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Abstract

This thesis examines problems faced in the distribution management of e-retailers, in differ-

ent stages of the supply chain, while accounting for sources of uncertainty. The first prob-

lem studies distribution planning, under stochastic customer demand, in a transshipment

network. To decide on a transportation schedule that minimizes transportation, inventory

and outsourcing costs, the problem is formulated as a two-stage stochastic programming

model with recourse. Computational experiments demonstrate the cost-effectiveness of dis-

tribution plans generated while considering uncertainty, and provide insights on conditions

under which the proposed model achieves significant cost savings.

We then focus our attention on a later phase in the supply chain: last-mile same-day

delivery. We specifically study crowdsourced delivery, a new delivery system where freelance

drivers deliver packages to customers with their own cars. We provide a comprehensive

review of this system in terms of academic literature and industry practice. We present a

classification of industry platforms based on their matching mechanisms, target markets,

and compensation schemes. We also identify new challenges that this delivery system

brings about, and highlight open research questions. We then investigate two important

research questions faced by crowdsourced delivery platforms.

The second problem in this thesis examines the question of balancing driver capacity

and demand in crowdsourced delivery systems when there is randomness in supply and

demand. We propose models and test the use of heatmaps as a balancing tool for directing

drivers to regions with shortage, with an increased likelihood, but not a guarantee, of a

revenue-producing order match. We develop an MDP model to sequentially select matching

and heatmap decisions that maximize demand fulfillment. The model is solved using a

stochastic look-ahead policy, based on approximate dynamic programming. Computational

experiments on a real-world dataset demonstrate the value of heatmaps, and factors that

impact the effectiveness of heatmaps in improving demand fulfillment.

The third problem studies the integration of driver welfare considerations within a

platform’s dynamic matching decisions. This addresses the common criticism of the lack

of protection for workers in the sharing economy, by proposing compensation guarantees

to drivers, while maintaining the work hour flexibility of the sharing economy. We propose

and model three types of compensation guarantees, either utilization-based or wage-based.

We formulate an MDP model, then utilize value function approximation to efficiently solve

the problem. Computational experiments are presented to assess the proposed solution

approach and evaluate the impact of the different types of guarantees on both the platform

and the drivers.
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Chapter 1

Introduction

E-retailing is a global market that has experienced enormous growth in the last decade.

Today, many retailers that were once only offering bricks-and-mortar stores are adopting

omnichannel models by expanding their services to online shopping. This growth comes

with higher expectations from customers; they are increasingly expecting shorter delivery

times without a hefty delivery charge. To create efficient and responsive distribution plans,

e-retailers need to account for the different sources of uncertainty that affect their distri-

bution activities throughout the various phases of the supply chain. This thesis examines

three distribution management problems, faced by e-retailers, that aim to optimize their

distribution planning activities under uncertainty.

Chapter 2 studies distribution planning between suppliers and distribution centers,

where we consider a transshipment network under stochastic customer demand, applicable

to many three-tier supply chain networks. We study this problem from the perspective of

a third-party logistics provider (3PL) that is outsourced to handle the logistics needs of

its clients; the 3PL uses a consolidation center to achieve transportation cost savings. We

formulate a two-stage stochastic programming model with recourse that aims to minimize

the sum of transportation cost, expected inventory holding cost and expected outsourcing

cost. The recourse variables ensure that the problem is feasible regardless of the realization

of demand, by allowing the option of using a spot market carrier if demand exceeds capacity.

We use Sample Average Approximation (SAA) to solve the problem and show that it

results in reasonable optimality gaps for problem instances of different sizes. We conduct

extensive testing to evaluate the benefits of the proposed stochastic model compared to

its deterministic counterpart. Computational experiments provide managerial insight into

the robustness and cost-effectiveness of the distribution plans of the proposed stochastic

model, and the conditions under which the model achieves significant distribution cost

savings.
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Chapter 3 onward, we shift our attention to a later phase in the supply chain, namely,

last-mile same-day delivery from distribution centers or stores to end customers. We par-

ticularly study an emergent delivery system, crowdsourced delivery, which relies on indi-

viduals completing last-mile delivery tasks with their own cars. In Chapter 3, we analyze

the current industry status of this delivery system and provide a classification of available

platforms based on their matching mechanisms, target markets and compensation schemes.

We review the operations research (OR) literature addressing this topic and assess the ap-

plicability of assumptions to real-world applications. We also compare the management

decisions within crowdsourced delivery systems to well-studied OR problems in the liter-

ature, and pinpoint new challenges that arise in the context of crowdsourced delivery. In

the following two chapters, we investigate two important managerial questions faced by

crowdsourced delivery platforms.

Chapter 4 studies the problem of balancing driver capacity and demand in crowd-

sourced delivery systems, when there is randomness in both driver supply and demand.

Since crowdsourced drivers are independent contractors, their movement is not directly

managed. We investigate the use of heatmaps as a balancing tool for directing drivers

to regions with shortage, with an increased likelihood, but not a guarantee, of a revenue-

producing assignment. This creates a generalized framework for managing the movement of

crowdsourced drivers, without a direct assumption on their compensation scheme. We de-

velop a Markov decision process (MDP) model to sequentially select matching and heatmap

decisions that maximize demand fulfillment. The model is solved using a stochastic look-

ahead policy, based on approximate dynamic programming. We also propose a simple

policy and an upper-bound problem that assumes drivers are directly managed. We find

that optimized heatmaps induce driver repositioning to areas of shortage and improve de-

mand fulfillment up to the level where drivers are managed directly, when the number of

drivers is higher than demand. The effectiveness of heatmap is most notable when the net-

work is imbalanced, where the demand inflow to some nodes is significantly higher/lower

than the outflow.

Chapter 5 examines the integration of driver welfare considerations in a platform’s

dynamic matching decisions. Crowdsourced delivery and other sharing economy plat-

forms typically compensate workers per task and provide little guarantees for their earn-

ing amount while they are ready to work. We study the problem of designing dynamic

matching policies, in a crowdsourced delivery system, that guarantee a particular level of

utilization or earning for active workers, while maintaining the inherent work hour flex-

ibility promoted by the sharing economy. We propose, model, and test three types of

guarantees, that are either utilization-based or wage-based. To capture the dynamic and

stochastic nature of crowdsourced delivery operations, we propose an MDP model. We

2



utilize approximate dynamic programming techniques to efficiently obtain good solutions,

given the high dimensionality of the solution space. In particular, we use value function

approximation to obtain good estimates of the value of post-decision states, using forward

simulation. We conduct extensive computational testing to assess the performance of the

proposed solution methodology. We also compare the different types of guarantee policies,

and assess their impact on the platform and the drivers, relative to the base policy, which

models the no-guarantee case.

Chapter 6 concludes the thesis and discusses opportunities for future research.

3



Chapter 2

Distribution Planning with Random

Demand and Recourse in a

Transshipment Network1

2.1 Introduction

In many supply chain networks, third party logistics providers (3PLs) are employed to

handle the distribution needs within the supply chain. The 3PL faces the challenging

task of coordinating these distribution activities between suppliers and customers, possibly

through the use of intermediate facilities, so as to create a lean cost-efficient supply chain,

while ensuring timely customer deliveries. Third party logistics is a fast growing market; in

2016, it had an estimated worldwide market size of 802.2 billion US dollars, 38% of which is

in the Asia Pacific region, 25% in North America, 21.5% in Europe (Langley, 2017). With

this growth comes increased competition which further necessitates that the 3PL create

leaner logistics solutions, in order to survive in a growingly contested market. In recent

years, there has been an increasing trend in businesses outsourcing their transportation

needs to 3PL’s to focus on their core business competencies. The various players within

the supply chain expect the 3PL to accommodate shipping quantities that may fluctuate

depending on customer demand. This creates a compelling need for a 3PL to operate more

efficiently, with imperfect information, to secure profitability, while providing competitive

shipping rates for clients and building customer loyalty.

1This chapter is based substantially on a published article in the European Journal on Transportation
and Logistics. Alnaggar, A., Gzara, F., and Bookbinder, J.H., 2020. ”Distribution planning with random
demand and recourse in a transshipment network.” EURO Journal on Transportation and Logistics 9, no.
1 (2020): 100007.

4



Many variations of freight distribution coordination with intermediate facilities have

been investigated by researchers. However, very limited work addresses such problems

with stochastic customer demand. In their literature surveys, both SteadieSeifi et al.

(2014) and Guastaroba et al. (2016) acknowledge the need for more research that considers

stochasticity in freight transportation planning. In addition, from an industrially-practical

point of view, when customer demand arrives in real-time, accounting for demand variation

at the distribution planning phase will enable the creation of efficient distribution plans

that more accurately anticipate actual distribution costs.

We study the problem of a 3PL that is coordinating transportation needs between

suppliers and customers when customer demand is stochastic. That coordination considers

the release time of shipments from suppliers, the delivery due dates of customers, the

different transportation options that could be used, as well as the holding cost at the

consolidation center. In our problem setting, the 3PL does not operate its own fleet, but

rather chooses the best available multi-modal transportation services for its clients. The

3PL determines a suitable shipping schedule, arranging for the pickup at suppliers when

shipments are ready, i.e., after their release time.

For a given supplier, orders of multiple customers are consolidated in fewer high-volume

loads and sent to the consolidation center, operated by the 3PL, through one or more trans-

portation options. A transportation option between a supplier and the consolidation center

is referred to as an inbound transportation option. We define an inbound transportation

option as a combination of a transportation mode (or multiple modes), a capacity, an

arrival time at the consolidation center, and a cost associated with the service. At the

consolidation center, the 3PL combines orders from multiple suppliers to the same cus-

tomer and delivers them through one or more transportation options, such that customer

delivery deadlines are satisfied. A transportation option from the consolidation center to

a customer is referred to as an outbound transportation option, and is defined as a combi-

nation of transportation mode, capacity, dispatch time from the consolidation center, and

cost.

Most transportation service prices are not simply based on the weight and volume of

the shipment. Prices also depend on when the service is taking place (e.g., peak seasons,

holidays), the mode of transportation used, as well as other factors such as the particular

route taken. Thus, inbound and outbound transportation cost may not be monotonically

increasing or decreasing with lead time. We adopt this general definition, where inbound

and outbound transportation options have nonlinear discrete cost functions.

The distribution service provided by the 3PL is for a predefined number of periods,

rather than a one-time service. However, the choice of transportation options, for inbound
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and outbound shipments, is contractual, and is kept for the full length of the planning

horizon. Once customer demand is known, if the actual demand cannot be fulfilled with the

particular choice of inbound and outbound options made at the beginning of the planning

horizon, a spot market carrier may be used to ship the additional demand at a higher

cost. The goal of the 3PL is to select transportation options that minimize the expected

transportation cost of the network plus the expected holding cost at the consolidation

center, while ensuring that customer demand is fulfilled by the due date.

One motivating example of the problem comes from a 3PL that manages the distribu-

tion planning of an e-retailer. The latter operates multiple distribution centers and orders

its products from a number of global suppliers. Each supplier provides different types of

products that the e-retailer sells. To manage their inventory, each distribution center peri-

odically places a replenishment order, which varies depending on end-customer’s demand.

In fulfilling those orders, the 3PL uses a consolidation center to save on transportation

cost between suppliers and the e-retailer’s distribution centers. The 3PL needs to choose

a minimal-cost transportation plan with specific transportation modes, capacity and ar-

rival/dispatch times at the consolidation center, for inbound and outbound shipments,

respectively, to carry on the regular transportation needs between suppliers and distribu-

tion centers. For simplicity and to make our problem applicable to other application areas,

we will refer to the third-tier of the supply chain (which are the distribution centers in this

example) simply as customers.

The main contributions of this research are threefold. Firstly, we address the need

for considering randomness in freight distribution planning with intermediate facilities by

proposing a two-stage stochastic programming model that accounts for stochastic customer

demand at the planning phase. Our proposed model addresses tactical decisions, i.e., the

choice of transportation options, and minimizes the sum of transportation-choice costs

plus expected operational costs. Secondly, modeling this problem from the perspective of

a third party logistics provider, even without demand uncertainty, has received very little

attention. This work aims to fill that gap. Thirdly, we conduct a thorough analysis on

the benefits and limitations of our proposed model and present managerial insights on the

conditions under which our model achieves significant distribution cost savings.

The rest of this chapter is arranged as follows. In Section 2.2 we provide a review of

relevant literature. In Section 2.3, we detail the problem setting and assumptions, and

formulate the proposed stochastic model. We discuss the solution methodology used in

solving the problem in Section 2.4. We then discuss our numerical testing and analysis,

and compare the performance of our stochastic model to its deterministic counterpart in

Section 2.5. Finally, we outline some concluding remarks and future directions in Section

2.6.
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2.2 Literature Review

References on freight consolidation have considered distinct goals and the viewpoints of

different decision makers. Relevant literature is in three main categories: freight/shipment

consolidation, freight transportation with intermediate facilities, and freight forwarder/3PL

operations. We also discuss important publications that explicitly incorporate stochasticity.

In the past three decades, considerable research has been done on shipment consolida-

tion (SCL). This classical problem mainly aims to find the optimal dispatch policy, from

the perspective of a shipper, that determines for how long to consolidate shipments, and

when to dispatch the aggregate load. Early research laid the foundation of this topic (Mas-

ters, 1980). Later, Higginson and Bookbinder (1994), Çetinkaya and Bookbinder (2003),

Mutlu et al. (2010), and Bookbinder et al. (2011) used simulation and stochastic modeling

to compare different dispatch policies and determine optimal ones under various settings

and considering additional costs, such as inventory cost.

The preceding references explicitly analyze SCL policies, but other researchers have in-

tegrated those decisions within wider-scope supply chain network decisions. Freight trans-

portation problems with intermediate facilities were reviewed by Guastaroba et al. (2016).

The authors suggested three classes of such problems, the second of which: intermediate

facilities in transshipment problems, is the closest to our problem setting, since the con-

solidation center acts as a transshipment node. Our problem extends the cited references

in Guastaroba et al. (2016) by considering a stochastic model rather than a deterministic

one. Another article by SteadieSeifi et al. (2014) surveys the literature on multi-modal

freight transportation planning. Our proposed model fits under their category of tactical

planning, i.e., choice of transport services, associated modes and capacities, and allocating

customer orders to the services selected.

Croxton et al. (2003), Berman and Wang (2006) and Song et al. (2008) each studied

distribution coordination with consolidation center(s) or merge-in-transit centers. Each

paper developed different models to determine the best distribution plan that minimizes

transportation plus inventory costs. Croxton et al. (2003) assume that suppliers provide

components, which are shipped to a merge-in-transit center, assembled, and dispatched

to the customer as a finished product. Song et al. (2008) suppose that suppliers also

furnish components, but the customer assembles the product after receiving all parts as

one consolidated load. Berman and Wang (2006) assume that each supplier provides a

number of products, which are sent to customers via a cross-dock.

Both Croxton et al. (2003) and Berman and Wang (2006) assume that freight is moved

via a pre-determined transportation arrangement, so the choice of carriers is not studied.
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Song et al. (2008), however, assume that the decision maker (a 3PL) selects from a large

number of possible carriers, each with a given dispatch time and cost. We adopt this latter

assumption: a typical 3PL chooses the modes and capacities from a number of potential

transportation service providers.

The three aforementioned papers had nonlinear cost functions. Transportation costs

follow a nonlinear discrete cost function in Song et al. (2008). Similar to those authors, we

adopt a general cost function that can capture the various factors affecting transportation

cost.

In the context of freight forwarding, most publications assume the relevant company

operates its own fleet, proposing different models that extend the classical vehicle routing

problem, or the pickup and delivery problem with time windows (Krajewska and Kopfer,

2009, Wang et al., 2014, Bock, 2010). Models that study 3PL coordination issues are

closely related to freight forwarders problems; transportation in supply chains is typically

outsourced to both 3PLs and freight forwarders. However, 3PLs may coordinate addi-

tional distribution activities, like warehousing and managing inventory. Song et al. (2008)

study the scheduling problem faced by a 3PL who is arranging shipments between suppliers

and customers in an international distribution network through the use of a consolidation

center. Cai et al. (2013) analyze the outsourcing of fresh products to a 3PL, where the

products could deteriorate during the transportation process, and derive the optimal de-

cisions for supply chain members. Qin et al. (2014) consider the freight consolidation and

containerization problem from the perspective of a 3PL that wants to determine the opti-

mal allocation of shipments to international shipping containers and the routing of those

containers.

Of some relevance to our work is the extensive family of problems on service network

design (SND), as surveyed by Crainic (2000) and Wieberneit (2008). SND decisions relate

to the network structure, i.e., selection of routes where service is conducted, and also the

movement of freight on the network. Our problem, however, assumes an already-established

network, where only the modal choice and scheduling of the freight movements, on prede-

fined routes, is of interest. Furthermore, SND problems often take the carrier’s perspective,

whereas our view is that of a 3PL that also manages a consolidation center, hence inventory

holding cost need be included. Guastaroba et al. (2016) argue that most papers on SND

with intermediate facilities concern applications at a national or regional level with a single

transport mode. Contrarily, our problem is applicable to global distribution networks, with

multiple transportation modes.

All previously reviewed papers assume deterministic customer demand. Limited work

addresses similar stochastic demand problems. Guastaroba et al. (2016) recognize that
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intermediate facilities in stochastic transshipment problems have received no attention, and

highlight this for future research. To the best of our knowledge, the only related papers

that consider randomness, but without transshipment, are Kılıç and Tuzkaya (2015) and

some stochastic service network design papers, surveyed below.

Kılıç and Tuzkaya (2015) investigate a two-echelon distribution network design problem

between distribution centers and wholesalers when demand is uncertain. The authors use

two-stage stochastic mixed integer programming, where the first stage selects location of

distribution centers; the second stage addresses transportation and inventory decisions, as

well as unmet demand. In contrast to that article, our work addresses transportation needs

in an already-established network.

Several papers have examined the benefit of considering demand randomness in design-

ing service networks. Lium et al. (2009) study demand stochasticity in SND by formulating

a two-stage stochastic programming model that chooses the routes and frequency of service

in the first stage, and decides on the allocation of commodities to established routes or

outsourcing a portion of demand in the second stage. Bai et al. (2014) later extend this

model to allow possible rerouting of vehicles, to reduce the amount of outsourcing needed

when demand is high. Both our research and Bai et al. (2014) consider outsourcing de-

mand when it exceeds available first-stage capacity. However, since the 3PL in our case

does not operate its own vehicle fleet, rerouting is not an option. Moreover, we examine

the trade-off between choice of first-stage transportation options and inventory holding

cost, a dimension not studied in stochastic network design problems.

Other publications (Hoff et al., 2010 and Crainic et al., 2014) focused on creating

efficient solution methodologies for solving realistic instances of stochastic SND problems.

Furthermore, more recent work by Wang et al. (2016) examined the value of deterministic

solutions, in terms of their quality and upgradeability, in a stochastic environment. Another

publication by Wang and Wallace (2016) studied the effect of considering spot markets at

the design stage of creating a transportation plan under uncertain demand. The article

showed that in most situations, accounting for spot markets when designing a service

network reduces total cost.

In the following section, we describe our problem setting, assumptions and formulation.

2.3 Problem Description and Formulation

We propose a two-stage stochastic programming model with recourse, to formulate the

Stochastic Distribution Planning with Consolidation (SDPC) problem faced by a 3PL that
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is coordinating shipments between suppliers, i ∈ I, and customers, j ∈ J , whose demands,

Dij, are uncertain. Given customers’ demand distributions, delivery due dates and supplier

release times, the 3PL needs to select the transportation options for shipments inbound

to and outbound from the consolidation center, at the beginning of the planning horizon.

Similar to Song et al. (2008), we adopt general, possibly nonlinear, cost functions for

inbound and outbound transportation options, f(xiq) and g(yjl), respectively. Note that

these cost functions may differ for distinct inbound and outbound transportation options,

q ∈ Qi and l ∈ Lj, respectively. Exploiting a general cost function enables consideration of

different transportation modes or multi-modal transportation options with varying capacity

levels, with those differences reflected in the cost structure.

In our problem setting, the chosen transportation options and their associated capacities

are fixed for the whole planning horizon. Once demand is realized, if total demand from

a supplier (to a customer) exceeds the capacity of inbound (outbound) transportation

option(s) reserved for that supplier (customer), a spot market carrier is used. A spot

market may also be used if inventory cost savings outweigh the increased spot market

cost. We note that the preceding additional cost of utilizing a spot market carrier is

incurred by the 3PL. This cost is composed of two parts, (a) the estimated spot market

per unit price premium between the origin and destination, and (b) a disutility factor that

represents the 3PL’s disutility to transport shipments through a spot market carrier. Such

a disutility factor can be set to zero, if shipping price is the only consideration for the

3PL to make shipments through a spot market carrier. However, the 3PL may not favor

shipping through a spot market carrier, e.g., due to unpredictable price fluctuations in that

market, or limited availability of spot market carriers in peak seasons. Thus, the disutility

factor is meant to adjust the level of favorability in using a spot market carrier by the

specific 3PL.

The first stage of the two-stage stochastic program tackles the selection of inbound and

outbound transportation options to be reserved for the duration of the planning period.

The second stage allocates orders to chosen first-stage options, or to spot market carriers.

The two stages are optimized simultaneously so as to minimize the sum of transportation

cost, expected inventory holding cost and expected spot market carrier shipping cost.

Let xiq be a binary variable indicating whether inbound transportation option q ∈ Qi

is reserved for supplier i ∈ I. Similarly, the binary variable yjl shows whether outbound

transportation option l ∈ Lj is reserved for customer j ∈ J . Let S be the set of possible

scenarios or demand realizations. usijq and wsijl are binary variables that express whether

shipment (i, j) is shipped through reserved inbound and outbound transportation options

q and l, respectively, in scenario s ∈ S. Similarly, µsij and λsij are binary variables that

indicate whether shipment (i, j) is moved via an inbound and outbound spot market carrier,
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respectively, in scenario s ∈ S. Table 2.1 outlines the complete list of notation. We

formulate the problem as shown below and refer to the model as the stochastic distribution

planning with consolidation - flow based formulation (SDPC-FF).

Note that we assume that if shipment (i, j) is transported by a spot market carrier, no

holding cost is incurred at the consolidation center, since the shipping time will be chosen

such that the interval the load is held at the consolidation center is negligible. Therefore,

the holding cost is incurred only if a shipment (i, j) is shipped through reserved inbound

and outbound transportation options, i.e., for a specific shipment (i, j), if both variables

usijq and wsijl have a value of 1. This requirement results in the nonlinearity of the holding

cost component of objective function (2.4).

[SDPC-FF] min
∑
i∈I

∑
q∈Q

f(xiq) +
∑
j∈J

∑
l∈L

g(yjl) + ζ(xiq, yjl) (2.1)

subject to xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L (2.2)

where
ζ(xiq, yjl) = Eξζs(xiq, yjl, ξ) (2.3)

ζs(xiq, yjl, d
s) = min

{∑
i∈I

∑
j∈J(i)

dsijhi(
∑
l∈L

τjlw
s
ijl(1− µsij)

−
∑
q∈Q

τiqu
s
ijq(1− λsij)) +

∑
i∈I

∑
j∈J(i)

dsij(πiµ
s
ij + πjλ

s
ij)

}
(2.4)

subject to∑
q∈Q

usijq + µsij = 1, i ∈ I, j ∈ J(i) (2.5)∑
l∈L

wsijl + λsij = 1, j ∈ J, i ∈ I(j) (2.6)∑
q∈Q

τiqu
s
ijq ≤

∑
l∈L

τjlw
s
ijl + τ̄iqλ

s
ij, j ∈ J, i ∈ I(j) (2.7)

∑
j∈J(i)

dsiju
s
ijq ≤ Ciqxiq, i ∈ I, q ∈ Q (2.8)

∑
i∈I(j)

dsijw
s
ijl ≤ Cjlyjl, j ∈ J, l ∈ L (2.9)

usijq, µ
s
ij ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J(i)

wsijl, λ
s
ij ∈ {0, 1}, j ∈ J, i ∈ I(j), l ∈ L (2.10)

The objective function (2.1) minimizes the total inbound and outbound transportation
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cost, f(xiq) and g(yjl), respectively, plus the recourse function: the expected value of

the second-stage problem. For a particular demand realization ds of the random vector ξ,

objective (2.4) minimizes the sum of the holding cost and the cost of shipping through a spot

market carrier. Constraints (2.5) and (2.6) guarantee that the model allocates each order to

exactly one inbound shipment, and exactly one outbound shipment, respectively, whether

the shipment is through a reserved first-stage transportation option or a spot market

carrier. Constraints (2.7) make sure that the outbound dispatch time of an order is greater

than its inbound arrival time. Constraints (2.8) and (2.9) ensure that the total demand

allocated to a transportation option, for a given supplier and customer, respectively, does

not exceed the capacity of that option. Finally, Constraints (2.10) impose the binary

requirement on all variables.

In order to avoid the nonlinearity in objective function (2.4), we propose an equivalent

linear path-based formulation that replaces the flow variables with path variables. We refer

to this formulation as the stochastic distribution planning with consolidation - path based

formulation (SDPC - PF), and we detail it next.

Linear path formulation

We define a set of feasible paths for shipment (i, j) from supplier i to customer j through the

consolidation center as Pij, where a feasible path pijql ∈ Pij represents a pair of inbound and

outbound transportation options (q, l) that is feasible with regard to arrival/dispatch times

for shipment (i, j). In other words, shipment (i, j) has a feasible path pijql if inbound option

q arrives at the consolidation center before outbound option l is dispatched. Shipment (i, j)

also has feasible paths through each of its inbound options q and through an outbound

spot market, and similarly, there are feasible paths along each outbound option l and an

inbound spot market. For a shipment (i, j), inbound and outbound shipping via a spot

market carrier is also a feasible path. For brevity, we refer to a feasible path as p ∈ Pij.
We define the following additional notation. aiqp and bjlp are binary parameters indicating

if options q and l are on path p ∈ Pij. csijp is the cost of sending shipment (i, j) on path p

in scenario s, where

csijp =



dsijhi(τjl − τiq), if no spot market carrier is used on path p ∈ Pij

πid
s
ij, if a spot market carrier is used only for inbound shipping on path p ∈ Pij

πjd
s
ij, if a spot market carrier is used only for outbound shipping on path p ∈ Pij

(πi + πj)d
s
ij, if a spot market carrier is used for both inbound and outbound shipping on

path p ∈ Pij
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We also define decision variables βsijp as binary variables that indicate whether or not

shipment (i, j) traverses path p ∈ Pij in scenario s. Figure 2.1 shows a visual representation

of the network with both the flow and path variables. The path based formulation, SDPC-

PF, can then be expressed as follows:

[SDPC-PF] min
∑
i∈I

∑
q∈Q

f(xiq) +
∑
j∈J

∑
l∈L

g(yjl) + ζ(xiq, yjl) (2.11)

subject to xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L (2.12)

where

ζ(xiq, yjl) = Eξζs(xiq, yjl, ξ) (2.13)

ζs(xiq, yjl, d
s) = min

∑
i∈I

∑
j∈J(i)

∑
p∈Pij

csijpβ
s
ijp (2.14)

subject to ∑
p∈Pij

βsijp = 1 ∀i ∈ I, j ∈ J(i) (2.15)

∑
p∈Pij

aiqpβ
s
ijp ≤ xiq ∀i ∈ I, j ∈ J(i), q ∈ Q (2.16)

∑
p∈Pij

bjlpβ
s
ijp ≤ yjl ∀j ∈ J, i ∈ I(j), l ∈ L (2.17)

∑
p∈Pij

∑
j∈J(i)

aiqpd
s
ijβ

s
ijp ≤ Ciq ∀i ∈ I, q ∈ Q (2.18)

∑
p∈Pij

∑
i∈I(j)

bjlpd
s
ijβ

s
ijp ≤ Cjl ∀j ∈ J, l ∈ L (2.19)

βsijp ∈ {0, 1}, i ∈ I, j ∈ J(i), p ∈ Pij (2.20)

The objective function (2.11) minimizes the total transportation cost plus the expected

value of the second-stage problem. For a specific realization ds of the random vector ξ, ob-

jective (2.14) minimizes the total allocation cost of shipments to feasible paths. Constraints

(2.15) ensure that exactly one path is chosen for each shipment (i, j) in the network. Con-

straints (2.16) and (2.17) guarantee that shipment (i, j) traverses a path only if both the

inbound transportation option of supplier i (xiq) and the outbound transportation option

of customer j (yjl) have a value of 1. Constraints (2.18) and (2.19) require that the total

demand that traverses a given path does not exceed the capacity of the inbound or out-

bound transportation options of that path. Finally, Constraints (2.20) impose the binary

requirement on the variables.

Note that constraints (2.18) and (2.19) may be modified by multiplying their left-hand-
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Figure 2.1. Visual representation of the network with the main decision variables and param-
eters.

side by xiq and yjl, respectively. However, empirical testing showed that such modification

caused a slight increase in computational time for some instances. Therefore, we refrain

from using this adjustment in our computational testing.

We use Sample Average Approximation (SAA) to solve SDPC-PF. The main advantage

of this technique is that it provides a statistical estimate of the optimality gap of the true

stochastic optimization problem, which is discretized by a very large scenario tree. In

contrast, solving the problem directly with a commercial solver with 50 or more scenarios

is computationally intensive for reasonable size problems, as it results in a large number

of path variables. Solving the problem directly also gives little information on the quality

of the solutions obtained, relative to the true stochastic problem. We therefore use SAA

to measure the quality of the resulting distribution plans by utilizing the optimality gap

estimate as a quality metric, and also to keep the problem size manageable and obtain

good solutions in a reasonable amount of time.
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2.4 Solution Methodology: Sample Average Approx-

imation

Sample Average Approximation is a Monte Carlo simulation-based solution technique for

solving two-stage or multi-stage stochastic optimization problems (Mak and Wood, 1999,

Kleywegt et al., 2002). In this technique, the objective function of the stochastic model is

approximated by a sample average estimate obtained from a random finite set of samples.

The problem is then solved, with the approximate objective function and a set of scenarios

SN , as a deterministic optimization problem either directly or using other solution tech-

niques. The process is repeated M times with different samples, and each time results in

a candidate solution. To assess the quality of the candidate solutions, statistical estimates

of their optimality gaps can be obtained.

SAA solves the true problem with a reasonable level of accuracy provided some condi-

tions are met (Kleywegt et al., 2002, Shapiro and Philpott, 2007). Those conditions, and

justifications on how SDPC-PF meets them, are as follows:

1. It is possible to generate a sample realization of the random vector ζ. For our

proposed problem, this can be done by sampling from each (i, j) demand distribution.

2. The SAA problem can be solved efficiently with a moderate sample size. We will

show in Section 2.5 that we can solve SDPC-PF in a reasonable amount of time, for

most test instances, with a sample size of N = 10.

3. The function ζs(xiq, yjl, d
s) can be easily computed for given xiq, yjl and ds. That

is, for a given first stage solution and a given realization of demand, the optimal

objective function (2.14) can be easily evaluated by solving the model in Equations

(2.14) to (2.20).

4. The true problem has relatively complete recourse, i.e., any solution to the first stage

problem is feasible to the second stage because it can be corrected. In SDPC-PF, this

is done through the assumption that a spot market carrier is always available when

demand cannot be fulfilled with reserved first stage variables. Thus, any choice of

transportation plan would result in a feasible second stage problem, because shipping

via the spot market is a feasible path for all shipments (i, j).

We now detail how SAA is used to solve SDPC-PF. Applying SAA, the objective

function of the second stage problem of SDPC-PF is approximated as:

ζ(xiq, yjl) =
1

N

∑
s∈SN

∑
i∈I

∑
j∈J(i)

∑
p∈Pij

csijpβ
s
ijp (2.21)
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where SN is the set of scenarios of size N sampled in a given SAA problem. The full SAA

model is expressed as follows:

[SAA Model] min
∑
i∈I

∑
q∈Q

f(xiq) +
∑
j∈J

∑
l∈L

g(yjl) + ζ(xiq, yjl) (2.22)

subject to

constraints (2.15)− (2.20), (2.21) ∀s ∈ SN

To assess the quality of the SAA solution, statistical estimates of lower and upper

bounds on the objective function value of the original stochastic problem may be obtained,

as well as estimates of the variances of these bounds. This is achieved by solving the SAA

model M times, where each time a set of independent samples of size N is generated.

This results in M candidate solutions, x1, . . . ,xM , where xm is the vector notation of the

solution of the first stage variables, x̄iq, ȳjl for candidate solution m ∈ {1, . . . ,M}, with

objective function values η1, . . . , ηM .

To estimate the lower bound of the true objective function value, we first compute the

mean (η̄) and the variance (σ̂2
N,M) of the objective function values η1, . . . , ηM as:

η̄ =
1

M

M∑
m=1

ηm (2.23)

σ̂2
N,M =

1

M(M − 1)

M∑
m=1

(ηm − η̄)2 (2.24)

The lower bound is expressed as:

LB = η̄ − tα,vσ̂N,M (2.25)

where tα,v is the α-critical value of the t-distribution with v degrees of freedom, v = M−1.

Kleywegt et al. (2002) note there is a trade-off between SAA solution quality and

computational requirements as the size N changes. With a larger N , the objective function

value of the SAA problem gets closer to the true objective value, but the computational

requirement increases significantly. Similarly, as the number of replications M increases, a

better lower bound can be obtained with a smaller standard deviation σ̂2
N,M . However, the

algorithm may become computationally inefficient. The exact values of N and M used in

our computational testing are explained in Section 2.5.

The upper bound on the true objective function value of each candidate solution is

obtained by evaluating the solution with a very large scenario tree of size N ′ that is

assumed to represent the true distribution of demand. Since each scenario s ∈ {1, . . . , N ′}
is an i.i.d. random sample, the problem of evaluating a candidate solution decomposes

into N ′ subproblems. The size of the scenario tree N ′ is much larger than the size of the

scenario tree maintained in each SAA run, N . We denote the objective function value of
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a given subproblem s as φ(xm, s), which is computed as shown in Equation (2.26). Note

that because each subproblem is solved separately, N ′ can be very large without causing a

significant computational burden. The estimate of the true objective value of the second

stage problem, denoted as φ(xm), is computed as shown in (2.27).

φs(x
m, s) =

∑
i∈I

∑
j∈J(i)

∑
p∈Pij

cijpβijp ∀s ∈ {1, . . . , N ′} (2.26)

φ(xm) =
1

N ′

N ′∑
s=1

φs(x
m, s) (2.27)

The value of the true objective function, η̄m, for candidate solution xm, and its variance,

σ2
N ′(x

m), are computed as shown in Equations (2.28) and (2.29), respectively,

η̄m =
∑
i∈I

∑
q∈Q

f(x̄iq) +
∑
j∈J

∑
l∈L

g(ȳjl) + φ(xm), (2.28)

σ2
N ′(x

m) =
1

N ′(N ′ − 1)

N ′∑
s=1

[φs(x
m, s)− φ(xm)]2. (2.29)

Finally, the upper bound of a candidate solution, zmU is computed as:

ηmU = η̄m + zασN ′(x
m) (2.30)

where zα is the α-critical value of the standard normal distribution. The upper bound of

the algorithm is the smallest ηmU , ∀m ∈ {1, . . . ,M}, as shown in Equation (2.31). The final

solution of SAA, x∗, is the candidate solution that results in the smallest optimality gap

(ηmU − ηL) for all candidate solutions m ∈ {1, . . . ,M}, which corresponds to the solution

with the smallest upper bound ηmU , as shown in (2.32).

