
Extremely fast (a,b)-trees at all
contention levels

by

Anubhav Srivastava

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

c© Anubhav Srivastava 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Many concurrent dictionary implementations are designed and evaluated with only low-
contention workloads in mind. This thesis presents several concurrent linearizable (a,b)-
tree implementations with the overarching goal of performing well on both low- and high-
contention workloads, and especially update-heavy workloads.

The OCC-ABtree uses optimistic concurrency control to achieve state-of-the-art low-contention
performance. However, under high-contention, cache coherence traffic begins to affect its
performance. This is addressed by replacing its test-and-compare-and-swap locks with
MCS queue locks. The resulting MCS-ABtree scales well under both low- and high-
contention workloads. This thesis also introduces two coalescing-based trees, the CoMCS-
ABtree and the CoPub-ABtree, that achieve substantially better performance under high-
contention by reordering and coalescing concurrent inserts and deletes. Comparing these
algorithms against the state of the art in concurrent search trees, we find that the fastest
algorithm, the CoPub-ABtree, outperforms the next fastest competitor by up to 2x.

This thesis then describes persistent versions of the four trees, whose implementations use
fewer sfences than a leading competitor (the FPTree). The persistent trees are proved to
be strictly linearizable. Experimentally, the persistent trees are only slightly slower than
their volatile counterparts, suggesting that they have great use as in-memory databases
that need to be able to recover after a crash.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Trevor for providing endless guid-
ance support in our weekly “one hour” meetings that often stretched to four hours. I
would also like to thank Wojciech Golab and Samer Al-Kiswany for agreeing to be on my
committee, and for providing many useful comments.

As always, I cannot thank my family enough for their neverending love, support, and
excellent food.

Finally, I would like to thank my fellow grad student Guy Coccimiglio for helping me un-
derstand persistent memory a little better, and my friend Nicholas Sunderland for reading
early drafts of this thesis.

iv

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Model 5
2.1 Asynchronous shared memory (ASM) model 5

2.1.1 Memory . 5
2.1.2 Configurations, steps and executions 6
2.1.3 Correctness . 6

2.2 Persistent asynchronous shared memory (PASM) model 6
2.2.1 Memory . 6
2.2.2 Recovery . 7
2.2.3 Configuration, steps, and executions 7
2.2.4 Correctness . 7

2.3 System considerations . 8
2.3.1 Caching . 8
2.3.2 Non-uniform memory architectures (NUMAs) 9
2.3.3 Flushing . 9
2.3.4 Allocation . 9
2.3.5 Scheduling and progress guarantees 10

3 Related work 11

4 A fast (a,b)-tree 18
4.1 Semantics . 18
4.2 Data structures . 19

v

4.3 Operations . 20
4.4 Correctness . 25

4.4.1 Definitions . 26
4.4.2 Invariants . 27
4.4.3 Linearizability of find . 30
4.4.4 Linearizability of insert and delete 31

4.5 Height bound . 32
4.6 Deadlock-freedom . 36
4.7 Performance vs lock-free implementation 40
4.8 Using MCS locks . 41

5 Coalescing 46
5.1 Coalescing with the MCS queue . 47

5.1.1 coalesce explanation . 50
5.2 Coalescing publishing . 51

6 Experiments 55
6.1 Setup and methodology . 55

6.1.1 System . 55
6.1.2 Memory reclamation . 55
6.1.3 Methodology . 56
6.1.4 Validation . 56

6.2 Results discussion . 59
6.2.1 Effect of update frequency and distribution 59
6.2.2 Effect of key range . 61

7 Persistent (a,b)-trees 62
7.1 The p-OCC-ABtree . 62
7.2 Implementation . 65

7.2.1 Link-and-persist . 65
7.2.2 Atomic updates with flush and sfence 66
7.2.3 Recovery . 67

7.3 Correctness . 68
7.3.1 Definitions . 68
7.3.2 Invariants . 69
7.3.3 Strict linearizability . 70

7.4 Optimizations . 73
7.5 Number of sfences vs FPTree . 73

vi

7.5.1 Simple inserts . 74
7.5.2 Successful deletes . 74
7.5.3 Splitting inserts . 74
7.5.4 Rebalancing steps . 74

7.6 Performance . 75
7.6.1 Experimental setup . 75
7.6.2 Results discussion . 78

8 Future work and concluding remarks 80

References 82

vii

List of Figures

3.1 LLX and SCX primitives . 12
3.2 Skip list diagram . 14

4.1 OCC-ABtree data structures . 19
4.2 Operations on an OCC-ABtree with a = 2, b = 4 24
4.3 Additional rebalancing operations . 25
4.4 Throughput comparison of the OCC-ABtree and LF-ABtree on a uniform-

access, search-only workload. 41
4.5 Throughput comparison of the OCC-ABtree and LF-ABtree on a uniform-

access, update-only workload. 42
4.6 Throughput comparison of the OCC-ABtree and LF-ABtree on a Zipfian-

access, update-only workload. 42
4.7 Throughput comparison of the OCC-ABtree, MCS-ABtree, and LF-ABtree

on a Zipfian-access, update-only workload. 44
4.8 Average number of cycles the OCC-ABtree, MCS-ABtree, and LF-ABtree

are stalled when running a Zipfian-access, update-only workload. 44
4.9 Average time a thread in the OCC-ABtree and MCS-ABtree takes to acquire

the lock, when running a Zipfian-access, update-only workload. 45

5.1 High-contention comparison . 50
5.2 Coalescing publishing example . 51

6.1 Benchmark with 10K keys . 57
6.2 Benchmark with 1M keys . 58

7.1 Selected p-OCC-ABtree operations . 64
7.2 Benchmark with 10K keys . 76
7.3 Benchmark with 1M keys . 77

viii

List of Tables

4.1 Reachable violation to violating thread mapping 33

ix

Chapter 1

Introduction

The (ordered) dictionary is one of the most fundamental abstract data types1. It stores
a set of keys, each of which has an associated value, and provides operations to insert
a key and value, remove a key, and find the value associated with a key. Dictionaries
also support predecessor, successor, and range query operations. Dictionaries are often
implemented using trees.

Concurrent dictionary implementations in the literature have typically focused on maxi-
mizing performance under low-contention workloads. These are workloads in which either
most operations are read-only, or updates are performed on uniformly distributed keys
(and thus rarely encounter contention). This thesis shows how to obtain high performance
in update-heavy workloads with high contention, without sacrificing performance in read-
heavy and low-contention update workloads.

The typical way to simulate high contention in concurrent data structure benchmarks is
to use data structures containing only a small number of keys. In this case, a simple data
structure (e.g. an array with locks for each element) is an acceptable solution. However,
high contention can also occur when dealing with lots of keys. For example, in a data
structure with many keys, a small subset of the keys might be updated very frequently.
This can be simulated by using update-heavy workloads in which threads access keys
according to a skewed probability distribution. In particular, this thesis focus on the Zipfian
distribution, which is commonly used for simulating real-world access patterns [3, 5]. In
the Zipfian distribution, the frequency of a key being accessed is proportional to its rank.
That is, the kth most frequent key is requested with probability proportional to 1/ks,

1In this thesis, dictionary always refers to an ordered dictionary

1

where s ≥ 0 is a parameter controlling the skew of the distribution (s = 0 is a uniform
distribution, and the skew increases as s does).

Though this thesis primarily explores the Zipfian workload, the uniform access distribution
is too important to ignore. Achieving good performance in the uniform workload is tied
to the problem of minimizing cache misses within a search. Concurrent binary search
trees (BSTs) are well-studied and have been heavily optimized for the uniform access
distribution, but their performance still suffers because of their long path lengths: in a
BST containing 1 million keys, searching for some keys will require traversing at least 19
nodes. The CPU’s cache likely only contains nodes in the beginning of the path, since
these nodes are accessed most frequently. This means that the rest of the accesses will
incur cache misses and require fetching the nodes from a lower level of cache, or from
main memory (a costly process). In fact, these cache misses dominate the runtime of BST
operations.

In contrast to BSTs, B-trees use fat nodes, each of which contains many pointers. This
results in B-trees having less depth than BSTs. A B-tree of order b has between b/2 and b
pointers in each node, meaning that the height of the tree is at most dlogb/2Ke, where K of
the number of keys in the tree. This can be significantly smaller than the dlog2Ke height
of BSTs for large K, and practically leads to fewer cache misses and faster searching in
B-trees. The time taken to search the keys of a B-tree node is negligible, since b is usually
chosen such that a node fits in a single cache line. Moreover, rebalancing in B-trees occurs
less frequently than in balanced BSTs. At first glance, it might not seem like a tree with fat
nodes is the right data structure to use if one wants to achieve good performance under high
contention. Although using fat nodes promotes better memory locality in low-contention
workloads, it could easily become a liability under high contention, especially if multiple
hot keys (which are updated frequently) are located in the same node. However, as shown
in the experiments, fat nodes are crucial for obtaining high performance in low-contention
and read-only workloads.

Cache misses are especially slow in architectures that feature non-uniform memory ac-
cess (NUMA). NUMA architectures contain compute regions called nodes which share
information via a network of buses/interconnections. NUMA architectures are becom-
ing increasingly prevalent, as they have better performance than uniform memory access
(UMA) architectures in workloads with high data access locality (the same data is ac-
cessed/modified by the same threads repeatedly). Threads within a NUMA node typically
share some levels of cache. In the experiments in this thesis, the last level cache is shared
amongst threads in a NUMA node. To read a memory address, a thread first checks some
number of caches.

2

This thesis presents four data structure designs2. All four designs are based on (a,b)-trees,
which are a generalization of B-trees that allow between a and b keys per node (where
a ≤ b/2). The first algorithm, the OCC-ABtree, uses optimistic concurrency control
(OCC) to implement the relaxed (a,b)-tree of Larsen and Fagerberg [35]. OCC involves
the use of version numbers to detect whether a node has changed. A node’s version
number is incremented at each update. Thus, if a thread reads a node’s version number,
does some local work, and reads the same version number again, it can be sure that the
node was not updated between the two reads. The second algorithm, the MCS-ABtree,
improves scaling compared to the OCC-ABtree under high contention by replacing test-
and-compare-and-swap (TACAS) locks in the OCC-ABtree with MCS locks [42]. The
third algorithm, the CoMCS-ABtree, adapts the idea of elimination from stacks for use
in trees. In a stack with elimination, whenever a thread experiences contention while
accessing the stack, it joins a group of threads that attempt to synchronize directly with
one another to complete their operations without accessing the stack. The CoMCS-ABtree
uses a technique called coalescing in which a thread that holds a lock traverses the MCS
lock queue and communicates directly with other threads in the queue, enabling them
to complete their operations without acquiring the lock. The proof of linearizability for
this algorithm is subtle. The fourth algorithm, the CoPub-ABtree, introduces a faster
coalescing technique that avoids the overhead associated with traversing lock queues.

Lastly, this thesis describes the changes required to make the aforementioned trees strictly-
linearizable in systems with persistent main memory. Strict linearizability is similar to
linearizability, with the additional requirement that operations cannot be completed after
a crash. Given enough time, system failures such as power outages are inevitable. When
a system failure occurs, any data that was not written to persistent storage (e.g. a hard
drive) is lost. The persisted data can then be used to recover the data structure. However,
even with modern persistent memory, writing every update to persistent storage is slow.
Thus, programmers must carefully decide which data they want to persist. Chapter 7 of
this thesis describes the modifications required to convert all the aforementioned trees into
persistent trees, and experimentally examines the cost of persisting data and the benefits
of coalescing in the persistent setting. The experiments show that the persistent memory
trees are only slightly less performant than their volatile memory counterparts.

The main contributions of this thesis are as follows

• It presents four novel algorithms: OCC-ABtree, MCS-ABtree, CoMCS-ABtree and
CoPub-ABtree, the last two of which include new techniques for coalescing in trees.

2The algorithms are publicly available, in the SetBench benchmarking suite: https://gitlab.com/

trbot86/setbench.

3

https://gitlab.com/trbot86/setbench
https://gitlab.com/trbot86/setbench

All algorithms are shown to be linearizable and deadlock-free.
• The experiments performed cover a broad selection of competing algorithms, and

the results show that the fastest algorithm in this thesis, the CoPub-ABtree, outper-
forms the next fastest competitor in a variety of workloads by up to 2x. Moreover, the
CoPub-ABtree scales well under high contention, even with multiple sockets (tolerat-
ing the effects of non-uniform memory architectures), without sacrificing performance
under low contention.
• It describes how to make all four data structures strictly-linearizable in a persistent

memory system, in a way that requires very few sfence instruction (two for inserts
which do not require splitting a leaf node and only one for deletes).
• It experimentally demonstrates that the persistent memory trees are almost as per-

formant as their volatile memory counterparts in every workload (and thus coalescing
is also practical in the persistent memory setting).

The remainder of this thesis is laid out as follows. Chapter 2 describes the theoretical mod-
els assumed by the algorithms in this thesis. Chapter 3 summarizes related work. Chapter 4
describes the OCC-ABtree, proves its linearizability and deadlock-freedom, and features a
brief performance discussion showing that the use of MCS locks in the MCS-ABtree im-
proves scaling across multiple processor sockets for high-contention workloads. Chapter 5
describes coalescing in the CoMCS-ABtree and CoPub-ABtree. Chapter 6 experimentally
compares the OCC-ABtree, MCS-ABtree, CoMCS-ABtree, and CoPub-ABtree against a
number of dictionary implementations on a variety of workloads. Chapter 7 describes
the modifications necessary to make the above (a,b)-trees persistent and experimentally
demonstrates that persistence does not incur too much overhead. Finally, Chapter 8 dis-
cusses possible future work and provides some concluding remarks.

4

Chapter 2

Model

The algorithms in Chapters 4 to 5 are developed for an asynchronous shared memory
system. The algorithms in Chapter 7 target an asynchronous shared memory system
with persistent main memory. This section begins by describing the asynchronous shared
memory model, then describes the changes required for the persistent asynchronous shared
memory model. Finally, we discuss additional considerations that affect the experiments
in this thesis.

2.1 Asynchronous shared memory (ASM) model

2.1.1 Memory

The system’s memory consists of a sequence of words which are indexed by their address.
The word size is assumed to be large enough to fit the address of any word in the system.

The memory of the system can be divided into local and shared memory. Local memory is
specific to a thread and can only be accessed or modified by that thread. Shared memory
is shared amongst all threads and can be accessed and modified by any thread.

Threads access or modify memory using atomic memory primitives. There are four atomic
memory primitives in this model: read, write, swap, and compare-and-swap (CAS). read(x)
returns the contents of memory address x. write(x,v) stores value v in memory address
x. swap(x,v) atomically stores value v at the memory address x and returns the value that
was previously stored at x. Finally, CAS(x,a,b) atomically compares the word at address
x with the value a and, if they are equal, stores the value b at address x and return true.
Otherwise, CAS returns false.

5

2.1.2 Configurations, steps and executions

The configuration of the system is defined to be the contents of local memory (including
each thread’s program counter) and shared memory. In the ASM model, a step is a read,
write, SWAP, CAS, or an invocation or response of a data structure operation.

An execution is a (possibly infinite) alternating sequence of configurations and steps:
C0s1C1s2C2 . . . (where Ci is a configuration and si is a step).

2.1.3 Correctness

Linearizability is a common correctness in the ASM model [31]. A concurrent execution α
is linearizable if linearization points can be selected for each completed operation, and for a
subset of the operations that started but did not complete, such that the linearization point
for an operation occurs during the operation, and the result of each completed operation in
α is the same as it would be if the operations were executed atomically at their linearization
points. An algorithm is linearizable if every execution of that algorithm is linearizable.

2.2 Persistent asynchronous shared memory (PASM)

model

The PASM model is intended to model the behaviour of crash-resilient systems with per-
sistent main memory. In the PASM model, the system may randomly crash. Whenever a
crash occurs, all threads crash simultaneously. The PASM model is similar to the ASM
model; key differences are described below.

2.2.1 Memory

In the PASM model, we assume that there are two copies of memory: volatile memory
and persistent memory. Threads only read from and write to volatile memory. Data can
be copied from volatile to persistent memory; this is known as flushing. When a crash
occurs, the contents of volatile memory are lost.

In addition to the memory primitives from the ASM model, the PASM model provides
two new primitives, flush and sfence. Threads use flush and sfence to guarantee that
their modifications have reached persistent memory.

flush(x), also called an explicit flush, flushes memory address x when a subsequent
sfence is executed by the same thread. In the PASM model, executing a write, a flush

6

of the modified address, and an sfence guarantees that the write has been flushed to
persistent memory by the time the sfence returns.

Memory addresses can also be flushed asynchronously without the programmer’s knowledge
(i.e. without calling flush or sfence). These are known as background flushes.

2.2.2 Recovery

Immediately after a crash, a recovery procedure is executed. The recovery procedure is
often used to restore the data structure to a valid state (e.g. by completing or rolling back
any partial updates). The recovery procedure has access to persisted memory. After the
recovery procedure returns, a set of new threads resume operations on the data structure.

2.2.3 Configuration, steps, and executions

The configuration in the PASM model is defined to be the contents of both volatile and
persistent memory. In the PASM model, a step is a read, write, SWAP, CAS, flush,
sfence, background flush, crash event, or an invocation or response of a data structure
operation. Background flushes and crash events are performed by a special system thread.
This system thread exists solely for the model and does not correspond to a thread that
would be running on a real system.

As in the ASM model, an execution is a (possibly infinite) alternating sequence of config-
urations and steps. The crash events in an execution partition the execution into segments
called eras. Note that the ith era includes the recovery procedure after the i− 1th crash
(for i > 1).

2.2.4 Correctness

Linearizability was originally defined in a model which did not include crash events. In-
stead, the persistent algorithms in this thesis use strict linearizability as their correctness
condition [4]. Strict linearizability is similar to linearizability, but forbids operations from
linearizing after a crash. Strict linearizability also allows operations to abort mid-operation,
but this feature is not required for the algorithms in this thesis.

7

2.3 System considerations

2.3.1 Caching

The system contains several caches, each of which contains a cached copy of a subset of
the system’s memory addresses. Data is added and removed from caches at the granularity
of cache lines, which are fixed-size contiguous sequences of memory addresses. A cache
line is 64 bytes and cache lines are 64-byte aligned. The caches are ordered in levels; L1 is
the highest level of cache, followed by L2, and so on.

To access or modify data at a memory address, a thread starts at the highest level cache
and works its way down until it finds the data. A thread is said to experience a cache hit
if it finds the data in a cache. Otherwise, the thread is said to experience a cache miss.
If the thread misses in every cache, it retrieves the data from main memory.

Higher levels of caches are smaller and shared amongst fewer threads than lower levels.
For example, an L1 cache is typically shared between threads on the same core, whereas
an L3 cache is typically shared between threads on the same processor socket.

