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Abstract 

Freezing of gait (FOG), is a brief episodic absence of forward body progression despite the 

intention to walk. Appearing mostly in mid-late stage Parkinson’s disease (PD), freezing 

manifests as a sudden loss of lower-limb function, and is closely linked to falling, decreased 

functional mobility, and loss of independence. 

Wearable-sensor based devices can detect freezes already in progress, and intervene by 

delivering auditory, visual, or tactile stimuli called cues. Cueing has been shown to reduce 

FOG duration and allow walking to continue. However, FOG detection and cueing systems 

require data from the freeze episode itself and are thus unable to prevent freezing. Anticipating 

the FOG episode before onset and supplying a timely cue could prevent the freeze from 

occurring altogether. 

FOG has been predicted in offline analyses by training machine learning models to 

identify wearable-sensor signal patterns known to precede FOG. The most commonly used 

sensors for FOG detection and prediction are inertial measurement units (IMU) that include an 

accelerometer, gyroscope and sometimes magnetometer. Currently, the best FOG prediction 

systems use data collected from multiple sensors on various body locations to develop person-

specific models. Multi-sensor systems are more complex and may be challenging to integrate 

into real-life assistive devices. The ultimate goal of FOG prediction systems is a user-friendly 

assistive device that can be used by anyone experiencing FOG. To achieve this goal, person-

independent models with high FOG prediction performance and a minimal number of 

conveniently located sensors are needed.  

The objectives of this thesis were: to develop and evaluate FOG detection and 

prediction models using IMU and plantar pressure data; determine if event-based or period of 

gait disruption FOG definitions have better classification performance for FOG detection and 

prediction; and evaluate FOG prediction models that use a single unilateral plantar pressure 

insole sensor or bilateral sensors. 

In this thesis, IMU (accelerometer and gyroscope) and plantar pressure insole sensors 

were used to collect data from 11 people with FOG while they walked a freeze provoking path. 
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A custom-made synchronization and labeling program was used synchronize the IMU and 

plantar pressure data and annotate FOG episodes. Data were divided into overlapping 1 s 

windows with 0.2 s shift between consecutive windows. Time domain, Fourier transform 

based, and wavelet transform based features were extracted from the data. A total of 861 

features were extracted from each of the 71,000 data windows.  

To evaluate the effectiveness of FOG detection and prediction models using plantar 

pressure and IMU data features, three feature sets were compared: plantar pressure, IMU, and 

both plantar pressure and IMU features. Minimum-redundancy maximum-relevance (mRMR) 

and Relief-F feature selection were performed prior to training boosted ensembles of decision 

trees.  

The binary classification models identified Total-FOG or Non-FOG states, wherein the 

Total-FOG class included windows with data from 2 s before the FOG onset until the end of 

the FOG episode. The plantar-pressure-only model had the greatest sensitivity, and the IMU-

only model had the greatest specificity. The best overall model used the combination of plantar 

pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity.  

Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG 

windows, freeze windows, and transition windows between Pre-FOG and FOG). The best 

model, which used plantar pressure and IMU features, detected windows that contained both 

Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 

1 s after the freeze began. Models using both plantar pressure and IMU features performed 

better than models that used either sensor type alone. 

Datasets used to train machine learning models often generate ground truth FOG labels 

based on visual observation of specific lower limb movements (event-based definition) or an 

overall inability to walk effectively (period of gait disruption based definition). FOG definition 

ambiguity may affect FOG detection and prediction model performance, especially with 

respect to multiple FOG in rapid succession. This research examined the effects of defining 

FOG either as a period of gait disruption (merging successive FOG), or based on an event (no 

merging), on FOG detection and prediction. Plantar pressure and lower limb acceleration data 

were used to extract a set of features and train decision tree ensembles. FOG was labeled using 
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an event-based definition. Additional datasets were then produced by merging FOG that 

occurred in rapid succession. A merging threshold was introduced where FOG that were 

separated by less than the merging threshold were merged into one episode. FOG detection 

and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging had 

little effect on FOG detection model performance; however, for the prediction model, merging 

resulted in slightly later FOG identification and lower precision. FOG prediction models may 

benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid 

succession. 

Despite the known asymmetry of PD motor symptom manifestation, the difference 

between the more severely affected side (MSS) and less severely affected side (LSS) is rarely 

considered in FOG detection and prediction studies. The additional information provided by 

the MSS or LSS, if any, may be beneficial to FOG prediction models, especially if using a 

single sensor. To examine the effect of using data from the MSS, LSS, or both limbs, multiple 

FOG prediction models were trained and compared. Three datasets were created using plantar 

pressure data from the MSS, LSS, and both sides together. Feature selection was performed, 

and FOG prediction models were trained using the top 5, 10, 15, 20, 25 or 30 features for each 

dataset. The best models were the MSS model with 15 features, and the LSS and bilateral 

features with 5 features. The LSS model reached the highest sensitivity (79.5%) and identified 

the highest percentage of FOG episodes (94.9%). The MSS model achieved the highest 

specificity (84.9%) and the lowest false positive (FP) rate (2 FP/walking trial). Overall, the 

bilateral model was best. The bilateral model had 77.3% sensitivity, 82.9% specificity, and 

identified 94.3% of FOG episodes an average of 1.1 s before FOG onset. Compared to the 

bilateral model, the LSS model had a higher false positive rate; however, the bilateral and LSS 

models were similar in all other evaluation metrics. Therefore, using the LSS model instead of 

the bilateral model would produce similar FOG prediction performance at the cost of slightly 

more false positives. Given the advantages of single sensor systems, the increased FP rate may 

be acceptable. Therefore, a single plantar pressure sensor placed on the LSS could be used to 

develop a FOG prediction system and produce performance similar to a bilateral system. 
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Chapter 1 

Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative condition that presents various 

symptoms, including rigidity, bradykinesia (slowed movements), postural instability and 

tremor [1]. As the disease progresses, motor symptoms can worsen and additional symptoms 

such as freezing of gait (FOG) [2] may develop. A FOG episode is a sudden loss of forward 

body progression despite the intention to move and is often described as a sensation of having 

one’s feet glued to the floor. FOG severely reduces mobility and can cause falls that result in 

serious injury [3,4]. Long term effects of FOG include fear of falling, decreased functional 

mobility, and loss of independence [5–7]. Interventions are needed to reduce the severity and 

occurrence of freezing to enable safe mobility and thereby enhance quality of life.  

 The precise cause of FOG is uncertain; however, triggers that increase the likelihood 

of freezing have been identified. These triggers include turning, walking through narrow 

spaces, stressful situations (such as walking in a crowd), and divided attention [8]. Cueing in 

the form of external auditory, visual, or tactile stimuli has improved gait parameters [9] and 

reduced freeze episode incidence [10]. Rhythmic cues delivered once a freeze occurs have 

been helpful in breaking the freeze and allowing continuation of walking [11,12]. However, 

constant cueing throughout the day may be distracting when a person is not walking, and 

cueing with a pre-set rhythm that is not matched to the intended stepping rhythm may induce 

FOG [13]. A preferred cueing method is one that is adaptive to the person’s walking dynamics 

and the transient need for assistance. 

FOG detection systems based on signals acquired during the freeze episode have been 

used to trigger cues in order to end the freeze and facilitate resumption of walking [14–16]. 

However, these approaches do not prevent FOG. A system that can predict FOG prior to onset 

is needed so that a preventative cue can be delivered.  

Although FOG is typically unpredictable by visual observation, gait data from wearable 

sensors such as inertial measurement units (IMU) (i.e., accelerometer, gyroscope, and 

sometimes magnetometer) have been used to identify differences between normal PD walking 

characteristics and characteristics preceding FOG (Pre-FOG gait). Using features (variables 
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used in machine learning) calculated with data from Pre-FOG and normal PD gait, machine 

learning models can be trained to classify new data as either normal PD gait or Pre-FOG. Thus, 

FOG can be predicted by training a model to recognize data from immediately before a FOG 

episode. Data from body-worn IMU [17–25] and electroencephalography (EEG) [26,27] 

sensors have been used to predict FOG [17–28] based on the identification of movement 

patterns and brain activity known to be associated with Pre-FOG. 

During straight line walking, changes in cyclic gait parameters such as stride length 

and cadence have been linked to imminent FOG [29,30]. Stride length and cadence can be 

easily measured using IMU sensors, and gait anomalies that indicate FOG can be identified as 

disruptions of the steady-state. For example, FOG has been detected by comparing stride length 

and cadence based features to specific thresholds [31,32]. However, distinguishing between 

normal PD gait and FOG is more challenging during activities such as turning and voluntary 

slowing (e.g., prior to stopping) [19]. During turning, cadence changes are not necessarily 

related to FOG, for instance, cadence can vary significantly in PD populations due to turning 

direction [33]. In contrast, plantar pressure features such as foot centre-of-pressure path may 

be useful for identifying Pre-FOG regardless of walking activity. Plantar pressure is a common 

and informative measure in PD gait analysis [34–42] and has recently been used for FOG 

detection [43–45]. Features based on deviations from normal centre of pressure movement 

have also been used in the fall-risk assessment of healthy elderly adults [46,47]. Since a 

complex interaction exists between postural stability and freezing [48], plantar pressure data 

may include subtle parameters linked to FOG that would be difficult to detect using IMU or 

EEG data, such as weight transfer changes between feet or foot centre of pressure movement 

[49]. Therefore, plantar pressure sensors may open new avenues in predicting FOG. In 

addition, in-shoe sensor integration may lead to a self-contained shoe-based system that is less 

obtrusive and thereby enhances end-user compliance.  

FOG characteristics can vary considerably between individuals and between FOG 

episodes for the same individual. Therefore, developing a single model capable of predicting 

FOG for many individuals (person-independent) is challenging and previous models have had 

inadequate prediction performance [17,19]. FOG prediction models optimized for a particular 
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individual (person-specific models) have shown good prediction performance [25,50]; 

however, person-specific models may not generalize well to other individuals and may not be 

suitable for a prediction system intended to be used by a broad population of freezers (people 

with PD who experience FOG). Therefore, there is a need to improve the FOG prediction 

performance of person-independent FOG prediction systems.  

Currently, the best FOG prediction systems use data collected from multiple sensors 

on various body locations. These multi-sensor systems must overcome challenges such as 

sensor synchronization and wireless data streaming between the sensors and a processing unit. 

Multi-sensor systems may also be cumbersome, and time consuming to don and doff, which 

could contribute to low user compliance (i.e., users abandoning the system). To reduce system 

complexity and improve wearability (comfort and user-friendliness), the number of body-worn 

sensors in a FOG prediction system should be minimized. FOG prediction models using single 

sensor input, such as a single shank-mounted accelerometer [21] or waist-mounted IMU [19] 

have been developed; however, prediction performance was worse than models using multiple 

sensor inputs. FOG prediction is a relatively new area of study and additional research is 

required to determine the feasibility of single sensor FOG prediction systems.  

Sensor location may also be important since movement symptoms associated with PD 

can manifest asymmetrically and commonly affect one side of the body more severely. The 

more severely affected side (MSS) and less severely affected side (LSS) are person specific 

and do not necessarily correspond to the dominant leg or hand. Despite the presence of a more 

severe side, the distinction between more and less severely affected sides is rarely considered 

in FOG detection and prediction studies. Thus, there is a need to determine whether the MSS 

or LSS is preferable for instrumentation in a single-sensor FOG prediction system.  

To further improve wearability, sensor integration should also be considered. A single 

plantar pressure sensor insole would be simpler than a multi-sensor system and could be 

integrated into regular footwear to facilitate donning and doffing. 

Various model development methods have been reported in the literature for FOG 

detection and prediction. Frequently, detection and prediction models are set up as supervised 

machine-learning classifiers [51] that utilize labeled datasets containing both FOG and Non-



 

4 

FOG (i.e., normal PD gait) data. Since the models learn to distinguish between classes based 

on the labels assigned to the training data (e.g., FOG class or Non-FOG class), accurate dataset 

labelling is essential. Since FOG characteristics can vary considerably [52], several FOG 

definitions have been used for dataset labeling. Differing definitions can result in multiple 

distinct datasets being produced from the same input data, with each dataset containing a 

different number of FOG episodes. FOG definition differences are especially apparent for data 

containing multiple FOG episodes in rapid succession.  

Two main FOG definitions have been used: event-based definitions [14,16,53–57] and 

periods of gait disruption [32,58–61]. Event-based definitions have a very specific onset (e.g., 

foot fails to leave the ground) and termination (e.g., foot leaves the ground), and multiple 

consecutive FOG episodes separated by a few steps would be labeled as many separate freezes. 

In contrast, the “periods of gait disruption” definitions are more general and relate to functional 

locomotion. For example, cessation of “effective stepping” [58] does not specify exact onset 

and termination timing. Accordingly, multiple FOG episodes in quick succession could be 

considered as a single period of disrupted gait. Currently, evidence is lacking to support the 

decision to use an “event-based” or “period of gait disruption” approach for labeling FOG. 

Given the importance of ground truth labeling in classification studies, and the difference in 

how FOG episodes in rapid succession are handled, the possible impact of using an “event-

based” or “period of gait disruption” definition should be investigated.  

1.1 Rationale 

Given the negative impact FOG can have on mobility, the development of assistive devices to 

predict and prevent FOG is very important. Although FOG is visually unpredictable, slight 

changes in gait characteristics have been observed in the data immediately preceding FOG.  

Pre-FOG walking patterns [17,62] measured using wearable IMUs have been used to predict 

FOG in offline analyses from data collected during walking tasks [17–25]. Currently, the best 

FOG prediction systems use data collected from multiple sensors on various body locations to 

develop person-specific models. Multi-sensor systems are more complex and may be 

challenging to integrate into real-life assistive devices. The ultimate goal of FOG prediction 
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systems is a user-friendly assistive device that can be used by anyone with PD experiencing 

FOG. To achieve this goal, person-independent models with high FOG prediction performance 

and using a minimal number of conveniently located sensors must first be developed.  

Plantar pressure data has been widely used in gait and balance studies including in PD 

populations [34–42], and may be useful in measuring subtle changes in gait associated with an 

upcoming freeze that would be difficult to detect with other sensors. Plantar pressure data has 

been used for FOG detection [43,44]; however, it has never been used for FOG prediction. 

Algorithms further developed for FOG-PD gait, incorporating plantar pressure, may be able to 

differentiate between normal movements and gait disturbances indicating imminent FOG 

better than the current IMU based systems.  

FOG prediction is a relatively new area of study and there is a lack of consensus 

regarding several important aspects of prediction model development. FOG is highly variable 

and different FOG definitions exist to emphasize certain characteristics of freezing. Different 

definitions can lead to confusion regarding what data are considered FOG, especially for FOG 

episodes that occur in rapid succession. The impact of the two most common types of FOG 

definitions (event-based definitions, and periods of gait disruption) used during dataset 

labeling has never been specifically examined in the context of FOG detection and prediction 

model performance.  

Despite the known asymmetry of PD motor symptom manifestation, the difference 

between the MSS and LSS is rarely considered in FOG detection and prediction studies. The 

additional information provided by the MSS or LSS, if any, may be beneficial to FOG 

prediction models, especially if using a single sensor. Given the asymmetry present in PD gait, 

and the advantages of single-sensor FOG prediction systems, research is needed to determine 

if there is a preferred leg for instrumentation.  

FOG can greatly limit the mobility of people with PD. Wearable FOG prediction 

systems could help reduce the negative effects of FOG. However, current FOG prediction 

systems have inadequate prediction performance and use inconsistent FOG definitions that 

make system evaluation and comparison challenging. This thesis addresses the need for a FOG 

prediction system that could be integrated into a wearable device to assist people with PD who 
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experience FOG. This thesis also guides future development of FOG prediction systems by 

examining previously under-utilized plantar pressure sensors and by critically examining 

assumptions and definitions used in existing FOG prediction methods.  

1.2 Objectives 

The objectives of this research were to: 

1) Develop FOG detection and prediction models using IMU and plantar pressure data. 

a) Determine which features are most useful for FOG detection and prediction using 

plantar-pressure data alone, IMU data alone, and combined IMU and plantar pressure 

data. 

b) Compare the performance of models based on plantar-pressure data alone, IMU data 

alone, and combined IMU and plantar pressure data, for FOG detection.  

c) Compare the performance of models based on plantar-pressure data alone and plantar 

pressure data combined with IMU data, for FOG prediction. 

2) Determine if event-based or “period of gait disruption” FOG definitions lead to better 

classification performance for FOG detection and prediction.  

3) Evaluate FOG prediction models that use a single unilateral plantar pressure insole sensor 

and models that use bilateral sensors.  

a) Determine if models using plantar pressure data from a single foot can predict FOG 

with performance comparable to models that use plantar pressure data collected from 

both feet.  

b) Determine if models using plantar pressure data from either the more severely affected 

side (MSS) or the less severely affected side (LSS) produce better classification results 

for FOG prediction. 

1.3 Contributions 

This research improves the field of FOG detection and prediction using wearable sensors in 

several important ways. In this thesis, the following contributions were made: 

1. Compared, plantar pressure, IMU, and combined plantar pressure and IMU 

feature-based models for FOG detection. Plantar-pressure sensors contributed useful 
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information in FOG detection models and can be effectively used for FOG 

identification. The research results indicated that plantar pressure sensors may be used 

alone in FOG detection and do not require the simultaneous use of IMU sensors.  

2. Developed a plantar-pressure based FOG detection system. Only one study prior to 

this research [64] and one in parallel [43] detected FOG from plantar pressure data; 

however, FOG detection performance was not evaluated with respect to time after FOG 

onset. A FOG detection system that detects the freeze immediately after onset would 

be more useful than a model that only detects the end of the episode. In this research, a 

newly developed model was able to detect the transition between Pre-FOG and FOG, 

thus the system detected the very beginning of a freeze episode, which had never been 

done using plantar-pressure features. Detecting freeze onset facilitates early cueing and 

perhaps early resumption of walking. 

3. Developed the first plantar-pressure based FOG prediction system for people with 

Parkinson’s disease1. Prior to this study, plantar pressure had never been used in a 

wearable-sensor based FOG prediction system. Plantar-pressure based model 

performance was found to be comparable to IMU-based models for FOG prediction. 

FOG is a debilitating walking disturbance and prediction of FOG allows time for FOG 

cueing to prevent FOG. A plantar pressure based system can be integrated into regular 

footwear and therefore be easier to use than systems that require multiple sensors at 

various body locations. This ease of use may lead to high user compliance of a wearable 

FOG prediction and cueing system.  

4. Compared the performance of models using ‘event-based’ and ‘period of gait 

disruption’ FOG definitions, and determined that merging multiple FOG episodes 

that occur in rapid succession had little effect on FOG detection and was 

detrimental to prediction. In existing FOG detection and prediction literature, no 

consensus existed for defining FOG as specific gait events (no merging) or as a period 

 
1 A study on FOG prediction using plantar pressure data [63] was conducted by our research team from the 

Movement Performance Laboratory, University of Ottawa and Intelligent Human Machine Systems Laboratory, 

University of Waterloo in parallel with the research described in this thesis.  
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of gait disruption (merging successive FOG). In this research it was determined that for 

detection, there was little difference between merged and non merged cases. However, 

prediction model performance was adversely affected by merging FOG episodes. 

Therefore, FOG prediction models should be trained using event-based FOG 

definitions (e.g., foot leaves or fails to leave the ground) that consider successive FOG 

episodes separately.  

5. Demonstrated that data from one plantar pressure sensor can be used effectively 

in a FOG prediction model. By requiring only one plantar pressure sensor on one foot 

instead of sensors on two feet, a wearable system could be easier to use, less costly, 

and eliminate delays caused by wireless communication and the need for 

synchronization between sensors. This research demonstrated that single sensor plantar 

pressure based models performed as well as two sensor models in nearly all metrics. 

Therefore, single-limb plantar pressure systems are viable, and potentially more 

desirable for FOG prediction. Furthermore, models using data from the LSS predicted 

FOG further in advance than models using MSS data. However, data from the more 

severely affected limb resulted in fewer false positives. Therefore, the preferred limb 

for instrumentation may be person-specific and dependent upon their need for early 

predictions, false positive tolerance, and ability to recover from FOG independently.   

Publications resulting from this research include: 

 

• Pardoel S, Shalin G, Nantel J, Lemaire ED, Kofman J. Selection of plantar-pressure 

and ankle-acceleration features for freezing of gait detection in Parkinson’s disease 

using minimum-redundancy maximum-relevance. Proceedings of the 42nd Annual 

International Conference of the IEEE Engineering in Medicine & Biology Society; 

2020 July 20-24; Montreal, Canada. IEEE; 2020. p. 4034–7.  

• Pardoel S, Kofman J, Nantel J, Lemaire ED. Wearable-sensor-based detection and 

prediction of freezing of gait in Parkinson’s disease: a review. Sensors. 

2019;19(23):5141. 
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• Pardoel S, Shalin G, Nantel J, Lemaire ED, Kofman J. Early detection of freezing of 

gait during walking using inertial measurement unit and plantar pressure distribution 

data. Sensors. 2021;21(6):2246. 

• Pardoel S, Shalin G, Lemaire ED, Kofman J, Nantel J. Grouping successive freezing 

of gait episodes has neutral to detrimental effect on freeze detection and prediction in 

Parkinson’s disease. PLOS ONE. 2021. (Accepted)  

• Pardoel S, Kofman J, Nantel J, Lemaire ED. Prediction of freezing of gait in 

Parkinson’s disease using unilateral and bilateral plantar pressure data. (in preparation). 

1.4 Thesis Outline 

Chapter 1 introduced the field of wearable FOG identification systems, provided background 

information, and stated the rationale, objectives, and contributions of this research. Chapter 2 

provides an overview of Parkinson’s disease, freezing of gait, wearable sensors, features, and 

machine learning algorithms used for FOG detection and prediction and underlines the 

limitations of existing FOG identification methods and directions for improvement. Chapter 3 

provides the data collection methodology including participant details, data collection 

hardware and protocols, and the dataset processing steps. Chapter 4 compares FOG detection 

models developed using IMU and plantar-pressure features. Chapter 5 analyses the effect of 

grouping FOG episodes in rapid succession, including the impact on detection and prediction 

model performance. Chapter 6 develops and compares FOG prediction models using plantar 

pressure data collected from one and two feet and examines the effect of using MSS and LSS 

instrumentation. Chapter 7 presents the thesis conclusions and outlines possible directions for 

future work.    

  



 

10 

Chapter 2 

Literature Review 

2.1 Parkinson’s Disease 

Parkinson’s disease affects approximately 67,500 to 100,000 Canadians in the later stages of 

life, [65,66], with 85% of people with PD over the age of 65 [67]. Symptoms appear at an 

average age of 64.4 years, with medical diagnosis 1.9 years later [65]. The number of people 

with PD is expected to rise given the aging population in Canada [68] and elsewhere. 

2.2 Freezing of Gait 

In moderate to advanced PD, locomotion deteriorates into a flexed upper body posture with 

small shuffling steps and an anteriorly shifted centre of mass. Rigidity and slowed movement 

(bradykinesia) lead to decreased walking speed and step length, poor balance, increased gait 

variability, and in some cases FOG [36,69–72]. 

Freezing of gait (FOG) is a complex and highly variable phenomenon defined as “a 

brief, episodic absence or marked reduction of forward progression of the feet despite the 

intention to walk” [73]. FOG is often described as the sensation of having one’s feet glued to 

the floor and an inability to initiate the next step. FOG becomes increasing likely as PD 

progresses [72,74], and is experienced by approximately 68% of individuals with advanced 

PD [75]. Although typically lasting only a few seconds [52], freezes can lead to falls [3,4,76] 

that can have immediate and lasting effects [5]. Injury, reduced mobility, fear of future falls, 

and decreased independence are all linked to FOG and can all contribute to a reduced quality 

of life [6,7,77,78]. With the cause of PD uncertain [74,79], no imminent cure, and the negative 

effect of reduced mobility on quality of life, research into assistive devices to improve mobility 

for people with FOG is important. 

FOG symptom management commonly involves medication, exercise regimes, cueing 

devices, and in some cases, deep brain stimulation (DBS). Pharmaceutical options vary, but 

the most widely used medication is Levodopa (L-dopa) [1,80]. L-dopa can immediately and 

dramatically improve coordination and motor function for people with PD. However, the 
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effects are temporary and due to the degenerative nature of the disease, medication becomes 

less effective over time necessitating multiple doses per day [81]. Furthermore, an estimated 

40% of people develop medication-induced motor fluctuations after 4-6 years of L-dopa 

treatment [82].  

In cases where medication is ineffective or side effects from high dosages are 

intolerable, DBS may be used. DBS employs surgically implanted electrodes to apply voltage 

to specific brain structures, most commonly the subthalamic nucleus (STN), and despite its 

functional mechanisms being uncertain [83], STN-DBS is a well-established treatment option 

in individuals with tremor and rigidity as main motor symptoms [84–86]. However, the 

effectiveness of STN-DBS to improve postural instability and gait disorders, and more 

specifically to manage FOG, especially ON state FOG (i.e., when the person is on medication), 

remains unclear [87]. 

Given that FOG is resistant to medication, that FOG can occur when a person with PD 

is both ON and OFF medication [88,89], and that DBS requires further investigation [83], 

physical interventions such as cueing and gait training [90] are of particular interest.  

2.3 FOG Identification 

For this research, FOG identification includes both detection and prediction. FOG detection is 

the recognition of the freeze episode after it has begun based on the classification of data 

collected during the FOG episode. In contrast, FOG prediction is the recognition of the freeze 

episode before onset based on the classification of data collected prior to the FOG onset (Pre-

FOG data).  

The current gold standard in FOG detection is video analysis by a clinician or 

movement specialist. However, since FOG is elusive in clinical settings [25] and people cannot 

feasibly be under prolonged video monitoring, wearable systems have been developed to detect 

FOG so that treatment can be assessed and adjusted [91,92]. Real-time systems have also been 

used to detect freezing and activate a cue in an attempt to decrease freeze duration 

[14,16,31,93].  
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2.3.1 FOG Identification Methods Using Wearable Sensors 

Current FOG identification methods vary in complexity, with the simplest methods directly 

comparing variables from wearable sensors to thresholds [32,53,94–99]. Threshold methods 

tend to have poorer detection performance but faster processing time, making them potentially 

useful in real-time systems [16,31,100–103]. To improve threshold-based classification, 

features that can better differentiate between normal PD gait and FOG (or Pre-FOG, the period 

just before the freeze) are desired. Features are numeric values calculated from sensor signals 

that capture a specific characteristic of the data. Features for FOG identification include 

Fourier transform based features [53,58,94–96,104–107], wavelet transform based features 

[27,98,101–103,108–112], various time domain features, and the widely used freeze index 

[94]. Features are discussed further in Section 2.4. 

To further improve FOG detection performance, machine learning techniques can be 

used, such as neural networks [60,110,113–124], decision trees [18,54,55,93,121,125–127], 

random forests [117,126,128], naïve Bayes [126,128], nearest neighbour [126], and support 

vector machines [108,111,119,129–132]. Most machine learning models used for FOG 

classification are supervised models. In supervised classification, data labeled as specific 

classes (e.g., FOG or Non-FOG), are used to train a classification model. Unlabeled test data 

are then given to the trained model, which classifies the data into the appropriate classes. A 

FOG detection model would thus classify data as FOG or Non-FOG based on previous training 

examples (dataset with class labels). In addition, anomaly detection [133] and unsupervised 

machine learning have been used for FOG identification [134] and are discussed in  

Section 2.3.1.4. 

The best machine learning method for FOG detection using wearable sensors has yet 

to be determined, but some of the best classifiers in the literature have been convolutional 

neural networks (CNN), CNN combined with long short-term memory recurrent neural 

networks, support vector machines, random forest, and AdaBoosted decision trees, as 

summarized in Table 2.1. A more complete list of recent research involving FOG detection 

using wearable sensors can be found in Table A.1 (Appendix A).  
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Table 2.1: Summary of top methods from studies that compared different machine learning 

classifiers for FOG detection using wearable sensors. 

Machine learning methods tested Best method Second best Third Best Source 

Random forests, decision trees, 

naive Bayes, k-nearest neighbour 

(KNN-l) (KNN-2), multilayer 

perceptron, boosting (AdaBoost) and 

bagging with pruned decision trees 

AdaBoosted 

decision tree  

(1 s window) 

Random forest 

(1 s window) 

Bagging with 

decision tree  

(1 s window) 

[126] 

Naïve Bayes, random forest, 

decision trees, random tree 

Random forest 

(1 s window) 

Decision tree 

(1 s window) 

Random tree 

(1 s window) 

[128] 

k-nearest neighbour, random forest, 

logistic regression, naïve Bayes, 

multilayer perceptron, SVM 

Support vector 

machine  

(1.6 s window) 

Random forest 

(1.6 s window) 

Multilayer 

perceptron  

(1.6 s 

window) 

[130,135] 

CNN, decision trees with bagging, 

AdaBoosting, LogitBoost, 

RUSBoost, RobustBoost, SVM 

CNN  

(2.56 s window) 

Support vector 

machine  

(2.56 s window) 

RUSBoost  

(2.56 s 

window) 

[121] 

Denoising autoencoder, CNN, 

CNN-LSTM, one-class SVM, SVM, 

random forest, AdaBoosted decision 

tree ensembles 

CNN-LSTM 

(3.2 s window) 

Random Forest 

(3.2 s window) 

CNN (3.2 s 

window) 

[122] 

KNN: k-nearest neighbour, CNN: convolutional neural network, CNN-LSTM: convolutional 

neural network combined with long short-term memory neural network, SVM: support vector 

machine. 

2.3.1.1 Decision Trees 

Decision tree classifiers are a series of binary selections that form branches resembling a tree 

structure. At each decision node, a feature value is compared to a threshold, which determines 

the next decision node. When no decision nodes remain, the sequence stops, and a class label 

is assigned to the sample. Figure 2.1 shows an example of a binary decision tree with five 

decision nodes (N1-N5) that could be used to classify an input sample as Class 0 (Non-FOG), 

or Class 1 (FOG). Each input sample has four features, X1: Dominant frequency (Hz), X2: 

Cadence (steps/s), X3: Stride length (m) and X4: Freeze index.   
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Figure 2.1: Example of a decision tree classifier, where X1-X4 are the input features. 

The node thresholds and branch topology are set during model training by optimizing 

a split criterion, Gini impurity minimization is typically used (Equation 2.1). 

𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑𝑝2(𝑖)

𝑖

 (2.1) 

where i is the class index and p is the fraction of training samples in each subset belonging to 

class i. A Gini impurity of 0 indicates a perfect split. 

