. The major recommendations derived from this research are as follows: 

 The results presented in chapter 3 showed that using a full dynamic ROM in the EKF estimation 

for a complex system such as the gasifier is computationally demanding due to the high 

computational cost. Thus, model reduction techniques can be explored in the future to enable the 

implementation of advanced state estimation strategies in the gasification system, and their 

potential integration with optimization-based control strategies. For instance, an optimization-

based closed-loop scheme, i.e., NMPC coupled with MHE, for a gasification system can be an 

interesting area of future research. To the author’s knowledge, this aspect has not been explored in 

the open literature.   

 The performance of the constrained AGS-EKF for a large-scale application (i.e., the gasifier 

involving ~500 states) was not assessed in this research. In such cases, the effect of non-Gaussian 

measurement noises and more importantly, non-Gaussian additive process uncertainties may 

intensify through the highly nonlinear complex process model, which makes the constrained AGS-

EKF scheme more sensitive to the accuracy of the corresponding Gaussian mixture models. In 

addition, the multivariate Gaussian mixture model of constrained states for large-scale applications 

may become complex and consequently, approximating one unique multivariate Gaussian mixture 

model that can satisfy the constraints on all the states becomes a sophisticated and challenging task. 

The numerical complexity increases if the large-scale system is badly scaled. For those cases, one 

potential solution is to normalize the process model so that the covariance matrix of the constrained 

multivariate distribution of the states represent a smaller range of numerical values, which may 

help the EM algorithm to find the proper Gaussian mixture model while satisfying all the process 

constraints. Future research studies may consider the application of the constrained AGS-EKF 

framework for large-scale constrained nonlinear processes involving non-Gaussian measurement 

noises and process uncertainties. 

 The constrained AGS-EKF introduced in this PhD thesis holds the underlying assumption that the 

distribution of the non-Gaussian measurement noises and process uncertainties can be known a 
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priori, which may not always be a valid assumption. As discussed in chapter 8, developing the state 

estimation schemes to increase the robustness is essential for applications involving unknown 

distributions of the noises or uncertainties. To further improve the features offered by the 

constrained AGS-EKF, a potential future work can focus on extending the AGS-EKF formulation 

and consider a robust AGS-EKF scheme to improve accuracy of the estimation when the process 

uncertainties and measurement noises follow unknown non-Gaussian distributions. Robust control 

tools successfully used for applications involving optimal process design and control200,201 can be 

borrowed to consider the development of such robust estimation techniques. 

  The outcome of the proposed EMHE framework have focused only on the non-Gaussian process 

uncertainties and measurement noises. The effect of the arrival cost was disregarded by considering 

a large estimation horizon. Future works can consider the state estimation for applications involving 

known non-Gaussian noises and uncertainties using EMHE coupled with the constrained AGS-

EKF to evaluate the arrival cost parameters in the EMHE framework. The expecting outcome is to 

improve the accuracy of the estimation using short estimation horizon for general constrained 

applications with non-Gaussian process uncertainties and measurement noises. 

 The RMHE framework introduced in this research is capable of providing an optimal Gaussian 

mixture model to describe the unknown distributions of either the process uncertainties or 

measurement noises. Future work may consider the development of a RMHE framework where 

both process uncertainty and measurement noise that follow unknown non-Gaussian distributions 

can be explicitly identified and handled by the estimation scheme. While this approach may imply 

the solution of mixed-integer nonlinear optimization problems, recent studies have shown that such 

problems could be transformed into nonlinear optimization problems using switching time 

techniques202. Hence, that approach could be potentially explored to develop computationally 

efficient formulations that may not require the need to solve online mixed-integer problems. 

 One key step in the MHE framework is to have access to accurate models describing measurement 

noises, process uncertainties and arrival cost information. While multiple approaches have been 

suggested, including those presented in this PhD thesis, the application of machine learning 

algorithms using active learning can be a potential area of future development that can further 

improve the online estimation for large-scale applications, particularly those that emerge in the 

energy sectors154,203,204,205,206. Hence, future research can be focused on exploring the 

implementation of active learning methods for MHE applications. 
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 Integration of design and control is an area that has been widely explored over the last decades. 