The cache coherence protocol guarantees that all threads see the same view of the
system’s memory at any point in time. The protocol used in this thesis is the MESI
protocol [47]. Modern processors implement more recent and more sophisticated protocols
(such as MOESI, used by AMD [1]), but MESI suffices for the purposes of this thesis.

In MESI, a cache line is always in one of four states:

• Modified: the cache line has been modified by some thread since it was loaded into
cache and is not present in any other cache.

• Exclusive: the cache line has not been modified by any thread since it was loaded
into cache, and is not present in any other cache.

• Shared: the cache line has not been modified by any thread since it was loaded into
cache, and may be present in other caches.

• Invalid: the cache line cannot be read from or written to (until it is read again from
main memory).

To read a word from main memory or a lower-level cache, the cache line containing the
word is loaded into all higher cache levels in the shared state. To modify the contents of a
memory address, a thread must load the cache line in the exclusive state, which invalidates
the cache line in all caches that the thread does not use. Cache lines are invalidated by
sending a message to other caches though a bus. If more messages are being sent along

8

the bus than it can handle (known as cache coherence traffic), the performance of the
system can stall.

2.3.2 Non-uniform memory architectures (NUMAs)

We consider a NUMA system with multiple processor sockets (physical groupings of com-
pute cores). Main memory is partitioned such that each socket has some socket-local
memory associated with it, which can be accessed at a lower latency than the memory
associated with other sockets.

Threads running on the same socket share the same last level cache, whereas threads
running on different sockets do not. So, writes performed by one thread can be accessed
by all other threads on the same socket via the last level cache. In contrast, threads
on a different socket load the written data from main memory, which is typically much
slower. As shown in Chapter 4, this can cause performance to decrease as the thread count
increases.

2.3.3 Flushing

flush, as used in this thesis, corresponds to the clwb (cache line write back) x86 instruc-
tion. x86 also contains a clflushopt instruction, which is similar to clwb but invalidates
the cache line, and a clflush instruction, which is equivalent to clflushopt followed by
an sfence.

2.3.4 Allocation

We assume the existence of a memory allocator which provides an allocate operation to
allocate memory for an object (e.g. a tree node) and a free operation which reclaims an
object’s memory.

To reclaim memory safely in a concurrent data structure, we also assume the existence of
a safe memory reclamation algorithm which delays freeing objects until they are no longer
reachable from the data structure, or from any thread’s local memory.

In particular, the algorithms in this thesis use DEBRA [14], which is a fast implementation
of epoch based reclamation (EBR).

Allocators in persistent memory systems must be carefully designed to avoid leaking mem-
ory when an allocation or deallocation is concurrent with a crash. Memory leaks are more
severe issues in persistent memory systems than in volatile memory systems because leaked
memory remains allocated (and hence leaked) after a crash.

9

In addition, the allocator should guarantee that pointers are recoverable after a crash (e.g.
by guaranteeing that memory addresses do not change after a crash, or by providing the
program with the new virtual memory offset associated with the process after a crash).
This guarantee is required for the data structures in this thesis to be recoverable after a
crash, since the recovery procedure follows pointers in the persisted tree nodes.

The persistent algorithms in Chapter 7 use jemalloc, which is not a persistent allocator
and DEBRA, which is not a persistent memory reclamation scheme. If one wishes to
actually implement these algorithms with a persistent allocator, one can use the Persistent
Memory Development Kit (PMDK) software library, originally developed by Intel [52]. For
persistent memory reclamation, NV-epochs from [20] is one possible option.

2.3.5 Scheduling and progress guarantees

This thesis uses the progress guarantees presented by Herlihy and Shavit in [30]. There
are two possible progress guarantees for lock-based algorithms.

The weaker of the two is deadlock-freedom. Intuitively, deadlock-freedom states that
some thread must continually complete operations in an infinite execution. Formally, an
algorithm is deadlock-free if, assuming a fair scheduler (one that schedules each thread an
infinite number of times):

1. In every infinite execution, an infinite number of operations return AND

2. There exists an infinite execution in which each thread returns from an infinite num-
ber of operations

The algorithms in this thesis are deadlock-free.

A stronger progress guarantee for lock-based algorithms is starvation-freedom. Intu-
itively, starvation-freedom states that all threads must continually complete operations in
an infinite execution. Formally, an algorithm is starvation-free if, in every infinite execu-
tion, each operation returns in a finite number of steps (again assuming a fair scheduler).
The algorithms in this thesis are not starvation-free. For example, a thread searching
for a key can be prevented from returning by other threads executing insert and delete
operations on that key.

10

Chapter 3

Related work

In this thesis, external search trees only store key-value pairs in the leaves. In constrast,
internal search trees refer to search trees in which key-value pairs are stored in internal
(non-leaf) nodes as well as leaves. The internal nodes of partially external search
trees may or may not contain key-value pairs. Keys (in internal nodes) which are only
used for directing searches to the correct leaf (and are not associated with a value) are
called routing keys [9].

Binary search trees (BSTs). Ellen et al. introduced the first lock-free external BST [23].
Searches are implemented the same way as in a sequential BST. An update first searches for
a target node to modify, then synchronizes with other updates by flagging or marking nodes
to indicate how they will be modified. Updates that encounter these flags or marks will
help the operation complete, guaranteeing lock-free progress. Natarajan and Mittal [44]
improve upon this design by flagging/marking edges instead of nodes, and reducing the
amount of memory allocated per update operation.

Bronson et al. [9] propose a partially external balanced BST (BCCO10) that uses opti-
mistic concurrency control (OCC) to synchronize threads. OCC involves the use of version
numbers (usually one per node, in node-based data structures like trees and linked lists)
that are incremented at each update. If an operation reads a version number, performs
some actions, and reads the same version number again, then no update modified the node
between the reads. BCCO10 introduces a complex hand-over-hand version number based
validation technique to implement fast searches. BCCO10 has previously been shown to be
the fastest concurrent BST in search-dominated workloads [7]. The synchronization tech-
nique used in the OCC-ABtree for updates is somewhat similar to BCCO10, but searches
are much simpler.

11

N

new

R

parent

old

FN

parent

R

FN

Replace

N ∪ FN

R ∪ FN by

Figure 3.1: LLX and SCX primitives [12]

David et al. [21] propose a set of methods for optimizing concurrent data structures. The
primary method is to optimistically construct an update locally and then atomically per-
form it on the data structure if the data used to construct the update has not changed.
They use version numbers to detect changes in the data structure, as in optimistic concur-
rency control. They use this method to design a straightforward yet efficient lock-based
external BST.

Brown et al. [11] introduced wait-free synchronization primitives (LLX and SCX), used them
to implement a template for lock-free trees, and used the template to produce a (balanced)
chromatic tree (a relaxation of a red-black tree) [12]. LLX and SCX are similar to the
more well-known LL and SC primitives, but operate on Data-records instead of individual
memory locations. A Data-record is a collection of fields. For node-based data structures,
a Data-record usually represents a node. LLX(v) returns a snapshot of the fields of a
Data-record v. An SCX(D, F, fld, new) by thread t atomically changes the value of a
single field fld to new and marks every record in the set F as finalized (no longer able to
be modified) only if none of the Data-records in D were modified since t’s last LLX on each
of them. Updates that follow the tree update template unlink a subgraph of nodes from
the tree and link in a new subgraph to replace it (see Figure 3.1). Any nodes involved in
the update are first read using LLX. Then, the thread performing the update constructs
the new subgraph locally. Finally, the thread attempts to use SCX to link the new nodes
into the tree and finalize any removed nodes. Although the algorithms in this thesis do not
use the LLX and SCX primitives, they modify the tree structure similarly to the template
(linking and unlinking subgraphs of the tree by only changing a single pointer in a node).

Several other concurrent BST algorithms have also been proposed [32, 45, 49].

B-tree variants. Brown used the aforementioned template to also design a lock-free
external (a,b)-tree (referred to in this thesis as the LF-ABtree), which is a concurrency-

12

friendly variant of an (a,b)-tree [10]. The LF-ABtree decouples structural operations (rebal-
ancing the tree) from logical operations (insert, delete, and find) to increase performance.
These structural operations were originally described by Larsen and Fagerberg in [35].
The LF-ABtree has been shown to be substantially faster than Natarajan and Mittal’s
trees and BCCO10, which are among the fastest BSTs [13]. The algorithms in this thesis
improve upon the LF-ABtree by replacing the relatively slow read-copy-update approach
for modifying leaves with in-place modifications. This involved replacing the LLX and SCX

primitives with optimistic concurrency control techniques (version numbers) and modify-
ing leaf nodes to use an unsorted array of keys. As the experiments in Chapter 6 show,
the (a,b)-trees introduced in this thesis significantly outperform the LF-ABtree in many
workloads.

The Bw-Tree is a lock-free variant of a B-tree that is designed to achieve high performance
under realistic workloads [37]. It uses a mapping table to map logical nodes to physical
pages. Each logical node contains a base state and a list of changes to it. Updates modify
a record (e.g. insert a key-value pair) or perform a page operation (e.g. splitting a page) by
adding to the list. This avoids the need to modify pages directly and hence reduces cache
misses. The list of updates is periodically combined and applied to the base node. Many
of the design decisions made in the Bw-Tree are focused on workloads that do not fit in
memory, and incur significant overhead when the tree does fit in memory. The experiments
in Chapter 6 include an optimized variant of the Bw-Tree called the OpenBw-Tree (since
the original Bw-Tree is not publicly available) [58]. The optimizations introduced in the
OpenBw-Tree increase performance by between 1.1x to 2.5x (depending on the workload).

The BzTree [8] simplifies the implementation of the Bw-Tree by using a multi-word compare-
and-swap (MwCAS), and results in the paper suggest it is faster than the BwTree (though
the official BzTree is not publicly available). Guerraroui et al. introduced a faster Mw-
CAS algorithm and used it to accelerate the BzTree [56]. The BzTree can also be made
persistent by using a persistent MwCAS. I attempted to compare with a public (unoffi-
cial) implementation of the BzTree, but encountered failures during validation [36]. The
implementors mentioned that the errors might be fixable, but were unable to produce a
fix.

In his thesis [41], McKenzie explores a number of modifications to a concurrent B-tree [39],
with the goal of improving performance in systems with non-uniform memory access
(NUMA). The most relevant modification to this thesis is the idea of using NUMA-aware
locks. NUMA-aware locks improve performance in NUMA systems by preferentially pass-
ing the lock to threads on the same NUMA node as the thread currently holding the lock.
This makes acquiring the lock faster. To maintain fairness between NUMA nodes, NUMA-
aware locks often have a bound on the number of times that ownership of a lock can stay

13

within a NUMA node (assuming some thread on another NUMA node wants to acquire the
lock). The algorithms presented in this thesis could possibly benefit from NUMA-aware
locks, but there may be a tradeoff with increased space overhead. McKenzie’s thesis also
explored include the replication of internal nodes (which is not applicable in the concurrent
model used in this thesis), the ideal granularity of locking, and compared the performance
of lock-free and locking reads. The author did not implement or test the delete opera-
tion (and so is excluded from the experiments in this thesis), but does sketch the changes
necessary for it to be added.

Distribution/contention aware data structures. There has been also some work on
data structures that are designed to accommodate non-uniform distributions.

The concurrent interpolation search tree (C-IST) of Brown et al. [13] uses internal nodes
that are much larger than the internal nodes of most B-tree implementations: for example,
the root node of the C-IST contains O(

√
n) keys. The C-IST uses linear interpolation

to quickly find keys in internal nodes. This results in O(log log n) runtime for smooth
distributions (a set of distributions which includes the uniform distribution). The C-IST
is primarily optimized for searching and, as shown in the experiments in Chapter 6, even
a modest amount of updates can drastically reduce the C-IST’s performance.

The splay tree [53] is a popular sequential dictionary that adapts to non-uniform distri-
butions. After searching for a key, the splay tree performs rotations to move the node
containing the key to the root. This reduces future access time for searches on the same
key, but also introduces a point of contention at the root, which makes the splay tree un-
suitable for concurrent use. The CBTree [3] is a concurrent splay tree-like data structure
which uses counting to perform splaying only after a significant number of searches/updates
have accessed a node, effectively amortizing the cost of a splay over many operations.

Figure 3.2: A skip list with height 4 [43]

The skip list [48] is a probabilistic dictionary with expected O(log n) searches and updates.

14

The skip list consists many stacked linked lists (see Figure 3.2). The lowest list contains
all key-value pairs, and each higher list contains a subset of the key-value pairs in the layer
beneath it. The height h of a key is defined by the highest list in which it appears. A
search for a key in a skip list starts at the highest (and sparsest) list, and searches it until
it either finds the key (and returns the associated value) or reaches a key after the search
key. In the latter case, the search continues in the list below, starting at the last key read
before overshooting. This continues until the search either finds the search key or does
not find the key in the lowest list. An insert operation inserts the key-value pair in the
lowest list and repeatedly flips a coin until it sees tails. For each heads it sees, it inserts
the key-value pair in the next higher list. Delete operations remove a key-value pair from
all linked lists it is in. Aksenov et al. introduced the Splay-List, a concurrent variant of
a skip list that performs splaying by increasing the height of the most frequently accessed
keys and decreasing the height of the least frequently accessed keys [5]. Like the CBTree,
the Splay-List uses a counter-based approach to amortize the cost of the splaying. The
authors of the Splay-List do not describe how keys should be deleted. The implications of
this on performance are discussed further in Chapter 6.

The contention adapting search tree (CATree) [51] is a variant of an external binary search
tree. Each leaf of the CATree is actually a sequential dictionary data structure, protected
by a lock. AVL trees were used as the sequential dictionary in the authors’ experiments
(as well as in this thesis). When sufficient contention is detected at a leaf, the sequential
data structure is split into two parts and an internal node connecting the two new leaves
is linked into the tree. Similarly, two adjacent sequential data structures are combined if
neither is under contention. The authors approximate contention at a leaf by measuring
how often its lock is already acquired when a thread attempts to acquire it. Frequently-
accessed keys are likely to appear as the only key in its leaf (i.e. sequential dictionary),
which isolates other (neighbouring) keys from cache coherence effects. This is unlike B-
trees, in which operations on keys sharing a leaf with a frequently-accessed key are likely
to experience many cache misses. At first glance, having an isolated leaf for frequently-
accessed keys appears to be optimal, but the coalescing technique introduced in this thesis
achieves better than sequential performance on a single key.

General approaches. There are several universal constructions for transforming se-
quential data structures into concurrent ones. Though universal constructions are simple
to use, they pay for their generality either by requiring multiple copies of the data structure
(which is not practical for large data structures) or by using a global log or state object
to serialize updates (which is a global bottleneck). [25] contains a summary of wait-free
universal constructions. Of those wait-free universal contructions, there are five which do

15

not require multiple copies of the data structure. The F-RedBlue and S-RedBlue construc-
tions from [24] assume that the object can be modified by an LL/SC instruction, which
is not true for a dictionary with more than a handful of elements. The SIM and P-SIM
constructions from [25] and the construction from [18] have a global bottleneck when ap-
plying the operations. Lastly, Calciu et al. describe a lock-based universal construction
that transforms sequential code into concurrent NUMA-aware code [16]. However, it uses
a shared log, which represents a global bottleneck and also requires a copy of the data
structure per NUMA node.

Transactional memory (TM) is another possibility for exploiting latent parallelism in se-
quential data structures. In TM, a transaction consists of a sequence of load and store
instructions that either succeeds or fails atomically [27]. When a transaction reads (re-
spectively, writes) a memory address, the address is added to the transaction’s read set
(respectively, write set). The union of a transaction’s read and write sets is called its data
set. If the data set of a transaction intersects the write set of a concurrent transaction,
then one or both transactions will abort. This is known as a data conflict. Transactional
memory can be implemented in hardware (HTM), software (STM), or a hybrid of the two
(HyTM) [19]. HTM is usually more efficient than STM, but HTM implementations are
usually best-effort: transactions may be aborted for reasons other than data conflicts (e.g.
if the read or write sets grow too large for the hardware to handle) [28]. In contrast,
STM is less efficient but can be run on systems without specialized hardware and typically
offers progress guarantees. Regardless of how it is implemented, transactional memory is
optimized for low-contention workloads. In the high-contention scenarios studied in this
thesis, almost all transactions would abort because of data conflicts.

Persistent concurrent trees. Venkataraman et al. introduce criteria to create consis-
tent durable data structures (CDDSs) [55]. These criteria are: durability and consistency
in the event of a crash, scalability (minimal space, performance, and complexity overhead
at arbitrarily large data structure sizes), and ease-of-use. They provide a B-tree which they
claim satisfies the CDDS criteria. However, the pseudocode does not explain how threads
are synchronized beyond mentioning a global version number that is incremented on each
update (which is a scalability bottleneck) and does not appear to consider the effect of
background flushes during updates (which I suspect can put the tree into an inconsistent
state)1.

Yang et al. created the NV-Tree, a persistent B-link tree (a B-tree in which nodes have
sibling links to enable fast range queries) [60]. The NV-Tree, like the CDDS B-tree and

1Similar issues are raised by Wang in [57].

16

the algorithms presented in this thesis, uses unsorted leaf nodes. This enables fast insert
and delete operations. The key difference between the NV-Tree and the persistent trees
in Chapter 7 is that the NV-Tree rebuilds all of its internal nodes if any internal node
becomes too full. As the authors mention, this can be extremely slow for large trees, but
occurs less than 1% of the time in their workloads. Additionally, the NV-Tree only persists
leaf nodes, since the entire tree can be recovered from them after a crash. This makes the
recovery procedure slower, but avoids some flushes.

Unfortunately, it appears that the NV-Tree is not strictly-linearizable. When an insert
into a full leaf node results in a split, a search may find the inserted key before the key is
persisted. If a crash occurs before the pointer to the new node is persisted, the recovered
data structure will not contain the inserted key. In this case, a search that sees the inserted
key and returns before the crash cannot be linearized.

The Fingerprinting Persistent Tree (FPTree) is another persistent concurrent B-tree [46].
It includes a number of optimizations that make it scale better than the NV-Tree. Each leaf
node includes a one-byte hash of each of its keys, known as a fingerprint. The fingerprints
are scanned prior to probing the keys themselves, which limits the average number of key
comparisons to 1. The authors note that this can have a large impact when key comparisons
are costly (for example, if the keys are strings). Like the NV-Tree, the FPTree uses unsorted
leaves and only persists leaf nodes (for fast insertion/deletion and minimizing flushing,
respectively). Finally, the FPTree uses a combination of transactional memory (for internal
nodes) and fine-grained locks (for leaf nodes) to synchronize threads. Using transactional
memory for internal nodes simplifies the correctness argument for searches. Though it
would be ideal to also use transactional memory for updates, transactional memory cannot
be used in conjunction with persistence primitives. Thus, the FPTree’s leaves have locks
that are acquired by updates (and read by searches during their transaction to avoid seeing
incomplete updates).

