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Abstract

Computerized tomography (CT) has long been used successfully in different ar-
eas of science and engineering. X-ray tomography and MRI in diagnostic medicine,
and geographical imaging, usually used for characterizing the subsurface of earth,
are well-known examples. For experimental determination of stress fields, trans-
mission photoelasticity has been well established and successfully applied in solid
bodies. However, for the determination of stress fields in particulate media, espe-
cially in granular soil medium, very little research has been conducted. Here, based
on CT principles, a non-destructive technique is presented for the determination of
stress fields in granular soil medium. This technique is based on crosshole seismic
probing, which is usually used by geophysicists for geophysical imaging. In this
technique, a set of seismic energy sources and a set of sensors are distributed on
different boundaries of the soil region of interest. The measured propagation delay
between each source-receiver pair, usually called the "travel-time”, is used to infer

the stress field.

The wave velocity field in granular soil medium is essentially anisotropic and
heterogeneous. In conjunction with the borehole technique, two different mathe-
matical models have been presented to approach the problem. One is based on
the states of stress at each point in the domain as the principal unknowns to be
determined, and the other is based on defining the stress field as a mathematical
expression with a certain number of unknown parameters. Both models lead to a
constrained nonlinear least squares problem. However, the first turned out to be
technically unmanageable due to the highl nonlinearity of the governing equations
and the large number of unknowns involved, while the latter proved to be not only
manageable but also an efficient approach. To demonstrate the merits of this ap-

proach for the determination of stress field of granular soil, a number of test cases

iv



corresponding to different boundary conditions are presented where the stress fields

are reconstructed from travel-times which are produced numerically.
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Chapter 1

Introduction

1.1 General Background to the Problem

Stress analysis of soil is one of the most challenging topics in geotechnical engi-
neering. Due to the particulate nature, the real mechanical behavior of soil is very

complex compared to that of continuous solid materials.

The Finite Element Method has long been used for stress analysis of a soil
medium. In classical Finite Element models, soil is modeled as a continuum; to
compensate for its particulate nature, the mechanical behavior is usually consid-
ered elasto-plastic with strain hardening [Che85]. The elasto-plasticity and strain
hardening characteristics have a limited validity and are different for different types
of soil; the results have a high level of uncertainty. This dissertation embodies the
results of a research program that was motivated by a number of recent papers such
as Santamarina et al [SGM*93), and Santamarina and Potts [SP94] which provided
experimental evidence that field measurements of travel-time could be used to infer

the state of stress in particulate media. That is, the objective of the present work
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CHAPTER 1. INTRODUCTION 2

is to provide a new technique for the determination of stress fields in granular soil
without incorporating any stress-strain constitutive law. This technique resembles
Photoelasticity which is an optical experimental technique designed to determine
stress fields in solid bodies with complicated geometry. In photoelasticity, light is
passed through a loaded transparent model of the body, which is initially isotropic
and homogeneous. The stress field caused by the loading causes the transparent
medium to become optically anisotropic. The optical anisotropy causes alteration
of the of the light characteristics such as changes in phase or polarization. These
are measured and related to the stress field by means of a mathematical frame-
work. In this technique, seismic waves are passed through a loaded region of soil
that is initially assumed to be isotropic and homogeneous. The stress here simi-
larly causes a non-homogeneous and anisotropic velocity field of the seismic waves.
Alteration of the original wave characteristics such as propagation delay between
pairs of points located on the boundary are measured and used in a mathematical

model to predict the stress field.

This technique provides a proper tool for determining the stress field using data
obtained from measurements in situ. The proposed technique can be applied to
verify classical models of stress analysis or to diagnose whether an existing soil
region such as an earth dam is close to failure. To apply this technique for design
purposes in similar fashion to photoelasticity requires further research in model

analysis.

1.2 General Background

Tomography is derived from the Greek word Touooc (tomos) that is, slice; it also

refers to the cross-sectional imaging of an object from either transmission or reflec-
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tion data collected by illuminating the object from many different directions. The
object is illuminated by means of a certain kind of energy that excites the object

and is transmitted in the form of waves.

During transmission, waves do not alter the characteristics of the object signif-
icantly; therefore tomography is regarded as a nondestructive method of imaging.
Since measurements of data are made on the boundary of the object, tomography

provides a relatively convenient way for collecting the data required for imaging
purposes.

The application of tomographic imaging in diagnostic medicine is well known,
and the first medical application used x-rays for forming images of tissues based on

their x-ray attenuation coefficients.

Geotomography is a more recent application of computerized tomography as a
nondestructive method in geophysical exploration. In contrast to medical tomog-
raphy where the object can be interrogated from all sides, in geotomography a
region underground can be viewed from only a few sides. Surface to surface data
collection is one of the most convenient strategies in geotomography, but it usually
leads to poor images. Borehole to borehole methods are more appropriate. Ad-
ditional surface or mine gallery sources and receivers where feasible gives better
quality images. This work is concerned with the borehole to borehole case, usually
called crosshole tomography, however the presented methodology is fundamentally
general, and additional surface or mine gallery measurements can easily be incor-
porated. A subsurface region bounded by two boreholes including transmitters and

receivers is shown in Figure 1.1.

In geophysical applications, seismic energy, usually produced by explosion, is

used to illuminate the region. The energy propagation in the region is governed by
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CHAPTER 1. INTRODUCTION 5

the acoustic or the elastic wave equation. If the wavelength is much smaller than
the size of inhomogeneities, the wave equation can be simplified to the well-known
eikonal equation. If the conditions are not satisfied, diffraction must be considered.
For instance, if we have an anomaly, particularly a low velocity anomaly, with a

size comparable to the wavelength, diffraction should certainly be considered.

As waves are transmitted through the region, based on the distribution of cer-
tain parameters in the region, they are reflected, refracted and/or diffracted. The
collected data contain information about these phenomena and therefore about the
distribution of these parameters in the region. In the present work, the main con-
cern is evaluating the stress distribution in the region of soil. We assume that there
is no interface in the region which may cause reflection; the stress is supposed to
change continuously, therefore there will be no significant diffraction. Consequently,

in this work, refraction will be the main factor that is emphasized.

To obtain a rough idea about difficulties involved in geophysical tomography, we
can consider the following equation which relates measured travel-times (¢;) between
two points on the boundary of the region and the spatial slowness distribution of

wave propagation (S(r)):
/R S(r)dli =t  i=1,2,--k (1.1)

where R; represents the ray path between two points along which seismic energy

propagates, and k is the number of rays taken into consideration.

In equation (1.1), R; generally is unknown and depends on the slowness dis-
tribution. Therefore, the problem is nonlinear and computationally involved. To
overcome this problem, iterative methods are applied; however, they are not al-
ways guaranteed to converge. The other serious difficulty is the lack of uniqueness

of the solution for the equations. This arises due to the limited directional coverage
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when sources and receivers are located in vertical boreholes. Noise is an inevitable
problem, which contaminates the received signals and consequently leads to an in-
consistent system of equations that has no exact solution. Although contaminated
data can be processed for imaging purposes, it will still affect the quality of the im-
age significantly, even though the magnitude of noise is usually small in geophysical

applications.

Anisotropy is one of the most serious problems which geophysicists often con-
front. In geophysical exploration applications, geophysicists are usually concerned
about inherent anisotropy caused by crystal orientation, particle orientation, crack
orientation or lamination. In this study, we are concerned with stress induced
anisotropy caused by contact orientation of particles as a result of loading. Wave
propagation in anisotropic media presents unique phenomena such as birefringence
or S-wave splitting, and quasi-propagation, i.e., particle motions in the three quasi-
body-waves will not be parallel to the corresponding displacements of P, S, and
Sh waves in isotropic media [Hel94, Aul73]. To account for the anisotropy, more
unknowns must be introduced, consequently the already ill-conditioned problem

becomes worse.

1.3 Research Objective and Thesis Preview

The objective of this work is to develop a method for stress determination in gran-
ular soils, based on tomographic principles. It is assumed that data is available
which represents the behavior of acoustic waves in the soil. This data, in general,
can be travel-times, wave amplitudes and/or full patterns of the output wave. In
this work, we will focus on travel-time of P-waves as a representation of wave be-

havior. The topic of the reconstruction of stress distribution in granular soil using
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measured travel-times is an inverse problem. Due to the novelty of this topic, to
our knowledge, there is no mathematical model available that relates the measured
travel-times to the stress distribution in granular soil media. Therefore, not only has
the inverse problem not been investigated before, but also there has been only few
attempts to tackle the forward problem, In an attempt to accomplish our objective,

we carried out our research step by step as follows:

1. Mathematical modeling. Considering the heterogeneity and the stress induced
anisotropy of the problem, and applying the existing relations between the
velocity of wave propagation and stress in particulate medium, we have es-
tablished an integral equation that relates the measured travel-times to the
stress field. Unlike equation (1.1), our equation is nonlinear, not only due to
its dependence on the ray paths, but also because of the nonlinear integrand.
This unfortunately adds a significant level of complexity.

2. Forward problem solution. We have carefully studied ray tracing in isotropic
and inherently anisotropic media, and concluded that a perturbation method
that has been widely used in heterogeneous-isotropic media can suit our
model. Therefore, we adopt this method and present an efficient ray trac-

ing technique for stress induced heterogeneous-anisotropic soil media.

3. Inverse problem solution. First, we present an inversion approach that is
based on using stresses as the principal unknowns. Due to the large number
of unknowns, and the limited information which is provided from the travel-
times because of their limited directional coverage, the inverse problem is
extremely ill-conditioned and the stress field cannot be reconstructed properly,
even by applying regularization. Therefore, we introduce the equilibrium

equations which must govern the stress field. This dramatically decreases
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the degree of instability of the equations; however, the problem remains ill-
conditioned. To improve the stability of the problem further, we apply a
regularization technique.

The system of equations derived from the regularization technique has to be
dealt with as a nonlinear least-squares problem, and solved iteratively. On
the other hand, considering the fact that, typically, the number of unknowns
involved in this approach is very large, an efficient way to handle the iterative
procedure of inverse problem is certainly required. In our model, fortunately,
each governing equation of the system involves only a few unknowns, con-
sequently its related Jacobian matrix is sparse. Therefore, an algorithm for
solving sparse nonlinear least-squares problems was adopted and encoded to
be applied in this problem. Unfortunately, due to the high nonlinearity of
the travel-time equations and the large number of unknowns involved, test
problems with synthetic data revealed that unless the initial guess is very
close to the solution, the iterations often either diverge or converge to a local
minimum.

As a second attempt to solve the inverse problem, we present another ap-
proach that is based on using stress functions with a limited number of un-
knowns to avoid some complexities we had in the first approach. The stress
functions are selected in such a way that they automatically satisfy the equi-
librium requirements, therefore the governing equations in this approach are
only travel-time equations. These equations are stable, but still highly non-
linear. To avoid convergence to a local minimum in this approach, we impose
a number of realistic constraints to this system of equations. Consequently
the obtained system has to be dealt with as a constrained nonlinear least-

squares problem which is one of the challenging problems in optimization.
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This approach is encoded and applied to a number of test problems for the

reconstruction of stress fields from synthetic travel-times.

The details of these approaches are contained in subsequent chapters. In chap-
ters 2 and 3, we present a comprehensive literature survey on some relevant princi-
ples, methods and tools used in inverse problem applications which are to a certain
degree similar to the problem of this study; Chapter 2 is devoted to issues related

to forward modeling, while Chapter 3 is devoted to inverse problem issues.

In Chapter 4, the principles of our approach to solve the problem in 2-D cases
are addressed, and a relation between travel-times and stress field is derived. Using
this relation, we present two approaches to formulate the inverse problem. In this
first approach, we represent the unknown stress field by considering the unknown
stress components on a set of pre-specified nodes in the soil region of interest. In
the second approach, we use the idea of stress potential functions to represent the
stress field of the entire region parametrically. Compared to the first approach,
the second has some attractive features such as involving only a small number of
unknowns, and also involving a parametric stress field that automatically satisfies
force equilibrium conditions. The last part of Chapter 4 essentially formulates the
problem in 3-D cases. This formulation is basically an extension of the 2-D case

formulation obtained from the second approach.

Chapter 5 addresses the numerical solution of both the forward and the inverse
problems in details. In Chapter 6, we present the application of the model for stress
reconstruction in different geotechnical problems. Finally, Chapter 7 is devoted to
a summary and the conclusions of this work, along with a discussion of future

possible work.



Chapter 2

Forward Modeling in CT

2.1 Introduction

The present study is probably one of the first attempts to apply tomography to
stress distribution reconstruction in soil. Due to the novelty of this subject, to the
author’s knowledge, no computational model for stress distribution reconstruction
has been presented in the literature so far. In this chapter, we will mainly review
methods of forward modeling in computerized tomography, which are applied in
geophysical explorations. These methods are developed to determine spatial distri-
bution of wave propagation velocity in a region excited by seismic energy. These
investigations are relevant to the present study because the foundations are basi-

cally the same.

The problem of determining the wave propagation velocity in a region can be
approached in three ways. First is the wave approach which is based on the govern-
ing partial differential equation of wave propagation; fundamentally it is the most

accurate approach and it appears to be widely applicable, however it requires a

10



CHAPTER 2. FORWARD MODELING IN CT 11

cumbersome computational process that limits its application. The second, diffrac-
tion tomography, is based on a version of the wave equation that has been simplified
to make the computational process of inversion easier. The simplifications are valid
only in specific circumstances. The third set, ray based methods of tomography,
are based on ray theory, which considers the transmission of energy along rays.
This is valid only in even more specific circumstances, but is computationally the

simplest.

Although the validity of diffraction tomography and ray based methods of to-
mography is limited, these methods have been widely used by researchers. This
is due to their relative simplicity, applicability and accuracy in comparison to full
wave approaches. Full wave approaches are theoretically ideal, but lead to severe

computational difficulties.

Because the reconstruction model of this work is based on a ray approach, we
will briefly discuss the foundations of wave and diffraction tomography approaches

in forward modeling, and present a detailed discussion of ray based methods.

Tomography is an inverse problem. To solve any inverse problem, we must
have a deep understanding of its corresponding forward problem. This Chapter is
devoted to a review of different approaches and some other issues related to the
forward modeling, while Chapter 3 is devoted to a review of techniques for solving

the inverse problem.

2.2 The Forward Problem

In forward problems, the goal is to compute some behavior of a system correspond-

ing to some parameter distribution. In geophysics, the primary forward problem is
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the computation of travel-times for waves passing through a medium with known

properties.

2.2.1 'Wave Propagation in Particulate Media

The consideration of mechanical wave propagation in particulate media was first
initiated by Newton in the 17th century, when he modeled air as a discrete medium
for propagation of sound [Alo95]. Wave propagation in particulate media is very
complicated when the wavelength approaches the particle diameter. Brillouin, in
his classical text [Bri46], has summarized the most significant developments related
to this subject until the 1940’s. One of the most important conclusions of Brillouin's
work is that when the wavelength is much greater than the interparticle spacing,
waves travel through particulate media as in a continuum. However, if the wave-
length approaches the interparticle spacing, waves are affected by the particulate

nature of the medium.

2.2.2 Anisotropy in Granular Soil

There are basically two kinds of soil anisotropy: inherent anisotropy which can be
caused by a variety of ordering processes on a “microscopic” level, such as grain
or crystal orientation, aligned cracks or fractures or periodic fine layering (“lamel-
lation”) [Hel94]; and stress induced anisotropy which is caused by interparticle
contact orientation as a consequence of loading. Researchers in different fields
are interested in different parameters related to anisotropy. For example, explo-
ration geophysicists are interested in the causes that makes the medium deviate
from isotropy, while most of civil engineers are interested in the elastic constants

in anisotropic medium. In this research, we are interested in stress distribution in
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a soil medium, therefore we are concerned with stress induced anisotropy and how

it affects wave propagation

Stress Induced Anisotropy and Wave Propagation

When a soil region undergoes loading, equilibrium and compatibility requirements
lead to an inhomogeneous-anisotropic stress distribution. The state of a particu-
late medium can be described at the micromechanical level by characterizing the
distribution of contacts, interparticle forces and particle orientations. Hence, it is
theoretically possible to relate the micromechanical characteristics of the partic-
ulate medium to the macro-characteristics of wave propagation such as velocity.
Numerical and experimental micromechanics research of particulate media has led
to important relations between the distribution of externally applied forces acting
at the boundaries of a granular assembly, and the fabric anisotropy and anisotropic
distribution of interparticle forces that evolve in response to boundary disturbances:
the average number of contacts and the average normal contact forces increase in
the direction of the higher normal stress until limiting values of force and fabric
anisotropy are reached. This change arises as a consequence of particle arrangement
and the distribution of interparticle contact orientations and contact forces in a par-
ticulate medium. Rothenburg [Rot80], and Rothenburg and Bathurst [RB89, RB92]
have proposed a truncated Fourier series to describe the distribution of these pa-
rameters. Rothenburg and Bathurst [RB89, RB92| suggested the following approx-

imation for the angular distribution of contact normals:
E(6) = %{1 +acos 2(6 — 6.)} 2.1)

where a is a parameter defining the magnitude of anisotropy in contact orientations

and 8, defines the direction of anisotropy. A similar expression has been suggested
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for contact forces. Although it seems to be feasible to pursue this micromechanical
approach to investigate wave propagation in particulate media with stress induced
anisotropy, to the best of our knowledge, this approach has not been extended for
this purpose.

Cross-Anisotropic Media

If a solid medium exhibits symmetry with respect to arbitrary rotations about one
axis, then it is called cross anisotropic. In this case the matrix of elastic coefficients
has only five dependent constants. Thus, with the z-axis as the axis of symmetry,
Hooke’s law can be expressed as follows:

- - 7 N

"2 1o o0 0 0 0

Yz

4 3 i1 Ci12 Ci3 0 0 0 Ex
Oz
ci2 ¢1 ¢z O 0 0 Ey
% 0 0 0
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Tzz
0
Ces |
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Inherently anisotropic soil is often modeled as cross-anisotropic medium espe-
cially in geophysical exploration applications [C72, BC90, CP92, PC92]. In the
case of stress induced anisotropy, depending on the loading conditions, soil may
behave as a cross-anisotropic medium or a medium with one plane of symmetry.
For example, when a soil medium undergoes a symmetric loading such as a circular
footing, soil behaves as a cross-anisotropic medium, while under plane strain condi-
tions, soil may be regarded as a medium with one plane of symmetry. In such cases
it may be theoretically possible to develop relations between the elastic constants

and the state of stress such as the one derived by Petrakis and Dorby [PD87]; such
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relations, theoretically, can be used to derive the wave equation in the stress in-
duced anisotropy case. However, the resulting wave equation would be extremely

nonlinear, thus very hard to handle for further applications.

2.2.3 Wave Velocity in Cross-Anisotropic Media

A fundamental aspect of an anisotropic medium is the variation in velocity of a
seismic wave with the direction of propagation. In anisotropic media, the velocity of
plane wave propagation, called phase velocity, differs from that of wave propagation
which is called ray velocity. As depicted in Figure 2.1, the wave surface is defined
as the locus of points reached at a given time by an impulsive point source at time
zero. Therefore a radial vector connecting the source to a point on this surface
represents the ray velocity at that point. On the other hand, the phase velocity
surface is defined as the locus of radial vectors, which are perpendicular to the

plane wave fronts of the wave surface.

0 S
- X
% 2,
¢ I’e[ .
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55
Wave front
‘ \ Wave surface
’ Phase velocity
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Figure 2.1: Relationship between the wave surface and phase velocity surface
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Although no research has been conducted about wave propagation in media

with one plane of symmetry, it is expected that the same phenomena exist.

