
Timing Predictable and High-Performance
Hardware Cache Coherence Mechanisms

for Real-Time Multi-Core Platforms

by

Anirudh Mohan Kaushik

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Anirudh Mohan Kaushik 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner: Jörg Henkel
Professor, Karlsruhe Institute of Technology

Supervisor(s): Hiren Patel
Professor, University of Waterloo

Internal Members: Rodolfo Pellizzoni
Associate Professor, University of Waterloo
Nachiket Kapre
Associate Professor, University of Waterloo

Internal-External Member: Kenneth Salem
Professor, University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Multi-core platforms are becoming primary compute platforms for real-time systems such as
avionics and autonomous vehicles. This adoption is primarily driven by the increasing appli-
cation demands deployed in real-time systems, and the cost and performance benefits of multi-
core platforms. For real-time applications, satisfying safety properties in the form of timing
predictability, is the paramount consideration. Providing such guarantees on safety properties re-
quires applying some timing analysis on the application executing on the compute platform. The
timing analysis computes an upper bound on the application’s execution time on the compute
platform, which is referred to as the worst-case execution time (WCET).

However, multi-core platforms pose challenges that complicate the timing analysis. Among
these challenges are timing challenges caused due to simultaneous accesses from multiple cores
to shared hardware resources such as shared caches, interconnects, and off-chip memories. Sup-
porting timing predictable shared data communication between real-time applications further
compounds this challenge as a core’s access to shared data is dependent on the simultaneous
memory activity from other cores on the shared data. Although hardware cache coherence mech-
anisms are the primary high-performance data communication mechanisms in current multi-
core platforms, there has been very little use of these mechanisms to support timing predictable
shared data communication in real-time multi-core platforms. Rather, current state-of-the-art ap-
proaches to timing predictable shared data communication sidestep hardware cache coherence.
These approaches enforce memory and execution constraints on the shared data to simplify the
timing analysis at the expense of application performance.

This thesis makes the case for timing predictable hardware cache coherence mechanisms as
viable shared data communication mechanisms for real-time multi-core platforms. A key take-
away from the contributions in this thesis is that timing predictable hardware cache coherence
mechanisms offer significant application performance over prior state-of-the-art data communi-
cation approaches while guaranteeing timing predictability.

This thesis has three main contributions.

First, this thesis shows how a hardware cache coherence mechanism can be designed to be
timing predictable by defining design invariants that guarantee timing predictability. We apply
these design invariants and design timing predictable variants of existing conventional cache
coherence mechanisms. Evaluation of these timing predictable cache coherence mechanisms
show that they provide significant application performance over state-of-the-art approaches while
delivering timing predictability.

Second, we observe that the large worst-case memory access latency under timing predictable
hardware cache coherence mechanisms questions their applicability as a data communication

iv

mechanism in real-time multi-core platforms. To this end, we present a systematic framework
to design better timing predictable cache coherence mechanisms that balance high application
performance and low worst-case memory access latency. Our systematic framework concisely
captures the design features of timing predictable cache coherence mechanisms that impacts their
WCET, and identifies a spectrum of approaches to reduce the worst-case memory access latency.
We describe one approach and show that this approach reduces the worst-case memory access la-
tency of timing predictable cache coherence mechanisms to be the same as alternative approaches
while trading away minimal performance in the original cache coherence mechanisms.

Third, we design a timing predictable hardware cache coherence mechanism for multi-core
platforms used in mixed-critical real-time systems (MCS). Applications in MCS have varying
performance and timing predictability requirements. We design a timing predictable cache co-
herence mechanism that considers these differing requirements and ensures that applications
with no timing predictability requirements do not impact applications with strict predictability
requirements.

v

Acknowledgements

This PhD thesis is a culmination of research work spanning over five years (2015-2021). The
academic training and character building crucial to complete this thesis started much earlier
under the guidance of several mentors who have guided and led me from naive beginnings to this
moment. These mentors have taken different forms – teachers, professors, friends, and family.
I have benefited from your collective wisdom and support, and I am immensely grateful for the
positive impact you all have had on this thesis.

Let me begin by first thanking my adviser, Prof. Hiren Patel. I lucked out working with
Hiren, and I consider myself even luckier to have been mentored by him for close to nine years
(2012-2021)! I have benefited greatly from his supervision style that puts student training at
the forefront. His training over these years have had a transformative effect on my technical
thinking and skills. Hiren taught me how to understand and communicate technical challenges
and observations at the right abstraction level that focuses on the essential details. In addition to
my technical training, Hiren imparted several life lessons at crucial points in my PhD tenure that
have shaped me into a better person. I am immensely grateful for his guidance and training, and
look forward to many years of collaboration and friendship.

I am extremely grateful to the members of my thesis committee for their time and constructive
feedback on my thesis: Prof. Jörg Henkel, Prof. Ken Salem, Prof. Rodolfo Pellizzoni, and Prof.
Nachiket Kapre.

I feel extremely privileged and humbled to have interacted with some amazing instructors,
academics, and students during my time at the UWaterloo. I sincerely thank you all for your
wisdom and inspiration. Special thanks goes to Mohamed Hassan, with whom I wrote the first
work that would lay the foundation for this thesis. Many thanks to the fantastic Zhuanhao Wu,
with whom I had the pleasure of collaborating on a couple of works that are part of this thesis. I
look forward to more collaborations with Zhuanhao. Special thanks to past and current members
of the CAESR lab for their knowledge and support: Dan Wang, Zhuoran Yin, Yunling Cui,
Nivedita Sritharan, Paulos Tegegn and Artem Klashtorny.

My time in Waterloo wouldn’t have been nearly as rich without a wonderful set of friends:
Hemant Saxena, Sharath Ibrahimpur, Jimit Mazmudar, Priya Soundararajan, Dhinakaran Vinayaga-
murthy, Abhinav Bommireddi, Retnika Devasher, Paulous Tegegn, Varuna Manivannan, and
Karthik Velakur. From yearly camping trips, happy hours, and Friday night hangouts, you guys
made Waterloo a special place for me and happily complimented the rigorous working hours of
graduate school. I thank you all for your support and I consider myself blessed for your friend-
ship. I want to especially thank Hemant for being a great friend and fellow companion on this
PhD journey. Your levelheadedness and strong support helped me in this journey, and I cannot

vi

thank you enough. Many thanks to Srinivas Suryanarayan, Navnit Narayan Das, Akshay Shri-
vastava, and Sanket Jaiswal for being wonderful friends over many years despite geographical
distances and different time-zones.

Finally and especially, I am immensely grateful to my parents Mandakolathur V. Mohan and
Revathy Mohan for their support and love during this education journey. It is not possible for me
to fully express my gratitude for their pure and unconditional love and support. They instilled in
me the value of seeking good education and have sacrificed many luxuries so that I may receive
a good education in India and Canada. My parents have been sources of strength during difficult
times and celebrated every success, no matter how small, with great pomp. They are the sole
reason for my success, happiness, and making my dreams come true.

vii

Dedication

This thesis is dedicated to my parents for their love, support, and wisdom thoughout my life.
I would never have made it here without you.

viii

Table of Contents

List of Figures xiv

List of Tables xvii

List of Publications xx

1 Introduction 1

1.1 Multi-Core Real-Time Systems . 2

1.2 Timing Predictability of Multi-Core Real-Time Systems 3

1.3 Thesis Focus: Achieving Predictable and High-Performance Shared Data Com-
munication Between Multiple Cores . 5

1.3.1 Motivation: Existing Predictable Shared Data Communication Mecha-
nisms Constrain Application Performance 7

1.3.2 Design Dilemma: Reconciling Predictability and High-Performance . . . 8

1.3.3 Our Approach: Predictable and High-Performance Shared Data Com-
munication through Hardware Cache Coherence 10

1.4 Key Benefits of Proposed Approach . 10

1.5 Thesis Contributions . 12

1.6 Structure of Thesis . 13

2 Background and Related Works 14

2.1 Multi-Core Platforms . 14

ix

2.2 Hardware Cache Coherence . 16

2.3 Related works . 24

2.3.1 Predictable management of shared hardware resources 24

2.3.2 Predictable shared data communication mechanisms 25

2.3.3 Hardware cache coherence mechanisms 26

3 Designing Predictable Cache Coherence Mechanisms for Hard Real-Time Systems 27

3.1 Introduction . 27

3.2 Main contributions . 29

3.3 Related Work . 30

3.4 System Model . 31

3.5 Design Invariants for Predictable Cache Coherence 32

3.5.1 Inter-core Coherence Interference . 33

3.5.2 Intra-core Coherence Interference . 37

3.6 Predictable Cache Coherence Protocols . 38

3.6.1 Architectural Modifications . 39

3.6.2 Cache coherence protocol state machine modifications 42

3.7 Latency Analysis . 47

3.8 Evaluation . 53

3.8.1 Verification . 53

3.8.2 Observed worst-case latencies . 54

3.8.3 Comparison against prior predictable approaches 56

3.8.4 Comparison of PMSI, PMESI, and Opt-PMESI protocols 58

3.9 Conclusion . 59

4 Balancing Predictability and High-Performance in Cache Coherence Mechanisms 60

4.1 Introduction . 60

4.2 Main contributions . 62

x

4.3 Related work . 63

4.4 Motivation . 64

4.4.1 High level understanding behind the WCL gap 64

4.4.2 Techniques to tighten the WCL . 65

4.5 System model . 67

4.6 Analyzing Predictable Cache Coherence Protocols 68

4.6.1 Formal model of coherence protocols 68

4.6.2 Design principles of cache coherence protocols 73

4.7 Worst-case Asymptotic Latency Analysis (WCAL) 74

4.7.1 Applying the formal model and analysis 79

4.8 Tightening WCL bounds . 80

4.9 Evaluation . 86

4.9.1 Observed WCL . 86

4.9.2 Average-case performance . 87

4.10 Conclusion . 88

5 Automatic Construction of Predictable and High-Performance Cache Coherence
Protocols 90

5.1 Introduction . 91

5.2 Main contributions . 92

5.3 Related works . 92

5.3.1 Predictable hardware cache coherence 92

5.3.2 Cache coherence protocol synthesis . 93

5.4 SYNTHIA implementation . 94

5.4.1 Protocol specification in SYNTHIADSL 95

5.4.2 Constructing t-states and transitions due to shared bus communication . 97

5.4.3 Constructing t-states and transitions due to interleaving memory oper-
ations . 101

xi

5.4.4 Handling replacements, transition actions, and shared memory protocol
construction . 105

5.4.5 Correctness of protocols constructed by SYNTHIA 106

5.4.6 Limitations of SYNTHIA . 107

5.5 Case study: Predictable MESIF (PMESIF) cache coherence protocol 107

5.6 Results . 112

5.7 Conclusion . 114

6 CARP: A Hardware Cache Coherence Mechanism for Multi-Core Mixed-Criticality
Systems 116
6.1 Introduction . 117

6.2 Motivation . 119

6.3 System Model . 120

6.4 High level overview of CARP . 121

6.4.1 Interference due to data responses from shared memory 122

6.4.2 Interference due to write-back responses 123

6.5 CARP implementation . 125

6.5.1 Implementing abort-and-retry for level E cores 128

6.5.2 Implementing PWB partitioning and slack scheduling for non-critical
write-back responses . 129

6.5.3 Hardware overhead . 130

6.6 Latency analysis . 130

6.6.1 Preliminaries . 130

6.6.2 Analysis . 132

6.6.3 Discussion . 136

6.7 Methodology . 136

6.8 Results . 138

6.8.1 Synthetic workloads . 138

6.8.2 SPLASH-2 workloads . 139

6.9 Related works . 140

6.10 Conclusion . 141

xii

7 End-to-End Predictable and High-Performance Real-Time Multi-Core Platforms 142

7.1 POTPOURRI: A (hypothetical) timing predictable and high-performance real-
time multi-core platform . 143

7.2 Deriving WCET under predictable cache coherence 145

8 Conclusion and Future Works 148

References 151

xiii

List of Figures

1.1 MPSoCs with multi-core computing units (highlighted) used in real-time systems. 2

1.2 Illustrative example of impact of shared data accesses on timing behavior of real-
time applications. 6

1.3 Performance slowdown of state-of-the-art approaches to predictable shared data
communication against a conventional multi-core communication mechanism
for the SPLASH-2 workloads on a 4-core multi-core platform. These results
are taken from [74]. Lower is better. 8

1.4 Performance slowdown of state-of-the-art approaches and one of our approaches
to predictable shared data communication against a conventional hardware cache
coherence mechanism for the SPLASH-2 workloads on a 4-core multi-core plat-
form. These results are taken from [74]. Lower is better. 11

2.1 Typical multi-core platform. Capacity and access latency trends of memory com-
ponents in memory hierarchy highlighted. 15

2.2 Example of incoherent shared data communication. 17

2.3 Hardware cache coherence implementation of MSI cache coherence protocol. . . 17

2.4 Coherent data sharing with MSI protocol. 17

2.5 MESI and MOESI cache coherence protocol state machines at the private cache
level. 18

3.1 Initially c0 modified A. c2 is core under analysis. 33

3.2 Initially c0 modified A and B. c1 is core under analysis. 34

3.3 Initially c0 reads A. c2 is core under analysis. 35

3.4 Initially c0 modified A, c2 modified B, and c1 requested B. c2 is core under analysis. 36

xiv

3.5 Initially, c0 has modified A. c2 is under analysis. 37

3.6 Architectural changes necessary for PMSI and PMESI. 39

3.7 Execution with t-states. Initially, c0 has A in S. 45

3.8 Execution example with PMSI and PMESI. 45

3.9 WC inter-core coherence latency. c1 is ci. 48

3.10 WC intra-core coherence latency. c1 is ci. 51

3.11 WC latencies and the effect of unpredictability sources on them. Horizontal
dotted line represents the analytical bound. Black bars are PMSI, PMESI, and
Opt-PMESI protocols, orange bars denote violating design invariant 2, red bars
denote violating design invariant 3, and green bars denote violating design in-
variant 4. 55

3.12 Memory request latency distribution under PMSI and PMESI protocols. 56

3.13 Execution time slowdown compared to MESI protocol. 57

3.14 Average-case performance speedups of PMSI, PMESI, and Opt-PMESI for syn-
thetic and SPLASH-2 benchmarks. 58

4.1 Variation of WCL for alternative and predictable cache coherence mechanisms
with core count on synthetic workloads. 61

4.2 Example execution under PMSI protocol. 64

4.3 PMI protocol and execution example. 66

4.4 Visual aid for Lemma 9. 77

4.5 Transforming PMSI protocol to PMSI* protocol withO(N) WCAL. Transitions
highlighted in red are offending transitions. 81

4.6 Average-case performance for SPLASH-2 workloads. 88

4.7 Slowdown of PMSI* on SPLASH-2. 89

4.8 Slowdown of PMESI* on SPLASH-2. 89

5.1 High level overview of SYNTHIA. 94

5.2 MSI protocol specification in SYNTHIADSL. 96

5.3 MSI protocol refinement for communication on the shared bus. Constructed t-
states and transitions are highlighted. 100

xv

5.4 MSI protocol refinement for interleaving memory operations. Constructed t-
states and transitions are highlighted. 104

5.5 MESIF protocol specification in SYNTHIADSL. 108

5.6 Execution example under PMESIF protocol. 111

6.1 Blocking communication due to shared memory responses. 122

6.2 Blocking communication due to write-back responses. 124

6.3 CARP protocol specification. 126

6.4 Generalized MCS arbitration scheme [27]. 131

6.5 Worst-case instance for a 4-core system. cua is cA0 134

6.6 Performance of design choices and CARP on synthetic workloads. 138

6.7 Performance of CARP on SPLASH-2. 140

7.1 Hardware compute stack of a real-time multi-core platform. Research contribu-
tions in this thesis span across the highlighted layers. 143

xvi

List of Tables

1.1 Summary of prior research works on improving predictability of multi-core real-
time systems. 5

2.1 Capacity and access latency of different memory components in memory hierar-
chy of Intel’s Xeon 5500 processors (Nehalem-EP) multi-core processors. Data
taken from [57]. 15

2.2 Private memory states for snooping bus-based MSI protocol. issue msg/state
means the core issues the message msg and move to state state. A core issues a
read/write request. Once the cache line is available, the core reads/writes it. A
replacement triggers a cache line eviction. Highlighted cells denote impossible
scenarios, and cells marked with ‘—‘ denote no change in state. 22

2.3 Shared memory states for snooping bus-based MSI protocol. 23

3.1 Hardware overheads with core count. 40

3.2 Private memory states for PMSI, PMESI, and Opt-PMESI. issue msg/state means
the core issues the message msg and move to state state. A core issues a read/write
request. Once the cache line is available, the core reads/writes it. A core needs to
issue a replacement to write back a dirty block before eviction. Changes to con-
ventional MSI and MESI are in bold red. Differing transitions between PMESI
and Opt-PMESI are marked as (A) and (B) respectively. 41

3.3 Shared memory states for PMSI protocol. 42

3.4 Shared memory states for PMESI protocol. 42

3.5 Shared memory states for Opt-PMESI protocol. 42

3.6 Description of the proposed t-states in PMSI and PMESI to achieve a pre-
dictable behavior. 43

xvii

4.1 2-core (svA, ev
cua
A) tvA for PMSI protocol. 72

4.2 Protocol changes to PMSI and PMESI protocols. 82

4.3 Private memory states for PMSI* protocol. issue msg/state means the core issues
the message msg and move to state state. A core issues a read/write request.
Once the cache line is available, the core reads/writes it. A replacement triggers
a cache line eviction. Highlighted cells denote impossible scenarios, and cells
marked with ‘—‘ denote no change in state. 84

4.4 Private memory states for PMESI* protocol. issue msg/state means the core is-
sues the message msg and move to state state. A core issues a read/write request.
Once the cache line is available, the core reads/writes it. A replacement triggers
a cache line eviction. Highlighted cells denote impossible scenarios, and cells
marked with ‘—‘ denote no change in state. 85

4.5 Simulation parameters. 87

4.6 Observed WCL (Obs) and analytical WCL bounds (Bound) in cycles for 4-core,
8-core, and 16-core configurations. 87

5.1 Description of routines used for protocol construction. 95

5.2 Private memory states for PMESIF cache coherence protocol generated by SYN-
THIA. issue msg/state means the core issues the message msg and move to state
state. Changes to conventional MESIF are in bold red. 109

5.3 Shared memory states and transitions of PMESIF cache coherence protocol . . . 110

5.4 PMESIF t-states and transitions constructed by SYNTHIA. 110

5.5 Evaluation of SYNTHIA on different protocols. SYNTHIA took less than a few
seconds to construct the protocols. 113

5.6 Predictability and performance evaluation. 113

6.1 AUTOSAR guidelines satisfied and extended by CARP. 120

6.2 Private memory states for CARP. issue msg/state means the core issues the mes-
sage msg and move to state state. A core issues a read/write request. Once the
cache line is available, the core reads/writes it. A core needs to issue a replace-
ment to write back a dirty block before eviction. Changes to PMSI are highlighted.127

6.3 Shared memory states for CARP protocol. 127

6.4 t-states and transitions introduced in CARP. 128

xviii

6.5 Symbols used in latency analysis. 132

6.6 Hybrid arbitration policy parameters. 137

6.7 Observed WCL for synthetic benchmarks. 138

7.1 An instance of POTPOURRI using different related works that adopt predictable
computer architecture design philosophy. 144

xix

List of Publications

A large part of the contents of this thesis has been previously published in peer-reviewed
conference and journal publications which I have co-authored. The use of the content, from the
listed publications, in this thesis has been approved by all co-authors. For each publication, I
present a list of my contributions.

1. Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel, ”Designing Predictable
Cache Coherence Protocols for Multi-Core Real-Time Systems” in IEEE Transactions on
Computers (TC), 2020 [74]

• Developed, designed and implemented the cache coherence mechanisms

• Developed the timing analysis

• Execution of empirical evaluation

• Wrote portions of the article

2. Anirudh Mohan Kaushik and Hiren Patel, ”A Systematic Approach to Achieving Tight
Worst-Case Latency and High-Performance Under Predictable Cache Coherence” in IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021 [76]

• Deveopled, designed and implemented the cache coherence mechanisms

• Developed the timing analysis

• Execution of empirical evaluation

• Wrote significant portion of the article

3. Anirudh Mohan Kaushik and Hiren Patel, ”Automated Synthesis of Predictable and High-
Performance Cache Coherence Protocols” in IEEE Design Automation and Test in Europe
(DATE), 2021 [75]

• Deveopled and designed the synthesis tool

• Execution of empirical evaluation

• Wrote significant portion of the article

4. Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel, ”CARP: A Data
Communication Mechanism for Multi-Core Mixed-Criticality Systems”, in IEEE Real-
Time Systems Symposium (RTSS), 2019 [77]

xx

• Deveopled and designed the cache coherence mechanism and contributed to imple-
mentation

• Developed the timing analysis

• Execution of empirical evaluation

• Wrote significant portion of the article

xxi

Chapter 1

Introduction

Today, computing systems are no longer limited to data-centers and supercomputers for deliver-
ing fast internet services and executing highly complex scientific computations respectively or
desktop and laptop devices for personal use. In the last ten years, embedded computing systems
that sense and interact with the physical world have become ubiquitous and pervasive in our daily
lives. Examples of domains where embedded computing systems are used range from wearable
and smart home technologies (smart watches, smart thermostats, video doorbells) to avionics, au-
tomotive, and robotic domains. Among these domains, computing systems used in avionics and
automotive must not only compute correct results for correct functioning (logical correctness),
but complete these computations within strict timing constraints (temporal correctness) for cor-
rect and safe operation. Failure to complete the computations within the timing constraints can
result in dire catastrophic consequences such as loss of human lives. Such compute systems that
depend on both logical correctness and temporal correctness are called real-time systems, and
are the focus of this thesis.

As an example, consider an object avoidance application deployed in vehicles to realize
semi/full autonomous driving capabilities [89]. This application detects the presence of objects
on the current vehicle trajectory path, and informs the human driver of any detected objects. The
human driver performs actions to safely steer the vehicle to avoid colliding with the detected
object. Clearly, for safety of the human driver, this application must not only detect the object
(functional correctness) but must do so in a timely manner (temporal correctness) so that the hu-
man driver can react to the detected object in a safe manner. Automatic braking system (ABS),
airbag control systems, autopilot functions, and safety-critical radar applications are other exam-
ples of applications from the automotive and avionics domains that must satisfy functional and
temporal correctness for safe and correct operation.

1

1.1 Multi-Core Real-Time Systems

(a) Tesla full-driving chip [140] (b) Renesas H3 MPSoC [139] (c) Xilinx Ultrascale+ MPSoC [17]

Figure 1.1: MPSoCs with multi-core computing units (highlighted) used in real-time systems.

There has been increasing attention and adoption of multi-core computing platforms to satisfy
the demand for high computation capabilities in current real-time systems [28,103,106,127,144,
145]. For example, ARM projects a 100× increase in computing performance between 2015-
2024 in the automotive domain to enable future advanced driver assistance systems (ADAS)
based on radar and computer vision technologies [146]. Multi-core computing platforms consol-
idate multiple processing units (referred to as cores or CPUs) onto a single component resulting
in enhanced application performance and reduced power consumption. Furthermore, the con-
solidation of multiple processing units offers advantages with respect to the size, weight, and
power (SWaP) constraints imposed by the embedded environment in which real-time systems
are deployed.

The current trend in industry is to use commercially available off-the-shelf (COTS) multi-
core platforms in real-time systems. This trend in using COTS multi-core platforms in real-
time systems is driven by the following reasons: (1) these platforms are readily available, (2)
multi-core platform vendors spend considerable efforts in verifying their implementation before
making them commercially available, and (3) availability of robust software ecosystems that
enable designers to deploy their software applications with minimal effort. For these reasons,
COTS multi-core platforms for real-time systems are preferred over custom in-house developed
multi-core platforms as they shorten deployment time and minimize cost [12, 29, 148]. Embed-
ded multi-processor system-on-chips (MPSoCs) developed for automotive and avionics domains
such as Tesla’s full self-driving computer [145], Renesas’s R-Car SoC [144], Xilinx Ultrascale+
MPSoCs [18] feature COTS multi-core computing units alongside other compute accelerators
such as as digital signal processing (DSP) units and graphics processing units (GPUs). We refer
to real-time systems that use multi-core computing units as multi-core real-time systems. We
refer the reader to [112] for a recent comprehensive survey of COTS multi-core computing units
used in real-time systems.

2

The memory hierarchy of current multi-core platforms feature multiple levels of hardware
caches, which are small on-chip memory structures that are placed close to the core’s execution
execution pipeline. These caches store a subset of data in the shared main-memory that is fre-
quently used, and provide fast data access to cores due to their proximity to the cores. Some of
these cache levels are private to each core and some caches levels are shared across all cores,
and they are essential for average-case performance. The multi-core platforms referred to in this
thesis are cached-based multi-core platforms. Since hardware caches are primary performance
features in multi-core platforms, there is a rich body of research work devoted towards leveraging
their performance benefits for real-time systems [15, 23, 79, 94, 115, 131, 150].

1.2 Timing Predictability of Multi-Core Real-Time Systems

Analyzing the temporal behavior of a real-time application prior to execution on the real-time
system, which is referred to as static timing analysis, is crucial towards guaranteeing its tem-
poral correctness. A real-time application comprises of multiple software routines or tasks, and
each task must satisfy logical and temporal correctness. At a high level, this static timing analysis
consists of two phases: (1) deriving an upper bound on the execution times of the tasks constitut-
ing the real-time application – worst-case execution time (WCET) analysis and (2) determining
an execution schedule of the tasks such that the computed WCET of each task is not exceeded –
schedulability analysis. Deriving the WCET of a task requires information about the task’s soft-
ware structure and the micro-architecture of the underlying compute platform. The derivation of
the task’s WCET must be safe in that it should be greater than or equal to any possible execution
time of the task and tight in that it is the lowest WCET possible.

The micro-architecture of COTS multi-core platforms poses challenges to carry out precise
WCET analysis resulting in the derivation of loose or pessimistic WCETs. The timing analysis
challenges with multi-core platforms are primarily attributed to the presence of shared hardware
resources that are shared between the multiple cores such as I/O interconnects, shared on-chip
memories, and the shared main-memory [104, 116]. Multiple real-time tasks simultaneously
executing on different cores interfere with each other for accesses to shared hardware resources
thereby impacting their timing behavior and complicating the timing analysis. To put this into
perspective, Nowotsch et al. [104] showed that a read operation to the shared main-memory
(DRAM) on a multi-core platform used in real-time systems increased by more than 14× when
the number of concurrent cores executing tasks increased from one core (41 cycles) to eight cores
(604 cycles). As a result, computing the WCET of a real-time task on a multi-core platform
must take into account the timing interference caused due to shared hardware resources, which
results in pessimistic WCET estimates. The risk of using such pessimistic WCET estimates is

3

that the schedulability analysis may deem a real-time application unschedulable on a compute
platform (in other words, no feasible execution schedule such that all tasks of the application
satisfy temporal correctness) even though it is safe to execute the real-time application on the
compute platform. This prevents real-time applications from being deployed, which limits the
functionality of the real-time system.

To this end, there is a large body of research devoted towards making multi-core real-time
systems timing predictable or simply predictable in order to enable the timing analysis to com-
pute precise WCET. Predictability is defined in Definition 1.

Definition 1. Predictability is a property of a system that makes it easy for timing analysis
to compute WCET of real-time tasks and guarantees that all possible execution times of tasks
deployed on the system are within their WCET [55].

Prior works in this research can be classified into four categories:

• (C1) New theories and analyses methodologies that improve the precision of the timing
analysis on multi-core real-time systems [7, 95, 96, 161, 165]

• (C2) Empirical analysis of COTS multi-core platforms to capture the timing impact of
shared hardware resources on WCET [29, 41, 103, 116]

• (C3) Software techniques such as real-time operating system (RTOS) extensions and con-
trol of existing hardware features on multi-core platforms to limit timing interference
[14, 23, 25, 47, 50, 52, 61, 79, 80, 84, 86, 99, 111, 141]

• (C4) Novel computer architecture components that are designed with predictability in mind
[15, 56, 63, 64, 78, 86, 91, 109, 118, 128, 131, 150] 1.

Table 1.1 puts into perspective the impact of one recent prior work from each of these categories
towards improving the predictability of multi-core real-time systems. We refer the reader to [40]
for a comprehensive survey and critique of research efforts devoted towards addressing timing
interference due to shared hardware resources in multi-core platforms.

1Note that prior works under C4 propose hardware features not available in COTS multi-core platforms. The
desired outcome of these works is to convince COTS multi-core manufacturers and vendors to implement them in
future COTS multi-core platforms.

4

Prior works Category Brief description Impact
Mancuso et al. [96] C1 A novel WCET analysis theory that reduces pes-

simism in the computed WCET of an application us-
ing knowledge about the application’s execution in
isolation (no interference)

Up to 60% reduction in the pessimism of es-
timated WCET compared to state-of-the-art
approaches

Radojković et al. [116] C2 Empirical analysis of several COTS multi-core plat-
forms to identify impact of shared hardware resource
interference on application execution time

Identifies COTS multi-core platforms suit-
able for real-time systems and presents a
methodology to identify computer architec-
ture components in multi-core platforms that
impact predictability

Ward et al. [153] C3 A software framework that provides fine grained con-
trol of shared hardware resources (cache and DRAM
partitioning, cache locking, cache scheduling) to
limit timing interference between concurrent real-
time tasks on shared hardware resources

Fine grained control reduced the timing in-
terference on shared hardware resources re-
sulting in scheduling tasks that were pre-
viously unschedulable due to pessimistic
WCET estimates

Valsan et al. [150] C4 New predictable computer architecture components
in the form of per-core hardware control of outstand-
ing memory requests to the shared memory to limit
contention of shared hardware resources (miss status
handling registers)

Up to 19% reduction in the WCET compared
to classic cache partitioning techniques.

Table 1.1: Summary of prior research works on improving predictability of multi-core real-time
systems.

1.3 Thesis Focus: Achieving Predictable and High-Performance
Shared Data Communication Between Multiple Cores

A common assumption underlying many of these prior works is that the real-time applications
deployed on the multi-core platforms consist of independent tasks. It is our take that this means
that real-time tasks do not communicate data with each other. This assumption is no longer
representative of current and emerging practical real-time systems [43, 60, 72]. Furthermore, as
demands for more integrated functionalities in real-time systems continue to rise shared data
communication between multiple simultaneously executing real-time applications on different
cores will be necessary to realize such functionalities. Examples of applications deployed in real-
time domains that feature data communication include machine learning algorithms for training
and classification [31, 85, 89, 172] and diagnostic real-time tasks that communicate frequently
changing values from sensors and engines [43, 60]. As a concrete example, in state-of-the-art
autonomous driving systems, multiple machine learning tasks execute in parallel and operate
on the data captured by various sensors (shared data) to perform real-time object detection and
vehicle localization computations [89].

Shared data communication between real-time applications executing on different cores makes
multi-core platforms even less amenable for timing analysis. This is because the timing behav-
ior of a real-time application accessing shared data not only depends on the timing interference
due to shared hardware resources but also on the memory state of the shared data due to past
memory activity from other applications on the same shared data. As an example, consider the

5

Core0 Core1

A: 5

Shared interconnects

Shared memory
A: 10

Private
cache

Core0 Core1

A: 5

Shared interconnects

A: 10

Private
cache

Read A

Core0 Core1

A: 5

Shared interconnects

A: 5

Private
cache

Read A

Core0 Core1

A: 5

Shared interconnects

A: 5

A: 5

Core0 Core1

A: 10

Shared interconnects

Shared memory
A: 10

Private
cache

Core0 Core1

A: 10

Shared interconnects

A: 10

Private
cache

Read A
Core0 Core1

A: 10

Shared interconnects

A: 10

A: 10

Time

Difference in timing of
Core1’s read access due to

shared data state

Write A

Read A

Scenario 2

Scenario 1

Figure 1.2: Illustrative example of impact of shared data accesses on timing behavior of real-time
applications.

scenarios shown in Figure 1.2 where two cores (Core0 and Core1) are accessing shared data
with memory address A. In the first scenario, Core0 has modified A with a new value, and this
is cached in Core0’s private cache. In the second scenario, Core0 has an unmodified version of
A in its private cache. Hence, the data state of A in Core0’s private cache is different in both
scenarios. This results in different timing behavior of Core1’s access to A as shown. In the
first scenario, Core0 has to respond by updating the shared memory version of A so that Core1

receives the most up-to-date version of A from the shared memory. On the other hand, in the sec-
ond scenario, Core1 receives the correct data from the shared memory without any involvement
of Core0. Therefore, precise timing analysis of shared data communication involves accounting
for timing interference due to shared hardware resources on two fronts – (1) a core’s own access
(Core1’s read to A in both scenarios) and (2) other cores’ responses based on the memory state
of the shared data (Core0’s update to shared memory in the first scenario). To handle the timing
analysis challenges associated with shared data communication, recent research have focused on
designing predictable shared data communication mechanisms [13,14,25,52,60,79,86,87,153].

6

1.3.1 Motivation: Existing Predictable Shared Data Communication Mech-
anisms Constrain Application Performance

Designing for predictability entails designing components that are amenable to WCET analysis.
As a result, designing for predictability is concerned with worst-case scenarios such that the
computed WCET estimates are safe. On the other hand, designing for high-performance entails
designing components that optimize for the common case or average-case scenarios. For exam-
ple, speculative execution and deep cache hierarchies are high-performance micro-architectural
optimizations common in COTS computing platforms that make computing WCET estimates dif-
ficult. Such architectural optimizations threaten predictability [11,147]. As a result, predictabil-
ity and high-performance are typically conflicting design goals where the former is concerned
with optimizing worst-case scenarios and the latter is concerned with optimizing average-case
scenarios [15, 24, 25].

Since predictability is a paramount consideration for real-time systems, state-of-the-art pre-
dictable shared data communication mechanisms trade away high-performance for enabling tim-
ing analysis. Examples of such mechanisms are:

• (M1) Private cache bypassing of shared data [13, 25, 86, 153],

• (M2) Co-locating real-time applications that communicate shared data to execute on the
same core [14, 25, 52],

• (M3) software changes to real-time applications to eliminate shared data communication
such as shared data duplication [25, 60, 79].

These mechanisms are adopted by industry as discussed in a recent survey on real-time systems
industry practices [5]. To put this in context with the example in Figure 1.2, mechanisms in M1
prevent cores from caching A in their private caches, mechanisms in M2 force the application to
execute on a single core, and mechanisms in M3 duplicate A into two versions where each version
has a unique memory address. At a high level, these prior mechanisms place one of the follow-
ing constraints: (1) how data is cached in the cores’ cache hierarchy and (2) when and where
real-time applications are executed to achieve predictable shared data communication. These
data caching and application execution constraints in turn affect performance. Data caching con-
straints prevent cores from fully utilizing their private memory hierarchy (caches) that have been
optimized for low latency access thereby incurring high compute latency. Application execution
constraints prevents the usage of all available cores on the multi-core platform thereby throt-
tling compute throughput. The consequences of such constraints (high compute latency and low
compute throughput) goes against some of the key reasons for adopting multi-core platforms

7

92
.6

1

81
.4

2

74
.1

2

87
.8

1

97
.8

8

2.
17

80
.6

6

11
.9

8

4.
19

32
.6

5

1.
26

5.
13

2.
84

4.
82

1.
68 2.
51

2.
20

1.
18

7.
17

2.
67

4.
63

7.
94

2.
54

4.
63

1.
31

0.
99 1.
74

1.
41 1.
67

2.
36

1 1 1 1 1 1 1 1 1

1

0
1
2
3
4
5
6
7
8
9

10

FFT Radix Ocean FMM LU Radiosity Cholesky Raytrace Barnes Geomean

Pe
rf

or
m

an
ce

 sl
ow

do
w

n

Cache bypassing - All data Co-locating tasks Cache bypassing - Shared data Conventional communication mechanism

Figure 1.3: Performance slowdown of state-of-the-art approaches to predictable shared data
communication against a conventional multi-core communication mechanism for the SPLASH-2
workloads on a 4-core multi-core platform. These results are taken from [74]. Lower is better.

(low compute latency and high compute throughput), and hence, prevent real-time systems that
employ such predictable shared data communication mechanisms to take full advantage of the
compute capabilities offered by multi-core platforms. Figure 1.3 highlights the performance
slowdown of state-of-the-art predictable shared data communication mechanisms compared to
the conventional multi-core communication mechanism deployed in multi-core platforms, which
is hardware cache coherence [97]. A clear takeaway from Figure 1.3 is that state-of-the-art
predictable shared data communication mechanisms exhibit up to 97× performance slowdown
(2.3×-32× average slowdown), which underscores the conflicting design trade-offs between pre-
dictability and performance.

1.3.2 Design Dilemma: Reconciling Predictability and High-Performance

The conflicting design goals of predictability and high-performance puts real-time system de-
signers and architects in a dilemma about the best way to reconcile them when designing a
shared data communication mechanism. This dilemma is a recurring feature in real-time sys-
tems research, and features for different components of the real-time compute stack of which
shared data communication mechanism is one component. Prior research works that addressed
this dilemma for different components of the real-time compute stack espoused one of the fol-
lowing two design philosophies:

1. Predictable Computer Architecture Design: Research works that followed this design
philosophy argued that the micro-architecture of compute platforms used in real-time sys-
tems must be designed with timing predictability as a first class design principle [15,
33, 56, 63, 65, 67, 78, 88, 91, 109, 118, 126, 128, 131, 150]. These works followed one of
two approaches: (1) design the entire compute stack (micro-architecture, instruction set
architecture, and associated compiler framework) from ground up with predictability in
mind [33, 88, 109, 126, 128] (complete approach) or (2) analyze the predictability guar-
antees of a particular computer architecture component such as caches and memory con-

8

trollers present in COTS multi-core platforms and design extensions to improve their pre-
dictability [15, 56, 63, 65, 67, 78, 91, 131, 150] (compositional approach).