UB = min
m∈{1,...,M}

ηmU (2.31)

x∗ = argmin
m∈{1,...,M}

(ηmU ) (2.32)

2.5 Computational Experiments and Analysis

In this section, we conduct extensive computational testing to assess the effectiveness of

SAA in solving the SDPC-PF and to evaluate the benefit of accounting for uncertainty in

modeling SDPC. We solve problem instances of various sizes and different experimental

settings using the SAA algorithm. We then compare the solution of SDPC to its deter-

ministic counterpart with average demand values. We refer to the deterministic problem

as the deterministic distribution planning with consolidation (DDPC) and we describe its

formulation in Appendix A.2. We compare the stochastic and deterministic solutions and
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objective values to evaluate the benefit of accounting for uncertainty, through computing

the value of stochastic solution.

We briefly describe the data generation method used and discuss the different data sets

used in testing and analysis, and how they compare and contrast, in Section 2.5.1. Detailed

explanation of data generation is provided in Appendix A.1. We further elaborate on our

computational testing by detailing the setting used for the SAA algorithm as well as some

key performance measures in Section 2.5.2. Finally, we report and discuss the results of our

computational testing in Section 2.5.3. The SAA algorithm was implemented in Python

2.7 on an Intel(R) Core(TM) i7 CPU, 2.90 GHz, 16.00 GB of RAM. The optimization

problems were solved by CPLEX 12.8.

2.5.1 Data Generation and Data Sets

We generate the parameters of the test instances partly following the method outlined by

Song et al. (2008), since their proposed model also studies a distribution planning problem

from the perspective of a 3PL. We randomly generate the additional parameters used in

our SDPC-PF. More particularly, we use Song et al.’s method to generate the network

of suppliers and customers and the sets of arrival times and dispatch times of inbound

and outbound options, Xi, Yj, for suppliers and customers, respectively. We modify their

proposed cost function of inbound and outbound options f(xiq), g(yjl), by incorporating

capacity. We also scale down their holding cost hi to make it a cost per unit, rather

than per shipment. We then generate the following additional parameters: capacities Ciq

and Cjl for inbound and outbound options, demand distributions for each (i, j) shipment,

and spot market inbound and outbound transportation cost, πi and πj, respectively. The

detailed data generation method is outlined in Appendix A.1.

Based on this method, we generate 10 data sets of different sizes. Each set is composed

of 5 instances that share the same network data but differ in the demand distributions

and the transportation options available for suppliers and customers. Table 2.2 outlines

the problem size of each data set in terms of the numbers of suppliers and customers, and

number of (i, j) shipments. The disutility factor of the spot market carrier is set to r = 4.

Recall that transportation cost through a spot market carrier is a variable per unit cost.

The 3PL thus pays for exactly the shipping amount needed and has more flexibility in

shipping time, as opposed to the reserved transportation options, which justifies the cost

difference. The effect of the disutility factor on the expected outsourcing amount and the

benefit of using SDPC-PF are analyzed in Section 2.5.2
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Table 2.2. Sizes of the data sets used in the computational experiments.

Data
Set No.

No. of
Suppliers

No. of
Customers

No. of
Shipments

Set 1 5 5 20

Set 2 5 10 20

Set 3 5 10 40

Set 4 10 10 50

Set 5 10 20 50

Set 6 10 20 100

Set 7 10 30 100

Set 8 10 30 200

Set 9 20 20 100

Set 10 20 20 200

We now better examine how inventory holding times at the consolidation center and

the number of inbound and outbound transportation options may influence the benefit of

using the SDPC-PF. For each set outlined above, we develop four experimental settings.

Each setting considers three arrival/dispatch times for each supplier i and customer j. We

assume that each supplier and customer have a slow option, an average-speed option and

a fast option. The arrival times τiq ∈ Xi of an inbound fast option, average-speed option,

and slow option for a given supplier i are generated uniformly in the ranges U[100,235],

U[235,370], and U[370,500], respectively. Similarly, the dispatch times τjl ∈ Yj of outbound

options that are fast, of average speed option, and slow for a given customer j are generated

uniformly in the respective ranges U[370,500], U[235,370], and U[100,235].

The four experimental settings differ in the following way:

• (A) For each of the three arrival and dispatch times of inbound and outbound options,

two levels of capacity are considered, creating a total of six transportation options

per supplier and customer. The two capacity levels are γ = 1.00 and γ = 1.15. In

this experimental setting, arrival/dispatch times of inbound and outbound options

are generated independently. For example, an average-speed option of supplier i

does not necessarily arrive before the dispatch time of the average-speed option of

customer j, given that i ∈ I(j). This results in higher average wait times at the

consolidation center, and therefore greater inventory cost.
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• (B) For each of the three arrival and dispatch times of inbound and outbound options,

the same two levels of capacity are considered γ = 1.00 and γ = 1.15, creating

six transportation options per supplier and customer. However, under this setting,

arrival times τiq ∈ Xi of suppliers i ∈ I are synchronized with the dispatch times

τjl ∈ Yj of customers j ∈ J(i) for specific speed levels. That is, for a given supplier i

and customer j ∈ J(i), supplier i’s fast transportation option is guaranteed to arrive

before customer j’s slow option is dispatched. The same synchronization is done

for different speed levels, such that average-speed and slow supplier options arrive

before the dispatch time of average-speed and fast customer options, respectively.

This creates instances of lower average holding times at the consolidation center.

• (C) Arrival and dispatch times are generated independently, similar to (A), but

three capacity levels (γ = 1.00, γ = 1.15, and γ = 1.3) are considered for each time,

thus creating a total of nine options per supplier and customer. We are interested

to know how having an additional capacity level may change the solution, and also

how increasing the number of transportation options may affect the efficiency of the

SAA algorithm, when average holding times at the consolidation center are high.

• (D) Arrival and dispatch times are synchronized, similar to (B), and three capacity

levels are considered for each time, γ = 1.00, γ = 1.15, and γ = 1.3, creating a total

of nine options per supplier and customer. Similar to (C), we wish to understand

the impact of an additional capacity level on the solution of SDPC, and the efficiency

of SAA with the increased number of transportation options, when average holding

times are low.

2.5.2 Experiments

SAA settings

We use SAA to solve the SDPC-PF, as outlined in Section 2.4. We define N = 10 scenarios

to estimate the expected second stage cost. This is then repeated forM = 10 SAA problems

so as to estimate a lower bound on the true expected cost.

Each scenario includes a realization of demand for each shipment (i, j). We sample

these realizations from the demand distribution data (Section A.1.2). Each SAA problem

is solved using CPLEX 12.8, with a maximum time limit of 1200 seconds (20 minutes). The

lower bound is computed as in Equation (2.25), with tα=5,v=9 = 1.833, for 95% confidence

interval and 9 (N-1) degrees of freedom.
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Our choice of N and M was based on empirical results so as to achieve a reasonable

trade-off between gap and computational time. Figure 2.2 shows the gap and the com-

putational time of two instance sets, 6A and 8A. Though the computational time when

N = 10 and M = 10 is higher than when both or either N and M take lower values, the

benefit is apparent in the reduced estimated optimality gap. Set 8A is more computation-

ally demanding; notice how increasing the value of N and M actually causes an increase

in the estimated gap since the optimality of each SAA run is not achieved in the imposed

time limit.

(a) Gap estimate for different values of N and
M - Set 6A.

(b) Total computational time of the M SAA
runs, each with N scenarios - Set 6A.

(c) Gap estimate for different values of N and
M - Set 6A.

(d) Total computational time of the M SAA
runs, each with N scenarios - Set 8A.

Figure 2.2. Trade-off between gap and computational time for different values of N and
M .

To obtain the upper bound on expected cost of the true problem, we consider all

individual solutions, xm, of the M runs, and evaluate them using a scenario tree of N ′ =

1000 scenarios. For each of the xm solutions, we calculate the expected second stage cost

of the solution and compute η̄m as shown in Equation (2.28). We then compute the upper

bound ηmU as in Equation (2.30), with zα=5 = 1.64, for a 95% confidence interval. The

estimated upper bound of the algorithm is min
m={1,...,M}

ηmU , as shown in Equation (2.31).
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Performance measures

To assess the advantage of taking demand uncertainty into account at the modeling phase,

we compare the SAA solution for each problem instance to the solution of its deterministic

counterpart DDPC-PF, shown in Section A.2. Particularly, we solve the deterministic

problem to obtain the distribution plan when the mean demand is used for each shipment

(i, j). We then evaluate the deterministic distribution plan using the same 1000 scenario

tree used to obtain the upper bounds of the SAA solutions. This shows the expected

cost savings achieved when distribution plans are constructed using SDPC as opposed to

DDPC. This value is referred to in the literature as the value of stochastic solution (Birge

and Louveaux, 2011). We report this value as (η̄det−η̄stoch)
η̄stoch

, where η̄det and η̄stoch are the

objective values of the deterministic and the stochastic solutions, respectively, when the

second stage problem is assessed on the full N ′ = 1000 scenario tree, computed as shown

in Equation (2.28). Note that η̄stoch is the objective value of the best SAA run, with the

lowest optimality gap.

To further highlight the potential benefits of our model, we report the expected out-

sourcing that each distribution plan requires. That is, the expected shipment amount,

as a percentage of total expected demand, that travels via spot market carriers rather

than a reserved first stage transportation option in the 1000-scenario tree demand dis-

tribution. This provides a measure of risk associated with the transportation plan of a

given solution by emphasizing the extent to which first stage reserved transportation op-

tions x̄iq, ȳjl are capable of satisfying demand. We also report the expected utilization of

reserved transportation options for each instance, seeking a possible relationship between

expected utilization of options and expected outsourcing.

2.5.3 Computational Results

SAA results

The SAA algorithm was applied to the different data sets of Section 2.5.1 for experimental

settings A, B, C and D. Results are shown in Tables 2.3 and 2.4. Note that each row

reports the average over 5 instances of the specified size and setting. For example, row 1A

in Table 2.3 shows the average results of 5 instances of Set 1 (5 suppliers, 5 customers, 20

shipments), experimental setting A. For additional clarity, we also provide detailed results

for one problem instance in Appendix A.3.

The first column of Tables 2.3 and 2.4 specifies the data set number. The relative gap

of the algorithm is reported in the second column and the number of feasible paths used to
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form the model is shown in the third, to demonstrate the problem size. Column 4 exhibits

the value of stochastic solution, a measure of the benefit of using our proposed stochastic

model over its deterministic counterpart. Columns 5 and 6 report the expected outsourcing

for solutions of the stochastic and the deterministic models, respectively. Columns 7 and 8

show the expected utilization of reserved inbound and outbound transportation options for

the stochastic and deterministic models. For insight on the fluctuation of cost over different

scenarios, we report the relative standard deviation of the lower and upper bounds, as a

percentage of their respective means, in columns 9 and 10. Finally, columns 11 to 14

respectively report the computational time (in seconds) of the full algorithm, the time to

solve the 10 SAA runs, the time to compute upper bounds, and the time to solve the

deterministic counterpart (DDPC).

SAA performance

The results clearly demonstrate that the optimal distribution plans of the SDPC are more

cost efficient than the plans of DDPC, once the actual demand is realized. Instances across

the different data sets and experimental settings show that the SDPC yields significant

expected cost savings, as outlined by the value of stochastic solution. Observe, however,

that the advantage of the SDPC, compared to DDPC with nominal values, is less notable

for denser problem instances, when a greater number of customer orders are consolidated

in a single load. This can be observed in the average value of stochastic solution of Sets 2

and 3, 5 and 6, 7 and 8, 9 and 10 across all experimental settings. For each of these pairs

of sets, the network size is the same, i.e., the same number of suppliers and customers, but

the number of shipments doubles. For example, the average value of stochastic solution

drops from 39.11% in Set 2A to 11.79% in Set 3A. The same trend can be observed when

comparing Sets 9A and 10A; the value of stochastic solution drops from 16.57% to 3.00%.

This implies that the SDPC problem is more beneficial in sparse networks as opposed to

denser ones. This observation can be explained by the fact that as the number of combined

(i, j) shipments in an inbound or outbound transportation option increases, the mean of the

consolidated shipment approaches the true mean, and therefore the deterministic solution,

with mean demand, becomes comparable to the stochastic one.

To show the relationship between the value of stochastic solution and the number

of shipments in an instance, we calculate the average ratio of number of shipments per

supplier and per customer as (no.shipments|I| + no.shipments
|J | )/2. Then, for all instances shown

in Tables 2.3 and 2.4, we graph the ratio of the average number of shipments per supplier

and customer versus the value of stochastic solution in Figure 2.3. The x-axis shows the

ratio in an ascending order and its corresponding set number. We see in the figure that
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as the number of shipments per supplier and customer increases, the value of stochastic

solution decreases. We also observe that the different experimental settings show very

similar trends, with a slightly higher value of stochastic solution for settings B and D, with

the lower average holding time.

Note from the tabular results that denser problem instances have much higher compu-

tational burden than sparser ones. This is seen in the SAA time reported in column 12 of

Tables 2.3 and 2.4. Sets 7 and 8, for example, both have 10 suppliers and 30 customers.

However, Set 8 has double the number of shipments of Set 7, i.e., 200 and 100 shipments,

respectively. The average computational time of Set 8B for solving the 10 SAA runs is

12022 seconds, while that of Set 7B is only 524 seconds. Nonetheless, the average compu-

tational time of the upper bound calculation is slightly higher for Set 8B, but somewhat

comparable, respectively 340 and 259 seconds for 8B and 7B.

Tables 2.3 and 2.4 also suggest that the difference in expected outsourcing percentage

between solutions of SDPC and DDPC is more significant for sparser problems. This

difference decreases for denser problem instances. In other words, for denser instances,

the expected outsourcing percentage of DDPC is low (compared to sparser instances)

and is closer in value to that of SDPC. Figure 2.4 plots the expected outsourcing for

solutions of both SDPC and DDPC versus the ratio of number of shipments to suppliers

and customers and highlights such an observation; the difference between the expected

outsourcing percentage of SDPC and DDPC decreases for denser problem instances. For

the expected utilization of reserved options, we observe that denser problem instances have

slightly higher expected utilization than sparser instances in the solutions of both SDPC

and DDPC.

The average optimality gap is at most 1.28% for instances of all data sets except Sets

8 and 10, with 200 shipments. For those two sets, the average optimality gap is at most

3.74%. We note, however, that in those sets, the maximum time limit of each SAA run

(1200 seconds) is reached, which implies that some or all of the SAA runs may have not

been solved to optimality, negatively affecting the quality of the candidate solutions and,

in turn, the optimality gap estimate. Because of the low optimality gap across different

instances under the current SAA setting outlined in Section 2.5.2, there is no motive to

increase the number of scenarios N maintained in the SAA problem.

We notice that the results of Set B, with the lower holding time at the consolidation

center, are comparable to those of Set A, implying that holding time does not have a

major impact on the benefit of SDPC. Nonetheless, the value of stochastic solution is

slightly higher for Set B compared to Set A, and the expected outsourcing of Set B is a bit

lower than that of Set A. This indicates that the reduced wait time in Set B marginally
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Figure 2.3. Relationship between value of stochastic solution and number of shipments per
supplier and customer.

decreases the need for outsourcing done to reduce holding cost, thus improving the value

of stochastic solution.

Sets C and D, with the greater number of options, show similar trends to Sets A and B,

in terms of the value of stochastic solution, the percentage of outsourcing and utilization for

both SDPC and DDPC. However, Sets C and D have higher average computational time of

SAA runs, for most instances, compared to Sets A and B. This increase in computational

time is at most double for most instances, with a few exceptions, e.g., the SAA time of 6C

is about 3 times that of 6A.

Effect of the spot market disutility factor and the holding cost on the benefit

of SDPC

We conduct analysis on experimental settings A and B, for all datasets, when the disutility

factor changes from r = 4 to r = 2 and the holding cost decreases by 50%. Since experi-

mental settings C and D show similar trends to A and B in the computational results in

Tables 2.3 and 2.4 but have higher computational time, we focus on settings A and B only.

We compare the optimality gap estimate, the value of stochastic solution, the expected

outsourcing and expected utilization for different combinations of r and h. Results are

shown in Table 2.5, where each row displays the average of 5 instances of the specified size

and setting.

We observe that the change in optimality gap as the disutility factor and holding

cost decrease is very slight for both experimental settings. We also note that for a given
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Figure 2.4. Expected outsourcing vs. number of shipments per supplier and customer for
SPDC and DDPC.

disutility level, reducing the holding cost provides minor improvements in the value of

stochastic solution. In other words, reduction in holding cost only provides a very small

amount of additional cost savings for the solutions of SDPC compared to DDPC, even for

instances with higher average holding time. The value of stochastic solutions improves an

average of 0.67% and 0.29% for settings A and B, respectively, with the reduction in holding

cost. This result is explained by the fact that the lower holding cost is reflected in both

SDPC and DDPC, and the cost savings between the two problems are mainly achieved

through reserving higher transportation option capacity to reduce the need to outsource

to the spot market when demand is high. Nevertheless, we note that the reduction in

holding cost does slightly reduce the amount of expected outsourcing, and this decrease is

more notable for setting A instances as compared to B. We also observe that the expected

utilization is only marginally affected by the changes in holding cost. Settings A and B

have an average increase of utilization of 1.83% and 0.30% as holding cost decreases.

Results also suggest that the disutility factor has the most impact on both the value

of stochastic solution and expected outsourcing percentage. This is anticipated, since the

disutility cost is a variable per unit cost and the model assumes that shipping through a spot

market carrier results in no holding cost. Lowering the disutility factor to r = 2 therefore

reduces the cost difference between first stage options and spot market. Particularly, we

notice that the benefit of incorporating randomness in the model is positively correlated

to the value of the disutility factor. That is, as the spot market shipping gets closer to
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that of reserving a transportation option ahead of time, and the 3PL is indifferent to spot

market shipping, considering customer demand stochasticity in the planning phase does

not result in remarkable cost savings. Thus, any chosen first-stage transportation plan can

easily be adjusted when actual demand is realized, at only a small cost.

Structural differences between solutions of the different configurations of disu-

tility factor and holding cost

The previous section examines the impact of changes in the disutility factor and holding

cost on the benefit of SDPC. Here we analyze how the structure of the distribution plans

obtained from solution of SDPC differs as the configuration of disutility factor and holding

cost changes. To do so, we focus on instance 9A3, discussed in Appendix A.3, and see

how the transportation plan changes for distinct capacity and speed levels. Figure 2.5

shows a breakdown of inbound and outbound transportation options for each of the four

combinations of disutility and holding cost considered in Section 2.5.3. The x-axis refers

to the instance name by the specific values of r and h in the instance. For example,

r4 h50% shows the results of the instance 9A3 when we solve it with r = 4 and 50% of the

holding cost. Each column in Figures 2.5a and 2.5b shows the breakdown of all reserved

inbound and outbound transportation options, respectively, based on their capacity and

speed levels, under each parameter setting. The different parts of a given column show

the number of options with a given capacity and speed level, where HighCap and AvgCap

refer to options with γ = 1.15 and γ = 1.00, respectively, and Fast, Avg, Slow, refer to the

three speed levels considered in the instance.

Figure 2.5 suggests that both the holding cost and the disutility factor impact the

actual distribution plan of SDPC. A decrease of 50% in holding cost, when r = 4, reduces

the number of inbound by 5, but keeps the number of outbound options unchanged. This

implies that with a high holding cost, and when average holding time is high, reserving

additional capacity may diminish the total network cost by cutting down on holding cost.

We note, however, that the reduction in holding cost has a greater impact on the choice of

speed levels of reserved options more than their capacity levels. For example, for a given

value of r, when h decreases by 50%, approximately the same number of high capacity

options is reserved as when h is kept at 100%. However, the change in the breakdown of

the reserved options based on speed is more apparent. This is intuitive since as holding cost

decreases, the trade-off between transportation and holding cost becomes less important.

Therefore, the solution may choose plans that result in higher wait times in an effort to

reduce transportation cost and in turn, minimize total cost.

As opposed to reduction in holding cost, we note from Figure 2.5 that the reduction in
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the disutility factor affects both the choice of the reserved transportation options’ capacity

and speed levels. For example, when h is at 100%, the number of high capacity inbound

options decreases from 15 to 11, and the number of high capacity outbound options de-

creases from 19 to 16, when r changes from 4 to 2. We also notice an increase in the number

of average-capacity average-speed options, both inbound and outbound. This reinforces

the results of the analysis in Section 2.5.3; as the value of the disutility factor decreases

and the spot market cost decreases, there is less need to develop robust distribution plans,

since adjusting plans after demand is realized is not costly.

(a) Inbound reserved options (b) Outbound reserved options

Figure 2.5. Breakdown of the transportation plan of the best SAA run of different configurations of r
and h.

2.6 Conclusion

In this chapter, we studied the stochastic distribution planning with consolidation problem

from the viewpoint of a 3PL managing a three-echelon supply chain network. We proposed

a two-stage stochastic program with recourse to model the problem of selecting inbound

and outbound transportation options for 3PL distribution planning, subject to stochastic

customer demand. To date, the literature on distribution planning in transshipment net-

works does not consider uncertainty faced in practical applications. This study offers an

extension of previous work by considering probabilistic demand in tactical decisions faced

by a 3PL that is handling the distribution needs of its clients.

Because of the nonlinearity in the objective function of our proposed stochastic distribu-

tion planning with consolidation - flow based formulation (SDPC-FF) model, we suggested

an alternative linear formulation, the stochastic distribution planning with consolidation -

path based formulation (SDPC-PF). The latter generates all feasible paths for shipments

in the network, and decides on the transportation options to reserve and the allocation

of shipments to paths. We applied Sample Average Approximation (SAA) to solve the
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SDPC-PF, and tested it extensively to evaluate its benefits and limitations. We also com-

pared the solutions obtained by the SDPC-PF to a deterministic heuristic for the stochastic

problem, the deterministic distribution planning with consolidation (DDPC), with mean

demand values, to assess the advantage of incorporating stochasticity in the modeling

phase.

Our computational testing suggests that significant cost savings can be achieved when

generating distribution plans using the SDPC rather than DDPC. The results also demon-

strate that the stochastic model greatly reduces the amount of outsourcing needed in the

second stage problem, compared to the deterministic case. We notice, however, that the

benefit of SDPC is less notable for denser problem instances, where large numbers of ship-

ments are consolidated in a single load. We also observe that changes in second-stage cost

may affect the benefit of SDPC or the structure of the choice of first-stage transportation

options, or both. For instance, reduction in holding cost does not affect the benefit of

SDPC, but changes the choice of transportation options. On the other hand, the spot

market cost plays a major role in how beneficial the SDPC problem is, and in the choice

of transportation options. This finding suggests that if the cost of shipping through a

spot market carrier is not much greater than the cost of reserving transportation options,

and the 3PL’s disutility of shipping through the spot market is low, there is less need to

establish a robust distribution plan ahead of time. That follows since correcting the initial

plan, once actual demand is realized, would not result in remarkable additional costs.

Future research could extend SDPC to also incorporate stochasticity in the ar-

rival/dispatch times of transportation options and study how the solution would change

compared to the current model as well as the deterministic case. Another possible exten-

sion is to consider the decision variables of transportation options as integer rather than

binary, with the 3PL having to choose how many vehicles, of a particular level of capacity

and a certain arrival/dispatch time, to reserve for inbound and outbound shipping for the

duration of the planning horizon.

Studying multiple consolidation centers, but choosing to send each shipment through

exactly one, is another interesting direction. A related suggestion is a model with two

consolidation centers, one closer to suppliers and the other closer to customers. This is a

more representative model of global distribution planning; what is the benefit of accounting

for uncertainty under that setting? Other directions include considering different cost

functions for the spot market, and the possibility of consolidating inbound and outbound

spot market shipments, to achieve economies of scale.
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Chapter 3

Crowdsourced Delivery: A Review of

Platforms and Academic Literature1

3.1 Introduction

E-retailing and same-day delivery continue to experience remarkable growth year after year.

The total revenue of online sales of physical goods in the US totaled up to $504.6 billion

US dollars, in the year 2018, and is expected to rise to $735 billion US dollars in 2023

(Statista, 2019). With this growth comes increased competition, especially in providing

shorter delivery time windows. In an effort to improve their logistics competitiveness, well-

established e-retailers as well as local small to medium sized businesses have experimented

with new innovative delivery systems to provide faster deliveries in cost-effective manners.

One such systems is “crowdsourced delivery”, where ordinary people carry out last-mile

deliveries with their own vehicles, from stores or warehouses to customers’ destinations.

This system falls under the broader emergent concept of the “sharing economy”, which

has created highly successful business models, such as Uber and Airbnb, in the last decade.

The main distinguishing factor in those business models is that they rely on individuals

sharing their under-utilized property for the mutual benefit of deriving value for themselves

and for the business. Though the concept of the sharing economy is fairly old, also known

as collaborative consumption, advances in mobile communication technologies and global

positioning systems (GPS) enabled its widespread emergence in recent years. Habibi et al.

(2017) argue that the boom of the sharing economy followed the financial collapse of 2008,

1This chapter is based substantially on a published article in Omega: The International Journal of
Management Science. Alnaggar, A., Gzara, F., and Bookbinder, J.H., 2021. ”Crowdsourced Delivery: A
Review of Platforms and Academic Literature.” Omega, 98, 102139.
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which has created a greater need to reduce customer costs. According to Pricewaterhouse-

Coopers (2015), the global revenue of the sharing economy was worth $15 billion in 2015,

and is estimated to grow to $335 billion by 2025.

In 2015, Amazon implemented crowdsourced last-mile delivery by introducing Amazon

Flex ; an on-demand package delivery service that hires independent freelance drivers to

transport same-day delivery packages to Amazon customers (Halzack, 2015). Some of

the items delivered are ordered under Prime Now, a delivery scheme offered by Amazon

with a guaranteed 2-hour delivery time window. Other items are ordered under Amazon

Fresh, a company division that handles grocery orders (Amazon.com, 2019). In 2018,

Walmart began piloting crowdsourced delivery in two US cities, under the name Spark

Delivery (Bose, 2018). In addition to implementations of this system by large e-retailers,

multiple start-ups have been launched in the last decade that offer last-mile crowdsourced

deliveries (e.g. Deliv, DoorDash, Hitch, Postmates). Those companies aim to provide more

affordable shipping services than old-school shipping methods through postal services or

overpriced couriers. They do so by connecting shippers to a network of people who are

willing to provide shared-mobility services, as a side activity that generates additional

income. Those services may be used for personal use or by businesses that offer fast,

same-day shipping.

The goal of this survey is to describe and analyze the state of the art of current crowd-

sourced delivery systems in the industry, and review the OR literature addressing this

emerging topic. In doing so, we also identify and review related subproblems in this sys-

tem that span other classical transportation problems heavily studied in the literature. We

outline the key differences of crowdsourced delivery systems and the new challenges they

bring about. To the best of our knowledge, there is no work in the literature that surveys

and compares existing crowdsourced delivery systems, provides a classification or taxonomy

of existing systems in practice, and proposes a typology of decisions within crowdsourced

delivery systems

The rest of this chapter is arranged as follows. In Section 3.2 we describe the current

crowdsourced delivery systems in the industry and compare their matching and scheduling

mechanisms as well as their compensation schemes. Section 3.3 reviews the literature on

crowdsourced delivery and compares the literature’s features and assumptions to the real

industry crowdsourced delivery systems. In Section 3.4, we provide a disaggregation of the

managerial decisions within a crowdsourced delivery system, compare those subproblems to

classical problems in the literature and identify new challenges that this emergent system

creates. Section 3.5 is dedicated to discussing future research opportunities. Finally, we

make some concluding remarks in Section 3.6.
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3.2 Crowdsourced Delivery Platforms

3.2.1 Overview of Available Crowdsourced Delivery Platforms

In this section, we review the different crowdsourced delivery platforms, mostly available

in North America. We compare and contrast how the different platforms work, what

distinguishes them from their competitors, and what are the main items they deliver.

We also observe how drivers are compensated, and the type of information collected from

drivers. Note that we do not review companies that provide crowdsourced delivery in other

regions, such as Europe and China, if their official websites are not in English. From our

research, we found that the main companies in other countries that do not provide official

documentation in English are Trunkrs and PickThisUp in the Netherlands, and Renren

Kuaidi in China. Since these are only three companies, we believe that this exclusion does

not significantly affect our analysis.

We group the delivery platforms into two main categories, e-retailers and couriers.

For e-retailers, Amazon Flex (Amazon.com, 2019) and Walmart Spark Delivery (Walmart,

2019) are currently the only available crowdsourced delivery platforms in North Amer-

ica. In contrast, courier crowdsourced delivery companies are quickly growing in number.

Those include companies like Postmates (2019), Deliv (2019), DoorDash (2019), Kanga

(2019), UberEats (2019), Hitch (2019), Roadie (2019), PiggyBee (2019), Nimber (2019),

DHL MyWays (DHL, 2013), UberFreight (2019), Truxx (2019), and BuddyTruk (2019).

With the exception of Amazon Flex, which pays a driver a per-hour rate from the time

he/she checks in at the distribution center, all the other delivery platforms pay drivers a

compensation per completed delivery. According to the driver information on the official

websites of those platforms, the value of such compensation is calculated by a formula,

which may be city-specific, which considers factors like mileage, wait time, size of package

and other factors. Drivers are notified of the earning amount before they accept a delivery

task. We note that not all those companies are equally as established. Some of them are

operating in multiple cities in the US and Canada, while others are just in a single city.

Companies like Postmates (2019), Deliv (2019), Roadie (2019) and Kanga (2019) allow

for the delivery of all items, with the exception of a shortlist of prohibited items. Other com-

panies like DoorDash (2019) and UberEats (2019) focus mainly on food delivery. UberEats

(2019) partners with local restaurants to provide delivery for their meals. DoorDash (2019)

provides both delivery from restaurants as well as grocery delivery. Instacart (2019) and

Shipt (2019) provide grocery delivery, and require its independent contractors to not only

deliver groceries to customers, but also to do the shopping themselves from a nearby gro-

cery store. It’s worth noting that aside from Walmart’s piloted service, Spark Delivery,
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Walmart is currently also using Doordash and Postmates in fulfilling customers’ online

grocery orders (Bose, 2018).

All platforms, with the exception of Hitch (2019) and Roadie (2019), assume that drivers

are making dedicated trips just for the sake of fulfilling the delivery request, and are not

necessarily heading in that direction. Contrarily, Hitch (2019) and Roadie (2019) match

delivery requests with a traveler’s already pre-planned trip. In other words, they collect

information on when a driver is planning to go somewhere (the time and destination), and

offer to drivers delivery requests that are already on their way. While Hitch (2019) mainly

supports local deliveries, Roadie (2019) allows for local and long-haul deliveries. All other

platforms, with the exception of truck crowdsourced services, provide only local deliveries.

UberFreight (2019), Truxx (2019) and BuddyTruk (2019) are the main platforms that

match bulky delivery requests to crowdsourced drivers with a truck. UberFreight (2019)

is mainly for long-haul full-truckload requests by businesses or enterprises that can be

fulfilled by owner-operators of trucks. Truxx (2019) and BuddyTruk (2019), on the other

hand, aim to match personal delivery requests of bulky items (e.g. furniture) with drivers

that own smaller-size trucks. Typically, requested trips for those platforms are less than

an hour long.

Kanga (2019) and Hitch (2019)’s target market is individuals rather than enterprises,

i.e., connecting people who want to send or receive a package or item with a driver willing

to make the delivery. Kanga (2019) gives shippers and drivers even the ability to agree on

a delivery price, while charging a service fee for connecting them.

Table 3.1 compares the different features of the various crowdsourced delivery platforms.

We note that Amazon Flex is composed of four divisions: Amazon Logistics, Amazon Prime

Now, Amazon Fresh, and Amazon Restaurants. The difference between the four divisions

is indicated in Table 3.1, the primary difference being in the delivery time window and type

of items delivered. We also observe that all platforms have a system for rating drivers,

and incentives based on good performance. Drivers may earn higher compensation during

busy seasons and periods of high demand.

3.2.2 Crowdsourced Delivery Scheduling and Matching Mecha-

nisms

Available crowdsourced delivery platforms follow distinct approaches in scheduling crowd-

sourced drivers and matching them with delivery requests. We classify the scheduling and

matching mechanisms into four main schemes.
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1. Pure self-scheduling. All crowdsourced delivery services use flexibility of working

hours as a major selling point that attracts crowdsourced delivery drivers. Yet dif-

ferent crowdsourced delivery systems use varying levels of such flexibility. Systems

that follow pure self-scheduling refer to platforms that do not require drivers to indi-

cate their hours of availability beforehand. Simply, when a driver is available to be

matched with a delivery request, he/she logs into the mobile app and keeps the app

running in the background. Once an order arrives, whose pickup is within a specified

radius of where the driver is, the driver is notified through the app of the request,

and may choose to accept or reject the offer. Those platforms are very similar to how

ride-hailing services such as Uber and Lyft operate. The following crowdsourced de-

livery platforms follow this scheduling and matching mechanism: Postmates (2019),

DoorDash (2019), UberEats (2019), as well as Truxx (2019) and BuddyTruk (2019)

for truck delivery.

2. Hybrid and centralized scheduling. Some crowdsourced delivery systems use a

more centralized scheduling approach to better balance supply and demand at various

times of the day. Those systems either require drivers to indicate their availability

on the mobile app, then receive delivery offers when they become available, or pick

shifts that work for their schedule on a first-come first-serve basis. Shifts are usually

posted well in advance, up to a week ahead, and additional on-demand shifts may

be posted on the app throughout the day. Amazon Flex, Deliv (2019), Instacart

(2019) and Shipt (2019) follow this type of scheduling and matching approach. Such

scheduling and matching is closest to traditional delivery services with a company’s

own fleet, since supply and capacity are more predictable. Some systems, such as

Amazon Flex and Deliv (2019), provide minimum pay guarantees for drivers, which

means that drivers are promised to be paid a given minimum amount, even if they

are not matched. Such programs further reduce uncertainty in supply and make the

system closer to classical scheduling, matching and routing problems.

As per the driver information on their official websites, Amazon Flex guarantees

drivers a pay of $18 per hour, regardless of the number of delivery requests. Deliv,

on the other hand, guarantees half the amount of the “Time on Task” rate, which is

one factor in computing driver pay, in addition to a per mile rate. The time on task

for Deliv is between $13-$18, depending on the city.

3. En-route matching. For this type of matching, drivers are matched with delivery

requests that are on their way of a pre-planned trip. A traveler or commuter indicates

on the system’s mobile app the date, time, origin, and destination of an upcoming

trip. Then the app matches the traveler with delivery requests on his/her way, such
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that a maximum distance or time deviation of the original travel route is observed.

Such matching closely resembles ride-sharing problems, which aim to match drivers

with riders on their way, with a small possible deviation. We review the literature of

ride-sharing in Section 3.3.3.

4. Bulletin-board type matching. This refers to systems that simply post deliv-

ery requests and a driver picks requests that match his/her schedule and preference.