Wave Equation Solution

The solution of wave equation for cross-anisotropic media [Whi83, ?] where the

z-axis is the axis of symmetry leads to the following equations for phase velocities:

Voo = [(c115i0% 8 + cqq + +cazcos?d + A)/(2p)]2/2 (2.3)
Viho = lcss sin? @ + cqq cos? 8)/p]*/? (2.4)
‘/SV.B = [(cll sinze + Ca3 COSzg + c4q4 — A)/(2p)]1/2 (2.5)

where
A = [{(c11 — ces) 5in? G — (caz — caq) cos? 8} + 4(c13 + c4q)? sin? § cos® §]1/2

and 6 is the phase angle measured from the z-axis of symmetry. The P-wave ray
velocity cannot be easily expressed in terms of stiffness coefficients in closed form
and it can be determined through parametric representations [Byu84], however

approximate models are available as follows:

4th Fourier Series Model. Byun et al [BCG89] proposed an approximate direct

expression through a truncated Fourier type expansion of the form
Va?(8) = a2 + a®cos’ — a?cos*f (2.6)

to describe the P-wave ray velocity surface for cross-anisotropic media. The
three parameters aq, a; and a; are functions of our stiffness coefficients c;1, ¢;3,
¢33 and cyq. Byun et al [BCG89) showed that, this three-term approximation
to the ray velocity is an excellent fit to P-wave ray velocity even for highly

anisotropic media.
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Elliptical Model. In this case of cross-anisotropy, the ray velocity of SH-waves
exhibits an elliptical dependence [Byu82, BC90]. In this case, Vj}, , the SH-
wave ray velocity as a function of ray angle 8 can be expressed as

1 cos’d + sin® 6
Ve W Vi

(2.7)

v

which involves the vertical and horizontal velocities, respectively,

e

“ -
Apparent P-wave anisotropy exhibited by some cross-anisotropic media is not
strictly elliptical [Byu82], however, any convex part of the wave front can be
locally fitted with an ellipse within the view angles involved in the specific field
situation [Hel94]. Due to this fact, Michelena et al [MMH93] showed that P-
wave ray velocity in cross-anisotropic media can be approximated properly by

a double elliptical model that has elliptical shape around the axis of symmetry.

2.2.4 Velocity-Stress Relations in Particulate Media: Mi-

cromechanics Based Relations

Velocity-stress relations in particulate media can be derived using micromechanics
principles. Applying Hertz contact theory for a cubic elastic sphere pack under
isotropic confining stress og leads to the following equation for the elastic modu-

lus {Whi83):

3E‘20'0 1/3
S 8
which leads to the following equation for P-wave speed:
3E2ao 1/6 6 1/2
V;’ _{8(1—'11‘2)2} (_n,p.) (29)
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Here, E,, n,, and p, are respectively the elastic modulus, Poisson’s ratio and density

of the solid from which the spheres are made.

Using Hertz and Mindlin contact Theories, Chang et al [CMS91] computed a
shear modulus of a statically isotropic packing under isotropic confining stress og

V3Ca
V2r(1—v)(1 +e)

where v and G are the Poisson’s ratio and the shear modulus of the material from

_ (-4
T 5(2-v)

[ 123(G?00) /3 (2.10)

Gmax

which the particles are made, e is the void ratio of the particulate media, and C,
is the coordination number. This shear modulus and the Poisson’s ratio for the

packing which was proposed as

v
“pack = 375 _3)

can be used to find a corresponding velocity-stress relation.

Micromechanics closed-form solution for G or v of random packings subjected
to anisotropic loading are not available; a limited set of numerical results were

presented by Chang et al [CMS91).

Empirical Relations

Analytical models based on micromechanics suggested a power relationship between
velocity and stress of particulate media. For example, equation (2.9) has a simple

form

V, = ac® (2.11)

where 8 = } and a is a constant that depends on the mechanical parameters of
the solid from which the particles are made. In this kind of micromechanics based

relations, the constant exponent 8 depends only on the nature of contact stiffness,
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e.g. B =  for Hertzian contact, and # = : for cone-to-plane contact [God90], while
it has been observed that microfabric changes upon the increased state of stress and
elasto-visco-plastic contact behavior is also important [AS95]. Considering all these
factors may lead to very complicated analytical models; instead several investigators

have proposed empirical expressions for this purpose.

For P-wave velocity of wave propagation in granular soil media Schmertmann [Sch78],
Kopperman et al [KSK82b] and Santamarina and Potts [SP94] suggested the same
power relationship of equation (2.11). For dry sand, Schmertmann [Sch78] found

B=02- 023
while Kopperman et al [KSK82b] and Santamarina and Potts [SP94] found
B=022-02 and B=019 — 0.22

respectively. For shear wave velocity, Schmertmann [Sch78] suggested the same

power relationship with

B =02 — 029

for dry sand. Other researchers [Roe79, KSK82a, YR84, SF95] have suggested
another empirical relation to relate the shear wave velocity V, along principal di-

rections with the state of stress in anisotropically bounded media:
V, = AcZo?, (2.12)

Here, A, a and J are constants, g, is the stress in the direction of propagation, and
Om 1s the stress in the direction of particle motion. Another empirical relation has

been suggested by Santamarina and Cascante [SC96]:

Op+ Om .z, 0p— Om
Vi = A=) () (2.13)
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where A, £ and 1 are constants.

It must be noted that equations (2.11) to (2.13) are not valid along non-principal
stress directions [AS95].
2.2.5 Wave Approach in Forward Modeling

In the wave approach of forward modeling, either elastic or acoustic wave equations

are considered. The elastic wave equations for and isotropic elastic medium are

0%u; oA .

p(r) a; = (Ar) + p(r)) 52 T w(r)\ Vg, i=1,2,3 (2.14)
32u,- 2 .

pr)5m = w(r)V76;, i=1,2,3 (2.15)

Here r is the position vector, the dilatation A is the volume change per unit volume,
u; represents the displacement vector components, and §; represents the rotation
vector components. The first equation governs the P-waves and the second the

S-waves. These equations can be obtained by combining Newton's law and a gen-

eralized Hooke’s law [Off58].

The acoustic wave equation can be obtained by combing Newton’s equation of
motion with an equation of state linking changes in pressure to changes in vol-

ume [Mor48]. This leads to the following equation:

2 T
S(r t) = ozl(r) 9 ’;iz’t) - P(r)V[%VP(r, B =S(rt)  (2.16)

Analytical solution for the elastic and acoustic wave equations to obtain the
displacement field u(r,t) or pressure field P(r,t) as a function of space and time
are available for only few simple cases [Whi83, Mor48]. Solutions of these equations

for other cases are attainable using numerical methods such as the finite difference
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and finite element methods. The finite difference method is used more often to
obtain numerical solutions for the wave equations. Alterman and Karal [AK68],
Virieux [Vir84, Vir86], Gauthier et al [GVT86], and Vafidis et al [VAK92] have
used the finite difference numerical method to solve the wave equations in time
domain, while Woodward and Rocca {WR88], Petrick et al [PBJ*88], and Pratt
and Worthington [PW88] have used the same method in frequency-domain.

2.2.6 Reduced Wave Equation Approach of Forward Mod-
eling

As described by Kak and Slaney [KS88], the field u(7) is first considered to be the

sum of two components
u(F) = uo(F) + us(7).
The component u,(7) is the field present without any inhomogeneities, and the

component u,(7), known as the scattered field, will be that part of the total field that

can be attributed solely to inhomogeneities. This leads to the following equation:
u,(F) = f g(F = 7)o(Fyu(#)dr (2.17)

Here g is a known Green’s function, and o()u(r’) is the forcing function of the
wave equation. Since this integral equation for the scattered field, u,, is written in
terms of the total field, v = ug + u,, this equation cannot be solved directly, but a

solution can be obtained using either the Born or the Rytov approximation.
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The First Born Approximation

If we substitute u(F) = uo(F) + u,(7) in equation (2.17), we obtain the following

integral equation:

w(F) = / 9(F — 7)o(F Yuo(F)dr + f 9(F = Yo(F )us(F)dr (2.18)

However if the scattered field, u,(), is small compared to ug(7), the effects of the

second integral can be ignored to obtain the approximation:

o (7) =~ f 9(F = 7)o yuo(F)dr (2.19)

This is called the first Born approximation which is valid only when the field, u,(7),

is smaller than uq(7).

The First Rytov Approximation

In the Rytov approximation which is valid under slightly different restrictions, first

the total field is represented as a complex phase or
u(F) = exp &(7) (2.20)
Here, the total complex phase, &, is expressed as follows:
3(7) = Bol(7) + 8.(7) (2.21)

where uo(7) = exp $o(7) and &, is the scattered complex phase. Substituting in
the wave equation and simplifying leads to a differential equation that yields the

following solution:

ue®, = /V 97~ P Yuo[(VE,)? + o()]dr (2.22)
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Using the Rytov approximation, we assume that the term in brackets in equation
(2.22) can be approximated to o(r). This leads to the first-order Rytov approxi-

mation to the function u¢®, as follows:

uq®, = L‘g(F— Vg (v )o(r )dr (2.23)

Thus ®,, the complex phase of the scattered field is given by

1
‘U,Q(‘F) v

g(F — 7 )uo(™)o()dr’ (2.24)

8

The Rytov approximation is valid under a less restrictive set of conditions than
the Born approximation [KS88]. Both of these approximations are the basis of the

“Fourier Diffraction theorem” which is the base of diffraction tomography.

2.2.7 Ray Based Approximation of Forward Modeling

Born and Wolf [BW65] used the wave equation to show that when the wavelength
of the propagation energy is small compared to the size of the scatterers, or when
the changes in the transmission speed per unit wavelength are small, energy may
be regarded as being transported along curves that are orthogonal trajectories to

the moving wave fronts.

The Eikonal Equation

The basic equation of geometrical acoustics describing the propagation of wave
fronts in an inhomogeneous medium of a continuously varying wave propagation

speed, ¢, is the eikonal equation

VO = % = (2.25)

1
c2
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where the surfaces ©(r) = constant may be called the geometrical wave fronts,
and p and & are the density and bulk modulus of the gas or fluid through which the
wave is propagating. As described by Nolet [Nol87), this equation can be obtained
by applying Fourier transform to the acoustic equation and then assuming that the
frequency w — oo. The vector VO is perpendicular to the wave front, and therefore
by definition parallel to the ray. Letting d7 be a tangent along the ray with length

ds, equation (2.25) leads to the following second-order differential equation for rays:

1 d 1dr
ViR =525 (2.26)

Beginning with the equation of elastic waves and following a similar way, we
can obtain the following eikonal equations of wave propagation in isotropic elastic
media:

o = 2 _ = 2.27
vor = 3o =i (2.27)
= 1

vep = £=— 2.28
VOl PR (2.28)

Here p is the solid density, A and u are Lame’s elastic constants, and V, and V, are

the P-wave and S-wave velocities.

The Fermat’s Principle in Ray Tracing

Fermat’s principle is an important and very useful principle that was formulated
in the 17th century originally for optical rays. This principle states that energy
propagates along the path that makes travel-time minimum. If we consider the
energy as propagating along a generally curved ray between two points through a
medium with V(7) representing the speed of energy transfer, the following integral

equation will relate the travel-time ¢ to V(7):

dr
t= /R V@ (2.29)
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where R represents the curved ray and dr is an infinitesimal portion of the ray in

the neighborhood of r.

Another way to obtain the eikonal equations, as shown by Stavroudis [Sta72]
and Nolet [Nol87], is to use Euler’s equation in “Calculus of Variation” to minimize

the travel-time in equation (2.29).

Validity of the Ray Approximation

Many researchers have studied the influence of diffracted waves when the ray ap-
proximation is incorporated. Wielandt [Wie87] concluded that ray approxima-
tion works well for positive anomalies, but in the presence of a negative anomaly,
travel-time data are likely to present the travel-time of the fastest path around the
anomaly, even at relatively short distances. In cases where diffracted waves have no-
ticeable amplitudes, if we use ray based models, inclusions with a positive anomaly
will appear larger than they are in nature; the amplitude of negative anomalies

may be grossly underestimated.

Methods of Ray Tracing

There are basically two main methods for tracing rays between two given end-points
through a continuously varying field: initial value and boundary value methods. In
the first method, often called the shooting method, we shoot the ray from one end-
point in a certain initial direction, find its destination, and then systematically vary
the initial direction until the ray emerges at the desired end-point. In the second
method, often called the bending method, we vary the curved path between the end-
points until it satisfies Fermat’s principle. The shooting methods are simple and

straightforward, but on the other hand much more time consuming than bending
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methods. According to Julian and Gubbins [JG77], they sometimes take 10 times
as much as bending methods. The bending methods, on the other hand, are fast

and efficient.

Shooting Methods

Wesson [Wes71| developed a numerical technique to trace seismic rays in an isotropic-
inhomogeneous medium. In that work, he used the central finite difference approx-

imations to the ray equation.

Julian and Gubbins [JG77] considered another formulation for the ray equation
in the 3-D case which leads to an initial value problem for a system of first-order
differential equations. To solve this system, the starting direction corresponding to

the desired end-point is found iteratively.

Johnson et al [JGSJ75] considered the ray equation (2.26) as the basis for a ray
tracing algorithm. This equation, in combination with a truncated Taylor series,

leads to the following expression suitable for numerical implementation:

dr 1 dr dr
r(s + As) =r(s) + EA'S + %[An - (Angg)a

I(As)? (2.30)
where n is the refraction index. One systematic way for finding the proper starting
direction in the shooting methods is using Newton-Raphson method as used by

many researchers ({LD80, AK82}).

The method of characteristics is based on a direct solution to the eikonal equa-
tion. This method was initially introduced by Jakowatz and Kak [JK76]; for the
2-D case it leads to the following numerical algorithm:
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zipn = o+ (%)As

yisn = Yj+(%)As

pis1 = pi+ 2As

G+ = ¢+ %A-’
where p = £ and ¢ = g—i-.

Lytle and Dines [LD80] introduced a numerical algorithm which is based upon
a Runge-Kutta solution of the 2-D ray equation:
o 1 on . on

= —(cos®—— — sin@®

i 3y 5;:) (2.31)

They used a Newton-Raphson method to obtain the correct starting ©.

White [Whi89] and Bregman et al [BBC89a, BCB89] used a velocity field with
piecewise constant gradient in a mesh of triangular cells. They proved the analytical
ray path in each cell is a circular arc, thus their ray tracing method is 2 matter
of connecting these circular arcs starting by a proper shooting direction which is

found iteratively.

Bending Methods

Wesson [Wes71] used the central difference approximations to the ray equation
to formulate the bending method for the seismic-ray tracing problem. Chan-
der [ChaT75] developed an equivalent method by approximating the integral equation
of the travel-time (2.29) by a sum, and then solving for the minimum time-path

directly.

Julian and Gubbins [JG77] developed a method which differs slightly from those
of Wesson (Wes71] and Chander [Cha75]; they expressed the ray differential equa-
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tions in terms of changes in the ray-path, linearized, and solved them iteratively

after applying the finite difference approximations.

Yang and Lee [YL76] introduced another approach based on bending; they first
reduced the second-order ray expressions to a set of first-order equations and then
solved them by applying a finite difference technique. This approximation leads
to a system of nonlinear equations that must be solved numerically. Pereyra et
al [PLK80] followed the same approach and applied the Newton-Raphson method

to solve the system of nomnlinear equations.

To avoid falling in local minima, Thurber and Ellswortk [TE80] proposed ap-
proximating the complex heterogeneous medium, by a layered medium by laterally
averaging velocities in region local to the source and receivers. Ray-paths in the
approximated model can be easily determined and used as the starting paths. For
more accurate ray tracing routines, Um and Turber [UT87| proposed an approxi-
mate fast algorithm as a bending method. Rather than explicitly solving the ray
expression, they perturbed a starting path to minimize the travel-time. The per-
turbation is made according to a geometrical interpretation of the ray equation.
Prothero et al [PTE88] developed another ray tracing fast algorithm. They first
determined the best circular arc path between two end-points which minimizes the
travel-time, and then made perturbation consisting of a sum of N sinusoidal terms
of the circular arc path to minimize the travel-time. To find the amplitudes of the
sinusoidal terms which minimizes the travel-time, they used the simplex method of
Nelder and Mead [NM65). Berryman [Ber90] applied a similar algorithm in which

a straight line rather than a circular arc path is perturbed by sinusoidal terms.

Vidale [Vid88| suggested a ray tracing method based on solving the eikonal
equation (2.25). That method appeared to be accurate. The algorithm includes
two steps: In the first step, travel-time values at all grid-points are calculated by
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using a finite difference approximation to the eikonal equation. At the second step,
ray-paths with minimum travel-times are located by tracing the path of steepest
gradient of travel-time from the receivers back to the source. This type of method
is often called a forward-and-backward method. Asakawa and Kawanaka [AK93]
proposed another ray tracing method based on the forward-backward method. In
this method, they divided the region into a number of cells, and considered an
extra number of calculation points on each cell boundary. They assumed that the
travel-time at any point between two other calculation points on the boundary can
be linearly interpolated in terms of the travel-times of the calculation points. In the
forward process, the travel-times of the calculation points are computed successively
using the previously calculated travel-times on the points in the neighborhood. In
the backward process, they used the procedure in [Vid88].

Ray Tracing in Anisotropic Media

Based on the general form of the elastic wave equation

9 oU. U
bz, CM 5, ) = P (2.32)

2

Cerveny [C72] derived the eikonal equations which govern compressional waves
and shear waves propagating in heterogeneous-anisotropic media. To derive these
equations, he assumed elastic constants that are continuous functions of position.
Those equations were derived using the theory of ray series and they lead to a
system of ordinary first-order differential equations to be solved for obtaining ray
paths. That method of ray tracing appeared to be cumbersome; it is impractical
to apply for iterative inversion algorithms where ray tracing must be iteratively

carried out.



CHAPTER 2. FORWARD MODELING IN CT 30

Tanimoto [Tan87] presented ray expressions for surface waves in anisotropic
laterally inhomogeneous media. Those equations are derived in two ways: first

from the Hamilton’s canonical equations, and second from Fermat’s principle.

2.3 Closure

In this chapter, we have presented a literature review of methods of forward model-

ing in computerized tomography. Here, we will summarize each presented method.

In section 2.2.2, we addressed the issue of anisotropy in granular soil. In that sec-
tion, we pointed out that there are two kinds of soil anisotropy: inherent anisotropy
and stress induced anisotropy. A considerable amount of research has been done
in relation to wave propagation in cross-anisotropic media. The outcome of this
research is some analytical relations for calculating phase and ray velocities. We
have not come across any research work which addresses wave propagation in stress

induced anisotropic media.

In section 2.2.4, we first reviewed analytical velocity-stress relations in particu-
late media based on micromechanics. Those relations are somewhat complicated,
and can be applied in only limited circumstances. On the other hand, empirical

relations are less complicated and are widely used in geotechnical applications.

In section 2.2.5, we discussed various wave approaches for forward problems.
These approaches are based on the p.d.e’s of the wave propagation which are,
theoretically, capable of providing high-resolution images. They require a huge
amount of computation, and because of high nonlinearity involved in the governing
equations, numerical algorithms may lead to local minima. For stress induced

anisotropic media, the governing p.d.e’s of wave propagation are not available, so
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that this approach is not applicable.

The reduced wave equation approach which is reviewed in section 2.2.6 is based
on a simplified version of the wave equations, and is applicable when the scattered
field is small. This approach leads to a forward process which is more efficient than
the wave approach; because the Green’s function is not available for stress induced

anisotropic media, it is not applicable in this study.