While several simultaneous design and control methods are available in the literature207,208,209,210,211, 

there is not a single study that has considered the impact of state estimation in the context of optimal 

design and control. Thus, it is recommended to perform such a study as a future work, which can 

provide new insights on the impact of state estimation for the optimal design of chemical systems.  
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Appendix A 

Expectation-maximization algorithm 

This appendix provides a brief discussion on the Expectation-Maximization (EM) algorithm. Consider 

a d-dimension Gaussian mixture model that approximates the vector-valued non-Gaussian variable 

(𝝕), as presented in Equations (4-11)-(4-12). Let 𝑧 = (𝑧1, … , 𝑧𝑛𝑔) represent a vector of 𝑛𝑔 binary 

indicator variables to identity of the Gaussian components of the Gaussian mixture model. The first 

step in EM algorithm is to draw 𝑁𝑆 number of samples from the original non-Gaussian multivariate 

distribution of the vector-variable 𝝕. The possibility that a sample 𝝕𝑠 follow the 𝑖th Gaussian 

component in the mixture is 𝑚𝑤𝑖𝑠; where 𝑚𝑤 is referred to as the membership weight. An adequate 

initial guess for the Gaussian components’ parameters (i.e., 𝜼𝑖, 𝑴𝑖, and 𝛼𝑖 for each 𝑖 Gaussian 

component) should be provided to the EM algorithm to begin the parameter estimation. Then, E-step 

and M-step are performed in a recursive fashion to estimate the mean value, covariance, and weight 

corresponded to each Gaussian component. EM algorithm converges once the log-likelihood does not 

change significantly from one iteration to the next one. The required computations in E-step and M-

step are presented next. 

Expectation step (E-step): Equation (A-1) aims to evaluate 𝑚𝑤𝑖𝑠 associated with the sample 𝝕𝑠 in 

cluster 𝑖. the membership weight is required to be determined for all the samples and all the Gaussian 

components in the mixture, as follows164,212:  

𝑚𝑤𝑖𝑠 =
𝑝𝑖(𝝕𝑠|𝑧𝑖; {𝜼

𝑖 ,𝑴𝑖}) 𝛼𝑖

∑ 𝑝𝑚(𝝕𝑠|𝑧𝑚; {𝜼
𝑚,𝑴𝑚})𝛼𝑚𝑛𝑔

𝑚=1

;     ∀ 𝑖 = 1,… , 𝑛𝑔 ;   ∀ 𝑠 = 1,… ,𝑁𝑆 

∑ 𝑚𝑤𝑖𝑠
𝑛𝑔
𝑖=1 = 1;           ∀ 𝑖 = 1,… , 𝑛𝑔 ;   ∀ 𝑠 = 1,… ,𝑁𝑆 

(A-1) 

where the probability density function of 𝝕𝑠 given the 𝑖th Gaussian component is164,212: 

𝑝𝑖(𝝕𝑠|𝑧𝑖; {𝜼
𝑖 ,𝑴𝑖}) =

1

(2𝜋)𝑑 2⁄ |𝑴𝑖|1 2⁄
𝑒−
1
2(
𝝕𝑠−𝜼

𝑖)
𝑇
𝑴𝑖
−1
(𝝕𝑠−𝜼

𝑖)
 (A-2) 

Maximization step (M-step): The membership weights provided by Equation (A-1) are used to re-

approximate the corresponding weight, mean value, and covariance of each Gaussian component in the 

Gaussian mixture model. To pursue this goal, Equations (A-3), (A-4), and (A-5) are required to be 

evaluated as ordered164,212. 
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𝛼𝑖
(𝑛𝑒𝑤)

=
∑ 𝑚𝑤𝑖𝑠
𝑁𝑆
𝑠=1

𝑁𝑆
 (A-3) 

𝜼𝑖
(𝑛𝑒𝑤)

= (
1

∑ 𝑚𝑤𝑖𝑠
𝑁𝑆
𝑠=1

)∑ (𝑚𝑤𝑖𝑠. 𝝕𝑠)
𝑁𝑆

𝑠=1
; (A-4) 