In such systems, no algorithm is used to automatically match drivers to delivery re-

quests, and the matching is done mainly through the sharing of information. Walmart

Spark Delivery follows such a system, where orders, with their associated destination

and delivery time window, are posted on the app, and drivers pick orders that they

can fulfill. Kanga (2019) and DHL MyWays employ that sort of approach, where re-

quests are posted and drivers match themselves. Nimber (2019) and PiggyBee (2019)

follow a similar system, but matching is also based on a driver’s pre-planned trip. In

PiggyBee, a traveler/commuter posts his/her travel plans and a customer who wants

to send or receive something along that route contacts the traveler with information

about the request, and they agree on a price. Nimber (2019), on the other hand,

works the opposite way. A list of requests is maintained and a driver may look up

a request that matches his/her travel plans. If none is available, a driver may input

his/her travel plans and get notified once delivery requests become available along

his/her route. UberFreight (2019) also uses this type of matching, where delivery

requests are posted on the app, and a truck owner-operator chooses the loads that

work for him/her.

Figure 3.1 provides an overview of the first three scheduling and matching schemes,

and a sample of their resulting routes. Note that we exclude the fourth pattern as the

matching is manually done, entirely through the sharing of information. The actual trip

under pattern 4 may resemble either pattern 1 or 3. In other words, a driver who manually

matches him/herself to a request may make a dedicated trip similar to pattern 1, though

not necessarily in a short time window. He/she may also choose to match him/herself with

an en-route order, similar to pattern 3. Note that the term additional functions, in the

second pattern of Figure 3.1, refers to the possibility of a crowdsourced driver having to

conduct other tasks, such as shopping for customers.

In Table 3.2, we analyze the target markets of different platforms categorized by the

matching mechanisms described above. Note that we differentiate between platforms de-

signed for the targeted use by individual consumers ordering from local stores/restaurants,

and those designed as an alternate transportation solution for businesses. In the former,

the crowdsourced delivery platform partners with local stores and restaurants that do not
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Figure 3.1. Matching schemes in crowdsourced delivery systems.

otherwise provide delivery services. The latter, however, provides alternative delivery so-

lutions to enterprises or businesses that may utilize additional transportation channels for

last mile delivery.

Observe that since shipments from local businesses typically have very short time win-

dows (less than an hour), such delivery services are only offered through the pure self-

scheduling mechanism. The fast-paced nature of the pure self scheduling mechanism makes

it a good fit only for short-haul deliveries. On the contrary, long-haul deliveries may re-

quire additional lead time to find suitable driver matches. Therefore they are offered

through en-route matching or bulletin-board matching mechanisms. Finally, centralized

scheduling requires large amounts of demand for successfully combining delivery requests

in cost-effective routes. Thus, this type of matching is more suitable as a last-mile delivery

solution for well-established businesses with significant daily demands.

3.2.3 Compensation Schemes and Managing Supply of Drivers

in Crowdsourced Delivery Systems

Crowdsourced delivery systems use varying compensation schemes to maintain a sufficient

supply of drivers and to pay them. We classify those schemes into three main categories,

and comment on challenges faced by the different approaches for compensation.

1. Hourly compensation. Amazon Flex is the only platform that uses just an hourly
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Table 3.2. Target market of platforms under different matching mechanisms.

Matching Mechanisms

Target Market

Individuals Business

Courier service From Local
Businesses

Short haul Long haul
Short haul Long haul

Pure self-scheduling X X X

Centralized scheduling X

En-route matching X X X X

Bulletin-board matching X X X X

rate to compensate crowdsourced drivers. A driver may earn more than the basic

hourly rate of $18/hour, if he/she has a larger capacity vehicle and is working under

the Amazon Logistics division, which delivers regular Amazon packages with a 1 or

2-day delivery time window. For all other divisions, a driver may earn more through

optional tips from customers. Amazon Flex manages the supply of drivers through its

minimum pay guarantee program and centralized scheduling discussed earlier. The

predictability in the compensation scheme is appealing to drivers, as drivers like to

secure income during their scheduled hours. Combining its attractive compensation

scheme with the centralized scheduling mechanism, ensures the balance of supply

and demand at various times of the day.

A major challenge faced by a delivery system with an hourly compensation scheme is

forecasting delivery needs and the number of drivers required to fulfill those deliveries,

ahead of time. To offset such an obstacle, Amazon Flex offers real-time on-demand

delivery blocks for drivers, in case scheduled drivers are not enough to meet current

demand. However, those on-demand time blocks come with a higher level of risk,

as the availability of drivers is not guaranteed. This may in turn reduce the service

level through increasing the percentage of demands not met by the promised delivery

time.

2. Per-delivery compensation. All other systems, with the exception of some sys-

tems in the category of manual bulletin-board-type matching, compensate drivers

per completed delivery. As in the driver information on the official websites of the

reviewed platforms, those platforms use formulas for computing the pay of drivers.

Those formulas may depend on some or all of the following factors: mileage, wait

time, size of package, traffic, and parking. The majority of systems under this pay-

ment scheme provide no payment guarantee for drivers, i.e. if a driver is available
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but is not matched with a delivery task, then he/she does not receive any payment.

Deliv, being an exception, guarantees a minimum pay for drivers even if they are

not matched. DoorDash, which specializes in restaurant delivery, offers drivers occa-

sional promotional guaranteed minimum pay during busy hours, around lunch and

dinner time. As for systems with manual bulletin-board type matching, no payment

guarantee is offered, but the pay is posted on the app with the rest of the delivery

request information.

In general, for a system with a per-delivery compensation scheme and no payment

guarantee, the availability of drivers and the maintenance of their loyalty are major

challenges. In other words, drivers would prefer more predictability in their schedule

and in their earning potential. That is, if they were to earn much less than the

advertised earning potential, they may choose not to participate in this delivery

system which may lead to a shortage of driver supply. This is especially true for

platforms that often have multiple packages on a route delivered by the same driver.

If he/she expects to deliver multiple packages, but gets only one or two, and is paid

based on the number of packages, the resulting earnings may be significantly less than

anticipated. So, to overcome the inconvenience of short-notice and unpredictability,

drivers would choose these systems if, from their experience, they do get matched

frequently during their available time, and are compensated well.

3. Shipper and driver determine the compensation. In some systems, a shipper

and a buyer agree on a delivery price and the platforms receives a commission for

matching them. This payment scheme is offered by some bulletin-board type match-

ing systems where individuals are the target market. Such systems may transport

many different types of items, either long-haul or short-haul. For instance PiggyBee

(2019) supports international shipping, while Kanga (2019) focuses on local shipping,

which may include bulky items. Platforms with such a compensation arrangement

are typically community-based casual networks that do not deal with large numbers

of daily deliveries. One major challenge for such a system is that matching is not

guaranteed, which may deem the system unreliable.

3.3 OR Literature on Crowdsourced Delivery

In this section, we review the OR literature that explicitly addresses crowdsourced delivery.

We compare the different logistics systems studied, the main decisions considered, the

assumptions made, and the type of modeling used. We also point out how the studied

logistics systems match with the delivery platforms in practice, as reviewed in Section 3.2.
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To better comprehend how crowdsourced delivery fits within existing literature, we review

representative papers in ride sharing and ride hailing, and highlight the similarities and

differences between those problems and crowdsourced delivery.

3.3.1 Overview of Crowdsourced Delivery OR Literature

Archetti et al. (2016) were the first to model the problem of crowdsourced drivers in logis-

tics networks by modeling the vehicle routing problem with occasional drivers. The paper

considers an extension of the classical vehicle routing problem, by introducing the option

of outsourcing part of demand fulfillment to what they called occasional drivers ; in-store

customers who are willing to make a delivery on their way home. The goal of the paper

was to deliver some initial insight on the benefit of employing and further exploring crowd-

sourcing in logistics systems, so some assumptions may have oversimplified the problem.

First, the proposed mixed integer programming model is static, and assumes that both

demand and occasional driver availability is known before the planning period starts. Sec-

ond, the model assumes that an occasional driver may be matched with a maximum of one

delivery task, so as to avoid the need to consider routing.

Archetti et al. (2016) propose a multi-start heuristic to greedily assign customers to

occasional drivers by solving a series of smaller scale integer programming problems that

determine the subset of customers served by occasional drivers. Furthermore, the paper

tests two compensation schemes, one based on only the delivery destination, and the other

based on the deviation from a driver’s original route or trip back home. Computational

testing suggests that results are highly dependent on three factors: (a) the ratio of num-

ber of occasional drivers available to number of customers, (b) the flexibility of occasional

drivers, in terms of the maximum deviation from their original trip that they are willing

to drive, and (c) the compensation scheme employed. Macrina et al. (2017) later propose

extensions to this problem by considering time windows of delivery and proposing two

mixed integer programming models, one that allows for multiple deliveries per occasional

driver, and another that allows for split deliveries. The authors argue that considering

multiple deliveries per driver and split deliveries can provide significant cost savings, as

compared to the vehicle routing problem with occasional drivers and additional time win-

dow constraints.

Arslan et al. (2018) study the crowdsourced delivery problem by proposing a variant

of the dynamic pickup and delivery problem that considers ad hoc drivers. Similar to

Archetti et al. (2016), the paper assumes that those ad hoc drivers are in-store customers

who are willing to make a few stops on their way home. The paper assumes that a driver

may complete more than one delivery task that may have different origins, not necessarily
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the store at which the driver was shopping. Three logistics networks, or geographies, are

investigated: one-to-many, few-to-many, and many-to-many. One-to-many assumes that

pickups are all in one location: the store at which the driver was shopping. Few-to-many

assumes that the driver has to pick up packages from a small number of locations and not

necessarily from the store at which he/she is shopping. Finally, many-to-many assumes

that each delivery task has its own unique pickup and delivery locations. Ad hoc drivers

and online orders arrive according to a uniform distribution, so the availability of drivers

is uncertain and there is no scheduling.

Arslan et al. (2018) assume that a fleet of dedicated vehicles is always available, to guar-

antee the feasibility of the problem. An ad hoc driver indicates his/her stop-willingness,

which is the number of stops he/she is willing to make on the way home. An exact re-

cursive algorithm is proposed to determine all feasible driver-job matches, where a “job”

is composed of one delivery task or up to four delivery tasks that are feasible to group

together with respect to time constraints. Then, for jobs consisting of more than one de-

livery task, all feasible routes are enumerated, and some reduction techniques based on

theoretical observations are used to reduce the number of possible routes. A heuristic is

also proposed to eliminate non-promising jobs and routes, thus reducing the number con-

sidered. Once feasible matches and routes are determined, a matching problem is solved to

find the best allocation of orders to ad hoc drivers or dedicated drivers. The authors note

that the one-to-many geography turns out to be the most promising in terms of potential

cost savings.

Similar to Arslan et al. (2018), Dayarian and Savelsbergh (2020) model the crowd-

sourced delivery problem as a dynamic problem. The paper allows matching at most one

delivery task to an occasional driver, who is also assumed to be an in-store customer. Two

dynamic models are proposed, a myopic one that does not consider any information on

future arrivals of orders and drivers, and sample scenario planning, where arrival rates of

drivers and online orders are used in addition to the system state to make decisions. A

maximum weighted matching problem is solved to determine optimal matches of orders to

drivers, where higher weight is given to urgent orders and orders that are far away from

the store. Orders that are not matched to occasional drivers are fulfilled by the store’s ded-

icated vehicles. A multi-trip vehicle routing problem with release and due times is solved

to determine the optimal routes of dedicated vehicles. Because of the dynamic nature of

the problem, Tabu search is used to quickly generate good vehicle routes in near real-time.

Decisions are made at various decision epochs, where a decision epoch is (1) at fixed times

throughout the planning horizon, and (2) upon every dedicated vehicle’s return to the

store. It is worth noting that the authors assumed the cost of delivering orders through

occasional drivers is zero, and justified that by arguing that compensation can be through
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store credit.

Gdowska et al. (2018) model the crowdsourced delivery problem as a bi-level stochastic

problem. The paper refers to in-store customers willing to make deliveries on their way

home as occasional carriers (OCs). Unlike other reviewed papers, this paper assumes

that OCs may choose to accept or reject possible assignments. At the first level of the

proposed algorithm, a stochastic model is solved to determine the subset of customer

orders to propose to OCs. Then, based on the rejection probability of the first stage,

the remaining orders are fulfilled by the company’s private fleet, by solving a capacitated

traveling salesman problem. The proposed algorithm does not keep track of the allocation

of orders to OCs, but rather determines the subset of customer requests to be offered to

OCs. The authors develop a heuristic that calculates the cost of fulfilling all orders through

the company’s private fleet, then iteratively increases the subset of customers to be served

by OCs until no more cost savings can be achieved. The paper suggests a basic pricing

scheme that compensates drivers based on delivery location and parcel size, independent of

the driver’s final destination. The authors also acknowledge the necessity of investigating

dynamic (or surge) pricing of OC’s compensation. They offer an initial dynamic pricing

scheme that correlates the compensation fee with the willingness of OCs to accept a task,

based on historical data.

Soto Setzke et al. (2017) design an algorithm that matches drivers and transportation

requests, based on drivers’ already planned routes or daily commutes. The authors model

the problem as a max-flow min-cost problem on a bipartite graph, where an arc exists if

a request is time feasible relative to a driver’s trip. The cost of each edge represents the

additional time that a driver would need to carry out the delivery request. The goal is to

establish an algorithm that gives drivers good matches of possible delivery requests, where

a driver may pick up a delivery from any location and not necessarily a store or distribution

center.

Qi et al. (2018) study the problem from an economics perspective and compare it to

traditional shipping. The paper is the first attempt to design and analyze the prospective

sharing logistics system based on analytical models and empirical parameter estimates.

The authors study a network that contains multiple last-mile delivery terminals, that act

as transshipment nodes. Inbound deliveries are shipped by the logistics service provider’s

trucks, while outbound shipments are completely carried by shared-mobility drivers. The

authors assume the drivers are always available, and argue that one of the main features of

shared mobility is its one-way one-shot nature; a car starts an outbound trip by approaching

its first demand destination and the service ends once it drops off the last package.

Qi et al. (2018) develop a continuous approximation model to study the open vehicle
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routing problem faced by drivers. The authors also propose a wage response model that

assumes a driver is willing to participate in a delivery service only if the payment is at

least the amount that he/she can otherwise expect to earn by providing shared rides to

passengers. The goal of this model is to characterize the cost of crowdsourcing shared mo-

bility. Finally, the authors develop an equilibrium model for synergy and competition with

the ride-share market, which aims to determine the supply of shared-mobility drivers. The

authors conclude that shared mobility is not as economically scalable as the conventional

truck-only system in terms of operating cost, unless the pool size of shared mobility keeps

pace with the increase in demand density. Furthermore, the value of shared mobility is

not in immediate operating cost savings, but rather the ability to reduce truck fleet size

and the additional operational flexibilities it provides that may enable the cost-efficiency

of the whole distribution system.

Literature Feature Comparison and Applicability to Real Crowd-

sourced Delivery Platforms

Let us compare the above reviewed papers in terms of the main features considered, the

assumptions made to characterize the crowdsourced delivery system, and the applicability

of those assumptions to the real platforms discussed in Section 3.2. Table 3.3 presents a

summary of comparisons.

First, we note that all papers, with the exception of Qi et al. (2018) and Soto Setzke

et al. (2017), assume that drivers are in-store customers who are willing to make stops

on their way home. This setting is not currently applied in practice, as none of the

crowdsourced delivery platforms reviewed in Section 3.2 employ drivers that way. Qi et al.

(2018) consider the more applicable case of when drivers are hired for the sole purpose

of making last-mile deliveries, but with flexible hours similar to ride hailing. This setting

is close to hybrid centralized matching (Pattern 2), as discussed in Section 3.2.2, where

many orders are consolidated at one pickup location. Soto Setzke et al. (2017) investigate

the problem of matching regular commuters’ trips to delivery tasks, which is similar to the

en-route matching, pattern 3.

We also note that four of the seven reviewed papers assume a maximum of one delivery

task per driver. This is more applicable for pure self-scheduling and en-route matching

patterns. However, for the hybrid centralized matching pattern, where orders share the

same pickup location, consolidating deliveries is preferred to achieve economies of scale.

In terms of decisions, all papers except Qi et al. (2018) and Gdowska et al. (2018)

considered the decision of allocating orders to drivers. Different assumptions were made
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regarding the arrivals of customer orders and drivers. Gdowska et al. (2018) consider the

problem of determining the subset of customer orders to offer to crowdsourced drivers,

while Qi et al. (2018) study the economic impact of such a delivery system, rather than

providing a decision-making tool for operational use.

Compensation of drivers was considered a decision variable by Qi et al. (2018) only

in their wage response model. While a few papers (Dayarian and Savelsbergh, 2020 and

Soto Setzke et al., 2017) did not discuss compensation at all, other papers assumed that

it was based on the location of customers (Archetti et al., 2016 and Gdowska et al., 2018),

deviation of the driver’s pre-planned trip (Archetti et al., 2016, Macrina et al., 2017 and

Arslan et al., 2018), or parcel size (Gdowska et al., 2018). Furthermore, Gdowska et al.

(2018) investigated linking drivers’ pay to their probability of accepting an order fulfill-

ment task based on historical data, as an initial step in introducing dynamic pricing in

crowdsourced delivery.

Let us now consider the development of crowdsourced delivery over time in both the

industry and academic literature. We generate a timeline in Figure 3.2 that illustrates

when the companies, discussed in Section 3.2, were launched, as well as the evolution of

the academic literature that explicitly study crowdsourced delivery. We observe that many

of the companies were founded years before the first academic work studied this system.

Though the first company was launched as early as 2011, we speculate that it took the

system a few years to become popular and commonly used, and that is when it gained the

interest of researchers.

Figure 3.2. Timeline of industry practices and academic work.
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Table 3.3. Comparison of different problem settings in crowdsourced delivery OR litera-
ture.

Paper
Problem Features

Occasional
drivers

Stop willing-
ness

Compensation Model

Archetti et al. (2016) In-store customers 1 Customer location,
Trip deviation

Static MIP

Dayarian and Savelsbergh (2020) In-store customers 1 Zero (store credit) Dynamic model

Macrina et al. (2017) In-store customers Multiple Trip deviation
Static MIP

Soto Setzke et al. (2017) Regular commuters 1 Not discussed Max flow min cost

Arslan et al. (2018) In-store customers 2-4 Trip deviation Dynamic model

Gdowska et al. (2018) In-store customers 1 Customer location,
Parcel Size

Stochastic model

Qi et al. (2018) Hired for
shared-mobility Multiple Wage response

model

Continuous
approximation,
Stochastic model,
Equilibrium model

3.3.2 Other Crowdsourced Delivery Studies and Hybrid Trans-

portation Systems

The literature also discusses other types of crowdshipping systems. For instance, Kafle

et al. (2017) study a hybrid network, where pedestrians and/or cyclists complete the last

leg of a delivery task (or the first leg of a pickup task), while a truck carries on the

rest of the delivery. The authors propose a mixed integer nonlinear program that selects

crowdsourced individuals from a set of bids, and determines the relay points and truck

routes and schedules.

A few studies have examined the concept of crowdsourced delivery from a qualitative

perspective. One such study is by Rougès and Montreuil (2014), which extensively re-

viewed public documents of 18 crowdsourced delivery businesses and presented a typology

of business models in the crowdsourced delivery industry. In contrast to our work, their

proposed typology focuses on the business characteristics of the various companies, such

as their business philosophies, revenue model, characters, etc. We also note that the list

of crowdsourced delivery companies has notably changed since that paper was published,

i.e., some of the reviewed companies are no longer in business, while new companies have

launched in the last 5 years. Another qualitative study by Carbone et al. (2015) identifies

different types of logistics in the sharing economy, by conducting an exploratory analysis

of 32 cases.

Devari et al. (2017) consider the benefit of exploiting a social network in last mile

delivery. The authors examine the results of a survey that aims to determine the willingness

of people to make a delivery to a friend, on their way home. They then build a logistics

regression model to determine the probability that a person would agree to make a delivery
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to a member of his/her social network. The study concludes that such a delivery scheme

may greatly reduce emissions as well as last-mile delivery costs.

Hybrid Transportation Systems: Integrating Passenger and

Freight Transportation

Researchers have also examined systems that combine transporting passengers and parcels.

Li et al. (2014) study such a network, where people and parcels are transported via the

same taxi network. The authors refer to the problem as the share-a-ride problem (SARP)

and model it as a mixed integer linear program. Because of the computational demand of

SARP, the authors propose a reduced problem, the freight insertion problem which starts

with a given route for passengers, and inserts parcel requests into the route. The static

and dynamic cases of both models are studied and analyzed. Later, Li et al. (2016) develop

an adaptive large neighborhood search (ALNS) heuristic to find good quality solutions to

the SARP in a short time. Another study, by Ghilas et al. (2013), examines the potential

use of a public transportation network in freight transportation. Those authors propose an

extension of the Pickup and Delivery problem (PDP), which they refer to as the pickup and

delivery problem with fixed scheduled lines (PDP - FSL), that synchronizes delivery vehicles

with scheduled city buses. Similarly, Fatnassi et al. (2015) and Masson et al. (2017) also

study variations of the problem of integrating passenger and freight transportation. In

their recent survey paper, Mourad et al. (2019) review the literature of passenger shared

mobility, as well as shared mobility systems that combine people and goods.

3.3.3 Crowdsourced Delivery vs. Ride-sharing

Ride-sharing has received much attention in the OR literature for years. It refers to

individuals sharing the excess capacity of their personal vehicles to transport passengers

on their way to a pre-planned trip, such that a maximum distance or time deviation from

their original route is maintained. This is not to be confused with ride-hailing, or activities

of Transportation Network Companies like Uber and Lyft, where drivers use their personal

vehicles to offer taxi-like services. Drivers in a ride-sharing system are performing an

activity of self-interest, and are matched with riders on their way, with the ultimate goal

of sharing the transportation cost and reducing their carbon footprint. Furuhata et al.

(2013) present a classification of existing ride-sharing systems and challenges that prevent

the widespread use of those systems.

Dynamic ride-sharing, in particular, has received considerable attention in the last

decade. This problem deals with the dynamic matching of drivers and riders, such that
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the total system-wide traveled mileage is minimized. Agatz et al. (2011) propose an

optimization-based approach to model the dynamic ride-sharing problem and suggest some

implications of improved overall system performance. Agatz et al. (2012) later review the

literature on OR in dynamic ride-sharing, and outline optimization challenges that arise

in implementing ride-sharing technologies.

Later, Lee and Savelsbergh (2015), Stiglic et al. (2015) and Masoud and Jayakrish-

nan (2017) study extensions of dynamic ride-sharing problems that aim to improve the

percentage of matches in the system in an effort to increase its reliability. Lee and Savels-

bergh (2015) investigate the benefits of employing a small number of dedicated drivers in

a ride-sharing network to serve riders that cannot be matched with ride-sharing drivers.

On the other hand, Stiglic et al. (2015) assess the benefits of meeting points in a ride-

sharing system, where riders may be picked up/dropped off at a location close to their

origin/destination, in an effort to exploit any flexibility from the riders’ side and increase

the number of feasible matches in the system. Masoud and Jayakrishnan (2017) propose

a fully flexible ride-sharing system that aims to maximize the number of served riders by

allowing for some flexibility features such as multi-hop itineraries to riders. The authors

argue that their suggested approach significantly increases the number of riders served.

We observe that the dynamic ride-sharing problem is closely related to the crowdsourced

delivery problem when matching is done en-route, as explained in Section 3.2.2. That is,

instead of drivers being matched with other passengers, drivers are matched with packages

to deliver on their way. The main difference between the two systems is that a driver’s

utility may change in the two systems; a driver may prefer delivering parcels over driving

passengers. Furuhata et al. (2013) notes that the building of trust in a network of unknown

travelers is a challenge facing the widespread implementation of ride- sharing systems. We

observe that this issue is less prominent in parcel delivery.

3.3.4 Crowdsourced Delivery Services vs. Ride-hailing

Ride hailing or services offered by Transportation Network Companies (TNC), like Uber

and Lyft, have some similarities with crowdsourced delivery systems. One major similarity

is that drivers are independent self-scheduling contractors in both systems. We observe

that crowdsourced delivery platforms that fall under Pattern 1, pure self-scheduling and

real-time matching, follow a similar matching mechanism as in ride hailing. Drivers indicate

their availability by logging into the app; no prior planning of their hours is required.

Balancing supply and demand in ride-hailing systems is managed through the use of

surge pricing. Now we will review some of the literature examining surge pricing in ride
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hailing services, then discuss the differences between ride hailing and crowdsourced delivery

that pose challenges in implementing surge pricing in crowdsourced delivery platforms.

Banerjee et al. (2015) model pricing in ride hailing as a queuing network, and assume

that drivers care more about their long term than their short term earnings. The authors

show that a static policy is optimal if system parameters are deterministic, but a dynamic

pricing policy is more robust to changes in system parameters. Bimpikis et al. (2019)

analyze pricing for steady-state conditions in a network where drivers behave in equilib-

rium and decide whether and when to provide service and where to reposition to. They

propose a “balance” property based on the demand patterns of the network and examine

its implications for prices, profits and consumer surplus. Cachon et al. (2017) investigate

various compensation schemes in a service platform with self-scheduling capacity. They

conclude that though surge pricing is not the optimal compensation scheme, it is often

close to optimal. They show that the optimal contract is one where both wages and prices

are allowed to vary, but unlike surge pricing, there is no fixed ratio between the two. In

addition, they argue that all stakeholders can benefit from surge pricing, in periods of high

demand, as providers are better utilized, and consumers benefit from expanded access to

the service. Finally, Castillo et al. (2017) point out that surge pricing can help eliminate

inefficiencies in traditional transportation systems, namely the “wild goose chase” in which

drivers’ earning are low due to long pick up times.

We observe that in ride hailing, surge pricing may increase the cost of a ride, and con-

sequently the pay of a driver, in areas with high demand and low supply. This potentially

balances supply and demand by attracting drivers to high paying regions and forcing cus-

tomers who are not willing to pay a higher price to leave the system. To the contrary, in

some crowdsourced delivery systems, such dynamic pricing might be more challenging to

implement as all deliveries have to be made. No orders can leave the system in periods

of high demand, and shipping costs should stay relatively stable to maintain a high level

of customer service. In other systems, especially those that exclusively offer restaurant

delivery such as UberEats, such surge pricing still exists. A customer ordering from a

restaurant at a very busy time gets charged an extra variable fee, in an effort to balance

supply and demand. This ensures system reliability, i.e. customers receive their order at

the right time.

A question that arises in such a setting is how to stimulate drivers to increase their

working hour flexibility, so as to ensure an adequate level of supply and create a reliable

delivery system. One way to attract drivers is to offer a sufficiently high rate of compensa-

tion that maximizes their personal earning potential, while minimizing the transportation

cost of the system.
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3.4 Breakdown of Decision Problems within Crowd-

sourced Delivery Systems

In this section, we analyze the various managerial aspects within crowdsourced delivery

systems and relate them to classical problems already studied in the literature. More ex-

plicitly, we define the decisions encountered in a crowdsourced delivery system and examine

how these decision problems relate to other problems already investigated in the literature,

and what additional challenges they bring about.

We break down such problems based on the matching and scheduling mechanisms

indicated in Section 3.2.2. Note that we do not include bulletin-board type matching in our

analysis since the mechanism operates completely manually. Such a system depends fully

on the sharing of information and does not rely on any algorithm for determining optimal

decisions. For each of the remaining three types, we identify subproblems within the system

and review representative papers in the literature that address those subproblems. The

objective is to highlight factors that distinguish those management decisions, in the context

of crowdsourced delivery, from other contexts studied in the literature. This then helps

identify promising research directions.

• Pure self-scheduling:

Features: systems that follow pure self-scheduling are for rush deliveries with short

time windows. Because of such small time windows, typically a driver is assigned

one order at a time. Some platforms, such as Postmates, may match drivers with

more than one order, if the driver agrees and if all delivery time windows can be

met. However, during a given interval, the short time windows significantly restrict

the number of possible matches, which eliminates the need for considering routing

decisions. Therefore the main problems become:

– Matching drivers and packages. This can be modeled as a maximum weighted

matching problem as in the dynamic models proposed by Dayarian and Savels-

bergh (2020) and Arslan et al. (2018). We note that the weight of a feasible

driver-package match may represent different factors, such as the proximity of

the driver, the rating of the driver, and additional issues that may give a driver

priority. The weights may also consider other issues, such as not leaving a driver

unmatched for a long time, so as to ensure that drivers will return to the app

in the future.

– Supply of drivers. Similar to ride-hailing, certain pricing mechanisms may be

used to guarantee the supply of drivers at various times of the day. We note,
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however, that the cost structure of the crowdsourced delivery service plays a

major role in the possible level of variability in driver compensation. In other

words, for platforms where customers pay a variable shipping fee, similar to

surge pricing, driver wage may simply be a portion of that shipping fee which

increases in periods of high demand. On the other hand, for platforms where

the shipping fee is fixed (e.g. through a monthly or yearly subscription service),

there is less flexibility in increasing driver pay, as the higher driver pay would

be an extra cost for the platform, which may in turn affect the profitability and

sustainability of the system.

• Hybrid and centralized scheduling:

Features: when schedules of drivers are communicated well before the delivery due

date, the problem becomes close to traditional delivery systems with dedicated

drivers. Such a system allows for consolidation of delivery orders into routes to

achieve transportation cost savings. The main problems under this setting are:

– Matching and routing of drivers and packages. This can be represented by

variants of the vehicle routing problem (VRP) if all packages are picked up

from the same location (see Golden et al., 2008 and Toth and Vigo, 2014),

or the pickup and delivery problem (PDP) if packages have different pickup

locations (see Berbeglia et al., 2007). Variants of the VRP that may be a good

fit for crowdsourced delivery systems with centralized scheduling include the

vehicle routing problem with time windows to represent the delivery deadlines

of packages, and the heterogeneous fleet vehicle routing problem to model the

different levels of capacity of drivers’ personal vehicles.

– Scheduling of time blocks under uncertain demand. Because of the uncertainty

in customer demand when driver time blocks are scheduled, advance determi-

nation of the number and duration of time blocks is a challenge for this system.

Since scheduling is centralized, the problem resembles employee scheduling with

demand uncertainty. Though the literature of employee scheduling in the ser-

vice sector is rich (see Van den Bergh et al., 2013 for a comprehensive review),

only a few papers study such a problem with demand uncertainty. Those papers

also address particular application areas. For example, Bard et al. (2003) model

a staff scheduling problem faced by the United States postal service, where the

shifts of full-time workers and the number of part-time workers is determined

before the exact demand is known. The paper assumes that demand is known

with certainty a week ahead. Once demand is known, schedules are established

by assigning overtime to full-time employees, assigning shifts to part time em-
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ployees, and hiring casual workers as needed. Restrepo et al. (2017) study an

employee scheduling problem when employees have identical skills. Their pro-

posed model determines for each employee, their work days, days off, start and

end of shifts, before demand is known. After demand is known, employees are

assigned to jobs and breaks within their shifts. Bürgy et al. (2018) model the

employee scheduling problem arising in retail stores, where assigning overtime

work by extending employee shifts is possible, to cope with periods of high

demand.

• En-route matching:

Features: this system aims to maximize the number of matches, such that a driver’s

deviation from his/her original trip does not exceed a distance or time maximum

value. As indicated earlier, this problem resembles dynamic ride-sharing problems.

The main decision of this system is:

– Matching of drivers and packages. This can be modeled as a maximum weighted

matching problem, as proposed by Agatz et al. (2011) and Lee and Savelsbergh

(2015), in solving dynamic ride-sharing problems. Such a model would guar-

antee the maximum profit (or least cost) that is feasible with regards to dis-

tance/time constraints. Another possible approach is formulating the problem

as a minimum-cost maximum-flow problem, where cost represents distance or

time, as suggested by Soto Setzke et al. (2017) in studying a crowdsourced de-

livery setting with en-route matching. The advantage of such approach is that

the maximum matchings that guarantee the least distance/time deviation are

found. Thus, this model is more suitable when there is no preference on feasible

driver-package matches, other than minimizing distance or time traveled, so as

to reduce the inconvenience faced by a driver in deviating from his/her original

trip.

The former breakdown of decisions suggests that the main decisions faced in a crowd-

sourced delivery system can be categorized into four main classes: matching, routing, driver

scheduling and compensation. In the following section, we identify promising research di-

rections under each of those decision classes, that narrow the gap in the existing literature

by considering specificities of crowdsourced delivery systems.
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3.5 Future Research

We present below some promising future research directions in crowdsourced delivery, under

each of the four decision classes suggested in the previous section.

1. Matching Decisions. Matching drivers and order requests is an important de-

cision in pure self-scheduling and en-routing patterns. For crowdsourced delivery

systems that follow those two patterns, it is interesting to consider different objec-

tive functions that reflect the multi-objective nature of matching faced in realistic

applications. Such objectives include minimizing total fulfillment cost, giving higher

priority to higher rated drivers, minimizing the time interval a driver is unmatched,

and many others. Those objectives may be combined through a function, and may be

given different priority levels. Using the maximum weighted matching problem with

multiple objectives in a dynamic framework is an interesting direction to assess the

implication of different objectives on the quality of the obtained matchings, in terms

of profitability, driver utility, and other possible metrics.

For the pure self-scheduling pattern, where drivers are matched to orders within

a given radius, studying the effect of radius size as a hard constraint vs. a soft

constraint is an interesting avenue. Hard constraints assume that it is not feasible to

match a driver out of his/her radius, while soft constraints assume it is still feasible,

but the match is penalized by the extra driving cost that the driver incurs. Assessing

the effect of such constraints on the number of matches in the system, as a measure

of the reliability of the system, is one possible goal of such a study.

2. Routing Decisions. As mentioned earlier, hybrid centralized scheduling is the

only pattern that requires rigorous routing decision making, as it combines multiple

packages in routes and plans drivers’ availability ahead of time. Though drivers’

schedules are planned in advance, systems that follow such a pattern in practice (e.g.

Amazon Flex) only require a minimum vehicle capacity size, and do not plan for

each individual driver’s vehicle size. As such, it is interesting to investigate routing

decisions when vehicle capacities are robust (i.e. within a range of values), and

customer demand in the network is uncertain. This will enable the creation of routes

that are more robust with respect to the different uncertainty parameters, rather

than planning only for the minimum capacity level.

3. Scheduling Decisions. Systems with hybrid centralized scheduling are faced by the

decision of determining the duration of drivers’ work shifts, as well as the number of

drivers needed for each shift, before demand is known. The literature on employee

56



scheduling with uncertain demand is application-specific, as explained in Section

3.4, and assumes that employees are regular rather than crowdsourced independent

contractors. Thus, proposing scheduling models, with uncertainty considerations,

that apply to crowdsourced delivery, and possibly extend to other crowdsourcing

services, is a promising research direction.

