
Data Protection in Big Data Analysis

by

Masoumeh Shafieinejad

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

c⃝ Masoumeh Shafieinejad 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Elisa Bertino
Professor
Dept. of Computer Science, Purdue University

Supervisor: Florian Kerschbaum
Associate Professor
Dept. of Computer Science, University of Waterloo

Internal Members: N.Asokan
Professor
Dept. of Computer Science, University of Waterloo
Xi He
Assistant Professor
Dept. of Computer Science, University of Waterloo

Internal-External Member: Lukasz Golab
Associate Professor
Dept. of Management Sciences, University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis was researched and written under the supervision of Professor Florian Ker-
schbaum. Contents from Chapters 2, 3, 4 and 5 are from joint works with Professor Ihab
F. Ilyas, Dr. Robert Sim, Dr. Huseyin A. Inan, Marcello Hasegawa, Dr. Koray Karabina,
Suraj Gupta, Jin Yang Liu, Nils Lukas, Xinda Li and Jiaqi Wang. The results of these
projects are published in three papers [167, 166, 168] and a technical report [165].

iv

Abstract

“Big data” applications are collecting data from various aspects of our lives more and more
every day. This fast transition has surpassed the development pace of data protection
techniques and has resulted in innumerable data breaches and privacy violations. To prevent
that, it is important to ensure the data is protected while at rest, in transit, in use, as
well as during computation or dispersal. We investigate data protection issues in big data
analysis in this thesis. We address a security or privacy concern in each phase of the data
science pipeline. These phases are: i) data cleaning and preparation, ii) data management,
iii) data modelling and analysis, and iv) data dissemination and visualization. In each of
our contributions, we either address an existing problem and propose a resolving design
(Chapters 2 and 4), or evaluate a current solution for a problem and analyze whether it
meets the expected security/privacy goal (Chapters 3 and 5).

Starting with privacy in data preparation, we investigate providing privacy in query
analysis leveraging differential privacy techniques. We consider contextual outlier analysis
and identify challenging queries that require releasing direct information about members of
the dataset. We define a new sampling mechanism that allows releasing this information in a
differentially private manner. Our second contribution is in the data modelling and analysis
phase. We investigate the effect of data properties and application requirements on the
successful implementation of privacy techniques. We in particular investigate the effects of
data correlation on data protection guarantees of differential privacy. Our third contribution
in this thesis is in the data management phase. The problem is to efficiently protecting
the data that is outsourced to a database management system (DBMS) provider while
still allowing join operation. We provide an encryption method to minimize the leakage
and to guarantee confidentiality for the data efficiently. Our last contribution is in the
data dissemination phase. We inspect the ownership/contract protection for the prediction
models trained on the data. We evaluate the backdoor-based watermarking in deep neural
networks which is an important and recent line of the work in model ownership/contract
protection.

v

Acknowledgements

First of all, I wish to give my deepest thanks to my supervisor Florian Kerschbaum for his
education, support and guidance in developing this work. I am sincerely grateful to Florian
for bringing my trust back in respectful and thriving academic work environment.

I wish to express my gratitude for the members of the examining committee – Elisa
Bertino, N. Asokan, Xi He, and Lukasz Golab – for taking the time to read through this
thesis and providing insightful comments.

My decision to transfer to the University of Waterloo and being part of the CrySP lab,
is one of the best I have made in my life. An exceptionally friendly group of people whom
I learned a lot and received a great deal of support from, and had an amazing time with.
Thanks to all who contributed to CrySP being as awesome as it is.

I wish to particularly thank those who made glowing memories in my phd life, each
in their very own special way; thank you: [alphabetically ordered] Erin Atwater, Cecylia
Bocovich, Nils Lukas, Navid Nasr, Maryam Sepehri, Lindsey Tolluch, Justin Tracey, and
Nik Unger from the CrySP lab, and: Mina Farid, Saeed Nejati, Bahareh Sarrafzadeh, and
indeed Nolan Shaw.

I am very grateful to the individuals near or far, who lit a candle with me in my
non-bright moments: Melica Mirsafian, Priyaa Varshini, Nathan Harms, Maryam Elahi,
Somaieh Taheri, Joel Reardon, and who became known as Dr. Professor Academia Smarts,
Robin Cockett (after a movie by his son)! I can’t thank you enough Maryam Bandari and
Besat Zardosht, for always being there for me from wherever you were in the world.

Additionally, I offer appreciation at the free and open movements in software and knowl-
edge. This thesis benefited from these movements significantly, from the code compiling
for the experiments to producing the final copy of this text.

I express my deep personal gratitude to my family for their love and support. A special
thank you to my mother Salimeh, for her giving the strongest spirit by her encouraging
words. A big thank you to my father Rasoul, for raising me a mountain flower as he likes
to put it, to make it happily through challenging times. Thank you Javad, Mohadeseh,
Mahdi, Masoumeh, Zahra, and Mohsen. Thank you Zahra, Kosar, Faezeh, Hoda, Haniyeh,
Yasamin and Yeganeh for your beautiful smiles bringing an enormous joy to my life.

vi

Dedication

To the memory of my beloved sister Fatemeh, and all the health-care workers,

who put their lives for the rest of us to survive the difficult time of the Covid-19 pandemic;

To courage, love and life.

vii

Table of Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Contributions . 2

1.2 Background . 5

1.2.1 Differential Privacy . 5

1.2.2 Bilinear Groups . 7

2 PCOR: Private Contextual Outlier Release via Differentially Private
Search 8

2.1 Introduction . 8

2.1.1 Our Contributions . 10

2.1.2 Chapter Organization . 11

2.2 Preliminaries . 11

2.2.1 Outlier Detection Algorithms . 11

2.2.2 Output Constrained Differential Privacy 13

2.3 Problem Definition . 14

2.3.1 Outlier-Preserving Privacy in PCOR 17

2.3.2 Utility Functions . 18

viii

2.4 Direct Approach for PCOR . 19

2.5 Sampling Approach for PCOR . 21

2.5.1 Uniform Sampling . 21

2.5.2 Graph-based Sampling . 23

2.6 Experiments . 30

2.6.1 Datasets . 30

2.6.2 Evaluation Setup . 30

2.6.3 Choosing a Sampling algorithm for PCOR 32

2.6.4 PCOR and Other Utility Functions 33

2.6.5 PCOR and Outlier Detection Algorithms 34

2.6.6 Privacy, Utility, Performance Trade-off 35

2.6.7 Context Match and Group Privacy 37

2.7 Related Work . 39

2.8 Conclusion . 39

3 On Privacy and Confidentiality of Communications in Organizational
Graphs 41

3.1 Introduction . 41

3.1.1 Our Contributions . 43

3.1.2 Chapter Organization . 43

3.2 Preliminaries . 44

3.2.1 Group Differential Privacy . 44

3.2.2 Pufferfish Privacy . 44

3.2.3 Wasserstein Mechanism . 45

3.2.4 Markov Quilt Mechanism . 46

3.3 Problem Definition . 47

3.3.1 Organizational Model . 47

3.3.2 Confidentiality Requirements . 48

ix

3.4 Mechanism Design . 49

3.4.1 Neighborhood model for correlation 49

3.4.2 Privacy Definition . 50

3.4.3 Correlation Models . 51

3.4.4 Measuring W∞ . 53

3.5 Experiments . 53

3.5.1 Language Tasks . 55

3.6 Related Work . 59

3.7 Conclusion . 60

4 Equi-Joins over Encrypted Data for Series of Queries 61

4.1 Introduction . 61

4.1.1 Our Contributions . 62

4.1.2 Chapter Organization . 63

4.2 Preliminaries . 63

4.2.1 Polynomial Functions . 63

4.2.2 Function-Hiding Inner Product Encryption 63

4.3 Problem Definition . 64

4.3.1 System Model . 64

4.3.2 Super-additive Leakage . 65

4.4 Protocol Overview . 68

4.4.1 Encoding Selection Operations in Polynomials 69

4.4.2 Modified Function-hiding IPE . 70

4.4.3 Our Secure Join Scheme . 73

4.5 Security . 75

4.5.1 Inner Product Encryption . 75

4.5.2 Secure Join Encryption . 78

4.6 Experiments . 83

x

4.6.1 Setup . 83

4.6.2 Crypto Operations in Secure Join 83

4.6.3 Joins and Database Size . 84

4.6.4 Joins and IN-Clause Size . 85

4.6.5 Comparison and Discussion . 85

4.7 Related Work . 86

4.8 Conclusion . 87

5 On the Robustness of Watermarking in Deep Neural Networks 88

5.1 Introduction . 88

5.1.1 Our Contributions . 89

5.1.2 Chapter Organization . 90

5.2 Preliminaries . 90

5.2.1 Definitions and Models . 90

5.2.2 Backdoor-based Watermarking in DNNs 91

5.2.3 Backdoor-based Watermarking Schemes 93

5.3 Problem Definition . 93

5.3.1 Unremovability in Backdoor-based Watermarking 93

5.3.2 Security claims in backdoor-based watermarking 94

5.3.3 Invalidity of the security claims . 94

5.4 Attacks on Backdoor-Based Watermarking 95

5.4.1 Black-box Attack . 96

5.4.2 White-Box Attack . 97

5.5 Experiments . 98

5.5.1 Experiment Setup . 98

5.5.2 Fine-Pruning Attack . 101

5.5.3 Our Results . 101

5.5.4 Discussion on Experiments and Results 102

5.6 Related Work . 104

5.7 Conclusion . 106

xi

6 Conclusion 107

References 108

xii

List of Figures

1.1 Security and Privacy in the Data Science Pipeline [106]. 2

2.1 Utility and Performance of PCORs for different sampling candidates, utility
function outputs context population size, outlier detection algorithm is
LOF, and ϵ = 0.2 (a,e) Uniform Sampling, (b,f) Random walk, (c,g) DFS,
(d,h) BFS; where (a), (b), (c) , (d) represent utility and (e), (f), (g) ,(h)
demonstrate performance in running time 31

2.2 Utility and Performance PCORS with different sampling candidates, utility
is measured by the overlap with CV , LOF is the outlier detection, and
ϵ = 0.1 (a,c) DFS, (b,d) BFS; where (a), (b) represent utility and (c), (d)
demonstrate performance in running time 33

2.3 Utility and Performance of PCORs with Grubbs and Histogram outlier
detection algorithms using BFS sampling over utility of context population
size for ϵ = 0.1 (a,c) Grubbs, (b,d) Histogram; where (a), (b) represent
utility and (c), (d) demonstrate performance in running time 34

2.4 The effect of privacy parameter over Utility in PCOR with BFS sampling
and LOF outlier detection(a) ϵ = 0.05, (b) ϵ = 0.1, (c) ϵ = 0.2, (d) ϵ = 0.4 . 35

2.5 The effect of number of samples over utility and performance in PCOR with
BFS sampling and LOF outlier detection for ϵ = 0.2 (a,e) n = 25, (b,f)
n = 50, (c,g) n = 100, (d,h) n = 200 . 36

3.1 Neighborhood correlation, each edge is correlated with its adjacent edges. . 50

3.2 Example W∞ determined by differencing cumulative distributions for the
Conditional model. 53

3.3 Cumulative distributions of Pr(f(D) = w|sji) for the Global model, condi-
tioned on secret sji . 56

xiii

3.4 Cumulative distributions of Pr(f(D) = w) assuming binomially distributed
counts for secrets sjk on edges k adjacent to Xi. 57

4.1 Upload phase in Secure Join on TA, TB of Example 2 71

4.2 Query phase in Secure Join on TA, TB of Example 2 72

4.3 Encryption operation benchmarks for a single row in table Customers . . 84

4.4 Joins runtime for various scale factors, single IN clause 84

4.5 Joins runtime for IN clause with various sizes, scale factor: 0.01 85

5.1 A high-level illustration of the learning process. 91

5.2 A schematic illustration of the backdooring process. 92

5.3 A schematic illustration of our black-box attack. 96

5.4 A schematic illustration of our white-box attack. 97

5.5 Watermark samples in MModel (a) Content (b) Noise (c) Abstract Images. 99

5.6 Fine-Pruning attack on CIFAR-10, for Embedded Content 100

5.7 Fine-Pruning attack on CIFAR-10, for Pre-specified Noise 100

5.8 Fine-Pruning attack on CIFAR-10, for Abstract Images 101

5.9 Watermark retention VS test accuracy of the watermarked model M̂ , as the
number of epochs increases, MNIST. 103

5.10 Watermark retention VS accuracy of the marked model M̂ , as the number
of epochs increases, CIFAR-10. 104

xiv

List of Tables

2.1 A sample of income data set D. 14

2.2 Sampling Methods Comparison - Performance. 32

2.3 Sampling Methods Comparison - Utility. 32

2.4 Intersection Overlap Utility - Performance. 33

2.5 Intersection Overlap Utility - Utility. 33

2.6 Outlier Detection Algorithms - Performance. 34

2.7 Outlier Detection Algorithms - Utility. 34

2.8 Effect of privacy parameter on performance. 35

2.9 Effect of privacy parameter on utility. 36

2.10 Effect of # of samples on performance. 36

2.11 Effect of # of samples on utility. 37

2.12 COE Match - Salary dataset . 38

2.13 COE Match - Homicide dataset . 38

3.1 Wasserstein metrics for edges with neighborhoods of size deg and properties
with global frequency freq. 54

3.2 Experimental results for histogram publication, ϵ = 100. We measure utility-
the number of positive ngram counts for each of the correlation models, as
well as for node-level, edge-level, and group privacy. 58

3.3 Experimental results for DPSU, ϵ = 100. We measure utility- the number of
extracted ngrams for each of the correlation models, as well as for node-level,
edge-level, and group privacy. 58

xv

4.1 Teams . 66

4.2 Employees . 66

4.3 The result of equi-join query at t1 . 66

4.4 The result of equi-join query at t2 . 67

4.5 A sample row r in TA . 68

4.6 A sample row r′ in TB . 69

5.1 Watermark removal attacks on various datasets 102

xvi

Chapter 1

Introduction

We have been moving towards the digital world with feverish haste that springs from the
urge for convenience, such as speeding up large scale data processing, or is an outcome
of necessity, for example carrying on with life with the least physical contact during the
Covid-19 pandemic. This has resulted in enterprises acquiring massive amounts of data,
referred to as Big Data, from a variety of sources that power their applications and enable
deeper and more informed analytics. Bertino and Ferrari [20] define the Big Data term
as “a data management and analytics paradigm featuring 5V: huge data Volume, high
Velocity (i.e., timely response requirements), high Variety of data formats, low Veracity (i.e.,
uncertainties in the data), and high Value”. The data goes through a series of processes
from cleaning to distribution as shown in four phases in Figure 1.1. Each phase could be
subject to information leakage or theft if proper protection techniques are not applied.
The Wikipedia page for data breaches, provides a list of 400 breaches during 2004 – 2020;
published through press reports, government news releases, or mainstream news articles.
The list includes those involving the theft or compromise of 30,000 or more records ranging
from financial data to health information, while many smaller breaches occur continually.
Another report [175] reveals that about 3.5 billion people saw their personal data stolen in
the top two of 15 biggest breaches of the 21st century alone. The smallest incident among
these 15 breaches, involved the data of a mere 134 million people. In addition, focusing on
privacy violations when publishing personal data, Chen et al. [32] provide several examples
of de-identification taking place as a result of linking attacks or data reconstructions. There
are many open data-protection problems in big data analysis. We provide an example of
security/privacy deficiencies for each of the four phases of the data science pipeline in this
thesis.

1

Data Cleaning

Data Preparation

Data

Management

Data Modelling

& Analysis

Dissemination

& Visualization

Figure 1.1: Security and Privacy in the Data Science Pipeline [106].

1.1 Contributions

During the data preparation phase, a trusted centralized data collector gathers raw data
from individuals, and prepares the dataset to undergo future processing by an untrusted
data analyst in any of data science phases. This preparation should provide sufficient
protection for the privacy of individuals in the dataset against the data analyst. The data
collector can guarantee this protection by applying encryption or privacy techniques in
the preparation phase. In our first contribution, we consider using differential privacy
techniques in the data preparation phase, for it i) randomizes the data, ii) guarantees a
bound on the information leakage, and iii) is not affected by the post-processing performed
by the data analyst. The application of differential privacy is particularly challenging in
database queries for which no tailored mechanism exists. We consider contextual outlier
detection among these challenging queries in Chapter 2, for its importance in i) error
detection in the data cleaning phase, and ii) data interpretation in the data analysis phase.

The data collector in Chapter 2, publishes only the outlying data points and their
corresponding contexts. This information is a point of interest for an analyst in the data
cleaning phase who eliminates these outliers as errors in the dataset. It is also a point
of great interest in the data analysis phase, where the analyst leverages this information
to interpret the data for making decisions such as adjusting the clients’ required monthly
payments to an insurance company, based on the their contextual behaviour. In either
case, the data collector needs to guarantee that the untrusted data analyst, who has access
to the outliers and their contextual description, does not learn any information about the
other individuals in the dataset.

Differential privacy for statistical queries of various types has been investigated in the
literature. However, the studies of privacy in outlier analysis are few, all neglecting the
privacy of non-outlier individuals, who define a context for an outlier. There are two main
challenges in defining and applying privacy in contextual outlier release. The first major
challenge is that the privacy technique must preserve the validity of the context for each
outlier. We propose techniques to protect the privacy of individuals through a relaxed
notion of differential privacy to satisfy this requirement. The second major challenge is

2

applying the proposed techniques efficiently, as they impose intensive computation to the
base algorithm. To overcome this challenge, we propose a graph structure to map the
contexts to, and introduce differentially private graph search algorithms as efficient solutions
for the computation problem caused by differential privacy techniques.

During the data modeling and analysis phase, a trusted model designer trains a model
on the individuals’ data, and distributes the model to users for classification/prediction
tasks later in the dissemination phase. These models are expected to only learn the general
task, and to not leak information about any particular individual in the training set to
the untrusted subset of users. However, the models are capable to memorize more than
expected and are susceptible to membership inference attacks, violating the privacy of the
individuals in the training set. A suggested approach to protect their data and prevent this
privacy violation is using differential privacy.

Differentially private data does not reveal any information about participance/absence of
any particular individual in the data set, and keeps this privacy guarantee while undergoing
post-processing as well. However, when applied in its original form, differential privacy
does not prevent inferring information about the data, if the data is not i.i.d and the
adversary possesses information about the data distribution. For example, if it is known
that four of five people in the same household have caught flu, assuming that the adversary
is aware of the flu spread formulation, (s)he can infer the probability of the fifth person
catching flu too. Similarly, through the model access, an adversary (untrusted user) can
exploit the correlation information among the training data and gain knowledge about a
target individual. We address this problem in Chapter 3, and show how we can take this
correlation information into account in model training in order to strengthen the privacy
guarantees.

We in particular consider the limits of differential privacy when used for confidentiality
in social graphs. We assess models that are trained on organizational communications, e.g.,
emails. These models, when disseminated, carry unique risks of breaching confidentiality,
even if the model is intended only for internal use. Current works that apply differential
privacy techniques to natural language processing tasks usually assume independently
distributed data, and overlook potential correlation among the records, resulting in a
fictional promise of privacy. Naively extending differential privacy techniques to focus on
group privacy instead of record-level privacy is a straightforward approach to mitigate this
issue. This approach, although providing a more realistic privacy guarantee, is over-cautious
and severely impacts model utility. We show the gap between these two extreme measures
of privacy over two language tasks, and introduce a middle-ground solution. We propose
a model that captures the correlation in the social network graph, and incorporates this
correlation in the privacy calculations through Pufferfish privacy principles.

3

In the data management phase, the data owner manages their data in a database
management system (DBMS). A resource-constrained data owner may outsource their data
to a resourceful but untrusted DBMS provider for storage and computation purposes. The
data owner desires to have the DBMS provider apply operations on the data, while not
learning any information about it. The data owner can use encryption to reliably protect
their data. However, some data management operations such as joins cannot be simply
performed over encrypted data and need specialized encryption schemes. Furthermore, the
data protection guarantees of the encryption schemes might reduce while the operations
are performed over the outsourced encrypted data, and over a series of queries. We address
this problem in Chapter 4 and contribute to reducing this information leakage in the data
management phase.

We provide a new encryption scheme for the outsourced data to a database management
system provider, e.g., in the cloud. The challenge is, performing operations such as equi-
joins over encrypted data requires specialized encryption schemes that carefully balance
security and performance. Our encryption scheme can efficiently perform equi-joins over
encrypted data with less leakage than the state-of-the-art. In particular, our encryption
scheme reduces the leakage to equality of rows that match a selection criterion and only
reveals the transitive closure of the sum of the leakages of each query in a series of queries.
Our encryption scheme is provably secure. We implemented our encryption scheme and
evaluated it over a dataset from the TPC-H benchmark.

During the data dissemination phase, the trusted model designer who trained the model
on the individuals’ data earlier in the modeling and analysis phase, may distribute the
model to users (sample owners) for classification/prediction tasks. The model designer
desires restrictions in the model re-distribution due to i) ownership protection incentives,
or ii) privacy concerns of the individuals in the dataset. The privacy concern arises from
purpose binding notion where the data collected for one purpose should not used for another
purpose without user consent. Watermarking models is a method to protect the models
from an unauthorized redistribution where the adversary has either black-box or white-box
access to the model. However, the watermarking schemes might be susceptible to removal
attacks. We underpin this problem in Chapter 5.

We consider watermarking algorithms that have been introduced in the past years to
protect deep learning models against unauthorized re-distribution. We investigate the
robustness and reliability of state-of-the-art deep neural network watermarking schemes,
namely backdoor-based watermarking. We propose two simple yet effective attacks – a
black-box and a white-box – that remove these watermarks without any labeled data from
the ground truth. Our black-box attack steals the model and removes the watermark
with only API access to the labels. Our white-box attack proposes an efficient watermark

4

removal when the parameters of the marked model are accessible, and improves the time to
steal a model up to twenty times over the time to train a model from scratch. We conclude
that these watermarking algorithms are insufficient to defend against redistribution by a
motivated attacker.

1.2 Background

Differential privacy is the base for the concepts and definitions we use in Chapters 2 and
3. Similarly, it is necessary to be familiar with bilinear groups to understand the design
proposed in Chapter 4. The rest of this chapter covers the required background.

1.2.1 Differential Privacy

Differential privacy (DP), was introduced in 2006 by Dwork et al. [52]. To protect individ-
ual’s data, DP mechanisms require that changing one record in the database should not
change the output distribution much. The formal definition is as follows.

Definition 1.2.1 (ϵ-Differential Privacy [52]). A randomized algorithmM is said to provide
ϵ-differential privacy if for any pair of neighboring databases D1, D2 differing in only a
single entry, and for any set S which is a subset of possible outcomes of the randomized
mechanism, S ⊆ Range(M),

Pr(M(D1) ∈ S)

Pr(M(D2) ∈ S)
≤ exp(ϵ) (1.1)

the probability taken over the randomness of the algorithm M.

A typical way to achieve ϵ-differential privacy for numeric queries is to apply the Laplace
mechanism as shown by McSherry et al. [134]. The main idea is to apply noise to the
output of a query for perturbation. The amount of noise depends on the sensitivity of the
query and the privacy budget ϵ. To provide the formal definition for a privacy mechanism,
we need to define sensitivity first.

Definition 1.2.2. [Sensitivity] Let d be a positive integer and D be a collection of datasets.
For any function f : D → Rd, the sensitivity of f, denoted by ∆f , is defined by

∆f = max
D1,D2

||f(D1)− f(D2)||1 (1.2)

where D1 and D2 are datasets in D differing in at most one element and || · ||1 denotes the
ℓ1 norm.

5

Laplace Mechanism

The idea to achieve DP is perturbing the query function by the introduction of random
noise generated according to a carefully chosen distribution.

Theorem 1.2.1. (The Laplace mechanism) Let d be a positive integer and D be a collection
of datasets. For any f : D → Rd, the randomized mechanism M

M(D) = f(D) + Laplace(0,∆f/ϵ) (1.3)

satisfies ϵ-differential privacy.

Sensitivity is a bound on the maximum effect of any element in the dataset, which
will be helpful to provide privacy to all elements in the dataset. Based on this, for a
given dataset D, a function f , and the privacy parameter ϵ, the Laplace mechanism adds
Laplace(0,λ) noise to the output of f where the parameter λ is determined by both ∆f
and ϵ.

We next introduce the exponential mechanism that is commonly used to provide differ-
ential privacy for non-numerical queries.

Exponential Mechanism

The goal of the exponential mechanism is to randomly map a set of n inputs each from a
domain D to some output in a range R [136]. There are no specific assumptions about the
nature of D or R other than a base measure µ on R exists. We proceed with the common
assumption that the base measure µ is uniform. The exponential mechanism is driven by
a utility function u : D ×R → R that assigns a real valued score to any pair (D, r) from
D ×R, higher scores indicate more appealing r’s for D. We show the sensitivity of this
utility function by ∆u:

∆u = max(D1,D2)∈N ,r∈R = |u(D1, r)− u(D2, r)|. (1.4)

Given a D ∈ D the goal of the mechanism is to return an r ∈ R such that u(D, r) is
(approximately) maximized while guaranteeing differential privacy.

Definition 1.2.3. (The exponential mechanism) [136] For any function u : D ×R → R,
the exponential mechanism is defined as follows:

Expϵu(D,R) := Choose r,

Pr[r] =
exp(ϵu(D,r)

2∆u
)

∑︁
r′∈R exp(ϵu(D,r′)

2∆u
)
. (1.5)

6

We include Theorem 1.2.2 for the privacy of the exponential mechanism and refer to
McSherry et al.’s work [136] for the its proof.

Theorem 1.2.2. Theorem 1. (Privacy [136]). The exponential mechanism Expϵu(d) gives
(2ϵ∆u)-differential privacy.

It follows from Theorem 1.2.2, for the exponential mechanisms to be the most useful,
sensitivity (∆u) must be limited. Commonly, the utility function is chosen such that
∆u ≤ 1, for Expϵu ensuring (2ϵ)-differential privacy.

1.2.2 Bilinear Groups

Let G1 and G2 be two distinct groups of prime order q, and let g1 ∈ G1 and g2 ∈ G2 be
generators of the respective groups. Let e : G1 × G2 → GT be a function that maps two
elements from G1 and G2 onto a target group GT , which is also of prime order q. We follow
the style of Kim et al. [109] to write the group operation in G1, G2 and GT multiplicatively
and write 1 to denote their multiplicative identity. The tuple (G1,G2,GT , q, e) is an
asymmetric bilinear group [139, 97, 27] if these properties hold:

• The group operation in the groups G1, G2, GT and the mapping e, are all efficiently
computable.

• The map e is non-degenerate: e(g1, g2) ̸= 1.

• The map e is bilinear: for all x, y ∈ Zq, this holds:
e(gx1 , g

y
2) = e(g1, g2)

xy

When dealing with vectors of group elements, for a group G of prime order q with an
element g ∈ G and a row vector v = (v1, · · · , vn) ∈ Zn

q where n ∈ N, we write gv to
denote the vectors of group elements (gv1 , · · · , gvn). Also, for any scalar k ∈ Zq and vectors
v,w ∈ Zn

q , we write: (gv)k = g(vk) and gv.gw = gv+w. Furthermore, the pairing operation

over groups is shown as: e(gv1 , g
w
2) = Πi∈[n]e(gvi1 , g

wi
2) = e(g1, g2)

⟨v,w⟩.

7

Chapter 2

PCOR: Private Contextual Outlier
Release via Differentially Private
Search

2.1 Introduction

We borrow the contextual outliers example of Han et al. [79]: “The temperature today
is 28◦C. Is it exceptional (i.e., an outlier)? It depends, for example, on the time and
location! If it is in winter in Toronto, yes, it is an outlier. If it is a summer day in Toronto,
then it is normal. Unlike traditional outlier detection, in this case, whether or not today’s
temperature value is an outlier depends on the context — the date, the location, and
possibly some other factors”. Contextual outlier detection helps with the problem of hidden
outliers — the data points that are considered normal compared to the whole population,
but are outliers when compared to a subset of the dataset. Consider an analyst performing
market research who wishes to determine the companies that are unusually profitable. While
Company V might have normal reported profit compared to all companies, it may have
outlying profit when compared to media companies with less than 2000 employees. In this
case, the released context for Company V is [Business = media] ∧ [|Employees| < 2000].
For the same data point V there might be multiple contexts (explanations) in which V is
an outlier, each of which might have a different utility value. One example for utility is the
size of the population that is covered by the context, which indicates the significance of
the outlier. Another example is the context’s overlap with a desired context, suitable for
scenarios where the private explanation is required to be in a close relation with a chosen

8

context. The data owner releases a context for V that ideally achieves the highest utility.
We assume reporting the outlier data point V is allowed when covered by the business
purpose of performing the analysis. However, releasing the context — although useful for
the data analyst — leaks information about other individuals in the dataset. This might
not be permitted without the users’ consent, according to privacy laws (e.g. GDPR [5]).

Technical Challenges

The privacy for statistical queries of various types, such as average, sum, variance, histogram,
median, and maximum likelihood estimator, have been investigated [52, 147, 51] in the
literature. However, the studies of privacy in outlier analysis are few, and mostly – described
in more detail in Section 2.7 – addressing the privacy of the outlier [63, 129, 25, 151].
Consequently, the privacy of individuals in the remaining population has remained neglected,
leaving the private contextual outlier reporting (PCOR) design as an open problem.

Differential privacy [50, 52, 53] is a popular privacy notion in data analysis [62] that
has shown success in providing privacy when applied to products made by organizations
such as the US Census Bureau [80, 131], Google [55], Apple [72] and Uber [95]. Since
differential privacy i) guarantees privacy for individual records, ii) ensures privacy even in
the presence of side information about the data, and iii) bounds the information leakage to
a total privacy budget (ϵ) across multiple data releases; it thoroughly meets the privacy
needs in PCOR. However, the challenges of utilizing differential privacy in PCOR are many,
including defining a meaningful notion of differential privacy for contextual outliers, finding
a proper technique that fits PCOR’s requirements, and proving that the privacy budget
is reasonably bounded. When queried about a record, PCOR must select a private valid
context with ideally high utility among all candidates. To achieve this goal, we propose a
variation of the exponential mechanism in PCOR, as this mechanism provides differential
privacy when the nature of the candidates is discrete. However, the conventional definition
of privacy and neighboring datasets in the exponential mechanism does not guarantee the
validity of the context in the outlier release case. This motivates us to propose a variation
of the exponential mechanism that guarantees the query response is valid and provides a
relaxed notion of differential privacy. Our proposed technique, similar to the conventional
exponential mechanism, in its formulaic application inevitably enumerates all possible
contexts to select one. This requirement heavily affects the performance of the scheme,
impeding its practicality. To summarize, our challenge is to provide a design for private
contextual outlier reporting that

1. Defines a notion of differential privacy for contextual outliers, and provides a technique

9

for achieving it. As a result, in most cases, the output of PCOR is approximately the
same (≤ eϵ), even if any single record in the input database is arbitrarily added or
removed;

2. Reduces the complexity from exponential time in the formulaic (direct) approach
to polynomial time. This reduction however, should not affect whether the design
supports differential privacy;

3. Achieves high utility. Supporting privacy and scalability, should not prevent the
design from meeting its purpose in providing useful data for the analyst, and;

4. Is compatible with any utility function (e.g. population size) as well as any outlier
detection algorithm, instead of being designed for a restricted number of specific
cases.