𝑴𝑖(𝑛𝑒𝑤) = (
1

∑ 𝑚𝑤𝑖𝑠
𝑁𝑆
𝑠=1

)∑ 𝑚𝑤𝑖𝑠 (𝝕𝑠 − 𝜼
𝑖(𝑛𝑒𝑤)) (𝝕𝑠 − 𝜼

𝑖(𝑛𝑒𝑤))
𝑇𝑁𝑆

𝑠=1
; (A-5) 

∀ 𝑠 = 1,… ,𝑁𝑆  
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Appendix B 

Nominal steady-state value for different case studies  

This appendix provides important information of the Williams-Otto reactor, WTP, and the CSTRs-

Separator network. Table B-1 presents the nominal steady-state value of the states in the Williams-Otto 

reactor. 

Table B-1: Nominal values of states for the Williams-Otto reactor 

Process Variables Base case value 

𝑋𝐴 0.090 

𝑋𝐵 0.399 

𝑋𝐶 0.015 

𝑋𝐸 0.141 

𝑋𝐺 0.110 

𝑋𝑃 0.105 

Likewise, Table B-2 presents the nominal steady-state value of the states, the capacity of bioreactor 𝑉𝑟 

and the area of the decanter 𝐴𝑑. Note that when performing the closed-loop for WTP, the lower bounds 

for 𝑞𝑝 and 𝑞2 are set to zero, whereas their upper bound is set to 600. 

Table B-2: Nominal values of states for WTP 

Process Variables Base case value 

𝑥𝑤 280.18 (mg/L) 

𝑠𝑤 100.02 (mg/L) 

𝑥𝑑 102.03 (mg/L) 

𝑥𝑏 951.73 (mg/L) 

𝑥𝑟 5975.82 (mg/L) 

𝑐𝑤 0.08 (mg/L) 

𝑐𝑤 0.08 (mg/L) 

𝑉𝑟 2500.00 (m3) 

𝐴𝑑 1100.00 (m2) 

Likewise, Table B-3 presents the nominal steady-state value of the states in the CSTRs-Separator 

network. 

Table B-3: Nominal values of states for the CSTRs-Separator 

network 

Process Variables Base case value 

𝑇1 380 (K) 
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𝐶𝐴1 2.67 (kmol/m3) 

𝐶𝐵1 2.15 (kmol/m3) 

𝑇2 380 (K) 

𝐶𝐴2 2.42 (kmol/m3) 

𝐶𝐵2 2.06 (kmol/m3) 

𝑇3 390 (K) 

𝐶𝐴3 1.85 (kmol/m3) 

𝐶𝐵3 2.15 (kmol/m3) 
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Appendix C 

Supplementary material for WTP study in section 6.2.1 

In addition to the information presented in Table B-2, WTP case study considers the following 

assumptions: 

i) The observability for the states 𝑠𝑤, 𝑥𝑑, and 𝑐𝑤 was confirmed by checking that the observability 

matrix is full rank (not shown for brevity). 

ii) The length of estimation (𝑁), prediction (𝐿) and control (𝐶) horizon were set to 3, 10, 5, 

respectively, and the time interval is 1 hour. N has to be small enough such that the effect of the 

AC method in the MHE estimation can be considered. Preliminary tests involving multiple 

combinations between 𝐿 and 𝐶 were performed to obtain the appropriate prediction and control 

horizons in the NMPC framework. The corresponding horizons considered in this work presented 

acceptable closed-loop performance at the nominal conditions reported in Table B-2. 

iii) There are two standard choices of importance function in C-PF (or in overall PF), namely the 

posterior and the prior213. In the current study, the prior importance function has been considered, 

which is the most frequently used importance function due to its simplicity. This probability density 

function has a zero mean bounded distribution that is assigned to the process uncertainties (𝒘𝑗). 