4. Compensation Decisions. Since drivers are independent contractors, determin-

ing the appropriate level of compensation that guarantees the availability of those

drivers, while maintaining the system’s profitability, is an important decision in all

crowdsourced delivery systems. Thus, studies that aim to find optimal compensa-

tion decisions, under the different crowdsourced delivery systems, are promising and

essential. In fact, the main distinguishing factor between crowdsourced delivery sys-

tems and traditional systems is that drivers are independent contractors. Therefore,

studying optimal compensation of drivers that induce more time and distance flexi-

bility from the drivers’ side, so as to ensure system reliability without compromising

its profitability is critical. This also includes deciding on the optimal price from the

customer side, which affects the supply-demand balance of the service network. Also,

other possible tools for balancing the supply and demand within the service network

is an important and interesting direction, explored in Chapter 4.

Related to compensation, is the issue of driver welfare in crowdsourced delivery. Since

drivers are independent contractors, they are not entitled to employee regulatory

protection under labor law, such as minimum wage. Thus, an important direction,

is how do we maintain the flexibility of the sharing economy while improving the

welfare of drivers. This question is investigated in Chapter 5.

3.6 Conclusion

This chapter analyzes the current industry trends in crowdsourced delivery, and provides a

taxonomy of available systems based on their scheduling and matching mechanisms, their

target markets, and compensation schemes. The taxonomy introduced can help clarify

how the various crowdsourced delivery systems differ, and ultimately aid researchers in

validating the realism of their assumptions when examining this emergent transportation

system. A review of the academic literature on this topic is also presented and a comparison

between crowdsourced delivery, ride sharing and ride hailing is discussed. Because of

the limited literature that explicitly examines this problem, we suggested a typology of

decisions within a crowdsourced delivery system, and compared those decisions to classical

problems in the literature. We highlighted the new challenges that crowdsourced delivery
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brings about, and proposed various directions for future research to narrow down gaps in

the literature.

We observed that the pure self-scheduling matching mechanism is employed when deliv-

ery time windows are very short, typically an hour or less. This matching mechanism works

similar to ride-hailing services, but delivers packages instead of transporting passengers.

We explained how the use of surge pricing in the context of crowdsourced delivery poses

more challenges as compared to ride-hailing, and highlighted future research on compensa-

tion schemes as a promising avenue. We also noticed that hybrid and centralized matching

is utilized by e-retailers with large amounts of daily demand, and is close to traditional em-

ployee scheduling as driver availability is planned well in advance. En-route matching was

found to be closest to ride-sharing, since drivers are completing an activity of self-interest,

and are willing to make only a small time and distance deviation from their original trip.

With regard to the academic literature, we noticed that most of crowdsourced delivery

studies consider assignment and matching decisions, and overlook the other decisions faced

by the system. In comparing the literature’s assumptions to the platforms in practice, we

noticed that some of the assumptions are far from reality, specifically relating to how

those drivers are employed. Most literature assume that crowdsourced drivers are in-store

customers, but this idea was never implemented in practice.

Based on the taxonomy suggested, we highlighted multiple promising areas for future

research that fall under four main decision categories: matching, routing, scheduling, and

compensation. We described multiple directions that have the potential to improve the

accuracy of decision support tools for this delivery system, by considering more of the

realistic constraints in the system. The proposed future research focuses on operational

decisions (matching and routing), as well as tactical decisions (scheduling and compensa-

tion). Yet we hope that the comprehensive analysis in this chapter will inspire researchers

to think of strategic, innovative, and practical ways to enhance crowdsourced delivery in

future years.
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Chapter 4

Heatmap Design for Crowdsourced

Delivery

4.1 Introduction

Crowdsourced delivery is a new trend in last-mile delivery that uses freelance drivers to

transport goods and parcels. This emerging transportation solution uses the concept of

shared mobility, similar to ride-hailing and ride-sharing, with the fundamental difference

of delivering packages rather than giving rides to passengers. Unlike ride-sharing, where

drivers are completing a trip of self-interest and are matched with riders on their way,

crowdsourced delivery tasks, in most cases, are dedicated trips done for the sole purpose

of delivery. Thus, the system shares more commonality with ride-hailing, which includes

services like Uber and Lyft. Since drivers are paid per gig (task), the platform does not

directly control their movement. Surge pricing with fixed commission contracts have been

widely used in ride-hailing platforms to balance supply and demands, where the wage of a

driver is a fraction of the price paid by the customer. However, crucial differences between

ride-hailing and crowdsourced delivery makes this type of dynamic pricing not always a

feasible option for crowdsourced delivery platforms. For instance, many crowdsourced

delivery platforms rely on membership fees or have a fixed delivery charge throughout the

day (e.g., DoorDash, 2021). Customers’ price sensitivity is higher in such a setting than

in ride hailing, and they are not willing to pay a significantly higher delivery charges when

driver supply is limited (Titone and Goch, 2018). A question that naturally arises from the

emergence of this system is: What tools can a platform use to balance supply and demand

in a crowdsourced delivery system, and how effective are they?

In this chapter, we focus on one main tool: heatmaps, which are used in practice
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through the platform’s app to communicate driver shortage across the service region. A

heatmap comprises a heat level at each zone within a service region, the higher the heat

level in a zone, the higher the likelihood that a driver, located in that zone, would be

matched with an order. Thus, it informs drivers of areas with driver shortage where they

are more likely to receive a revenue-generating match, which triggers probabilistic driver

movement, ultimately better balancing supply and demand. Heatmaps may be associated

with a financial incentive, such as a higher revenue per matching. In this research we

propose a general framework that is independent of the particular compensation scheme a

platform offers drivers. Instead, we model heatmaps as a decision that a platform controls,

which results in the probabilistic relocation of drivers as a response.

We study a setting in which a platform, aiming to maximize service level throughout

a planning horizon, has two main control levers for balancing supply and demand within

the service region: (a) matching drivers and demand and (b) selecting a heatmap that

influences relocation decisions of unmatched drivers. The goal of this research is to propose

a novel formulation that models heatmaps as a control lever, then study the effectiveness

of heatmaps in balancing supply and demand of a crowdsourced delivery system. We aim

to identify the main factors that enhance service level in this dynamic setting, as well

as to quantify how well heatmaps can influence drivers to move to regions where they

are most needed, relative to a benchmark model where drivers can be directly managed.

More particularly, we study a crowdsourced delivery platform that provides same day

delivery solutions to local stores following the pure self-scheduling matching pattern as

discussed in Alnaggar et al. (2019). Under this matching pattern, driver availability as well

as customer demand is unknown in advance, but may be characterized probabilistically.

Orders originate from multiple pickup points (e.g. local stores) and not a single warehouse.

Delivery time windows are typically very short, about an hour long, and thus there is

limited opportunity for consolidation. Examples of platforms in practice operating under

this setting include Postmates, DoorDash, UberEats.

This research develops a Markov Decision Process (MDP) model that captures the

dynamic and uncertain nature of crowdsourced delivery operations. At a particular point

in time, the model retains information on the set of active drivers and their locations, as

well as the set of all orders, their origins and destinations. Then for a given decision epoch,

the model decides on the best allocation between drivers and orders as well as the best

heatmap. Decision epochs represent discrete points in time when the platform makes those

decisions. As a response to a heatmap, unmatched drivers within the network may choose

to relocate to other regions, stay in the same region, or exit the system. Inactive drivers

may choose to join the system and be considered for matching in areas with supply shortage,

determined through the heatmap that they see in the platform app. The response of drivers
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to a given heatmap is characterized as a transition matrix with known probabilities.

In this chapter, we make several key contributions. (1) We introduce a new problem that

describes a new modeling appraoch to a realistic setting faced by crowdsourced delivery

platforms that aim to maximize service level by balancing supply and demand across

service regions. We present a Markov Decision Process (MDP) model to formulate the

problem, accounting for specific features such as delivery time windows, varying travel

time between origin-destination nodes, and service time for preparing orders. To the best

of our knowledge, this work is the first attempt to formalize the use of heatmaps in a

decision model. (2) We then present analytical results that reduce the state and action

spaces of the MDP model when orders are homogeneous in terms of order fulfillment

priority, enabling reduction of the solution space. (3) We propose and formulate a stochastic

look-ahead policy that utilizes properties of the problem to efficiently solve the problem

without the need to solve the full MDP model. We also propose a simple heuristic policy for

prescribing a heatmap, given the state of the system. (4) Finally, we conduct computational

experiments generated from a real-world dataset to assess the proposed solution approaches

against two benchmark models, and evaluate the benefit of using heatmaps. We find that

the effectiveness of heatmaps in improving service level is most notable when demand

patterns within a service region are imbalanced, and when the number of drivers in the

network exceeds average demand.

This chapter is organized as follows. Section 4.2 reviews relevant literature. Section 4.3

describes the problem and introduces the proposed MDP model. Section 4.4 develops the

proposed solution methodology and formulates the stochastic look-ahead policy. Section

4.5 explains the computational experiments and presents computational results. Finally,

the chapter is concluded in Section 4.6.

4.2 Literature Review

This work falls under the growing body of literature addressing same day delivery, a class

of the broad last-mile delivery problem with the additional challenge of shorter delivery

time windows. Particularly a delivery task needs to be completed the same day it is

announced. This problem has been studied under different settings and assumptions,

especially concerning the mode of delivery. Most commonly, same-day delivery is assumed

to be completed by a privately owned fleet of trucks, where the underlying problem is a

variation of the vehicle routing problem with time windows or its dynamic counterpart

(e.g., Voccia et al. (2019), Ulmer et al. (2019)). Researchers have also investigated the

viability of integrating goods and passengers transportation to efficiently complete last-
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mile deliveries. Studies have examined the benefit of utilizing passenger city transit for

last mile deliveries (see Fatnassi et al. (2015), Ghilas et al. (2016) and Masson et al. (2017)),

as well as idle capacity in taxis (see Li et al., 2014), and have concluded that such settings

can achieve cost and energy savings compared to traditional ones.

Crowdsourced delivery is one trend that has gained the attention of researchers in

recent years. In contrast to the traditional use of trucks, crowdsourced delivery enables

more efficient short-time-window delivery completion through the use of freelance drivers.

Though it provides economic advantages over traditional delivery systems, particularly for

being an asset-light transportation model (Qi et al., 2018), it introduces the additional

challenge of uncertainty in driver supply. That is because a platform cannot directly bring

more drivers to work or increase their supply when there is shortage. Alnaggar et al. (2019)

provide a recent comprehensive review of the operations research literature addressing

crowdsourced delivery, as well as a review of the main trends of this system in practice.

Many papers that study crowdsourced delivery assume a supply of both crowdsourced

drivers and full time employees, and model the problem as a variant of the vehicle routing

problem (e.g., Archetti et al. (2016), Macrina et al. (2017) and Dayarian and Savelsbergh

(2020)) or the dynamic pickup and delivery problem (e.g., Arslan et al. (2018)). Those

studies also assume that crowdsourced drivers are in-store customers, a setting that has

not been implemented in practice, although considered by some companies (e.g., Walmart),

as the papers suggest.

Ulmer and Savelsbergh (2020) study a different angle of the crowdsourced delivery

problem, in particular workforce scheduling, in a setting where deliveries may be completed

by both crowdsourced drivers and company drivers. Given the uncertainty in supply of

crowdsourced drivers, and the time those drivers are available to complete deliveries, the

paper aims to find a minimum cost schedule of company drivers that guarantees a desired

service level. Unlike our problem, the paper assumes an environment where all orders

originate from a warehouse.

Mousavi et al. (2020) consider a last-mile delivery system that uses mobile depots

and crowdsourced drivers. The paper assumes that crowdsourced drivers are commuters,

whose availability is stochastic, and are willing to deliver packages on their way to a trip

of self-interest. The goal is to find the optimal location of mobile depots and the optimal

allocation of orders to crowdsourced drivers. Qi et al. (2018) study a similar transshipment

network structure that assumes multiple terminals where crowdsourced drivers can pick

up consolidated orders. The paper assumes that drivers, hired for the sole purpose of

completing deliveries, are not necessarily commuters. The aim is to assess the large-scale

integration of shared mobility in logistics networks. Lei et al. (2020) investigate the problem
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of dynamically acquiring crowdsourced delivery workers by sending invitation requests such

that supply level matches demand as closely as possible.

In contrast to the literature, this work assumes a pure self-scheduling pattern, which

resembles the setting of ride-hailing problems, where orders may originate from any point in

a pre-specified service region, such as a local business or restaurant. As such, our problem

description adopts slightly different assumptions, the most important of which is that the

delivery time window is very short. That is, platforms that employ a pure self-scheduling

pattern are often third-party delivery services that provide same-day delivery to a variety

of local businesses. Examples of such platforms include Doordash and Postmates. Those

platforms are characterized by their very short delivery time windows, typically an hour

long, and the varying pickup locations, making order consolidation especially challenging.

Thus, a crowdsourced driver typically completes a single order delivery at a time.

This research is also relevant to the stream of literature on surge pricing. Bimpikis et al.

(2019) study the impact of spatial pricing in ride hailing networks and derive conditions

under which spatial price discrimination maximizes a platform’s revenue. The authors

study the system in steady state and do not account for temporal variability. Besbes et al.

(2021) study the short term spatial pricing problem, in particular how to optimally set

prices within a continuous service region so as to maximize the platform’s revenue. Hu

et al. (2021) investigate the temporal aspect of surge pricing in ride-hailing, particularly

that drivers and riders respond to surge pricing on different timescales, and identify two

types of equilibrium pricing strategies. Lu et al. (2018) empirically analyze whether short-

run variations in surge prices attract drivers. Using a difference-in-differences approach,

the authors show that the ability to see the surge heatmap has a statistically significant

impact on drivers’ decisions to reposition and drivers’ revenue. In contrast to this research,

the authors study the drivers’ problem and model it as a multinomial logit discrete choice

model. This work investigates the problem from the platform’s perspective and captures

the behavior of drivers as a stochastic function of the chosen heatmaps.

Surge pricing as an incentive mechanism assumes that this additional revenue enabling

price increase comes from the customer. This gives the platform more flexibility to vary

prices, and encourages price-sensitive customers to exit. In a crowdsourced delivery setting

additional revenue is typically not collected from customers and delivery is expected to be

somewhat stable, and thus customers do not exit the system when driver availability is

limited.

Even if we associate a price to each heat level, in contrast to surge pricing we consider

a set of discrete heat levels at each node, then decide on the complete heatmap. By

doing so, we capture the interdependence between nodes when assigning them heat levels,
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i.e., a heat level at a given node not only attracts/repels drivers to/from that node, but

also affects flow to neighboring nodes. This contrasts to the literature on spatial surge

pricing (over a network) which assumes an infinite supply of drivers (Bimpikis et al.,

2019), i.e., drivers continue to join the system as long as their expected earning satisfies

some equilibrium constraints. In a way we can think of the heatmap design problem as

a generalized framework that allows us to focus on the effect (probabilistic movement) of

drivers rather than assume a particular payment structure that triggers their movement

(e.g. fixed commission contract). Our proposed model also considers a more general setting

where demand may be time-varying, thus capturing both spatial and temporal effects of

demand and supply variations.

4.3 Markov Decision Process (MDP) Model

We consider a last-mile delivery network operated by a crowdsourced delivery platform,

where orders and drivers arrive to the system randomly throughout the day. Orders have

known origins and destinations and are featured by a very short delivery time window. At

discrete points in time throughout the day, i.e., decision epochs, the platform decides on the

allocation of orders to active drivers, as well as the choice of heatmap. The latter triggers

a probabilistic movement of active unmatched drivers and inactive drivers to regions with

driver supply shortage.

Let N denote the set of nodes, representing centers of geographic regions and A is

the set of arcs connecting adjacent nodes. At decision epoch t, the platform keeps track

of the set of drivers, Mt, with information on their location and status (active, en-route,

inactive). The platform also keeps track of the set of active orders Dt, which specifies the

origin and destination of each order, as well as the delivery deadline.

For a given decision epoch, the platform matches orders to drivers so as to maximize the

number of fulfilled orders in immediate and future epochs; this is a proxy for maximizing

the service level of the platform. A driver at node i who is assigned to an order with

destination j at epoch t will be at node j at epoch t + τij, where τij is the travel time

between nodes i and j. Thus, matching decisions influence driver availability in the future.

Since drivers are freelancers who may enter/exit the system anytime they wish, the platform

communicates to them about regions with driver shortage, i.e., those where drivers have a

higher chance of being matched, by using a heatmap. This encourages drivers to reposition

to areas where they are needed most.

To account for drivers joining or exiting the system throughout the planning horizon, we

add an auxiliary node (denoted as node 0) that captures the set of drivers that enter or leave
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the platform. That is, a driver may exit the system and decline any proposed deliveries by

repositioning to node 0. Similarly, a driver who is initially outside the system, may choose

to join by repositioning from node 0 to any other node.

Before proceeding with the model formulation, we first provide a formal definition of a

heatmap.

Definition 1. A heatmap h is a vector of size |N | that takes integer values in the range

[1, γ]. Each value is referred to as a heat level. A given choice of heatmap h triggers

the probabilistic movement of available drivers in the network, characterized by transition

matrix P (h).

Note that we define all notation used in the model formulation and solution approach

within text, and also provide a comprehensive notation summary in Appendix B.5.

4.3.1 State and Action Spaces

The state variable, or the state of the system St at decision epoch t, is the minimum amount

of information that is necessary and sufficient to make a decision. This is characterized,

in this problem, by the set of drivers in the network,Mt, and the set of active orders, Dt.
An active order is an order that has been received, but not yet assigned to a driver, and it

still may be delivered within its delivery time window. We assume that if an order is not

delivered by the delivery deadline, it is lost or outsourced to a third party. This reflects the

short time window of the crowdsourced delivery system. The state variable is then defined

as St = (Mt,Dt).

At a given decision epoch t, the platform makes two main decisions: (a) the matching

of orders and active drivers and (b) the choice of heatmap. A particular heatmap h ∈ H,

where H is the set of all possible heatmaps, induces the movement of unmatched drivers

to neighboring regions with known probabilities. We assume that drivers only reposition

to neighboring regions, in response to a heatmap, that are reachable in one decision epoch.

We capture the repositioning probabilities for a heatmap h through a transition matrix

P (h), where pij represents the probability that a driver at node i repositions to node j.

The number of unmatched drivers at i ∈ N , denoted as mu
ti, that may choose to reposition

(empty) to other regions is known at epoch t. Thus, the number of drivers at i that move

to j is a multinomially distributed random variable with mu
ti trials and pij probability of

success.

We define the decision function Xπ(St) = (xt,yt) as a rule for mapping state St to

action vector (xt,yt), where π is a policy that indicates the type of the decision function,

xt and yt are vectors specifying the matching and heatmap decisions, respectively.
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We note that the probability of driver movement as a response to a heatmap is assumed

to be known. The details and implementation of an approximation algorithm tailored

to the problem at hand is out of the scope of this chapter and is left for future work.

One way of estimating and updating the transition probabilities, used in the proposed

optimization framework, is through Bayesian inference. For a given heatmap, we start

with a prior belief, obtained from domain knowledge. We assume that each observation

of driver repositioning is an independent trial. For a given node i ∈ N , we have |Ni| + 2

discrete choices of repositioning locations, each with an unknown probability. Those choices

represent transitioning to adjacent nodes, staying in the same node, or exiting the system,

where Ni is the set of nodes adjacent to i. Thus, the probability of transitioning is a

multinomial distribution.

In Bayesian statistics, the parameter vector associated with a multinomial distribu-

tion is drawn from Dirichlet Distribution, which forms the prior distribution (Congdon,

2007). The Dirichlet distribution is characterized by the number of outcomes k and a

concentration parameter α; a vector of positive real numbers. Increasing the magnitude

of the concentration parameter α increases the level of confidence in the prior belief. The

expected value of the posterior distribution of the probability of repositioning can then

be used as the heatmap transition probability in the proposed optimization framework.

Interested readers are referred to Congdon (2007) for more details on Bayesian modeling

and inference.

Before proceeding with the rest of the MDP model, we provide a toy example that

illustrates the interaction between matching and heatmap decisions.

Toy Example

Example. Consider a two-node, two-period problem, and assume that the number of

drivers is fixed (case 1). At t = 1, the number of drivers at each node is m1 =

[
9

3

]
. The

active orders for each o-d pair is d1 =

[
0 5

10 0

]
.

To maximize demand fulfillment, the platform chooses the following matching decisions

x1 =

[
0 5

3 0

]
. This results in the unmatched drivers mu

1 =

[
4

0

]
. Assuming a travel time of

1 epoch, as a result of matching, the initial distribution of drivers at t = 2 is min
2 =

[
3

5

]
.
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When no additional orders are received, the remaining orders at t = 2 are d2 =

[
0 0

7 0

]
.

Since the initial supply of drivers at node 2 as a result of matching is not enough to

cover the remaining orders, the platform chooses a heatmap that triggers the movement of

unmatched drivers from node 1 to 2. For instance heatmap, h =

[
1

3

]
results in transition

matrix P (h) =

[
0.1 0.9

0 1

]
. Thus, the unmatched drivers in node 1 move to node 2 following

a binomial distribution with probability p12 = 0.9. A random sample of such distribution

indicates the following repositioning u1 =

[
1 3

0 0

]
. Thus, at t = 2 the number of drivers is

m2 =

[
3 + 1 = 4

5 + 3 = 8

]
, which covers the remaining orders.

4.3.2 Post-decision State, Exogenous Information, Contribution

The post-decision state refers to the state of the system immediately after a decision has

been made, but before arrival of any new information. In the considered problem, this

refers to the destination of matched drivers and the number of active unfulfilled orders.

Exogenous information, on the other hand, is the information that becomes available

to the platform between two consecutive decision epochs. This constitutes the realization

of the random variables of driver repositioning as a response to a chosen heatmap and the

arrival of new orders. The arrival of orders for an origin-destination (o-d) pair (i, j) is

assumed to follow a known distribution. Let Wt denote new driver and order information

that first becomes known between t and t + 1. Given the post-decision state and the

realization of exogenous information (Wt), the system transitions to the next state St+1,

denoted as the pre-decision state. Let C(St, (xt,yt)) denote the contribution (reward) of

making decision vector (xt,yt) when in state St. Let xtij denote the number of orders,

matched at t, with o-d pair (i, j). The contribution is defined as

C(St, (xt,yt)) =
∑
i∈N

∑
j∈N

xtij.

We use the expected total reward criterion for computing the optimal policy. Let vπ(St)

denote the expected reward from epoch t to the end of the planning horizon T , and Π denote

the set of all possible policies. We set a terminal reward at decision epoch T , C(ST ) = 0,
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for all states ST , which represents the end of a day when no orders are accepted.

vπ(S0) = Eπ
{

T∑
t=0

C(St, X
π(St))|S0

}
(4.1)

The objective is to find an optimal policy π∗ such that the expected total number of

fulfilled orders is at least as good as any other policy; vπ
∗
(S0) ≥ vπ(S0) for all π ∈ Π.

4.3.3 Reduction of the Dimension of State and Action Spaces

Customer demand in crowdsourced delivery systems is typically homogeneous in terms of

order fulfillment priority. While the objective is to fulfill as many orders as possible, no

order is prioritized over another, except based on their delivery deadline. This characteristic

enables us to prove a proposition that simplifies the state and action spaces at each epoch

t.

Recall that xtij denotes the number of (i, j) orders matched at epoch t. Define Dtij ⊆ Dt
as the set of orders with o-d pair (i, j) that are active at epoch t, and which is ordered

in increasing order of delivery deadline. Let Xtij be the set of fulfilled orders at epoch t

chosen as the first xtij elements of the ordered set Dtij, and let X ′tij be an arbitrarily chosen

subset of Dtij. Recall that vπ(st) denotes the reward from decision epoch t up to the end of

the planning horizon, following policy π, and Wt is a realization of the random exogenous

information between t− 1 and t.

Proposition 1. For a given choice of heatmap h at t, and a given realization of exogenous

information Wt+1, vπ(St+1|St, xt = Xtij, yt = h) ≥ vπ(St+1|St, xt = X ′tij, yt = h).

In words, choosing set Xtij of matched orders, over any other arbitrary set X ′tij, guar-

antees that for a given policy, from decision epoch t + 1 onward, the accumulated reward

vπ(·) is at least as good as that obtained from any other subset. We present the proof in

Appendix B.1.1.

Proposition 1 enables us to simplify the decision variable at each decision epoch under

the assumption of the homogeneity in demand fulfillment priority and drivers. That is,

any driver at node i matched to any order with an o-d pair (i, j), would result in the same

reward. It suffices for the platform to decide on the number of (i, j) orders to be matched

at each decision epoch, rather than solving for the explicit matching between these two

sets, then fulfill orders in an increasing order of delivery deadline. However, presenting the

more general form lays the foundation for future work on variations of the problem that

may consider the explicit assignment of drivers to orders and other features of the problem,

such as the bundling and routing of orders under short time windows.
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We note that this assumption also imposes the implicit assumption that the exit proba-

bility of the aggregate number of drivers in a node is independent on the time each specific

driver joins the system. We argue that since we consider the probabilistic movement of

the aggregate number of drivers in a node, the time aspect may be approximately factored

in the computation of the transition probabilities. For instance, from historical data, the

platform may know that a certain time of the day is unfavorable to drivers and thus adjusts

the transition probability to account for the higher exit probability.

4.4 Solution Methodology

Even with the simplification of decision variables resulting from proposition 1, the model

suffers from the curse of dimensionality in state, action and outcome spaces. The underly-

ing uncertainty in both driver availability and demand creates a very large state space St

at each epoch. This, when combined with the extensive range of feasible actions for each

state and epoch, makes the model computationally intractable to solve to optimality by

Bellman’s equation, for reasonable size problems. Thus, we turn to a stochastic look-ahead

(SLA) policy as an alternative solution methodology for sequentially finding the optimal

heatmap as new information is revealed. SLA is an approximate dynamic programming

policy that is used to obtain good approximate solutions for MDPs suffering from the curse

of dimensionality (Powell, 2011).

A stochastic look-ahead policy is a rolling horizon framework that selects decisions at

epoch t, while considering possible realizations of random information within a forecast

window. The platform’s problem is formulated as a two-stage stochastic program, where

information at epoch t is known with certainty, while future information within a forecast

window {t + 1, . . . , t + Γ}, t + Γ ≤ T is only known probabilistically when decisions are

made, where Γ is the duration of the forecast window. Under an SLA policy, the platform’s

primary focus is to decide on actions for a particular decision epoch t; decisions for future

periods are only incorporated to account for the effects of decisions made at t on subsequent

time periods. Recall that the dependence of decision epochs is contributed mainly to the

fact that the destinations of matched drivers at t determine (in part) drivers’ availability in

consecutive time epochs, and that it takes one decision epoch for the effect of the heatmap

(movement of drivers) to materialize. Our proposed solution methodology formulates a

two-stage stochastic program to determine the best matching and heatmap decisions. To

improve computational efficiency, we decompose matching and heatmap decisions into two

separate optimization problems. Figure 4.1 is a visual overview of the proposed solution

approach, which we detail next.
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Figure 4.1. Overview of the proposed solution approach steps.

4.4.1 Matching with Controlled Driver Relocation - an Upper

Bound

At a given decision epoch t, the decision concerning the choice of heatmap and number of

orders to match can be expressed as an optimization problem that maximizes the number

of matches at decision epoch t, plus the expected number of matches in decision epochs

within the forecast horizon {t + 1, . . . , t + Γ}. We first formulate the problem faced by

the platform assuming that it has full control over the movement of drivers, and is able

to directly request drivers to move to locations where they are needed. That is, instead

of relying on the probabilistic responses to heatmaps, the platform directly controls the

relocation of drivers. The purpose of this model is twofold. First, it enables us to evaluate

the effectiveness of heatmaps in managing the flow of drivers by creating a benchmark of

the best case scenario. Since orders have a short matching time window, fulfilling all orders

at each decision epoch may not be possible. Thus, the matching with controlled driver

relocation problem (MCDRP) computes the best possible matching for particular problem

instances, allowing us to accurately assess the potential of heatmaps in balancing supply

and demand. Second, this problem enables us to partially quantify the benefit, in terms of

the improvement in service level, of treating crowdsourced drivers as employees rather than

freelancers in terms of the improvement in service level. That is, how much improvement

in total matching will the platform gain, if drivers are treated as employees who can be

directly managed and moved in the network, rather than as independent contractors who

respond probabilistically to heatmaps.

We first define the following notation. l is the index specifying the decision epoch,

i.e., l ∈ {t, t + 1, . . . , t + Γ}. S is the set of samples of random orders considered in the

SLA policy. xlij, x
s
lij are decision variables denoting the number of matched known and

forecasted orders, respectively, for an o-d pair (i, j). mli,m
s
li are the decision variables
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for the number of drivers at each node i, in the first and second stages, respectively. The

number of drivers is known at epoch t, but unknown for subsequent epochs. ulij, u
s
lij denote

the number of drivers that transition from node i to j between decision epochs l and l+ 1,

in the first and second stages. dtωij is a parameter representing the number of known active

orders with (i, j) o-d pairs at decision epoch t with deadline at epoch t+ ω where ω is the

duration of the delivery time window. Similarly, dslωij is a parameter for the number of

forecasted orders with (i, j) o-d pairs in sample s ∈ S, at decision epoch l with deadline

at epoch l + ω. dlkij, d
s
lkij are decision variables for carried forward orders at epoch l that

expires at epoch l + k, k < ω, in the first and second stages, respectively. We also define

service time ∆ as the time duration, in decision epochs, it takes for an order to be ready

for pickup (which may be set to 0). Finally, α is a scalar ∈ (0, 1).

We note that for ease of exposition, we use a fixed delivery time window ω for all orders.

However, orders may have variable delivery time windows that are dependent on the store

from which they originate or their o-d pair. This can easily be handled by updating the

number of orders with a particular o-d pair and a given deadline, dtkij, at the beginning of

each decision epoch.

The problem is formulated as follows.

[MCDRP]

max

t+∆∑
l=t

∑
i∈N

∑
j∈N

xlij +
1

|S|
∑
s∈S

Qs(m, d, xs,ms, us, ds) (4.2a)

s.t.
∑
j∈N

xlij ≤ mli ∀i ∈ N, l ∈ {t, . . . , t+ ∆} (4.2b)

xlij ≤
l+ω∑

k=l+τij

dlkij ∀i, j ∈ N, l ∈ {t, . . . , t+ ∆} (4.2c)

dlkij = d(l−1)kij −max{(x(l−1)ij −
l+k−1∑

k′=l+τij−1

d(l−1)k′ij), 0} ∀i, j ∈ N, l ∈ {t+ 1, .., t+ ∆ + 1},

k ∈ {l + τij , .., l + ω − 1} (4.2d)∑
j:(i,j)∈A

ulij = mli −
∑
j∈N

xlij ∀i ∈ N, l ∈ {t, . . . , t+ ∆} (4.2e)

mli =
∑
j∈N

x(l−τji)ji +
∑

j:(j,i)∈A

u(l−1)ji ∀i ∈ N, l ∈ {t+ 1, . . . , t+ ∆ + 1} (4.2f)

ulij ∈ Z≥0 ∀(i, j) ∈ A, l ∈ {t, . . . , t+ ∆}

xlij ∈ Z≥0 ∀i, j ∈ N, l ∈ {t, . . . , t+ ∆}

mli ∈ Z≥0, dlkij ≥ 0 ∀i, j ∈ N, l ∈ {t+ 1, . . . , t+ ∆ + 1},

k ∈ {l + τij , .., l + ω − 1} (4.2g)
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where

Qs(m, d, xs,ms, us, ds) =

Γ∑
l=t+∆+1

∑
i∈N

∑
j∈N

α(l−t)xslij (4.3a)

s.t.
∑
j∈N

xslij ≤ mli ∀i ∈ N, l ∈ {t+ ∆ + 1} (4.3b)

∑
j∈N

xslij ≤ ms
li ∀i ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ} (4.3c)

xslij ≤ dslωij +

l+ω−1∑
k=l+τij

dlkij ∀i, j ∈ N, l ∈ {t+ ∆ + 1} (4.3d)

xslij ≤ dslωij +

l+ω−1∑
k=l+τij

dslkij ∀i, j ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ} (4.3e)

dslkij = d(l−1)kij −max{(xs(l−1)ij −
l+k−1∑

k′=l+τij−1

d(l−1)k′ij), 0} ∀i, j ∈ N, l ∈ {t+ ∆ + 2},

k ∈ {l + τij , .., l + ω − 1} (4.3f)

dslkij = ds(l−1)kij −max{(xs(l−1)ij −
l+k−1∑

k′=l+τij−1

ds(l−1)k′ij), 0} ∀i, j ∈ N, l ∈ {t+ ∆ + 3, .., t+ Γ},

k ∈ {l + τij , .., l + ω − 1} (4.3g)∑
j:(i,j)∈A

uslij = mli −
∑
j∈N

xslij ∀i ∈ N, l ∈ {t+ ∆ + 1} (4.3h)

∑
j:(i,j)∈A

uslij = ms
li −

∑
j∈N

xslij ∀i ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ} (4.3i)

ms
li =

∑
j∈N

xs(l−τji)ji +
∑

j:(j,i)∈A

us(l−1)ji ∀i ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ} (4.3j)

uslij ∈ Z≥0 ∀(i, j) ∈ A, l ∈ {t+ ∆ + 1, . . . , t+ Γ}

xslij ∈ Z≥0 ∀i, j ∈ N, l ∈ {t+ ∆ + 1, . . . , t+ Γ}

ms
li ∈ Z≥0, d

s
lkij ≥ 0 ∀i ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ}

k ∈ {l + τij , .., l + ω − 1} (4.3k)

Objective function (4.2a) maximizes the number of matches of known active orders,

plus the expectation of matched forecasted orders for decision epochs within the forecast

horizon. The second-stage objective function (4.3a) maximizes a discounted value of fore-

casted orders matches, for decision epochs {t+ ∆ + 1, . . . , t+ Γ}. The discount parameter

α(l−t) is inversely proportional to the length of time interval between the current epoch

and the future period, i.e., the later the period the lower its weight. This discount factor

recognizes that the farther ahead the decision epoch is, the higher the cumulative noise in

order information and driver availability. It is important to note, however, that this ob-

jective does not contradict the proposed expected total reward criterion in the underlying

MDP.
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We note here that the linking variables between the first and the second stages are the

number of drivers and the carried forward orders, mli and dlkij, l = t + ∆ + 1. Those are

reflected in constraint sets (4.3b, 4.3d, 4.3f, and 4.3h). Constraints (4.2b) and (4.3b-4.3c) ensure

that the number of matched orders with an origin i, do not exceed the number of drivers at that

node, for both known and forecasted orders. Constraints (4.2c) and (4.3d, 4.3e) make sure that

the number of matched orders is at most equal to the number of orders (new and carried forward)

with an (i, j) o-d pair. Constraints (4.2d) and (4.3f, 4.3g) compute the orders that are carried

forward between two consecutive decision epochs.

Constraints (4.2e) and (4.3h, 4.3i) guarantee the flow balance of drivers; total number of

drivers that reposition to any node j, equals the number of unmatched drivers at the origin node

i. Constraints (4.2f) and (4.3j) compute the number of drivers at subsequent decision epochs

l+ 1 for each node i. Constraints (4.2g) and (4.3k) assign integer values to all variables with the

exception of carried forward orders dlkij , d
s
lkij , which are continuous.