Chapter 7 presents persistent versions of the trees in this thesis. The new persistent
trees are implemented using the link-and-persist method from [20] (a similar technique is
proposed in [56]). Whenever new nodes are linked into the data structure, the pointer to
the new nodes is marked to indicate that it is not persisted. The update then persists the
pointer, removes the mark on it, and returns. Searches are accordingly modified to wait
until a pointer is unmarked (and hence persisted) before following it. This guarantees that
operations only access persisted data.

17

Chapter 4

A fast (a,b)-tree

4.1 Semantics

This chapter introduces a fast (a,b)-tree, the OCC-ABtree. The trees in this thesis all
implement the following dictionary operations.

• find(k): If a key-value pair with key k is present, return the associated value.
Otherwise, return ⊥.
• insert(k, v): If a key-value pair with key k is present, return the associated value.

Otherwise, insert the key-value pair <k,v> and return ⊥.
• delete(k): If a key-value pair with key k is present, delete it and return the associ-

ated value. Otherwise, return ⊥.

Range queries could be added to these using the techniques described in [6], but are not
described further in this thesis.

The OCC-ABtree also includes rebalancing steps, which are performed within operations
but are not part of the data structure’s interface. In this thesis, an update refers to either
a rebalancing step or the insertion (resp. deletion) in an insert (resp. delete) operation.
Note that an operation might contain several updates (e.g. an insert of a key, followed by
two rebalancing steps).

The OCC-ABtree consists of an entry pointer to a sentinel node that is never removed.
This sentinel node has no keys and just one child pointer, which points to the root of the
tree. The pseudocode for the data structures used in the OCC-ABtree and its operations is
presented below. To avoid cluttering the pseudocode, the memory reclamation operations
are not shown. (However, the source code includes all of the necessary invocations.)

18

1 // K is key type , V is

value type

2 abstract type Node

3 marked : bool

4 lock : TACASLock

5 searchKey : K

6 keys : K[MAX_SIZE]

7

8 type Leaf inherits Node

9 vals : V[MAX_SIZE]

10 ver : int

11

12 type Internal inherits Node

13 size : int

14 ptrs : Node[MAX_SIZE

]

15 type TaggedInternal inherits Internal

16

17 // The result of a search

18 type PathInfo

19 gp : Node // grandparent

20 p : Node // parent

21 pIndex : int

22 n : Node // node

23 nIndex : int

24

25 type RetCode is SUCCESS or FAILURE or

RETRY

26

27 // Sentinel node: points to root

28 entry : Internal

Figure 4.1: OCC-ABtree data structures

4.2 Data structures

The OCC-ABtree has three types of nodes: leaf nodes, internal nodes and tagged (internal)
nodes. Leaf nodes store keys and values in their keys and vals arrays. We say an entry in
the keys array is empty if it is ⊥. An empty key has no associated value. Leaves contain
at most MAX SIZE keys and values. In the experiments, the minimum node size is 2 and
the maximum node size is 11. A node is 232 bytes, and thus occupies 4 64-byte cache lines.
The keys in a leaf are unsorted and there can be empty entries between keys.

Internal nodes contain size child pointers, and size − 1 routing keys (that are used to
guide searches to the appropriate leaf) in a sorted array. Once an internal node is created,
its routing keys are never changed, but its child pointers can change. To add or remove a
key in an internal node, one replaces the entire node. A new node is created to replace the
internal node, and the parent of the internal node is updated to point to the new node. In
contrast, keys in leaves are modified in-place (without creating a new node).

Conceptually, a tagged node (TaggedInternal) represents a temporary height imbalance
in the tree. In a traditional B-tree, all leaves have the same depth. The OCC-ABtree
satisfies a relaxed version of this balance property: all leaves have the same relaxed
depth. The relaxed depth of a leaf is its depth, less the number of tagged ancestors
it has. These imbalances represented by tagged nodes are gradually corrected using the
fixTagged rebalancing step.

19

Each node also has a test-and-compare-and-set (TACAS) lock, and a node is only modified
while it is locked. In a TACAS lock, the acquiring thread spins until the lock bit is unset,
then attempts to acquire it with a compare-and-swap instruction. If it fails, it goes back
to waiting until the lock bit is unset. TACAS locks are similar to test-and-test-and-set
locks, and formative experiments suggest that there is no difference in their performance
for the trees presented in this thesis. Leaf nodes have an additional version number field,
ver, that records how many times the leaf has changed and whether it is currently being
changed. After acquiring a leaf’s lock, a thread increments the leaf’s version before making
any changes to the leaf and increments the version again once it has completed its changes,
and finally releases the lock. Thus, a leaf’s version is even if the leaf is not being
modified and odd if the leaf is being modified. This is very important for the
correctness arguments in this thesis. The version number is used by searches to determine
whether any modifications occurred while reading the keys of a leaf1. Separating the
version from the lock increases the window in which searches can read the leaf (and is also
important for publishing coalescing in Chapter 5.2).

Nodes also contain a searchKey field that can be used to search for a node even if it does
not contain any keys. The searchKey is set to an arbitrary key in the node when it is
created, and is constant.

Finally, nodes contain a marked bit (initially false) which is set before a node is unlinked
from the tree. Updates use the marked bit to quickly tell whether a node is in the tree.
Once a node is marked, it is never unmarked.

Updates sometimes requires information about a node’s ancestors. This is represented by
the PathInfo structure. PathInfo is returned by search and contains the leaf at which
the search terminated, the node’s parent and grandparent, the index of the node in the
parent’s ptrs array, and the index of the parent in the grandparent’s ptrs array.

4.3 Operations

All operations invoke a common search procedure, which takes a key as its argument,
and searches the tree looking for key (starting at the root). At each internal node, search
determines which child pointer it should follow by invoking seqGetChild, which traverses
the node’s routing keys sequentially. Once search reaches a leaf, it invokes searchLeaf

to determine whether the leaf contains key. search returns <rc, val, path>. If key was

1A leaf’s version field could hypothetically wrap around and cause an ABA problem, but at 100 million
updates per second, this would take 2900 years for a 64-bit word size.

20

Algorithm 4.1: OCC-ABtree operations (search)

29 <RetCode , V> searchLeaf(leaf , key)

30 RETRY:

31 ver1 = leaf.ver

32 if ver1 is odd

33 goto RETRY

34

35 val = ⊥
36 for keyIndex = 0 up to MAX_SIZE - 1

37 if leaf.keys[keyIndex] = key

38 val = leaf.vals[keyIndex]

39 break

40 ver2 = leaf.ver

41 if ver1 6= ver2 goto RETRY

42 if val = ⊥ return <FAILURE , ⊥>
43 else return <SUCCESS , val >

44

45 int seqGetChild(node , key)

46 numKeys = node.size - 1

47 nIndex = 0

48 while nIndex < numKeys and key ≥ node.keys[nIndex]

49 nIndex ++

50 return nIndex

51

52 <RetCode , V, PathInfo > search(key)

53 gp = NULL , p = NULL , pIndex = 0, n = entry , nIndex = 0

54 while n is not Leaf

55 gp = p, p = n, pIndex = nIndex

56 nIndex = seqGetChild(n, key)

57 n = n.ptrs[nIndex]

58

59 path = PathInfo(gp , p, pIndex , n, nIndex)

60 rc , val = searchLeaf(n, key)

61 return <rc , val , path >

62

63 V find(key)

64 rc, val , path = search(key)

65 return val

21

Algorithm 4.2: OCC-ABtree operations (insert and delete)

66 V insert(key , val)

67 RETRY:

68 rc, prev , path = search(key)

69 if rc = SUCCESS return prev

70

71 leaf = path.n

72 parent = path.p

73 Lock leaf

74 if leaf marked

75 Unlock leaf and goto RETRY

76

77 // Verify key is not present

78 for i = 0 to MAX_SIZE - 1

79 if leaf.keys[i] = key

80 Unlock leaf

81 return leaf.vals[i]

82

83 if leaf.size < MAX_SIZE

84 // Insert without splitting

85 for i = 0 to MAX_SIZE - 1

86 if leaf.keys[i] = ⊥
87 leaf.ver++

88 leaf.vals[i] = val

89 leaf.keys[i] = key

90 leaf.size++

91 leaf.ver++

92 Unlock leaf and return ⊥
93 else

94 Lock parent

95 if parent marked

96 Unlock leaf/parent

97 goto RETRY

98

99 Mark leaf

100 // Tagged if parent is not entry

101 newNodes = Internal with two new

children that evenly share

contents of leaf and new key/val

102 parent.ptrs[path.nIndex] = newNodes

103 Unlock leaf/parent

104 cleanup(newNodes.searchKey)

105 return ⊥

106 V delete(key)

107 RETRY:

108 rc, prev , path = search(key)

109 if rc = FAILURE

110 return ⊥
111

112 leaf = path.n

113 Lock leaf

114 if leaf is marked

115 goto RETRY

116

117 for i = 0 to MAX_SIZE - 1

118 if leaf.keys[i] = key

119 deletedVal = leaf.vals[i]

120

121 // Perform modification

122 leaf.ver++

123 leaf.keys[i] = ⊥
124 leaf.size --

125 leaf.ver++

126

127 if leaf.size = MIN_SIZE - 1

128 Unlock leaf

129 cleanup(leaf.searchKey)

130 else

131 Unlock leaf

132 return deletedVal

133 return ⊥

22

Algorithm 4.3: OCC-ABtree operations (cleanup)

134 void cleanup(key)

135 RETRY:

136 gp = NULL , p = entry , pIndex = 0

137 do

138 gp = p, p = n, pIndex = nIndex

139 nIndex = seqGetChild(n, key)

140 n = n.ptrs[nIndex]

141

142 if n is TaggedInternal:

143 fixTagged(gp, p, n, pIndex)

144 goto RETRY

145

146 if n.size < MIN_SIZE and n is not

entry or root:

147 fixUnderfull(gp , p, n, pIndex ,

nIndex)

148 goto RETRY

149 while n is not Leaf

150

151 fixTagged(gp , p, n, pIndex , nIndex)

152 Lock n, p, and gp

153 if n, p, or gp is marked

154 Unlock all locks and return

155

156 Mark n and p

157 if p.size + 1 ≤ MAX_SIZE

158 newNode = Internal combining keys/

ptrs of n/p

159 gp.ptrs[pIndex] = newNode

160 Unlock all locks and return

161 else

162 // Tagged if parent is not entry

163 newNodes = Internal with two

children evenly sharing keys/

ptrs of n/p

164 gp.ptrs[pIndex] = newNodes

165 Unlock all locks and return

166 fixUnderfull(gp , p, n, pIndex ,

nIndex)

167 if nIndex = 0

168 // Sibling is right neighbour

169 sIndex = 1

170 else

171 // Sibling is left neighbour

172 sIndex = nIndex - 1

173 sib = p.ptrs[sIndex]

174

175 if sib is TaggedInternal

176 return

177

178 // Lock leftmost sibling of n

and sib first

179 Lock n, sib , p, and gp

180 if n, sib , p, or gp is marked

181 Unlock all locks and return

182

183 if n.size ≥ MIN_SIZE or n is

entry or root

184 Unlock all locks and return

185

186 Mark n, sib , and p

187 if n.size + sib.size ≤ 2 *

MIN_SIZE

188 // Distribute case

189 newNodes = copy of p with

pointers to two nodes

sharing keys/ptrs of n/sib

(without ptrs to n/sib)

190 gp.ptrs[pIndex] = newNodes

191 else

192 // Combine case

193 combined = New node with keys/

ptrs of n/sib

194 if gp = entry and p.size = 2

195 // Remove p entirely

196 entry.ptrs [0] = combined

197 else

198 newNodes = copy of p with

pointer to combined

instead of n and sib

199 gp.ptrs[pIndex] = newNodes

200 Unlock all locks
23

found, then rc is SUCCESS and val is the associated value. Otherwise, rc is FAILURE and
val is ⊥. In either case, path is a PathInfo object as described in Chapter 4.2.

searchLeaf is similar to the classical double-collect snapshot algorithm [2]. It reads the
leaf’s version, reads its keys/values, then re-reads the leaf’s version to verify that the
leaf did not change while its keys/values were being read. If the leaf did change, then
searchLeaf retries from scratch. If the key is found, search returns <SUCCESS, val>,
otherwise, it returns <FAILURE, ⊥>. Note that search and searchLeaf do not acquire
locks. This allows for greater concurrency, since (with some care) internal nodes can be
updated while searches are traversing through them. Searches never restart from the root,
unlike in other trees.

The find(key) operation essentially just invokes search.

Figure 4.2: Operations on an OCC-ABtree with a = 2, b = 4. (1) The key-value pair
〈6,C〉 is deleted. This creates an underfull node. (2) The underfull node is merged with
its sibling. This leaves the parent underfull, but the parent is the root, which is allowed
to remain underfull. (3) 〈9,E〉 is inserted into an empty slot (simple insert). (4) No empty
slot exists for 〈5,F〉, so the appropriate leaf is split, and a TaggedInternal node is created
(splitting insert). (5) The TaggedInternal node is conceptually merged into its parent.
We implement this by replacing its parent with a new Internal node.

In a delete(key) operation, a thread first invokes search(key). If search does not find
key, then delete returns ⊥. Otherwise, it locks the leaf and deletes the key by setting it to
⊥, and returns the associated value (Figure 4.2, 1). If key was deleted by another thread
between search and acquiring the lock, delete returns ⊥. If deleting the key makes the
node smaller than the minimum size, delete invokes cleanup to rebalance the tree with
fixUnderfull (Figure 4.2, 2).

In an insert(key, val) operation, a thread first invokes find(key). If search finds the
key, then insert returns the associated value (Figure 4.2, 3). Otherwise, it locks the leaf

24

Figure 4.3: Left: fixTagged case where the parent of the tagged node is full and must be
split (inserting a new tagged node). Right: fixUnderfull case where the siblings cannot
be merged, so keys are distributed evenly instead.

and tries to insert key (resp. val) into an empty slot in the keys array (resp. vals array).
We call this case a simple insert. If there is no empty slot, insert locks the leaf’s parent
and replaces the leaf with a new tagged node whose children contain the leaf’s contents
and the inserted key-value pair (Figure 4.2, 4). It then invokes cleanup to rebalance the
tree with fixTagged (Figure 4.2, 5). We call this case a splitting insert.

cleanup searches for the key of a tagged or underfull node and attempts to remove any
tagged or underfull node it encounters during its search. The fact that cleanup correctly
rebalances the tree with its invocations of fixTagged and fixUnderfull is proved in
Section 4.4.

fixTagged attempts to remove a tagged node. It tries to get rid of the tagged node by
creating a copy c of its parent, with the tagged node’s key and children merged into c, and
changing the grandparent to point to c (Figure 4.2, 5). However, if the merged node would
be larger than the maximum allowed size, fixTagged instead creates a new node p with
two new children c1 and c2, which evenly share the contents of the old tagged node and its
parent (Figure 4.3, Left). The grandparent is then changed to point to p. p is created as
a tagged node, unless it is the new root, in which case it is simply an internal node.

fixUnderfull fixes a node that is smaller than the minimum allowed size by either merging
it with a sibling node (if the contents of both nodes can fit in a single node) (Figure 4.2,
2) or by evenly dividing keys and values/pointers with a sibling node (Figure 4.3, Right).

4.4 Correctness

This section proves that the OCC-ABtree is linearizable. Recall that an algorithm is
linearizable if, in every concurrent execution, every operation appears to happen atomically
at some point between its invocation and its response.

25

Proving the linearizability of the OCC-ABtree requires a definition linking the physical
representation of the OCC-ABtree (i.e. the contents of the system’s memory) to the
abstract dictionary it represents. The operations are then shown to modify the physical
state of the tree in a way that is consistent with the abstract semantics described in
Section 4.1.

4.4.1 Definitions

Definition 1 (Reachable node). A node is said to be reachable if it can be reached by
following child pointers from the entry node.

Definition 2 (Key in OCC-ABtree). Let l be a reachable leaf. k is in the OCC-ABtree
if, when l’s version was last even, k was in l’s keys array. Furthermore, if k is the ith key
in l, the value associated with k is l.vals[i].

In other words, a key is logically inserted or deleted when a thread increments the version
number of the leaf for the second time (making it even).

Definition 2 is somewhat counter-intuitive. One might consider the following simpler def-
inition: a key k is in the tree if it is in some leaf’s keys array. Indeed, this alternate
definition can also be used to prove that the OCC-ABtree is linearizable. However, Def-
inition 2 is necessary for the correctness of publishing coalescing (Section 5.2). Using a
consistent definition hopefully makes the correctness argument easier for the reader.

There are two more definitions which are used in the proofs throughout this thesis. The
key range of a node is a half-open subset of the universe of keys (e.g. [100, 200) if the
keys are numbers, or [“aardvark”, “apple”) if the keys are strings). Intuitively, the key
range of a node is the set of keys that are allowed to appear in the subtree rooted at that
node.

Definition 3 (Key range). The key range of the entry node is defined to be the universe
of keys. Let n be a reachable internal node with key range [L,R). If n has no keys, the
key range of its child is also [L,R). Otherwise, suppose n contains keys k1 to km. The
key range of n’s leftmost child (pointed to by n.ptrs[0]) is [L, k1), the key range of n’s
rightmost child (pointed to by n.ptrs[m]) is [km, R), and the key range of any middle
child pointed to by n.ptrs[i] is [ki, ki+1).

Finally, the OCC-ABtree (along with all other trees in introduced in this thesis) is a
relaxed (a,b)-tree, as introduced by Larsen and Fagerberg [35]. The relaxed (a,b)-tree is
a search tree (as defined below). The most important consequence of the OCC-ABtree
being a search tree is that, for any key k in the universe of keys, there is a unique search
path for k, and this path passes through every reachable node whose key range contains k.

26

Intuitively, this path is the path an atomic search of k would take. Note that the uniqueness
of the path implies that there is a unique reachable leaf in the search tree whose key range
contains k.

Definition 4 (Search Tree). Suppose n is an internal node in a tree and k is a key in n.
A tree is a search tree if

• All keys in the subtrees to the left of k in n are less than k AND

• All keys in the subtrees to the right of k in n are greater than or equal to k

4.4.2 Invariants

Proving an insert is correct requires proving that search finds the correct leaf to insert
into. For search to find the correct leaf, the tree must satisfy some structural properties,
which are only satisfied if previous inserts and deletes were correct. This cyclical depen-
dency is common in correctness proofs for concurrent algorithms. The standard way to
deal with this is by assuming a set of invariants about the structure of the tree. These
invariants hold for the initial state of the tree, and every modification to the tree preserves
all invariants. These invariants can then be used to prove the linearizability of the data
structure.