2. Predictable Software Runtime Design: Research works that followed this design phi-
losophy argued that COTS multi-core platforms will continue to exhibit low predictability
as compute platform vendors will most likely optimize for high-performance due to mar-
ket factors. Therefore, it is the responsibility of the software (application or RTOS) to
guarantee predictability [14, 23, 25, 47, 50, 52, 61, 79, 80, 84, 86, 99, 111, 141].

State-of-the-art predictable shared data communication mechanisms described in the previ-
ous section (Section 1.3.1) espoused the second design philosophy. In this thesis, we adopt the
first design philosophy and propose hardware-based shared data communication mechanisms to
achieve predictable and high-performance shared data communication. Therefore, the research
contributions of this thesis fall under the predictable computer architecture design philosophy.
Our motivation for choosing this design philosophy is based on the observation that software
approaches to predictable shared data communication such as cache bypassing and task mapping
have reached a ceiling on their performance returns. This is because, these approaches have
limited visibility of the underlying micro-architecture and hence, wield limited control on the
performance and predictability trade-offs. As a result, it is highly unlikely that newer communi-
cation mechanisms that follow the same design philosophy will observe significant performance
returns above this performance ceiling.

On the other hand, predictable computer architecture design allows for finer control of the
predictability and performance trade-offs through micro-architectural changes. Hence, a shared
data communication mechanism designed by making performance-preserving predictable micro-
architectural changes to an existing hardware-based shared data communication mechanism can
achieve better performance compared to state-of-the-art approaches while guaranteeing pre-
dictability. This leads to the following research question that this thesis is concerned with:

Thesis question: Is it possible to design a hardware-based predictable shared data communi-
cation mechanism such that its average-case performance guarantees go beyond the perfor-
mance ceiling of state-of-the-art predictable shared data communication mechanisms?

The approach taken in this thesis proposes micro-architectural changes to hardware cache
coherence mechanisms, which are existing data communication mechanisms in COTS multi-
core platforms. The research contributions presented in this thesis answer the above proposed
research question in the affirmative.

9

1.3.3 Our Approach: Predictable and High-Performance Shared Data Com-
munication through Hardware Cache Coherence

Hardware cache coherence is a staple high-performance feature in multi-core platforms that facil-
itates correct shared data communication between multiple cores [97]. At a high level, hardware
cache coherence enables multiple cores to correctly access the most up-to-date shared data, and
allow multiple cores to simultaneously cache shared data in their private caches. However, hard-
ware cache coherence has been overlooked as a potential shared data communication mechanism
in real-time multi-core platforms. In this thesis, we take the first steps towards making hardware
cache coherence mechanisms viable shared data communication mechanisms for multi-core real-
time systems. We describe the design of multiple predictable hardware cache coherence mech-
anisms that are amenable to timing analyses for different real-time system models (Chapters 3
and 6), and discuss design techniques that effectively balance high average-case application per-
formance and tight predictability requirements (Chapter 4). This thesis makes a strong case for
the adoption and deployment of predictable hardware cache coherence mechanisms in real-time
multi-core platforms by showing that they offer significant average-case performance benefits
compared to existing predictable shared data communication mechanisms while still guarantee-
ing predictability. Hence, this thesis provides evidence for the following thesis statement:

Thesis statement: A shared data communication mechanism for real-time multi-core plat-
forms that uses predictable hardware cache coherence delivers high average-case perfor-
mance compared to state-of-the-art approaches while guaranteeing timing predictability.

1.4 Key Benefits of Proposed Approach

There are two key benefits of our proposed approach (predictable hardware cache coherence)
that make it a compelling data communication mechanism for deployment in multi-core real-
time systems.

1. High average-case performance: The research contributions in this work show com-
pelling evidence that predictable hardware cache coherence offer better average-case per-
formance compared to state-of-the-art predictable communication mechanisms. Figure 1.4
extends the results presented in Figure 1.3 with the performance slowdown of one of our
approaches. Compared to the conventional hardware cache coherence mechanism, which
is optimized for performance, our predictable hardware cache coherence mechanism ex-
hibits 1.46× average performance slowdown and up to 2× performance slowdown (Radix
benchmark). This performance slowdown is a consequence of guaranteeing predictability.

10

92
.6

1

81
.4

2

74
.1

2

87
.8

1

97
.8

8

2.
17

80
.6

6

11
.9

8

4.
19

32
.6

5

1.
26

5.
13

2.
84

4.
82

1.
68 2.

51

2.
20

1.
18

7.
17

2.
67

4.
63

7.
94

2.
54

4.
63

1.
31

0.
99 1.

74

1.
41 1.
67

2.
36

1.
22 2.

00

1.
92

1.
41

1.
22

1.
17 1.
52

1.
50

1.
37

1.
46

1 1 1 1 1 1 1 1 1

1

0
1
2
3
4
5
6
7
8
9

10

FFT Radix Ocean FMM LU Radiosity Cholesky Raytrace Barnes Geomean

Sl
ow

do
w

n

Cache bypassing - All data Co-locating tasks Cache bypassing - Shared data Our approach Conventional cache coherence

Figure 1.4: Performance slowdown of state-of-the-art approaches and one of our approaches to
predictable shared data communication against a conventional hardware cache coherence mech-
anism for the SPLASH-2 workloads on a 4-core multi-core platform. These results are taken
from [74]. Lower is better.

However, the performance slowdown of our approach is the least compared to state-of-
the-art approaches. In fact, our approach achieves up to 4× improvement in performance
compared to cache bypassing for shared data, which is the best among the state-of-the-art
approaches. The key reason for this high-performance benefit is that unlike state-of-the-art
approaches, predictable hardware cache coherence mechanisms do not enforce any data
caching or application execution constraints. As a result, these mechanisms take better
advantage of the computation capabilities offered by multi-core platforms compared to
existing state-of-the-art approaches. As real-time applications continue to feature high
compute demands and frequent data communication [72, 102, 146], the communication
mechanisms proposed in the thesis are well-positioned to satisfy these demands without
compromising on the critical timing predictability requirements.

2. Better software design productivity: Hardware cache coherence mechanisms handle
correct shared data communication between cores transparent to the software applica-
tion [97, 138]. This means that a software application designer does not need to worry
about handling correct shared data communication in the software, and instead, can solely
focus on exploring and implementing new software functionalities. This property of hard-
ware cache coherence mechanisms holds for the predictable hardware cache coherence
mechanisms proposed in this thesis. Real-time software designers design software applica-
tions that must meet functional and timing predictability guarantees. Predictable hardware
cache coherence mechanisms can reduce some of the design burden by guaranteeing pre-
dictability of data communication. This improves the design productivity of real-time soft-
ware designers as they can focus more on the functional implementation of the software
application. With growing emphasis of using machine learning algorithms in real-time
systems (for example, object detection and classification in self/fully driving autonomous
vehicles [89]), high designer productivity of software application designers is crucial in
order to implement advanced functionalities in real-time systems.

11

1.5 Thesis Contributions

This thesis makes the following contributions:

1. Design Invariants for Designing Predictable Hardware Cache Coherence Mechanisms
[74] (Chapter 3): The starting point of the research presented in this thesis begins with
understanding how to build a predictable hardware cache coherence mechanism. We first
comprehensively analyze all sources of timing interference that can arise when cores si-
multaneously cache correct versions of shared data in their private caches. We then pro-
pose a set of design invariants, which are general design guidelines, to design predictable
cache coherence mechanisms. These design invariants do not impose any implementation
constraints, and are not tied to any existing cache coherence mechanism implementation.
We design three predictable cache coherence mechanisms using these design invariants.
We perform timing analysis to compute the worst-case memory access latency under the
proposed predictable cache coherence mechanisms, and empirically show that this derived
worst-case memory access latency is safe and tight.

2. Balancing Predictability and High-Performance Guarantees in Predictable Hard-
ware Cache Coherence Mechanisms [76] (Chapter 4): A shared data communication
mechanism that is predictable but has large worst-case memory access latency is an inferior
choice compared to another predictable communication mechanism with lower worst-case
memory access latency irrespective of the former’s performance benefits over the latter.
This is because worst-case timing estimates are used in the schedulability analysis (Sec-
tion 1.2). To this end, the second contribution presents a systematic analysis framework
to understand the relationship between design features of a predictable cache coherence
mechanism and the resulting worst-case memory access latency. Using this framework,
we present a technique to lower the worst-case memory access latency under predictable
cache coherence mechanisms while preserving their performance benefits over state-of-
the-art communication mechanisms.

3. Automating the Construction of Predictable and High-Performance Cache Coher-
ence Protocols [75] (Chapter 5): In hardware cache coherence mechanisms, the cache
coherence protocol is the main component that enforces rules for correct shared data com-
munication between cores. Designing a predictable and high-performance cache coherence
protocol is non-trivial as it requires accounting for different types of memory communi-
cation scenarios: (1) accesses to shared hardware resources such that they are managed
in a predictable manner and (2) simultaneous memory interleaving from multiple cores to
the same shared data such that they are handled in a non-stalling manner. Accounting for

12

these scenarios adds to the design complexity of predictable and high-performance cache
coherence protocols. To manage this design complexity, the third contribution proposes
SYNTHIA, a tool that automates the construction of predictable and high-performance
cache coherence protocols. The input to this tool is a simple specification of the cache
coherence protocol that is devoid of any predictability and performance guarantees. The
tool refines this input and adds details that guarantee predictability and high-performance.

4. Designing Criticality Aware Predictable Cache Coherence Mechanisms for Mixed
Criticality Systems [77] (Chapter 6): A mixed-criticality system (MCS) is a real-time
system where tasks running on the system have different safety requirements (timing and
average-case performance requirements). To support shared data communication between
tasks of various criticality levels, the underlying communication mechanism must ensure
that the timing behavior of high critical tasks are not impacted by low critical tasks. The
fourth contribution presents CARP, a criticality aware predictable hardware cache coher-
ence mechanism that allow tasks of different criticality levels to communicate data with
each other while ensuring that shared data communication to/from low critical tasks do not
impact the timing behavior of high critical tasks.

1.6 Structure of Thesis

Chapter 2 provides a background on multi-core platforms and hardware cache coherence mecha-
nisms and presents a brief overview of related works. Chapters 3-6 are the main research contri-
butions of this thesis. Chapter 3 presents a design template that guides the design of predictable
hardware cache coherence mechanisms for hard real-time systems and describes the construction
of three predictable hardware cache coherence mechanisms. Chapter 4 presents a systematic for-
mal analysis framework to capture the relationship between the design of predictable hardware
cache coherence mechanisms and their timing analysis. This framework guides the design of
better predictable hardware cache coherence mechanisms that result in lower worst-case latency
while maintaining their average-case performance benefits. Chapter 5 describes SYNTHIA, a tool
that automates construction of predictable hardware cache coherence protocols. SYNTHIA is de-
signed using the formal analysis framework developed in Chapter 4. Chapter 6 describes the de-
sign of predictable hardware cache coherence mechanisms for mixed-criticality systems (MCS),
which are real-time systems that deploy tasks of varying timing criticality levels. Chapter 7
shows how our research contributions can be integrated with other prior works to realize end-
to-end timing predictable and high-performance real-time multi-core systems. We conclude this
thesis with Chapter 8 that lists some areas of future works based on our research contributions.

13

Chapter 2

Background and Related Works

This chapter provides necessary background on multi-core platforms and hardware cache coher-
ence mechanisms that allow for coherent shared data communication between multiple cores on
multi-core platforms and a brief overview of related works. We discuss specific related works in
detail based on the research contributions in Chapters 3-6.

2.1 Multi-Core Platforms

Figure 2.1 shows the typical components of a multi-core platform. A multi-core platform con-
solidates several processing units called cores onto a single silicon die. Each core consists of
parallel circuitry for decoding and executing a sequence of instructions and dedicated register
files that store data manipulated and operated on by the instructions. A core fetches the data re-
quired by the instructions into the register files from the memory hierarchy, which is a hierarchy
of memory components with different data capacities and access latency. The focus of this thesis
is on the data movement in the memory hierarchy. The memory hierarchy includes a hierarchy
of caches, which are small low-latency SRAM-based memory components and a high-latency
DRAM-based main-memory that stores all data; the cache hierarchy stores a subset of data in
the main-memory. Table 2.1 describes the data capacity and access latency of different memory
components in a typical multi-core platform. Both instructions and data share the same physical
memory space (Von Neumann architectures). Some levels of the memory hierarchy are private to
each core and other levels are shared across all cores. For example, in most multi-core platforms
each core has one to two levels of private cache memories, which are referred to as the level one
(L1) and level two (L2) cache levels. These private cache memories are small and are placed

14

Shared Message and Data Buses

Unified Last Level
Cache (LLC)

Core0
L1

Data
L1

Instr

Unified L2

Core1
L1

Data
L1

Instr

Unified L2

CoreN
L1

Data
L1

Instr

Unified L2

DDR-based main-memory

In
cr
ea
si
ng
ac
ce
ss
la
te
nc
y

D
ec
re
as
in
g
ca
pa
ci
ty

Fast

Slow Large

Small

Figure 2.1: Typical multi-core platform. Capacity and access latency trends of memory compo-
nents in memory hierarchy highlighted.

Component Capacity Access latency
Register files 1KB 1 cycle

Private L1 cache 32KB 4 cycles
Private L2 cache 512KB 10 cycles

Shared LLC 6MB 38 cycles
Shared main-memory 4-12GB 65-100 cycles

Table 2.1: Capacity and access latency of different memory components in memory hierarchy of
Intel’s Xeon 5500 processors (Nehalem-EP) multi-core processors. Data taken from [57].

close to the core’s instruction execution circuitry for fast access. Multiple cores share the larger
cache levels (last level caches) and the DRAM-based main-memory. Cores access these shared
memory components through a shared interconnect.

In this thesis, we consider multi-core platforms that have a 3-level memory hierarchy with
private split L1 caches for instruction and data, a unified shared last level cache (LLC), and a
DRAM-based main-memory. The memory hierarchy is inclusive in that the L1 caches store a
subset of the data present in the L2 cache, and the L2 cache stores a subset of data in the main-
memory. Cores access the shared LLC and main-memory through a bus interconnect. The exact
parameters of the multi-core model assumed by the latency analysis and evaluation are specific
to the research contribution, and are described in the appropriate chapters.

Note that this thesis focuses on improving the timing predictability of one component of
the multi-core compute stack, which is the data communication component, through predictable

15

hardware cache coherence mechanisms. This data communication component encompasses the
private and shared levels of the memory hierarchy. The following chapters derive the worst-case
latency (WCL) of a memory request under the proposed predictable hardware cache coherence
mechanisms. This WCL is a building block towards computing the total WCET of a task. We
adopt a compositional timing analysis approach [59] to use the derived WCL of a memory re-
quest to compute the total WCET of a task. At a high level, compositional timing analysis divides
a multi-core platform into independent components and the timing contributions of each com-
ponent can be combined to compute the total WCET of task. In Chapter 7, we discuss in detail
the WCET computation using our proposed predictable hardware cache coherence mechanisms
using compositional timing analysis.

2.2 Hardware Cache Coherence

The objective of a cache coherence mechanism is to enable cores to cache the most recent write
on shared data. These mechanisms are the primary data communication mechanisms in existing
multi-core platforms [97].

Illustrative example of incoherent data sharing. Incoherent sharing of data occurs when multi-
ple cores read different versions of the same data that is present in their private cache hierarchies.
Figure 2.2 shows a scenario where cores share incoherent data. Consider the shared data in ad-
dress A. Initially, both cores (Core0 and Core1) do not have A in their private caches. At 1 ,
Core0 performs a write operation to A. Since Core0 does not have A in its private cache, this
write operation is a cache miss. Core0 communicates the write operation on the interconnect,
and the shared memory supplies the value of A (2), which is then updated by Core0. At 3 ,
Core1 performs a read operation to A, and this read operation is a cache miss. Core1 communi-
cates its read operation on the interconnect. The lack of a cache coherence mechanism can cause
the shared memory to send an outdated value of A. This is shown in 4 where Core1 receives an
outdated value of A resulting in incoherent view of A across the cores.

Hardware cache coherence. A cache coherence mechanism avoids data incoherence by deploy-
ing a set of rules to ensure that cores access and cache the correct version of data at all times. The
main component in a hardware cache coherence mechanism is a cache coherence protocol, which
is a state machine that deploys the set of rules. Typically, the coherence protocol maintains data
coherence at cache line granularity, which is a fixed size collection of data. The protocol state
machine implements these rules with a set of coherence states that convey access permissions
(read, write) and other information about the cache line data, and coherence state transitions
between states are triggered based on the memory activity of cores on the shared data. Figure
2.3 shows the implementation of a hardware cache coherence mechanism. The cores’ cache

16

Write A = 10

Message interconnect

Core0 Core1

Data interconnect

A:- A:-

A:5

Cache
miss

Write A = 10

Message interconnect

Data interconnect

A:5 10 A:-

Core0 Core1

A:5

Read A

Message interconnect

Core0 Core1

Data interconnect

A:10 A:-

Cache
miss

A:5

Read A

Message interconnect

Core0 Core1

Data interconnect

A:10 A:5

A:5

Time1 2 3 4

Figure 2.2: Example of incoherent shared data communication.

Read,	Write

M SIWrite,	
Read

Read

Write

Write

Read
Read

Coherence states

Write

Write

State transitions

Core’s memory activity Remote core’s memory activity

(b) MSI protocol at private cache level.

M

I/S

Write

Write

Read

Read

(c) MSI protocol at shared memory level.

I 0 0x0010

M 1 0x1234

S 0 0x7834

Cache controller

Data arrayTag array
Cache sets

Coherence
state

Dirty bit Tag address
To

interconnects

(a) Core’s private cache implementation.

64-Bytes data

Figure 2.3: Hardware cache coherence implementation of MSI cache coherence protocol.

Write A = 10

Message interconnect

Core0 Core1

Data interconnect

A:-

A:5

Cache
miss

Write A = 10

Message interconnect

Data interconnect

Core0 Core1

Read A

Message interconnect

Core0 Core1

Data interconnect

Cache
miss

Read A

Message interconnect

Core0 Core1

Data interconnect

A:5 10

Time1 2 3 4

I

Write-back data

A:- I A:10 M A:- I A:10 M A:- I A:10 S A:10 S

I/S A:5 M A:5 M I/S

Figure 2.4: Coherent data sharing with MSI protocol.

controllers implement the coherence protocol, and the coherence states for the cache lines are
maintained in the tag arrays.

Cache coherence protocols deployed in current multi-core platforms consist of three funda-
mental stable states, which establish the Modified-Shared-Invalid (MSI) protocol: modified (M),
shared (S), and invalid (I) [138]. Figure 2.3 shows the MSI protocol state machine at the private
cache and shared memory levels. A cache line in M means that the current core has written to it
and it did not propagate the updated data to the shared memory yet. Only one core can have a
specific cache line in a modified state, and is referred to as the owner. A core that has a cache
line in M and observes remote memory activity on the cache line must update the cache line copy

17

Core’s memory activity Remote core’s memory activity

M SI

Read

E
Write

Read

Read

E-Read

Write

Write
Read Write

Write

Read

(a) Modified-Exclusive-Shared-Invalid (MESI) protocol.

Read

Read,	Write

E SI

Read

Write
ReadM Read

Write
Write,	
Read

Write

Read

Read

Write

O

Write

Write

Read

Write

Read

Write,	
Read

(b) Modified-Owned-Exclusive-Shared-Invalid (MOESI) protocol.

Figure 2.5: MESI and MOESI cache coherence protocol state machines at the private cache level.

in the shared memory. This operation is called write-back to shared memory. A cache line in
S means that the core has a valid, yet unmodified version of that line. One or more cores can
have versions of the same cache line in shared state to allow for fast read accesses. Cores that
have the same cache line in the shared state are referred to as sharers. This constraint of one
owner for a cache line or multiple cores sharing a cache line is referred to as the single-writer
multiple-reader (SWMR) invariant [138]. A cache line in I denotes the unavailability of that
line in the cache or that its data is outdated and no longer valid. At the shared memory level, the
I and S are fused into one state I/S. This state means that the cache line data contents are not
modified by any core. The shared memory state M means that there is a core that has updated the
data contents of the cache line, and the data of the cache line in the shared memory is no longer
up-to-date.

Figure 2.4 applies the MSI protocol to the example in Figure 2.2. Initially, both cores have
A in I state (1), and the shared memory has A in I/S. Core0’s write operation changes the
coherence state of A in Core0’s private cache to M state (2). The shared memory state of A
correspondingly transitions to the M state. At 3 , Core1 communicates its read operation to
Core0 and the shared memory. The shared memory cannot respond with data to Core1 as it
does not have the up-to-date version of A. Core1’s read operation causes Core0 to perform a
write-back of the updated data contents of A to the shared memory. After the data write-back,
the shared memory sends the updated A to Core1. At 4 , both cores have up-to-date copies of A,
and coherence state of A in the private caches of Core0 and Core1 is S.

The Modified-Exclusive-Shared-Invalid (MESI) and Modified-Owned-Exclusive-Shared-Invalid
(MOESI) protocols are cache coherence coherence protocols that apply performance optimiza-
tions to the MSI protocol, and these protocols are deployed in current multi-core platforms
[28, 106]. These protocols are shown in Figure 2.5a and 2.5b respectively. The MESI proto-
col introduces the exclusive (E) as shown in Figure 2.5a. A core that receives a line in E state
from the shared memory (E-Read in Figure 2.5a) guarantees that no other core has the same line
in a valid state (S or M states). To enable this optimization, the shared memory keeps track of
additional states to identify (1) a read-only copy of the line present in cores’ private cache (S

18

state), (2) no copy of the line present in any cores’ private cache (I state), and (3) an exclusive
or modified copy of the line is present in a core’s private cache (E/M state). The E state allows
for one performance optimization for store requests. A core that has a line in the E state can
complete a store request without issuing any coherence messages on the bus. This is because a
core that has a line in the E state implies that there are no other cores that have the same line in
their private caches. Hence, no private copies of the line need to be invalidated. We refer to this
performance optimization as silent stores. On the other hand, in MSI protocol, a core performing
a store operation on a line in S or I state must issue coherence messages on the shared bus before
it can complete its store operation. The MOESI protocol in Figure 2.5b adds an optimization to
the MESI protocol in the form of the owned (O) state, which minimizes data write-backs to the
shared memory. In the MSI and MESI protocols, a core that has a cache line in M and observes a
remote read operation must write-back the updated cache line data contents to the shared memory
and changes the coherence state of the cache line to S. The O state in MOESI protocol optimizes
this behavior by eliminating the write-back to shared memory; a core with a cache line in M state
sends data to the requesting core on a remote read request, and transitions to the O state.

Types of hardware cache coherence. Cores’ cache controllers and the shared memory change
the state of their cache line copies based on the observed memory activity. There are two types
of hardware cache coherence mechanisms based on how cores and the shared memory observe
this memory activity: (1) snooping bus-based cache coherence and (2) directory based cache
coherence [138]. In snooping bus-based mechanisms, cores broadcast their memory activity on
a shared bus, and cores and the shared memory observe memory activity on a cache line by
snooping this shared bus. Hence, the snooping bus is the ordering point for all memory activity.
On the other hand, under directory based cache coherence mechanisms, cores communicate their
memory activity to a centralized directory (unicast communication) that tracks information about
a cache line across cores. The directory then communicates a core’s memory activity to a cache
line to other cores that have the cache line (multicast communication). Hence, the directory is
the ordering point for all memory activity. The snooping bus-based coherence mechanisms is
typically used for multi-core platforms with small core count (4-16 cores) due to bus scalability
limits [138]. This dissertation focuses on snooping bus-based cache coherence mechanisms as
they are typically implemented in multi-core platforms with a small number of cores, which is
the case in current real-time systems [28, 106].

Memory activity under snooping bus-based cache coherence. We will use an example to
describe a core’s memory activity to a cache line under a snooping bus-based cache coherence
mechanism. Consider the following scenario: core c0 issues a read to cache line Z. The read to
Z first checks c0’s private cache for the data contents of Z. On a private cache hit, the necessary
data is supplied, and the read is marked complete. Private cache hits do not generate coherence
activity. On a cache miss, the private cache controller of c0 generates a coherence message of

19

the form Get(A). If a core issues a read request to Z, its cache controller generates a GetS(Z)
message; GetS(Z) means to obtain a shared copy of Z. If a core issues a store request to Z, its
cache controller generates a GetM(Z) message; GetM(Z) means to obtain a modified copy of Z.
If Z is marked for eviction, and has been modified, the core first generates a PutM(Z) message,
and then writes back the updated data contents of Z to the shared memory. If the core has Z
in a shared state and wants to modify it, it generates an Upg(Z) message. The cache controller
then broadcasts the GetS(Z)/GetM(Z)/PutM(Z)/Upg(Z) coherence message on the snooping bus.
A coherence message is said to be ordered on the bus when all cores and the shared memory
observe the corresponding memory request on the bus. A core observes its own messages on
the bus (Own) as well as messages by other cores (Other). For example, c0’s GetS(Z) coherence
message is observed by c0 as OwnGetS(Z), and the other cores observes the same coherence
message as OtherGetS(Z). Based on the cache coherence protocol transition, the coherence state
of Z copies in c0 and other cores change or remain the same.

Tables 2.2 and 2.3 show the complete snooping bus-based MSI cache coherence protocol
state machines at the private cache level and shared memory level respectively. The state ma-
chines in Table 2.2 and 2.3 have more details specific to the snooping bus implementation that
that described in Figure 2.3. The state machines have stable coherence states (s-states) and
transient coherence states (t-states). Memory activity on a cache line start and end on s-
states, and t-states capture pending memory activity information on the cache line. There are
three types of t-states: (1) t-states that denote that a core is waiting for the corresponding co-
herence message to be ordered on the snooping bus (states suffixed with A), (2) t-states that
denote that a core is waiting for the requested data response (states suffixed with D), and (3) t-
states that are waiting for both the coherence messages to be ordered and data responses (states
suffixed with AD). As an example, consider a core that performs a read operation on a cache
line that it does not have in its private cache under the MSI protocol. The starting stable state
of the cache line is I. The core issues a GetS() coherence message and changes the coherence
state of the cache line to t-state IS AD, which denotes that a core has issued a GetS() coherence
message and is waiting for the GetS() message to be ordered on the bus and the corresponding
data response. When the coherence message is ordered on the snooping bus, the core changes
the coherence state to t-state IS D, which denotes that a core has observed its ordered coher-
ence message, and is waiting for the data response. On receiving the data response, the cache
line coherence state transitions to the stable coherence state S, and the core completes the read
memory operation.

In addition to capturing pending memory state information, t-states also capture informa-
tion regarding coherence state changes due to interleaving memory activity from other cores to
the same cache line. Interleaving memory activity from other cores to the same cache line is
possible due to the non-atomic implementation of the snooping bus [138]. Non-atomic snoop-

20

ing bus is preferred and implemented in existing multi-core platforms due to their performance
benefits [138]. There are two ways to deal with interleaving memory activity on the same cache
line. In the first approach, a core that has a cache line in a t-state can stall any coherence state
changes until it completes its pending memory operation. However, such a protocol design will
have poor performance as it introduces stalls. The second approach is a non-stalling approach
wherein t-states can capture the impact of the interleaving memory activity to a cache line on
a core’s pending memory operation on the same cache line. We will illustrate this information
capture using the following example. Consider c0 has a cache line in t-state IS D. c0, all other
cores, and the shared memory have observed c0’s read coherence message, and c0 is waiting for
the data response. While c0 is waiting for the data response, another core c1 broadcasts a GetM()
coherence message to the same cache line. Since c1 is performing a write operation, c0 must
invalidate the cache line on receiving the data response to maintain the SWMR invariant. As a
result, c0 moves the cache line from t-state IS D to t-state IS DI. Transient state IS DI de-
notes that a core is waiting for the requested cache line data contents, and on receiving the cache
line completes the read operation and moves to the I state. Note that this approach introduces
additional t-states to eliminate stalling, and hence, offers better performance compared to the
first stalling based approach.

In Table 2.3, the shared memory fuses the s-states I and S into one s-state IoS, which
means that the data contents of the cache line are unmodified. This means that either some
cores or no core have the cache line in their private caches. The t-states IoS D denotes that
the shared memory is waiting for a core to send updated cache line data contents to the shared
memory (write-back) due to a cache line replacement or in response to another core’s request.
The shared memory on receiving the cache line data contents updates the shared memory copy
and transitions to s-state IoS.

21

Core events Bus events

St
at

es

R
ea

d

W
ri

te

Rep
lac

em
en

t

O
w

nG
et

S

O
w

nG
et

M

O
w

nD
at

a

O
w

nP
ut

M

O
th

er
G

et
S

O
th

er
G

et
M

O
th

er
Pu

tM

I
Issue

GetS()/IS AD

Issue

GetM()/IM AD
— — —

S Hit, Complete read
Issue

GetM()/SM AD
-/I — I

M Hit, Complete read Hit, Complete write
Issue

PutM()/MI A
Write-back data,

Send data/S Send data/I

IS AD -/IS D -/IS A — — —
IS D Complete read/S — -/IS DI —

IS A
Complete read/

S
— — —

IM AD -/IM D — — —
IM D Complete write/M -/IM DS -/IM DI —
SM AD Hit, Complete read/- Stall -/SM D -/SM A -/IM AD
SM D Hit, Complete read/- Stall Complete write/M -/SM DS -/SM DI —

SM A Hit, Complete read/- Stall Complete
write/M — -/IM A —

SM DS Hit, Complete read/- Stall
Complete write,

send data,
write-back data/S

— -/SM DSI —

SM DI Hit, Complete read/- Stall
Complete write,

send data,
write-back data/I

— — —

SM DSI Hit, Complete read/- Stall
Complete write,

send data,
write-back data/I

— — —

MI A Hit, Complete read Hit, Complete write Write-back
data/I

Send data,
write-back
data/II A

Send data/II A

IM DI
Complete write,

Send data/I — — —

IS DI Complete read/I — — —

IM DS
Complete write,
write-back data,

send data/S
— -/IM DSI —

IM DSI
Complete write,

Send data/I — — —

II A -/I — — —

Table 2.2: Private memory states for snooping bus-based MSI protocol. issue msg/state means the core issues the
message msg and move to state state. A core issues a read/write request. Once the cache line is available, the core
reads/writes it. A replacement triggers a cache line eviction. Highlighted cells denote impossible scenarios, and
cells marked with ‘—‘ denote no change in state.

22

State GetS GetM PutM Data from core
IoS Send data to requesting core/IoS Send data to requesting core/M —
M Clear owner/IoS D Update owner to requesting core/M Clear owner/IoS D Write to memory/IoS A

IoS D Stall Stall Stall Write memory/IoS
IoS A Clear owner/IoS — Clear ownerIoS

Table 2.3: Shared memory states for snooping bus-based MSI protocol.

23

2.3 Related works

This thesis proposes predictable and high-performance shared data communication mechanisms
through hardware cache coherence mechanisms. We briefly discuss related works on predictable
management of shared hardware resources and predictable shared data communication mecha-
nisms in real-time multi-core platforms, and hardware cache coherence.

2.3.1 Predictable management of shared hardware resources

Timing interference caused due to shared hardware resources such as caches, main-memory, and
interconnects compromises on the predictability of real-time multi-core platforms. As a result,
there is a large body of research that focus on predictable management of such hardware re-
sources [14, 15, 23, 25, 47, 56, 61, 63, 64, 66, 78, 80, 86, 91, 99, 109, 111, 118, 128, 131, 141, 150].
At a high-level, these techniques enforce spatial or temporal isolation to minimize timing inter-
ference due to simultaneous accesses to shared hardware resources from multiple cores. Spatial
isolation techniques such as set-based partitioning and way-based partitioning in shared caches
and DRAM bank partitioning across cores ensure that multiple tasks running on different cores
access non-conflicting memory partitions [14,15,23,25,61,80,86,86,99,131,141,150]. Temporal
isolation techniques space the execution of tasks across time such that multiple tasks running on
different cores do not simultaneously conflict on shared hardware resources [47,63,66,109,111].

The research contributions of this thesis focus on predictable shared data communication be-
tween tasks running on different cores. This data communication happens through the memory
hierarchy, which comprises of private and shared memory components. While many of these
prior works assume that tasks running on cores do not communicate with each other, they are
key ingredients along with our research contributions to design end-to-end predictable and high-
performance real-time compute platforms. In particular, prior works that focus on predictable
management of shared memory hierarchy components such as shared caches and shared inter-
connects coupled with predictable hardware cache coherence mechanisms enable predictable and
high-performance memory hierarchies in real-time multi-core platforms. For example, in Chap-
ters 3 and 6, we deployed our predictable shared data communication mechanisms on a shared
bus that implements a time division multiplexing (TDM) arbitration policy. TDM arbitration
achieves temporal isolation for cores’ accesses to shared memory by dividing access time to the
shared memory into fixed time slots that are allocated to cores. A core has exclusive access to
the shared memory in its allocated time slot, thus achieving temporal isolation.

24

2.3.2 Predictable shared data communication mechanisms

As discussed in Section 6.2, state-of-the-art approaches place data caching and application exe-
cution constraints to achieve predictable shared data communication between cores [13, 14, 25,
52,60,79,86,153]. At a high level, these constraints prevent multiple cores from simultaneously
caching multiple copies of the same shared data in their private caches. For example, approaches
that enforce private cache bypassing of shared data [13, 25, 86, 153] prevent cores from caching
shared data in their private caches. As a result, such approaches do not fully utilize a core’s
private memory hierarchy (private caches) resulting in reduced application performance. Con-
sider approaches that co-locate tasks that communicate shared data with each other on the same
core [14,25,52]. By co-locating communicating tasks on the same core, tasks assigned to a core
better utilize the core’s memory hierarchy compared to cache bypassing approaches. However,
these approaches also prevent multiple copies of communicated data to be stored in different
cores’ private caches. On the other hand, our predictable hardware cache coherence mecha-
nisms do not impose any data caching or application execution constraints, which results in
unconstrained utilization of the memory hierarchy. For this reason, predictable hardware cache
coherence mechanisms significantly outperform state-of-the-art approaches as we show in the
following chapters.

Data duplication of communicated data is another common approach typically adopted by in-
dustry to eliminate timing interference due to data communication [43, 60]. The key mechanism
behind these approaches is that tasks running on different cores create dedicated copies of shared
data, perform operations on them, and then write-back the modified data contents. This model
of communication ensures that tasks work on the same version of data throughout their execu-
tion, and their temporal behavior is not affected by other simultaneous tasks working on other
dedicated copies of the same shared data. However, there are two drawbacks of this approach:
(1) data duplication increases memory footprint of applications and (2) tasks may not operate
on fresh data. The first drawback may result in higher memory storage requirements, which
can go against the size, weight and power constraints imposed by embedded environments. The
second drawback can degrade applications’ quality-of-service (QoS) by forcing applications to
operate on stale data; for example, tasks that operate on rapidly changing sensor values. On
the other hand, predictable hardware cache coherence mechanisms do not duplicate shared data,
and enforce rules such that communicating tasks running on different cores operate on the most
up-to-date data.

25

2.3.3 Hardware cache coherence mechanisms

Predictable hardware cache coherence

To the best of our knowledge, the research contributions discussed in Chapter 3 was the first work
to make a case for predictable hardware cache coherence for real-time multi-core platforms.
This has prompted several research works that analyzed timing behavior of existing hardware
cache coherence mechanisms in COTS multi-core platforms [114, 133, 135] and designed novel
predictable hardware cache coherence mechanisms that offer different predictability and perfor-
mance trade-offs [13, 65, 67, 139]. We describe these related works in detail in the following
chapters.

Conventional hardware cache coherence

Hardware cache coherence is a primary feature in COTS multi-core platforms [97]. Given its
importance in facilitating coherent data communication between cores, there is a rich body of
research spanning different optimization targets such as design complexity [26, 81, 122, 151],
scalability [3,70,71,110,142,162,163], high-performance [36,37,100,125,164,168], low power
[21, 93, 98, 101, 167], and security [160] to name a few. Furthermore, there is active research in
extending hardware cache coherence to facilitate coherent data communication between multiple
processors such as a multi-core processor and accelerators such as GPUs or FPGAs [6,113,169].
While these optimization targets are important for multi-core real-time systems, especially power
and security, they do not optimize for timing predictability. The research contributions in this
thesis propose new hardware cache coherence mechanisms that are optimized to improve timing
predictability while retaining the performance benefits of conventional hardware cache coherence
mechanisms. These prior research works on improving design complexity, high-performance,
power, and security are orthogonal to our research contributions, and open up several avenues of
future works as described in Chapter 8.

26

Chapter 3

Designing Predictable Cache Coherence
Mechanisms for Hard Real-Time Systems

The first research contribution of this thesis shows how to design predictable shared data com-
munication mechanisms using hardware cache coherence. As described in Section 2.2, hard-
ware cache coherence enables multiple cores to simultaneously cache shared data in their private
cache. However, COTS multi-core manufacturers disclose few details about the underlying hard-
ware cache coherence mechanisms, which make it difficult to ascertain their timing predictabil-
ity. To this end, we assume a generic hardware cache coherence mechanism that enables multiple
cores to simultaneously cache shared data in their private cache, and examine all possible sce-
narios that result in timing unpredictability. Based on these timing unpredictable scenarios, we
present a design template in the form of design guidelines for designing predictable hardware
cache coherence mechanisms. Using this design template, we describe and evaluate the design
of three predictable hardware cache coherence mechanisms that are amenable to timing analysis.

3.1 Introduction

In hard real-time systems, correctness depends on both the functioning behavior, and on the tim-
ing of that behavior [90]. Applications running on these systems have strict requirements on
meeting their execution time deadlines. Missing a deadline in a hard real-time system may cause
catastrophic failures [109]. Therefore, ensuring that deadlines are always met via static timing
analysis is mandatory for such systems. Timing analysis computes an upper bound for the execu-
tion time of each running application on the system by carefully accounting for hardware imple-
mentation details, and using sophisticated abstraction techniques. The worst-case execution time

27

(WCET) of any application has to be less than or equal to this upper bound to achieve predictabil-
ity. As application demands continue to increase from the avionics [103] and automotive [127]
domains, there is increasing attention in deploying multi-core platforms. This is primarily due
to the benefits multi-core platforms provide in cost, and performance. However, multi-core plat-
forms pose new challenges towards guaranteeing temporal requirements of running applications.
Among these challenges, achieving predictable shared data accesses in real-time applications
has gained recent attention from the research community [25, 60, 61, 86, 153]. Recent work has
showed clear evidence of data sharing between real-time tasks in practical real-time domains
deployed on multi-core platforms [60], thereby making this an important challenge and the main
focus of this work.