To eliminate the nonlinearity in constraint (4.2d), we replace it with the following set of

constraints:

dlkij = d(l−1)kij − θlkij (4.4a)

θlkij ≥ x(l−1)ij −
l+k−1∑

k′=l+τij−1

d(l−1)k′ij (4.4b)

θlkij ≥ 0 (4.4c)

Similar linearization is applied to constraints (4.3f, 4.3g).

4.4.2 Matching and Heatmap Selection Problem

We now describe the problem of concurrently optimizing heatmap selection and matching de-

cisions so as to maximize the expected matching within the forecast horizon. We refer to this

problem as the matching and heatmap selection problem (MHSP). The model is shown in Ap-

pendix B.2.1. The goal of MHSP is to match drivers and orders and to sequentially prescribe

heatmaps that direct probabilistic driver movement to nodes where they are most needed, so

as to improve total driver-order matching. In MHSP, both driver relocation and future orders

are uncertain. The model aims to maximize the expected matching, considering mean values of

driver relocation, and random future orders.

Capturing heatmap selection and probabilistic driver movement in MHSP results in a high

number of integer and binary variables. We observe that MCDRP is a valid upper bound on the

matching and heatmap selection problem. Thus, to improve computational efficiency, matching

and heatmap selection decisions are decomposed into two separate optimization problems. An

optimal solution of MCDRP determines the optimal matching of orders to drivers, as well as the
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optimal repositioning of drivers. This solution is then used to infer the optimal heatmap, such

that the platform selects a heatmap that results in a matching at the next decision epoch t+ 1,

that is as close as possible to that if drivers were directly managed. We refer to this problem as

the heatmap selection problem (HSP).

Lemma 1 proves the relationship between MCDRP and MHSP.

Lemma 1. MCDRP is a relaxation of MHSP.

The proof is given in Appendix B.1.2.

Heatmap Selection Problem

A solution to MCDRP specifies the optimal number of unmatched drivers to move from i to j

(u(t−1)ij) for a given decision epoch t − 1. It also determines the number of unmatched drivers

at each node i (mu
i = m(t−1)i −

∑
j:(i,j)∈A x(t−1)ij), where x(t−1)ij are the optimal values of the

decision variables of the number of fulfilled orders. Define variable yh as a binary variable that

equals 1 if heatmap h ∈ H is selected. The rest of the notation is similar to that introduced in

Section 4.4.1. We use bar over a variable to indicate that the value of a variable is known, i.e.,

taken from the solution of MCDRP.

The goal of the heatmap selection problem is to get an expected matching at the subsequent

decision epoch, t, as a result of drivers responding to the heatmap, that is as close as possible

to one obtained from MCDRP. The problem of selecting an optimal heatmap, is formulated as

follows. We refer to solving MCDRP then inferring the best heatmap using HSP as the stochastic

lookahead policy (SLA).

[HSP] min
∑
i∈N

∑
j∈N
|xtij − xtij | (4.5a)

∑
h∈H

yh = 1 (4.5b)

u(t−1)ij =
∑
h∈H

mu
i Pij(h)yh ∀(i, j) ∈ A (4.5c)∑

j∈N
xtij ≤

∑
j∈N

x(t−τji)ji +
∑

j:(j,i)∈A

u(t−1)ji ∀i ∈ N (4.5d)

xtij ≤
t+ω∑

k=t+τij

dtkij ∀i, j ∈ N (4.5e)

xtij ≥ 0, yh ∈ {0, 1} ∀h ∈ H, i, j ∈ N

u(t−1)ij ≥ 0 ∀(i, j) ∈ A (4.5f)

Objective function (4.5a) minimizes the absolute deviation between the number of matches

in the solution of MCDRP and the number of matches as a result of a heatmap selection yh

at decision epoch t. Constraint (4.5b) ensures that a single heatmap is selected. Constraints

(4.5c) compute the expected number of repositioning drivers as a result of selecting a particular
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heatmap. Constraints (4.5d) ensure that the total number of matches at a given node i does

not exceed the expected number of drivers in that node, which is the sum of drivers arriving by

matching plus those that reposition. Finally, Constraints (4.5e) make sure that the number of

matches for a given o-d pair do not exceed the number of active orders.

A linearization of objective function (4.5a) is achieved by rewriting it as follows, with some

additional constraints.

min
∑
i∈N

∑
j∈N

φij

φij ≥ xtij − xtij ∀i, j ∈ N

φij ≥ xtij − xtij ∀i, j ∈ N

φij ≥ 0 ∀i, j ∈ N

We note that in the heatmap selection problem, we only infer a single heatmap for a given

decision epoch, t − 1, and not for subsequent decision epochs within the forecast window, as

in MHSP. When the objective function value of (4.5a) is zero, then there exists a heatmap

with expected driver movement similar to the movement suggested by MCDRP, and thus the

difference in matching at t is zero. However, since future decisions in the forecast window, Γ,

are approximated in MCDRP assuming that driver movement is directly controlled, the optimal

heatmap of HSP need not be optimal with respect to MHSP.

4.4.3 Simple Policy for Heatmap Selection

As the number of nodes in the network |N | increases, the size of the heatmap selection problem

(HSP) increases exponentially. That is because the response of drivers to a heatmap depends not

only on the heat level of a particular node i ∈ N , but rather depends on the complete heatmap of

all nodes in the network. In other words, the movement triggered by a heat level at a particular

node is dependent on the heat levels of adjacent nodes. The number of possible heatmaps is γ|N |,

where γ is the number of heat levels, and thus the size of the heatmap selection problem grows

exponentially with slight increases in the size of N .

To overcome this difficulty, we propose a simple easy-to-implement policy for selecting a

heatmap, as an alternative to the SLA policy. Given the state of the system and a particular

matching, this policy iteratively updates the heat level of regions with high driver supply shortage,

computing the expected movement of drivers at each iteration. We assume that matching deci-

sions are done independently; the policy focuses on selecting a heatmap in a way that considers,

when assigning a heat level to a region, the implication on the movement of drivers throughout

the network. Thus, the suggested policy selects a heatmap given a particular matching, and

driver locations at t+ 1 as a result of this matching.

To maximize the reward obtained from matching alone, we propose a matching problem that
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modifies MCDRP such that no driver movement is assumed. That is, unmatched drivers stay in

their regions of origin, and a driver at i moves to another region j only through being matched

with an order of destination at j. We formulate this model in Appendix B.2.2 and show that it is

a valid lower bound on MHSP, under one condition. We refer to this problem as the matching with

no driver relocation problem (MNDRP) and use it as a benchmark to compare the effectiveness

of heatmaps against. We use this model to maximize the reward earned from matching alone,

then use the proposed simple policy to select a heatmap that further improves the accumulated

reward.

Simple Policy for Heatmap Selection

For a decision epoch t−1, a solution of MNDRP results in an initial distribution of drivers at the

subsequent decision epoch, m̄ti, based on the destinations of orders matched to drivers at t− 1.

For remaining drivers, i.e., unmatched drivers and inactive drivers, a heatmap is selected such

that nodes with highest shortage receive additional supply first, by reflecting that on the heat

level. We compute δti = m̄ti−
∑

j∈N
∑t+ω

k=t+τij
d̄tkij , which is the shortage of drivers at node i and

epoch t relative to orders. The policy is composed of two main steps: a modification step, and an

update step. Those two steps are repeated iteratively until one of the following stopping criteria

is reached: (i) there are no unmatched drivers available to move, (ii) no driver shortage at any

node, (iii) the maximum heat level is reached and their is still shortage, or (iv) the maximum

number of iterations is reached. The policy steps are as follows:

1. Solve MNDRP. Get an initial distribution of drivers as a result of matching, m̄ti.

2. Iteratively complete the following steps until one of the stopping criteria is reached:

(a) Modification: find a node with the maximum driver shortage (min δti). Increase its

heat level by 1.

(b) Update: calculate expected number of drivers in each region and expected shortage

based on driver repositioning probabilities.

4.5 Computational Experiments

We test the proposed solution approach and benchmark policies on multiple test instances gen-

erated from the Chicago ridehailing dataset as we explain in the following section. We design

the computational experiments to test the effect of four main factors on the benefit of heatmaps:

(1) driver supply, (2) demand scale, (3) demand imbalance over the service network, and (4)

repositioning probability estimate. Particularly, we vary initial driver supply to five different

supply levels, computed as a percentage of average demand. We create three different demand
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arrival scenarios that vary the demand scale and network balance. We also create two different

repositioning probability estimates to test the sensitivity of the proposed algorithm with respect

to the approximated probability. For each of those settings, we solve ten instances of two cases of

the problem; case 1: where the supply of drivers is constant throughout the planning horizon, and

case 2: where drivers may enter or exit the service network throughout the day by transitioning

to/from the artificial node. This creates a total of 400 test instances, each solved using 4 different

solution approaches:

• Matching with Controlled Driver Repositioning Problem (MCDRP), where the movement

of drivers is directly managed by the platform,

• Stochastic Lookahead Policy (SLA), the proposed solution approach that utilizes that MC-

DRP solution to infer the best heatmap using HSP,

• Matching with Controlled Driver Repositioning Problem (MNDRP), where the network is

balanced through matching,

• Simple Policy (simple) where we first optimize matching decisions using MNDRP, then

iteratively assign heat levels to nodes based on their supply shortage as detailed in Section

4.4.3.

The computational time of the SLA policy is a few seconds per decision epoch. All other policies

require less computational time.

4.5.1 Chicago Dataset Instances

We use the Chicago ridehailing dataset (TNP-Chicago-Trips, 2019) to generate the network and

demand information of test instances. We use trip data from September 1, 2019 to February 29,

2020 during evening hours between 4pm and 7pm. We then aggregate the community areas of

Chicago based on the city of Chicago data portal (Pump, 2012), which results in nine sides: far

north, northwest, north, west, central, south, southwest, far southwest, far southeast. The trip

pickup and delivery time in the dataset is reported in increments of 15 minutes, and thus, we use

15 minutes as the length of decision epochs.

Aggregating community areas into sides helps obtain representative estimates of the distri-

bution of demand, since aggregating data results in more data points for each pair of nodes in

the network. Drivers typically transition to neighboring nodes when considering repositioning,

and thus partitioning the service region into granular nodes may reduce the capability of drivers

understanding the heatmap collectively, and thus make it difficult to approximate driver response

to a selected heatmap. The solution approach relies on the enumeration of the set of possible

heatmaps, which grows exponentially with the size of the network. We leave the investigation

of dominance relationship within the set of heatmaps and the extension to larger networks to
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future research. The current testing captures the essence of the trade-offs we test for in assessing

the potential of heatmaps. Depending on the specific operations of platforms, the movement

of drivers may be decomposed spatially, motivating the focus on the interaction within smaller

networks.

For each date in the filtered dataset, we count the number of trips between each origin-

destination pairs based on the aggregate nodes for a 15-min interval. There are twelve 15-min

intervals between 4 pm and 7 pm, thus each day results in 12 data points of trip counts, for

each o-d pair, corresponding to each of the 15-min intervals. Because of the very high number

of rides in the Chicago ride hailing dataset (e.g., for some o-d pairs, there are over 300 rides in

just a single 15-min interval), we scale down the count data by a factor of 10. We then fit the

trip count data, for each o-d pair, into a negative binomial distribution. The negative binomial

distribution is a generalization of the Poisson distribution where the equi-dispersion assumption

does not necessarily hold. Travel time between nodes is computed as the average travel time

between community areas of each pair of nodes.

For all test instances, we assume that the heatmap consists of 3 heat levels, γ = 3. Though

the proposed methodology can handle a higher number of levels, heat levels should be chosen

in a way that enables drivers to understand their implication, and thus a high number of heat

levels is likely to cause confusion to drivers and create more randomness in their response. We set

T = 100 decision epochs, and a forecast window, Γ, of 10 decision epochs. We also use a sample

set of 10 scenarios (|S| = 10) for the two-stage stochastic models. Drivers are randomly located

throughout the service region at the first decision epoch. In case 2, where drivers may enter/exit

the system, at the first epoch we set the number of inactive drivers in the auxiliary node to be

25% of total expected demand.

Heatmap Transition Probabilities

The probabilities of repositioning between nodes, as a response to a heatmap are first set for

the special case (case 1), where active drivers do not exit the system and no new drivers join.

This is then extended to the more general case (case 2). We note that we do not estimate those

probabilities from the Chicago dataset as the set only contains trip information, and does not

provide any data on the movement of unmatched drivers in the service network. We briefly discuss

initial steps for estimating those probabilities in Section 4.3.1. For the computational testing, we

randomly generate those probabilities following a systematic process. First, we define a pairwise

repositioning probability for each pair of nodes (i, j) with heat levels εi, εj as ρεiεj . This denotes

the probability of transitioning to node j with heat level εj from node i with heat level εi. Thus,

the complement 1− ρεiεj denotes the probability of staying at node i.

We define the repositioning probability between nodes (i, j) ∈ A as shown in Equations (4.6).

The number of drivers that reposition from any node i ∈ N is a multinomial random variable,

with mu
ti trials and probabilities of success pij . We assume that drivers stay at their node of origin
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with probability equal to the compliment of the maximum pairwise transition probability, and

thus we take the maximum with respect to adjacent pairwise probabilities. Then the probabilities

of moving is normalized such that the sum of all probabilities adds to 1.

pij = (
ρεiεj∑

{j:(i,j)∈A} ρεiεj
)(1− pii)

pii = 1− max
{j:(i,j)∈A}

(ρεiεj ) (4.6)

The extension of the repositioning probabilities to case 2, as well as the exact values used in

the testing are specified in Appendix B.3.

4.5.2 Detailed Analysis of a Decision Epoch

We present detailed results of one decision epoch to demonstrate the use of a heatmap and the

movement of drivers. Figure 4.2 gives a visual summary of the heatmap solution on the aggregate

Chicago network, for one decision epoch of an instance with initial supply level equal to 120%

of mean demand, solved using the SLA policy. For ease of exposition, we focus on the heatmap

decisions, however, the complete solution specifies both heatmap and matching decisions. Recall

that drivers may relocate to adjacent nodes, that can be reached within one decision epoch (15-

min). The figure shows the optimal heatmap in that decision epoch, as well as the number of

unmatched drivers in each node. It also shows the outcome of the heatmap, i.e., the movement

of drivers as a response to the heatmap (no. drivers). Note that the reported number of drivers

in each node represents only the response of drivers to the heatmap, and does not account for

the number of drivers as a result of matching decisions.

Unmatched drivers in each node, as well as active drivers in the auxiliary node that may

enter the service region, respond to the heatmap by relocating probabilistically. For example,

given this heatmap, the 14 unmatched drivers at the central region will stay in the same region

with probability 70%, relocate to the west region with probability 10%, and exit the system

with probability 20%. To transition between decision epochs, we generate 50 samples of the

multinomial distributions of driver movement, given the number of unmatched/inactive drivers

and the probabilities of repositioning for the selected heatmap. We then choose the movement

with the highest frequency, so as to simulate the movement with the highest probability. If

multiple realizations have the same highest frequency, we break the tie arbitrarily.

4.5.3 Assessing the Effectiveness of Heatmaps

To examine the effect of heatmaps in changing the locations of drivers in a service network,

we compare total demand fulfillment relative to two benchmarks, MCDRP, where movement

of drivers is directly managed, and MNDRP, where unmatched drivers stay in the same region
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Figure 4.2. Heatmap solution for one decision epoch. The figure shows the optimal heatmap,
the distribution of unmatched drivers, and the number of drivers in each node as a response to
the heatmap.
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and do not relocate to neighboring nodes. Recall that MCDRP is an upper bound on the SLA

policy, and represents the maximum possible demand fulfillment, while MNDRP maximizes order

fulfillment utilizing matching as the sole control lever. Figure 4.3 plots the percentage of orders

fulfillment for 10 test instances, three levels of initial supply, under each of the two cases (with

or without the option of additional drivers entering/exiting the network). The three levels of

supply are relative to total expected demand in the network. For instance, 80% supply is when

the number of drivers in the network is 80% of the total arrival rate of orders between all pairs of

nodes, which represents a scenario where supply is less than demand. Similarly, 100% and 150%

supply represent scenarios where supply is equal to or exceeds expected demand, respectively.

We note here that when the number of drivers in the network is constant (case 1) and driver

supply does not exceed demand (80% - 100% of expected demand), balancing the network through

matching is sufficient to maximize order fulfillment. Driver repositioning in this case only slightly

improves order fulfillment. This can be noted from the small gap in the percentage of demand

fulfilled for the MNDRP relative to MCDRP. With a supply of 80%, average order fulfillment

is 77.13% and 78.65% for MNDRP and MCDRP, respectively, while a supply of 100% results in

84.73% and 86.32% for MNDRP and MCDRP, respectively. This indicates that even if driver

movement is managed directly (MCDRP), which is the best possible outcome, little improvement

in service level can be achieved relative to balancing the system only through matching (MNDRP).

However, when supply exceeds demand (150% of expected demand), MCDRP and heatmap

policies (SLA and simple policy) achieve higher demand fulfillment, while MNDRP only improves

marginally. Average order fulfillment of MNDRP is 93.03%, while that of the SLA policy is

99.02%, an improvement of 8.14% relative to the supply level of 100%. This shows that heatmaps

are more effective when the supply of drivers in the network exceeds demand, so that they improve

the network balance beyond the level achieved by matching alone.

When drivers enter and exit the service region throughout the planning horizon (case 2), we

see a slightly higher gap between the SLA policy and the simple policy. For instance, with the

supply level of 100%, the SLA policy achieves an average order matching of 98.28%, while that

of the simple policy is 94.55%. This indicates that the policy by which we select the heatmap

plays a role in its effectiveness. This is especially true for case 2, since drivers leave the network

(probabilistically) as a result of the heatmap choice, and thus a suboptimal choice may result in

more drivers exiting the system. For detailed statistics refer to Tables B.1 and B.2 in Appendix

B.4.

Improvement in service level by driver supply

Figure 4.4 plots the average demand fulfillment for cases 1 and 2 under varying levels of supply.

We consider five supply levels (80%, 90%, 100%, 120%, and 150% of expected demand) and plot

the average order fulfillment over 10 problem instances. We notice in case 1 that the difference

in demand fulfillment between the policies is more significant as supply passes the 100% mark.
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Figure 4.4. Improvement of demand fulfillment by driver supply: case 1 and case 2.

The SLA policy achieves 1.54% improvement in demand fulfillment relative to the MNDRP, for

a supply level of 100%. However, when supply increases to 150%, this performance gap increases

to 5.99%. The difference is more apparent in case 2: the SLA policy almost converges to the

performance of the MCDRP at the supply level of 120% and 150%, with a gap of 1.11% and

0.04%, respectively. For 150% supply level, a larger gap exists between MCDRP and MNDRP

(6.03%), as well as MCDRP and the simple policy (1.24%).

Service level fairness by region

Since the platform’s goal is to maximize total demand fulfillment, this may come at the expense

of low service level in regions where demand outflow is lower than inflow, especially for low driver

supply. We plot the average demand fulfillment by region in Figures 4.5. For the supply level of

80%, we observe a gap of 29.5% and 16.6% between the best and worst service level by region

under the SLA policy, for cases 1 and 2 respectively. The service level improves sharply with

higher driver supply and the variation between different regions diminishes. At the supply level

of 150%, the maximum service level gap between regions is 0.5% for both cases 1 and 2.

The opposite effect is observed in Figures 4.6 where we plot the percentage of drivers matched

over regions. The percentage of matched drivers is high for all nodes, when the supply of drivers is

low. For example, for case 2 and a supply level of 80%, the percentage of matched drivers by zone

is between 89.7% and 99.8%. This indicates that the platform fulfills orders to destination nodes

where outflow demand is expected. When supply increases to 150%, the percentage of matched

drivers ranges between 28.6% and 90.1% for different zones, but the high order fulfillment (ranging

between 98.9% and 99.4%) indicates that the majority of demand is fulfilled, even if there are no

orders to match drivers with at destination nodes.
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Figure 4.5. Average demand fulfillment by zone with varying driver supply - SLA policy.

Figure 4.6. Average driver matching by zone with varying driver supply - SLA policy.
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4.5.4 The Effect of Changes in Demand Patterns on the Benefit

of Heatmaps

To test the effect of changes in demand on the benefit of heatmaps, two testing scenarios are

generated. (1) Demand data, discussed in Section 4.5.1, is scaled down by a factor of 4. (2) An

imbalanced network is created by reducing the demand inflow of two nodes in the network by a

factor of 10, while keeping the rest of the demand unchanged. This represents a scenario where

many orders originate from certain regions, but much fewer orders are delivered to that region.

We notice that scaling down demand does not significantly affect the results. Thus, we focus on

scenario (2) and report the results of scenario (1) in Appendix B.4.

Figure 4.7 plots the percentage of fulfilled demand, for imbalanced network testing scenario,

with various levels of driver supply. We observe from Figure 4.7 that for case 1 with a supply

level of 80%, heatmaps prescribed by the SLA policy improves total order matching by 8.63%

relative to balancing through matching only (MNDRP). However, this gap quickly increases with

additional driver supply; with a supply of 100% the gap between the two policies increases to

16.36%, while for a supply of 150%, this gap further widens to 34.34%. In an imbalanced network,

using matching alone (MNDRP) as a control lever quickly fails; even with the increase in driver

supply, the service level is leveled slightly below the 50% mark. With a supply of 80% an order

fulfillment rate of 48.16% is achieved. When driver supply increases to 150%, order fulfillment

only slightly increases to 49.1%.

We also note that the performance gap between the SLA policy and the simple policy is

further highlighted when the network is imbalanced. The order fulfillment gap between those two

policies increases from 5.46% to 14.7% for supply levels of 80% and 150%, respectively, under

case 2. This indicates that the way by which heatmaps are prescribed can play a significant role

in their effectiveness. The performance of the SLA policy also does not converge to that of the

UB policy with higher supply levels, unlike the results of the original dataset shown in Figure

4.4. At a supply level of 150% in case 2, 98.07% of orders are fulfilled when driver repositioning

decisions are controlled directly (MCDRP), while 84.58% of orders are fulfilled under the SLA

policy.

Service level fairness by region

We examine the service level fairness by region when demand is imbalanced in the network and

plot the demand fulfillment by region for the SLA policy in Figure 4.8. We notice that the two

regions with demand outflow much higher than demand inflow (nodes 3 and 5) have the lowest

service level. For case 1 and a supply level of 80%, those regions have an order fulfillment rate of

25.2% and 51.3%, while the next lowest order fulfillment rate by region is 89.7%. For case 2, a

similar low order fulfillment rate is observed (35.4% and 62%). However, significant improvement

85



Figure 4.7. Improvement of demand fulfillment by driver supply - imbalanced network: case 1
and case 2.

in order fulfillment is achieved as supply increases. For those two regions, fulfilled orders increases

to 67.2% and 90.7% for case 1, and 74.6% and 87.7% for case 2, given a supply level of 150%.

The opposite effect is observed when examining the percentage of matched drivers by region

in Figures 4.9. Nodes 3 and 5 always have a matching of close to 100% regardless of driver

supply. Other nodes, however, have driver matching percentages that vary by driver supply. For

instance, for case 2 and a supply level of 80%, the percentage of matched drivers in other nodes

varies between 66.6% and 92.8%. This variability increases further with additional supply; for a

supply level of 150%, driver matching in other nodes varies between 29.4% and 91.0%.

4.5.5 Sensitivity to Transition Probabilities

We test the sensitivity of the performance of heatmaps when we vary the repositioning probability

estimates. Particularly, we look at two scenarios. (1) For case 1, we reduce the probability of

moving to any node by 50%. That is, before we compute the full transition probability matrix,

we reduce the pairwise probability of movement by 50% and increase the probability of staying

in the same node by that amount, so that the sum of probabilities adds up to 1. (2) For case 2,

we reduce the probability of exiting the system by 50%, then increase the probability of staying

in the same node by that amount. We test the algorithms on the imbalanced network discussed

in Section 4.5.4.

Figure 4.10 plots the improvement in demand fulfillment by driver supply when we vary the

transition probabilities as discussed. We see that for case 1, when the probability of moving is

reduced by 50%, the gap between the performance of the SLA policy further deviates from that
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Figure 4.8. Average demand fulfillment by zone varying driver supply - imbalanced network,
SLA policy.

Figure 4.9. Average driver matching by zone varying driver supply - imbalanced network, SLA
policy.
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Figure 4.10. Improvement of demand fulfillment by driver supply - imbalanced network -
P-sensitivity: case 1 and case 2.

of MCDRP. For instance, for a supply level of 120%, the SLA policy achieves 66.13% order fulfill-

ment, while MCDRP achieves 77.39%. This contrasts with the results of the original dataset of

the imbalanced network, where the SLA policy and MCDRP fulfill 73.14% and 77.33% of orders,

respectively, for the same supply level. However, the SLA policy still significantly improves order

fulfillment relative to MNDRP (48.74%), where the platform does not interfere with driver move-

ment. For case 2, decreasing the exit probability seems to have little effect on the performance,

and shows a consistent trend with the results of the imbalanced network in Figure 4.7.

4.5.6 Main Takeaways

The computational experiments highlight the benefit of utilizing heatmaps as a control mechanism

to balance driver supply in a service region. The results show that heatmaps are most valuable

when:

1. The supply of drivers exceeds demand. When the number of drivers is lower than

demand and the level of network imbalance is low (i.e., demand inflow for all nodes is

only slightly different than demand outflow), heatmaps may not provide additional order

fulfillment relative to balancing the network through matching alone. This is observed in

Figure 4.3. However, as supply increases, additional demand fulfillment is attainable with

the use of heatmaps.

2. The demand in the network is highly imbalanced. In networks where the difference

between demand inflow and outflow of some regions is high, heatmaps achieve considerably

88



higher demand fulfillment compared to balancing through matching alone. In particular,

they achieve an improvement of up to 35.48% compared to the matching only benchmark

(MNDRP), when supply of drivers is high (150% of expected demand). This is observed

in Figure 4.7.

3. Matching and relocation decisions are considered together. The policy by which

heatmaps are prescribed plays a significant role in their effectiveness. In particular, the

SLA policy outperforms the simple policy, especially as both demand imbalance and the

number of drivers increase. This highlights the importance of considering matching and

relocation decisions concurrently, rather than sequentially. It also shows the benefit of the

heatmap selection problem, over using a simple heuristic for selecting a heatmap.

We also observe that for highly imbalanced networks, the performance of the heatmap does

not converge to that of the UB problem. This shows that further incentives are needed to reduce

the stochasticity in driver repositioning as a response to heatmaps so as to approach the MCDRP

solution, where driver repositioning decisions are directly managed.

4.6 Conclusion

This chapter studies the use of heatmaps as a tool to balance driver supply and demand for

delivery in a crowdsourced delivery system, where orders originate from any region within a service

network and delivery time windows are very short. A heatmap communicates to crowdsourced

drivers, through the mobile app, shortage within the service region, which triggers probabilistic

movement of unmatched and inactive drivers. This research assesses the effectiveness of heatmaps

in achieving a high service level by directing drivers to regions with supply shortage, compared

to a benchmark model where driver movement is directly managed. Given the dynamic and

uncertain nature of the problem, an MDP model is proposed for making allocation and heatmap

selection decisions. A reduction of the solution space is derived, under the assumption that orders

are homogeneous, i.e., have the same order fulfillment priority.

The model is then solved using a stochastic look-ahead policy, an approximate dynamic

programming approach that iteratively makes decisions given the current status of the system

and probabilistic information of the future. We propose an upper-bound problem that assumes

drivers can be directly managed. We observe that the SLA policy can be more efficiently solved

by disaggregating the matching decision, obtained by solving the upper-bound problem, then

inferring the optimal heatmap from the solution of the upper-bound problem. We also present a

simple policy as an alternative to the SLA policy, to efficiently solve large scale problems. This

policy sequentially assigns heat levels to regions with the highest supply shortage. We assess the

proposed policies against the upper-bound problem, and a lower-bound benchmark that assumes

the platform can only influence driver movement through matching; drivers do not relocate to

other regions if not matched.
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We conduct computational experiments derived from the Chicago ridehailing dataset to assess

the performance of the proposed policies and analyze when heatmaps can help the platform

achieve a high service level. Computational results show that the number of drivers in the system

has a great impact on the effectiveness of heatmaps in balancing supply and demand. That is,

with a higher number of drivers, a larger gap exists between the service level obtained when

using heatmaps as compared to the LB policy, where the platform does not interfere with driver

movement. We also find that imbalanced networks, where the demand inflow of some nodes

significantly differs from the outflow, especially benefit from the use of heatmaps. Accounting for

uncertainty in future demand and the interdependence between heat levels of different regions

can also significantly improve supply-demand balance in the network. This is observed from the

performance gap between the SLA policy and the simple policy.

The performance of the SLA policy converges to that of the UB policy when the supply of

drivers increases, for the original dataset with a moderately balanced network. However, for highly

imbalanced networks, though the use of heatmaps improves service level significantly relative to

the LB policy, the performance does not converge to that of the UB policy. This indicates that

additional incentives are needed to reduce the stochasticity in driver response to heatmaps so as

to further approach the level achieved when drivers are directly managed.

An interesting future direction that complements our current study would be designing a data-

driven estimation algorithm, from historical data, to compute the probability of driver movement

as a response to a heatmap. Further work could propose enhancements to the simple policy

to improve its performance and efficiently select close-to-optimal heatmaps, without needing to

assess the whole set of heatmaps.

Another possible extension is to study various modifications to the proposed problem setting,

including heterogeneous drivers, explicit matching between orders and drivers, routing of orders

under short time windows, among others. This builds up on the original MDP model presented,

but with the need for a different solution methodologies that account for more detailed information

of drivers and orders.

Investigating and modeling uncertainty in the impact of heatmaps by assuming that repo-

sitioning probabilities are uncertain is another interesting extension of this work. Furthermore,

investigating dominance relationships in the set of heatmaps so as to handle larger service net-

works would further strengthen the proposed model and solution approach. Lastly, from a prac-

tical perspective, it is interesting to find ways for drivers to disclose their repositioning decisions

to the platform, so that the movement and shortage of drivers is updated in real time. This

helps in managing the competition between drivers, which may negatively affect the impact of

heatmaps.
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Chapter 5

Dynamic Matching with Driver

Welfare Considerations in

Crowdsourced Delivery

5.1 Introduction

The rise of the sharing economy has enabled the creation of many on-demand service platforms,

that connect customers looking for quick service with freelance workers who are ready to provide

them. In most platforms, workers are considered independent contractors, and thus are not

entitled to employee regulatory protection (e.g., minimum wage, sick leave). The lack of such

regulations has attracted criticism from workers, labor advocates and regulators, who call for

more equitable welfare measures. This has been increasingly noticeable in recent years, with the

rapid growth of such platforms, which has led to the increase in the number of workers associated

with sharing economy platforms.

In December 2018, New York city passed the first minimum wage pay rate for ride-hailing

drivers in the United States, which forces companies to pay drivers a minimum of $17.22 per

hour, after deducting trip related expenses (O’Brien, 2019). Later, in September 2019, California

passed bill AB-5, what since became known as the ”gig economy law”. This law, which came

into effect on January 1st 2020, aims to protect the welfare of gig economy workers and other

independent contractors by enforcing that they be treated as employees, who receive at least the

minimum wage and are entitled to sick and vacation leave. Most recently, Uber drivers in the UK

are now entitled for minimum wage, holiday pay and pension (Uber-UK, 2021). The welfare of gig

economy workers has been a well-noted drawback of the sharing economy. Yet, recognizing those

freelance workers as employees has the unintended negative effect of many of those individuals

losing work (Staggs, 2020), especially in smaller markets.
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One of the main features that promoted the success of sharing economy platforms is the

flexibility it offers its workers by allowing them to schedule their own working hours. Such

flexibility has attracted workers that do not depend on the gig economy for full-time employment,

but rather use it as a means of supplementing their income. Enforcing that platforms consider all

workers as employees will eliminate the inherent flexibility of the sharing economy, and will drag

the business models of those platforms back to traditional ones. In this research, we explore one

possible middle ground solution that continues to offers flexibility to gig economy workers, but

provides compensation guarantees for active workers. The goal is to design a system with some

compensation guarantees that ensure that gig economy workers meet a target utilization rate, or

a minimum wage, without the rigid requirement of considering them employees.

In particular, we consider three types of guarantee policies: (i) a maximum utilization guar-

antee that aims to achieve a utilization target for an activity window of a specified number of

consecutive hours, (ii) an hourly minimum wage guarantee for an activity window, and (iii) an

hourly minimum wage only while drivers are actively delivering orders, but not between con-

secutive order matches. Since drivers are typically paid when they are actively fulfilling a task,

the fraction of time they expect to be busy (i.e., their utilization) plays a significant role in the

earnings they receive (Benjaafar and Hu, 2020).

We develop a dynamic matching framework that continues to treat workers as independent

contractors, but establishes guarantees to improve the earning potential of workers, ultimately

contributing to enhancing their welfare. This enables the continuation of service and maintaining

an abundant supply of workers, since the proposed system does not affect the core business model

of gig economy companies, and the flexibility of workers is not compromised. Our purpose in

this research is to answer the following fundamental questions: What are the implications of the

different types of earning guarantees on the operations of the platform? Are drivers better off

under such guarantees? Is the platform worse off?

We focus our modeling and analysis on sharing economy platforms providing transportation

services, in particular crowdsourced last-mile delivery. We propose a Markov decision process

(MDP) model to capture the highly dynamic and stochastic nature of such platforms. The state

of the system constitutes detailed driver and order information. When a driver logs in the app,

the driver is available for matching, but inactive. Once a driver receives their first order, their

status changes to active and the platform guarantees a utilization level or minimum wage for a

specified activity time window of τ consecutive hours. The goal of the platform is to maximize

profit earned from fulfilling orders, while providing utilization guarantee for active drivers. Since

the setting is dynamic, a matching at time t, not only incurs the immediate costs/revenue, but

also affects the feasibility and optimality of future decisions. Thus, our choice of the modeling

framework (MDP) is motivated by the importance of capturing the downstream cost of decisions,

when such guarantees are in place.

In this chapter we make several key contributions. (1) We introduce and model a timely new

problem that studies a middle-ground solution in the battle of improving the welfare and reg-
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ulatory protection of gig economy workers, by guaranteeing a particular utilization/wage, thus

improving workers earning potential without changing the flexible matching system employed

by such platforms. We present a Markov Decision Process (MDP) to model the problem. We

also propose a base-case model that reflects the case of no utilization guarantees. (2) To handle

large scale problems, and overcome the curse of dimensionality, we present a value function ap-

proximation solution approach, based on approximate dynamic programming, which enables the

efficient computation of good quality solutions. (3) Finally, we conduct thorough computational

experiments to test the performance of the proposed model and solution approach relative to the

myopic policy, and the base-case model. We also compare the different types of guarantee policies

and quantify the expected earning for drivers and the expected profit for the platform under each

policy, and relative to the base policy.

The remainder of this chapter is organized as follows. Section 5.2 reviews relevant literature.

Section 5.3 describes the problem and introduces the proposed MDP model. Section 5.4 explains

the different guarantee policies, and the explicit formulation of their cost functions. Section

5.5 details the proposed value function approximation algorithm and derives some theoretical

properties of the proposed solution approach. Section 5.6 presents computational experiments

and main results. Finally, the chapter is concluded in Section 5.7.