To improve performance and reduce overfitting due to excessively deep trees, 

ensemble methods can be used. Ensemble methods train multiple weak-learners and make the 

final classification decision based on the majority vote of the weak learners. Boosting can also 

improve performance. AdaBoosting (adaptive boosting) repeatedly retrains the classifier, 

placing increasing importance on incorrectly classified training examples [19,136,137]. 

LogitBoosting (logistic boosting) [138], RUSBoosting (random undersampling boosting) 

[139], and RobustBoosting [140] are extensions of AdaBoosting that can further improve 

performance [121]. Decision tree based models for FOG detection include ensembles of trees 

and boosting techniques [121,126,128], with performance results ranging from 66.25% to 
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98.35% sensitivity and 66.00% to 99.72% specificity [18,54,55,93,121,125–128]. 

Decision-tree based models have also been used in FOG prediction [18,19], achieving 83.8% 

sensitivity and 82.1% specificity [19].  

 Boosted decision tree ensembles have performed well for FOG detection and have a 

number of advantages. First, unlike other machine learning algorithms such as support vector 

machines and neural networks, the inner workings of decision tree models can be easily 

understood. Second, the input features do not require normalization since decision node 

thresholds are feature specific. Finally, ensemble methods help prevent overfitting, which may 

occur with a single, deeper classifier. For these reasons, ensembles of decision trees were used 

in this research.  

2.3.1.2 Support Vector Machines 

Support vector machines (SVM) are binary (two class) classifiers that trace a hyperplane to 

separate the data points from each class (Figure 2.2).  

 

Figure 2.2: Example of SVM classifier hyperplane, where X1 and X2 are two features. 

In SVM classifiers, the hyperplane separating the classes is found by maximizing the 

margin, which is the distance between the hyperplane and the nearest samples of each class 

(the support vectors) (Figure 2.2). New data points are classified based on the side of the 

hyperplane where they occur. If the training data classes are not easily separable, a kernel can 
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be used to transform the data into a dimension where the data can be linearly separable [137]. 

Machine learning classifiers including nearest neighbours, random forests, logistic regression, 

naïve Bayes, multilayer perceptron, and support vector machines have been compared, using 

waist-mounted accelerometer data acquired from 15 people with PD performing walking tasks 

and activities of daily living in their homes [130]. The machine learning methods were also 

compared using feature sets from three other studies [16,126,128]. The mean sensitivity and 

specificity was highest when using a support vector machine, regardless of the feature set 

[130]. This suggests that support vector machines may be well suited for FOG detection. SVM 

classifiers for FOG detection achieved 74.7%–99.73% sensitivity and 79.0%–100% specificity 

[108,111,119,129–132]. SVM classifiers have also been used in FOG prediction [23,25], and 

reached 89.2% sensitivity [23]. 

The largest drawback of SVM classifiers is that they perform poorly when the classes 

are not separable (i.e., when there is overlap between classes). The data can be made separable 

using kernel functions; however, it is difficult to determine which kernel function to use. 

Furthermore, since the inner workings of the models are difficult to understand, especially as 

dimensionality increases, model tuning can be challenging. Despite being challenging to tune, 

SVM classifiers have been shown to work well for FOG detection and prediction studies and 

were used in this research.  

2.3.1.3 Neural Networks 

Neural networks (NN) are made up of interconnected layers of nodes inspired by the structure 

of neurons in the brain [141]. NN have been frequently used in FOG detection and prediction 

studies. For FOG detection, NN model performance achieved 72.2%–99.83% sensitivity and 

48.4%–99.96% specificity [60,110,113–124]. Neural networks for FOG prediction tended to 

perform slightly worse, reaching up to 86% sensitivity, 80.25% specificity, and 89% precision 

[26,27,135]. Different NN subtypes have been used in FOG detection and prediction, such as 

convolutional [121–124,142] and recurrent [20,21,122,123] networks. Convolutional neural 

networks (CNN) have become popular in numerous applications, including medical image 

analysis, in part due their ability to recognize local patterns within images and because feature 
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extraction prior to classification is not required [143,144]. A convolutional neural network 

performed well for FOG detection [123], achieving 95.1% sensitivity and 98.8% specificity. 

Recurrent neural networks have recently been used for FOG prediction due to their 

applicability to time-series data [20,21]. Recurrent neural networks utilize previous data in 

addition to current inputs during classification [145], thus giving the network “memory” to 

help recognize sequences [146]. Long short-term memory networks, a type of recurrent neural 

networks, have been used in FOG detection [63,122,123] and FOG prediction [20]. For 

prediction, a long short-term memory network achieved over 90% accuracy when predicting 

FOG up to 5 s in advance [20].  

 Neural networks have been shown to work well in FOG detection and prediction. 

However, NN require large amounts of data and time for training. Furthermore, similar to 

SVM, the inner workings of NN models are obscure which makes model tuning difficult. This 

research did not use NN models; however, CNN were used in a parallel research project [63] 

as part of a larger project at the Movement Performance laboratory, University of Ottawa and 

Intelligent Human Machine Systems laboratory, University of Waterloo, which this research 

is also part of.  

2.3.1.4 Unsupervised and Semi-Supervised models 

Since freezing manifests differently for each person, person-specific models usually 

outperform person-independent models [19,55,119,126,129]. However, person-specific 

models may not generalize well to other individuals, which is important for a system intended 

to be used by a broad population of freezers (people with PD who experience FOG). 

Furthermore, in practice, it is difficult to obtain enough data to develop a model for an 

individual. To address the lack of data, unsupervised learning has been attempted. 

Unsupervised methods do not rely on experts labelling FOG episodes. Instead, clustering 

techniques are used to define the classes [134]. Alternatively, an anomaly detection approach 

can be used to define the normal class and then identify abnormalities, such as FOG, that do 

not conform to that class [18,142]. Although unsupervised FOG detection would not require 
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data labelling, few studies have used this approach, and unsupervised model performance has 

been worse than supervised models [142]. 

Recently, transfer learning, and semi-supervised learning have been used to create 

partly personalized FOG detection methods without requiring large amounts of data. Transfer 

learning was used by training a neural network first using grouped data from multiple people 

then adding an additional network layer that was trained using an individual’s data [20]. Semi-

supervised learning methods use labeled data to train a base classifier before updating the 

model in an unsupervised manner [107,116,120]. Semi-supervised methods reduce the need 

for labeled data and preserve the generalization ability from a multi-person data set, while 

allowing person-specific tuning. Semi-supervised learning theoretically combines the 

advantages of both supervised and unsupervised learning. When applied to FOG detection, 

model classification performance achieved 89.2%–95.9% sensitivity [107,120] and 93.1%–

95.6% specificity [107,120]. However, it is unclear if the reported evaluation metrics were 

calculated using a FOG-episode or window based approach [107,120]. The distinction between 

window-based and FOG episode based evaluation is discussed in Section 2.5.1. In addition, a 

2 s tolerance was used that allowed classifications up to 2 s before or after the FOG episode to 

count as correct [120]. Therefore, although transfer and semi-supervised machine learning 

methods seem promising, the value of these methods for FOG detection and prediction remains 

unclear. 

2.3.2 FOG Prediction During Walking 

Five main FOG types have been identified in the literature: start hesitations (FOG during gait 

initiation), turn hesitation (FOG while turning), hesitation in tight quarters (FOG while passing 

through narrow spaces), destination-hesitation (FOG when approaching a target), and open 

space hesitation (FOG without apparent cause while walking in open space) [52,147]. 

Generally, FOG during gait initiation can be detected but not predicted due to a lack of data 

preceding the freeze. In contrast, FOG types that occur during walking usually have several 

steps preceding FOG onset. The walking immediately preceding FOG has been studied, and 

differences have been found between normal PD walking gait and Pre-FOG gait. For example, 



 

19 

prior to FOG, stride length decreases while cadence increases, often leading to festination 

(small, shuffling, ineffective steps) [29,30,74]. To quantify the differences between normal PD 

gait and Pre-FOG, various features have been calculated (Section 2.4). Using these features, 

machine learning models have been trained to predict FOG by detecting Pre-FOG gait [17–

28]. There is no consensus regarding the precise beginning of Pre-FOG gait, and Pre-FOG 

labels are usually assigned to the data preceding FOG onset based on an assumed duration, as 

discussed next.  

2.3.2.1 Prediction Approach and Pre-FOG Duration 

Prediction models are typically developed by labeling the Pre-FOG gait data and training the 

model to detect these Pre-FOG data. FOG episodes are generally unpredictable by human 

observers and labelling the start of Pre-FOG visually is not possible. Instead, a FOG episode 

is visually identified and data prior to the freeze are labeled as Pre-FOG using a fixed period. 

Pre-FOG durations of 5 s [21,26,27] or 2 s [17] have been set prior to model training. 

Alternatively, models have been tested using multiple Pre-FOG durations ranging from 1 to 

6 s, and the best performing Pre-FOG duration was selected [18,20,22,23].  

Optimal Pre-FOG segment duration is difficult to determine. If Pre-FOG walking is 

assumed to be a degradation of gait leading to FOG (threshold theory [79]), data closest to the 

freeze would resemble FOG and the data farther from the freeze would resemble typical PD 

walking without freezing. Using long Pre-FOG durations has produced more false positives, 

presumably due to similarities between Pre-FOG and normal PD gait [19]. Thus, short Pre-

FOG durations may perform better for FOG prediction models since data are taken closer to 

FOG onset and are likely more distinct from typical walking [20]. Relatively short Pre-FOG 

durations of 2-3 s have had better classification accuracy than longer Pre-FOG durations [23]. 

However, short Pre-FOG durations can result in later predictions, which limits the time in 

which a preventative cue can be activated [19]. In FOG prediction models, the choice of Pre-

FOG duration appears to be a trade-off between early prediction and classification accuracy.   

FOG is known to manifest differently in different individuals and the Pre-FOG duration 

that results in the best model performance has differed across participants [17–19,28]. Models 
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with person-specific Pre-FOG durations have performed better than fixed duration models 

[19]. However, the data in the study were collected while participants were OFF medication 

and the dataset included only 37 voluntary stops and 185 windows of pre-stop data. In addition, 

cadence was used to determine the optimal Pre-FOG duration [19], but it is unclear if cadence 

is an appropriate input to identify optimal Pre-FOG duration since cadence naturally varies 

during daily walking (e.g., during turning, stopping, obstacle avoidance, etc.). Further study 

with a larger population of freezers is required. In this thesis, fixed Pre-FOG durations were 

used; however, future studies may benefit from person-specific Pre-FOG duration tuning. 

Various sensors have been used for FOG detection and prediction, with IMUs being 

the most common [51,148] (Table A.1). An IMU consists of an accelerometer, gyroscope, and 

sometimes a magnetometer. IMUs track movement of the limbs or body, and have been used 

for FOG prediction [17–22,24,25]. However, more sensitive sensor systems may improve 

prediction performance by detecting subtle movements or physiological parameters that cannot 

be easily measured with IMUs. For example, FOG prediction has been done by tracking an 

individual’s emotional state. FOG is known to be exacerbated by stressful situations and 

correlations have been found between FOG and physiological variables such as heart rate [149] 

and galvanic skin response (GSR) [28]. GSR is a measure of the skin’s electrical resistance, 

and decreases in response to increased perspiration, which is a physiological indicator of stress. 

Unlike gait-based methods, emotional state measurement may be applicable to all types of 

freezes (e.g., walking, turning, gait initiation), potentially making FOG prediction models more 

versatile. A multivariate Gaussian distribution approach that used GSR features predicted FOG 

with 71% accuracy, an average of 4.2 s before the freeze [28]. The predictions were made 

offline with the future goal of real-time implementation. Although FOG prediction using GSR 

was promising [28], the relevance of GSR was different in each participant. For some people, 

GSR was closely correlated with imminent FOG, whereas for others GSR indicators were 

delayed or absent [28]. In addition, it is unclear whether the usefulness of GSR would change 

following a cue or prolonged system use. Physiological changes in the brain, measured using 

electroencephalography (EEG), have also been used for FOG identification [26,27,60,115]. 

EEG signals combined with a Bayesian neural network have been used to predict FOG with 
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86% sensitivity and 80% specificity [26]. Despite promising results, EEG based systems are 

likely not applicable to an everyday wearable device due to the intricate system of electrodes 

used for data collection and related wearability issues. Simpler, more user-friendly systems are 

needed. 

2.4 Features used for FOG Detection and Prediction 

A variety of features in the time domain and frequency domain have been used in FOG 

detection and prediction (Table A.2). While most of these features were previously established 

in non-PD applications [46,150–152], custom features have been created specifically to detect 

FOG; such as FOG criterion (FOGC) [32,153], GaitScore [154], FOG detection on glasses 

(FOGDOG) [31], k value [59,99,155–158], R value [159], freeze index [94], K freeze index 

[160], and multichannel freeze index [160].  

Feature calculation from wearable sensor data is typically done using data windows. 

Windowing involves segmenting a set of discrete data points into smaller subsets for 

processing. For FOG identification, window lengths range from 0.2 to 32 s [117,161], 

[102,103], with the most common window length being 1 s. Long windows with many sample 

points are desirable for calculating frequency-based features involving the discrete Fourier 

transform (DFT), since the number of sample points in the input signal determine the output 

frequency bin resolution. However, long windows decrease the temporal resolution and do not 

accurately represent short events within the window. In addition, long windows with many 

data points may be slower to process and may introduce unwanted lag between data acquisition 

and classification. Studies comparing multiple window lengths have found that, in general, 

1-4 s windows are preferable [96,98,126,132,135,161]. 

2.4.1 Freeze Index 

The freeze index (FI) is the most widely used feature in FOG classification studies. FOG often 

presents as uncontrolled shaking of the lower-limbs with little or no forward body progression 

[74]. Using plantar force sensors, ground reaction force (GRF) signal frequency content has 

been determined to be within 0-3 Hz during normal walking. In contrast, during freezing, leg 

shaking increased the GRF signal’s frequency range [34]. The freeze index (FI) was defined 
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as the ratio of the area under the power spectral density (PSD) curve for the freezing band (3-8 

Hz) to the area under the locomotion band (0-3 Hz), based on shank acceleration along the 

shin’s longitudinal axis [94] (Equation 2.2). 

𝐹𝐼 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑃𝑆𝐷 𝑐𝑢𝑟𝑣𝑒 𝑖𝑛 𝑓𝑟𝑒𝑒𝑧𝑒 𝑏𝑎𝑛𝑑

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑃𝑆𝐷 𝑐𝑢𝑟𝑣𝑒 𝑖𝑛 𝑙𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑
 (2.2) 

FOG detection using the FI and person-specific thresholds has had good performance, with 

sensitivity of 73.1% and specificity of 81.6% [16,162]. The FI has been used with various 

sensor locations and has been combined with a movement threshold to differentiate walking 

from standing still [16]. The FI is the most well-known and widely used FOG classification 

feature (Table A.2) and has become a comparator for new detection methods [94]; hence, the 

FI was used in this research. 

2.4.2 Time Domain Features 

A variety of time domain features (detailed in Table A.2) have been used for FOG detection 

and prediction. Simple features such as mean [18,28,54,55,57,100,108,118,125,126,129–

131,135] and standard deviation [17,18,23,25,28,54,55,57,100,108,116,118,120,125,126,129–

131,135] have been widely used to quantify signal characteristics from multiple sensor types 

and locations. Features have also been used to measure movement of specific body parts (e.g., 

trunk angular velocity [17], foot velocity [163], medial-lateral angular jerk of the shank [23]). 

Stride parameter features have been used to examine walking; such as, cadence 

[19,58,100,104,164], step length [58,100,108] and symmetry (left-right cross correlation of 

medial-lateral angular velocity [17,57,61]). Other features were focused less on typical gait 

measurements. For example, entropy has been used to quantify the randomness in acceleration, 

gyroscope and EEG signals associated with freezing [18,19,23,27,57,114,125–128,132,134]. 

Other features combined gait variables, such as FOGC (freezing of gait criterion) [32] and 

FOGDOG (freezing of gait detection on glasses) [31], which used cadence and stride length to 

detect the progressive shortening and quickening of steps that has been observed prior to FOG 

[29,30,74]. An advantage of time domain features is that they are typically easily understood, 
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which facilitates model interpretation. However, some FOG characteristics, such as trembling 

of the limbs, can be better measured using frequency-based features.  

Time domain features are usually calculated using either fixed-duration windows or 

windows normalized to steps such that each window contains one step or stride [19,23,56,64]. 

The distinction between fixed-duration windows and step normalized windows, (where each 

step is processed when the step is completed), is potentially very important, especially for real-

time systems where both classification performance and classification speed are critical. For 

example, calculating stride duration from a window that is synchronized to the beginning and 

end of the stride (approximately 1 s) could result in the delayed detection of an event that 

occurred during the stride. Other features such as step length, cadence, cadence variation, stride 

peaks, and FOGC may share the limitations of step-synchronized windows, depending on the 

feature calculation method. In contrast, features extracted from fixed duration windows can be 

calculated as soon as the data window is available, which is independent of the gait cycle and 

determined by the size of the shift between consecutive sliding windows. Using a sliding 

window shift that is shorter than a stride allows a finer resolution in the time domain since 

multiple classifications can be made within each stride. For this reason, the features used in 

this research are fixed duration windows rather than windows synchronized to gait.  

2.4.3 Frequency Based Features 

For FOG detection and prediction, frequency based features are used to quantify signal 

characteristics present in the frequency domain and include standard deviation in frequency 

domain [56,129,132,135], spectral density center of mass [27,56,114,118,119,129,130,135], 

peak amplitude and corresponding frequency [95,132,165], power of the signal in specific 

frequency bands [16,25,54,55,93,105,118,119,125,126,131,165–167,169], and the freeze 

index [15–17,53,93,94,96,100,104–108,116,118–120,125,126,132,162,164,166,167]. While 

Fourier transforms are typically used to convert signals from the time domain to frequency 

domain, Fourier transform limitations have led to the increased use of wavelet approaches 

[27,98,101–103,108–112]. 
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2.4.3.1 Fourier Transform 

The discrete Fourier transform (DFT) approximates a given signal through summation of 

scaled sine waves (Equation 2.3). This is used to examine the distribution of the signal power 

across different frequency bands. For FOG detection and prediction, DFT has been calculated 

in a given window from acceleration, derivative of knee angle or angular velocity in the sagittal 

plane and FI [56,58,94,132]. The DFT has also been used to preprocess data windows prior to 

being classified using a CNN [121,122]. 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−
𝑖2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

  

𝑘 = 0,… ,𝑁 − 1 

(2.3) 

where x is an input sequence of N-1 equally spaced samples and X is the output of the same 

length. Since DFT represents a given signal as a summation of constant sine waves, signals 

that are short relative to the length of the window are not well represented. Large time windows 

are desirable since more data points creates higher resolution in the frequency domain. 

However, if the window size is too large, entire FOG episodes can be missed, since short 

periods of higher frequencies that may correspond to FOG, are difficult to represent using 

constant sine waves. The resulting frequency spectrum will contain mostly the lower 

frequencies, which are relatively unchanging within the window, and are therefore well 

represented in the frequency domain [16]. Larger windows also require more processing, 

which would be a disadvantage in a real-time system. Generally, window lengths of 1-5 s are 

used [16,126,130], which is considered a good balance between resolution in the frequency 

domain, resolution in the time domain (being able to detect short freezes), and computation 

time.  

Despite window length limitations, the DFT remains widely used in FOG detection 

[14–16,94,104,121,122,125,126,164,168], especially for the freeze index [15–

17,19,24,25,53,57,61,93,94,96,100,104–108,116,118–120,125,126,132,164,166,167,169], 

and is included in this research. 



 

25 

2.4.3.2 Wavelet Transform 

Wavelet transforms (WT) use short wave segments called wavelets instead of constant sine 

waves. Through the choice of starting wavelet, shifting in time, and scaling in frequency, 

wavelets could better capture sudden movements sometimes present in FOG, and have been 

used in FOG detection systems [98,101,102,108,110,111,164].  

The discrete wavelet transform (DWT) uses low-pass and high-pass filters to generate 

vectors of coefficients. The low pass filter generates the approximation coefficients, and the 

high-pass filter gives the detail coefficients. Mean, minimum, maximum and variance of the 

coefficient vectors have performed well as FOG identification features [27,101–103,108–112]. 

Therefore, WT features are used in this research.  

2.4.4 Feature Sets and Feature Selection 

Individual FOG detection features tend to be tuned to specific types of freezes (e.g., FOG 

during straight line walking) [32]. To be applicable to more walking conditions, and more 

representative of the wide range of FOG manifestations, a larger set of features can be 

considered. Time domain features have been used to quantify gait parameters such as step length 

[58,100,108] cadence [164], asymmetry [18], and peak limb angular velocity [116,120], 

whereas frequency domain features can capture small movements characteristic of FOG, such 

as trembling in specific frequency bands [94]. Combining multiple features from the time and 

frequency domains can provide the benefits of both feature groups. However, an excessive 

number of features or complex features requiring many calculation stages may induce 

unacceptable delays when computing power is limited, as in many wearable systems. Using a 

minimal number of easily calculated features is desirable; however, too few or overly simple 

features may adversely impact classification performance and classifier generalizability. To 

address the delicate balance of classification performance and classification speed, feature 

selection algorithms can be used to determine the best features from a larger set. Algorithms such 

as Relief-F [170] or correlation-based approaches can be used to rank features according to their 

relevance so that the least relevant can be eliminated [171]. Feature selection is commonly used 

in FOG identification studies [17,18,26–28,55,60,109,111,112,114,115,118,119]. In this thesis, 
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a set of features in the time and frequency domains, were calculated, followed by feature 

selection to eliminate the least useful features and reduce the number of input features. 

2.5 Limitations and Challenges of Current FOG Identification Methods 

2.5.1  FOG Detection Methods 

Some FOG detection methods presented in Section 2.3.1 and Table A.1 achieved excellent 

performance, with sensitivity and specificity above 95% [22,43,56,123,126,132,155]. Despite 

high sensitivity and specificity, FOG detection studies have used different performance 

metrics, which complicates performance comparisons. For example, a FOG detection system 

used to trigger a real-time cue during walking might emphasize freeze onset detection. This 

detection system might attempt to classify every data point or window as FOG or Non-FOG 

[16,162,166,167]. Incorrect classification of individual windows would influence performance 

metrics such as sensitivity and specificity. In contrast, a long-term monitoring system may treat 

each freeze occurrence as a binary event and evaluate whether or not the FOG episode was 

successfully detected [43,129,131]. In episode-based evaluations, the model is not required to 

identify each window correctly; instead, some incorrectly classified windows may be ignored 

so long as the episode is detected. Thus, compared to window-based evaluations, FOG episode 

evaluations can lead to better performance results for the same model. Model performance 

evaluations can also be influenced by various experimental procedures and underlying 

definitions. Two examples are ignoring FOG shorter than 3 s [128], and calculating specificity 

using only data from participants who did not freeze during testing, which may not reflect the 

model’s true performance when used on freezers, since gait from people who froze would 

likely generate more false positives [132]. Differences in evaluation metrics and procedures 

make comparisons of FOG detection method performance more difficult. 

When evaluating a classification system, ideally, different data should be used for 

training and testing to prevent model performance overestimation that can occur when the 

model is evaluated with data previously used in model training [21,26,27,60,93,109,112–

114,121,132,160,172]. Cross-validation is often used when dataset size is limited [16–

18,54,55,116,119,120,125–131,134,142,162,166,167]. For FOG research, leave-one-person-
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out (LOPO) cross-validation is the most common. In LOPO cross validation, model training 

uses data from all but one participant and model testing uses data from the remaining 

participant. The process is repeated for each participant and the model performance results for 

each person are averaged. Some FOG identification studies, often more preliminary in nature, 

used ad hoc optimization to tune parameters and set thresholds [28,43,96,98,105,156–

158,161,173]. Ad hoc optimization, although useful for initial system assessment, is not a good 

indicator of classifier performance, and should be followed by a more robust evaluation 

scheme, such as cross-validation. 

For people with PD, the antiparkinsonian medication state (ON or OFF) can have a 

substantial effect on motor control, gait patterns, physical abilities, and FOG. Freezing occurs 

more frequently in the OFF state than the ON state. In the OFF state, smaller shuffling steps 

are common, whereas in the ON state, many people can walk fairly normally. Since freezing 

occurs more frequently when OFF medication, FOG identification models are often developed 

using OFF medication walking data due to the increased number of FOG episodes available 

for training. However, during daily walking, individuals are typically ON medication to enable 

their activities of daily living. Therefore, using OFF medication data to train a FOG 

identification model that will be used during the ON medication state may be detrimental to 

classification performance [23]. Given that medication is needed in PD management, and any 

wearable cueing device would primarily be used while participants are ON medication, in this 

research, data collection was performed while participants were in the ON medication state.  

Following data collection, FOG episodes are typically visually identified and labeled. 

These labels serve as the ground truth for model training and system validation. Even though 

FOG is a well-defined clinical phenomenon [73], the criteria for defining the beginning and 

end of FOG episodes are not always described in FOG identification studies. Differing FOG 

definitions make comparisons between studies difficult.  

Based on the FOG detection literature, this research used sensitivity and specificity as 

evaluation metrics, leave-one-out cross validation, and data collected while participants were 

in the ON medication state. 
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2.5.2 FOG Prediction Methods 

FOG prediction studies have utilized various machine learning methods including decision 

trees [18,19], support vector machines [23,25], k-nearest neighbours [22,23,25], linear 

discriminant analysis [17,22,23], neural networks [20,21,26,27] and statistical tests [24]. While 

good classification performance has been reported [22–24,26], existing FOG prediction 

models are somewhat preliminary in nature and real-time prediction has not been reported. 

Additionally, FOG prediction studies are generally not evaluated in terms of a real-life 

application. For instance, sensitivity and specificity are often reported for Pre-FOG window 

classification; however, the number of episodes predicted, how early the predictions occurred, 

and the number of false positives are frequently absent or under reported. Therefore, there is 

uncertainty regarding how far in advance FOG can be predicted. Predictions as early as 6 steps 

prior to FOG onset for OFF medication participants and 4 steps prior to FOG onset for ON 

medication participants have been reported [23]. However, the data were collected during the 

walking portion of a 7 m timed up and go test that involved mostly straight-line walking and a 

single turn. The prediction performance for more complex walking involving obstacles and 

multiple turns is therefore unknown. Other studies, that specifically calculated the delay 

between FOG identification and freeze onset, showed that the majority of predictions were 

made 0.5 s before onset [44], and that earlier classifications accounted for fewer predictions 

[25]. However, many studies did not differentiate between Pre-FOG duration and prediction 

time. As previously stated, FOG prediction is typically done by detecting Pre-FOG data. 

Crucially, Pre-FOG duration does not necessarily reflect the prediction time. Thus, if a model 

is trained using data from 5 s before FOG, this does not necessarily mean that the model can 

predict FOG 5 s before FOG onset [20,26,27]. In this thesis, the delay between FOG 

predictions and FOG onset was calculated to quantify how far in advance predictions were 

made.  

Current FOG prediction models are mostly person-specific [19,20,24,28], or use a cross 

validation procedure in which a single person’s data is in both training and testing datasets 

[22]. Tuning classifiers to individuals has been shown to improve FOG identification 

performance [19,55,119,126,129]; however, this may be challenging for real-life wearable 
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device implementation since a calibration session would be required to collect person-specific 

data before the model could be tuned to the individual. More importantly, current models are 

unable to achieve real-time FOG prediction. Therefore, models should first be person-

independent, so that robust and versatile algorithms can be created. Once real-time prediction 

has been achieved, personalization could be implemented to tune the models to boost 

performance. In this research, the models are person-independent, and personalization could 

be investigated in future work.  

2.6 Potential Improvements for FOG Detection and Prediction 

2.6.1 Plantar Pressure Measurement for FOG Prediction 

Plantar pressure is a common and informative measure in PD gait analysis [34–42] and has 

recently been used for FOG detection [43–45]; however, plantar pressure has not been explored 

in FOG prediction. Ground reaction force (GRF) from pressure sensors under the foot, usually 

under heel and forefoot, have been used to calculate stride parameters that are related to FOG 

[36,39,41,42,174]. Rapid GRF changes caused by shaking of the legs during freezing have 

been useful in characterizing FOG [34,36], and contributed to creating the FI [94]. With 

multiple pressure sensors under each foot, more descriptive features, such as the centre of 

pressure, can be calculated to detect abnormal walking [38] or to identify specific activities 

such as gait initiation and termination [175]. Recently, high resolution pressure sensing insoles 

have been used in the fall-risk assessment of healthy elderly adults [46,47]. Features extracted 

from the pressure sensing insoles, such as deviations of the centre of pressure (COP) path 

[46,47], may be applicable to FOG identification and may be especially useful in 

differentiating between normal PD gait and imminent FOG. Features extracted from wearable 

in-shoe plantar-pressure sensors that have been used to characterize or detect FOG in PD, and 

asses elderly fall risk [46,47] are presented in Table A.3.  

While gait parameters such as cadence and stride length have been used to predict FOG 

offline in steady state walking, these measures may be less relevant to FOG prediction during 

more transient activities such as turning or voluntary slowing. In contrast, foot centre of 

pressure path features could potentially be used to identify Pre-FOG regardless of the walking 
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activity. Plantar pressure data has been used in models that detected differences between fallers 

and non-fallers in healthy elderly adults [46], and has been used in FOG detection [43–45]. 

Therefore, plantar pressure data may be helpful for FOG prediction [44,176], and are used in 

this research. 

2.6.2 FOG Definition and Merging  

FOG detection and prediction models are frequently set up as supervised machine-learning 

classifiers [51] that utilize training datasets containing both FOG and Non-FOG data (i.e., steps 

without freezing). Therefore, accurate manual labelling of the dataset as FOG or Non-FOG is 

essential. Unfortunately, FOG characteristics can vary considerably between individuals and 

between FOG episodes for the same individual. FOG can occur with small shuffling steps, 

trembling in place, or with a complete lack of movement (akinetic) [52]. The FOG definition 

“an episodic inability (lasting seconds) to generate effective stepping…” has been used by 

other researchers [53,58] and encompasses the shuffling, trembling in place, and akinetic FOG 

subtypes [52]. However, the definition relies on subjective judgement of “effective” walking 

and, even when performed by experts, visual FOG assessment is prone to inter-rater 

discrepancies, especially between different clinical teams [177]. Despite this, expert 

assessments likely capture the majority of gait deviations and are sufficient for FOG detection, 

as evidenced by good detection performance of the resulting models [27,32,58–60,95,96,99–

102,104,108,115,117,118,120,125,128,131,153,158,159,161,163,165]. However, FOG 

prediction cannot be approached the same way since the period before a freeze cannot be easily 

identified visually. Instead, FOG prediction ground truth is typically identified by selecting a 

period of walking data immediately before FOG onset (as described in Section 2.3.2.1). Models 

are trained to differentiate between this Pre-FOG gait, FOG episodes, and normal PD walking 

[51]. Appropriate ground truth labelling can improve the model training dataset and allow 

reproducibility and comparison between different studies. 