One mechanism for managing shared data accesses that is standard in existing multi-core
platforms is cache coherence [97, 138]. Cache coherence mechanism provides all cores in the
multi-core platform access to coherent data that may be cached in their private caches [138].
Cache coherence is realized by implementing a protocol that specifies a core’s activity (read or
write) on cached shared data based on the activity of other cores on the same shared data. While
cache coherence can be implemented in software or hardware, modern multi-core platforms im-
plement the cache coherence protocol in hardware [97]. This is so that software programmers do
not have to explicitly manage coherence of shared data in the application. A recent work studied
the effect of cache coherence on execution time using different Intel and AMD processors and
coherence protocols [52]. The study compared execution times between executing an applica-
tion sequentially and in parallel. It concluded that the interference from cache coherence can
severely reduce benefits gained from parallelism. In fact, it can make parallel execution 3.87×
slower than sequential execution [52]. For real-time applications that share data, this emphasizes
the importance of considering cache coherence effects when deriving WCET bounds. However,
as observed by a recent survey [51], there is no existing technique to account for the effects of
cache coherence in static timing analysis in real-time systems.

Current techniques, which do not use cache coherence, enable coherent data sharing by en-
forcing restrictions on shared data accesses. These techniques include (1) disabling caching of
shared data [61, 86], (2) mapping tasks that share data to execute on the same core [23, 25, 50],
and (3) marking shared data accesses as critical sections such that they are accessed by a single
core at any time instance [115]. These techniques enable predictable and coherent data sharing
at the expense of (1) severely degrading average-case performance, (2) imposing task scheduling
restrictions, and (3) application and real-time operating system (RTOS) modifications. On the
other hand, a predictable hardware cache coherence mechanism can address these three limita-
tions of current techniques as it (1) allows shared data to reside in the private caches of multiple
cores simultaneously, (2) does not impose task scheduling restrictions, and (3) does not require
application modifications.

28

This chapter describes how to design hardware cache coherence mechanisms for managing
predictable shared data accesses. A key contribution of this work is to show that a simple com-
bination of a conventional hardware cache coherence protocol and a shared bus that deploys
a predictable shared bus arbitration policy is insufficient to guarantee predictable shared data
accesses under cache coherence. We address the problem of maintaining cache coherence in
multi-core real-time systems by analyzing and modifying conventional hardware cache coher-
ence protocols. The resulting cache coherence protocols allow for predictable and coherent data
sharing in a manner amenable for timing analysis [74]. This chapter analyzes the conventional
MSI and MESI snooping bus-based cache coherence protocols, and describes the design of pre-
dictable variants of these protocols – predictable MSI (PMSI) and predictable MESI (PMESI)
protocol respectively. The timing analysis computes the worst-case latency (WCL) of a memory
request under these protocols. The timing analysis shows that although PMESI has additional
performance benefits over PMSI, the WCL of a memory request under PMSI and PMESI are
the same. We also identify opportunities to improve the average-case performance of PMESI
through additional hardware modifications, which results in a new protocol Opt-PMESI.

3.2 Main contributions

In summary, we make the following contributions in this chapter.

1. We identify scenarios in conventional cache coherence protocols that can lead to scenar-
ios where a memory request has unbounded memory latency (Section 3.5). The identified
scenarios are general and independent of the implementation details of the deployed cache
coherence protocol. Based on the scenarios, we propose a set of design invariants to ad-
dress the unbounded memory latency. Implementing these design invariants results in a
predictable cache coherence protocol where a memory request has bounded memory la-
tency.

2. We analyze the conventional MSI and MESI coherence protocol, and highlight the unpre-
dictable behaviors in these protocol. We propose extensions to the MSI and MESI co-
herence protocols to guarantee predictability resulting in the predicable MSI (PMSI) and
predictable MESI (PMESI) protocols. The PMSI and PMESI protocols satisfy the design
invariants for predictability (Section 3.5) through protocol changes and architectural exten-
sions (Section 3.6). We also design the Opt-PMESI protocol that improves average-case
performance over PMESI protocol through hardware optimizations.

29

3. We provide a timing analysis for our proposed coherence protocols and decompose the
analysis to highlight the contributions to latency due to arbitration logic and communica-
tion of coherence messages between cores (Section 3.7).

4. We evaluate the proposed coherence protocol using the gem5 simulator [17] (Section 3.8).
Performance evaluation using synthetic and SPLASH-2 workloads shows that PMSI, PMESI,
and Opt-PMESI achieve up to 4× speedup over competitive predictable approaches for a
quad-core system while guaranteeing predictability. Furthermore, Opt-PMESI improves
performance over PMSI and PMESI by up to 12%.

3.3 Related Work

Prior research efforts investigated the access latency overhead resulting from shared buses [109],
caches [131, 141, 153], and dynamic random access memories (DRAMs) [64, 118, 159]. For
shared caches, most of these efforts primarily focused on preventing a task’s data accesses from
affecting another task’s data accesses. They used data isolation between tasks by utilizing strict
cache partitioning [153] or locking mechanisms [141]. Authors in [131] promoted splitting the
data cache into multiple data regions that simplified the analysis. However, they indicated that
cache coherence is still an issue that has to be addressed. Similarly, several proposals for shared
main memories deployed data isolation that assigned a private memory bank per core [118,159].
However, we find that data isolation suffers from three limitations. The first limitation is that it
disallows sharing of data between tasks; thus, disabling any communication across applications
or threads of parallel tasks running on different cores. The second limitation is that it may result
in poor memory or cache utilization. For instance, a task may keep evicting its cache lines if
it reaches the maximum of its partition size, while other partitions may remain underutilized.
The third limitation is that it does not scale with increasing number of cores. For example, the
number of cores in the system has to be less than or equal to the number of DRAM banks to be
able to achieve isolation at DRAM.

Recent works [64, 87] recognized these limitations, and offered solutions for sharing data.
Authors in [64] shared the whole memory space between tasks for main memory, and [87] sug-
gested a compromise that divided the memory space into private and shared segments for caches.
Nonetheless, these approaches focused on the impact of sharing memory on timing analysis, and
they did not address the problem of data correctness resulting from sharing memory. Authors
of [16] studied the overhead effects of co-running applications on the timing behavior in the
avionics domain, where cache coherence was one of the overhead sources. A recent survey [51]
observed that there is no existing technique to include the effects of data coherence on timing
analysis for multi-core real-time systems.

30

However, there exist approaches that attempt to eliminate unpredictable scenarios that arise
from data sharing. Authors in [23] proposed data sharing-aware scheduling policies that avoided
running tasks with shared data simultaneously. A similar approach proposed by [50, 52] re-
designed the real-time operating system to include cache partitioning, task scheduling, and feed-
back from the performance counters to account for cache coherence in task scheduling deci-
sions. Such approaches rely on hardware counters that feed the schedule with information about
memory requests. They also require modifications to existing task scheduling techniques. For
example, the solution in [23] is not adequate for partitioned scheduling mechanisms. A different
solution introduced in [115] applied source-code modifications to mark instructions with shared
data as critical sections. These critical sections were protected by locking mechanisms such that
they were accessed only by a single core at any time instance. This solution suffers from two lim-
itations. The first limitation is that the software is responsible for maintaining cache coherence to
guarantee shared data correctness. As a result, additional changes to the software are necessary
in order to explicitly manage cache coherence. The second limitation is that only one core can
access a cache line of shared data at a time. Other cores requesting this data must wait until a
core completes all operations on the shared data. In the worst case, this is equivalent to sequen-
tial execution. On the other hand, our proposed cache coherence protocols (PMSI and PMESI)
allow tasks to simultaneously access shared data, which considerably improves performance. In
addition, PMSI and PMESI do not pose any requirements on task scheduling techniques, and
they do not require software modifications.

3.4 System Model

We consider a multi-core system with N cores, {c0,c1,...,cN−1}. Each core has a private cache,
and all cores have access to a shared memory. This shared memory can be an on-chip last-
level cache (LLC), an off-chip DRAM, or both. Tasks running on cores share data. These
tasks can belong to a parallel application that is distributed across cores, or different applications
that communicate between each other. Cores can share the whole shared memory space similar
to [64] or share part of the memory space similar to [87]. We do not impose any restrictions on
how the interference on the shared memory is resolved, whether it is the LLC or the DRAM.
Furthermore, we do not require any special demands from the task scheduling mechanism. This
allows one to integrate the proposed solution to current task scheduling techniques, and to various
mechanisms that control accesses to shared memories in multi-core real-time systems. Cores
share a common snooping bus that connects private caches of cores to the shared memory. This
shared bus allows for cores to broadcast their memory requests to other cores and the shared
memory, and data transfers between the shared memory and cores. The shared bus also transfers

31

coherence messages deployed by the coherence protocol to ensure data correctness. Cores snoop
the bus to observe memory activity of other cores. The system deploys a predictable arbitration
on the shared bus. Note that data transfers between private caches are only via the shared memory
(no cache-to-cache transfers). The proposed solution is independent of the core architecture, and
the predictable arbitration mechanism on the bus. However, the analysis and experiments we
present in this work consider a system with in-order cores, and a time-division-multiplexing
(TDM) bus as the base arbitration scheme. A TDM slot width allows for one data transfer
between shared memory and the private cache including the overhead of necessary coherence
messages.

3.5 Design Invariants for Predictable Cache Coherence

A cache coherence protocol ensures correctness of shared data across all cores in a multi-core
platform. As we show in this section, simply adopting a predictable arbiter in this case does not
necessarily mean that tasks will have predictable latencies upon accessing the shared memory.
This is because the latency suffered by one core accessing a shared line is dependent on the co-
herence state of that line in the private caches of other cores. Two major contributions of this
paper are (1) to identify these unpredictable scenarios, and (2) to propose invariants to address
them. In this section, we describe these unpredictable scenarios, and propose design invariants to
address these scenarios. Exact sources of unpredictability in current multi-core platforms are de-
pendent on the cache coherence protocol and micro-architecture details of the cache controllers,
which are proprietary and are not publicly available. The proposed invariants are general design
guidelines, which are independent of the adopted cache coherence protocol implementation and
the underlying platform architecture. For the predictable cache coherence protocols described in
Section 3.6, we realize these invariants using a combination of cache coherence protocol changes
and hardware structures.

An arbiter manages accesses to the shared bus such that at any time instance it exclusively
grants bus access to a single core. A predictable arbiter guarantees that each requesting core
is granted the bus eventually in a defined upper-bound amount of time. Upon implementing a
coherence protocol, a core initiates memory requests by exchanging coherence messages with
other cores and the shared memory. Therefore, before investigating the potential sources of
unpredictability, we extend the predictable bus arbiter with Invariant 1 such that it manages both
data transfers and coherence messages.

Invariant 1. A predictable bus arbiter must manage coherence messages and data on the bus
such that each core broadcasts a coherence request or communicates data on the bus if and
only if it is granted an access slot to the bus.

32

/

c2 c0 c1 c2 c1 c0

c0
c1
c2

1 2 3 4 5 6

Broadcast write/read Broadcast write-back Data transfer

c2 c0 c1 c2 c1 c0
1 2 3 4 5 6

Invariant 2

TDM
slots

Figure 3.1: Initially c0 modified A. c2 is core under analysis.

Investigating the implications of a conventional coherence protocol on the WCET, we find
that there are five major sources that can lead to unpredictable behavior. We group these sources
into two categories: inter-core interference and intra-core interference. Figures 3.1–3.4 illustrate
example scenarios for these sources. The example scenarios consider a system with three cores,
c0, c1, and c2, and deploys a TDM arbitration across cores. If the request type is not specified
whether it is a read or write, that means the scenario is agnostic to it. Each of Figures 3.1–
3.4 separately defines the initial system state and the core under analysis for the corresponding
scenario. We denote TDM slot i as i .

3.5.1 Inter-core Coherence Interference

Inter-core interference arises due to memory activity across different cores. We enumerate four
unpredictable scenarios that arise due to memory activity across different cores. These scenarios
differ based on (1) the memory activity (reads/writes), and (2) the cache lines accessed by the
cores.

Interference on same line

The first source of unpredictability arises from multiple cores reading the same modified cache
line, say A. If a core requests to modify A, it has to wait for the owner to write-back A to the
shared memory. In Figure 3.1, initially, c0 has a modified version of A in its private cache. The
core under analysis is c2. At 1 , c2 broadcasts a read request to A. Since c0 has the modified
version of A, it has to write-back the updated A to the shared memory first. However, this is c2’s
slot; thus, c0 has to wait for its allocated slot to perform the write-back. Hence, at 2 , c0 writes

33

c0
c1
c2

c1 c2 c0 c1 c2 c0
1 2 3 4 5 6

TDM
slots

c1 c2 c0 c1 c2 c0
1 2 3 4 5 6

Invariant 3

Broadcast write/read Broadcast write-back Data transfer

Figure 3.2: Initially c0 modified A and B. c1 is core under analysis.

back A to the shared memory in its slot. At 3 , c1 broadcasts a write request to A. Since the
shared memory has the updated version of A, c1 is able to obtain A and modify it. As a result, c2
re-broadcasts a read request to A at 4 . This time c2 has to wait for c1 to write-back A. From c2’s
perspective, the events at 4 are a repetition of the events at 1 ; c2 re-broadcasts its request to
A and waits for another core to write it back. Thus, this situation is repeatable and can result in
unbounded memory latency. Although c2 is granted access to the bus, it is unable to obtain the
requested data due to the coherence interference.

Invariant 2. The shared memory services requests to the same line in the order of their arrival
to the shared memory.

Proposed solution. Invariant 2 requires memory to service requests to the same cache line in
their arrival order; thus, it guarantees that a line being requested by a core will not be invalidated
before the core accesses it. In the above example, the memory serviced requests based on the
arbitration schedule order, which is different from the arrival order resulting in unbounded mem-
ory latency. Imposing Invariant 2 in Figure 3.1, c2’s request to A arrives to the shared memory
before c1’s request; therefore, c1 has to wait for c2 to execute its operation before it gains an
access to A. Note that in conventional snooping bus-based coherence protocols, this invariant is
realized by ensuring that the shared memory responds to memory requests from cores based on
their broadcasted order [138].

Interference on different lines

The second source of interference arises when multiple cores request different cache lines that
are modified by the same core (owner). As a result, the owner has to write-back the modified
lines requested by the other cores to the shared memory. For instance in Figure 3.2, c0 has

34

c0
c2

c2 c0 c1 c2 c0 c1
1 2 3 4 5 6

TDM
slots

c2 c0 c1 c2 c0 c1
1 2 3 4 5 6

Invariant 4

Broadcast write Broadcast write-back Data transferCache hit

Figure 3.3: Initially c0 reads A. c2 is core under analysis.

modified versions of lines A and B. The core under analysis is c1. c1 broadcasts a request to A in
1 , and c2 broadcasts a request to B in 2 . Accordingly, c0 has to write-back both A and B to the
shared memory. Since c0 can schedule one memory transfer in a slot, it can write-back only one
line to the shared memory. If no predictable mechanism manages the write-backs, c0 can pick
any pending one. At 3 , c0 writes back B. Therefore, at 4 , c1 is stalled on A. This situation can
repeat indefinitely. While c1 is waiting for A, c2 can ask for another line, which is also modified
by c0 and the same situation can repeat.

Invariant 3. A core responds to coherence requests in the order of their arrival to that core.

Proposed solution. Invariant 3 imposes an order in servicing coherence messages from other
cores (write-backs, for example). The right side of Figure 3.2 deploys Invariant 3. Since the
request to A arrives before that to B, c0 has to write-back A first (in 3) then B (in 6); thus, a
predictable behavior is guaranteed.

Writes to non-modified lines

The third source is due to write hits in the private cache to non-modified lines. Recall that the
predictable bus arbiter only controls accesses to the shared bus. As a result, a request that results
in a hit in the private cache can proceed without waiting for the corresponding core slot. However,
write requests to unmodified lines that hit in the private cache can result in the following two
unpredictable scenarios described in Figures 3.3 and 3.4.

The first scenario arises when multiple cores update the same line and one of the cores has
the line in an unmodified state in its private cache. For example, in Figure 3.3, c0 has a version
of A in its private cache that is not modified. At 1 , c2 broadcasts a read request to A, while
simultaneously c0 has a write operation to A that results in a hit in its private cache. Consider the

35

c0
c1
c2

c2 c0 c1 c2 c0 c1
1 2 3 4 5 6

c2 c0 c1 c2 c0 c1 c2

Invariant 5

/ Broadcast write/read Broadcast write-back Data transfer
1 2 3 4 5 6 7

Figure 3.4: Initially c0 modified A, c2 modified B, and c1 requested B. c2 is core under analysis.

scenario where c0’s write hit on A occurs first. As a result, c2 has to wait until c0 writes back A.
This scenario is shown in Figure 3.3. After c0 writes back A in 2 , c0 again has another write hit
to A in 3 . Again, c2 has to wait for c0 to write-back A. Consequently, this situation is repeatable
and can starve c2.

Invariant 4. A write request from ci that is a hit to a non-modified line in ci’s private cache
has to wait for the arbiter to grant ci an access to the bus.

Proposed solution. Invariant 4 stalls a write request by a core, which is a hit to a non-modified
line until the arbiter grants an access slot to that core. Thereby, it avoids the aforementioned
unpredictable consequences. It is worth noting that Invariant 4 aligns with Invariant 1 as follows.
Invariant 1 mandates that a core can initiate coherence messages into the bus only when it is
granted an access to it by the arbiter. Although a write hit to a non-modified line does not need
data from the shared memory, it still needs to send coherence messages on the bus. This is
necessary to invalidate local copies of the same line that other cores have in their private caches.
Accordingly, a write hit to a non-modified line has to wait for a granted access by the arbiter. On
maintaining Invariant 4 in Figure 3.3, the following behavior is guaranteed. Since 1 belongs
to c2, and c0’s request is a write hit to A, which is not modified, c0 must wait for its slot to that
request. c2 broadcasts its write request to A in 1 , and c0 invalidates its own local copy of A.
Since no core has a modified version of A, c2 obtains A from the shared memory and performs
the write operation.

Invariant 4 resolves the race situation between a request generated by a core in its designated
slot and write hits from other cores. However, a second unpredictable scenario is possible that
Invariant 4 does not manage. We describe this scenario using Figure 3.4. Initially, c0 has a
modified version of A, c2 has a modified version of B, and c1 has requested B. At 1 , c2 broadcasts
a read request to A; thus, c0 updates the shared memory with the modified value of A at 2 . Since

36

Invariant 6c0
c2

c2 c0 c1 c2 c0 c1
1 2 3 4 5 6

Broadcast write/read Broadcast write-back Data transfer

c2 c0 c1 c2 c0 c1
1 2 3 4 5 6

Figure 3.5: Initially, c0 has modified A. c2 is under analysis.

c2’s request is a read, c0 does not invalidate its local version of A. At 4 , c2 has two pending
actions: fetching A from memory, and writing back B to the memory in response to c1’s request.
Assume that c2 chooses to write-back B. Therefore, its request to A waits for the next slot. At 5 ,
c0 has a write hit to A. Consequently, since this is c0’s slot, it conforms with Invariant 4; thereby,
it modifies A. At 6 , c2 has to re-broadcast its request to A and wait for c0 to write-back A to
memory again. From c2’s perspective, this situation is similar to the situation at 1 . Similarly, in
subsequent periods, after c0 writes back A, it can have a write hit to A before c2 receives it from
the memory. Clearly, this situation is repeatable indefinitely, and creates unbounded memory
latency for c2.

Invariant 5. A write request from ci that is a hit to a non-modified line, say A, in ci’s private
cache has to wait until all waiting cores that previously requested A get an access to A.

Proposed solution. Invariant 5 stalls a write request to a non-modified line until all pending
requests from previous slots are completed. Thereby, it avoids the above unpredictable scenario.
Maintaining Invariant 5 in the right side of Figure 3.4, the following behavior is guaranteed.
During c0’s slot, it has a hit to A. Since A is non-modified by c0 and is previously requested by c2,
the write hit cannot be processed. Accordingly, c2 obtains A from the shared memory in its next
slot and performs its operation. c0’s request to A is broadcasted afterwards in the corresponding
slot.

3.5.2 Intra-core Coherence Interference

Intra-core coherence interference arises due to multiple memory activity from the same core such
as a core’s own pending request and its response to a request from another core. This response
is for example, a write-back to a line that this core has in a modified state. In Figure 3.5, c0 has
a modified version of A. At 1 , c2 broadcasts a request to A; thus, c0 marks A for write-back
in its next slot. However, at 2 , c0 has a pending request to B that is broadcasted in 2 . Thus,

37

the write-back of A waits for c0’s next slot. Similarly, at 4 , c0 has another pending request to
another line, C. Accordingly, the write-back of A by c0 can indefinitely stall, which results in
unbounded latency of c2’s request.

Invariant 6. Each core has to deploy a predictable arbitration between its own generated
requests and its responses to requests from other cores.

Proposed solution. Invariant 6 states that any predictable arbitration mechanism between
coherence requests of a core and responses from the same core is sufficient to address the intra-
core interference. Deciding the adequate arbitration depends on the application. Deploying
Invariant 6 in Figure 3.5, the predictable arbitration mechanism will eventually allocate one slot
to c0’s write-back operation of A, which bounds the memory latency of c1’s request.

3.6 Predictable Cache Coherence Protocols

We show the effectiveness of the proposed invariants by applying them to the conventional MSI
and MESI protocols. This results in predictable MSI (PMSI) and predictable MESI (PMESI)
protocols for multi-core real-time systems. To ensure that the invariants described in Section
3.5 are held, we propose architectural modifications and additional coherence states. The archi-
tectural modifications apply to both PMSI and PMESI, and the additional coherence states are
protocol specific.

Invariants require either architectural modifications or a combination of both architectural
modifications and additional coherence states. For example, Invariants 1 and 2 require only
architectural modifications and no changes to the coherence protocols. On the other hand, In-
variants 3–6 require modifications to both the architecture and the coherence protocol. This is
because Invariants 3 and 6 regulate the write-back operation of cache lines. Since a core has to
wait for a designated write-back slot to write-back a cache line A, it has to maintain A in a t-state
to indicate that A is waiting for write-back. Similarly, Invariants 4 and 5 regulate the write hit
operation to non-modified lines. A core has to wait for a designated slot to perform the write hit
operation to a cache line, say B. Accordingly, it has to maintain B in a t-state indicating that it
has a pending write to B.

In the following sections, we describe the architectural modifications that are required for
both PMSI and PMESI coherence protocols (Section 3.6.1), and then describe the PMSI and
PMESI protocol modifications (Section 3.6.2).

38

Core ci D-$ I-$ CC
Core c0 D-$ I-$ CC

Address Address

Pending request
(PR) FIFO

Pending Write-back
(PWB) FIFO

Work conserving
round-robin arbitration

TDM arbiter Shared memory

Address Core
ID

Coherence
message

Pending request lookup table
(PRLUT)

1

2

3

4

Figure 3.6: Architectural changes necessary for PMSI and PMESI.

3.6.1 Architectural Modifications

Figure 3.6 depicts a multi-core system with a private cache for each core and a shared memory
connected to all cores via a shared bus. A TDM bus arbiter manages accesses to the shared
memory. The proposed architecture changes are highlighted in grey.

The TDM arbiter 1 manages the coherence requests such that each core can issue a coher-
ence request message only when it is granted an access to the bus. This satisfies Invariant 1. The
shared memory uses a first-in-first-out (FIFO) arbitration between requests to the same cache
line. We implement this arbitration using a look-up table (LUT) 2 to queue pending requests
(PR), denoted as PR LUT in Figure 3.6. Each entry consists of the address of the requested
line, the identification of the requesting core, and the coherence message. The PR LUT queues
requests by the order of their arrival. When the memory has the updated data of a cache line,
it services the oldest pending request for that line. Each core buffers the pending write-back
responses in a FIFO queue, which Figure 3.6 denotes as the pending write-back (PWB) FIFO 3 .
This modification cooperates with the proposed t-states to satisfy Invariant 3. Each core deploys
a work-conserving TDM arbitration between the PR and PWB FIFOs 4 . This arbitration along
with the proposed t-states comply with Invariant 6.

These architectural changes, along with the coherence protocol changes, also satisfy Invari-
ants 4 and 5 as follows. If a core ci has a write hit to a non-modified line A, it has to broadcast
an Upg() coherence message on the bus. With 1 , the arbiter does not allow this Upg() message
on the bus unless it is the TDM slot of the initiating core. In consequence, the write hit to A
is postponed to ci’s next slot, which implements Invariant 4. Assume that during ci’s next slot,
there were one or more pending requests to A from other cores that arrived before ci’s request.
According to Invariant 5, ci’s write hit to A has to wait until these pending requests are serviced.

39

Core count PRB (bits) PWB (bits) PRLUT (bits) Total (bytes)
2 128 128 134 81
4 256 256 272 290
8 512 512 552 1093
16 1024 1024 1120 4236

Table 3.1: Hardware overheads with core count.

Recall that PR LUT 2 queues pending requests. If the write hit is to one of these lines, the arbiter
does not select the store hit to execute during this slot. Accordingly, Invariant 5 is fulfilled.

Hardware overhead. For aN -core system, the PR, PWB, and PRLUT structures haveN entries
each as each core can only have one pending request at any time instance. For an address width
of 64-bits, the hardware overheads of the per-core PR, per-core PWB, and PRLUT buffers are
64×N -bits, 64×N -bits, and (64+ log2N +2)×N -bits respectively; the core ID and coherence
message fields in the PRLUT are log2N -bits and 2-bits wide respectively. Hence, for a 4-core,
8-core, and 16-core system, the total hardware overheads are 290-bytes, 1093-bytes and 4236-
bytes respectively. Table 3.1 describes the per structure hardware overhead for different core
counts.

40

Core events Bus events

R
ea

d

W
ri

te

Rep
lac

em
en

t

O
w

nD
at

a

O
w

nU
pg

O
w

nP
ut

M

O
th

er
G

et
S

Othe
rG

etM
/O

the
rU

pg

O
th

er
Pu

tM

I
Issue

GetS/IS D
Issue

GetM/IM D
— — —

S
Hit, Complete

read
Issue

Upg/SM D
I/- — -/I

M
Hit, Complete

read
Hit, Complete

write
Issue

PutM/MI A
Issue

PutM/MS A
Issue

PutM/MI A

IS D

If E-Read,
Complete read/E,

else Complete
read/S

— -/IS DI —

IM D Complete write/M -/IM DS -/IM DI —

SM A Stall Complete
write/M — Reissue write/I

MI A
Hit, Complete

read
Hit, Complete

write — Write-back to
memory/I — —

MS A
Hit, Complete

read
Hit, Complete

write -/MI A
Write-back data

to memory/S — -/MI A

IM DI
Complete write,

issue
PutM/MI A

— — —

IS DI Complete read/I — — —

IM DS
Complete write,

issue
PutM/MS A

— -/IM DI —

E
Hit, Complete

read
Hit, Complete

write/M
(A) Issue

PutM/EI A
(A) Issue

PutM/ES A
(A) Issue

PutM/EI A
(B) Send

NoData to
memory/I

(B) Send NoData
to memory/S

(B) Send NoData
to memory/I

EI A
Hit, Complete

read
Hit, Complete

write/MI A
— Send data to

memory/I — —

ES A
Hit, Complete

read
Hit, Complete

write/MS A
-/EI A

Send data to
memory/S — -/EI A

Table 3.2: Private memory states for PMSI, PMESI, and Opt-PMESI. issue msg/state means the core issues the
message msg and move to state state. A core issues a read/write request. Once the cache line is available, the
core reads/writes it. A core needs to issue a replacement to write back a dirty block before eviction. Changes to
conventional MSI and MESI are in bold red. Differing transitions between PMESI and Opt-PMESI are marked as
(A) and (B) respectively.

41

State Core events
GetS GetM PutM Data from core

IoS Send data to requesting core/IoS Send data to requesting core/M —
M Clear owner/IoS D Update owner to requesting core/M Clear owner/IoS D

IoS D Stall Stall Stall Write memory/IoS

Table 3.3: Shared memory states for PMSI protocol.
State Core events

GetS GetM PutM Data from core
I Send data to requesting core/M Send data to requesting core/M —
S Send data to requesting core/S Send data to requesting core/M —
M Clear owner/S D Update owner to requesting core/M Clear owner/IoS D
S D Stall Stall Stall Write memory/S

Table 3.4: Shared memory states for PMESI protocol.
State Core events

GetS GetM PutM Data from core NoData from core
I Send data to requesting core/M Send data to requesting core/M —
S Send data to requesting core/S Send data to requesting core/M —
M Clear owner/S D Update owner to requesting core/M Clear owner/IoS D
S D Stall Stall Stall Write memory/S -/S

Table 3.5: Shared memory states for Opt-PMESI protocol.

3.6.2 Cache coherence protocol state machine modifications

We discuss the protocol modifications to the MSI and MESI protocols that work in tandem with
the hardware structures described earlier. The protocol modifications result in new protocols:
PMSI and PMESI protocols respectively. We also describe an optimized variant of PMESI, Opt-
PMESI, which adds hardware and protocol extensions to improve the average-case performance
of PMESI. We first describe the t-states that are removed and unmodified across all the pro-
tocols (Sections 3.6.2 and 3.6.2), and then introduce new t-states introduced for each protocol
in Sections 3.6.2-3.6.2. Table 3.2 shows the private caches’ coherence states for a cache line
and the transitions between these states for the PMSI, PMESI, and Opt-PMESI protocols, and
Tables 3.3-3.5 shows the shared memory coherence states and transitions for the PMSI, PMESI,
and Opt-PMESI protocols. Table 3.6 describes the new t-states added to the PMSI and PMESI
protocols. We do not make changes to the coherence states for the shared memory, and hence
it is not shown. Shaded cells represent transitions that are not possible under correct operation.
Cells marked with “-” represent situations where no transition occurs, and the coherence state
remains unchanged.

Removed t-states

For a real-time system, t-states that indicate unavailability of cache line in the private caches
and waiting for coherence messages to appear on the bus are not needed. Examples of such

42

Initial s-state Transient state Final s-state Description

M MI A I

ci has a line A in M state. Another
core requested A to modify. MI A is
necessary to reflect that ci has to
write-back A in its next write-back
slot.

E EI A I

ci has a line A in E state. Another
core requested A to modify. EI A is
necessary to reflect that ci has to
write-back A in its next write-back
slot.

M MS A S
Similar to MI A except that the
other core requested a read to A.

E ES A S
Similar to EI A except that the
other core requested a read to A.

Table 3.6: Description of the proposed t-states in PMSI and PMESI to achieve a predictable
behavior.

t-states include IM AD, IS AD, IM A, and IS A (Section 2.2, Chapter 2). On deploying a
predictable bus arbitration, once a core is granted access to the bus, no other core can issue
a coherence message during that slot. This is assured by Invariant 1. Accordingly, during a
core’s slot, its coherence messages are not disrupted by messages from other cores. By removing
these t-states, PMSI, PMESI, and Opt-PMESI has fewer states and transitions compared to their
respective conventional protocols [138]. For example, assume that ci issues a read request to a
line A that is invalid in its private cache. During ci’s slot, it broadcasts its OwnGetS() to the
bus. Since ci is the only core broadcasting coherence messages to the bus, it cannot receive its
data before observing its OwnGetS() on the bus. Therefore, ci changes A’s state from I to IS D
without the need to move to IS A. By removing these t-states, PMSI, PMESI, and Opt-PMESI
has fewer states and transitions compared to their respective conventional protocols [138].

Unmodified t-states

Transient states that denote the waiting for data response are retained. Examples of such t-states
are IS D and IM D that denote a core’s read or write request is waiting for data respectively. This
is because if ci issues a request to a cache line that is modified by another core cj , ci must wait
until cj writes back that cache line to the shared memory. Accordingly, ci has to move to a t-
state indicating that it is waiting for a data response from the memory. In addition, there are

43

three other unmodified t-states such as IS DI, IM DI, and IM DS. These states indicate that
the core has to take an action after receiving the data and perform the operation. For example, the
t-state IS DI indicates that a core waiting on data for a broadcasted read operation observed a
remote write operation. The core on receiving the data completes the read operation, invalidates
its copy, and moves to the I state.

Predictable MSI cache coherence protocol (PMSI)

For PMSI protocol, we propose two additional t-states that are necessary to guarantee that
invariants are upheld. t-states MI A and MS A manage the write-back operation for lines in the
M state. These t-states convey that: (1) a line has a pending write-back response, and (2) the
final state the line transitions to after the core completes the write-back. A core that has a cache
line in M moves to MI A or MS A on observing a remote write or read request to the same cache
line respectively. In the core’s write-back allocated slot, the core completes the write-back and
transitions to the I or S state respectively.

Figure 3.7 illustrates an example of the t-statesMI A and MS A. In Figure 3.7, c0 has a write
hit to an unmodified copy of A, and moves from state S to state M in 2 . c1 broadcasts a read
request to A in 3 and moves from I to IS D, which denotes waiting for data. c0 observes the
remote read request, and marks A for write-back, and moves from M state to MS A state. This
state indicates that c0, in the next designated slot, will write-back A to the memory and change
its local copy of A to S state. Before c0 writes back A to shared memory, it observes c2’s modify
request to A in 4 . As a consequence, it updates its A’s state to MI A, which indicates that c0 has
to invalidate A once it performs the write-back operation 6 . t-state SM A is necessary to handle
write hits to non-modified lines predictably. For example, in Figure 3.7, during c2’s slot 1 , c0 has
a write hit to A, which it has in S state. To impose Invariant 4, c0 has to postpone this operation to
its next slot. Towards doing so, it updates its A’s state to SM A to preserve the information of the
upgrade request to A. In its next slot, if no other core is pending on A (Invariant 5), c0 broadcasts
its write operation on the bus, performs the store to A, and moves its A to the s-state M 2 .

Predictable MESI cache coherence protocol (PMESI)

The PMESI protocol adds the exclusive (E) state to the PMSI protocol. Section 2.2 in Chapter 2
describes the performance benefits of the E state in the MESI cache coherence protocol. Table
3.2 shows the transition to E state. Adding the E state introduces two new t-states: EI A and
ES A states. These t-states manage the write-back operations for lines in the E state. Similar to
the MI A and MS A t-states in PMSI, these states convey that a line has a pending write-back,

44

MàMS_Ac0

c0
1

Broadcast write/read Broadcast write-back Data transfer

c1
c2

SM_Aà M
c1 c2 c0 c1 c2 c0

IàIS_D IS_DàIS_DI

IàIM_D

MS_AàMI_A
MI_AàI

IS_DI à I

IM_D à M

2 3 4 5 6 7
c2

Issue request

SàSM_A

8

Figure 3.7: Execution with t-states. Initially, c0 has A in S.

c0

c0
1

Broadcast write/read Broadcast write-back Data transfer

c1
c2

IàIS_DàS

c1 c2 c0
2 3 4

IàIS_DàS

IàIS_DàS

c0

c0
1

c1
c2

IàIS_DàE

c1 c2 c0 c1 c2
2 3 4 5 6

IàISd

IàIS_D

EàES_A
ES_AàS

IS_DàS

IS_DàS

(a) PMSI (b) PMESI

c0

c0
1

c1
c2

IàIS_DàE

c1 c2
2 3

IàIS_DàS

Send NoData
EàS

(c) Opt-PMESI

IàIS_DàS

Figure 3.8: Execution example with PMSI and PMESI.

and the final state of the line after the write-back is completed. The rationale behind these states
is that when the shared memory sends exclusive data for a requested line to a core, the coherence
state of this line in the shared memory is recorded as M. This enables the silent writes optimization
in MESI/PMESI. Hence, the shared memory cannot send data to subsequent requests to this line
until the core that has the line in E state performs a write-back of the line. As a result, a core that
has a line in E state, and observes remote activity on the line must mark the line for write-back.

Optimized PMESI (Opt-PMESI)

The presented PMESI protocol requires cores that have lines in states E or M to issue write-back
responses to the shared memory on (1) observing remote memory activity to these lines and
(2) cache line replacements. On the other hand, the PMSI protocol only performs write-back
responses for lines in M state. As a result, lines in PMESI are subjected to more write-back re-
sponses compared to PMSI, which in turn increases request latencies for certain types of memory
access patterns. This is because write-back responses and pending demand requests contend for
a core’s allocated slots. As a result, this can offset the performance advantage provided by silent

45

writes in PMESI. Figure 3.8 shows a simple scenario where cores c0, c1 and c2 broadcast read
requests (in that order) to a line X under PMESI and PMSI, and highlights the increased request
latencies in PMESI compared to PMSI.

Figure 3.8a shows the request latencies of c0, c1 and c2 to X under PMESI. Under PMESI, c0
receives X in 1 that is marked as exclusive as no other core has a copy of X. As a result, X in
c0’s private cache is in E state. On observing c1’s remote read in 2 , c0 marks X for write-back
by moving from E state to ES A. c0 completes the write-back in 4 , and the memory moves from
M state to S state as there are multiple sharers of X. c1 receives X in 5 , and c2 receives X in 6
as c2 broadcasted its request to X after c1. Note that both c1 and c2 receive X in S state. On the
other hand, under PMSI, c0, c1, and c2 receive X at the end of 1 , 2 , and 3 respectively. This
execution is shown in Figure 3.8b. This is because all cores receive X in S state, and remote
activity observed for a line in S state does not result in write-back responses. As a result, for this
execution, PMSI offers better average-case performance than PMESI.