In section 2.2.7, we reviewed ray based methods of forward modeling. These
methods can be applied when the wavelength is small compared to the size of scat-
terers, or when the inhomogeneity is continuous. The most important part of the
forward modeling is ray tracing, for which two sets of methods are reviewed: shoot-
ing and bending. The shooting methods are simple and straight forward, but time
consuming compared to bending methods. Bending methods are fast and efficient,
and can be divided into two sets: those based on the ray differential equation,
and those based on perturbation methods. Perturbation based methods are widely
used and have proved to be successful in many applications. For ray tracing in
cross-anisotropic media, the eikonal equation has been derived and used for ray
tracing. For ray tracing in stress induced anisotropic media, to our knowledge, no
method has been suggested; perturbation methods used in isotropic media can be
easily extended to this kind of anisotropic media. In chapter 4, we will present a
ray tracing technique for stress induced anisotropic media based on perturbation

methods.



Chapter 3

Inverse Problem in CT

3.1 Introduction

The inverse problem, in general sense, is the determination of a parameter or a set
of parameters, e.g., velocity of wave propagation from a set of measured parameters,
e.g., travel-time. In tomography, the spatial distribution of parameters is of interest,
therefore the purpose of solving inverse problems arise in tomography applications
is the determination of the spatial distribution of some parameter(s) from a set of
measured parameter(s). In this chapter, we will present a review on techniques and

schemes commonly used in the inverse problem of geophysical tomography.

3.2 Inverse Problem in the Wave Approach

In Section 2.2.5 of Chapter 2, the wave approach was presented for forward model-
ing. This approach is based on the solution of the wave differential equations. One

of the earliest attempts to apply the wave equations in inverse problems was made

32
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by Bleinstein and Cohen (BC79], and Cohen and Bleinstein {CB79]. In that work,
the acoustic wave equation is simplified in such a way that the inversion of reflected
data leads to a closed form solution. The approximation used in the simplified wave

equation is valid for small transverse variations compared to vertical variations.

In Tarantola [Tar84a] and Gauthier et al [GVT86], the exact form of the acoustic
equation is used for the forward modeling. In that work, a nonlinear inversion
procedure using a least-squares method has been used to minimize the misfit of
the calculated and observed pressure field Py(r,t) for discrete points on the surface.
This leads to minimization of a nonquadratic function in a multi-variable space.
The procedure uses the gradient method in optimization; forward modeling, as a
part of the inversion procedure, is based on a finite difference approximation of the

acoustic wave equation in the time domain.

Tarantola [Tar84b] and Mora [Mor87| have tackled the inverse problem of the
elastic wave. Following Tarantola [Tar84a], they have used the same nonlinear
inversion strategy to obtain the solution which minimizes the misfit of calculated

and observed displacements u(r,t) at discrete points on the boundary.

The strategy presented by Tarantola [Tar84a, Tar84b], Gauthier et al [GVT86],
and Mora [Mor87] which is based on the wave equations in time domain has some
serious drawbacks, e.g., consuming huge computational time. To overcome this
drawback, Pratt and Worthington {PW90] and Pratt [Pra90] carried out the forward
modeling procedure in the frequency domain rather than in the time domain. For
the forward problem part, they applied the finite difference technique to solve the
wave equations in the frequency domain; for inversion, they applied the strategy

used by Tarantola [Tar84a).

Because of the highly nonlinear relation between data and the desired model,
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and on the other hand the large number of unknowns involved in the wave approach,
traditional optimization techniques are likely to converge to a local minimum, un-
less the starting point is adequately close to the global minimum. To provide
such a starting point, Pratt and Goutly {[PG91] suggested travel-time tomography,
which is based on ray approximation as a proper way for obtaining acceptable low
resolution images. In that work, they used the same strategy used by Pratt and
Worthington [PW90] and Pratt [Prad0].

In Tarantola [Tar84a] and following work, the entire output wave pattern is cho-
sen to construct the misfit function; this is the main reason of the highly nonlinear
relation between the data and model space. To overcome this problem, Lou and
Schuster [LS91] have moved in another direction; they reduced the nonlinearity
by expressing the wave equation in terms of travel-time, thus choosing the travel-
time parameter to construct the misfit function rather than the entire output wave

pattern.

3.3 Transform Based Inversion Methods

Using Born or Rytov approximations, the Fourier diffraction theorem can be ob-
tained [KS88]: When an object is illuminated by a plane wave, the Fourier trans-
form of the forward scattered field measured on a line parallel to the plane wave
gives the values of the 2-D Fourier transform of the object along a semicircular
arc in the frequency domain. As the frequency of wave increases, the radius of arc
increases until the scattered field is closely approximated by the Fourier Slice The-
orem which is stated as [Kak85]: The Fourier transform of a parallel projection of
an image f(z,y) taken at an angle © gives a slice of the two-dimensional transform

F(u,v), subtending the angle ©® with the u-axis.
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To apply these theorems in tomography, we must illuminate the object by plane
waves from many directions. In the way we may obtain the two-dimensional Fourier

transform of the object and finally recover the object by Fourier inversion.

Devaney [Dev82| used the Rytov approximation and developed formulas that
operate on the monofrequency scattered field. Devaney [Dev84] discussed geophys-
ical applications of diffraction tomography.

One of the major problems in geophysical applications of the Fourier diffrac-
tion theorem is that the region cannot be imaged by parallel beams because such
plane wave—forms cannot be generated exactly. To overcome this problem, Whit-
ten and Molyneux [WMB88|] have presented an extension of the algorithm suggested
by Devaney [Dev82|, which allows for the use of sources with arbitrary radiation

patterns.

Extraction of the scattered wave field from the total recorded wave field is a
serious difficulty for the implementation of diffraction tomography. This problem
reduces to the problem of estimating the source signature. Pratt and Worthing-
ton [PW88] have shown how the source function can be extracted statically from

the data.

3.4 Ray Based Travel-Time Tomography

By introducing S(F) = T/:T‘)’ the slowness of wave propagation, we may use equation

(2.29) to obtain the travel-time equation:

t= /R S(7)dr (3.1)

This equation is a Fredholm integral equation of the first kind [dH80] which can be

written down for each pair of source-receiver on the boundary of the region. The
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purpose of inversion is to determine S(7), the slowness distribution of the region of

interest, from a given set of measured travel-times ¢.

If the ray paths are known, then by discretizing the region into small cells and
supposing that the ray path in the cell is a straight line along which the speed is

constant, we can obtain the following linear algebraic equations:
Z AT{j.Sj = t.; (32)
i
This is the discretized version of (3.1); here ¢; is the measured travel-time of the ith

ray and Ar;; is the length of the portion of the ith ray contained in the jth cell.

Combining the equations for all the rays, we obtain the matrix equation

[M]{S} = {t} (3.3)

where [M] is a matrix that depends on the ray path and {S} and {t} are the vectors

of slowness and the measured travel-times, respectively.

Many researchers (e.g., [DL79, McM83, 1va87|) considered the rays as straight
lines; under this assumption, the problem becomes linear and, consequently, rel-
atively easy to invert. However, in most applications, it is well-known that ray
bending is significant where spatial variations of speed are considerable. Thus,
neglecting the ray-bending in such regions is not reasonable, and the straight line

assumption is valid only in limited cases.

3.4.1 Reconstruction Techniques in Straight-Ray Tomogra-
phy

Even though the straight ray assumption in geophysical applications is valid in only
very limited cases, some researchers (e.g. [LL77, DL79, McM83, Iva87|) have used
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reconstruction techniques that are based on this assumption. These techniques are
essentially based on solving the system of equations (3.3); this can be carried out

using iterative methods or matrix methods.

Iterative Methods

In tomographic imaging applications, iterative methods based on the “method of
projections” have been applied successfully. This method, first proposed by Kacz-
marz [Kac37] and elucidated by Tanabe [Tan71], is based on the system of linear
equation as follows:

N
Zm{ij-——-t,' 1= 1,2,~~-,M (34)

i=1
where M and N are the number of equations and unknowns, respectively. Each of
these equations represents a hyperplane in N-dimensional space, and the image may
be considered as a single point, the intersection of the hyperplanes in this space.
The computational procedure for locating this point consists of first starting with
an initial guess on the first hyperplane, projecting this point on the next hyperplane
successively and finally projecting back onto the first hyperplane, and so forth. If
a unique solution exists, the iterations will always converge to that point; however,
if the system is singular, the iterations converge to a point with minimum distance
to the initial guess point {Tan71]. The process of projecting point S¢~1), obtained
from the (z — 1)th iteration on the hyperplane represented by the ith equation to
yield point S(7) can be mathematically described by:

ti—

Zszl m

where t; is the measured travel-time along the ith ray, while #; is the computed

) = g6-1) 4 mix (3.5)

travel-time based on the (¢ — 1)th solution. This direct implementation of the
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method for a system with a large number of views with a large number of unknowns
is expensive, but there are many approximate algorithms based on the idea: ART,
SIRT, SART, etc.

In ART (Algebraic Reconstruction Technique), in order to speed the computa-
tion, the my’s in the last equation are simply replaced by 1 or 0, depending upon
whether the center of the kth image cell is or is not within the ith ray [KS88§],
and the values of § are corrected after each iteration. Noise in the measurements,
and the procedure used for correction after each iteration, lead to poor images.
This technique has been used for geotomography by Larger and Lytle [LL77] and
MacMechan [(McM83].

SIRT (Simultaneous Iterative Technique) uses the same approximations as in
ART, but applied the correction only after all available rays have been examined.
This approach, though slower than ART, usually leads to better results [KS88].
Dines and Lytle [DL79] applied this technique for imaging attenuation and speed
in crosshole tomography. They applied SIRT in combination with averaging scheme
for smoothing.

SART (Simultaneous Algebraic Reconstruction Technique), first reported in An-
derson and Kak [AK84], is another method that combines the best of ART and SIRT
to get reconstructions of good quality and numerical accuracy in only one itera-
tion [KS88]. In this method, as in SIRT, the correction terms are simultaneously
applied for all the rays in one projection.

Matrix Methods

To invert the linear systems that appear in the computational process in tomo-

graphic applications, matrix methods are widely applied. To employ the existing
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techniques for inversion purposes, there are some difficulties that should be consid-
ered. The most important difficulty is that the matrix of coefficients that appears in
geotomographic applications is neither square nor of full rank, and also the systems
are mixed-determined. The other aspect of the linear systems is that the vector
of measured data is not accurate because of the inevitable noise. Singular value
decomposition can be employed to analyze the effect of noise on the solution of

equation (3.3).

According to Lancsoz [Lan6l1], any M x N matrix G can be written as the

product of three matrices as follows:
G =UAVT (3.6)

where U and V are orthogonal matrices of dimensions M x M and N x N re-
spectively, and A is an M x N diagonal matrix whose diagonal elements are called
“singular values”. The generalized inverse of G denoted by G including only the
r non-zero singular values is:

Gt = V,AFUT (3.7)
Therefore, applying the so-called natural solution of any linear system such as

Gz = d can be expressed as:
Z=G%d (3.8)

This natural solution reduces to the minimum length solution when the problem
is purely under-determined, and to the least squares solution when the problem is
purely over-determined [Men89]. An equivalent expression for the natural solution
is:

. e
=)y —V; (3.9)
i=1 '\i
where a; are coeflicients related to the measured data, and A; and V; are the singular

values and the columns of V respectively. In geophysical applications, there are
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commonly a number of small singular values among the non-zero ones; these cause

amplification of the noise carried by a;; SVD must be modified.

Damping stabilizes the natural solution when the data contains noise; equation
(3.9) is replaced by:
~ Aoy
z= —V; 3.10
?::1 )\12 +p2 t ( )
When JX; is small, the contribution of the corresponding eigen vector is small so
that the noise is not amplified; when \; is large compared to u, the latter has little

effect. The natural solution can be written:

z

VAA(AZ + 1) YUTd (3.11)

Another way to obtain equation (3.11) is to minimize a combination of solution
error and length (& = £Te + p?(z¥z)), where ¢ = Gz — d. This minimization leads

to:

%= (GTG + p*I)'G*d (3.12)

This is called the Ridge regression estimate or the damped-least-squares solu-
tion {Men89], and it has been applied by many researchers such as Wiggins [Wig72]
who used equation (3.11), Nolet [Nol85] who compared some inversion algorithms
used to obtain the solution, Bregman et al [BBC89a, BCB89, BBC89b], White [Whi89)],
Berryman [Ber90] and Phillips and Fehler [PF91]. Berryman [Ber90] applied an-
other version of the damped-least-squares solution which is based on minimizing a
combination of solution error and the distance between the solution and another

starting point.

The damped least-squares method can be generalized, if a2 combination of solu-
tion error and some functional such as Cz rather than solution length is minimized.

Thus, (||Gz ~d||? +p?||Cz|[?) can be minimized to yield the following regularization
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equation:

(GTG + p2C*C)z = GTd (3.13)

The damped least-squares solution is a special case where C = I. In practice C
is chosen to smooth out the oscillations in the solution caused by noise; often Cz is
taken so that it approximates the second derivative of the solution. Equation (3.13)
has been used by many researchers such as Lytle and Dines [LD80] who applied
this technique using the Laplacian operator to construct C in borehole to borehole

tomography, and Ivansson [Iva87].

Equation (3.9) shows that & is linearly dependent on the eigen- values of the
G matrix. This means that errors in G arising from modeling approximations will
lead to errors in Z; these are compounded with errors arising from noisy data.
The total least-squares solution attempts to find a solution that minimizes these
errors in some sense. Golub and Van Loan [GVL80| presented a singular value
decomposition analysis of this problem, and Weldon Demmel [Dem87], Van Huffal
and Van dewalle [VHV88] have modified their algorithm.

3.4.2 Iterative Schemes in Curved-Ray Tomography

Within the last several years, researchers in tomography have recognized that in
the case of strongly refracting media, straight-line inversion can lead to significant
reconstruction error. This has lead to the development of reconstruction techniques

in curved-ray tomography.

In curved-ray tomography, we attempt to determine S(7), the slowness distri-
bution from a set of measured travel-times that are governed by equation (3.1).
In this equation, R is governed by the Eikonal equation. In general, the problems
defined by equation (3.1) and the Eikonal equation are highly nonlinear, therefore
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iterative schemes suggested to solve them are not always guaranteed to converge to

desired solutions.

Straight-Line Inversion with Modified Data

Straight-Line Inversion with Modified Data (SLIM) is an iterative approach that
involves the straight-line inversion of a modified data set that is updated in each
iteration. The measured data, e.g., ¢ are used to produce an initial field approxi-
mation, e.g. $(?, and then for each subsequent iteration k, the data are adjusted
by the difference between the data £*~!) predicted on the basis of preceding iter-
ate S%*~1) and the true data set . That is, each iteration is characterized by the

straight line inversion of modified data £, where
F) = gle=1) 4 (¢ — fk-1)) (3.14)

where £® = t. The predicted data t*) are normally produced by applying well
established ray tracing methods, and iteration continues until some termination

criterion for either the predicted data set £(*) or the field iterations S*) is satisfied.

The SLIM process, which is illustrated in Figure 3.1, has been used by re-
searchers in different tomography disciplines; Ivansson [Iva85] used this technique
in geophysical imaging.

Curved Ray Algebraic Inversion

In Curved Ray Algebraic Inversion (CRAI), straight-line inversion is used only to
provide an initial iterate S(®). Subsequent approximations S(*! are obtained by
curved-ray inversion where the ray paths are defined on the basis of the preceding

iterate S*~!) and this inversion process typically involves discretization of the
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Figure 3.1: SLIM-Straight line inversion with modified data
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field followed by solution of the resulting system of algebraic equations. The CRAI
concept which is outlined in Figure 3.2 has been applied by many researchers such

as Lytle and Dines [LD80] who applied it in borehole to borehole tomography.

Although the use of straight-line inversion leads to an algorithm that is faster
and easier to implement than CRAI, SLIM appears to be a rather unsophisticated
method where the data are adjusted to counteract the inaccuracy due to the con-

ventional inversion approach used.

Generalized Iterative Schemes in Curved-Ray Tomography

Dolovich [Dol90] showed that both SLIM and CRAI can be interpreted as mappings

of the general form:

§=S+07'(t— MS) (3.15)

where M is the operator which maps 5, the slowness vector, to ¢, the travel-times
vector, and O~! is an inverse operator. Using the contraction mapping theorem,
Dolovich has studied and analyzed the convergence properties of mappings of the
form given by equation (3.15) in general and of SLIM and CRAI in particular. He
finally introduced the idea of “generalized curved ray algebraic inversion” based on
equation (3.15), the proposed methods to select the inverse operator O~! so as to
enhance the convergence properties of the iterative scheme corresponding to this

equation.

Perturbation Method

In this method, a linear equation is obtained by approximately relating the slowness

model modifications to the travel-times perturbations. Having an estimate of the
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desired model, {So}, and considering the basic travel-time equation (3.1), we can

obtain a relation in two ways.

If we consider Ry as a representative of rays that correspond to {So}, we will

have a typical equation:
/Ro So(F)dr = to (3.16)

where £o represents the calculated travel-times using the {So} model. The matrix

version of this equation is:

[M]{So} = {to} (3.17)

Fermat’s principle implies that first-order variations of the slowness will cause
second-order perturbations in ray paths [AR80], therefore we can consider the same

[M] as the approximated matrix corresponding to the true model {S}; thus

[M]{S} = {t} (3.18)
where {t} is the vector of the measured travel-times. Subtracting the last two

equations from each other, we obtain the following linear equation:
[M]{AS} = {At} (3.19)

where {AS} and {At} are the vector of slowness modifications and the vector of
travel-time perturbations respectively. Having found {AS} from equation (3.19),
we can find a new estimate of slowness {So + AS} and use it to construct a new

[M] matrix, and so on so forth.

This technique has been used by many researchers such as Nolet [Nol85], Bording
et al [BGL*87], and Michelena and Harris [MH91].

Another formulation can be obtained by considering the basic equation of travel-

time tomography in terms of wave speed:

dr
rV(r)

HV(r)] = (3.20)
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where t[V(r)] is the observed travel-times as a function of wave speed. To linearize

this equation, we consider a Taylor expansion about a starting speed model V5(r):

tHV(r)] =  tVo(r)) + 2 V=V°6V(r) (3.21)
;o |v=v,, o 'H’o §V(r) + O(52V(r))

According to Fermat’s principle, if V; is close enough to the actual V' distribu-

tion, then

1

Thus, discarding terms of O(§2V/(r)), we obtain the following linear equation:

_ sV (r)
5t = — /Ra Ok (3.22)

=0

This linear relation between ét and §V(r) has been used by various researchers
such as Julian and Anderson [JA68], Backus and Gilbert [BG69], Bregman et
al [BBC89a, BCB89, BBC89b| and White [Whi89].

Feasibility Concept Based Method

This method, introduced by Berryman [Ber89b, Ber89a, Ber90, Ber92] as a stable
iterative technique in nonlinear travel-time tomography, can be applied in various
tomography problems [Ber92]. Fermat's principle shows that trial wave speed mod-
els that lead to ray paths with travel-times smaller than the observed travel-times
are not feasible. He introduces a feasibility violations number, which is the number
of ray paths with travel-time less than that measured, and applies Fermat’s prin-
ciple to show that the feasible region is convex. The other important idea which is
used repeatedly in the algorithm is that the ray paths which correspond to a given
slowness model {S} are valid for any other slowness model {yS} where v > 0.
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These ideas constitute the basis for the following iterative algorithm that has been
applied successfully in travel-time tomography problems [Ber89b, Ber89a]:

1. Chose an initial estimate of the slowness model {S}, and form the system of

linear equations for ray tracing.

2. Compute v such that {$} = {7S} best fits the observed travel-times for these

rays.

3. Compute {5}, the modified model of {S} which gives a better fit to the data

using the damped least-squares method.

4. Compute a model between {S} and {S,} which is closer to the boundary of

the feasible region. Since the feasible region is convex, such a model exists.