Table 2.2 presents various definitions used for FOG ground truth labeling in FOG 

detection and prediction studies. Key phrases such as “episodic inability to generate effective 

stepping” [58], or “stop in alternating left-right stepping” [14,54,55], can be subjective and 
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leave room for ambiguity regarding what is considered an “effective” step, especially when 

activities other than straight line walking are performed, where normal “alternating left-right 

stepping” is intentionally disrupted (e.g., changing speed or direction, obstacle avoidance). 

Ambiguity also occurs for festination and small shuffling steps, which are a common FOG 

subtype [52] and may not be considered as freezes according to some definitions [53,57]. Table 

2.2 also presents definitions used in FOG detection and prediction studies that are more specific 

or encompass multiple FOG subtypes. The definition used by [57] lists different ways a freeze 

might present (e.g., no foot movement, heel lifting while toes stay on the ground, irregular 

turning rhythm while the pivot foot stays on the ground [57]), whereas [32,56,153,159] use 

multiple FOG labels according to different types or severities of FOG instances. 

Table 2.2: FOG definitions in FOG detection and prediction studies. 

FOG Definitions Source 

“The beginning of a FOG event was detected when the gait pattern (i.e., alternating 

left–right stepping) was arrested, and the end of FOG was defined as the point in time 

at which the pattern was resumed” (authors reference [52]) 

[16] 

“…the moment of arrested gait pattern, i.e., stop in alternating left-right stepping, as 

start of a FOG episode, and the instant when the patient resumed a regular gait pattern 

as end of FOG”  

[14,54,55] 

“…an episodic inability to generate effective stepping” (authors reference [178]) [58] 

“… an unintentional and temporary phenomenon where the feet failed to progress” 

(authors reference [52,178,179]) 

[53] 

“… an absolute cessation or marked reduction of forward progression of the feet 

despite the intention to walk” (authors reference [73]) 

[60] 

“… paroxysmal interruption of stride or marked reduction in forward feet progression” [59] 

“… an epoch of time in which patients suddenly became unable to make a turn inside 

a taped 1 m2 box on the floor, despite the intention to do so” (authors reference [60]) 

[115] 

“…when the gait pattern (alternating right and left steps) was arrested or if it appeared 

as if they were trying unsuccessfully to initiate or continue locomotion/turn. The end 

of an episode was defined as the time when an effective step had been performed and 

followed by continuous locomotion.” 

[61] 

Definitions including subtypes 

“(1) slight modification of the gait with no falling risk (green); (2) main gait 

modification with falling risk (orange); (3) FOG gait is blocked with or without 

festination (red).” 

[32,153] 

“… an intention to walk without movement of the feet, or as heel lifting while toes stay 

on the ground, or an irregular turning rhythm while the pivot foot stays on the ground” 

(authors reference [52,58,180]) 

[57] 

“… each stride is classified at the output as one of the six types: normal, short+ (similar 

to, but shorter than ‘normal’ strides), short- (very short forward movements, up to 20 

[56] 
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cm, with frequencies of the movement in the low (locomotor) band), FOG+ (FOG with 

knee trembling/tremor), FOG- (FOG with complete motor block), and progressive 

shortening of stride while turning (PST).” * 

No definition provided, however, a distinction is made between trembling in place and 

shuffling forward FOG subtypes.  

[159] 

* Locomotor band refers to the 0 – 3 Hz frequency range. 

The definitions in Table 2.2 can be broadly grouped as event-based [14,16,53–57] or 

periods of gait disruption [32,58–61,115,153]. The event-based definitions focus on specific 

behaviors of the limbs, such as cessation of foot advancement [53] or failure of the stepping 

foot to leave the ground [57]. Event-based definitions have a very specific onset (e.g., foot fails 

to leave the ground) and termination (e.g., foot leaves the ground); however, shuffling FOG or 

multiple consecutive FOG episodes separated by a few steps would be labeled as many 

separate freezes that may be more appropriately classified as a single FOG episode. In contrast, 

the “periods of gait disruption” definitions are more general and relate to functional 

locomotion. For example, cessation of “effective stepping” [58] does not specify exact onset 

and termination timing. Accordingly, shuffling FOG and multiple FOG episodes in quick 

succession could be considered as a single period of disrupted gait.  

In FOG detection and prediction studies, FOG episodes are labeled and datasets are 

subjected to various assumptions (e.g., ignoring short FOG [57,128]) and pre-processing steps 

(e.g., merging FOG episodes [57] or window homogeneity requirements [121]) to refine which 

frames or data windows are considered as FOG. Since very short duration FOG can be difficult 

to detect using automatic systems [58] or could be considered a minor gait disturbance, some 

researchers exclude FOG episodes shorter than 1 s [57], or shorter than 3 s [128]. In addition 

to explicitly eliminating FOG episodes based on a duration, short FOG can also be excluded 

by using a low temporal resolution (e.g., labels applied at one second intervals or longer 

[113,163]). Similarly, some FOG episodes can be excluded through windowing. If the 

windows are required to be homogeneous (i.e., composed entirely of data with the same label) 

then all FOG episodes shorter than the chosen window duration are excluded. In many cases, 

the chosen window length is a compromise between being short enough to capture brief FOG 

episodes and long enough for specific feature calculations, such as FI [51,94]. 
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Excluding short FOG may overlook periods of multiple FOG in rapid succession. For 

example, a person may freeze, take a few ineffective steps while attempting to resume normal 

walking, then freeze again. According to an event-based FOG definition, multiple FOG 

episodes in quick succession would be labeled as individual FOG episodes with a few steps in 

between. If a low temporal resolution for labelling is used (i.e., labels applied at long time 

intervals), a minimum FOG duration is imposed, or windows are required to be homogeneous, 

entire sequences of short FOG episodes may be excluded or labeled as normal gait. However, 

multiple short FOG episodes may be relevant gait disturbances that should be detected and 

considered in a cueing system. A FOG definition based on a period of gait disruption would 

consider a sequence of multiple short FOG episodes as a single FOG occurrence. Combining 

many short FOG episodes into one FOG occurrence would be less likely to result in discarded 

data due to windowing or the labeling interval.  

 Various approaches can be used to merge multiple FOG episodes that occur in quick 

succession. For instance, FOG episodes separated by less than a specific time threshold can be 

merged [57]. Alternatively, windows could be considered to be FOG if they contain at least 

50% FOG data; therefore, as the window moves through the data, two FOG episodes separated 

by a short Non-FOG period, such as one or two small steps, could result in the windows all 

being labeled as FOG [121]. 

Currently, evidence is lacking to support the decision to use an “event-based” or 

“period of gait disruption” approach for classifying FOG. This research investigated the effect 

of merging successive FOG on freeze detection and prediction in PD. The outcomes can help 

guide the development of appropriate classification models for wearable FOG identification 

systems. 

2.6.3 Single Sensor Instrumentation for FOG Prediction 

Accelerometers and gyroscopes are the most commonly used sensor type for FOG detection 

and prediction and have demonstrated accurate detection using wearable sensors [51,148]. To 

improve wearability, researchers have developed systems that can use everyday devices and 

clothing such as smartphones [104,125,164,168], smartwatches [55], pants [95,165] and shoes 
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[43,161]. Smart-device and clothing-integrated systems are less cumbersome than systems 

requiring multiple sensors on various body parts and may lead to higher user satisfaction and 

compliance. A drawback of smartphone and clothing-based systems is signal noise that may 

be generated by sensor movement relative to the body. In-shoe sensors, such as plantar pressure 

sensors, are less susceptible to this type of noise since there is little relative movement between 

the shoe and foot.  

FOG prediction systems would benefit from increased wearability and simplicity. 

Attempts have been made to reduce prediction system complexity by using a single sensor 

input, such as a single shank-mounted accelerometer [21] or a waist-mounted IMU [19]. 

However, additional research is required to determine the feasibility of single sensor FOG 

prediction systems. A single sensor system would have several advantages compared to a multi 

sensor version such as eliminating the need for sensor synchronization, reducing the number 

of sensors worn, reducing the amount of data to acquire and process, and ultimately allowing 

simpler classifiers that could run on local microprocessors. Research is needed to determine if 

single sensor FOG prediction systems could produce models comparable in performance to 

multi-sensor systems. 

Parkinson’s disease movement symptoms manifest asymmetrically and commonly 

affect one side of the body more severely. The more severe side (MSS) and less severe side 

(LSS) are person specific and do not correspond to the dominant leg or hand. Despite the 

presence of a more severe side, the difference between MSS and LSS limbs is rarely considered 

in FOG detection and prediction studies. The distinction between the MSS and LSS may not 

be necessary for FOG detection systems since both the MSS and LSS provide sufficient 

information for FOG detection, as evidenced by single sided FOG detection studies that 

identified FOG without considering MSS and LSS [94,110,125,161] or utilized data from the 

Daphnet dataset [94], which consists of data from the waist, and left leg only [51]. Unlike FOG 

detection studies, FOG prediction studies frequently assume that walking patterns gradually 

degrade prior to FOG. This degradation is difficult to identify and FOG prediction studies 

produce lower sensitivity and specificity than FOG detection models using similar methods 

[44] (Table A.1). The additional information provided by the MSS or LSS, if any, may be 
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beneficial to FOG prediction models, especially if using a single sensor. Given the asymmetry 

present in PD gait and the advantages of single-sensor FOG prediction systems, there is a need 

to determine if there is a preferred leg for instrumentation. This research aimed to determine 

whether single MSS, LSS, or bilateral plantar-pressure data are most useful for FOG 

prediction. 

2.7 Summary  

Automatic detection and prediction systems that use data from wearable sensors could reduce 

FOG incidence and severity by identifying FOG in real-time and providing an assistive cue. 

FOG detection and cueing after freeze onset has been reported [14,16,31,93]; however, to 

prevent FOG, the episodes must be predicted. FOG prediction is more challenging than 

detection and has only been performed in offline analyses [17–28]. To achieve the eventual 

goal of a real-time FOG prediction system, FOG prediction systems, which are currently, 

mostly IMU-based, must first be improved. Plantar pressure data may improve FOG prediction 

systems by providing features that represent subtle gait parameters that would be difficult to 

detect with IMUs or other wearable sensors. 

Datasets used to train machine learning models often use ground truth FOG labels 

generated based on visual observation of specific lower limb movements or an overall inability 

to walk effectively. FOG definition ambiguity may affect model performance, especially with 

respect to multiple FOG in rapid succession. There is a need to determine whether merging 

FOG in rapid succession is beneficial to FOG identification systems.  

 Simplicity and ease of use are important factors for wearable assistive devices. FOG 

prediction systems need to be simplified before an everyday wearable FOG prediction system 

can be created. Eliminating unnecessary sensors and integrating the sensors into footwear may 

be an effective way to produce a simpler and more user-friendly wearable FOG prediction 

system.  Research is needed to determine whether plantar pressure sensor insoles can be used 

to predict FOG and determine if it is preferable to instrument the more severely affected limb, 

the less severely affected limb, or both.  
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Chapter 3 

Methodology 

3.1 Overview  

Chapter 3 describes the data collection, pre-processing, and cross validation steps that were 

common to all analyses in this thesis. The additional, analysis-specific, steps are explained in 

Chapters 4-6, including model training setup and model evaluation. 

 To fulfill the thesis objectives, a dataset containing labeled FOG episodes was required. 

Since no publicly available FOG dataset included data from the desired sensor systems, a new 

dataset was collected from a group of participants with Parkinson’s disease (Section 3.2). 

Plantar pressure and IMU data were collected while participants walked a freeze-provoking 

path (Sections 3.3 and 3.4). Once collected, IMU and plantar pressure data were synchronized. 

FOG instances were visually annotated and Pre-FOG labels were assigned to the data 

immediately preceding each FOG episode (Section 3.5). Data were divided into overlapping 

1 s windows and grouped into target and non-target classes in preparation for binary classifier 

development (Section 3.6). A set of diverse features including time-domain, Fourier transform, 

and wavelet transform based features were calculated from each window (Section 3.7.1). The 

importance of each feature was assessed using mRMR and Relief-F feature ranking 

(Section 3.7.2), and the top ranked features were used to train models using a modified LOPO 

cross-validation (Section 3.8). The final steps of model development and evaluation varied 

between analyses and are described in Chapters 4-6. 

3.2 Participants 

A convenience sample of people with PD were recruited through the Ottawa-Outaouais region 

Parkinson’s community. To be eligible for this research, participants were required to have a 

confirmed diagnosis of PD, experience freezing at least once a week, and be able to walk 

independently (without a walking aid). Participants must not have undergone deep brain 

stimulation or have conditions other than PD that impaired their ability to walk. Eleven males 
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volunteered to participate in the study. Participants had a mean age of 72.7 ± 5.5 years and 

mean time since PD diagnosis of 10.5 ± 4.8 years (Table 3.1).  

Data were collected during a single visit to the Movement Performance Laboratory at 

the University of Ottawa. Participants were on their normal antiparkinsonian medication 

schedule and dosage. Data collection was typically scheduled in the hours prior to the 

participant’s next dose so that the medication would be wearing off during testing and FOG 

would be more likely to occur. Participants were assessed using the New Freezing of Gait 

Questionnaire (NFOG-Q) [181], Self-Reported Fall Questionnaire, and the Movement 

Disorder Society Unified Parkinson’s Disease Rating Scale motor examination (UPDRS III) 

[182], (Table 3.1). Participants were also asked whether their PD symptoms predominantly 

affected the right or left side of their body and which direction tended cause freezes more 

frequently when turning. Ethics approval was obtained from the University of Ottawa (H-05-

19-3547) and University of Waterloo (40954), and all participants provided informed written 

consent. 

The participant details, questionnaire responses, and the results of the data collection 

and labeling (Section 3.5) are presented in Table 3.1. 

Table 3.1: Participant information and questionnaire responses. 

Participant Age 

(Years) 

More 

severely 

affected 

side 

Time since 

PD 

diagnosis 

(years) 

NFOG-

Q score 

UPDRS 

III score 

Number 

FOG 

episodes 

Average 

FOG 

duration 

(s) 

P01 67 Right 16 14 10 49 0.69 

P02 80 Left 11 21 20 35 2.64 

P03 71 Left 11 17 13 14 1.06 

P04 64 Left 10 4 18 0 0 

P05 70 Right 14 20 13 0 0 

P06 68 Left 19 22 29 10 4.23 

P07 78 Right 5 15 16 221 1.52 

P08 70 Right 12 17 20 24 1.51 

P09 80 Left 10 18 18 9 0.75 

P10 80 Left 2 4 15 0 0 

P11 72 Right 5 19 20 0 0 

Mean 

SD 

72.7  

5.5 

 10.5 

4.8 

15.5  

5.9 

17.5 

4.8 
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3.3 Biosignal Measurement, Sensors and Equipment 

3.3.1 IMU Sensors 

IMU data were collected using the Shimmer3 (Shimmer, Dublin, Ireland) system (Figure 3.1a). 

Four wireless sensor units (65 mm x 32 mm x 12 mm, 31 g) recorded 3-axis acceleration (± 4 g) 

and gyroscope data (± 500 dps). Sensor units were placed on the medial side of each shank, 

just above the malleolus, and lateral side of each thigh, just above the knee (Figure 3.1 b). IMU 

data were collected at 512 Hz (downsampled to 100 Hz in post processing) and streamed to a 

computer running the ConsensysPRO v1.6.0 software for processing. Synchronization 

between the four sensor units was done automatically in the ConsensysPRO software. 

 

Figure 3.1: Shimmer IMU system: (a) sensor unit, (b) locations on the body. 

3.3.2 Plantar Pressure Sensing Insoles 

Plantar pressure was measured bilaterally with F-Scan insole sensors (Tekscan, Boston, MA, 

USA) [183] (Figure 3.2). These insoles are thin (< 1 mm) and flexible with a resolution of 3.9 

pressure sensing cells per cm2 [184]. A new pair of insoles was used for each participant and 

trimmed to fit inside their regular shoes. Insole sensors were connected to a receiver unit 

strapped to the lateral shank (Figure 3.2 c), which was tethered to a laptop computer. Plantar 

pressure data were collected at 100 Hz and recorded using the FScan Research v7.50 software. 
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Figure 3.2: F-Scan insole plantar-pressure sensors: (a) insole sensor, (b) sensor inside running 

shoe, (c) sensor system when worn. 

3.3.3 Calibration and Equilibration 

The IMU sensors were calibrated using the Shimmer 9DoF Calibration software. 

Accelerometer calibration consisted of sequentially placing the sensor such that each axis was 

aligned with the direction of gravity. The gyroscope calibration involved slowly rotating the 

sensor around each axis. IMU calibration was performed once prior to data collection and was 

not repeated between participants. 

The FScan insoles were equilibrated prior to participant arrival and calibrated once 

installed into the participant’s shoes. Equilibration used a pressurized air bladder to apply a 

uniform force across the entire insole; the software then adjusted the constants for each sensor 

cell to equalize the output pressure. The equilibration was performed at 138, 276, and 414 kPa 

[185]. The FScan step calibration was performed immediately prior to the walking trials. 

Participants were weighed using a digital scale. Next, the participants were asked to stand with 

all their weight on a single foot and then shift to stand on the other foot. This was done for both 

feet.  
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3.4 Data Collection Protocol 

For all walking trials, the participants wore the Shimmer IMU sensors (4 sensor units), and the 

FScan plantar pressure sensors (2 insoles), as described in Section 3.3. Participants completed 

up to 30 self-paced walking trials following a pre-determined path approximately 25 m in 

length. The walking task path started and ended in a seated position and involved multiple 90° 

and 180° turns, stops, starts and a narrow passageway leading to a dead end (Figure 3.3). 

The walking task path was designed to include freeze inducing situations (gait 

initiation, turning, narrow halls and turning in a confined space) interspersed with straight 

walking to allow gait to stabilize and reach steady state before the next obstacle was 

encountered. Participants were told that in the event of a freeze, they should recover 

independently (without assistance) and continue walking until the end of the full path. The turn 

in the hallway could be performed in either direction, according to whichever was more likely 

to elicit FOG for each participant (Section 3.2).  

 

Figure 3.3: Walking task path. The box on the left-hand side is the chair at the beginning and 

end of the trial. The triangles are cones, and the grey zone delimits a narrow hallway. Red 

octagons indicate momentary voluntary (2 s) stops. 

Five baseline trials were performed followed by 25 additional trials while performing 

a cognitive and motor task simultaneously to increase the likelihood of freezing. The cognitive 

task consisted of continuously saying words out loud beginning with a specific letter provided 

by the researcher prior to each trial. The words could not be proper nouns, could not be 

repeated, and could not use the same root (e.g., tea, teapot, teacup). A standardized list of letters 
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was used for the cognitive test. The motor task consisted of carrying a plastic tray with objects 

on it, without letting the objects fall. Initially a small pyramid of three wooden blocks was 

used. To increase task difficulty, an empty paper cup (weighted slightly with a coin) was placed 

on the tray instead of the blocks (Figure 3.4). Alternatively, some participants carried the tray 

in one hand and a sealed water bottle in the other hand.   

The walking trials were video recorded using a smartphone camera (30 Hz). During 

data collection, FOG episodes were identified, and an offline labeling process was used to 

refine the FOG onset and termination times (Section 3.5). For all trials, the researcher walked 

with the participant to assist in the case of loss of balance and thus prevent a fall. The 

participants were allowed to rest between trials for as long as they required. 

 

Figure 3.4: Example of walking trial with participant turning to the right in narrow hallway. 
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3.5 Synchronization and FOG Labeling 

All data processing was done using MATLAB R2019b (or newer) with the Statistical and 

Machine Learning and the Deep Learning toolboxes (formerly neural network toolbox) and 

App Designer (MathWorks, MA, USA). Following data collection, a custom program was used 

for data labeling and synchronization. The program imported and displayed the video and 

plantar pressure and IMU data simultaneously, which allowed the data to be visually inspected 

and facilitated synchronization (Figure 3.5). 

 

Figure 3.5: Sample display from the synchronization and labeling program. 

Plantar pressure, IMU data, and video were synchronized using a single leg stomp 

performed at the beginning of each trial. Lifting the foot off the ground produced a period of 

zero plantar pressure. The first frame of non-zero plantar pressure data was used as the stomp 

event. For the IMU, the stomp was identifiable as the maximum positive amplitude at the start 

of the trial for vertical acceleration from the shank sensor on the stomping foot. For the video, 
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the stomp was the frame in which the shoe contacted the ground. Synchronization was 

confirmed using multiple heel strike events throughout the walking trial.  

Offline labeling was performed to annotate the onset and termination of each FOG 

episode. Labeling was performed by researcher S Pardoel. In cases of uncertainly, a second 

labeler (Dr. J Nantel) was consulted. Each video frame was labeled as FOG or Non-FOG. The 

video labels were transferred to the synchronized plantar pressure and IMU data using linear 

interpolation to the closest timestamp. The beginning of a freeze was defined as “the instant 

the stepping foot fails to leave the ground despite the clear intention to step”. The end of the 

freeze was defined as “the instant the stepping foot begins or resumes an effective step”. For 

example, a step was considered effective the instant the heel lifted from the ground, provided 

that it was followed by a smooth toe off with the entire foot lifting from the ground and 

advancing into the next step without loss of balance. As a special case, if a person froze, 

stopped trying to advance, and remained standing, the instant that the participant stopped trying 

to advance was considered the end of the freeze. This was determined by the complete absence 

of foot movement and known FOG characteristics such as trembling of the knee, medial-lateral 

weight shifting, or attempt at shuffling.  

Following FOG and Non-FOG labeling, Pre-FOG labels were applied to all data within 

the 2 s period immediately prior to the onset of each freeze episode. For two FOG episodes 

less than two seconds apart, data between the two FOG episodes were labeled as Pre-FOG. 

The 2 s Pre-FOG duration was chosen since this time represents approximately two strides and 

was sufficient for FOG prediction in previous studies [17,186]. Furthermore, 2 s to 3 s Pre-

FOG durations have led to better Pre-FOG classification accuracy than longer Pre-FOG 

durations [23].  

Activity labels were also applied to the data to identify standing, walking, and turning, 

using the same methods as the FOG and Non-FOG labeling. Once synchronization and labeling 

were complete, the data were trimmed and exported from the synchronization and labeling 

program. All data without an activity label (i.e., data that was not standing, walking, or turning) 

were discarded.  
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3.6 Windowing and Class Creation 

3.6.1 Windowing 

The labeled data were split into 1 s windows with a 0.2 s shift between consecutive windows 

(Figure 3.6 a). A window could contain a combination of Pre-FOG, FOG, and Non-FOG data.  

3.6.2 Target and Non-Target Class Creation 

Prior to classifier model development, windows were grouped into target and non-target 

classes and models were trained to differentiate between the classes. Whether a given data 

window was assigned to the target or non-target class varied by analysis. All class composition 

explanations are in reference to Figure 3.6. 

 

Figure 3.6: Diagram of data windowing and target class compositions: (a) windows W1-W3 

contain: Non-FOG data only, W4-W8: Non-FOG and Pre-FOG data, W9-W13: Pre-FOG data 

only, W14-W18: Pre-FOG and FOG data, W19: FOG data only, and W20: FOG and Non-FOG 

data, (b) class composition for models in Chapters 4 and 6, (c) class composition for detection 

models in Chapter 5, (d) class composition for prediction models in Chapter 5. 
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In Chapter 4, the objective was to develop a single model that could predict and detect 

FOG. Therefore, the target class included data windows containing purely Pre-FOG data (W9-

W13), purely FOG data (W19), and windows containing both Pre-FOG and FOG data (W14-

W18). The non-target class included all other windows (W1-W8, W20) (Figure 3.6 a,b). 

In Chapter 5, different target and non-target classes were used to develop separate 

detection and prediction models. For the detection models, the target class included all 

windows that contained any FOG data. Thus, windows containing Pre-FOG and FOG (W14-

W18), purely FOG (W19), or FOG and Non-FOG data (W20) were included in the target class. 

The non-target class contained all other windows which included purely Non-FOG data (W1-

W3), Non-FOG and Pre-FOG data (W4-W8), and purely Pre-FOG data (W9-W13)  

(Figure 3.6 a,c).  

For the prediction models in Chapter 5, the target class contained the windows 

beginning anytime during the 2 seconds prior to FOG onset. Thus, windows containing purely 

Pre-FOG data (W9-W13) and windows containing Pre-FOG and FOG data (W14-W18) were 

included in the target class. Windows that contained purely Non-FOG data (W1-W3), Non-

FOG and Pre-FOG (W4-W8), purely FOG data (W19), or FOG and Non-FOG data (W20) 

were in the non-target class for the FOG prediction models (Figure 3.6 a,d). 

For all FOG prediction models in Chapter 6, target and non-target class composition 

was the same as Chapter 4. Thus, the target class included data windows containing purely 

Pre-FOG data (W9-W13), both Pre-FOG and FOG data (W14-W18), and purely FOG data 

(W19). The non-target class included all other windows (W1-W8, W20) (Figure 3.6 a,b). 

3.7 Feature Extraction and Feature Selection 

In this thesis, features were calculated from the data windows and used to train FOG detection 

and prediction models. These features differed according to the analysis-specific methods; 

however, the same set of starting features, and feature selection methods were utilized.  

3.7.1 Feature Extraction 

The features used in this research were based on [45] (Table 3.2). Features were grouped by 

time domain (n=13), Fast Fourier transform (n=8), and discrete wavelet transform (Haar 
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mother wavelet) (n=14). The fast Fourier transform (FFT) is an efficient algorithm for 

computing the discrete Fourier transform. For the FFT and DWT categories, 38 signal inputs 

were used: total ground reaction force (GRF); position, velocity, and acceleration of foot centre 

of pressure (COP) in anterior-posterior and medial-lateral directions; ankle and thigh 

acceleration in anterior-posterior, vertical, and medial-lateral directions; and ankle and thigh 

angular velocity in anterior-posterior, vertical, and medial-lateral directions. COP velocity and 

acceleration are the first and second derivatives of COP position, respectively. All features 

were calculated separately for the left and right sides, with the exception of “number of weight 

shifts” that required data from both feet.  

Table 3.2: Features extracted from windowed data. 

Feature Feature description Source 

Number of 

input 

parameters 

Total 

features 

Time domain features (n=13) 

Number, 

duration, length 

of COP reversals 

Number, length, duration of centre of 

pressure (COP) path anterior-posterior 

direction reversals per window (n=3) 

[47] 2 6 

Number, 

duration, length 

of COP 

deviations 

Number, length, duration of medial-

lateral COP deviations per window. 

Deviation is the first derivative of 

medial-lateral COP exceeding a 

threshold of ± 0.5 mm/window (n=3) 

[47] 2 6 

CV of COP 

position, 

velocity, 

acceleration  

Anterior-posterior and medial-lateral 

coefficients of variation (CV) of COP 

position, velocity, and acceleration 

(n=6)  

[47] 2 12 

Number of 

weight shifts  

Number of times the majority of total 

GRF (>50%) changed foot (n=1)  
- 1 1 

Total computed features 25 

Fast Fourier Transform (FFT) features (n=8) 

Total power in 

FFT signal 

Power in FFT signal per window as 

sum of squared amplitude (n=1) 
[105] 38 38 

Dominant 

frequency 

Frequency bin with highest amplitude 

per window (n=1) 
[132] 38 38 

Max, min, mean  
Maximum, minimum, and mean 

amplitude of FFT signal (n=3) 
[132] 38 114 

Power in 

locomotion, 

freeze bands  

Power under FFT curve in locomotion 

band (0.5-3 Hz) and freeze band (3-8 

Hz) (n=2) 

[94] 38 76 
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Freeze index 
Ratio of power in freeze band (3-8 Hz) 

and locomotion band (0.5-3 Hz), (n=1) 
[94] 38 38 

Total computed features 304 

Discrete Wavelet Transform features (n=14), Haar mother wavelet 

Variance of 

coefficients 

Variance of the detail and 

approximation coefficient vectors (n=2) 
[187] 38 76 

Max, min, mean 

Maximum, minimum, mean of detail 

and approximation coefficient vectors 

(n=6) 

[187] 38 228 

Max, min, mean 

energy 

Maximum, minimum, mean energy of 

detail and approximation coefficient 

vectors (n=6) 

[187] 38 228 

Total computed features 532 

 

In total, 861 individual features were extracted from the over 71,000 data windows 

[44]; 528 features were calculated from accelerometer and gyroscope data, and 333 features 

calculated from plantar pressure data (GRF; COP position, velocity, acceleration). Before 

calculating the COP, GRF values less than 5% of the two-foot total were set to 0, since the 

limb was in swing and the small pressures were not relevant to FOG. 

3.7.2 Feature Selection 

An excessively large number of features can increase computational cost and increase the risk 

of model overfitting. To reduce feature set size and improve model performance, feature 

selection methods can be used to identify the most relevant features for FOG classification.  

Filter feature selection methods compare features according to a specific metric (e.g., 

correlation with the output class) and rank features according to their usefulness [171]. The 

most useful features can then be used as inputs to any classifier. Wrapper methods incorporate 

the classifier into the feature selection process and, in their simplest form, repeatedly train and 

test the classifier using different combinations of features from the initial set. The best feature 

set for that classifier and set of parameters is chosen based on the classifier performance [171]. 

In this thesis, filter type feature selection was used because the method is independent of the 

classifier and the highest ranking features can be used with any machine learning classifier, 

which makes the feature selection results applicable to future FOG identification studies.  
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  Minimum-redundancy maximum-relevance (mRMR) is an established feature 

selection method in machine learning studies, including PD studies, with input signals such as 

speech patterns [188], kinematics of handwriting (in-air movement in handwriting) [189], GRF 

[190], and body acceleration [50]. The mRMR algorithm is a multivariate approach that selects 

features such that the mutual information between a feature and class is maximized, while the 

pairwise information between features is minimized [191]. In this thesis, mRMR using mutual 

information was used for feature ranking. The result was a ranked list of features that are 

correlated with the target class, with each feature contributing different information. 

 Relief-F feature ranking incorporates interactions between features [170] and has been 

used in activity monitoring situations with plantar pressure data collected during walking [47]. 