That is, 𝒘𝒑𝑗 ∈ ℝ
𝑁𝑃×𝑛𝑥 are the samples that are drawn randomly from the probability distribution 

assigned to the process uncertainties at 𝑗th time interval (𝒘𝑗). The samples are selected using Monte 

Carlo sampling techniques. These samples are imposed on the estimated states calculated from 

MHE at the time step 𝑘 − 𝑁 − 1 (�̂�𝑘−𝑁−1) to generate the 𝑁𝑃 particles used as the prior estimation 

of the states in the C-PF estimation. Moreover, it is critical to select a large enough number of 

particles to represent an acceptable approximation of the actual distribution of the states of the 

system while keeping reasonable computational costs. Preliminary simulations showed that 100 

particles provided an acceptable representation of the states in the C-PF method at reasonable 

computational costs. 

iv) Both the MHE and NMPC are subject to bounds on the MVs (see Table B-2). 

v) Step changes in the set-point for the biomass concentration 𝑥𝑤 were considered. Note that for the 

case of symmetric bounded process uncertainties, set points of CVs have not been considered the 

same as those used for non-symmetric bounded process uncertainties. This is because process 

uncertainties are identified as model structural errors. Due to the non-symmetric process 
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uncertainty tested in this work, the plant may not operate around the nominal operating point 

depicted in Table B-2. Thus, in order to make the WTP dynamically operable in closed-loop, the 

set points of CVs were modified for the case of non-symmetric bounded uncertainty. 

vi) The weight matrix for the CVs is as follows: 𝑸𝒐𝒖𝒕
𝑇 = 𝑑𝑖𝑎𝑔([1,200,1]). The diagonal elements are 

the weights for 𝑥𝑤 and 𝑠𝑤 and 𝑐𝑤, respectively. These weights have been tuned based on 

preliminary tests. Note that 𝑥𝑤 and is at least two orders of magnitude higher than 𝑠𝑤; hence, the 

larger weight on 𝑠𝑤.  

vii) Weights on the MVs were not considered in the NMPC framework to simplify the analysis. 

WTP: Scenarios I-III: Open-loop estimation 

For the open-loop operation, all the input variables remained constant and equal to their nominal values 

reported in Table B-2 in section B. Table C-1 summarizes the results obtained from Scenarios Ⅰ and 

Scenario Ⅱ during open-loop operation. As shown in Table C-1, the highest 𝑆𝑆�̂�(𝑛) corresponds to 

MHE results using 0.5TS whereas the lowest 𝑆𝑆�̂�(𝑛) is that obtained from using TS as the AC method. 

In Scenario Ⅰ, using C-PF as the AC estimator slightly reduces the estimation error in MHE when 

compared to an MHE estimation associated with EKF as the AC estimator (~1% reduction). Scenario 

Ⅱ considers non-symmetric bounded distribution; hence, it was expected that EKF may not perform 

well since the process uncertainty significantly deviates from a Gaussian distribution. Nevertheless, the 

results obtained for this scenario using the different approximation methods showed no significant 

differences in performance. This is mostly because the process uncertainty has zero mean value with 

narrower bounds; hence, process uncertainties may not significantly impact open-loop operation.  

Table C-1: 𝑆𝑆�̂�(𝑛) Open-loop operation of the WTP, Scenarios Ⅰ-Ⅱ  

AC estimation method (n) Scenario Ⅰ Scenario II 

TS 0.0165 0.0208 

0.5TS 1.0000 1.0000 

EKFexpc 0.0409 0.0216 

C-PFexpc 0.0306 0.0228 

EKF 0.0382 0.0217 

C-PF 0.0305 0.0238 

Table C-2 presents the averaged CPU time needed to execute Scenario Ⅰ and Scenario Ⅱ at 

each time interval, respectively. As shown in this table, the required CPU time for Scenario Ⅰ 

in the case of using EKF is almost 24% smaller than that using C-PF. Similarly, for Scenario 
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Ⅱ, using EKF as the AC estimator reduces the required CPU time by almost 20% in comparison 

to the case of using C-PF. Since minimizing computational expenses is a critical element in an 

online estimation and control framework, the performance improvement achieved by using C-

PF (measured in this work as a function of 𝑆𝑆�̂�(𝑛)) is not significant enough to make the 

computational efforts worthwhile. Note that the averaged CPU times reported for the cases of 

TS and 0.5TS can be used as benchmarks to determine the additional computational expenses 

required to apply an AC estimation method, i.e., no additional calculations are needed for those 

two AC estimation methods. For instance, compared to the benchmark, an additional 1.71s and 

1.78s are required on average to estimate the AC parameters using EKFexpc for Scenario I 

and Scenario II, respectively. 