To address this performance limitation of PMESI, we add hardware and protocol extensions
to PMESI, resulting in a new protocol that we refer to as Opt-PMESI. The key observation behind
Opt-PMESI is that a line in E state has read-only permissions, and hence, the data contents of
a line in E state are equal to that in the shared memory. As a result, there is no need to write-
back the data contents of a line in E state to the shared memory. However, the shared memory
tracks this line in M state, and hence, the core must communicate to the shared memory that it
did not update this line. To facilitate this communication, we extend the shared bus to allow for
an additional wire per core that is asserted by cores to communicate to the shared memory that
a line in E state is not modified. A core asserts a signal on this wire (1) when it observes remote
memory activity on a line that it has in the E state, and changes state immediately to either S
or I based on the remote memory activity, and (2) on cache line replacements. The action of
asserting a signal on this wire by a core is shown in Table 3.2 as Send NoData to memory. The
shared memory on observing this signal assertion accordingly changes the state of the line, and
responds to pending memory requests to the same line. As a result, t-states EI A and ES A
are no longer needed. Note that this additional wire in the shared bus need not be subjected to a
predictable arbitration as there can be only one core that has a line in E state. Hence, at most one
core will assert a signal on the wire in a slot.

Figure 3.8c shows the same example with Opt-PMESI. The key difference is in 2 , where c0
immediately moves from E state to S state on observing the remote read from c1 to X. The shared
memory on observing the asserted signal by c0 moves from M to S state, and sends X to c1 in 2 .

46

3.7 Latency Analysis

We derive the upper bound per-request latency that a core suffers when it attempts to access the
shared memory. The considered system deploys one of the four predictable protocols: (1) PMSI,
(2) PMESI, and (3) Opt-PMESI. Shared memory accesses from multiple cores are handled by a
TDM bus arbitration scheme. We partition this latency into four components and compute the
worst-case (WC) value of each of them. Definitions 1–5 formally define these latency compo-
nents. We use ci as the core under analysis, and denote a request generated by ci as reqi.

Definition 1. Arbitration latency, Larb
i , of a request reqi is measured from the time stamp of its

issuance until it is granted access to the bus. Larb
i is due to the arbitration schedule that allocates

slots to cores.

Definition 2. Access latency is the time required to transfer the requested data by ci between
the shared memory and the private cache of ci. We assume that this data transfer takes a fixed
latency, Lacc. This latency can be considered as the WC access latency of the shared memory.
Prior works such as [64, 153] can be used to determine the value of Lacc for LLCs and DRAMs.

Definition 3. Coherence latency, Lcoh
i , of a request reqi is measured from the time stamp when

ci is granted access to the bus until it starts its data transfer. Lcoh
i is due to the deployed coher-

ence protocol. We divide the coherence latency into two components: inter-core and intra-core
coherence latency, which we denote receptively as LinterCoh

i and LintraCoh
i .

Definition 4. Inter-core coherence latency, LinterCoh
i , of a request reqi is measured from the

time stamp when reqi is granted access to the bus until the data is ready by the shared memory
for ci to receive in ci’s slot.

Definition 5. A request reqi suffers intra-core coherence latency, LintraCoh
i , if it has to wait

until ci issues a coherence response to an earlier request by another core. ci is required to issue
a coherence response when another core requests a line, say B, that ci has in a modified state.
Therefore, ci needs to write back B to the shared memory.

Lemma 1. The WC arbitration latency, WCLarb
i , of any request generated by ci occurs when ci

has to wait for the maximum possible number of requests generated by other cores before it can
issue a request on the bus. For a system deploying conventional TDM bus arbitration, WCLarb

i

is calculated by Equation 3.1, where N is the number of cores and S is the TDM slot width in
cycles.

WCLarb
i = N · S (3.1)

47

c0

c1
1
Broadcast write/read request Broadcast write-back Data transfer

c1
c2

c2 c0 c1 c2 c0 c1

IàIS_DIS_DI à I

2 3 4 5 6 7

IM_DàIM_DI IM_DIàMI_A

IM_DàIM_DS

MI_Aà I

c2 c0 c1

IM_DSàMS_A

c2 c0 c1

MS_Aà S

IS_D à SWCL1
interCoh

8 9 10 11 12 13
/

I à IM_D

Figure 3.9: WC inter-core coherence latency. c1 is ci.

Proof. Recall that the deployed TDM arbiter grants one slot to each core per period. Thus, the
period equals to N · S cycles, where N is the number of cores and S is the TDM slot width in
cycles. The WC situation occurs when a request reqi,r by ci arrives one cycle after the start of
ci’s slot. Consequently, reqi,r has to wait for one TDM period until it is granted access by the
bus, which equals to N · S.

Lemma 2. For PMSI, the WC inter-core coherence latency, WCLinterCoh
i , of a request by ci to

A occurs when the remaining N − 1 cores broadcast write requests to A before ci’s request.

Proof. In PMSI, the modified data copy in the owner’s cache must first be written back to mem-
ory, and the memory sends the updated data to the requesting core (Table 3.2). According to
Invariant 2, the shared memory services multiple requests to the same line in order of requests
observed by the shared memory. Thus, in the WC, ci has to wait until previously pending re-
quests to A complete and the shared memory has the updated value of A before it receives A. As
a result, ci suffers WCLinterCoh

i when all other N − 1 cores in the system requested to modify A
before ci issued its request. There are 3 cases. For each case, assume that each core consumes T
periods to obtain A, write to it, and update the shared memory with the new value. The first case
is when at least one core other than ci does a read request to A rather than a write request. The
second case is when ci requests A before at least one core among N − 1 cores requests A. The
third case is when less than N − 1 cores request A before ci.

Case 1. Assume that core cj in the remaining (N−1) cores broadcasts a read request to A before
ci. When cj receives A, it does not perform a write-back to shared memory as it does not modify
A. As a result, ci does not incur T periods from cj’s access to A. Hence, the WCL of ci is less
than (N − 1)× T cycles.

48

Case 2. Let ci’s write request to A be broadcasted before cj’s request where cj is in the remaining
(N − 1) cores. Invariants 2 and 3 mandate that both cores and the shared memory respond to
requests in the arrival order of requests. Hence, ci’s request is serviced before cj , and is not
affected by cj’s request to A. As a result, inter-core coherence latency of ci < (N − 1) × T
periods.

Case 3. Let N ′ < N − 1 cores broadcast write requests to A before ci. As a result, ci incurs
inter-core coherence latency of N ′ × T cycles. This inter-core coherence latency is less than
(N − 1)× T cycles, and hence, this scenario cannot be the WC.

Illustrative example. Figure 3.9 shows an illustrative example of the WCLinterCoh
1 . Initially,

cores c1 and c0 have pending read and write requests to A in this order. At 1 , c1 receives A
and completes its read request. At 2 , c2 broadcasts a write request to A. c0 observes the remote
write request, and moves to t-state MI A to mark A for write-back. c0 receives A in 3 and
issues the write-back, which is completed in its slot at 6 . Before c0 can complete its write-back,
c1 broadcasts a read request to A at 4 . Hence, c1 must wait for both c0 and c2 to complete
write-backs to A before receiving A. After c0 completes its write-back, c2 receives A in 8 , and
schedules the write-back of A in 11 . c1 receives A at 13 resulting in WCLinterCoh

1 = 10 slots.

Lemma 3. For PMESI, the WC inter-core coherence latency, WCLinterCoh
i , for a request by ci

to A occurs in one of the following scenarios (1) remaining N −1 cores broadcast write requests
to A before ci’s request or (2) from the remaining N − 1 cores, a core broadcasts a read request
to A, and then the remaining N − 2 cores broadcast store requests to A before ci’s request.

Proof. In PMESI, lines in E or M state must be written back to shared memory on observing
remote memory activity on the same line (Table 3.2). Hence, two worst-case scenarios exists for
PMESI that result in the worst-case inter-core coherence latency. The first worst-case scenario is
similar to PMSI (Lemma 2) where the remainingN−1 cores broadcast write requests to the same
line before ci’s request. The second worst-case scenario occurs when core cj in the remaining
N − 1 cores first broadcasts a read request, and then the remaining N − 2 cores broadcast write
requests to A before ci’s request to A. In this scenario, core cj receives A in E state as no other
core has A in their private caches. Recall from Section 2.2 that only one core can have a line in
E state. On observing remote write requests from other cores, cj marks A for write-back, and
completes the write-back in the next allocated slot. Since the remaining N − 2 cores perform
write operations, each of the N − 2 cores must first complete the store operation, and then write-
back A. We omit a detailed proof regarding this scenario as it is similar to the proof of Lemma
2.

Lemma 4. For Opt-PMESI, the WC inter-core coherence latency, WCLinterCoh
i , for a request by

ci to A occurs when the remaining N − 1 cores broadcast write requests to A before ci’s request.

49

Proof. Recall from Section 3.6.2, cores do not perform write-back responses for lines in E state
in Opt-PMESI. As a result, only lines in M state trigger write-back responses in Opt-PMESI on
remote memory activity and cache line replacements. Hence, the worst-case scenario for Opt-
PMESI is equivalent to PMSI, and the proof is similar to that of Lemma 2.

Lemma 5. For PMSI, PMESI, and Opt-PMESI, WCLinterCoh
i is calculated by Equation 3.2.

WCLinterCoh
i = 2 ·N · S · (N − 1) +

{
N · S N > 2

0 N ≤ 2
(3.2)

Proof. From Lemma 2, ci has to wait in WC for N −1 cores to obtain the line from the memory,
perform the write operation, and finally update the shared memory with the new value. In WC,
this procedure consumes two TDM periods for each other core, which leads to a total of 2(N−1)
TDM periods. This accounts for the first component in Equation 3.2. Figure 3.9 shows the WC
inter-core coherence latency for c1 in a three-core system, where c1 waits for 4 periods from the
stamp of issuing the request to the bus until its data is ready to be sent by the memory. Moreover,
if N > 2, when the shared memory has the updated version that is ready to send to ci, ci might
have missed its slot in the current period. Therefore, it has to wait for an additional period to be
able to receive A from the shared memory. In Figure 3.9, the WC inter-core coherence latency
of c1 is 5 TDM periods, i.e., 15 slots. On the other hand, if N ≤ 2, the core is guaranteed to
have a slot in the same period as the data is ready at the memory. This accounts for the second
component in Equation 3.2. Recall that each TDM period is N · S cycles. WCLinterCoh

i is as
calculated by Equation 3.2.

Lemma 6. For PMSI, PMESI, and Opt-PMESI, the WC intra-core coherence latency is calcu-
lated by Equation 3.3, where N is the number of cores and S is the TDM slot width in cycles.

WCLintraCoh
i =

{
2 ·N · S N > 2

N · S N ≤ 2
(3.3)

Proof. There exist two cases:

Case of N > 2. A request from ci implies two actions from ci. First, issuing the request to
the bus. Second, receiving the data from the shared memory. As a result, the worst-case intra-
coherence latency occurs when each of these actions is delayed by write back responses that ci
has to conduct. Since the system deploys a work-conserving TDM between responses and own
requests. Each action can encounter a maximum delay of one TDM period. Accordingly, the
WC intra-coherence latency is two TDM periods or 2 ·N · S.

50

c0

c1
1

Broadcast write/read Broadcast write-back Data transfer

c1
c2

c2 c0 c1 c2 c0 c1
2 3 4 5 6 7

MàMS_A

c2 c0 c1
IàIM_D

c2 c0 c1

IS_D à S

8 9 10 11 12 13

MS_Aà S

IàIS_D

IàIS_D

MàMS_A MS_Aà S

MS_Aà S

IS_D à S

WCL1
arb

WCL1
intraCoh

Figure 3.10: WC intra-core coherence latency. c1 is ci.
Case of N ≤ 2. Recall that each core can have at maximum one pending request at any instance.
Hence, ci cannot have two pending write back requests from the only other core in the system,
cj . In worst-case, ci requests a line that is modified by cj . Thus, it has to wait for two TDM
periods because of inter-core coherence interference as per Lemma 5. In addition, ci can have a
worst-case arbitration latency of one TDM period as per Lemma 1. During this delay, which is
three TDM periods at worst, ci can have up to only one pending write back. This is because of
the TDM arbitration between write backs and own requests.

Illustrative example. Figure 3.10 shows the WCLintraCoh
1 . c1 generates a request to A immedi-

ately after the start of 1 . As a result, it cannot broadcast its request in 1 , and waits for its next
slot (4). However, 4 is designated as a write-back slot, and c1 completes a pending write-back
in this slot. Thus, c1 does not broadcast its request to A until 3 , which is one TDM period later.
c1 must wait for c0 to write-back the updated value of A before receiving A. c0 writes back A in
9 , and the shared memory can send A to c1 in 10 . However, 10 is designated as a write-back

slot, and c1 completes another pending write-back in this slot. Hence, c1 receives A in 13 , which
is one TDM period later. The delay experienced by c1 in broadcasting its request and receiving
A is the intra-core coherence latency, which is shown in Figure 3.10.

Theorem 1. The total WCL suffered by a core ci issuing a request to a shared line A under PMSI,
PMESI, and Opt-PMESI is calculated as:

WCLtot
i = WCLarb

i +WCLinterCoh
i +WCLintraCoh

i + Lacc (3.4)

Proof. The total WCL is the sum of the latency components: arbitration, inter- and intra-coherence,
and the access latencies.

51

Coverage of unpredictability sources. Section 3.5 listed five unpredictability sources and their
associated design invariants. Missing an unpredictability source means that the WCL bound is
larger than the one the above analysis provides. We argue that we covered all possible unpre-
dictability sources.

Lemma 7. Section 3.5 cover all possible unpredictable scenarios under which a core’s memory
request can suffer from unbounded latency.

Proof. Assume that there exists an unaccounted unpredictable source. As a result, this unac-
counted unpredictable source will result in a WCL greater than that derived in Theorem 1. The
worst-case scenario consists of memory requests across cores to data that result in the WCL.
To construct the worst-case scenario, we categorize a core’s (ci) memory request into three cat-
egories: (1) the memory request is a cache hit, (2) the memory request is not a cache hit and
the requested data is neither simultaneously cached in other cores’ caches nor simultaneously
requested by other cores, and (3) the memory request is not a cache hit and the requested data is
either simultaneously cached in at least another core’s cache or simultaneously requested by at
least another core. Memory requests in (1) do not access the bus to broadcast coherence messages
or wait for the requested data. This is because the requested data is available in ci’s private cache,
and the memory request can operate on the cached data. As a result, the WCLarb

i , WCLinterCoh
i ,

andWCLintraCoh
i are 0. Hence, memory requests in category (1) cannot constitute the worst-case

scenario. Memory requests in (2) access the bus to broadcast coherence messages and wait for
the requested data. However, since other cores neither simultaneously cache nor make requests
to the same data, WCLinterCoh

i is 0. Hence, the worst-case scenario cannot consist of memory
requests in (2). Memory requests in (3) also access the bus to broadcast coherence messages
and wait for the requested data. Furthermore, the requested data is either simultaneously cached
in another cores’ caches or simultaneously requested by other cores. Hence, in the worst-case,
ci must wait for other cores’ to complete their requests and perform any actions (write-backs)
before receiving the requested data. Therefore, WCLarb

i , WCLinterCoh
i , and WCLintraCoh

i are 6=
0, and the worst-case scenario must consist of memory requests in (3). However, the scenarios
described in the analysis in Section 3.7 do indeed consist of memory requests that fall in (3). Fur-
thermore, these scenarios are the worst-case scenarios that result in the WCL. Since the latency
analysis are for protocols that satisfy the design invariants listed in Section 3.5, we have covered
all possible unpredictable scenarios.

Theorem 2. A cache coherence mechanism is timing predictable if and only if it satisfies the
design invariants listed in Section 3.5

Proof. Proof for → (necessary condition). Let CC be a cache coherence mechanism that is
timing predictable. This means that there does not exist a scenario under CC where a memory

52

request from a core has unbounded latency. From Lemma 7, this means the implementation of
CC does not exhibit the scenarios listed in Section 3.5. Since each scenario listed in Section
3.5 has a corresponding design invariant, CC’s implementation satisfies all the design invariants
listed in Section 3.5.

Proof for← (sufficient condition). Let CC satisfy the design invariants listed in Section 3.5.
CC satisfies the design invariants either at the cache coherence protocol level, micro-architecture,
or a combination of both. Each design invariant in Section 3.5 fix a scenario where a core can
have unbounded latency when multiple cores simultaneously cache coherent data in their private
caches. Since Lemma 7 proves that Section 3.5 covers all possible unbounded latency scenarios,
satisfying all the corresponding design invariants in Section 3.5 ensures that there does not exist
a scenario where a core’s memory request can have unbounded latency. Hence, CC is timing
predictable.

3.8 Evaluation

We integrate PMSI, PMESI, and Opt-PMESI into the gem5 simulator [17]. We use the Ruby
memory model in gem5, which is a cycle-accurate model with a detailed implementation of cache
coherence events. We use a multi-core architecture that consists of in-order x86 cores running
at 2GHz. Each core has a private 16KB direct-mapped L1 cache, with its access latency as 3
cycles. All cores share an 8-way set-associative 1MB LLC cache. Since the focus of this work
is on coherence interference, we use a perfect LLC cache to avoid extra delays from accessing
off-chip DRAM. Consequently, the access latency to the LLC is fixed, and equals to 50 cycles
(Lacc = 50 cycles). The DRAM access overheads can be computed using other approaches such
as [64, 159], and they are additive [165] to the latencies derived in this work. Both L1 and LLC
have a cache line size of 64 bytes. The interconnect bus uses TDM arbitration amongst cores.
The L1 cache controller uses work-conserving TDM arbitration between a core’s own requests
and its responses to other core requests. We do not run an operating system in the simulator, and
hence, all memory addresses generated by the cores are physical memory addresses. We evaluate
PMSI, PMESI, and Opt-PMESI using the SPLASH-2 [157] benchmark suite. In addition, we use
synthetic workloads to stress the WC behavior.

3.8.1 Verification

We verified the correctness of PMSI, PMESI, and Opt-PMESI using various methods. 1) We
used the Ruby Random Tester with gem5 [17] specifically to verify coherence protocols. We

53

stressed all protocols with 10 million random requests. 2) We used carefully-crafted synthetic
micro-benchmarks to cover all possible transitions and states all the three protocols. This also
ensures the exhaustiveness of the identified unpredictability sources and corresponding invari-
ants. If there was an unpredictability source that is not included in Section 3.5, it should lead to
unpredictable behavior (i.e., observed latencies would exceed the bound) at one or more of the
transitions, which we did not observe. 3) We executed the applications in the SPLASH-2 suite
on gem5 using PMSI, PMESI, and Opt-PMESI and they run to completion. Furthermore, we
check data correctness by checking the output of each application. 4) We also formally verified
the correctness properties and WCL bounds for the protocols using the formal models developed
by Sensfelder et al. [133].

3.8.2 Observed worst-case latencies

We study the effectiveness of PMSI, PMESI, and Opt-PMESI to bound the delays resulting from
coherence interference. We also study the effects of violating each one of the invariants on the
memory latency. We use a 4-core system for our experiments. For SPLASH-2, we launch each
SPLASH-2 application as four threads using four single-threaded cores, where only one appli-
cation is used per experiment. Figure 3.11 depicts our findings, and shows the total observed
memory latency. Since SPLASH-2 applications are optimized to minimize data sharing, they
do not stress the coherence protocol. Therefore, to further stress the coherence protocol, we
execute synthetic experiments using 9 synthetically-generated workloads: Synth1 to Synth9 in
Figure 3.11. In each synthetic experiment, we simultaneously run four identical instances of one
workload by assigning one instance on each core. These experiments represent the maximum
possible sharing of data since each core generates the same sequence of memory requests. The
WC arbitration latency for benchmarks in all experiments is N ·S = 200 cycles for N = 4 cores
and slot S = Lacc = 50 cycles; hence, not shown. Since all three protocols have the same worst-
case scenarios and latencies (Section 3.7), we present results only for the PMSI protocol. We
verified that the below observations also apply to PMESI and Opt-PMESI. Figure 3.12 shows the
violin plot distributions of memory request latency under different predictable cache coherence
protocols.
Observations. (1) Figure 3.11 shows that for PMSI the total WC latencies are within their ana-
lytical total WCL bounds. We also observed that the individual latency components such as the
arbitration, inter-core, and intra-core coherence latency components are within their respective
analytical WCL bounds derived in Section 3.7. This is shown Figure 3.11. (2) On the other hand,
violating any of the invariants introduces a source of unpredictability, which results in exceeding
those bounds. Moreover, for source 1, one of the cores is not able to obtain an access to a block
that it requests and the program never terminates. This is the reason that Figure 3.11 does not

54

0

500

1000

1500

2000

2500

3000

barnes cholesky fft fmm lu ocean radiosity radix raytrace

W
C

L
(c

yc
le

s)

(a) Total memory latency for SPLASH-2 suite.

0

500

1000

1500

2000

2500

3000

barnes cholesky fft fmm lu ocean radiosity radix raytrace

W
C

L
(c

yc
le

s)

(b) Inter-core coherence latency for SPLASH-2 suite.

0
100
200
300
400
500
600
700
800
900

1000

barnes cholesky fft fmm lu ocean radiosity radix raytrace

W
C

L
(c

yc
le

s)

(c) Intra-core coherence latency for SPLASH-2 suite.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9
W

C
L

(c
yc

le
s)

(d) Total memory latency for synthetic workloads.

0

500

1000

1500

2000

2500

3000

3500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

W
C

L
(c

yc
le

s)

(e) Inter-core coherence latency for the synthetic
workloads.

0

500

1000

1500

2000

2500

3000

3500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

W
C

L
(c

yc
le

s)

(f) Intra-core coherence latency for the synthetic
workloads.

Figure 3.11: WC latencies and the effect of unpredictability sources on them. Horizontal dotted
line represents the analytical bound. Black bars are PMSI, PMESI, and Opt-PMESI protocols,
orange bars denote violating design invariant 2, red bars denote violating design invariant 3, and
green bars denote violating design invariant 4.

show Unpredictable 1. This shows that augmenting a conventional coherence protocol with a
predictable arbiter does not guarantee predictability. Note that violating some of the invariants
also results in exceeding the latency bounds of the individual latency components. For exam-
ple, we observed that violating invariant 3 causes resulted in the observed inter-core coherence
latency to exceed the corresponding analytical bound across all synthetic and SPLASH-2 bench-
marks. (3) For a quad-core system, the latency suffered by a core due to coherence interference
is 9× more than the latency due to bus arbitration. The inter-core coherence interference solely

55

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

0

250

500

750

1000

1250

1500

La
te

nc
y

in
 c

yc
le

s

(a) PMSI on synthetic workloads.

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

0

250

500

750

1000

1250

1500

La
te

nc
y

in
 c

yc
le

s

(b) PMESI on synthetic workloads.
Figure 3.12: Memory request latency distribution under PMSI and PMESI protocols.

contributes a latency up to 7× of the arbitration latency, while the latency resulting from the
intra-core coherence interference is double the arbitration latency. This provides evidence of the
importance of considering the coherence latency when sharing data across multiple cores for real-
time applications. (4) From the violin plot distributions in Figure 3.12, most memory requests
to shared data under PMSI, PMESI, and Opt-PMESI protocols benefit from caching, and expe-
rience lower memory request latency. This highlights the key benefit of using predictable cache
coherence protocols compared to alternative predictable shared data mechanisms that constrain
private caching of shared data. The maximum observed memory request latency across synthetic
benchmarks under PMSI, PMESI, and Opt-PMESI are within the analytical WCL bound.

3.8.3 Comparison against prior predictable approaches

We compare the overhead caused by four alternative predictable approaches to handle data shar-
ing in multi-core real-time systems: (1) not using private caches (uncache-all), (2) not caching
the shared data (uncache-shared), (3) the proposed PMSI, PMESI, and Opt-PMESI protocols,
and (4) mapping all tasks that share data to the same core (single-core). For the first three ap-
proaches, each application is distributed across four-cores. uncache-shared is an adaptation of
the approach by [61, 86], but for data instead of instructions. single-core maps tasks with shared
data to the same core to eliminate incoherence due to shared data, which adopts the idea of data-
aware scheduling [23]. The overhead is calculated as the slowdown compared to the conventional
MESI protocol. Figure 3.13 depicts our findings for the SPLASH-2 workloads, where MSI and
MESI are the conventional (unpredictable) protocols implemented as in [138].

Observations. (1) Across all benchmarks, the uncache-all has the worst execution time with a

56

92
.6

1

81
.4

2

74
.1

2

87
.8

1

97
.8

8

2.
17

80
.6

6

11
.9

8

4.
19

32
.6

5

1.
26

5.
13

2.
84

4.
82

1.
68 2.

51

2.
20

1.
18

7.
17

2.
67

4.
63

7.
94

2.
54

4.
63

1.
31

0.
99 1.

74

1.
41 1.
67

2.
36

1.
22 2.

00

1.
92

1.
41

1.
22

1.
17 1.
52

1.
50

1.
37

1.
46

1.
34 2.

18

2.
00

1.
54

1.
24

1.
23 1.

75 1.
91

1.
45 1.
59

1.
21 1.

94

1.
83

1.
36

1.
19

1.
16 1.
46

1.
48

1.
35

1.
42

1.
00

1.
01

1.
01

1.
01

1.
01

1.
00

1.
01

1.
00

1.
00 1.
01

1 1 1 1 1 1 1 1 1

1

0
1
2
3
4
5
6
7
8
9

10

FFT Radix Ocean FMM LU Radiosity Cholesky Raytrace Barnes Geomean

Sl
ow

do
w

n

Uncache all Single core Uncache shared PMSI PMESI Opt-PMESI MSI MESI

Figure 3.13: Execution time slowdown compared to MESI protocol.

geometric mean slowdown of 32.66× compared to MESI, followed by single-core and uncache-
shared with geometric mean slowdowns of 2.67× and 2.11× respectively. The uncache-shared
and single-core approaches require additional hardware and software modifications to the appli-
cations and RTOS to track cache lines shared between cores. (2) Since private data does not cause
any coherence interference, uncache-shared allows caching of only private data, while uncaching
of all shared data. In Figure 3.13, uncache-shared has better performance than uncache-all for
all applications with a geometric mean slowdown of 2.11× Nonetheless, uncache-shared re-
quires additional hardware and software modifications to distinguish and track cache lines with
shared data, which are the same modifications required by [115]. (3) Mapping applications
with shared data to the same core avoids data incoherence since these tasks share the same pri-
vate cache. However, it prohibits parallel execution of these application. In consequence, for
some applications (fft, radix, and raytrace), single-core achieves better performance compared
to uncache-shared, while for other applications, it exhibits lower performance. This is depen-
dent on several factors such as the memory-intensity of the application and the ratio of shared
to non-shared data. Overall, single-core achieves a geometric slowdown of 2.67×. (4) On the
other hand, PMSI, PMESI, and Opt-PMESI protocols achieve better performance compared to
all other predictable approaches with no changes to the application or RTOS. PMSI, PMESI, and
Opt-PMESI achieve improved performance of up to 4× the best competitive approach, uncache-
shared, with a geometric mean slowdown of 1.46×, 1.59×, and 1.42× in performance compared
to MESI respectively. (3) For the synthetic benchmarks, the single-core approach offers 2.9× av-
erage performance speedup over uncache-shared approach. This is because the uncache-shared
approach disallows any caching of memory addresses, and hence, no memory requests result in
cache hits. The PMSI, PMESI, and Opt-PMESI protocols offer 3.08×, 2.99×, and 3.12× av-
erage performance speedup over uncache-shared respectively. Compared to single-core, PMSI,
PMESI, and Opt-PMESI exhibit performance speedups as high as 16% without constraining core
utilization.

57

1.
00

0.
94 0.
95 0.
99 1.
01

0.
93

0.
94 0.
96

0.
95 0.
96

1.
07

1.
07

1.
03

1.
01

1.
12

0.
99 1.
02 1.
06

1.
02 1.
04

0.8

0.9

1

1.1

1.2

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9 Geomean

Sp
ee
du
p

PMSI PMESI Opt-PMESI

(a) Synthetic benchmarks.

0.
91

0.
92 0.
96

0.
91 0.
99

0.
95

0.
87

0.
78

0.
94

0.
911.
01

1.
03

1.
05

1.
03

1.
03

1.
01

1.
04

1.
01

1.
02

1.
03

0.6
0.7
0.8
0.9
1

1.1

FFT Radix Ocean FMM LU Radiosity Cholesky Raytrace Barnes Geomean

Sp
ee
du
p

PMSI PMESI OPT-PMESI

(b) SPLASH-2 benchmark suite.
Figure 3.14: Average-case performance speedups of PMSI, PMESI, and Opt-PMESI for syn-
thetic and SPLASH-2 benchmarks.

3.8.4 Comparison of PMSI, PMESI, and Opt-PMESI protocols

Figures 3.14a and 3.14b compare the average-case performance of the PMSI, PMESI, and Opt-
PMESI protocols for the synthetic and SPLASH-2 benchmarks respectively against PMSI. While
all the protocols have the same WCL bounds, PMESI and Opt-PMESI have additional states and
transitions that enable average-case performance improvements over PMSI. Figures 3.14a and
3.14b normalize the average-case performance to PMSI.
Observations. (1) Across synthetic and SPLASH-2 benchmarks, PMESI does not provide per-
formance benefits over PMSI. The key reason for this is the increased number of write-backs
in PMESI due to states E and M. In PMESI, a core triggers a write-back for a line that it has
in E or M state. Recall from Section 3.6.1 that cores deploy a predictable arbitration scheme
that services write-backs and pending demand requests in a core’s allocated slot. As a result, the
increased number of write-backs in PMESI contend for the allocated slots resulting in longer exe-
cution time to complete cores’ demand requests. For the synthetic benchmarks, we observed that
PMESI experiences 24% more write-backs on average than PMSI. For the SPLASH-2 bench-
marks, PMESI experiences 1.9× more write-backs than PMSI. This is because the working data
set sizes of the SPLASH-2 benchmarks do not fit in the private caches resulting in more cache
line evictions due to capacity misses. As a result, in PMESI, 44% of the total write-backs in
SPLASH-2 are due to cache line evictions to lines in E state. Hence, PMESI does not improve

58

over PMSI (4% average performance degradation for synthetic benchmarks and 9% average per-
formance degradation for SPLASH-2 benchmarks) due to the increased number of write-back re-
sponses that contend for allocated slots with demand requests. (2) The additional hardware over-
head in Opt-PMESI addresses this performance limitation of PMESI, and improves over PMSI
and PMESI for both the synthetic and SPLASH-2 benchmarks. For synthetic and SPLASH-2
benchmarks, Opt-PMESI improves performance by 4% and 3% respectively. The performance
improvement is primarily due to silent writes that allows cores to complete writes on lines in E
state without broadcasting on the bus.

3.9 Conclusion

We point out possible sources of unpredictable behavior in conventional coherence protocols.
To address this unpredictability, we describe a set of invariants. These invariants are general
and can be applied to other coherence protocols. We show how to deploy these invariants in
the fundamental MSI and MESI protocols. Towards this target, we propose a set of novel tran-
sient states as well as minimal architecture requirements resulting in predictable MSI (PMSI)
and predictable MESI (PMESI) protocols. Furthermore, we design Opt-PMESI, an alternative
protocol that addresses the performance limitations of PMESI. We derive WCL bounds for all
three protocols, and experiment using the SPLASH-2 benchmark suite and worst-case oriented
synthetic workloads. Our evaluation shows that (1) the invariants implemented in all three pro-
tocols ensure that that the observed WC latencies are within the derived analytical bounds, and
(2) the average-case performance of our approaches offer significant average-case performance
over state-of-the-art predictable approaches for shared data accesses.

59

Chapter 4

Balancing Predictability and
High-Performance in Cache Coherence
Mechanisms

The second research contribution of this thesis brings to attention the WCL gap between pre-
dictable cache coherence mechanisms and prior predictable shared data communication mech-
anisms. This WCL gap makes predictable cache coherence an inferior communication choice
compared to prior predictable shared data communication mechanisms due to their relatively
high WCL. While the tools from the previous chapter (Chapter 3), in the form of design in-
variants, facilitate the design of predictable hardware cache coherence mechanisms, they do not
provide any guidance on how to improve their timing predictability. Improving the timing pre-
dictability means reducing the WCL of a memory request. To this end, we present a systematic
framework that captures the relationship between predictable cache coherence mechanism de-
sign and their corresponding WCL. Using this framework, we present a technique to reduce the
WCL under predictable cache coherence mechanisms through changes to the underlying cache
coherence protocol. Our design technique results in predictable cache coherence mechanisms
that have the same WCL guarantees as prior communication mechanisms, thereby eliminating
the WCL gap, while still maintaining the performance advantage over prior mechanisms.

4.1 Introduction
Satisfying temporal properties of safety-critical tasks in the form of worst-case latency bounds
(WCL) is the paramount consideration; average-case performance is typically a secondary con-

60

250 300 350 400 450 500 550 600 650 700 750 800 850
1773 2436

3286
4520

5964
7636

9470

12036
13786

16236
18199

21720

23999

1599 2249
3299

4882
6364

8064
9491

11536

14364
15595

18199

21732

24770

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000
22,000
24,000
26,000
28,000
30,000

4 5 6 7 8 9 10 11 12 13 14 15 16

W
C

L
 in

 c
yc

le
s

Number of cores

Analytical WCL bound: Cache bypassing

Analytical WCL bound: Predictable cache coherence

Observed WCL: Cache bypassing

Observed WCL: PMSI

Observed WCL: PMESI

Quadratic

Linear

Figure 4.1: Variation of WCL for alternative and predictable cache coherence mechanisms with
core count on synthetic workloads.

sideration. This is because WCL bounds are used to determine an execution schedule of safety-
critical tasks, and tighter WCL bounds improves task schedulability. This means that a data
communication mechanism that offers large WCL bounds is an unacceptable mechanism irre-
spective of the stellar average-case performance it provides. Based on this criterion, Figure 4.1
shows that predictable cache coherence mechanisms proposed so far [74, 77, 139] are unaccept-
able data communication mechanisms.

Figure 4.1 plots the analytical WCL bound and observed WCL for different data communi-
cation mechanisms as a function of the number of cores (N). We take mechanisms described in
prior works such as cache bypassing of shared data [25,61,86], and the PMSI and PMESI cache
coherence protocols [74]. Cache bypassing mechanism disables cores from caching shared data,
and hence, sidesteps cache coherence by forcing all shared data to reside in the shared mem-
ory. As a result, the WCL of a memory request under cache bypassing is the latency to access
the shared memory, which grows linearly with the N . On the other hand, prior works on pre-
dictable cache coherence mechanisms [74,77,139] showed that WCL of a memory request grows
quadratically with N . To put these trends into perspective, we take a 8-core platform; a core
count of 8 cores is representative of multi-core real-time platforms such as the NXP QorIQ T4
platform [106]. We will assume a TDM-based shared bus arbitration where each core receives
a time slot of length 50 cycles. For a 8-core system, the analytical WCL bound of existing pre-
dictable cache coherence protocols is 7250 cycles, and the analytical WCL bound of the cache
bypassing mechanism is 450 cycles. Our evaluation shows that the 16× WCL gap returns at
most a 5× performance speedup over cache bypassing for the SPLASH-2 benchmark. We ar-
gue that this disparity between WCL gap and performance returns is not acceptable, and brings
into question the applicability and possibly the commercial adoption of predictable cache co-

61

herence mechanisms for safety-critical platforms with a reasonable number of cores. Rather, a
4× performance speedup over cache bypassing and with same WCL (no WCL gap) would make
predictable cache coherence mechanisms more compelling and acceptable data communication
mechanisms.

Unfortunately, recent prior works such as [13, 65] that address this WCL gap in predictable
cache coherence mechanisms do not provide a systematic approach to design predictable cache
coherence mechanisms with tight WCL and high-performance. These works provide ad hoc
approaches that focus on a specific cache coherence protocol and enforce caching constraints
to bridge the WCL gap. On the other hand, a systematic approach provides a designer the key
reasons behind the high WCL in predictable cache coherence mechanisms, which then allows
the designers to reason about approaches to designing coherence mechanisms that achieve tight
WCL and high-performance.

In this work, we present a systematic approach towards designing predictable cache coher-
ence mechanisms that offer tight WCL and high-performance. Tight WCL means that the WCL
of a memory request grows linearly with core count. The resulting cache coherence mechanisms
derived on applying our approach have the same WCL as the cache bypassing mechanism thereby
bridging the WCL gap. For example, we design predictable cache coherence mechanisms with
WCL of 450 cycles for a 8-core system, which is a 94% reduction compared to the WCL of exist-
ing predictable cache coherence mechanisms. For an approach to be systematic, it must be guided
by some formal analysis that captures the root causes of the high WCL in existing predictable
cache coherence mechanisms. To this end, our first main contribution is a formal framework and
analysis that identifies the design features of a cache coherence mechanism that contribute to
its WCL. Our second contribution describes one technique towards designing predictable cache
coherence mechanisms that offers tight WCL and high-performance through micro-architectural
extensions and cache coherence protocol changes. This technique is guided by the insights de-
rived from our formal framework and analysis, and hence, systematic. Our design technique
distinguishes itself from prior works [13, 65] in that it does not apply any caching constraints,
and can be applied to tighten the WCL of different cache coherence protocols. We apply our
design technique to two cache coherence protocols, and show that the resulting protocols main-
tain their performance advantage over the cache bypassing mechanism (up to 5× performance
speedup) while having the same WCL as the cache bypassing mechanism.

4.2 Main contributions
In summary, the main contributions of this work are:

1. A systematic approach that consists of a formal framework to model and analyze pre-
dictable cache coherence mechanisms and their WCL. This framework identifies the root

62

causes for the high WCL in existing predictable cache coherence mechanisms (Section
4.6).

2. Guided by the analysis, we focus on one technique to design predictable cache coherence
mechanisms with tight WCL and high-performance. We show that the resulting cache
coherence mechanisms from applying this technique have the same WCL as that of cache
bypassing, thereby eliminating the WCL gap (Section 4.8).

3. We evaluate two cache coherence mechanisms obtained from applying our proposed tech-
nique using the gem5 micro-architectural simulator [17]. Our performance evaluation
shows that the new mechanisms maintain their performance advantage over cache bypass-
ing (up to 5× performance speedup) and sacrifice at most 13% of the original coherence
mechanisms (Section 4.9).