Relief-F assigns a score to each feature according to that feature’s estimated quality [170]. The 

Relief-F algorithm first sets all feature scores to 0. Then, for m randomly selected training 

instances, the k nearest samples from each class are used to update the feature scores, according 

to a distance metric (e.g., Euclidean, Manhattan). In this research, Relief-F was performed with 

m = 2000 random selections and k = 200 nearest neighbours. The k and m values were chosen 

based on preliminary testing that showed no changes in feature ranks with higher values.  

 Both the mRMR and Relief-F feature ranking algorithms sort the features according to 

estimated importance. The top ranked features are selected according to a desired number of 

features. In this thesis, the desired number of features varied according to the analysis being 

performed, as described in Chapters 4 and 6. 

3.8 Leave-One-Freezer-Out Cross Validation 

Leave-one-freezer-out (LOFO) cross validation was used to evaluate all models in this thesis. 

The typical leave-one-person-out cross validation trains a model using the data from all but 

one person, then tests the model using the held-out person’s data. In FOG classification studies, 

it is common for some individuals to experience FOG in normal living but not during the in-

laboratory data collection. Thus, if a person who did not freeze during testing was held out as 

the test subject, the corresponding test data would be entirely from the non-target (Non-FOG) 

class. This is problematic since a model cannot truly be evaluated using data from only the 
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negative class. In some studies, the model is assumed to have 100% sensitivity for these 

individuals [57,128]; however, this assumption can skew overall model performance results. 

The LOFO method avoids this issue since only participants who froze during data collection 

are involved with model testing, while participants who did not experience FOG are always 

included in the training set.  
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Chapter 4 

Early Freezing of Gait Detection using Plantar Pressure and IMU Data 

4.1 Introduction 

In this chapter IMU and plantar pressure data were combined for early FOG detection. The 

binary classification models identified Total-FOG or Non-FOG states, wherein the Total-FOG 

class included data windows from 2 s before the FOG onset until the end of the FOG episode. 

Three feature sets were compared: plantar pressure features, inertial measurement unit (IMU) 

features, and both plantar pressure and IMU features (PP-IMU). 

4.2 Methodology 

4.2.1 Windowing 

The windowing used in this chapter is explained in Section 3.6. In addition, in this chapter 

each window was assigned a label corresponding to the data it contained. The window labels 

were: 

• Pre-FOG (purely Pre-FOG data) 

• FOG (purely FOG data) 

• Pre-FOG-Transition (Pre-FOG and FOG data) 

• Non-FOG (Non-FOG data, Non-FOG and Pre-FOG data, and FOG and Non-

FOG data) 

Another combined label was generated as Total-FOG, which contained Pre-FOG, Pre-

FOG-Transition, and FOG windows.  

4.2.2 Feature Extraction and Selection  

The starting feature set described in Section 3.7.1 was used for this analysis. Three feature 

groups were compared: plantar pressure, inertial measurement unit (IMU), and both plantar 

pressure and IMU features (PP-IMU). Feature selection was performed separately for each of 

the feature sets using both the mRMR and Relief-F algorithms (Section 3.7.2). For feature 
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selection, the target class was composed of all windows with the Total-FOG label and the non-

target class contained the Non-FOG windows. The top 5, 10, 15, 20, 25, 50, 75, and 100 

features according to both the Relief-F and mRMR feature selection methods were used for 

model training and comparison. 

4.2.3 Classification Model Development 

For classification model development, decision tree ensembles and support vector machines 

were used. In pilot testing, different tree ensemble boosting techniques were examined. 

RUSBoosting performed better than bagging, LogitBoosting and AdaBoosting approaches. 

This is likely due to the dataset being highly imbalanced, which can negatively affect classifier 

performance. FOG occurs infrequently during walking and FOG datasets generally contain 

several times more Non-FOG samples than FOG samples [25]. RUSBoosting randomly 

undersamples the majority class (non-target class) so that the number of samples matches the 

minority class (target class). Note that undersampling is only done during model training and 

not during testing; therefore, the class imbalance in the testing data is unaffected. Support 

vector machine models with linear, polynomial (3rd and 5th order), and radial basis function 

kernels were also evaluated. SVM models with various hyperparameter configurations were 

tested, including the box constraint parameter that determined the amount of allowable 

misclassifications. The MATLAB classifier optimization function was used to set the box 

constraint value.  Class imbalance was addressed by setting the cost function to be proportional 

to the class size. The SVM models had good specificity but low sensitivity. The poor 

performance of the SVM models may indicate that the dataset used in this research is not 

separable. To improve SVM model performance, additional model tuning could be performed, 

or a custom kernel function could be designed to create separation between the classes for the 

current dataset; however, this would be challenging and time consuming. Instead, since 

RUSBoosted decision tree ensembles consistently outperformed the SVM models, the SVM 

models were abandoned in favour of decision tree ensembles.  

The classifier selected for all subsequent model development and comparison was a 

RUSBoosted decision-tree ensemble. The base decision trees (n=100) were tested with 
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maximum depths of 5 or 10 decision splits, and with the top 5, 10, 15, 20, 25, 50, 75, and 100 

features according to both the Relief-F and mRMR feature selection methods, from each of the 

three feature groups.  

Five test cases were used during LOFO analysis (Table 4.1). The target and non-target 

classes for the five test cases were defined as different groupings of the labeled windows. For 

each cross-validation fold, the model was trained only once using Case 1 (target class: Total-

FOG, non-target class: Non-FOG), then evaluated on each of the five test cases. Case 1, where 

the target class was Total-FOG windows and included Pre-FOG, Pre-FOG-transition, and FOG 

windows, was based on the goal of a clinically relevant cueing system, where real-time cueing 

would be activated before or during a freeze. For Cases 2, 4, and 5, the target class contained 

a single label. This was done to evaluate the model’s ability to recognize each of the labels 

individually. For Case 3, the Pre-FOG and Pre-FOG-Transition windows were grouped to form 

the target class, to examine the feasibility of using these two labels in future model 

development. This target class (Case 3) contained windows from the beginning of Pre-FOG 

data until, at most, one second into the FOG event; therefore, detection of windows in this 

target class would be either prediction of a freeze or detection of freeze episode initiation.  

Table 4.1: Target and non-target class composition for each test case. 

 Target class Non target class 

Case 1 
Total-FOG: 

Pre-FOG, Pre-FOG-Transition, FOG 
Non-FOG 

Case 2 Pre-FOG Non-FOG 

Case 3 Pre-FOG, Pre-FOG-Transition Non-FOG 

Case 4 Pre-FOG-Transition Non-FOG 

Case 5 FOG Non-FOG 

4.3 Results  

Table 4.2 presents the total number of windows for each label from each participant. Table 4.3 

presents the LOFO cross-validation results for plantar pressure, IMU, and both plantar pressure 

and IMU (PP-IMU) features. 

 

 



 

53 

Table 4.2: Number of data windows of each label extracted from each participant. 

Participant 
Window labels 

Pre-FOG Pre-FOG-Transition FOG Non-FOG 

P01 217 166 7 3721 

P02 178 171 294 5188 

P03 66 62 17 6884 

P04 0 0 0 2635 

P05 0 0 0 5331 

P06 52 49 162 9368 

P07 725 1303 766 6572 

P08 75 126 84 4848 

P09 44 30 5 6848 

P10 0 0 0 6034 

P11 0 0 0 9039 

Label total 1357 1907 1335 66468 

Table 4.3: Top performing RUSBoosted ensembles of decision trees. Target class is Total-

FOG (Case 1).  

Held out test 

participant 

Plantar pressure 

features 

IMU features PP-IMU features 

Relief-F, 5 features, 

5 splits 

mRMR, 25 features, 

5 splits 

Relief-F, 10 features, 

5 splits 

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) 

P01 69.7 83.7 68.2 84.0 70.0 86.0 

P02 71.7 86.7 67.0 90.7 70.6 87.9 

P03 68.3 89.7 54.5 96.1 61.4 92.9 

P06 93.9 89.5 73.4 93.5 93.2 90.2 

P07 72.8 80.3 34.8 92.1 68.7 78.9 

P08 89.5 79.6 70.9 92.3 82.1 87.6 

P09 79.7 72.5 64.6 92.2 88.6 79.7 

Mean  

SD 

78.0  

9.4 

83.2 

5.7 

61.9 

12.4 

91.6 

3.4 

76.4 

10.8 

86.2 

4.8 

Sens: sensitivity, Spec: specificity. 

Performance was very similar for the plantar-pressure features model (sensitivity 

78.0%, specificity 83.2%) and the PP-IMU features model (sensitivity 76.4%, specificity 

86.2%) (Table 4.3). The IMU-features model had the lowest sensitivity (61.9%) but the highest 

specificity (91.6%). The best number of features and best feature ranking method differed for 

each group of features (Table 4.3). The best plantar-pressure features model used the top 5 

Relief-F features. The best IMU-features model used the top 25 mRMR features. The best PP-

IMU features model used the top 10 features according to Relief-F rankings. For all models, 
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decision trees with 5 splits outperformed decision trees with 10 splits. The best model from 

Table 4.3 used combined features (i.e., PP-IMU features model), with 76.4% sensitivity and 

86.2% specificity for the Total-FOG target class (Pre-FOG, Pre-FOG-Transition, FOG). The 

features used in the PP-IMU model are presented in Table 4.4. 

Table 4.4: Top 10 features (according to Relief-F) used in the PP-IMU features model. 

Feature rank Feature description 

1 Dominant frequency of COP velocity in AP direction for right leg 

2 Dominant frequency of COP velocity in AP direction for left leg 

3 Dominant frequency of COP velocity in ML direction for right leg 

4 Dominant frequency of thigh acceleration in AP direction for left leg 

5 Number of AP COP path reversals for left leg 

6 Number of AP COP path reversals for right leg 

7 Minimum WT dC of COP position in AP direction for right leg 

8 Dominant frequency of thigh acceleration in AP direction for right leg 

9 Mean energy of WT aC of COP position in AP direction for right leg 

10 Mean WT aC of COP position in AP direction for right leg 

AP: anterior-posterior, ML: medial-lateral, WT: wavelet transform, aC: approximation 

coefficient, dC: detail coefficient. 

The results for Cases 2-5 are presented in Table 4.5, Table 4.6, and Table 4.7. The 

specificity results for Cases 2-5 were constant across cases, since specificity is based on the 

non-target class (true negatives and false positives), which was unchanged across test cases. 

Table 4.5: Target class test cases for PP-IMU features model, using top 10 features according 

to Relief-F. Column headers are the target class label(s), as defined in Table 4.1. 

Held out test 

participant 

Pre-FOG  

(Case 2) 

Pre-FOG and Pre-

FOG-Transition 

(Case 3) 

Pre-FOG-

Transition 

(Case 4) 

FOG 

(Case 5) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

P01 52.5 86.0 69.5 86.0 91.6 86.0 100.0 86.0 

P02 23.0 87.9 49.0 87.9 76.0 87.9 96.3 87.9 

P03 37.9 92.9 57.8 92.9 79.0 92.9 88.2 92.9 

P06 73.1 90.2 84.2 90.2 95.9 90.2 98.8 90.2 

P07 48.8 78.9 64.5 78.9 73.2 78.9 79.9 78.9 

P08 69.3 87.6 78.6 87.6 84.1 87.6 90.5 87.6 

P09 81.8 79.7 87.8 79.7 96.7 79.7 100.0 79.7 

Mean  

SD 

55.2 

19.3 

86.2 

4.8 

70.2 

13.2 

86.2 

4.8 

85.2 

8.9 

86.2 

4.8 

93.4 

7.0 

86.2 

4.8 

Sens: sensitivity, Spec: specificity. 
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Table 4.6: Target class test cases for plantar-pressure features model, using top 5 features 

according to Relief-F. Column headers are the target class label(s), as defined in Table 4.1. 

Held out test 

participant 

Pre-FOG  

(Case 2) 

Pre-FOG and Pre-

FOG-Transition 

(Case 3) 

Pre-FOG-

Transition 

(Case 4) 

FOG 

(Case 5) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

P01 52.5 83.7 69.2 83.7 91.0 83.7 100.0 83.7 

P02 23.6 86.7 49.6 86.7 76.6 86.7 98.0 86.7 

P03 43.9 89.7 64.1 89.7 85.5 89.7 100.0 89.7 

P06 76.9 89.5 85.1 89.5 93.9 89.5 99.4 89.5 

P07 36.7 80.3 62.9 80.3 77.4 80.3 99.2 80.3 

P08 82.7 79.6 88.1 79.6 91.3 79.6 92.9 79.6 

P09 70.5 72.5 78.4 72.5 90.0 72.5 100.0 72.5 

Mean  

SD 

55.3 

20.5 

83.2 

5.7 

71.0 

12.7 

83.2 

5.7 

86.5 

6.4 

83.2 

5.7 

98.5 

2.4 

83.2 

5.7 

Sens: sensitivity, Spec: specificity. 

Table 4.7: Target class test cases for IMU features model, using top 25 features according to 

mRMR. Column headers are the target class label(s), as defined in Table 4.1. 

Held out test 

participant 

Pre-FOG  

(Case 2) 

Pre-FOG and Pre-

FOG-Transition 

(Case 3) 

Pre-FOG-

Transition 

(Case 4) 

FOG 

(Case 5) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

P01 53.5 84.0 67.9 84.0 86.7 84.0 85.7 84.0 

P02 16.3 90.7 43.8 90.7 72.5 90.7 94.6 90.7 

P03 31.8 96.1 49.2 96.1 67.7 96.1 94.1 96.1 

P06 44.2 93.5 62.4 93.5 81.6 93.5 80.2 93.5 

P07 17.8 92.1 35.5 92.1 45.4 92.1 32.9 92.1 

P08 65.3 92.3 66.2 92.3 66.7 92.3 82.1 92.3 

P09 50.0 92.2 62.2 92.2 80.0 92.2 100.0 92.2 

Mean  

SD 

39.8 

17.2 

91.6 

3.4 

55.3 

11.6 

91.6 

3.4 

71.5 

12.7 

91.6 

3.4 

81.4 

20.9 

91.6 

3.4 

Sens: sensitivity, Spec: specificity. 

4.4 Discussion 

Comparing the different models in Table 4.3, and the same test cases across Table 4.6 and 

Table 4.7, the plantar-pressure features model reached higher sensitivity than the IMU-features 

model. However, the IMU-features model achieved higher specificity for all cases. This 

indicates that plantar pressure may identify FOG related patterns that the IMU sensors cannot; 
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however, plantar pressure sensors may produce more false positives. Thus, including features 

from both sensor systems is recommended. 

The PP-IMU features model was selected as the best overall model. Further analysis 

from the additional four test cases (Table 4.5) showed that just over half the Pre-FOG windows 

were correctly identified. If this model were used to trigger an assistive cue, identifying 55.2% 

of the Pre-FOG windows before the FOG occurs would be helpful, but may result in many 

missed opportunities to avoid a freeze (i.e., assuming that an appropriate cue can mitigate or 

avoid an upcoming freeze episode). For Pre-FOG-Transition, sensitivity was 85.2% using 

plantar pressure and IMU data, indicating that most transition windows between Pre-FOG and 

the freeze would be identified; therefore, a cue could be administered within the first second 

of the FOG episode. When Pre-FOG and Pre-FOG-Transition windows were combined, model 

sensitivity decreased to 70.2%. Hence, including Pre-FOG adversely affected freeze-event 

recognition. FOG window classification using plantar pressure and IMU data was highly 

effective (93.4% sensitivity), indicating that few FOG windows were missed. In practice, the 

freeze identification model would perform very well as a FOG detection system, with a cue 

administered during the freeze if the Pre-FOG or transition states were missed. A similar 

analysis in [25] predicted 66.7% of the freeze episodes within 2 s of onset and detected 97.4% 

of the episodes between 2 s before and 4 s after FOG onset. These results were based on the 

number of FOG episodes, which may contribute to the better performance compared to results 

presented in this analysis, where results were based on decisions for each window. 

The PP-IMU features model sensitivity was 76.4%, indicating that approximately 24% 

of the target-class windows were missed by the model. Other FOG prediction research [50] 

reported higher sensitivity (93%), although as in [20,25], the performance metrics were 

calculated based on FOG episodes, rather than windows. Thus, the sensitivity results are not 

directly comparable to this window-based analysis.  

The PP-IMU features model specificity was 86.2%, indicating that approximately 14% 

of the non-target classifications were false positives. In an intelligent cueing device, this could 

result in false cues during walking, which may lead to reduced user compliance, depending on 

the type of cue. To ensure that the cueing system is effective and is used as intended, the 
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number of false cues should be minimized in future research. For example, a decision threshold 

could be implemented such that consecutive classifications are required to trigger a cue 

(Chapters 5 and 6). In addition, minimalistic or variable cues could be used such that false 

positives are better tolerated by the user. For instance, cue intensity or magnitude could begin 

at an almost imperceptible level and increase with successive positive FOG predictions. While 

90% or greater specificity would be ideal, specificity below this threshold is common in the 

FOG prediction literature. Specificities of 67.0% [17], 80.25% [26], and recently 86% [23] 

have been reported. 

 The analysis outcomes could be applicable to a wearable freeze-detection system that 

is localized to the shoe. PP-IMU features model performance was only slightly better than the 

plantar-pressure features model. While improvements could be made to plantar pressure 

features model sensitivity, the plantar pressure model performed very well as a detection 

system, detecting 98.5% of the FOG windows. Including IMU features in the PP-IMU features 

model was primarily to improve specificity. If the plantar pressure features model specificity 

could be improved by other means, then the IMU sensors could be excluded. Models using 

only plantar pressure sensors are explored further in Chapter 6.    

4.5 Conclusion  

The combination of accelerometer, and plantar pressure data gave the best FOG identification 

results. The best decision tree ensemble model was built using 10 features and achieved 76.4% 

sensitivity and 86.2% specificity when classifying 1 s windows of Total-FOG data (data from 

2 s before FOG onset until the end of the FOG episode). This model detected the transition 

between Pre-FOG gait and FOG with 85.2% sensitivity, which corresponds to detecting FOG 

less than one second after the freeze began. Furthermore, the FOG windows were detected with 

93.4% sensitivity, indicating that few FOG windows were missed.  

If the best model were applied in a wearable cueing device that helps avoid or break 

out of a freeze, this system would have a 70.2% chance of identifying FOG windows from 

before or within 1 second of the FOG onset. If this transition phase is missed, the cue would 

likely be applied during the freeze since the model was able to detect 93.4% of FOG windows. 
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While the model using both plantar-pressure and IMU features to detect Total-FOG had 86% 

specificity (i.e., 14% false positive rate, which is common in FOG prediction studies), higher 

specificity is preferred in practice. To address this, a cueing threshold could be implemented 

such that a cue is only triggered if multiple consecutive positive classifications are obtained, 

as explored in Chapters 5 and 6.  

 

 



 

59 

Chapter 5 

Merging Multiple FOG in Rapid Succession 

5.1 Introduction 

This chapter examined whether merging multiple freezes that occur in rapid succession could 

improve FOG detection and prediction model performance. Plantar pressure and lower limb 

acceleration data were used to extract a feature set and train decision tree ensembles. The event-

based definition of FOG was used in generating the non-merged dataset. Additional datasets 

were produced by merging FOG episodes separated by less than a merging threshold into a 

single episode. FOG detection and prediction models were trained for merging thresholds of 

0, 1, 2, and 3 s.  

5.2 Methodology 

5.2.1 Merging 

Consecutive freezes were merged into a single freeze if the time between the beginning of a 

FOG episode and the end of the previous FOG episode was less than a merging threshold. All 

data between the two freezes were relabeled as FOG, thus forming a single longer FOG 

episode. Merging thresholds of 0, 1, 2, and 3 s were used to create separate datasets for model 

development.  

5.2.2 Windowing and Target Class Creation 

For each merging threshold dataset (0, 1, 2, 3 s), windowing (Section 3.6.1) and feature 

extraction (Section 3.7.1) were performed. The target and non-target class composition was 

different for the detection and prediction models developed in this chapter (Section 3.6.2).  

5.2.3 Detection and Prediction Model Development 

The detection and prediction models in this chapter used identical starting parameters and 

differed only by the target and non-target class composition (Section 3.6.2). This chapter used 

the input features (Table 4.4) and model architecture found to be best in Chapter 4 (Table 4.5). 
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To examine the effect of FOG merging on FOG identification performance, the detection and 

prediction models were trained repeatedly, using identical model parameters but with different 

dataset merging thresholds (0, 1, 2, 3 s). LOFO cross validation was used for all models. 

5.2.4 Model Evaluation  

The trained models were evaluated using windows and FOG episodes. The window-based 

evaluation compared each window classification to the ground truth label and calculated 

sensitivity and specificity. While sensitivity and specificity are useful measures, this evaluation 

does not necessarily reflect a model’s ability to act as a timely trigger for a cueing system since 

a model may only detect freeze windows and trigger a cue at the end of a FOG episode. 

Therefore, the FOG-episode-based evaluation determined if and when each episode was 

detected by the model. To avoid cues caused by misclassified windows, three consecutive 

positive target class classifications were required to generate a model trigger decision (MTD) 

(i.e., three previous windows had to be classified as belonging to the target class, Figure 5.1). 

Each MTD would correspond to a cue if used in a real-time intelligent cueing system. For each 

FOG episode, a MTD target zone was defined as the period between the start of Pre-FOG (2 s 

prior to the FOG episode) and FOG termination since a cue within this target zone would be 

helpful to either prevent or mitigate a FOG episode. If a MTD occurred within the MTD target 

zone, then the corresponding FOG episode was successfully identified.  

Identification delay (ID) was defined as the time between FOG onset and a successful 

MTD identification. A positive ID indicates that the FOG episode was identified after it began 

(FOG detection) and a negative ID indicates FOG episode identification before episode onset 

(FOG prediction). If a MTD target zone contained multiple MTD, then the FOG episode was 

identified multiple times and only the first MTD was used to calculate the ID. 

Each MTD was considered to be either a true positive (TP) (within the MTD target 

zone), or a false positive (FP) (outside the MTD target zone). MTD precision was calculated 

as the number of true positive MTD divided by the total number of positive MTD (TP+FP).  
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Figure 5.1: Model trigger decision diagram. Three consecutive windows classified as being 

part of the target class (W1-W3) results in a model trigger decision (MTD), where the MTD 

instant corresponds to the end of the third window. FOG is successfully identified if there is a 

MTD instance within the MTD target zone. The time difference between the FOG onset and 

the MTD instant is the identification delay. 

 

As a final step in the model, a no-cue interval of 2.5 s was implemented. During the 

no-cue interval, any MTD generated by the system would be ignored. In a real cueing system, 

a person receiving a cue should react to the stimulus and modify their gait. The no-cue interval 

ensures that the person has time to respond to the cue, and that the system has time to reassess 

their gait before another cue is given.  

5.3 Results 

The number of FOG episodes experienced by each participant for different merging thresholds 

is presented in Table 5.1. Merging FOG episodes reduced the number of FOG episodes, 

primarily for participants P07 and P08.  
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Table 5.1: Number of FOG episodes for each participant for different merging thresholds. 

Participant 

Number of FOG episodes Reduction in number of 

episodes  

by merging with MT = 3 s 
MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

P01 49 48 48 48 1 

P02 35 35 35 35 0 

P03 14 14 13 13 1 

P04 0 0 0 0 - 

P05 0 0 0 0 - 

P06 10 10 10 10 0 

P07 221 171 118 87 134 

P08 24 16 14 14 10 

P09 9 9 9 7 2 

P10 0 0 0 0 - 

P11 0 0 0 0 - 

MT: merging threshold. 

For window-based FOG detection (Table 5.2), sensitivity and specificity averages 

across all participants changed little (≤ ± 1%) due to merging (mean sensitivity: 83.4% for 

MT = 2 s, compared to 82.4% for MT= 0 s; mean specificity: 87.9% for MT = 2,3 s, compared 

to 88.3% for MT = 0 s). This included participants P07 and P08, who had the largest reduction 

in number of FOG episodes due to merging (Table 5.1). For the prediction models (Table 5.3), 

mean sensitivity decreased slightly as the merging threshold increased (68.4% for MT = 2 s, 

from 73.4% for MT = 0 s). Mean specificity was highest (82.8%) for MT = 2 s and lowest 

(80.9%) for MT = 3 s.   

Table 5.2: Window-based FOG detection model performance for various merging thresholds.  

Participant 

MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

P01 88.1 88.2 88.3 88.3 89.5 87.3 88.8 87.4 

P02 81.0 90.2 81.4 90.4 80.6 90.1 81.0 90.2 

P03 70.6 93.1 72.0 93.0 74.8 93.1 73.4 93.0 

P06 90.6 90.7 93.8 90.3 90.6 90.6 93.8 90.3 

P07 64.9 86.9 65.1 86.4 63.2 86.6 61.3 86.8 

P08 87.2 87.2 87.2 87.2 86.6 87.3 87.0 87.0 

P09 94.4 81.6 93.1 80.8 98.6 80.4 94.1 80.4 

Mean  

SD 

82.4 

10.1 

88.3  

3.4 

83.0 

10.0 

88.1  

3.6 

83.4 

10.8 

87.9 

3.7 

82.8 

11.0 

87.9 

3.7 

MT: merging threshold, Sens: sensitivity, Spec: specificity. 
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Table 5.3: Window-based FOG prediction model performance for various merging thresholds.  

Participant 

MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

Sens 

(%) 

Spec 

(%) 

P01 70.5 81.7 68.8 80.6 63.1 82.0 67.3 79.0 

P02 55.3 83.5 57.3 83.1 58.2 83.4 59.0 82.3 

P03 61.7 93.4 60.2 93.9 57.4 94.3 63.1 93.1 

P06 87.1 88.7 85.1 89.1 82.2 90.7 82.2 90.3 

P07 72.2 67.5 68.6 67.0 66.2 66.7 65.6 64.7 

P08 77.6 84.3 71.2 84.5 69.4 85.6 67.2 82.8 

P09 89.2 75.6 87.8 76.1 82.4 76.7 78.6 73.7 

Mean  

SD 

73.4 

11.5 

82.1 

7.9 

71.3 

10.7 

82.1  

8.1 

68.4  

9.6 

82.8  

8.4 

69.0  

7.7 

80.9  

9.0 

MT: merging threshold, Sens: sensitivity, Spec: specificity. 

FOG episode-based evaluation results are presented in Table 5.4 and Table 5.5. For the 

FOG detection model (Table 5.4), the mean percentage of correctly identified FOG episodes 

increased from 91.3% for 0 s merging threshold to 93.3% for 2 s merging threshold. For the 

prediction model (Table 5.5), the mean percentage of correctly identified FOG episodes 

increased from 94.0% (0 s threshold) to 95.9% (3 s threshold). For the detection model, the 

highest percentage of correctly identified FOG episodes occurred using a 2 s merging 

threshold. For prediction, the highest percentage was achieved with a 3 s merging threshold. 

 For the detection model, changing merging thresholds from 0 s to 3 s, led to FOG 

identification (earliest MTD) occurring 0.21 s later (changing from -0.4 s to -0.19 s). When 

changing merging threshold from 0 s to 2 s, which had the best percentage of correctly 

identified FOG episodes, the mean ID occurred 0.14 s later (-0.4 to -0.26 s). For the prediction 

model, changing merging thresholds from 0 s to 3 s led to the FOG identification (earliest 

MTD) occurring 0.08 s later (changing from -0.56 s to -0.48 s). For both detection and 

prediction models, a negative ID indicated FOG prediction since FOG identification was 

before FOG onset. 
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Table 5.4: Episode-based FOG detection model performance for various merging thresholds.  

Participant 

MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

EI  

(%) 

Average 

ID (s) 

EI 

(%) 

Average 

ID (s) 

EI 

(%) 

Average 

ID (s) 

EI 

(%) 

Average 

ID (s) 

P01 91.8 0.02 91.7 0.04 93.8 0.01 93.8 0.03 

P02 85.7 0.48 85.7 0.49 85.7 0.47 85.7 0.47 

P03 71.4 -0.34 71.4 -0.32 84.6 -0.13 76.9 -0.18 

P06 100.0 -0.35 100.0 -0.41 100.0 -0.35 100.0 -0.41 

P07 90.0 -0.72 90.1 -0.62 89.0 -0.21 88.5 -0.08 

P08 100.0 -1.09 100.0 -0.73 100.0 -0.53 100.0 -0.56 

P09 100.0 -0.83 100.0 -0.78 100.0 -1.10 100.0 -0.58 

Mean 

SD 

91.3 

9.7 

-0.40  

0.50 

91.3 

9.7 

-0.33  

0.43 

93.3 

6.4 

-0.26  

0.45 

92.1 

8.2 

-0.19 

0.34 

MT: merging threshold, ID: identification delay, EI: episodes identified as a percentage of the 

total number of FOG episodes for each participant, ID: identification delay (positive delay 

indicates FOG identified after onset, negative delay indicates FOG identified before onset). 

Table 5.5: Episode-based FOG prediction model performance for various merging thresholds. 

Participant 

MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

EI (%) 
Average 

ID (s) 
EI (%) 

Average 

ID (s) 
EI (%) 

Average 

ID (s) 
EI (%) 

Average 

ID (s) 

P01 95.9 -0.02 95.8 0.00 89.6 0.04 91.7 -0.01 

P02 94.3 0.30 94.3 0.27 97.1 0.27 100.0 0.30 

P03 78.6 -0.33 64.3 -0.49 76.9 -0.26 92.3 -0.28 

P06 100.0 -0.49 100.0 -0.49 100.0 -0.59 100.0 -0.61 

P07 97.3 -1.17 97.1 -1.01 95.8 -0.83 94.3 -0.76 

P08 91.7 -1.15 100.0 -0.81 100.0 -0.72 92.9 -1.08 

P09 100.0 -1.10 100.0 -1.12 100.0 -0.98 100.0 -0.92 

Mean  

SD 

94.0 

6.9 

-0.56 

0.55 

93.1 

11.9 

-0.52 

0.47 

94.2 

7.9 

-0.44 

0.43 

95.9 

3.6 

-0.48 

0.46 

MT: merging threshold, ID: identification delay, EI: episodes identified as a percentage of the 

total number of FOG episodes for each participant, ID: identification delay (positive delay 

indicates FOG identified after onset, negative delay indicates FOG identified before onset). 

The number of true positive (TP) and false positive (FP) MTD for each participant are 

presented in Table 5.6 and Table 5.7. Detection model precision did not change with merging, 

with 40.3% precision for a 3 s merging threshold. Prediction model precision decreased from 

19.4% to 14.3% as the merging threshold increased from 0 s to 3 s.   
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Table 5.6: MTD precision for the FOG detection model.  