Table C-2: Averaged CPU time (s), Scenarios Ⅰ and Ⅱ 

AC approximation approach Scenario Ⅰ Scenario Ⅱ 

TS 1.85 1.86 

0.5TS 1.88 1.87 

EKFexpc 3.56 3.63 

C-PFexpc 4.41 4.36 

EKF 3.78 3.77 

C-PF 4.37 4.42 

Table C-3 compares the MHE performance obtained from the different instances considered 

in Scenario Ⅲ. As presented in Table 6-1 in section 6.2.1, this scenario aims to perform open-

loop MHE estimation using smaller and larger plant designs while considering both symmetric 

and non-symmetric bounded process uncertainties. A comparison between 𝑆𝑆�̂�(𝑛) for Scenario 

Ⅲ.A and Scenario Ⅲ.B shows the effect of different plant designs under symmetric bounded 

distributions. As shown in Table C-3, the 𝑆𝑆�̂�(𝑛) reported for TS, EKFexpc, C-PF-excpc, EKF, 

and C-PF in Scenario Ⅲ.B are larger than those obtained for Scenario Ⅲ.A. For a fixed 

estimation horizon, a higher plant capacity (Scenario Ⅲ.B) is expected to be more dependent 

to the AC since the response time of the process is larger in comparison with a smaller plant 

design (Scenario Ⅲ.A). Therefore, a more significant loss in open-loop performance is 

expected in the absence of an acceptable AC approximation method (e.g., 0.5TS) for the case 

of a larger plant design, as shown in Figure C-1. Note however that the normalized SSE 

(𝑆𝑆�̂�(𝑛)) reported in Table C-3 are smaller for larger plant sizes (Scenario III.B) than those 
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obtained for a smaller plant size (Scenario III.A). This is because of the normalization 

performed using the SSE reported for 0.5TS, which resulted in the worst estimation method 

for both scenarios. As a result, the need of using an adequate AC approximation method 

becomes more important as the plant capacity increases (i.e., Scenario Ⅲ.B). Moreover, the 

effect of plant design in the case of non-symmetric bounded uncertainties, i.e., Scenarios Ⅲ.C 

and Ⅲ.D, is depicted in Table C-3. This table shows that, regardless of the plant capacity, the 

estimation during open-loop operation remains fairly the same for all the AC approximation 

methods. 

Table C- 3: 𝑆𝑆�̂�(𝑛) Open-loop MHE estimation for the WTP, Scenario Ⅲ 

AC approximation approach  Scenarios  

Ⅲ.A Ⅲ.B Ⅲ.C Ⅲ.D 

TS 0.0301 0.0109 0.0248 0.0217 

0.5TS 1.0000 1.0000 1.0000 1.0000 

EKFexpc 0.0715 0.0210 0.0261 0.0256 

C-PFexpc 0.0558 0.0223 0.0260 0.0249 

EKF 0.0693 0.0213 0.0295 0.0258 

C-PF 0.0559 0.0222 0.0262 0.0256 

. 

 

Figure C-1: Open-loop MHE estimation, Scenario Ⅲ.A and Ⅲ.B 

Based on the above, both EKF and C-PF returned similar performances in terms of SSE. 

However, EKF is capable of providing an accurate AC approximation during open-loop 

operation at lower computational costs. 
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Appendix D 

Supplementary material for HIPS study in section 6.2.2 

This section presents the information and assumptions that have been considered in the HIPS case 

study. Table D-1 shows the main parameters of HIPS process that has been adopted in the present work 

for this case study. The manipulated variables (MVs) considered in NMPC framework for this process 

are the outlet flowrate (Q) and the cooling water flowrate (𝑄𝑐𝑤). The lower and upper bounds for these 

two MVs are presented in Table D-1.  