Theorem 5 (OCC-ABtree Invariants). The following invariants are true at every config-
uration in any execution of the OCC-ABtree.

1. The reachable nodes form a relaxed (a,b)-tree.

2. The key range of a node that was once reachable is constant.

3. A node that is not reachable contains the same keys and values that it contained
when it was last reachable and unlocked (i.e. updates do not both unlink and modify
a node).

4. A key appears at most once in a leaf.

5. If a node was once reachable, and is currently unmarked, it is still reachable.

6. If a node is unlocked and was once reachable, its size field matches the number of
keys it contains.

7. The key range of n in search(key) contains key.

Intuitively, invariants 1 to 4 follow from the sequential correctness of the updates together
with the guarantee that any node that might be replaced or modified is locked and reachable
until the update occurs. The sequential correctness of the updates (i.e. their correctness

27

in a single-threaded execution) can be established by inspection of the pseudocode, so we
do not prove it in detail. We briefly explain the (concurrent) correctness of invariants 1 to
4. Invariants 5 and 6 are straightforward from the pseudocode.

Invariant 7 is slightly different from the others, in that it is not a structural invariant.
Rather, it describes the correctness of one of the operations. The proof is somewhat
involved, so it is proved in detail.

Proof. The invariants hold at the initial state of the OCC-ABtree.

1: OCC-ABtree is a relaxed (a,b)-tree. The updates to the tree are the same as
those described by Larsen and Fagerberg in [35]. They prove that, if these updates occur
atomically, the tree is always a relaxed (a,b)-tree. Thus, the remainder of the proof simply
shows that each update affects the tree atomically. This requires proving that for each
update:

• There is a single step at which the update appears to take place

• The update is correct

The first condition is simple. Simple inserts and deletes appear when the modified leaf is
unlocked, by Definition 2. All other updates only change a single pointer of a reachable
node (to point to the update’s newly created nodes).

For the second condition, assume that the updates are sequentially correct. This is easily
verifiable by examining the pseudocode in this thesis and comparing it to the pseudocode
in [35]. To establish concurrent correctness from sequential correctness, it is sufficient to
show that the update occurs on the correct data (i.e. on the correct node and with any
preconditions of the sequential code satisfied), the update affects data that is actually in
the tree, and the data used to construct the update does not change while the update is
being constructed.

An insert(key, val) operation uses the search function to find the leaf in which to
insert. By invariant 7, the leaf’s key range contains key. By invariant 1 (this invariant),
the tree is a relaxed (a,b)-tree and thus a search tree, so there is a unique reachable leaf
whose key range contains key. Finally, this leaf is reachable if the insert returns, because
insert verifies that the leaf is not marked. Thus, the insert occurs in the correct leaf. A
similar argument holds for delete.

The sequential code for the rebalancing steps has some preconditions. The fixTagged

rebalancing step requires that the node is tagged, but its parent and grandparent node
are not. This is guaranteed by cleanup. If any ancestor of the target node was tagged,

28

cleanup would have invoked fixTagged on it and restarted the search. Also, fixTagged
is only invoked on the target node if it is tagged.

fixUnderfull requires that none of the involved nodes are tagged, the parent node is
not underfull, and the target node is underfull. The underfull node and its ancestors are
not tagged, otherwise cleanup would have invoked fixTagged on them and restarted the
search. The sibling node in fixUnderfull is also not tagged; this is explicitly verified. The
parent node is not underfull, otherwise cleanup would have invoked fixUnderfull on it.
Note that the parent could not become underfull because the keys of an internal node are
constant. Finally, the target node is verified to be underfull. Thus, the rebalancing steps
also act on the correct data.

Each update verifies that all involved nodes are not marked before performing its update.
If the node is not marked, it is in the tree until the update itself unlinks the node, by
invariant 5. Moreover, any children of the node are also in the tree by Definition 1. Thus,
the data used to construct the update is actually in the tree.

Finally, the locks acquired by each update guarantees that any data involved in the update
is constant until the locks are released.

2: Constant key range. We must examine places where existing nodes are attached to
a new parent and ensure that the key range of all descendent nodes remains the same. This
happens in fixTagged and fixUnderfull. In either function, the routing keys surrounding
any pointer that is not removed remain the same before and after the update. Thus, the
key range of the pointed to node does not change. This holds for leftmost and rightmost
children of a node too, since the grandparent’s key range does not change (by this invariant),
and the new parent’s key range is the same as the old parent’s.

3: Unreachable nodes contain the same keys and values as they did when they
were last reachable and unlocked. Updates that unlink a node first lock it, then
unlink it, then unlock it, without changing the node’s keys or values.

4: No duplicate key. Insert operations read the whole leaf while it is locked before
attempting to insert a key, so a duplicate key is never inserted. The leaf that an insert
operation tries to insert into is correct by invariant 7.

fixUnderfull does not create duplicate keys when merging two leaves because there is a
unique leaf whose key range contains a given key, and any keys in that key range are only
present in that leaf (invariant 1). Thus, a key can only be in one of the two leaves and so
cannot appear twice in the merged node.

29

7: Search correctness. The search maintains the invariant that the key range of the
node it is currently reading contains the search key. Call this node n. The invariant holds
for the entry node, since its key range is the entire key space. Since the routing keys of an
internal node partition its key range, there is a unique child whose key range contains the
search key.

Let c be the child followed by the search after reading node n. Even if n is not in the tree
when the pointer to c is read by the search, c must have been set as a child of n while n
was in the tree, since only nodes in the tree are modified (invariant 3). Thus, at the time
that n was in the tree and had c as its child, the key range of c contained the search key
(Definition 3). Since the key range of a node is constant (invariant 2), the key range of c
also contains the search key.

With these invariants proved, the linearizability of the operations can now be established.

4.4.3 Linearizability of find

The leaf at which search(key) terminates was, at some point, the unique leaf that might
have contained key, by invariant 7.

The search only returns if, during an interval when the leaf was unlocked, it either finds
the search key and reads its value or it reads the entire leaf and does not find it. In the
former case, we know that this key is unique in the leaf (invariant 4). Since the leaf was
unlocked for the entire interval and nodes are not modified while they are unlocked, the
result value of find is correct for the leaf state in that interval.

If the leaf was in the tree at any point in this interval, find may linearize at that point and
be correct. If the leaf was never in the tree during the unlocked interval, find linearizes
at the point just before the leaf was unlinked. The leaf must have been marked when it
was unlinked; so, by invariant 3, the value returned by find is the same as it would be if
the find occurred atomically just before the node was unlinked.

In this case, we must show that the find was concurrent with the point when the leaf was
unlinked. Theorem 6 implies that the leaf must have been in the tree at some point during
find’s invocation of search. Since (by assumption) the node was not in the tree in the
unlocked interval, the find must have been concurrent with its unlinking. Note that the
search procedure does not actually read the marked bit to check whether a leaf is in the
tree; it is only described here for analysis.

Theorem 6. Each node search visits was in the tree at some time during the search.

30

Proof. The statement is true for the root. If the root is a leaf, the proof is complete.
Otherwise, search reads a child pointer from the root. We now show that any child
pointer read from a node n which was in the tree at some time during the search points to
a child which was also in the tree at some time during the search.

If n is still in the tree at the time the child pointer is read, the child pointed to is also
in the tree at that point by Definition 2. Thus the child is also in the tree at some point
during the search.

Otherwise, n must have been (atomically) unlinked by some update U at time t. The search
was concurrent with the unlinking of n since n was in the tree at some point during the
search (by assumption) and n was not in the tree when the search read the child pointer.
By invariant 3, the pointers of n point to its children just before it was unlinked at time t.
Thus, the child followed by the search procedure was in the tree at some time during the
search as well (namely, at t).

4.4.4 Linearizability of insert and delete

There are four possible linearization points for an insert(key, val) operation. Note
that in the final iteration of the RETRY loop, the leaf l that the insert locks is the unique
reachable leaf that might contain key since the OCC-ABtree is a search tree (invariant 1),
key is in l’s key range (invariant 7), and l is not marked (invariant 5).

An insert that succeeds in its search is linearized in the same way as a find operation.
The return value of the search is the value associated with the key (by the correctness of
find) and is the correct value to return for insert.

An insert that finds key in the leaf l after acquiring the l’s lock (and thus does not
modify l) may linearize at any point while the l’s lock is held because while l is locked, the
key cannot be removed from l, the key’s associated value cannot change, and l cannot be
unlinked (since unlinking l would require marking it). Since the leaf’s version is even, the
associated value is the correct return value according to Definition 2.

An insert that inserts a key-value pair into a non-full leaf l linearizes at its second in-
crement of l’s version (which marks the modification as complete). The key is not in the
OCC-ABtree before the linearization point since the insert read l while it was locked with-
out finding the key, and l is the unique reachable leaf that might contain l. The key is in
the OCC-ABtree after the linearization point (according to Definition 2) because the key
is added to l, l is still reachable, and l’s version is even.

For splitting inserts, searches can observe the change as soon as the pointer to the new
subtree is written in the parent, since searches do not read locks on internal nodes. Thus,

31

splitting inserts must linearize at the write to the parent node. Suppose a splitting insert
writes the new pointer into the parent node p at time t. Let l be the leaf that was split
and replaced by a tagged node t with children l1 and l2. The inserted key is not in the
OCC-ABtree before the write to p since the insert reads l while it is locked and does not
find the key (and l is the unique reachable leaf that might contain the key). After the
write to p, the inserted key is in the tree because it is in either l1 or l2, both of which
are reachable because p is unmarked and thus reachable (invariant 5). The other keys in l
are not affected by splitting inserts since they are placed in one of l1 or l2 by the splitting
insert.

The returned value of ⊥ is correct in the above two cases, since the insert succeeded. The
linearization of deletes and justification of return values is similar to the first three cases
above.

4.5 Height bound

This section shows that the height of the OCC-ABtree is bounded by O(c+ loga n), where
c is the number of threads currently executing an operation on the OCC-ABtree.

We now introduce the concept of a violation. A violation is a node which must be
removed from the tree. There are two types of violations. A tag violation is any tagged
node. An underfull violation is a non-tagged node, other than the entry node or root
node, which is smaller than the minimum size. This sections shows that the number of
reachable violations is bounded by c, then uses this bound to derive a height bound on the
OCC-ABtree.

One more definition is needed before discussing the bound on the number of reachable
violations. A violating thread is a thread that has created either a tag violation by
splitting a leaf (in insert) or an underfull violation by making a leaf underfull (by deleting
a key in it), and has not returned from its operation.

To show that the number of reachable violations in the tree is bounded by c, consider
a mapping ρ from reachable violations to violating threads. Intuitively, if a reachable
violation v maps to a violating thread T , T is responsible for removing v from the OCC-
ABtree (by invoking fixTagged or fixUnderfull in cleanup). In some cases, T might also
be responsible for removing new reachable violations created in the process of removing v.
Table 4.1 describes when reachable violations are added to the mapping (by operations and
rebalancing steps). A reachable violation v can be removed from the mapping in one of
two ways (not described in the table): either v is unlinked from the tree (by a rebalancing
step) or, if v is an underfull violation at a leaf, an insert makes the leaf not underfull.

32

Update type Case New entries in ρ
insert Splitting insert, new tagged node t

is not root
ρ(t) = inserting thread

Splitting insert, new node t is root -
delete Leaf n becomes underfull ρ(n) = deleting thread
fixTagged n with
parent p

p not max size, new parent p′ not
underfull

-

p not max size, new parent p′ under-
full

ρ(p′) = ρ(n)

p max size, new tagged node t (not
root) with new children c1 and c2

ρ(t) = ρ(n)

p max size, new node is root with
new children c1 and c2

-

fixUnderfull n
with sibling s and
parent p

Combined node n′ not underfull,
new parent p′ not underfull

-

Combine: n′ not underfull, p′ under-
full (and not root)

ρ(p′) = ρ(n)

Combine: n′ not underfull, p′ under-
full (and is root)

-

Combine: n′ underfull, p′ not under-
full

ρ(n′) = ρ(n)

Combine: n′ underfull, p′ underfull
(and not root)

ρ(n′) = ρ(n), ρ(p′) = ρ(s)

Combine: n′ underfull, p′ underfull
(and is root)

ρ(n′) = ρ(n)

Distribute keys, new parent p′ not
underfull

-

Distribute: p′ underfull ρ(p′) = ρ(p)

Table 4.1: Reachable violation to violating thread mapping

33

The bound on the number of reachable violations is a result of Theorem 7. The crux of
the proof of Theorem 7 is Property 9, which guarantees that a violating thread is able to
find the violation that maps to it by searching in cleanup. Thus, if a thread does not find
any violation in its search, it can safely return.

Theorem 7. The mapping described in Table 4.1 is injective.

Proof. The mapping is initially empty, which matches the initial state of the tree.

Proving that the mapping is injective requires showing that each reachable violation maps
to some violating thread, and no violating thread is mapped to by more than one reachable
violation. We prove the latter statement first (since its proof is simpler).

Each violating thread is mapped to at most once. Let T be a violating thread.
A reachable violation v is only mapped to T in one of two ways. The first way is if T
created v through a splitting insert or delete operation. In this case, no reachable violation
was previously mapped to T since T was not a violating thread before it created v. The
second way is if, after a rebalancing step, a newly created reachable violation is mapped
to T . Examining Table 4.1, it is clear that every update that does this also unlinks a
reachable violation that previously mapped to T . Since the invariant guarantees at most
one reachable violation mapped to T before the rebalancing, T still only has one reachable
violation that maps to it after the rebalancing step.

Each reachable violation maps to some violating thread. A thread maps each new
violation that it creates either to itself (in the case of splitting inserts or deletes that make
a node underfull), or to a thread whose reachable violation it removed. In either case, the
thread being mapped to is a violating thread, by the fact that the mapping is injective.

The only remaining way the theorem could be false is if a violating thread which is mapped
to some reachable violation v returns. This would leave v mapped to a thread that is no
longer a violating thread. Property 9 shows that this is never the case.

Property 9 implies that once a violating thread in cleanup reaches a leaf without encoun-
tering any violations, there are no reachable violations that map to the thread. Note that
once a thread in cleanup has no reachable violation that maps to it, no new reachable
violations will be mapped to the thread until it returns and performs a new operation (see
Table 4.1). Thus, the thread may return without violating the invariant.

The proof of Invariant 9 relies on Property 8. The proof of Property 8 is by exhaustive
examination of Table 4.1 and the sequential part of the rebalancing updates, and thus is
omitted.

34

Property 8. Let k be the searchKey of the violation originally created by a violating
thread T . If a (not necessarily reachable) violation v maps to T , then the key range of v
contains k.

Consider a thread T performing a search in cleanup. The location of T , loc(T) is the
node pointed to by the pointer most recently read by T , or the entry node if T is at the
beginning of cleanup. The atomic completion of T ’s search is the set of nodes that
would be traversed along an atomic search for T ’s search key, starting at loc(T).

Property 9. While a violation v maps to a violating thread T and T is executing a search
for key k in cleanup, one of the nodes in the atomic completion of T ’s search is a violation
and T will not return from cleanup.

Proof. The property holds whenever T is the entry node, since an atomic search from the
entry node for k will pass through v (the OCC-ABtree is a search tree and the key range
of v contains k, by Property 8).

The following two statements are sufficient to prove the property:

1. Every step of T ’s search maintains the property

2. Every update maintains the property

To see that the first statement is true, observe that T can only break the property by moving
to another node or returning. If T moves to the entry node (because it invokes fixTagged
or fixUnderfull) then the property is maintained (as argued above). Otherwise, if T
moves to a child node from an internal node, then the internal node was not a violation
(otherwise T would have fixed it). The child node T moves to is in the atomic completion
of T ’s search because the keys of an internal node are constant (so T reads the same keys
and child pointer that an atomic search would). Finally, suppose T returns after reaching
leaf node l (which cannot be tagged). T did not call fixUnderfull and restart its search,
thus it must have either read that l.size > a, l was the entry node, or l was the root.
At that read, l is not an underfull violation. But, l is the only node left in the atomic
completion of T ’s search (since l is a leaf). This contradicts the assumption that there is
a violation in the atomic completion of T ’s search.

Every update also maintains the property. If an update does not unlink any node in the
atomic completion, the atomic completion does not change, so the property is maintained.
If an update does unlink a node in the atomic completion, there are two cases.

35

Case 1. Suppose there is a node n immediately before the unlinked node(s) in the atomic
completion of T ’s search and n is reachable. Before the update, v was in n’s subtree and
thus was reachable. If v is not unlinked by the update, it is still reachable and in n’s
subtree after the update. If v is unlinked by the update, a new violation that maps to T
will also be reachable and in n’s subtree (if there is a new violation; otherwise no violation
maps to T and it can return at any time). In either case, the fact that the OCC-ABtree is
a search tree means that there is unique search path for k. This path will pass through n
and then the violation mapping to T , since the key of both nodes contains k (Property 8).
Since n is in the atomic completion of T , so is the violation.

Case 2. Otherwise, either there is no node in the atomic completion of T ’s search before
the unlinked nodes, or the node immediately before the unlinked nodes is already unlinked.
In the former case, since unlinked nodes are not changed when they are removed, the atomic
completion remains the same. In the latter case, every node in the atomic completion from
loc(T) to the nodes being unlinked is not reachable (since, by definition, all children of a
reachable node are reachable). None of these nodes can change because they are no longer
reachable, so the atomic completion of T ’s search remains the same after the update.

Thus, a violating thread does not return from cleanup until there is no violation that maps
to it. Recall that no new violations map to the violating thread after this point (until it
starts a new operation).

Thus, the mapping function is injective.

The remainder of the height bound proof is relatively simple. Since the mapping function is
injective, there can be at most c reachable violations at any time, where c is the number of
violating threads. Consider removing each of these violations atomically. When a violation
is removed by a rebalancing step, the height of the tree is reduced by at most one. Thus,
removing c violations reduces the height of the tree by at most c. Since the OCC-ABtree
is simply an (a,b)-tree (with height O(loga n)) when it contains no violations, its height
with the violations is O(c+ loga n).

Theorem 10 (OCC-ABtree height bound). The height of the OCC-ABtree is O(c+loga n),
where c is the number of violating threads.

4.6 Deadlock-freedom

Recall that an algorithm is deadlock-free if (assuming a fair scheduler),

36

1. In every infinite execution, an infinite number of operations return AND

2. There exists an infinite execution in which each thread returns from an infinite num-
ber of operations

Theorem 11. The OCC-ABtree is deadlock-free.