Participant 

MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

TP FP 
PR 

(%) 
TP FP 

PR 

(%) 
TP FP 

PR 

(%) 
TP FP 

PR 

(%) 

P01 324 231 58.4 323 227 58.7 330 245 57.4 321 236 57.6 

P02 436 346 55.8 443 337 56.8 434 346 55.6 436 343 56.0 

P03 79 268 22.8 82 276 22.9 87 270 24.4 81 271 23.0 

P06 221 575 27.8 233 608 27.7 221 570 27.9 232 604 27.8 

P07 1147 409 73.7 1128 437 72.1 1131 407 73.5 1196 414 74.3 

P08 211 391 35.0 213 381 35.9 206 374 35.5 206 373 35.6 

P09 62 797 7.2 61 844 6.7 67 851 7.3 71 836 7.8 

Total   2480 3017  2483 3110  2476 3063  2543 3077  

Mean SD   
40.1  

21.6 
  

40.1 

21.5 
  

40.2 

21.2 
  

40.3 

21.5 

MT: merging threshold, TP: true positive (MTD within MTD target zone), FP: false positive 

(MTD outside MTD target zone), PR: precision (PR= TP/ (TP+ FP) ×100). 

Table 5.7: MTD precision for the FOG prediction model.   

Participant 

MT = 0 s MT = 1 s MT = 2 s MT = 3 s 

TP FP 
PR 

(%) 
TP FP TP FP 

PR 

(%) 
TP TP TP FP 

P01 171 383 30.9 162 377 30.1 137 338 28.8 154 429 26.4 

P02 117 705 14.2 123 721 14.6 126 699 15.3 132 781 14.5 

P03 41 205 16.7 40 154 20.6 32 157 16.9 42 213 16.5 

P06 73 728 9.1 70 649 9.7 63 474 11.7 67 535 11.1 

P07 998 1565 38.9 793 1641 32.6 508 1691 23.1 365 1863 16.4 

P08 120 437 21.5 78 413 15.9 64 342 15.8 66 492 11.8 

P09 48 1008 4.5 46 883 5.0 44 832 5.0 32 1010 3.1 

Total 1568 5031  1312 4838  974 4533  858 5323  

Mean  

SD 
  

19.4 

11.2 
  

18.3 

9.4 
  

16.7 

7.1 
  

14.3 

6.5 

MT: merging threshold, TP: true positive (MTD within MTD target zone), FP: false positive 

(MTD outside MTD target zone), PR: precision (PR= TP/ (TP+ FP) ×100). 

Table 5.8 presents the result of using a 2.5 s no-cue interval after each triggered cue. 

The no-cue interval was applied to the models with the highest precision (i.e., detection model 

with 3 s merging threshold, prediction model with 0 s merging threshold). For detection model 

episode identification, the no-cue interval did not change the percent of identified FOG. For 

the prediction model, the no-cue interval reduced the mean percentage of identified FOG 

minimally (94% to 93.8%). This decrease was due solely to participant P07 for whom the 

percentage of identified FOG episodes decreased from 97.3% to 96.4%. The no-cue interval 
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reduced the number of false positive and true positive MTD for both the detection and 

prediction models. The no-cue interval decreased mean detection model precision from 40.3% 

(MT = 3 s) to 31.8% and increased mean prediction model precision from 19.4% (MT = 0 s) 

to 30.6%. 

Table 5.8: MTD precision for FOG prediction and detection models using a 2.5 s no-cue 

interval between consecutive cues. 

Participant 

Detection Model 

MT = 3 s (2.5 s no-cue interval) 

Prediction model 

MT = 0 s (2.5 s no-cue interval) 

EI (%) TP FP PR (%) EI (%) TP FP PR (%) 

P01 93.8 45 40 52.9 95.9 47 51 48.0 

P02 85.7 45 73 38.1 94.3 50 76 39.7 

P03 76.9 11 67 14.1 78.6 12 54 18.2 

P06 100.0 23 108 17.6 100.0 24 109 18.0 

P07 88.5 187 98 65.6 96.4 222 164 57.5 

P08 100.0 25 67 27.2 91.7 23 64 26.4 

P09 100.0 10 132 7.0 100.0 11 165 6.3 

Total  346 585   389 683  

Mean  

SD 

92.1 

8.2 
  

31.8  

19.9 

93.8 

6.8 
  

30.6 

17.0 

MT: merging threshold, ID: identification delay, EI: episodes identified as a percentage of the 

total number of FOG episodes for each participant, TP: true positive (MTD within MTD target 

zone), FP: false positive (MTD outside MTD target zone), PR: precision (PR= TP/ (TP+ FP) 

×100).  

Figure 5.2 shows an example walking session with MTD TP and FP. Without a no-cue 

interval (Figure 5.2 a), the first FOG episode was detected at the beginning of the episode 

(leftmost green circle at approximately 26 s). The second FOG was predicted approximately 

1 s before FOG onset (multiple MTD starting at approximately 44 s), and MTD occurred in 

groups of consecutive windows for both the TP MTD (green) and FP MTD (red). When the 

no-cue interval was used (Figure 5.2 b), there was also successful FOG identification at the 

beginning of the first episode (TP MTD at 26 s), successful FOG prediction (TP MTD at 44 s), 

and the number of false positive MTD was reduced from 15 (Figure 5.2 a) to 2 (Figure 5.2 b). 
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Figure 5.2: Example session of walking data classification and freeze identification: (a) 

without no-cue interval, (b) with 2.5 s no-cue interval. TP MTD: true positive model trigger 

decision (MTD within MTD target zone), FP MTD: false positive model trigger decision 

(MTD outside MTD target zone). 

5.4 Discussion 

The best performing FOG detection model used a 2 s merging threshold, whereas the best 

prediction model had a 0 s merging threshold (i.e., no merging). For the window-based 

evaluation, model performance was similar for all detection models, across merging 

thresholds, and there was a slight difference in performance for prediction models. Model 

performance was similar to other person-independent FOG detection [57,121,126,128,130] 

and prediction [17,23,26,28] models in the literature. 

For the FOG episode-based analysis, the percentage of successfully identified FOG 

episodes increased slightly due to FOG-episode merging for both the detection (+ 2.0%) and 

prediction (+ 1.9%) models. The prediction model with a 3 s merging threshold outperformed 

the detection model by identifying 95.9% of FOG episodes. For all merging thresholds of the 



 

68 

detection and prediction models, FOG episodes were identified prior to the FOG onset; 

therefore, both detection and prediction models were able to predict FOG. 

The earliest predictions occurred without merging (0 s merging threshold). Individual 

participant FOG identification was as early as 1.09 s before FOG onset for the detection model 

(P08, Table 5.4), and 1.10 s to 1.17 s before FOG onset for the prediction model (P09-P07, 

Table 5.5). When averaged across participants, the earliest identifications were 0.40 s before 

FOG onset for the detection model and 0.56 s before FOG onset for the prediction model, 

which both occurred with no merging. The FOG identification was closer to freeze initiation 

when the merging threshold was 3 s for detection (0.19 s before FOG onset) and 2 s for 

prediction (0.44 s before FOG onset). Therefore, a merging threshold of 3 s for detection and 

2 s for prediction would provide the shortest time for preventative cueing. Merging FOG 

episodes may not be beneficial in a preventative cueing system since merging led to later FOG 

identifications but similar FOG identification percentages. 

For the detection model, less than ± 0.2% differences in MTD precision were found 

between merging thresholds. For the prediction model, increasing the merging threshold from 

0 s to 3 s decreased the number of true positive MTD from 1568 to 858 and increased the 

number of false positives from 5031 to 5323, resulting in a 5.1% decrease in precision. This 

may be the result of having fewer data windows in the target class during training due to 

merging. Also, there were more FP compared to TP, for both detection and prediction models. 

Models tended to produce grouped zones of MTD (Figure 5.2 a), likely because of the 

80% overlap between consecutive windows, where data in successive windows were similar 

and lead to the same classification. To reduce FP, a larger shift between windows may be 

helpful [57]; however, this would decrease the temporal resolution of a cueing protocol. The 

2.5 s no-cue interval greatly reduced the number of false positive MTD (5323 to 585 for 

detection, 5031 to 683 for prediction) by excluding consecutive FP MTD after the first MTD 

in the group. As shown in Figure 5.2, a TP MTD near the end of a FOG episode can eliminate 

FP MTD immediately after the end of the FOG episode, since the FP MTD would fall within 

the no-cue interval. For detection, the no-cue interval had no effect on the percentage of 

identified FOG episodes. For prediction, the no-cue interval only affected the percentage of 
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identified FOG episodes for participant P07, and this was only a 0.9% difference. P07 had 

many short FOG in rapid succession. FOG episodes that began within a no-cue interval were 

considered to be successfully detected, whereas Pre-FOG data for subsequent short freezes 

within the no-cue interval were ignored. Therefore, models using the no-cue interval may miss 

FOG episodes that otherwise would have been predicted from the Pre-FOG data. However, 

these missed episodes do not necessarily indicate decreased model performance, since in a real 

application, if a cue were given, the subsequent (missed) episode may never occur. In this 

analysis, 2.5 s was considered to be enough time for the person to respond to the cue and for 

the model to collect additional data to inform the next classification. Further study is required 

to determine the time required for gait to adjust following a cue, if the time is person or FOG-

subtype specific, and whether subsequent FOG episodes can be avoided. The results could then 

be used as relevant parameters for personalized FOG cueing systems. For example, the user’s 

reaction to the cue could be the input of a secondary classifier that is trained using post-cue 

data. The secondary classifier could determine if the gait parameters are stabilizing and cueing 

can be stopped, or that gait remains abnormal, and cueing should be continued or modulated. 

For the FOG detection model, merging successive FOG episodes did not substantially 

improve performance and no-merging resulted in the earliest MTD. For the prediction model, 

FOG episode merging increased the percentage of identified FOG episodes, but slightly 

decreased window-based sensitivity and specificity, decreased model precision, and resulted 

in less time between identification and freeze onset. The improvement in percentage of 

identified FOG episodes was at the cost of identifications being made later. For a FOG 

prediction model intended to be used in a cueing system, where early detection of FOG may 

be important, the merging of FOG episodes could be detrimental.  

5.5 Conclusion 

This chapter examined the effects of defining FOG either as a period of gait disruption 

(merging successive FOG), or based on an event (no merging), on FOG detection and 

prediction. For detection, defining FOG as a period of gait disruption produced minimal 

changes in performance; therefore, expert labeling based on periods of ineffective gait is likely 
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sufficient and labeling the onset and termination of each successive FOG episode within a 

larger period of gait disruption may not be required. Prediction model performance was 

adversely affected by increasing the merging threshold, specifically in terms of precision. 

Therefore, FOG prediction models should be trained using event-based FOG definitions (e.g., 

foot leaves or fails to leave the ground) that consider successive FOG episodes separately. 
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Chapter 6 

FOG Prediction using Unilateral and Bilateral Plantar Pressure Data  

6.1 Introduction  

In this chapter, FOG prediction models developed using data from one plantar pressure insole 

worn unilaterally and two insoles worn bilaterally are compared. Three datasets were created 

using features from the more severely affected side (MSS) of the body, the less severely 

affected side (LSS), and both sides. Feature selection was performed, and FOG prediction 

models were trained using each dataset. The best MSS, LSS and bilateral-limb models were 

identified and compared. 

6.2 Methodology 

6.2.1 Feature Extraction, Feature Selection and Target Class Creation 

Windowing and feature extraction were performed as described in Sections 3.6.1 and 3.7.1. 

For all prediction models developed in this chapter, the target class included windows 

containing purely Pre-FOG data, purely FOG data, and windows containing both Pre-FOG and 

FOG data (Section 3.6.2, Figure 3.6 a,b).  

For each data window, 166 unilateral features and 1 bilateral feature (number of weight 

shifts) were extracted from the plantar pressure data, resulting in 333 features (Section 3.7.1). 

Relief-F ranking was used to determine the best features. For the bilateral-limb models, all 333 

features were ranked. For the unilateral models, separate datasets were created with 166 MSS 

or 166 LSS features. Relief-F feature ranking was then performed for both the MSS and LSS 

datasets.  

6.2.2 Prediction Model Development  

All prediction models developed in this chapter used the same parameters and training 

methods. The only difference between the models was the input dataset and the number of 

input features. Separate prediction models were trained using 5, 10, 15, 20, 25 and 30 features 

from each of the MSS, LSS, and bilateral datasets.  
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Each data window was classified using a binary classification model. In this chapter, 

RUSBoosted decision tree ensembles (100 trees with 5 splits each, Section 4.2.3) were trained 

and validated using LOFO cross validation.  

6.2.3 Model Evaluation 

The trained models were evaluated using windows and FOG episodes. The window-based 

evaluation compared each window classification to the ground truth label and calculated 

sensitivity and specificity. Episode based evaluation was similar to the evaluation in Chapter 5, 

where three consecutive windows classified as belonging to the target class resulted in a model 

trigger decision (MTD) (Figure 6.1). If a MTD occurred within the MTD target zone, then the 

corresponding FOG episode was successfully identified. The identification delay (ID) was the 

time between FOG onset and a successful MTD identification. However, in this chapter, the 

MTD target zone was defined differently and was specific to each FOG episode.  

In the literature, Pre-FOG gait has been identified 3 steps prior to onset [29], and 

predictions have been reported 4-5 s in advance [20,28]. Furthermore, model classification 

target zones have been defined as 8 s prior to FOG onset [50]. Therefore, the MTD target zone 

in this analysis was initially defined as the period beginning 6 s prior to FOG onset until the 

end of the FOG episode. The period between the beginning of the MTD and FOG onset is the 

prediction target zone (Figure 6.1). To define the MTD target zone for a given FOG, the 

prediction target zone was initially set to 6 s. If there was another FOG, a stand to walk 

transition, or a turn to walk transition within the 6 s period prior to FOG onset, then the 

prediction target zone was shortened to exclude these turning, standing, or FOG data. This was 

done to ensure that false positives caused by the end of the previous FOG episode, turn to walk 

transitions, or stand to walk transitions were not mistakenly interpreted as predictions of the 

upcoming FOG. To ensure that the turning data were not included in the MTD target zone, a 

1 s delay was used so that the prediction target zone started 1 s after the end of the turn. 

Similarly, for transitions from standing to walking, a 1 s delay was used to remove periods of 

gait initiation from the MTD target zone (Figure 6.1).  



 

73 

Each MTD was considered to be either a true positive (within the MTD target zone) or 

a false positive (outside the MTD target zone). The MTD false positive rate was calculated as 

the total number of false positive MTD per trial for each participant, and as the average FP rate 

across all participants. While freezing during gait initiation is a known FOG manifestation 

[4,73], for this analysis, FP MTD that occurred during standing or gait initiation were ignored. 

Gait initiation was defined as the first second of walking after standing. As a final step in model 

development, a 2.5 s no-cue interval was used.  

 

Figure 6.1: Model trigger decision diagram. Three consecutive windows classified as the 

target class (W1-W3) results in a model trigger decision (MTD), where the MTD instant 

corresponds to the end of the third window. FOG is successfully identified if there is a MTD 

instant within the MTD target zone. The time difference between FOG onset and MTD instant 

is the identification delay (ID). The period between the beginning of the MTD target zone and 

the FOG onset is the prediction target zone.  

6.3 Results  

FOG prediction model performance for each number of features is presented in Figure 6.2. 

Overall, the highest sensitivity (79.5%) was for the LSS model with 5 features. The LSS model 

had the highest sensitivity for 5, 10, 15 and 25 features. The bilateral model had the highest 

sensitivity for 20 (74.6%) and 30 (66.7%) features.  

Specificity for all MSS, LSS, and bilateral models ranged between 81.3% and 88.0%. 

The highest overall specificity (88.0%) was for the bilateral model with 30 features. The LSS 

(87.5%) and MSS (83.9%) models also had high specificity using 30 features.  
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The highest percentage of identified FOG episodes ranged from 90.3% to 94.9% for all 

models that used 5, 10 or 15 features. For increasing numbers of features, the percentage of 

identified FOG decreased for all models. Overall, the highest percent of identified FOG 

(94.9%) was for the LSS models with 5 or 10 features. 

The LSS and bilateral models produced similar identification delays using 5, 10, 15 

and 20 features. Overall, the earliest identifications were for the bilateral and LSS models with 

5 features, which both had a -1.1 s ID. For all models that used 5 or 10 features, the ID values 

were between -0.9 s and -1.1 s.  

The MSS models had the lowest average false positive rate per walking trial for all 

number of features, and the LSS models had the highest FP rates. Overall, the lowest false 

positive rate was for the MSS model using 30 features (1.0 FP/trial). The highest false positive 

rate was for the LSS using 5 or 10 features (3.4 FP/trial).  

Overall, using more features tended to increase specificity, decrease sensitivity, 

decrease percentage of identified FOG episodes, and decrease number of false positives per 

trial. Increasing the number of features resulted in later predictions for the bilateral and MSS 

models. 

To select the ideal number of features, the different models were ranked for each 

evaluation metric, then the summation of ranks was calculated and the number of features with 

the smallest sum was selected. For instance, the MSS model with 5 features was the third best 

MSS model for sensitivity, fifth best for specificity, third best for percentage of identified FOG 

episodes, best (first ranked) for ID, and fifth best for FP rate. These ranks (3, 5, 3, 1, 5) were 

summed to produce a summed score of 17 for the MSS model with 5 features. This ranking 

was done for the MSS, LSS, and bilateral models (Table 6.1).  
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Figure 6.2: FOG prediction model performance: a) sensitivity, b) specificity, c) episodes 

identified as a percentage of the total number of FOG episodes for each participant, d) average 

identification delay, e) average number of false positives per walking trial. 

 

Table 6.1: Summed ranks for each combination of dataset and number of features.  

Dataset 
Number of input features 

5 10 15 20 25 30 

MSS 17 16 12* 20 22 18 

LSS 15* 16 19 21 16 18 

Bilateral 13* 14 19 20 19 20 

* indicates model selected as best.  
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According to the ranking, the best MSS model used 15 features, and the best LSS and 

bilateral models both used 5 features. The features used in the best models are presented in 

Table 6.2. To examine model performance for each participant, the cross-validation results for 

the best MSS, LSS, and bilateral models are presented in Table 6.3 and Table 6.4.  

Table 6.2: Features used for the best MSS, LSS and bilateral models. 

MSS 

15 features 

LSS 

5 features 

Bilateral 

5 features 

Number of AP COP path 

reversals 

Number of AP COP path 

reversals 

Dominant frequency of COP 

velocity AP for right leg 

Dominant frequency of COP 

velocity AP 

Power in freeze band (3-8 Hz) 

of COP velocity AP 

Number of AP COP path 

reversals for left leg 

Dominant frequency of COP 

velocity ML 

Dominant frequency of COP 

velocity AP 

Number of AP COP path 

reversals for right leg 

Mean energy of WT aC of 

COP position AP 

Power in freeze band (3-8 Hz) 

of COP position AP 

Dominant frequency of COP 

velocity ML for right leg 

Number of ML COP path 

deviations 

Dominant frequency of COP 

acceleration AP 

Mean energy of WT aC of COP 

position AP for right leg 

Mean WT aC of COP position 

AP 

  

Power in freeze band (3-8 Hz) 

of COP velocity AP 

Mean WT aC of COP velocity 

AP 

Dominant frequency of COP 

acceleration ML 

Power in freeze band (3-8 Hz) 

of COP position AP 

Dominant frequency of COP 

acceleration AP 

Mean WT dC of GRF 

Max energy of WT aC of COP 

position AP 

Power in freeze band (3-8 Hz) 

of COP position ML 

Mean duration of AP COP 

path reversals 

AP: anterior-posterior, ML: medial-lateral, WT: wavelet transform, aC: approximation 

coefficient, dC: detail coefficient. 
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Table 6.3: Sensitivity and specificity results for the best MSS, LSS and bilateral models.  

Participant 

MSS 

15 features 

LSS 

5 features 

Bilateral 

5 features 

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) 

P01 59.2 87.6 77.9 73.3 69.7 81.8 

P02 73.7 87.9 70.0 86.6 71.7 86.7 

P03 60.7 89.3 73.8 87.5 68.3 89.5 

P06 84.0 88.3 95.1 88.6 93.5 89.6 

P07 57.2 83.6 64.5 79.7 68.8 81.0 

P08 88.8 80.7 92.6 85.2 89.1 79.1 

P09 93.7 76.9 82.3 68.2 79.7 72.3 

Mean  

SD 

73.9 

14.1 

84.9 

4.3 

79.5 

10.5 

81.3 

7.3 

77.3 

9.7 

82.9 

5.8 

Sens: sensitivity, Spec: specificity. 

Table 6.4: Episode based model performance for the best MSS, LSS and bilateral models. 

Participant 

MSS 

15 features 

LSS 

5 features 

Bilateral 

5 features 

EI 

(%) 

ID 

(s) 

FPR 

(FP/trial) 

EI 

(%) 

ID 

(s) 

FPR 

(FP/trial) 

EI 

(%) 

ID 

(s) 

FPR 

(FP/trial) 

P01 85.7 -0.6 1.5 87.8 -0.7 1.4 89.8 -1.2 1.8 

P02 97.1 -0.3 0.9 91.4 -1.0 1.1 94.3 -1.1 1.1 

P03 78.6 -0.7 2.2 85.7 -0.7 2.5 85.7 -0.7 2.2 

P06 100.0 -0.1 2.2 100.0 -0.8 2.0 100.0 -0.6 1.7 

P07 77.4 -0.3 1.7 99.1 -1.0 6.8 90.0 -0.8 3.5 

P08 100.0 -1.1 1.7 100.0 -1.5 3.9 100.0 -1.4 3.2 

P09 100.0 -1.9 3.8 100.0 -2.1 6.1 100.0 -2.0 5.0 

Mean  

SD 

91.3 

9.6 

-0.7 

0.6 

2.0 

0.8 

94.9 

5.9 

-1.1 

0.5 

3.4 

2.1 

94.3 

5.5 

-1.1 

0.4 

2.6 

1.2 

ID: identification delay, EI: episodes identified as a percentage of the total number of FOG 

episodes for each participant, FPR: false positive rate. 

6.4 Discussion 

The overall best model for FOG prediction was the bilateral model, with 77.3% sensitivity, 

82.9% specificity, -1.1 s ID, 94.3% of FOG episodes identified, and 2.6 false positives per 

walking trial. Compared to the bilateral model, the MSS model had 3.4% lower sensitivity and 

identified 3% fewer FOG episodes, 0.4 s later. Thus, the MSS model identified fewer FOG 

episodes and identifications were made later. The LSS model had similar sensitivity, 

specificity, percentage of identified FOG episodes, identification delay and 0.8 more false 

positives per walking trial than the bilateral model; thus, the bilateral model had similar 
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prediction performance but fewer false positives. Therefore, the bilateral model is 

recommended. 

Between the two single-limb models, the LSS model had higher prediction 

performance than the MSS model. LSS model sensitivity and specificity were comparable to 

other single-sensor FOG prediction studies in the literature [19,21,26,27]. The best LSS model 

performed better for FOG prediction than a similar tree based algorithm (AdaBoosted C4.5 

decision tree) that used data from a single waist mounted IMU [19]. Compared to a FOG 

prediction model that used EEG signals, the LSS had lower sensitivity (79.5% compared to 

85.86%), and similar specificity (81.3% compared to 80.25%) [26]. However, a single plantar 

pressure sensor could be integrated into regular footwear and could therefore be used in a 

simpler and much more user-friendly wearable system than EEG sensors.  

For the bilateral model, sensitivity and specificity were lower than for models in 

existing literature where sensors were worn on both the limbs [23]. A model using gyroscope 

data from the shins predicted FOG with 84.1% sensitivity and 85.9% specificity [23]. 

However, the model was developed using data from only 35 FOG episodes.  

Other models in the literature achieved even higher sensitivity and specificity 

[22,24,50].  For example, a person-specific model using an ensemble of 9 SVM classifiers and 

data from 3 IMU sensors reported 93% sensitivity and 87% specificity [50]. Using the same 

dataset, a 3 class (Pre-FOG, FOG, Non-FOG) k-nearest neighbours classifier achieved 94.1% 

sensitivity and 97.1% specificity. However, these systems were not person-independent or 

used multiple sensors on various parts of the body, and thus are not directly comparable to the 

system analyzed in this thesis. 

Compared to other models in the literature, the LSS model FOG episode identification 

performance was very good. The LSS model identified 94.9% of episodes, which is similar to 

[50] where, 94% of episodes were identified, and was only slightly worse than a person-

specific model used in [25] that identified 97.4% of episodes. The best MSS, LSS, and bilateral 

models in this thesis all identified more than 91% of the FOG episodes. Furthermore, for the 

LSS and bilateral models, the average identification delay was -1.1 s. Thus, if used as part of 

a real-life cueing system, the LSS or bilateral models would cue most of the FOG episodes, 
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with identifications made just over 1 s prior to FOG onset. Although earlier predictions are 

generally considered to be preferable, the time needed for a user to respond to a cue and alter 

their gait to avoid freezing is largely unknown. It is thus unclear whether FOG identifications 

being made 1.1 s prior to onset is sufficient for use in a real-life system. Future testing 

involving FOG prediction and cueing is required to determine how far in advance the FOG 

predictions must be.   

The comparison of models that used plantar pressure data from the MSS and LSS was 

a primary goal of this analysis. The LSS model had higher sensitivity, earlier FOG 

identifications, and identified a higher percentage of FOG episodes than the MSS model. The 

better prediction performance of the LSS may be explained by an increased role of this limb 

in balance and postural stability during walking. Differences between the MSS and LSS have 

been identified in various motor tasks [192], and participants with PD (with and without FOG) 

preferentially adjusted the positioning of their least affected limb in order to retain balance 

after slipping [193]. Therefore, the LSS limb may also be preferentially used for stability 

during walking, similar to how amputees rely on the intact limb for stability and balance [194]. 

Postural stability and FOG are intricately related [48] and dual-task walking (a common trigger 

for FOG) can negatively affect stability in freezers [195]. Furthermore, stability and postural 

control in PD can be assessed using COP [196,197]. COP based features that indicate postural 

instability may also indicate upcoming FOG. Therefore, if participants are preferentially using 

the less severely affected limb for stability control when walking, the link between instability 

and FOG may lead to the LSS being the more informative limb for FOG prediction. The 

connection between postural stability, FOG, and the preferential use of the LSS or MSS for 

stability control during walking should be further investigated. 

The best MSS model had the highest specificity, lowest false positive rate, and latest 

predictions compared to the LSS and bilateral models. Therefore, the MSS predicted FOG less 

in advance but resulted in fewer false positive MTD. The best MSS model had a false positive 

rate of 2.0 FP per walking trial. In addition to the number of FP per walking trial, the FP 

frequency was estimated using the duration of each walking trial. Once averaged for all 

walking trials and all participants, the best MSS model produced one FP approximately every 
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35 s of walking. Similarly, one FP was produced approximately every 26 s for the bilateral 

model and every 23 s for the LSS model. However, since this research used a specially 

designed freeze inducing walking path, fewer false positives may be experienced during daily 

walking.  

In a real-life setting, which limb to use may depend on the person, their FOG history, 

and the intervention (cueing) approach. For someone who tends to recover independently 

following a freeze, minimizing false positives may be more important than early cueing. Thus, 

instrumenting the MSS may be preferable since it had higher specificity and fewer false 

positives. In contrast, for someone who frequently experiences loss of balance and potential 

falls when freezing, collecting data from the LSS may be preferable, since the FOG episodes 

would be identified earlier and with higher sensitivity. For this person, a late or missing cue 

may be more disruptive to overall walking than the increased number of false positives. In 

addition, the type of cue may also influence the decision to instrument the MSS or LSS limb. 

When using a minimalistic cue, FP may be better tolerated and thus permit the use of the LSS 

model since false positive cues are less of a concern. However, an intense or potentially 

bothersome cue may be best used with MSS instrumentation to reduce unnecessary cueing. 

While the LSS model performance was similar to the bilateral model, the bilateral 

model is recommended for FOG prediction since it produced fewer false positives. LSS false 

positive frequency was one FP every 23 s, compared to one FP every 26 s for the bilateral 

model. If implemented in a real-life cueing system, a 3 s difference in FP frequency may be 

imperceptible to the user. Single sensor systems can potentially be simpler, less expensive, and 

more user-friendly than systems with multiple sensors and the use of a single sensor instead of 

two may be more important than a slight increase in FP rate. Therefore, models that use plantar 

pressure data from the LSS may be preferable to models that use plantar pressure data from 

both feet, in some situations.   

6.5 Conclusion 

This chapter compared FOG prediction models that used plantar pressure data collected from 

the more severely affected side, the less severely affected side, and both sides together. 
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RUSBoosted ensembles of decision trees were trained. The best models were MSS with 15 

features, and LSS and bilateral with 5 features. The LSS model had higher sensitivity and 

identified a higher percentage of FOG episodes more in advance of the FOG onset, compared 

to the MSS. The MSS model had higher specificity and fewer false positives. In a system that 

uses a single plantar pressure sensor, the decision to instrument the LSS or MSS may be person 

specific. For someone who tends to recover independently from FOG, instrumenting the MSS 

may be preferable since there would be fewer false positives. However, for someone who 

experiences loss of balance during freezing, cueing earlier may be more important than 

minimizing false positives, thus instrumenting the LSS may be preferable.   

LSS and bilateral model performance was similar for all evaluation metrics except the 

false positive rate. The LSS model had a higher FP rate than the bilateral model. Therefore, in 

terms of prediction performance, using plantar pressure data from both feet is recommended. 

However, since the difference in FP rate between the LSS and bilateral models was small, the 

advantages of a single sensor system may outweigh the increase in FP rate. In practice, using 

a single-sided plantar-pressure based FOG prediction system could enhance wearability and 

compliance since fewer sensors would need to be worn.  
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Chapter 7 

Conclusion 

In this thesis, FOG detection and prediction models that used data from IMU and plantar 

pressure insole sensors were developed. The plantar pressure based models detected and 

predicted FOG with classification performance comparable to models that used both IMU and 

plantar pressure data. Merging multiple FOG episodes that occur in rapid succession had little 

effect on detection model performance but was detrimental to prediction. Models that used 

plantar pressure data collected from the LSS and from both feet were found to have similar 

FOG prediction performance.  

All thesis objectives were met: 

Objective 1: Develop FOG detection and prediction models using IMU and plantar 

pressure data. 

a) Determine which features are most useful for FOG detection and prediction using 

plantar-pressure data alone, IMU data alone, and combined IMU and plantar 

pressure data. 