Table D-1: Nominal values of states at steady-state, and model parameters for HIPS 

Process Variable Scaled case value (SCV) Base case value 

𝐶𝑖 0.61 6.14e-05 (mol/L) 

𝐶𝑚 1.00 6.07 (mol/L) 

𝐶𝑏 1.00 1.05 (mol/L) 

𝐶𝑟 2.51e-11 2.51e-11 (mol/L) 

𝐶𝑏𝑟 2.24e-12 2.24e-12 (mol/L) 

𝑇 0.78 389.31 (K) 

𝑇𝑗 0.64 320.52 (K) 

𝜇𝑟
0 4.55 4.55e-08 (mol/L) 

𝜇𝑏
0 1.97e-09 1.97e-09 (mol/L) 

𝑄𝑙, 𝑄𝑢 0-1 0-1.14 (L/s) 

𝑄𝑐𝑤
𝑙 , 𝑄𝑐𝑤

𝑢  0-1 0-1 (L/s) 

Process 

Parameters 

Value Process Parameters Value 

𝐶𝑖
𝑓
 0.9815 (mol/L) 𝑄𝑖

𝑠 0.0015 (L/s) 

𝐶𝑚
𝑓

 8.63 (mol/L) 𝑄𝑐𝑤
𝑠  1 (L/s) 

𝐶𝑏
𝑓
 1.0548 (mol/L) 𝑄𝑠 1.1412 (L/s) 

𝑇𝑓 333 (K) 𝑈 80 (J/(s.K.m2)) 

𝑇𝑗
𝑓
 350 (K) 𝐴𝐻 19.5 (m2) 

𝑄𝑖 0.0015 (L/s) 𝑉 94.50 (L) 

𝐶𝑖
𝑠 0.0001 (mol/L) 𝜌𝑠 0.9150 (Kg/L) 

𝐶𝑚
𝑠  6.0723 (mol/L) 𝐶𝑝𝑠 1647.265 (J/kg.K) 

𝐶𝑏
𝑠 1.0545 (mol/L) 𝑒𝑓 0.57 

𝐶𝑟
𝑠 1 (mol/L) 𝜌𝑐𝑤 1 (Kg/L) 

𝐶𝑏𝑟
𝑠  1 (mol/L) 𝐶𝑝𝑠𝑤 4045.7048 (J/kg.K) 

𝑇𝑠 500 (K) 𝑉𝑐 2.000 (L) 

𝜇𝑟
0𝑠 1 (mol/L) Δ𝐻𝑟 69919.56 (J/mol) 

𝜇𝑏
0𝑠 1 (mol/L) 𝑅 1.9858 cal/(mol.K) 

The underlying assumptions considered for the HIPS case study are as follows: 

i) The observability matrix for the states 𝐶𝑏, 𝐶𝑟, 𝐶𝑏𝑟, 𝑇 and 𝜇𝑏
0 is a full rank matrix that confirms the 

observability of the system (not shown for brevity). 
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ii) The length of estimation (N), prediction (L) and control (C) horizon are set to 10. These tuning 

parameters were obtained from preliminary simulations. The time interval is set to 1 s.  

iii) The HIPS process requires to produce a variety of grades of polystyrene based on consumer 

demands182. Hence, three step changes in the set-point of the monomer concentration 𝐶𝑚 were 

considered to develop the closed-loop framework for three different grades of the product where 

the conversion of monomer is 20%, 25%, and 30% 182,183. 

The weight matrix for CVs is as follows: 𝑸𝒐𝒖𝒕 = 𝑰2×2, i.e., the weights are the same for both CVs (i.e., 

Cm and T). No weights on the MVs are considered in the NMPC framework.  
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Appendix E 

Jacobian and Sensitivity Matrices 

The analytical evaluation of the Jacobian matrix for each of the case studies considered in this thesis 

has been performed using the symbolic toolbox in SymPy library of Python214. Note that the analytical 

evaluation of the Jacobian matrix allows to update this matrix based on the current numerical value of 

the state variables of the system; this provides the possibility to check the linear observability of the 

system operating around a nominal operating point. As a reminder, the linear observability matrix for 

each process can be evaluated based on the corresponding Jacobian matrix 𝑨 and the sensitivity matrix 

𝑯 of the system, as shown in Equation (3-9). The matrices for most of the case studies presented in this 

thesis are presented next. 