4.3 Related work
Hassan et al. [74] presented a template for designing predictable cache coherence protocols, and
proposed the PMSI protocol using the design template. The template defined design invariants
for designing predictable cache coherence protocols. In this work, all the protocols including
PMSI*, and PMESI*, satisfy the design invariants described in [74]. Sritharan et al. [139] de-
signed Pendulum, a time-based predictable cache coherence protocol for mixed-critical multi-
core systems wherein cores retained cache lines for specific time duration based on the criticality
level of the tasks executing on the cores. State transitions in Pendulum were triggered on mem-
ory activity and physical time, and some coherence states in Pendulum encoded information
about physical time. Our formal framework does not capture physical time, and hence, cannot
model the coherence states and transitions in Pendulum. Kaushik et al. [77] designed CARP, a
PMSI-based predictable cache coherence protocol for mixed-critical multi-core systems. CARP
allowed data communication between non-critical and critical cores while disallowing timing in-
terference from non-critical tasks on critical cores [77]. CARP can be modeled using our formal
framework, and the changes to the PMSI protocol in Section 4.8 can tighten the WCL bound of
memory requests from critical cores under CARP. Bansal et al. [13] and Hassan [65] presented
predictable cache coherence protocols that tightened the WCL under predictable cache coher-
ence mechanisms through a combination of specific protocol changes and caching constraints.
The predictable cache coherence protocol in [13] disallowed communicated data to reside in the
core’s private caches, and the protocol in [65] disallowed modified communicated data to reside
in the cores’ private caches. These protocols required support from the software application to
distinguish between data that is communicated between cores and private to a core. On the other
hand, our technique of protocol changes along with point-to-point data interconnects achieves

63

c0 c1 c2 c3 c0 c1 c2 c3
c0

c1

c2

0 1 2 3 4 5 6 7

c3

c0 c1 c2 c3 c0 c1 c2 c3
8 9 10 11 12 13 14 15

X

Y

Z

WB X WB Y WB Z

X Y Z

Y Z

Z

PWB at end of slot 2

PWB at end of slot 3

PWB at end of slot 7

Figure 4.2: Example execution under PMSI protocol.

tight WCL and high-performance without placing any caching constraints. The transformed
protocols in Section 4.8 have the same WCL bound as [13, 65].

Recently, Salah and Hassan [67] described a new bus architecture for snooping bus-based
cache coherence mechanisms that tightened the WCL of a memory request. The key insight
behind their bus architecture is the decoupling of coherence message communication with cores
and shared memory and the data communication between the cores and shared memory. This
decoupling enables achieves tighter WCL bounds compared to prior predictable cache coherence
mechanisms. This work is complimentary to [67] and achieves tighter WCL bounds through pro-
tocol changes while preserving the conventional predictable bus architecture that couple message
and data communication. The WCL of a memory request under our proposed approach is the
same as that under [67].

4.4 Motivation

4.4.1 High level understanding behind the WCL gap
Bridging the WCL gap requires first understanding the root cause of the high WCL in existing
predictable cache coherence protocols. We present a high level understanding of the WCL gap
using Figure 4.2 as an illustrative example. Section 4.7 provides a formal treatment of the WCL
gap analysis. Figure 4.2 shows an execution using the PMSI coherence protocol on a 4-core
platform. c2 is the core under analysis. The shared bus deploys a TDM arbitration that allocates
one time slot to each core that is large enough to complete one memory transaction between core
and the shared memory. We use i to denote TDM slot i.

Initially, c3 has cache lines X, Y, and Z in M state. Cores c0, c1, and c2 make read requests
to X, Y, and Z at 0 , 1 , and 2 respectively. Based on the PMSI protocol (Table 3.2 in Chapter
3), the read requests from c0-c2 causes c3 to write-back the updated versions of X, Y, and Z to
shared memory. On receiving the updated versions, the shared memory can send the data to the

64

requesting cores. Write-back operations to the shared memory require access to the shared data
bus. As a result, c3 has to wait for its allocated slots to complete the write-back operations. Figure
4.2 shows c3’s pending write-back buffer (PWB), which records the write-backs. c3 completes the
write-back operations at 3 , 7 , and 10 for X, Y, and Z respectively. We make two observations
pertinent to the WCL of c2’s memory request to Z.
Observation 1. c3’s data write-back operations to shared memory are in response to the read
requests from c0, c1, and c2. For example, c3’s write-back to X is in response to the c0’s read
request to X. These data write-backs to shared memory are necessary for maintaining data cor-
rectness. Since the write-backs require access to the shared buses, c3 must wait for its allocated
time slots on the shared buses to complete the write-backs to shared memory as shown in Figure
4.2.
Observation 2. c2 must wait for c3 to complete all prior write-backs recorded before Z in its
PWB. This is because a core’s PWB entries are serviced in a FIFO manner [74]. As a conse-
quence, c2 must wait for previous write-backs (X and Y) and the write-back of the requested Z
before receiving Z from the shared memory.

From these two observations, c2 has to wait for priorN−1 write-backs to the shared memory
before its requested data is written to shared memory. Since each write-back operation from a
core waits for its allocated slot (O(N)), the WCL of c2’s request scales quadratically with N
(O(N2)). Hence, at a high level, the root cause of this quadratic WCL in existing predictable
cache coherence protocols can be attributed to:
A scenario where at least one core responds with shared bus accesses to another core’s request,
and these responses must complete before the requesting core can complete its request.

4.4.2 Techniques to tighten the WCL
This high-level understanding behind the WCL gap reveals different techniques to tighten the
WCL. One possible technique is to allow a core to complete its responses immediately on ob-
serving another core’s request. This can be achieved by replacing shared buses that communicate
responses from cores with dedicated buses for each core Another technique focuses on eliminat-
ing scenarios where a core responses with shared bus accesses to another core’s request, which
is the focus of this work. In this work, we describe one technique that applies protocol changes
and makes use of direct cache-to-cache communication between cores through point-to-point
interconnects. Note that cores still communicate coherence messages through the shared mes-
sage bus and communicate data with the shared memory through the shared data bus. Direct
cache-to-cache communication between cores is available in existing multi-core platforms such
as ARM’s snoop control unit [8] and Intel’s multi-processor quick path interconnect [173]. The
high-level idea behind this technique is that protocol changes convert scenarios where a core
executes shared bus accesses in response to another core’s request into direct communication

65

c0
c0

c1

c2

0 1 2 3

c3

X
Y

Z

M

I

Write,	
Read

Write,	
Read

Write,	Read/
Send	data

Write,
Read

Own memory activityRemote memory activity

c1 c2 c3

X Y Z

Broadcast request Send data

Invalidate cache line

Figure 4.3: PMI protocol and execution example.

between cores. As a result, the protocol changes eliminate a core from performing shared bus
accesses in response to another core’s request. However, such protocol changes may trade away
significant performance opportunities in the original protocol if not done carefully. Using the
PMSI protocol as an example, we show the extent to which careless protocol changes can de-
grade performance. In Section 4.8, we describe one technique that refines the protocol changes
to effectively balance tight WCL and average-case performance.

Consider the following protocol changes to the PMSI protocol: (1) a cache line transitions to
M state instead of the S state on an own read request, and (2) a cache line in M transitions to I
instead of S state on a remote read request. Note that these changes are valid and do not violate
data correctness as a cache line in M has both read and write access permissions [138]. The
resulting protocol due to these changes, predictable Modified-Invalid (PMI) protocol, is shown
in Figure 4.3. We deploy the PMI protocol on a multi-core model that has direct cache-to-cache
communication support between cores. In the PMI protocol, a core that has a cache line in M
state sends the requested cache line to the requesting core directly and invalidates its cache line
copy (move to I state). Applying the PMI protocol to Figure 4.2, c3 sends the requested data
to the other cores and changes the coherence states of its copies of the requested data from M to
I state. These changes allow the requesting cores (c0-c2) to complete their requests in the same
slot that it made their requests as shown in Figure 4.3.
WCL of memory request under PMI. Notice that the PMI protocol does not have any tran-
sitions where a core performs shared bus accesses in response to another core’s request; for
example, there are no transitions that trigger write-backs to the shared memory due to another
core’s request. The key reason for this lies in the following observation regarding the PMI pro-

66

tocol. The PMI protocol allows only one core to have a copy of the cache line. If one were to
look at the overall state of the requested cache line across all cores before and after a memory
request from the shared memory perspective, then the state of the cache line remains the same;
there exists one core that has a copy of the cache line in M state. As a result, no cores respond
with shared bus accesses on observing another core’s request. In the worst-case, a core waits
for its allocated slot to communicate its request on the shared message bus, and will receive the
requested in the same slot either from the shared memory or from another core. Hence, the WCL
of a memory request under PMI is O(N), which is tighter than that under the PMSI protocol
(O(N2)).
Average-case performance of PMI. While the PMI protocol has tight WCL, the lack of a shared
state S prevents multiple cores from simultaneously having the same cache line in their private
caches, which in turn degrades its average-case performance benefits. For an 8-core multi-core
configuration, the WCL of a memory request under PMI is tighter than that under PMSI by 94%
(450 cycles vs 7250 cycles). However, our evaluation shows the PMI protocol exhibits an aver-
age performance slowdown of 3.1× compared to the PMSI protocol, and 2× compared to cache
bypassing technique. This imbalance between tight WCL and performance under the PMI pro-
tocol makes it an inferior choice as a data communication mechanism. Hence, protocol changes
to cache coherence protocols targeted at tightening their WCL must be done carefully in order
to retain their existing high-performance benefits. In Section 4.8, we present one technique of
protocol changes that balances tight WCL and high-performance. We describe the design of the
PMSI* protocol, which is derived from applying our proposed technique to the PMSI protocol.
The WCL of a memory request under PMSI* is the same as that under the PMI protocol, and the
PMSI* protocol exhibits at most a 22% performance slowdown compared to the PMSI protocol.

4.5 System model
We consider a multi-core model with N cores C = {c0, c1, ..., cN−1}. We denote the set of T
tasks that execute on N cores as Γ = {τi : i ∈ [0, T − 1]}. Multiple tasks can be mapped for
execution to the same core. At any instance of time, a core executes one task; multiple cores
execute tasks simultaneously. We assume cores implement in-order pipelines, and each core
allows for one outstanding memory request. Cores have a memory hierarchy consisting of split
level one (L1) private data and instruction caches, and a shared memory. The contents of a core’s
data and instruction caches are managed by the cache controllers. The shared memory contains
all the data required by the tasks running on the cores, and the private caches hold a subset of
the tasks’ data (inclusive memory hierarchy). The cores’ caches are configured as write allocate
write-back caches.

The multi-core model deploys a predictable snooping bus-based cache coherence protocol,

67

and consists of the hardware structures presented in Chapter 3. The number of entries in the
pending response buffer, and pending request lookup table is set to N ; at any instance of time
there can be N pending requests across all cores [74]. Pending responses in a core’s pending re-
sponse buffer are serviced in a first-in first-out (FIFO) order [74]. Cores communicate coherence
messages on the shared snooping bus interconnect, which we refer to as the shared message bus.
Cores communicate data with the shared memory using a shared data bus. The message and data
buses are split-transaction non-atomic buses [138].

The analysis assumes TDM shared bus arbitration, although other predictable arbitration poli-
cies are also possible. Each TDM time slot is large enough to complete one memory operation to
the shared memory, which includes the time to communicate messages based on the predictable
cache coherence protocol. In an arbitration period, each core is allocated a constant number of
TDM slots based on their shared memory access requirements. The slot allocation for a core is
independent of the slot allocation of other cores. As a result, the worst-case asymptotic arbitra-
tion latency experienced by a core to access the shared bus is O(N). Prior works on multi-core
real-time systems have used a similar multi-core system model [47, 61, 63, 65, 66, 74, 77, 139].

4.6 Analyzing Predictable Cache Coherence Protocols
In this section, we describe our formal framework that establishes the relationship between pro-
tocol designs and their corresponding WCL. This framework guides our efforts in tightening
the WCL of existing predictable cache coherence protocols in Section 4.8. In Section 4.6.1,
we present the formal model of cache coherence protocols, and in Section 4.7, we present a
first-order WCL analysis using this model.

4.6.1 Formal model of coherence protocols
There are three main components of our formal model: (1) coherence states, (2) transitions
between coherence states, and (3) multi-core protocol view, which captures the transitions in
coherence states due to memory activity on the cache line.

Coherence states

The coherence state (stable state or transient state) of a cache line in a core’s private cache
encodes three pieces of information that govern the core’s memory activity on the cache line,
and the core’s responses due to memory activity from other cores on the cache line.
1. Access permissions: Access permissions denote the read and write permissions of a cache
line in a core’s private cache. We denote a cache line’s access permissions as AP = {read, write,

68

eread, invalid}. A cache line in a core’s private cache has invalid access permission if the core
cannot read or write its data contents. This means that the cache line is either not present in
the core’s private cache or has incorrect data. A cache line in a core’s private cache has read
access permission if the core can read its data contents. A cache line in a core’s private cache
has exclusive-read access permission (eread) if the core can read its data contents, and it is the
only core that has the cache line in its private cache. A cache line in a core’s private cache has
write access permission if the core can read and write its data contents.
2. Data state: The data state component conveys relative information about the data contents
of a cache line in the core’s private cache and in the shared memory. We denote the data state
of a cache line as DS = {dirty, clean}. A cache line in a core’s private cache with dirty data
state means that the core may have modified the data contents of the cache line. Hence, the data
contents of the cache line in the core’s private cache are different from that in the shared memory.
On the other hand, a cache line in a core’s private cache with clean data state means that the data
contents of the cache line are the same in the core’s private cache and in the shared memory.
Note that multiple cores cannot simultaneously have the same cache line with dirty data state.
3. Data authority: The data authority component determines whether a core with a cache
line responds with data to a remote core that requests the same cache line. We denote the data
authority of a cache line as DA = {active, passive}. A cache line in a core’s private cache with
active data authority responds with data to remote memory activity to the same cache line. On
the other hand, a cache line in a core’s private cache with passive data authority does not respond
with data to remote memory activity to the same cache line. Note that at any instance of time,
only one core can have a cache line with active data authority or multiple cores can have a cache
line with passive data authority.

S = AP × DS × DA is the set of all possible coherence states of a cache line in a core’s
private cache. A coherence state of a cache line with address A in core’s ci ∈ C private cache is
a 3-tuple of the form sciA = (apciA , ds

ci
A , da

ci
A) ∈ S where apciA ∈ AP, dsciA ∈ DS, and daciA ∈ DA.

The shared memory controller also maintains coherence states for the cache lines in the shared
memory. Coherence state changes for a cache line at the shared memory is due to data state and
data authority changes for the cache line in the private caches. Hence, our framework does not
model the coherence states in the shared memory.

State transitions

Transitions between coherence states are triggered on events observed by the cache controllers
on the shared snooping message bus. These events are caused by memory requests issued by the
cores’ cache controllers due to the application execution. We denote the set of memory requests
on a cache line as O = {ReadReq,WriteReq}, and we denote the set of events on a cache line
as E = {OwnRead,OtherRead,OwnWrite,OtherWrite}. We next describe the generation of

69

events from memory requests.
A core first issues a ReadReq/WriteReq to a cache line with memory address A. If A is

available in the core’s private cache with appropriate access permissions, then it is a cache hit,
and the core completes the memory request. If A is not present in the core’s private cache with
the appropriate access permissions, the cache controller generates a coherence message based on
the memory request. The cache controller communicates the coherence message on the shared
snooping bus in the core’s allocated slot. The core that generated the ReadReq/WriteReq ob-
serves the coherence message for its request as an OwnRead/OwnWrite event, and other cores
observe the same coherence message as OtherRead/OtherWrite events. Cores change the co-
herence state of their cached copies of A based on the observed event and the current coherence
state of A in their private caches. Hence, the state transitions in a cache coherence protocol
map the current coherence state and observed event to a new coherence state, and defined as the
function T : S× E→ S.

Multi-core coherence views

The latency analysis in Section 4.7 requires information of the coherence states of the cache
line across all cores in the multi-core platform. This is because, the latency of a core’s memory
request to a cache line is dependent on the coherence states of the cache line in other cores, and
the state changes due to memory activity on the cache line [74]. However, the above modeling
of coherence states and transitions between coherence states is restricted to a single core. For
example, consider the state transition from I to S on a write request in the PMSI protocol. The
latency to complete this transition is dependent on whether or not another core has the same
cache line in M state, and such information is unavailable from the I to S state transition. To
this end, we present multi-core coherence views that capture the coherence states of a cache line
across all cores in the multi-core platform, and changes to the coherence states of the cache line
across all cores due to memory activity on the cache line. There are three main components of
a multi-core coherence view: (1) state view (Definition 2), (2) event view (Definition 3), and (3)
transitioned state view (Definition 4).

Definition 2. A state view of A, svA = 〈sc0A , s
c1
A , ..., s

cN−1

A 〉, is an N -tuple composed of the coher-
ence states of A across all N cores in a multi-core platform where ∀i ∈ [0, N − 1], ci ∈ C and
sciA ∈ S.

Definition 3. An event view of A, evciA = 〈ec0A , e
c1
A , ..., e

cN−1

A 〉, is an N -tuple composed of events
observed by all N cores in a multi-core platform due to ci’s memory request to A where ∀i ∈

70

[0, N − 1], ci ∈ C, eciA ∈ E and eciA = h(ci, cj, op) as defined below:

h(ci, cj , op) =

OwnRead : if cj = ci ∧ op = ReadReq
OtherRead : if cj 6= ci ∧ op = ReadReq
OwnWrite : if cj = ci ∧ op = WriteReq
OtherWrite : if cj 6= ci ∧ op = WriteReq

(4.1)

op ∈ O is the memory request.

Definition 4. Let evciA = 〈ec0A , e
c1
A , ..., e

cN−1

A 〉 be an event view caused by ci’s memory request to
A, and svA = 〈sc0A , s

c1
A , ..., s

cN−1

A 〉 be the state view of cache line A prior to ci’s request to A. A
transitioned state view of A, tvA = 〈s′c0A , s′

c1
A , ..., s′

cN−1

A 〉, where s′ciA = T(sciA , e
ci
A), ∀ci ∈ C is the

transitioned coherence state obtained from applying the transition function T on event eciA and
state sciA .

The transitioned state view describes the final coherence states of a cache line across all cores
due to a core’s memory request on the cache line. This view captures the state changes of the
core that made the memory request and the state changes of other cores that observed the remote
memory request. Note that the state views are specific to a cache coherence protocol as their
compositions are dependent on the coherence states and transitions defined in the protocol state
machine. For the rest of the paper, we use the shorthand representation (svA, ev

ci
A) tvA to

denote the following: a memory request to A by ci ∈ C, which results in an event view eciA , on
state view svA transitions to a new transitioned state view tvA.
Illustrative example using PMSI protocol. The three states of the PMSI protocol are: (1)
Modified (M), (2) Shared (S), and (3) Invalid (I). A cache line in I state denotes unavailability
of data. Hence, the I state has invalid access permissions, clean data state, and passive data
authority. A core that has a cache line in S state has read only access permissions, and the core
has not modified the cache line contents. The S state in PMSI has read access permissions,
clean data state, and passive data authority. A core that has a cache line in M state has read and
write access permissions, and the core has modified the cache line contents. As a result, a core
that has a cache line in M state must respond to a remote request to the same cache line with the
updated data contents. The M state in PMSI has write access permissions, dirty data state, and
active data authority.

Consider a scenario where c0 has A in the M state, c1 does not have A (I state), and c1 issues
a write request to A. Based on the transitions in PMSI protocol, c0 transitions from M to I state
on observing a remote write request, and c1 changes the coherence state of A from I to M on
receiving the requested data. Since M has active data authority, c0 sends the requested data to
c1. For this scenario, (svA, ev

c1
A) tvA, svA = 〈M,I〉, evc1A = 〈OtherWrite,OwnWrite〉, and

tvA = 〈I,M〉. Consider an alternate scenario where c1 has A in M state, c0 does not have A
(I state), and c0 issues a read request to A. Based on the transitions in the PMSI protocol, c1

71

Table 4.1: 2-core (svA, ev
cua
A) tvA for PMSI protocol.

svA evA tvA
〈I,I〉 〈OwnRead,OtherRead〉 〈S,I〉
〈I,I〉 〈OwnWrite,OtherWrite〉 〈M,I〉
〈S,S〉 〈OtherWrite,OwnWrite〉 〈I,M〉
〈S,S〉 〈OwnRead,OtherRead〉 〈S,S〉
〈M,I〉 〈OtherWrite,OwnWrite〉 〈I,M〉
〈M,I〉 〈OwnWrite,OtherWrite〉 〈M,I〉
〈I,S〉 〈OwnRead,OtherRead〉 〈S,S〉
〈I,S〉 〈OtherRead,OwnRead〉 〈I,S〉

transitions from M to S state on observing a remote read request, and c0 changes the coherence
state of A from I to S on receiving the requested data. For this scenario, (svA, ev

c1
A) tvA,

svA = 〈I,M〉, evc1A = 〈OwnRead,OtherRead〉, and tvA = 〈S,S〉. Table 4.1 enumerates all
possible unique (svA, ev

cua
A) tvA for the PMSI protocol for a 2-core system.

Operations on state views

We define operations that transform the state views in (svA, ev
ci
A) tvA to numeric values. In

Section 4.7, we use these operations to derive conditional expressions that identify the protocol
state machine properties that impact the resulting WCAL bound of a memory request under the
protocol. Definitions 5 and 6 define value functions for different components of the coherence
state, Definition 7 defines a general weight operation for a state view, and Definition 8 captures
the change in coherence states between an initial state view and a transitioned state view.

Definition 5. DSV (sciA), is the data state value of a coherence state, where DSV : S → {0, 1}
is defined as

DSV (sciA) =

{
1 : dsciA = dirty
0 : dsciA = clean (4.2)

Definition 6. DAV (sciA), is the data authority value of a coherence state, where DAV : S →
{0, 1} is defined as

DAV (sciA) =

{
1 : daciA = active
0 : daciA = passive (4.3)

Definition 7. The f -weight of a state view svA, Σ(svA, f), is the sum of f -value of coherence
states in svA.

Σ(svA, f) = ΣN−1
i=0 f(sciA) (4.4)

f can be one of the two value functions defined in Definitions 5-6. Hence, the data state weight
and data authority weight of svA are Σ(svA, DSV), and Σ(svA, DAV), respectively.

72

Definition 8. ∆(svA, tvA, f) is the change in f -weight of state views for A when (svA, ev
ci
A)

tvA.
∆(svA, tvA, f) = Σ(tvA, f)− Σ(svA, f) (4.5)

Σ(tvA, f) and Σ(svA, f) are state view f -weights (Definition 7) of tvA and svA respectively,
and f can be one of the two value functions defined in Definitions 5 and 6. Hence, the change in
data state weight and change in data authority weight for cache line A are:

∆(svA, tvA, DSV) = Σ(tvA, DSV)− Σ(svA, DSV) (4.6)

∆(svA, tvA, DAV) = Σ(tvA, DAV)− Σ(svA, DAV) (4.7)

4.6.2 Design principles of cache coherence protocols
Write-backs to shared memory and coherence message broadcasts are examples of shared bus
actions executed by a core. A cache coherence protocol that causes a core to execute nonessential
shared bus actions unnecessarily increases the latency of a core’s memory request and compli-
cates the cache coherence protocol design. We define four design principles that eliminate such
nonessential shared bus actions in predictable cache coherence protocols. We use P to denote
the set of predictable cache coherence protocols that follow these four design principles. The
analysis in the following section holds for all predictable cache coherence protocols in P. The
PMSI and PMESI protocols described in Chapter 3, Section 3.6 are members of P.

Property 1. A core does not execute shared bus actions for a cache line if the data state and
data authority of the cache line in the core’s private cache do not change on own or other cores’
memory requests to the cache line.

A core’s memory request to a cache line that is a cache hit does not change the coherence
state of the cache line. This is because the cache line in the core’s private cache has the appropri-
ate coherence state (access permissions, data state, and data authority) to complete the memory
request. Hence, the core does not require communication with other cores or the shared memory
to complete the memory request, and as a result, shared bus actions are unnecessary. For ex-
ample, in the PMSI and PMESI protocols, (S,OwnRead/OtherRead) → S does not generate
shared bus actions.

Property 2. Shared bus actions are not executed by a core on observing another core’s memory
request to a cache line if the data state and authority weights of the cache line across all cores
before and after the memory request are equal.

73

Equal data state and authority weights of a cache line before and after a memory request to
the cache line means that the overall data authority and data state of the cache line across all
cores remain unchanged. As a result, a core’s shared bus actions in response to another core’s
memory request on a cache line in this scenario do not convey any new information about the
data state and data authority of the cache line and hence, unnecessary. In the PMSI and PMESI
protocols, the transition (M,OtherWrite) → I does not generate shared bus actions as the core
performing OwnWrite exercises the transition (I,OwnWrite)→ M. Notice that before and after
the memory request, only one core has the cache line in M state. Hence, shared bus actions by
a core other than the requesting core are unnecessary as the cache line remains in the M state
across all cores before and after the memory request.

Property 3. A core does not change the data state or data authority of a cache line in its private
cache from dirty to clean and active to passive respectively on its own memory request to the
cache line.

The rationale behind this property is that a core that has a cache line in dirty data state or
active data authority means that the core has a valid version of the cache line in its private cache.
This means that a core can complete its own memory request to this cache line with no changes
to the data state or data authority. Therefore, shared bus actions associated due to changing
data state from dirty to clean or data authority from active to passive are eliminated. In the
PMSI and PMESI protocols, the following transitions are disallowed: (M,OwnRead) → S,
(E,OwnRead)→ S.

Property 4. A core does not change the data authority of a cache line in its private cache from
passive to active on observing another core’s request to the same cache line.

Recall from Section 4.6.1 that multiple cores can have a cache line with passive data au-
thority. Allowing cores to change their data authority from passive to active would result in
multiple cores executing shared bus actions to change their data state and data authority. These
need to be resolved such that only one core has the cache line with active data authority, which
unnecessarily complicates the protocol design. Hence, such changes to the data authority are
disallowed, which eliminates the associated shared bus actions.

4.7 Worst-case Asymptotic Latency Analysis (WCAL)
In this work, we perform an asymptotic analysis that captures the growth behavior of memory
request latency under a predictable cache coherence protocol with the number of cores (N). The
function for the asymptotic analysis is a core’s memory request latency under a predictable cache

74

coherence protocol. The asymptotic latency analysis abstracts away certain detailed features
required to perform a precise latency analysis such as details regarding the arbitration schedule.

The best-case asymptotic latency of a core’s memory request under a predictable cache co-
herence protocol is when it is a cache hit. Since a cache hit does not generate any coherence
messages and does not require shared bus accesses, the best-case asymptotic latency is indepen-
dent of the number of cores. On the other hand, the worst-case asymptotic latency (WCAL) of
a core’s memory request under a predictable cache coherence protocol is when the request is not
available in the core’s private cache (cache miss) and this request incurs timing interference due
to simultaneous memory activity from other cores. Bridging the WCL gap requires understand-
ing how the WCL of memory request grows with the number of cores and the design features of
predictable cache coherence protocols that cause such growth. The WCAL analysis presented in
this section concisely captures this understanding. The following lemmas and proofs derive the
WCAL of a core’s memory request under a predictable cache coherence protocol. We use the
Big-O notation (O) to denote the WCAL of a core’s memory request.
Main result and proof overview. Our main result (Theorem 3) exposes the necessary and
sufficient design properties of p ∈ P that render the WCAL of a memory request under p to
grow quadratically with the number of cores (O(N2)). cua ∈ C denotes the core under analysis.
Lemma 8 establishes the design properties of p that cause a core ci ∈ C\{cua} to execute shared
bus actions in response to cua’s memory request. Lemma 9 uses the result of Lemma 8 to prove
that ci’s shared bus responses must complete before cua can receive its requested data. Theorem
3 proves that the WCAL of memory request under p ∈ P that satisfies Lemma 9 is O(N2).

Definition 9. When (svA, ev
cua
A) tvA, α(svA, tvA) is a boolean expression computed as(

(∆(svA, tvA, DSV) < 0) ∧ (DSV (s′cua

A) = DSV (scua

A))
)
∨(

(∆(svA, tvA, DAV) < 0) ∧ (DAV (s′cua

A) = DAV (scua

A))
) (4.8)

Lemma 8. When (svA, ev
cua
A) tvA, ∃ ci ∈ C \ {cua} that executes shared bus actions in

response to cua’s memory request to A ⇐⇒ α(svA, tvA) evaluates to true.

Direct Proof. Proof for =⇒. When (svA, ev
cua
A) tvA, let ∃ ci ∈ C \ {cua} that executes

shared bus actions in response to cua’s memory request to A. Since cua and ci execute shared bus
actions, the data state and data authority of A in cua and ci changes (Property 1). We consider
four cases based on the changes in data state and data authority weights (Definition 8) when
(svA, ev

cua
A) tvA. We prove that ci executes shared bus actions in cases 1, 2 and 3. For case

4, we arrive at a contradiction based on the properties defined in Section 4.6.2, and therefore, ci
does not execute shared bus actions.

1. ∆(svA, tvA, DSV) < 0

75

2. ∆(svA, tvA, DAV) < 0

3. ∆(svA, tvA, DAV) < 0 ∧∆(svA, tvA, DAV) < 0

4. ∆(svA, tvA, DSV) ≥ 0 ∧∆(svA, tvA, DAV) ≥ 0

Case 1. In this case, Σ(svA, DSV) > 0 before cua’s memory request and Σ(svA, DSV) = 0
after cua’s memory request. As a result, ∃cj ∈ C that had A with dirty data state before cua’s
memory request and changed its data state to clean after cua’s memory request. Since Property
3 disallows a core to change its data state from dirty to clean on its own memory request,
cj 6= cua. Hence, cj = ci. Furthermore, since multiple cores cannot have a cache line with
dirty data state at the same time, the data state of cua must be clean before and after its memory
operation. Hence, ci executes shared bus actions in response to cua’s memory request to A when
∆(svA, tvA, DSV) < 0) ∧ (DSV (s′cuaA) = DSV (scuaA)) evaluates to true.
Case 2. Following the approach of case 1 and applying Propery 3, ci changes the data authority
of A in its private cache from active to passive on observing cua’s memory request. Hence, ci
executes shared bus actions in response to cua’s memory request to A when ∆(svA, tvA, DAV) <
0) ∧ (DAV (s′cuaA) = DAV (scuaA)) evaluates to true.
Case 3. This case combines cases 1 and 2; hence, ci executes shared bus actions in response to
cua’s memory request.
Case 4. There are four sub-cases:
Case 4.1: ∆(svA, tvA, DSV) = 0 ∧∆(svA, tvA, DAV) = 0 Under an efficient predictable cache
coherence protocol, Property 2 states that shared bus actions are unnecessary when ∆(svA, tvA, DSV) =
0 and ∆(svA, tvA, DAV) = 0. Hence, we reach a contradiction, and therefore, ci does not exe-
cute shared bus actions in this case.
Case 4.2: ∆(svA, tvA, DSV) > 0 ∧∆(svA, tvA, DAV) > 0 When ∆(svA, tvA, DSV) > 0,
Σ(svA, DSV) = 0 before the memory request and Σ(tvA, DSV) > 0 after the memory request.
This means that the data state of A across all cores and shared memory was clean before cua’s
memory request, and ∃ cj ∈ C updated A and changed its data state of A from clean to dirty.
Now, cj 6= ci as a core cannot change its data state to dirty on observing another core’s request;
a core changes the data state of a cache line to dirty due to data content modifications caused by
an own memory operation. Hence, cj = cua. This means that the other cores (C \ {cua}), which
includes ci, do not change their data states of A.

Similarly, other cores in C \ {cua}, which includes ci, do not change their data authority
of A when ∆(svA, tvA, DAV) > 0; Property 4 disallows a core to change their data author-
ity from passive to active on observing a remote memory request. Notice that in both cases
(∆(svA, tvA, DSV) > 0 and ∆(svA, tvA, DAV) > 0), ci does not change data authority and data
state of A in its private cache. Hence, from Property 1, ci does not execute shared bus actions
when ∆(svA, tvA, DSV) > 0 and ∆(svA, tvA, DAV) > 0.

76

c0 c1 c2 c3 c0 c1 c2 c3
c0
c1
c2

0 1 2 3 4 5 6 7

c3

c0 c1 c2 c3 c0 c1 c2 c3
8 9 10 11 12 13 14 15

A
B

C

A B C

A B C

B C

B C D E

PRB at end of slot 2

PRB at end of slot 3

PRB at end of slot 5

D

F

E

No space in PRB to record F

D

Figure 4.4: Visual aid for Lemma 9.

Case 4.3: ∆(svA, tvA, DSV) = 0 ∧∆(svA, tvA, DAV) > 0 and
Case 4.4: ∆(svA, tvA, DAV) = 0 ∧∆(svA, tvA, DSV) > 0 The proofs for these cases follows
from cases 4.1 and 4.2, and hence, ci cannot execute shared bus actions.
Proof for⇐=. When (svA, ev

cua
A) tvA, let α(svA, tvA) evaluate to true. For (∆(svA, tvA, DSV) <

0)∧(DSV (s′cuaA) = DSV (scuaA)) to be true, cua’s data state must not change when (svA, ev
cua
A)

tvA, and Σ(svA, DSV) > 0, Σ(tvA, DSV) = 0. The scenario that satisfies this is when
∃ ci ∈ C \ {cua} that has A in dirty data state in svA, and the memory request from cua causes
all cores to have A in clean data state. Hence, ci must write-back the data of A to shared memory
in response to cua’s memory request, which is a shared bus action.

For (∆(svA, tvA, DAV) < 0) ∧ (DAV (s′cuaA) = DAV (scuaA)) to be true, cua’s data authority
must not change when (svA, ev

cua
A) tvA, and Σ(svA, DAV) > 0 and Σ(svA, DAV) = 0. The

scenario that satisfies this is when ∃ ci ∈ C\{cua} that has A in active data authority in svA, and
cua’s memory request to A causes ci to change its data authority to passive. When ci changes its
data authority of A from active to passive, the shared memory is the data source of A. Hence,
ci must communicate coherence messages to inform the shared memory of this change in data
authority.

The key takeaway from Lemma 8 is that a negative change to the overall data state or data
authority of a cache line across all cores on a core’s (cua) memory request causes another core
(ci ∈ C \ {cua}) to respond with shared bus accesses.

Lemma 9. When (svA, ev
cua
A) tvA, if α(svA, tvA) evaluates to true, then cua must wait for

shared bus actions by ∀ci ∈ C \ {cua}, which are in response to its memory request, to complete
before it can receive A.

Proof by Contradiction. We show that there exists a scenario where allowing ci to complete
shared bus actions after cua’s memory request results in ci’s pending response buffer to overflow

77

(record more than N responses). We consider two cases and use Figure 4.4 as a visual aid for
the first case.

Case 1: N > 2. Let cua receive the most up-to-date data contents of A in the same time slot
when it made the request. ci performs shared bus actions due to changes in either its data state
or data authority of A in response to cua’s memory request. These shared bus actions are inserted
into ci’s pending response buffer. In Figure 4.4, cua is c0 and ci is c3. c3 has modified versions of
A-F in its private cache. Hence, c3 inserts the write-back response for A in its pending response
buffer (PRB) on observing c0’s read request to A. ci cannot execute these shared bus actions in the
current time slot, which is allocated to cua, and must wait for its next allocated slots to complete
these actions. This is shown in Figure 4.4 where c3 executes the write-back for A in 3 . For an
arbitration scheme that allocates at least one slot to each core, the worst-case arbitration latency
isN time slots. This means that the worst-case arbitration latency scales linearly with core count
O(N). In the worst-case, the remaining cores (C \ {ci}) can make requests to different cache
lines other than A that ci has modified. This means that ci’s pending response buffer has N − 1
responses at the start of its allocated slot. In Figure 4.4, c3’s PRB has three write-back responses
in its PRB at the start of 3 (write-back responses to A, B, and C). Since other cores received
their requested data in the same slot when they made their requests, these cores can make new
requests in the next arbitration period. In the worst case, these cores make memory requests to
different cache lines also modified by ci. As a result, ci has to record 2× (N − 1) > N pending
responses before its next allocated slot. ci cannot record more than N write-back responses (due
to pending response buffer capacity), and hence, this scenario cannot happen. In Figure 4.4, c0-c2
make new requests to D, E, and F in 4 , 5 , and 6 that are modified by c3, and hence, c3 must
queue up the write-back responses to these cache lines in its PRB. However, c3’s PRB is full on
inserting the write-back for E and does not have enough entries for F.

Case 2: N = 2. For this case, consider an arbitration scheme that allocates multiple time
slots to one core (cua) and one time slot to another core (ci) such as a weighted TDM arbitration
scheme. Since ci can finish one write-back to shared memory in an arbitration period, this case
also renders the same situation as described in the previous case where ci’s pending response
buffer can overflow.

The key takeaway from Lemma 9 is that a core (cua) must wait for other cores (C \ {cua}) to
complete their shared bus accesses that are in response to its memory request before it can
receive the requested data and complete its request.

Theorem 3. For a predictable cache coherence protocol p ∈ P, if ∃ svA, tvA such that α(svA, tvA)
evaluates to true when (svA, ev

cua
A) tvA, then the WCAL of a memory request under p isO(N2).

Direct proof. Our proof consists of two parts. The first part establishes that in the worst-case,
N − 1 cores can have pending memory requests when cua communicates its memory request to

78

A. The second part establishes that cua must wait for the prior cores to complete their requests
before cua can receive data for A and complete its memory request.