2.1.1 Our Contributions

Florian Kerschbaum, Ihab F. Ilyas and I propose PCOR [167], a framework for privately
releasing contextual outliers that addresses the aforementioned challenges:

1. PCOR utilizes a technique for a relaxed notion of differential privacy that prevents
an adversary from learning information about the individuals in the context other
than the reported outlier.

2. We propose deploying a sampling layer – based on a graph structure – prior to applying
the exponential mechanism, to reduce the complexity of PCOR to polynomial time.
In our efficient sampling, we analyze the Breadth-First and the Depth-First search
algorithms. We modify these algorithms to support differential privacy for the
outcome. We contribute the first presentation of differentially private graph search
algorithms in the literature.

3. We prove our proposed solution is private and compare our algorithm in privacy and
computational complexity to alternative solutions. The performance and utility of
our algorithm is also supported by our experimental results.

4. We show that our framework can accommodate any utility function for the contexts.
We provide results for two examples of utility functions that correspond to two
separate classes of outlier release. One, evaluates the context based on the size of
the population it covers while the other, evaluates the contexts based on its relation

10

(overlap) with a chosen context. Ultimately, we claim our algorithm works for the
generic case of reporting the contextual outliers and is not limited to any particular
outlier detection algorithm. Our claims are reinforced by experimental results over
three algorithms for different outlier detection categories.

PCOR solves the challenge of simultaneously providing privacy, utility, and performance in
reporting contextual outliers. Applied on a dataset of 50,000 records, PCOR reduces the
runtime from three days in the direct differentially private approach to 37 minutes; while
it maintains 90% of the maximum utility1 and guarantees relaxed (output constrained,
defined in Section 2.2.2) differential privacy with ϵ = 0.2.

2.1.2 Chapter Organization

The rest of this chapter is organized as follows: In Section 2.2 we describe the outlier
detection algorithms and define the notion of differential privacy we use. In Section 2.3 we
provide the formal model and problem definitions for our private contextual outlier release
(PCOR). We discuss the direct approach of embedding a differential privacy mechanism
in contextual outlier detection in Section 2.4 and address the performance challenge. In
Section 2.5 , we introduce a graph representation of contexts used in our efficient sampling
algorithms. Privacy proofs of the candidate algorithms are also covered in Section 2.5. Their
performance and accuracy are evaluated through the experiments described in Section 2.6.
Our results in Section 2.6 confirm that our final candidate succeeds in achieving privacy,
accuracy and efficiency. In Section 2.7, we situate our work in the current body of research,
and in Section 2.8 we conclude this work.

2.2 Preliminaries

2.2.1 Outlier Detection Algorithms

Outlier detection algorithms fall into three main categories: i) Statistics-based, ii) Distance-
based and iii) Model-based methods [93]. In statistics-based outlier detection techniques
[73, 178, 31, 160, 133, 89, 4, 155] it is assumed that normal data points appear in high
probability regions of a stochastic model, while outliers appear in its low probability regions.

1These numbers correspond to the experiments where the utility is “population size”. The experiments
for the “overlap” utility run even faster (Section 5.5.4).

11

There are two different types of statistics-based approaches: a) Hypothesis testing, and b)
Distribution fitting approaches. The hypothesis testing [73, 178, 160] approach calculates
a test statistic based on the data points, then it determines whether the null hypothesis
claiming no outlier exists in the dataset, is valid or not. We evaluate Grubbs’ test [73] as
a hypothesis testing outlier detection, which expects the data to follow an approximate

normal distribution. The test statistic is defined as G =
maxi=1,··· ,N |Yi−Ȳ |

s
, where Ȳ is the

sample mean and s is the standard deviation. The null hypothesis is rejected if G > Gcritical.
The distribution fitting approach [4, 89, 133, 155] first fits a probability density function
to the data. Next, it labels the points with low probability as outliers. We select the
Histogram approach [4] for the fitting distribution category to benefit from its strength
in not relying on the assumption of knowing an underlying distribution. The histogram
method first bins the range of values by dividing the range of the random variable into a
series of consecutive and non-overlapping intervals. In the second step, it counts how the
number of values fall under each bin. We use equi-width histogram, and choose the square
root of the total number of samples as the number of bins. The data points that belong
to bins of very low frequency are reported as outliers. Distance-based outlier detection
techniques often define a distance between data points, which is used for defining a normal
behavior [28, 158, 111, 110]. The outlier in this setting is a point that is distant from the
others. We investigate Local Outlier Factor [28] as the distance-based outlier detection
method in our experiments. The local outlier factor (LOF) method scores data points based
on the density of their neighboring data points and detects the outlier points based on the
scores. The LOF takes values approximately equal to 1 for a normal point versus ≫ 1 for an
outlier [28]. Hence, the factor can be used to detect outliers. Following paragraphs describe
how the algorithm scores the data points. Given a positive integer k, the k−distance of an
object p, denoted by k−distance(p), is defined as the distance(p, o) between p and another
object o, such that i) there exists at least k objects other than p in the dataset whose
distance to p is less than or equal to distance(p, o), and ii) there exists at most k−1 objects
other than p in the dataset whose distance to p is strictly less than distance(p, o). The
k − distance neighborhood of p, denoted by Nk(p), contains all objects other than p whose
distance to p is less than or equal to k−distance(p). The reachability distance of an object
p with respect to object o is defined as reach− distk(p, o) = max{k− distance(o), d(p, o)}.

Definition 2.2.1. The local reachability density of p is defined as:

lrdk(p) = 1/(

∑︁
o∈Nk(p)

reach− distk(p, o)

|Nk(p)|
).

12

The local outlier factor of p is defined as:

LOFk(p) =

∑︁
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|
.

Contrary to the outlier detection algorithms described above, model-based techniques
detect the outliers in a supervised approach. However, in this project we focus on the
unsupervised outlier detection algorithms as they do not require access to labeled data.

2.2.2 Output Constrained Differential Privacy

To provide privacy in our PCOR, we utilize a relaxed notion of differential privacy, namely
Output Constrained Differential Privacy [88]. We postpone the reasoning for this choice to
Section 2.3.1, after introducing the notations and defining the problem at the beginning of
Section 2.3.

Definition 2.2.2. (f -Neighbors) Given function f : D → O, for any pair of datasets
D1, D2 ∈ D, the datasets D1 and D2 are neighbors w.r.t. f , denoted by N (f(.)), if

1. f(D1) = f(D2) ̸= ∅

2. (D1, D2) ∈ N

The f -Neighbors D1 and D2, not only have to satisfy the general neighboring condition
and differ from each other in only one record, but also need to result in the same (non-
empty) output result/set when the function f is applied to them. In our outlier release
use case, the function f outputs the set of all valid contexts in the dataset for a particular
outlier. We elaborate outlier release in Section 2.3 and define f in Definition 2.3.1.

Definition 2.2.3. (Output Constrained Differential Privacy – OCDP) A randomized
mechanism M satisfies (ϵ, f)−OCDP, if for any (D1, D2) ∈ N (f(.)), and every set of
outputs S ⊆ Range(M), we have:

Pr[M(D1) ∈ S] ≤ eϵPr[M(D2) ∈ S]. (2.1)

Exponential mechanism guarantees an accuracy limited by an upper bound [136]. For
PCOR’s accuracy, we present empirical evaluations in Section 5.5 to measure the exact
achieved accuracy.

13

Table 2.1: A sample of income data set D.

Record Job title City District Salary

1 Medical Doctor Montreal Business S1

2 Lawyer Toronto Business S2

3 CEO Ottawa Diplomatic S3

4 Lawyer Toronto Business S4

5 Lawyer Ottawa Diplomatic S5

6 Medical Doctor Toronto Historic S6

7 Lawyer Ottawa Business S7

8 Lawyer Ottawa Diplomatic S8

9 CEO Montreal Historic S9

10 Medical Doctor Toronto Diplomatic S10

2.3 Problem Definition

The outlier release encourages the anomaly or discourages it, due to approval or disapproval
incentives respectively. In the approval incentive, the outlier benefits from the announcement
as their outlying is desired. However, in the latter, the anomaly is undesired and needs to
be proven to penalize the outlier. For approval incentive, imagine a funding agency that
awards people with outstanding achievement in underrepresented groups. In this example,
the agency is allowed to announce the outlier and the privacy-enhanced context, while any
individual in that context is able to deny their participation in the funding competition.
For disapproval incentive, imagine an insurance company increasing the annual payment of
a client due to the client’s abnormal behavior among a group of clients. While the insurance
company is required to provide justification for this increase, they are not allowed to
reveal information about any other client. To clarify how contextual outlier release violates
the privacy of the participants, we provide an example of income analysis with concrete
attribute values in Table 2.1. The goal in this example is to reveal the context that covers
the largest population for an outlier. D is a dataset with categorical attributes of Jobtitle =
{CEO,MedicalDoctor, Lawyer}, City taking values from {Montreal, Ottawa, Toronto},
andDistrict with the domain {Business,Historic,Diplomatic}, and a numerical attribute
Salary. Assume that the data owner reveals the record V , e.g. record 8 in Table 2.1, has
its highest anomaly significance in the context Jobtitle ∈ {CEO,Lawyer}, in Diplomatic
district of Ottawa. By having a side information about the individuals in the maximum
context, e.g. by knowing there is only one CEO living in Diplomatic district of Ottawa,
the revealed deterministic statement about the outlier V , leaks information about the

14

presence of the CEO in the dataset as well.

In our setup, we consider a dataset instance, D, of a relational schema, R. Attributes of
R are presented by the set attr(R) = {A1, · · · , Am,M}; where M is the metric attribute
we define the outlier with regard to. We denote by Pij , a predicate that is defined over the
jth value in the domain of a categorical or numerical attribute Ai derived from attr(R). For
instance, in our running example, P23 is the third attribute value in the second attribute
in attr(R) = {Jobtitle, City,District, Salary}, which is City = Toronto. The domain of
an attribute Ai includes all possible values for Ai, regardless of them being covered in
the particular instance D; we refer to the domain size of Ai by |Ai|. In reporting private
contextual outliers, it is necessary to take all the values in the domain of the attributes into
account; the reason for this requirement is discussed in Section 4. A predicate Pij filters the
tuples from D to a subset that satisfies the predicate. This filtering can be represented as
conjunction of disjunction predicates; [P11∨P12∨· · ·∨P1|A1|]∧ · · ·∧[Pm1∨Pm2∨· · ·∨Pm|Am|];
this format covers many common types of SQL queries.
Now, we can define a context, C. A context is represented as a binary vector of the
form ⟨c11, · · · , c1|A1|, · · · , cm1, · · · , cm|Am|⟩ with length t =

∑︁m
i=1 |Ai|. The bit cij in C is

set to 1, if the predicate Pij is covered in the context. C filters the dataset D to the
population DC . A tuple V belongs to DC , denoted as V ∈ DC , if V is selected by a
set of predicates Pij, ∀i ∈ [1,m] in C, where 1 ≤ j ≤ |Ai|. We denote the total num-
ber of tuples in C’s population as |DC |. In our example of the dataset with categorical
attributes of attr(R) = {Jobtitle, City,District, Salary} with the attribute domains of
{CEO,MedicalDoctor, Lawyer} for Jobtitle, {Montreal, Ottawa, Toronto} for City, as
well as District attributes {Business,Historic,Diplomatic}, this combination of predi-
cates: [P11 ∨ P13] ∧ [P23] ∧ [P32], filters the dataset to the CEOs and Lawyers in Toronto
who live in the Historic district. The corresponding context to this subset of the dataset
is represented by C = ⟨101001010⟩. Evidently, any non-empty context should include at
least one predicate of each attribute, i.e. the context vector has a minimum Hamming
weight2, m. We call context C ′ connected to C, if the Hamming distance of C ′ and C is
1, i.e. C ′ is constructable from C by adding or removing (not both) only one predicate.
For our running example of C = ⟨101001010⟩, being CEOs and Lawyers in Toronto who
live in the Historic district, the context C ′ = ⟨100001010⟩ which is CEOs in Toronto who
live in the Historic district, is connected to C. Now, we can define the contextual outlier
release. Given an outlier detection algorithm that takes as input any population DC and the
metric M , and outputs all outlier in DC , we can implement the outlier verification method
fM(DC , V) to determine if V is an outlier in C with regard to the metric M ; formally

2The Hamming weight of a binary vector is the number of 1’s in the vector.

15

fM(DC , V) =

{︄
true, V is an outlier in DC w.r.t. M

false, Otherwise

We call a context C, a matching context for an outlier V with regard to metric M if
and only if fM(DC , V) = true.

Definition 2.3.1. (Contextual Outlier Enumeration, COEM) Given a dataset D with
schema R, a metric attribute M, and an outlier verification function fM forM , COEM (D, V)
produces all matching contexts of V ; i.e. all C’s from the attributes attr(R) such that
V ∈ DC , and fM(DC , V) = true.

To the best of our knowledge, the problem COEM defined above is a hard problem
with no existing efficient solution [176, 121]. Recall from Section 2.3, that each output of
COEM is assigned a score by a utility function, where higher scores indicate more appealing
outputs. We focus on two types of utility, uV (D,C), of a context C for an outlier V : i) a
quantitative evaluation of the context independent from other contexts. The population
size of C is an very common example for this utility type, since it indicates the outlier’s
significance. ii) an evaluation of the context that may score the context based on its
relation with a chosen context. As an example of this utility type, we investigate the
overlap of the candidate context with a fixed starting context – the results are shown in
Section 5.5.4. In either case, the data owner desires to report V with a context that is
both private and achieves high utility. In this work, as implied in the definition, we only
consider deterministic outlier detection algorithms embedded in COEM .

Definition 2.3.2. (Private Contextual Outlier Reporting) Given a dataset D with schema
R, a metric attribute M , a local outlier V , and a contextual outlier enumeration COEM

for M , private contextual outlier reporting (PCOR) produces a context C for V such that

(a) fM(DC , V) = true

(b) C is produced by a differentially private mechanism

(c) C is expected to maximize utility within COEM(D, V)

(d) C is calculated in O(p(n))

Note that the context C is the only context that is released to explain the outlying of
V . All the valid contexts calculated for generating COEM are solely known by the data
owner and are used to compute C.

16

In the previous section, we elaborated on the outlier detection algorithms to deploy in
fM(DC , V), affecting the results of COEM . We also defined differential privacy’s [50]
requirement for PCOR and presented the exponential mechanism for implementing it. In
Section 2.3 we explain why we choose Output Constrained Differential Privacy for PCOR.
Subsequently, in Section 2.3.2, we discuss PCOR’s compatibility with any utility function
through the two examples mentioned above.

2.3.1 Outlier-Preserving Privacy in PCOR

As shown in Equation 1.1, a mechanism M provides differential privacy, if the probability
of obtaining any of its possible outcomes S changes with a maximum ratio of eϵ, if an input
dataset D1 is changed to any neighboring dataset D2. Hence, if there is an S in range of
M that has a zero probability of occurrence for a dataset D1 but a non-zero probability for
a neighboring dataset D2, the differential privacy guarantee does not hold. The mechanism
must range over all S ⊆ Range(M) with non-zero probability. Since PCOR must output a
valid context for V as the final answer, it assigns zero probability to all non-valid contexts.
This zero probability is a violation of differential privacy, if adding or removing a record in
a dataset D1 changes a valid context S for V to a non-valid context for V in D2. In PCOR,
differential privacy is guaranteed by applying the exponential mechanism to COEM (D, V).
COEM(D, V), as introduced in Definition 2.3.1, outputs the set of all contexts in which
V is an outlier so that fM(DC , V) = true – property (a) in Definition 2.3.2 – is satisfied.
Therefore, to guarantee differential privacy as introduced in its original form as represented
in Equation 1.1, for any outlier V and any neighboring datasets D1 and D2, the equality
COEM(D1, V) = COEM(D2, V) must hold. In other words, adding or removing a record,
should not change the set of valid contexts for a particular outlier V . This condition is
too strict for outlier detection, and as we show in our experiments in Section 2.6.7, there
exist several neighboring datasets for various outlier detection algorithms that violate this
constraint. Hence, we need some notion of differential privacy with satisfiable requirements
for outlier detection algorithms, and we need to show that the shift to this notion, does not
sacrifice the privacy guarantee that we are looking for. Since violating the constraint in
the original differential privacy notion is algorithm-dependent, we propose a relaxed notion
of (Output Constrained) differential privacy that is algorithm-dependent as well3. This
notion guarantees ϵ−differential privacy when the equality COEM (D1, V) = COEM (D2, V)
for the outlier detection algorithm holds. We ran several experiments for the next two
observations: i) to what extent the COEM (D1, V) = COEM (D2, V) assumption in OCDP

3Note that the common notion of differential privacy, (ϵ, δ)−DP , is not algorithm dependent.

17

matches the results of outlier detection algorithms in practice, ii) what are the effects if this
assumption does not hold and whether it results in a privacy sacrifice. Our results include
evaluations of this assumption in group privacy, where the datasets D1 and D2 differ in
more than one record. We ran experiments on the outlier detection algorithms introduced
earlier in Section 2.2.1, and provide the results in Section 2.6.7.

2.3.2 Utility Functions

As described in Section 2.3, the differential privacy level in a mechanism is directly related
to the sensitivity of the utility function. We discussed in Section 2.3 that in order to
support reasonable levels of privacy, we aim for utility functions with sensitivity close to 1.
We introduce two such utility functions here: i) Maximizing the context population size,
and ii) Maximizing the overlap with the starting context.

Context Population Size

The outlier verification function, f , can return true on various contexts for a tuple V .
Intuitively, a larger context population indicates a higher significance of the outlier.

Definition 2.3.3. (Maximum Context) C is the Maximum context for outlier V with
regard to fM if and only if

(i) fM(DC , V) returns true

(ii) ∀C ′ s.t. fM(DC′ , V) = True: |DC | ≥ |DC′ |

By choosing the population size as utility score, the mechanism guarantees the output
to be close enough to the highest score answer, i.e. the maximum context. Formally,

uV (D,C) =

{︄
−∞, fM(DC , V) = false

|DC |, Otherwise

The utility of −∞ is assigned to non-valid contexts, so that it has zero probability to
be picked by the exponential mechanism. Furthermore, since the population size would
differ by at most 1, if replacing the dataset with a neighboring one, the utility function has
sensitivity of 1.

18

Overlap with the Starting Context

Another subject of interest in outlier analysis is a utility function that scores a context
based on its relation to a chosen context. For this category of utility functions, we focus on
one that scores a context C based on its population’s intersection with the population of a
chosen/starting context for V , CV . Formally,

uV (D,C) =

{︄
−∞, fM(DC , V) = false

|DC ∩DCV
|, Otherwise

Note that, changing a record in the dataset D alters the score, i.e. the intersection size,
by at most 1 (sensitivity). As mentioned earlier, PCOR utilizes the exponential mechanism
to provide differential privacy. We start with the direct application of the mechanism and
argue why it imposes a substantial computational complexity to PCOR. To resolve the issue,
we propose applying a sampling layer prior to deploying the the exponential mechanism.
However, as we explain in Section 2.5.1, sampling in its basic form does not reduce the
complexity of the direct approach. To improve the sampling method, we map the contexts
and their connections to a graph. Searching over the graph, we observe “locality” in the
matching contexts and use this property to propose efficient sampling methods for our
PCOR. A random walk on the graph shows significant superiority over the basic sampling
approach. To improve the sampling even further, we use the utility to direct the search and
introduce differentially private versions of Depth-First and Breadth-First search algorithms
for sampling. This results in a private scalable design for PCOR that achieves high utility.

2.4 Direct Approach for PCOR

In the direct application of the exponential mechanism in OCDP, we apply the mechanism
over the outlier enumeration algorithm, as described in Algorithm 1. As we mentioned in
Section 2.3, in order to provide more privacy protection for the individuals it is impor-
tant that the enumeration algorithm considers all the values in the domain of attributes
in attr(R), not just the values covered in the dataset D. We show the rationality be-
hind this requirement through the example in Section 2.3. The data owner reports the
record V is an outlier in the context Jobtitle ∈ {CEO,Lawyer}, in Diplomatic dis-
trict of Ottawa. By enumerating just over the values in the dataset, this report reveals
that the individuals in the context are either CEOs or Lawyers. However, by enumer-
ating over all possible values in the domain, the context description will be larger, e.g.
Jobtitle ∈ {CEO,Lawyer, CFO,Diplomat}, in Diplomatic district of Ottawa. This re-

19

port leaves it unclear that which of the attribute values CEO, Lawyer, CFO, Diplomat is
in the dataset.

Algorithm 1: PCOR - Direct Approach

Input : D, attr(R), V , u, ϵ1
Output: Cp

1 CM = ∅
2

// Ranging over all possible

contexts, to find matches

3 for C ⊆ attr(R) do
4 if fM(DC , V) = true then
5 CM ← CM ∪ C
6 end

7 end
8 // The exponential mechanism

9 return Cp ← Expϵ1u (D,CM);
10 Comment: A context C is a subset of the values of the attributes in attr(R). All

C’s included in COEM(D, V) are candidates for the private output, but with a
probability determined by the utility function u. The mechanism drawing from the
candidates set terminates the algorithm.

Theorem 2.4.1. Algorithm 1 satisfies (ϵ = 2ϵ1, COEM(., V)) − OCDP , according to
Definition 2.2.3.

Proof. Consider the neighboring pair (D1, D2) ∈ N(f(.)), for COEM being the outlier
enumeration used in Algorithm 1. According to Definition 2.2.2, D1 and D2 differ in one
record and result in the same range of outputs, CM . To prove the algorithm satisfies the
claim in the Theorem 2.4.1, we need to show that the probability of algorithm outputting
a particular C∗

p for D1 is 2ϵ1-different from D2.

Pr[Alg1(D1) = C∗
p]

Pr[Alg1(D2) = C∗
p]

=

e
ϵ1u(C

∗
p,D1)∑︁

c∈CM
eϵ1u(c,D1)

eϵ1u(C
∗
p,D2)∑︁

c∈C′
M

eϵ1u(c,D2)

=
eϵ1u(C

∗
p ,D1)

eϵ1u(C
∗
p ,D2)

×
∑︁

c∈C′
M
eϵ1u(c,D2)

∑︁
c∈CM

eϵ1u(c,D1)
(2.2)

20

Since |D1| − |D2| = 1, any context selected for D1 loses in maximum one record when
selected for D2. The utility for each context is proportional to its population size, hence its
sensitivity is at most 1, i.e. ∆u ≤ 1. This means that that for any context in R (including
Cp) the relation u(c,D1)− u(c,D2) ≤ ∆u ≤ 1 holds. Hence the Equation 2.2 simplifies to

Pr[Alg1(D1) = C∗
p]

Pr[Alg1(D2) = C∗
p]

≤ eϵ1∆u × eϵ1∆u = e2ϵ1∆u ≤ e2ϵ1 (2.3)

Note that the number of elements in CM is the same as C ′
M , due to the neighboring

definition for output constrained differential privacy. However, the population size for the
contexts in CM and C ′

M might differ in one record.

Theorem 2.4.2. The computation complexity of Algorithm 1 is O(2t+1), where t is the
total number of attribute values.

Proof. Direct application of the exponential mechanism requires brute forcing over all
possible contexts for V (lines 3-7 in Algorithm 1) and find the matching ones. With a
context being a binary vector ⟨c11, · · · , c1|A1|, · · · , cm1, · · · , cm|Am|⟩ of length t =

∑︁m
i=1 |Ai|,

this phase is O(2t). It also calculates the weight of each candidate (lines 3-7), which is
O(2t) as well. Hence, Algorithm 1 is O(2t+1).

2.5 Sampling Approach for PCOR

To resolve the efficiency problem in PCOR, we propose deploying a sampling layer, prior
to applying the exponential mechanism. We start with Uniform Sampling, and analyze its
privacy and complexity of the algorithm.

2.5.1 Uniform Sampling

The first sampling algorithm we evaluate, picks contexts uniformly from the set of all
valid contexts. We apply the exponential mechanism after sampling. The idea of utilizing
Uniform Sampling prior to the exponential mechanism was investigated by Lantz et al. [116].

Theorem 2.5.1. The Uniform Sampling in Algorithm 2, satisfies (ϵ = 2ϵ1, COEM (., V))−
OCDP .

21

Proof.

Pr[Alg2(D1) = C∗
p]

Pr[Alg2(D2) = C∗
p]

=

e
ϵ1u(C

∗
p,D1)∑︁

c∈CM
eϵ1u(c,D1)

× PrD1 [C
∗
p ∈ CM]

eϵ1u(C
∗
p,D2)∑︁

c∈C′
M

eϵ1u(c,D2)
× PrD2 [C

∗
p ∈ CM]

≤ eϵ1∆u × eϵ1∆u × 1 = e2ϵ1∆u. (2.4)

The first two items in the inequality in Equation 2.4 follows the same reasoning as the
proof in Theorem 2.4.1. The Pr[C∗

p ∈ CM] is independent of the database being D1 or D2,
as the contexts are chosen based on attribute values not the records, and the attribute
values for D1 and D2 are the same.

Algorithm 2: PCOR - Uniform Sampling

Input : D , attr(R), V , u, ϵ1, p (p = 1
2
here)

Output: Cp

1 // Finding n matching contexts

2 CM = ∅
3 while |CM | ≤ n do
4 for i ≤ t do

5 C[i] =

{︄
1, w.p. p

0, w.p. 1-p

6 end
7 if fM(DC , V) = true then
8 CM ← CM ∪ C
9 end

10 end

11
// The exponential mechanism on the

samples

12 return Cp ← Expϵ1u (D,CM);
13 Comment: We form the context vector, by setting one’s and zero’s randomly. In

the general case the probabilities are correspondingly p and 1− p. We consider
p = 1

2
to achieve Uniform Sampling. We obtain the CM from the sampling, then

apply Exp. mechanism as in Algorithm 1.

22

Theorem 2.5.2. The computation complexity of Algorithm 2 is O(2t), where t is the total
number of attribute values.

Proof. We calculate the complexity of Algorithm 2 in lines 3-10 first. The algorithm keeps
sampling among all 2t contexts until it finds n matching contexts for V . We want to
find out how many contexts the algorithm should sample on average to achieve the goal.
Assume the total number of matching contexts for V is N ; i.e. the probability of a sample
being a matching context is N

2t
. Hence, the number of success in sampling follows Binomial

distribution B(x, N
2t
), with x being the total number of samples [46]. Since the expected

value of the number of success in Binomial distribution in this case is x× N
2t
, we need n× 2t

N

samples to obtain n matching contexts on average. Furthermore, Algorithm 2 runs the
exponential mechanism on the matching contexts, which adds O(n) complexity. Therefore,
Uniform Sampling is O(n×2t

N
+ n). Considering n and N being constant values, Uniform

Sampling does not effectively change the complexity of the direct approach.

2.5.2 Graph-based Sampling

We assume the data owner knows a valid starting context4 CV for a local outlier V and
desires to find the private maximum one through PCOR. We map this problem to a search
over a graph G initiating form V ’s starting context CV , aiming to reach the maximum
context. We define the context graph with the set of vertices V tx = {C}, where {C} is all
possible contexts defined over the attribute values from attr(R). There is an edge between
two contexts C and C ′ if they are connected to each other, i.e. they are different in the
presence of just one attribute value. Every context C can be represented as a binary vector
of the form ⟨c11, · · · , c1|A1|, · · · , cm1, · · · , cm|Am|⟩ with length t =

∑︁m
i=1 |Ai|. As a result,

flipping a bit in C forms a binary vector for context C ′ which is different from C in just
one (added/removed) attribute value. Hence, there are t number of C ′s connected to C;
i.e. each vertex is of degree t. Given that the connected vertices are different in just one
attribute value, we hypothesize that if V is an outlier in C, then it is more probable to be
an outlier in a connected vertex than some randomly chosen vertex among Vtx. In other
words, we hypothesize the existence of locality in outlier detection algorithms. We show in
this work the hypothesis holds for algorithms from any outlier detection category. We start
by our first sampling algorithm on the context graph: Random Walk.

4The data owner can obtain this context through an initial search.

23

Random Walk Sampling

The data owner knows a valid context for a local outlier V , namely starting context CV , and
desires to find the private maximum one. In random walk sampling, we initiate from the
starting context and change the attribute values to obtain the next context to continue the
chain. The change in the context in each iteration includes adding/removing an attribute
value to/from the context.

Algorithm 3: PCOR - Random Walk Sampling

Input : D , attr(R), V , CV , u, ϵ1
Output: Cp

1 CM = [CV]
2 //n is the total number of samples

3 while |CM | ≤ n && Cconn ̸= ∅ do
4 C ← CV

5 Cconn = {connected vertices to C}
6

//Ci is selected randomly from

Cconn

7 Ci
r←− Cconn

8 if fM(DCi
, V) = true then

9 CM ← CM ∪ Ci

10 CV ← Ci

11 end
12 else
13 Cconn.remove(Ci)
14 end

15 end

16
// The exponential mechanism on the

samples

17 return Cp ← Expϵ1u (D,CM);
18 Comment: The random walk adds/removes a random attribute value to/from a

starting context to obtain the next context, the algorithm continues to do so until
the next context is a matching one for V , this context is the second sample. We
continue random walking from the obtained matching context, until we reach the
desired number of sampled contexts in the multiset CM . The the exponential
mechanism is applied afterwards as in Alg. 1 to the samples to select the final
differentially private output.

24

Theorem 2.5.3. The random walk sampling described in Algorithm 3 satisfies (ϵ =
2ϵ1, COEM (., V))–OCDP, where ϵ1 is the privacy parameter in the exponential mechanism.

Proof. To calculate the privacy provided by an algorithm, we evaluate the probability
change of the privacy mechanism outputting a particular value when switching from a
database D1 to a neighbor D2. These probabilities are shown by Pr[Alg3(D) = C∗

p] and
Pr[Alg3(D2) = C∗

p] in this case respectively. A closer look to the algorithm, reveals that
for C∗

p to be an output for D1, it must be selected by the exponential mechanism from CM .
Hence,

PrD1 [Alg3(D1) = C∗
p] = PrD1 [C

∗
p |CM]× PrD1 [CM]

= PrD1 [C
∗
p |CM]× Πn

i=1PrD1 [Ci|Ci−1]× PrD1 [CV] (2.5)

Now, we calculate the probability of Algorithm 3 resulting in the same final answer (C∗
p)

for the two databases D1, D2. Let CM = {c1, c2, · · · , cc, · · · , cp} be the path of contexts
sampled by Algorithm 3 for database D1. To update the CM from any path of contexts, e.g.
{c1, c2, · · · , ci}, to another path that is different from the former in only the last context,
i.e. {c1, c2, · · · , ci+1}, two events need to take place. First, the predecessor context of ci+1

be selected from the i elements in the CM , we show this context by cj. Second, among all
nodes connected to cj , ci+1 be selected. By changing from D1 to D2, the former’s probability
reduces by 2ϵ∆u; the latter however maintains the same probability, as the selection among
the connected nodes is random. Hence, as we also showed in proving Theorem 2.5.1, the
probability of selecting the same C∗

p from a set of n samples such as CM , is bounded by
e2ϵ∆u. Therefore,

Pr[Alg3(D1) = C∗
p]

Pr[Alg3(D2) = C∗
p]

≤ e2ϵ1∆u (2.6)

Note that multiple paths could lead Algorithm 3 to achieve the same output for D2 as D1.
In our proof however, we consider the worst case where there is only one path, therefore
Algorithm 3 has to follow the same path for D2 that it does for D1.