Gas-phase Reactor 

The Jacobian and sensitivity matrices for the gas-phase reactor are as follows: 

𝑨 = [
[−64 ∗ 𝑝𝐴, 32 ∗ 𝑝𝐴],

[0,         0]
] 

𝑯 = [1 1] 

where the first and second row in 𝑨 represent the derivatives of the first and second equations with 

respect to the states, respectively. Note that the first and second column represent the derivatives with 

respect to 𝑝𝐴 and 𝑝𝐵, respectively.  

Wastewater Treatment plant (WTP) 

The Jacobian matrix for WTP is a 6x6 matrix. The first to sixth element at each row represents the 

partial derivatives of the one of the differential equations in WTP (see Equation (4-29)) with respect to 

𝑥𝑤, 𝑠𝑤, 𝑥𝑑, 𝑥𝑏, 𝑥𝑟, and 𝑐𝑤, respectively. The analytical Jacobian matrix determined for WTP based on 

its state variables is as follows: 

𝑨 = [[0.10849152 ∗ 𝑠𝑤/(𝑠𝑤  +  300.0)  −  0.12550833 −  0.0001 ∗ 𝑥𝑤/𝑠𝑤, 32.547456

∗ 𝑥𝑤/(𝑠𝑤 +  300.0)
2 +  5.0𝑒 − 5 ∗ 𝑥𝑤

2/𝑠𝑤
2, 0, 0, 0.0503750000000000, 0], 

[−0.1824 ∗
𝑠𝑤

𝑠𝑤 +  300.0
+  2.6666𝑒 − 5 +  2.0𝑒 − 5 ∗

𝑥𝑤
𝑠𝑤
,−54.72 ∗

𝑥𝑤
(𝑠𝑤 +  300.0)

2
−  0.075 

−  1.0𝑒 − 5 ∗
𝑥𝑤

2

𝑠𝑤
2
, 0, 0, 0, 0],  
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[0, 0, 0.0012399051105 ∗ 𝑥𝑑 ∗ exp(−0.00078567 ∗ 𝑥𝑑) −  0.0725 −  1.57815

∗ exp(−0.00078567 ∗ 𝑥𝑑) , 0.0725000000000000, 0, 0],  

[0.250750000000000, 0, −0.002479810221 ∗ 𝑥𝑑 ∗ exp(−0.00078567 ∗ 𝑥𝑑) +  3.1563

∗ exp(−0.00078567 ∗ 𝑥𝑑) , 0.002479810221 ∗ 𝑥𝑏 ∗ exp(−0.00078567 ∗ 𝑥𝑏)

−  0.25075 −  3.1563 ∗ exp(−0.00078567 ∗ 𝑥𝑏) , 0, 0],  

[0, 0, 0, −0.002479810221 ∗ 𝑥𝑏 ∗ exp(−0.00078567 ∗ 𝑥𝑏) +  0.10575 +  3.1563

∗ exp(−0.00078567 ∗ 𝑥𝑏) , −0.105750000000000, 0],  

[−1.824𝑒 − 5 ∗ 𝑠𝑤/(𝑠𝑤 +  300.0), −0.005472 ∗ 𝑥𝑤/(𝑠𝑤 +  300.0) ∗

∗ 2, 0, 0, 0, −0.265375000000000]] 

The sensitivity matrix 𝑯 for this system is: 

𝑯 = [

[0 1 0 0 0 0 ],
[0 0 1 0 0 0 ]
[0 0 0 0 0 1 ]

, ] 

Network of continuous-stirred tank reactors (CSTRs) and separator 

The Jacobian matrix for this process is a 9x9 matrix. The first to ninth element at each row is the first 

derivative of the one of the differential equations (see Equation (8-9)) with respect to 𝑇1, 𝐶𝐴1, 𝐶𝐵1, 𝑇2, 

𝐶𝐴2, 𝐶𝐵2, 𝑇3, 𝐶𝐴3, and 𝐶𝐵3, respectively. With this in mind, the Jacobian matrix and the sensitivity matrix 

for this system are as follows: 