5. Scale {S,»} by a proper v to find {S¢} = {75} which minimizes the number

of feasible violations.

6. Stop if {Sy} properly fits the data, otherwise repeat steps 2 to 6.

3.4.3 Ray Based Travel-Time Tomography in Inhomoge-

neous Anisotropic Media

The inverse problem of travel-time tomography of inhomogeneous-anisotropic me-
dia is essentially the same as that of inhomogeneous-isotropic media. The inversion
process basically consists of two components: a ray tracing algorithm, which is
the forward problem solver in inhomogeneous-anisotropic media, and an iterative
scheme. For ray tracing, the method proposed by Cerveny [€'72] can be used;

for the second component, one of the iterative schemes described earlier can be
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used. However, there are some difficulties that arise in the inversion process of
inhomogeneous-anisotropic media in particular. One difficulty is that the num-
ber of unknowns in inhomogeneous-anisotropic media is much larger that that in
inhomogeneous-isotropic media; this leads to problems that are considerably more
ill-conditioned than those that arise in the isotropic case. The other difficulty is the
long time required to solve the forward problem. These difficulties must be dealt

with properly, otherwise the inversion process is impractical.

Cerveny and Jech [CJ82] proposed a linearized solution to evaluate travel-
times of seismic body waves in inhomogeneous, slightly anisotropic media. In this
method, they make a correction to the travel-time according to the unperturbed
ray paths which were calculated according to a given Ciji. Based on this work,
Cerveny and Firbas [CF84)] suggested a numerical model for travel-time inversion

in inhomogeneous-anisotropic media.

Chapman and Pratt [CP92, PC92] presented a travel-time tomography tech-
nique for inhomogeneous, slightly anisotropic media. They basically followed Cerveny
[C72] in their formulation, however they used an isotropic ray tracing scheme, reck-
oning that anisotropic effects are due to weak perturbation of the isotropic system,
and thus can be ignored in ray tracing. For the inversion process, they used the

perturbation method which was described in the Chapter 2.

3.5 The Nonlinear Least-Squares Problem

The nonlinear least-squares problem arises most commonly from data fitting ap-
plications, where the purpose is to fit a set of data such as travel-time data with

a model such as ¢(a) that is nonlinear in a. Such a problem arises in the research
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and will be discussed in the coming chapters. This problem is stated as:

Minimize f(z) = -R(:n)TR(:c Zr,(:c (3.23)
1—1
where z7 =< z,,%,,-+-,Z, > represents the vector of unknowns and RT(z) =<

r1(Z1), r2(z2), -+ *;Ta(zn) > where ri(z) denotes the ith residual, represents the
vector of residual functions. It is usually not recommended to solve nonlinear least-
squares problems by general-purpose minimization methods; this is mainly due to
the special structure of equation (3.23) which leads to special relations between the
derivatives of R(z) and F(z).

The first derivative matrix of R(z) is simply the Jacobian matrix J(z) defined

81"(:1:) .

7-=1,"',m’ .=1’-.-’n
‘J( ) 32, J

Thus, an approximated model of R(z) around a point z. is:

M.(z) = Re(z) + J(zc)(z — z) (3.24)

On the other hand, it can be shown that the first and second derivatives of
f(z) = §R(z) R(z) are:

Vf(z) = g,i J(z)TR(z),j =1,-+n (3.25)
and
Vifz) = 5o

8::,-3::,-

=J(z)TJ(z)+ S(z),i=1,--m, j=1,---n (3.26)

where

=Y mri(z)Vir(z)

=1

Thus the quadratic model of f(z) around z. is:

me(z) = 5 R(ze)T R(ze)+R(z) I (ze) (z—20)+ 5(ae) (J(ze) I (2 +5 (2)) (52
(3.27)
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To obtain the minimum of m.(z), we must have Vm.(z;) = 0; this leads to New-

ton’s method which yields:
Ty = 2. — (J(2)TT(2e) + S(2c)) 1 (ze)T R(z) (3.28)

The iterative method which is based on this equation is usually called the “full
Newton method”; it is a fast local method for the nonlinear least-squares prob-
lem [DS83]. However, due to the fact that S(z) is usually either unavailable or

inconvenient to obtain analytically, this method is not commonly used in practice.

To come up with a practical solution to the nonlinear least-squares problem, two
alternatives are available: The first is based on approximating R(z) using equation

(3.24) and then minimizing
. 1
mC(z) = §”Mc(z)”§

and the second is based on using equation (3.28) along with approximated S(z.).
The first alternative leads to a linear least-squares problem which can be solved

using the following equation to obtain the next iterate z.:
24 = z. — (J(2)T I (2)) " T (zc)T R(z) (3.29)

The iterative method that consists of using equation (3.29) at each iteration is called
the Gauss-Newton method. Equations (3.29) and (3.28) differ only in the term S(z),
included by Newton’s method in the second derivative matrix given by equation
(3.27) but omitted by the Gauss-Newton method. Equivalently, the only difference
between the quadratic model m.(z.) and m.(z.) given by equations (3.27) is that
the portion S(z;) of V?f(z.) is omitted from m.(z.). It can be shown [DS83]} that if
S(z.) is small relative to J(z.)TJ(z.), where z. is the solution, the Gauss-Newton

method is locally or linearly convergent, i.e.,

|2k+1 - :z:.| < clzck — T.
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where ¢ € [0,1).

The main drawback of the Gauss-Newton method is that it may take steps that
are too long, but in the correct direction. This suggests two ways of improving
the Gauss-Newton algorithm: using it with a line search, or with a trust region
strategy [DS83]. The first approach leads to

Ty = Te = ’\C(J(zc)rj(zc})—IJ(‘EC)TR(:BC) (3.30)

where A is chosen in such a way that f(z.) decreases adequately. In the trust
region approach, the following problem must be solved:
Minimize [|R(zc) + J(zc)(z+ — ze)ll3
subject to ||z — z.|| < 4.

This minimization problem is based on the idea of using an approximated linear
model to R(z) along with d., an upper bound step length, for obtaining the best
subsequent point to the solution. This leads to the following equation which forms
the Levenburg-Marquardt method [DS83]:

T = Te — (J(2e)T I (2e) + ped) 7V (ze) T R(ze) (3.31)
where
pe =0 if [[(J(zc)TI(z)) I (2ze)T R(ze)]l2 < O
{ ie > 0 otherwise

The other alternative to find a practical method to solve the least-squares prob-
lem is based on approximating S(z) in equation (3.37) rather than completely
omitting it; this leads to the full-Newton type methods which are slow, though
they can be superior to the Gauss-Newton method on large residual problems. One
way to obtain approximation is using a second approach that approximates S(z.)

by A(z.) which is updated iteratively based on the following equation:

A(zy — zc) = J(24)TR(z4) — J(z) T R(z+4) (3.32)
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3.6 Large Scale Sparse Nonlinear Least-Squares

Problems

In some applications of seismic tomography [BBC*85], a kind of nonlinear least-
squares problems arises where the Jacobian matrix of the system is large and sparse.
To solve this kind of problems, Martinez [Mar87] introduced an algorithm in which
the Gauss-Newton method is approximately solved at each iteration using an it-
erative preconditioned conjugate gradient algorithm, then a new point is obtained
using a two-dimensional trust region scheme. Reported results indicate that this
algorithm is promising for large-scale problems. The following is the step by step
algorithm as described in [Mar87].

To minimize 1||R(z)||2, let z° be an arbitrary initial point, (7:) a sequence of
strictly positive numbers such that limit 7% = 0, ©,,0, € (0,1), O3 € (0,1), and
0<M<M<cx.

Let z* be the kth approximation to the solution obtained by the algorithm. We
denote

By = R(z%), Ju = J(=*), g = IR = V(R@)) | .

T

To obtain z**!, in the case g, # 0, we perform the following steps:

Step 1: compute J; and gi. If gr = 0, stop.
Step 2: Obtain wi € R™ such that ||J7 Jxwe + gell < mellgell
Step 3: Obtain vx € R as the solution of the following bidimensional problem:

Minimize |[|Jev + R
subject to v = A1gk + Aqwi, |[v]] < [juws|
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Step 4: Set d} = —gi. test the following conditions for vg:

< Ve gk >< —O1|vel|l|gell
and
M\gell < llvell < Mlgell
If these inequalities are satisfied, set d? = v, otherwise dz = d}.
Step 5: Set ¢ = ||d}||. Perform the following steps:
(a) obtain d as the solution of the problem:
Minimize |[Jed + Ra|
subject to d = Ay dy + AodZ,||d|| < ¢
(b) If
SIR( + I < SIFEIP + 02 < gr,d >,
go to (d).

(c) Let t be such that @3t < f < (1 — @3)¢, replace ¢ by £ and go to step
(a).-
(d) di = d, z**! = zF + df.

3.7 Constrained Optimization

The general nonlinear programming problem may be stated in the following form:

T
NP : minimizef(z) subject tol<{ Azz } <u
C(z)
z €R?
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where f(z) is a smooth nonlinear objective function, Ay, is a constant matrix of con-
straints, and C(z) is a vector of smooth nonlinear constraint functions. It is widely
agreed that problems with nonlinear constraints are considerably more difficult than
those with purely linear constraints. In general, the difficulty arises because of the
conflict between unconstrained reducing f and satisfying the constraints. Meth-
ods for solving problems were briefly described in previous sections; on the other
hand, variable bound and/or general linear constraints add few conceptual diffi-
culties to the basic iterative procedures of unconstrained problems [GMS*88]. In
contrast, attaining and maintaining feasibility with respect to nonlinear constraints
are potentially very difficult tasks. There is no guaranteed procedure to determine
whether a feasible point exists with respect to a set of general nonlinear constraints;
furthermore, even if a feasible point is given, moving to another feasible point gen-
erally requires an iterative procedure. Thus, any method for NP must somehow

balance changes in f against changes in the constraint violations.

The general approach in nonlinear optimization methods is to transform NP
into a sequence of solvable sub-problems. Due to the relative ease with which un-
constrained problems can be solved, most methods developed earlier attempted to
transform NP into an unconstrained sub-problem. We next give a brief description
of some of the well-known methods of nonlinear constraint optimization. We focus
on one method that is widely regarded as the most effective general method for
NP. Since procedures for variable bound and linear constraints are relatively well

understood, we consider only nonlinear constraints, i.e., NP is defined as:

NP : minimizef(z) subject to C(z) >0
zeR

(3.33)
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3.7.1 Penalty-Function Methods

A penalty function is a combination of the original objective function and a penalty
term that increases monotonically with some measure of constraint violation. The
most widely used differentiable penalty term is the sum of squared constraint vio-
lations, which gives the quadratic penalty function:

Py(z.p) = f(z) + 3p > Imin(0, (@) (3.34)

=1

Let z*(p) denote the unconstrained minimum of P,(z, p); under mild conditions,
it can be shown that z"(p) approaches z* as p approaches infinity. Thus, the
classical quadratic penalty function approach consists of finding the unconstrained
minimum of Py(z,p) for a sequence of increasing values of p. Methods based on
this approach are often called “sequential unconstrained minimization techniques”.
Unfortunately, quadratic penalty function methods suffer from certain difficulties.
In particular, the penalty parameter p in equation (3.34) must approach infinity
for z*(p) to converge to z*. Each increase in p leads to increased ill-conditioning
in the unconstrained sub-problems. Furthermore, these methods are inefficient, if

each sub-problem is solved accurately [GMS*88].

These difficulties can be avoided by using a non-differentiable penalty function,
of which the most popular is the [; penalty function:
Py(z,p) = f(&) + p 3 Imin(0, ei(2))] (3.35)
i=1
Under mild conditions, there is a finite threshold value p such that z* is a local
minimum of P, for p > p [GMS*88]. This implies that z* can be computed with
a single unconstrained minimization; for this reason, penalty functions like P; are

sometimes termed exact penalty functions.
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3.7.2 Barrier Function Method

An effective approach to deal with inequality constraints is based on the use of
barrier functions, which combines the original objective function with a weighted
barrier term, a function with a positive singularity at the boundary of the feasible
region. The most popular are the logarithmic and inverse barrier functions:
Bi(z,u) = f(z) — 1) Laci(z)
=1

and

1
Bi(z,p) = f(z) + 4 2 @)
Let z*(u) denote the unconstrained minimum of B(z, 1); under mild conditions,
it can be shown that z*(u) approaches z* as u approaches zero [GMS*88]. If a
strictly feasible starting point is known, a barrier function method will produce a
sequence of improving (and strictly interior) estimates of z=. However, the extreme

nonlinearity and special properties of barrier functions make it difficult to apply

standard unconstrained methods.

3.7.3 Generalized Reduced-Gradient Methods

Another approach to treating nonlinear constraints is based on the idea of reducing
f while remaining on the nonlinear constraints. The best known such methods
are called “generalized reduced-gradient (GRG) methods”. The sub- problem in
a GRG method usually involves changing z in order to reduce f, followed by an

iterative procedure to restore feasibility.

GRG methods have been effective on many practical problems. However, they

can be extremely inefficient when applied to problems with highly nonlinear con-
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straints; they have tended to be most successful when applied to constraints that
are almost linear.

3.7.4 Sequential Quadratic Programming Methods

Sequential quadratic programming (SQR) methods are widely regarded as some
of the most efficient methods for solving practical optimization problems. As pre-
sented by Schittkowski [Sch88], suppose that we want to solve a general nonlinear
programming problem of the type

Minimize f(z)
zeR?
(3.36)
. :0 s .= 1’.--’m
subject to 9(=) I ©
gi(z) >0 ,j=m.+1,---,m

with continuously differentiable real-valued functions f and g;,-+-,gm.
The basic idea is to formulate and solve, in each iteration, a quadratic program-

ming sub-problem, which is obtained by linearizing the constraints and approxi-

mating the Lagrange function

(o) = f(a) ~ - wi(2) (3.37)

quadratically, where £ € R™ and u = (uy,---,um)? € R™ is the vector of Lagrange
multipliers.

Let z; € R", vx € R™ and B, € R™" denote the approximated solution,

Lagrange multipliers and Hessian of Lagrange function, respectively. Thus, we
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must solve the following quadratic programming problem:

Minimize 1d7Bid + V f(zx)Td
zeR"

Vgi(ze)Td + g;(z) =0 ,j=1,.--,m,

Vgi(ze)Td + gj(z2) 20 ,j=mc+1,---,m

(3.38)
subject to {

Let di be the solution of this sub-problem and u; the corresponding multiplier.

A new iterate is obtained by

d
Th+1 - Tk t k (3.39)
Vk+1 Vi U — Vg

where a; € (0, 1] is a suitable step-length parameter. Although it can be guaranteed
that the matrix By is positive definite, it is possible that (3.38) is not solvable due to
inconsistent constraints. One possible remedy is to introduce an additional variable

d € R, leading to the modified problem:

Minimize 1d7TBid + V f(zi)Td + pid®

zeR®
. Vgi(ze)Td + (1 ~ 8)gi(ze) 20 ,j € Ji (3.40)
subject to
Vgi(ze)Td + gi(z) > 0 Jj € Kk
0<4§<1

where Ji, the active set is given by:
Je={1, -, m}U{jlm. <j <m, gj(zk) < eor ug-k) > 0}

and Kj is the complement set. In (3.40), € is any small tolerance to define the
active constraints and ug-k) denotes the jth coefficient of u;. Obviously, the point

(do = 0,6 = 1) satisfies the linear constraint of (3.40) which is therefore always
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solvable. To avoid calculation of second derivatives and to obtain a final super-

linear convergence rate, the standard approach is to update By as follows:

99k _ Bipeni Be

Biyr = B + e ol Beme (3.41)
where
Gk = Ve L(zr41,uk) — Vo L(zk, uk)
and

Dk = Ti41 — Tk

3.8 Constrained Nonlinear Least-Squares Prob-

lem

This problem can be defined in the same way as (3.36) where
1 T
f(z) = 5R(z)7 R(z).

Since most nonlinear least-squares problems are ill-conditioned, general nonlinear
programming methods may not handle them properly. One alternative to solve this
problem is to use an algorithm that is designed for this purpose. However, very few
algorithms have been presented in the literature to tackle this problem. Mahdavi
Amiri [MA81] proposed an approach based on an SQP method. Another algorithm
was proposed by Mahdavi-Amiri and Bartles [MAB89] which is based on an exact
penalty function. Schittkowski [Sch88] showed that a simple transformation of the
original constrained nonlinear least-squares problem and its subsequent solution by
a general purpose SQP algorithm retains typical features of a special purpose code

and prevents the need to take care of any negative eigen values of an approximated
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Hessian matrix. Due to the availability of many general purpose SQP codes and the
simplicity of implementing the transformation, this idea is appealing. The trans-
formation is performed by introducing [ additional variables y =< y;, -,y >T

and ! additional equality constraints of the form:
fi(z)_yi=01i=11”'7l (3.42)

Considering the unconstrained least-squares problem (3.23) first, the equivalent
transformed problem is:
Minimize 1yTy
<z,y >Te ™ (3.43)
subject to R(z) —y =10
This can be written in a general form as follows:
Minimize f(Z)
eR* (3.44)
subject to §(z) =0
where i = n + [, £ =< z,y >7, f(&) = 1yTy and §(Z) = R(z) —y. Applying the
SQP method derived in Section 3.7 leads to the following quadratic programming
sub-problem:
Minimize %ﬂByf-}- Vi(ze)Td
d eR? (3.45)
subject to Vg(Z:)Td + §(zx) =0

where By is an approximation of the Hessian of the Lagrange function
L(z,u) = f(z) = u"§(2)

which can be obtained as follows:

B,,:[Bk 0] (3.46)
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Substituting (3.46) into (3.45) gives the equivalent quadratic programming sub-

problem:

Minimize ;d7Bid + 1eTe +yle
< d,e>TeR
subject to VR(zx)Td —e+ R(zx) —yr =0

(3.47)

If we take nonlinear constraints into account, the following transformed problem

must be solved by an SQP method:

In this case the quadratic programming sub-problem is of the kind:

subject to

S

\

Minimize 1yTy
yeR
[ fi(z)—yi=0 ,i=1,.--,1
subject to [ 9;(z) =0 I = 1o
gi(z) >0 ,Jj=m.+1l,---.m
i<z <2y

_ d
Minimize % (Jr eT) B ( ) +yle
e

<d,e>Te R
Vii(ze)Td — e + filze) +yi) =0 ,i=1,---,1
ng(zk)Td+gj(zk) =0 ’j = 1)"'me

Vg;i(ze)Td + gj(zk) = 0 J=me+1,---

-z <d<zy, — T

This is basically identical to the minimization problem 3.38.

(3.48)

(3.49)
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3.9 Sparse Least-Squares Problem

Linear least-squares problems arise frequently in many applications in tomography
where data fitting usually forms the core of the inverse problem. In linear data
fitting, the least-squares problem appears as the major part of the inverse process,
while in nonlinear data fitting, nonlinear least-squares problem arises and must be
solved iteratively; each iteration usually includes a least-squares problem. Thus,
having an efficient algorithm for solving the linear least-squares problem is crucial
for most inverse problems. In this Section we will describe four methods, some of

them are widely used to solve the least-squares problem.

3.9.1 The Method of Normal Equations

The most widely used method for solving the full rank least-squares problem is the

method of normal equations.

For ATAz = ATb, where A € R™" with the property that rank(A) = » and
b € R™ we can summarize the algorithm of normal equations to compute the least-

squares solution as follows:
o Compute the lower triangular portion of C = AT A.
o Compute the Cholesky factorization C = GGT.
o Solve Gy = d. (d = ATb)
e Solve GTzys =1y.