From Section 4.5, the predictable arbitration policy deployed on the shared message bus
allocates at least one time slot to each core. In the worst-case, cores in C \ {cua} have allocated
slots before cua’s allocated slot. Hence, |C \ {cua}| = N − 1 cores can communicate memory
requests in their allocated slots before cua communicates its memory request to A. In the worst-
case, ∀ci ∈ C \ {cua}, (svXi

, evciXi
) tvXi

satisfies α(svXi
, tvXi

) (Lemma 8) where Xi is the
cache line requested by ci. As a result, for each ci ∈ C \ {cua}, ∃ cj ∈ C where ci 6= cj that
executes shared bus actions in response to ci’s memory request. From Lemma 9, ci must wait
for cj’s bus actions before it can complete its memory request. Hence, ∀ci ∈ C \ {cua} cannot
receive their data and complete their memory requests in the same slots that they communicated
their requests in. As a result, N − 1 cores can have pending requests when cua communicates its
memory request to A.

A core’s pending response buffer records at most N responses to distinct cache lines, and
processes the responses in the response buffer in FIFO order (Section 4.5). In the worst-case,
core ci’s pending response buffer of ci ∈ C \ {cua} has N − 1 responses where the last response
is for cua’s memory request. This scenario can happen when ∀ci ∈ C \ {cua}, Xi 6= A and
∀ci, cj ∈ C \ {cua} and ci 6= cj , Xi 6= Xj . As a result, ci responds to cua’s memory request after
executing N − 1 shared bus actions for the prior N − 1 memory requests.

Recall that the shared bus arbitration policy allocates each core a constant number of time
slots (Section 4.5), and the arbitration scales linearly with the number of cores O(N). Since ci
takes O(N) to execute a shared bus action, cua receives A after ci completes N − 1 bus actions,
which results in WCAL of a memory request to be (N − 1)×O(N) = O(N2).

The key takeaway from Theorem 3 is that the WCL of a memory request under a predictable
cache coherence protocol that exhibits at least one (svA, ev

cua
A) tvA that satisfies α(svA, tvA)

grows quadratically with the number of cores N .

4.7.1 Applying the formal model and analysis
We apply the presented formal model to derive the WCAL of a memory request under the PMESI
protocol described in Chapter 3 (Section 3.6). For a 2-core multi-core configuration, the set of
valid state views constructed based on the PMESI protocol is {〈I, I〉, 〈I,E〉, 〈I,M〉, 〈I,S〉, 〈E, I〉,
〈M, I〉, 〈S, I〉, 〈S,S〉}. The following (svA, ev

ci
A) tvA in PMESI protocol satisfy α(svA, tvA):

(〈E, I〉, 〈OtherRead,OwnRead〉) 〈S,S〉 and (〈M, I〉, 〈OtherRead,OwnRead〉) 〈S,S〉.
Consider (〈E, I〉, 〈OtherRead,OwnRead〉) 〈S,S〉. Since E has dirty data state and I has
clean data state, Σ(svA, DSV) = 1+0 = 1. Σ(tvA, DSV) = 0+0 = 0 as S has clean data state.
Hence, ∆(svA, tvA, DSV) = 0− 1 = −1, which is < 0. Furthermore, since the core generating

79

the OwnRead moves from I to S state, DSV (s′cuaA) = DSV (scuaA). Since there exists at least
one svA and tvA in PMESI protocol that satisfies α(svA, tvA), from Theorem 3, the WCAL of a
memory request under PMESI grows quadratically with N (O(N2)).

In the following section, we describe one technique of tightening the WCL of a memory
request under a predictable cache coherence protocol. This technique uses protocol changes to
eliminate all (svA, ev

cua
A) tvA in the cache coherence protocol that satisfy α(svA, tvA). These

protocol changes target the offending transitions, which we define in Definition 10.

Definition 10. For a (svA, ev
cua
A) tvA that satisfies α(svA, tvA), the state transitions constitut-

ing (svA, ev
cua
A) tvA are defined as offending transitions.

4.8 Tightening WCL bounds
In Section 4.4, we described protocol changes to the PMSI protocol to tighten its WCL, which re-
sulted in the PMI protocol. These changes targeted the offending transitions (M,OtherRead)→
S and (I,OwnRead)→ S in the PMSI protocol. However, despite the improvements to WCAL
under PMI compared to that under the PMSI protocol (O(N) vs O(N2)), the PMI protocol is
an inferior data communication choice due to its significant performance slowdown. In order to
design predictable cache coherence mechanisms that have tight WCAL (O(N) WCAL) while
maintaining their average-case performance benefits, we need to rethink our identification of of-
fending transitions. In the following paragraphs, we show that exposing events related to data
communication on state transitions can refine the identification of offending transitions.

We revisit the PMSI protocol in Figure 4.5 to highlight our approach to identifying offend-
ing transitions using data communication events. The PMSI protocol in Figure 4.5a shows the
following additional information related to data communication between cores and shared mem-
ory: (1) transient states T that denote waiting for data responses, and (2) events on transitions
related to data communication. There are four types of events related to data communication:
(1) send data to requesting core (SDC), (2) send data to shared memory (SDM) 1, (3) receive
data from another core (RDC), and (4) receive data from shared memory (RDM). Note that this
additional information regarding data communication events is extracted from our formal model.
The data authority encoding in coherence states and the result of Lemma 8 identify the type of
data communication events on transitions.

We make two observations from Figure 4.5a. First, in PMSI, a transition triggered on Own-
Read or OwnWrite reaches the same destination state irrespective of the source of data. For
example, a core that does not have a cache line and generates an OwnRead moves to S state
irrespective of whether it receives the requested data from another core or from the shared mem-

1SDM is same as write-back to shared memory

80

M SIOwnWrite,
OwnRead

OwnWrite

OtherRead/SDM,	SDC

OwnWrite

OtherWrite/SDC OtherWrite

OwnRead OwnRead,
OtherRead

T

RDM

RDC
T

RDM

RDC
OtherRead,	OtherWrite

(a) PMSI protocol with data communication events.

M SIOwnWrite,
OwnRead

OwnWrite

OtherRead/SDC

OwnWrite

OtherWrite/SDC OtherWrite

OwnRead OwnRead,
OtherRead

T

RDM

RDC
T

RDM

RDC

(b) PMSI* protocol with O(N) WCAL.

T Transient state

Figure 4.5: Transforming PMSI protocol to PMSI* protocol with O(N) WCAL. Transitions
highlighted in red are offending transitions.

ory. Second, a core that has a cache line in M sends the data to the requesting core and performs
a write-back to shared memory only when the cache line in the requesting core transitions from
I to S on a OwnRead. In other words, (I,OwnRead) → S receives data from another core
(RDC) only if there exists another core that has the data in M state.

These two observations allow us to refine the conditions under which (I,OwnRead)→ S is
an offending transition: (I,OwnRead)→ S is an offending transition when it receives the cache
line from another core (RDC). Otherwise, (I,OwnRead)→ S is not an offending transition if it
receives data from the shared memory. The shared memory sends a cache line to the requesting
core if and only if there does not exist another core that has the same cache line in M state. Hence,
if a core receives the requested cache line from the shared memory, then no cores will perform
shared bus accesses in response to the requesting core’s request. As a result, the S state does not
increase the WCAL under this scenario, and can be retained.

Figure 4.5b shows the protocol changes to PMSI with this refinement regarding (I,OwnRead)→
S resulting in the PMSI* protocol. The transition (M,OtherRead)→ S is changed to (M,OtherRead)→
I, which is the same in PMI. However, only a portion of the (I,OwnRead)→ S is changed de-
pending on the data source. In contrast, the protocol changes in PMI replaced (I,OwnRead)→
S with (I,OwnRead) → M irrespective of the data source. In Figure 4.5b, cache line in tran-
sient state T , moves to M on receiving data from another core (RDC) or to S on receiving data
from shared memory (RDM). As a result, the PMSI* retains the S state, which allows some
scenarios where multiple cores can simultaneously have a cache line in their private caches. In
PMSI*, cores cannot simultaneously have a cache line in their private caches when one core has
a cache line in M state and observes a read request from another core. In Section 4.9, we show
that this loss in caching scenarios in PMSI* in at most 22% performance performance slowdown.
Theorem 4 proves that the WCAL of PMSI* is O(N).

Theorem 4. The WCL of a memory request under PMSI* is the same as that under the cache
bypassing mechanism.

Direct proof. In the cache bypassing mechanism, the worst-case instance is when the requested
cache line is in the shared memory. As a result, the requesting core must wait for its next allocated

81

Protocol Offending transitions Protocol changes

PMSI
(M,OtherRead)→ S (M,OtherRead)→ I
(I,OwnRead)→ S (I,OwnRead)→ M on RDC

(I,OwnRead)→ S on RDM

PMESI

(M,OtherRead)→ S (M,OtherRead)→ I
(E,OtherRead)→ S (E,OtherRead)→ I
(I,OwnRead)→ S (I,OwnRead)→ E on RDC

(I,OwnRead)→ S on RDM

Table 4.2: Protocol changes to PMSI and PMESI protocols.

time slot, which in the worst-case is the arbitration period. We show that PMSI* has the same
worst-case instance as the cache bypassing mechanism.

In the PMSI* protocol described in Figure 4.5b, a core receives the requested cache line either
from the shared memory (RDM) or from another core (RDC). A core receives the requested
cache line from the shared memory only when there does not exist another core that has the same
cache line in M state. Hence, there does not exist any cores that will respond with shared bus
accesses in response to the requesting core’s memory request. Therefore, the worst-case instance
when a core receives a cache line from the shared memory is the same as that of cache bypassing.
In the worst-case, the requesting core waits for its next allocated slot to broadcast its request, and
will receive the requested cache line in the same slot.

On the other hand, a core receives the requested cache line from another core that has the
cache line in M state. However, the transitions in PMSI* causes the core that has the cache line
in M state to transition to I state after sending the cache line data (SDC). Furthermore, a core
that receives the requested cache line from another core moves to M state. The corresponding
(svA, ev

cua
A) tvA in this scenario is (〈M, I, 〉, 〈OtherRead,OwnRead〉) 〈I,M〉. Apply-

ing the state view operations, ∆(svA, tvA, DAV) = 0 and ∆(svA, tvA, DSV) = 0. Hence,
α(svA, tvA) is false. Since no cores respond with shared bus accesses, the requesting core re-
ceives the cache line in the same slot it broadcasted its memory request.

Table 4.2 tabulates the offending transitions in the PMSI and PMESI protocols and sum-
marizes the corresponding changes to these transitions applied by our technique. Note that our
technique only makes changes to the protocol state machine at the private cache level; the proto-
col state machine at the shared memory is unchanged. The changes to the PMESI protocol are
similar to those described for the PMSI protocol. This highlights the generality of our technique
across different protocols, which is a consequence of our systematic approach. Tables 4.3 and
4.4 tabulate the complete PMSI* and PMESI* protocol state machines at the private cache level.
The protocol state machines at the shared memory remain the same as those described in Tables
3.3 and 3.4 in Chapter 3. Cells marked in red denote the protocol changes that tighten the WCL

82

as described in Table 4.2.
As described earlier, the protocol changes in PMSI* and PMESI* rely on point-to-point

data interconnects that allow for direct data communication between cores. As a result, a core
receives data either through the shared data bus or through the point-to-point data interconnects.
We assume that the shared data bus and point-to-point data interconnects have different ports into
a core’s cache memory. This makes the identification of the data source straightforward. A core’s
cache controller, which implements the coherence protocol, checks the data ports to determine
the transitions to exercise based on the data source (RDC, RDM).

83

Core events Bus events

St
at

es

R
ea

d

W
ri

te

R
ep

la
ce

m
en

t

O
w

nG
et

S

O
w

nG
et

M

O
w

nD
at

a

O
w

nP
ut

M

O
th

er
G

et
S

O
th

er
G

et
M

O
th

er
Pu

tM

I
Issue

GetS()/IS D
Issue

GetM()/IM D
— — —

S
Hit, Complete

read
Issue

Upg()/SM A
-/I — I

M
Hit, Complete

read
Hit, Complete

write
Issue

PutM()/MI A
Send data/I Send data/I

IS D

If shared
memory is

data source,
then

complete
read/S, else
complete

read/M

— -/IS DI —

IM D
Complete
write/M -/IM DI -/IM DI —

SM A
Hit, Complete

read/- Stall Complete
write/M

Reissue
write/I

MI A
Hit, Complete

read
Hit, Complete

write
Write-back

data/I
Send

data/II A
Send

data/II A

IM DI
Complete

write, Send
data/I

— — —

IS DI
Complete

read/I — — —

II A -/I — — —

Table 4.3: Private memory states for PMSI* protocol. issue msg/state means the core issues the message msg and
move to state state. A core issues a read/write request. Once the cache line is available, the core reads/writes it.
A replacement triggers a cache line eviction. Highlighted cells denote impossible scenarios, and cells marked with
‘—‘ denote no change in state.

84

Core events Bus events

St
at

es

R
ea

d

W
ri

te

R
ep

la
ce

m
en

t

O
w

nG
et

S

O
w

nG
et

M

O
w

nD
at

a

O
w

nP
ut

M

O
th

er
G

et
S

O
th

er
G

et
M

O
th

er
Pu

tM

I
Issue

GetS()/IS D
Issue

GetM()/IM D
— — —

S
Hit, Complete

read
Issue

Upg()/SM A
-/I — I

M
Hit, Complete

read
Hit, Complete

write
Issue

PutM()/MI A
Send data/I Send data/I

E
Hit, Complete

read
Complete
write/M

Issue
PutM()/EI A

Send data/I Send data/I

IS D

If shared
memory is

data source,
then

complete
read/S, else
complete

read/E

— -/IS DI —

IM D
Complete
write/M -/IM DI -/IM DI —

SM A
Hit, Complete

read/- Stall Complete
write/M

Reissue
write/I

MI A
Hit, Complete

read
Hit, Complete

write
Write-back

data/I
Send

data/II A
Send

data/II A

EI A
Hit, Complete

read
Complete

write/MI A
Write-back

data/I
Send

data/II A
Send

data/II A

IM DI
Complete

write, Send
data/I

— — —

IS DI
Complete

read/I — — —

II A -/I — — —

Table 4.4: Private memory states for PMESI* protocol. issue msg/state means the core issues the message msg and
move to state state. A core issues a read/write request. Once the cache line is available, the core reads/writes it.
A replacement triggers a cache line eviction. Highlighted cells denote impossible scenarios, and cells marked with
‘—‘ denote no change in state.

85

4.9 Evaluation
We prototype the original and transformed predictable cache coherence protocols on the gem5
micro-architectural simulator [17]. The original protocols are the PMSI, and PMESI protocols
and the new coherence protocols derived on applying our technique are PMSI*, and PMESI*.
Table 4.5 describes our simulated real-time multi-core platform. We configure the shared LLC
such that all accesses to the LLC are cache hits. We do this in order to focus on the impact of
maintaining cache coherence on the memory request latency. We also compare against the cache
bypassing mechanism [25, 61, 86].

Our evaluation uses synthetic workloads and the multi-threaded workloads in the SPLASH-2
benchmark suite [157]. The synthetic workloads stress different data communication patterns
between cores, and exercise the protocol transitions. The workloads in the SPLASH-2 bench-
mark suite are derived from domains such as scientific computation and graphics. We run all
SPLASH-2 workloads until completion, and check for data correctness using the in-built verifi-
cation routines. We verified the data correctness for all the predictable protocols evaluated in this
work.

4.9.1 Observed WCL
Table 4.6 shows the observed total WCL and analytical total WCL bounds for the cache bypass-
ing mechanism, and the predictable cache coherence protocols for synthetic workloads. Recall
that the synthetic workloads feature intensive data communication between cores, and hence,
frequently stress the worst-case scenarios. The observed WCL is the maximum memory re-
quest latency observed across all synthetic benchmarks for a core configuration. The analytical
bounds are computed based on the core count (N) and the TDM slot width S. The analytical
total WCL bound for cache bypassing, PMSI*, and PMESI* is computed as N × S + S cycles
(Theorem 4). The analytical total WCL bound for PMSI, and PMESI protocols is computed as
2NS × (N + 1) + S [74].
Observations. Table 4.6 shows the widening WCL gap with core count between cache bypassing
and existing predictable cache coherence protocols PMSI, and PMESI with core count. For 8-
core and 16-core, the WCL gap is 16× and 32× respectively. On the other hand, the PMSI*,
and PMESI* protocols have the same analytical WCL bounds as cache bypassing for different
core counts. Furthermore, the observed WCL under PMSI* and PMESI* protocol are within the
analytical WCL bounds.

86

Parameter Configuration

Multi-core platform
4-16 in-order cores, one outstanding memory request per core, 2GHz

operating frequency

Cache hierarchy
Private L1 split data and instruction caches, 32kB 4-way cache

associative, shared L2 cache (last level cache LLC), cache line size
64-bytes

Bus interconnect
Shared data and message bus interconnects between cores and LLC,
TDM arbitration policy, point-to-point data interconnects between

cores, one TDM slot per core, slot width = 50 cycles

Table 4.5: Simulation parameters.

Cores Cache bypassing PMSI PMESI PMSI* PMESI*
Bound Obs Bound Obs Bound Obs Bound Obs Bound Obs

4 250 250 2050 1599 2050 1019 250 250 250 250
8 450 450 7250 6384 7250 5964 450 450 450 450

16 850 850 27250 24770 27250 23999 850 850 850 850

Table 4.6: Observed WCL (Obs) and analytical WCL bounds (Bound) in cycles for 4-core, 8-
core, and 16-core configurations.

4.9.2 Average-case performance
Figure 4.6 shows the average execution time speedup of the different predictable cache coherence
protocols compared to the cache bypassing data communication mechanism across all SPLASH-
2 workloads. For the cache bypassing mechanism, we modified the SPLASH-2 applications
to mark memory regions communicated between cores, and disallowed caching of memory ad-
dresses in these memory regions. We normalize the average speedup across synthetic bench-
marks to the cache bypassing mechanism. Figures 4.7-4.8 empirically highlight the trade-off in
performance observed in PMSI* and PMESI* protocols due to the protocol changes. Figure 4.7
shows the performance slowdown of the PMSI* protocol compared to the PMSI protocol, and
Figure 4.8 shows the performance slowdown of the PMESI* protocol compared to the PMESI
protocol A performance slowdown greater than 1 means that the execution time under the new
protocol (PMSI*, PMESI*) is slower than the original protocol (PMSI, PMESI). For this evalu-
ation, we use a multi-core configuration with 8-cores. We also evaluated the performance on the
synthetic workloads, and observed similar performance trends.
Observations. From Figure 4.6, all coherence protocols including the new protocols offer sig-
nificant performance benefits (as high as 5× performance speedup, 65% average performance
speedup) over cache bypassing for the SPLASH-2 benchmarks. This is because the coherence
protocols does not place caching constraints on data. Even though the new protocols sacrifice

87

1.00

1.61 1.54 1.52
1.36

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Cache bypassing PMSI PMESI PMSI* PMESI*

Sp
ee

du
p

Figure 4.6: Average-case performance for SPLASH-2 workloads.

some performance opportunities compared to the original protocols, they still maintain between
36%-56% average performance speedup over cache bypassing while exhibiting the same WCL.
We use Figures 4.7-4.8 to explain the performance trends between the transformed and original
protocols for each SPLASH-2 benchmark.

From Figure 4.7, the PMSI* protocol trades-off minimal performance benefits (6% average
slowdown) for tighter WCL bounds compared to the PMSI protocol. The PMSI* protocol disal-
lows certain instances where multiple cores can have the same cache line in their private caches
simultaneously. In particular, cores cannot simultaneously have a cache line in their private
caches when one core has a cache line in M state and observes a read request from another core;
the core with cache line M invalidates and moves to I and the cache line in the requesting core
moves from I to M. Similarly, Figure 4.8 show that the PMESI* protocols trade-off minimal per-
formance benefits (13% average slowdown respectively) for tighter WCL bounds compared to
the PMESI protocol. Note that there are instances where PMSI* and PMESI* performance better
(slowdown less than 1) compared to the PMSI and PMESI protocols respectively. For example,
PMSI* and PMESI* exhibit 2%-3% performance improvement over the PMSI and PMESI pro-
tocols for the FFT benchmark. We attribute this to the reduced write-backs to shared memory
in PMSI* and PMESI* protocols, which reduces the contention on a core’s allocated time slots.
Shared Memory write-backs and demand requests from a core contents for the core’s allocated
slots. Hence, we observe some instances where reducing the shared memory write-backs (FFT,
Raytrace) improves performance. In summary, the technique described in Section 4.8 reduces
the WCL of predictable cache coherence mechanisms by 94% for a 8-core system while trading
off between 1%-6% average performance compared to existing coherence mechanisms.

4.10 Conclusion
In this work, we present a systematic approach to bridge the WCL gap between predictable
cache coherence mechanisms and alternative data communication mechanisms. Our approach

88

1 1 1 1 1 1 1 1 1 11.01 1.01 0.97
1.10 1.08 1.15

0.99

1.22

1.03 1.06

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes-Hut Cholesky FFT FMM LU Ocean Raytrace Radiosity Radix Geomean

Sl
ow
do
w
n

PMSI PMSI*

Figure 4.7: Slowdown of PMSI* on SPLASH-2.

1 1 1 1 1 1 1 1 11.
03

1.
02

0.
98

1.
23

1.
07 1.
20

1.
11

1.
66

1.
04

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Barnes-Hut Cholesky FFT FMM LU Ocean Raytrace Radiosity Radix

Sl
ow
do
w
n

PMESI PMESI*

Figure 4.8: Slowdown of PMESI* on SPLASH-2.

consists of a formal framework that identifies the key reasons behind the high WCL in existing
predictable cache coherence mechanisms. We describe one technique that tightens the WCL of
predictable cache coherence mechanisms while retaining their performance advantage over alter-
native data communication mechanisms such as cache bypassing. Our proposed technique uses
a combination of protocol changes and direct data communication through point-to-point data
interconnects. We design two new predictable cache coherence protocols, PMSI* and PMESI*,
using our proposed technique. Our evaluation shows that the WCL of a memory request under
the new protocols is the same as that under cache bypassing, and hence, tighter than the existing
PMSI and PMESI protocols. For a 8-core system, our proposed technique tightens the WCL of a
memory request under the new protocols by 94% and trades away 1%-6% performance average
performance compared to that under PMSI and PMESI protocols. Furthermore, the new proto-
cols maintain their performance advantage over the cache bypassing mechanism (65% average
performance speedup).

89

Chapter 5

Automatic Construction of Predictable and
High-Performance Cache Coherence
Protocols

Chapters 3 and 4 provided the tools that guide the design of predictable and high-performance
cache coherence mechanisms. Recall that a cache coherence protocol is a component of a cache
coherence mechanism and is implemented as a state machine that enforces the rules of coherent
data communication. In Chapter 3, we implemented some of the design invariants in the cache
coherence protocol resulting in the PMSI and PMESI cache coherence mechanisms and in Chap-
ter 4, we showed that the design of the cache coherence protocol can significantly influence the
performance and predictability guarantees. This makes the underlying cache coherence protocol
a vital component of a hardware cache coherence mechanism.

Designing predictable and high-performance cache coherence protocols is a complex de-
sign exercise as it requires accounting for several communication scenarios between cores on
a shared data. This is clear from the cache coherence protocol descriptions in Chapters 3
and 4. These coherence protocols have several t-states and transitions that are instrumen-
tal in achieving predictability and high-performance. To manage this design complexity, the
third research contribution presents a tool, SYNTHIA, that automates the construction of pre-
dictable and high-performance cache coherence protocols. SYNTHIA refines an input specifica-
tion of a cache coherence protocol that is devoid of any predictability and performance guarantees
and outputs a complete cache coherence protocol implementation that guarantees predictability
and performance.

90

5.1 Introduction
A hardware cache coherence protocol has a set of rules that ensures memory operations from
cores operate on up-to-date versions of the requested data. The coherence protocol is a state
machine with coherence states, and transitions between coherence states. Designing cache co-
herence protocols that deliver high-performance and that are correct is known to be challeng-
ing [107]. This is because the design process requires manually analyzing all possible interleav-
ings of memory operations from different cores to the same shared data, and then constructing
protocols that allow for these interleavings with little to no stalling of the memory operations.
Designing one that also guarantees worst-case latency bounds (often called predictability) fur-
ther exacerbates the challenge. This is because ensuring predictability while considering the
many scenarios of interleaving memory operations across different cores requires intricate anal-
yses of the hardware architecture and the protocol [74]. Missing one scenario can compromise
predictability or limit the achievable performance.

The increase in complexity in designing predictable and high-performance cache coherence
protocols comes in the form of additional states and transitions to the protocol [74,138]. For ex-
ample, the Modified-Shared-Invalid (MSI) protocol with no additional support for predictability
or high-performance has 3 states and 12 transitions. A predictable and high-performance variant
of the same protocol, however, has 15 states and 58 transitions [74]; a 5× increase in protocol
size (number of states and transitions). A protocol designer is more prone to miss some states
and transitions due to this dramatic increase in protocol complexity to achieve predictability and
high-performance, which in turn compromises on correctness.

To improve productivity and simplify the construction of correct, predictable, and high-
performance cache coherence protocols, we propose SYNTHIA, a tool that automates the co-
herence protocol construction. SYNTHIA takes as input a simple specification of a protocol that
is devoid of states and transitions to achieve predictability or high-performance. This allows
a protocol designer to focus on how a memory operation proceeds correctly without worrying
about interleaving memory operations on the same data and carrying out the memory opera-
tion in a predictable manner. SYNTHIA refines this simple input specification and produces a
predictable protocol implementation that achieves predictability and high-performance.

Our previous work described high level details about SYNTHIA’s mechanism and applied
SYNTHIA to three popular coherence protocols (MSI, MESI, and MOESI coherence protocols).
In this work, we elaborate SYNTHIA’s mechanism that constructs the protocol implementations
and describe the construction of a predictable variant of a currently implemented coherence pro-
tocol. We extend our previous work [75] in two ways. First, we expand on SYNTHIA’s mech-
anism that constructs the predictable and high-performance protocol implementation (Section
5.4). Our previous work [75] described the conditions under which new states and transitions
were constructed, and did not describe the type of states and transitions constructed. Second,

91

we use SYNTHIA to construct a predictable variant of the Modified-Exclusive-Shared-Invalid-
Forward (MESIF) protocol (Section 5.5), and evaluate the predictability and performance of
PMESIF protocol using the gem5 micro-architectural simulator [17]. Recent reverse-engineering
efforts by Sensfelder et al. [135] found that the NXP QorIQ multi-core platforms deployed the
MESIF cacheh coherence protocol. We describe in detail the construction of the PMESIF pro-
tocol by SYNTHIA and highlight key predictability and performance features of the PMESIF
protocol.

5.2 Main contributions
Our main contributions in this work are as follows:

• We present an approach to automatically construct predictable and high-performance snoop-
ing bus-based cache coherence protocols.

• We implement our approach in a tool called SYNTHIA. The input to SYNTHIA is a simple
protocol specified in a domain-specific language SYNTHIADSL only using stable states.
SYNTHIA uses the input protocol specification and carefully analyzes scenarios that re-
quire access to the shared bus including those that allow simultaneous interleaving mem-
ory operations on the same data. This analysis results in the construction of new states
and transitions that achieve predictability and high-performance. The key operation in
SYNTHIA is careful analysis of scenarios that require access to the shared bus, and al-
lowing simultaneous interleaving memory operations on the same data to proceed without
stalling.

• We evaluate SYNTHIA by generating predictable and high-performance protocol imple-
mentations for several common protocols such as the MSI, MESI, MOESI, and MESIF
coherence protocol [135,138]. On average, the complexity of the generated protocols have
an increase of 4.9× the number of states and transitions. We thoroughly validate their
correctness and ensure they are efficient using the gem5 micro-architectural simulator.
SYNTHIA is available at https://github.com/caesr-uwaterloo/Synthia.

5.3 Related works

5.3.1 Predictable hardware cache coherence
Predictable hardware cache coherence protocols ensure that there is a worst-case latency bound
on memory accesses across all cores [65, 67, 74, 77, 139]. These protocols are deployed on a

92

multi-core model that uses a shared snooping bus to communicate coherence messages between
cores and the shared memory, and a shared data bus between cores and the shared memory.
The shared snooping bus is a non-atomic split transaction bus [138]. The shared snooping bus
and data bus deploy a predictable arbitration policy to predictably manage simultaneous ac-
cesses from cores. Examples of predictable arbitration policies include time division multiplex-
ing (TDM) and round-robin (RR). These predictable arbitration policies divide access time to the
shared bus into fixed time slots, and allocates these time slots to cores. A core is granted exclusive
access to the bus at the start of its allocated slot. A core can only access the bus in its allocated
slot; a pending bus access from a core that arrives immediately after the start of its allocated slot
must wait for the start of its next allocated slot [74]. The memory hierarchy of the multi-core
consists of one level of split private data and instruction write-back caches, and a shared last level
cache memory. The private caches store a subset of data present in the shared memory. A core
can communicate data in its private cache with other cores through point-to-point interconnects.

Prior works on designing predictable cache coherence protocols [65, 74, 77] modified exist-
ing conventional cache coherence protocols to satisfy predictability. These works first exhaus-
tively analyzed different scenarios that can result in unpredictable scenarios. New t-states and
transitions were constructed to address these unpredictable scenarios while maintaining data cor-
rectness and most of the performance benefits in the conventional protocols. Depending on the
conventional protocol complexity, the analysis and the number of t-states and transitions to be
constructed for predictability can be high making it an error prone process. SYNTHIA relieves
this complexity burden by automating the analysis, and the construction of correct, predictable,
and high-performance coherence protocols. A protocol designer provides SYNTHIA a protocol
specification using only s-states and SYNTHIA automatically constructs a correct, predictable,
and high-performance coherence protocol with the appropriate t-states.

Recently, Hessien and Hassan [67] described a new predictable bus architecture for snooping
bus-based cache coherence mechanisms. A key feature of their work is that conventional cache
coherence protocols can be deployed on this bus architecture with no protocol modifications, and
the bus architecture guarantees predictable shared data communication between cores through
cache coherence. On the other hand, the cache coherence protocols constructed by SYNTHIA are
predictable through protocol changes and hardware structures in the cache controllers that work
in tandem with the protocol changes [74].

5.3.2 Cache coherence protocol synthesis
Oswald et al. [107] presented ProtoGen, an automated tool that constructed high-performance
directory-based cache coherence protocols. The input to ProtoGen was an atomic specification
of a directory cache coherence protocol specified using stable coherence states. ProtoGen re-
fined the input atomic specification by adding new transient states and transitions using domain

93

SynthiaDSL
description

Transient states and transitions
for shared bus accesses

(Section 5.2)

Transient states and transitions for
interleaving memory operations

(Section 5.3)

Transient states and transitions for
replacements and shared memory protocol

(Section 5.4)

Input Output
Private
cache

protocol

Shared
memory
protocol

Refinement

Figure 5.1: High level overview of SYNTHIA.

knowledge built into the tool. The output of ProtoGen was a non-stalling directory protocol
implementation. While SYNTHIA takes inspiration from ProtoGen, it differs from it in two
ways. First, SYNTHIA generates snooping bus-based coherence protocols, which have different
designs and construction mechanisms compared to directory based protocols [138]. This is be-
cause of differences in coherence message communication (broadcast vs unicast) and ordering
mechanisms (bus vs directory) [138]. This results in different protocol construction mechanisms.
Second, SYNTHIA constructs predictable high-performance coherence protocols whereas Proto-
Gen constructed coherence protocols that only optimize performance. As a result, protocols
generated with SYNTHIA can be used in real-time multi-cores. Furthermore, SYNTHIA is better
positioned than ProtoGen for multi-core platforms with lower core counts (between 4-16 cores)
where snooping-bus based protocols offer better average-case performance than directory-based
protocols [138]. Recently, Oswald et al. extended their ProtoGen work with HieraGen [108] that
constructed directory based protocols for multi-level cache hierarchies; ProtoGen constructed
directory based protocols for a 2-level cache hierarchy. SYNTHIA constructs predictable cache
coherence protocols for a 2-level cache hierarchy, and currently does not construct predictable
cache coherence protocols for multi-level cache hierarchies.

Alternate protocol synthesis tools such as Transit [149] and VerC3 [35] relied on program
synthesis that use a combination of designer provided guidance and model checking to complete
partial descriptions of an input protocol specification. A key feature of these tools was frequent
designer intervention to add information to the input specification for correct protocol construc-
tion [107]. We take an alternative approach by embedding domain knowledge about predictable
high-performance snooping bus-based protocols into SYNTHIA to automate the protocol con-
struction. On the other hand, Furthermore, SYNTHIA only requires a designer to provide a simple
input specification, and generates the corresponding correct, predictable, and high-performance
protocol implementation without further designer intervention.

5.4 SYNTHIA implementation
Figure 5.1 presents an overview of SYNTHIA. SYNTHIA takes as input a protocol specification
written in SYNTHIADSL (Section 5.4.1). The specification consists of s-states and transitions
between s-states at the private cache level. Note that SYNTHIA assumes the input specifica-
tion is correct, and does not perform any verification for correctness on the input. The input

94

Table 5.1: Description of routines used for protocol construction.
Routine Description
NEWTRANSIENTSTATE(x, y, z) Construct new transient state of the form xy z and sets state encoding of

xy z to be equal to x if pre-ordered t-state or y if post-ordered t-state.
NEWTRANSITION(x, y, e) Construct new transition from state x to state y triggered on event e.
t.SOURCE() Return the source state for transition t.
t.DESTINATION() Return the destination state for transition t.
t.EVENT() Return the triggering event for transition t.
t.SETDESTINATION(()d) Sets the destination state of transition t to d.
ISOWN(ev) Returns true if ev is an own event (OwnReadM, OwnRead, OwnWrite),

false otherwise.
ISINVALID(s) Returns true if access permissions of s is invalid, false otherwise.
ISDIRTY(s) Returns true if data state of s is dirty, false otherwise.
ISACTIVE(s) Returns true if data authority of s is active, false otherwise.
GETDST(s, ev) Returns the destination s-state on applying event ev on source s-state s.
OWNTRANSITIONS(ev) Returns the set of transitions triggered on other event ev. For example if ev

is OtherWrite, then routine returns transitions triggered on OwnWrite.
ISCUMULATIVECHANGE(t1, t2) Returns true if the cumulative data state or data authority across the source

states in t1 and t2 are different from the cumulative data state or data author-
ity across the destination states in t1 and t2, false otherwise.

is refined by creating new t-states and corresponding transitions, and results in a predictable
and high-performance protocol implementation. This refinement identifies two main scenarios
to construct t-states: (1) transitions that must wait for some communication on the shared bus
such as broadcast coherence messages or data communication with shared memory (Section
5.4.2), and (2) transitions that change due to interleaving memory operations on the same cache
line (Section 5.4.3). We explain the construction of transitions due to t-states using examples.
After refinement, SYNTHIA outputs the cache coherence protocol state machines at the private
cache level and shared memory. Table 5.1 describes the routines used in the protocol construction
algorithms presented in the following subsections.

5.4.1 Protocol specification in SYNTHIADSL
The input information about s-states and transitions is defined in a domain specific language,
SYNTHIADSL. There are two components in the input: (1) coherence state encoding of s-
states and (2) transitions between s-states. Figure 5.2 shows the MSI protocol specification
in SYNTHIADSL.
Coherence state encoding. Each s-state of a cache line specified in the input is a 3-tuple of
the form (ap, ds, da) where ap ∈ {invalid, read, write, exread} is the access permission, ds ∈
{clean, dirty} is the data state of the cache line, and da ∈ {active, passive} is the data authority
of the cache line. The access permission conveys the type of memory operation (read/write)

95

1 M : (write, dirty, active) 10 (S, OwnRead) -> S
2 S : (read, clean, passive) 11 (S, OtherRead) -> S

3 I : (invalid, clean, passive) 12 (S, OwnWrite) -> M
4 (I, OwnReadM) -> S 13 (S, OtherWrite) -> I
5 (I, OwnRead) -> S 14 (M, OwnReadM) -> M
6 (I, OtherRead) -> I 15 (M, OtherRead) -> S
7 (I, OwnWrite) -> M 16 (M, OtherWrite) -> I

8 (I, OtherWrite) -> I 17 (M, Replacement) -> I
9 (S, Replacement) -> I

Figure 5.2: MSI protocol specification in SYNTHIADSL.

permitted on the cache line by a core. A core that does not have a cache line in its private cache
has invalid access permissions. read denotes that a core can read the cache line data contents,
and write denotes that a core can read and write the cache line data contents. Under the single-
writer-multiple-reader (SWMR) invariant [138], at any instance of time only one core can have
a cache line with write access permissions or multiple cores can have the cache line with read
access permissions. exread denotes that a core can read the cache line data contents, and is the
only core (exclusive) that has the cache line. The data state of a cache line conveys whether a
core has modified the data contents of the cache line. A dirty data state means that a core may
have modified the data contents, and clean data state means that the core has not modified the
data contents. The data authority of a cache line conveys whether a core can communicate the
cache line data contents to another core that requests for the same cache line via the point-to-
point data interconnects. An active data authority means that a core can send the cache line
data contents in its private cache to the requesting core and passive data authority means the
core does not respond with data to another core’s request. Lines 1-3 show the coherence state
encoding for the M, S, and I states. For the MESI and MOESI protocols, the state encoding of E
and O states are (exread, dirty, active) and (read, dirty, active) respectively. A key benefit of
this state encoding is that protocols with states different from those found in the common MSI,
MESI, and MOESI protocols can also be modeled in SYNTHIADSL. In Section 5.5, we show the
construction of the predictable Modified-Exclusive-Shared-Invalid-Forward coherence protocol
(PMESIF); MESIF protocol is deployed in NXP QorIQ multi-core processors [135].
Transitions. (src,ev)→dst is a transition where src is the source s-state, dst is the desti-
nation s-state, and ev ∈ {OwnReadM,OwnRead,OwnWrite,OtherRead,OtherWrite,
Replacement} is the event that triggers the transition. OwnReadM event denotes a core’s

96

own read request issued to a cache line, and the core receives the data response from the shared
memory. OwnRead event denotes a core’s own read request issued to a cache line, and the core
receives the data response from its cache (cache hit) or from another core respectively. Own-
Write event denotes a core’s own write request issued to a cache line, and the core receives the
data response from the shared memory or its own cache (cache hit) or another core. Other-
Read and OtherWrite events denote other cores’ read and write requests to a cache line ordered
on the bus. Replacement denotes a cache line replacement. Lines 4-17 in Figure 5.2 define
the state transitions in the MSI protocol. For example, consider (I,OwnReadM) → S. This
means that a core performs a read operation on a cache line that it does not have in its private
cache (I). On receiving the requested cache line data from the shared memory, the core tran-
sitions the cache line to S state. We use OwnWR (OtherWR) to denote a transition triggered
on either OwnRead or OwnWrite (OtherRead or OtherWrite). Note that the MSI protocol
has the same source and destination states for OwnReadM and OwnReadC events (I and S
states). The MESIF protocol described in Section 5.5 has different destination states for Own-
ReadM and OwnReadC events.