Theorem 2.5.4. The computation complexity of Algorithm 3 is O(t).

Proof. Random walk starts from a starting context for V , CV and iteratively changes a
random attribute value of CV until it finds a matching context among the t connected
contexts. Afterwards, it forms a path by repeating the same process for the last context
on the chain. As searching through connected contexts to a context C is done without
replacement, its complexity is O(t), the process is repeated for a constant number of times n

25

to form CM . Ultimately, the exponential mechanism is applied to select the final candidate
among n (constant number of) samples. Hence, the algorithm’s complexity is O(nt+n).

Exploiting the context graph in the Random Walk algorithm improves the sampling
complexity from exponential in Uniform Sampling to linear. Our experimental results in
Section 5.5 also affirms the superiority of the Random Walk in utility and performance over
the Uniform Sampling. To improve the utility and performance even more, we alter the
walk over the connected contexts from a random method to a one directed by the utility
function; in other words, we can improve sampling further by taking the utility already
during selection of the next vertex into account. Therefore, we explore the Depth-First and
Breadth-First search algorithms for sampling.

Depth-First Search Sampling

We modify the Depth-First search (DFS) algorithm [44] to provide a differentially private
version of the algorithm. We emphasize that differential privacy cannot be supported with
a non-modified DFS algorithm, e.g. by perturbing its output. As described in Section 2.2,
differential privacy requires the algorithm to generate any output with approximately the
same (eϵ different) probability for neighboring datasets. However, as DFS is a deterministic
algorithm, the probability of it generating any output is zero except for one particular value.
Hence, applying DFS on a dataset D1 might result in an output r that has probability of
zero when DFS is applied on a neighboring dataset D2; this property prevents the original
DFS from supporting differential privacy. To overcome the challenge, we modify DFS as
presented in the Algorithm 4. The sampling method initiates a stack with a starting context
for V , CV . Next, it searches over all connected contexts to CV and selects a matching
context by applying the exponential mechanism to the candidates and pushes the result
onto the stack. The last context on the stack is the starting point for the next iteration.
The iterations continue until the stack contains the desired number of samples, n.

Theorem 2.5.5. The differentially private DFS described in Algorithm 4 satisfies (ϵ =
(2n+ 2)ϵ1, COEM (., V))–OCDP, where n is the total number of samples, ϵ1 is the privacy
parameter in the the exponential mechanism.

Proof. A similar reasoning to the one in Theorem 2.5.3 holds for DFS. The idea is calculating
the probability of forming the same stack of nodes for neighboring datasets D1 and D2.
However, the probability of obtaining the same stack, i.e. the corresponding probability
to Πn

i=1PrD1 [Ci|Ci−1] × PrD1 [CV] in Equation 2.5, is not the same value for D1 and D2

anymore. As in differential private DFS, we apply the exponential mechanism before adding

26

Algorithm 4: PCOR - Depth-First Search Sampling

Input : D , attr(R), V , CV , u, ϵ
Output: Cp

1 Stack ← {CV }, Samples ← 0, V isited ← ∅
2 //n is the total number of samples

3 while |V isited| ≤ n && |Stack| > 0 do
4 C ← Stack.top(), V isited ← V isited ∪ C, Cchldn ← ∅
5 // Generating all children of C

6 for i ≤ t do

7 C[i] ←
{︄
0, If C[i] = 1

1, If C[i] = 0

8 if fM(DC , V) = true and C /∈ V isited then
9 Cchldn ← Cchldn ∪ C

10 end

11 end
12 if not Cchldn then
13 Stack.pop()
14 end
15 else
16

// The exponential mechanism on

children of C

17 C ← Expϵ1u (D,Cchldn)
18 push C onto Stack

19 end

20 end

21
// The Exp. mechanism for the

final private answer

22 return Cp ← Expϵ1u (D, V isited);
23 Comment: The algorithm starts from a starting context, CV , adds it to the stack.

It then calculates all the connected nodes to CV that are matching contexts for V .
Next, the algorithm applies the exponential mechanism to select one of the
connected nodes, cc. Afterwards, the cc is pushed onto the stack, to be the
starting point for the next search as well. This procedure continues until n
samples are pushed onto the stack. The last sample in the stack is the final
privacy preserving answer.

27

any child to the stack, each conditional probability in Equation 2.5 is ϵ1∆u different for

D1 and D2. Since there are n nodes in the stack, the upper bound is:
PrD1

[Stack]

PrD2
[Stack]

≤ e2nϵ1∆u.

We also know from Equation 2.4, that the probability of selecting the same C∗
p from a set

of n samples (Stack), is bounded by e2ϵ1∆u. This results in

Pr[Alg4(D1) = C∗
p]

Pr[Alg4(D2) = C∗
p]

≤ e(2n+2)ϵ1∆u (2.7)

Theorem 2.5.6. The computational complexity of Algorithm 4 is O(t), where t is the
total number of attribute values.

Proof. The differential private DFS algorithm starts a path from a starting context for V ,
CV , selects the next matching context the t connected contexts by applying the exponential
mechanism to them and pushes the result onto the stack; which forms an O(2t) step. Then
repeats the process for the last context on the stack until the stack size reaches the constant
desired value, n, times. Hence, the algorithm’s complexity is O(2nt).

Breadth-First Search Sampling

We introduce a modified and differentially private version of the Breadth-First search (BFS)
algorithm [118] as our last sampling method. The reason for necessity of modifying the
algorithm to support differential privacy is the same as the one provided for Depth-First
search algorithm in Section 18. Our sampling method starts from a starting context for V ,
CV . It initiates the set CM with that context, then searches over all connected contexts to
CV and adds all the matching contexts to CM . To decide the starting point for the next
iteration, it applies the exponential mechanism to the contexts in the CM(treating CM as
a priority queue) and proceeds similarly with the selected context. The process continues
until n number of samples are added to CM .

Theorem 2.5.7. The differentially private BFS described in Algorithm 5 satisfies ((2n+
2)ϵ1, COEM(., V))–OCDP, where n is the total number of samples and ϵ1 is the privacy
parameter in the exponential mechanism.

Proof. Similar to DFS, the privacy proof of BFS follows the proof for Theorem 2.5.3. Which
results in

Pr[Alg5(D1) = C∗
p]

Pr[Alg5(D2) = C∗
p]

≤ e(2n+2)ϵ1∆u (2.8)

28

Theorem 2.5.8. The computation complexity of Algorithm 5 is O(t), where t is the total
number of attribute values.

Proof. BFS initiates the search from a starting context for V , CV , searches over its connected
contexts to find the matching ones to add to CM which forms an O(t) step. This step
is repeated for a context chosen by the exponential mechanism from CM (O(nt)) for the
constant desired number of samples, n, times. Hence, the algorithm is O(n2t+ nt).

Algorithm 5: PCOR - Breadth-First Search Sampling

Input : D , attr(R), V , CV , u, ϵ
Output: Cp

1 CM = {CV }, Samples ← 0, V isited ← ∅
2 //n is the total number of samples

3 while |V isited| ≤ n && |CM | > 0 do
4 // The exponential mechanism on CM

5 C ← Expϵ1u (D,CM)
6 V isited ← V isited ∪ C, CM .remove(C)
7 // Adding all children of C to CM

8 for i ≤ t do

9 C[i] ←
{︄
0, If C[i] = 1

1, If C[i] = 0

10 if fM(DC , V) = true and C /∈ V isited then
11 CM ← CM ∪ C
12 end

13 end

14 end

15
// The Exp. mechanism for the

final private answer

16 return Cp ← Expϵ1u (D, V isited);
17 Comment: The algorithm starts from a starting context CV , and calculates all the

connected contexts to CV , adds the matching ones to the priority queue CM . It
continues by applying the the exponential mechanism to the contexts in CM , and
iterates the procedure until it finds all n samples.

29

2.6 Experiments

We run five groups of experiments to support our choices for the parameters in our PCOR
design varying: i) Sampling algorithm, ii) Utility function, iii) Outlier detection algorithms,
iv) Privacy parameter ϵ, and v) Group privacy limit in OCDP.

2.6.1 Datasets

We evaluate PCOR over two datasets. The first one is the Ontario’s public sector salary
dataset. The province of Ontario (Canada) annually publishes a list of public employees
who earn $100,000 and above [2]. We filter the dataset to obtain the information of
51000 employees with income higher than 100K in Ontario, the attributes are attr(R) =
{Jobtitle, Employer, Y ear, Salary}, with domain sizes: |Jobtitle| = 9, |Employer| = 8,
and |Y ear| = 8. The second dataset we use is homicide reports in the United States [1],
compiled and made available by the Murder Accountability Project. The data is gathered
from multiple agencies and includes the age, sex, ethnicity of victims and perpetrators,
their relationship, and the weapon used. We filter the dataset to obtain 110,000 records.
The attributes of the data are attr(R) = {AgencyType, State,Weapon, V ictimAge}. The
categorical attributes have domains of size 4, 6, and 6 respectively. Since our results for
both datasets follow the same pattern, we mainly provide the experiment results on the
salary dataset.

2.6.2 Evaluation Setup

We ran our experiments on a machine with 1 TB RAM, 132 cores, Intel(R) Xeon(R) CPU
E7-8870 2.40GHz specifications. We repeated each experiment 200 times to achieve reliable
results for PCORs and fair comparison of the algorithms in utility and performance. The
performance is measured as the runtime of the algorithm, in two metrics: i) The range of
shortest to longest runtime, and ii) The average runtime. The utility is measured as the
proportion of the utility of the PCOR’s output to the maximum utility. The maximum
utility for each data point (outlier), is gained from a reference file. The reference file contains
all possible contexts in attr(R) accompanied with their associated utility, and the list of
outliers for each context. Generating this file, for our data set of 51,000 records utilizing
an optimized program took three days to complete on the machine mentioned earlier. This
is also the running time of the direct/formulaic application of exponential mechanism in
OCDP (described in Section 2.4). From the reference file, we find all matching contexts

30

(a) USample-Utility (b) Rwalk-Utility (c) DFS-Utility (d) BFS-Utility

(e) USample-Time (f) Rwalk-Time (g) DFS-Time (h) BFS-Time

Figure 2.1: Utility and Performance of PCORs for different sampling candidates, utility
function outputs context population size, outlier detection algorithm is LOF, and ϵ = 0.2
(a,e) Uniform Sampling, (b,f) Random walk, (c,g) DFS, (d,h) BFS; where (a), (b), (c) ,
(d) represent utility and (e), (f), (g) ,(h) demonstrate performance in running time

for outlier V and find the one with maximum utility to divide the utility results of the
PCOR by. For the 200 utility results, we provide the mean and the 90% confidence interval
(CI) for each PCOR. We run five groups of experiments to answer the following questions:
1) what is the best (private, accurate, fast) sampling algorithm for PCOR? 2) Is PCOR
flexible with embedding other utility functions? 3) Is PCOR flexible with embedding other
outlier detection algorithms? We evaluate PCOR over three deterministic outlier detection
algorithms, each from a main category described in Section 2.1, namely: Grubbs [73], Local
Outlier Factor (LOF) [28], and Histogram [4]. 4) How does changing each one of privacy,
utility and performance parameters affect the other two. 5) How does changing a (group
of) record affect the set of possible outcomes, COEM?

31

Table 2.2: Sampling Methods Comparison - Performance.

Algorithm Tmin Tmax Tavg ϵ Outlier

Uniform 7m 24h 97m 0.2 LOF
Random Walk 15s 109s 51s 0.2 LOF

DFS 8m 80m 40m 0.2 LOF
BFS 6m 61m 37m 0.2 LOF

Table 2.3: Sampling Methods Comparison - Utility.

Algorithm Utility CI ϵ Outlier

Uniform 0.65 (0.64, 0.67) 0.2 LOF
Random Walk 0.57 (0.55, 0.60) 0.2 LOF

DFS 0.88 (0.85, 0.90) 0.2 LOF
BFS 0.90 (0.88, 0.93) 0.2 LOF

2.6.3 Choosing a Sampling algorithm for PCOR

We show that using Breadth-First Search algorithm for private sampling results in the
highest utility and performance for PCOR. We evaluate four sampling algorithms: i)
Uniform Sampling, ii) Random Walk, iii) Breadth-First Search, and iv) Depth-First Search.
The results are depicted in Figure 2.1. We generate sets of length 50 samples and set ϵ = 0.2
as the total differential privacy budget. This translates to ϵ1 ≈ 0.002 in Depth-First Search
and Breadth-First Search as shown in Equations 2.7 and 2.8, and ϵ1 = 0.1 in Uniform
Sampling and Random Walk as shown in Equations 2.4 and 2.6 respectively. The run
times of the sampling algorithms are shown in Figure 2.1[e-h] and summarized in Table 2.2.
Utility is measured as the ratio of the population size of the private answer to that of
the maximum context’s for an outlier V . Utility comparison results are shown in Figures
2.1[a-d] and summarized in Table 2.3. The Random Walk improves the performance of
the uniform sampling significantly, but it sacrifices utility. The BFS and DFS algorithms
perform close to each other in running time and utility, they make up for the utility loss in
Random Walk by a considerable amount, but require a longer runtime. Their advantage
over Uniform sampling in both utility and performance is noticeable. The slight advantage
of BFS over DFS in utility and runtime, also holds for PCOR with a different utility
function (Section 6.3). Therefore, we select BFS as PCOR’s final sampling method.

32

(a) DFS-Utility (b) BFS-Utility (c) DFS-Time (d) BFS-Time

Figure 2.2: Utility and Performance PCORS with different sampling candidates, utility is
measured by the overlap with CV , LOF is the outlier detection, and ϵ = 0.1 (a,c) DFS,
(b,d) BFS; where (a), (b) represent utility and (c), (d) demonstrate performance in running
time

Table 2.4: Intersection Overlap Utility - Performance.

Algorithm Tmin Tmax Tavg ϵ Outlier

DFS 3m 47m 19m 0.2 LOF
BFS 5m 48m 20m 0.2 LOF

2.6.4 PCOR and Other Utility Functions

We show the adaptability of PCOR with any utility function by providing the results of
embedding another utility function than the population size in Tables 2.4 and 2.5. The
utility function in this experiment calculates the population intersection of the private
context and the starting context, CV . The utility and performance evaluations confirm
that BFS is a superior candidate over the DFS algorithm.

Table 2.5: Intersection Overlap Utility - Utility.

Algorithm Utility CI ϵ Outlier

DFS 0.88 (0.86, 0.91) 0.2 LOF
BFS 0.97 (0.95, 0.98) 0.2 LOF

33

(a) Grubbs-Utility (b) Histogram-Utility (c) Grubbs-Time (d) Histogram-Time

Figure 2.3: Utility and Performance of PCORs with Grubbs and Histogram outlier de-
tection algorithms using BFS sampling over utility of context population size for ϵ = 0.1
(a,c) Grubbs, (b,d) Histogram; where (a), (b) represent utility and (c), (d) demonstrate
performance in running time

Table 2.6: Outlier Detection Algorithms - Performance.

Algorithm Tmin Tmax Tavg ϵ Sampling

Grubbs 0.5m 1m 0.8m 0.2 BFS
Histogram 2m 4m 3.4m 0.2 BFS

2.6.5 PCOR and Outlier Detection Algorithms

We show that PCOR can be successfully used with various outlier detection algorithm. We
explore two more outlier detection algorithms in our PCOR design: Grubbs, and Histogram
methods. The results are shown in Figure 2.2 and summarized in Table 2.6 and Table 2.7.
We filter the original dataset to obtain a subset of 11000 records with 14 attributes values
in total, and use BFS as the sampling algorithms in the PCOR design. In this set of
experiments, the number of samples is n = 50 and the privacy parameter is ϵ = 0.2.
For Histogram method, we bin the samples corresponding to a context C to

√︁
|DC | bins,

where |DC | is the size of the population covered by C. The bins with less frequency than

Table 2.7: Outlier Detection Algorithms - Utility.

Algorithm Utility CI ϵ Sampling

Grubbs 0.86 (0.84, 0.89) 0.2 BFS
Histogram 0.89 (0.87, 0.91) 0.2 BFS

34

(a) ϵ = 0.05, Utility (b) ϵ = 0.1, Utility (c) ϵ = 0.2, Time (d) ϵ = 0.4, Time

Figure 2.4: The effect of privacy parameter over Utility in PCOR with BFS sampling and
LOF outlier detection(a) ϵ = 0.05, (b) ϵ = 0.1, (c) ϵ = 0.2, (d) ϵ = 0.4

Table 2.8: Effect of privacy parameter on performance.

ϵ Tmin Tmax Tavg Sampling Outlier

0.05 2m 29m 15m BFS LOF
0.1 2m 29m 16m BFS LOF
0.2 3m 30m 17m BFS LOF
0.4 3m 30m 17m BFS LOF

2.5× 10−3|DC | are labeled as outliers. The results confirm the compatibility of our PCOR
design with various outlier detection algorithms. Furthermore, the success of applying BFS
on the algorithms implies that the locality (discussed in Section 5.2) exists in all evaluated
outlier detection algorithms.

2.6.6 Privacy, Utility, Performance Trade-off

We show the trade-off between privacy, utility and performance for our final candidate, BFS
sampling algorithm, by changing the privacy parameter ϵ for n = 50 number of samples.
The results are shown in Figure 2.4 and are summarized in Table 2.8 and Table 2.9.
Increasing the ϵ from 0.05 to 0.4 generally increases the utility, however the parameter
ϵ = 0.2 is the optimum value and the utility does not increase significantly afterwards.
Moreover, changing the privacy parameter does not impose a notable effect on the algorithm
runtime. We also investigate the effect of changing the number of samples while the
privacy parameter is fixed ϵ = 0.2. The results are shown in Figure 2.5 and summarized in

35

Table 2.9: Effect of privacy parameter on utility.

ϵ Utility CI Sampling Outlier

0.05 0.67 (0.62, 0.71) BFS LOF
0.1 0.82 (0.78, 0.85) BFS LOF
0.2 0.90 (0.88, 0.93) BFS LOF
0.4 0.92 (0.90, 0.94) BFS LOF

(a) n = 25, Utility (b) n = 50, Utility (c) n = 100, Utility (d) n = 200, Utility

(e) n = 25, Time (f) n = 50, Time (g) n = 100, Time (h) n = 200, Time

Figure 2.5: The effect of number of samples over utility and performance in PCOR with
BFS sampling and LOF outlier detection for ϵ = 0.2 (a,e) n = 25, (b,f) n = 50, (c,g)
n = 100, (d,h) n = 200

Table 2.10: Effect of # of samples on performance.

Samples Tmin Tmax Tavg Sampling Outlier

25 1m 14m 7m BFS LOF
50 3m 29m 16m BFS LOF
100 6m 61m 37m BFS LOF
200 21m 163m 99m BFS LOF

36

Table 2.11: Effect of # of samples on utility.

Samples Utility CI Sampling Outlier

25 0.85 (0.81, 0.88) BFS LOF
50 0.88 (0.85, 0.91) BFS LOF
100 0.90 (0.88, 0.93) BFS LOF
200 0.84 (0.81, 0.87) BFS LOF

Tables 2.10 and 2.11. As we showed in the proof of Theorem 2.5.8, the only parameters in
the computation complexity of BFS are: i) the total number of attribute values t, and ii)
the number of samples n – which we referred to as a constant number in the proof. Hence,
when t is fixed, n determines the performance of PCOR. Increasing the number of samples
from 25 to 100 decreases the performance, but increases the utility. This increment does
not continue for for n = 200. Recall from Theorem 2.5.7, that keeping a fixed ϵ in PCOR
while increasing n, requires using smaller ϵ1’s in algorithm design, this can cancel out the
positive affect of higher n’s on utility.

Advanced Composition

Our experiment results show that PCOR provides good privacy guarantee (ϵ = 0.2)
while achieving high utility values (∼ 90%), by using the sequential differential privacy
composition. We emphasize that this privacy parameter can be improved even further by
applying improved composition techniques for Exponential mechanism [47].

2.6.7 Context Match and Group Privacy

Our reduced salary dataset consists of 11,000 records with 3 attributes that include 14
attribute values in total. The homicide dataset consists of 28,000 records with three
attributes that include 12 attribute values in total. We chose small datasets to run several
experiments in a reasonable amount of time. We are aware that our results do not benefit
from this choice, as changing a single record in a small dataset, more strongly affects
the set of outliers than in a large dataset. We repeated each experiment for 100 random
outliers and measured the contexts set match of the original dataset and its neighboring
datasets. Recall from Section 2.3.1 that the experiments in this section are to observe:
i) to what extent the assumption COEM(D1, V) = COEM(D2, V) in OCDP matches the

37

Table 2.12: COE Match - Salary dataset

Algorithm ∆D = 1 ∆D = 5 ∆D = 10 ∆D = 25

Grubbs 99.8% 96.9% 94.5% 91.9%
LOF 89% 87.9% 86.7% 85.7%

Histogram 95.5% 82.1% 70.8% 58.8%

Table 2.13: COE Match - Homicide dataset

Algorithm ∆D = 1 ∆D = 5 ∆D = 10 ∆D = 25

Grubbs 100% 100% 100% 97.8%
LOF 99.9% 99.5% 98.7% 97.7%

Histogram 98.5% 85.2% 69.3% 53.3%

results of outlier detection algorithms in practice, ii) what are the effects if this assumption
does not hold and whether it results in a privacy sacrifice. For both mentioned datasets
and all three outlier detection algorithm, we recorded the COEM results of the original
dataset and its 50 randomly chosen neighboring datasets. The results for the objective
i) are summarized in Tables 2.12 - 2.13. These tables show the results for neighboring
datasets that are different from the original dataset (∆D) in 1, 5, 10, and 25 records, for the
salary and the homicide dataset respectively. For objective ii) and to evaluate the privacy
in the case of non-matching COE’s of the neighboring datasets, we ran another set of
experiments. Consider the contexts in the intersection of non-equal sets COEM (D1, V) and
COEM(D2, V), where |D1 −D2| = 1. We measured the maximum ratio of the probability
of selecting any of these context for D1 to the probability of selecting the same context
for D2. This experiment was repeated for 200 outlier samples for three outlier detection
algorithm over the Salary dataset. All the experiments confirm this ratio is below eϵ (recall
the differential privacy requirement in Equation 1.1) for ϵ = 0.2 that is the privacy budget in
our experiments that we presented earlier in this section. In other words, for non-matching
COE’s of neighboring datasets, we found no instance that violates the privacy bound in
(unconstrained) ϵ−differential privacy.

38

2.7 Related Work

The attempts to provide privacy in outlier detection, initiated with using secure computation
methods for distributed [182, 48] or non-distributed [12] data. In a different approach,
Bhaduri et al. [21] use nonlinear data distortion transformation and show how it can
be useful for privacy preserving anomaly detection from sensitive datasets. Mehnaz and
Bertino [137] propose a framework that enables efficient anomaly detection on encrypted
data, to preserve privacy during the computation. Gehrke et al. [63] introduce crowd
blending privacy, in which for every individual in the database, either the individual blends
in to a crowd of k people in the database with respect to the privacy mechanism, or the
mechanism ignores the individual’s data. Inspired by crowd blending [63] and providing
different levels of privacy [66], Lui and Pass [129] proposed tailored differential privacy
for protecting outliers, in which the privacy parameter for an individual is determined by
the “outlierness” of the individual’s data in the dataset. Böhler et al. [25] evaluate the
opposite by relaxing the differential privacy definition and granting outliers less protection,
as they consider the outliers as “faulty systems or sensors one need to detect”. In another
attempt in private outlier investigation, Nissim et al. [148] use differential privacy to locate
a small outlier cluster privately. Okada et al. in [151] break the outlier analysis to two tasks:
i) counting outliers in a given subspace and ii) discovering sub-spaces containing many
outliers, under the constraints of differential privacy. They show their method achieves
better utility compared to the original global sensitivity based methods. Nonetheless, our
work is the first to investigate the privacy of the individuals in the outlier’s context.

2.8 Conclusion

The revealed context in contextual outlier release leaks information about the individual
records in the dataset. We address this privacy violation in this chapter and propose
techniques for a relaxed notion of differential privacy to provide a private contextual outlier
release (PCOR) and resolve the issue. However, the differential privacy solution in its
formulaic application suffers from weak performance, impeding its usage in practice. To
achieve efficiency in PCOR, we propose utilizing a sampling layer in the design. We present
differentially private graph search algorithms, first time in the literature, and use them for
sampling. We prove PCOR with the presented sampling methods supports worthwhile levels
of differential privacy, while providing the desired utility and performance. We articulate
and demonstrate empirically that PCOR design is compatible with any utility function
in outlier detection. Our results also indicate that the relaxation required for providing

39

privacy in PCOR is a not a strong requirement, and is satisfied in most cases in practice.
Furthermore, we show that PCOR is generic and fits any outlier detection algorithm.

40

Chapter 3

On Privacy and Confidentiality of
Communications in Organizational
Graphs

3.1 Introduction

A number of applications in natural language understanding rely on language models [36, 9].
To enable such models it is necessary to process training data that best represents the
target application. Such tasks become especially sensitive in the setting of organizational
communication, where organizations, individuals, or communities may share secret data, and
preserving confidentiality is of utmost importance. Huseyin A. Inan, Marcello Hasegawa,
Robert Sim and I looked into the privacy issues in the organizational communications [166].
These communications often presents a complex underlying structure of interactions well
modeled by a social graph. Data privacy in graphs and social graphs have been addressed by
a number of previous works, for example [192, 142, 41, 103, 60, 198, 101], where most of the
works based on differentially private approaches model individuals as nodes and exchanged
messages as edges. These proposed methods provide either node level privacy guarantees
or edge level privacy guarantees. In the context of organizational communication we define
node level guarantees as individual privacy and edge level guarantees as confidentiality.
That is, confidentiality involves protecting information that is shared between two or more
individuals in the organization. In this work we set aside questions of individual privacy
and examine problems in ensuring confidentiality in organizational communication. The
goal is to enable the production of ML models for an enterprise, without compromising

41

potentially sensitive business secrets. It is worth noting that a limitation of node level
privacy is that in an organizational context, this approach can produce models with lower
than optimal utility. To understand this, suppose the CEO of a company communicates
regularly with messages addressed to all employees. From the organization’s perspective
this information is public to everyone, and yet a differentially private mechanism acting at
a node level will be forced to mask out the presence of these messages as they originate
from a single node. This would be necessary to satisfy the requirement that a differentially
private model should be invariant to the presence or absence of any single node. Instead
we consider a model that affords edge-level privacy. In this case the CEO can broadcast
to all employees, and enable this correspondence to be included in training of the model,
since the information is replicated across many edges, but she can still protect private 1:1
correspondence with her CFO, for example, thus preserving confidentiality.

Technical Challenges

However, the situation is not so straightforward. In the case of social graphs, often the
properties of an edge can be inferred by the properties of other nearby edges. Such
a case does not fall under the framework of differential privacy, where the theoretical
guarantees are based on presence/absence of individual elements, without taking into
account any effect on other elements. One approach to address this problem is via group
differential privacy. Group privacy assumes that all edges in a group of participants are
fully correlated, and queries against the graph must be invariant to the presence or absence
of the entire group. This framing can significantly impact the accuracy of the model or
query by being over-protective of edge-edge relationships. Furthermore, it requires an
explicit description of what constitutes a group in the organization. We address the issues
presented by edge correlation by employing a generalized version of differential privacy
called Pufferfish [171]. In Pufferfish a set Spairs ⊆ S × S of complementary secret pairs is
defined, and privacy is provided by ensuring the secret pairs are indistinguishable, for any
data distribution (capturing the correlation among the records) known to the adversary.
Through this requirement the correlation problem can be addressed while allowing utility
to be preserved. In addition, the non-independence between edges also affords us a simple
model for confidentiality, namely that information passing between neighboring edges is
more likely to be confidential than information that is randomly distributed in the social
graph. From this perspective, we propose a privacy model that accounts for information
dependence between edges in the graph and define a notion of what constitutes an edge’s
neighborhood. In this work we are limited to L-Lipschitz queries which are sufficiently
broad to cover for counting and frequency queries.

42

For the purposes of this work we adapt the Attribute Disclosure Attack defined in [17]:

Definition 3.1.1 (Attribute Disclosure Attack). Given T=(G,A,B), which is a snapshot
of an organization with a social graph G = (V,E), where V is the set of individuals and E
demonstrates the correspondence between them, correspondent behavior A and attribute
information B, the attribute disclosure attack is used to infer the attributes ae for all
e ∈ Et where Et is a list of targeted edges. For each e ∈ Et, we have information about the
correspondence between the individuals linked by e.

This definition deviates from that proposed be Beigi et al. [17] in that it focuses on
disclosing information about correspondence between users. That is, the goal of the attack
is to leak information about what is communicated along the edges of the graph.

3.1.1 Our Contributions

The contributions of this work are as follows, it:

1. Presents a complete formulation of confidentiality protection in closed social net-
works such as an enterprise or organization, including accounting for neighborhood
correlation,

2. Models predicting neighborhood correlations assuming varying degrees of attacker
knowledge,

3. Shows the gap between two extreme measures of privacy, record-level privacy and
group privacy, over two language tasks, and

4. Provides empirical results of applying our work to statistical query tasks [69, 188] in
a real enterprise graph.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows: In Section 3.2 we describe the background for
group privacy, Pufferfish privacy and a mechanism for achieving this privacy. In Section 3.3
we provide the organizational model and confidentiality problem definitions. We introduce
our correlation model and our privacy mechanism in Section 3.4. In Section 3.5, we provide
the results of applying the privacy mechanism to two query tasks. We situate our work in
the current body of research in Section 3.6, and in Section 3.7 we conclude this work.

43

3.2 Preliminaries

In this section, we provide the notations and definitions for the concepts used throughout
the chapter.

3.2.1 Group Differential Privacy

Note that in the definition of ϵ-differential privacy, the guarantee holds for a single data
entry. However, following from the composability property of differential privacy [135], the
setting can be extended to multiple data entries. If the goal is to protect a group, this can
be achieved by setting ϵ to ϵ/k for any k ∈ N where k represents the size of the group. In
this case, all groups of size k are ϵ-differentially private protected. We summarize this by
formally defining group differential privacy [51] in the following theorem.

Theorem 3.2.1 (Group Differential Privacy). Any ϵ−differentially private mechanism M
is kϵ−differentially private for groups of size k. That is, for all ||D1 −D2||1 ≤ k and all
S ⊆ Range(M):

Pr[M(D1) ∈ S] ≤ exp(kϵ)Pr[M(D2) ∈ S] (3.1)

We point out that the scaling of the noise is inversely proportional to the privacy budget
ϵ. Therefore, setting ϵ to ϵ/k will in turn change the noise level from ∆f/ϵ to k ·∆f/ϵ,
which may significantly decrease the utility of the query. However, this is the price to pay
to obtain stronger privacy guarantees with group differential privacy.

3.2.2 Pufferfish Privacy

Differential privacy provides robust guarantees for a wide range of database queries. For
our scenario, it is useful to consider Pufferfish privacy [108], which is a Bayesian privacy
framework providing rigorous privacy guarantees against many types of attackers. An
advantage of the Pufferfish framework is that a domain expert can develop rigorous privacy
definitions for their data sharing needs without holding an expertise in privacy. This is
achieved by specifying three components in the Pufferfish privacy framework: a set S of
potential secrets, a set Spairs ⊆ S ×S of discriminative secret pairs, and a collection of data
distributions Θ. The Pufferfish framework provides a rich class of privacy definitions based
on the components specified by a domain expert. We formally define the framework in the
following based on [108].