5.2 Literature Review

There is a growing body of literature addressing decision problems arising in the context of

on-demand service platforms that were enabled by the rise of the sharing economy. Benjaafar

and Hu (2020) review the main types of sharing economy platforms, discuss major streams of

research, and open research questions. The authors note that on-demand service platforms have

come under scrutiny for the lack of regulatory protections of workers. Industry groups have

argued that these platforms compete unfairly against established businesses; since workers are

independent freelancers, the platform does not abide by labor regulations.

Initial literature has examined welfare considerations in sharing economy platforms. Yu et al.

(2017) show that moderate regulatory policies improve total social welfare, by striking a balance

between key competing objectives, such as job creation, reducing traffic congestion, maximizing

consumer and worker welfare. Benjaafar et al. (2019) examine the question of whether labor pool

expansion reduces workers welfare. They find that growth in labor pool size initially stimulates

demand, improving the utilization of workers, and increasing their wages. Welfare of workers

decreases only when the labor pool is sufficiently high. Hu and Zhou (2019) study the effect of

minimum wage on the platform, drivers and riders. The authors derive worst-case performance

of fixed commission contracts to quantify a guaranteed lower bound on performance.

Existing research addressing wage and welfare questions in sharing economy platforms has

mainly focused on strategic questions concerning the effect of such minimum wages on the plat-
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form, drivers, and consumers, or lack thereof. In this research, we examine a different angle of

the problem: the impact of putting such guarantees into action from the platform’s perspective.

We model the problem of dynamically matching drivers with orders when such a minimum wage

or utilization guarantee is in effect, and design a methodology for providing real-time matching

that maximizes the platform’s profit while respecting driver wage guarantees.

Most literature investigating problems arising in the sharing economy examine questions on

how best to price services and compensate workers, especially when workers are self-scheduling

and prices and wages are dynamic. Cachon et al. (2017) examine various compensation schemes

in a service platform with self-scheduling capacity. The authors conclude that there is notable

benefit to the platform in adopting a pricing policy that dynamically adjusts prices and wages.

They show that all stakeholders can benefit from surge pricing, in periods of high demand, as

providers are better utilized, and consumers benefit from expanded access to the service. Bimpikis

et al. (2019) investigate the impact of spatial pricing in ride hailing networks and derive conditions

under which spatial price discrimination maximizes a platform’s revenue. Besbes et al. (2021)

examine the short term spatial pricing problem faced by ridehailing platforms, in particular how

to optimally set prices within a continuous service region so as to maximize the platform’s revenue.

Sharing economy platforms for last mile delivery, i.e., crowdsourced delivery, partially or

fully utilize freelance workers to complete last mile delivery tasks. Alnaggar et al. (2019) review

the operations research literature on crowdsourced delivery along with the main trends of this

system in practice. The authors classify decisions faced in this system into four main categories:

matching, routing, driver scheduling, and driver compensation. This work loosely falls under

the driver compensation category. Compensation of drivers in crowdsourced delivery was only

considered a decision variable by Qi et al. (2018) in their wage response model. Many papers in

the crowdsourced delivery literature assume that driver compensation is a function of the location

of customers (e.g., Archetti et al., 2016 and Gdowska et al., 2018), deviation of the driver’s pre-

planned trip, when drivers are not dedicated workers (e.g., Archetti et al., 2016, Macrina et al.,

2017 and Arslan et al., 2018), or parcel size (Gdowska et al., 2018). In contrast to the literature,

in this research we aim to achieve a compensation guarantee over a period of time, rather than

decide on a particular compensation structure for workers. The proposed model and solution

approach are general, and can handle different types of compensation schemes.

5.3 Markov Decision Process (MDP) Model

We consider a last-mile delivery network operated by a crowdsourced delivery platform, where

orders and drivers arrive to the system randomly throughout the planning horizon (e.g., a given

day). Order arrival follows a Poisson process with a known arrival rate λ per epoch. When an

order arrives, its origin and destination information are known, as well as the time window of

order fulfillment. New drivers arrive to the platform with a known arrival rate µ per decision
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epoch.

The pool of drivers is divided into two sets: (a) active drivers: drivers who were matched

with a delivery request and who may be en-route delivering an order and (b) inactive drivers:

drivers who are available to provide service, but have not yet received any order requests. Inactive

drivers, set (b), receive no matching guarantees. However, once a driver receives their first delivery

request, they join the pool of active drivers (a), and the platform offers them a compensation

guarantee W , for τ consecutive hours. At discrete time points throughout the day, i.e., decision

epochs, the platform decides on the matching between orders and drivers that maximizes the

number of matched requests while offering active drivers guarantee W , expressed in terms of

utilization or wage, for τ consecutive hours, which is the duration of the activity time window

during which they receive the guarantee.

Note that we define all notation used in the model formulation and solution approach within

text, and also provide a comprehensive notation summary in Appendix C.1.

5.3.1 State Space

The state variable St, at decision epoch t, is the minimal amount of information necessary and

sufficient to make a decision. The two main components that constitute the state variable in

this problem are driver information and order information. Driver information includes the set

of drivers in the system, each with known attributes detailing their activity status, availability

for matching, location, progress towards guarantee W (i.e., utilization or wage earned), active

time spent in the system. Order information describes the the set of active orders, their origin-

destination (o-d) locations and time window (announcement time and delivery deadline).

At decision epoch t, each driver has an attribute vector a, such that:

a = (sa,ma, oa, ha, ya)

where sa is a binary indicator that equals 1 if the driver is active (i.e., has received an order

request and is within their guaranteed time interval τ), and 0 otherwise. ma is a binary indicator

that is set to 1 if the driver is available for matching, and 0 if the driver has been matched at an

earlier epoch and is currently delivering an order, and thus not available for matching. oa denotes

the current location of the driver, ha is the active time spent up to time t. For active drivers

(sa = 1), active time ha is less than or equal to the activity time window τ . After being active for

τ consecutive hours, the driver status changes to inactive, thus the driver joins the pool of inactive

drivers and no longer receives the compensation guarantee. ya denotes the progress towards the

desired guarantee policy, e.g., the wage earned by the driver up to time t or the portion of active

time that the driver is utilized up to time t. We denote the set of driver attributes at time t, for

drivers who are available for matching (ma = 1), and drivers who are en-route (ma = 0), as At
and A′t, respectively.
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Each order request is associated with an attribute vector b that retains necessary information

about the order. That is,

b = (ob, db, [t
min
b , tmaxb ])

where ob and db are the origin and destination of the order, and [tminb , tmaxb ] is the time window

of order fulfillment. Bt is the set of all demand attributes b at time t.

We denote the number of drivers with attribute a at time t as Rta, and the vector of available

drivers at t as Rt = (Rta)a∈At . Similarly, the number of orders with attribute b at t is denoted

as Dtb, and the vector of orders at t is Dt = (Dtb)b∈Bt . Thus the state of the system at epoch t is

compactly written as St = (Rt, Dt). Note here that the driver and order vectors Rt and Dt are

typically very sparse because of their detailed attributes.

5.3.2 Action Space

We define variables xtab and xta0 as the number of drivers with attribute a assigned to orders with

attribute b in decision epoch t, and the number of drivers with attribute a that are not assigned

to any order in t, respectively. Let B+ denote the set of all possible decisions, i.e. B+ = Bt ∪{0}.
The decision vector at time t is expressed as xt = (xtab)a∈At,b∈B+ .

5.3.3 Myopic Objective Function

The objective of the platform is to maximize profit obtained from demand fulfillment, while

providing drivers with the specified guarantee. That is, once a driver is active, they are offered a

guarantee W , while they are within their activity time window τ . We detail the different types

of guarantee policies in the next section. The reward of assigning a driver with attributes a to

an order with attributes b is expressed in general form as follows:

πab =



R(b)− C(a, b), if b ∈ Bt, (ha < τ) or (ha ≥ τ and ya ≥W )

R(b)− C(a, b)− F (a), if b ∈ Bt, ha ≥ τ, ya < W

−F (a), if b = 0, sa = 1, ha ≥ τ and ya < W

0, otherwise

(5.1)

The first case specifies the reward of matching a driver with an order, which is the revenue

minus the cost of the match, if after fulfilling the match, the driver will still be within their

activity window τ , or the driver would complete τ and has met the target guarantee W . The

revenue term R(b) is a function of the attributes of order b, whereas the cost term C(a, b) depends

on both the driver attributes (a), and order attributes (b). The exact forms of the revenue and

cost functions are discussed in Section 5.4. The second case is similar to the first, but with an
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additional penalty term F (a), a function of driver attributes (a), when a driver does not meet

the desired guarantee. The third case assigns the penalty term for unmatched drivers who do

not meet their policy guarantee at the end of their activity time window τ . Finally, the last case

assigns a cost of 0 for all other possible cases.

5.3.4 Myopic Policy

At decision epoch t, given a particular state St, the myopic policy finds the best matching given

the current state, without any consideration of future uncertainty or the impact of decisions made

now on the feasibility and optimality of future decisions. Modeling the myopic policy serves as an

essential building block in modeling the approximate dynamic programming algorithm that we

detail in Section 5.3.5. We also use the myopic policy as a benchmark against which to compare

the performance of the proposed algorithm.

We first discuss the time window constraint of fulfilling orders. At decision epoch t, the time

it takes a driver a to fulfill an order b is denoted as ιab.

ιab = η
(
||oa − ob||+ ||ob − db||

)
(5.2)

where || · || is the norm that measures the travel distance between two nodes (e.g. L2 norm), and η

is a scalar that converts the distance measure to a time estimate. We also let ιb denote the travel

time between the origin and destination of demand b, i.e., ιb = η(||ob−db||). Let Dab denote the set

of time-feasible assignments between drivers and orders, i.e., Dab = {(a, b) ∈ At×B+
t |ιab ≤ tmaxb }

We formulate the myopic policy as an integer programming model expressed as follows:

max
∑

a,b∈Dab

πabxtab (5.3)

∑
b:(a,b)∈Dab

xtab = Rta, ∀a ∈ At (5.4)

∑
a∈At

xtab ≤ Dtb, ∀b ∈ Bt (5.5)

xtab ∈ Z+, ∀(a, b) ∈ Dab (5.6)

Objective function (5.3) maximizes the profit of fulfilling orders, as detailed in (5.1). Con-

straint set (5.4) is the flow conservation of drivers, ensuring that each driver is assigned to one

feasible decision, either to an order or is unmatched in the current epoch. Constraint set (5.5)

ensures that the number of drivers assigned to orders with attribute b does not exceed the number

of orders with that attribute. Constraint set (5.6) limits the domain of the decision variables to

positive integer values.

Note that the constraint matrix expressed by (5.4) and (5.5) is totally unimodular (Wolsey

and Nemhauser, 1999), and thus the linear relaxation of the above integer program results in
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integral solutions at all extreme points. We can therefore relax the integrality requirement (5.6)

and replace it with the non-negativity constraint,

xtab ≥ 0,∀(a, b) ∈ Dab (5.7)

5.3.5 MDP Contribution Function

The linear program (5.3-5.5, 5.7) finds the optimal matching between drivers and orders, given

known information, but does not account for the impact of decisions made on the future dynamics

of the system. Let Ct denote the myopic objective function (5.3), and Xt denote the feasible region

of the LP, characterized by Constraints (5.4, 5.5 and 5.7). The objective of the proposed MDP

model is

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γ

∑
s∈S

p(s|St, xt)Vt+1(s)

)
(5.8)

Equation (5.8) is the Bellman recursion function. The first term minimizes the immediate

myopic cost of choosing decision vector xt ∈ Xt, when in state St. The second term denotes the

cost-to-go function, which maximizes a (discounted) expectation of the value of future states.

Computing the exact value of Vt(St) for all possible states St is intractable for reasonable size

problems. Thus, rather than solving Equation (5.8) exactly, we employ approximate dynamic

programming techniques to propose tractable policies that approximate the cost-to-go function.

We define Wt as the exogenous information that is continuously arriving between epochs t−1

and t. Wt = (R̃ta, D̃tb)a∈At,b∈Bt , where R̃ta is the number of drivers joining or leaving the system

between t− 1 and t, and D̃tb is the number of new order arrival between epochs t− 1 and t.

Due to its computational advantages, we rewrite Bellman’s equation utilizing a post-decision

state representation (Sxt ) when estimating the cost-to-go, rather than the predecision state St.

A post-decision state determines the state of the system immediately after a vector of decisions

is selected, but before the arrival of any new stochastic information (e.g., new order arrival).

Rewriting Bellman’s equation as a function of the post-decision state, as shown in Equations

(5.9), substantially reduces the dimensionality of the outcome space. For every realization of the

random vector Wt, we solve one deterministic optimization problem, then find the mean of the

optimal values of all optimization problems. This is much less computationally demanding than

the original representation of Bellman’s equation (5.8), where we need to compute the maximum

over the entire distribution of random outcomes Wt (Ruszczyński, 2010; Powell, 2011).

Vt(St) = max
xt∈Xt

{
Ct(St,xt) + γVt(S

x
t )
}

Vt(S
x
t ) = E[Vt+1(St+1)|Sxt ]

(5.9)

The system thus evolves as follows: (S0,x0, S
x
0 ,W1, S1,x1, S

x
1 ,W2, S2, . . . , St,xt, S

x
t , . . . , ST ).
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5.3.6 Transition Function and Post-decision State

The post-decision state captures the changes in the state vector immediately after a decision xb

is made. Thus, Sxt = (Rxt , D
x
t ) captures changes to both the driver and order vectors. To derive

the post-decision state, we let a′ = aM (a,xt) denote the changes of driver attribute vector a

after decision xt is selected, where aM is a transition function. At decision epoch t, consider all

positive assignments between drivers and orders (a, b) ∈ At × Bt such that xtab > 0. To describe

the changes to the attribute vector as a result of matching, we first introduce an indicator function

δa′(a,xt) =

1, if aM (a,xt) = a′

0, otherwise.

Then, the post-decision resource state Rxt = (Rxta)a∈At,x is updated as

Rxta′ =
∑
a∈At

∑
b∈B+t

δa′(a,xt)xtab, ∀a′ ∈ At,x (5.10)

where At,x is the set of possible attributes of drivers after decision xt is made.

To update the post-decision order vector, we note that any order with an expired time window,

such that t+ 1 > tmaxb + ιb is considered lost, and is thus not moved forward to t+ 1. We denote

the set of lost orders as B̄t. For the remaining orders, we update the order vector as follows:

Dx
tb = Dtb −

∑
a∈At

xtab, ∀b ∈ Bt \ B̄t (5.11)

Note that an active driver’s attribute changes even if the driver is not matched. Particularly,

the number of hours active in the system increases by the duration of the time interval of the

decision epoch, i.e., h′a = ha + ∆, where ∆ is the time interval between two consecutive decision

epochs.

5.3.7 Pre-decision State

The arrival of exogenous information between epoch t and t + 1, Wt+1 = (W r
t+1,W

d
t+1), tran-

sitions the system from post-decision state Sxt to the next pre-decision state St+1, where

St+1 = (Rt+1, Dt+1). We define a transition function aM,W that captures the progression of

matched drivers’ trips. That is, a′ = aM,W (a), ∀a ∈ At, where a′ = (s′a,m
′
a, o
′
a, h
′
a, y
′
a) ∈ At+1.

For instance, if a driver arrives at the pickup location of the matched order ob, the new origin

of the driver is now o′a = ob. But since the order delivery is not complete, m′a = 0, a /∈ At+1,

indicating that the driver is not considered for matching at t+ 1.
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We again utilize an indicator function representation as follows:

δa′(a) =

1, if aM,W (a) = a′

0, otherwise.

Then the pre-decision resource vector Rt+1 = (Rt+1,a)a∈At+1 is computed as

Rt+1,a′ =
∑
a∈At,x

δa′(a)Rxta +W r
t+1,a′ , ∀a′ ∈ At+1 (5.12)

where Wt+1,a′ denotes the number of inactive drivers with attribute a′, who arrive (if Wt+1,a′ > 0)

or depart (if Wt+1,a′ < 0) between epochs t and t+ 1.

Next, we update the demand state vector Dt+1 = (Dt+1,b)b∈Bt+1 . This is composed of carried

forward orders Dx
tb, plus new orders that arrives between t and t + 1, W d

t+1, and is expressed as

follows:

Dt+1,b = Dx
tb +W d

t+1,b, ∀b ∈ Bt+1 (5.13)

5.4 Guarantee Policies

The proposed guarantee policies differ mainly in the type of guarantee W , whether it is wage or

utilization based, and the type and form of the penalty term F (a). We consider three types of

guarantee policies:

1. The platform maximizes the utilization of active drivers to reach a target utilization W for

τ consecutive hours.

2. The platform guarantees active drivers a minimum pay W for τ consecutive hours. This is

also referred to in the literature as the effective wage.

3. The platform guarantees drivers a minimum pay of W , while they are actively delivering

orders. That is, drivers are compensated only for the time they are delivering orders and

may have unpaid long breaks between consecutive orders that do not count towards their

minimum pay. This is also referred to in the literature as the nominal wage.

We also model the base-case policy, where the platform does not offer any earning guarantees to

drivers. This policy acts as a benchmark to compare the performance of the proposed policies

against. In what follows, we formulate and explain the explicit cost function used under each

policy.
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Policy 1. Maximum Utilization During an Activity Window τ

The motivation behind this guarantee policy is to investigate a policy that is less dependent on the

compensation structure employed by a particular platform, and thus gain generate insights that

may extend to different types of platforms. In other words, since the results of the minimum pay

guarantee depend on the assumption of the compensation of drivers, focusing on driver utilization

while they are active enables us to examine the main trade-offs a platform encounters when driver

utilization is prioritized.

Under this policy, ya represents the utilization percentage of a driver with attributes a, and

the penalty F (a) = F (ya) is a function of such utilization. Note that the penalty in this case is

not actual dollars paid by the platform, but rather an artificial amount which forces the model

to improve the utilization of drivers to reach the desired target W .

We formulate the cost function as follows.

• R(b) = θbwb, where wb is the distance between the origin and destination of the order, and

θb is the revenue per unit distance.

• C(a, b) = θ̄abwab, where wab is the distance between the origin of a driver and the origin of

an order, and θ̄ab is a scalar, which represents the cost or disutility per unit distance.

• F (a) = ζρa, where ρa is a piecewise linear function of the utilization of a driver, and ζ is a

penalty score.

We note that the above cost and revenue functions are used in computational experiments

examining different solution approaches under the utilization policy, which we present in Section

5.6.3. However, when comparing the different types of guarantee policies (Section 5.6.4), to be

consistent, we use the cost and revenue functions proposed under policy 2.

Parametric Cost Function Approximation

Parametric cost function approximation refers to the use of parametrically modified deterministic

models. The goal is to improve the performance of the myopic policy by parametrically adjusting

the cost function and/or constraints so as to (partially or fully) capture the effect of uncertainty

(Powell, 2019). To design the parametric cost function approximation (PCF), the objective

function coefficients (5.1) are modified as follows.

• A priority score L(a, b) is added to drivers with reduced utilization, and orders closer to

expiry, where L(a, b) = α(ρa + ρ′b).

• Case three is modified such that a penalty is incurred every time a driver falls below

utilization W , and not just at the end of the activity window τ .
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Thus, objective function πab is expressed as:

πab =



R(b)− C(a, b) + L(a, b), if b ∈ Bt, (ha < τ) or (ha ≥ τ and ya ≥W )

R(b)− C(a, b) + L(a, b)− F (a), if b ∈ Bt, ha ≥ τ, ya < W

−F (a), if b ∈ {0}, sa = 1, ya < W

0, otherwise

(5.14)

Although we use ρa in the expression of both F (a) and L(a, b), the penalty and priority scores

are not equal because of ζ and α, and may be expressed using different functions.

Policy 2. Minimum Wage During an Activity Window τ

Under this policy, the platform guarantees a minimum compensation for drivers W for τ consecu-

tive hours. If this minimum compensation is not earned from matching, the platform compensates

drivers directly with the difference. The activity time window τ ensures that drivers get to work

when they are ready, for a specified activity window, rather than leaving them unmatched too

long between consecutive matchings. We compare this policy against policy 3, where drivers are

only guaranteed a minimum wage while completing deliveries.

To estimate driver compensation and the platform’s profit, we focus on the compensation

structure used by restaurant meal delivery platforms. The revenue and cost functions are esti-

mated using data from UberEats official website, as detailed in Section 5.6.4. Under this policy,

the penalty F (a) = F (ya), is a function of the average wage earned during the τ activity time

window. We modify the order attribute by adding a revenue per order, φb which is the fraction

of order value that the platform earns from the restaurant for providing delivery service. We

express the terms of the myopic objective function under the minimum wage policy as follows.

• R(b) = θb(wb) + φb, where the first term is a delivery cost charged to the customer, that is

based on the distance between the origin and destination of the order, and φb is the fraction

of the value of the order that the platform collects from the restaurant/store.

• C(a, b) = θ̄abwab + ϕb, where θ̄ab is the variable per-unit-distance delivery cost, paid to

drivers, and ϕb is the fixed cost per delivery, .

• F (a) = (W − ya) · τ , where W is the minimum hourly wage, ya is the hourly earning of a

driver with attributes a, and τ is the number of hours in the guarantee time window.

Policy 3. Minimum Pay Guarantee while Delivering Orders

This policy is a modification of policy 2 that only guarantees a minimum pay to drivers while they

are delivering orders. That is there is no activity time window τ , and the platform only ensures
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that the compensation received while delivering orders delivery is no less than a minimum pay W .

Thus, drivers receive no earning guarantee if they are idle between two consecutive matchings.

In this case, the myopic objective function changes to

πab =


R(b)− C(a, b), if b ∈ Bt, ya ≥W

R(b)− C(a, b)− F (a), if b ∈ Bt, ya < W

0, otherwise

(5.15)

where the revenue and cost functions are identical to those defined under policy 2. F (a) =

(W − ya) · ha, where ha is the time spent delivering an order.

Base-Case Policy. No Driver Earning Guarantee

We model the base-case policy, where the platform does not offer any earning guarantees to

drivers. The goal is to assess the benefit of compensation guarantees on drivers and the platform,

and investigate the impact of driver earning guarantees on the quality of obtained assignments.

Under this policy, the attribute vector of drivers reduces to the following:

a = (ma, oa)

where ma and oa denote the driver availability for matching and their location, respectively.

Since the platform does not provide any minimum earning guarantee, it does not keep track of

the status or active time of drivers. Intuitively, the demand attribute vector is unaffected by the

platform’s guarantee to drivers. Under the base-case policy, the immediate reward of assigning a

driver a to an order b is expressed as follows:

πab =

R(b)− C(a, b), if b ∈ Bt
0, if b = 0

(5.16)

That is, since no earning/matching guarantee is in place, the platform does not incur a

cost/penalty for matches that compensate drivers poorly. The rest of the model follows from the

MDP formulation detailed earlier.

5.5 Value Function Approximation

Bellman Equation (5.8) computes the value of being in a state St as the sum of the immediate

myopic cost plus the discounted expected value of future states, i.e., the cost-to-go. Computing

the value function (Vt) exactly for all possible states is computationally expensive, even with the

reduction in outcome space enabled by the post-decision state representation (5.9), as discussed
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earlier. Thus, we aim to approximate the value functions Vt(S
x
t ) so as to obtain high quality

solutions more efficiently, while still capturing the downstream impact of decisions. We refer to

the approximation function as V̄t(S
x
t ). The optimization problem we solve is

Zt(St) = max
xt∈Xt

{
Ct(St,xt) + γV̄t(S

x
t )
}

(5.17)

To compute approximation V̄t(S
x
t ), we simulate the system forward in time for N iterations.

At iteration n ∈ {1, . . . , N}, a sample path ωn of the stochastic process is randomly selected,

which includes realizations of the random variables (of orders and drivers) for the finite planning

horizon, t = 0, . . . , T . Given the sample path ωn, the following optimization problem is solved for

t = 0, . . . , T , with the approximate value function computed from the previous iteration n − 1,

as follows:

Zt(S
n
t ) = max

xt∈Xt

{
Ct(S

n
t ,xt) + γV̄ n−1

t (SM,x(Snt ,xt))
}

(5.18)

At a particular decision epoch t, we solve optimization problem (5.18) given state Snt . We

obtain the optimal solution xnt , then compute the post-decision state as Sx,nt = SM,x(Snt ,xt), and

the subsequent pre-decision state Snt+1 = SM,W (Sx,nt ,Wt(ω
n)). We then solve (5.18) again, and

continue the process until we reach the end of the planning horizon T .

To design the approximate value function, similar to the idea presented in Simao et al. (2009),

we take advantage of an important property of our problem. We notice that because of the detailed

characteristics captured in the driver attribute vector, the value of Rta typically does not exceed

one. Thus, a linear approximation of V̄ n
t as a function of available drivers Rta is proposed as

follows:

V̄ n−1
t (Sxt ) = V̄ n−1

t (Rxt ) =
∑

a′∈At,x

ῡta′R
x
ta′

=
∑

a′∈At,x

ῡta′
∑
a∈At

∑
b∈B+

δ′a(a,xt)xtab

=
∑
a∈At

∑
b∈B+

ῡn−1
t+ῑ(t,a,d),aM (a,xt)

xtab

(5.19)

where ῡta′ is the value coefficient of having a driver with attribute a′ at epoch t, and ῑ(t, a, d)

is the travel time of driver with attribute a, when decision d is applied. Optimization problem

104



(5.18) is rewritten as

Zt(S
n
t ) = max

xt∈Xt

{
Ct(S

n
t ,xt) + γ

∑
a∈At

∑
b∈B+

ῡn−1
t,aM (a,xt)

xtab
}

= max
∑

(a,b)∈Dab

(πab + γῡn−1
t+ῑ(t,a,d),aM (a,d)

)xtab∑
b:(a,b)∈Dab

xtab = Rta, ∀a ∈ At∑
a∈At

xtab ≤ Dtb, ∀b ∈ Bt

xtab ≥ 0

(5.20)

Note that ῡn−1
ta′ can be interpreted as the marginal value of having an additional resource

(driver) with attribute vector a′, on the objective function value Zt(S
n
t ). Therefore, we can also

think of it as the slope of the objective function Zt(S
n
t ) with respect to Rxta, which is computed

as

vnt−1,a =
∂Zt(St)

∂Rxt−1,a

=
∑
a′∈At

∂Zt(St)

∂Rta′

∂Rta′

∂Rxt−1,a

, (5.21)

where ∂Zt(St)/∂Rta′ are the dual variables associated with Constraints (5.4) in LP (5.20), and

∂Rta′/∂R
x
t−1,a is defined as

∂Rta′

∂Rxt−1,a

=

1, if a′ = aM,W (axt−1)

0, otherwise.

The estimated values ῡnt−1,a at iteration n are then updated to be a weighted average of the

estimate from the previous iteration ῡn−1
t−1,a, and the new values vnt−1,a as follows:

ῡnt−1,a = (1− αn−1)ῡn−1
t−1,a + αn−1v

n
t−1,a (5.22)

Algorithm (1) details the steps of the forward simulation used for approximating the value

functions.

5.5.1 Hierarchical Aggregation

The state space considered in this problem is vast, especially since the attribute vector of drivers

stores highly detailed information about the driver status. When we consider the full attribute

vector to approximate the value function, we face a statistical challenge; for attribute a and

epoch t, we do not have enough samples to accurately learn its value function. We can create
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Algorithm 1: Approximate Value Functions

Initialize ῡ0
ta, t ∈ {0, . . . , T}, a ∈ At, S1

0 .
Set n = 1.
while n ≤ N do

Randomly select a sample path ωn.
for t = 0, . . . , T do

Solve optimization problem (5.20). Let xnt denote its solution, and vnta
denote the new estimate obtained from the dual of constraints (5.4).

Update the value function as in Equation (5.22).
Update the state:

Sx,nt = SM,x(Snt , x
n
t )

Snt+1 = SM,W (Sx,nt ,Wt+1(ωn))

n← n+ 1, Sn0 ← Sn−1
T

return value functions {ῡnta, t = 1, . . . , T, a ∈ At}.

more samples for each attribute a at time t and iteration n, but since the state S is a vector,

the number of possible states increases exponentially with the number of dimensions. Table 5.1

demonstrates the size of the outcome space for a single decision epoch t for a problem instance

with 400 zones, and with ya and ha discretized to 20 values, where H is the number of possible

outcomes.

To overcome this, hierarchical aggregation is implemented, as suggested by George et al.

(2008). The authors argue that aggregating states for the purpose of approximating the value

function results in better convergence of the VF, and thus better results. We train the model with

and without hierarchical aggregation, and compare the results in the computational experiments.

Aggregation is used to create a hierarchy of state spaces, {A(g), g = 0, 1, 2, . . . , |G|}, with

successively fewer dimensions. One intuitive way to aggregate the state space is to use spatial

aggregation. This is motivated by the fact that spatial correlation is likely to exist between

neighboring zones, i.e., two zones that are close to each other are likely to have close value

functions. Let Σ denote the number of zones in the model. We propose three levels of aggregation;

the first, level 0, is the disaggregate level, where the number of zones is the same as in the model,

i.e., σ(g=0) = Σ. For each other aggregation level g > 0, we aggregate 22g neighboring zones into

one area. Thus, for level one, we group each 4 zones together, i.e., σ(g=1) = Σ/4 and at level

two, we group every 16 zones together, σ(g=2) = Σ/16. At each iteration, a disaggregate zone

belongs to one and only one aggregate area, at each aggregation level. Note that the size of zones,

whether at the disaggregate or aggregate level, need not be equal throughout the service region,

as long as a disaggregate zone belongs to only one aggregate zone. For instance, a disaggregate

zone in a sparsely populated region could be larger in size than one at a more densely populated

region.

We aim to estimate the value functions at different levels of aggregation. The estimate of the
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function at the disaggregate level is assumed to be noisy but unbiased. Thus, we estimate the bias

as the difference between the function at some level of aggregation and the disaggregate level 0.

Choosing the right level of aggregation to approximate value functions includes a trade-off between

statistical and structural errors. Let {ῡ(g)
ta , g ∈ G} denote the estimate of the value function ῡta at

different levels of aggregation. To reach a trade-off between statistical and structural errors, we

compute an improved estimate as a weighted average of estimates at different aggregation levels

as proposed by George et al. (2008). That is,

ῡta =
∑
g∈G

w
(g)
ta · ῡ

(g)
ta , (5.23)

where {w(g)
ta }g∈G is a set of weights for each aggregation level, that add up to one. George et al.

(2008) show that a good choice of weights can be obtained by using a simple formula that they

call WIMSE, which assigns weights to each aggregate level such that they are inversely correlated

to the estimate of the mean squared deviations from the true value at that level. The mean

squared deviation is the sum of variance and bias estimates. We show how to compute those

weights in what follows; interested readers are referred to George et al. (2008) for the complete

derivation.

We first compute the following:

β̄
(g,n)
ta = Estimate of bias due to smoothing a transient data series,

= (1− ηn−1)β̄
(g,n−1)
ta + ηn−1(vnta − ῡ

(g,n−1)
ta ).

µ̄
(g,n)
ta = Estimate of bias due to aggregation error,

= ῡ
(g,n)
ta − ῡ(0,n)

ta .

¯̄β
(g,n)
ta = Estimate of total squared variation,

= (1− ηn−1) ¯̄β
(g,n−1)
ta + ηn−1(vnta − ῡ

(g,n−1)
ta )2.

(5.24)

Notice that in the proposed methodology we are using two step-size variables. ηn is used in

updating bias and squared variation estimates, as shown in (5.24), and is typically a deterministic

step size or a constant (e.g., ηn = 0.1). α
(g,n)
ta is the step size used to update the value function

estimate ῡnta. The variance of the observations at a given aggregation level is estimated using

(s2
ta)

(g,n) =
¯̄β

(g,n)
ta − (β̄

(g,n)
ta )2

1 + λ
(g,n)
ta

, (5.25)

107



where λ
(g,n)
ta is computed as

λ
(g,n)
ta =

(α
(g,n−1)
ta )

2
n = 1,

(1− α(g,n−1)
ta )2λ

(g,n−1)
ta + (α

(g,n−1)
ta )2 n > 1.

We then compute an estimate of the variance of ῡ
(g,n)
ta as

(σ̄2
ta) = Var[ῡ

(g,n)
ta ] = λ

(g,n)
ta (s2

ta)
(g,n). (5.26)

The weight we assign to each level of aggregation is given by

w
(g,n)
ta ∝

(
(σ̄2
ta)

(g,n) + (µ̄
(g,n)
ta )2

)−1
, (5.27)

where the weights are normalized so they sum to one. The above estimates are easy to compute

even for very large scale state spaces. This allows us to compute an estimate for all states,

regardless of whether they were visited or not.

Table 5.1. Outcome state space size for a single decision epoch t.

No.
of
zones

Driver
sta-
tus
(sa)

Driver
avail-
ability
(ma)

Percent
comple-
tion of τ
(ha)

Progress
to guar-
antee
(ya)

H

400 2 2 20 20 320,400

5.5.2 Structural Analysis

In this section, we derive some theoretical properties of the proposed model.

Relationship between the dual variables of (5.20) and value func-

tion estimates

We now show a result that formalizes the relationship between the dual variables of the LP (5.20)

and the value function estimates. Let ῡab be the value function estimate when a driver with

attributes a is matched to order with attributes b. Let va, a ∈ A denote the dual variables of

constraint set (5.4) and κb, b ∈ B denote the dual variables of constraint set (5.5). Also, let

the attribute vector A = A1 ∪ A2 ∪ A3, where A1 is the subset of driver attribute such that

sa = 1, ha ≥ τ, ya < W , A2 ⊂ A is the subset of drivers satisfying sa = 1, (ha < τ) or (ha ≥
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τ and ya ≥ W ), A3 is the set of remaining driver attributes, A3 = A \ A1 ∪ A2. The dual of LP

(5.20) is

min
∑
a∈A

Rtava +
∑
b∈B

Dtbκb (5.28)

s.t. va + κb ≥ θbwb − θ̄abwab − ζρa + γῡab a ∈ A1, b : (a, b) ∈ Dab (5.29)

va + κb ≥ θbwb − θ̄abwab + γῡab a ∈ A2, b : (a, b) ∈ Dab (5.30)

va ≥ −ζρa + γῡa0 a ∈ A1 (5.31)

va ≥ γῡa0 a ∈ A2 ∪ A3 (5.32)

κb ≥ 0 b ∈ B (5.33)

Lemma 2. The optimal values of the dual variables va, a ∈ A, in the driver compensation

guarantee model (5.20), have the following structure

va =


max

{
(−ζρa + γῡa0), max

b:(a,b)∈Dab

(θbwb − θ̄abwab − ζρa + γῡab − κb)
}
, a ∈ A1

max
{
γῡa0, max

b:(a,b)∈Dab

(θbwb − θ̄abwab + γῡab − κb)
}
, a ∈ A2

γῡa0, a ∈ A3

(5.34)

Proof.

• For a ∈ A1, the constraints imposed on a in the dual problem are (5.29) and (5.31). To

minimize objective function (5.28) while satisfying (5.29) and (5.31), va takes the highest

value of the RHS of the two constraint sets (5.29) and (5.31), i.e., va = max
{

(−ζρa +

γῡa0), max
b:(a,b)∈Dab

(θbwb − θ̄abwab − ζρa + γῡab − κb)
}

.