Proof. The second criterion is satisfied by considering an execution in which the scheduler
picks a thread and performs its operation alone (without scheduling any other thread).
This results in a sequential execution. Each operation will terminate in a finite number
of steps because the operation’s search will always reach a leaf node (invariant 1) and
perform the desired operation. Thus, each thread returns an infinite number of times if
the scheduler chooses each thread infinitely often (e.g. by cycling through threads in a
round-robin way).

Now we prove that the first criterion is satisfied. Consider an infinite execution of the OCC-
ABtree. Suppose for a contradiction that there exists a time t1 after which no operations
return. Let S be the set of operations that take steps forever.

Since no operations return after t1, and each insert/delete only inserts/deletes at most
once before returning, there exists a time t2 > t1 after which no key is inserted or deleted.
After t2, the only other updates that might modify the tree are rebalancing steps. Larsen
and Fagerberg show that once inserts and deletes stop happening, only a bounded number
of rebalancing steps can occur (Theorem 7 in [35]). Thus, there must exist a time t3 > t2
after which no rebalancing steps occur and therefore the tree is no longer modified. Since
a version is set to odd only when the tree is about to be modified, all version numbers are
even (and constant) after t3.

To obtain a contradiction, we show that one of the operations in S must eventually return.
Consider the following two cases.

Case 1: There is a find in S. No find can be stuck searching for a leaf forever since
the OCC-ABtree is a search tree (invariant 1) that is not being modified, so the search will
eventually reach a leaf. The search also cannot be stuck repeatedly executing the RETRY

loop in searchLeaf because the leaf’s version number is always even. So, searchLeaf

should terminate and the find should return. This is a contradiction.

Case 2: There is no find in S. All operations in S are inserts or deletes. There are
four places where an insert or delete might be stuck:

(a) The RETRY loop in searchLeaf

37

(b) The RETRY loop in insert or delete

(c) Waiting to acquire a lock that is held by another thread

(d) The RETRY loop in cleanup

We consider each of these subcases in turn.

Subcase 2a. search will eventually terminate for the reasons described in Case 1.

Subcase 2b. The operation cannot be stuck in the RETRY loop of insert or delete

because it will eventually start a search after t3 (when the tree is no longer being modified).
Every node traversed in this search is linked in the tree, and is thus unmarked (invariant 5).

Subcase 2c. Suppose, after time t3, some threads are each infinitely trying to acquire
some lock. A thread only fails to acquire a lock if the lock is held by another thread.
Consider the graph in which a vertex representing thread T has an edge to another thread
T ′ if T ′ is holding the lock that T is trying to acquire. This graph must contain at least
one cycle for threads to be stuck forever when trying to acquire a lock. The proof below
eventually aims to prove that this cycle cannot exist without causing a contradiction.

Pick an arbitrary cycle and call the threads in this cycle T1 through Tm. Each Ti has a
lock on some node ni and is trying to lock the node held by the thread after it in the
cycle. Each of the Ti’s can only be executing either a splitting insert, a fixTagged call, or
a fixUnderfull call. Simple inserts and deletes acquire at most one lock, so they cannot
be part of the cycle (they do not try to acquire a lock while they already hold some lock).

The proof that the cycle cannot exist uses the following definition. The relaxed height of
a node in a relaxed (a,b)-tree (such as the OCC-ABtree) is the number of nodes between it
and any leaf in its subtree (including one endpoint), excluding any tagged nodes [35]. The
relaxed height of a node is well-defined: it is the same no matter which leaf in its subtree is
chosen. For a node n, its relaxed height is written rh(n). In the OCC-ABtree, the relaxed
height of a node is constant once the node is linked into the tree. This is verifiable by
examining the sequential pseudocode of each update.

The proof proceeds by showing that nodes are always locked in order of non-decreasing
relaxed height. This implies that rh(n1) ≤ rh(n2) ≤ . . . rh(nm) ≤ rh(n1). Thus, the
relaxed heights of all ni must be equal.

If T1 (WLOG) is executing fixTagged, the node it is trying to lock (n2) must either be
the parent node or the grandparent node in its update (since it has already locked n1). If
n2 is the parent node, rh(n2) = rh(n1) + 1 since n2 is the parent of n1 and is not tagged

38

(cleanup guarantees there are no violations at the parent or grandparent). If n2 is the
grandparent, rh(n2) is either rh(n1) + 1 (if n1 is the parent) or rh(n1) + 2 (if n1 is the
tagged node). Either way, rh(n1) < rh(n2), which is a contradiction.

If T1 (WLOG) is executing a splitting insert, n2 is the parent node. If n2 is not tagged, the
contradiction is the same as in the fixTagged case above. Suppose n2 is tagged. n2’s lock
is held by thread T2. T2 cannot be executing a splitting insert, since n2 would have to be
the parent node of the splitting insert (n2 is not a leaf). But then, T2 would have acquired
all of its locks, which contradicts the assumption that all threads are blocked. T2 also
cannot be executing fixUnderfull because no node involved in fixUnderfull is tagged
(the sibling is explicitly verified, the other three are handled by cleanup calling fixTagged

before fixUnderfull). Finally, as proven above, T2 cannot be executing fixTagged as this
leads to a contradiction.

The only remaining possibility is for all Ti to be executing fixUnderfull. If any Ti
executing fixUnderfull is trying to lock the parent or grandparent node, the contradiction
is the same as in fixTagged: rh(ni) < rh(ni+1). Otherwise, all Ti are locking the right
sibling of their node ni. But this implies that n1 was once the left sibling of n2, which was
the left sibling of n3, and so on until nm was the left sibling of n1. This is, even intuitively,
a contradiction. Formally, suppose the key range of ni is [Li, Ui). The key ranges of siblings
are adjacent, so the above statement implies U1 = L2, U2 = L3, and so on until Um = L1.
Thus, all Li and Ui are the same. This is a contradiction because no node has an empty
key range.

Thus, there cannot be such a cycle of threads T1 to Tm. This implies that some thread will
eventually acquire all of its locks and either return (e.g. if an insert finds the key it wishes
to insert) or modify the tree (by inserting/deleting a key or executing a rebalancing step)
after t3, which is a contradiction.

Subcase 2d. Finally, suppose none of the other subcases occurs. Thus, every thread is
infinitely searching in cleanup. A thread T will eventually reach a violation v at some
time after t3 since it searches forever and returns if it does not find a violation.

If v is a tag violation, T will acquire all locks and fix the violation (contradicting the fact
that the tree is no longer being modified after t3). T will not retry after acquiring the locks
because no search after t3 reaches a marked node. Note that T will eventually acquire all
locks because it performs an infinite number of searches, so it must eventually acquire all
locks in order to continue searching.

If v is an underfull violation, T will call fixUnderfull. If the sibling node is not tagged,
T will eventually acquire all locks and fix the violation, which is a contradiction. If the

39

sibling node is tagged, the injective mapping from Section 4.5 guarantees that there is
some violating thread (call it T ′) to which v is mapped. T ′ will reach v because it is
infinitely searching in cleanup and there are no violations on the path to v (otherwise T
would have fixed them). Once T ′ reaches v, it will call fixTagged, successfully acquire all
of its locks, and fix the violation. Again, this is a contradiction.

The other trees in this thesis are also deadlock-free. The proofs are similar, and so are
omitted.

4.7 Performance vs lock-free implementation

The OCC-ABtree is based on the lock-free (a,b)-tree (LF-ABtree) of [10], which often
outperforms the state-of-the-art in binary search trees. The LF-ABtree uses the wait-free
primitives LLX and SCX (extended versions of the well-known LL and SC primitives). A key
is inserted by replacing a leaf with a new copy that contains the new key. This read-copy-
update style of insertion is encouraged by the LLX and SCX primitives (since SCX can only
modify a single pointer atomically). Copying every key and pointer/value in a node every
time it has to be updated adds significant overhead to updates, so the LF-ABtree does
not scale well in heavy-update workloads. This is true even if the updates are uniformly
distributed. In contrast, the OCC-ABtree modifies leaves in place, leading to more efficient
updates.

We briefly compare the performance of the OCC-ABtree and the LF-ABtree to motivate
further algorithmic improvements. In these experiments, n threads all access the same tree
containing 1 million keys (and values) for 10 seconds. The experiments in this chapter were
run on a 4-socket Intel Xeon Gold 5220 with 18 cores per socket and 2 hyperthreads (HTs)
per core, for a total of 144 hardware threads, and 192GiB of RAM. In all experiments,
threads are pinned such that the first socket is saturated before the second socket is used,
and so on. Additionally, the pinning ensures that all cores on a socket are used before
hyperthreading was engaged (i.e. hyperthreading is engaged for all thread counts other
than 18 threads, in the graphs below). The full experimental setup is described in detail
in Chapter 6. We test three workloads: search-only with uniformly distributed accesses
to keys in the data structure, update-only with uniform accesses, and update-only with
Zipfian accesses.

The OCC-ABtree and LF-ABtree perform similarly in the search-only workload (Fig-
ure 4.4), but the OCC-ABtree outperforms the LF-ABtree on the uniformly distributed,
update-only workload (Figure 4.5) because of the reduced update overhead. In the update-
only Zipfian workload (Figure 4.6), the LF-ABtree has much better scaling, but its peak

40

Figure 4.4: Throughput comparison of the OCC-ABtree and LF-ABtree on a uniform-
access, search-only workload.

performance is only marginally better than the OCC-ABtree. The poor scaling of the
OCC-ABtree under high-contention workloads is a result of contention on the TACAS lock
of the few leaves containing frequently updated keys. When an update completes, any
concurrent updaters that were waiting on the lock rush to acquire it, causing significant
cache coherence traffic. This causes stalled cycles. This performance problem is magnified
as the number of processor sockets increases.

4.8 Using MCS locks

As a first step towards mitigating this performance problem, we replace the TACAS locks
in the OCC-ABtree with MCS locks [42]. These are queue-based locks which are ideal for
high-contention, since they offer constant remote memory reference complexity. A thread
attempting to acquire a lock creates a queue node, and joins a queue of threads waiting
to acquire the lock, spinning until the owned bit in its queue thread is set to true by
the thread just before it in the queue. Spinning locally instead of on a heavily contended
bit eliminates the problem of multiple threads rushing to acquire the lock as soon as it is
released. As an added bonus, MCS locks are fair, which may have some beneficial effect in
practice on the tail latencies of updates. The only change to the OCC-ABtree pseudocode

41

Figure 4.5: Throughput comparison of the OCC-ABtree and LF-ABtree on a uniform-
access, update-only workload.

Figure 4.6: Throughput comparison of the OCC-ABtree and LF-ABtree on a Zipfian-
access, update-only workload.

42

is the replacement of the TACAS lock on line 4 with an MCS lock.

The space overhead of using MCS locks is minimal. Each node only needs a pointer-sized
field to point to the tail of the MCS queue, and each thread only ever needs four MCS
queue nodes, since no operation acquires more than four locks at a time. Note that these
queue nodes do not need to be allocated on the heap. (In the experiments in this thesis,
they are stack allocated, which is highly efficient.)

Figures 4.7 to 4.9 illustrate the effectiveness of using MCS locks in workloads with high
contention. Figure 4.7 is the same experiment as in Figure 4.6 but with the MCS-ABtree
added in. Figure 4.8 compares the average number of cycles per operation spent stalled
while waiting for cache coherence on an update-only, Zipfian workload (as measured by
the PAPI RES STL performance counter in the PAPI C++ library [54]). The hardware
setup is as described in Chapter 6. Finally, Figure 4.9 compares the average time taken
to acquire the lock. Note the logarithmic scale on Figures 4.8 and 4.9: the OCC-ABtree
spends roughly an order of magnitude more time stalled and trying to acquire the lock
when running on multiple sockets (compared to both MCS-ABtree and its own single socket
performance).

The degree to which the use of MCS locks addresses the scaling issues of the other two
algorithms is quite surprising. It would be interesting to investigate whether similar gains
could be made in other lock-based concurrent data structures with this simple change.

43

Figure 4.7: Throughput comparison of the OCC-ABtree, MCS-ABtree, and LF-ABtree on
a Zipfian-access, update-only workload.

Figure 4.8: Average number of cycles the OCC-ABtree, MCS-ABtree, and LF-ABtree are
stalled when running a Zipfian-access, update-only workload.

44

Figure 4.9: Average time a thread in the OCC-ABtree and MCS-ABtree takes to acquire
the lock, when running a Zipfian-access, update-only workload.

45

Chapter 5

Coalescing

Although MCS locks substantially improve performance, there is still a scaling bottleneck
caused by the serialization of modifications to hot nodes (which contain frequently updated
keys). This problem is reminiscent of the scaling problems faced by designers of concur-
rent stacks and queues. In this section, we adapt elimination, one of the most impactful
algorithmic innovations in concurrent stacks, for use in trees.

Elimination in a stack reduces contention by trying to pair up concurrent push and pop
operations, allowing threads to communicate with one another directly to complete their
operations without modifying the stack. We describe a technique for dictionary operations
called coalescing in which multiple concurrent insertions and deletions of the same key are
grouped and reordered (i.e., their linearization order is permuted) such that they can all
be completed with at most one modification to the data structure.

In particular, after a simple insert (i.e., one that does not split a leaf), or a successful
delete, we try to identify and coalesce any concurrent insertions and deletions of the same
key1. Suppose we linearize this successful update operation U as in Chapter 4.4. Then,
linearizability allows us to freely order other insertions and deletions of key before or after
U , as long as they are concurrent with the linearization point of U .

Suppose U is a simple insert(key, val). If a deletion of key is concurrent with the
linearization point of U , then it can be linearized immediately before U and return ⊥
(without modifying the data structure). Similarly, if an insertion of key is concurrent
with the linearization point of U , then it can be linearized immediately after U and return

1We could potentially also coalesce after performing a splitting insert, but splits are relatively uncom-
mon, and this would complicate the algorithm and its correctness argument.

46

val. Since neither of these operations change the data structure, an arbitrary number of
insertions and deletions of key can be coalesced in this way, provided they are concurrent
with the linearization point of U .

The case where U is a successful delete(key) is similar. A deletion of key that is con-
current with the linearization point of U is linearized after U (and returns ⊥), and an
insertion of key that is concurrent with the linearization point of U is linearized before U
(and returns the value removed by U).

5.1 Coalescing with the MCS queue

The challenge is now to detect insertions and deletions of key that are concurrent with the
linearization point of a simple insert or successful delete. Since MCS locks were already
being used to improve scaling, an interesting initial approach is to leverage the queue to
do this: the thread that performed the successful operation traverses the queue, coalescing
any operations on the same key (and removing their queue nodes from the queue). This
approach is somewhat similar to flat combining [29], but with the key difference that a
coalesced thread can return immediately after it is coalesced instead of having to wait
for coalescing to complete. The resulting tree is called the Coalescing-MCS-ABtree, or
CoMCS-ABtree.

47

Algorithm 5.1: MCS coalescing implementation

201 abstract type Node

202 queueTail : MCSNode

203 ... // remaining fields

204

205 type Operation is INS , DEL or BAL

206

207 type MCSNode

208 op : Operation

209 key : K

210 next : MCSNode

211 retval : V

212 owned : bool

213 coalesced : bool

214

215 <bool , V> lockOrCoalesce(node ,

mcsNode)

216 // atomically set tail

217 tail = atomic_swap(node.

queueTail , mcsNode)

218 if tail 6= NULL

219 tail.next = mcsNode

220 Spin until owned or coalesced

is set

221 if mcsNode.coalesced

222 return <false , retval >

223 return <true , ⊥>
224

225 // Same as regular MCS lock

226 release(mcsNode , node)

227 if CAS(node.queueTail , mcsNode ,

NULL) succeeds

228 return

229 // Another node is in queue

230 Spin until next is set

231 next.owned = true

232 coalesce(head , end , val)

233 if end = head return

234

235 Spin until head.next is set

236 prevInQueue = head

237 curr = head.next

238 while curr 6= end

239 Spin until curr.next is set

240 nextCurr = curr.next

241

242 if curr.key 6= head.key or

curr.op = BAL

243 // Do not coalesce curr

244 prevInQueue.next = curr

245 prevInQueue = curr

246 else

247 // Coalesce curr

248 curr.retval = val

249 curr.coalesced = true

250 curr = nextCurr

251 prevInQueue.next = end

252

253 V insert(key , val)

254 myNode = new MCSNode(key , INS)

255 acq ,retval = lockOrCoalesce(leaf ,

myNode)

256 if not acq

257 return retval

258 ...

259 if leaf.keys[i] = ⊥
260 leaf.ver++

261 ... // Insert key

262 currTail = leaf.queueTail

263 leaf.ver++

264 coalesce(myNode , currTail , val)

265 Unlock leaf

266 return ⊥

Algorithm 5.1 contains the pseudocode for the CoMCS-ABtree. Each node contains a
queue of augmented MCS queue nodes. In addition to the standard owned and next fields,
an augmented queue node created by an update U contains the following data:

48

• op: The type of operation (insert, delete, or rebalance) U wishes to perform
• key: key if U is an insert(key, val) or delete(key), otherwise ⊥
• coalesced: A bit that indicates the insert/delete has been coalesced (initially false)
• retval: The value to return if U is an insert and is coalesced

To lock a node, a thread first creates an augmented MCS queue node then invokes lockOrCoalesce,
which returns when either the lock is acquired or the thread’s operation is coalesced.
lockOrCoalesce appends the queue node to the end of the queue by atomically swapping
the node’s existing tail with the new queue node then making the existing tail’s next point
to the queue node. The thread then spins not only on its owned variable (as in a traditional
MCS lock), but also on its coalesced bit. Thus, a thread will stop spinning either because
it holds the lock, or because it has been coalesced. If it was coalesced, the thread imme-
diately returns retval if it was performing an insert and ⊥ if it was performing a delete.
(How retval is set is described below. Recall from the discussion in the beginning of this
chapter that all coalesced deletes return ⊥.) A thread performing a balance operation is
never coalesced. If the lock is acquired, the thread continues to perform its operation.

Every simple insert and successful delete will attempt to perform coalescing. Let U be a
simple insert or successful delete, l be the leaf it modifies, and v the value that U deletes
or inserts. After U finishes modifying l, but before its second write to the version of l, U
reads the current MCS queue tail t. U then increments the version and invokes coalesce,
which performs a bounded traversal starting from the head of the queue and continuing
until it reaches t (coalesce is described further below). Whenever coalesce encounters a
queue node that represents an insertion or deletion of the same key, it removes the node
from the queue, stores v in retval, and finally sets coalesced to true. As discussed in
the beginning of this chapter, v is the correct value for coalesced inserts to return.