44

Definition 3.2.1 (Pufferfish Privacy). A randomized algorithm M is said to provide
ϵ-Pufferfish privacy for a domain (S,Spairs,Θ) if for all distributions θ ∈ Θ, for all secret
pairs (si, sj) ∈ Spairs, and for all possible outputs w ∈ Range(M) it satisfies

⃓⃓
⃓⃓PrM,θ(M(D) = w|si, θ)
PrM,θ(M(D) = w|sj, θ)

⃓⃓
⃓⃓ ≤ exp(ϵ)

where D is drawn from the distribution θ and si and sj are such that Pr(si|θ) ̸= 0 and
Pr(sj|θ) ̸= 0.

We note that there is an additional source of randomness in the definition of Pufferfish
privacy, the dataset D is itself a random variable that is drawn from a distribution θ ∈ Θ.
A domain expert constructs the set S for the potential secrets that are desired to be hidden
(e.g. private data of an individual). Spairs is simply the pair of such potential secrets
that we would like to guarantee are indistinguishable in evaluating M. Finally, Θ is a
collection of distributions where each probability distribution θ ∈ Θ corresponds to an
attacker to be protected against. Θ can be selected based on the fine grain of how data
can be plausibly generated and it also reflects the attackers’ beliefs in how the data were
generated (incorporating any background knowledge and side information). The whole
process gives the domain expert flexibility to customize privacy to the specific set of secrets
and data generation scenarios that are typical in their domain. We further point out that
Pufferfish privacy provides a general framework in the sense that it covers ϵ-differential
privacy as an instantiation for a particular choice of domain (S,Spairs,Θ) (see Theorem 6.1
in [108]).

3.2.3 Wasserstein Mechanism

While there is no efficient general mechanism that applies to any Pufferfish instantiation,
there are a number of mechanisms for specific Pufferfish instantiations [108, 87]. For general
Pufferfish instantiation, Song et al. [171] introduce a mechanism that achieves Pufferfish pri-
vacy, but does not satisfy efficiency in its original form. We introduce their base mechanism
here. Later in Section 3.4 of this chapter, we present our adjustments to their mechanism
that makes it efficient to utilize for our use case of enterprise communications. The main
idea of the mechanism in [171] is similar to the Laplace mechanism in differential privacy.
Instead of adding noise based on the global sensitivity ∆f in differential privacy, Song et al.
use the distributions Pr(f(D)|si, θ) and Pr(f(D)|sj, θ) in the Pufferfish framework, propose
a metric quantifying the worst case distance between these two distributions, and inject
noise proportional to this distance. They find that the ∞-Wasserstein distance is the right
choice for this purpose.

45

Definition 3.2.2 (∞-Wasserstein distance). Let µ, ν be two probability distributions
on R and τ(µ, ν) denote the set of all joint distributions with marginals µ and ν. The
∞-Wasserstein distance between µ and ν is defined as

W∞(µ, ν) = inf
γ∈τ(µ,ν)

max
(x,y)∈support(γ)

| x− y | .

Intuitively, W∞ measures the maximal distance that any probability mass moves while
transforming µ to ν in the most optimal way possible. W∞ is related to the well-known
Earth Mover’s Distance in that it accounts for the maximal shift in probability over the
domain of τ but not the amount of mass in the shift [92]. Based on the ∞-Wasserstein
distance, the Wasserstein mechanism calculates the maximum over (si, sj) ∈ Spairs and
θ ∈ Θ, analogous to ∆f , and applies the Laplace noise proportional to the maximum
∞-Wasserstein distance. It is proven in [171] (see Theorem 3.2) that this mechanism
utilitys ϵ-Pufferfish privacy.

Theorem 3.2.2 (Wasserstein mechanism). Let (S,Spairs,Θ) be a domain. For any function
f : D → R the randomized mechanism M

M(D) = f(D) + Laplace(0,W/ϵ)

where
W = sup(si,sj)∈Spairs,θ∈Θ W∞(µiθ, νjθ) for µi,θ = Pr(f(D)|si, θ) and νj,θ = Pr(f(D)|sj, θ)
satisfies ϵ-Pufferfish privacy.

3.2.4 Markov Quilt Mechanism

The Wasserstein mechanism can be quite expensive in terms of computational complexity,
as it requires modeling the effects of varying all complementary secret pairs on the function
f . Song et al. [171] introduce the Markov Quilt mechanism for the special case where the
dependence inside a dataset can be described by a Bayesian network, which fits to our setting
of interest. In the case where the dependence is most effective in the “local” neighborhood,
the amount of noise can be calibrated with respect to the size of this neighborhood. To
this end, max-influence of a variable Di on a set of variables DA under a distribution class
Θ is defined as

eΘ(DA|Di) = sup
θ∈Θ

max
a,b∈X

max
dA∈X |DA|

log
Pr(DA = dA|Di = a, θ)

Pr(DA = dA|Di = b, θ)

where X denotes the range of each Di.

46

In terms of privacy it is an advantage that the dependence stays as “local” as possible
if one can find a large set DA such that Di has low max-influence on DA. Especially if
one can claim certain conditional independence from a variable towards some part of the
dataset it can also simplify the calibration of the noise. The following notion is helpful to
show what is described here.

Definition 3.2.3 (Markov Quilt). A set of variables DQ in a dataset is a Markov Quilt
for a variable Di if there exists a set Di ∈ DN such that D = DN ∪ DQ ∪ DR and Di is
conditionally independent from DR given DQ, i.e. Pr(DR|DQ,Di) = Pr(DR|DQ).

In this formulation, [171] choose the subscripts N and R to represent “nearby” and
“remote” nodes in the Bayesian network, respectively, with the Q (quilt) nodes separating
them and establishing conditional independence. Based on this notion, [171] introduces
the Markov Quilt mechanism that protects a variable Di by adding Laplace noise to a
L-Lipschitz query f with scale parameter L× |DN |/(ϵ− δ) where δ is an upper bound on
the max-influence of Di on DQ. We note that the effect of Di is obscured with noise whose
amount is based on the cardinality of the local variables (|DN |) and a correction term to
account for the effect of the distant variables (δ). Naturally, the privacy of all variables can
be protected by adding noise with the maximum scale parameter over all variables Di ∈ D.
It is shown in [171] (see Theorem 4.3) that this mechanism utilitys ϵ-Pufferfish privacy. It
is also proven that Markov Quilt mechanism satisfies sequential composition (see Theorem
4.4 in [171]).

Theorem 3.2.3 (Markov Quilt Mechanism). Let (S,Spairs,Θ) be a domain. For any L-
Lipschitz function f if each Di ∈ D has the trivial quilt DQ = ∅ (with DN = D, DR = ∅),
then the Markov Quilt Mechanism provides ϵ-Pufferfish privacy.

3.3 Problem Definition

With preliminaries defined, we model the organizational communication through a graph
structure. Having the communication modeled, we then describe the confidentiality re-
quirements for the model.

3.3.1 Organizational Model

We model the network of organizational communications by a graph with the following
properties:

47

• The graph displays the communications in the organization.

• Nodes are the individuals of the organization.

• There is an edge between two nodes if one of the nodes communicated with (e.g. sent
an email to) the other one; the graph is not directed.

• Edges may be labeled with a set of zero or more properties. For example, an edge
may be labeled with the token “acquisition” if the correspondents discussed the topic
“acquisition”.

• The target application is to perform queries over the graph to measure statistics of
edge properties.

In principle, “queries over the graph to measure statistics of edge properties” may imply
training a language model or performing similar natural language tasks over the graph.
For the purposes of our work we focus on a simpler task, which is to safely release a set of
edge properties present in the graph. For language tasks, this can be defined as extracting
common n-grams from correspondence. Other application scenarios have examined popular
item sampling. This problem has been explored in related work like differentially private
set union (DPSU) [69], and top-k item selection [49].

3.3.2 Confidentiality Requirements

In order to achieve our goal of organizational confidentiality, we impose the following
additional requirements:

• The privacy mechanism should protect edges (provide edge-level privacy),

• the mechanism should account for correlation between neighboring edges,

• the mechanism should protect against changes to edge properties, but not to changes
in graph structure (the graph edges are considered invariant and public, whereas the
properties of the edges are private1),

• the graph structure is known to attackers, and

1For example, an organization’s leadership structure is usually public knowledge, and individuals with
internal access can usually determine who reports to who and infer common lines of communication.

48

• attackers may have access to a data generation model θ that can predict an edge’s
properties, given its neighbors’.

Note that the data generation model θ assumes that neighboring edges influence one-another
but non-neighboring edges don’t. That is, an edge’s properties are conditionally independent
of the rest of the graph, given its neighbors’ properties. This is equivalent to expressing the
graph as a Markov random field. In practical scenarios, edge correlation may be effective
beyond the neighborhood of an edge. However, we believe our conditional independence
assumption is a reasonable approximation. The reader will note that this problem framing
lends itself well to Pufferfish privacy: the presence or absence of a property on an edge can
be framed as a pair of complementary secrets s0i and s1i respectively for all edges Xi in the
graph. In the Pufferfish instantiation this leads to having the set of secrets S = {s0i , s1i :
for all edges i in the graph}, so the status of the corresponding property of each edge is a
secret. The set of secret pairs becomes Spairs = {(s0i , s1i) : for all edges i in the graph} as
we desire that the adversary cannot tell if each edge has the property of interest or not.
Finally, attackers have access to generating distributions in Θ describing how properties
may be defined on the graph, and in particular how they may be correlated.

In the following section we describe how we can leverage Pufferfish privacy to protect
edge properties, while accounting for neighborhood correlation, and subsequently we present
empirical results on a language task applied to a real-world organizational graph.

3.4 Mechanism Design

We consider the graph representation of the organizational communications, consisting of
nodes for individuals and edges for the correspondences among them.

3.4.1 Neighborhood model for correlation

In our neighborhood model, we capture the correlation among the adjacent edges as shown
in Figure 3.1. This is one choice of modeling correlation for the communication between
nodes and one can think of other models such as the clique model in the flu status over
social network example of [171] where the network is a union of cliques and each clique has
a dependency among its nodes. This may be appealing for the organization communications
considering each group in the organization as a clique. However, in practice it is seldom
the case that every pair of individuals in a particular group has a communication link

49

between them, and therefore the actual cliques in the communication graph correspond to
only subsets of the groups in the organization, not capturing the correlation effectively.
Furthermore, the set of maximal cliques in a large graph may be prohibitively expensive to
enumerate and estimate W∞ for each. In our model we instead define the graph as a union
of neighborhoods, where each neighborhood is defined as a central edge and its adjacent
neighbors. Figure 3.1 shows an example of this model. The edge 23 is adjacent to edges
21, 24, 31 and 34. Similarly, edge 57 is adjacent to edges 51, 56, 58, 59, and 76. Note that
the conditional independence assumption implies that knowledge of the edge properties in
the neighborhood is sufficient to determine the properties of the central edge.

Figure 3.1: Neighborhood correlation, each edge is correlated with its adjacent edges.

A change in an edge’s properties will influence its neighbors. For example, an edge
labeled with the property “acquisition” may imply that neighbors are much more likely
to share this property. If we can model the effect of this change probabilistically, we
can compute the Wasserstein distance between query distributions, providing a sensitivity
measure that accounts for an edge’s correlation with its neighbors. In the next section we
outline our privacy definition, followed by three proposed models for capturing neighborhood
correlation.

3.4.2 Privacy Definition

We use Pufferfish privacy to design a private mechanism that takes correlation into account.
We start with designing a private mechanism for counting one property in the graph, and
then extend it to all property counts:

1. The database is a set of records: D = {X1, · · · , XN}; Xi = 0 or Xi = 1 corresponding
to the events the edge i has the property or not2, indicating complementary secrets
s0i or s1i .

2Or: whether the property frequency is above a certain threshold or not.

50

2. The Pufferfish parameters: (S,Spairs,Θ): the set of secrets S = {s0i , s1i ; i = 1, . . . , n},
the secret pairs to be indistinguishable Spairs = {(s0i , s1i), i = 1, . . . , n}, and Θ, the set
of models describing the correlation. The Pufferfish privacy guarantee is shown in
Equation (3.2).

e−ϵ ≤ PrM,θ(M(D) = w|s0i , θ)
PrM,θ(M(D) = w|s1i , θ)

≤ eϵ (3.2)

(a) In the organizational communication S consists of the binary values of each Xi,
i = 1, . . . , n.

(b) Spairs is what we want the property label to be indistinguishable from. Since the
label is binary, Spairs is (s

0
i , s

1
i), which indicate the existence or non-existence of

an property in an edge.

(c) Θ: Instead of considering a set of correlations, we focus on the neighborhood
correlation for θ ∈ Θ. We use the Markov Quilt mechanism from [171] for this
model. However, unlike the Markov Quilt mechanism, we rely on empirical data
and measure the exact correlation inside the quilt.

(d) Query f : Maps the dataset D into a scalar f(D) = |i ∈ {1, . . . , n} : Xi = 1|,
counting the number of edges having the property of interest.

3. Markov Quilt. We adapt the Markov Quilt Mechanism to protect the edges in our
neighborhood model. We assume that each edge Xi is correlated to its adjacent edges
(DN) and has no correlation with the rest of the graph (neither to DR, nor to DQ),
i.e. δ = 0. The card(DN) translates to the maximum number of adjacent edges to
an edge, i.e. 2× degmax − 1, where degmax is the maximum degree of a node in the
graph, and we subtract 1 so as not to double-count the central edge itself. We note
that the application of 2× degmax group differential privacy (Corollary 3.2.1) would
be a baseline for our case.

3.4.3 Correlation Models

In order to assess the Wasserstein distance between neighboring secret pairs (changing a
single property from true to false or vice-versa), we require a model that can estimate
by how much a neighborhood’s labels might change due to a change in the central edge’s
label. Specifically, we seek to estimate Pr(f(D) = w|si, θ). The attacker’s priors, encoded
by θ indicate to what accuracy the attacker may be able to estimate the change in f(D)
if edge Xi changes its label, replacing s0i with s1i or vice versa. By applying the Markov
assumption, we need only measure the impact of a label change on an edge’s immediate

51

neighborhood (i.e. its impact on the Markov quilt). Thus, for each of the correlation models
below, w is measured for the local neighborhood and the rest of the graph is assumed to
be constant.

Conditional Model

Our first model, namely the Conditional model estimates the probability Pr(f(D) =
w|si, deg(Xi), freq(a)), where deg(Xi) is the number of edges adjacent to edge Xi, freq(a)
is the attacker’s prior on the frequency of property a (i.e. their prior estimate of how many
edges are labeled with a, perhaps sampled from a public corpus). We construct this model
empirically by bucketizing deg(Xi) and freq(a) on a logarithmic scale, sampling up to 100
edges per bucket, and building a histogram describing Pr(f(D) = w), for discrete intervals
of w. Note that since the rest of the graph is invariant to changes in si, we need only
measure this distribution over values of w specific to the edge’s local neighborhood. This is
our highest-fidelity model and represents the most knowledge we assume an attacker may
possess about the graph.

Global Model

Our second model, called the Global model ignores deg(Xi) and freq(a) and empirically
measures Pr(f(D) = w|sji) for secrets s0i and s1i . The resulting model is a normalized
frequency histogram of how often f(D) = w when the central edge’s property is set, s1i , and
a separate histogram for when it is not set s0i . As in the conditional model, we measure the
distribution over the range of values that w may take over a local neighborhood, assuming
the rest of the graph to be constant.

Binomial Model

Finally our third model, which we call the Binomial model, representing the least amount
of attacker knowledge, empirically estimates pi = Pr(sj|si), the probability distribution over
a randomly selected adjacent edge’s secrets, given the label of the central edge, and then
estimates Pr(f(D) = w|si) as a Binomial distribution parameterized by pi and deg(Xi):

P (f(D) = w|si) = Binomial(deg(Xi), pi)

That is, for a given edge Xi with deg(Xi) neighboring edges, if Xi’s label is si, then
the probability that it has w neighboring edges with a true label is represented by the

52

Figure 3.2: Example W∞ determined by differencing cumulative distributions for the
Conditional model.

distribution of successes over deg(Xi) Bernoulli trials with success probability pi. Note
that pi is considered a constant over the whole graph, independent of deg(Xi), and is
parameterized by the central edge’s label si.

3.4.4 Measuring W∞

Our correlation models afford a straightforward estimation of the maximal Wasserstein
distance W = maxXi∈DW∞(Xi). For each neighborhood in the graph, instantiate distribu-
tions Pr(f(D)|s0i) and Pr(f(D)|s1i), and measure W∞. Computationally, this is equivalent
to determining the largest horizontal distance between the two distributions when they are
expressed as cumulative functions, as illustrated in Figure 3.2. W is then the maximal W∞
over all edges. Note that W is bounded above by the largest neighborhood size: flipping a
single edge property may trigger a flip in at most deg(Xi) adjacent edges.

3.5 Experiments

We run our experiments on the Avocado corpus[149]. In order to accurately recognize
messages sent to multiple recipients, we apply a simple inference heuristic for identifying
organizational mailing lists and their memberships (enabling, for example, the expansion of
“All Employees”, instantiating an edge from sender to each member of this list. The com-
plete graph contains 393 nodes (individuals) and 21312 edges representing correspondence

53

log(freq) log(deg) W∞ W

0 0 1.0 10.0
0 1 0.08 8.0
0 2 0.02 20.0
0 3 0.01 18.83
1 0 1.0 10.0
1 1 0.58 57.0
1 2 0.5 500.0
1 3 0.09 169.47
2 0 0.71 7.1
2 1 0.66 66.0
2 2 0.74 740.0
2 3 0.51 960.33
3 0 0.5 5.0
3 1 0.31 31
3 2 0.37 370.0
3 3 0.29 546.07
4 0 0.36 3.6
4 1 0.16 16.0
4 2 0.21 210.0
4 3 0.13 244.79

Table 3.1: Wasserstein metrics for edges with neighborhoods of size deg and properties with
global frequency freq.

between users. The largest neighborhood in the graph consists of 1883 edges. Edges are
subsequently labeled with properties. We extract unigrams and bi-grams from messages
passed between edges and set the edge property Xa

i to “true” for each ngram a. Thus
an edge with the property “acquisition” set to true indicates that at least one message
passed between the connected nodes containing the word “acquisition”. Edges with no such
property are implicitly “false” for that property. With edge properties set, we construct
the three correlation models, as described in section 3.4.3. Table 3.1 shows the estimated
Wasserstein measures for the various property frequencies and neighborhood size under
the Conditional correlation model. The boxed row represents the highest sensitivity. The
maximum influence W∞ of a bucket is scaled by the maximum neighborhood size for the

54

bucket, up to the largest possible neighborhood in the graph Nmax = 1883. That is:

W = W∞ ∗min(Nmax, 10
log(deg)+1)

We note several points of interest in Table 3.1. First, that while the largest W cor-
responds to large neighborhoods (log(deg) = 3), it doesn’t necessarily correspond with
high-frequency or low-frequency properties. Second, we note that the maximal W is roughly
equivalent to half the largest neighborhood, achieving some improved utility over group
privacy.

Our second model, the Global model measures Pr(f(D) = w|si) directly for se-
crets s0i and s1i . The cumulative distribution functions of these measures are shown
in Figure 3.3. The maximal Wasserstein measure is the maximum horizontal distance
between these two distributions, or 866. Finally, the Binomial model represents the
two label distributions by estimating Bernoulli parameters p0 and p1 for each label re-
spectively, and measuring the maximal Wasserstein distance between these distributions
Pr(f(D) = w|sji) = Binomial(deg(Xi), pj). Using this approach we empirically measure
p0 to be 0.0277 and p1 to be 0.2739. These parameters indicate that an adjacent edge
is about ten times more likely to have property a if the central edge has property a.
Figure 3.4 shows the binomial distributions for these Bernoulli parameters, and again the
maximal Wasserstein measure is the maximum horizontal distance between the curves, or
558. Compared with the Global model, we observe that choosing a binomial distribution is
a relatively poor approximation of the empirical behavior, but may represent an attacker’s
best guess as to how neighborhoods vary when edge properties change.

3.5.1 Language Tasks

We apply the privacy mechanism to two query tasks, histogram release, and differentially
private set union (DPSU) [69].

Histogram release

Our first task involves generating a histogram over edge properties. When edge properties
are ngrams, the task is equivalent to computing the frequencies of ngrams in the corpus. To
limit the sensitivity of the histogram to changes in a single edge, we limit the contribution
of each edge to c = 1000 distinct ngrams. The value of c determines the maximum number
of ngrams each edge contributes and we choose the c most common on each edge. Note

55

� ��� ��� ��� ���� ���� ���� ����

���

���

���

���

���

���

�
�
�

�
�

�

Figure 3.3: Cumulative distributions of Pr(f(D) = w|sji) for the Global model, conditioned
on secret sji .

that for this task it is assumed that the domain of ngrams is known a priori from a public
source. In practice it is usually necessary to identify these using the private corpus as well,
which we address in the second experiment. Histogram publication can be accomplished
using the Laplace mechanism, adding Laplace noise with scale parameter λ = cW/ϵ, where
c is the per-edge contribution limit, W is the maximal Wasserstein distance accounting
for edge-neighborhood correlation, and ϵ is the privacy budget. For the purposes of this
experiment we choose a relatively large ϵ = 100, as the corpus is comparatively small
for running effective privacy mechanisms. It has been noted in other work that privacy
mechanisms on graphs require large values of ϵ, e.g. [37]. To measure the utility of the
result, we assess root mean square error (RMSE) between the noisy and true histogram, and
also indicate the utility of the histogram, measured as the number of ngrams with positive
counts (note that some noisy counts may be negative). Positive counts are necessary for
language modeling tasks such as computing inverse-document-frequency [96], and a large
number of negative counts indicates lower utility of the resulting histogram. Results are
reported over ten trials. Table 3.2 contains the results for the histogram task. Note that
even with a large epsilon, and a moderate amount of noise, in the best case (edge-level
privacy) only 58% of ngrams have useful counts. However, unlike the Conditional, Global,
or Binomial models this result doesn’t account for correlation. Note that in the case of
group privacy the added noise is comparable to the total number of edges in the graph.

56

� ��� ��� ��� ���� ���� ���� ����

���

���

���

���

���

���

�
�
�

�
�

�

Figure 3.4: Cumulative distributions of Pr(f(D) = w) assuming binomially distributed
counts for secrets sjk on edges k adjacent to Xi.

DP Set Union Application

In the histogram publication experiment we noted that it is assumed that the domain of
ngrams is known a priori, an assumption which may not be true. For instance, real-world
language modeling applications may call for differentially private vocabulary selection.
Differentially private set union (DPSU) aims to identify the union of elements in k input
sets (in our setting, sets of edge properties on k edges). This problem was addressed in [69].
To account for edge correlation, as in the case of histogram publication, it is necessary
to scale the sensitivity of the property counts by cW , as changing any edge can change
as many as c properties and may influence its neighborhood by a factor as large as W .
For this experiment we compare the utility (the number of published n-grams) of the
privacy mechanism over ten independent applications of the mechanism, for each of the
three correlation models. We also provide baseline utility for node-level, edge-level, and
group privacy. We choose ϵ = 100 and c = 1000 as in the previous experiment. The
results of this experiment are shown in Table 3.3. As in the previous experiment, the best
result corresponds to edge-level privacy, which neglects to account for edge-neighborhood
correlation. Of the approaches that address correlation, the binomial model utilities the
largest set of ngrams.

57

Description W λ utility (%) RMSE

Edge-level privacy 1 10.0 809200.5 ± 529.6 (58.2%) 12.0 ± 0.02
Node privacy 1 10.0 77679.0 ± 159.4 (5.6%) 6.4 ± 0.06

Binomial Model 558 5580.0 695823.0 ± 521.3 (50.1%) 5577.7 ± 8.14
Global Model 866 8660.0 695316.8 ± 647.3 (50.0%) 8665.8 ± 12.15

Conditional model 960 9600.0 695366.3 ± 561.83 (50.0%) 9594.2 ± 12.24
Group privacy 1883 18830.0 695195.5 ± 428.6 (50.0%) 18833.3 ± 26.73

Table 3.2: Experimental results for histogram publication, ϵ = 100. We measure utility-
the number of positive ngram counts for each of the correlation models, as well as for
node-level, edge-level, and group privacy.

Description W E[utility] σ

Edge-level privacy 1 24814.9 46.3
Node privacy 1 91 3.35

Binomial Model 558 228.7 5.71
Global Model 866 135 6.51

Conditional model 960 116.7 7.29
Group privacy 1883 41.9 3.11

Table 3.3: Experimental results for DPSU, ϵ = 100. We measure utility- the number of
extracted ngrams for each of the correlation models, as well as for node-level, edge-level,
and group privacy.

Discussion

Our experimental results illustrate the challenges associated with differentially private
language modeling tasks. If ϵ is large, and the number of private entities numbers in the
tens of thousands, the utility of a DP mechanism can still be very limited. Despite these
observations, our results illustrate how a privacy mechanism can be appropriately modified
to account for neighborhood correlations in the graph, and we believe utilities can only
improve with larger graphs. We suggest the following directions as future research to
improve the privacy/utility.

1. Applying sensitivity reduction techniques can lessen the effect of large neighborhoods
on the required privacy budget. These techniques have made great improvements in
the node-level privacy literature [102, 24, 38, 159].

58

2. Using alternative neighborhood models with less sensitivity can improve the privacy.
We use an over-protective model to capture cliques of users. For example, focusing
on clusters in the organizational graph instead of considering all adjacent edges, can
be promising.

3. Applying advanced composition techniques [99, 7, 54], can improve the privacy in
series of queries significantly. Based on Rènyi differential privacy [140], moments
accountant has shown this improvement in differentially private deep learning [7].

3.6 Related Work

Existing privacy approaches for social graphs use different techniques and mechanisms
[17]. These techniques are categorized into three main categories: i) grouping-based
approaches, ii) edge manipulation algorithms, and iii) differential-privacy-based techniques.
Grouping-based approaches include k-anonymity-based approaches [41, 125, 192, 197, 200]
and cluster-based techniques [22, 84, 122, 142, 177]. K-anonymity is among the first
techniques proposed for protecting the privacy of datasets and aims to anonymize each
user/node in the graph so that it is indistinguishable from at least k − 1 other users.
Machanacajjhala et al. [132] showed that a k-anonymous solutions still have severe privacy
problems when the sensitive attributes lack diversity, or when the adversary has access
to background knowledge. Clustering-based approaches group users and edges and are
limited to the applications where only the density and size of the cluster is revealed, so
that individual attributes are protected. Edge manipulation algorithms utilize edge-based
strategies such as random edge adding/deleting and random edge switching [190, 15]. The
edge perturbation algorithm can use random-walk-based techniques [128, 142] as well. As
the most recent category, differential privacy provides a strong privacy guarantee that the
risk of user’s privacy leakage does not increase as a result of participating in a database [51].
A common way of achieving differential privacy is by introducing random noise through the
Laplace mechanism (for numerical attributes) or Exponential mechanism (for non-numerical
attributes) to the query answers [51].

The differentially private proposals for social graphs fall into two categories: edge-level
differential privacy, and node-level differential privacy. In edge-level differential privacy [147,
163, 101, 83], the result of the analysis does not change by adding or removing an edge. Node-
level privacy however [102, 24, 38, 159, 37, 65], is resilient against adding or removing a node,
therefore it is more difficult to achieve. Note that differential privacy assumes independence
among instances in the dataset. It has been shown that the dependency between instances

59

affects the robustness of differential privacy guarantees to de-anonymization [123, 197].
The naive approach to address this issue to use group-level differential privacy, where the
group of dependant records/nodes are considered as one instance [37, 65]. The transition to
group privacy sacrifices utility even more, and motivates our work. We investigate privacy
for correlated data, as an alternative to group-privacy, to prevent leakage when the records
are not independent [108, 171]. To do so, we use Pufferfish privacy [108], and propose a
mechanism to achieve this privacy inspired by Song et al.’s work [171].

3.7 Conclusion

Natural language tasks are an area of increasing relevance with recent advances in language
modeling capabilities, and the availability of large language corpora. In order to train
language models targeting organizations, it is necessary to address latent confidentiality
concerns in the data– even models that are released for internal use may leak information
across groups of users. In this chapter we explored the problem of preserving organizational
confidentiality in language tasks, leveraging the Pufferfish privacy framework, while address-
ing non-IID data among edges in the organization’s social network. We showed how our
proposed scheme presents a compromise between two extreme measures of privacy, record-
level differential privacy and group privacy. By taking record correlation into account, our
scheme provides a more meaningful notion of privacy than record-level differential privacy,
while improving the utility compared to group privacy. In order to address correlation in
the graph, we imposed a Markov assumption enabling us to locally model the sensitivity
of graph queries under changes to edge properties, and estimated a maximal Wasserstein
metric under varying assumptions about attackers’ priors. To demonstrate our approach we
applied the mechanism to a real-world organizational dataset and measured performance
on a pair of statistical graph query tasks.

Queries over n-grams are only a small part of developing language models from natural
language data, and our work leaves many open questions with respect to the development
of language models with high utility. For example, can the Wasserstein mechanism be
extended to model training tasks, such as the application of stochastic gradient descent [8]?
Furthermore, we model correlation up to and including very large neighborhoods of edges,
raising the question of how large neighborhoods in a closed graph should be treated– is
there value in preserving confidentiality within the organization once neighborhoods reach
some critical size? Clearly, we can derive improved utility if we are not required to protect
these groups. Further research is needed to address these and related questions.

60

Chapter 4

Equi-Joins over Encrypted Data for
Series of Queries

4.1 Introduction

Outsourcing data management into the cloud comes with new security risks. Insiders at the
cloud service provider, attackers seeking high-profit targets or international legislators may
exploit access to the cloud infrastructure. Encryption where the key is held at the client
provides an additional layer of security countering these threats. However, regular data
management operations such as joins cannot be simply performed over encrypted data.
Hence, specialized encryption schemes for performing joins over encrypted data have been
developed [78, 141, 187, 156, 153, 107, 30]. Suraj Gupta, Jin Yang Liu, Koray Karabina,
Florian Kerschbaum and I studied equi-joins, since their security is particularly challenging.
On the one hand, a database management system (DBMS) cannot hide the equality of
join attribute values, since the cross product of two tables of size n each, is of size n2

which is prohibitively large for subsequent operations. Hence, the DBMS needs to select
a subset of the cross product using the equality condition. On the other hand, revealing
the equality condition leaks the frequency of items in a primary key, foreign key join. This
is critical, since primary key, foreign key joins are a very common operation and it has
been demonstrated that frequency information is very powerful in cryptanalysis [114, 146].
The encryption scheme (for joins) by CryptDB [156] has been effectively broken using this
frequency information [146]. Consequently, the challenge for any encryption scheme for
joins is to allow selecting from the cross-product, yet reveal as few equality conditions as
possible.