• For a ∈ A2, similar analysis holds. The constraints imposed on a in the dual prob-

lem are (5.30) and (5.32). To minimize objective function (5.28) while satisfying (5.30)

and (5.32), va takes the greater value of the RHS of the two constraint sets, i.e.,

va = max
{
γῡa0, max

b:(a,b)∈Dab

(θbwb − θ̄abwab + γῡab − κb)
}

.

• Finally, for a ∈ A3, only constraint set (5.32) is imposed, and thus to minimize the objective,

va = γῡa0.

This concludes the proof.

5.6 Computational Experiments

We test the proposed model and solution approach on multiple test instances to examine the

effectiveness of the different computational policies and factors that affect solution quality. We
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first focus on the utilization guarantee, where we examine and compare multiple solution poli-

cies including the myopic policy, parametric cost function approximation (PCF), value function

approximation (VFA) with and without heirarchical aggregation, as well as VFA when combined

with PCF. We then compare the three proposed guranatee policies (utilization, minimum wage

for activity window, and minimum wage while on-delivery) for restaurant delivery test instances,

where we approximate the platform’s profit and driver earning given data from the official website

of UberEats (2021).

5.6.1 Data Generation

We test the solution approach using randomly generated instances. The number of stages or

decision epochs is set to T = 168, with a duration of 5 minutes for each epoch, implying a 14-

hour planning horizon. To ensure that driver utilization guarantees are considered as we approach

the end of the horizon, the planning horizon is extended by 2 hours (T = 192) only when training

the value functions. Drivers are initially uniformly distributed on a 10×10 grid network at t = 0,

and continue arriving at rate µ = 2 per decision epoch. One unit of distance in the grid network is

assumed to be 3 km. Each disaggregate location is the center of 0.5× 0.5 square, resulting in 400

disaggregate locations in the network. At a given decision epoch, the number of drivers exiting

is the minimum of the random realization of the exit distribution with mean ψ = 4 per epoch,

and the number of inactive drivers at t. New orders arrive following a Poisson process with mean

λ = 10 per epoch. The delivery time window is set to 90 minutes from order announcement time.

The origin and destination of each order is uniformally distributed in the network.

The parameters of the objective function of the utilization policy are set as follows. θb = 1

implying that a unit of reward is obtained for each unit distance traveled between an origin and

a destination. θ̄ab = 1
2
√

200
, implying that the maximum disutility weight assigned to the distance

between a driver and the origin of an order is 0.5. η, the scalar that converts the distance measure

to a time estimate, is to equal 0.8. This means that it takes 4 minutes to travel 3 km, implying

a vehicle speed of 45 km/hr.

The utilization guarantee W is set to 0.8, and the activity time window τ is set to 2 hours

(24 consecutive decision epochs). Penalty functions ρa and ρ′b are as shown in Figure 5.1. Figure

5.1a plots the shape of ρa. A driver meeting the minimum guaranteed utilization rate of 80% has

a penalty of 0; drivers below this threshold are assigned a penalty that increases as utilization

decreases. Figure 5.1b plots the shape of the function ρ′b. An order is assigned a penalty (priority)

score that is a function of the minimum delivery time ιb it takes to travel from the origin to the

destination of the order. Below a particular threshold (0.25 in the figure), the order is assigned

a high priority as there is a high likelihood of losing it in consecutive decision epochs if it is not

assigned. Over that threshold, the order is also assigned a priority, that decreases as the time

window increases. Beyond another threshold (0.5 in the figure), the order is assigned a priority
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of 0, indicating that moving it forward to subsequent time periods is less risky. α, a parameter

that scales the priority scores with the matching reward, is set to 1.

(a) Shape of driver matching penalty function
ρa.

(b) Shape of demand loss risk penalty function
ρ′b.

Figure 5.1. Shape of penalty functions ρa and ρ′b.

5.6.2 Value Function Approximation

In this section, we train the value functions as described by Algorithm (1) with and without

spatial aggregation. A lookup table representation is used for approximating the value function.

This means that in the value function approximation routine, we can estimate only the value of

states that have been visited, at the disaggregate or aggregate levels. We start by initiating value

functions for all a ∈ A, t ∈ {0, 1, . . . , T} to 0, then run N = 1000 iterations to train the value

functions using forward sample paths as outlined in Algorithm (1). Only when an attribute a at

time t is encountered do we update its value function. Hierarchical aggregation is used to provide

a better estimate on states that may be visited, not only states that have been visited.

Figure 5.2 shows the progression of the value function over iterations for the VFA algorithm

with and without hierarchical aggregation. We observe that using hierarchical aggregation im-

proves the convergence of the value function estimates. This figure shows the solution of a single

instance, solved N times, each with the most updated value function at n ∈ {1, . . . , N}. Notice

how, when using aggregation, the total objective (sum of the objective function values over the

planning horizon) has an upward trend as we learn the value functions, then levels off approxi-

mately when N > 500. This implies that the value functions converge, and further iterations will

likely not change the estimates. For the disaggregate level, on the other hand, though we see an

upward trend, it is apparent that there is high variability. This indicates that the N iterations

are insufficient for learning the value functions, since driver attributes with disaggregate locations

are not visited often enough.
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(a) Total objective value per iteration without
aggregation.

(b) Total objective value per iteration with ag-
gregation.

Figure 5.2. Value function convergence with and without hierarchical aggregation.

5.6.3 Utilization Guarantee: Comparing Computational Policies

We test the proposed model and VFA solution approach (with and without aggregation) over

multiple instances. We compare the performance of the propose solution policies against two

benchmarks: the myopic policy (with and without PCF) and the base-case policy. Table 5.2

summarizes solution statistics for the average of 10 instances, solved using different computational

policies. The table columns show the percentage of active drivers (i.e., those who receive the

guarantee), the percentage of drivers that met the desired utilization and those who missed it,

the average utilization of all active drivers. It also shows the percent deviation from the desired

guarantee for drivers with a utilization below W , the percentage of drivers that timed-out, i.e.,

did not complete their activity window τ by the end of the planning horizon, the average total

distance per decision epoch for all matches, and finally, the percentage of met demand. Note that

in this set of instances, that the penalty parameter ζ is set to 1.

We notice that the aggregate VFA algorithm achieves the highest number of drivers meeting

the desired utilization W , 30.99%, followed by the disaggregate VFA, 18.44%. Although under

the myopic policy, only 4.46% of active drivers have a utilization of at least W and the average

utilization is slightly higher than the that of the base-case policy, incorporating parametric cost

function approximation (PCF) results in an average utilization (71.33%) comparable to that of the

aggregate VFA algorithm (71.86%). This is interesting since the PCF algorithm simply modifies

the cost function of the myopic policy, and does not require training value function estimates,

which is an additional computational advantage.

Table 5.2 also shows that the aggregate VFA algorithm results in less efficient matches. Rel-

ative to the base-case policy, the average distance more than triples. It is also apparent that

effectiveness of the VFA algorithm in reaching the desired utilization needs to be further im-

proved, since having only 30.99% of drivers meeting the desired utilization is quite low. In what

follows, we discuss the effect of varying the penalty parameter ζ, as well as the effect of combining
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Table 5.2. Comparison of solution statistics of different computational policies (average
of 10 instances).

Policy Type
Active
Drivers
(%)

Guarantee
Met (%)

Guarantee
Missed
(%)

Avg Uti-
lization
(%)

Deviation
(%)

Timed-
out
Drivers
(%)

Avg
Dist

Met
Demand
(%)

Disagg. VFA 55.47 18.44 68.18 68.28 -20.02 13.38 25.21 99.64

Agg. VFA 58.75 30.99 55.53 71.86 -18.24 13.48 37.08 99.87

Myopic 59.75 4.46 81.97 60.76 -25.74 13.57 15.42 99.81

Myopic - PCF 48.87 6.85 80.70 71.33 -12.19 12.44 20.89 99.83

Base
case

62.56 3.72 82.16 57.82 -29.28 14.12 12.48 99.67

VFA with parametric cost function approximation.

Varying the penalty parameter ζ of missing the desired utilization

We investigate the benefit of increasing the penalty coefficient in the penalty function F (a) on

reaching the desired utilization threshold W . Based on the results in Table 5.2 and Figure 5.2, it

is apparent that aggregating value functions improves the convergence of their estimates. Thus,

in this section, only VFA with aggregation is considered. We also experiment with combining

parametric cost function approximation within the VFA algorithm. Each row in Table 5.3 reports

the results for the average of 10 instances.

We notice a significant improvement in the percentage of drivers that meet utilization thresh-

old W as the value of ζ increases. Just increasing ζ to 10 from the initial value of 1, results in

an additional 20.79% of active drivers meeting utilization W . The percentage of drivers meet-

ing the utilization target continues to increase slightly with increases in ζ. Another significant

improvement is achieved when VFA is combined with PCF as we see in the last row. The per-

centage of drivers meeting W increases to 86.67%. Considering only drivers that complete their

activity window τ (i.e., excluding timed-out drivers), this translates to 99.74% of drivers meeting

utilization W . However, this comes at an apparent cost in trip efficiency as the average dis-

tance per decision epoch is 45.79, which is more than triple that of the base-case policy, 12.48.

Thus, we further examine the trade-off between utilization and trip efficiency for the different

computational policies.
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Table 5.3. Comparison of solution statistics of VFA with aggregation, varying ζ (average
of 10 instances).

Penalty (ζ)
Active
Drivers
(%)

Guarantee
Met (%)

Guarantee
Missed
(%)

Avg Uti-
lization
(%)

Deviation
(%)

Timed-
out
Drivers
(%)

Avg
Dist

Met
Demand
(%)

ζ = 1 58.75 30.99 55.53 71.86 -18.24 13.48 37.08 99.87

ζ = 10 57.08 51.78 34.47 75.28 -19.10 13.75 39.41 99.89

ζ = 50 56.59 58.47 28.51 76.24 -19.41 13.02 40.38 99.87

ζ = 100 56.85 59.45 27.07 76.45 -19.50 13.48 40.20 99.87

ζ = 250 56.80 61.02 25.45 76.81 -19.31 13.53 40.33 99.87

VFA-
PCF,
ζ = 250

52.38 86.67 0.23 84.56 -2.19 13.10 45.79 99.89

Trade-off between utilization and trip efficiency

We compare the expected utilization of drivers for different matching policies and investigate

the relationship between utilization and trip efficiency. Trip efficiency is defined as the expected

distance traveled between a driver’s origin and the origin of the order they are matched with.

That is, when a driver is matched with a nearby order, the trip is more efficient than if they

are matched with a farther order. Figure 5.3 plots the distribution of expected utilization, under

different computational policies, for drivers that complete their activity window τ .

Figure 5.4 plots the total distance travelled per epoch for 10 instances of each of the matching

policies. We observe that although combining aggregate VFA with PCF results in the highest

fraction of drivers meeting utilization W , and much lower variability in drivers’ utilization relative

to the other policies, it also has the highest expected total trip distance. In general, we notice

a inverse relationship between utilization and trip efficiency; as the mean utilization of drivers

increases, the trip efficiency decreases.

Active drivers over the planning horizon

Figure 5.5 plots the number of active drivers throughout the planning horizon, under the VFA-

PCF policy, the myopic PCF policy and the base case policy. We observe that the base policy

keeps a somewhat steady number of active drivers throughout most of the planning horizon,

oscillating between 25 and 30 drivers. The PCF policy (Fig. 5.5a), on the other hand, follows an

approximate cyclical pattern, in the number of active drivers. This pattern repeats approximately

every 24 epochs (or 2 hours), which is the duration of the activity time window τ . This indicates
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Figure 5.3. Driver utilization for different computational policies (average of 10 in-
stances).

that the policy follows some kind of schedule for inviting active drivers, such that once the desired

number of drivers is reached, no additional drivers are invited until a portion of active drivers

complete their activity time window τ .

Examining cost function (5.14) and this pattern more closely, we notice that this happens

because of the penalty imposed on missing the desired utilization and the fact that the PCF

algorithm does not accurately capture the effect of decisions made now on the future. This

penalty increases as the gap between the desired and actual utilization increases. The algorithm

keeps inviting new drivers, favoring trip efficiency, until a particular threshold where the penalty

cost becomes higher than the efficiency cost saving. At this point the supply of drivers levels off

for a few decision epochs, then decreases as some drivers complete their activity window τ . When

drivers’ utilization improves, and after another approximate threshold point (lower points in the

graph), the algorithm again favors efficiency since utilization of active drivers is high enough, and

thus invites more drivers, and the cycle repeats.

Combining PCF with VFA allows us to reduce this oscillating effect, as observed in Figure

5.5b. The supply of drivers varies less significantly than that of the PCF policy. This indicates

that the approximate value functions are helpful in predicting the downstream penalty of the low

utilization of drivers.
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Figure 5.4. Total distance travelled per epoch for different computational policies.

The effect of changes to τ and W

We now examine the effect of changes to activity time window τ and the target utilization level

W on the solution. Each row in Table 5.4 shows the average of 10 instances solved for each

combination of τ and W using the aggregate VFA combined with PCF. We first note that the

duration of the activity window τ seems to have a more significant effect on the solution than the

utilization target W . That is, for a fixed τ , varying W results in slight changes to the average

utilization of drivers, the average distance and the percentage of demand met. Interestingly, when

τ is set to 1 hour (12 epochs), we see a significant drop in percentage of demand met. This could

be due to the following. First, in order to meet utilization target W in a short amount of time,

the algorithm invites fewer drivers, which results in more uninvited drivers exiting the system.

Second, the penalty of missing driver utilization guarantee in a shorter time is higher than the

priority score set to prioritize expiring demand in parametric cost function (5.14), and thus the

algorithm improves driver utilization at the expense of demand fulfillment.

Another interesting observation from the results in Table 5.4 is that when τ increases to 3

hours, trip efficiency improves (i.e., average distance decreases), while average utilization slightly

decreases. This shows that more efficient driver-order matching can be achieved when the time

window of meeting the utilization target increases.
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(a) Parametric Cost Function.

(b) VFA - PCF.

Figure 5.5. Number of active drivers over the planning horizon.

5.6.4 Comparison of Guarantee Policies: Utilization vs. Wage

Guarantee

We test and compare the three guarantee policies, and assess their impact on the platform and

drivers. Though the proposed model could extend to other platforms, in this section we focus

on platforms offering restaurant delivery. The revenue and cost functions are approximated from

the information provided on UberEats official website.

The revenue collected by the platform is earned from two sources: the restaurants from which

orders originate, and the consumers that place orders. Restaurants are charged 30% of the value

of the meal, whereas consumers pay a delivery fee, a service fee, a small order fee, and delivery

adjustment fee. For simplicity we focus on the first two types of consumer fees, since they are

incurred by every order. Delivery fee depends on the location of the customer relative to the

restaurant from which they are ordering, while service fee is 15% of the value of the meal, with

a minimum of $2.5 and a maximum of $4.5 (UberEats, 2021).
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Table 5.4. Varying activity time window τ and utilization target W .

τ W
Active
Drivers
(%)

Guarantee
Met (%)

Guarantee
Missed
(%)

Avg Uti-
lization
(%)

Deviation
(%)

Timed-
out
Drivers
(%)

Avg
Dist

Met De-
mand
(%)

70% 16.55 88.81 0.00 97.97 0.00 11.19 13.80 51.49

80% 14.20 84.97 0.00 97.53 0.00 15.03 11.69 46.611 hr

90% 11.89 89.93 0.00 97.22 0.00 10.07 10.26 40.17

70% 52.48 87.10 0.63 82.19 -2.05 12.27 44.33 99.86

80% 52.38 86.67 0.23 84.56 -2.19 13.10 45.79 99.892 hrs

90% 52.74 86.84 0.22 84.47 -0.63 12.94 46.09 99.90

70% 46.53 71.60 16.99 80.09 -7.04 11.41 30.34 96.73

80% 47.82 82.73 4.84 81.31 -8.19 12.44 33.61 96.773 hrs

90% 48.18 82.00 6.43 80.81 -6.70 11.57 33.93 96.75

The revenue that a platform earns is a function of the order attributes b, and depends on the

distance between order origin and destination, wb, and the value of the order, φb. To compute

the variable cost of delivery as a function of distance, we use a step function. The variable cost of

delivery for a distance no more than 2 units is $4, between 2 and 5 units is $6, and greater than

6 is $7. The value of orders is uniformally distributed in the range [10,40], of which the platform

receives 30% of the order value. The cost of completing an order is a function of order attributes b

and driver attributes a to whom the order is assigned. According to Manzocco (2019), UberEats

Toronto offers the following payment structure to drivers: $1.5 per pickup, $1 per delivery, $0.49

per km from pickup to drop-off, and $0.28 per minute spent fulfilling the order. Thus, the cost

is a function of the distance between driver a and order b, wab, which is used to compute the

variable per mileage and per minute payment, and the fixed pickup and drop-off cost per order,

ϕb. The minimum wage for drivers is set to $15 per hour.

As noted earlier, two types of wage guarantee policies are considered: wage guarantee during

an activity window τ (policy 2), and wage guarantee only while delivering orders (policy 3). Table

5.5 compares the performance of those two policies with the utilization policy and the base case

policies. Each row displays the average of 10 instances. To compute the average driver earning,

we subtract 0.5 times the mileage compensation ($0.245/km) from the revenue earned. This,

however, does not factor in other vehicle expenses such as maintenance and depreciation costs.

We note from Table 5.5 that the wage guarantee policy (P2) results in lower average distance

than the utilization policy. The average utilization of drivers is lower under policy 2, but the
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Table 5.5. Comparison of guarantee policies (average of 10 instances).

Guarantee
Policy Type

Perc.
Ac-
tive

Avg
Uti-
lization
(%)

Avg
Driver
Earn-
ing/hr
($)

Avg
Platform
Pay/hr
($)

Timed-
out
Drivers
(%)

Avg
dist

Perc.
Met
De-
mand

Utilization (P1) 48.21 85.87 31.97 0.00 12.80 34.01 99.89

Wage (P2) 54.08 68.17 26.08 0.04 13.15 23.01 99.87

Wage - when Active (P3) 83.79 37.70 15.38 0.00 0.00 19.32 99.85

Base case 82.98 37.70 15.54 0.00 0.00 19.38 99.82

average driver profit under both policies is well over the minimum wage of $15.

The wage guarantee policy while drivers are delivering orders (policy 3), without an activity

window τ , results in a very similar solution to that of the base case policy. Driver average profit

($15.38 and $15.54, respectively) and average utilization (37.7%) is much lower under those

policies relative to policies 1 and 2.

Are drivers better off under guarantee policies? Is the platform

worse off?

Figure 5.6 plots the average total distance per decision epoch vs. the average hourly earning for

drivers under the four considered policies. We note that, although the utilization policy (P1)

results in more inefficient routes in terms of total distance travelled, driver earning under this

policy is the highest. The minimum wage guarantee policy (P2) reduces both average earning

and distance, indicating that the lower compensation is for the sake of limiting matching drivers

with farther orders. On the other hand, policy 3, where drivers are guaranteed the minimum

wage only while delivering orders, does not provide any higher compensation to drivers relative

to the base policy.

Figure 5.7 plots the average platform profit per decision epoch vs. the average hourly earning

per driver for the four considered policies. We see that under policy 3, where drivers receive a

minimum wage while on delivery, the platform’s profit is similar to that of the base case, and so

is average driver earning. We also note that although policy 1 is the best for drivers in terms

of hourly earnings, it results in the worst average profit for the platform. Policy 2, on the other

hand, results in a small expected profit reduction for the platform ($2.48 per epoch), relative to

the base policy, but a considerably higher hourly rate increase for drivers (an increase of $10.54).

119



Figure 5.6. Total average distance travelled per epoch vs. average driver hourly rate.

5.7 Concluding Remarks

This research studies the integration of compensation guarantees for sharing economy workers

within a platform’s dynamic matching framework. Those compensation guarantees aim to provide

earning protection to gig economy workers, while maintaining the work hour flexibility promoted

by the sharing economy. Drivers are self-scheduling and do not pre-announce their schedules.

Once a driver is active in the platform, i.e., they are available and they receive their first invitation

to deliver an order, the platform offers them an earning guarantee. We propose, model and test

three types of earning guarantees: (i) a maximum utilization guarantee up to a utilization target

W , for an activity window of length τ , (ii) an hourly minimum wage guarantee for an activity

window of τ consecutive hours, and (iii) an hourly minimum wage only while drivers are delivering

orders.

To capture the dynamic and stochastic nature of matching drivers to orders in a sharing econ-

omy platform, we model the problem as a Markov decision process. The detailed driver and order

attributes needed to accurately capture dynamics of the system, and the spatial and temporal

features of the problem, make the problem high dimensional. Thus, solving it to optimality using

Bellman’s equation is intractable for reasonable size problems. We thus turn to approximate

dynamic programming, particularly, value function approximation. The value function estimates

mainly focus on driver attributes, and take advantage of the sparsity of the drivers attribute vec-

tor, thus utilize a linear approximation representation. To further enhance the convergence of the

value function estimates, we use spatial hierarchical aggregation to exploit the spatial correlation

between value functions. This helps us increase the number of samples for the value function
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Figure 5.7. Average platform profit per epoch vs. average driver hourly rate.

estimates, thus improving their estimation.

We conduct extensive computational testing to assess the performance of the proposed value

function approximation, and to compare the different types of guarantee policies. For the utiliza-

tion guarantee policy, we observe that combining parametric cost function approximation with

value function approximation results in the highest number of drivers meeting the target uti-

lization level. However, this comes at a clear cost in trip efficiency; the higher the utilization of

active drivers, the longer the distance between drivers and the origins of their matched orders. To

compare the different guarantee policies, we extract data from a crowdsourced restaurant delivery

platform (UberEats) to estimate the platform’s matching profit and driver compensation. We

observe that drivers receive the highest average earning under the utilization policy, although trip

efficiency is significantly worse than all other policies. The wage policy for an activity window

(policy 2) results in a slight increase in average distance relative to the base case policy, but an

hourly wage increase of $10.54 for active drivers. The wage policy when delivering orders (policy

3) results in almost identical average driver earning, utilization and average distance, relative to

the base case. We find that policy 2, the wage guarantee for an activity window, results in the

best trade-off in improving driver earnings, while causing only a slight reduction to the platform’s

profit.

Some interesting directions for future work include extending the proposed model to other

sharing economy operations, e.g., ridehailing, where the time window for demand fulfillment is

very short. From a methodological perspective, tuning the parametric cost function approxima-

tion policy may further improve its performance. Furthermore, experimenting with other methods

of approximating the value function, such as using regression and other parametric models, is a

121



promising direction. Such approaches help us obtain estimates of unvisited states by fitting a

parametric function based the features of visited states.
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Chapter 6

Conclusion and Future Research

The rapid development of e-retailing in the last decade necessitates the creation of efficient and

responsive distribution plans, that account for different sources of uncertainty within the supply

chain. This thesis investigates three stochastic distribution planning problems, faced by e-retailers

at different stages of the supply chain.

Chapter 2 presents a distribution planning problem in a transshipment network under stochas-

tic customer demand. This work addresses the gap in the literature concerning the limited work

that accounts for randomness in freight distribution planning with intermediate facilities. We

study the problem from the perspective of a 3PL, and formulate a two-stage stochastic program-

ming model with recourse that minimizes transportation, inventory and outsourcing costs. The

model is then solved using sample average approximation (SAA), which results in reasonable

optimality gaps for problem instances of varying sizes. Computational experiments highlight the

robustness and cost-effectiveness of the proposed stochastic model compared to its deterministic

counterpart. They also provide insights on the conditions under which the model achieves notable

cost savings.

We then examine a later stage in the supply chain, in particular, last-mile same-day delivery

from distribution centers, stores or restaurants to the customer’s doorstep. We focus on crowd-

sourced delivery, an emergent last-mile delivery system where freelance self-scheduling drivers

complete last mile deliveries with their own vehicles. Chapter 3 presents a comprehensive re-

view of this system in terms of both academic work and industry practice. It also highlights

new challenges that this system brings about, relative to more traditional transportation and

delivery systems. The following two chapters study two important research questions faced by

crowdsourced delivery platforms.

Chapter 4 introduces, models and assesses the use of heatmaps as a control lever to balance

supply of drivers and demand in a crowdsourced delivery system. Heatmaps communicate to

drivers regions with driver shortage, where drivers have a higher probability of being matched

with a revenue-producing order. We formulate an MDP model to dynamically choose heatmap
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and matching decisions that maximize demand fulfillment within a planning horizon. A stochastic

lookahead policy, based on approximate dynamic programming, is proposed to obtain good quality

solutions in a reasonable amount of time. We then propose a computational enhancement method

that decomposes heatmap and matching decisions without affecting solution quality. Based on

computational experiments extracted from the Chicago ridehailing dataset, we find that heatmaps

are most effective in improving demand fulfillment when the supply of drivers exceeds expected

demand, and when the demand patterns in the service network are imbalanced.

Chapter 5 investigates the integration of driver compensation guarantees with dynamic match-

ing decisions of a crowdsourced delivery platform. This addresses the common criticism of the

lack of protection for workers in the sharing economy, by proposing compensation guarantees

to drivers, while maintaining the work hour flexibility of the sharing economy. We propose and

model three types of compensation guarantees, that are either utilization-based or wage-based.

The problem of dynamically matching drivers and orders, while ensuring a particular type of

driver compensation guarantee is met, is formulated as an MDP model. The problem is then

solved by value function approximation, so as to obtain good quality solutions efficiently. Exten-

sive computational testing is presented to assess the proposed solution approach, and evaluate

the impact of the different types of guarantees on both the platform and the drivers.

While we presented several possible extensions to our work in previous chapters, there are

many other interesting directions in the broad area of stochastic distribution planning. For

instance, considering crowdsourcing of distribution activities in other phases of the supply chain,

and not just the last mile. Under this setting, managing the stochastic supply of crowdsourced

workers is very critical, as failure to accurately meet the supply needs could result in a greater

downstream impact on the supply chain. Thus, determining the best trade-off between work

flexibility and maintaining a reliable level of supply that accurately fulfills the needs of the supply

chain is essential.

Another interesting direction is examining and modeling other innovations in transportation

and delivery. For example, this can include the use of autonomous trucks and delivery droids.

Those innovative delivery methods could potentially pose issues of endogenous uncertainty, i.e.,

demand of customers may be affected by the delivery method employed, especially if deliveries

are not made to the customer doorstep as a result. Therefore, studying the effectiveness of the

partial or full adoption of such delivery technologies on fulfilling orders with short time windows,

while also capturing the effect of possible demand pattern changes as a result of this adoption is

an interesting area of research.
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Valentina Carbone, Aurélien Rouquet, and Christine Roussat. Carried away by the crowd”:

what types of logistics characterise collaborative consumption. In 1st International Workshop

on Sharing Econom, Utrecht, Netherlands, 2015.

Juan Camilo Castillo, Dan Knoepfle, and Glen Weyl. Surge pricing solves the wild goose chase.

In Proceedings of the 2017 ACM Conference on Economics and Computation, pages 241–242.

ACM, 2017.

Peter Congdon. Bayesian statistical modelling, volume 704. John Wiley & Sons, 2007.

126

https://www.reuters.com/article/us-walmart-delivery/walmart-trials-grocery-delivery-to-rival-amazon-flex-idUSKCN1LL1Q1
https://www.reuters.com/article/us-walmart-delivery/walmart-trials-grocery-delivery-to-rival-amazon-flex-idUSKCN1LL1Q1
https://www.buddytruk.com/


T. G. Crainic. Service network design in freight transportation. European Journal of Operational

Research, 122(2):272–288, 2000.

Teodor Gabriel Crainic, Mike Hewitt, and Walter Rei. Scenario grouping in a progressive hedging-

based meta-heuristic for stochastic network design. Computers & Operations Research, 43:90

– 99, 2014.

K. L. Croxton, B. Gendron, and T. L. Magnanti. Models and methods for merge-in-transit

operations. Transportation Science, 37(1):1–22, 2003.

Iman Dayarian and Martin Savelsbergh. Crowdshipping and same-day delivery: Employing in-

store customers to deliver online orders. Production and Operations Management, 29(9):2153–

2174, 2020.

Deliv. https://www.deliv.co/, 2019. Accessed on 2019-04-09.

Aashwinikumar Devari, Alexander G Nikolaev, and Qing He. Crowdsourcing the last mile delivery

of online orders by exploiting the social networks of retail store customers. Transportation

Research Part E: Logistics and Transportation Review, 105:105–122, 2017.

DHL. Dhl crowd sources deliveries in Stockholm with MyWays, 2013. URL http:

//www.dhl.com/en/press/releases/releases_2013/logistics/dhl_crowd_sources_

deliveries_in_stockholm_with_myways.html#.XKywEphKiHs.

DoorDash. https://www.doordash.com/, 2019. Accessed on 2019-04-09.

DoorDash. https://help.doordash.com/consumers/s/article/What-fees-do-I-pay?

language=en_US, 2021. Accessed on 2021-06-29.

Ezzeddine Fatnassi, Jouhaina Chaouachi, and Walid Klibi. Planning and operating a shared goods

and passengers on-demand rapid transit system for sustainable city-logistics. Transportation

Research Part B: Methodological, 81:440–460, 2015.

Masabumi Furuhata, Maged Dessouky, Fernando Ordóñez, Marc-Etienne Brunet, Xiaoqing
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Appendix A

Chapter 2 Appendix

A.1 Data generation

We explain below the specific procedure used to generate data for our computational experiments.

A.1.1 The network of suppliers and customers

Locations of suppliers and customers are randomly generated within a radius of 1,000 miles from

the consolidation center. We locate suppliers and customers on opposite sides of the 1,000-mile-

radius circle, such that the consolidation center is a natural middle point. We do that since,

from a practical point of view, suppliers in some long-haul freight transportation applications are

clustered in a different geographical area, which may be overseas. We conducted some experi-

ments with suppliers and customers randomly located throughout the 1,000-mile-radius circle; we

observed very similar results to when they are located on opposite sides. This is attributed to the

fact that our network is a pure transshipment network where direct deliveries between suppliers

and customers are not possible. In order to justify the need for consolidation, supplier-customer

shipments (i, j) are selected on the network such that the distance between supplier i and the

consolidation center plus the distance from the consolidation center to customer j is at most 1.25

times the direct distance from i to j.
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A.1.2 Distribution of demand, holding cost, and transportation

option capacity

Each shipment (i, j) has a uniform demand distribution; the lower bound of the distribution is

generated in the range U[300,450] and the width of the distribution is set at 30%. For example,

if shipment (i, j) has a lower bound of 350, with a 30% width the demand follows a uniform

distribution U[350,455]. The holding cost of shipments from a given supplier i is a variable cost

per volumetric unit, per time unit, generated uniformly as hi=U[0.005,0.01].

The capacity of inbound and outbound transportation options is determined as follows. For

a given inbound transportation option q, the average demand of all customer orders for which

option q is feasible, denoted as d̄iq, is calculated. Option q ∈ Qi is feasible for customer j if at

least one outbound option l ∈ Lj for customer j leaves the consolidation center after inbound

option q arrives there. Capacity Ciq of option q is then generated as Ciq = γd̄iq, where γ is in

between [1.0, 1.3]; the exact value of γ is specified when generating data sets in Section 2.5.1.

This capacity is then rounded up to be in multiples of 10 units. The capacity of an outbound

option is generated in a similar manner, Cjl = γd̄jl.

A.1.3 Supplier and Customer Data

For supplier i ∈ I, a release time υi is generated in the range [0,100]. A supplier has a number

of inbound transportation options q ∈ Qi with arrival times τiq ∈ Xi between [100,500]. The

number of options and their arrival times are specified in the data sets in Section 2.5.1.

For option q with arrival time τiq, the transportation cost is expressed as fi(τiq) = θiρi(τiq)
Ciq

ξ ,

where θi is the scale factor of supplier i and is randomly generated in U[0.5,1.5]. ρi(τiq) is

the transportation rate corresponding to arrival time τiq, Ciq is the capacity of option q, and

ξ is the baseline capacity that is assumed to be 4000 units. This capacity level corresponds to

approximately an average consolidated demand of 8 customers, following the demand distributions

outlined above.

We generate ρi(τiq) as follows. First, a baseline transportation rate ρ̄i is generated as ρ̄i = δi·ρ,

where δi is the distance and ρ is the average unit rate that is uniformly distributed in the
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range U[30,50]. A baseline transportation time ιi is then generated as ιi = δi/v, where v is the

average speed per time unit, generated in the range U[2,3]. If the transportation time is shorter

than the baseline, i.e., τiq − υi ≤ ιi, the transportation rate is higher than the baseline rate;

ρi(τiq) = ρ̄i + 2 · ρ̄i · [1− ((τiq − υi)/ιi)] + ρ̄i · ε, where the first term denotes the baseline rate, the

second represents the extra cost to make the transportation time shorter than the baseline time,

and the third term is some random perturbation in which ε is generated in the range U[-0.1,0.1].

On the other hand, if the transportation time is longer than the baseline, i.e., τiq − υi > ιi, we

set ρi(τiq) = ρ̄i−0.1 · ρ̄i · [1− (ιi/(τiq−υi))] + ρ̄i · ε. So, transportation options that need less time

to reach the consolidation center, once the consolidated shipment is released, are faster options,

and therefore have higher rates. The supplier cost function for the baseline capacity ξ is plotted

in Figure A.1a.

Finally, we generate the cost of shipping through a spot-market carrier πi, for each supplier

i ∈ I. As mentioned earlier, this is a per unit cost composed of two elements: (a) the expected

inbound spot market rate per unit and (b) the 3PL’s disutility to ship through a spot market

carrier. For each supplier i the cost is generated as πi = fi(0.5ιi)
ξ r, where a spot market carrier

is assumed to be a fast option with 0.5 the baseline speed, and r is the 3PL’s disutility factor of

using a spot market carrier. The exact value of r is specified when generating data sets in Section

2.5.1.

Random customer data is obtained in a similar manner as supplier data. For customer j ∈ J ,

we generate due date κj uniformly in range [500,600]. Each customer has a number of outbound

transportation options l ∈ Lj , with dispatch times τjl ∈ Yj between [100,500]. The number of

options and their dispatch times are specified in Section 2.5.1.

Outbound transportation cost is expressed as gj(τjl) = θjρj(τjl)
Cjl

ξ , where θj and ξ are

generated in the same ranges as in supplier data. For ρj(τjl), a baseline transportation rate ρ̄j

and a baseline transportation time ιj are generated. The expressions are ρ̄j = δj ·ρ, and ιj = δj/v,

where ρ and v are generated in the same uniform ranges as in supplier data. If the transportation

time is shorter than the baseline, i.e., κj − τjl < ιj , the transportation price ρj(τjl) is calculated

as ρj(τjl) = ρ̄j + 2 · ρ̄j · [1− ((κj − τjl)/ιi)] + ρ̄i · ε. However, if transportation time is longer than
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the baseline, i.e., κj − τjl ≥ ιj , the price equals ρj(τjl) = ρ̄j − 0.1 · ρ̄j · [1− (ιj/(κj − τjl))] + ρ̄j · ε.

Likewise, faster transportation options, i.e., ones that require less time to reach the customer

from the time they depart the consolidation center, cost more than slower ones. The customer

cost function for the baseline capacity ξ is plotted in Figure A.1b.