The above algorithm is convenient because it relies on standard algorithms: Cholesky
factorization and matrix multiplication. The sensitivity of the z;s solution ob-

tained from this algorithm depends on k;(A) = square of the ratio of the largest
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to the smallest singular values. Therefore, when k, is large, the normal equations
method gives inaccurate results. In large sparse matrices, the first step of this
method can be performed efficiently using the fast algorithms presented by Gus-
tavson [Gus78] to obtain AT and AT A of a sparse matrix A. This algorithm can be
applied for sparse matrices stored using a row-wise storing scheme usually called
“IA-JA scheme”. In this scheme a matrix A with m rows and n columns is stored
using three one-dimensional arrays. Two arrays list the column indices (JA) and
numerical values (A) of the NA non-zero matrix entries. The arrangement of these
elements is row-wise. The third array is a set of row (address) pointers (IA) where
ith element of IA is the address in both JA and A of the first non-zero element in
the ith row of A.

3.9.2 QR Factorization

Another possible way to solve the least-squares problem is applying the QR factor-
ization. For a given A € R™*" with m > n and b € R™, suppose that an orthogonal

matrix € R™*™ has been computed such that

R
QTA=R=[ !

[
d m-n

then, since @ is orthogonal, we have

is upper triangle. If

lAz - 83 = QT Az — QTb[|3 = ||Riz — C[3 + ||d|I3
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for any z € R*. If rank(A) = rank(R;) = n, the least-squares solution is defined
by the upper triangular system:

Rizrs=c¢

Therefore, the full rank least-squares problem can be readily solved once the QR
factorization of A is computed. There are many algorithms to carry out the
QR factorization such as Householder QR factorization which utilizes Householder
transformations [GVL89]. The Householder approach produces inaccurate results
when applied to large residual, ill-conditioned problems; however, it is applicable
to wider class of matrices compared to the method of normal equations because the
Cholesky process applied to AT A breaks down before the back substitution process
on QTA = R [GVL89].

3.9.3 LSQR Algorithm

The LSQR algorithm by Paige and Saunders [PS82] has been applied successfully
in various areas of inverse problem. The algorithm is basically designed to solve the
least-squares problem especially when A, the coefficient matrix is large and sparse,
and it is based on the bidiagonalization procedure of Golub and Kahan [GK65].
It generates a sequence of approximations z; such that the residual norm [jri||2
decreases monotonically, where r;, = b — Az;. This algorithm is similar in style to

the well-known Conjugate Gradient method and can be summarized as follows:
1. Initialize Byu; = b, ayv; = ATuy, wy = vy, 20 =0, & = By, and 7 = a.
2. Fori=1,2,3,--- repeat steps 3-6

3. Continue the bidiagonalization
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(a) [3:'+171'i+1 = Av; — oqu;
(b) @ip1vip1 = ATugyy — Big1v;

4. Construct and apply next orthogonal transformation:

(a) pi = (2 + B2.)7

(d) Oip1 = s;a41
(€) Piy1 = —cicin
(f) ®: = :®;
(8) Piv1 = 9:%;

5. Update = and w

(a) zi = zicy + %‘wi

@.
(b) wip1 = Vi — —tw;

6. Test for convergence. Exit if some stopping criteria have been met.

From numerical tests conducted by Paige and Saunders [PS82], it can be con-
cluded that the above algorithm is a very good alternative to solve least- squares
problems that arise in inverse problem applications because it showed a good per-

formance when A is ill-conditioned.



CHAPTER 3. INVERSE PROBLEM IN CT 67

3.9.4 Solving The Augmented System

The regularization technique is used broadly in various inverse problem applica-

tions; this technique, as shown earlier, leads to equation (3.12):
(GTG + p2CTC)z = GTd.

In large scale inverse problems, both matrices G and C are large and sparse,
and it is clear that
A=GTG +p*CTC
is symmetric, positive definite; however, the matrix-matrix multiplication involved
to obtain A may lead to a dense matrix. To avoid the matrix-matrix multiplication,
keep the sparsity of the original matrices and to save the required computation time

considerably, it may be desired to solve the following augmented system:

i

where r = b — Gz is the residual. It can be shown that for commonly used C

I G
GT -\ CTC

matrices, CTC is a sparse matrix, especially for large-scale problems. Thus, the
matrix coefficient of equation (3.50) is still sparse; also it is symmetric, but indefi-
nite. This kind of sparse systems can be solved very efficiently using sparse solvers,

either directly [GL81] or iteratively [MVT77].

3.10 Closure

In this chapter, we have presented a literature review of inverse problem methods
in computerized tomography. In this section, we will summarize each presented

method.
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Methods of inversion based on the wave approach are reviewed in section 3.2.
These methods are based on the governing wave p.d.e’s that ultimately lead to
nonlinear optimization problems. Because of the high nonlinearity of the govern-
ing equations, and on the other hand, the large number of unknowns involved,
numerical optimization algorithms are cumbersome and often converge to a local
minimum. For stress induced anisotropic media, the wave p.d.e’s are not available,

therefore this approach is not applicable in this study.

In section 3.3, we presented transform based inversion methods. These meth-
ods are based on either the Fourier diffraction theorem or the Fourier slice theorem.
These method require Huminating the object by plane waves from multiple direc-
tions; this is very difficult in the borehole to borehole technique used in this study.
Another difficulty in these methods is the extraction of the scattered wave field
from the total recorded wave field. Finally, for stress induced anisotropic media,

neither the Fourier diffraction theorem nor the Fourier slice theorem is applicable.

In section 3.4, we reviewed methods of ray based travel-time tomography that,
due to their relative simplicity, are very attractive. However, all of those methods
are only applicable for inhomogeneous media which are isotropic; for those media

the line integral travel-time equation has linear kernel.

Ray based travel-time tomography methods in inhomogeneous anisotropic media
are reviewed in section 3.4.3. Those methods are presented for inhomogeneous
cross-isotropic media; they lead to iterative inversion schemes. For stress induced

anisotropic media, no inversion method has been suggested up until now.

As we will find in the next chapter, the inversion models presented for stress
induced anisotropic media lead to nonlinear least squares problems. In section 3.5,

we reviewed the fundamentals of the unconstrained nonlinear least squares problem
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in general, while in section 3.6, we addressed the same problem when large sparse
Jacobian matrices are involved. The latter arise in the first inversion approach

presented in the next chapter.

In section 3.7, we reviewed the basics of constrained nonlinear optimization
problem in general. Among methods used to solve this problem, SQR methods are
widely regarded as some of the most efficient. Based on these methods, we presented
an efficient algorithm for solving constrained nonlinear least squares problems which

arise in the second inversion approach presented in the next chapter.

Finally, in section 3.9, we reviewed some numerical issues that arise in sparse

least squares problems.



Chapter 4

Mathematical Modeling

4.1 Introduction

In this chapter, we formulate a stress reconstruction technique of a 2-D granular
soil medium by applying travel-time tomography. We assume that before it is
loaded, the soil is homogeneous, or at least piece-wise homogeneous, and isotropic.
Stress distribution corresponding to loading makes the medium inhomogeneous and
anisotropic. In this formulation, we will adopt the elliptical anisotropy assumption.
Treating the anisotropy in this way has the merit of providing a practical travel-time

algorithm for highly anisotropic and inhomogeneous media.

The stress reconstruction technique of this study leads to an inverse problem.
As in other inverse problems, the direct problem is an essential part of solving the
corresponding inverse problem. Thus finding an efficient way to treat the direct
problem is very important to achieve a practical method to solve the inverse prob-
lem. We will therefore adopt the ray approach to formulate the direct problem.

We consider ray bending, which is very important in highly inhomogeneous media,

70
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and the direct problem will be a matter of ray tracing and simple line integration
along rays. For the ray tracing, we will present two methods. The first method
basically extends an inhomogeneous-anisotropic medium of the method proposed
by Asakawa and Kawanaka [AK93]. The second method is a bending method that
uses the simplex method of Nelder and Mead [NMS65] to find optimum ray paths.

For the inverse problem, we will present two methods based on two different
approaches. In the first approach, which we call the nodal stress approach, we define
the stress field in terms of nodal stress components. With this approach, we obtain
a set of nonlinear equations that relates measured travel-times to the stress field.
Since these equations are usually inadequate for determining the unknown stress
field, we therefore impose the equilibrium equations to decrease the ill-conditioning
of the equations. Furthermore, to obtain a completely stable system, we use a
regularization technique. In this way, we obtain a large-scale nonlinear system that

can be solved using an optimization technique.

In the second approach to the inverse problem, which we call the stress potential
function approach, we adopt the idea of stress potential functions to represent the
stress field. This approach has two advantages: First, it requires a small num-
ber of unknowns to define a stress field with a reasonable accuracy, and second,
it defines stress components in such a way that they automatically satisfy equi-
librium conditions. With this approach, we obtain a system of highly nonlinear
equations, but with only a few unknowns. The system can be solved using opti-
mization techniques; however, because of the high nonlinearity, it is quite possible
that optimization leads to an undesired local minimum. To avoid this problem, we
impose some constraints such as the boundary conditions and the positiveness of
the minimum principal stress. We thus obtain a constrained nonlinear least-squares

problem that we solve using an appropriate optimization technique.
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The last part of this chapter is devoted to the extension of the stress potential
function approach, previously described for the 2-D case, to the 3-D case.

4.2 Ray Based Travel-Time Equation for Stress

Induced Anisotropic-Inhomogeneous Media

Due to the relative simplicity and the attractive features of the ray-based approach
discussed in Chapter 2, we choose this approach to formulate the problem. The
fundamental equation giving the travel-time associated with a ray path R in a
general media is

t= fR Sdr (4.1)
where S = 3 is the ray, or group, slowness at each location on the ray path, and
dr is the incremental length along the ray path. In a heterogeneous anisotropic
medium, S is a function of 7, the position vector, and &, the angle which represents

the slowness direction. Thus,

£ = /R S(r, &)dr (4.2)

To derive the travel-time equation on the basis of equation (4.2), we assume

elliptical anisotropy for the slowness of P-wave propagation as shown in Figure 4.1.

In Figure 4.1, S;(r) and S;(r) represent the maximum and minimum slownesses
at the point r; they will be called principal slownesses. The directions corresponding
to the principal slownesses are assumed to coincide with the principal axes of stress.

The latter assumption is consistent with the power relation

Vp =a0"9
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Figure 4.1: Elliptical anisotropy of slowness

described in Chapter 2. The following equation explains the elliptical directional

variations of slowness:

S%(r,®) = Si(r)?sin® ® + S5(r)% cos® & (4.3)

Substituting S(r, ®) from (4.3) in (4.2), we obtain the following equation in z'y’

rotating system:

t= [ Si(r2(dz) + Slr)(dy)? (4.4)

Considering ¥, the angle between the rotating z'y’ system and zy system, we have:
& 2t Yy sy

dz’ cos¥V sin¥ dz
= (4.5)
dy’ —sin¥ cos¥ dy

Substituting dz’ and dy’ from (4.5) in (4.4), we obtain:

t= /}; \/(cos ¥dz + sin Wdy)2S,(r)? + (~ sin ¥dz + cos Tdy)25,(r)? (4.6)
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Using equation (2.11) along principal stress directions leads to:

Sir) = ~oi (47)
5i(r) = 7o (48)

where o1 and o, are the maximum and minimum principal stress and a and g are
constants. Substituting S;(r) and S,(r) from these equations in (4.6) leads to the

following fundamental travel-time equation which relates travel-time to stress field:

t= —1-‘/}; \/(cos Udz + sin Udy)?o7 *# + (— sin Odz + cos Tdy)20; % (4.9)
a

4.3 Ray Tracing in Stress Induced Inhomogeneous

Anisotropic Media

In Chapter 2, we have briefly reviewed some ray tracing methods suggested for
inhomogeneous-anisotropic media. All of the reviewed methods are based on the
elastic wave equation in which the tensor of elastic parameters is used. Since at
any point this tensor represents the inherent anisotropy of the medium of interest,
these methods can therefore be used only in inherently anisotropic media; we are

unaware of any ray tracing method for stress induced media.

In this section, based on the travel-time equation (4.9), we will present two

methods for ray tracing in stress induced inhomogeneous anisotropic media.

4.3.1 A Forward-Backward Type Ray Tracing Method

This method essentially extends the linear travel-time interpolation method of ray

tracing suggested by Asakawa and Kawanaka [AK93] for inhomogeneous isotropic



CHAPTER 4. MATHEMATICAL MODELING 75

media. In this method, we divide the 2-D medium into a number of cells where
we consider a number of extra points on the boundaries of each cell as depicted in

Figure 4.2.

Figure 4.2: A typical grid used in ray tracing

The algorithm consists of two steps which we call forward and backward pro-
cesses. In the forward process, for each source point we calculate travel-times at
the discrete points. In the backward process, we trace ray paths between each pair

of source and receiver points.

Basic Equations

To derive the basic equations, we consider a straight ray path segment AB and
reaching point D as shown in Figure 4.3.
We seek a relation among t4, tp and tp which are the travel-times at points

A and B that are assumed to be known or computed in previous steps, and at
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¢ @- —&- @

Figure 4.3: Segment AB of a ray path in a typical cell

an arbitrary discrete point D. We also need another relation to find the point C

leading to minimum tp. In terms of ¢¢, the travel-time ¢p is given by

tp = to + S(8)y/I2 + (I, + )2 (4.10)

where [, [, and r are shown in Figure 4.3, and S(8) is the slowness along CD.
Obtaining tc by linear interpolation between t4 and tg and using equations (4.3),

(4.7) and (4.8), we obtain the following equation for ¢p:

to=tAdd +t3 \/ Psin(y +9) + 057 cos?($ + )12 + (I +7)?]
(4.11)

where

P = tan™}(

)

According to Fermat’s principle, we obtain the correct travel-time ¢tp and the true

L+

ray by equating % Qm to zero. This leads to

L(o7* — }?)
B+ (I +r)

[sin( + $) cos(¥ + ) + (I, + 7)1 +
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(l +r)loi ™ sin(% +9) + 07 cos’(p + §)] - A= 1E)

VIor# sin®($ + B) + 057 cos?($ + P2 + (I +7)?] = 0 (4.12)

We can obtain r by solving the above equation numerically, and then we can

substitute it in equation (4.11) to obtain ¢p.

Forward Process

In this process, we must calculate the travel-times corresponding to each source
point at the discrete mesh points. To calculate the travel-time at a certain point,
we must examine different possible segments, as AB in Figure 4.3, that the ray path
may cross to reach the point. We then calculate the travel-times corresponding to
each of these segments using equations (4.11) and (4.12) and choose the minimum

one following the same procedure used by Asakawa and Kawanaka [AK93].

Backward Process

After we compute the travel-times on all cell boundaries that correspond to a certain
shot point, we can find the ray paths by applying Fermat’s principle. For each
ray path we start from a receiver point; determine the position of point C using
different possible segments on the boundary of the receiver cell; choose the one that
corresponds to the minimum travel-time according to Fermat's principle. Having
found C, we proceed by treating the resulting C' as a new receiver point, until we
reach the shot point. This procedure must be repeated for each receiver point to

find the other ray paths.
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4.3.2 Fermat’s Principle-Based Ray Tracing Method

This method is essentially an extension to the bending type methods used by
Prothero et al [PTE88] and Berryman [Ber90] for ray tracing in inhomogeneous
isotropic media. To find a ray path between two points using this method, fol-
lowing Berryman [Ber90], we perturb the straight line connecting the two points
by a number of algebraic terms such as sinusoidal or polynomial terms. These
terms are multiplied by unknown coeflicients that we find using Fermat’s princi-
ple. According to “Weiestrass Polynomial Approximation Theorem” [LVGY5], any
function under mild conditions may be uniformly approximated arbitrarily closely
by a polynomial. We therefore used a polynomial perturbation terms to find ray
paths. Starting from the following polynomial of order n as a ray path

R(c) = ia;zi (4.13)

i=0

for a ray path between a source and a receiver located at (z;,y1) and (z3,y:), by
satisfying the end-points, it can be shown that the corresponding ray path can be

expressed as

i t
22_1:1

] (4.14)

R(z)=y1 +(z — 1) 2740 + zn:a;[(:z:" - :1:‘1) ~(z —z1)

T2—-2Z1 o T3 — I,

From equation (4.9), we have

= L dy 2 -28 1 dy 2 -28
t = Z/};\/(coslll + Is sin ¥)20,(r)"2 + (—sin ¥ + 72 cos ¥)20,(r)~%Pdz (4.15)

where % of the ray path can be obtained from the following equation:

dy dR(z) _y2—y1 <~ -1y Ta— I

. = Jizf-D 22771 4.16

dz dz Ty — 2 + ;a‘[w Ty — :cl] ( )
According to Fermat’s principle, energy travels along a ray which leads to the

least travel-time; therefore considering a; (i = 2,-~~+,n) as variables, the ray trac-

ing between (z,,y;) and (z2,y2) may be regarded as the following multivariable
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optimization problem:

. e . _ l dy . 2 -28 : dy 2 -28
Minimizet = - /;e \/(T:os ¥+ 7 5o T)2gy(r)-2 + (—sin ¥ + 7z °°° ¥)20,(r)-Pdz
(4.17)

where

iy— = dR(z) = Y2 ~ 0 4+ Ea,-[iz:i -_ —22 — zi] (418)

dz dz T2 -1 o Ty — T,

The numerical implementation of this ray tracing method using the simplex method

will be discussed in Chapter 5.

The two ray tracing methods presented in this chapter are both based on Fer-
mat’s principle. and therefore are capable of handling complicated wave phenom-
ena such as diffraction. However, the first method is neither straightforward for
programming nor is it efficient. The second method is on the other hand straight-

forward for numerical implementation and well-suited for inverse problems.

4.4 The Inverse Problem

The stress field of a soil medium can be represented in two ways: in the first,
stress components are defined on a set of discrete pre-specified nodes as in the
finite elements or finite difference methods of stress analysis; in the second, stress
components of the entire medium ca be represented parametrically using suitable
continuous functions. Based on these methods of stress representation, we will

present two approaches to formulate the inverse problem

4.4.1 Nodal Stress Approach

In this approach, we define a set of nodes on the region of soil medium. Each node

carries three unknowns that are the stress components required to define the state
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of stress at a point in the 2-D case. The state of stress of any point in a 2-D problem

can be represented either by:

1. the two principal stresses (o1, o2) and the angle they make with the x and y

axes (V) as shown in Figure 4.1; or

2. the three stress components in the Cartesian system (o, oy, and 7).

The first way leads to highly nonlinear equilibrium equations. However, the second
way has the advantage of leading to linear equilibrium equations as described shortly

in this section.

In this approach, we use the travel-time equation in the Cartesian system to
form a system of nonlinear equations that relates the unknown nodal stress to the
measured travel-time. Because the number of unknown nodal stresses is usually
larger than the number of measured travel-times, this system is inadequate for
stress determination. We, therefore, add the equilibrium equations to the system.
To stabilize, further, the system of travel-time and equilibrium equations, we use a

regularization technique.

Travel-Time Equation in the Cartesian System

To represent stress in the Cartesian system, we use the stress sign convention illus-

trated in Figure 4.4 which is commonly used in soil mechanics problems.

The terms oy, o2 sin ¥ and cos ¢ which appear in equation (4.15) can be ex-
pressed through o, o, and 7 using the following known stress transformation equa-

tions:

o, + 1
o= gl - o) (4.19)
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Yy

Figure 4.4: Stress Components

oz + o, 1
g2 = 2 L~ ’i\/(az — 0y)? + 472 (4.20)
sin 20 = 27 (4.21)
\/(cr,, —0y)? + 412
cos2¥ = - T=+ % (4.22)

\/(a', —ay)? + 412

Using equations (4.19) through (4.22), equation (4.15) leads to the following

travel-time equation in terms of the stress components in the Cartesian system:

t"—/\[ﬂ— = gloi® + 14+ () 4+ gloi®dz (4.23)

where oy and o, are given in equations (4.19) and (4.20), and g is given by the

equation: .
_ (L= (&))(oy — 00) + 4%

\/(ay —0.)% +4r?