Notice that the input SYNTHIADSL specification does not have (1) transitions triggered when
a core observes its own memory operation, (2) transitions triggered when a core receives the re-
quested data, and (3) actions that a core executes as a consequence of a transition such as sending
data to another core (SD), and write-back data to shared memory (WD). These information are
added by SYNTHIA during protocol construction. SYNTHIA automatically adds transitions trig-
gered when a core’s own memory operation is ordered on the snooping bus (Ordered) and on
receiving the requested data (RD), and the appropriate actions based on the data state and data
authority of the states involved in the transition.

The state encoding used in SYNTHIA is the same as that presented in Section 4.6 in Chapter
4. As a result, SYNTHIA also automates the analysis presented in Section 4.7 in Chapter 4, and
computes the WCAL of the input cache coherence protocol specification. SYNTHIA identifies
the offending transitions that results in the WCAL of a memory request under the input cache
coherence protocol to be O(N2) where N is the number of cores.

5.4.2 Constructing t-states and transitions due to shared bus communi-
cation

Key idea. Recall that the shared bus for predictable cache coherence protocols uses a predictable
arbitration policy that allocates each core a fixed time slot to exclusively access the bus [74].
This means that a core must wait for its allocated time slot to communicate on the shared bus.
These protocols use t-states to denote that a core has pending shared bus communication and
is waiting for its allocated time slot [74]. Hence, SYNTHIA analyzes each transition in the input

97

Algorithm 1 t-states for shared bus communication
1: procedure ISTSNEEDEDBUSCOMM(t)
2: src = t.SOURCE(), dst = t.DESTINATION(), ev = t.EVENT()
3: if ISOWN(ev) then
4: if src == dst then return false
5: else if ISINVALID(src) then return true
6: else if ISCLEAN(src) ∧ ev == OwnWrite then return true
7: else if ISDIRTY(src) ∨ ISACTIVE(src) then
8: tList = OWNTRANSITIONS(ev)
9: for all ot ∈ tList do

10: if ISCUMULATIVECHANGE(ot, t) 6= 0 then return true
return false

specification, and identifies whether a transition must communicate coherence messages or data
on the shared bus.
Mechanism. Algorithm 1 describes the conditions under which SYNTHIA constructs t-states and
transitions for shared bus communication and Algorithm 2 describes the construction of t-states and
transitions for shared bus communication. Algorithm 1 is used in Algorithm 3 in Section 5.4.3.
The input to Algorithm 2 is a transition t, and it is applied to each transition in the input SYN-
THIADSL specification. This algorithm exploits two key insights. First, for transitions triggered
on own memory operations (line 3), t-states are required only when (a) src has invalid access
permissions and src 6= dst (lines 6-11) or (b) src has clean data state and the operation
is OwnWrite (lines 12-15). Second, for transitions triggered on other memory operations, t-
states are required depending on the overall state of the cache line before and after the memory
operation across all cores (lines 16-28). New transitions are required for cases that introduce
new t-states. Using Figure 5.3 as an illustrative example, we explain this implementation.
Consider insight (1). If src has invalid access permissions (ISINVALID returns true), then
src does not have the cache line data contents to complete its own memory operation (lines
6-11). Hence, such transitions require t-states that wait for both the broadcast of coherence
message regarding the memory operation to be ordered on the bus and the requested data con-
tents. Lines 7 and 8 construct AD and D t-states, and lines 9-11 constructs the transitions due
to these new t-states. In Figure 5.3, (I,OwnRead) → S has t-states IS AD and IS D where
IS ADwaits for the coherence message broadcast to be ordered and IS Dwaits for the requested
data. The original transition (I,OwnRead) → S is changed to (I,OwnRead) → IS AD,
(IS AD,Ordered) → IS D, and (IS D,RD) → S. For transitions (src,OwnWrite) → dst
where src has clean data state, SYNTHIA also constructs AD and D states. Note that although
src has the cache line data contents to complete its OwnWrite operation, receiving the cache
line data contents before completing the OwnWrite operation in such a scenario simplifies the
protocol design when taking into account interleaving memory operations from other cores to

98

Algorithm 2 Construction of t-states and transitions due to shared bus communication
1: procedure CONSTRUCTTSANDTRANSITIONSFORBUSCOMM(t)
2: src = t.SOURCE(), dst = t.DESTINATION(), ev = t.EVENT()
3: if ISOWN(ev) then
4: if ISINVALID(src) ∨ (ISCLEAN(src) ∧ ev == OwnWrite) then
5: s1 = NEWTRANSIENTSTATE(src, dst, AD)
6: s2 = NEWTRANSIENTSTATE(src, dst, D)
7: t.SETDESTINATION(s1)
8: t1 = NEWTRANSITION(s1, s2,Ordered)
9: t2 = NEWTRANSITION(s2, dst,RD)

10: else if ISDIRTY(src) ∨ ISACTIVE(src) then
11: tList = OWNTRANSITIONS(ev)
12: for all ot ∈ tList do
13: if ISCUMULATIVECHANGE(ot, t) 6= 0 then
14: s1 = NEWTRANSIENTSTATE(src, dst, A)
15: t.SETDESTINATION(s1)
16: t1 = NEWTRANSITION(s1, dst,Ordered)

the same cache line [138].
Consider insight (2). Unlike the previous case, determining whether (src,Other) → dst re-
quires t-states by solely looking at the properties of src and dst can introduce unneces-
sary t-states. Unnecessary t-states introduces unnecessary bus communication, which in turn
causes unnecessary delays to the memory operation. As an example, consider the transitions
(M,OtherRead)→ S and (M,OtherWrite)→ I. Although both I and S have same data author-
ity and data state, (M,OtherWrite)→ I does not require t-states whereas (M,OtherRead)→ S
requires at least one t-state. This is because (M,OtherRead)→ S performs a write-back of the
updated data contents, which must wait for the allocated time slot to communicate data to the
shared bus. Hence, at least one t-state is required to indicate the pending write-back operation.
On the other hand, (M,OtherWrite) → I does not require a write-back to shared memory, and
the core that has the cache line in M can send the data to the requesting core.

We find that taking into account the cumulative coherence states of a cache line across all
cores can identify whether (src,Other)→ dstmust access the shared bus, and hence, requires
t-states. For example, consider a two-core system c0 and c1 where c0 has cache line X in M state
and c1 does not have X (I state). Consider that c1 issues an OwnWrite. c0 moves to I and c1
moves to M after c1’s OwnWrite based on the transitions described in Figure 5.2. Notice that only
one core has X in M state before and after c1’s memory operation. Hence, the cumulative data state
and data authority of X across all cores remains the same before and after c1’s memory operation.
As a result, there is no need for c0 to communicate the updated data contents of X to the shared
memory. If c0 performs a write-back to shared memory, c0’s updates to X will be overwritten by
c1’s write operation to X. Furthermore, c0 need not inform the shared memory about the change

99

OtherRead,
OwnRead

RD

OwnWrite

Ordered

OtherRead MI

S

IM_AD IM_D

IS_D

IS_AD

RD

OtherWrite/SD

MS_A

Ordered/WD,SD

OwnWrite
RD

OtherWrite
OtherRead

OwnRead,
OwnWrite

Ordered

OwnRead
OtherWrite SM_D

SM_AD Ordered

Figure 5.3: MSI protocol refinement for communication on the shared bus. Constructed t-
states and transitions are highlighted.

in its data authority of X. This is because c1 receives X with active data authority, and hence,
c1 responds to subsequent requests to X. Alternatively, consider that c1 issues an OwnRead. c0
and c1 transition to S after c1’s OwnRead. In this scenario, the cumulative data state and data
authority of X across all cores changes after c1’s OwnRead. Before the memory operation, c0
has X with dirty data state and active data authority, and after the memory operation, c0 and c1
have X with clean data state and passive data authority. In this case, c0 must communicate the
change in data authority (from active to passive) and data state (dirty to clean) in X to maintain
data correctness. In the MSI protocol, the communication of both data state and data authority
changes are realized by c0 doing a write-back to shared memory; the M state has dirty data state
and active data authority. As a result, this scenario requires t-states. Note that conventional
cache coherence protocols do not need t-states in this scenario. This is because conventional
protocols are deployed on multi-core models where the shared bus does not allocate exclusive
time slots to cores. Hence, cores can respond immediately on observing other memory operations
on the bus, which removes the need for t-states [138].

In Algorithm 2, SYNTHIA only considers transitions triggered on other memory operations
where src has either dirty data state or active data authority Transitions triggered on other
memory operations cannot upgrade their data state from clean to dirty and data authority from
passive to active. OWNTRANSITIONS(ev) returns a list of transitions triggered on own mem-
ory operation based on ev. For example, if ev is OtherWrite, then OWNTRANSITIONS(ev)

100

returns valid transitions triggered on OwnWrite. For each returned transition from line 11, SYN-
THIA computes the change in cumulative data state and cumulative data authority between des-
tination and source states in t and ot. ISCUMULATIVECHANGE first computes a value based
on the data state and data authority of the destination states in ot and t and a value based on
the source states in ot and t, and then returns the difference between the computed values. A
non-zero difference means that a core must respond with some operation that requires shared
bus access, and hence, requires at least one t-state; otherwise no t-states are required. In
Figure 5.3, consider (M,OtherRead) → S. Line 11 returns ot =(I,OwnRead) → S and
(S,OwnRead) → S. ot =(S,OwnRead) → S violates the SWMR invariant as one core has
the cache line M and another core has the cache line in S simultaneously. Hence, the only valid ot
is (I,OwnRead)→ S. The source states in ot and t are M and I and the destination states in ot
and t are both S. Line 19 returns true as the cumulative changes in data authority and data state
are not zero, which results in constructing MS A. The original transition (M,OtherRead) → S
is replaced with (M,OtherRead) → MS A and (MS A,Ordered) → S. Since M has dirty data
state and active data authority, the transition (MS A,Ordered) → S is causes the core with the
cache line in MS A to write-back the modified data contents to shared memory (WD) and send
the data to the requesting core. On the other hand, consider (M,OtherWrite)→ I. The valid ot
returned in line 11 is (I,OwnWrite)→ M. In this case, the source states in ot and t are M and I
and the destination states in ot and t are I and M respectively. Line 19 returns false as there
are no cumulative changes in data authority and data state. Hence, this transition does not have
t-states.

5.4.3 Constructing t-states and transitions due to interleaving memory
operations

Key idea. In the protocol so far, there is no information regarding what a core must do when it
has a pending operation on a cache line and observes interleaving memory operations from other
cores on the same cache line. For example, consider a core that has a cache line in IM D that is
waiting to receive the requested data to complete its pending OwnWrite. Notice that there are
no transitions in Figure 5.3 that determine what this core should do on observing OtherWrite or
OtherRead on the same cache line. This scenario can occur as it may take several cycles for
the core to receive the requested data during which multiple cores can perform operations on the
same cache line while it is in IM D. One solution is to stall any state changes to a cache line in a
t-state until it transitions to its destination s-state. This solution trades simple protocol design
for reduced performance as it introduces stalls. On the other hand, minimizing stalling while
still maintaining predictability requires careful analysis of state changes due to interleaving other
memory operations on a cache line in a t-state. In this step, we perform such analysis to con-

101

Algorithm 3 t-states for interleaving memory operations
1: procedure ISTSNEEDEDINTERLEAVINGMEMOPS(t, ts)
2: src = t.SOURCE(), dst = t.DESTINATION(), ev = t.EVENT()
3: for all oev ∈ {OtherRead,OtherWrite} do
4: if ISPREORDERED(ts) then
5: newDst = GETDST(src, oev)
6: if newDst 6= dst then
7: if ISOWN(ev) then
8: if ISINVALID(newDst) then
9: s1 = NEWTRANSIENTSTATE(newDst, dst, AD)

10: NEWTRANSITION(ts, s1, oev)
11: else
12: s1 = NEWTRANSIENTSTATE(newDst, dst, A)
13: NEWTRANSITION(ts, s1, oev)

14: else
15: s1 = NEWTRANSIENTSTATE(newDst, newDst, A)
16: NEWTRANSITION(ts, s1, oev)
17: NEWTRANSITION(s1, newDst,Ordered)

18: else
19: NEWTRANSITION(ts, ts, oev)

20: if ISPOSTORDERED(ts) then
21: newDst = GETNEWDST(dst, oev)
22: if newDst 6= dst then
23: s1 = NEWTRANSIENTSTATE(ts, newDst)
24: NEWTRANSITION(ts, s1, oev)
25: nt =(dst, oev)→ newDst
26: if ISTSNEEDEDBUSCOMM(nt) then
27: s2 = NEWTRANSIENTSTATE(dst, newDst, A)
28: NEWTRANSITION(s1, s2,RD)
29: else
30: NEWTRANSITION(s1, newDst,RD)

31: else
32: NEWTRANSITION(ts, ts, oev)

struct t-states and transitions that capture the correct order of state changes due to interleaving
memory operations. SYNTHIA relies on Algorithm 2 to achieve this minimal stalling while still
maintaining predictability.
Mechanism. For this analysis, we first classify t-states into two categories based on the relative
ordering of other memory operations observed by a cache line on the shared bus: pre-ordered
and post-ordered t-states. Algorithm 3 constructs t-states based on this classification. The
algorithm takes as input a t-state (ts) and the transition on which this t-state lies on (t). For
both categories, t-states are not required if there is no stable state change due to interleaving

102

other memory operations. For example, (I,OtherRead)→ I and (S,OtherRead)→ S do not
need t-states as the stable states do not change due to interleaving memory operations.
Pre-ordered t-states. A cache line is in a pre-ordered t-state if the core’s pending memory
operation is not yet ordered on the snooping bus. AD and A t-states are pre-ordered t-states as
they wait for the core’s memory operation to be ordered on the snooping bus. For example,
IM AD and MS A are examples of pre-ordered t-states. IM AD waits for the coherence message
for its write request to be ordered on the bus and the requested data, and MS A waits for the
coherence message for its data write-back to shared memory to be ordered on the bus. A cache
line in a pre-ordered t-state observes interleaving memory operations from other cores on the
bus (if any) before it sees its own memory operation ordered on the bus. As a result, a cache line
in a pre-ordered t-state reacts to other memory operations (if any) in the same way as if the cache
line is in the source state. For example, IM AD, which lies on (I,OwnWrite) → M, reacts to
other memory operations in the same way as I, and MS A, which lies on (M,OtherRead)→ S,
reacts to other memory operations in the same way as M.

Lines 4-19 in Algorithm 3 describe the constructing of new t-states and transitions for a
pre-ordered t-state. In line 5, SYNTHIA applies the other memory operation oev on the source
s-state of the transition, and extracts the new destination s-state (newDst). A new t-state may
be required to capture any state change (newDst 6= dst) depending on the transition type of
t. If t is triggered on an own memory operation (lines 7-13), then t-states are required in
order to capture the state change, and appropriate transitions to ensure the own memory oper-
ation ultimately completes. For example, consider the pre-ordered t-state SM A, which reacts
to other memory operations in the same way as S. On an OtherWrite, a cache line in S inval-
idates its data contents and moves to I state. Hence, a cache line in SM A must transition to a
t-state that conveys that the cache line data contents are invalid and an OwnWrite operation is
pending. Remaining in SM A state on an OtherWrite operation violates the SWMR invariant. On
lines 8-10, AD t-state is required as the interleaving memory operation invalidates the cache
line data contents (newDst has invalid access permissions). Lines 15-17 handle interleaving
memory operations that change the destination state of transitions triggered on other memory
operations. For such cases, SYNTHIA creates a new A t-state with newDst, and the corre-
sponding transitions. For example, consider t-states MS A, which lies on (M,OtherRead)→ S.
MS A is waiting for the coherence message to complete its data write-back to shared memory.
An OtherWrite on M transitions to nextDst =I, which is different than the current dst (S).
Hence, SYNTHIA constructs t-state II A, and the transitions (MS A,OtherWrite)→ II A and
(II A,Ordered) → I. SYNTHIA adds the send data action to the requesting cores (SD) to
the transition (MS A,OtherWrite) → II A (not shown in Algorithm 3). Note that II A on
observing the ordered coherence message for the data write-back, which was issued when the
cache line was in MS A, simply transitions to I. For transitions that do not change state due to
interleaving memory operations (line 19), SYNTHIA adds a self transition on t-state ts. For

103

RD, SD OtherWrite

OtherWrite

OtherRead

OtherRead

OtherWrite, OtherRead

OtherWrite, OtherRead

M

I

IM_AD IM_D

IM_DS_D

IM_DI_D

IM_DSI_D MS_A

S

RD

RD/SD

OtherWrite,OtherRead

OtherWrite/SD
II_A

Ordered

Figure 5.4: MSI protocol refinement for interleaving memory operations. Constructed t-
states and transitions are highlighted.

example, interleaving memory operations on IM AD behaves in the same way as I, which does
not change state. Hence, SYNTHIA adds self transitions (IM AD,OtherRead) → IM AD and
(IM AD,OtherWrite)→ IM AD.
Post-ordered t-states. A cache line is in a post-ordered t-state after the core’s pending mem-
ory operation is ordered on the snooping bus. Hence, other memory operations (if any) are
ordered after the core’s pending memory operation. A cache line in a post-ordered t-state reacts
to other memory operations on the cache line in the same way as if the cache line is in the des-
tination state. D states are post-ordered t-states. For example, IM D on (I,OwnWrite) → M
and IS D on (I,OwnRead) → S reacts to other memory operations in the same way as M and
S respectively.

Lines 20-30 in Algorithm 3 construct t-states and transitions for post-ordered t-states. In
contrast to pre-ordered t-states, SYNTHIA applies other memory operations on the destination
s-state (line 21), and constructs t-states and transitions on a state change due to the other
memory operations (lines 22-30). Consider IM D. An OtherRead on M transitions to S. Hence,
SYNTHIA constructs a new t-state IM DS D as shown in Figure 5.4, which captures the state
change. This state conveys that a pending write operation on a cache line observed an Other-
Read memory operation on the same cache line, and on receiving the requested cache line, the
final s-state is S. A core that has a cache line in IM DS D completes the pending OwnWrite on
receiving the requested data, and finally transitions to S. An OtherWrite on M transitions to I.

104

Similarly, SYNTHIA constructs a new t-state IM DI D on an OtherWriteas shown in Figure 5.4.
On receiving data, IM DI D will transition to the stable state I. SYNTHIA applies Algorithm 3
on the new post-ordered t-states IM DS D and IM DI D. Since IM DI D lies between M and I,
an other memory operation on IM DI D reacts in the same way as I. Hence, SYNTHIA creates a
self transition for other memory operations on IM DI D as shown in Figure 5.4.

SYNTHIA uses Algorithm 2 to decide whether a post-ordered t-state transitions to the des-
tination s-state directly or through other t-states. For example, consider a core that has a
cache line in IM DS D. On receiving data, the core must complete the pending write operation,
write-back the updated data contents, send the data to the requesting core, and transition to the
final destination s-state S. Since, there is an operation that requires shared bus access (write-
back), IM DS D cannot directly transition to S, and must first transition to a t-state (MS A) to
indicate pending write-back as shown in Figure 5.4. In this case, IM DS D lies on M and S,
and ISTSNEEDEDBUSCOMM returns true for (M,OtherRead) → S (details in Section 5.4.2).
Hence, SYNTHIA constructs t-states MS A and the transition (IM DS D,RD)→ MS A to denote
that on receiving the requested data, the cache line is marked for write-back. On the other hand,
IM DI D can directly transition to I on receiving the data as ISTSNEEDEDBUSCOMM returns
false for (M,OtherWrite) → I. This check for shared bus accesses in response to interleaving
other memory operations, and the construction of t-states to indicate pending shared bus ac-
cesses is a key distinguishing feature between predictable coherence protocols and conventional
cache coherence protocols.

5.4.4 Handling replacements, transition actions, and shared memory pro-
tocol construction

Replacements to cache lines with dirty data state or active data authority must write-back data
to the shared memory or inform the shared memory regarding change in data authority respec-
tively. For example, consider a replacement transition (s,Replacement) → i where s is a
s-state with valid access permissions and i is a s-state with invalid access permission. If the
data state of s is dirty, then SYNTHIA constructs a new t-state of the form si A and transitions
(s,Replacement) → si A and (si A,Ordered) → i. The transition (si A,Ordered) → i
is accompanied with write-back data to shared memory action. Similarly, SYNTHIA also con-
structs si A and transitions (s,Replacement) → si A and (si A,Ordered) → i if the data
authority of s is active. However, since the replacement changes the data authority of the cache
line, the action accompanied with (si A,Ordered) → i is a coherence message broadcast to
inform the cores and shared memory the change in data authority of the cache line.

SYNTHIA also generates the protocol state machine at the shared memory. For any input
protocol specification, the shared memory must maintain one state to denote if a cache line’s data

105

contents are unmodified, and another state to denote if a core has a modified copy of the cache line
in its private cache. Since a core may write-back updated data contents of a cache line to shared
memory, the shared memory maintains a D state that waits for the pending data communication
from the core. Additional shared memory states are dependent on the s-states defined in the
input specification.

Finally, for each transition in the core and shared memory protocols, SYNTHIA determines
whether any action (SD, WD, BM) must be executed by a cache controller or shared memory on
completing the transition. SD denotes that the cache controller or shared memory must send data
to a requesting core, WD denotes that cache controller must send data to the shared memory, and
BM denotes a coherence message broadcast. For a transition, the data state and data authority
of the source state (s-state or t-state) denotes the type of action executed on exercising the
transition. For example, a source state with dirty data data state will perform a WD action on
transitioning to a destination state with clean data state.

5.4.5 Correctness of protocols constructed by SYNTHIA

In this section, we prove that the cache coherence protocols generated by SYNTHIA satisfy the
SWMR invariant provided the input SYNTHIADSL specification satisfies the SWMR invariant.
The SWMR invariant is a key correctness invariant for cache coherence protocols [138].

Theorem 5. If the input SYNTHIADSL specification is correct, then the protocol implementation
constructed by SYNTHIA is correct.

Direct proof. A cache coherence protocol satisfies the SWMR invariant if and only if at any
instance of time one or more cores have a cache line with read access permissions or only one
core has the cache line with write access permissions. We make two observations from Algorithm
2 and 3 that show that SYNTHIA does not construct protocols that violate the SWMR invariant.

First, SYNTHIA does not remove s-states listed in the input SYNTHIADSL specification or
add new s-states during the protocol construction; SYNTHIA only adds new t-states and tran-
sitions with these t-states. Hence, in the protocol constructed by SYNTHIA, multiple cores that
have copies of a cache line in s-states satisfy the SWMR invariant. Second, the construction
of t-states (lines 5, 6, 14 in Algorithm 2 and lines 9, 12, 15, 23, and 27 in Algorithm 3) are
based on the transitions between s-states (src, dst, newDst) defined in the input correct SYN-
THIADSL specification. SYNTHIA modifies the original transitions between s-states to include
the new t-states but does not change the source and destination s-states of the transition. Since
the state encoding of t-states is either the source s-state for pre-ordered t-states or destination
s-states for post-ordered t-states, multiple cores that have the cache line in t-states also satisfy
the SWMR invariant. Furthermore, putting these two observations together, multiple cores that
have the cache line int-states and s-states also satisfy the SWMR invariant.

106

5.4.6 Limitations of SYNTHIA

There are three main limitations of SYNTHIA. First, SYNTHIA assumes that the input protocol
specification is correct, and does not verify or validate the correctness of the input protocol spec-
ification. Second, the final non-stalling protocol implementation is described in SYNTHIADSL.
To empirically evaluate the constructed non-stalling protocol, a designer must convert the pro-
tocol implementation in SYNTHIADSL into an alternate implementation for micro-architectural
simulation such as SLICC [17] or hardware logic implementation (Verilog or VHDL). Third,
SYNTHIA generates snooping bus-based cache coherence protocols, and assumes all cores ex-
ecute hard real-time tasks. As a result, SYNTHIA cannot generate predictable cache coherence
protocols for mixed-critical systems deployed on multi-core platforms such as CARP [77] and
Pendulum [139].

5.5 Case study: Predictable MESIF (PMESIF) cache coher-
ence protocol

Recently, Sensfelder et al. [135] reverse engineered the hardware cache coherence protocol de-
ployed in the NXP QorIQ multi-core processors. The NXP QorIQ multi-core processors are
positioned for use in safety-critical systems such as avionics [106]. Their reverse engineering ef-
forts revealed that the NXP QorIQ multi-core processor deployed a snooping bus-based MESIF
cache coherence protocol. Their discovery is important as it shows that there exist multi-core
processors used for safety-critical real-time systems that implement hardware snooping bus-
based cache coherence mechanisms for shared data communication between cores. To satisfy
the timing constraints of the deployed safety-critical tasks, the snooping bus-based cache co-
herence mechanism must be predictable [74]. For the NXP QorIQ multi-core processor, this
means that the implemented MESIF cache coherence mechanism must be predictable. While
we are not aware of all the implementation details of the MESIF cache coherence mechanism in
the NXP QorIQ multi-core processors and hence, their predictability guarantees, we design one
predictable variant of the MESIF cache coherence mechanism using SYNTHIA. The constructed
predictable and high-performance variant of the MESIF cache coherence protocol, PMESIF, sat-
isfies the design invariants listed in [74].

The MESIF protocol consists of 5 s-states. The M, E, S, and I states are the same as
described in Section 5.4.1. The forwarding state F allows a core with a read only copy of the
cache line to send the data to another core requesting for the same cache line. Hence, the state
encoding of F is (read, clean, active). The SYNTHIADSL specification of the MESIF protocol
in stable states is shown in Figure 5.5.

We highlight one key feature about the MESIF protocol that makes it different from the MSI,

107

1 M : (write, dirty, active) 14 (M, OwnRead) -> M
2 S : (read, clean, passive) 15 (M, OwnWrite) -> M
3 E : (exread, dirty, active) 16 (M, OtherRead) -> S
4 F : (read, clean, active) 17 (M, OtherWrite) -> I
5 I : (invalid, clean, passive) 18 (M, Replacement) -> I

4 (I, OwnReadM) -> E 19 (E, OwnRead) -> E
5 (I, OwnRead) -> F 20 (E, OwnWrite) -> M
6 (I, OwnWrite) -> M 21 (E, OtherRead) -> S
7 (I, OtherRead) -> I 22 (E, OtherWrite) -> I
8 (I, OtherWrite) -> I 23 (E, Replacement) -> I

9 (S, OwnRead) -> S 24 (F, OwnRead) -> F
10 (S, OwnWrite) -> M 25 (F, OwnWrite) -> M
11 (S, OtherWrite) -> I 26 (F, OtherRead) -> S
12 (S, OtherRead) -> S 27 (F, OtherWrite) -> I
13 (S, Replacement) -> I 28 (F, Replacement) -> I

Figure 5.5: MESIF protocol specification in SYNTHIADSL.

MESI, and MOESI cache coherence protocols. Consider the transitions (I,OwnRead) → F
and (F,OtherRead) → S. Notice that a core that has a cache line in F and observes an Other-
Read not only sends the data to the requesting core but also changes the cache line coherence
state to S; the core releases its active data authority on the cache line. As a result, the requesting
core that receives data from another core (OwnRead), receives the cache line in F state. The
benefit of transferring the F state of a cache line between requesting cores is that the likelihood
of a cache line in F state to be a replacement candidate due to a cache capacity miss is lowered.
A core that receives a cache line for its read request from another core will be the most recently
used cache line in the cache set, and hence, will most likely not be a replacement candidate.
Hence, the likelihood of cores receiving their requested cache line from other cores is high in
MESIF protocol. On the other hand, the MSI, MESI, and MOESI cache coherence protocols do
not have a forwarding state, and do not transfer data authority to cores performing read requests
on cache lines.

Table 5.2 shows the private cache coherence states of PMESIF cache coherence protocol

108

Table 5.2: Private memory states for PMESIF cache coherence protocol generated by SYNTHIA.
issue msg/state means the core issues the message msg and move to state state. Changes to
conventional MESIF are in bold red.

Core events Bus events
OwnRead OwnWrite Replacement Receive data (RD) Ordered OtherRead OtherWrite

I Issue Own-
ReadM/IS AD

Issue Own-
Write/IM AD

— —

S Hit, Complete read Issue Own-
Write/SM AD

-/I — -/I

M Hit, Complete read Hit, Complete write Issue write-
back/MI A

Issue write-
back/MS A

Send data/I

E Hit, Complete read Hit, Complete
write/M

Issue write-
back/EI A

Issue write-
back/ES A

Send data/I

F Hit, Complete read Issue write/FM AD Issue coherence mes-
sage/FI A

Send data/S Send data/I

IS AD -/IS D — —
IM AD -/IM D — —
IS D If exclusive data from

memory Complete
read/E, else Complete
read/F

— -/IS DI

IM D Complete write/M -/IM DS -/IM DI
IM DS Complete write, issue

write-back/MS A
— -/IM DSI

IM DI Complete write, send
data/I

— —

IM DSI Complete write, send
data/I

— —

IS DI Complete read/I — —
SM AD Stall /SM D — -/IM AD
SM D Stall Complete write/M -/SM DS -/SM DI
SM DI Stall Complete write, send

data/I
— —

SM DS Stall Complete write, issue
write-back/MS A

— -/SM DSI

SM DSI Stall Complete write, send
data/I

— —

FM AD Stall /FM D Send data/SM AD -/IM AD
FM D Stall Complete write/M -/FM DS -/FM DI
FM DI Stall Complete write, send

data/I
— —

FM DS Stall Complete write, issue
write-back/MS A

— -/FM DSI

FM DSI Stall Complete write, send
data/I

— —

MI A Hit, Complete read Hit, Complete write Write-back to
memory/I

— Send data/II A

MS A Hit, Complete read Hit, Complete write -/MI A Write-back to
memory, send
data/S

— Send data/II A

EI A Hit, Complete read Hit, Complete
write/MI A

Write-back to
memory/I

— Send data/II A

ES A Hit, Complete read Hit, Complete
write/MS A

-/EI A Write-back to
memory, send
data/S

— Send data/II A

FI A Hit, Complete read Stall Write-back to
memory/I

— Send data/II A

II A Stall Stall -/I — —

generated by SYNTHIA. The cells in red indicate t-states and transitions that differ from the
conventional MESIF cache coherence protocol. Table 5.4 maps the PMESIF t-states and transi-
tions constructed by SYNTHIA to Algorithms 2 and 3. As an example, consider the construction
of (E,OtherRead)→ ES A. In the input MESIF protocol description in Figure 5.5, a core that
has a cache line in E transitions to S on observing OtherRead. The state encoding of E and S
are (exread, dirty, active) and (read, clean, passive) respectively. The requesting core on re-

109

Table 5.3: Shared memory states and transitions of PMESIF cache coherence protocol
State Events from core

Read Write Replacement Data from core
I Send exclusive data to requesting core, up-

date owner/M
Send data to requesting core, update owner/M

M Update owner/F D Update owner/M -/I D
F D Update owner/F D Update owner/M — Write memory/F
I D Write memory/S
S Send data to requesting core, update owner/F Send data to requesting core, update owner/M
F Update owner/F Send data to requesting core, update owner/M -/I D

Table 5.4: PMESIF t-states and transitions constructed by SYNTHIA.
Algorithm lines t-states and transitions constructed

Lines 4-9 in Algorithm 2 (I,OwnRead) → IS AD, (I,OwnRead) → IM AD, (IS AD,Ordered) → IS D,
(IM AD,Ordered) → IM D, (IS D,RD) → E/S, (IM D,RD) → M, (S,OwnWrite) → SM AD,
(SM AD,Ordered) → SM D, (SM AD,RD) → M, (F,OwnWrite) → FM AD, (FM AD,Ordered) →
FM D, (FM D,RD)→ M

Lines 10-16 in Algorithm 2 (M,OtherRead)→ MS A, (E,OtherRead)→ ES A
Lines 8-10 in Algorithm 3 (SM AD,OtherWrite)→ IM AD, (FM AD,OtherWrite)→ IM AD

Lines 11-13 in Algorithm 3 (FM AD,OtherRead)→ SM AD
Lines 15-17 in Algorithm 3 (MS A,OtherWrite) → II A, (ES A,OtherWR) → II A, (MI A,OtherWrite) → II A,

(EI A,OtherWrite)→ II A
Line 19 in Algorithm 3 (SM AD,OtherRead) → SM AD, (IM AD,OtherRead) → IM AD, (IS AD,OtherRead) → IS AD,

(IM AD,OtherWrite) → IM AD, (IS AD,OtherWrite) → IS AD, (ES A,OtherRead) → ES A,
(MS A,OtherRead)→ MS A

Lines 23-25 in Algorithm 3 (IM D,OtherRead) → IM DS, (IM DS,OtherWrite) → IM DSI, (IM D,OtherWrite) → IM DI,
(IS D,OtherWrite) → IS DI, (SM D,OtherRead) → SM DS, (SM D,OtherWrite) → SM DI,
(SM DS,OtherWrite) → SM DSI, (FM D,OtherRead) → SM D, (FM D,OtherWrite) → FM DI,
(FM D,OtherRead)→ FM DS, (FM DS,OtherWrite)→ FM DSI

Lines 26-28 in Algorithm 3 (IM DS,RD)→ MS A, (SM DS,RD)→ MS A, (FM DS,RD)→ MS A
Line 30 in Algorithm 3 (IS DI,RD) → I, (IM DI,RD) → I, (IM DSI,RD) → I, (SM DI,RD) → I, (SM DSI,RD) → I,

(FM DI,RD)→ I, (FM DSI,RD)→ I
Lines 31-32 in Algorithm 3 (IS D,OtherRead) → IS D, (IS DI,OtherRead) → IS DI, (IS DI,OtherWrite) → IS DI,

(IM DS,OtherRead) → IM DS, (IM DI,OtherRead) → IM DI, (IM DI,OtherWrite) →
IM DI, (IM DSI,OtherRead) → IM DSI, (IM DSI,OtherWrite) → IM DSI,
(SM DS,OtherRead)→ SM DS, (FM DS,OtherRead)→ FM DS, (SM DSI,OtherRead)→ SM DSI,
(SM DSI,OtherWrite) → SM DSI, (SM DI,OtherRead) → SM DI, (SM DI,OtherWrite) → SM DI,
(FM DSI,OtherRead) → FM DSI, (FM DSI,OtherWrite) → FM DSI, (FM DI,OtherRead) →
FM DI, (FM DI,OtherWrite)→ FM DI

ceiving the data transitions from I to F state. The input to Algorithm 2 is (E,OtherRead)→ S,
and this transition exercises lines 14-20 since ev =OtherRead. The condition on line 14 re-
turns true as E has dirty data state and active data authority. OWNTRANSITIONS(OtherRead)
returns (I,OwnRead) → F. The condition on line 17 returns true as there is a cumulative
change in data state from dirty to clean across all cores when the cache line in one takes
the transition (E,OtherRead) → S and the cache line in the requesting core takes the tran-
sition (I,OwnRead) → F. Hence, SYNTHIA constructs the new t-state ES A, and transitions
(E,OtherRead)→ ES A and (ES A,Ordered)→ S.

We highlight two key features of the PMESIF protocol.
Feature 1. Unlike the conventional MESIF coherence protocol where a core with a cache line in

110

c0

c0
1

Broadcast message Data transfer

c1

c2

c1 c2 c3 c0 c1 c2

2 3 4 5 6 7

MàMS_A
Issue WB

IàIM_D

IàIS_D

IàIS_D

IS_DI

IS_DI IS_DIàI

IS_DIàI

IM_DàM

II_AàI

c3

MS_AàII_A
Send data

TDM schedule

Figure 5.6: Execution example under PMESIF protocol.

M/E sends the requested data to the first requesting core, a core that has a cache line in MS A/ES A
can send data to multiple requesting cores through the point-to-point data interconnects. This is
because a core that has a cache line in MS A/ES A can observe multiple requests to the same
cache line from different cores while waiting for its allocated slot to perform the write-back to
shared memory. Figure 5.6 shows an execution example on cache line A accessed by 4 cores
(c0-c3) where c2 has A in M state. For this execution example, we assume the shared buses deploy
a time division multiplexing (TDM) predictable bus arbitration, and each core is allocated one
time slot. In slot 2, c1 broadcasts a read request on A. This causes c2 to issue a write-back
coherence message and change the coherence state of its cache line copy of A to MS A. For this
example, assume that c2 completes the data write-back in its allocated slot (slot 7). In slot 4,
c3 also broadcasts a read request on A. c2 observes c3’s read request and does not change the
coherence state of its A copy. c0’s write request to A causes A in c2 to transition to II A. c2
sends the cache line data contents of A to the requesting cores c0, c1, and c3. This is shown in
Figure 5.6 where c2 sends A to all the requesting cores in slot 5. Since each core is connected to
every other core through point-to-point data interconnects, all the cores receive A in slot 5 and
complete their pending memory requests on A.
Feature 2. In the conventional MESIF coherence protocol, a core that has a cache line in IS DI
completes the pending read request on receiving the data, and sends the data to another requesting
core that has a pending write operation on the same cache line [135]. Recall that under the MESIF

111

coherence protocol, a core that has a pending read request to a cache line receives the cache line
data contents with active data authority (F state). For example, consider the execution example
in Figure 5.6. Under the conventional MESIF coherence protocol, c1 sends the data to c0 on
receiving A. On the other hand, under PMESIF coherence protocol, a core that has a cache line
in IS DI does not send the data to another core on receiving the requested data. This is because
under PMESIF coherence protocol, a core that does not complete its read request to a cache line
in its allocated slot means that there exists another core that has the same cache line in either
MS A or ES A state and is waiting for its allocated slot to perform a write-back of the requested
cache line to shared memory. In the execution example in Figure 5.6, cores c1 and c3 do not
complete their read requests to A in their allocated time slots (slots 2 and 4 respectively) because
c2 has to complete the write-back of A to shared memory. MS A and ES A have the same state
encoding as M and E states respectively, and hence, have active data authority. On observing
an OtherWrite, the core with cache line in MS A/ ES A will respond with data to the requesting
cores. As a result, the core with cache line in IS DI does not send data responses under PMESIF
coherence protocol.