Note that U reads the queue tail before it is linearized (i.e., before it performs the second
write to the version of l). Thus, every node U encounters during coalesce is in the queue
when U is linearized. In other words, every removed node represents an operation that is
concurrent with the linearization point of U . It is crucial that the queue tail is read before
the linearization point of U . Otherwise, U could traverse nodes belonging to operations
that started after U was linearized, and erroneously coalesce them (which is not correct,
because such operations cannot necessarily be linearized as described in the beginning of
this chapter).

Note that coalesce is only invoked on leaf nodes, so the MCS queues in internal nodes
are just regular MCS queues (without any coalescing). Coalescing greatly improves per-
formance at high thread counts in high contention workloads, as Figure 5.1 shows.

49

Figure 5.1: (a,b)-tree comparison on high-contention workload.

5.1.1 coalesce explanation

coalesce removes all nodes that represent insert or delete operations on head.key between
head and end, the tail read at line 262 (excluding head and end). Note that head is indeed
the head of the queue since coalesce is only invoked if the lock is owned and the owning
thread’s MCSNode is always the head of the queue.

If end = head, there are no nodes strictly between head and end so coalesce returns
without doing anything. Otherwise, coalesce begins reading the MCS queue starting
from the node after head (which must exist since end is somewhere after head in the
queue). prevInQueue stores the last traversed queue node which was not coalesced, and is
initially head.

In the loop, the thread waits for the current node’s successor to be set and saves it in a
local variable before deciding to whether to coalesce the current node. This is necessary in
this implementation because MCS queue nodes are stack-allocated. This means that once
a queue node is coalesced, its owning thread might return and overwrite the queue node’s
data (including the pointer to its successor in the queue). Thus, the successor must be
saved before marking the node as coalesced.

If the current node’s key does not match head.key or if the queue node’s operation is
not INS or DEL (i.e. it is a balance operation, BAL), the queue node is not coalesced. So,
the last not coalesced queue node (prevInQueue) is linked to curr. If the node should be
coalesced, its return value is set to val and its coalesced bit is set. prevInQueue does not

50

Figure 5.2: Coalescing publishing example. Consider the state of leaf l as shown. l.rec
stores the CoRec of a completed simple insert insert(2,F). Consider three (independent)
inserts that are attempting to insert in l and are all at line 286. Insert 1 cannot coalesce
itself with rec since the version of the leaf it read is greater than rec.ver. Insert 2 cannot
coalesce itself since its key does not match rec.key. Insert 3 can coalesce itself.

change in this case. After the loop is complete, prevInQueue is linked to end, connecting
the non-coalesced nodes to the remainder of the queue (from end onwards).

coalesce is guaranteed to reach end eventually, since queue nodes cannot leave the queue
unless they acquire the lock or are coalesced by coalesce. The thread that invokes
coalesce holds the lock for the entire duration of coalesce and no other thread can
invoke coalesce during this time since coalesce is only invoked by a thread that holds
the lock.

5.2 Coalescing publishing

In the CoMCS-ABtree, queue traversals cause costly cache misses. This section describes
a modification of the OCC-ABtree called the coalescing publishing (a,b)-tree (CoPub-
ABtree, for short), in which each leaf stores a summary, called an CoRec, of the last
operation U that modified it, which concurrent operations use to coalesce themselves. (U
is either a simple insert or a successful delete.)

The contents of an CoRec are similar to the data that MCS queue nodes are augmented
with in Section 5.1: key stores the key that U inserted or deleted and val stores the value
that it inserted or deleted. Thus, if an insert on the same key as U can determine that
it is concurrent with the linearization point of U , it can coalesce itself and return the val

from the CoRec published by U . Similarly, if a delete on the same key as U is concurrent
with the linearization point of U , it can coalesce itself and return ⊥.

51

The ver field of CoRec is used by inserts and deletes to determine whether they are concur-
rent with the linearization point of U . Let l be the leaf modified by U . U increments the
version of l to an odd value v, performs its modification, publishes an CoRec in l whose ver
field set to v, and finally increments the version of l to v + 1. Recall that the linearization
point of U is when it sets the version to v + 1 (i.e., the second increment of the leaf’s
version). Thus, an insert/delete is concurrent with the linearization point of U if:

1. It reads a version of l less than or equal to v and
2. It returns after the version of l is at least v + 1

since the version number of a leaf only ever increases. Condition 1 guarantees that the
insert/delete is present before the linearization point of U , and condition 2 guarantees that
it is present after the linearization point.

Let us see how an insert(key, val) decides whether it can coalesce itself (Algorithm 5.2).
As soon as the insert’s search terminates, it reads the leaf’s version and stores it in sVer

(short for search version). As in the OCC-ABtree, it then traverses the leaf and if it finds
key, it returns the associated value. If it does not find key, or if the leaf is being modified
(i.e., if its version is odd), the insert invokes lockOrCoalesce in an attempt to coalesce
itself, or lock the leaf if it is unable to do so.

In lockOrCoalesce, the insert attempts to read a snapshot of the leaf’s CoRec. To do
this, it reads the leaf’s version (line 280), then reads the CoRec rec, then re-reads the
leaf’s version (line 284). If the reads of the leaf’s version return identical results, and the
version is even (indicating the leaf is not being modified), then a snapshot was obtained.
Otherwise, lockOrCoalesce tries to obtain a snapshot again.

Once a snapshot is obtained, condition 2 is guaranteed to be satisfied. To see why, note
that the leaf’s version is even when it is last read at line 283 by the exit condition of the
loop. But, rec.ver is always an odd value, thus the version read at line 283 is at least
rec.ver+1.

At line 286, lockOrCoalesce tries to determine whether condition 1 is satisfied. If it is, and
key matches rec.key, then lockOrCoalesce returns <false, rec.val>, so tryInsert

returns at line 321, which causes the insert to coalesce itself and return rec.val. Otherwise,
the insert does not have enough information to argue that it can coalesce itself, so it
attempts to lock the leaf. If it acquires the lock, the insert proceeds as in the OCC-
ABtree. If it performs a simple insert, it publishes a CoRec (as described above). If the
insert fails to acquire the lock, it attempts to coalesce itself again.

The coalescing of deletes is similar, except that coalesced deletes always return ⊥ (not
rec.val). Figure 5.2 shows an example of coalescing publishing.

52

Without the need to traverse a queue, the CoPub-ABtree scales even better than the
CoMCS-ABtree, which already outperforms the OCC-ABtree and MCS-ABtree on the
high-contention workload (Figure 5.1).

Finally, we note that the CoRec could also be used to linearize finds in high-contention
workloads. In some extreme scenarios, this could possibly be useful in preventing find(key)

from being starved by an endless stream of updates to key. I did not observe this in my
experiments, since the nodes are small enough that searches can typically traverse a leaf
in the interval between when one update completes and the next one begins.

53

Algorithm 5.2: Coalescing publishing

267 // K is key type , V is value type

268 type CoRec

269 key : K

270 val : V

271 ver : int

272

273 type Leaf

274 rec: CoRec

275 ... // remaining fields

276

277 <bool , V> lockOrCoalesce(leaf , key ,

sVer)

278 while true

279 // Try to coalesce self

280 do

281 ver1 = leaf.ver

282 rec = leaf.rec

283 ver2 = leaf.ver

284 while ver1 is odd or ver1 6= ver2

285

286 if sVer ≤ rec.ver and rec.key =

key

287 return <false , rec.val >

288

289 // Cannot coalesce , try to lock

290 if tryLock(leaf.lock)

291 return <true , _>

292

293 <RetCode , V> trySearchLeaf(leaf , key)

294 ver1 = leaf.ver

295 if ver1 is odd

296 return <RETRY , ⊥>
297

298 val = ⊥
299 for i = 0 up to MAX_SIZE - 1

300 if leaf.keys[i] = key

301 val = leaf.vals[i]

302 break

303 ver2 = leaf.ver

304 if ver1 6= ver2 return <RETRY , ⊥>
305 if val = ⊥ return <FAILURE , ⊥>
306 else return <SUCCESS , val >

307 <RetCode , V, PathInfo , int >

trySearch(key)

308 Search for leaf as before

309 sVer = leaf.ver

310 rc, val , ver = trySearchLeaf(

leaf , key)

311 return <rc , val , path , sVer >

312

313 V insert(key , val)

314 rc, prev , path , sVer =

trySearch(key)

315 if rc = SUCCESS return prev

316

317 leaf = path.n

318 parent = path.p

319 acq , retval = lockOrCoalesce(

leaf , key , sVer)

320 if not acq

321 return retval

322

323 // Did not coalesce , insert as

usual

324 leaf.ver++

325 ... // Insert key

326 leaf.rec = <key ,val ,leaf.ver >

327 leaf.ver++

328 Unlock leaf and return ⊥
329 ...

54

Chapter 6

Experiments

This chapter compares the trees presented thus far with other leading dictionary imple-
mentations using the SetBench benchmarking framework.

6.1 Setup and methodology

6.1.1 System

The experiments in this chapter were run on a 4-socket Intel Xeon Gold 5220 with 18
cores per socket and 2 hyperthreads (HTs) per core, for a total of 144 hardware threads,
and 192GiB of RAM. In all experiments, threads are pinned such that the first socket is
saturated before the second socket is used, and so on. Additionally, the pinning ensures
that all cores on a socket are used before hyperthreading was engaged. The machine runs
Ubuntu 20.04.2 LTS. All code is written in C++ and compiled with G++ 7.5.0-3 with
compilation options -std=c++14 -O3. The scalable allocator jemalloc 5.0.1-25 is used.
numactl -i all is used to interleave pages evenly across all processor sockets.

6.1.2 Memory reclamation

All data structures in the experiments use a fast variant of epoch based memory reclamation
called DEBRA [14], except the SplayList (which does not reclaim memory at all) and
the OpenBw-Tree (which uses a different form of EBR and was too complex to port to
DEBRA).

55

6.1.3 Methodology

Each experiment run starts with a prefilling phase, in which a random subset of keys
are inserted into the data structure until the data structure size reaches its expected size
in the steady state (half of the key range, in these experiments, since the proportions of
inserts and deletes are always equal). After the prefilling phase, n threads are created and
started together, and the measured phase of the experiment begins. In this phase, each
thread repeatedly selects an operation (insert, delete, find) based on the desired update
frequency, selects a key according to a uniform or Zipfian distribution. This continues for
10 seconds, and the total throughput (operations completed per second) is recorded. Each
experiment is run three times, and the results below are the averages of the runs.

6.1.4 Validation

To sanity-check the correctness of the evaluated data structures, each thread keeps track
of the sum of keys that it inserts and deletes into the tree. At the end of each run, all
threads’ sums are added to a grand total, and the grand total must match the sum of keys
in the data structure.

56

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

u
p

d
at

es
20

%
u
p

d
at

es
0%

u
p

d
at

es

Figure 6.1: Results of benchmark with 10000 keys.

57

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

u
p

d
at

es
20

%
u
p

d
at

es
0%

u
p

d
at

es

Figure 6.2: Benchmark with 1M keys.

58

6.2 Results discussion

See Chapter 3 for descriptions of the data structures included in the experiment
graphs. In Figures 6.1 and 6.2, solid bars represent the trees from this thesis, striped
bars represent data structures that are distribution-näıve (LF-ABtree, BCCO10, NM14,
DGT15, OpenBw-Tree), and checkered bars represent data structures that adapt their
structure to the access distribution (CATree, CBTree, SplayList), or try to exploit it to
obtain faster searches (the concurrent interpolation search tree, C-IST in the figure).

6.2.1 Effect of update frequency and distribution

Search-only

In general, better performance on the search-only workloads is correlated with short paths
to the keys, since longer paths result in more cache misses. The C-IST has nodes that
are much larger than those of the (a,b)-trees and the OpenBw-Tree, and quickly traverses
them using interpolation search. For example, the root in the C-IST contains O(

√
n)

keys, where n is the size of the entire tree. As a result, the C-IST is very shallow and
has extremely fast searches. The (a,b)-trees and the OpenBw-Tree have heights larger
than the C-IST but less than the BSTs. Accordingly, in the 1 million key workload, the
(a,b)-trees and OpenBw-Tree perform worse than the C-IST and much better than the
BSTs (BCCO10, NM14, DGT15), roughly doubling their throughput. On the 10000 key
workload, the C-IST performs slightly worse than the (a,b)-trees, since it is optimized for
large data structures. The BSTs have similar performance relative to one another on the
search-only uniform workloads.

The CBTree and SplayList performed worse than expected on the search-only, Zipfian
workload. Splaying in these data structures should theoretically accelerate searches (espe-
cially since the splayed key is never removed in a search-only workload), but they barely
exceed their performance on the uniform workload. The CATree’s performance is reason-
able on the uniform workload, but is much worse than the other data structures on the
Zipfian workload. This observation is true in the workloads with updates, as well, since all
of the CATree’s operations (even searches) require locking the leaf that is being searched or
modified. The CATree’s authors describe a lock-free CATree, but we could not find a high
performance C/C++ implementation, and according to their own results, their optimized
implementation does not scale beyond 16 threads. The poor performance of the CBTree,
SplayList, and CATree illustrates a common flaw of distribution-adaptive data structures:
they rely on arbitrary parameters that determine how often adjustments should be per-
formed, and these parameters may not be optimal for all systems (or thread counts). The

59

parameters used in these experiments are the default parameters in the code provided by
the authors. There is no obvious way to improve the parameters without specializing the
results to target a certain update frequency, key range, and key access distribution.

The distribution-naive data structures exhibit the similar performance on the search-only
uniform and Zipfian distributions.

The implementation of the CATree used in these experiments is a port of the authors’ Java
code. The authors also describe a lock-free CATree and an optimization to the CATree
that makes it more performant in high-contention settings by making some leaf nodes lock-
free, but I was unable to port these versions of their Java code to C++ because of their
complexity. However, the performance of the locking CATree implementation in these
experiments seems to match the performance in the original paper [51]. Per their own
results, the optimized version does not scale past 16 threads, and even assuming the same
(approximately 2x) performance benefit they observe from the optimization, the lock-free
optimized CATree would still likely be slower than the trees presented in this thesis.

20% and 100% updates

The CoMCS-ABtree and CoPub-ABtree drastically outperform the other data structures
in the 100% Zipfian update workload, with the CoPub-ABtree nearly doubling the perfor-
mance of its closest competitors.

Data structures that perform much worse in the update workloads can be divided into
two groups. The first group is comprised of data structures that have slow updates even
when keys are uniformly distributed. This group includes the LF-ABtree, OpenBw-Tree,
and the C-IST, all of which perform much worse on 100% uniform updates than in the
search-only workload, especially when running on multiple processor sockets (72 threads
and above). The LF-ABtree handles a moderate amount of updates well (outperforming
all non-coalescing data structures at 144 threads), but the OpenBw-Tree and C-IST do
not. In the case of the C-IST, this is because rebuilding the tree after updates is extremely
costly. The second group is comprised of data structures whose updates do not scale
well with contention (i.e., in the Zipfian workload). This group includes the OCC-ABtree
(for the reasons mentioned in Chapter 4), the CATree (for the reasons mentioned above),
and BCCO10, which uses OCC and might suffer from the same problems that affect the
OCC-ABtree.

A notable outlier in these results is the SplayList, which had relatively poor search-only
performance but exceeds the performance of NM14, DGT15, and the LF-ABtree on the
high-contention workload. This may be partially because the SplayList never removes
deleted keys from the data structure, so reinserting a key that was once in the SplayList

60

requires no memory allocation (allocation normally adds considerable overhead to the other
data structures). This approach is quite efficient for the purposes of this benchmark, but
might be less so if the set of keys that are ever inserted is much larger than the set of keys
that are typically in the dictionary. In that case, in addition to being slower, the SplayList
would also waste memory.

6.2.2 Effect of key range

Overall, most data structures perform worse on the larger key range workload. This is
because path lengths to a leaf are (on average) longer when there are more keys in the
data structure. As discussed in the previous section, longer path lengths result in more
cache misses hence slower operations.

However, there is an important exception to this rule. For update-heavy workloads, the
trees whose nodes have multiple nodes ((a,b)-trees, the C-IST, and the Open Bw-Tree)
perform no worse or even better on larger key ranges. In the larger key range workload,
two random keys are less likely to share a leaf than in the smaller key range workload
(regardless of whether the accesses are uniform or Zipfian). This results in less contention
on locks, because operations on two random keys are less likely to acquire the same lock.
In addition, for the CoMCS-ABtree and CoPub-ABtree in Zipfian workloads, coalescing is
more likely to occur in the larger key range workload because most operations accessing a
node are acting on the same key.

The SplayList performs even worse than the other data structures on the larger key range.
This is likely because operations must search through every key that was ever in the data
structure, even if it has been deleted (since the SplayList does not remove deleted keys
from the data structure).

61

Chapter 7

Persistent (a,b)-trees

This chapter describes the changes required to make the OCC-ABtree strictly-linearizable
in a system with persistent main memory. The resulting tree, the Persistent Memory
OCC-ABtree (or p-OCC-ABtree for short), requires significantly fewer cache line flushes
than one of the best-performing persistent B-trees, the FPtree [46]. The MCS-ABtree,
CoMCS-ABtree, and CoPub-ABtree can also be modified in the same way to yield strictly-
linearizable implementations. The end of the chapter provides experimental results com-
paring the persistent memory trees to their volatile memory counterparts, and shows that
the persistent memory trees are only slightly slower.

7.1 The p-OCC-ABtree

As the name suggests, the p-OCC-ABtree is based on the OCC-ABtree. The defining
difference between the two algorithms is that the p-OCC-ABtree operations guarantee
that their changes to keys, values, and pointers are in persistent memory before they
return. This allows the p-OCC-ABtree to be recovered to a consistent state after a crash.
For performance reasons, the remaining node fields (e.g. size, version, lock state) are not
persisted. Thus, they might contain incorrect values after a crash. However, they can
easily be fixed by the recovery procedure.

Many concepts from the OCC-ABtree have a direct analogue in the p-OCC-ABtree. For
example, the concept of reachability in the OCC-ABtree is analogous to p-reachability in
the p-OCC-ABtree. A node is p-reachable (short for persistently reachable) if it can
be reached from the entry node by following child pointers in persistent memory. The p-
OCC-ABtree also satisfies many of the same invariants as the OCC-ABtree. For example,

62

updates to the p-OCC-ABtree appear to take effect atomically. In fact, all the invariants
proved for the OCC-ABtree have an analogous version in the p-OCC-ABtree (described in
the correctness section).

The implementation of the p-OCC-ABtree is similar to the implementation of the OCC-
ABtree. However, there are some changes that must be made to guarantee its correctness
in the persistent memory model. These are described in the next section.

63

Figure 7.1: Selected p-OCC-ABtree operations

330 V insert(key , val)

331 ...