Equation (4.23) relates each measured travel-time to stress components at points

(4.24)

lying on the corresponding ray path. In Chapter 5 where the numerical imple-
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mentation of the nodal stress approach is described, we will show how to obtain
travel-time equations that relate measured travel-times to nodal stress components

using an appropriate interpolation function.

Equilibrium Equations

Using the sign convention illustrated in Figure 4.4, we find that the force equilibrium

requirements in the z and y directions lead to the following partial differential

equations:
0o, O _
ar Ooy
G G - " (4.26)

where +, is the density of the soil. In the nodal stress approach, these two equations
lead to a set of linear equations relating nodal stress components of the soil medium

this will be described in Chapter 5.

Regularization

With M measured travel-times and N nodes in a 2-D soil medium, the travel-time
equation (4.23) provides M nonlinear equations, while the equations of equilibrium
(4.25) and (4.26) each provides approximately N equations. Thus approximately
(2N + M) equations are available for obtaining 3N unknowns. The 2N equilibrium
equations are independent while, due to the limited angles of shooting available
in crosshole techniques, the M nonlinear travel-time equations are not completely
independent. Therefore, the linear system which includes the equilibrium equations
and any linearized version of the travel-time equations set, usually has a relatively

high condition number.



CHAPTER 4. MATHEMATICAL MODELING 83

Data noise is an invitable factor in this problem and we should therefore take
proper measures to avoid undesired solutions. This factor leads to oscillatory so-
lutions for the problem, because the travel-time equation is basically a Fredholm
equation of the first type which is sensitive to data noise, especially when the lin-
ear system involved has a high condition number. The sensitivity to data noise
in this problem is not expected to be as much as in common travel-time tomog-
raphy, because the approximately 2N equilibrium equations are guaranteed to be

independent.

In this approach, we use a regularization technique to avoid the undesired oscil-
latory solutions. This technique is based on adding some common sense constraints
to the ill-conditioned system to secure its stability. For example, to avoid oscilla-
tory solutions, a widely used method is to establish an expression that defines the
function roughness, then to impose conditions for minimizing the expression. A
typical expression for function roughness is Cz where C is usually a linear oper-
ator and z is the vector of unknowns. Thus, the regularization technique can be
summarized as the additional information obtained from the following condition to
avoid oscillatory solutions:

Minimize [|Col|| (4.27)

where ¢ is the vector of unknown stresses in the Cartesian system.

Nonlinear Least Squares Solution

In the nodal stress approach, we obtain a set of nonlinear travel-time equations
using equation (4.23) for each measured travel-time; this set can be represented as

follows:

) =t = o [0 ()~ 1o 4 (14 (1) 4 los e
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for i=1,---,M (4.28)

where r,;(0) denotes the nonlinear function of the ith travel-time residual. If we

represent the linear equations obtained from equations (4.25) and (4.26) by
[,(c)=0 and l(c)=0

by introducing (o) as the linear function of the jth equilibrium equation residual,

we can obtain the following set of linear equations
1‘1,-(0')=lj(0'), j=M+1,--- M +2N, (4.29)

where, if j is odd, L;(o) must be used, otherwise l(o) must be used and N, repre-
sents the number of cells used to discretize the medium. If we denote the residuals
vector of equation (2.29) by Ry(o), and the residuals vector of equation (2.30) by
Rpr (o), considering the regularization strategy we can formulate the solution to the

inverse problem as the solution of the following nonlinear least squares problem:

2

. Rn(0)
Minimize 5 Ri(0) (4.30)
Co

In Chapter 5, we will describe a numerical optimization technique for solving

this nonlinear least square problem.

4.4.2 Stress Potential Function Approach

In this approach, instead of presenting the stress field by defining stress components
on a set of discrete pre-specified nodes, we use appropriate continuous functions

with only a few unknown parameters to represent the stress field of the entire
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medium. Compared to the nodal stress approach, this approach has the advantage
of envolving only few unknowns, so that it leads to a more reliable and less involved
numerical inversion procedure. Another attractive feature of this approach is that
we can define the stress functions in such a way that they automatically satisfy the

equilibrium equations, therefore no additional equations of equilibrium are required.

The other attractive feature of this approach is the small sensitivity of the
solution to data noise, because the number of measurements is much larger than
the number of unknowns; regularization is usually not necessary. However, due to
the high nonlinearity of the travel-time equations, it is likely that the numerical
procedure of inversion in this approach will lead to an undesired solution. To avoid

this problem, we impose some constraints as before.

Stress Potential Functions

Following the idea of Airy stress function [T'G82|, we can represent the three stress
components in 2-D problems using only one potential function. In this way, in
addition to considerably decreasing the number of unknown required parameters,
the equations of equilibrium (4.25) and (4.26) are automatically satisfied. With
® as a potential function, the three stress components can be represented in the

following form:

9%®

Oy = a—y;-{-’r.y (4.31)
0*®

o, = ) + Yy (4.32)
8*®

T = 520y (4.33)

where ® can be any continuous function of z and y, however according to Weiestrass

polynomial approximation theorem, polynomials are an appropriate choice for fit-
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ting a stress field. Neglecting linear terms in a general two dimensional polynomial,

we can use the following polynomial as a stress function:
®(z,y,a) = a1z? + ayzy + azy® + az’ + asz’y + agzy: + ay® + - - (4.34)

where a represents the vector of unknown polynomial coefficients. Thus equations

(4.31) to (4.32) show the stress components in terms of a are:

oz(z,y,a) = 2a3+2asz+ (6ar+7,)y+--- (4.35)
oy(z,y,a) = 2a;+6asz+ (2as +v,)y +--- (4.36)
T(z,y,a) = a2+ 2as5z +2asy ++-- (4.37)

Travel-Time Equation

The travel-time equation in this approach is exactly the same as equation (4.23) in
which oy, 02 and g must be obtained by substituting oz, o, and T from equations

(4.35) to (4.37) in equations (4.19), (4.20) and (4.24), respectively.

Constraints

In this approach, we take advantage of some constraints to restrict the domain of
the variables of the highly nonlinear governing equations. A number of constraints
can be imposed due to the boundary conditions where some or all stress components

are known. These constraints are linear in a and can be represented as follows:
Crla)=0, ¢=1,---,n (4.38)

where ny, is the number of known stress components.
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Another set of constraints can be obtained by considering the fact that non-
cohesive granular soil media cannot resist tensile stress, therefore the minimum

principal stress must be always positive. Thus from equation (4.20), we must have

Oz + 0y > ﬁa’z —0y)? +4r2 (4.39)

where 0. and o, must always be positive, otherwise this constraint cannot be
satisfied, thus
gz >0 (4.40)

and

oy, >0 (4.41)
On the other hand simplifying the inequality (4.39) leads to
020, —T* >0 (4.42)

Equations (4.40) and (4.41) lead to another set of linear constraints which can be

represented as:

Cr(a) >0, j=1,---,2n, (4.43)

where np is a number of points we can choose arbitrarily in the region. The
inequality (4.42) leads to a set of nonlinear constraints which can be represented

as follows:

Cn.(a) >0, k=1,---,np (4.44)

Constrained Nonlinear Least Squares Solution

As with the nodal stress approach, we can obtain a set of nonlinear travel-time
equations represented by equation (4.28). Here, oy, 02 and g in the that equation

can be written in terms of a the vector of unknown stress function coefficients; that
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is, Tn; is a function of a. Therefore, we denote the vector of residuals defined by

equation (4.28) by R(a).

Now, considering the linear equality constraints given by equation (4.38) and
the linear and nonlinear inequality constraints given by (4.43) and (4.44), we can
formulate the solution to the inverse problem as the solution to the following con-
strained nonlinear least squares problem:

Minimize 1||R(a}||®
Cr(a)=0 ,i=1.--,ng
) (a) (4.45)
subject to{ Cy.(a) >0 ,i=ng+1,---,np+2n,
CN..(G)>0 ,i:nL+2np+1,---,nL+3np
In Chapter 5, we will describe a numerical optimization technique for solving this

least squares problem.

4.5 A Method for the Velocity-Stress Power Re-

lationship Parameters Determination

In Chapter 2, we presented equation (2.11) which is suggested by many researchers
as the relation between P-wave velocity in particulate media, and the state of
stress. For a specific soil media, the parameters a and § in that equation are
determined experimentally. For this purpose, traditionally, a soil sample is provided
and taken to a laboratory where it is subjected to a number of different isotropic
stresses. Under each stress, the P-wave velocity is measured and recorded; with
these measurements, o and § can be determined using either a linear regression
analysis in log-log scale or a nonlinear least-squares algorithm; for more details

see [Sch78, KSK82b, SP94, Cas96).
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In this study, we suggest another method for the determination of a and S.
This method is based on the in situ travel-time measurements; extraction of a
soil sample, which leads to soil fabric alternation, is not required. Therefore, this

method leads to more accurate parameters.

To determine a and B, in this method, we simply need to treat them as un-
knowns in the travel-time equation (4.2). In this way, we consider two more un-
knowns in the nonlinear leas-squares problem (4.30) or (4.45); this leads to the

determination of a and 3, as well as the stress field components.

4.6 The Stress Potential Function Approach in
3-D

In cases where loading and other circumstances may not justify a 2-D modeling,
using a 3-D model is inevitable. To develop a 3-D model for soil stress reconstruc-
tion, one reasonable way is to use the same approach we used for the 2-D case while
extending the methods and techniques involved in the forward modeling and the

inverse problem where deemed necessary.

4.6.1 Travel-Time Equation in 3-D

As an extension to the ray based travel-time equation (4.9) obtained earlier in
this chapter for the 2-D case, we will derive a similar travel-time equation that
may be used in 3-D soil stress reconstruction model. Here, as an extension to the
elliptical anisotropy used in the 2-D model, we assume an ellipsoidal anisotropy for

the velocity of P-wave propagation. Thus, considering Vi(r), Vo(r) and V3(r) as
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the principal velocities, in the direction of z/, ¥’ and 2/, a rotating system axes, we
can use the following equation which describe the ellipsoidal directional variations
of speed:

V(ru)? = Vi(r)2ef + Vo(r)%ef + Va(r) 27 (4.46)
Here V(r,u) represents the P-wave speed at point r in the direction of the unit
vector u = u;€] + uzey + uzey, where (e}, 5, €3) represents the vector basis in the

z'y’z’ rotating system. In terms of slownesses, we obtain:
S(r,u)? = S1(r)?u? + Sa(r)*u? + Sa(r)’u (4.47)

Considering dr’ as the incremental vector along the ray path at point r, and its

components in the z'y’z’ system, we have
dr' = dz'e] + dy'e, + dz'ey (4.48)

Thus, we obtain the following equation by substituting (4.47) in the travel-time

equation (4.2):

¢ = /R V(51(r)2u + Sy(r)2ui? + Sa(r)u?)dr? (4.49)
Since v and dr’ are in the same direction, we have
dz’ , dy , dz
(—1;7 = ul’ ;i—r—,- = ‘u,z, 21—‘; = ’u,la (4.50)

This leads to the following travel-time equation in the z'y’z’ system:

t= [ VSi(r)(de)? + Sa(r)(dy')? + Salr)?(d=)? (4.51)

Using L, the well-known linear transformation matrix, we have:
dz’ In b2 La dz
dy' (= |l b2 I dy (4.52)

dz' 131 132 133 dz
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where ;; (i = 1,-++,3, j = 1, -+, 3) are the components of L. Combining the last
two equations leads to the following travel-time equation which can be used in ray

tracing and the inverse problem:

t= [ [ (udz + biady + hadz)?S, (r)’ (4.53)
+(121d1: + lzgdy + 123d2)252(1')2
+(Is1dz + lsody + lagdz)?Ss(r)? )%

or in terms of stress field using equations (4.7) and (4.8):

t= El; /R [ (ludz + lapdy + liadz)207 % (4.54)
+({a1dz + lyody + lzsdz)za'zqw
+(l31d17 + lazdy + laadz)za';w ]%

4.6.2 Ray Tracing in Stress Induced Inhomogeneous Anisotropic

Media

In the 2-D case, we presented two methods for ray tracing, both of which are
fundamentally extendible to the 3-D case. However, it is clear that the second
method is more efficient, thus more suitable for the 3-D case where efficiency is yet
more important than in the 2-D case. To extend that method to the 3-D case, we
use parametric representation for ray paths. For a ray path between two points

(24, Ys» 2,) and (zy,Yr, 2.), we can use the following parametric equation:

z(t) = z,+ (2, — 2, )t + TiSat’ ,0<t<1
y(t) = o+ (Y — Yt + Tia bt ,0<t <1 (4.55)
Z(t) = z,+ (2 —z)t+ T att ,0<t< 1

Here a;, b; and ¢; are the perturbation coefficient sets, and n., n,, and n, are

the number of perturbation terms in each set, respectively. The combination of
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equations (4.54) and (4.55) leads to the travel-time equation in 3-D. For ray tracing,
the unknown coefficient sets a;, b; and ¢; must be found; this can be done, similar

to the 2-D case, using the simplex method of Nelder and Mead [NMS65].

4.6.3 The Inverse Problem

In the 3-D case, we can employ the idea of the stress potential function to formulate
the inverse problem. In 3-D stress fields, there are six different stress components in

the tensor of stress. Figure 4.5 shows stress components acting on a cubic element.

(o]
A4"

o]

G
XV, el
S, |/ ‘
[¢] ze
y ]Oyz
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Figure 4.5: Stress Components

Considering gravity force in the z direction, the equilibrium equations can be

obtained as follows:

Jozx Oozy Oozz
+ +

ettt e = 0 (4.56)

dozy  Ooyy  Odoyz

52ty s = O (4.57)
fozz Ooyz 6azz+% - 0 (4.58)

oz Oy 0z
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Unlike in the 2-D case, unfortunately, the solution to these equations cannot
be represented using a single potential function. However, to find stress functions
that satisfy equilibrium, we can introduce a function with a number of unknown
coefficients for each stress component. We then use equations (4.56) to (4.58)
to find relations between the coefficients. For example, we can use the following

polynomials to represent the stress components:

Oz = a1+ aoz +a3y+a4z+a522+a3y2 +a7zz + agzy + agzz + ayoyz + - - -
Op = bi+byx+---+boyz+---
Oy = C1tCT+---+croyz+---
Oy = dy+doz+---+diyz+---
Ozz: = € +ezx+---+eoyz+---

oy = fi+fox+--+ froyz+---

Substituting these functions in (4.56) through (4.58) leads to the following relations:

az = —(ds+e4) bs = —(d2+f4) cs = —(e2+ fa+7s)
as = —(ds+e)/2 bs = —(ds— f10)/2 ez = —(es+ fr0)/2
ag = —(2ds+ eyo) bsg = —(2ds+ fo) g = —(2e5+ fa)

ag = —(dio+ 2e7) bo = ~—(do +2f7) cio = —(es+2fe)

Therefore, in this example, we need 6 x 10 — 3 x 4 = 48 independent unknowns to

represent the stress field.



Chapter 5

Numerical Solution of the Model

5.1 Introduction

In Chapter 4, based on travel-time tomography, we presented a mathematical model
for soil stress reconmstruction. This model, basically, consists of two parts: the
forward problem model, and the inverse problem model. The forward problem
modeling lead to the fundamental travel-time equation (4.9). This equation is a
line integral equation in which R, the integral path, is known. The main subject
of the forward problem is the determination of the integration paths between any
two points in a region with a given stress field. The process of determining these
paths is called ray tracing. In this chapter, we will present a numerical technique

for the ray tracing method based on Fermat’s principle presented in Chapter 4.

The inverse problem is mainly governed by the same travel-time equation (4.9),
but the subject here is the determination of stress field corresponding to a set of
measured travel-times. In Chapter 4, we presented two approaches to formulate

the inverse problem: the first led to a Large-scale nonlinear least-squares problem

94
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(4.30) and the second led to a smaller constrained nonlinear least-squares problem.
In this chapter, we will present detailed optimization techniques to solve these

least-squares problems numerically.

5.2 Numerical Formulation

Here we present a numerical formulation for the ray tracing method based on Fer-

mat’s principle presented in Chapter 4.

In Chapter 4, we concluded that ray tracing between two points (z;,y;) and
(z2,9y2) in a region with given stress field leads to the following multivariable opti-

mization problem (4.17):

d d; -
Minimize t = l/ \/(cos ¥+ Zsin 0)20;%8 4+ (—sin @ + Y cos @)20; Pdr
aJr dz dz

where

dy y.—uy Z - i1 z‘;—z‘;
—_— = + a; zx‘_ [ ——
dr ;-1 Z i{ :z:z-—:z:1)

=2
Solving this minimization problem leads to the determination of the unknown
a;'s. To convert the integral equation to an algebraic equation, we introduce f; as

follows:

d;
fi= ‘ﬂcos v + (-d—g);sin ;)20 + (~sin &; + (g—i—), cos ¥;)205,2° (5.1)

Thus, using Simpson’s rule, we obtain the following optimization problem:
C . Az
Minimize ¢ = -3-;[]‘1 +4fa+2fs +4fa+ - +2fn_2+4fn-1+ fN] (5.2)

Here N is the number of discrete points we choose arbitrarily along the unknown ray
path. The expression to be minimized in this minimization problem is a simple alge-

braic expression with a;’s, the unknown perturbation coefficients to be found. The



CHAPTER 5. NUMERICAL SOLUTION OF THE MODEL 96

minimization problem (5.2) can be solved using any unconstrained multivariable
minimization method. However, similar problems arise in ray tracing of other geo-
graphical applications are traditionally solved using the simplex method of Nelder
and Mead [NM65]; see [PTE88, Ber90].

5.2.1 Ray Tracing Using the Simplex Method

The simplez method of multivariable minimization problems is due to Nelder and
Mead [NM65]. The method requires only function evaluation and not derivatives.
A simplex is the geometrical figure consisting, in n dimensions, of = + 1 points
(or vertices) and all their interconnecting line segments, polygonal faces, etc. For
example, in two dimensions a simplex is a triangle, and in three dimensions it is a

tetrahedron.

The simplex method must be started with n 4+ 1 points, defining an initial
simplex. The initial simplex can be obtained by starting with an initial starting

point P,, then taking the other n points to be:
P; = Py + Ae; (53)

where the e;s are n unit vectors, and A is usually a constant that must be chosen

properly.

Having an initial simplex, the simplex method takes a series of steps, most of
that just move the point of the simplex where the function is largest (high point)
through the opposite face of the simplex to a lower point. These steps are called
reflections and are comnstructed in such a way that they maintain a finite inner
n-dimensional volume of the simplex. Hence, the method expands the simplex in

one or another direction to take larger steps. When it reaches a “valley floor”, the
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method leads to contraction in the transverse direction and tries to ooze down the
valley. If there is a situation where the simplex must shrink in all directions, the
method leads to contraction in all directions, pulling itself around its lowest point.
In figure 5.1, the basic moves of this method are illustrated.

(a) (Simplex at a beginning of a step)
high
'8 low
(b) (Reflection)
(c) (Reflection and Expansion)
(d) (Contraction)
(e) (Multiple Contraction)

Figure 5.1: The basic moves of the simplex method

To present mathematical expressions for reflection, contraction, and expansion,

we consider Py, Py,---, P, as the (n + 1) points defining the current simplex. We
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write y; for the function value at point P; and define

max(y:) (5.4)

I

Yn
1

min(y;)

o= ) (5.5)
1

Accordingly, reflection, contraction and expansion are respectively defined by the

following relations:

P* = (L+a)P -abh, (5.6)
P~ = (1-pB)P-pBP, (5.7)
P* = (1-7)P -7P, (5.8)

here Pi, P are the points which correspond to ys and y; P is the centroid of
the points with ¢ # h; @, the reflection coefficient, is a positive constant; 3, the
contraction coefficient, lies between 0 and 1; and 7, the expansion coefficient, is
greater than unity. An appropriate sequence of such moves will eventually bring

all points into a valley.