61

A state-of-the-art encryption scheme for joins by Hahn et al. [78] further reduces the
leakage from deterministic encryption [77] and onion encryption [156, 180] by only leaking
equality condition for tuples that match a selection criterion. However, the leakage of a
series of queries in this encryption scheme corresponds to the leakage of the union of the
queries, i.e., it may be larger than the union (sum) of the leakage of each query. We provide
an example of such super-additive leakage in Section 4.3. In this project we aim to reduce
the leakage of equality conditions even further. We present a new encryption scheme [165]
for joins that not only restricts the leakage of the equality condition to tuples that match
a selection criterion, but also limits the leakage of a series of queries corresponds to the
transitive closure of the union of the leakage of each query, i.e., there is no super-additive
leakage. We believe that this leakage is a natural lower bound for the leakage of an efficient
encryption scheme for non-interactive joins using one outsourced DBMS. Note that oblivious
joins [11, 14, 112] which only leak the size of the joint table, either require secure hardware
or multi-party computation [16], and an interactive protocol that reveals the size of the joint
table. Our construction requires the use of a new cryptographic technique – function-hiding
inner product encryption – compared to previous approaches. Our construction is efficient
with cryptographic operations requiring only a few milliseconds and the ability to run
hash-based joins with expected time complexity O(n). Our construction works for arbitrary
equi-joins. As a comparison, the state-of-the-art encryption scheme by Hahn et al. [78]
requires nested-loop joins (with O(n2) time complexity), and it only works for primary key,
foreign key joins. We implemented our encryption scheme and evaluated encrypted joins
over a dataset from the TPC-H benchmark.

4.1.1 Our Contributions

Our contributions are as follows:

• We provide a new encryption schemes for non-interactive equi-joins over encrypted
data where a series of queries only leaks the transitive closure of the union of the
leakage of each query, i.e., without super-additive leakage.

• We analyze the security of our scheme using a formal security proof.

• We evaluate the performance of a DBMS using our encryption scheme over a database
from the TPC-H benchmark.

62

4.1.2 Chapter Organization

The remainder of this chapter is structured as follows: Section 4.2 provides the necessary
cryptographic background. Section 4.3 describes the system model and problem in detail
and Section 4.4 describes our join encryption scheme. We presents its security proof in
Section 4.5 and its performance evaluation in Section 4.6. Section 4.7 surveys related work
and Section 4.8 summarizes our conclusions.

4.2 Preliminaries

4.2.1 Polynomial Functions

We use the definition of polynomial functions by Leung et al. [119]. Consider a polynomial
f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 of the set of polynomial in x over the prime field

Zq. If the indeterminate x in the expression is regarded as a variable which can assume any
value in Zq, then in the most natural way the polynomial f(x) will give rise to a mapping
of the set Zq into Zq. This mapping is defined by the polynomial f(x) as follows. To
each element c of the domain Zq there corresponds under the mapping the unique value
f(c) = anc

n + an−1c
n−1 + · · ·+ a1c+ a0 of the range Zq. Thus this is the mapping c → f(c)

of Zq into Zq. This mapping is called the polynomial function in the variable x defined
by the polynomial f(x). Polynomial functions that are bounded by Lemma 4.2.1 in their
probability of evaluating to zero.

Lemma 4.2.1. (Schwartz-Zippel [164, 199] adapted in [109]) Fix a prime q and let f ∈
Zq[x1, · · · , xn] be an n-variate polynomial with total degree at most t and which is not
identically zero. Then,

Pr[x1, · · · , xn
R←− Zq : f(x1, · · · , xn) = 0] ≤ t

q
. (4.1)

4.2.2 Function-Hiding Inner Product Encryption

We build our scheme on the function-hiding inner-product encryption construction by Kim
et al. [109]. Their scheme consists of four algorithms Πipe = (IPE.Setup, IPE.KeyGen,
IPE.Encrypt, IPE.Decrypt) described below. We keep their notations where bold lowercase
letters (e.g. v,w) denotes vectors and bold uppercase letters (e.g. B,B∗) denote matrices.
GLn(Zq) is the general linear group of (n× n) matrices over Zq.

63

1. IPE.Setup(1λ, S): On input of the security parameter λ and S a polynomial-sized
(in λ) subset of Zq, the setup algorithm samples an asymmetric bilinear group
(G1,G2,GT , q, e) and chooses generators g1 ∈ G1 and g2 ∈ G2. Then, it samples
B ← GLn(Zq) and sets B∗ = det(B) · (B−1)T . Finally, the setup algorithm outputs
the public parameters pp = (G1,G2,GT , q, e) and the master secret key msk =
(pp, g1, g2,B,B∗).

2. IPE.KeyGen(msk, v): On input of the master secret key msk and a vector v ∈ Zn
q , the

key generation algorithm chooses a uniformly random element α
R←− Zq and outputs

the pair: sk = (K1, K2) = (g
α·det(B)
1 , gα·v·B1). Note that the second component is a

vector of group elements.

3. IPE.Encrypt(msk, w): On input of the master secret key msk and a vector w ∈ Zn
q ,

the encryption algorithm chooses a uniformly random element β
R←− Zq and outputs

the pair: C = (C1, C2) = (gβ2 , g
β·w·B∗
2).

4. IPE.Decrypt(pp, sk, ct): On input of the public parameters pp, a secret key sk =
(K1, K2) and a ciphertext C = (C1, C2), the decryption algorithm computes D1 =
e(K1, C1) and D2 = e(K2, C2). Then, it checks whether there exists z ∈ S such that
(D1)

z = D2. If so, the decryption algorithm outputs z. Otherwise, it outputs ⊥. The
efficiency of this algorithm is guaranteed by |S| = poly(λ).

The correctness of Πipe holds when the plaintext vectors v and w satisfy ⟨v,w⟩ ∈ S for
a polynomially-sized S. Since D1 = e(K1, C1) = e(g1, g2)

αβ·det(B) and D2 = e(K2, C2) =
e(g1, g2)

αβ·v·B(B∗)TwT
= e(g1, g2)

αβ·det(B)·⟨v,w⟩, the decryption algorithm will correctly output
⟨v,w⟩ if ⟨v,w⟩ ∈ S.

4.3 Problem Definition

4.3.1 System Model

In outsourced data management, a client stores their [sensitive] data on a database server
under the control of a DBMS service provider [76]. Later, the client can access the
outsourced data through an online query interface provided by the server. Clients desire
to allow the server to process data queries while maintaining the confidentiality of the
data. For this purpose, they encrypt data before outsourcing. However, encrypted data is

64

hard to process. Therefore, to allow for more expressive server-side data processing, the
client will provide certain “unlocking” information (tokens) for a set of specific (equi-join)
predicates. The client expects the server to behave semi-honestly and perform exactly
the considered query while trying to find out any additional information. We consider
a relational model, where the client outsources their data in a number of (at least two)
tables each consisting of several data columns (e.g., relational attributes). In this work
we focus on performing equi-join over two outsourced tables TA and TB. Without loss
of generality, we assume both tables have n rows and m attributes, with each attribute
taking its values from a domain of size ℓ, to simplify the notations. The equi-join result
on the two join columns of the table-pair (TA, TB), is a subset of the cross-product of rows
from the two tables that contain equal values in their join columns [78]. Assume table
TA with |TA| = n records, has schema (A0, A1, · · · , Am) with join key A0 that identifies
the join column and other attributes A1, · · · , Am. Each attribute Ai has a domain Xi.
We denote by xi,j, i ∈ [m] and j ∈ [ℓ] , the jth domain value in Xi. We show the rows
in TA by tuples of variables: (a10, · · · , a1m), · · · , (an0 , · · · , anm). Similarly, TB has schema
(B0, B1, · · · , Bn), with domain Yi for each Bi. We denote by yi,j ,i ∈ [m] and j ∈ [ℓ], the jth

value in Yi. TB has |TB| = n rows shown by (b10, · · · , b1m), · · · , (bn0 , · · · , bnm). The equi-join
with join attributes A0 and B0 is an operation on tables TA and TB, denoted by1 TA ▷◁ TB.
The result of TA ▷◁ TB has schema (Θ, A1, · · · , Am, B1, · · · , Bm), and consists of records
(θr,r

′
, ar1, · · · , arm, br

′
1 , · · · , br

′
m). The attribute Θ takes its values from all A0’s and B0’s that

match, in other words: θr,r
′
= ar0 = br

′
o , for all r ∈ [n] , r′ ∈ [n] where ar0 = br

′
0 holds. There

is a further filtering based on additional filtering-predicates chosen from {A1, · · · , Am} and
{B1, · · · , Bm}.

4.3.2 Super-additive Leakage

We describe the secure join problem through the following example.

Example 1. Consider TA and TB in Tables 4.1 and 4.2 containing employees information
and their teams, respectively. Thus: (A0, A1) = (Key, Name), and (B0, B1, B2, B3) =
(Team, Record, Employee, Role). Assume the filtering-predicates are chosen over A1 with
domain X1 = {Web application, Database} for TA, and B3 with domain Y3 = {Programmer,
Tester} for TB. The equi-join of these two tables over the join keys A0 = Key and B0 =
Team, includes four pairs (ar0, b

r′
0) from row r in TA and row r′ in TB, with true equality

condition: (a10, b
1
0), (a

1
0, b

2
0), (a

2
0, b

3
0), (a

2
0, b

4
0). Two additional equality pairs (b10, b

2
0), (b

3
0, b

4
0)

only from Table TB need to be included in order to complete the transitive closure.

1As used in [78]

65

Key Name
1 Web Application
2 Database

Table 4.1: Teams

Record Employee Role Team
1 Hans Programmer 1
2 Kaily Tester 1
3 John Programmer 2
4 Sally Tester 2

Table 4.2: Employees

We also emphasize that the uniqueness of the join attribute values in A0 is a feature
of Example 1, not a general requirement, since our scheme is not limited to joins between
primary key, foreign key joins.

We consider three database operations (queries) at times t0 < t1 < t2, i.e. t0 is the
point in time after encrypted database upload, t1 is the point in time after the first query,
but before the second query and t2 is the point in time after the first and the second query.

t0: Encrypted database upload.

t1: SELECT ⋆ FROM Employees JOIN Teams ON Team = Key WHERE Name = “Web
Application” AND Role = “Tester”

t2: SELECT ⋆ FROM Employees JOIN Teams ON Team = Key WHERE Name = “Database”
AND Role = “Programmer”

Record Employee Role T.Key T.Name
2 Kaily Tester 1 Web Application

Table 4.3: The result of equi-join query at t1

In our analysis we compare encryption schemes for joins over encrypted data based
on the (number of) pairs with true equality condition they reveal. The results of the two
queries are depicted in Tables 4.3 and 4.4, respectively. To compute those results efficiently
the DBMS needs to reveal the equality condition of the pairs (a10, b

2
0) and (a20, b

3
0), i.e., this

66

Record Employee Role T.Key T.Name
3 John Programmer 2 Database

Table 4.4: The result of equi-join query at t2

represents our minimum leakage and no efficient encryption scheme using non-interactive
matches on a single DBMS can avoid this leakage.

The first proposal for database operations over encrypted data by Hacigümüs et al. [77]
used deterministic encryption [26, 18] to compute joins. In deterministic encryption each
data value is deterministically encrypted to the same ciphertext, such that the DBMS can
compare the ciphertexts for an equi-join. While this idea by itself has been shown to be
insecure [146], it is still the fundamental idea for subsequent schemes. In our analysis,
we can state that deterministic encryption reveals all six (equal) pairs at time t0. An
improvement over deterministic encryption was presented by CryptDB [156]. CryptDB
uses onion encryption and wraps each deterministic ciphertext in a probabilistic ciphertext.
Hence, at time t0 no pair is revealed, but at time t1 all six pairs are revealed, since the
wrapped probabilistic encryption needs to be stripped before an equi-join is feasible. The
equality condition can be restricted to a few columns by using re-encryptable deterministic
encryption [107, 141]. However, in our example there are only two columns and both are
involved in the same join operation. Specialized schemes, such as [187, 30, 153], also maintain
a re-encryption token for the entire table covered by the pair of columns. Hence, they do
not offer any improvement against our analysis of CryptDB. A state-of-the-art encryption
scheme for joins over encrypted data by Hahn et al. [78], loosely speaking, replaces the
probabilistic encryption by key-policy attribute-based encryption (KP-ABE) [70]. They
also use searchable encryption instead of deterministic encryption, but we ignore this in our
work, since it does not impact our analysis. KP-ABE ensures that only rows that match a
selection criterion specified by the attributes, can be decrypted and hence their ciphertext
can be matched. After, time t1 this scheme reduces the revealed pairs to (a10, b

2
0) which is

the minimum at this point of time.

However, consider what happens in this encryption scheme at time t2. In the first query,
the wrapped KP-ABE encryption on rows 1 from Team and 2 from Employees, but also
row 4 from Employees since it also matches Role = “Tester”, are removed. In the second
query, the wrapped KP-ABE encryption on rows 2 from Teams and 3 Employees, but
also row 2 from Employees since it also matches Role = “Programmer”, are removed. In
summary, at time t2 the wrapped probabilistic encryption on all rows has been removed
and all six (equal) pairs are revealed, since the adversary controlling the DBMS can match

67

the unwrapped rows. This reveals more pairs than necessary for the union of the queries.
We call this super-additive leakage, since it is more than the sum of the leakages of each
query. The challenge for our encryption scheme is to only reveal the pairs (a10, b

2
0) and

(a20, b
3
0) at time t2. The goal is a leakage equal to the transitive closure over the union of

the leakages of each query. Hence, we claim that an encryption scheme with this leakage
is more secure under a sequence of queries than the state-of-the-art encryption scheme by
Hahn et al. Informally speaking, we aim for re-encrypting the deterministic ciphertexts to
different keys for each query when the probabilistic encryption is removed. Constructing
such an encryption scheme is not trivial, but we claim that a modification to function-hiding
inner-product encryption [109] in combination with an encoding scheme using polynomials
achieves the desired property.

4.4 Protocol Overview

Let tables TA and TB be the tables to be encrypted, and joined over a set of rows selected
based on their attribute values. We propose a protocol that achieves this goal securely. In
this section, we first describe our implementation of the selection operation, then we explain
the modifications we made to the function-hiding inner product encryption scheme of Section
4.2.2, in order to implement a combined selection and joins operation. Subsequently in
Section 4.4.3, we provide a full picture of our scheme in details. We clarify the steps of our
protocol described in this section with the aid of Example 2.

Example 2. Assume sample rows r and r′ of the tables TA and TB indicated in Tables 4.5
and 4.6.

A0 A1 A2

ar0 ar1 ar2

Table 4.5: A sample row r in TA

Consider the following database equi-join query, with specified selection filters:

SELECT ⋆ FROM TA JOIN TB ON A0 = B0 WHERE
A1 IN Φ1 = (ϕ1,1, . . . ,ϕ1,t) AND B1 IN Ψ1 = (ψ1,1, . . . ,ψ1,t).

68

B0 B1 B2

br
′

0 br
′

1 br
′

2

Table 4.6: A sample row r′ in TB

This query results in the join of the sample rows in Tables 4.5 and 4.6, if ar0 == br
′

0 , and
if the specified selection criterion matches the values of ar1 and br

′
1 ; in other words:

∃ϕ1,z ∈ Φ1 s.t. ar1 = ϕ1,z ∧ ∃ψ1,z ∈ Ψ1 s.t. br
′

1 = ψ1,z.

The join query’s WHERE clause in Example 2, imposes t restrictions (Φ1) on one
attribute (A1) in TA, and t restrictions (Ψ1) on one attribute (B1) in TB. As we describe
in Section 4.4.1, in general, the IN clause for table Tτ , τ ∈ {A,B}, can impose a maximum
of t restrictions on each of the m attributes in table Tτ .

4.4.1 Encoding Selection Operations in Polynomials

We implement the selection operation through the usage of polynomial functions. Each
polynomial Pi, i ∈ [m], is of degree t and can encode maximum t attribute values, as its
roots. These attribute values are specified by Φi in the IN clause of the join query for TA,
and all belong to the same domain Xi. Recall from Section 4.3 that Xi is the domain of the
attribute Ai. Hence, Pi enables the query to select the rows from TA that have particular
attribute values as attribute Ai. Similarly, each polynomial Qi, i ∈ [m], takes the values
specified in the IN clause Ψi for TB, as its roots. These values belong to Yi, which is the
domain of the attribute Bi. Therefore, Qi enables the join query to select the rows from TB

with desired attribute values for Bi. Both Pi(x) and Qi(y) take their coefficients from Zq.

Thus: Pi(x) =
∑︁t

j=0 pi,j · xj, such that Pi(ϕi,z) = 0, z ∈ [t]. In a similar way,

Qi(y) =
∑︁t

j=0 qi,j · yj, i ∈ [m], such that Qi(ψi,z) = 0, z ∈ [t]. We emphasize that
with the requirements of degree t, and maximum t specified points (roots), each Pi or Qi

can take any polynomial from a set of at least q distinct polynomials. If an attribute Ai or
Bi is not included the selection criterion, it is encoded as the zero polynomial; i.e. Pi = 0 or
Qi = 0 respectively. Otherwise, according to Lemma 4.2.1, the probability of the non-zero
polynomials of form Pi or Qi evaluating to zero at a randomly selected point is bounded
by t

q
. We assume an efficient and injective embedding from the attribute values of Ai’s

and Bi’s, i ∈ [m] , to Zq which generates elements in Zq uniformly at random, to comply

69

with the Schwartz-Zippel lemma. We use a cryptographic hash function to provide such a
mapping.

To apply the filtering predicates in Φi’s and Ψi’s specified in the query, the client sends
the corresponding polynomials’ coefficients pi,j ’s and qi,j ’s as join tokens to the server. The
server multiplies these coefficients by their corresponding [pre-stored] powers of attribute
values. When these polynomials evaluating to zeros at rows with the target attribute values,
they unwrap the join value for the server.

Example 3. Consider TA and TB in Tables 4.5 and 4.6, in addition to the join query in
Example 2. The client uploads the non-join attribute values ar1 and ar2 of TA on the server,
as [an encrypted] vector ((ar1)

0, · · · , (ar1)t, (ar2)0, · · · , (ar2)t). Similarly the non-join attribute
values of TB, i.e. b

r′
1 and br

′
2 , are stored as: [encrypted] ((br

′
1)

0, · · · , (br′1)t, (br
′

2)
0, · · · , (br′2)t).

At query time, the client selects their filtering predicates, such as Φ1 for attribute A1, and
Ψ1 for attribute B1. Hence, the client chooses P1(x) and Q1(y) such that they evaluate
to zero at ϕ1,z’s, z ∈ [t] and ψ1,z’s, z ∈ [t] respectively. For the other attributes, i.e. ar2
and br

′
2 , the client assigns polynomials that are identical to zero. Thus, the client’s join

query token, consists [encrypted] (p10, · · · , p1t, 0⃗) for TA and [encrypted] (q10, · · · , q1t, 0⃗) for
TB, where 0⃗ is an all-zero vector of length t+ 1. It is easy to see that the inner product
of the token generated for TA and the stored vector for TA equals zero, if ar1 = ϕ1,z, for a
ϕ1,z ∈ Φ1. A similar argument holds for TB and br

′
1 = ψ1,z, for a ψ1,z ∈ Ψ1. To give a clear

picture of the polynomial-encoding implementation in this example, we skipped the details
of the encryption operation. We provide a full description of our scheme in Section 4.4.3.

4.4.2 Modified Function-hiding IPE

We described the function-hiding inner-product encryption construction Πipe by Kim et
al. [2] in Section 4.2.2, which is the base for our scheme. However, we made the following
modifications on the construction to adjust it with our scheme’s needs.

1. We set the random parameters in IPE.KeyGen and IPE.Encrypt to 1, i.e. α = β = 1.
We instead incorporate random parameters δ and γ in the input vectors v and
w of IPE.Key and IPE.Encrypt, making vectors are of forms v = (v′, 0, δ) and
w = (w′, γ, 0).

2. Πipe generates a pair of secret keys sk = (K1, K2) during IPE.KeyGen, a pair of
encrypted outputs C = (C1, C2) in IPE.Encrypt that decrypt to the pair (D1, D2)
in IPE.Decrypt. In our scheme, we just use one element of these pairs. Hence, as

70

TA TB

pp = (G1,G2,GT , q, e)
msk = (pp, g1, g2,B,B∗)

pp = (G1,G2,GT , q, e)
msk = (pp, g1, g2,B,B∗)

Setup (Client)Setup (Client)

γr
A,1, γ

r
A,2

R←− Zq

Cr
A = g

wr
AB⋆

2

wr
A = (ωr

A, γ
r
A,1, 0)

ωr
A = (H(ar0), γ

r
A,2(a

r
1)

0, · · · , γr
A,2(a

r
1)

t,

γr
A,2(a

r
2)

0, · · · , γr
A,2(a

r
2)

t)

γr′
B,1, γ

r′
B,2

R←− Zq

Cr′
B = gwBB⋆

2

wr′
B = (ωr′

B, γ
r′
B,1, 0)

ωr′
B = (H(br

′
0), γ

r′
B,2(b

r′
1)

0, · · · , γr′
B,2(b

r′
1)

t,

γr′
B,2(b

r′
2)

0, · · · , γr′
B,2(b

r′
2)

t)

Encryption (Client)Encryption (Client)

Upload PhaseUpload Phase

Figure 4.1: Upload phase in Secure Join on TA, TB of Example 2

we describe in full details in Section 4.4.3, we use the following parameters in our
scheme: sk2 = gv·B1 , C = gw·B⋆

2 , D = e(g1, g2)
det(B)·⟨v,w⟩.

3. Πipe extracts the value of ⟨v,w⟩ from the decrypted value D at the end of the
protocol. We are not interested in obtaining the value of ⟨v,w⟩ in our scheme, but
a deterministic function of this value. Hence, we do not require the ⟨v,w⟩ reside in
the polynomial-sized subset S for which one can break the discrete logarithm with
overwhelming probability. Ultimately, We apply Πipe twice independently in our join
encryption scheme, first on table TA and then on table TB

3. We calculate D(sk, C)
for both of these iteration and conclude a “match” if the obtained D’s are equal.

71

TA TB

k
R←− Zq \ {0}

δA
R←− Zq

TkA = gvAB
1

vA = (νA, 0, δA)

νA = (k, p10, · · · , p1t, 0⃗),
where P1(ϕ1,j) = 0,

for all ϕ1,j ∈ Φ1, j ∈ [t]

δB
R←− Zq

TkB = gvBB
1

vB = (νB, 0, δB)

νB = (k, q10, · · · , q1t, 0⃗),
where Q1(ψ1,j′) = 0,

for all ψ1,j′ ∈ Ψ1, j
′ ∈ [t]

Join Query (Client)Join Query (Client)

Dr
A = e(TkA, C

r
A)

Dr
A = e(g1, g2)

det(B)kH(ar0)+P1(ar1)

Dr′
B = e(TkB, C

r′
B)

Dr′
B = e(g1, g2)

det(B)kH(br
′

0)+Q1(br
′

1)

Query Processing (Server)Query Processing (Server)

If and only if Dr
A == Dr′

B , then join happens, as:
the selection criterion are satisfied

(∃j, j′ ∈ [t] s.t. ar1 = ϕ1,j and br
′

1 = ψ1,j′),

the join values of the two tables match (ar0 = br
′

0).

Query Result (Server)Query Result (Server)

Query PhaseQuery Phase

Figure 4.2: Query phase in Secure Join on TA, TB of Example 2

72

4.4.3 Our Secure Join Scheme

Our Secure Join scheme consists of five algorithms, namely (SJ.Setup, SJ.TokenGen, SJ.Enc,
SJ.Dec, SJ.Match). The algorithms SJ.Setup, SJ.TokenGen, and SJ.Enc are applied by
the client, on Tτ , where τ ∈ {A,B}. The server applies SJ.Dec to Tτ . After applying the
first four algorithms to both TA or TB and obtaining DA and DB, the server applies the
fifth algorithm, SJ.Match, to the results to find out whether DA and DB match. A positive
answer allows performing the join operation.

1. SJ.Setup(1λ): (Client, upload phase)
On input the security parameter λ, the setup algorithm samples an asymmetric
bilinear group (G1,G2,GT , q, e) and chooses generators g1 ∈ G1 and g2 ∈ G2. Then,
it samples B ← GLn(Zq) and sets B∗ = det(B) · (B−1)T . Finally, the setup algorithm
outputs the public parameters pp = (G1,G2,GT , q, e) and the master secret key
msk = (pp, g1, g2,B,B∗).

2. SJ.Enc(msk, wr
τ): (Client, upload phase)

The encryption algorithm takes as input the master secret key msk and a vector
wr

τ ∈ Zm(t+1)+3
q constructed from row r in table Tτ . To construct wr

τ , the encryption

algorithm chooses two uniformly random elements γr
τ,1, γ

r
τ,2

R←− Zq to form wr
τ =

(ωr
τ , γ

r
τ,1, 0). The vector ωr

τ , represents the information in the row r of table Tτ .
This information, is the hash of the join value and t powers of each of the other
attribute values. Recall that t is the same as the degree of polynomials introduced
in Section 4.4.1. These powers of attributes values in ωr

τ are obfuscated by γr
τ,2

in wr
τ . Therefore, for a sample row r ∈ [n] in TA shown in Table 4.5, we have

ωr
A = (H(ar0), γ

r
A,2 ·(ar1)0, · · · , γr

A,2 ·(ar1)t, · · · , γr
A,2 ·(arm)0, · · · , γr

A,2 ·(arm)t). In a similar

way, for a row r′ ∈ [n] of TB in Table 4.6, we have ωr′
B = (H(br

′
0), γ

r′
B,2 · (br

′
1)

0, · · · , γr′
B,2 ·

(br
′

1)
t, · · · , γr′

B,2 · (br
′

m)
0, · · · , γr′

B,2 · (br
′

m)
t). The cryptographic hash function H(·) used

in forming ωr
A and ωr′

B, maps each attribute values of the join column to a fixed-size
value, and acts [as much as practically possible] like a random function.

Now, SJ.Enc(·) is ready to perform the encryption, and computes Cr
τ = g

wr
τ ·B⋆

2 .

3. SJ.TokenGen(msk, Ξτ): (Client, query phase)
The token generation algorithm takes as input the master secret key msk and the
join-query’s filtering predicates for table Tτ shown by Ξτ = (ξτ,1, · · · , ξτ,m). Recall

2We show this value by Tk in our scheme, as it acts as an unlocking token.
3The order does not matter here.

73

from Section 4.4.1 that ΞA = (Φ1, · · · ,Φm) and ΞB = (Ψ1, · · · ,Ψm). We elaborated in
Section 4.4.1 that how the client chooses polynomials Pi’s and Qi’s, i ∈ [m], to encode
the values specified in the IN clauses Φi’s and Ψi’s respectively. We also explained
that for each Pi or Qi, there are at least q such polynomials that the client can choose
their candidate from. To generates a token for the join query, the SJ.TokenGen(·)
algorithm chooses a uniformly random element δτ

R←− Zq and generates a vector

vτ ∈ Zm(t+1)+3
q of the form vτ = (ντ , 0, δτ). The vector ντ consists of a [non-zero]

symmetric secret query key k chosen randomly from Zq \ {0} for encrypting the
join attribute, and the coefficients of the polynomials corresponding to the filtering
predicates ΞB = (Ψ1, · · · ,Ψm). Hence, to run the sample join query in Example 2,
the clients first needs to generate vectors νA = (k, p1,0, · · · , p1,t, · · · , pm,0, · · · , pm,t)
for table TA, and νB = (k, q1,0, · · · , q1,t, · · · , qm,0, · · · , qm,t) for table TB. Now, the
token generation algorithm can compute Tkτ = gντ ·B

1 , as the final token.

4. SJ.Dec(pp, Tkτ , Ctrτ): (Server, query phase)
On input of the public parameters pp, a token Tkτ , and a ciphertext Ctrτ , the
decryption algorithm computes Dr

τ = e(Tkτ , C
r
τ) for a row r in Tτ . The output

of SJ.Dec(·), if the selection criteria is satisfied, equals e(g1, g2)
det(B)kH(ar0) for table

TA. Similarly, for the same query, the decrypted value for row r′ of table TB equals

e(g1, g2)
det(B)kH(br

′
0), when the selection criteria is satisfied.

There exist many (searchable) encryption schemes [45] which can be used for pre-
filtering the rows with the attributes matching the selection criteria reducing the size
of the tables, but they are orthogonal to our join encryption scheme. For a better
exposition, we describe only the application of our encryption scheme.

5. SJ.Match(Dr
A, D

r′
B): (Server, query result)

This algorithm inspects the results of applying the previous four algorithms to all the
rows in tables TA and TB, and performs a join when there is a match. In other words,
the decrypted value for each row r in TA, D

r
A, is compared with that of row r′ in TB,

and if they match, the corresponding rows r and r′ in TA and TB are combined to
form the row (θr,r

′
, ar1, · · · , arm, br

′
1 , · · · , br

′
m) in the join table, where θr,r

′
= ar0 = b′0.

Example 4. Figure 4.2 shows the steps of Secure Join for the particular example of TA and
TB in Tables 4.5 and 4.6, and the join query in Example 2. In the upload phase, the client
first chooses the protocol parameters, and then starts the encryption for the (only) row r
in TA and the (only) row r′ in TB. The client forms the information vectors of these rows,
ωr

A and ωr′
B, and prepares them for encryption by randomizing them to obtain vectors wr

A

74

and wr′
B that yield the final ciphertexts Cr

A and Cr′
B . The client uploads these ciphertexts

at the server.

The client initiates the query phase by generating tokens to target rows with certain
attribute values, specified in ϕ1 for TA and in ψ1 for TB, for the join operation. To do so, the
client uses polynomial encoding to obtain vectors νA and νB for ϕ1 and ψ1, then randomizes
these vectors to vA and vB, which yield the final tokens TkA and TkB. Receiving these
tokens in the query phase, the server decrypts the stored Cr

A and Cr′
B with TkA and TkB

to obtain Dr
A and Dr′

B . If D
r
A ̸= Dr′

B , the server disregards the query. However, if they do
match, the server performs the join and combines the rows r and r′.

4.5 Security

As stated in Section 4.1, we propose a new encryption scheme for joins that not only
restricts the leakage of the equality condition to tuples that match a selection criterion,
but also where the leakage of a series of queries corresponds to the transitive closure of
the union of the leakage of each query, preventing super-additive leakage. Our design
relies on the assumption that the clients are trusted and the server is semi-honest. A
semi-honest adversary wants to learn confidential data, but does not change queries issued
by the application, query results, or the data in the DBMS. This threat includes DBMS
software compromises, root access to DBMS machines, and even access to the RAM of
physical machines [156]. We structure our security proof as follows: First, we prove that our
modified inner-product encryption scheme from Section 4.4.2 maintains the same security
property as Kim et al.’s [109]. Then, using the simulator for the inner-product encryption
we construct a simulator for our join encryption scheme.

4.5.1 Inner Product Encryption

Kim et al. prove security of their function-hiding inner-product encryption according to
the following SIM-Security definition4

Definition 4.5.1. (SIM-Security for Function-Hiding Inner-Product Encryption) Recall
Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) from Section 4.2.2. Πipe is
SIM-secure if for all efficient adversaries A, there exists and efficient simulator S that

4An inner product encryption scheme that is secure under the simulation-based definition, is also secure
under the indistinguishability-based definition. We refer to [109] for more details.

75

the output of the following experiments are computationally indistinguishable in security
parameter λ.

1. RealA(1λ)

• (pp,msk) ← IPE.Setup(1λ)

• b ← AOIPE.KeyGen(msk,·),OIPE.Encrypt(msk,·)(λ)

• output b

2. SimA,S(1λ)

• (pp, st5) ← Setup′(1λ)

• b ← AO′
IPE.KeyGen(st,·),O′

IPE.Encrypt(st,·)(λ)

• output b

The oracles OIPE.KeyGen(msk, ·) and OIPE.Encrypt(msk, ·) represent the real key generation
and encryption oracles of Πipe, while O′

IPE.KeyGen(st, ·) and O′
IPE.Encrypt(st, ·) represent the

simulated stateful key generation and encryption oracles.