FOG detection models were developed using features extracted from plantar pressure, IMU, 

and IMU and plantar pressure data. The model that used only plantar pressure features 

produced the highest sensitivity (78.0%), whereas the model that used only IMU features 

produced the highest specificity (91.6%). The best overall performance was achieved by the 

model that used 10 features from the combination of IMU and plantar pressure data. Of the top 

10 features, only two were calculated from IMU data; the remaining eight features were 

calculated using the plantar pressure data. Separately, FOG prediction models were trained 

using features extracted from plantar pressure data. The prediction models performed well, 

achieving over 77% sensitivity and 82% specificity. Therefore, plantar pressure features were 

useful for FOG detection and prediction.  

From the top 10 features used in the FOG detection model, eight were from the 

frequency domain and two from the time domain. Similarly, the plantar pressure features used 

for prediction were from both time domain and frequency domain. The dominant frequency of 
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COP velocity feature and the number of COP path reversals in the AP direction feature ranked 

highly for all detection and prediction models. The mean energy of the wavelet transform 

approximation coefficient vector of COP position in the AP direction also ranked well for 

multiple models. Therefore, features from the time domain and frequency domain (both FFT 

and WT) performed well for FOG detection and prediction.  

b) Compare the performance of models based on plantar-pressure data alone, IMU 

data alone, and combined IMU and plantar pressure data, for FOG detection. 

All FOG detection models that used IMU data alone, plantar pressure data alone, or both IMU 

and plantar pressure data, were able to detect FOG. However, the combination of IMU and 

plantar pressure data gave the best results. The best model was a RUSBoosted ensemble of 

decision trees built using 10 features from the IMU and plantar pressure data. The model 

achieved 76.4% sensitivity and 86.2% specificity when classifying 1 s windows of Total-FOG 

data (i.e., data from 2 s before FOG onset until the end of the FOG episode). Furthermore, the 

FOG windows were detected with 93.4% sensitivity.  

 A separate RUSBoosted decision tree ensemble FOG detection model was trained 

using the same set of 10 features from the IMU and plantar pressure data. The model was 

trained to detect windows containing FOG data and achieved 83.4% sensitivity, 87.9% 

specificity, and detected 93.3% of FOG episodes.  

c) Compare the performance of models based on plantar-pressure data alone and 

plantar pressure data combined with IMU data for FOG prediction. 

For FOG prediction, two different models were developed, both using RUSBoosted decision 

tree ensembles. The first model used 10 features extracted from IMU and plantar pressure data, 

and the second model used 5 features extracted from bilateral plantar pressure data. The FOG 

prediction model with features from IMU and plantar pressure data achieved 73.4% sensitivity, 

82.1% specificity and identified 94% of FOG episodes 0.56 s in advance. The FOG prediction 

model that used only plantar pressure data achieved 77.3% sensitivity, 82.9% specificity, and 

identified 94.3% of the FOG episodes 1.1 s in advance. The model using only 5 features 

extracted from plantar pressure data had higher sensitivity and earlier detections, while the 
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specificity and percentage of identified FOG episodes were similar between models. Therefore, 

the model that used 5 plantar pressure features was better than the model that used IMU and 

plantar pressure based features. The comparison of these prediction models demonstrated that 

the data from IMU sensors is not necessary to achieve good FOG prediction performance.   

Objective 2: Determine if event-based or “period of gait disruption” FOG definitions lead 

to better classification performance for FOG detection and prediction. 

Detection models developed using merged and unmerged data had similar performance. 

Therefore, when training a FOG detection system, labeling groups of multiple FOG in 

succession as a single period of gait disruption is sufficient (i.e., each small freeze does not 

need to be independently labeled). Since ground truth labeling is typically a time-consuming 

manual task, using the period of gait disruption (merged) approach is more efficient and 

recommended for FOG detection model development.  

Prediction models developed using merged data had worse performance compared to 

models developed using unmerged data. In particular, using merged data decreased model 

precision. Therefore, FOG prediction models should be trained using event-based FOG 

definitions (e.g., foot leaves or fails to leave the ground) that consider successive FOG episodes 

separately. 

Objective 3: Evaluate FOG prediction models that use a single unilateral plantar 

pressure insole sensor and models that use bilateral sensors.  

a) Determine if models using plantar pressure data from a single foot can predict 

FOG with performance comparable to models that use plantar pressure data 

collected from both feet.  

The FOG prediction model that used plantar pressure data from both feet had 77.3% sensitivity, 

82.9% specificity, -1.1 s ID, and identified 94.3% of the FOG episodes with a false positive 

rate of 2.6 FP per walking trial. Compared to the bilateral model, the LSS model had similar 

sensitivity, specificity, percentage identified FOG episodes, identification delay and 0.8 more 

false positives per walking trial.  



 

85 

Bilateral and LSS model performance was similar. The LSS produced a slightly higher 

false positive rate than the bilateral model. In practice, the advantages of single sensor systems 

may outweigh the increase in false positives. Therefore, a single plantar pressure sensor placed 

on the LSS could be used to develop a FOG prediction system and produce performance similar 

to a bilateral system.  

b) Determine if models using plantar pressure data from either the more severely 

affected side (MSS) or the less severely affected side (LSS) produce better 

classification results for FOG prediction. 

When comparing the FOG prediction models developed using data from the MSS and LSS, 

the LSS model had higher sensitivity and identified a higher percentage of FOG episodes more 

in advance. The MSS model had higher specificity and fewer false positives. Therefore, in a 

system that uses a single plantar pressure sensor, the decision to instrument the LSS or MSS 

may be person specific. For someone who tends to recover independently from FOG, the MSS 

may be preferable since there would be fewer false positives. For someone who experiences 

loss of balance during freezing, cueing earlier may be more important than minimizing false 

positives, thus the LSS may be preferable.   

7.1 Future Work 

The models and analyses performed in this thesis can be continued and improved in multiple 

ways. In this thesis, data were collected from only 11 participants. In the FOG detection and 

prediction literature fewer than 12 participants is common (Table A.1) and only five FOG 

detection studies had more than 25 participants [57,59,61,99,124]. For prediction, the largest 

participant pools were 18 participants [17,25]. While the sample size used in this thesis could 

be considered average, future research should use data from larger groups of freezers. In 

addition, as women tend to be underrepresented in FOG research, a targeted recruitment 

strategy should be implemented to address this disparity. More participants will help with 

model generalization and FOG subtype analysis. For instance, a larger participant pool would 

allow a more complete understanding of FOG manifestations and analysis of different FOG 

subtypes leading to FOG-subtype-specific models. Compared to fully personalized models, 
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FOG-subtype-specific models could be easier to implement since they would not require large 

amounts of data from a single individual for training. Therefore, models personalization 

according to FOG-subtype may improve performance compared to fully person-independent 

models, while avoiding challenges associated with fully person-specific systems.  

 An important step in developing real-life FOG prediction systems is implementing real-

time prediction models. To date, FOG prediction models have not been tested in real-time. The 

models developed in this thesis, especially the model using data from only one plantar pressure 

sensor on the LSS, could be integrated into a real-time wearable system. Once a FOG 

prediction system has been implemented in real-time, cueing systems could be investigated to 

help prevent or mitigate FOG episodes.   

 Evaluation of a real-time prediction and cueing system would also allow additional 

analyses and improvements such as the no-cue interval duration analysis described in 

Section 5.4. Once the prediction and cueing systems have been tested in real-time, new data 

could be used to study how gait parameters change following a cue. These data could be used 

to create models that can identify whether gait parameters are stabilizing and cueing can be 

stopped, or that gait remains abnormal and cueing should be continued or modulated.   

The connection between postural stability, FOG, and the preferential use of the LSS or 

MSS for stability control during walking should be further investigated. Additional 

experiments specifically designed to evaluate FOG prediction systems that use plantar pressure 

data from the LSS and MSS are needed. Moreover, additional factors could be explored such 

as FOG subtype and medication state, to determine the effect on FOG prediction using plantar 

pressure data from the LSS and MSS.  

For FOG prediction models developed in Chapter 6, most false positives occurred 

during turning, indicating that differentiating between a turn and a freeze is challenging for the 

model. Furthermore, features used by the MSS, LSS, and bilateral models predominantly 

included COP movements in the AP direction. During turning, the COP path includes 

movement in the ML direction. Thus, the lack of COP features from the ML direction may 

have contributed to the high number of FP observed during turning and could be investigated 

in more depth.  
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To further reduce FP during turning, an activity recognition algorithm could be 

developed to identify turning. Subsequently, activity recognition and FOG prediction models 

could be trained to run jointly. Alternatively, the output from the activity recognition model 

could be used as an input to the FOG prediction model.  

Finally, high resolution plantar pressure sensors were used in this research. The most 

useful features were calculated using COP movements, which can be calculated with a much 

lower resolution insole sensor. Thus, as part of future research, the models developed in this 

work could be validated on a simpler insole system with fewer pressure-sensing cells. Using 

lower resolution plantar pressure sensors would reduce cost and simplify the system, which 

are both desirable for real-life wearable systems.   
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Appendix A 

Summary of FOG Detection and Prediction Studies and Features  

Table A.1: Summary of recent FOG detection studies using wearable sensors. 

Source 
Studied 

Population 

Walking Task 

Performed 

Sensor Type  

and Location 
FOG Detection Method Features 

Classifier 

Performance 

Real 

Time 

Moore 2008 

[94] 

11 FOG-PD  

(7 froze), ON 

and OFF, 46 

episodes 

Lab, straight 

walking, 180° 

turns, narrow 

doorways, 

obstacle 

avoidance. 

IMU (1) left 

shank 

Freeze index (FI) with  

person-specific thresholds. 6 s 

windows, detection based on 

FOG episode occurrences. 

E 

Detected 89.1% 

of episode 

occurrences, 

10% false 

positives 

No 

Zabaleta 

2008 [198] 

 

4 FOG-PD, ON 

and OFF 

Lab, sit to stand, 

90° and 180° 

turns, figure-eight, 

doorway 

navigation, 

obstacle 

avoidance. 

IMU (6) 

heels, shanks, 

thighs 

Multivariate linear 

discriminant analysis, 

frequency-based features. 

Person-specific, detection 

based on classification of 

individual 3 s windows. 

E 

Area under 

ROC curve. 

Average of all 

participants: 

0.937 

No 

Jovanov 

2009 [15] 

4 HC,  

1 UFOG-PD 

Lab, sit to stand 

and walking. 

IMU (1) right 

knee 

FI [94], 0.32 s windows  

(64 samples at 200 Hz). 
E - Yes 

Bachlin  

2009-2010  

[16,166,167,

169] * 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions to 

start, stop, and 

turn 360° in both 

directions. 

Simulated ADL 

(walk to room, 

return with glass 

of water)  

Acc (3) left 

shank, left 

thigh, lower 

back 

FI [94] with additional energy 

threshold to reduce false 

positives due to standing. 4 s 

windows with 0.5 s shift each 

step. Detection performance 

based on classification of 

windows with a 2 s tolerance. 

E 

Person-

independent 

threshold: 

Sensitivity: 

73.1% 

Specificity: 

81.6% 

Yes 
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Bachlin 2009 

[105] * 

10 FOG-PD  

(8 froze) 237 

episodes 

Lab, straight 

walking, 180° 

turns, randomly 

given instructions 

and simulated 

ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Same methods as [16]. 

Improved offline through 

person-specific thresholds. 

Detection performance based 

on classification of windows 

with a 2 s tolerance. 

E 

Sensitivity: 

88.6% 

Specificity: 

92.8% 

 

No 

Delval 2010 

[58] 

10 HC,  

10 NFOG-PD,  

10 FOG-PD  

(5 froze), OFF, 

20 episodes 

Lab, 2 km/h 

treadmill, objects 

unexpectedly 

dropped on belt in 

front of 

participant. 

CBMC, 

goniometers 

(2) knees 

Compared stride features 

(e.g., step duration, step 

distance), and FI to person-

independent thresholds, using 

4.1 s windows. 

E 

Sensitivity: 75–

83% 

Specificity: 

>95% 

No 

Djuric-

Jovicic 

2010 [117] 

4 FOG-PD 

Lab, sit to stand, 

straight walking 

through doorway, 

180° turn, return 

to seat. 

IMU (6) feet, 

shanks, thighs 

Energy thresholds to detect 

movement, combined with 

NN for FOG detection. 0.2 s 

and 1.0 s windows. 

Classification performance 

based on number and duration 

of false detections. 

E 
Classification 

error up to 16% 
No 

Popovic 

2010 [64] 

9 FOG-PD  

(7 froze), ON, 

24 episodes 

Lab, sit to stand, 

straight walking 

through doorway, 

180° turn, return 

to seat. 

FSR in-shoe 

insole, Acc 

(6) feet, 

shanks, thighs 

FSR signals to create single 

person-specific “normal 

step”. Pearson’s correlation 

coefficient (PCC) calculated 

for FSR signal of entire trial, 

then compared to a threshold. 

E - No 

Cole 2011 

[113] 

2 HC, 10 

UFOG-PD, 107 

episodes 

Lab, unscripted 

ADL in mock 

apartment. 

Acc (3) shin, 

thigh, 

forearm, EMG 

(1) shin 

Stand vs sit detection, NN for 

FOG detection. Person-

independent model, 2 s 

windows, detection 

performance calculated per 1 

s segments. 

E 

Sensitivity: 

82.9% 

Specificity: 

97.3% 

No 

Tsipouras 

2011 [127] 

 

5 HC,  

6 NFOG-PD,  

5 FOG-PD 

- 

Acc (6) 

wrists, legs, 

chest, waist, 

Gyro (2) 

chest, waist 

C4.5 decision tree, random 

forest, using 2 s windows. 
E 

Accuracy: 

Decision tree: 

95.08% 

Random forest 

96.11% 

No 
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Niazmand 

2011 [165] 

6 FOG-PD 

(varying 

severity) 

Lab, walk with 

180° turns, with 

and without 

walking aid. 

Walking, 180° and 

360° turns (both 

directions), 

doorways. 

Instrumented 

pants, Acc (5) 

waist, thighs, 

shanks 

Multi-stage, person-

independent, threshold-based 

classification, identifies 

suspicious movement, then 

frequency feature used for 

classification, using 2 s 

windows. 

E 

Sensitivity: 

88.3% 

Specificity: 

85.3% 

No 

Zhao 2012 

[95] 

8 FOG-PD  

(6 froze), 82 

episodes 

Lab, 5-8 min 

random 

instructions 

(stand, walk, stop, 

turn). 

Instrumented 

pants, Acc (5) 

waist, thighs, 

shanks (as in 

[165]) 

Time series, acceleration 

peaks detection (1.5 s 

windows) and frequency 

features via FFT  

(4 s windows), compared to  

person-independent 

thresholds. 

E 

Sensitivity: 

81.7% 

 

No 

Mazilu 2012 

[126] * 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, randomly 

given instructions 

and simulated 

ADL. 

 

Acc (3) left 

shank, left 

thigh, lower 

back 

AdaBoosted decision tree 

classifier best among several. 

Compared window sizes 1–

4 s, 1 s was ideal. Detection 

performance based on 

classification of individual 

windows. 

E 

Person-specific: 

Sensitivity: 

98.35% 

Specificity: 

99.72% 

Person-

independent: 

Sensitivity: 

66.25% 

Specificity: 

95.38% 

No 

Tripoliti 

2013 [128] 

5 HC,  

6 NFOG-PD,  

5 FOG-PD, ON 

and OFF, 93 

episodes 

Lab, rise from 

bed, walking tasks 

including 

doorways, 180° 

turns, and ADL. 

Acc (4) 

ankles, wrists, 

IMU (2) 

waist, chest 

Random forest classifier, 1 s 

windows. Person-independent 

detection performance based 

on classification of individual 

windows. 

E 

Sensitivity: 

81.94% 

Specificity: 

98.74% 

No 
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Moore 2013 

[96] 

25 FOG-PD  

(20 froze), OFF, 

298 episodes 

Lab, TUG. 

IMU (7) 

Lower back, 

thighs, 

shanks, feet 

FI thresholds [94]. Compared 

different sensor locations, 

person-independent 

thresholds and window 

lengths. Detection 

performance based on 

classification of FOG episode 

occurrences and percentage of 

time frozen. 

E 

Lower back 

sensor, 

10 s window: 

Sensitivity: 

86.2% 

Specificity: 

82.4% 

No 

Mazilu 2013 

[18] * 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Person-specific decision tree, 

tested different feature sets 

and supervised vs 

unsupervised feature selection 

using principal component 

analysis (PCA). Detection 

performance based on 

classification of individual 1 s 

windows. 

E, S 

Unsupervised:  

Sensitivity: 

77.7% 

Specificity: 

87.56% 

Supervised: 

Sensitivity: 

69.42% 

Specificity: 

87.76% 

No 

Coste 2014 

[32] 

4 UFOG-PD,  

44 episodes 

Lab, corridor walk 

with dual task. 

IMU (1) 

shank 

Freezing of gait criterion 

(FOGC) feature, based on 

cadence and stride length, 

incorporating  

person-specific thresholds. 

Detection performance based 

on classification of FOG 

episode occurrences. 

E 
Sensitivity: 

79.5%  
No 
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Sijobert 2014 

[153] 

 

7 UFOG-PD,  

50 episodes 

Lab, corridor walk 

with dual task. 

IMU (1) 

shank 

FOGC [32], with person-

specific thresholds. Detection 

performance based on 

classifying FOG episode 

occurrences. FOG episodes 

labeled as Green (n = 19, 

slight gait modification with 

no fall risk), Orange (n = 12, 

gait modification with fall 

risk) or red (n=19,  

FOG – blocked gait). 

E 

Correctly 

identified 26 of 

31 FOG (orange 

and red) 

No 

Kwon 2014 

[161] 

 

20 FOG-PD  

(6 froze), ON, 

36 episodes 

Lab, repeated 

straight walk with 

180° turns. 

Acc (1) in 

shoe heel 

Root mean square (RMS) of 

acceleration compared to  

person-specific threshold. 

0.2–10 s windows. 3–4 s 

windows recommended. 

E 

Minimum of 

sensitivity or 

specificity: 

85.8% 

No 

Pepa 2014 

[164] 

18 UFOG-PD, 

ON 

Lab, 3 TUG 

variations: 

standard, with 

cognitive dual 

task, with manual 

dual task. 

Acc (1) 

smartphone 

worn on belt 

at hip 

Fuzzy logic model using 

frequency features, person-

specific thresholds, 2.56 s 

windows. Detection 

performance based on 

classification of windows 

(sensitivity, specificity) and 

FOG episode occurrences 

(sensitivity) – distinction not 

indicated in results. 

E 
Sensitivity: 89% 

Specificity: 97% 
No 
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Djuric-

Jovicic 2014 

[56] 

 

 

12 FOG-PD, 

OFF 

Lab, sit to stand, 

walk with 90° and 

180° turns, 

multiple 

doorways. 

IMU (2) 

shanks,  

FSR in-shoe 

insoles 

Each stride is compared to a 

“normal” stride using spectral 

power, stride duration, and 

shank displacement. Custom 

rule-based method classified 

each stride based on person-

specific thresholds. 

E 

FOG with 

tremor: 

Sensitivity: 99% 

Specificity: 

100% 

FOG complete 

stop: 

Sensitivity: 

100% 

Specificity: 

100% 

No 

Assam 2014 

[109] * 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Wavelet decomposition for 

feature extraction and 

conditional random fields for 

classification. Train/test for 

each person individually 

(person-specific model), 

compared 2.5, 4 and 8 s 

windows. Results for 3 

participants, separately. 

E, S 

Best single 

participant 

results, with 4s 

window: 

Sensitivity: 65% 

Precision: 

61.9% 

No 

Mazilu 2014 

[93] 

5 FOG-PD, 102 

episodes 

Lab, walking with 

turns and 

doorways. 

IMU (2) 

ankles 

Person-independent decision 

tree classifier (C4.5), multiple 

frequency-based input 

features, 2 s windows. 

Detection performance based 

on classifying FOG episode 

occurrences. 

E 
99 of 102 FOG 

detected 
Yes 
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Mazilu 2015 

[54] ** 

18 FOG-PD  

(11 froze), 182 

episodes 

Lab, walking tasks 

with cognitive and 

manual tasks. 

Straight walking, 

180° and 360° 

turns, narrow 

spaces, hospital 

circuit with 

elevator, 

unexpected stops 

start, and turns. 

IMU (2) 

wrists 

Decision tree classifier 

(C4.5), features from wrist 

data, 3 s windows, person-

specific detection 

performance based on 

classifying FOG episode 

occurrences. 

E 

Person-specific: 

Sensitivity: 90% 

Specificity: 83% 

No 

Zach 2015 

[53] 

23 FOG-PD  

(16 froze), OFF, 

166 episodes 

Lab, self-paced, 

fast walking, short 

steps, short fast 

steps, 360° turns 

both directions. 

Acc (1) lower 

back 

FI [94] compared to person-

specific and person-

independent thresholds, 2 s 

windows, detection 

performance based on 

classifying FOG episode 

occurrences. 

E 

Person-

independent 

threshold: 

Sensitivity: 75% 

Specificity: 76% 

No 

Kim 2015 

[125] 

15 FOG-PD  

(9 froze), 46 

episodes 

Lab, hospital 

hallway, straight 

walk with 180° 

turns, also with 

dual tasks. 

IMU (1) 

(smartphone) 

ankle, pants 

pocket, chest 

pocket, waist 

AdaBoosted, person-

independent, decision tree 

using 4 s windows. Compared 

different sensor locations, 

found waist best. 

E 

Smartphone on 

waist: 

Sensitivity: 86% 

Specificity: 

91.7% 

No 

Handojoseno 

2015 [60] 

 

4 FOG-PD, OFF 

Lab, TUG with 

180° or 540° turns 

in both directions. 

EEG, head 

Person-independent NN to 

detect FOG during turning, 

0.256 s windows, 1 s samples 

(117 normal turning, 224 

FOG turning). 

E, S 

Sensitivity: 

74.6% 

Specificity: 

48.4% 

 

No 

Nivya Venu 

2016  [112]* 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Wavelet decomposition used 

sub-band energies as features, 

continuous random field used 

for detection. 4 s windows.  

Person-independent detection 

performance based on 

classifying FOG episode 

occurrences. 

E, S 

Average of 3 

participants test 

set: 

Sensitivity: 

90.3% 

Precision: 

95.8% 

No 
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Martin 2016 

[135] **** 

6 FOG-PD, ON 

and OFF 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g. brushing 

teeth). 

Acc (1) left 

hip 

Different methods, feature 

sets, and window sizes 

compared. Best results from 

SVM. Detection performance 

based on classification of 

individual 1.6 s windows. 

E 

Sensitivity: 

91.7% 

Specificity: 

87.4% 

No 

Mazilu 2016 

[55] ** 

 

18 FOG-PD  

(11 froze), 184 

episodes 

Lab, walking tasks 

with cognitive and 

manual tasks. 

Straight walking, 

180° and 360° 

turns, narrow 

spaces and 

hospital circuit 

with elevator, 

unexpected stops 

start, and turns. 

IMU (2) 

wrists 

Decision tree classifier (C4.5) 

similar to [54], but fewer 

features and evaluation of 

single wrist input. 3 s 

windows, detection 

performance based on 

classifying FOG episode 

occurrences. 

E, S 

Person-specific: 

Sensitivity: 85% 

Specificity: 80% 

Person-

independent: 

Sensitivity: 90% 

Specificity: 66% 

No 

Lorenzi 2016 

[156–

158,173] 

 

16 UFOG-PD 

Lab, walking 

through doorway, 

180° turns. 

IMU (2) 

shanks, IMU 

(1) side of 

head 

Compared headset (combined 

with NN) and shin mounted 

IMUs. Shin method using 

custom k-index feature 

compared to person specific 

thresholds performed best. 

E 

From shin 

system: 

Sensitivity: 

94.5% 

Specificity: 

96.7% 

No 
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Rezvanian 

2016 [98] * 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Continuous wavelet transform 

computed ratio of frequency 

ranges, compared to person-

independent threshold. 

Compared different window 

lengths, suggested 2 s 

windows for future real-time 

implementation. 

E 

Window 2 s: 

Sensitivity: 

82.1% 

Specificity: 

77.1% 

Window 4 s: 

Sensitivity: 

84.9% 

Specificity: 

81.01% 

No 

Ahlrichs 

2016 [132] 

*** 

 

20 FOG-PD  

(8 froze) ON 

and OFF, 209 

episodes 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and a 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g. brushing 

teeth). 

Acc (1) waist 

Person-independent SVM 

(linear kernel), best results 

with 3.2 s windows. 

Classified windows 

aggregated over 60 s and 

degree of confidence 

calculated and compared to 

threshold to determine 

whether a FOG episode was 

present during aggregation 

period. 

E 

Sensitivity: 

92.3% 

Specificity: 

100% 

No 

Capecci 2016 

[104] 

20 FOG-PD  

(16 froze), ON, 

98 episodes 

Lab, TUG test, 

cognitive or 

manual dual task. 

IMU (1) 

smartphone at 

waist 

Cadence and modified freeze 

index extracted and compared 

to person-specific thresholds. 

Detection performance based 

on classification of individual 

3.56 s windows. 

E 

 

 

Sensitivity: 

87.57% 

Specificity: 

94.97% 

No 

Ly 2016 

[114] 

 

7 FOG-PD, OFF Lab, TUG. EEG, head 

Person-independent NN, 

compared different features 

and number of EEG channel 

inputs. Data divided into 1 s 

segments (343 effective 

walking and 343 freezing). 

E, S 

Using all 32 

channels: 

Sensitivity: 

72.2% 

Accuracy: 

71.46% 

No 
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Pham 2017 

[133] * 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Anomaly detection approach. 

Acceleration and spectral 

coherence features calculated 

for incoming window and 

“normal” reference. Person-

independent thresholds used 

to classify FOG, “normal” 

reference updated with each 

Non-FOG window. Detection 

performance based on 

classification of individual 

0.6 s windows. 

E 
Sensitivity: 87% 

Specificity: 94% 
No 

Pham 2017 

[160] * 

 

Development: 

10 FOG-PD  

(8 froze), 

Test: 24  

FOG-PD (OFF) 

 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Test: TUG, 180° 

and 540° turns in 

both directions. 

Acc (3) left 

shank, left 

thigh, lower 

back 

IMU (7) foot, 

shank, thigh, 

lower 

back/hip 

Development data from 

Daphnet*, test data from 

[199]. Several new features 

(including multichannel 

freeze index) presented and 

evaluated, detection used  

anomaly score compared to  

person-independent threshold 

to classify individual 3 s 

windows. 

E, S 

Freeze index 

using hip sensor 

X-axis: 

Sensitivity: 89% 

Specificity: 94% 

 

No 

Pham 2017 

[107] * 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Freeze index and spectral 

coherence features used to 

generate average value used 

as threshold for FOG 

detection. Participant 

independent averages 

automatically updated during 

use. Detection performance 

based on classification of 

0.6 s windows. 

E 

Sensitivity: 

89.2% 

Specificity: 

95.6% 

 

No 
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Ahn 2017 

[31] 

 

10 HC,  

10 FOG-PD, 

OFF,  

42 episodes 

Lab, TUG and 

10 m walk tests. 

IMU (1) in 

smart glasses 

Custom FOG detection on 

glasses feature (FOGDOG), 

incorporated stride length and 

cadence, with person-specific 

thresholds, 1 s windows. 

Detection performance based 

on classifying FOG episode 

occurrences. 

E 

For PD 

participants: 

Sensitivity: 97% 

Specificity: 88% 

Yes 

Tahafchi 

2017 [108] 
2 FOG-PD 

Lab, 6 min of 

walking turning 

and stepping in 

place. 

EMG + IMU 

units (6) 

thighs, 

shanks, feet 

SVM with Gaussian kernel, 

multiple time series and 

frequency features. 1 s 

windows. 

E 
Sensitivity: 90% 

Specificity: 92% 
No 

Suppa 2017 

[59] 

28 FOG-PD  

(25 froze), 152 

episodes  

(102 OFF, 50 

ON) 

Lab, simulated 

home 

environment, 

TUG passing into 

narrow hall, 

turning both 

directions. 

IMU (2) shins 

k index from shin-mounted 

sensor compared to person-

specific thresholds [155], with 

additional analysis of ON vs 

OFF states. 

E 

Sensitivity: 

93.41% 

Specificity: 

98.51% 

No 

Kita 2017 

[99] 

 

32 UFOG-PD 

(25 froze) 

Lab, straight 

walking, through 

doorway, with 

180° turn, and 

return. 

IMU (2) 

shanks 

Improvements on k index in 

[155], including new Kswing, 

K’ features. Person-specific 

performance based on 

percentage of time frozen per 

trial. 

E 

Sensitivity: 

93.41% 

Specificity: 

97.57% 

No 

Rodriguez-

Martin 2017 

[129] ***, 

**** 

21 FOG-PD, 

ON and OFF, 

1321 episodes 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and a 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g., brushing 

teeth). 

IMU (1) left 

hip 

SVM (radial basis function 

kernel), compared person-

independent and person-

specific models, using 3.2 s 

windows. Detection 

performance based on 

classifying FOG episode 

occurrences. 

E 

Person-

independent: 

Sensitivity: 

74.7% 

Specificity: 

79.0% 

Person-specific: 

Sensitivity: 

88.09% 

Specificity: 

80.09% 

No 
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Rodriguez-

Martin 2017 

[131] ***, 

**** 

12 PD-FOG, 

106 episodes 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and a 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g., brushing 

teeth). 

IMU (1) left 

hip 

Same detection algorithm as 

[129], also using 3.2 s 

windows. Detection 

performance based on 

classifying FOG episode 

occurrences. 

E 

Sensitivity: 

82.08% 

Specificity: 

97.19% 

Yes 

Ly 2017 

[115] 

 

6 FOG-PD Lab, TUG. EEG, head 

Person-independent Bayesian 

NN, to detect FOG during 

turns. Similar to [60], with 

addition of  

S-transform. Data divided 

into 1 s samples (204 normal 

turning, 204 FOG turning). 

E, S 

Sensitivity: 

84.2% 

Specificity: 

88.0% 

No 

Pepa 2017 

[100] 
20 UFOG-PD 

Lab, TUG, with 

cognitive or 

manual dual task, 

sit, lay on bed, 

stand up and 

maintain upright 

posture, and run 

on a treadmill if 

able. 

IMU (1) 

smartphone at 

waist 

Fuzzy inference system 

compared to person-specific 

thresholds to detect periods of 

walking and FOG. 2.56 s 

windows (256 samples at 100 

Hz). Detection performance 

based on classifying FOG 

episode occurrences, duration 

of FOG also examined. 

E 

FOG detection 

performance 

using ANOVA. 