Using this simplex method, we can summarize the ray tracing technique as
shown in Figure 5.2. This technique has been encoded and used successfully in ray

tracing in two dimensional stress induced heterogeneous anisotropic media.
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Figure 5.2: Flow diagram of the ray tracing procedure
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5.3 Numerical Formulation of the Inverse Prob-

lem

In Chapter 4, based on the nodal stress approach and the stress potential function
approach, we presented two mathematical models for formulating the inverse prob-
lem. The first approach led to a large scale nonlinear least-squares problems, while
the second approach led to a constrained nonlinear least-squares problem. The
main governing equation in both of these approaches has the form of a Fredholm

integral equation of the first kind, except that they are nonlinear.

From the inverse problem perspective, Fredholm integral equations of the first
kind lack the three requirements: existence, uniqueness, and stability of well-
posedness [Gro93]. Therefore, our inversion algorithm should be capable of en-
countering an ill-posed and yet nonlinear system. In this section, after we set up
the governing equations in a manageable form, we describe iterative schemes for

solving these problems.

5.3.1 Nodal Stress Approach: Numerical Formulation

In this approach, the soil medium is discretized to a set of nodes, where each node
carries three unknowns (in 2-D cases). As shown in Chapter 4, this approach leads
to the travel-time equation (4.23); this leads to a set of nonlinear equations which
is definitely inadequate for solving the inverse problem. There, we introduced the
equilibrium equations and a regularization technique to remove the singularity of
the system and to avoid undesired solutions. The combination of the travel-time
equations, the equilibrium equations, and the regularization leads to the minimiza-

tion problem (4.30) which we solve using an iterative optimization method.
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The first governing equation is equation(4.23) in which o, oy, and 7 represent

stress components at points lying on the ray path defined by R = y. These points

are not necessarily nodal points. Therefore, we use an interpolation function to

relate stress components inside a rectangular cell in the discretized medium to

nodal components of the cell. Figure 5.3 shows a rectangular cell with its nodal

points.

)

AXx

I -1

ﬁm Y;)

T(;m Y j+l)

Figure 5.3: A rectangular cell with nodal points in a 2-D medium

The interpolation function for o, is defined in a compact form as follows:

where

M

N3

and

4
O’_-._.(-'B, y) = E Nkazk

k=1

A‘z‘la"y (Zir1 = 2)(Yi+1 — ¥) 1 Tz1
AzlAy (1’2 - zi)(yj'f'l - y) 1 Oz2
5aay (Zit1 — 2)(y — v3) ,Oz3
aang (2~ ) (Y — ¥3) Tz

(5.9)

o2(%,7)
o-(i +1,7)
az(i:j + 1)

0'=(7: + laj + 1)
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Thus, to convert the travel-time integral equation (4.23) to a manageable algebraic

equation, we introduce f; as follows:

fi= \/[1+( —=)2 — gilo? + [1+( )? + gilog? (5.10)

where g;, 01; and oy; can be obtained, respectively, from equations (4.24) , (4.19)
and (4.20) in which o,, o, and 7 must be obtained from equation (5.9). Thus using

Simpsons rule, we obtain the following algebraic travel-time equation:

t= 3\/— ——{fi+4fa+2fs+4fs+--+2fn-2+4fn-1+ fn) (5.11)

or in a compact form:

w; f: 5.12
3\/. 2a § z ( )
where w; denotes the factors 1,4,2,4, - ,2,4, 1 and N is the number of discrete

points we choose arbitrarily along the ray path.

To obtain algebraic equations corresponding to the equilibrium equations (4.25)
and (4.26), we can either substitute the derivatives in these equations by appro-
priate finite difference expressions, or write the force equilibrium equations in z
and y directions for a cell assuming linear variations for stress components; this

assumption is consistent with the interpolation function (5.9).

Figure 5.4 shows a cell under stress components with linear variations. Consider-
ing a rectangular cell that undergoes these stress components simultaneously leads

to the following equation corresponding to 3 F; =0 and }_ F,, = 0, respectively:
{(02(i,7) + 02(i,5 + 1)) ~ (02(i + 1,J) + 0=(¢ + 1,5 + 1))} Ay

—{(r(z,7)+ 7+ 1,7)) = (r(, i+ 1) +7GE+ 1,7+ 1))}Az = 0 (5.13)

{(oy(2,5) + ay(i + 1,35)) — (ay (2,5 + 1) + oy(¢ + 1,5 + 1)) }Az
{7 ) + 75+ 1) = (7,7 +1) + 7+ 1,5 + 1)) }Ay + 1. AzAy = 0(5.14)
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Figure 5.4: A rectangular cell with linear variations under: (a) o, (b) oy, (¢} 7
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For regularization, we slightly modify the Laplacian operator used in [LD80,
Iva87] for constructing the C matrix in (4.27). In 2-D parameter distribution, the
Laplacian of a parameter o is defined as follows:

0% 0%

Ae=92,99
"= T a2

(5.15)

When used in regularization, this operator forces identical degrees of smoothness
in the z and y directions; this is not necessarily desirable. To obtain a more flexible

operator, we introduce the following operator:

8o 8%
Ag=A—+ #5!?

o (5.16)

where ) and p, the smoothing parameters, must be estimated properly. If we choose
A = p, we can use the widely used L-curve method [Han392, HO93] for estimating
an appropriate A. If we choose to have two different parameters, we can use the

idea of a solution roughness trade-off curves used in [CP92, PC92].

With the finite difference approximations, equation (5.16) leads to the following

equation:
(Aa)ij = (A/::)z(o'("' + l,j) +o(z— l,j))
A [ .. 7] . . o
_2((Am)2 * (Ay)z)("(”” + (‘5;;)5(0(1 +1,5) + o(3,5 — 1)(5.17)

where the o’s represent the nodal parameter values in the neighborhood of node
(7,7) as shown in Figure 5.5. Equation (5.17) must be applied to all interior nodes
in the region; for nodes on the boundaries of the region, one-dimensional second
derivative-based operators can be used. The different relations obtained in this way

can be assembled properly to form the C matrix.



CHAPTER 5. NUMERICAL SOLUTION OF THE MODEL 105

& SGdD

¢ 0Gld) o(ij) 6 (i+1.)

.

a(ij+l)

Figure 5.5: Nodal parameters used in forming the regularization operator

Nonlinear Least Squares Problem

For each measured travel-time, equation (5.12) provides a nonlinear equation, thus
we obtain a set of nonlinear travel-time equations. Equations (5.13) and (5.14) can
be applied to each cell in the discretized soil medium to produce a set of equa-
tions. We represent the set of nonlinear equations and the set of linear equations,

respectively, by:

Ry(e) = 0 (5.18)
Ri(c) = 0 (5.19)

Therefore, after forming the matrix C, the regularization matrix, we can formulate
the solution to the inverse problem as the solution of the following nonlinear least-
squares problem: )
Rn(o)
Minimize L Ri(o) | =

- 1R (5.20)
Co

[ XN
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Because of the large number of unknowns usually involved in this least-squares
problem, and on the other since each governing equation involves only a small
number of unknowns, this problem may be regarded as a large-scale sparse nonlinear
least-squares problem. To solve this problem, we use the algorithm introduced
by Martinez [Mar87]. In Chapter 3, we presented a step by step version of this
algorithm in which Jacobian matrix evaluation, and sparse matrix multiplication,
sparse linear system solution, and a typical bidimensional minimization problem are

involved. In the following, we will present some details related to these operations.

Jacobian Matrix

In general, the Jacobian matrix J is defined as follows:

J o= [Jy
[ J] ’i=1’..,’m ;j:l,---’np (5_21)
5 = &

Here, F; is the ith component of the function vector, z; is the jth variable, and
m and n, are the number of function components and nodes, respectively. Thus,
assuming n, and n. as, respectively, the number of measured travel- times and
number of cells, we can obtain the Jacobian matrix using the following equations:

For 1 < ¢ < n, according to equation (5.12):

ot; Az X Of

= = 2 5.22
H doz; 327 “ do; (522
at,' AZ N afk
Ji; = = - 5.23
7 day;  3v2a par} Wk doy, ( )
] N
J; = Ot; - Az Of (5.24)

dr;  3V2a = “”‘a_r}

To obtain appropriate expressions for a%'t;‘:" 5%[:)_-, %f%, we apply the chain rule,
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thus
Sfx 8gx 3oy Bogg af
Goc; doe i Oor; 8oy Sgs
Sfx —_ Ogy 8oy oy St (525)
9oy, 8oy; oy, doy; oy
afy 8gx Boux Bon 2
81'}' 81,' 81', 81" 8ogg

The partial derivatives of fi w.r.t gi, o1&, and o3 can be easily obtained from
equation (5.10), while those of gi, o1x and o3 w.r.t. o, ;» 0y; and 7; can be evaluated

from equations (4.24), (4.19) and (4.20), respectively.

To determine a and £, as described in Chapter 4, we treat them as unknowns;

this leads to the following expressions for the corresponding Jacobian matrix mem-

bers:
J--—QE— wa (5.26)
t] aa 3\/'2‘ 2 = kJk v
and
3t,' Az -
Jij = —haz Z ~(({1 +(— k= gloid o+ [{1 +(—)k + giloz oY)
3‘\/-01 k= 1
(5.27)
For n; + 1 < i < n; + n,, according to equation (5.13):
ORL,
Jij = 9o, = FAy (5.28)

where the positive sign is used when j refers to points on the left side of the cell,

and the negative sign for the right side.

ORy,
Jij = 90, =0 (5.29)
and
ORy, _
Jg= 5t =Fha (5.30)

where the positive and negative signs are respectively used when j refers to points

on the bottom and top sides of the cell.
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For n; + n. + 1 <7 < ny + 2n,, according to equation (5.14):

ORz,

Ji; = aaL.' =0 (5.31)
OR:, _

Jij = 5o, = FAz (5.32)

where the positive and negative signs are respectively used when j refers to points

on the top side and bottom side of the cell.

ORy,
a'l' ]

J,-J- = = :FAy (533)

where the positive and negative signs are respectively used when j corresponds to

points on the right and the left sides of the cell.

For n; + 2n. + 1 <t < n¢ + 2n. + 3n,, we have:
[J:5] = [Cij) (5.34)

where C' can be assembled according to equation (5.17).

Sparse Matrix Transpose and Multiplication

In step 2 of the iterative procedure of Martinez algorithm [Mar87], the following
linear system must be solved in which a sparse matrix J. represents the Jacobian

matrix:

I8 Tewr + gell < mellgell (5.35)
To solve this system, we form the linear system
JLJwwr = —ge

and solve it iteratively using a sparse solver based on a preconditioned conjugate

gradient method [BBC*94]; we stop iterations when (5.35) is satisfied. Since JZ
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is sparse and usually a large matrix, the calculation of JT and JI Ji required for
forming the linear system must be carried out using an efficient method. For this
purpose we use the efficient algorithms invented by Gustavson [Gus78] for obtaining

a sparse matrix transpose and sparse matrix multiplications.

Bidimensional Minimizaticn Problem

In steps 3 and 5 of the Martinez algorithm, a typical bidimensional minimization

problem of the following form must be solved:

Minimize ||Jid + Re|
subject to { d=Ade + ddi
ldlf <¢
Here J is a given matrix, Rk, d} and d} are given vectors, and ¢ is a given scalar.
Thus our aim is to find the coefficients A; and X;. To formulate a solution to this
problem, we first introduce E = (e;, e2) to be an orthonormal basis of the subspace

spanned by (d},d%); we calculate E using singular values decomposition [PTVF92].

Thus, the above problem can be written as:

Minimize ”Jkd + Rk”
d=Epu (5.36)

subject to
lld]l < ¢

where u7 = (u;,p2) and g, and g, are unknown coefficients. Since d = Ep, this
problem can be equivalently written as:
Minimize |JiEp + Ril?

subject to ||u||® < ¢2

or

Minimize (uTBp +2u¥C + D)
subject to pTu < ¢
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where B, C, and D are defined as follows:

by b
B=|" | =ETJTLE (5.37)
b21 622
2 T T
C = = E Jk R]c (5.38)
C2
and
D = RfR: (5.39)

To solve this bidimensional minimization problem, we first assume that the
constraint is inactive. Thus, for the quadratic function in (5.36) to be stationary,
we must have:

Bpu+C=0 (5.40)
If p, the solution of this 2 by 2 linear system, satisfies the constraint, the correct
solution is achieved; otherwise, the constraint is active and we form the following

Lagrange function in which p is an unknown Lagrange multiplier:
L(p,p) = p"Bpu+24"C + D + p(p" s — £7) (5.41)

The necessary conditions for a stationary point for this fanction are:

aL

= = .42
P (B+plp+C=0 (5.42)
oL = T 2 _
3 prp—tt=0 (5.43)

This is a 3 by 3 system of nonlinear equations that we solve iteratively using

Newton-Raphson’s method.
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Flow Chart of the Inverse Problem

The numerical procedure of solving the inverse problem using the nodal stress
approach is summarized in Figure 5.6. Based on this procedure, we have developed

a FORTRAN code to be used in stress reconstruction of 2-D soil media.

5.3.2 Stress Function Approach: Numerical Formulation

As described in Chapter 4, in this approach, only one continuous function is required
to represent the distribution of the three stress components in 2-D problems. Here,
we chose polynomials as stress potential functions; Hence, the inverse problem

solution is a matter of determining the unknown coefficients of a polynomial.

The only governing equation in this approach is the travel-time equation (4.23)
where o1, 0, and g must be obtained by substituting o, o, and 7 from equations
(4.35) to (4.37) in equations (4.19), (4.20), and (4.24) respectively. As with the pre-
vious approach, we obtain equation (5.12), the algebraic version of equation (4.23).
With the constraints represented by (4.38), (4.40), (4.41) and (4.42), the inverse
problem leads to the constrained nonlinear least-squares problem represented by
(4.45). We solve this problem using an algorithm based on the SQP algorithm
of Scittkowski [Sch88]. As described in Chapter 4, this algorithm mainly involves
calculating the Jacobian matrix of the constraints and the functions values. We

next present relations for evaluating the Jacobian matrices.
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Figure 5.6: Flow Chart of the numerical solution in the nodal stress approach
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Jacobian Matrix of the Travel-Time Equations

With (aj,j = 1,~~-,n) as the unknown coefficients, and n, as the number of mea-
sured travel-times, according to equation (ref{eq:5.12):

Ot; Az N Bf

J“' = =
da; 322 (o - da;

yFor1<i1<m, (5.44)

where gﬁf_ can be calculated using the following chain rule:

T T 80z,
8o« 80'" ar da;
a Of Ofx O N !
aa,- agk 60'1k 0oz Tz TV k a;
o2k  daap  Bay o
Oor, Ooy, 97 da;

The partial derivatives of fr w.r.t gi, o1k, and o9 can be easily obtained from
equation (5.10); those of gi, o1 and oo w.r.t. o;,, 0, and 7 must be evaluated
from equations (4.24), (4.19) and (4.20), respectively; and finally those of o, gy,
and 7 w.r.t. a; must be calculated using the stress functions such as equations

(4.35) to (4.37).

To determine a and 3, we need:

ot;
%5 = B

and
Ot;

These derivatives can be evaluated using equations (5.26) and (5.27).

Jacobian Matrix of the Constraints

In Chapter 4, we obtained two sets of constraints in this approach: linear constraints

and nonlinear constraints. In computing the Jacobian matrix of the constraints,
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we can treat both of these sets in a similar manner, except that the part of the
Jacobian matrix corresponding to the linear constraints is constant, and thus must
be computed once, while the rest must be updated in each iteration. The constant

part of J,, the constraints Jacobian matrix, can be obtained as follows:

0oz; Ooy, ar

J i3 = ] ) ’ L = 1", 4
(Jg)ij da;" Ga or 3a; i=1 ny, (5.46)
0o, .
(Jg)ij = aa_ sy t=ng + 19 RN (A + np (5-47)
3
doy; .
(odi = g v i=nr+mptl,o ng+2n, (5.48)
J

In equation (5.46), depending on the boundary conditions, some or all of the partial
derivative terms may be used. The rest of J,, which corresponds to the nonlinear

constraints given by (4.42), can be calculated using the chain rule as follows:

0o, Ooy; or

(Jo)ij = oy 9a; T i 275;? i=np4+2n,+1,---,n +3n, (5.49)

In equations (5.46) to (5.49), the partial derivatives must be calculated using the

functions of the corresponding stress component.

Flow Chart of The Inverse Problem

The numerical procedure of solving the inverse problem using the stress potential
function approach is summarized in Figure 5.7. Based on this procedure, we have

developed a FORTRAN code to be used in stress reconstruction of 2-D soil media.

5.4 Scaling

In the two approaches we presented for soil stress reconstruction, the unknown vari-

ables involved may vary greatly in magnitude. In the nodal stress approach, there
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Figure 5.7: Flow Chart of the numerical solution in the stress potential function

approach
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are three unknown variables: two principal stresses and the angle these stresses
make with the Cartesian system axes. The angle is in the range [0, 27|, while the
principal stresses, depending on their units, may be in a much larger range. In the
stress potential function approach, with a and £ as unknown variables, we have the

same kind of difference between the magnitude of stress components, and a and S.

Large variations in the magnitude of variables lead to large variations in the
magnitude of the corresponding derivatives. Therefore, optimization algorithms
based on functions and constraints derivatives lead to ill-conditioned Jacobian and
Hessian matrices; this, due to the finite precision available in computers, disturbs
the convergence of the algorithms significantly. The remedy to this problem is

re-scaling the independent variables; this is equivalent to changing their units.

For re-scaling, in case a realistic guess for lower and upper bound of each in-
dependent variable is available, Gill et al [GMWS81] recommended the following

transformation relation:

z=Dy+C (5.50)

where {z;} are the original variables, {y;} are the transformed variables, and D
and C are, respectively, a diagonal matrix and a vector defined in terms of the
variables lower and upper bounds. For variable z; with lower and upper bound a;

and bj;, the jth diagonal element of D is:
1
dj; = 5(b; — a;) (5.51)
and the jth element of the vector C is:

1

This transformation guarantees that —1 < y; < 1 for 5. If a realistic upper

and lower bounds are not available, the most commonly used transformation of the
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following form is recommended [GMW81, DS83]:
z =Dy (5.53)

where D is a constant diagonal matrix. The element of this diagonal matrix must be
chosen according to the typical values in such a way that the transformed variables
vary, roughly, in the same range. In this work, we used a scaling scheme based on

the latter transformation form.

An interesting aspect of scaling strategies based on (5.53) is that when they are
used in Newton methods with exact Hessian matrix, they do not affect the sequence

of iterates [GMW81, DS83]. This means that
z; = Dyx (5.54)

where k is the iteration number.



Chapter 6

Numerical Examples

6.1 Introduction

In order to assess the performance of the mathematical models presented for ray
tracing and stress reconstruction in particulate soil media, we have developed FOR-
TRAN computer programs based on these models. In this chapter. we present the

results we have obtained using these programs in some typical examples.

For ray tracing, we will present an example of a soil medium that undergoes
a footing loading. First, we calculate the stress distribution corresponding to the
loading, we then use the ray tracing program for determining the ray paths and

their corresponding travel-times.

For stress reconstruction, we will present four typical examples in which syn-
thetic data is used to infer the corresponding stress fields. In the first example
where we presen a footing problem, we will reconstruct the stress fields using a
program based on the nodal stress approach; in the second to fourth examples,

where we, respectively, present footing, tunnel, and retaining wall problems, we

118
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will use another program based on the stress potential function approach for stress

reconstruction.