Lemma 4.5.1. The modified function-hiding inner-product encryption scheme of Sec-
tion 4.4.2 is SIM-secure.

Kim et al. [109] provide full details of achieving security through a simulation-based
proof in a generic model of bilinear groups. For space restrictions, we skip repeating the
full detailed proof here, and provide their high-level idea instead. We then discuss that
the modifications we introduced (Section 4.4.2) to their scheme does not compromise its
security, hence the same security argument holds for our scheme as well.

To prove SIM-security of Πipe, Kim et al. construct a generic bilinear group simulator
S that interacts with the adversary A, such that the distribution of responses in the real
scheme is computationally indistinguishable from that in the ideal scheme. The simulator
S must respond to the key generation and encryption queries as well as the generic bilinear
group operation queries. For each key generation and encryption query, the simulator
responds with a fresh handle corresponding to each group element in the secret key and
the ciphertext. Similarly, for each generic group oracle query, the simulator responds with
a fresh handle for the resulting group element. The simulator maintains a table that maps
handles to the formal polynomials the adversary forms via its queries. Hence, each oracle

5A simulator state

76

query is regarded as referring to a formal query polynomial. Two sets of formal variables
are defined for Πipe, namely sets R and T , with the universe U being the union of the two.
All the formal polynomials the adversary submits to the final test (zero-test) oracle are
expressible in the formal variables in R. To answer the zero-test queries, the simulator
performs a series of substitutions to re-express the adversary’s query polynomials as a
polynomial over the formal variables in T . The major challenge in the simulation is in
answering the zero-test queries. To consistently answer each zero-test query, the simulator
first looks up the corresponding formal polynomial in its table and decomposes it into a
“canonical” form, that is, as a sum of “honest”and “dishonest” components. The honest
components correspond to a proper evaluation of the inner product while the dishonest
components include any remaining terms after the valid inner product relations have been
factored out. Kim et al. argue, using properties of determinants, that if a query polynomial
contains a dishonest component, then the resulting polynomial cannot be the identically
zero polynomial over the formal variables corresponding to the randomly sampled elements
in B. Then, the simulator can correctly (with overwhelming probability) output “nonzero”
in these cases. Finally, in the ideal experiment, the simulator is given the value of the
inner product between each pair of vectors the adversary submits to the key generation
and encryption oracles, so it can make the corresponding substitutions for the honest inner
product relations and thus, correctly simulate the outputs of the zero-test oracle.

Proof. Being built on the scheme Πipe, the security of our scheme results from that of
Πipe. To prove the SIM-security of our Scheme in Section 4.4.2, we need to show that the
modifications we introduced to the SIM-secure scheme Πipe, do not affect its security proof.

1. Changing the randomness from α and β, to δ and γ1 in the input vectors v and w
respectively.
The simulator S should satisfy the following two conditions for corrections: i) S’s
response to the key generation, encryption, and group oracle queries made by the
adversary A should be distributed identically as in the real experiment, and ii) S
should correctly simulate the response to the zero-test queries made by the adversary
A. While the latter is guaranteed by the properties of determinants and randomly
sampled elements in the matrix B, the former is assured by the randomness of α and
β. Our substitutes for the randomness provided by α and β, namely δ and γ1, allow
generating fresh handles in the simulation and consequently uniform and identical
distributions as in the real experiment as per the first condition. The second condition
however, is not affected by this modification, since it is satisfied by the properties of
the matrix B, regardless of the values of α and β. Hence, replacing α and β with

77

“1”, and including the randomness in the input vector does not affect the satisfaction
of this condition.

2. Eliminating the first item of the pair for each of the followings: secret key, ciphertext,
and decrypted value.
We mentioned earlier in this section that all the formal polynomials the adversary
submits to the final test (zero-test) oracle are expressible over the variables in the
set R. Kim et al. argue that for any polynomial formed over these variables by
the adversary, the simulator can correctly simulate the responses to the zero-test
queries. Therefore, as long as new variables are not introduced to R, this proof holds.
Considering the elements in R (Definition 3.2 in [109]), eliminating the first item of
the pair in the secret key, ciphertext and the decrypted value, does not change these
formal variables, not to mention that it cannot introduce new variables to R. Hence,
it cannot enable the adversary to submit a “dishonest” component in the polynomial
that outputs to zero in the zero-test to compromise the simulator.

Since our inner-product encryption scheme is SIM-secure we can replace its decryption
keys and ciphertexts by outputs from the simulator and the two traces will be computa-
tionally indistinguishable as long as the decrypted plaintexts match.

4.5.2 Secure Join Encryption

We define security of our join encryption scheme following the methodology for symmetric
searchable encryption (SSE) schemes by Curtmola et al. [45]. Let λ be the security parameter
of the encryption schemes. Let H = {q1, . . . , qµ} be a sequence of join queries where µ =
poly(λ). Let σ(qi) be the result of the equi-join query qi, i.e., σ(qi) = {(r1, r′1), . . . , (rν , r′ν)}
is the set of equality pairs between rows ri,j and r′i,j (which can be from the same table).
We define the trace τ(H) = {n,m, σ(q1), . . . , σ(qν)}.

Definition 4.5.2. (SIM-Security for Join Encryption) We say a Join Encryption is SIM-
secure, if there exists a simulator S(τ (H)) that given the trace τ (H) such that the following
two experiments are computationally indistinguishable in the security parameter λ:

1. RealA(1λ)

• (pp,msk) ← IPE.Setup(1λ)

78

• b ← A(V IEWDBMS(H))

• output b

2. SimA,S(1λ)

• (pp, st) ← Setup′(1λ)

• b ← A(S(τ(H), st))

• output b

Theorem 4.5.2. The scheme Secure Join = (SJ.Setup, SJ.TokenGen, SJ.Enc, SJ.Dec,
SJ.Match) from Section 4.4.3 is SIM-secure.

Proof. We construct the simulator S as follows: Recall that aij and bij are the plaintext
values in the encrypted tables. We initialize all plaintext values to ⊥. Given a set of
equality pairs σ(qh), we set all join values ai0 and bi0 of equality pairs to the same random
values from Zq preserving already set values not equal ⊥. All remaining join values of ⊥
are replaced by random numbers. We compute values for the selection attribute values aij ,
bij and selection values ϕj,i, ψj,i by solving a linear system of equations for binary numbers –
one for each possible pair of attribute value (or selection value) and domain value from [n].
This can be done in polynomial time using Gaussian elimination. Finally, we encrypt all
plaintexts for tables and generate keys for the queries using the simulator for inner-product
encryption. This results in random plaintexts with ciphertexts that produce the trace τ (H)
as prescribed by the simulator. Each query produces now decryption results D = D′, if
the join conditions (same query, same join values and selection criteria are satisfied) are
fulfilled or random numbers otherwise. The actual values of the query results cannot be
obtained by the adversary, since they cannot break the discrete logarithm.

It remains to show that the real protocol also either produces the same decryption
results D, D′ for join matches or random numbers, with overwhelming probability in λ
(note that q = O(2λ)). Without loss of generality, we simplify the representation and
show by D = e(g1, g2)

det(B)kH(a0)+P (a1) the decryption result for an arbitrary row from table
TA, with join value a0 and selecting attribute A1. D is decrypted by a token generated
by query key k and polynomial P (x). We show that if this D equals a D′ of the form
e(g1, g2)

det(B)k′H(b0)+Q(b1) for an arbitrary row from TB, decrypted by a token generated by
query key k′ and polynomial Q(y), then D and D′: i) belong to the same query, ii) have
the same join value, and iii) satisfy the selection criteria. There are eight different cases to
investigate based on the following conditions:

• Satisfying/not-satisfying the selection criterion

79

• Belonging to the same/different query/ies

• Equality/non-equality of join values

Claim 4.5.1. The equality D = D′, holds with overwhelming probability if and only if all
of the three conditions above are satisfied.

In what follows, we show that this claim holds due to the randomness in: i) the
symmetric key k, ii) the output of the hash function H(·), and iii) the coefficients of the
polynomials, the probability of D and D′ taking the same value is negligible in the all cases
except the case of belonging to the same query, having the same join value, and satisfying
the selection criterion. In investigating the following cases we assume we are given a pair
of decrypted values (D,D′), where:

D = e(g1, g2)
det(B)kH(a0)+P (a1),

D′ = e(g1, g2)
det(B)k′H(b0)+Q(b1).

(4.2)

1. Same query, same join values, both selection criterion hod,

Pr[D = D′] = Pr[kH(a0) = k′H(b0)] = 1. (4.3)

2. Same query, same join values, at least one of the selection criterion does not hold,
e.g. the value of either of a1 or b1 is not included in the WHERE clause,

Pr[D = D′] = Pr[kH(a0) + P (a1) = k′H(b0) +Q(b1)]

= Pr[P (a1) = Q(b1)] ≤
t

q
.

(4.4)

Recall from Section 4.4.1 that how Lemma 4.2.1 is applied to the polynomial encoding.
The last inequality in the above equation results from applying Lemma 4.2.1 to
P (x)−Q(b1), which is a polynomial of degree t, and it evaluating to zero means the
total probability of P (a1) = Q(b1). This is an upper bound for the particular use
case of P (a1) = Q(b1).

3. Same query, different join values, both selection criterion hold,

Pr[D = D′] = Pr[kH(a0) = k′H(b0)]

= Pr[H(a0) = H(b0)] =
1

q
.

(4.5)

80

D and D′ belonging to the same query results in k = k′. Hence, we just need to
calculate the probability of the hash output for join value b0 colliding with that of a0,
while a0 ̸= b0. As the cryptographic hash function H(·) acts as a random function
with range Zq, this probability is 1

q
.

4. Same query, different join values, at least one of the selection criterion does not hold,

Pr[D = D′] = Pr[kH(a0) + P (a1) = k′H(b0) +Q(b1)]

≤ t

q
.

(4.6)

Similar to the item (2), the inequality above results from applying the Lemma 4.2.1
to the polynomial P (x) + kH(a0)− k′H(b0)−Q(b1).

5. Different queries, same join values, both selection criterion hold,

Pr[D = D′] = Pr[kH(a0) = k′H(b0)]

= Pr[k = k′] + Pr[k ̸= k′, H(a0) = 0]

=
1

q − 1
+

q − 2

q − 1
× 1

q
=

2

q
.

(4.7)

D and D′ correspond to equal join values, hence H(a0) = H(b0). If H(a0) is not
zero (which has probability q−1

q
), the equality of D and D′ requires the equality of

the query keys, i.e., k = k′. Since k and k′ belong to different queries are chosen
independently and randomly from Zq \ {0}, the probability of one of them taking the
same value as the other one is 1

q−1
, resulting in the overall probability 2

q
for D = D′.

6. Different queries, same join values, at least one of the selection criterion does not
hold,

Pr[D = D′] = Pr[kH(a0) + P (a1) = k′H(b0) +Q(b1)]

≤ t

q
.

(4.8)

Similar to the items (2) and (4), the inequality above results from applying the Lemma
4.2.1 to the polynomial P (x) + kH(a0)− k′H(b0)−Q(b1).

7. Different queries, different join values, both selection criterion hold,

Pr[D = D′] = Pr[kH(a0) = k′H(b0)] =
1

q
. (4.9)

81

We calculated the probability of H(a0) = H(b0) when a0 ̸= b0 in item 3, which is the
probability of a H(b0) taking the same random value as the other independent value
H(a0). This probability does not increase by multiplying these random values by
other fixed or random values (k and k′ here).

8. Different queries, different join values, at least one of the selection criterion does not
hold,

Pr[D = D′] = Pr[kH(a0) + P (a1) = k′H(b0) +Q(b1)]

≤ t

q
.

(4.10)

Similar to the items (2), (4), and (6), the inequality above results from applying the
Lemma 4.2.1 to the polynomial P (x) + kH(a0)− k′H(b0)−Q(b1).

From a given (D,D′) to any (D,D′) in the set of queries.
Through items (1) - (8), we showed that for a given (D,D′), the equality holds if and only
if the corresponding rows to these values are decrypted through processing the same query,
have the same join value, and satisfy the selection criteria in the query. The probability of
the equality D = D′ taking place for any other cases is in O(1

q
). However, if we consider all

the ε ≤ 2µn ciphertext decryptions by µ queries over the join tables, this probability can
increase to O(ε

2

2q
), according to the birthday paradox. However, O(

√
q = 2λ/2) is a loose

upper bound for ε in our scheme, since the number of queries and the number of database
rows in our scheme is polynomial-sized in λ, i.e., ε = poly(λ).

We can re-iterate our security properties as corollaries of Theorem 4.5.2.

Corollary 4.5.2.1. (Restricting leakage to the selection criterion) The Secure Join =
(SJ.Setup, SJ.TokenGen, SJ.Enc, SJ.Dec, SJ.Match) restricts the leakage to the selection
criterion.

The decryption algorithm, SJ.Dec(·), outputs D = e(g1, g2)
det(B)kH(a0)+P (a1). Hence, the

server can obtain D = e(g1, g2)
det(B)kH(a0), if and only if P (a1) evaluate to zero. According

to Lemma 4.2.1 the probability of P (a1) evaluating to zero when the values of a1 is not in
the WHERE clause, is negligible. Hence, Secure Join successfully restricts the leakage to
the selection criterion.

Corollary 4.5.2.2. (Preventing Super-additive leakage) The Secure Join = (SJ.Setup,
SJ.TokenGen, SJ.Enc, SJ.Dec, SJ.Match) prevents super-additive leakage.

82

Items (5) to (8) in the proof of Theorem 4.5.2 show that the probability that SJ.Match
results in a match for different queries is negligible. This protection holds even if both
selection polynomials evaluate to zero, or even if the join values match. Hence, Secure Join
successfully prevents the adversary from linking the results of different queries.

4.6 Experiments

In this section, we evaluate our Secure Join scheme (introduced in Section 4.4.3) in running
secure hash joins over outsourced data. We provide three evaluation categories: i) a
benchmark of the cryptographic operations in Secure Join, ii) server’s performance in
performing joins operation (decryption anch match) for various database sizes, and iii)
server’s performance in performing joins operation for various IN clause sizes for a single
attribute.

4.6.1 Setup

We ran our experiments using a single thread on a machine with four processors, a 64-bit
Intel Core i7− 7500U@2.70GHz each, with 15.4GiB RAM and running Ubuntu 20.04.01.
In our experiments, we used an adjusted version of function-hiding inner product encryption
implementation by Kim et al. [109] (described in Section 4.2.2). The adjustments were
made to the implementation, so that it complies with our modifications from Section 4.4.2.
In our experiments, we use the data provided by TPC-H benchmark. We in particular
use the tables tables TA = Orders and TB = Customers from the benchmark. The table
Orders, has nine attribute values: (orderkey, custkey, orderstatus, totalprice, orderdate,
orderpriority, clerk, shippriority, comment), while Customers has eight: (custkey, name,
address, nationkey, phone, acctbal, mktsegment, comment). The original tables Orders and
Customers have 150, 000 and 1, 500, 000 rows respectively. We use scale factors in the range
of (0.01 - 0.1). The customer key information provides the join attribute custkey in both
tables. We also add another attribute column selectivity to both tables. Selectivity takes
values { 1

12.5
, 1
25
, 1
50
, 1
100

}. We use these values for two purposes: i) providing some values for
the attribute Selectivity, ii) showing the proportion of the table assigned with this attribute
value. Hence, each Selectivity value x is assigned to x× n rows where n is the table size.

For example, in a table Customers with 150, 000 rows, 1, 500 rows are assigned the same
attribute value with 1

100
as their Selectivity.

4.6.2 Crypto Operations in Secure Join

Figure 4.3 shows a micro-benchmark of our implementation of the cryptographic operations
in Secure Join for a single row. This experiment provides the average implementation
results for a row in the table Customers, when the IN clause size varies from 1 to 10. The
cryptographic operations are SJ.Enc(·), SJ.TokenGen(·), and SJ.Dec(·) from Section 4.4.3.

83

1 2 3 4 5 6 7 8 9 10
0
5

10
15
20
25
30
35
40
45
50
55

IN Clause Size

R
u
n
n
in
g
T
im

e
(m

s)

Token Generation
Encryption
Decryption

Figure 4.3: Encryption operation benchmarks for a single row in table Customers

The token generation algorithm does not show a noticeable change in runtime over different
values for size of the IN clause (t in Section 4.4.1). The algorithm takes less than 2ms to
run for each value of t, since it only calculates a single value of gντB

1 , although increasing t
from 1 to 10 changes the non-zero values in the ν vector from 2 to 11 respectively. The
encryption algorithm takes 3.4ms on average to encrypt a rows for t = 1, this time increases
linearly to 9.6ms for t = 10, since the algorithm calculates the t powers for each attribute
value in the table, pre-encryption. The most time consuming cryptographic operation in
Secure Join is the decryption algorithm, which takes 21.2ms to run for t = 1 which increases
to 53ms for t = 10.

4.6.3 Joins and Database Size

Figure 4.4 shows the runtime of joins operation over the encrypted data on the server side,
i.e. SJ.Dec(·) and SJ.Match(·), for several database sizes and different Selectivity values (s),
when the join query consists of a single value in the IN clause for each table. As expected,

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0
25
50
75

100
125
150
175
200
225
250
275
300

TPC-H Scale Factor

R
u
n
n
in
g
T
im

e
(s
)

s = 1/100

s = 1/50

s = 1/25

s = 1/12.5

Figure 4.4: Joins runtime for various scale factors, single IN clause

84

the runtime of performing the joins operation increases linearly with the database size. This
increase however, is more noticeable for higher values of Selectivity. When the Selectivity
value, shown by s in Figure 4.4 is 1

100
, the server takes 3.52s to run joins over tables Orders

and Customers with scale factor 0.01 and 35.34s to do the same for the tables with scale
factor 0.1. However, when s = 1

12.5
, the server takes 27.88s to run joins over Orders and

Customers with scale factor 0.01 and 282.49s to do so for the tables with scale factor 0.1.

4.6.4 Joins and IN-Clause Size

Figure 4.5 shows the runtime of joins operation over the encrypted data on the server side,
i.e. SJ.Dec(·) and SJ.Match(·), for several sizes of IN clause (t) and different Selectivity
values (s), when the scale factor for join tables Orders and Customers is 0.01. As depicted

1 2 3 4 5 6 7 8 9 10
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

IN Clause Size

R
u
n
n
in
g
T
im

e
(s
)

s = 1/100

s = 1/50

s = 1/25

s = 1/12.5

Figure 4.5: Joins runtime for IN clause with various sizes, scale factor: 0.01

in the plots in Figure 4.5, increasing t, results in a longer runtime for Joins. This increase,
however taking place in all Selectivity experiments, is more noticeable the value of s is
larger. It takes the server 3.50s to run the joins operation over the tables Orders and
Customers for t = 1 and 8.75s to do the same for t = 10, when s = 1

100
. The corresponding

running time for s = 1
12.5

are 27.86s and 69.62s. We ran each of the experiments in Sections
4.6.3 and 4.6.4, 25 times, aiming to demonstrate the data in the 95% confidence interval.
However, the deviations from the mean value in our results were of order 10(−2), resulting
in unobservable error bars in our plots in Figures 4.4 and 4.5.

4.6.5 Comparison and Discussion

We mentioned in Section 4.1 that a state-of-the-art encryption scheme for joins by Hahn
et al. [78] reduces the leakage to only leaking the equality condition for tuples that match
a selection criterion. However, their scheme: i) requires nested-loop joins (with time
complexity O(n2)), ii) only works for primary key, foreign key joins, and iii) still results in

85

a super-additive leakage, as we showed in Section 1. Our new encryption scheme for joins
prevents this super-additive leakage, is not limited to primary key, foreign key joins, and
can run hash joins (with expected time complexity O(n)).

It is challenging to provide a one-to-one comparison of our performance measurement
experiments with those in [78], due to: i) the differences in the parameters (the number of
rows and attribute values) of the join tables, ii) the unclarity of join query parameters such
as IN clause size and selectivity in [78], and iii) different hardware used to perform the
experiments. Hence, we provide approximate performance comparisons. Their experiments
[78] report an average runtime of 15 seconds for 1000 average decrypted values, i.e., 15ms
per decryption. Our results in Figure 4.3 show an average time of 21ms for one decryption
operation (for IN clause size of one). The results in [78] also report the average of 6s
for a join operation over tables Part (20, 000 rows and 6 attribute values) and LineItem
(6, 000, 000 rows and 8 attribute values) from TPC-H, with scale factor 0.1. Our experiments
show a result of 35s over tables Orders and Customers with scale factor 0.1 (and selectivity
1

100
). In conclusions, our performance is already on the same order of magnitude even

without any parallelization at better security.

Furthermore, the experiments in [78] benefit from performance improvement provided
by parallelizing each join query over 32 cores. The authors also re-use the decrypted
information of the earlier join queries in the later ones to boost performance further. While
our experiments are not intended to reuse the decrypted information due to the stronger
security objectives of our scheme, they can as well benefit from parallelizing over several
cores, instead of running on just one (the current setup).

4.7 Related Work

In this work we consider non-interactive equi-joins over encrypted data in a single-client,
single-server setting. This model is known as the database-as-a-service model [76]. We
provide the history of join encryption schemes [78, 156, 180, 77] that address security in
this model in Section 4.3. All of these schemes use a deterministic or searchable encryption
scheme as its basic building block and then aim to reduce the leakage of the join pattern,
i.e., the number of equality pairs revealed. We argue that our join encryption scheme
proposed in this chapter leaks the least information in this setting and represents a natural
lower bound of the necessary leakage in the two table setting.

CryptDB [156] also introduced the concept of re-encryption as a method to reduce
leakage in the multiple (more than two) table setting. The idea of re-encryption is that
each table is encrypted with a different key and tables are re-encrypted to joint keys on a
join operation. Kerschbaum et al. [107] introduce an algorithm that optimizes the selection
of the joint key. Mironov et al. [141] present a new encryption scheme that makes the
re-encryption uni-directional and hence prevents linking non-matched rows in a group of
joins. Note that our proposed encryption scheme uses a fresh key in each query and hence
does not need to resort to any of these techniques in order to achieve their (and stronger)
security properties. Pang and Ding [153] present a secret-key encryption scheme that avoids

86

self-joins and Wang and Pang [187] extend it to a public-key encryption scheme. Carbunar
and Sion [30] use Bloom filters to achieve a similar security guarantee, but also have to
manage false positives at the client due to the properties of Bloom filters. All three schemes
either reveal the equality pairs of the entire columns or none, just as CryptDB. Hahn et
al. [78] and now our scheme improve over this by only revealing the equality pairs for rows
matching a selection criterion.

Many join algorithms can be parallelized, and Bultel et al. [29] process joins over
encrypted data in a map-reduce cluster. Such a parallelization is also applicable to our
encryption scheme and could further speed up join operations over large data, although
our performance is already competitive to the state-of-the-art at better security. Inter-
active schemes, e.g., secure multi-party computation, fully homomorphic encryption with
intermediate decryption or secure hardware, can also implement joins over encrypted data.
These schemes need to implement a circuit, i.e., an algorithm whose instructions and data
accesses are independent of the input data. Agrawal et al. [11] were the first to introduce
this problem as sovereign joins. Arasu and Kaushik [14] present the first, non-trivial, secure
algorithms, but they are still too complicated to be practically implemented. Krastnikov et
al. [112] present the first non-trivial, secure and practical algorithms.

Joins can also be consider between datasets from multiple parties. Mykletun and Tsudik
[143] are the first to point out there is inherent threat of collusion between one of the (two)
parties and the database provider which cannot be fully avoided. Hang et al. [81] present a
key management scheme for multiple parties in this setting. Kantarcioglu et al. [100] develop
an anonymization scheme that can prevent some of the leakage while maintaining efficiency.
A cryptographic technique to match datasets from two parties is private set intersection
(PSI). PSI was introduced by Fagin et al. [56] and formally developed by Freedman et
al. [58]. It is practically deployed by Google and Mastercard [94]. PSI protocols using a
service provider exist [105, 6, 104]. However, PSI cannot be applied to equi-join, since a
prerequisite for PSI is that each data element in each set is unique. The security of most
PSI protocols deteriorates to the all-or-nothing disclosure level of CryptDB when elements
can be replicated as in an equi-join over two database tables.

4.8 Conclusion

In this chapter we present a new join encryption scheme that prevents additional leakage
from a series of queries. We compare our scheme to the state-of-the-art join encryption
schemes and it achieves comparable performance even without parallelization, better scal-
ability (due to hash joins instead of nested loop joins) and reduced leakage over series of
queries, i.e., better security. We provide a formal security proof and evaluate an implemen-
tation over a dataset from the TPC-H benchmark. We claim our construction achieves a
natural lower bound for the leakage in an efficient, non-interactive, single-server setting.
Hence, future work can investigate which restrictions to remove in order to further reduce
the leakage of join encryption schemes.

87

Chapter 5

On the Robustness of Watermarking
in Deep Neural Networks

5.1 Introduction

The task of generating a neural network model is computationally expensive and also
requires a considerable amount of training data that has undergone a thorough process of
preparation and labeling. The task of data cleaning is known to be the most time consuming
task in data science [157]. According to a data science practitioners’ report, data scientists
spend around 80% of their time on just preparing and managing data for analysis [57].
This enormous investment on preparing the data and training a model on it is however at
an immediate risk, since the model can be easily copied and redistributed once released.
To protect the model from unauthorized re-distribution, watermarking approaches have
been introduced, inspired by wide deployment of watermarks in multimedia [115, 162, 174].
Watermarking approaches for DNNs span over two broad categories: white-box [181] and
black-box watermarking [10, 75, 195]. Black-box watermarking can be verified more easily
than white-box watermarking; in the former, the verification only requires API access to
the service using the stolen model, while in the latter verification requires access to all
parameters of the stolen model. Furthermore, black-box watermarking is advantageous
over white-box watermarking as it is more likely to be resilient against statistical attacks
[185].

Nils Lukas, Jiaqi Wang, Xinda Li, Florian Kerschbaum and I investigated [168] recent
black-box watermarking approaches [10, 75, 195]. These approaches each introduce a
(some) variant(s) of backdoor-based watermarking to protect model ownership. Backdoors
or neural trojans, [39, 74, 126], are originally the terms for a class of attacks against the
security of deep learning when an entity outsources the learning for model computation to
another untrusted but resourceful party. The party can train a model that performs well
on the requested task, while its embedded backdoors lead to targeted misclassifications
when encountering a particular trigger in the input. The idea of “turning a weakness into
a strength” [10], launched a new line of work suggesting using backdoors for ownership
protection [10, 75, 195]. The idea is to use some triggers in the training data set that

88

embed specific behavior, a signature, but do not impede the regular classification task. The
triggers in the training data set can take one of the following forms: embedded content
representing a logo of the owner [75, 195], a pre-defined noise pattern in the inputs [195], or
a set of particular inputs acting as a secret key set [10, 195]. In this chapter, we investigate
whether backdoors in DNNs are sufficiently robust as watermarks embedded in the models.
Existing approaches for removing backdoors either do not output a model, but are deployed
alongside a service [42, 61, 127] or are not effective in removing watermarks without access
to the ground-truth labels [184, 124]. Neural-Cleanse [184] requires access to a set of
correctly labeled samples to detect the backdoor and only works for one type of backdoor
used in watermarking – a small patch on the images. Fine-Pruning [124] removes backdoors
by pruning redundant neurons that are less useful for the main classification. As we show
in our experimental results, fine-pruning without access to correctly labeled data is also
ineffective in removing the backdoors in all of the aforementioned watermarking categories.
When fine-pruning successfully drops the retention rate of the watermark, it also causes a
significant drop in the model’s accuracy rendering it basically useless.

We introduce two new attacks (black-box and white-box) on the backdoor-based wa-
termarking schemes named above, and show that all of these watermarks are removable
in both attacks. Our attacks require neither any correctly labeled training data, nor the
backdoor embedded in the model. We have two goals: i) removing the watermark, while
ii) providing the same functionality with little accuracy drop from the original marked
model. Both, our black-box or white-box attack, achieve these goals; the black-box attack
has only access to the predicted labels by the attacker, while the white-box attack is more
efficient. With either of these attacks, an attacker can produce an unmarked model for
re-distribution from the marked model without the need for preparing labeled training data
and in case of the white-box attack without access to the same computational resources.
Our black-box attack is a model stealing attack and shows that backdoors do not transfer
among models if the stolen model is not trained on the backdoor samples. Our white-box
attack requires access to the model’s parameters, but is up to twenty times more efficient
than training a model from scratch. Moreover, the accuracy of the models produced by
our white-box attack may even improve over the accuracy of the marked models.

5.1.1 Our Contributions

This work has two main contributions:

1. We introduce our black-box attack that removes the embedded watermark in backdoor-
based watermarking schemes. This attack solely relies on publicly available informa-
tion, i.e. no labeled data, and successfully removes the watermark from the neural
network without requiring any access to the network parameters, the classification
probability vector, or the backdoor embedded as the watermark. The performance
and accuracy of the stolen model in this attack is within 4% of the watermarked
model.

89

2. We introduce our white-box attack for scenarios that we are guaranteed access to the
model parameters. Benefiting from the additional information, our white-box attack
is more efficient and offers a(n) (up to twenty times) faster version than training the
data from scratch, with similar model accuracy within 1%1 of the watermarked model.
Our attacks show that these backdoor-based watermarking schemes are insufficient
to protect against re-distribution by a motivated attacker. We explicitly show that
the unremovability property defined by Adi et al. [10] does not hold. It therefore
seems necessary to develop new, stronger protection techniques.

5.1.2 Chapter Organization

We provide formal definitions for deep neural networks and backdoor-based watermarking
schemes in Section 5.2 and follow it by the security vulnerability of the schemes in Section
5.3. Subsequently in Section 5.4, we introduce our black-box and white-box attacks for
watermark removal. Finally in Section 5.5, we present the results of the experiments that
confirm a successful watermark removal. In Section 5.6, we situate our work in the current
body of research.

5.2 Preliminaries

Backdooring enables the operator to train a model that deliberately outputs specific
(incorrect) labels; backdoor-based watermarking schemes use this property to design trigger
sets to watermark the DNN. The intuition in black-box watermarking is to exploit the
generalization and memorization capabilities of deep neural networks to learn the patterns
of an embedded trigger set and its pre-defined label(s). The pairs of learned patterns
and their corresponding predictions will act as the keys for the ownership verification. As
described in Section 5.2.3, we focus on the three backdoor-based watermarking schemes
proposed in the literature.

5.2.1 Definitions and Models

We follow the notations by Adi et al. [10] throughout this chapter to introduce our attack
accordingly. In order to train a neural network classifier, we initially require some objective
ground-truth function f . A neural network classifier consists of two algorithms: training and
classification. In training, the network tries to learn the closest approximation of f . Later,
during the classification phase the network utilizes this approximation to perform prediction
on unseen data. Formally, the input to the neural network is represented by a set of binary
strings: D ⊂ {0, 1}∗. The corresponding labels are represented by L ⊂ {0, 1}∗ ⋃︁{⊥} ; with
the symbol ⊥ showing the undefined classification for a specific input. The ground-truth
function f : D → L, assigns labels to inputs. Also, for D̄ the set of inputs with defined

13.5% for an Image-Net model trained on 30% of the data.