Yes 

Wang 2017 

[106] 

 

9 UFOG-PD, 

OFF 

Lab, gait 

initialization, 

narrow aisle, 

turning and dual 

tasks. One 

participant 

performed ADL in 

their home. 

Acc (1) lower 

back 

FI and RMS of acceleration. 

Both compared to person-

specific thresholds and 

combined with an ‘OR’ 

statement. Detection 

performance calculated as 

percent time frozen per trial. 

E 

Sensitivity: 

90.8% 

Specificity: 

91.4% 

No 
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Punin 2017 

[101] 

1 HC, 1 NFOG-

PD, 6 FOG-PD, 

OFF, 27 

episodes 

Lab, stair climb 

and descent, 

straight walking 

and 180° turns. 

IMU (1) right 

ankle 

Discrete wavelet transform, 

compared to person-

independent threshold. 

Detection performance based 

on classifying FOG episode 

occurrences. 

E 

Sensitivity: 

86.66% 

Specificity: 

60.61% 

 

Yes 

Saad 2017 

[118] 

5 FOG-PD ON, 

64 episodes 

Lab, straight 

walking, 180° 

turn, manual dual 

task or narrowed 

walking path. 

Clinic circuit 

including 

unscripted stops, 

starts, turns and 

doorways. 

Acc (2) foot, 

shin, 

Goniometer 

(1) knee, 

Telemeters 

(IR proximity 

sensors) (2) 

upper and 

lower medial 

shank 

Time and frequency domain 

features extracted from 2 s 

windows. Best features for  

each sensor identified.  

Person-independent, NN with 

Gaussian activation function 

used for detection. 

Defined average performance 

as mean of the fraction of 

FOG correctly identified and 

the fraction of Non-FOG 

correctly identified. 

E, S 

Average of all 

participants: 

Performance: 

87% 

No 

Sama 2018 

[130] **** 

15 FOG-PD, 

ON and OFF 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and a 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g. brushing 

teeth). 

IMU (1) left 

hip 

Compared multiple classifiers 

and feature sets, best results 

with SVM, using 1.6 s 

windows (64 samples at 40 

Hz). Person-independent 

detection performance based 

on classifying FOG episode 

occurrences 

E 

Sensitivity: 

91.81% 

Specificity: 

87.45% 

No 
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Prateek 2018 

[163] 

16 UFOG-PD  

(8 froze), 58 

episodes 

Lab, walking 

backwards, 180° 

turns, stepping 

over a board, walk 

a figure-eight 

loop, walk 

between sets of 

chairs placed 

close together. 

IMU (2) heels 

Detect instances of zero 

velocity or trembling, then, a 

point process filter computed 

probability of FOG based on 

foot position, orientation, and 

velocity. Detection 

performance based on 

classifying FOG episode 

occurrences, duration of FOG 

also examined. 

E 

Person-specific 

model, detected 

47/58 FOG 

episode 

occurrences. 

Accuracy: 

81.03% 

No 

Ashour 2018 

[111] *  

4 participants 

from Daphnet 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

SVM (linear kernel). Used 

infinite feature ranking [200] 

to reduce feature set. Person-

specific detection 

performance based on 

classifying FOG episode 

occurrences. 

E, S 

1 patient top 

ranked (30 

features)  

Accuracy: 

94.4% 

No 

Camps 2018 

[121] **** 

21 FOG-PD, 

ON and OFF 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and a 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g., brushing 

teeth). 

IMU (1) left 

hip 

1D CNN, 2.56 s windows 

stacked to combine current 

and previous windows. 

Person-independent detection 

performance based on 

classification of windows. 

Replicated other FOG 

detection methods and 

compared performance of 

models and 

feature sets. 

- 

CNN: 

Sensitivity: 

91.9% 

Specificity: 

89.5% 

No 
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Oung 2018 

[119] * 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

 

Acc (3) left 

shank, left 

thigh, lower 

back 

Probabilistic NN, using time 

domain features (117) and 

frequency features (126), 4 s 

windows. Also examined 

SVM with RBF kernel. 

Person-specific and person-

independent models 

compared. 

E, S 

Person-specific: 

Sensitivity: 

99.83% 

Specificity: 

99.96% 

Person-

independent: 

Sensitivity: 

87.71% 

Specificity: 

87.38% 

No 

Li 2018 

[134] 

10 FOG PD, 

OFF, 281 

episodes 

Lab, straight 

walking (10 m and 

100 m), 180° 

turns, narrow 

spaces. 

Acc (1) lower 

back 

Person-independent, 

unsupervised approach 

(training data not labeled). 

Mini batch k means clustering 

algorithm using acceleration 

entropy, 1 s windows. Once 

the centre of the FOG and 

Non-FOG classes were found, 

new data were classified 

based on which centre was 

closest. 

E 

Sensitivity: 

92.4% 

Specificity: 

94.9% 

No 

Mikos 2018 

[116,120] 

 

25 people, no 

other 

description 

provided  

(23 froze), 221 

episodes 

Lab, TUG and 

random walking. 

IMU (2) 

ankles 

Semi-supervised approach. 

NN, base training person-

independent. Then 

unsupervised training during 

use improved performance. 

E 

Sensitivity: 

95.9% 

Specificity: 

93.1% 

Yes 
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Rad 2018 

[142] * 

 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Probabilistic anomaly 

detection approach using 

denoising autoencoder. 

Person-independent model 

trained to recognize normal 

gait (trained using Non-FOG 

data), 1 s windows. Compared 

CNN trained using Non-FOG 

(unsupervised) and FOG 

(supervised) data for 

comparison. 

- 

Proposed 

model: 

AUC: 77% 

Supervised 

model: 

AUC: 84% 

No 

El-Attar 

2019 [110] * 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (1) left 

shank 

Combined 1D discrete 

wavelet transform with FFT 

features, and used NN for 

classification.  

Person-specific detection 

performance based on 

classifying FOG episode 

occurrences. 

E 
Accuracy: 

96.3% 
No 

Punin 2019 

[102,103] 

 

1 HC,  

1 NFOG-PD,  

6 FOG-PD, 27 

episodes 

Lab, straight 

walking, 180° 

turns, stair 

climbing. 

IMU (2) back 

of ankles 

(distal 

posterior 

shank) 

Discrete wavelet transform, 

signal energy compared to  

person-independent threshold 

using 32 s windows (256 

samples at 8 Hz), updated 

every second. Detection 

performance based on 

classifying FOG episode 

occurrences. 

E 

Sensitivity: 

60.61% 

Specificity: 

86.66% 

Yes 
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Mazzetta 

2019 [159] 

 

7 PD with 

varying disease 

severity, tested 

ON and OFF 

Simulated 

apartment, TUG 

turning both ways, 

narrow hallways 

and doorways. 

IMU/EMG 

devices 

shanks 

(tibialis 

anterior, 

gastrocnemius 

medialis) 

Multi-stage thresholds using 

gyroscope and surface EMG. 

Gyro signal and threshold 

used to identify beginning and 

end of each step, then custom 

R feature compared to person-

independent threshold 

distinguished FOG. Detection 

performance based on 

classifying individual steps. 

E 

False positive 

rate 5% 

False negative 

rate 2% 

No 

Reches 2020 

[57] 

71 PD tested 

ON and OFF 

Lab, TUG with 

360° turns both 

ways and a 180° 

through a 

doorway. 

IMU (3) 

ankles and 

lower back 

SVM with RBF, 3 s windows, 

Non-FOG windows 50% 

overlap, and 80% overlap for 

FOG windows. Window 

based evaluation. 

E, S 

Sensitivity: 

84.1% 

Specificity: 

83.4% 

No 

Dvorani 

2020 [154] 
4 UFOG-PD 

Lab, 10 m straight 

line walking in 

hallway with 

180°, sit to stand, 

360° turns, 

passing through 

doorways [201]. 

IMU (1) foot 

Acceleration and angular 

velocity compared to 

threshold to determine rest 

phase. Motion phase start 

detected using foot pitch and 

roll angles, motion phase end 

determined using jerk of the 

acceleration signal 

corresponding to heel strike. 

Once motion phase detected, 

GaitScore feature used for 

FOG detection. Evaluation 

based on identification of 

motion phases. Generalized 

model used for all 

participants. 

- 
Sensitivity: 97% 

Specificity: 87% 
No 
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Shi 2020 

[124] 
63 FOG-PD 

Lab, 7 m TUG 

test, walk through 

clinic. 

IMU (3) 

ankles and 

neck (C7) 

2D CNN, 4 s windows with 

3 s overlap. Continuous 

wavelet transform on 

windowed data to produce 

scalograms. Train/test split 

was 50/13 participants. 

- 

Accuracy: 

89.2%  

Sensitivity: 

82.1% 

Specificity: 96% 

No 

Li 2020 

[123]* 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Combination CNN and 

LSTM, with squeeze-and-

excitation block, data 

augmentation was used to 

reduce dataset imbalance. 4 s 

windows, and 10 fold cross 

validation used.  

- 

Sensitivity: 

95.1% 

Specificity: 

98.8% 

AUC: 0.945 

No 

Sigcha 2020 

[122] ***, 

**** 

21 FOG-PD, 

ON and OFF, 

1321 episodes 

Participant’s 

home, 180° turns, 

doorways, 

walking outside, 

dual tasking and a 

false positive test 

intended to create 

shaking 

resembling FOG 

(e.g., brushing 

teeth). 

IMU (1) left 

hip 

Compared many machine 

learning models, found a 

combination CNN LSTM was 

best. Used 3.2 s windows, 

75% overlap. FFT was 

calculated for each window, 

groups of 4 windows were 

used as input. 

Used leave one out cross 

validation. 

- 

Sensitivity: 

87.1% 

Specificity: 

87.1% 

AUC: 0.939 

No 

Marcante 

2021 [43] 

20 PD tested 

ON and OFF, 

(53 of 140 

walking trials 

contained FOG) 

Lab, 2 minute 

walk test, 360° 

turns, TUG, and 

ADL. 

Pressure 

sensing 

insoles with 

acc (2) 

Threshold based FOG 

detection using 1 s windows 

and frequency-based features. 

FOG episode occurrence and 

duration used to produce 

binary decision “Did the 

participant experience 

FOG?”. 

E 
Sensitivity: 96% 

Specificity: 94% 
No 
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Mancini 

2021 [61]  

27 FOG-PD, 18 

PD, 21 HC, 

tested OFF 

Lab, 2 min walk 

test in 8m 

hallway, 1 min 

walk test with 

verbal dual-task. 

 

IMU (8) 

shins, feet, 

wrists, 

sternum, 

lower back 

Detect walking, using 

left/right correlation of 

angular velocity identify 

possible FOG, then use AP 

acceleration to calculate FI, 

compared to threshold. 

Results are for classification 

of Freezers vs Non-Freezers. 

E 

Rater 1 

Sensitivity: 89% 

Specificity: 88% 

Rater 2 

Sensitivity: 80% 

Specificity: 87% 

 

No 

Bikias 2021 

[202] ** 

 

11 FOG-PD 

who froze, 180 

episodes 

Lab, walking with 

cognitive and 

manual tasks: 

straight, 180° and 

360° turns, narrow 

spaces and 

hospital circuit 

involving 

elevator, 

unexpected stops 

start and turns. 

IMU (1) wrist 

3-class (FOG, walking with 

turns, stops) CNN classifier 

using linear and angular 

acceleration data as input. 

Leave one out cross 

validation, used 3 s windows, 

with 0.25 s overlap, window-

based classification 

evaluation.  

- 
Sensitivity: 83% 

Specificity: 88% 
No 

FOG Prediction 

Mazilu           

2013 [18] * 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Assumed duration of Pre-

FOG class (1–6 s). 3 class 

decision tree classifier (Pre-

FOG, FOG, not FOG) and 1 s 

window for feature extraction. 

Person-specific, prediction 

performance based on 

classification of individual 

windows. 

E, S 

1 participant 

with assumed 

3 s Pre-FOG 

F1-score: 0.56 

No 
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Mazilu 2015 

[28] ** 

 

11 FOG-PD 

Lab, walking with 

cognitive and 

manual tasks: 

straight, 180° and 

360° turns, narrow 

spaces and 

hospital circuit 

involving 

elevator, 

unexpected stops 

start and turns. 

Electrocardio-

gram (1) 

(ECG) chest, 

galvanic skin 

response (1) 

(fingertip) 

Assumed Pre-FOG duration 

(3 s) used for feature 

selection. Feature extraction 

used 3 s window. Multivariate 

Gaussian distribution used in 

anomaly detection model. 

Person-specific model for 

each individual. Instead of 

pre-defined Pre-FOG length, 

model decision threshold set 

manually. Prediction based on 

number of FOG episode 

occurrences. 

E, S 

SC data 

predicted 

132/184 

(71.3%) of FOG 

episode 

occurrences on 

average 4.2 s in 

advance, 71 

false positives. 

No 

Handojoseno 

2015 [27] 

16 FOG-PD, 

404 episodes 
Lab, TUG. EEG, head 

Person-independent NN 

trained with 462, 1 s data 

segments for each class, 

tested on 172 segments. 

Extracted multiple frequency-

based features using FFT and 

wavelets, multilayer 

perceptron NN for 

classification. Defined Pre-

FOG as data between 5 s and 

1 s prior to FOG. 

E, S 

Sensitivity: 86% 

Precision: 

74.4% 

No 

Zia 2016 

[21] * 

 

3 chosen 

randomly from 

Daphnet 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (1) left 

shank 

Person-specific layered 

recurrent NN. Detection 

applied to the 5 s prior to 

FOG. One participant had 

best results, trained on 9 

episode occurrences, tested on 

15. 

- 

Best participant: 

Sensitivity: 30% 

Precision: 89% 

No 
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Palmerini 

2017 [17] ** 

18 FOG-PD  

(11 froze), 180 

episodes 

Lab, walking with 

cognitive and 

manual tasks: 

straight, 180° and 

360° turns, narrow 

spaces and 

hospital circuit 

involving 

elevator, 

unexpected stops 

start and turns. 

IMU (3) 

ankles, lower 

back 

Assumed Pre-FOG as 2 s 

before FOG. Features 

extracted from 2 s windows. 

Linear discriminant analysis 

to classify Pre-FOG vs 

normal gait windows. Person-

independent model. 

E, S 
Sensitivity: 83% 

Specificity: 67% 
No 

Handojoseno 

2018 [26] 

 

16 FOG-PD Lab, TUG. EEG, head 

Person-independent NN 

trained with 462, 1 s data 

segments for each class, 

tested on 172. Predict FOG by 

classifying data segment 5 s 

prior to freeze with Bayesian 

NN. 

E, S 

Sensitivity: 

85.86% 

Specificity: 

80.25% 

No 

Torvi 2019 

[20] * 

 

 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

LSTM and RNN with 2 

transfer learning approaches. 

Found best performance with 

LSTM, trained network then 

added person-specific final 

layer. Examined set Pre-FOG 

duration: 1, 3 and 5 s. 

- 

Predicted FOG 

up to 5 s in 

advance with 

>90% accuracy 

No 
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Naghavi 

2019 [24] * 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Window lengths (2-4 s), 2 s 

best. Personal ‘stop threshold’ 

to remove non-walking data. 

Used groups of 6 windows 

with 0.5 s shift. FOG onset 

identified when first three 

windows were statistically 

different (Kruskal–Wallis) 

from the next three. 

Identifications within 2s prior 

to FOG considered prediction. 

Defined ‘Predictivity’ as ratio 

of correctly predicted FOG 

events to all correctly 

identified events. 

Performance based on FOG 

episodes. 

E 

Sensitivity: 

92.5% 

Specificity: 

89.0% 

Predictivity: 

88.8% 

No 

Naghavi 

2019 [25] 

18 PD 

(9 froze, 7 used 

in model 

training), 156 

episodes 

Lab, wide and 

tight 180° turns, 

straight walking, 

narrow hall, stops. 

Acc (2), 

ankles 

(Vertical and 

AP axes) 

1 s Pre-FOG data relabeled as 

FOG. Groups of 6, 2 s 

windows used for 

classification. Examined 

synthetic minority over-

sampling technique 

(SMOTE), adaptive synthetic 

sampling (ADASYN), and 

misclassification cost. Used 

K-NN, SVM, decision tree, 

and MLP classifiers. Person-

dependent models. Proposed 

ClsfBagging model (ensemble 

classifier with SVM, KNN 

and MLP trained using 

bagging). 

E 

Person-specific 

model identified 

97.4% of 

episodes 

Predicted 66.7% 

of episodes 

(within 2 s 

before onset) 

No 
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Arami 2019 

[50]* 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Projected features forward in 

time then classified FOG with 

binary SVMs. Nine feature 

families were used, one SVM 

per family, then classification 

based on majority vote of 

SVMs. 10-fold cross 

validation 4 s windows with 

0.5 s shift. Identifications 

correct if within ± 8 s of FOG 

onset. 

E, S 

Person-specific 

Sensitivity: 

93% 

Specificity: 

87% 

Predicted 94% 

of episodes 1.72 

s in advance. 

No 

Zhang 2020 

[19] 

12 PD, tested 

OFF (304 

episodes) 

Lab, straight 

walking, turning 

90° and 180°, 

doorway, narrow 

hall. 

Acc (1) lower 

back 

Step segmentation windows. 

Step based and conventional 

features compared, 

AdaBoosted models, 

personalized Pre-FOG 

duration. Window based 

evaluation. 

E, S 

Person-specific 

Sensitivity: 

83.8% 

Specificity: 

82.1% 

Person-

independent 

Sensitivity: 

72.7% 

Specificity: 

78.9% 

No 

Demrozi 

2020 [22] * 

10 FOG-PD  

(8 froze), 237 

episodes 

Lab, straight 

walking, 180° 

turns, random 

instructions and 

simulated ADL. 

Acc (3) left 

shank, left 

thigh, lower 

back 

Three class k-NN, using 1-6 s 

windows, best was 2 s 

windows with 1 s overlap. 

Transformation matrix 

(Gaussian-kernel linear 

discriminant analysis) applied 

to windows prior to 

classification. Used Pre-FOG 

durations 2-4 s, 3-fold cross 

validation and window based 

evaluation.  

- 

Sensitivity: 

94.1% 

Specificity: 

97.1% 

No 
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Borzi  2021 

[23] 

11 FOG-PD, 

tested ON (35 

episodes) and 

OFF (34 

episodes) 

Lab, 7 m TUG test 

in simulated home 

environment. 

Gyro (2) shins 

Performed step segmentation 

on sagittal plane angular 

velocity. Features extracted 

from each step, wrapper-

based feature selection. Used 

SVM, KNN, LDA, LR, best 

models were SVM and LDA. 

Tested Pre-FOG durations 

2-5 s. 

E, S 

ON medication 

Sensitivity: 

84.1% 

Specificity: 

85.9% 

OFF medication 

Sensitivity: 

85.5% 

Specificity: 

86.3% 

No 

* Daphnet dataset originally collected by Bachlin et al. [16] (n = 10, 8 froze during testing). A total of 237 FOG episodes (8 participants 

OFF, 2 ON who claimed to freeze often while ON). Accelerometers on left shank, left thigh, and lower back. 

** CuPiD dataset originally collected by Mazilu et al. [172] (n = 18, 11 froze during testing). 180 FOG episodes (ON/OFF state not 

mentioned in original article, subsequently reported ON state [55]). [54] reported 182 FOG episodes and [55] reported 184 episodes. 

IMU (9) on wrists, thighs, ankles, feet, and lower back. Galvanic skin response sensor (1) on hand, ECG sensor (1) on chest, smartphone 

(1) in front pocket with integrated IMU, pressure sensing shoe insole (1), functional near-infra-red spectroscopy (fNIR) sensor on 

forehead. 

*** REMPARK project (Personal Health Device for the Remote and Autonomous Management of Parkinson's Disease) [203,204]. Data 

collected by multiple researchers, in participant’s homes in OFF and ON states. Waist worn IMU. 

**** MASPARK project [205]. 

Abbreviations and acronyms: Feature extraction (E), selection (S), FOG: freezing of gait, HC: healthy control participants, FOG-PD: 

people with PD with FOG symptoms, NFOG-PD: people with PD with no FOG symptoms, UFOG-PD: FOG symptoms not reported, 

ON: on medication, OFF: off medication 

Acc: accelerometer, EEG: electroencephalogram, EMG: electromyography, Gyro: gyroscope, IMU: inertial measurement unit, CBMC: 

camera-based motion capture 

CNN: convolutional neural network, NN: neural network, RNN: recurrent neural network, LSTM: long short-term memory neural 

network, SVM: support vector machine, KNN: k-nearest neighbour, LDA: linear discriminant analysis, LR: logistic regression 

ADL: activities of daily living, TUG: Timed Up and Go Test, AUC: area under ROC curve, FFT: fast Fourier transform, FI: freeze 

index [94], FOGC: freezing of gait criterion, FSR: force sensing resistor, GSR/SC: galvanic skin response/skin conductance, PCA: 

principal component analysis, PCC: Pearson correlation coefficient, PSD: power spectral density, RMS: root mean square, ROC: 

receiver operating characteristic. 
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Table A.2: Features extracted from wearable-sensor data and used for freezing of gait detection or prediction. 

Feature Name Sensor Type Sensor Location Feature Description Source 

Mean 

Acc, 

Gyro 

GSR 

Goniometer 

Telemeters 

Chest, wrist, lower 

back, waist, thigh, 

knee, shanks, ankle, 

foot, 

GSR: finger, 

Goniometers: knees, 

Telemeters: between 

shanks 

Mean of signal within window and axis. 

Acceleration: 3D vector magnitude or 3 axes 

Gyro: Angular velocity 3D vector magnitude, or 3 axes 

GSR: Conductance, low-pass filtered at 0.9 Hz 

Goniometer: Knee angular rotation. 

Telemeter: Voltage output, spikes in signal indicate that legs 

are next to one another. 

[18,28,54,55, 

57,100,108, 

118,125,126, 

129–131,135] 

Min, Max, Median, 

HarmMean, 

GeoMean, Trim 

mean, Mode, 

Range 

Acc, GSR, 

Gyro 

Shank, thigh, lower 

back, insole 

GSR: finger 

Descriptive statistics within given window. 

Acceleration: 3D vector magnitude, or individual axes 

GSR: Conductance, low-pass filtered at 0.9 Hz 

Gyro: angular rotation of the shank or back 

[18,23,28,43, 

57,131,132] 

Increment of mean 

values 
Acc Waist 

Difference between mean of current window and mean of 

previous window for anterior/posterior acceleration. 
[129,130,135] 

Difference in 

means of different 

axes 

Acc Waist 
Difference in acceleration mean values between axes for 

current window (X and Y, X and Z, Y and Z). 
[130,135] 

Number of peaks in 

a window 
Acc 

Instrumented pants, 

Acc (5) waist, thighs 

and shanks 

Number of times relative acceleration signal [206] passes 

above a threshold during 1.5 s window. Normal reference set 

to 3. More than 3 peaks per 1.5 s considered possible FOG. 

[95,165] 

 

Duration of 

acceleration above 

threshold 

Acc 

Instrumented pants, 

Acc (5) waist, thighs 

and shanks 

Time the relative acceleration signal [206] is above a 

threshold. Normal reference 0.85 s per 1.5 s window. Longer 

durations considered suspicious (possibly FOG). 

[95,165] 

Turning degrees Gyro Lower back 

Angular rotation about vertical axis. Calculated as the integral 

of low pass filtered (1.5 Hz) angular velocity about the 

vertical axis. 

[17] 

Left-right cross-

correlation 
Gyro Ankles, feet 

Maximum cross-correlation between mediolateral angular 

velocity (de-trended), left and right ankles  

(0.25 to 1.25 s). Correlation between limbs in ML axis. 

[17,57,61] 
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Left-Right average 

SD 
Gyro Ankles 

Average between SD of mediolateral angular velocity (de-

trended), of right and left ankles. 
[17] 

Stride similarity Gyro Shank 

Stride similarity, is scalar value inversely proportional to the 

similarity between the current and previous strides, calculated 

using the dynamic time warping algorithm. 

[23] 

RMS 
Acc, 

Gyro 

Sole of shoe, shank, 

thigh, lower back, 

ankle, chest 

Root mean square (RMS) of acceleration or angular velocity 

data in given window, for 3 axes. Also total across axes [57]. 

[18,19,23,57, 

106,119,125, 

161] 

- Acc, Gyro Ankles, lower back 

max [𝑅𝑀𝑆(𝑥𝑅𝐿 , 𝑦𝑅𝐿 , 𝑧𝑅𝐿), 𝑅𝑀𝑆(𝑥𝐿𝐿, 𝑦𝐿𝐿 , 𝑧𝐿𝐿)]

  𝑅𝑀𝑆(𝑥𝑏𝑎𝑐𝑘 , 𝑦𝑏𝑎𝑐𝑘, 𝑧𝑏𝑎𝑐𝑘)
 

where RL and LL indicate right and left legs. Calculated for 

both lower back gyroscope and accelerometer data. 

[57] 

Inter quantile range 
Acc, 

Gyro 

Ankle, thigh, chest, 

and waist 

Interquartile range of acceleration or angular velocity in given 

window, for 3 axes. 
[125] 

Standard deviation 

Acc, 

Gyro 

GSR 

Goniometer 

(G) 

Telemeters 

(T) 

Chest, lower back, 

waist, thigh, shanks, 

ankle, foot, wrist, 

GSR: finger 

G: knees 

T: between shanks 

Standard deviation in given window. 

Acceleration: 3D vector magnitude or 3 axes 

Gyro: 3D vector magnitude of angular velocity, or 3 axes 

GSR: Conductance, low-pass filtered at 0.9 Hz 

Goniometer: Knee angular rotation. 

Telemeter: Voltage output, spikes in signal indicate that the 

legs are next to one another. 

[17,18,23,25, 

28,54,55,57, 

100,108,116, 

118,120,125, 

126,129–

131,135] 

Variance 
Acc, 

Gyro 

Shanks, thigh, lower 

back, waist, ankle, 

chest 

Variance in given window. Calculated for acceleration or 

angular velocity data in given window, for 3 axes. In [111] 

and [110], variance calculated for FFT signal and detail and 

approximation coefficients from discrete wavelet transform. 

[18,19,110, 

111,125,126] 

Acceleration 

indicator (𝑆𝐴𝐶) 
Acc 

Shank, thigh, lower 

back 

Binary value, to detect acceleration in each axis 

𝑆𝐴𝐶 = 𝑠𝑔𝑛((𝑋 − (𝑋̅ − 𝜎))+), where X is a set of acceleration 

data, 𝑋̅ is mean of X, σ is standard deviation of X, and sgn(a) 

is a sign function of a   while (a)+ returns a only if a ≥ 0, 

otherwise returns 0. 

[133] 

Zero velocity and 

Trembling event 

intervals (ZVEI, 

TREI) 

Acc, Gyro Heel 

Direction of gravitational acceleration used to calculate ZVEI 

and TREI to determine if foot is stationary (zero velocity) or 

trembling, from all acceleration and angular velocity axes. 

[163] 
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Foot speed Acc, Gyro Heel 
Foot position, orientation, and velocity, from 3 axis 

acceleration and angular velocity [207]. 

[163] 

 

Integral Acc 
Waist, shank, thigh, 

low back 
Integral of acceleration in given window, for given axis. 

[119,129,130, 

135] 

Angular jerk Gyro Shank 
Angular jerk is the second derivative of the angular velocity. 

Calculated around the ML axis. 
[23] 

Normalized 

angular jerk 
Gyro Shank 

Normalized angular jerk is the angular jerk normalized by the 

time duration of the input signal. 
[23] 

Kurtosis 
Acc, 

Gyro 

Waist, ankle, shank, 

thigh low back, ankle 

Kurtosis within a given window, from all acceleration axes, 

angular velocity, acceleration 3D vector, or absolute value of 

harmonics in 0.04–0.68, 0.68–3 and 3–8 Hz frequency bands 

(calculated from FFT of 3D acceleration) 

[18,57,125,129

–131,135] 

Skewness 
Acc, 

Gyro 

Waist, shank, thigh, 

low back, ankle 

Measure of signal asymmetry within a given window, from all 

axes of the acceleration, angular velocity, acceleration 3D 

vector magnitude, or absolute value of harmonics in 0.04–

0.68, 0.68–3 and 3–8 Hz frequency bands (calculated from 

FFT of 3D acceleration, or angular velocity). 

[18,57,129–

131,135] 

Mean absolute 

Value 
Acc 

Shank, thigh, low 

back 

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑛|

𝑁

𝑛=1

 

For acceleration x within a window of N data points. 

Calculated for 3 axes. 

[119] 

Simple square 

interval 
Acc 

Shank, thigh, low 

back 

𝑆𝑆𝐼 = ∑|𝑥𝑛|
2

𝑁

𝑛=1

 

For acceleration x within a window of N data points. 

Calculated for 3 axes. 

[119] 

v-order 2 and 3 Acc 
Shank, thigh, low 

back 

𝑣2 = (
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

)
1
2, 𝑣3 = (

1

𝑁
∑|𝑥|𝑖

3

𝑁

𝑖=1

)
1
3 

For acceleration x within window of N data points. Calculated 

for 3 axes. 

[119] 
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Waveform length Acc 
Shank, thigh, low 

back 

𝑊𝐿 = ∑|𝑥𝑛+1 − 𝑥𝑛|

𝑁−1

𝑛=1

 

For acceleration x within window of N data points. Calculated 

for 3 axes. 

[119] 

Average amplitude 

change 
Acc 

Shank, thigh, low 

back 

𝐴𝐴𝐶 =
1

𝑁
∑|𝑥𝑛+1 − 𝑥𝑛|

𝑁−1

𝑛=1

 

For acceleration x within a window of N data points. 

Calculated for 3 axes. 

[119] 

Difference absolute 

standard deviation 
Acc 

Shank, thigh, low 

back 

𝐷𝐴𝑆𝐷𝑉 = √
1

𝑁 − 1
∑(𝑥𝑛+1 − 𝑥𝑛)

2

𝑁−1

𝑛=1

 

For acceleration x within window of N data points. Calculated 

for 3 axes. 

[119] 

Maximum fractal 

length 
Acc 

Shank, thigh, low 

back 

𝑀𝐹𝐿 = 𝑙𝑜𝑔10

(

 √∑(𝑥𝑛 − 𝑥𝑛+1)
2

𝑁−1

𝑛=1
)

  

For acceleration x within window of N data points. Calculated 

for 3 axes. 

[119] 

Step length Acc, CBMC 
Waist, thigh, shank, 

foot 

Distance (m) between consecutive footfalls of the same limb, 

measured as double integral of A/P acceleration or by camera-

based motion capture. 