In the stress reconstruction examples, in order to obtain the travel-time data
synthetically, we first use ABAQUS [HS95], a finite element software widely used
in nonlinear problems, to analyze the soil medium. Having the stress distribution,

we use the ray tracing program for generating the synthetic travel-time data.

6.2 Ray Tracing in a Soil Medium Under Footing

To illustrate the performance of the ray tracing technique we developed for stress
induced anisotropic soil media, we present an example corresponding to a typical
problem in soil mechanics. In this example, as depicted in Figure 6.1, we assume a
region of soil medium that undergoes a footing loading. We assume that the footing
is long enough so that, for stress analysis, a plane strain model is satisfactory. We,
further, assume that the region is symmetric about a vertical plane, and that it is

of infinite horizontal extent.

For stress analysis using ABAQUS, we assumed that soil with density v, =
1.85gr/cm® behaves as elastic-plastic material. The elastic response is assumed to
be linear and isotropic with Young’s modulus E = 2.1 x 10%kg/cm?® and Poisson’s
ratio v = 0.3. Yield is assumed to be governed by the Mohr-Coulomb surface,
with a friction angle & = 30°, and cohesion C = 0.25kg/cm2. Unfortunately,
Mohr-Coulomb yield criterion is unavailable in ABAQUS, however it is possible to
convert Mohr-Coulomb parameters to those of Drucker-Prager which is available in
ABAQUS. According to the ABAQUS user manual [HS95], in plane strain prob-

lems, the following formula can be used for calculating 8 and &%, Drucker-Prager
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Figure 6.1: Soil region under footing

parameters corresponding to a given ® and C:

33 tan @
t = 6.1
af = e raae (6.1)

3v3C

d = 6.2
V9 + 12tan®* @ (6-2)

and
oe = d (6.3)

(1 - 3tanp)
Therefore, we find § = 39.76° and 0% = 0.5kg/cm®. Having analyzed the soil
medium using ABAQUS, we obtain the stress distribution shown in Figure 6.2. In
this figure the distribution of o, o, and 7 is shown.

With the stress distribution results obtained from ABAQUS and assuming
a = 40 and B = 0.22 corresponding to the stress in (kg/m?), we used the ray
tracing program we have developed to determine the ray paths and travel-times.
We found that using only three a;’s, the perturbation terms in equation (4.14), is
quite satisfactory. Therefore, we obtained the ray paths between source and re-

ceiver points located in two parallel boreholes on the left and right boundary of the



CHAPTER 6. NUMERICAL EXAMPLES 121

Sigma(x) x10 °
6 3
T 0
-5 0 5
5
0
8
6
4
2
0
4
x 10
1
0
1

Figure 6.2: Distribution of o;. oy, and T of the soil medium under footing
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region respectively. These ray paths are shown in Figure 6.3. In this figure, the

tendency of the ray paths to pass through the high stress zone is clearly shown.

5 5
0] 0

—55 0 5 -535 0
5 5

=5 0 5 -5 0
0 0

-2 -2

-4 -4

%5 0 5 s 0

5

Figure 6.3: Ray paths between sources and receivers in a soil region under footing
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6.3 Stress Reconstruction in Footing Problems

To demonstrate the performance of the stress reconstruction techniques we have
developed in this work, we will present two footing problem examples. In the
first example, we used the nodal stress approach to reconstruct the stress of a 25
node soil region; this approach failed to handle large-scale problems. In the second
example, we used the stress potential function approach to reconstruct the stress

field of the example presented in Section 6.2.

6.3.1 Footing Problem Stress Reconstruction: Nodal Stress

Approach

In this example, we assume a soil region that undergoes a mat foundation of 10.0
m width. As depicted in Figure 6.4, the foundation causes a uniform pressure of
4000kg/m? on the contact region; the soil medium can be modeled as a half-space
subjected to a uniform load.

Assuming that the soil in this example behaves as an elastic and isotropic
medium, we can use the closed form solution of the stress distribution obtained
using theory of elasticity [KS91]. However, in this solution, the gravity load of soil
is not considered; to the author’s knowledge, no analytical solution which accounts
for the gravity load is available. To account for the gravity load, we superimpose

the following approximate solution to the closed form solution:

o = koy

Oy = Y0y

T =0
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40000 kg/m

Figure 6.4: Soil region modeled as a half-space subjected to a uniform load
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Here 0z, 0, and T are the stress components, « is the soil density, y is the depth
of the point where the stress is evaluated, and k is a constant. Due to the limited
capability of the nodal stress approach, we construct the stress distribution of a
small subregion shown by the shaded area in Figure 6.4. Discretizing the shaded
area into a 5 x 5 grid and choosing k£ = 0.1, we obtained the stress distribution in

this subregion as shown in Figure 6.5.

With the calculated stresses, and @ = 30 and 8 = 0.2, we first generated
travel-time data using the ray tracing algorithm. Then we input this travel-time
data along with a and g to the FORTRAN program we have developed based on
the nodal stress approach. The initial stress distribution supplied to the program
is shown in Figure 6.6; the divergence of this stress field from the actual field is
around %10. Finally we input the following equality constraints corresponding to
points in contact with the footing:

r =0

{o,, = 4000kg/m’

After eight iterations, the algorithm converges to the stress field shown in Figure
6.7.

Attempts to solve large-scale problems or even solving this problem but starting
from an initial guess with more divergence have failed. Therefore, this approach is

not appropriate for real world problems.

6.3.2 Footing Problem Stress Reconstruction: Stress Func-

tions Approach

In this example, we attempt to reconstruct the stress field of the footing problem

presented in Section 6.2. The travel-time data required for the stress reconstruction
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Figure 6.5: Distribution of o, 0y, and 7 in the rectangular subregion
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Figure 6.6: Distribution of ¢, oy, and 7 in the initial guess
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Figure 6.7: Reconstructed distribution of o,, gy, and 7 in the footing problem using

the nodal stress approach
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was obtained from the ray tracing carried out in that section. As the loading
and geometry are symmetric about the x-axis in the problem, we choose an even
potential function of z. Furthermore, we found that polynomial of orders less than
6 do not present the stress field of this problem satisfactorily. Therefore, we use
the following eighth order polynomial as the stress potential function:
® = a1z° + apy® + azz’y + aay® + asz? + aez?y’®
+ary® + aszly + agz’y’ + a1y’ + anz® + aipzty’?
+apz’y + anz’y + asz'y’ + aez’y’ + aprz®
+a182°%° + aiez’y* (6.4)
This leads to the following relations for the stress field components:
9*®
Oz = £ + VY
= 2a; + (6as+7,)y + 2a¢z® + 12a79°
+6agz’y + 20ay0y”® + 2a12z' + 12a;3z°%y?

+6a15z'y + 204162y + 2a137% + 12a,9z%y® (6.5)

2*®
oy = '&7 + Y.y

= 2a; + (2a3 + %)y + 12a52° + 2aey”
+ 12asz%y + 2aey® + 30ap;z* + 12a;,z%y?
+2a13y* + 30az’y + 12a352%° + 2a169°
+56a172°% + 30a18z'y® + 12a;0z%y* (6.6)

9%®
dz0y
= 2a3z + 4aezy + 4agz® + Bagzy® + 8a;yz’y

+8a13:cy3 + Bayqz’ + 120.15:1:33;2 + 10agzy*

+12a;5z%y + 16a192%y° (6.7)
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Thus in this approach we need to determine only 19 unknowns to reconstruct the

stress field. In case a and B are unknown, we must determine 21 unknowns.

Boundary Conditions

On the surface of the soil region where y = 0, the stresses o, and T are known. For

points in contact with the footing (—2.0 < z < 2.0), we have:

o, = 75000kg/m?

T =0
while for the free points on the surface (2.0 < [z| < 5.0), we have:

g, = 0

T =10

To incorporate these conditions and the linear and nonlinear constraints required
in the reconstruction algorithm, we define a set of discrete points on the region. In
this problem, we used the nodal points of a grid of 0.5m intervals in both z and y

directions.

Reconstructed Stress Field

In this example and the upcoming examples, to demonstrate the results, we present
four sets of three diagrams showing the distribution of o, o, and T; each set is
placed in a column. The first, which we call the actual, is that computed by
ABAQUS. The fourth, which we call the best possible, is the least squares approx-
imation to the actual obtained by using the chosen polynomial form for the stress

function. The second, which we call the initial guess is obtained by making random
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perturbations to the coefficients in the best possible. The third, which we call the

reconstructed field, is that obtained from the tomographic reconstruction.

In this example, the results are shown in Figure 6.8. The initial guess for stress
distribution, shown in the second column of this figure, is obtained by making
random perturbations, of amounts varying from %5 to %30, to the coefficients of
the best possible. The initial guess of @ and g is:

a=32.0 and § =0.264.

Using the FORTRAN program we have developed based on the stress potential
function approach, we obtained the reconstructed stress distributions shown in the

third column of Figure 6.8 after three iterations, with
a=238.96 and 8 = 0.214.

These values are very close to those we used to generate the travel-time data.
Between the constructed stress distributions shown in the third column and the

best possible solution shown in the fourth column, there is a good agreement.

6.3.3 Tunnel Problem Stress Reconstruction: Stress Func-

tions Approach

In this example, as depicted in Figure 6.9, we assume a symmetric region of a soil
medium which encloses a tunnel. We assume that the tunnel is long enough so that

a plane strain model is satisfactory.

To obtain the stress distribution of the soil medium using ABAQUS, we assumed
that soil with density 4, = 1.85gr/cm® behaves as elastic-plastic material. The

elastic response is assumed to be linear and isotropic with Young’s modulus E =
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Figure 6.8: Distribution of ¢., gy, and 7 of the soil medium for the Actual, Initial,

Reconstructed and the Best possible solution in the footing problem
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2.1 x 102kg/cm® and Poisson’s ratio » = 0.3. Yield is assumed to be governed
by the Mohr-Coulomb surface, with a friction angle & = 30°, and cohesion C =
0.25kg/cm®. Using equations (6.1) to (6.3), we find the following Drucker-Prager

criterion parameters corresponding to those of Mohr-Coulomb’s.

B = 39.76°
o2 = 0.5kg/cm’

The soil around the tunnel is supported by a closed reinforced concrete shell as
depicted in Figure 6.9. We assume that the concrete behaves as a linear elastic and

isotropic medium with the following moduli:

E 2.86 x 10°kg/cm?
v = 0.15

By analyzing this problem using ABAQUS, we obtained the stress distributions
of the soil medium as shown in the first column of Figure 6.10.

With the stress distribution results obtained from ABAQUS, we used the ray
tracing code to determine travel-times. for this purpose, we assumed that a = 43.0
and B = 0.23; we also assumed that two vertical boreholes are available on the
boundaries of the region as depicted in Figure 6.9. Furthermore, it is assumed
that 25 seismic wave sources are placed in one borehole, and the same number of
receivers is placed in the other borehole. The sources and receivers are placed at
2.0m intervals beginning from the soil surface to 10.0m depth, and then they are
placed at 1.0m intervals to 28.0m depth. Then we obtain 625 travel-times to be

used for stress reconstruction in this problem.

Because of the symmetry in this problem, we used the same eighth order poly-

nomial of equation (6.4) as the stress potential function.
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Boundary Conditions

On the free surface of the soil region where y = 0, all the three stress components

are equal to zero, i.e.

o, = 0
o, = 0
T =0

To incorporate these conditions and the linear nonlinear constraints required in
the reconstruction algorithm, we define a set of discrete points on the region. In
this problem, we used the nodal points of a grid of 0.4m intervals in both z and y

directions.

Reconstructed Stress Field

In this example, the results are shown in Figure 6.10. The initial guess for stress
distribution, shown in the second column of this figure, is obtained by making
random perturbations, of amounts varying from %10 to %30, to the coefficients of

the best possible solution.

Using the FORTRAN program we have developed based on the stress potential
function approach, we obtained the reconstructed stress distributions shown in the
third column of Figure 6.8 after seven iterations. Between the constructed stress
distributions shown in the third column and the best possible solution shown in

the fourth column, there is a very good agreement.
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6.3.4 Retaining Wall Problem Stress Reconstruction: Stress
Functions Approach

In this example, as depicted in Figure 6.11, we have a soil medium supported by a
retaining wall. Here, we are interested in stress reconstruction of the shaded area
of the soil region. We assume that the soil region along with the retaining wall are

long enough so that, for stress analysis, a plane strain model is satisfactory.
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Figure 6.11: Soil region supported by a retaining wall

To obtain the stress distribution of the soil medium using ABAQUS, we assumed
that soil with density 4, = 1.85gr/cm® behaves as elastic-plastic material. The

elastic response is assumed to be linear and isotropic with Young’s modulus £ =
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2.1 x 10%kg/cm® and Poisson’s ratio » = 0.3. Yield is assumed to be governed
by the Mohr-Coulomb surface, with a friction angle ® = 30°, and cohesion C =
0.25kg/cm®. Using equations (6.1) to (6.3), we find the following Drucker-Prager

criterion parameters corresponding to those of Mohr-Coulomb’s.

B = 39.76°
0% = 0.5kg/cm’

The soil region is supported by a reinforced concrete retaining wall. We assume
that the concrete behaves as a linear elastic and isotropic medium with the following

moduli:
E = 2.86 x 10°kg/cm?

v = 0.15

By analyzing this problem using ABAQUS, we obtained the stress distribution
of the soil medium. In the first column of Figure 6.12, the distribution of the stress

components 0., o, and 7 of the soil region of interest is shown.

With the stress distribution results obtained from ABAQUS, we used the ray
tracing code to determine travel-times. for this purpose, we assumed that a = 41.0
and 8 = 0.20; we also assumed that two vertical boreholes are available on the
boundaries of the region as depicted in Figure 6.11. Furthermore, it is assumed
that 9 seismic wave sources are placed in one borehole, and 10 receivers are placed
in the other borehole. The sources and receivers are placed at 0.5m intervals be-
ginning from 0.5m depth. Then we obtain 90 travel-times to be used for stress

reconstruction in this problem.

As the problem is asymmetric, we use the following sixth order polynomial as

the stress potential function:

® = a1z 4 arzy + a3y’ + a2’ + asz’y
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+aszy® + ary® + asz® + agz®y + aoz’y?
+anzy® + eyt + an® + awz'y + aisz’y?
+a16z’y® + arrzy® + aisy® + a19z® + azz’y

+azlz4y2 + azazzy'* + ag4xy5 + azsye (6.8)

This leads to the following relations for the stress field components:
52
a: = '6? + 7‘y

= 2a3 + 2a¢z + (6a7 +7,)y + 2a;0z°
+6a11zy + 12(112;1,12 + 2a;5z3 + 6a15:c2y
+12a17zy® + 20a18y° + 2a212* + 6axnz’y
+12a3z%y* + 20az4zy® + 30aqsy* (6.9)

62
Oy = gz T 1Y

= 2a; + 6asz + (2as +7,)y + 12asz?
+ 6agzy + 2(110y2 + 20a;3z° + 12a141:2y
+6a15zy? + 2a16y° + 30a19z* + 2042023y
+12a2z*y® + 6azzy® + 2asy* (6.10)
3%
dz0y

= a; + 2asz + 2asy + 3agz’

+4a0zy + 3auyz + 4014.'123 + 60.152:2y
+6a16zy® + 4a17y3 + 5azezt + 8021m3y
+ 9a2:z%y? + 8azszy® + Hazeyt (6.11)

Thus in this approach we need to determine only 25 unknowns to reconstruct the

stress field. In case a and B are unknown, we must determine 27 unknowns.
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Boundary Conditions

The surface of the soil region supported by the retaining wall is subjected to a
vertical uniform load of 20000.0kg/m?, therefore, at y = 0, the stresses oy nd T are

known and we have:

o, = 20000kg/m?

T =0

To incorporate these conditions and the linear and nonlinear constraints required
in the reconstruction algorithm, we define a set of discrete points on the region. In
this problem, we used the nodal points of a grid of 0.25m intervals in both z and y

directions.

Reconstructed Stress Field

In this example, the results are shown in Figure 6.12. The initial guess for stress
distribution, shown in the second column of this figure, is obtained by making
random perturbations, of amounts varying from %10 to %40, to the coefficients of

the best possible solution.

Using the FORTRAN program we have developed based on the stress potential
function approach, we obtained the reconstructed stress distributions shown in the
third column of Figure 6.12 after five iterations. Between the constructed stress
distributions shown in the third column and the best possible solution shown in

the fourth column, there is a very good agreement.
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6.4 Closure

In this chapter, we have presented some results using the ray tracing and inversion

techniques we have developed in this study.

In section 6.2, we presented the ray tracing results for a typical footing problem;
these results are obtained using the ray tracing technique we have developed for
stress induced anisotropic media. Since, to our knowledge, there is no other ray
tracing technique available for stress induced anisotropic media, these results cannot
be verified. However, the tendency of the ray paths to pass through the high
stress zone is evident which somewhat confirms the performance of the ray tracing

technique.

In section 6.3.1, we presented the results of applying the nodal stress approach
for stress reconstruction in a small-scale problem. In that problem, the initial guess
was obtained by perturbing the actual stress distribution by around %10. Un-
der these circumstances, the reconstruction technique performance was acceptable.
However, the approach failed for more distant starting guesses for this-small scale

problem, and for any guess for large-scale ones.

In sections 6.3.2 to 6.3.4, we presented the results of stress reconstruction we
obtained by applying the stress potential function approach in three typical geotech-
nical problems. These results indicate that the inversion technique based on this
approach is reliable and capable of reconstructing general features of stress fields.
However, due to some shortcomings in the polynomial representation of the stress

field, delicate details in stress distribution, if any exist, cannot be reconstructed.



Chapter 7

Closure

This dissertation embodies the results of research which was motivated by the
success of computerized tomography (CT) in various disciplines. In this research,
we employed the concepts and techniques of CT to develop a model which can be
used for monitoring stress distribution of granular soil media. This is an inverse
problem, and we assume that travel-time data of compressional seismic waves is

available for this purpose.

The media of interest in this problem can be categorized as inhomogeneous
and anisotropic. Accordingly, we first derived a relation between travel-time of
compressional waves and stress distribution. This relation is in the form of Fredholm
equation of the first kind. As the second step, based on that equation, we developed
a fast two-point ray tracing technique for solving the direct problem.

For the inverse problem, we first developed an inversion technique based on
considering the unknown stress components on prespecified nodes on the region of
interest. This technique led to a large scale highly nonlinear optimization prob-
lem which appeared to be impractical to handle real world problems. Thus, we

143
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developed another inversion technique based on parametric representation of stress
field. This technique led to a highly nonlinear, though manageable, optimization
problem. Finally, based on synthetic data, we presented a number of illustrative

examples to evaluate the performance of the models developed in this work.

It may be noted that the present work represents a part of that required to
establish a more reliable and sophisticated model for soil stress imaging. Due to
the novelty of this work, no simulated or experimental results are available in the
literature to evaluate the performance of the models of this work; hopefully, this

work will trigger further future research in this area.

Finally, for further research in this area, we suggest the following topics.

¢ Incorporating more realistic anisotropy models.
e Extending the presented models for fluid-saturated porous media.
¢ Encoding and evaluating the 3-D model presented in this work.

e Incorporating other methods of parametric representation of stress field in

the stress potential function approach.

o Sometimes there is a known closed form solution to a problem which is similar
to the one being studied. For example, there is a known closed form solution
for a footing on an elastic half-space. In such a case, we may take this solution
as a first approximation, and use a polynomial stress function to model the

difference between our problem and the classic one.

e obtaining and using measured travel-time data for inversion.
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