90

Figure 5.1: A high-level illustration of the learning process.

ground-truth labels, D̄ = {x ∈ D|f(x) ̸= ⊥}, the algorithms’ access to f is granted through
an oracle Of . Hence, the learning process illustrated in Figure 5.1, consists of the following
two algorithms:

• Train (Of , D): a probabilistic polynomial-time algorithm that outputs a model M

• Classify (M,x): a deterministic polynomial-time algorithm that outputs a label
M(x) ∈ L\{⊥} for each input x ∈ D

The metric ϵ−accuracy evaluates the accuracy of the algorithm pair (Train, Classify). In
an ϵ−accurate algorithm the following inequality holds:

Pr[Classify(M,x) ̸= f(x)|x ∈ D̄] ≤ ϵ

The probability is taken over the randomness of Train, with the assumption that the
ground-truth label is available for those inputs.

5.2.2 Backdoor-based Watermarking in DNNs

Backdooring teaches the machine learning model to output incorrect but valid labels
TL : T → L\{⊥}; x ↦→ TL(x) ̸= f(x) to a particular subset of inputs T ⊆ D, namely the
trigger set. The pair b = (T, TL) forms the backdoor for a model. A randomized algorithm
called SampleBackdoor generates the backdoors b. There are two variants for backdooring
a model: during training or after training. We focus on backdooring during training, since
our experiments support the conclusion by Adi et al. [10] that backdoors introduced after
training the model are easier to remove. The complete backdooring process is illustrated in
Figure 5.2.
Formally presenting, backdoor (Of , b,M) is an algorithm that on inputs oracle to f , the
backdoor b and a model M , outputs a model M̂ . The backdoor model M̂ is required to
output particular incorrect (regarding f) labels for the inputs from the trigger set and
correct ones for other inputs. In other words, the following two inequalities must always
hold for a backdoored model M̂ :

• Prx∈D̄\T
2 [Classify(M̂, x) ̸= f(x)] ≤ ϵ

2We assume D̄ = D, without loss of generality

91

Figure 5.2: A schematic illustration of the backdooring process.

• Prx∈T [Classify(M̂, x) ̸= TL(x)] ≤ ϵ

To watermark an ML model using the backdooring process, the algorithm MModel() is
used. MModel() consists of the following sub-algorithms:

1. b ← SampleBackdoor(D,Of): The watermarking schemes commits to the embedded
backdoors b. Note that we differ from Adi et al. [10] by ignoring the master and
verification keys mk, vk, since they have no affect on our attack.

2. Compute M̂ ← Mark(D,Of , b): Computes the watermarked model M̂ by training
and embedding the backdoor b.

3. Output (M̂, b).

The verification of a watermark is performed by the algorithm Verify(M, b). Verify takes
as input a model M and the backdoor b, and outputs a bit in {0, 1}, indicating whether
the watermark is present in the model M or not. Formally,

Verify(M, b) =

⎧
⎪⎨
⎪⎩

1, if
∑︁

x∈T I[Classify(M,x) ̸= TL(x)]

− 1
|L| |T | ≤ ϵ|T |

0, otherwise.

where I[expr] is the indicator function that evaluates to 1 if expr is true and 0 otherwise.
Note that, as we skip the cryptographic commitment details, the marking key mk in Verify
translates to the inputs x in the trigger set T , and the verification key vk refers to the
corresponding labels TL. Furthermore, the 1

|L| |T | comes from the assumption that the
ground-truth label is undefined for the inputs of the trigger set T , for which we assume the
label is random. Hence, we assume that for any x ∈ T , we have Pri∈L[Classify(M,x) =
i] = 1

|L| . As a result, it is expected that 1
|L| |T | of the inputs fall into the backdoor label

“randomly”. Hence, to verify the presence of the watermark in the model without a bias,
we need to deduct this number from the classification result.

92

5.2.3 Backdoor-based Watermarking Schemes

We investigate the recent backdoor-based schemes in [10, 75, 195]. The watermark embedded
in these schemes is one of the following three forms: Embedded Content, Pre-Specified
Noise, and Abstract Images.

a) Content Embedded (Logo): This method [75, 195] adds a fixed visual marker (e.g. a
text) to a set of inputs, namely the watermark set. The inputs with this watermark
all classify to a fixed label.

b) Pre-Specified Noise: This method [195], adds a fixed instance of Gaussian noise as
watermark to inputs. Similar to Content Embedded watermarking schemes, this
approach maps the marked inputs to a fixed label.

c) Abstract Images: In this category of watermarking, a set of abstract images [10], or
images that are not from the same distribution as the training data [195] is selected
and labeled with pre-defined classes.

The are two main differences between the last watermarking and the first two, in Abstract
Images: i) different subsets of the trigger set are mapped to different classes, not a fixed
one, ii) the watermark is no more a pattern added to any input, but a fixed set of inputs
and labels. Hence, the watermark test set is the same as the watermark train set.

5.3 Problem Definition

5.3.1 Unremovability in Backdoor-based Watermarking

Adi et al. [10] formally define the security properties of unremovability, unforgeability and
enforcing non-trivial ownership in their paper. We focus on the unremovability property
that prevents an adversary from removing a watermark, even if s/he knows about the
existence of a watermark and the used algorithm. The unremovability requires that for
every algorithm A the chance of winning the following game is negligible:

1. Compute (M̂, b) ← MModel()

2. Run A and compute M̃ ← A(Of , M̂)3

3. A wins if:
Prx∈D\T [Classify(x, M̂) = f(x)]

≈ Prx∈D\T [Classify(x, M̃) = f(x)]

and Verify(M̃, b) = 0

3Due to the cryptographic commitment, the verification key is useless for the adversary and not needed
in our attacks.

93

5.3.2 Security claims in backdoor-based watermarking

We review the security claims in black-box watermarking as stated in [10, 75, 195], and
discuss how our attacks invalidate the presented claims. (i) As stated in [195], Section 4:
“After embedding (the watermarks), the newly generated models are capable of ownership
verification. Once they [the marked models] are stolen and deployed to offer AI service,
owners can easily verify them [the watermarks] by sending watermarks as inputs and
checking the service’s output.” (ii) As well, authors [10] claim that their proposed scheme
is persistent in the sense that “It is hard to remove a backdoor, unless one has knowledge
of the trigger set.” However, our attacks show that the watermark is successfully removable
– hence, it is no longer verifiable – and to perform so, the attacker does not require any
knowledge of the trigger set. (iii) On a similar note to [10], Guo et al. [75] claims that
“transferring learning is on the same order of magnitude as the cost of training, if not
higher. With that much resources and expertise at hand, an attacker would have built a
model on their own.” This claim neglects the fact that the cost of data preparation for
the original model is comparable with (or even higher than) the cost of model generation
itself, consequently the attacker saves a considerable amount by stealing the model through
queries. (iv) Zhang et al. [195] refer to the results of [179] to state that stealing a model
using prediction APIs needs queries of significant size; e.g. 100k, where k is the number of
model parameters in the particular example of two-layered neural network in [179]. They
conclude that as more complicated models with more parameters the attack would even
need considerably more queries. Our experiments demonstrate that a successful model
stealing attack on ResNet-32 network with 0.46 million of parameters [85], only needs to
query the API, 50,000 times and does not require access to the probability vector.

5.3.3 Invalidity of the security claims

We emphasize that our attacks are designed to invalidate the security claims by the proposed
schemes [10, 75, 195]. Our adversary is weaker than the one assumed in their model. We
propose two computationally bounded adversaries, who not only win the security game in
Section 5.3.1, but also demand fewer requirements. Our black-box attack only requires API
access to the model (M̂) and inputs D̃ from the domain to remove the watermark while
preserving the functionality. Our white-box attack does so using much less computational
resources, through accessing the model (M̂) parameters and public inputs D̃ from the
domain. Although granted in the game, neither of our attacks require access to the ground-
truth oracle Of , i.e. the labeled data. The adapted games are presented in Sections 5.4.1
and 5.4.2, respectively. We highlight the objectives of our attacks:

• We do not need any correctly labeled data. Data from the same distribution, but
without any labels is sufficient for our attack. Hence, the most time consuming task
of preparing the data sets ceases to apply to the adversary.

• We do not need many queries to the watermarked model to derive labels – on the
order of the original training data set. Hence, rate-limiting or blocking the adversary

94

are not successful defences to our attacks.

• We do not need any knowledge of the trigger set or its labels of the backdoor. Hence,
the adversary can use our algorithm only under the assumption that the model is
watermarked.

• Our attacks, in particular the white-box attack, achieve comparable accuracy to the
watermarked model even for complex models such as ResNet-32 for the Image-Net
data set. Hence, an adversary can successfully use the stolen model.

• Our white-box attack requires significantly less training time than training the model
from scratch. Hence, any claim that removing the watermark is too costly for the
adversary does not apply – even ignoring the omitted time to prepare the data.

5.4 Attacks on Backdoor-Based Watermarking

The hypothesis behind our attacks is that backdoor-based watermarking schemes introduced
in Section 5.2.3 divide the input distribution into two disjoint ones: i) main distribution
which is classified correctly and ii) watermark distribution which is deliberately misclassified
and does not fit the main distribution. This separation in the input distribution is common
among all three types of trigger sets. This results in the watermark being treated as
outliers in the main classification and the network never learns to classify it correctly.
We introduce two attacks in Sections 5.4.1 and 5.4.2 that exploit this disjointedness to
remove the watermark. Our attacks remove the watermark with less requirements than
the original adversary A [10] (introduced in Section 5.3.1), as they do not require access
to the training data and the ground-truth function. They also guarantee higher efficacy.
The reason is, the unremovability game is labeled as won if the attacker A suggests a
model M̃ , such that the model achieves a similar test accuracy as the watermarked model
M̂ while: Verify(M̃, b) = 0. From the Verify description in the previous section, the
function outputs zero if the following holds:

∑︁
x∈T I[Classify(M̃, x) ̸= TLx]− 1

L
|T | > ϵ|T |;

meaning the number of inputs in the trigger set mapped by M̃ to labels different than the
pre-defined labels exceeds a small fraction of the trigger set. We go beyond this condition,
and introduce the full removal of the watermark, with the following two conditions:

(i) Prx∈D[Classify(x, M̂) = f(x)]
≈ Prx∈D[Classify(x, M̃) = f(x)]

(ii)
∑︁

x∈T I[Classify(M̃, x) = TL(x)]− 1
L
|T | ≤ ϵ|T |

In full removal of the watermark, the attacker’s proposed model M̃ , still achieves a close
accuracy to the marked model’s on the test set. However, in this definition, the number of
inputs in the trigger set mapped by M̃ to the corresponding pre-defined labels does not
exceed a random labels assignment’s result by more than a small fraction, i.e., any trace of
the watermark is removed.

95

5.4.1 Black-box Attack

In our black-box attack, we steal the functionality by querying the watermarked model
with inputs having a similar distribution to the main distribution discussed earlier and then
training a surrogate model on it. Since this distribution does not include any watermarks
by nature, the stolen model only copies the backdoor-free functionality. Our attack requires
limited number of training inputs, and although computationally inefficient, saves on the
work-intensive data preparation task. Our black-box attack does not assume any access
to the trigger set, any labeled data including the training data or the parameters of the
watermarked model M̂ . Our attack solely relies on the public information. We query the
watermarked model M̂ with input D̃ and use the classification label4 as data labels, to train
a derived model as illustrated in Figure 5.3. Note that D̃ is distinct from the watermarked
model M̂ ’s training data D, but is from the same application domain. We show our attack

Figure 5.3: A schematic illustration of our black-box attack.

model through the following black-box, full watermark removal game. The OM̂ in the game
indicates the black-box access to M̂ through a prediction API.

1. Compute (M, M̂, T, TL) ← MModel()

2. Run A and compute M̃ ← A(OM̂)

3. A wins if:
(i) Prx∈D[Classify(x,M) = f(x)]

≈ Prx∈D[Classify(x, M̃) = f(x)]
(ii)

∑︁
x∈T I[Classify(M̃, x) = TLx]− 1

L
|T | ≤ ϵ|T |

The attacker A makes queries to M̂ and train its model M̃ based on M̂ ’s responses. A
wins if it achieves the accuracy of the original model and removes the watermark fully.

4Just the final class, unlike [152] we do not need the probability vector

96

5.4.2 White-Box Attack

The black-box attack we proposed in the previous section, does not require any information
about the model parameters. However, we show that if the attacker A is guaranteed access
to the model parameters, as is the default assumption in the unremovability game of Adi et
al. [10], they can remove the watermark more efficiently. We model the white-box attack by
the following white-box full watermark removal game, which is the same as the black-box
model except the oracle access to the model OM̂ is replaced by a direct access to M̂ .

1. Compute (M, M̂, T, TL) ← MModel()

2. Run A and compute M̃ ← A(M̂)

3. A wins if:
(i) Prx∈D[Classify(x,M) = f(x)]

≈ Prx∈D[Classify(x, M̃) = f(x)]
(ii)

∑︁
x∈T I[Classify(M̃, x) = TLx]− 1

L
|T | ≤ ϵ|T |

Recall that our goal is to prevent the model from learning the misclassifications which
are essential to watermarking. As mentioned earlier, we see the watermarking samples
as outliers to the main distribution, and believe that the marked model overfits to learn
misclassifying them. In order to remove the watermark, we apply regularization to the
marked model to normalize the weights and avoid overfitting [23]. Our white-box attack,

Figure 5.4: A schematic illustration of our white-box attack.

illustrated in Figure 5.4, consists of the two following sub algorithms: regularization and
fine-tuning. The input for both sub-algorithms is D̃, which is of the same domain as but
distinct from D.

1. AReg(M̂,OM̂) → M̂Reg

2. AFine(M̂Reg,OM̂) → M̃

97

The first sub-algorithm AReg performs the regularization on M̂ . Since we do not know
which layer contributes to learning the watermark misclassification, we define regularization
to impact all layers to prevent overfitting to the backdoors. Our experiments show that
AReg removes the watermark fully by using L2 regularization. However, it affects the test
accuracy compared to the original model M . To compensate for this accuracy reduction,
the output of AReg is then fed to AFine to be fine-tuned on an unmarked training set. We
emphasize that our white-box attack does not require any information of the ground-truth
function or the trigger set for winning the game. Instead, it uses a random set of inputs from
the domain of the original model and queries the model M̂ to label them. Our experiments
show that this attack is significantly more efficient than training a new model and achieves
the same accuracy.

5.5 Experiments

We present the results of applying our black-box and white-box attacks on watermarking
schemes of Section 5.2.3; these results confirm that our attacks successfully remove the
watermarks.

5.5.1 Experiment Setup

In Section 5.4, we introduced our attacks through full watermark removal games between a
challenger MModel and the attacker A. We simulate both entities in this section and run
experiments according to the described algorithms. We use the computing infrastructure
with the following features: Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz, 255GB RAM,
Driver Version: 418.40.04, and CUDA Version: 10.1. We use GPU model Tesla P100 16GB
for Image-Net training and use Tesla K10.G2.8GB for others.

Data Sets and Models

We evaluate our attacks over four popular data sets in DNN literature: MNIST, CIFAR-10,
CIFAR-100, and Image-Net. Our data pre-processing includes data normalization as well
as data augmentation. Data augmentation is performed by random rotation, width and
height shift, and horizontal flip. For MNIST dataset, we use LeNet model [117] and train
it on 60K training images and test it on 10K test images. For CIFAR-10, we use VGG-16
and train the model on 50K training images and test it on 10K test images. For MNIST
and CIFAR-10 datasets we split the training data in half for the attacker and owner. Our
mini-batches contain 64 elements and we use the RMSProp [23] optimizer with learning rate
of 0.001. While training any model, we use Early Stopping [23] on the training accuracy
with a min-delta of 0.1% and a patience of 2. Unlike the other two datasets, for CIFAR-100
and Image-Net we use ResNet-32 to train the model. For CIFAR-100 and Image-Net we
use overlapping training data for the attacker and owner, we discuss the reasons in Section

98

Figure 5.5: Watermark samples in MModel (a) Content (b) Noise (c) Abstract Images.

5.5.4. We use a batch size of 100, an SGD optimizer with an initial learning rate of 0.1
and momentum of 0.9. We adjust the learning rate by dividing it by 10 every time the
training plateaus. For the white-box attack we use a constant number of 10 epochs for
regularization. We use 0 - 1, a.k.a. “min-max feature scaling”, normalization [23] for all
datasets.

Original and Marked Model Generation

We first simulate the MModel algorithm in our full watermark removal games to generate
the original model M , the watermarked model M̂ , and the watermark consisting of the
watermark set T and its corresponding labels TL. The watermark set for different schemes,
shown through examples in Figure 5.5, is constructed according to Section 5.2.3. MModel
trains a model M̂ with a portion the of the watermark set and a portion of the remaining
training set. Note that the rest of the two sets is needed to form test set and watermark
test set. For each experiment, we use randomly selected subsets of the trigger set for
training the watermark model. Recall from Section 5.2.3 that the watermark set and the
watermark test set are the same for the Abstract Images watermarking scheme, but not for
the Embedded Content or the Pre-specified Noise scheme.

Attack Algorithm A and Generating M̃

In both our black-box and white-box attacks, the algorithm A aims to derive a model M̃
that keeps the same test accuracy as marked model M̂ , while it reduces the watermark
retention to 1

|L| , where |L| is the total number of valid classes. This reduction, shows that
the model associates the watermarked input to the pre-defined class, not more than a
random classifier would do, hence indicating success in removing the watermark fully. To
generate M̃ , neither of our attacks uses the original model M ’s training data with the
ground-truth labels, nor any of the watermarking information. Instead, they both query
the watermark model M̂ with inputs from the publicly known domain of M̂ and train M̃
with the corresponding labels. The white-box attack initializes M̃ with M̂ ’s parameters,
then undergoes regularization followed by fine-tuning with public data labeled by M̂ .

99

Figure 5.6: Fine-Pruning attack on CIFAR-10, for Embedded Content

Figure 5.7: Fine-Pruning attack on CIFAR-10, for Pre-specified Noise

Security and Performance Evaluation

In what follows, we present our black-box and white-box attack with concrete parameters
in their setup and evaluation. As mentioned earlier in this section, our security evaluation
metrics are: i) test accuracy and ii) watermark retention. For test accuracy, we compare the
accuracy of the model generated by our attack with that of the target model on classifying
an unseen test set. For watermark retention, we measure what portion of a set of marked
inputs are classified as their pre-defined labels by the models generated through our attacks.
We also evaluate the performance of our attacks, based on the time they take to run rather
than the number of epochs. The number of epochs depends on some factors in the model
training - such as the input size, while the time is an independent measure. For example,
an epoch in the fine-tuning phase (Section 5.4.2) takes much more time than an epoch in
the regularization, as the size of the training set in fine-tuning is at least ten times the
training set size in the regularization.

100

Figure 5.8: Fine-Pruning attack on CIFAR-10, for Abstract Images

5.5.2 Fine-Pruning Attack

Fine-pruning [124] uses the black-box labels to prune the dormant neurons — the neurons
with activation frequency below the threshold — to remove backdoors. The pruning is
followed by a fine-tuning phase to increase the accuracy.

Our results show that fine-pruning with black-box labels fails at simultaneously removing
embedded watermarks and preserving the test accuracy. Figures 5.6 - 5.8 shows the accuracy
and watermark retention of the attack for different threshold values. Note that we do not
consider larger threshold values since pruning many neurons results in a significant loss of
test accuracy. Specifically, in the best case fine-pruning reduces the watermark retention
to 22.2% for Abstract Images while suffering a test accuracy drop of 8.4% for CIFAR-10
dataset. In contrast, our white-box attack lowers the watermark retention to 12.8% with
only 1% of accuracy decrease.

We verified that fine-pruning attack does remove the watermarks when the attacker has
access to ground-truth labels. However, we do not consider this attack under this strong
assumption as a fair comparison to our attacks.

5.5.3 Our Results

Watermark Removal

We present the results of our black-box and white-box attacks in Table 5.1 in this section.
We evaluate our attacks on MNIST, CIFAR-10 and Image-Net datasets over each of
the watermarking schemes described in Section 5.2.3: Embedded Content, Pre-specified
Noise and Abstract Images. As the Abstract Images in its original paper [10] is used for
watermarking models trained on CIFAR-100 too, we include experiments for watermark
removal for those models as well. Our results show that the black-box attack removes the
watermark with a performance comparable to training the original watermarked model,
whereas the white-box attack does so with significant speed-up. It is also worth noting that

101

Table 5.1: Watermark removal attacks on various datasets

Dataset W.M. W.M. W.M. B.B. B.B. B.B. B.B. W.B. W.B. W.B. W.B.
Scheme Model Model Post Acc. W.M. Attack Post Acc. W.M. Attack

Acc. Time Acc. Drop Ret. Time Acc. Drop Ret. Time

Content 99% 3.5m 98.7% 0.3% 9.6% 3.6m 98.8% 0.2% 9.2% 0.59m
MNIST Noise 98.9% 2.6m 98.7% 0.2% 8.5% 4.1m 99% -0.1% 8.4% 0.77m

Abstract 98.8% 2.6m 98.5% 0.3% 8.6% 5m 98.7% 0.1% 11.4% 2.1m

Content 83.1% 166m 79.4% 3.7% 8.1% 244m 82.1% 1% 12.8% 20m
CIFAR-10 Noise 83.3% 178m 80.9% 2.4% 3.4% 208m 82.6% 0.7% 7.7% 20m

Abstract 83.3% 112m 80.3% 3% 20% 158m 82.4% 0.9% 22.9% 33m

CIFAR-100 Abstract 66.4% 203m 65.2% 1.2% 1% 177m 65.8% 0.6% 11.4% 10m

Content 66.1% 3949m 62.0% 4.1% 0.1% 5922m 63.6% 2.5% 9% 1427m
IMAGE-NET Noise 66.9% 3958m 61.7% 5.2% 0.1% 5902m 63.6% 3.3% 11% 1419m

Abstract 66.5% 3960m 61.5% 5% 0.1% 5906m 63.0% 3.5% 12% 1412m

Content 66.1% 3949m 63.0% 3.1% 0.1% 5385m N/A N/A N/A N/A
IMAGE-NET* Noise 66.9% 3958m 64.4% 2.5% 0.1% 5367m N/A N/A N/A N/A

Abstract 66.5% 3960m 63.3% 3.2% 0.1% 5758m N/A N/A N/A N/A

*Indicates we use the probability vectors for black-box attacks

by allowing the fine-tuning to continue for longer, the white-box attack can even achieve
higher accuracy than the watermarked model.

For the Image-Net dataset, we also include a black-box attack where the attacker has
access to the probability vector of the prediction. We show that by gaining this information,
the attacker can steal an Image-Net model with only 3% accuracy drop using the black-box
attack. In the white-box attack, we optimized the attack to reach the same level of accuracy
and then the attacker only requires 30% of the data samples that the model owner (or the
black-box attack) uses for training but removes the watermark within a very short period
of time. The accuracy drop of the white-box attacker can be further lowered using larger
(unlabeled) data sets. For example, when using 100% of the data samples, the accuracy
drop of the white-box attack on an Abstract Images watermark is less than 1%.

5.5.4 Discussion on Experiments and Results

We provide further discussion about the parameters in our attacks here: i) The restrictions
that prevent our model from reaching the highest accuracy, ii) The reasons behind our
models selection, iii) A deeper investigation and presenting evidences that a model has to
choose between a resilient backdoor and high accuracy, and cannot keep both.

Not the Highest Accuracy

Since we are simulating both the challenger and the attacker in our experiments and desire
not allowing overlap in their training dataset, our models effectively have access to half
of the training dataset. The limitation prevents our models in MNIST and CIFAR-10

102

Figure 5.9: Watermark retention VS test accuracy of the watermarked model M̂ , as the
number of epochs increases, MNIST.

experiments from reaching their highest possible accuracy [193]. However, despite this
limitation, our attacks still successfully remove the embedded watermarks. For CIFAR-100
and Image-Net, the non-overlapping requirement and reducing the training set size results
in more than 10% accuracy loss in the watermarked model itself compared to a non-marked
model. Therefore, we allow overlap in training set of both the watermarked and the attacker
model for this case.

Model Selection

In our experiments, the attacker uses the same model architecture for M̃ as the owner does
for the watermarked target model M̂ . There are two incentives for this selection: i) as
stated by Juuti et al. [98], higher complexity models increase the prediction accuracy until
they are as complex as the source model. Hence, on one hand, the attacker cannot use
a model with less capacity than the target model or he will lose accuracy. On the other
hand, training a model with higher capacity requires more recourse, e.g more number of
queries. This discourages the attacker from training a model with higher capacity than
the target mode. Therefore, the target model is the optimal point for the attacker. ii)
Watermark removal in our attacks depends on learning the main classification, and not
learning the intended misclassification for a trigger set which has a different distribution
than the main data. As model resemblance likely increases the chance of backdoor transfer,
we use the same model for the attacker as the owner to increase the chance of watermark
retention to the highest possible value, as the worst case for the attacker. Yet, despite our
selection of models being the one where the transfer of the watermark is most likely, our
attacks successfully remove the watermark leaving this architecture as the best option for
the attacker.

103

Figure 5.10: Watermark retention VS accuracy of the marked model M̂ , as the number of
epochs increases, CIFAR-10.

Watermark Retention and Test Accuracy

In addition to the successful watermark removal by our attacks, we observed another
important result in our experiments. In our black-box attack, we applied the model stealing
to a fully trained model M̂ with embedded watermarks. To investigate the success of model
stealing over partially trained models, we repeatedly applied the attack to the marked
model M̂ during its training. The resulting test accuracy and watermark retention of the
stolen model M̃ are plotted in Figures 5.9 and 5.10 for both MNIST and CIFAR-10 data
sets.

The attack reaches lower watermark retention if M̂ achieves higher test accuracy. This
increase in the model accuracy is a result of overcoming the underfitting by increasing the
number of epochs during training M̂ . An underfitted model M̂ transfers its watermark
– backdoor or bias towards the backdoor – to the stolen network M̃ and makes it more
resilient to watermark removal. Clearly, our black-box attack is successful against any 100%
accurate model. Hence, watermark retention can only be introduced by inaccuracies in the
model. However, our results indicate that these inaccuracies need to be quite significant to
result in successful watermark retention for backdoor-based watermarks.

5.6 Related Work

Black-box Watermarking Schemes. The demand in protecting neural networks
that are solely accessible through a remote API, encouraged black-box watermarking in
DNNs [34]. DeepSigns [161] embeds watermarks in the probability density function of
the activation set of the target layer and introduces two versions of the framework to
provide watermarking in both white-box and black-box setting. In two other approaches
[35, 138], the authors use adversarial examples in a zero-bit watermarking algorithm to
enable extraction of the watermark without requiring model parameters. This approach

104

however, requires limitation on transferability of the utilized adversarial examples across
other networks. Backdoor-based watermarking [10, 75, 120, 145, 195] – as investigated in
this work – is another recent line of work in black-box watermarking that feed a secret
trigger set and its pre-defined labels to the model during training to protect ownership.

Backdoor Removal. Since backdooring a neural network may also impose other
threats, identifying and removing them has gained attention in research. However, typically
such systems [42, 61, 127] are intended to be employed alongside the neural network. They
are tasked only to fend off attempts of actively using the embedded backdoor, which is not
applicable for the scenario of attacking watermarking schemes since the trigger set is never
released. There are few schemes [124, 184] that do not require access to the trigger set at
any time. The Neural-Cleanse approach [184] first detects whether a backdoor exists in the
model by checking how many pixels in the input image should be modified for the prediction
to change to another class. When there is one such consistent small modification for many
benign inputs, it is assumed to be a backdoor and then it undergoes reverse-engineering
and mitigation processes. This approach only works with backdoors that are restricted to
a small patch of the image, which is not the case for all watermark types in this work. The
Fine-Pruning approach [124] removes backdoors by pruning redundant neurons. This attack
is discussed in details in Section 5.5.2. We show that fine pruning attack only removes
backdoors with access to correctly labeled data.

Removing Backdoor-based watermarks. In a different approach to remove
backdoor-based watermarks, Hitaj et al. [91] introduce an Ensemble and an Evasion attack
to remove backdoor-based watermarks. The Ensemble attack, steals n models and collects
responses from all of them for each query. It then selects the answer that receives the highest
vote among the responds from the stolen networks, and provides that as API prediction.
In comparison to this attack, our attacks solely require one marked model and produces a
clean model that can be redistributed. In the Evasion attack in [91], a detector mechanism
blocks the verification of watermarks. The service will return a random class prediction
when it suspects a query is a watermark-trigger. This approach will not be effective in
backdoor removal if the trigger samples have a similar distribution to the original samples
[196]. Chen et al. [40] remove the backdoor-based watermark by fine-tuning the model,
arguing that previous results [10] on the resilience of backdoor-based watermarking schemes
against fine-tuning was due to the low value of learning rate. They use a combination of
labeled (20%− 80%) and unlabeled data to remove the watermark. Our attacks break the
security of backdoor-based watermarking schemes without the need to access labeled data,
multiple models, or evading the queries that aim at watermark verification.

Model Stealing Attacks. Model stealing attacks were generalized by Orekondy et
al. [152], with less requirements than similar works in the literature [98, 154]. We use a
similar approach to Orekondy et al. in our black-box attack, with two differences: i) we
query the target model with data of a similar distribution to the model’s training data
rather than random images, and ii) we just need the final label for the queries instead of
their probability vectors. Limiting access to final labels instead of probability vectors is
a proposed defence against previous model stealing attacks [154]. Our black-box attack
achieves accuracy close to the marked model which suggests that this proposed defence is

105

insufficient against model stealing attacks.

The work presented in this chapter inspired a follow-up research by Lukas et al. [130]
that is published by the time of finalizing this thesis. Lukas et al. propose taxonomies for
watermarking schemes and removal attacks.

5.7 Conclusion

We present two attacks on the recent backdoor-based watermarking schemes in deep neural
networks: i) black-box attack, and ii) white-box attack. The watermark in the targeted
model could take any of the forms: i) a logo, or an embedded content, ii) a pre-specified
noise pattern, or iii) abstract images. Our black-box and white-box attacks do not require
access to the trigger set, the ground-truth function of the watermarked model or any labeled
data. This saves enormous amount of time and resources in preparing the training data.
Our attacks use limited number of inputs from the publicly known domain of the marked
model, and query the model for labels. They remove the models’ watermark successfully
with negligible drop on the classification accuracy. Our black-box approach achieves these
goals with minimum access requirements and by solely exploiting the models’ classification
labels. However, granting more information (e.g. the marked model’s parameters) enables
us to devise a white-box attack that is more efficient and accurate than our black-box
attack.

106

Chapter 6

Conclusion

In this thesis, we addressed four security/privacy problems in distinct phases of the data
science pipeline. In Chapter 2 we contributed to privacy in data preparation and proposed
PCOR. PCOR is a solution for privacy violation in contextual outlier detection that
balances the privacy, utility and performance trade-off. Defining differential privacy for
outlier detection is different from statistical queries such as sum or average. It is particularly
challenging, since a target data point can be an outlier in some contexts while it is a non-
outlier in the rest. We tackle this challenge by using a relaxed notion of differential privacy,
namely, output constrained differential privacy. Our results indicate that this relaxation
is a not a strong requirement and is satisfied in most cases in practice. This approach
can also be applied for defining privacy in other challenging database queries as well. In
addition, we introduced differentially private graph search algorithms in our work to achieve
higher efficiencies. These algorithms also can be utilized for sampling in similar graph-based
private solutions for a significant improvement in performance.