332 if leaf.size < MAX_SIZE

333 // Insert without splitting

334 for i = 0 to MAX_SIZE - 1

335 if leaf.keys[i] = ⊥
336 leaf.ver++

337 leaf.vals[i] = val

338 flush(leaf.vals[i])

339 sfence ()

340 leaf.keys[i] = key

341 flush(leaf.keys[i])

342 sfence ()

343 leaf.size++

344 leaf.ver++

345 Unlock leaf and return ⊥
346 else

347 Lock parent

348 if parent marked

349 Unlock leaf/parent

350 goto RETRY

351

352 // n is tagged if parent is not

entry

353 Create internal n with two new

children c1 and c2 that evenly

share contents of leaf and new

key/val

354 flush(c1)

355 flush(c2)

356 flush(n)

357 sfence ()

358 parent.ptrs[path.nIndex] = marked

ptr to n

359 flush(parent.ptrs[path.nIndex])

360 sfence ()

361 unmark(ptr)

362 Mark leaf

363 Unlock leaf/parent

364 cleanup(n.searchKey)

365 return ⊥

366 <RetCode , V, PathInfo > search(key)

367 gp = NULL , p = NULL

368 pIndex = 0, nIndex = 0

369 n = entry

370 do

371 gp = p, p = n, pIndex = nIndex

372 nIndex = seqGetChild(n, key)

373 Spin while n.ptrs[nIndex] is

marked

374 n = n.ptrs[nIndex]

375 while n is not leaf

376

377 path = PathInfo(gp , p, pIndex , n,

nIndex)

378 rc, val = searchLeaf(n, key)

379 return <rc , val , path >

380

381

382

383 recover(node)

384 Unlock node if locked

385 Unmark node if marked

386 if node is Leaf

387 size = number of non -⊥ keys in

node

388 node.ver = 0

389 flush(node)

390 else

391 for each ptr in node.ptrs

392 if ptr marked

393 unmark(ptr)

394 recover(child at ptr)

395

396 recoverTree ()

397 recover(entry)

398 sfence ()

64

7.2 Implementation

The goal of this section is to provide the reader with an intuitive understanding of the
differences between the OCC-ABtree implementation and the p-OCC-ABtree implemen-
tation. More rigorous arguments appear in the correctness section.

The implementation of the p-OCC-ABtree differs from the OCC-ABtree in three ways.
First, the p-OCC-ABtree uses the link-and-persist method from [20] to link in new updates.
At a high-level, this ensures that updates only modify p-reachable nodes, and searches only
visit nodes that were p-reachable at some time during the search. Second, updates use
flush and sfence to guarantee that they appear to take effect atomically in the p-OCC-
ABtree. Finally, the p-OCC-ABtree includes a recovery procedure, recoverTree, which is
invoked after a crash to bring the tree to a valid state.

Algorithm 7.1 contains the pseudocode for selected operations in the p-OCC-ABtree.
flush(x) is used as shorthand for flushing all cache lines that contain object x.

7.2.1 Link-and-persist

To motivate the link-and-persist method, consider the following scenario. Suppose a split-
ting insert inserts key as it would in the OCC-ABtree (by splitting a leaf node, creating
a tagged node joining the two new leaves, and changing a pointer in the tree to point to
the tagged node). Recall that the pointer to the tagged node is first written into volatile
memory (caches) and later flushed to persistent memory (main memory). Suppose that a
crash occurs after the pointer to the tagged node is written to volatile memory, but before
the pointer is flushed to persistent memory (i.e. before the tagged node or its children
become p-reachable). Since the pointer is not persisted, the insert cannot be linearized.
Not linearizing the insert is allowed by strict linearizability; operations that are interrupted
by a crash can be dropped (i.e. removed from the execution).

However, a find(key) that took place after the pointer was written into volatile memory
might have found key, returned its associated value val, and terminated before the crash.
This find cannot be linearized because the insert that inserted key and val was removed
from the execution. Unlike the insert, find was not interrupted by the crash, and so
strict-linearizability does not allow us to remove it from the execution (so the execution is
not strictly-linearizable).

The problem above occurred because find returned data that was not yet p-reachable (i.e.,
was only reachable in volatile memory). This can be fixed by using the link-and-persist
technique [20] (a similar technique is given in [56]). Algorithm 7.1 shows the modifications

65

to splitting inserts and search. (Rebalancing steps are modified similarly to splitting
inserts, and cleanup is modified similarly to search.)

In the link-and-persist method, an update’s new nodes are linked into the tree by changing
a pointer to point to them (like in the OCC-ABtree). However, the pointer is initially
created with a mark on it (line 358), to indicate that the pointer might not be persisted
(and thus the node(s) it points to might not be p-reachable). The update then flushes the
marked pointer and performs an sfence (lines 359-360). Finally, after the sfence, the
update removes the mark from the pointer (361).

The searches in search and cleanup are modified to wait until a pointer is not marked
before following it (line 373). This ensures that search and cleanup only access nodes
that have been p-reachable. All operations use search or cleanup to find any nodes they
will modify. Moreover, as shown in the correctness section, updates only modify nodes
that are currently p-reachable.

7.2.2 Atomic updates with flush and sfence

A recovery procedure must be able to recover a consistent state of the data structure after
a crash. If it is possible for the persistent data structure to contain partial modifications
from an operation, the recovery procedure must be able to either complete or rollback the
operation. A common way to achieve this is to log the changes an operation will perform
before performing those changes. If a crash occurs, the recovery procedure can use the log
to complete or revert any incomplete operations. Logging can incur significant overhead
because the log itself must be flushed to persistent memory.

I take a simpler approach: for each update, there is a single flush to persistent memory
when the update appears to take place.

Simple insert. Instead of just writing val and key, a simple insert now does the follow-
ing (see lines 333 to 345):

1. val is written into the node

2. flush is performed on the cache line cv containing val

3. An sfence is performed

4. key is written into the node

5. flush is performed on the cache line ck containing key

6. Another sfence is performed

66

The inserted key-value pair appears atomically (in the appropriate leaf, which is already
p-reachable) when ck is flushed to persistent memory. Note that a background flush might
cause this to occur before the explicit flush at step 5 (but after step 4). Before ck is
flushed, the key slot contains ⊥, so the key-value pair is logically not present in the tree
(since ⊥ is not a valid key).

Successful delete. In a successful delete(key), key is set to ⊥, a flush is performed on
the cache line (containing key), followed by an sfence. The delete takes effect atomically
when ⊥ is flushed (since ⊥ is not a valid key).

Other updates. All other updates to the tree (splitting inserts and rebalancing steps)
behave as follows (see lines 347 to 365):

1. The new nodes are created

2. flush is performed on all cache lines that contain new nodes

3. An sfence is performed

4. The new nodes are linked into the tree by changing one pointer

5. flush is performed on this pointer

6. Another sfence is performed

Flushing the new nodes before linking them into the tree prepares the update in persistent
memory (without actually introducing it to the tree). The update then takes effect atom-
ically when the pointer to the new nodes is flushed (either explicitly, or by a background
flush between steps 4 and 6).

7.2.3 Recovery

Because updates to the p-OCC-ABtree are atomic, the recovery procedure does not have
to deal with partial modifications to the tree. The recovery procedure is recoverTree.
recoverTree invokes recover on the entry node (which is assumed to be at a known
location after a crash). recover fixes a node as described below and then recursively
invokes itself on all children of its node.

The recovery procedure makes one change to guarantee the safety of the tree: it fixes the
size field to match the actual number of keys in a leaf, in case the persisted value does not
match the actual value. The other four changes made by the recovery procedure restore
the deadlock-freedom guarantee of the p-OCC-ABtree. Overall, the recovery procedure
does the following. At each node:

67

• The lock state is set to unlocked.

• The marked bit is unset.

• If the node is a leaf, its version is reset to 0.

• If the node is a leaf, its size field is set to the number of keys in the leaf.

• If the node is an internal node, any marked child pointer is unmarked. The pointer
is already persisted since it is being accessed from persistent memory.

Any changes made during recovery are flushed and an sfence is performed at the end of
recovery. The recovery procedure does not need to repair a node’s searchKey or the size

field of internal nodes, since these fields are constant from the time they are initialized.

7.3 Correctness

This section begins by providing a definition to link the physical state of the p-OCC-
ABtree to its abstract contents. It then mentions some invariants which hold for the p-
OCC-ABtree; these are analogous to the invariants of the OCC-ABtree and can similarly
be used to show that the p-OCC-ABtree is strictly-linearizable.

7.3.1 Definitions

The system is said to be recovering from the time when a crash occurs until the time
when recoverTree returns.

In strict linearizability, every operation that is concurrent with a crash must either be lin-
earized before the crash or be removed from the execution. Any simple insert or successful
delete that has flushed a key will be recovered (and thus cannot be removed from the
execution). These operations must therefore be linearized before the crash, even if they
have not yet incremented the version for the second time. This is reflected in the definition
below, and in the changes to the linearization points in the following section.

Definition 12. Let l be a p-reachable node. A key k (not equal to ⊥) is in the p-OCC-
ABtree if either

1. The system is recovering and k is in l’s keys array OR

2. The system is not recovering and k was in l’s keys array when l’s version (in volatile
memory) was last even

Furthermore, if key k is the ith key in l, the value associated with k is l.vals[i].

68

If the system is not recovering, Definition 12 is similar to the definition of a key being in
the OCC-ABtree. That is, keys and values are logically added or removed from the tree
when the version number is incremented to an even number. If the system is recovering,
however, every key in a p-reachable node is in the tree (the version is ignored).

7.3.2 Invariants

Theorem 13 (p-OCC-ABtree Invariants). The p-OCC-ABtree satisfies the following in-
variants, which are analogous to the OCC-ABtree invariants:

1. The p-reachable nodes form a relaxed (a,b)-tree.

2. The key range of a node that was once p-reachable is constant.

3. A node that is not p-reachable contains the same keys and values that it did when
it was last p-reachable and unlocked (i.e. updates do not both unlink and modify a
node).

4. A key appears at most once in a leaf.

5. If a node was once p-reachable, and is currently unmarked, it is p-reachable.

6. If a node is unlocked and was once reachable, its size field matches the number of
keys it contains.

7. The key range of n in search(key) contains key.

Proof. The proofs of most of these invariants are similar to the proofs in Section 4.4. The
proof for invariant 1 requires an additional explanation of why every node used by an
update was once p-reachable.

Proof of invariant 1. Recall that to prove the p-OCC-ABtree is a relaxed (a,b)-tree, it
suffices show that for each update:

• There is a single step at which the update appears to take place

• The update is correct

The first condition holds for the reasons laid out in the previous section on atomic updates.

The second condition is largely the same as the proof in the OCC-ABtree. However, that
proof uses invariant 5, which requires showing that the nodes traversed in the search were
all reachable at some time. This was trivial in the case of the OCC-ABtree (because the
nodes are reached by following child pointers), but is not trivial in the p-OCC-ABtree,
which uses p-reachability.

69

We will show that every node traversed by search in the p-OCC-ABtree was p-reachable
at some time. Assume that every node traversed by a search until node n is p-reachable.
If n is the entry node, it is p-reachable by definition.

Otherwise, the search reached n by following an unmarked pointer from a node p. We
will show that there exists a time t when p was p-reachable and contained the unmarked
pointer to n. If p was p-reachable when it read the unmarked pointer to n, t is the time
of the read. Otherwise, invariant 3 guarantees that p’s pointers have not been modified
since it was last p-reachable. Thus, when p was last p-reachable, it contained an unmarked
pointer to n. In this case, t is the time when p was last reachable.

Finally, notice that there are two ways p could contain an unmarked pointer to n. The first
way is if p contained a pointer to n when it was created. In this case, since p was flushed
before being linked into the tree, its pointer to n is persisted. Otherwise, the pointer was
first introduced to p by an update U as a marked pointer. This update must have flushed
the pointer before unmarking it. In either case, the unmarked pointer was in persistent
memory by time t.

At time t, p was p-reachable and contained a pointer to n in persistent memory. Thus, n
was p-reachable at time t.

The remainder of the proof of is similar to the proof for the OCC-ABtree.

7.3.3 Strict linearizability

The p-OCC-ABtree has slightly different linearization points than the OCC-ABtree, to
deal with the different definition of when a key is in the tree.

Operations which do not modify the tree are linearized as in the OCC-ABtree. Splitting
inserts in the p-OCC-ABtree are linearized when the pointer to the new nodes is flushed
to persistent memory (instead of it is written to volatile memory).

Simple inserts and successful deletes linearize differently depending on whether or not they
are interrupted by a crash. When not interrupted by a crash, simple inserts and successful
deletes have the same linearization points as they did in the OCC-ABtree: the increment
of the leaf’s version (in volatile memory) to an even number. Recall that this linearization
point is chosen to support coalescing publishing.

To see why we cannot linearize the same way when interrupted by a crash, consider the
following scenario. Suppose a simple insert or successful delete that flushes key (thus
making its change persistent) but does increment the version to an even number before a
crash. The recovery procedure would recover this key-value pair, even though the operation
was not linearized. To solve this problem, we linearize these operations at the crash.

70

Theorem 14. The p-OCC-ABtree is strictly-linearizable.

Proof. Note that these linearization points all occur after an operation’s invocation and
before its response or crash. We must show that performing each operation at its lin-
earization point (and returning the appropriate value) correctly affects the contents of the
abstract dictionary according to Definition 12. Let E be an arbitrary execution of the
p-OCC-ABtree. We prove that E is strictly-linearizable by induction.

Suppose the prefix of E up to the beginning of the ith era of operations (including the
recovery procedure after the i − 1th crash, if i > 1) is strictly-linearizable, and that the
p-OCC-ABtree satisfies all invariants. We show that the prefix up to the beginning of the
i+ 1th era of operations is strictly-linearizable and the p-OCC-ABtree recovered after the
ith crash satisfies all invariants.

We do this by breaking up the execution fragment from the beginning of the ith era of
operations to the beginning of the i+ 1th era of operations into three parts: the execution
fragment before the ith crash, the ith crash, and the recovery after the ith crash. We show
that each fragment is strictly-linearizable by showing that the operations correctly mod-
ify the abstract dictionary. Note that the concatenation of strictly-linearizable execution
fragments is strictly-linearizable, by the locality property of strict linearizability.

Before the ith crash. We consider the tree operations performed from the beginning
of the ith era until (but not including) the ith crash. The linearizability arguments for
these operations is analogous to the arguments established for linearizability in the OCC-
ABtree: the linearization points used in this section are all analogous to the OCC-ABtree’s
linearization points, the p-OCC-ABtree satisfies analogous invariants, and the definition
of a key being in the p-OCC-ABtree is Definition 12.2 (which is analogous to the OCC-
ABtree’s definition of a key being in the tree).

At the ith crash. At the time of the crash, the definition of a key being in the tree
changes from Definition 12.2 to Definition 12.1. It must be shown that the keys in the tree
after the crash are exactly those that were in the tree before the crash, plus any that were
inserted by a simple insert linearized at the crash and minus any that were deleted by a
successful delete linearized at the crash.

First consider the case when a key k is in the tree after a crash. That is, there exists some
p-reachable leaf l such that k = l.keys[i] (for some index i).

If k was also in the tree before the crash (according to Definition 12.2), it is only correct
for k to be in the tree after the crash if no delete of k linearized at the crash. This is indeed

71

the case, since a delete of k that linearized at the crash would have set l.keys[i] to ⊥
and flushed ⊥. But, by assumption, k is in the keys array of l after the crash.

Otherwise, if k was not in the tree before the crash, it is only correct for k to be in the
tree after the crash if an insert of k did linearize at the crash. This is true. Since k was
not in the tree before the crash but l was p-reachable and contained k, the l’s version must
have been odd at the crash (according to Definition 12.2). Thus, there must have been an
ongoing insert that inserted k at the time of the crash. Since the crash occurred after the
flush of k but before the version was incremented to an even number, this insert linearized
at the crash.

A similar argument shows that k is not in the tree after a crash if and only if k was either
deleted at the crash or was not in the tree before the crash (and was not inserted at the
crash).

p-OCC-ABtree invariants 1-4 and 7 are maintained during a crash since they only describe
persisted data. Invariants 5 and 6 might be incorrect since they refer to volatile fields.
However, they are restored by the recovery procedure.

After the ith crash (recovery). The recovery procedure does not affect the set of
p-reachable nodes or their keys or values, so the set of keys in the tree is fixed while the
system is recovering. By the time the recovery procedure returns, all p-reachable nodes’
versions are 0, and thus the key in the tree is the same according to Definitions 12.1 and
12.2.

Additionally, all p-OCC-ABtree invariants are satisfied by the time the recovery procedure
returns. p-OCC-ABtree invariants 1-4 and 7 were correct before recovery, and the recovery
procedure fixes the volatile fields, which ensures that invariants 5 and 6 hold by the time
it returns.

Thus, the execution up to the beginning of the operation in the i + 1th era is strictly-
linearizable, and the p-OCC-ABtree satisfies all invariants.

The proofs for the MCS-ABtree, CoMCS-ABtree, and CoPub-ABtree are similar. Note
that coalescing does not conflict with the change of linearizing some operations at a crash.
In both the CoMCS-ABtree and the CoPub-ABtree, an operation Oe is only coalesced
after the successful operation Op has executed its second increment of the leaf’s version.
Any simple insert or successful delete has linearized by this time (and a future crash does
not change this fact).

72

7.4 Optimizations

There are two optimizations that can be made to the tree. Both remove the need for the
first sfence (after writing val) in simple inserts. Recall from Chapter 2 that flushing
multiple cache lines at an sfence is no more expensive than flushing a single cache line,
since cache lines are flushed in parallel. That is, the number of sfence instructions should
be considered as the performance cost of persistent memory, not the number of flushes.

Normally, in simple inserts, it is important to wait for val to be flushed before inserting
key because key and val are not necessarily in the same cache line. Without the sfence,
it is possible for the cache line containing key to be flushed asynchronously (i.e. in the
background) but the cache line containing val to not be flushed. This results in an invalid
key-value pair in the tree, which might be erroneously recovered after a crash.

The first optimization is to ensure that each key is in the same cache line as its associated
value. This can be accomplished by, for example, using a key-value pairs array instead
of a keys array and a values array. This was not implemented because it complicates the
implementation: if internal nodes also have a keys-pointers array, searches might become
slower since the keys are not as densely packed and occupy more cache lines; if not, inter-
nal nodes and leaf nodes have different memory layouts and require type information to
distinguish them.

The second optimization is to use hardware that guarantees flush instructions are first-in-
first-out (FIFO) ordered. That is, if flush is first performed on the cache line containing
val then the cache line containing key, val is flushed before key.