[58,100,108] 

Step duration Gyro 
Thigh, shank, ankle, 

foot 

Duration (s) between consecutive footfalls of same limb (or 

contralateral limb [23]), calculated from angular velocity 

peaks (raw or filtered) 

[23,56,58,108] 

Cadence Acc, Gyro 
Feet, shank, thigh, 

waist, lower back 

Number of steps in given time (e.g., steps/minute), from time 

between peaks in angular velocity, vertical acceleration, 

second harmonic of acceleration in frequency domain [104], 

or calculated as in [208]. 

[19,58,100, 

104,164] 

Cadence variation Acc Waist Standard deviation of cadence, from last 3 windows. [164] 
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Stride peaks 

Gyro, 

Angular 

velocity 

Shank (ankle) 
Peak of low pass filtered (4th order Butterworth 10 Hz) 

angular velocity within gait cycle, in frontal plane. 
[116,120] 

Fraction of weight 

span 
FSR 

13 locations under 

foot 

Maximum minus minimum total force relative to estimated 

body weight (defined as 90% of measured weight) 
[43] 

Peak height and 

width 

Gyro, 

Angular 

velocity 

Shanks 

Height (with respect to 

zero) and half-power width of the positive portion of the 

signal peak. Peak height represents the maximum angular 

velocity reached in each step and Peak width is the 

proportional to the swing time. 

[23] 

Gait pattern 

variability  
Acc Lower back Width of the dominant harmonic in the power spectrum [19] 

Zero Crossing rate, 

mean crossing rate 
Acc 

Shank, thigh, low 

back 

Number of times acceleration signal changes between positive 

and negative. Number of times acceleration signal changes 

between below average and above average in a given window. 

Calculated for 3 axes. 

[18] 

Signal vector 

magnitude 
Acc 

Shank, thigh, low 

back 

Summation of Euclidean norm over 3 axes over entire 

window, normalized by window length. 
[18] 

PCA 

Acc 

Goniometer 

(G) 

Telemeters 

(T) 

Waist, shank, thigh, 

low back 

G: knees 

T: between shanks 

Principal component analysis, calculated from raw 3 axis 

acceleration data from all sensors, each acceleration axis 

within specific spectral bands, or used to decrease 

dimensionality of multi-sensor feature set. 

[18,118,129, 

130] 

Normalized signal 

magnitude area 

(SMA) 

Acc 
Shank, thigh, low 

back 

Acceleration magnitude summed over 3 axes normalized by 

window length. 
[18,131] 

Eigenvalues of 

dominant 

directions (EVA) 

Acc 
Shank, thigh, low 

back 

Eigenvalues of covariance matrix of acceleration along all 3 

axes. 
[18] 

Energy (time 

domain) 

Acc, Gyro, 

EMG on 

tibialis 

anterior 

Forearm, foot, shank 

and thigh, waist, 

EMG: on shin 

Energy, where x(n) is discrete signal in time domain, n sample 

index, T window length, and E signal energy: 

𝐸 =∑ |𝑥(𝑛)|2
𝑇

𝑛=1
 

Calculated from each acceleration or angular velocity axis, or 

from surface EMG signal. 

[113,117] 
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Average 

acceleration energy 

(AAE) 

Acc 
Shank, thigh, low 

back 
Mean of acceleration signal energy over 3 axes. [18] 

Asymmetry 

coefficient 
Acc 

Shank, thigh, low 

back 

The first moment of acceleration data in window divided by 

standard deviation over window. Calculated for 3 axes. 
[18] 

Freezing of gait 

criterion (FOGC) 
Gyro, Acc Shank 

Cadence and stride length measure, for stride n 

𝐹𝑂𝐺𝐶𝑛 =
𝐶𝑛 𝐿𝑚𝑖𝑛

𝐶𝑚𝑎𝑥(𝐿𝑛 + 𝐿𝑚𝑖𝑛)
 

where 𝐶𝑛 is cadence, 𝐿𝑛 stride length. Maximum cadence 

𝐶𝑚𝑎𝑥 set to 5 strides/s, and minimum stride length 𝐿𝑚𝑖𝑛= 5 

cm. Cadence and stride parameters calculated from angular 

velocity and acceleration [209] 

[32,153] 

FOG detection on 

glasses 

(FOGDOG) 

Acc Head 

𝐹𝑂𝐺𝐷𝑂𝐺 =
𝑁𝑠𝑡𝑒𝑝
𝑁𝑚𝑎𝑥

×
(𝐷𝑟𝑒𝑓 − 𝐷

′)

𝐷𝑟𝑒𝑓
 

where 𝐷′ is cumulative forward distance travelled by person 

during window, 𝐷𝑟𝑒𝑓 pre-set normal forward distance 

travelled, 𝑁𝑠𝑡𝑒𝑝 cadence (number of steps/s), 𝑁𝑚𝑎𝑥 pre-set 

maximum normal cadence, forward distance from double 

integral of forward acceleration after correction for head tilt 

angle, step length from [210]. 

[31] 

K index, and K’ 

index 
Gyro Shank 

Summation of absolute value of low pass filtered angular 

velocity of left and right shanks in sagittal plane: 

𝑘 = 𝑙𝑜𝑤𝑝𝑎𝑠𝑠(|𝜔𝑙𝑒𝑓𝑡|)  + 𝑙𝑜𝑤𝑝𝑎𝑠𝑠(|𝜔𝑟𝑖𝑔ℎ𝑡|) 

𝜔𝑙𝑒𝑓𝑡 and 𝜔𝑟𝑖𝑔ℎ𝑡 are angular velocities in sagittal plane. 

[59,99,155–

158] 

 

R value 

EMG, Gyro, 

angular 

velocity 

IMU/EMG devices 

on shanks (tibialis 

anterior and 

gastrocnemius 

medialis) 

R value is calculated once for each stride. 

𝑅 =
max (𝐴𝐵𝑆)

𝑠𝐸𝑀𝐺|𝑡=𝑡max (𝐴𝐵𝑆)
 

ABS is absolute value of moving average angular velocity in 

sagittal plane, sEMG surface EMG signal, max (𝐴𝐵𝑆) 
maximum ABS during a stride, 𝑠𝐸𝑀𝐺|𝑡=𝑡max (𝐴𝐵𝑆) value of 

surface EMG at that instant. 

[159] 
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GaitScore (Ω) Acc, Gyro Foot 

Ω = |
∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑖𝑛
𝛾𝑚𝑖𝑛

| ∙ |
∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑎𝑥
𝛾𝑚𝑎𝑥

| ∙ 𝜆 

where 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 are reference values. 

𝛾𝑚𝑖𝑛 = {
𝜁𝑚𝑖𝑛

∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑖𝑛

𝜁𝑚𝑖𝑛 < ∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑖𝑛
otherwise

 

𝛾𝑚𝑎𝑥 = {
𝜁𝑚𝑎𝑥

∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑎𝑥

𝜁𝑚𝑎𝑥 < ∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑎𝑥
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝜁𝑚𝑖𝑛 and 𝜁𝑚𝑎𝑥 are thresholds. 𝜆 is a weight defied as: 

 

𝜆 = {

1 for sgn(∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑎𝑥) = −sgn(∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑖𝑛)

|∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑎𝑥 − ∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑖𝑛|

𝑐(|∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑎𝑥| + |∅𝑝𝑖𝑡𝑐ℎ,𝑚𝑖𝑛|)
otherwise

 

 

where 𝑐 is a tuning weight. Ω of one indicates healthy gait, Ω 

close to zero indicates pathological gait. 

[154] 

Ratio of height of 

first peak 
EMG 

EMG: shank (tibialis 

anterior) 

Height of peak at origin in autocorrelation of filtered EMG 

signal, in a given window.  
[113,211] 

Lag of first peak 

(not at origin) 
EMG 

EMG: shank (tibialis 

anterior) 
Autocorrelation of filtered EMG signal, in a given window. [113,211] 

Step regularity Acc Lower back Amplitude of the first peak in the autocorrelation signal. [19] 

Pearson’s 

correlation 

coefficient 

(PCC) 

Acc, Gyro, 

FSR 

Shanks, thighs, waist, 

ankles, lower back, 

FSR: under feet 

Similarity between two signals, with n sample points, 

𝑥𝑖, 𝑦𝑖, i
th value of x and y signals; means 𝑥̅, 𝑦̅ 

𝑃𝐶𝐶 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)
2𝑛

𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

 

Calculated between acceleration or gyroscope axes or between 

FSR force of a step compared to template “normal” step. 

[56,57,64,129–

131,135] 

Ground reaction 

force 
FSR 

Under heel, ball of 

foot 

Sum of forces from all force sensing resistors (FSR) under a 

foot. 
[64] 

Shank 

displacement 
Acc, Gyro Shanks 

Shank displacement (m) calculated from vertical acceleration 

and pitch angular velocity [212]. 
[56] 

Change of the 

shank transversal 

orientation 

Gyro Shanks 

Rotation angle in transversal plane, calculated as integral of 

angular velocity data about vertical axis, for each limb and 

each stride. 

[56] 
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Auto regression 

coefficient 
Acc Waist 

Four auto-regression coefficients obtained by Bourg method 

from acceleration in all 3 axes [213]. 
[129,130,135] 

Entropy 
Acc, 

Gyro, EEG 

Acc: ankle, pants 

pocket, waist, wrists, 

chest, thigh 

Gyro: chest, waist, 

low back, shanks 

EEG: head 

Shannon’s entropy: 

𝐻(𝑥) = −∑𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑛

𝑖=1

 

where discrete variable x contains n values, P is probability 

(often defined from histogram), calculated from each axis of 

acceleration or angular velocity in time and frequency 

domains, or filtered EEG voltage from multiple scalp 

locations. Also calculated for specific frequency bands [57]. 

[18,19,23,27, 

57,114,125–

128,132,134] 

Sample entropy Acc 
Shank, thigh, low 

back, ankle 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  −𝑙𝑛 [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
] 

𝑚 = 2, 𝑟 = 0.2 ×  𝜎 
where 𝜎 is standard deviation [214]. 

[24,25] 

Direct transfer 

function 
EEG Head 

Application of coherence directionality in multi-variate time 

series [215]. Signals from motor control regions:  

O1-T4 (visual), P4-T3 (sensorimotor affordance), Cz-FCz 

(motor execution) and Fz-FCz (motor planning). Data filtered 

band-pass (0.5–60 Hz), band-stop (50 Hz), then normalized 

with a z-transformation. 

[26] 

ICA 

Independent 

component analysis 

EEG Head 

Independent component analysis, used to maximize separation 

between signal components. Signals from motor control 

regions: O1-T4 (visual), P4-T3 (sensorimotor affordance), Cz-

FCz (motor execution) and Fz-FCz (motor planning). Data 

filtered bandpass  

(0.5–60 Hz), band-stop (50 Hz), then normalized with a  

z-transformation. 

[26] 

Raw FFT 

Acc, gyro, 

Goniometer 

(G) 

Waist, shank, G: 

knee joint 

The output signal from FFT. Calculated using acceleration, 

derivative of knee angle or angular velocity in the sagittal 

plane, in given window. 

[56,58,122, 

132] 
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PSD bands 

Acc, EEG, 

Goniometer 

(G), 

Telemeters 

(T) 

Heels, shank and 

thighs, knee, shanks.  

G: knee 

T: between shanks 

Specific frequency bands of power spectral distribution (PSD), 

generated by FFT, short-time FFT (SFFT),  

Z-transformation, or other method to convert  

time domain signal into frequency domain. Calculated from 

each acceleration and angular velocity axis, knee angular 

rotation, telemeter voltage, or filtered  

EEG voltages. 

[60,114,118, 

198] 

 

Harmonic ratio Acc Lower back 
Stability of walking calculated by acceleration signal frequency 

domain. 
[19] 

Ratio of peak 

frequencies 
Goniometer Knee angle 

Computed from FFT of derivative of knee angle. Ratio of 

highest amplitude in 3–8 Hz divided by highest amplitude in 

0.3–3 Hz. 

[58] 

Power in frequency 

domain 
Acc 

Ankle, shanks, 

thighs, waist, chest, 

wrists 

Area under curve of power spectral density plot, between 

specific bands. From acceleration 3D vector magnitude or 

individual axes. 

Also, ratio of specific bands (similar to FI) [119]. 

[16,25,54,55, 

93,105,118, 

119,125,126, 

131,165–

167,169] 

Freeze index (FI) 

 

IMU (Acc), 

Goniometer 

(G), 

Telemeter 

(T) 

Acc: Various 

locations and sensor 

orientations, G: 

knees, T: between 

shanks  

Ratio of signal power in freeze band (3–8 Hz) and locomotion 

band (0–3 Hz) [94] 

𝐹𝐼 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑃𝑆𝐷 𝑐𝑢𝑟𝑣𝑒 𝑖𝑛 𝑓𝑟𝑒𝑒𝑧𝑒 𝑏𝑎𝑛𝑑

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑃𝑆𝐷 𝑐𝑢𝑟𝑣𝑒 𝑖𝑛 𝑙𝑜𝑐𝑜𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑
 

Calculated from acceleration and angular velocity axes, 3D 

vector magnitude, knee angular rotation or  

telemeter voltage. 

[15–

17,19,24,25, 

53,57,61,93,94,

96,100,104–

108,116,118–

120,125,126, 

132,164,166, 

167,169] 
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Multi-channel FI  

(𝐹𝐼𝑀𝐶) 

Acc 

 

 

Foot, shank, thigh, 

lower back/hip 

Ratio of powers 𝑃𝐻 to 𝑃𝐿 (i.e., freeze and locomotor bands) 

that are summations of acceleration signal powers over N 

channels, where Matrix X of size N ×M represents an N-

channel recording session with M regularly spaced time 

samples 

𝐹𝐼𝑀𝐶 =
𝑃𝐻
𝑃𝐿

 

𝑃𝐻 =
1

2𝑓𝑠
∑[ ∑ [𝑃𝑋𝑋𝑛(𝑖)] +

𝐻2

𝑖=𝐻1+1

∑[𝑃𝑋𝑋𝑛(𝑖)]

𝐻2−1

𝑖=𝐻1

]

𝑁

𝑛=1

 

𝑃𝐿 =
1

2𝑓𝑠
∑[ ∑ [𝑃𝑋𝑋𝑛(𝑖)] +

𝐻1

𝑖=𝐿+1

∑[𝑃𝑋𝑋𝑛(𝑖)]

𝐻1−1

𝑖=𝐿

]

𝑁

𝑛=1

 

where N is number of inputs, 𝑓𝑠 sampling frequency, 𝑃𝑋𝑋, 

power spectrum of signal x, 𝐻1 =
3𝑁𝐹𝐹𝑇

𝑓𝑠
,  

𝐻2 =
8𝑁𝐹𝐹𝑇
𝑓𝑠

, 𝐿 =
0.5𝑁𝐹𝐹𝑇
𝑓𝑠

 

[160] 

K freeze index 

(𝐹𝐼𝐾) 

Acc 

 

 

Foot, shank, thigh, 

lower back/hip 

Freeze index from each acceleration signal axis, spectral 

analysis using the Koopman operator [216]. Koopman 

eigenvalues and eigenfunctions are considered frequencies (λ) 

and power (K(λ)) [217]. 

𝐹𝐼𝐾 =
∑ 𝐾(𝜆)
𝐻2
𝜆=𝐻1+1

∑ 𝐾(𝜆)
𝐻1
𝜆=𝐿+1

 

where 𝐿 = 0.5(2𝜋), 𝐻1 = 3(2𝜋), 𝐻2 = 8(2𝜋) 

[160] 

Total power Acc, Gyro 
Lower back, thigh, 

shank, ankle 

𝑇𝑇𝑃 =∑𝑃𝑗

𝑀

𝑗=1

 

where P is the power spectrum of the acceleration signal for a 

window of length M [218,219]. Calculated for 3 axes. In [57] 

used gyroscope when turning, acceleration otherwise. 

[57,119] 
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Mean power 

 
Acc 

Lower back, thigh, 

shank 

𝑀𝑁𝑃 =
1

𝑀
∑𝑃𝑗

𝑀

𝑗=1

 

where P is power spectrum of acceleration signal for window 

of length M [218,219]. Calculated for 3 axes. 

[119] 

Energy Derivative 

ratio (EDR) 
Acc Lateral waist 

Derivative of vertical acceleration energy in 3–8 Hz band 

divided by derivative of energy in 0.5–3 Hz band. 
[100,164] 

Median frequency Acc 
Lower back, thigh, 

shank 

𝑀𝐷𝐹 =
1

2
∑𝑃𝑗

𝑀

𝑗=1

 

where P is the power spectrum of acceleration signal for a 

window of length M [218,219]. Calculated for 3 axes. 

[19,119] 

Peak frequency Acc 
Lower back, thigh, 

shank 

𝑃𝐾𝐹 = 𝑚𝑎𝑥(𝑃𝑗), 𝑗 = 1,… ,𝑀 

where P is power spectrum of acceleration signal for a 

window of length M [218,219]. Calculated for 3 axes. 

[119] 

 

Peak amplitude, 

Frequency of peak 

amplitude 

Acc, Gyro, 

FSR 

Waist, thighs, shanks, 

lower back, ankle 

Gyro: shanks, lower 

back, ankle 

Maximum value in frequency domain and corresponding 

frequency bin. Calculated for [0.5–3 Hz] band and [3–8 Hz] 

band. In [95] relative acceleration signal is used, defined in 

[206]. In [23] angular velocity is used. Also calculated with 

total force curve from FSR and AP COP [43]. 

[19,23,43,57, 

95,132] 

Higher harmonics Acc Waist, shanks  
3 frequency bins with highest peaks. Calculated for all 

acceleration axes. 
[129,132,135] 

Frequency standard 

deviation 
Acc, Gyro 

Waist, lower back, 

thighs, shanks, ankle 

FSR in-shoe insoles 

Standard deviation of signal in specific frequency bands, 

e.g., 0.1–0.68 Hz, 0.68–3 Hz, 3–8 Hz, 8–20 Hz, 0.1–8 Hz. 

Calculated for 3 axes. 

[57,129,132, 

135] 

Principal harmonic 

width 
Gyro Shanks 

The half-power width of the principal harmonic (peak 

amplitude frequency). 
[23] 

Weighted power 

spectral peak 
Gyro Shanks 

Product of the maximum value in the frequency domain and 

the corresponding bin. 
[23] 

Low power 

frequency 
Gyro Shanks 

Ratio between the power in the 0-2 Hz band and the total 

signal power. 
[23] 
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Spectral density 

centre of mass 

(COM) 

Acc, EEG, 

Goniometer 

(G), 

Telemeters 

(T) 

Acc: Waist, thigh, 

shank, foot,   

EEG: Head, G: knee, 

T: between shanks 

x(n), is amplitude of bin n, and f(n) is frequency of bin n: 

𝐶𝑂𝑀 =
∑ 𝑓(𝑛)𝑥(𝑛)𝑁−1
𝑛=0

∑ 𝑥(𝑛)𝑁−1
𝑛=0

 

Calculated from 3 axis acceleration signal, filtered EEG 

voltage calculated within specific frequency bands, knee 

angular rotation or telemeter voltage. 

[27,114,119, 

129,130,135] 

1st 2nd 3rd spectral 

moments 
Acc 

Lower back, thigh, 

shank 

𝑆𝑀1 =∑𝑓𝑗 × 𝑃𝑗

𝑀

𝑗=1

, 𝑆𝑀2 =∑𝑓𝑗
2 × 𝑃𝑗

𝑀

𝑗=1

, 𝑆𝑀3 =∑𝑓𝑗
3 × 𝑃𝑗

𝑀

𝑗=1

 

where P is power spectrum of acceleration signal for window 

of length M [218,219]. Calculated for 3 axes. 

[119] 

Spectral coherence Acc, EEG 
Lower back, thigh, 

shank, EEG: head 

Calculated from 3D acceleration or filtered EEG data using 

Welch method [220] 

𝐶𝑥𝑦(𝜔) =
𝑃𝑥𝑦(𝜔)

√𝑃𝑥𝑥(𝜔) × 𝑃𝑦𝑦(𝜔)
 

where ω is frequency, 𝑃𝑥𝑥(𝜔) is power spectrum of signal x, 

𝑃𝑦𝑦(𝜔) is power spectrum of signal y, and 𝑃𝑥𝑦(𝜔) is cross-

power spectrum for signals x and y. Also used with wavelet 

power spectrum in[27]. EEG signal from 4 locations: O1-

visual, P4-sensorimotor affordance, Cz-motor execution, and 

Fz-motor planning. Filtered bandpass (0.5–60 Hz). 

[27,133,160, 

160] 

Max amplitude and 

number of peaks of 

spectral coherence 

Acc 

 

 

Foot, shank, thigh, 

lower back/hip 

Maximum amplitude and number of peaks of spectral 

coherence feature [133]. 

[160] 

 

Discrete wavelet 

transform (DWT) 
Acc, EMG 

Lower back, thigh, 

shank, EMG: 

quadriceps 

Discrete wavelet transform, Decomposition coefficients 

(approximate and detail coefficients) used as features. 

Calculated from the acceleration 3D vector magnitude each 

axis individually, or the raw EMG signal. 

[101,108,109, 

112] 

Select bands of the 

CWT 
Acc 

Lower back, thigh, 

shank 

Continuous wavelet transform in specific ranges  

(0.5–3 Hz, 3–8 Hz), also ratio of signal in 0.5–3 Hz band 

divided by signal in 0.3–8 Hz. Calculated for 3 axes. 

[98] 
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Ratio of peak 

amplitude in 

wavelet transform 

bands 

Goniometer, 
Knee, derivative of 

knee angle 

Sinusoidal wavelet transform used to calculate ratio of peak 

amplitude in 3–8 Hz band divided by peak in  

0.5–3 Hz band. 

[58] 

Wavelet mean Acc 
Lower back, thigh, 

shank 
Mean of detail coefficients of DWT using Debauches wavelet. [24] 

S-transform, 

amplitude 
EEG Head 

Maximum amplitude in theta (4–8 Hz), alpha (8–13 Hz), low 

beta (lβ, 13–21 Hz) and high beta (hβ, 21–38 Hz) bands. Total 

amplitude across all bands were extracted for a specific time. 

Electrodes placed: F3, F4, FC1, FC2, C3, C4, CP1, CP2, CZ, 

P3, P4, PZ and O1, O2, OZ  

(F = frontal, C = central, P = parietal, O = occipital and  

Z = midline). Data filtered band-pass filter (0.5–40 Hz), 

normalized with z-transformation. 

[115] 

Energy (frequency 

domain) 
Acc, Gyro 

Foot, shank, thigh, 

forearm, waist, chest, 

ankle 

Summation of squared absolute value of signal, where f(h) is 

discrete signal in frequency domain, with frequency bins h=1 

to H, and E is signal energy 

𝐸 =∑ |𝑓(ℎ)|2
𝐻

ℎ=1
 

Calculated from 3 axis acceleration or angular velocity signal. 

[56,91,100, 

125,126,131, 

164] 

 

Min, max 

amplitude of FFT 

and DWT 

Acc 
Shank, thigh, low 

back 

Minimum and maximum values of energy of frequency 

domain signal, for both FFT and DWT approximation and 

detail coefficients, as in [102,103]. Calculated from  

3 axis acceleration signal. 

[102,103,110, 

111] 

Cross-correlation EEG Head 

𝑅𝑥𝑦(𝑘) = 𝐸[𝑥(𝑛)𝑦(𝑛 + 𝑘)] 

where 𝑥(𝑛), and 𝑦(𝑛 + 𝑘) are two signals and 𝑘 is the number 

of time units that signal 𝑦(𝑛) lags 𝑥(𝑛), and 𝐸[∙] is 

expectation operator. EEG signal from O1-visual, P4-

sensorimotor affordance, Cz-motor execution, and  

Fz-motor planning. Filtered band-pass (0.5–60 Hz). 

[27] 
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Cross power 

spectral density 

(CPSD) 

EEG Head 

Cross power spectral density [221] 

𝑃𝑥𝑦(𝑓) = ∑ 𝑅𝑥𝑦(𝑘)

∞

𝑘=−∞

𝑒−𝑗2𝜋𝑓𝑘𝑇 

where R is cross correlation function. EEG signal from 4 

locations: O1-visual, P4-sensorimotor affordance,  

Cz-motor execution, and Fz-motor planning. Filtered band-

pass (0.5–60 Hz). 

[27] 

Weighted Phase 

Lag Index (WPLI) 
EEG Head 

Weighted phase lag index [222]. EEG signal from 4 locations: 

O1-visual, P4-sensorimotor affordance,  

Cz-motor execution, and Fz-motor planning. Filtered band-

pass (0.5–60 Hz). 

[27] 

Wavelet cross 

spectrum 
EEG Head 

The wavelet cross spectrum 𝑊𝐶𝑆𝑖(𝑠), defined as 

𝑊𝐶𝑆𝑥𝑦𝑖(𝑠) = 𝑆(𝑊𝑥𝑖(𝑠)𝑊𝑦𝑖
∗𝑇(𝑠)) 

where 𝑥 and 𝑦 are two time series, 𝑖 time shift index, 𝑠 scale, 

S a smoothing operator, and 𝑊𝑥𝑖 and 𝑊𝑦𝑖 the wavelet 

transform coefficients. EEG signal from  

4 locations: O1-visual, P4-sensorimotor affordance,  

Cz-motor execution, and Fz-motor planning. Filtered  

band-pass (0.5–60 Hz). 

[27] 

Phase locking 

value 
EEG Head 

Phase locking value [223] 

𝑃𝐿𝑉𝑡 =
1

𝑁
|∑𝑁𝑒𝑗𝜃(𝑡,𝑛)
𝑁

𝑛=1

| 

where 𝜃(𝑡, 𝑛) is phase difference between signals which can 

be derived from the angles of their wavelet coefficients. EEG 

signal from 4 locations: O1-visual,  

P4-sensorimotor affordance, Cz-motor execution, and  

Fz-motor planning. Filtered band-pass (0.5–60 Hz). 

[27] 
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Table A.3: Features extracted from in-shoe plantar pressure sensors to characterize gait or FOG in PD and features used to classify fall 

risk in healthy older adults. 

Feature Sensor and location Description Source 

Stride time FSR (2) under toe and heel Duration between foot strike to ipsilateral foot strike [34,36] 

Swing time FSR (2) under toe and heel Time foot is in the air during a stride [36] 

Double support time FSR (2) under toe and heel Time both feet are in contact with ground during a stride [36] 

Stride time variability  FSR (2) under toe and heel 
Coefficient of variation (CV) of stride time,  

CV=(SD/mean)*100% 
[34] 

Left, right swing time FSR (2) under toe and heel 
Total time each foot is in the air per stride, (left or right), averaged 

across all strides 
[39] 

Left, right swing 

variability 
FSR (2) under toe and heel 

Coefficient of variation of swing time, for left and right legs, 

calculated individually. 
[39] 

Short and long swing 

time 
FSR (2) under toe and heel 

Limb (right or left) labeled as short or long depending on which 

limb had larger mean swing time 
[39] 

Short and long swing 

time CV 
FSR (2) under toe and heel CV values of short swing time and long swing time  [39] 

Gait asymmetry FSR (2) under toe and heel 
Absolute value of the natural logarithm of the short swing time 

divided by long swing time  
[39] 

Velocity Instrument mat (GAITRite) Body forward velocity  
[40] 

 

Step length Instrument mat (GAITRite) Distance between steps of same leg  
[40] 

 

Step length variability Instrument mat (GAITRite) Step-to-step variability of step length 
[40] 

 

Single limb support Instrument mat (GAITRite) Duration of single limb support phase 
[40] 

 

Ground reaction forces 

PPS (4) or FSR (4) heel, 

toe and medial/lateral ball 

of foot, PSI 

Summation of pressure readings of all sensors, normalized by 

bodyweight  

[38,175,224] 

 

COP 

PPS (4) heel, toe and 

medial/lateral ball of foot, 

PSI 

Centre of pressure of each foot [38,175] 

Fraction of weight span 13 locations under foot 
Max – min total force relative to estimated body weight (defined 

as 90% of measured weight) 
[43] 
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Dominant frequency 13 locations under foot 
Dominant frequency in the Fourier domain, calculated using the 

total GRF or the COP position in AP direction. 
[43] 

Features extracted from pressure sensing insoles for fall risk assessment of elderly adults 

Cadence PSI (900 cell) Number of strides per second  [46] 

Stride time PSI (900 cell) 
Time from one foot strike to the next consecutive strike of same 

foot  
[46] 

Swing time PSI (900 cell) Total time foot is in the air during each stride  [46] 

Percent stance time PSI (900 cell) 
Time during which one foot is in contact with ground as % stride 

time 
[46] 

Percent double support 

time 
PSI (900 cell) 

Time during which both feet are in contact with ground, as % 

stride time 
[46] 

Stride time symmetry 

index 
PSI (900 cell) 

Symmetry index (SI) of right and left leg stride times. From [225] 

𝑆𝐼 =
(𝑋𝑅 − 𝑋𝐿)

0.5(𝑋𝑅 + 𝑋𝐿)
× 100% 

where 𝑋𝑅 and  𝑋𝐿 are stride time for right and left legs  

[46] 

CV stride time, stance 

time, swing time 
PSI (900 cell) 

Coefficient of variation (CV) of stride time, stance time, and 

swing time 
[46] 

COP path reversals 

(A/P), number, length, 

duration 

PSI (900 cell) 
COP path should advance monotonically. Number, length and 

duration of COP path direction reversals per stance.  
[47] 

COP path deviations 

(M/L), number, length, 

duration 

PSI (900 cell) 

Number, length and duration of mediolateral COP deviations per 

stance. Deviations defined as first derivative of COP ML signal 

exceeding a threshold of ± 0.5 mm/frame 

[47] 

Lateral COP position PSI (900 cell) 
Maximum distance from centre line of insole. Normalized by 

width of trimmed sensor 
[47] 

Coefficients of 

variation of COP 

trajectory 

PSI (900 cell) 
Anterior-posterior (AP) and (ML) coefficients of variation (CV) 

for stance phase COP path 
[47] 

Impulse of each phase 

of gait (I1, I2, I3, I4, I5, 

I6, I7) 

PSI (900 cell) 

Impulse calculated as area under the curve of GRF normalized by 

bodyweight. 

I1 (foot-strike to first peak), I2 (first peak to minimum), I3 

(minimum to second peak), I4 (second peak to foot-off), I5 (foot-

strike to minimum), I6 (minimum to foot-off), and I7 (foot-strike 

to foot-off) 

[46] 

FSR: force-sensing resistor, PPS: pneumatic pressure sensor, PSI: pressure sensing insole. 