In Chapter 3, contributing to data modeling and analysis, we showed the limits of
differential privacy in providing a meaningful notion of privacy in social graphs. We explored
the problem of preserving organizational confidentiality in language tasks, and demonstrated
the data correlation among edges in the organization’s social network. On the one hand,
these non-IID data points turn the record-level differential privacy into a fake privacy
promise. On the other hand, its straightforward remedy, i.e., group differential privacy,
is overprotective and affects accuracy significantly. We proposed a middle-ground scheme
between these two extreme measures of privacy in queries over n-grams, by leveraging the
Pufferfish privacy framework that takes data correlation into account. Our scheme provides
a starting point for a more meaningful notion of privacy than record-level differential
privacy, while improving the utility compared to group privacy. We modeled correlation up
to and including very large neighborhoods of edges. This limited our utility improvement
and leaves it as an open problem how other correlation models, or more adjusted graph
representations could improve the utility even more. It also requires further research to
assess how our mechanism can be extended to model training tasks.

In Chapter 4, we addressed a security problem in outsourcing data management to the
cloud. We considered data management operations such as joins that cannot be simply

107

performed over encrypted data and require specialized encryption. The development of
these specialized encryption schemes over the years reduced the leakage from frequency
information to only equality condition for tuples that match a selection criterion, yet
ignoring the fact that the leakage of a series of queries may be larger than the union (sum)
of the leakage of each query. We presented a new join encryption scheme that prevents
this additional leakage. Our construction uses function-hiding inner product encryption
and can run hash-based joins. As a result, it achieves comparable performance with the
state-of-the-art join encryption schemes while providing better security. This performance
could be improved even more with parallelization. We believe that our construction achieves
a natural lower bound for the leakage in an efficient, non-interactive, single-server setting.
We leave it as an open problem that which restrictions to remove in order to further reduce
the leakage of join encryption schemes.

In Chapter 5 we analysed watermarking in deep neural networks as a data protection
technique in data dissemination. We considered backdoor-based watermarking, a state-of-
the-art black-box watermarking scheme. We showed that these schemes fail in satisfying
their security claims such as: i) once they [the marked models] are stolen and deployed to
offer AI service, owners can easily verify them [the watermarks] by sending watermarks
as inputs and checking the service’s output, ii) it is hard to remove a backdoor, unless
one has knowledge of the trigger set, iii) it is impossible to remove the watermark even
with guaranteed full access to the ground-truth function while restricting the runtime of
the adversary, or giving unlimited power to the adversary while restricting its access to
the ground-truth function, iv) transfer learning is on the same order of magnitude as the
cost of training, if not higher, v) stealing a model using prediction APIs needs queries of
significant size; e.g. 100k, where k is the number of model parameters, etc. We showed the
invalidity of these claims by introducing our black-box attack that does not require access
to the trigger set, the ground-truth function of the watermarked model or any labeled data.
Our attack uses limited number of inputs from the publicly known domain of the marked
model, and queries the model for labels. It removes the models’ watermarks successfully
with negligible drop on the classification accuracy. We also propose a white-box attack,
in case of access to the marked model’s parameters, which provides higher efficiency and
accuracy. Both of our attacks can be used in evaluating the robustness of other black-box
watermarking schemes as well.

This thesis provides examples of technical weaknesses in data protection algorithms and
protocols. However, we emphasize that data breaches and privacy violations could also
occur as a result of other deficiencies, ranging from poor implementations such as those
inducing vulnerability to side channel attacks, to human factors such as social engineering.
While out of the scope of this thesis, these deficiencies require intensive research as well,
for providing a comprehensive guarantee of data protection.

108

References

[1] The murder accountability project. https://www.kaggle.com/

murderaccountability/homicide-reports#database.csv. Accessed: 2019-
12-15.

[2] Ontario’s public sector salary dataset. https://www.ontario.ca/page/

public-sector-salary-disclosure. Accessed: 2019-07-31.

[3] Scikit-learn machine learning in python. http://scikit-learn.org/stable/auto_
examples/neighbors/plot_lof.html. Accessed: 2019-07-31.

[4] Pearson, Karl, pages 418–419. Springer New York, New York, NY, 2008.

[5] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data,and repealing directive 95/46/ec (general
data protection regulation), 2016-06-27.

[6] Aydin Abadi, Sotirios Terzis, and Changyu Dong. O-psi: delegated private set
intersection on outsourced datasets. In IFIP International Information Security and
Privacy Conference, pages 3–17. Springer, 2015.

[7] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 308–318, New York, NY, USA, 2016. Association for Computing
Machinery.

[8] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 308–318, New York, NY, USA, 2016. Association for Computing
Machinery.

[9] Martin Adam, Michael Wessel, and Alexander Benlian. Ai-based chatbots in customer
service and their effects on user compliance. Electronic Markets, pages 1–19, 2020.

109

[10] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
Turning your weakness into a strength: Watermarking deep neural networks by
backdooring. In 27th USENIX Security Symposium (USENIX Security 18), pages
1615–1631, Baltimore, MD, 2018. USENIX Association.

[11] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu, and Yaping Li. Sovereign
joins. In 22nd International Conference on Data Engineering (ICDE’06), pages
26–26. IEEE, 2006.

[12] Abdulatif Alabdulatif, Heshan Kumarage, Ibrahim Khalil, and Xun Yi. Privacy-
preserving anomaly detection in cloud with lightweight homomorphic encryption.
Journal of Computer and System Sciences, 90:28 – 45, 2017.

[13] Miguel E. Andrés, Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Geo-indistinguishability: differential privacy for location-based sys-
tems. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, CCS ’13, pages 901–914, New York, NY, USA, 2013. ACM.

[14] Arvind Arasu and Raghav Kaushik. Oblivious query processing. In Proc. 17th
International Conference on Database Theory (ICDT), Athens, Greece, March 24-28,
2014, pages 26–37, 2014.

[15] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang. Walk2friends:
Inferring social links from mobility profiles. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, page 1943–1957,
New York, NY, USA, 2017. Association for Computing Machinery.

[16] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. Smcql: secure querying for federated databases. Proceedings of the VLDB
Endowment, 10(6):673–684, 2017.

[17] Ghazaleh Beigi and Huan Liu. A survey on privacy in social media: Identification,
mitigation, and applications. ACM/IMS Trans. Data Sci., 1(1), March 2020.

[18] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently
searchable encryption. In Annual International Cryptology Conference, pages 535–552.
Springer, 2007.

[19] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural
probabilistic language model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

[20] E. Bertino and E. Ferrari. Big data security and privacy. In A Comprehensive Guide
Through the Italian Database Research, 2018.

[21] K. Bhaduri, M. D. Stefanski, and A. N. Srivastava. Privacy-preserving outlier
detection through random nonlinear data distortion. Trans. Sys. Man Cyber. Part
B, 41(1):260–272, February 2011.

110

[22] Smriti Bhagat, Graham Cormode, Balachander Krishnamurthy, and Divesh Srivas-
tava. Class-based graph anonymization for social network data. 2(1):766–777, August
2009.

[23] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[24] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of
social networks via restricted sensitivity. In ITCS, page 87–96, 2013.

[25] Jonas Böhler, Daniel Bernau, and Florian Kerschbaum. Privacy-preserving outlier
detection for data streams. In Giovanni Livraga and Sencun Zhu, editors, Data
and Applications Security and Privacy XXXI, pages 225–238, Cham, 2017. Springer
International Publishing.

[26] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for
deterministic encryption, and efficient constructions without random oracles. In
Annual International Cryptology Conference (CRYPTO), pages 335–359. Springer,
2008.

[27] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages 213–229, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[28] Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identi-
fying density-based local outliers. In PROCEEDINGS OF THE 2000 ACM SIGMOD
INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, pages 93–104.
ACM, 2000.

[29] Xavier Bultel, Radu Ciucanu, Matthieu Giraud, Pascal Lafourcade, and Lihua Ye.
Secure joins with mapreduce. In International Symposium on Foundations and
Practice of Security, pages 78–94. Springer, 2018.

[30] Bogdan Carbunar and Radu Sion. Toward private joins on outsourced data. IEEE
transactions on knowledge and data engineering, 24(9):1699–1710, 2011.

[31] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[32] Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala.
Privacy-preserving data publishing. 2(1–2):1–167, January 2009.

[33] Huili Chen, Bita Darvish Rohani, and Farinaz Koushanfar. Deepmarks: A digital
fingerprinting framework for deep neural networks. arXiv preprint arXiv:1804.03648,
2018.

[34] Huili Chen, Bita Darvish Rouhani, Xinwei Fan, Osman Cihan Kilinc, and Farinaz
Koushanfar. Performance comparison of contemporary dnn watermarking techniques.
arXiv preprint arXiv:1811.03713, 2018.

111

[35] Huili Chen, Bita Darvish Rouhani, and Farinaz Koushanfar. Blackmarks: Blackbox
multibit watermarking for deep neural networks. arXiv preprint arXiv:1904.00344,
2019.

[36] Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu,
Jackie Tsay, Yinan Wang, Andrew M Dai, Zhifeng Chen, et al. Gmail smart compose:
Real-time assisted writing. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD’19, page 196–206, New
York, NY, USA, 2019. Association for Computing Machinery.

[37] Rui Chen, Benjamin C.M.Fung, Philip S.Yu, and Bipin C.Desai. Correlated network
data publication via differential privacy. The VLDB Journal, 2014.

[38] S. Chen and S. Zhou. Recursive mechanism: Towards node differential privacy and
unrestricted joins. In SIGMOD, page 653–664, 2013.

[39] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Xiaodong Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning. CoRR,
abs/1712.05526, 2017.

[40] Xinyun Chen, Wenxiao Wang, Yiming Ding, Bender Chries, Jia Ruoxi, and Dawn
Song. Leveraging unlabeled data for watermark removal of deep neural networks. In
ICML workshop on Security and Privacy of Machine Learning, 2019.

[41] James Cheng, Ada Fu, and Jia Liu. K-isomorphism: Privacy preserving network
publication against structural attacks. pages 459–470, 01 2010.

[42] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan Boneh. Sen-
tinet: Detecting physical attacks against deep learning systems. arXiv preprint
arXiv:1812.00292, 2018.

[43] B. Collingsworth and R. Menezes. Identification of Social Tension in Organizational
Networks, pages 209–223. 04 2009.

[44] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[45] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In Proceedings
of the 13th ACM Conference on Computer and Communications Security, (CCS),
pages 79–88, 2006.

[46] Jay L. Devore. Probability and Statistics for Engineering and the Sciences.
Brooks/Cole, 8th edition, January 2011. ISBN-13: 978-0-538-73352-6.

[47] Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal differential privacy com-
position for exponential mechanisms. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119

112

of Proceedings of Machine Learning Research, pages 2597–2606. PMLR, 13–18 Jul
2020.

[48] L. T. Dung and H. T. Bao. A distributed solution for privacy preserving outlier detec-
tion. In 2011 Third International Conference on Knowledge and Systems Engineering,
pages 26–31, Oct 2011.

[49] David Durfee and Ryan Rogers. Practical differentially private top-k selection with
pay-what-you-get composition. CoRR, abs/1905.04273, 2019.

[50] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, pages
1–12, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[51] Cynthia Dwork. Differential privacy: A survey of results. In Manindra Agrawal,
Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications
of Models of Computation, pages 1–19, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[52] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Third Theory of Cryptography Conference
(TCC 2006), volume 3876 of Lecture Notes in Computer Science, pages 265–284.
Springer, March 2006.

[53] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9(3–4):211–407, August 2014.

[54] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential
privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
pages 51–60, 2010.

[55] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14, pages
1054–1067, New York, NY, USA, 2014. ACM.

[56] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking
it. Communications of the ACM, 39(5):77–85, 1996.

[57] Crowd Flower. 2016 data science report, Mar 2016.

[58] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In International conference on the theory and applications of
cryptographic techniques, pages 1–19. Springer, 2004.

[59] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property
inference attacks on fully connected neural networks using permutation invariant
representations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 619–633. ACM, 2018.

113

[60] Tianchong Gao, Feng Li, Yu Chen, and XuKai Zou. Preserving local differential
privacy in online social networks. In International Conference on Wireless Algorithms,
Systems, and Applications, pages 393–405. Springer, 2017.

[61] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and
Surya Nepal. Strip: A defence against trojan attacks on deep neural networks. arXiv
preprint arXiv:1902.06531, 2019.

[62] Chang Ge, Xi He, Ihab F. Ilyas, and Ashwin Machanavajjhala. Apex: Accuracy-
aware differentially private data exploration. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages 177–194, New York, NY,
USA, 2019. ACM.

[63] Johannes Gehrke, Michael Hay, Edward Lui, and Rafael Pass. Crowd-blending
privacy. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, pages 479–496, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[64] Johannes Gehrke, Edward Lui, and Rafael Pass. Towards privacy for social networks:
A zero-knowledge based definition of privacy. In Yuval Ishai, editor, Theory of
Cryptography, pages 432–449, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[65] Arpita Ghosh and Robert Kleinberg. Inferential privacy guarantees for differentially
private mechanisms. abs/1603.01508, 2018.

[66] Arpita Ghosh and Aaron Roth. Selling privacy at auction. Games and Economic
Behavior, 91:334 – 346, 2015.

[67] Yoav Goldberg. A primer on neural network models for natural language processing.
J. Artif. Int. Res., 57(1):345–420, September 2016.

[68] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. 02 2014.

[69] Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen, Milad
Shokouhiand, and Sergey Yekhanin. Differentially private set union. ICML, 2020.

[70] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of the
13th ACM conference on Computer and communications security (CCS), pages 89–98,
2006.

[71] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 38, 03 2013.

[72] A. Greenberg. Apple’s ‘differential privacy’ is about collecting your data — but not
your data. 2016.

114

[73] Frank E. Grubbs. Procedures for detecting outlying observations in samples. Tech-
nometrics, 11(1):1–21, 1969.

[74] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. CoRR, abs/1708.06733,
2017.

[75] Jia Guo and Miodrag Potkonjak. Watermarking deep neural networks for embedded
systems. In 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2018.

[76] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. Providing database as a service.
In Proceedings 18th International Conference on Data Engineering, pages 29–38.
IEEE, 2002.

[77] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Executing
SQL over encrypted data in the database-service-provider model. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD), pages
216–227, 2002.

[78] F. Hahn, N. Loza, and F. Kerschbaum. Joins over encrypted data with fine granular
security. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 674–685, April 2019.

[79] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[80] Samuel Haney, Ashwin Machanavajjhala, John M. Abowd, Matthew Graham, Mark
Kutzbach, and Lars Vilhuber. Utility cost of formal privacy for releasing national
employer-employee statistics. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD ’17, pages 1339–1354, New York, NY, USA,
2017. ACM.

[81] Isabelle Hang, Florian Kerschbaum, and Ernesto Damiani. Enki: access control for
encrypted query processing. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 183–196, 2015.

[82] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and An-
drew Y. Ng. Deep speech: Scaling up end-to-end speech recognition. CoRR,
abs/1412.5567, 2014.

[83] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of
the degree distribution of private networks. In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM ’09, page 169–178, USA, 2009.
IEEE Computer Society.

115

[84] Michael Hay, Gerome Miklau, David Jensen, Donald Towsley, and Philipp Weis.
Resisting structural identification in anonymized social networks. PVLDB, 1:102–114,
08 2008.

[85] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016.

[86] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[87] X. He, A. Machanavajjhala, and B. Ding. Blowfish privacy: Tuning privacy-utility
trade-offs using policies. SIGMOD ’14, page 1447–1458, New York, NY, USA, 2014.
Association for Computing Machinery.

[88] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. Composing
differential privacy and secure computation: A case study on scaling private record
linkage. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 1389–1406, New York, NY, USA, 2017.
ACM.

[89] Rebecca Hellerstein. Who bears the cost of a change in the exchange rate? pass-
through accounting for the case of beer. Journal of International Economics, 76(1):14–
32, 2008.

[90] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian
Kingsbury. Deep neural networks for acoustic modeling in speech recognition. Signal
Processing Magazine, 2012.

[91] Dorjan Hitaj and Luigi V Mancini. Have you stolen my model? evasion attacks against
deep neural network watermarking techniques. arXiv preprint arXiv:1809.00615, 2018.

[92] F. L. Hitchcock. The distribution of a product from several sources to numerous
localities. Journal of Mathematics and Physics, 20(1-4):224–230, 1941.

[93] Ihab F. Ilyas and Xu Chu. Data cleaning, 2019-06-17.

[94] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying
secure computing: Private intersection-sum-with-cardinality. In 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 370–389. IEEE, 2020.

[95] Noah Johnson, Joseph P. Near, and Dawn Song. Towards practical differential privacy
for sql queries. Proc. VLDB Endow., 11(5):526–539, January 2018.

116

[96] Karen Sparck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 1972.

[97] Antoine Joux. A one round protocol for tripartite diffie–hellman. In Wieb Bosma,
editor, Algorithmic Number Theory, pages 385–393, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[98] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. Prada: Protecting
against dnn model stealing attacks. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 512–527, 2019.

[99] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for
differential privacy. IEEE Transactions on Information Theory, 63(6):4037–4049,
2017.

[100] Murat Kantarcioglu, Ali Inan, Wei Jiang, and Bradley Malin. Formal anonymity mod-
els for efficient privacy-preserving joins. Data & Knowledge Engineering, 68(11):1206–
1223, 2009.

[101] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Pri-
vate analysis of graph structure. ACM Trans. Database Syst., 2014.

[102] S.P. Kasiviswanathan, K. Nissim, and S.Raskhodnikova. Analyzing graphs with node
differential privacy. In TCC, page 81–98, 2013.

[103] Michael Kearns, Aaron Roth, Zhiwei Steven Wu, and Grigory Yaroslavtsev. Private
algorithms for the protected in social network search. Proceedings of the National
Academy of Sciences, 113(4):913–918, 2016.

[104] Florian Kerschbaum. Collusion-resistant outsourcing of private set intersection.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing, pages
1451–1456, 2012.

[105] Florian Kerschbaum. Outsourced private set intersection using homomorphic en-
cryption. In Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pages 85–86, 2012.

[106] Florian Kerschbaum. Data science pipeline, 2019.

[107] Florian Kerschbaum, Martin Härterich, Patrick Grofig, Mathias Kohler, Andreas
Schaad, Axel Schröpfer, and Walter Tighzert. Optimal re-encryption strategy for
joins in encrypted databases. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 195–210. Springer, 2013.

[108] D. Kifer and A. Machanavajjhala. Pufferfish: A framework for mathematical privacy
definitions. Association for Computing Machinery, 1:39, 2014.

117

[109] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J.
Wu. Function-hiding inner product encryption is practical. In Dario Catalano and
Roberto De Prisco, editors, Security and Cryptography for Networks, pages 544–562,
Cham, 2018. Springer International Publishing.

[110] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers
in large datasets. In Proceedings of the 24rd International Conference on Very Large
Data Bases, VLDB ’98, pages 392–403, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

[111] Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov. Distance-based outliers:
Algorithms and applications. The VLDB Journal, 8(3-4):237–253, February 2000.

[112] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. Efficient oblivious
database joins. Proc. VLDB Endow., 13(11):2132–2145, 2020.

[113] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Neural Information Processing Systems, 25, 01
2012.

[114] Marie-Sarah Lacharité and Kenneth G. Paterson. A note on the optimality of
frequency analysis vs. ℓp-optimization. IACR Cryptol. ePrint Arch., 2015:1158, 2015.

[115] G.C. Langelaar, Iwan Setyawan, and R.L. Lagendijk. Watermarking digital image
and video data. a state-of-the-art overview. Signal Processing Magazine, IEEE, 17:20
– 46, 10 2000.

[116] Eric Lantz, Kendrick Boyd, and David Page. Subsampled exponential mechanism:
Differential privacy in large output spaces. In Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security, AISec ’15, pages 25–33, New York, NY, USA,
2015. ACM.

[117] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition
with a back-propagation network. In Advances in neural information processing
systems, pages 396–404, 1990.

[118] C. Y. Lee. An algorithm for path connections and its applications. In IRE Transactions
on Electronic Computers, EC-10 (2), pages 346 – 365. IEEE, 1961.

[119] K. T. Leung, Ida A. C. Mok, and Suen S. N. Polynomials and Equations. Hong Kong
University Press (HKU), 1992.

[120] Zheng Li and Shanqing Guo. Deepstego: Protecting intellectual property of deep
neural networks by steganography. arXiv preprint arXiv:1903.01743, 2019.

118

[121] Jiongqian Liang and Srinivasan Parthasarathy. Robust contextual outlier detection:
Where context meets sparsity. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, CIKM ’16, pages 2167–
2172, New York, NY, USA, 2016. ACM.

[122] C. Liu and P. Mittal. Linkmirage: Enabling privacy-preserving analytics on social
relationships. In NDSS, 2016.

[123] Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. Dependence makes you
vulnerable: Differential privacy under dependent tuples. In NDSS, volume 16, pages
21–24, 2016.

[124] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. CoRR, abs/1805.12185, 2018.

[125] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, page 93–106, New York, NY, USA, 2008. Association for Computing
Machinery.

[126] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning attack on neural networks. 01 2018.

[127] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE Inter-
national Conference on Computer Design (ICCD), pages 45–48. IEEE, 2017.

[128] Yushan Liu, Shouling Ji, and Prateek Mittal. Smartwalk: Enhancing social network
security via adaptive random walks. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page 492–503, New
York, NY, USA, 2016. Association for Computing Machinery.

[129] Edward Lui and Rafael Pass. Outlier privacy. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, Theory of Cryptography, pages 277–305, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[130] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. Sok: How robust is
image classification deep neural network watermarking? (extended version), 2021.

[131] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory
meets practice on the map. In 2008 IEEE 24th International Conference on Data
Engineering, pages 277–286, April 2008.

[132] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl.
Discov. Data, 1(1):3–es, March 2007.

[133] G Mclachlan. Mahalanobis distance. Resonance, 4:20–26, 06 1999.

119

[134] F. McSherry and K. Talwar. In Proceedings of the 48th IEEE Symposium on Foun-
dations of Computer Science (FOCS), page 94–103, 2007.

[135] F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, page 19–30, New York, NY, USA,
2009. Association for Computing Machinery.

[136] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’07, pages 94–103, Washington, DC, USA, 2007. IEEE Computer
Society.

[137] Shagufta Mehnaz and Elisa Bertino. Privacy-preserving real-time anomaly detec-
tion using edge computing. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 469–480, 2020.

[138] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitching for
remote neural network watermarking. arXiv preprint arXiv:1711.01894, 2017.

[139] Victor Miller. The weil pairing, and its efficient calculation. J. Cryptology, 17:235–261,
09 2004.

[140] Ilya Mironov. Renyi differential privacy. CoRR, abs/1702.07476, 2017.

[141] Ilya Mironov, Gil Segev, and Ido Shahaf. Strengthening the security of encrypted
databases: Non-transitive joins. In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography, pages 631–661. Springer International Publishing, 2017.

[142] Prateek Mittal, Charalampos Papamanthou, and Dawn Song. Preserving link privacy
in social network based systems. 08 2012.

[143] Einar Mykletun and Gene Tsudik. On security of sovereign joins. IACR Cryptol.
ePrint Arch., 2006:380, 2006.

[144] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh. Digital water-
marking for deep neural networks. International Journal of Multimedia Information
Retrieval, 7(1):3–16, Mar 2018.

[145] Ryota Namba and Jun Sakuma. Robust watermarking of neural network with
exponential weighting. arXiv preprint arXiv:1901.06151, 2019.

[146] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on
property-preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015, pages 644–655, 2015.

120

[147] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the Thirty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’07, pages 75–84, New York, NY, USA,
2007. ACM.

[148] Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Locating a small cluster privately. 04
2016.

[149] Douglas Oard, William Webber, David Kirsch, and Sergey Golitsynskiy. Avocado
research email collection. https://catalog.ldc.upenn.edu/LDC2015T03, 2015.

[150] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. Towards reverse-
engineering black-box neural networks. In International Conference on Learning
Representations, 2018.

[151] Rina Okada, Kazuto Fukuchi, and Jun Sakuma. Differentially private analysis of out-
liers. In Annalisa Appice, Pedro Pereira Rodrigues, Vı́tor Santos Costa, João Gama,
Aĺıpio Jorge, and Carlos Soares, editors, Machine Learning and Knowledge Discovery
in Databases, pages 458–473, Cham, 2015. Springer International Publishing.

[152] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing
functionality of black-box models. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[153] Hweehwa Pang and Xuhua Ding. Privacy-preserving ad-hoc equi-join on outsourced
data. ACM Transactions on Database Systems (TODS), 39(3):1–40, 2014.

[154] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, ASIA CCS ’17, pages 506–519, New York, NY, USA, 2017. ACM.

[155] Emanuel Parzen. On estimation of a probability density function and mode. Ann.
Math. Statist., 33(3):1065–1076, 09 1962.

[156] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP), pages 85–100,
2011.

[157] Gil Press. Cleaning big data: Most time-consuming, least enjoyable data science task,
survey says, Mar 2016.

[158] Sridhar Ramaswamy, Rajeev Rastogi, Kyuseok Shim, and Taejon Korea. Efficient
algorithms for mining outliers from large data sets. 04 2000.

[159] S. Raskhodnikova and A. Smith. Efficient lipschitz extensions for high-dimensional
graph statistics and node private degree distributions. FOCS, 2016.

121

[160] Bernard Rosner. Percentage points for a generalized esd many-outlier procedure.
Technometrics, 25(2):165–172, 1983.

[161] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: A generic
watermarking framework for ip protection of deep learning models. arXiv preprint
arXiv:1804.00750, 2018.

[162] Lalit Kumar Saini and Vishal Shrivastava. A survey of digital watermarking techniques
and its applications. CoRR, abs/1407.4735, 2014.

[163] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B.Y. Zhao. Sharing graphs using
differentially private graph models. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, page 81–98, 2011.

[164] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980.

[165] Masoumeh Shafieinejad, Suraj Gupta, Liu Jin Yang, Koray Karabin, and Florian
Kerschbaum. Equi-joins over encrypted data for series of queries. In arXiv:2103.05792,
2021.

[166] Masoumeh Shafieinejad, Huseyin A. Inan, Marcello Hasegawa, and Robert Sim. On
privacy and confidentiality of communications in organizational graphs. In ICLR
workshop on Distributed and Private Machine Learning (DPML), 2021.

[167] Masoumeh Shafieinejad, Florian Kerschbaum, and Ihab F. Ilyas. Pcor: Private
contextual outlier release via differentially private search. In 46th ACM International
Conference on Management of Data (SIGMOD), 2021.

[168] Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum.
On the robustness of backdoor-based watermarking in deep neural networks. In 9th
ACM Workshop on Information Hiding and Multimedia Security (IH&MMSEC),
2021.

[169] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 3–18, May 2017.

[170] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556, 09 2014.

[171] S. Song, Y. Wang, and K. Chaudhuri. Pufferfish privacy mechanisms for correlated
data. In Proceedings of the 2017 ACM International Conference on Management of
Data, page 1291–1306, 2017.

[172] Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially
private k-means clustering. In Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy, CODASPY ’16, pages 26–37, New York, NY,
USA, 2016. ACM.

122

[173] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3104–3112. Curran Associates, Inc., 2014.

[174] Mitchell D. Swanson, Mei Kobayashi, and Ahmed Hossam Tewfik. Multimedia data-
embedding and watermarking technologies. Proceedings of the IEEE, 86(6):1064–1087,
12 1998.

[175] Dan Swinhoe. The 15 biggest data breaches of the 21st century, Jan 2021.

[176] Guanting Tang, James Bailey, Jian Pei, and Guozhu Dong. Mining multidimensional
contextual outliers from categorical relational data. Intelligent Data Analysis, 19, 07
2013.

[177] Brian Thompson and Danfeng Yao. The union-split algorithm and cluster-based
anonymization of social networks. pages 218–227, 01 2009.

[178] Gary L. Tietjen and Roger H. Moore. Some grubbs-type statistics for the detection
of several outliers. Technometrics, 14(3):583–597, 1972.

[179] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Stealing machine learning models via prediction api. In Proceedings of the 25th
USENIX Conference on Security Symposium, SEC’16, pages 601–618, Berkeley, CA,
USA, 2016. USENIX Association.

[180] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. Process-
ing analytical queries over encrypted data. Proceedings of the VLDB Endowment,
6(5):289–300, 2013.

[181] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding wa-
termarks into deep neural networks. In Proceedings of the 2017 ACM on International
Conference on Multimedia Retrieval, pages 269–277. ACM, 2017.

[182] J. Vaidya and C. Clifton. Privacy-preserving outlier detection. In Fourth IEEE
International Conference on Data Mining (ICDM’04), pages 233–240, Nov 2004.

[183] B. Wang and N. Z. Gong. Stealing hyperparameters in machine learning. In 2018
IEEE Symposium on Security and Privacy (SP), pages 36–52, May 2018.

[184] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks. In Neural Cleanse: Identifying and Mitigating Backdoor Attacks
in Neural Networks, page 0. IEEE, 2019.

[185] Tianhao Wang and Florian Kerschbaum. Attacks on digital watermarks for deep
neural networks. In 44th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2019.

123

[186] Tianhao Wang and Florian Kerschbaum. Robust and undetectable white-box water-
marks for deep neural networks, 2019.

[187] Yujue Wang and HweeHwa Pang. Probabilistic Public Key Encryption for Controlled
Equijoin in Relational Databases. The Computer Journal, 60(4):600–612, 10 2016.

[188] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett.
Differentially private histogram publication. The VLDB Journal, 22(6):797–822, 2013.

[189] Bin Yang, Issei Sato, and Hiroshi Nakagawa. Bayesian differential privacy on correlated
data. In SIGMOD, page 747–762, 2015.

[190] Xiaowei Ying and Xintao Wu. Graph generation with prescribed feature constraints.
pages 966–977, 04 2009.

[191] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 3320–3328. Curran Associates, Inc., 2014.

[192] Mingxuan Yuan, Lei Chen, and Philip S. Yu. Personalized privacy protection in social
networks. Proc. VLDB Endow., 4(2):141–150, November 2010.

[193] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Han-
cock Richard C. Wilson and William A. P. Smith, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA Press, September
2016.

[194] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 3391–3401. Curran Associates,
Inc., 2017.

[195] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing
Huang, and Ian Molloy. Protecting intellectual property of deep neural networks
with watermarking. In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pages 159–172. ACM, 2018.

[196] Li Zhang, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove your model
belongs to you: A blind-watermark based framework to protect intellectual property
of dnn. December 2019.

[197] X. Zheng, J. Han, and A. Sun. A survey of location prediction on twitter. IEEE
Transactions on Knowledge and Data Engineering, 30(9):1652–1671, 2018.

[198] Tianqing Zhu, Gang Li, Wanlei Zhou, and S Yu Philip. Differentially private social
network data publishing. In Differential Privacy and Applications, pages 91–105.
Springer, 2017.

124

[199] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,
editor, Symbolic and Algebraic Computation, pages 216–226, Berlin, Heidelberg, 1979.
Springer Berlin Heidelberg.

[200] Lei Zou, Lei Chen, and M. Tamer Özsu. K-automorphism: A general framework for
privacy preserving network publication. Proc. VLDB Endow., 2(1):946–957, August
2009.

125