7.5 Number of sfences vs FPTree

The FPTree is an efficient concurrent, persistent B-tree with a number of optimizations
(see Chapter 3). In this section, we compare the number of sfence instructions required
in each of the operations performed by the FPTree and the p-OCC-ABtree. The FPTree
does not persist its internal nodes, which might lead one to believe that it requires fewer
sfence instructions than the p-OCC-ABtree. However, the p-OCC-ABtree only requires
one sfence for simple inserts, whereas the FPTree uses two. Since simple inserts and
successful deletes make up the bulk of the operations on the tree, the p-OCC-ABtree
actually requires fewer sfence instructions. Moreover, the p-OCC-ABtree only requires
two sfences for splitting inserts, whereas the FPTree requires five.

73

7.5.1 Simple inserts

The FPTree [46] uses a bitmap to indicate whether a key-value pair is valid. The bitmap
for a key is set to 1 after a key is inserted to mark it as valid, and set to 0 to mark a key
as deleted. Simple inserts in the FPTree require two sfences: one after inserting the key
and one after changing the bitmap. In contrast, simple inserts in the p-OCC-ABtree only
require one sfence (using one of the optimizations in the previous section).

The decision to represent an empty slot in the OCC-ABtree with ⊥ is essentially what
allows the optimized simple insert to only need one sfence. This might seem like a
significant restriction, since it is often implemented by reserving a key that represents
⊥. Indeed, the implementation of the OCC-ABtree from Section 6 does reserve a key to
represent ⊥. However, this is not the only way of representing an invalid key. ⊥ could
equivalently be represented by any key outside the key range of the leaf. search can easily
be modified to return the key range of the leaf as well, allowing any operation to determine
whether a key in the leaf represents ⊥ or is a valid key.

7.5.2 Successful deletes

Both the p-OCC-ABtree and the FPTree only require one sfence for successful deletes.
The p-OCC-ABtree flushes the deleted key’s cache line an performs an sfence. The
FPTree flushes the bitmap entry for the key after setting it to 0 (to indicate the key-value
pair is no longer valid) and performs an sfence.

7.5.3 Splitting inserts

Splitting inserts in the FPTree are not atomic. Thus, the FPTree uses logging to ensure
that it can be recovered to a consistent state after a crash. This logging approach requires
five sfence instructions. In comparison, the p-OCC-ABtree only requires two sfences:
one to persist data in the new nodes and one to persist the pointer to the new nodes.

7.5.4 Rebalancing steps

Rebalancing steps are not persisted in the FPTree, but are in the p-OCC-ABtree. Like in
splitting inserts, the p-OCC-ABtree requires two sfences: one to persist data in the new
nodes and one to persist the pointer to the new nodes.

74

7.6 Performance

This section briefly compares the performance of the persistent trees introduced in this
thesis to their volatile counterparts.

7.6.1 Experimental setup

The experimental setup and methodology are the same as Section 6.1, except the system
is a 2-socket Intel Xeon Gold 5220R CLX with 24 cores per socket and 2 hyperthreads
(HTs) per core (for a total of 96 hardware threads), 192GiB of RAM, and 1536GiB of Intel
3DXPoint non-volatile RAM as the main memory.

75

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

u
p

d
at

es
20

%
u
p

d
at

es
0%

u
p

d
at

es

Figure 7.2: Results of benchmark with 10K keys.

76

Zipf parameter = 0 (Uniform) Zipf parameter = 1 (Skewed)

10
0%

u
p

d
at

es
20

%
u
p

d
at

es
0%

u
p

d
at

es

Figure 7.3: Benchmark with 1M keys.

77

7.6.2 Results discussion

Figures 7.2 and 7.3 contain the results of the experiments for 10000 and 1 million keys,
respectively.

Considering only the persistent trees, we see trends that match the trends from the volatile
trees. On uniform and search-only workloads, the persistent trees all perform roughly the
same.

In the workloads with contention (20% and 100% updates with a Zipfian access distribu-
tion), the p-OCC-ABtree scales far worse than the other persistent trees, especially on
multiple processor sockets (e.g. the sharp decrease in performance in the 20% workload
with Zipfian access). This is likely due to the cost of cache coherency, as it was for the
volatile trees. Coalescing appears to increase the performance of the persistent CoMCS-
ABtree and CoPub-ABtree in high-contention workloads as it did in the volatile setting.

Comparing the persistent and volatile trees, we observe the following trends. As expected,
the persistent and volatile memory trees perform equally well on search-only workloads
(since there is no flushing). The slight decrease in performance in the persistent trees is
due to the (very minor) overhead of having to verify that each pointer is unmarked (even
though this is always true because the tree is not changing).

In the 20% and 100% update workloads, the added cost of persisting data makes the
persistent memory trees slightly slower than the volatile memory trees overall. The most
interesting feature of these workloads is the performance of the persistent CoPub-ABtree in
the 10000 keys benchmark. The relative difference in performance between the persistent
CoPub-ABtree and the other persistent trees is larger than the different between the
volatile CoPub-ABtree and the other volatile trees. This is likely because coalescing (if
implemented efficiently) reduces the number of flushes that have to occur (since coalesced
operations do not change the tree and do not flush).

Overall, these results suggest that coalescing is a promising concept in persistent memory
as well — in fact, it sometimes improves performance even more than it does in volatile
memory systems.

Coalescing might also be useful for preventing wear on the persistent memory hardware.
Intel Optane systems contain dedicated memory controllers for persistent memory [59].
These memory controllers handle wear-leveling and bad-block management. They also
contain a number of write-combining buffers, which coalesce writes to the same memory
address, thus reducing the hardware wear caused by multiple writes.

The coalescing used in the CoMCS-ABtree and CoPub-ABtree can be viewed as a software
fallback for these buffers, similar to how software transactional memory is a fallback for

78

hardware transactional memory. Software transactional memory allows for transactions
to complete when they would normally abort in hardware transactional memory (e.g. for
cache capacity reasons). Similarly, the software coalescing algorithms presented in this
thesis are able to perform coalescing on any number of addresses, whereas the maximum
amount of hardware coalescing is restricted by the number and size of buffers.

79

Chapter 8

Future work and concluding remarks

The coalescing schemes described in this thesis do not work as-is if the desired semantics of
insert are that an existing value associated with the key should be replaced and the old
value returned, since this requires communication between all threads that are coalescing
themselves. The MCS coalescing scheme could be modified to support these semantics
by maintaining the current value associated with the key as the queue is being traversed,
though this would require coalesced operations to wait for coalescing to complete before
returning, which might be slower. In general, the MCS queue could be used to implement
flat combining [29] to combine more general operations (e.g., incrementing a counter) into
a single write.

The simple change of using MCS locks drastically improved the performance of the OCC-
ABtree. Using NUMA-aware locks like HCLH [38], lock cohorting [22], or NUMA-aware
reader-writer locks [15] might also be a simple way of improving performance further.

Several of the optimizations from existing persistent trees could be applied to the persistent
trees in this thesis. The fingerprints used in the FPTree could be used to quickly compare
keys with expensive comparisons (e.g. strings). The wB+-Tree is a sequential persistent
B-tree in which leaves contain a slot array storing the sorted order of key slots [17]. This
allows for binary search within a leaf, at the cost of having to update the slot array on
inserts and deletes. This optimization might not be effective on high-update workloads
of this thesis. The clfB-tree is another sequential persistent B-tree which uses differential
encoding of keys and pointers to fit more keys into a node [17]. The first key in a node is
stored normally, but every subsequent key is stored as the difference between it and the
previous key. Since keys in a node are usually close to each other, this optimization can
greatly reduce the number of bytes required to store a key (and thus increase the number

80

of keys that can be stored per node). A similar optimization can be applied to pointers.
The main drawback of differential encoding is that searches must decode the keys/pointers,
which can take a significant amount of time.

Finally, testing the persistent (a,b)-trees using an allocator designed for persistent mem-
ory and comparing against existing persistent concurrent B-trees would be interesting.
Unfortunately, there do not appear to be any official public implementations of the three
persistent concurrent B-trees mentioned in Chapter 3.

In total, this thesis introduced eight different (a,b)-trees, each excelling in some setting.

The OCC-ABtree has the best performance out of all the trees under uniform work-
loads. The MCS-ABtree scales well, even under Zipfian, moderate-update workloads. The
CoMCS-ABtree and CoPub-ABtree are able to use contention to their advantage and dras-
tically outperform existing data structures on high-contention workloads, while retaining
almost all of their low-contention performance. And, the persistent versions of these trees
each provide their respective advantages in the increasingly common persistent memory
setting.

Hopefully, the success achieved in each of these domains convinces the reader that in-
vesting in workload-specific improvements for concurrent algorithms can yield significant
performance gains.

81

References

[1] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Manual, Volume 2:
System Programming. Advanced Micro Devices Inc, March 2021.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. J. ACM, 40(4):873–890, September 1993.

[3] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and Robert E. Tar-
jan. Cbtree: A practical concurrent self-adjusting search tree. In Proceedings of the
26th International Conference on Distributed Computing, DISC’12, page 1–15, Berlin,
Heidelberg, 2012. Springer-Verlag.

[4] Marcos K Aguilera and Svend Frølund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, 2003.

[5] Vitaly Aksenov, Dan Alistarh, Alexandra Drozdova, and Amirkeivan Mohtashami.
The Splay-List: A Distribution-Adaptive Concurrent Skip-List. In Hagit Attiya,
editor, 34th International Symposium on Distributed Computing (DISC 2020), vol-
ume 179 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:18,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[6] Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for efficient
range queries. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’18, page 14–27, New York, NY, USA,
2018. Association for Computing Machinery.

[7] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. Getting to the root of concur-
rent binary search tree performance. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 295–306, Boston, MA, July 2018. USENIX Association.

[8] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. Bztree:
A high-performance latch-free range index for non-volatile memory. Proc. VLDB
Endow., 11(5):553–565, January 2018.

82

[9] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’10, page 257–268, New
York, NY, USA, 2010. Association for Computing Machinery.

[10] Trevor Brown. Techniques for Constructing Efficient Lock-free Data Structures. PhD
thesis, University of Toronto, 11 2017.

[11] Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking
data structures. In Proceedings of the 2013 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’13, page 13–22, New York, NY, USA, 2013. Association
for Computing Machinery.

[12] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking
trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP ’14, page 329–342, New York, NY, USA, 2014.
Association for Computing Machinery.

[13] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. Non-blocking interpolation
search trees with doubly-logarithmic running time. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’20, page 276–291, New York, NY, USA, 2020. Association for Computing Machinery.

[14] Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There
has to be a better way. In Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC ’15, page 261–270, New York, NY, USA, 2015.
Association for Computing Machinery.

[15] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir
Shavit. Numa-aware reader-writer locks. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, page
157–166, New York, NY, USA, 2013. Association for Computing Machinery.

[16] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Black-
box concurrent data structures for numa architectures. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, page 207–221, New York, NY, USA, 2017.
Association for Computing Machinery.

[17] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory. Proc.
VLDB Endow., 8(7):786–797, February 2015.

[18] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal construction for
wait-free transaction friendly data structures. In Proceedings of the Twenty-Second

83

Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10,
page 335–344, New York, NY, USA, 2010. Association for Computing Machinery.

[19] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS XII, page 336–346, New York, NY, USA, 2006. Association for
Computing Machinery.

[20] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi. Log-free
concurrent data structures. In Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’18, page 373–385, USA, 2018. USENIX
Association.

[21] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concur-
rency: The secret to scaling concurrent search data structures. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’15, page 631–644, New York, NY, USA,
2015. Association for Computing Machinery.

[22] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: A general technique
for designing numa locks. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, page 247–256, New
York, NY, USA, 2012. Association for Computing Machinery.

[23] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC ’10, page 131–140, New York, NY,
USA, 2010. Association for Computing Machinery.

[24] Panagiota Fatourou and Nikolaos D. Kallimanis. The redblue adaptive universal con-
structions. In Proceedings of the 23rd International Conference on Distributed Com-
puting, DISC’09, page 127–141, Berlin, Heidelberg, 2009. Springer-Verlag.

[25] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free universal
construction. In Proceedings of the Twenty-Third Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA ’11, page 325–334, New York, NY,
USA, 2011. Association for Computing Machinery.

[26] Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, 2004.

[27] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition.
Morgan and Claypool Publishers, 2nd edition, 2010.

84

[28] William Hasenplaugh, Andrew Nguyen, and Nir Shavir. Quantifying the capacity
limitations of hardware transactional memory. In PODC ’15: Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[29] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, page
355–364, New York, NY, USA, 2010. Association for Computing Machinery.

[30] Maurice Herlihy and Nir Shavit. On the nature of progress. In Proceedings of the
15th International Conference on Principles of Distributed Systems, OPODIS’11, page
313–328, Berlin, Heidelberg, 2011. Springer-Verlag.

[31] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[32] Shane V. Howley and Jeremy Jones. A non-blocking internal binary search tree.
In Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA ’12, page 161–171, New York, NY, USA, 2012.
Association for Computing Machinery.

[33] Joseph Izraelevitz, Hammurabi Mendes, and Michael Scott. Linearizability of persis-
tent memory objects under a full-system-crash failure model. In International Sym-
posium on Distributed Computing, volume 9888, pages 313–327, 09 2016.

[34] Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. Clfb-tree: Cacheline
friendly persistent b-tree for nvram. ACM Trans. Storage, 14(1), February 2018.

[35] Kim S. Larsen and Rolf Fagerberg. B-trees with relaxed balance. In Proceedings of the
9th International Symposium on Parallel Processing, IPPS ’95, page 196–202, USA,
1995. IEEE Computer Society.

[36] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm.
Evaluating persistent memory range indexes. Proc. VLDB Endow., 13(4):574–587,
December 2019.

[37] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-tree for new
hardware platforms. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 302–313, April 2013.

[38] Victor Luchangco, Dan Nussbaum, and Nir Shavit. A hierarchical clh queue lock. In
Proceedings of the 12th International Conference on Parallel Processing, Euro-Par’06,
page 801–810, Berlin, Heidelberg, 2006. Springer-Verlag.

85

[39] Karl Malbrain. A blink tree latch method and protocol to support synchronous node
deletion, 2014.

[40] Paul E McKenney and John D Slingwine. Read-copy update: Using execution history
to solve concurrency problems. In Parallel and Distributed Computing and Systems,
volume 509518, 1998.

[41] Marlon McKenzie. Creating a concurrent in-memory b-tree optimized for numa sys-
tems. Master’s thesis, University of Waterloo, 9 2015.

[42] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65,
February 1991.

[43] Wojciech Mula. Skip list.svg, 2008. https://commons.wikimedia.org/wiki/File:Skip list.svg.

[44] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees.
In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’14, page 317–328, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[45] Aravind Natarajan, Lee H. Savoie, and Neeraj Mittal. Concurrent wait-free red black
trees. In 15th International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems - Volume 8255, SSS 2013, page 45–60, Berlin, Heidelberg, 2013.
Springer-Verlag.

[46] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. Fptree: A hybrid scm-dram persistent and concurrent b-tree for storage
class memory. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD ’16, page 371–386, New York, NY, USA, 2016. Association for
Computing Machinery.

[47] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In Proceedings of the 11th Annual In-
ternational Symposium on Computer Architecture, ISCA ’84, page 348–354, New York,
NY, USA, 1984. Association for Computing Machinery.

[48] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, June 1990.

[49] Arunmoezhi Ramachandran and Neeraj Mittal. A fast lock-free internal binary search
tree. In Proceedings of the 2015 International Conference on Distributed Computing
and Networking, ICDCN ’15, New York, NY, USA, 2015. Association for Computing
Machinery.

86

[50] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. Onefile:
A wait-free persistent transactional memory. In 2019 49th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN), pages 151–163,
2019.

[51] K. Sagonas and K. Winblad. Contention adapting search trees. In 2015 14th Inter-
national Symposium on Parallel and Distributed Computing, pages 215–224, 2015.

[52] Steve Scargall. Programming Persistent Memory: A Comprehensive Guide for Devel-
opers. Springer Nature, 2020.

[53] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
J. ACM, 32(3):652–686, July 1985.

[54] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting perfor-
mance data with papi-c. In Matthias S. Müller, Michael M. Resch, Alexander Schulz,
and Wolfgang E. Nagel, editors, Tools for High Performance Computing 2009, pages
157–173, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[55] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Camp-
bell. Consistent and durable data structures for non-volatile byte-addressable mem-
ory. In Proceedings of the 9th USENIX Conference on File and Stroage Technologies,
FAST’11, page 5, USA, 2011. USENIX Association.

[56] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. Easy lock-free indexing in
non-volatile memory. In 2018 IEEE 34th International Conference on Data Engineer-
ing (ICDE), pages 461–472, April 2018.

[57] Ziqi Wang. Consistent and durable data structures for
non-volatile byte-addressable memory. [paper review], 2019.
https://wangziqi2013.github.io/paper/2019/08/28/cdds.html.

[58] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael
Kaminsky, and David G. Andersen. Building a bw-tree takes more than just buzz
words. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, page 473–488, New York, NY, USA, 2018. Association for Computing
Machinery.

[59] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
An empirical guide to the behavior and use of scalable persistent memory. In 18th
{USENIX} Conference on File and Storage Technologies ({FAST} 20), pages 169–182,
2020.

[60] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. Nv-tree: Reducing consistency cost for nvm-based single level systems.

87

In Proceedings of the 13th USENIX Conference on File and Storage Technologies,
FAST’15, page 167–181, USA, 2015. USENIX Association.

88

	List of Figures
	List of Tables
	Introduction
	Model
	Asynchronous shared memory (ASM) model
	Memory
	Configurations, steps and executions
	Correctness

	Persistent asynchronous shared memory (PASM) model
	Memory
	Recovery
	Configuration, steps, and executions
	Correctness

	System considerations
	Caching
	Non-uniform memory architectures (NUMAs)
	Flushing
	Allocation
	Scheduling and progress guarantees

	Related work
	A fast (a,b)-tree
	Semantics
	Data structures
	Operations
	Correctness
	Definitions
	Invariants
	Linearizability of find
	Linearizability of insert and delete

	Height bound
	Deadlock-freedom
	Performance vs lock-free implementation
	Using MCS locks

	Coalescing
	Coalescing with the MCS queue
	coalesce explanation

	Coalescing publishing

	Experiments
	Setup and methodology
	System
	Memory reclamation
	Methodology
	Validation

	Results discussion
	Effect of update frequency and distribution
	Effect of key range

	Persistent (a,b)-trees
	The p-OCC-ABtree
	Implementation
	Link-and-persist
	Atomic updates with flush and sfence
	Recovery

	Correctness
	Definitions
	Invariants
	Strict linearizability

	Optimizations
	Number of sfences vs FPTree
	Simple inserts
	Successful deletes
	Splitting inserts
	Rebalancing steps

	Performance
	Experimental setup
	Results discussion

	Future work and concluding remarks
	References