𝑨 = [[547878871188951.0 ∗ 𝐶𝐴1
2 ∗ exp (−8539.81236468607/𝑇1)/𝑇1

2

−  1.4, 128311688311.688 ∗ 𝐶𝐴1

∗ exp (−8539.81236468607/𝑇1), 0, 0, 0, 0, 0.400000000000000, 0, 0], 

 [−16225643492903.5 ∗ 𝐶𝐴1
2 ∗ exp(−8539.81236468607 𝑇1⁄ ) 𝑇1

2⁄ ,−3800000000.0 ∗ 𝐶𝐴1

∗ exp(−8539.81236468607 𝑇1⁄ ) −  1.4, 0, 0, 0, 0, 0, −43200.0

∗ 𝐶𝐴3  (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄

+ 1200.0 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)⁄ , 4320.0

∗ 𝐶𝐴3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄ ],  
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[16225643492903.5 ∗ 𝐶𝐴1
2 ∗ exp (−8539.81236468607/𝑇1)/𝑇1

2, 3800000000.0 ∗ 𝐶𝐴1

∗ exp (−8539.81236468607/𝑇1), −1.40000000000000, 0, 0, 0, 0, −11520.0

∗ 𝐶𝐵3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)⁄ , 1152.0

∗ 𝐶𝐵3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄  

+ 320.0 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)⁄ ], 

 [1.40000000000000, 0, 0, 547878871188951.0 ∗ 𝐶𝐴2
2 ∗ exp (−8539.81236468607/𝑇2) 𝑇2

2⁄

−  2.4, 128311688311.688 ∗ 𝐶𝐴2 ∗ exp (−8539.81236468607/𝑇2), 0, 0, 0, 0], 

 [0, 1.40000000000000, 0, −16225643492903.5 ∗ 𝐶𝐴2
2

∗ (exp (−8539.81236468607/𝑇2))/𝑇2
2, −3800000000.0 ∗ 𝐶𝐴2

∗ exp (−8539.81236468607/𝑇2) −  2.4, 0, 0, 0, 0], 

 [0, 0, 1.40000000000000, 16225643492903.5 ∗ 𝐶𝐴2
2

∗ exp (−8539.81236468607/𝑇2) 𝑇2
2⁄ , 3800000000.0 ∗ 𝐶𝐴2

∗ exp (−8539.81236468607/𝑇2), −2.40000000000000, 0, 0, 0],  

[0, 0, 0, 4.00000000000000, 0, 0, −4.00000000000000, 12529870.1298701

∗ 𝐶𝐴3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄ +  3341298.7012987

∗ 𝐶𝐵3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄ +  4176.62337662338

∗ (−450.0 ∗ 𝐶𝐴3 −  450.0 ∗ 𝐶𝐵3 +  25000.0) (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄  

− 295844.155844156 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)⁄ , −1252987.01298701

∗ 𝐶𝐴3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄  −  334129.87012987

∗ 𝐶𝐵3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄  −  417.662337662338

∗ (−450.0 ∗ 𝐶𝐴3 −  450.0 ∗ 𝐶𝐵3 +  25000.0) (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄  

− 40606.0606060606 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)⁄ ],  

[0, 0, 0, 0, 4.00000000000000, 0, 0, 72000.0 ∗ 𝐶𝐴3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄  

−  3.33333333333333 − 2000.0 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)⁄ , −7200.0

∗ 𝐶𝐴3 (36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2

⁄ ],  
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[0, 0, 0, 0, 0, 4.00000000000000, 0, 19200.0 ∗ 𝐶𝐵3/(36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2, −1920.0

∗ 𝐶𝐵3/(36.0 ∗ 𝐶𝐴3 −  3.6 ∗ 𝐶𝐵3 +  1000.0)
2  −  3.33333333333333 

−  533.333333333333/(36.0 ∗ 𝐶𝐴3  −  3.6 ∗ 𝐶𝐵3 +  1000.0)]] 

And the 𝑯 is: 

𝑯 = [

[1 0 0 0 0 0 0 0 0 ],
[0 0 0 1 0 0 0 0 0  ],
[0 0 0 0 0 0 1 0 0  ]

]  

 