The cost of spot-market carrier shipping πj , for each customer j ∈ J , is generated as πj =

fj(0.5ιj)
ξ r, where a spot market carrier is assumed to be a fast option with 0.5 the baseline speed.

(a) Supplier cost function (b) Customer cost function

Figure A.1. Transportation options cost function for suppliers and customers.
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A.2 Deterministic distribution planning with consol-

idation (DDPC)

The deterministic distribution planning with consolidation - path based formulation (DDPC-PF)

is modeled below, using the same notation and decision variables defined in Section 2.3. We

use the path formulation as opposed to the flow formulation, to avoid the nonlinearity in the

objective function and since the number of paths is small when there is only a single scenario. In

this model, the mean demand of each shipment (i, j), which we denote as d̄ij , is used instead of

samples from the demand distribution.

[DDPC-PF] min
∑
i∈I

∑
q∈Q

f(xiq) +
∑
j∈J

∑
l∈L

g(yjl) +
∑
i∈I

∑
j∈J(i)

∑
p∈Pij

cpβijp (A.1)

subject to
∑
p∈Pij

βijp = 1 ∀i ∈ I, j ∈ J(i) (A.2)

∑
p∈Pij

aiqpβijp ≤ xiq ∀i ∈ I, j ∈ J(i), q ∈ Q (A.3)

∑
p∈Pij

bjlpβijp ≤ yjl ∀j ∈ J, i ∈ I(j), l ∈ L (A.4)

∑
p∈Pij

∑
j∈J(i)

aiqpd̄ijβijp ≤ Ciq ∀i ∈ I, q ∈ Q (A.5)

∑
p∈Pij

∑
i∈I(j)

bjlpd̄ijβijp ≤ Cjl ∀j ∈ J, l ∈ L (A.6)

xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L

βijp ∈ {0, 1}, i ∈ I, j ∈ J(i), p ∈ Pij (A.7)

Similar to SDPC-PF, the objective function (A.1) minimizes the total transportation cost

and the cost of allocating shipments to paths. Constraints (A.2) ensure that exactly one path

is chosen for each shipment (i, j) in the network. Constraints (A.3) and (A.4) guarantee that

shipment (i, j) traverses a path only if both the inbound transportation option q of supplier i and

the outbound transportation option l of customer j are open. Constraints (A.5) and (A.6) ensure

that the total demand that traverses a given path does not exceed the capacity of the inbound
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and outbound transportation options of that path. Finally, Constraints (A.7) impose the binary

requirement on the variables.

A.3 Detailed SAA results example

In this section we provide and analyze the detailed result of one problem instance; instance 3

from set 9A, with 20 suppliers, 20 customers and 100 shipments. We exhibit the results of the

10 SAA runs in Table A.1. The first column shows the run number and the second shows the

objective value of the run, which is the expected transportation and holding cost based on the 10

scenarios within the run as defined by objective function (2.22). This objective value is the sum

of the first stage and the second stage costs, shown in columns 3 and 4, respectively. We evaluate

each of those runs on a 1000-scenario tree and report the upper bound estimate and standard

deviation in columns 5 and 6. We also report the expected outsourcing and expected utilization

for each run in columns 7 and 8, respectively.

In Table A.2, we show statistics of the instance. The upper bound is the minimum of the

upper bound estimates reported in column 5 of Table A.1, which is the upper bound of run 9

in this instance. We also report the lower bound and its standard deviation; the lower bound is

the mean of the objectives in column 2 of Table A.1, minus tα=5,v=9σ̂N,M , as shown in Equation

(2.25). The absolute gap of the SAA algorithm, i.e., the difference between upper and lower

bounds, as well as the relative gap are also shown. We compute the relative gap as UB−LB
UB , since

our goal is to evaluate the quality of the UB; the expected cost of the true problem. The cost

values reported in columns 2 to 6 are all in units of 1000s of dollars.

We note that the SAA run with the optimal transportation plan, which is run 5 in this

instance, resulted in relatively low expected outsourcing and expected utilization values, compared

to other runs. This suggests that this plan reserved a higher level of capacity compared to plans

of other SAA runs.

To further analyze the results, we provide a summary of the distribution plan of each SAA

run in Table A.3. That table summarizes, for each run, the total number of inbound and out-
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bound reserved options with different speed and capacity levels. The breakdown of the optimal

transportation plan, run 5, is also plotted in Figure A.2. We note that the different runs result in

somewhat similar transportation plans. This low variability in the solutions of the SAA runs in-

dicates the stability of sampling among the different runs. We also notice that for some suppliers

and customers, more than one transportation option is reserved. Run 5, for instance, has a total

of 28 inbound reserved options for 20 suppliers, and 22 outbound options for 20 customers. Since

this instance is from experimental setting A, with the high expected wait time at the consolida-

tion center, the results suggest that in some cases, overbooking capacity is justifiable to reduce

expected holding cost.

Table A.3 also shows that average-speed options are the most reserved, especially with higher

capacity level. This is explained by the fact that the arrival and dispatch times for inbound and

outbound options in this instance are independent, meaning that slow inbound options do not

necessarily create feasible paths with fast outbound options, making reserving fast options with

higher costs less justifiable.

Table A.1. Detailed SAA solution of Instance 3 - Set 9A.

SAA
run

Objective
First
stage cost

Second
stage cost

Upper
bound
(UB)

UB standard
deviation

Expected
outsourc-
ing (%)

Expected
utiliza-
tion (%)

1 515.087 463.319 51.767 525.381 0.344 1.51 72.30

2 520.095 470.902 49.193 523.708 0.233 1.22 70.38

3 517.050 467.325 49.725 525.101 0.283 1.41 71.52

4 518.735 469.991 48.744 521.468 0.171 1.21 71.95

5 519.759 473.242 46.516 520.006 0.039 1.03 71.85

6 518.214 471.784 46.430 522.902 0.171 1.25 70.24

7 516.361 461.241 55.119 531.877 0.444 1.85 72.21

8 519.626 472.740 46.886 522.398 0.102 1.10 72.94

9 516.499 470.524 45.975 522.383 0.216 1.58 76.76

10 521.323 473.636 47.687 520.549 0.041 0.92 72.79
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Table A.2. SAA solution statistics of Instance 3 - Set 9A.

Upper bound 520.006

Std. dev. upper bound 0.039

Lower bound 517.126

Std. dev. lower bound 0.626

Absolute Gap 2.880

Relative Gap 0.55%
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(a) Inbound reserved options (b) Outbound reserved options

Figure A.2. Breakdown of the transportation plan of the best SAA run (run 5).

Table A.3. Transportation plans for each SAA run, Instance 3 - Set 9A.

SAA
run

Inbound Options Outbound Options

fast average slow fast average slow

γ = γ = γ = γ = γ = γ =

1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.15

1 6 3 5 11 2 1 3 3 3 10 0 3

2 6 3 6 10 2 1 1 5 2 11 1 3

3 6 3 5 11 1 1 1 5 3 10 1 3

4 7 2 5 11 2 1 1 5 2 11 0 3

5 6 3 5 11 2 1 1 5 2 11 0 3

6 7 2 5 11 2 1 1 5 2 11 1 3

7 7 2 6 10 2 1 2 4 3 10 0 3

8 5 1 6 13 1 1 1 6 2 11 0 2

9 7 4 3 9 1 0 0 3 2 12 1 4

10 5 1 5 14 1 1 1 6 2 11 0 2



Appendix B

Chapter 4 Appendix

B.1 Proofs

B.1.1 Proof of Proposition 1

Proposition 1. For a given choice of heatmap h at t, and a given realization of exogenous

information Wt+1, vπ(St+1|St, xt = Xtij , yt = h) ≥ vπ(St+1|St, xt = X ′tij , yt = h).

Proof. We prove Proposition 1 by induction. Since vπ(ST ) = 0, for all ST , we show that the

result holds for T − 2 and T − 1. Let Dlkij be the set of active orders at epoch l with deadline at

epoch l + k, l ∈ {t, . . . , T}, k ∈ {l + τij , l + ω}, |Dlkij | = dlkij . Suppose at t = T − 2, we choose

the set of orders to fulfill X ′T−2ij ⊆ D(T−2)T ij and assume that D(T−2)(T−1)ij 6= ∅ (without loss

of generality, we assume that τij = 1). Since the choice of heatmap h and the number of fulfilled

orders for each (i, j) pair, xtij , is fixed and does not affect the set Xtij , the number and locations of

drivers at t = T − 1, mT−1, is independent of the choice of subset of orders to match. So mT−1 is

constant for a given realization of the binomial random variable of repositioning, mu
T−1, regardless

of the elements of the set X ′T−2ij . Since X ′T−2ij is a subset of D(T−2)T ij , the carried forward

demand at T − 1 is d(T−1)T ij = d(T−2)T ij − xT−2ij , ∀i, j ∈ N . If for every i ∈ N , mT−1i ≤∑
j∈N

d(T−1)T ij , then the maximum number of possible matches at node i is mT−1i. Therefore,
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vπ(ST−1|ST−2, xT−2 = XT−2ij , yT−2 = h) = vπ(ST−1|ST−2, xT−2 = X ′T−2ij , yT−2 = h), and any

arbitrary choice of the set X ′T−2ij would result in the maximum possible reward at t = T − 1.

However, if for a given node i ∈ N , mT−1i >
∑
j∈N

d(T−1)T ij , then supply at node i exceeds demand,

and a higher number of matches could have been obtained if X ′T−2ij consisted of orders from the

set D(T−2)(T−1)ij , since more orders from the set D(T−2)T ij would be carried forward to T − 1,

resulting in a similar matching at t = T − 2, but a higher matching at t = T − 1. Therefore,

vπ(ST−1|ST−2, xT−2 = XT−2ij , yT−2 = h) > vπ(ST−1|ST−2, xT−2 = X ′T−2ij , yT−2 = h).

We have now shown that the result of Proposition 1 holds for T − 2 and T − 1. By the

induction assumption, assume that the result holds for t = 2, . . . , T − 3. Next, we show that the

result holds for t = 1. We choose X ′1ij ⊆ D13ij and we assume that D12ij 6= ∅. As noted earlier,

m2i is independent of the choice of the elements of the set X ′1ij . Since we set X ′1ij to be a

subset of D13ij , d23ij = d13ij − x1ij , ∀i, j ∈ N . If for every i ∈ N m2i ≤
∑
j∈N

(d23ij +
∑2+ω

k=4 d2kij),

then the maximum number of possible matches at t = 2, for every i ∈ N , is m2i. Therefore,

vπ(S2|S1, x1 = X1ij , y1 = h) = vπ(S2|S1, x1 = X ′1ij , y1 = h), and any arbitrary choice of the set

X ′1ij would result in the maximum possible reward at t = 1.

However, if for a given i ∈ N , m2i >
∑
j∈N

(d23ij +
∑2+ω

k=4 d2kij), then supply exceeds demand

at node i, and a higher number of matches at t = 2 could have been obtained if X ′1ij contained

elements from the set D1,2ij , since more orders could have been carried forward to t = 2, resulting

in a similar matching at t = 1, but a higher number of matches at t = 2. So, vπ(S2|S1, x1 =

X1ij , y1 = h) > vπ(S2|S1, x1 = X ′1ij , y1 = h), which concludes the proof.

B.1.2 Proof of Lemma 1

Lemma 1. MCDRP is a relaxation of MHSP.

Proof. Proof. To show that MCDRP is a relaxation of MHSP, we start by showing that a feasible

solution to Model (B.1) is also feasible to Model (4.2), but the opposite is not true.

Notice that Constraints (4.2b - 4.2d) and (4.3b - 4.3g) are shared in the first and second stage

problems of (B.1) and (4.2). Thus, it suffices to show that Constraints (B.1b - B.1g) and (B.2b
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- B.2i) give a feasible solution with respect to Constraints (4.2e - 4.2g) and (4.3h - 4.3k). For

ease of exposition, we drop the s subscript for the second stage variables, so that, for example,

ylh refers to both first stage ylh and second stage yslh variables. Recall that a particular choice

of heatmap, denoted by variable ylh, determines the transition probability Pij(h), which in turn

determines the number of drivers that reposition from i to j, denoted by variables ulijh and u′li.

Since the number of drivers that reposition (ulijh and u′li) in (B.1) is guaranteed to add up to the

number of unmatched drivers at i because of Constraints (B.1d) and (B.2e-B.2f), it follows that

the value of
∑

h∈H
∑

j:(i,j)∈A uljih + u′li equals
∑

j:(i,j∈A) ulij because of (4.2e) and (4.3h-4.3i).

Thus, any feasible values of uljih and uli satisfy constraints (4.2e, 4.3h-4.3i) and (4.2f, 4.3j), and

therefore, any solution of (B.1) is feasible with respect to (4.2).

Next, we show that the opposite is not true; not all solutions of (4.2) are feasible for (B.1).

Recall that
∑

h∈H ulijh determines the number of drivers that reposition from i to j, for all (i, j) ∈

A. This is equivalent to ulij in model (4.2). We can easily see that any value of ulij that meets

the following two conditions (a) ulij > (mli−
∑

j∈N xlij)Pij(h) and (b) ulij ≤ (mli−
∑

j∈N xlij) is

feasible to (4.2). That is because such a value meets Constraints (4.2e, 4.3h-4.3i), but is infeasible

to (B.1) since it violates Constraints (B.1c, B.2c-B.2d). So model (B.1) is more constrained than

model (4.2), and thus (4.2) is a relaxation of (B.1).

B.2 Additional Formulations

B.2.1 Matching and Heatmap Selection Problem (MHSP)

To formulate the problem, we first define the following additional notation. Binary variables

ylh, y
s
lh equal 1 if heatmap h ∈ H is chosen at epoch l, and 0 otherwise, for first and second stage

problems, respectively. ulijh, u
s
lijh are the number of drivers that transition from node i to node

j, between decision epochs l and l+ 1, given heatmap h, in the first and second stages. u′li, u
′s
li is

the number of drivers that stay at node i at decision epoch l in the first and second stages. This

is needed to ensure the flow balance after transition, i.e., the total number of drivers stays the

same when transitioning between l and l + 1. M is a very large real number.
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The problem is formulated as follows.

[MHSP]

max

t+∆∑
l=t

∑
i∈N

∑
j∈N

xlij +
1

|S|
∑
s∈S

Qs(m, d, xs, ys,ms, us, ds) (B.1a)

s.t. (4.2b− 4.2d)∑
h∈H

ylh = 1 l ∈ {t, . . . , t+ ∆} (B.1b)

ulijh ≤ (mli −
∑
j∈N

xlij)Pij(h) ∀(i, j) ∈ A, h ∈ H, l ∈ {t, . . . , t+ ∆} (B.1c)

u′li = (mti −
∑
j∈N

xlij)−
∑
h∈H

∑
j:(i,j)∈A

ulijh ∀i ∈ N, l ∈ {t, . . . , t+ ∆} (B.1d)

ulijh ≤Mylh ∀(i, j) ∈ A, h ∈ H, l ∈ {t, . . . , t+ ∆} (B.1e)

mli =
∑
j∈N

x(l−τji)ji +
∑
h∈H

∑
j:(j,i)∈A

u(l−1)jih + u′(l−1)i ∀i ∈ N, l ∈ {t+ 1, . . . , t+ ∆ + 1} (B.1f)

xlij , u
′
li ∈ Z≥0 ∀i, j ∈ N, l ∈ {t, . . . , t+ ∆}

ulijh ∈ Z≥0, ylh ∈ {0, 1} ∀(i, j) ∈ A, h ∈ H, l ∈ {t, . . . , t+ ∆}

mli ∈ Z≥0 ∀i ∈ N, l ∈ {t+ 1, .., t+ ∆ + 1}

dlkij ≥ 0 ∀(i, j) ∈ A, l ∈ {t+ 1, .., t+ ∆ + 1},

k ∈ {l + τij , .., l + ω − 1} (B.1g)
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where the second-stage cost function is defined as

Qs(m, d, xs, ys,ms, us, ds) =

Γ∑
l=t+∆+1

∑
i∈N

∑
j∈N

α(l−t)xslij (B.2a)

s.t. (4.3b− 4.3g)∑
h∈H

yslh = 1 ∀l ∈ {t+ ∆ + 1, . . . , t+ Γ} (B.2b)

uslijh ≤ (mli −
∑
j∈N

xslij)Pij(h) ∀i, j ∈ N, l ∈ {t+ ∆ + 1}, h ∈ H (B.2c)

uslijh ≤ (ms
li −

∑
j∈N

xslij)Pij(h) ∀i, j ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ}, h ∈ H (B.2d)

u′sli = (mli −
∑
j∈N

xslij)−
∑
h∈H

∑
j:(i,j)∈A

uslijh ∀i ∈ N, l ∈ {t+ ∆ + 1} (B.2e)

u′sli = (ms
li −

∑
j∈N

xslij)−
∑
h∈H

∑
j:(i,j)∈A

uslijh ∀i ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ} (B.2f)

uslijh ≤Myslh ∀(i, j) ∈ A, h ∈ H, l ∈ {t+ ∆ + 1, . . . , t+ Γ} (B.2g)

ms
li =

∑
j∈N

xs(l−τji)ji +
∑
h∈H

∑
j:(i,j)∈A

us(l−1)jih + u′s(l−1)i ∀i ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ} (B.2h)

xslij , u
′s
li ∈ Z≥0 ∀i, j ∈ N, l ∈ {t+ ∆ + 1, . . . , t+ Γ}

uslijh ∈ Z≥0, ∀(i, j) ∈ A, h ∈ H, l ∈ {t+ ∆ + 1, . . . , t+ Γ}

ms
li ∈ Z≥0 ∀i ∈ N, l ∈ {t+ ∆ + 2, .., t+ Γ}

dslkij ≥ 0 ∀(i, j) ∈ A, l ∈ {t+ ∆ + 2, .., t+ Γ},

k ∈ {l + τij , .., l + ω − 1} (B.2i)

Similar to MCDRP, the first and second stages are linked by the number of drivers and carried forward

demand at epoch t+∆+1, reflected here in the additional constraints (B.2c and B.2e). Objective function

(B.1a) maximizes the number of matches of active orders at decision epochs t to t+∆, plus the expectation

of matched forecasted orders for decision epochs {t + ∆ + 1, . . . , t + Γ}. Constraints (B.1b) and (B.2b)

guarantee that a single heatmap is selected for epoch t and for each subsequent epoch l. Constraints (B.1c)

and (B.2c-B.2d) limit the number of drivers that transition from nodes i to j, given heatmap h, to the

unmatched drivers at epoch t multiplied by the transition probability Pij(h). Since the right-hand-side of

this equation can be fractional and the number of drivers on the left-hand-side is rounded down, we add

Constraints (B.1d) and (B.2e-B.2f) to ensure the flow balance between the number of unmatched drivers

at epoch l and the number of available drivers at l+1. We assume that if the number of unmatched drivers

at l is not equal to the total number of drivers that transition to other nodes δlijh due to the rounding

error in equations (B.1c) and (B.2c-B.2d), the difference (which cannot exceed 1) stays at the origin node
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i. We relax this assumption through the proposed solution methodology discussed in Section 4.4.

Constraints (B.1e) and (B.2g) ensure that drivers move according to transition probability matrix P (h)

only if heatmap h is chosen. Constraints (B.1f) and (B.2h) compute the number of drivers at decision

epoch l + 1 for each node. Constraints (B.1g) - (B.2i) assign only integer values to all variables except

ylh, y
s
lh, which are binary, and dlkij , d

s
lkij , which are continuous.

B.2.2 Matching with No Driver Relocation (MNDRP) - a Lower

Bound

In this section, we simplify MHSP by considering only matching decisions, without heatmaps to influence

the repositioning decisions of drivers. We assume that if drivers are not matched, they simply stay at their

origin node. The goal is to maximize the number of fulfilled orders through matching drivers with orders

in a way that considers their availability in subsequent time periods. We use this model as a benchmark to

compare the effectiveness of heatmaps against. That is, this model enables us to quantify the additional

matching that we’re able to achieve when heatmaps are used, compared to when balancing supply and

demand is done only through matching decisions.

[MNDRP]

max

t+∆∑
l=t

∑
i∈N

∑
j∈N

xlij +
1

|S|
∑
s∈S

Qs(x, d, xs,ms, ds) (B.3a)

s.t. (4.2b− 4.2d)

mli =
∑
j∈N

x(l−τji)ji + (m(l−1)i −
∑
j∈N

x(l−1)ij) ∀i ∈ N, l ∈ {t+ 1, . . . , t+ ∆} (B.3b)

xlij ∈ Z≥0 ∀i, j ∈ N, l ∈ {t+ 1, . . . , t+ ∆}

mli ∈ Z≥0, dlkij ≥ 0 ∀i ∈ N, l ∈ {t+ 1, . . . , t+ ∆ + 1}

k ∈ {l + τij , . . . , l + ω − 1} (B.3c)
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where

Qs(x, d, xs,ms, ds) =

Γ∑
l=t+∆+1

∑
i∈N

∑
j∈N

α(l−t)xslij (B.4a)

s.t. (4.3b− 4.3g)

ms
li =

∑
j∈N

xs(l−τji)ji + (m(l−1)i −
∑
j∈N

xs(l−1)ij) ∀i ∈ N, l ∈ {t+ ∆ + 2} (B.4b)

ms
li =

∑
j∈N

xs(l−τji)ji + (ms
(l−1)i −

∑
j∈N

xs(l−1)ij) ∀i ∈ N, l ∈ {t+ ∆ + 3, . . . , t+ Γ} (B.4c)

xslij ∈ Z≥0 ∀i, j ∈ N, l ∈ {t+ ∆ + 1, . . . , t+ Γ}

ms
li ∈ Z≥0, d

s
lkij ≥ 0 ∀i, j ∈ N, l ∈ {t+ ∆ + 2, . . . , t+ Γ},

k ∈ {l + τij , . . . , l + ω − 1} (B.4d)

Constraints (B.3b) and (B.4b-B.4c) compute the number of drivers at subsequent decision epochs,

where unmatched drivers do not relocate, but rather stay in their origin node. The following lemma

demonstrates the relationship between MNDRP and MHSP.

Lemma 3. MNDRP is a restriction of MHSP, if there exists a heatmap h ∈ H, such that ∀i ∈ N,

pii(h) = 1.

The proof is similar to that of Lemma 1; any solution of model (B.3) is feasible with respect to model

(B.1), but the opposite is not true.
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B.3 Repositioning Probabilities

In the computational experiments, we set the pairwise repositioning probabilities as expressed in (B.5).

ρεiεj =



0.9, if εj = 2 and εi = 0

0.4, if εj = 2 and εi = 1

0.55, if εj = 1 and εi = 0

0.2, if εj = 2 and εi = 2

0.1, if εj = 1 and εi = 1

0, otherwise

(i, j) ∈ A. (B.5)

We define the repositioning probability between nodes (i, j) ∈ A as shown in (4.6). The number

of drivers that reposition from any node i ∈ N is a multinomial random variable, with mu
ti trials and

probabilities of success as expressed in equations (4.6).

We now extend the definition of repositioning probabilities to case 2, where drivers can exit the system

and new drivers may join. We define the pairwise probabilities for a pair of nodes (i, j) as shown in (B.6).

Recall that node 0 is the auxiliary node where drivers enter/exit the system. For each pair of nodes (i, j),

there are 3 associated probabilities: ρεiεj : the probability of moving from i to j given the heat levels of

each node, ρ(εiεj ,i): the probability of staying at node i given the heat levels of nodes i and j, and ρ(εiεj ,0):

the probability of exiting the system given heat levels εi and εj . Thus, for each pair of nodes (i, j) we

define a vector ρεiεj =
[
ρεiεj ρεiεj ,i ρεiεj ,0

]
. In the computational testing, we use the following values

of ρεiεj for each pair of heat levels.
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ρεiεj =



[
0.0 0.1 0.9

]
if εj = 0 and εi = 0[

0.0 0.5 0.5

]
if εj = 0 and εi = 1[

0.0 0.8 0.2

]
if εj = 0 and εi = 2[

0.3 0.1 0.6

]
if εj = 1 and εi = 0[

0.1 0.5 0.4

]
if εj = 1 and εi = 1[

0.0 0.8 0.2

]
if εj = 1 and εi = 2[

0.5 0.1 0.4

]
if εj = 2 and εi = 0[

0.3 0.4 0.3

]
if εj = 2 and εi = 1[

0.1 0.7 0.2

]
if εj = 2 and εi = 2

(i, j) ∈ A, i, j 6= 0. (B.6)

We also define ρ0,εi as the probability of entering the system from the auxiliary node, given the heat

level of node i. The following are the values set in the testing:

ρ0,εi =


0.5, if εi = 2

0.3, if εi = 1

0, if εi = 0

(B.7)

The repositioning probabilities for the whole network are then obtained by equations (4.6).

B.4 Additional Computational Results

Tables B.1 and B.2 report the solution summary of different test settings, solution policies, and supply

levels, for cases 1 and 2, respectively. Each cell is the average of 10 problem instances with varying demand

realizations, for the complete planning horizon T . We report on two main statistics: (1) percentage demand

fulfillment throughout the planning horizon, which quantifies the expected service level under each policy,

and (2) percentage of matched drivers in the network, the complement of which indicates the percentage

of drivers that may relocate as a response to a heatmap. That is, when a high number of drivers is

matched, only a small percentage can relocate as a response to a heatmap. The test settings we use are

(1) the original dataset as described in Section 4.5.1, (2) demand data scaled down by a factor of 4, (3)
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Table B.1. Solution statistics for different testing setting, varying computational policies
and levels of initial driver supply, case 1 (no enter/exit).

Supply

(% of
Avg
Demand)

Policy
Fulfilled demand (%) Matched drivers (%)

Original
Data

Scaled-
down
Demand

Imbalanced
Network

P-
sensitivity

Original
Data

Scaled-
down
Demand

Imbalanced
Network

P-
sensitivity

MCDRP 78.65 78.95 57.84 57.88 96.21 94.85 86.5 86.86

SLA 78.09 78.44 56.79 54.2 93.09 91.82 82.93 81.58

simple 77.45 77.69 50.93 49.96 89.67 88.48 76.58 75.79
80

MNDRP 77.13 77.36 48.16 48.3 88.34 87.36 73.84 74.61

MCDRP 86.32 85.82 62.57 62.66 95.98 93.37 82.67 83.46

SLA 85.89 85.27 60.72 57.12 92.92 90.04 77.38 75.8

simple 85.27 84.39 52.08 50.68 89.92 87.12 69.29 69.54
90

MNDRP 84.73 84.07 48.36 48.48 87.86 86.17 66.89 68.57

MCDRP 94.29 91.09 67.75 67.79 96.21 90.74 80.39 81.2

SLA 90.8 90.31 64.87 60.18 89.97 86.72 72.88 71.21

simple 90.19 88.74 53.2 51.44 87.85 82.29 65.49 66.38
100

MNDRP 89.26 87.62 48.51 48.6 84.76 79.88 62.61 65.5

MCDRP 98.62 98.22 77.33 77.39 87.03 83 77.66 78.31

SLA 97.51 97.1 73.14 66.13 77.76 75.47 68.21 66.34

simple 95.06 93.96 55.97 53.23 76.83 71.85 58.64 59.45
120

MNDRP 92.3 91.2 48.77 48.74 72.69 68.16 57.09 59.6

MCDRP 99.06 99.06 91.3 91.28 61.24 59.69 71.63 72.24

SLA 99.02 98.78 83.44 74 57.56 56.27 57.62 57.3

simple 97.82 96.76 58.47 55.01 59.9 57.43 51.43 51.7
150

MNDRP 93.03 92.12 49.1 49.13 56.33 56.12 48.29 50.55

imbalanced network described in Section 4.5.4 where we reduce demand inflow of two nodes by a factor of

10, while keeping the rest of the demand distributions the same, and (4) sensitivity on heatmap transition

probabilities as detailed in Section 4.5.5.

B.5 Notation Summary
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Table B.2. Solution statistics for different testing setting, varying computational policies
and levels of initial driver supply, case 2 (enter/exit).

Supply

(% of
Avg
Demand)

Policy
Fulfilled demand (%) Matched drivers (%)

Original
Data

Scaled-
down
Demand

Imbalanced
Network

P-
sensitivity

Original
Data

Scaled-
down
Demand

Imbalanced
Network

P-
sensitivity

MCDRP 94.04 93.5 70.21 70.24 94.41 90.62 80.51 81

SLA 92.3 91.3 62.5 62.38 94.46 91.3 83.85 80.91

simple 91.4 89.5 57.04 56.57 92.7 89.85 76.29 72.11
80

MNDRP 77.13 77.36 48.16 48.3 88.34 87.36 73.84 74.61

MCDRP 97.66 97.15 75 75.02 91.15 87.02 78.81 79.37

SLA 95.8 94.86 65.6 65.47 92.41 89 81.73 78.63

simple 93.41 91.79 58.86 58.2 87.38 85.36 73.03 68.34
90

MNDRP 84.73 84.07 48.36 48.48 87.86 86.17 66.89 68.57

MCDRP 98.98 98.83 80.1 80.14 84.21 80.47 77.44 78.08

SLA 98.27 97.35 68.9 68.78 89.1 85.34 80.47 77.49

simple 94.55 93.33 60.71 60.29 82.24 79.86 70.22 64.94
100

MNDRP 89.26 87.62 48.51 48.6 84.76 79.88 62.61 65.5

MCDRP 99.06 99.06 89.27 89.24 68.6 65.8 74.21 74.71

SLA 98.98 98.73 75.24 74.97 75.88 73.67 78.35 75.07

simple 96.06 94.88 64.5 63.88 75.75 72.57 65.81 60.36
120

MNDRP 92.3 91.2 48.77 48.74 72.69 68.16 57.09 59.6

MCDRP 99.06 99.07 98.07 98.01 52.86 51.8 66.22 66.73

SLA 99.05 99.03 84.58 84.26 60.95 59.88 73.9 70.52

simple 97.33 96.37 69.88 69.54 69.89 66.94 60.92 55.44
150

MNDRP 93.03 92.12 49.1 49.13 56.33 56.12 48.29 50.55
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Table B.3. Notation Summary.

MDP Notation

Notation Meaning Notation Meaning

N set of nodes in the network A
set of arcs connecting adjacent
nodes

t time index (decision epoch) of plan-
ning horizon

T the length of the planning horizon

Mt set of drivers at epoch t Dt set of orders at epoch t

Dtij
set of orders with o-d pair (i, j), or-
dered in increasing order of delivery
deadline

mti
number of drivers at location i,
epoch t

dtlij
number of orders with o-d pair (i, j)
at epoch t with delivery deadline at l

τij
travel time (in epochs) between
nodes i and j

ω delivery time window (in epochs) of
order fulfillment

γ maximum heat level

h heatmap H set of all heatmaps

P (h) Transition probability matrix given
heatmap h

pij
probability of transitioning from
node i to j

St state of the system at epoch t xt matching decision vector at epoch t

yt heatmap decision vector at epoch t mu
ti

number of unmatched drivers at
node i

Xπ(St)
decision function for mapping state
to action

π MDP policy

Wt
random information revealed at
epoch t

Xtij
set of fulfilled orders at t with o-d
pair (i, j)

C(St, (xt, yt))
contribution (reward) of making de-
cision vectors xt, yt when in state St

vπ(S0) value function of state S0 when fol-
lowing policy π

Solution Methodology Notation

Ni set of nodes adjacent to i Γ duration of forecast window

l time index within forecast window
l ∈ {t+ 1, . . . , t+ Γ}

S set of random samples of demand
considered in SLA policy

dslkij

number of forecasted orders with o-
d pair (i, j) at epoch l with delivery
deadline at l + k

∆
service time duration for preparing
order

xlij
decision variable: number of
matched active orders with o-d pair
(i, j)

xslij

decision variable: number of
matched forecasted orders with o-d
pair (i, j)

mli,m
s
li

decision variable: number of drivers
at i in epoch l, for fist and second
stages

ulij
decision variable: number of drivers
transitioning from i in epoch l

αl−t discount parameter Qs(·) objective function value of second
stage given scenario s

yh
binary decision variable for choice of
heatmap

δti
shortage of drivers at node i, epoch
t+ 1 given known demand

εi heat level at node i ρεiεj

pairwise probability of transitioning
from a node with heat level εi to an
adjacent node with heat level εj
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Chapter 5 Appendix

C.1 Notation Summary
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Table C.1. Notation Summary 1.

Notation Meaning Notation Meaning

λ order arrival rate per epoch µ driver arrival rate per epoch

W guarantee (utilization or wage based) τ activity time window in hours

t time index (decision epoch) of plan-
ning horizon

T the length of the planning horizon

St state of the system at epoch t a driver attribute vector

sa binary indicator, driver active ma binary indicator, driver available

oa location of driver ha active time up to t

ya
progress towards desired guarantee
(utilization or earning amount)

At set of attributes of available drivers
at epoch t

A′t set of attributes of en-route drivers
at epoch t

b demand attribute vector

(ob, db) origin and destination of order [tminb , tmaxb ] time window of order fulfillment

ϕb
fraction of order value that platform
earns

Bt set of all demand attributes at t

Rta
number of drivers with attribute a
at t

Rt Rt = (Rta)a∈At
vector of drivers

Dtb
number of orders with attribute b at
t

Dt Dt = (Dtb)b∈Bt
vector of demand

xtab, xta0

number of drivers with attribute a
assigned to orders with attribute b,
and not assigned

B+ B+ = Bt ∪ {0}

Dab set of time feasible assignments be-
tween driver a and order b

R(b) revenue as a function of demand at-
tribute b

C(a, b)
cost, function of demand and driver
attributes

F (a)
penalty term as a function of driver
attribute

L(a, b) priority score in parametric cost
function approximation

η scalar that converts distance to time
estimate

ιab
time it takes driver a to fulfill order
b

wb
distance between the origin and des-
tination of an order b

θb revenue per unit distance wab
distance between the origin of a
driver a and the origin of an order b

θ̄ab per unit distance delivery cost ζ penalty coefficient

φb
fraction of value of the order the
platform collects

ϕb fixed cost per delivery

ρa driver matching penalty function ρ′b demand loss penalty function
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Table C.2. Notation Summary 2.

Notation Meaning Notation Meaning

Vt(St) the value of being in state St Xt the feasible region at t

Ct(St, xt)
myopic objective value of taking ac-
tion vector xt when in state St

Wt
exogenous information arriving be-
tween t− 1 and t.

N number of iterations in VFA algo-
rithm

ωn sample path at iteration n

V̄t approximate value function ῡta′
value function coefficient of having a
driver with attribute a′ at t

ῑ(t, a, d) travel time of driver a when decision
d is applied at t

vnt,a
new value function estimate at iter-
ation n obtained from dual variables

γ discount factor in MDP objective ψ rate of drivers exiting the system

Σ number of zones in the model G set of aggregation levels

σg number of zones in aggregate level g w
(g)
ta weight of aggregate level g

β̄
(g,n)
ta bias estimate due to smoothing µ̄

(g,n)
ta bias estimate due to aggregation error

¯̄β
(g,n)
ta total squared variation estimate ηn

step size for updating bias and
squared variation estimates

αnta
step size for updating value function
estimate

s2
ta variance estimate
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