5.6 Results
Evaluation of SYNTHIA. SYNTHIA successfully constructs non-stalling and predictable co-
herence protocols from s-states specifications of MSI, MESI, MOESI, and MESIF protocols.
The MESI and MOESI protocol specifications are derived from [138] and [1] respectively. Ta-
ble 5.5 shows the number of states and transitions in the input and output. The MSI-P and
MESI-P protocols differ from the MSI and MESI protocols in that all states have passive data
authority. As a result, all data communication between cores in these protocols are through the
shared memory. The predictable and high-performance protocol of MSI-P is the PMSI protocol
described in [74]. A key takeaway is the significant increase in the number of states and tran-
sitions in order to achieve predictability and high-performance. For example, a predictable and
high-performance MOESI implementation has more than 5× the number of states and transitions
compared to the input specification. Hence, SYNTHIA relieves the design burden on a protocol
designer by automating the analysis and protocol construction. We validated the protocols gen-
erated by SYNTHIA against manually implemented verified versions of the protocols. We found
that the states and transitions in the protocols generated by SYNTHIA matched the manually im-
plemented versions. We also checked their correctness, predictability, and performance through
exhaustive testing using the gem5 simulator [17].

SYNTHIA is designed to improve the productivity of protocol designers by automating the
exhaustive analysis required to construct predictable and high-performance protocols. To high-
light this key utility of SYNTHIA, we perform the following experiment. Suppose a protocol

112

Table 5.5: Evaluation of SYNTHIA on different protocols. SYNTHIA took less than a few seconds
to construct the protocols.

Protocol Input SYNTHIA output Validation Stalling transitions based on Algorithm 2
States Transitions States Transitions Correctness Testing Disabled Only pre-ordered Only post-ordered

MSI 3 14 17 66 3 3 12 of 36 4 of 39 8 of 48
MSI-P 3 14 17 64 3 3 14 of 39 4 of 39 10 of 51
MESI 4 20 26 96 3 3 18 of 51 6 of 57 12 of 72

MESI-P 4 20 26 95 3 3 22 of 57 6 of 57 16 of 78
MOESI 5 25 27 103 3 3 18 of 57 6 of 60 12 of 78
MESIF 5 25 35 118 3 3 22 of 63 6 of 66 16 of 84

Table 5.6: Predictability and performance evaluation.

Protocol Predictability (WCL in cycles) Performance
Observed WCL Analytical WCL Speedup

MSI 3061 6450 3.45×
MESI 3214 6450 3.35×

MOESI 2019 6450 3.99×
MSI-P 6364 7250 1.72×

MESI-P 5964 7250 1.69×
MESIF 3741 7250 3.24×

designer manually designed the protocols listed in Table 5.5, and missed certain analyses that
account for interleaving other memory operations to the same shared data (Algorithm 2). The
missing analyses result in stalled transitions in the output protocol, which limit the performance
of the cache coherence protocol. Consider a case where a protocol designer does not perform
any of the analyses outlined in Algorithm 2. For the MSI protocol, we observed that 12 transi-
tions out of total 36 transitions are stalling transitions, which constitutes more than 30% of the
transitions (highlighted in Table 5.5). Across all protocols, we observed more than 30% of the
transitions in the output protocols are stalling transitions. If a designer accounts for only one
type of t-states (post-ordered or pre-ordered), then 9%-16% of the transitions in the constructed
protocols are stalling transitions. On the other hand, protocols generated by SYNTHIA have no
stalling transitions due to interleaving memory operations from other cores. In summary, a pro-
tocol designer can construct protocols where more than a third of all the transitions are stalling
transitions by missing some scenarios. SYNTHIA addresses this by automating the analysis and
construction as described in Section 5.4.
Predictability and performance evaluation. We manually converted the states, transitions, and
actions in the generated protocols into the SLICC syntax, and evaluated them using the gem5
micro-architectural simulator [17]. The conversion was straightforward as it involved describing
the states, transitions, and actions in the output protocol in SLICC syntax. We used the synthetic
workloads from [74] and verified the data correctness of the protocols. We modeled a 8-core

113

multi-core platform where the shared bus deploys a TDM arbitration. Each core is allocated one
TDM slot. Table 5.6 shows the maximum observed worst-case latency (WCL) experienced by a
memory request under the predictable cache coherence protocols, and the average-performance
speedup of the protocols compared to a cache bypassing technique. The cache bypassing tech-
nique achieves predictable data sharing between cores by disabling private caching of shared
data. From Table 5.6, the observed WCL across all protocols are within their derived analytical
WCL bound, and the generated cache coherence protocols outperform (as high as 3.94×) the
cache bypassing technique while achieving predictability.

Among the predictable cache coherence protocols, the PMOESI cache coherence protocol
offers the best performance speedup (3.99× average speedup over cache bypassing and 15%
over PMSI, which is the next best cache coherence protocol). The key reason for this is that the
PMOESI cache coherence protocol has the least number of transitions that require communica-
tion with the shared memory. In the PMOESI protocol, a core that has a cache line in E state
must write-back the data contents to the shared memory on an OtherRead event. A core that
has cache line in M and observes an OtherRead event does not trigger a write-back to shared
memory. In this scenario, the core responds with the requested data and transitions the cache
line from M = (write, dirty, active) to O = (read, dirty, active); ISCUMULATIVECHANGE()
in Algorithm 2 returns false. On the other hand, in the PMESI and PMESIF protocols, a core
that has a cache line in E or M states must write-back the data contents to the shared memory on
an OtherRead event. As a result, the PMESI and PMESIF protocols have lower performance
benefits compared to the PMOESI protocol, yet still maintain more than 3× average performance
improvement over cache bypassing.
Verification of cache coherence protocols. We use the framework by Sensfelder et al. [133]
to formally verify the correctness, liveness, and safety properties of the protocols generated by
SYNTHIA. This framework uses the UPPAAL modeling framework. We changed the models
in [133] to reflect our system model, and verified correctness (SWMR invariant, data value in-
variant), liveness (program termination), and safety (latency of each memory request is within
the WCL bound) properties of the PMSI, PMSI-P, PMESI, PMESI-P, PMOESI and PMESIF
protocols.

5.7 Conclusion
We present SYNTHIA, an automated tool for constructing correct, predictable and high-performance
cache coherence protocols from simple protocol specifications. SYNTHIA automates the analyses
that identifies scenarios involving interleaving memory operations from multiple cores to shared
data and that require access to the shared bus. SYNTHIA refines the input protocol using the
analysis by adding new states and transitions that achieve predictability and high-performance.

114

We apply SYNTHIA on multiple coherence protocol implementations found in existing multi-
core platforms such as the MSI, MESI, MOESI, and MESIF cache coherence protocols. We
validated the correctness, predictability, and performance of the protocols generated by SYN-
THIA, and confirmed that the states and transitions in the generated protocols matched manually
implemented versions.

115

Chapter 6

CARP: A Hardware Cache Coherence
Mechanism for Multi-Core
Mixed-Criticality Systems

The previous chapters (Chapters 3, 4, and 5) focused on designing predictable hardware cache
coherence mechanisms for hard real-time systems where all tasks running on cores are safety-
critical and have strict timing requirements. However, tasks deployed on multi-core real-time
systems deployed in avionics and automotive domains have varying safety-critical levels that
have different different timing requirements. For example, a multi-core platform deployed in
a vehicle may execute quality-of-service (QoS) tasks that control the in-vehicle infotainment
system (low safety-critical) while simultaneously executing tasks that perform object detection
(high-critical). These real-time systems are referred to as mixed-criticality systems (MCS).

The fourth research contribution of this thesis presents CARP, a predictable hardware cache
coherence mechanism for mixed-criticality systems (MCS). The key feature of the predictable
hardware cache coherence mechanism described in this chapter is that it is criticality-aware. This
means that the state transitions in the underlying coherence protocol are triggered based on the
observed memory activity and the criticality levels of the tasks performing the memory activity.
In this chapter, we make use of mixed-critical systems certification standards for automotive
domains such as AUTOSAR and ISO-26262 to guide the design of CARP. We show that CARP
prevents the data communication activity of low-critical tasks to affect the temporal behavior of
high-critical tasks as mandated by the standards.

116

6.1 Introduction
Mixed-criticality systems (MCS) consist of tasks with varying safety requirements [14, 22, 72,
103]. These tasks are typically categorized into different criticality levels based on the severity
of consequences of any deviation in their safety requirements [152]. The avionic and automotive
domains have adopted several principles behind MCS as seen in standards such as DO-178C,
ISO-26262, and AUTOSAR [152]. These domains continue to notice an increase in demands
for complex and integrated functionalities whose implementations require interactions and com-
munication between these complex functionalities [25, 60]. There is considerable interest in the
community in using multi-core platforms to deploy such functionalities [20,30,105,126,128] for
resource consolidation and cost reductions.

There are several prior research efforts in deploying MCS on multi-cores, but many of them
assume that tasks do not communicate with each other [27, 47, 56, 63, 64, 78, 84, 166]. This
assumption is not representative of practical systems. For example, Hamann et al. [60] described
that communication is prevalent in automotive embedded applications deployed on multi-cores.
Hence, it is not surprising that recent research efforts have attempted to support communication
between tasks in MCS [25, 45]. We are encouraged by this trend to explore predictable data
communication mechanisms for MCS.

We observe that prior efforts on designing data communication mechanisms for MCS have
the following side-effects: (1) they underutilize the performance opportunities available on multi-
cores, and (2) they disallow communication between critical and non-critical tasks [25]. For
the first side-effect, consider Chisolm et al.’s [25] work, which allows communication between
critical tasks, but these tasks must be executed on the same core of a multi-core platform. Using
this approach, if all tasks were to communicate with a common task, then they would all have to
be deployed on the same core. This would result in underutilization of the multi-core platform
(effectively single-core utilization). We find that this side-effect is a result of certain guidelines
put forth by the standards or lack thereof. Therefore, any data communication mechanism that
complies with the standards may also suffer from the same side-effect. Consider the AUTOSAR
standard that allows data communication between critical tasks as long as they reside in the same
memory partition (§ 2.1.2.2 and § 2.1.2.4) [10]. However, AUTOSAR also mandates that tasks
sharing a memory partition must be executed on the same core (§ 2.7) [9], which restricts the
utilization of hardware parallelism offered by multi-cores.

For the second side-effect, to the best of our knowledge, there is limited guidance in the
standards on the requirements of communication between critical and non-critical tasks. Con-
sequently, the general approach taken has been to disallow communication between such tasks.
However, we find that practical deployments can benefit from communication between non-
critical and critical tasks. Examples include the use of non-critical tasks for run-time monitoring
where tasks monitor the execution of critical tasks for data correctness [158,170,171], and qual-

117

ity management tasks [42] that improve the overall functioning and responsiveness of the MCS.
Presently, one way to incorporate such non-critical tasks in MCS is to elevate them to be critical
tasks, which would most likely impact the safety-critical requirements of critical tasks. Note that
ISO-26262 allows non-critical tasks to co-exist with critical tasks in the same memory partition
as long as the safety requirements of critical tasks are not violated (§ 2.7) [42]. To collect on
the potential benefits of incorporating non-critical tasks, communication must be allowed with
critical tasks, but it must be enabled carefully to ensure predictability, and without affecting the
safety-critical requirements of critical tasks.

In this work, we develop a data communication mechanism for MCS that (1) leverages per-
formance opportunities offered by multi-core platforms, and (2) allows communication between
critical and non-critical tasks without violating the safety-critical requirements of critical tasks.
In particular, we focus on the safety requirements that deal with the temporal properties (worst-
case latency bounds) of critical tasks. To accomplish this, we cautiously and excitedly step be-
yond the constraints placed by the standards with the hope of fostering discussions on proposed
extensions for future evolution of the standards. To motivate benefits of such proposed exten-
sions, we design CARP, a data communication mechanism based on hardware cache coherence
that uses these proposed extensions to enable communication between critical and non-critical
tasks, and deploys them across multiple cores. A key novelty of CARP is that it dynamically
handles the communication between tasks based on their criticality levels. As a result, CARP is
a criticality-aware data communication mechanism. This criticality awareness property allows
critical and non-critical tasks to communicate such that the temporal properties of critical tasks
are not affected by non-critical tasks. Prior works that facilitate data communication between
critical and non-critical tasks such as [139] do not dynamically adapt the communication, and
hence, introduce some timing interference in the temporal bounds of critical tasks. From our
evaluation, CARP improves average-case performance by 30% over prior state-of-the-art data
communication techniques proposed for MCS and real-time systems.
Our main contributions in this work are as follows.

• We propose CARP, a criticality-aware cache coherence protocol that enables high per-
formance data communication between critical and non-critical tasks while ensuring the
non-critical tasks do not interfere with the worst-case latency bounds (WCL) of critical
tasks.

• We present a latency analysis for CARP to derive the WCL bounds on data communica-
tion.

• We compare CARP against prior approaches for enabling data communication using syn-
thetic and SPLASH-2 workloads [157]. We show that the observed data communication

118

latencies are within the WCL bounds, and CARP offers improved average-case perfor-
mance over prior approaches for predictable data communication.

6.2 Motivation
We list two key guidelines defined in the AUTOSAR standard that govern the design of data com-
munication mechanisms. The first guideline allows tasks of different criticality levels to reside in
the same memory partition (§ 2.1.2.2 and § 2.1.2.4) [10]. A consequence of this guideline is that
tasks can communicate through shared data [25, 60]. Therefore, tasks of any criticality level can
communicate with each other through shared data resident on the same memory partition. The
second guideline states that tasks sharing a memory partition must execute on the same core (§
2.7) [9]. This guideline forces tasks communicating via shared data to reside on the same core.
There are two key limitations that these guidelines impose for MCS deployments on modern and
future multi-core platforms. (1) Limiting the number of cores that can be used based on data
communication patterns of the application. As multi-cores continue to have large core counts,
there would be considerable underutilization of hardware resources in deployments where tasks
communicate. (2) Deploying tasks onto processing elements best suited for their execution is
limited. Heterogeneous multi-core platforms with various accelerators [105] match the needs of
modern applications, and has received recent attention for MCS [53, 62]. For example, certain
machine-learning or vehicle tracking functionality may use a graphics-processing unit, and other
computations may use real-time cores. However, if these functionalities communicate, then such
heterogeneous platforms cannot be used since the tasks must reside on the same core. Note
that AUTOSAR does provide explicit and implicit communication mechanisms. However, ex-
plicit communication typically results in lower performance due to lack of caching, and implicit
communication sacrifices data consistency [60].

In an effort to address these limitations, we present two possible extensions for consideration.
The first extension allows communicating tasks to be deployed across multiple cores provided
the safety-critical requirements of critical tasks are not violated. Recently, Hassan et al. [74] pro-
posed an approach to allow communicating tasks of the same criticality level to execute on differ-
ent cores. They showed significant performance improvements over deploying communicating
tasks onto the same core while preserving safety-critical requirements. Our work distinguishes
itself from [74] in that we focus on data communication across tasks of different criticality levels
deployed across multiple cores.

The second extension allows communication between critical and non-critical tasks such that
non-critical tasks do not violate the safety-critical requirements of critical tasks. To the best
of our efforts, we did not find any guidance in AUTOSAR for data communication between
non-critical and critical tasks. Hence, the only way to allow such tasks to communicate is to

119

Table 6.1: AUTOSAR guidelines satisfied and extended by CARP.

CARP feature Standard guideline Relationship
Multiple tasks share a memory partition § 2.1.2 [10] Satisfies
Tasks of different criticality levels share a memory
partition

§ 2.1.2 [10] Satisfies

Critical and non-critical tasks share a memory parti-
tion

§ 2.7 [42] Satisfies

Data communication between non-critical and critical
tasks

None Extends

Tasks sharing a memory partition are deployed across
cores

§ 2.7 [9] Extends

elevate the criticality level of non-critical tasks. However, the introduction of newly elevated
critical tasks will interfere with the temporal requirements of existing critical tasks. Hence,
an alternative mechanism that allows for such communication without impacting the temporal
requirements of critical tasks is desirable. Note that ISO-26262 does allow non-critical tasks
to co-exist with critical tasks in the same memory partition as long as non-critical cores do not
violate the safety requirements of critical tasks (§ 2.7) [42], but the general approach to such
communication has been to disallow it. In this work, we disallow level E tasks to potentially
corrupt memory contents by restricting them to only read communicated data.

Table 6.1 summarizes the relationship between CARP’s features and the guidelines described
in the AUTOSAR and ISO-26262 standards. This relationship falls into 2 categories: (1) Satis-
fies: CARP’s features satisfy the guidelines in the standards and (2) Extends: CARP’s features
require extensions to the standards. We view CARP as a step towards identifying the benefits
of extending the guidelines on data communication in order to develop high performance yet
predictable data communication mechanisms for multi-core MCS.

6.3 System Model
We denote a task set with T tasks in the system as Γ = {τil : l ∈ {A,B,C,D,E}, i ∈ [0,T− 1]}
where every task has a criticality level l [152]. Our MCS model follows standards in avionics
and automotive domains that classify tasks into different criticality levels based on their safety
requirements [10, 39, 42, 124]. A task may have one of the five criticality levels: level A tasks
are the most critical whose failure may result in fatalities through level E that are not critical and
experience system performance impacts on a failure. We collectively refer level A-D tasks as

120

critical tasks and level E tasks as non-critical tasks. Levels A and B tasks mandate tight WCL
bounds with level A tasks having more stringent requirements than B. Tasks at levels C and D are
soft real-time tasks that also need WCL bounds; however, these bounds are less stringent than
levels A and B tasks. Level E tasks do not have any WCL bounds. Such a MCS model has been
used in prior research [25, 78, 84, 99] 1.

Our real-time multi-core platform has N cores C = {c0, c1, ..., cN−1}. A task mapped onto
a core inherits the task’s criticality level. For example, τil mapped onto core cj results in clj
indicating that a task of l criticality level is executing on cj . Note that we do not constrain a core
to run a single task, and multiple tasks with different criticality levels can be executed on the
same core. We require the core to identify the criticality level of the task currently executing on
it. We describe one architectural extension to achieve this identification in Section 6.5. For the
remainder of the text, we use the term core to refer to the task executing on the core. We denote
C l = {cmi : ∀cmi ,m = l} as the set of cores running tasks of criticality l. We assume that cores
are in-order and allow for at most one outstanding memory request. Our evaluation empirically
validates the analysis with this assumption. However, the proposed solution is independent of the
core architecture, and works with out-of-order cores. The cores have a private memory hierarchy
with caches and shared memory. The caches hold a subset of data stored in the shared memory,
and the shared memory holds all the data needed by tasks running on the multi-core platform.

Cores communicate with the shared memory through a shared bus as the interconnect. A
shared bus deploys an arbitration policy that manages the communication over the bus. The ar-
bitration policies place constraints on when cores and memories are granted access to the shared
bus for communication, and/or the amount of bus bandwidth made available for cores and mem-
ories. We deploy our proposed data communication mechanism on variants of time-division
multiplexing (TDM) and round-robin (RR) arbitration policies. These arbitration policies have
received considerable attention in the real-time community [27, 63, 66], and have been imple-
mented in real-time platforms [118, 130].

6.4 High level overview of CARP

CARP delivers performance benefits by allowing (1) communicating tasks to be distributed
across cores, and (2) communicated data to be cached in the private caches of cores. It follows
the template of guidelines put forth by Hassan et al. [74], and includes new features specifically
catered for multi-core MCS. There are two interference scenarios that arise due to communi-
cation to/from level E tasks on the WCL bounds of critical tasks: (1) interference scenario
due to data responses from shared memory and (2) interference scenario due to write-backs.

1We are aware that ISO-26262 and AUTOSAR standards define level D as the highest criticality level and level
A as the lowest criticality level.

121

Blocking latency due to level E task

A B C A B C A B C A B

Worst-case latency

cA0
cB1
cC2
cE3

Blocking latency due to level A-D task

Latency due to arbitration

Data latency

1 2 3 4 5 6 7 8 9 10 11

Broadcast request Broadcast write-back Data transfer

Figure 6.1: Blocking communication due to shared memory responses.

CARP disallows these interference scenarios through two techniques: (1) forces level E cores to
abort-and-retry in the presence of simultaneous communication from critical cores on the same
shared data and (2) partitions the PWB buffer to isolate write-back responses for critical cores
from non-critical cores, and schedule write-back responses from non-critical cores in slack. In
the following section, we illustrate these interference scenarios and the impact of the techniques
using a 4-core system (c0 − c3) that executes a level A, B, C and E task respectively. For ease of
explanation, we consider a schedule that uses TDM arbitration. This schedule allocates one slot
for each levels A-C cores to manage concurrent accesses to the shared memory. Following the
guidelines set by Mollison et al. [99], we use slack to schedule data communication to/from E
tasks.

6.4.1 Interference due to data responses from shared memory
Observation. Figure 6.1 highlights the interference scenario due to data responses from shared
memory. In the first slot, cA

0 broadcasts a write request to data X. The shared memory sends X in
the same slot, and cA

0 completes its request. An updated copy of X resides in the private memory
of cA

0 , and a stale copy of X resides in shared memory. The second slot, which is allocated to
cB
1 , is unused by cB

1 making it a slack slot. Suppose cE
3 uses this slack slot and broadcasts a read

request to X. Since, cA
0 has an updated version of X, it has to write back the update to the shared

memory before the shared memory can send X to cE
3 . Hence, cA

0 must wait for its allocated slot

122

to update the shared memory (slot 4). In the third slot, cC
2 broadcasts a write request to X. In slot

5, cB
1 issues a write request to X, and will receive X from the shared memory after cC

2 . After cA
0

updates the shared memory with the updated X, the shared memory can send data to the cores
waiting on X. To maintain data correctness, the shared memory must send data in the order of
requests [74,138]. For example, if the shared memory reorders data response to cB

1 ’s request over
that of cC

2 ’s request then cB
1 will receive a value X updated only by cA

0 and not by cA
0 and cC

2 . As a
result, cB

1 operates on incorrect X value, which compromises data correctness. Hence, the shared
memory must first send data to cE

3 and then to cC
2 and cB

1 . This blocking of data communication
from the shared memory to cC

2 and cB
1 due to cE

3 is highlighted in red in Figure 6.1.
Solution. One potential solution is to prioritize data responses from shared memory to critical
tasks over data responses to level E tasks. However, we observe that prioritization can indefinitely
defer the data responses to level E tasks, which limits level E tasks’ effectiveness to MCS func-
tioning. For the example in Figure 6.1, consider that the shared memory prioritizes responses to
cC2 and cB1 over the response to cE3 . Since cB1 does a write operation, the memory and cB1 move to
the modified state (M) after sending and receiving X respectively. After cB1 completes the write
operation, two conflicting scenarios exist that prevent cE3 to receive X: (1) the shared memory
cannot send X to cE3 as it must wait for cB1 to write-back the updated X, and (2) cB1 does not mark
X for write-back as it does not observe the pending read from cE3 , which was issued earlier than
cB1 ’s request. Hence, an alternative solution that does not indefinitely defer data responses to
level E tasks is necessary.

Revisiting the above example, we observe that if cE3 aborts its current request to X on observ-
ing remote requests to X from critical cores and retries its request to X after observing requests
from cC2 and cB1 , then cB1 observes the request from cE3 and schedules the write-back response for
X. The order of requests observed by the shared memory will be cC2 , cB1 , and cE3 , and the shared
memory can send the updated X to cE3 after cB1 completes its write-back. Hence, the abort-and-
retry mechanism ensures that critical cores will not be blocked by data responses to level E cores
and level E cores will receive their data responses. Note that this mechanism in CARP offers a
trade-off between the value received by a level E core for a request to shared data and the free-
dom from blocking due to communication to/from level E cores on the WCL bounds of critical
cores. In particular, a level E core may receive a more updated value of the requested data com-
pared to the value of the data when the level E core broadcasted its first request to the requested
data. We find this trade-off to be acceptable as ensuring no interference from non-critical cores
to the temporal requirements of critical cores is a key safety requirements in MCS [42, 44].

6.4.2 Interference due to write-back responses
Observation. Hassan et al. [74] proposed the PWB data structure in the CC to isolate requests
made by a core that miss in the private cache and write-back responses due to memory activity

123

A B C A B C A B C A B

Worst-case latency

cA0
cB1
cC2
cE3 Latency due to arbitration

WB X WB Y WB Z
Blocking latency due to level A-D task

1 2 3 4 5 6 7 8 9 10 11
Blocking latency due to level E task

Broadcast request Broadcast write-back Data transfer

X

Y
Z

Figure 6.2: Blocking communication due to write-back responses.

from other cores [74]. They applied a predictable work conserving round-robin (RR) arbitra-
tion mechanism between the PR and PWB buffers as both cache miss requests and write-back
responses require access to the shared bus [74]. However, their cache coherence protocol does
not consider communication between mixed-critical and non-critical tasks [74]. Using Figure
6.2, we show that the current PWB design can cause blocking interference to critical cores in the
presence of data communication between critical and non-critical cores.

Figure 6.2 modifies the example in Figure 6.1 such that cE3 , cC2 and cB1 access different data
blocks (X, Y, and Z respectively) that are modified by cA0 and reside in cA0 ’s private cache. Hence,
cE3 requests X in slot 2, cC2 requests Y in slot 3, and cB1 requests Z in slot 5. On observing these
requests, cA0 marks blocks X, Y, and Z for write-back by placing these blocks in its PWB buffer.
Based on the guidelines listed in [74], write-back responses in a core’s PWB are scheduled in a
first-in-first-out (FIFO) order. Hence, in the first available slot of cA0 that is marked for write-back,
which is slot 4 in Figure 6.2, cA0 will write-back X followed by write-backs to Y and Z in slots
7 and 10, respectively. Although the data requested by the critical cores are different from that
requested by cE3 , the FIFO order of draining the write-backs results in blocking communication
to the critical cores as highlighted in Figure 6.2. In Figure 6.2, data response to cC2 (Y) is blocked
by the write-back response for cE3 on X, which further blocks the data response to cB1 (Z).
Solution. To eliminate this blocking interference, we partition the PWB of each core to isolate
write-back responses for critical cores and non-critical cores, and schedule write-back responses

124

from the partition containing write-back responses to non-critical cores in slack. Applying this
approach for the example in Figure 6.2, cA0 will schedule the write-backs to Y and Z in slots 4
and 7 respectively, and does not incur any blocking interference from cE3 ’s write-back response.

The rationale for using slack to schedule write-back responses for non-critical cores is based
on the observation that implementing a cache coherence protocol for data communication in-
creases the availability of slack in the system. This occurs because cores experience a larger
number of hits in their private caches, which reduces the number of accesses to the shared mem-
ory. In turn, this reduces the utilization of the cores’ allocated slots rendering them to be slack.
Our evaluation shows that when using cache coherence, up to 40% and 76% of the allocated slots
are unused for synthetic and real-world benchmarks rendering them as slack. Conventional slack
allocation policies allocated slack to low criticality and non-critical cores that have pending re-
quests [66,83,99]. In this work, we propose a different slack allocation policy that allocates slack
for ready requests from low criticality and non-critical cores and pending write-back responses
from non-critical PWBs across cores. Scheduling write-back responses due to non-critical cores
in slack ensures no blocking interference due to write-backs on the WCL bounds of critical cores.

Note that CARP allows bounded timing interference on the timing guarantees of levels A-
D cores due to other levels A-D cores. This bounded timing interference comes from the (1)
predictable arbitration on the shared memory and (2) read-write memory activity of other levels
A-D cores. Timing interference from (1) is a natural consequence when arbitrating accesses to
a shared resource. The ISO-26262 standard suggests that tasks of different criticality levels can
co-exist in the same memory partition as long as a lower critical task does not interfere with the
timing requirements of a higher critical task (ISO-26262-9 §6.5) [42]. Given the examples of
timing interference listed in ISO-26262 (Annex D in ISO-26262-6) [42], CARP does not allow
for unbounded blocking of execution.

6.5 CARP implementation
In this section, we describe implementations of the techniques presented in Section 6.4. To imple-
ment abort-and-retry, level E cores must differentiate the criticality levels of requests broadcasted
on the bus. Similarly, the PWB partitioning mechanism requires critical cores to differentiate be-
tween critical and non-critical requests to enqueue write-back responses in the appropriate PWB
partitions. To this end, CARP’s coherence protocol and architectural extensions enable CARP to
be criticality aware. Figure 6.3 shows CARP’s protocol state machine and the architectural ex-
tensions necessary to support CARP. CARP implements two coherence protocols: (1) for level
A-D cores (Figure 6.3a) and (2) for level E cores (Figure 6.3b). Figure 6.3c shows the architec-
tural extensions. Tables 6.2 tabulates the protocol state machine of CARP at the private cache
level and shared memory level respectively. Table 6.4 describes the t-states introduced to sup-

125

(a) CARP cache coherence protocol
for levels A, B, C, D cores

(b) CARP cache coherence
protocol for level E cores (c) CARP architectural extensions

M

I

S

Wl

Wl
Wl

Wl Rl

Rl

Wl

Wl
Rl

Wl

RWl

Rl

RWl

Rl RWl

Rl

Wl

RWl

RWl

RWl

RE

Rl

2

3

S
RE

RE
R/WA/B/C/D

RE 1

I

WA/B/C/DRE

RERl
Wl

4

Core activity Data response
Reissue request

Rl: Read from criticality level l
Wl: Write from criticality level l Transient state

Abort-and-Retry state
Remote core activity

Address Address

Address Core ID Coherence
message

CL

3 bits

Address

MCS arbiter

Shared memory

Critical PWB
RR arbitration

Criticality register (3bits)

Core c0
D-$ I-$ CC

c1
cn

PR

PR LUT

Non-Critical PWB

Figure 6.3: CARP protocol specification.

port criticality awareness. In Table 6.4, we describe the events leading to the t-state (Cause
field), and the operations executed by the CC in the t-state (Action field).

126

Core events Bus events

R
ea

d

W
ri

te

Rep
lac

em
en

t

O
w

nD
at

a

O
w

nU
pg

O
w

nP
ut

M

Othe
rG

etS
fro

m
A-D

co
res

Othe
rG

etS
fro

m
E

co
res

Othe
rG

etM
/O

the
rU

pg

O
th

er
Pu

tM

I
Issue

GetS/IS D
Issue

GetM/IM D
— — — —

S
Hit, Complete

read
Issue

Upg/SM D
I/- — — -/I

M
Hit, Complete

read
Hit, Complete

write
Issue

PutM/MI A
Issue

PutM/MS A PutM/MS AE
Issue

PutM/MI A

IS D Complete read/S If E core, -/AR,
else — — If E core, -/AR,

else -/IS DI
—

IM D Complete write/M -/IM DS -/IM DSE -/IM DI —

SM A Stall Complete
write/M — — Reissue write/I

MI A
Hit, Complete

read
Hit, Complete

write — Write-back to
memory/I — — —

MS A
Hit, Complete

read
Hit, Complete

write -/MI A
Write-back data

to memory/S — — -/MI A

MS AE
Hit, Complete

read
Hit, Complete

write -/MI A
Write-back data

to memory/S -/MS A — -/MI A

IM DI
Complete write,

issue
PutM/MI A

— — — —

IS DI Complete read/I — — — —

IM DS
Complete write,

issue
PutM/MS A

— — -/IM DI —

IM DSE
Complete write,

issue
PutM/MS A

— -/IM DS -/IM DI —

Table 6.2: Private memory states for CARP. issue msg/state means the core issues the message msg and move to
state state. A core issues a read/write request. Once the cache line is available, the core reads/writes it. A core
needs to issue a replacement to write back a dirty block before eviction. Changes to PMSI are highlighted.

State Core events
GetS from A-D cores GetS from E cores GetM PutM Data from core

IoS Send data to requesting core/IoS Send data to requesting core/IoS Send data to requesting core/M —
M Clear owner/IoS D Clear owner/IoS D Update owner to requesting core/M Clear owner/IoS D

IoS D Cancel pending level E core requests, Stall Stall Stall Stall Write memory/IoS

Table 6.3: Shared memory states for CARP protocol.

127

Table 6.4: t-states and transitions introduced in CARP.

t-state Cause Action
AR (1) A level E core waiting for data

response observes a remote
read/write request from a critical
core.

Level E core aborts and retries its
request.

MS AE (2) A critical core that has modified
data in private cache observes a
remote read request from level
E core.

The critical core enqueues write-
back response in non-critical PWB.

MS A (3) A critical core that has modified
data in private cache observes a re-
mote read request from another crit-
ical core.

The critical core enqueues write-
back response in critical PWB and
removes any matching entry in non-
critical PWB.

IM DSE (4) A critical core waiting for data re-
sponse to complete write operation
observes remote read request from
level E core.

After completing write on data re-
sponse, core enqueues write-back
response in non-critical PWB.

6.5.1 Implementing abort-and-retry for level E cores
CARP introduces a criticality register in each core’s cache controller that tracks the criticality
level of the current task scheduled for execution by the real-time operating system (RTOS) as
shown in Figure 6.3c. This allows the cache controller to broadcast the criticality level. Initial-
izing the contents of the criticality register can be done either by the RTOS scheduler, or by the
task through software extensions prior to a task’s execution. The cache controller (CC) looks up
the criticality level in this register when generating coherence messages.

Figures 6.3a and 6.3b show the protocol specifications to support abort-and-retry memory
requests. For each request generated by a core, the core’s CC looks up the contents of the
criticality register and broadcasts the request along with the core’s criticality information. For
critical cores, the CCs broadcast read (R) and write requests (W) as Rl and W l respectively
where l ∈ {A,B,C,D} based on the criticality register contents. For non-critical cores, the CCs
broadcast read requests as RE.

Figure 6.3a shows CARP’s protocol specifications for data communication between critical
tasks in which all critical cores follow the same transitions and state changes for data communica-
tion between critical cores. On the other hand, Figure 6.3b shows CARP’s protocol specifications
for data communication between level E cores and critical cores in which different transitions are
exercised based on the criticality levels of the remote requests. We revisit the example in Section

128

6.4.1 to highlight the state transitions for cE
3 in Figure 6.3b and for cores cC

2 and cB
1 in Figure 6.3a.

cE
3 broadcasts its request to X, and transitions from I to a transient state that denotes cE

3 is waiting
on data from the shared memory. The shared memory records cE

3 ’s pending request in the PR
LUT. cA

0 observes the level E remote read request on the shared bus, and updates its non-critical
PWB with a pending write-back response to X. cA

0 then transitions from M → 2 . While cE
3

is waiting for the data response, cC
2 broadcasts a request to X. Due to this broadcast, two state

transitions are exercised: (1) cA
0 observes a critical read request and transitions from 2 → 3

(Figure 6.3a) and updates its critical PWB with a pending write-back response to X and (2) cE
3

observes a critical read request and moves to the transient state denoted as 1 in Figure 6.3b. At
transient state 1 , cE

3 aborts its current request, and retries the read request to X by regenerating
the read request.

Aborting a request requires discarding all information about the request from the system. In
cA
0 , there are two pending write-back responses to X: (1) in the non-critical PWB due to cE

3 ’s
request and (2) in the critical PWB due to cC

2 ’s request. At the PR LUT, there is an entry cor-
responding to requests from cE

3 and cC
2 . Hence, the aborting mechanism discards the write-back

response in cA
0 ’s non-critical PWB due to cE

3 ’s request and the PR LUT entry corresponding to
cE
3 ’s request. Discarding entries in the non-critical PWB is done during the transition between

transient states 2 to 3 . Prior to updating the critical PWB, the CC scans the non-critical PWB
for write-back responses to the same data, and discards them. CARP extends the PR LUT with
criticality information and introduces logic in the shared memory controller that discards entries
for level E cores in the PR LUT when the shared memory observes critical cores’ data commu-
nication on the same data.

The above set of transitions for cE
3 repeat on observing cB1 ’s remote request to X. Hence, the

final order of requests observed by the cores and shared memory to X is: cC
2 , cB1 and cE

3 . If there
are no other requests to X from other critical cores between cE

3 request and its response from
shared memory, X in cE

3 transitions to S on receiving X from the shared memory. Note that in the
presence of critical requests to the same shared data, E-cores can continuously abort and retry
their memory requests. We allow for this as temporal bounds are not required for level E cores.

6.5.2 Implementing PWB partitioning and slack scheduling for non-critical
write-back responses

To address the blocking interference due to a single per-core PWB buffer (Section 6.4.2), CARP par-
titions the PWB into a critical-PWB and a non-critical PWB as shown in Figure 6.3c. Critical
PWB enqueue write-back responses due to requests from critical cores, and non-critical PWB
enqueue write-back responses due to requests from non-critical cores. For the example in Fig-
ure 6.2, the critical-PWB of cA0 will have write-back responses for Y and Z, and the non-critical

129

PWB of cA0 will have write-back response for X. To ensure that critical cores are not blocked by
write-back responses due to level E cores, the arbitration policy between requests and write-back
responses is only applied to the PR buffer and critical-PWB partition as shown in Figure 6.3c.

At the start of a slack slot, we prioritize ready requests from levels C-D cores over write-back
responses and requests from level E cores as levels C-D cores execute higher criticality tasks. If
there are no ready requests from levels C-D cores, the critical and non-critical PWBs of all cores
are checked, and a write-back request is scheduled if found. If no ready requests from levels
C-D cores and write-back responses in the cores are found, the slack slot is allocated to a level
E core. We use RR to arbitrate across requests from multiple level E cores.

6.5.3 Hardware overhead
CARP protocol specifications and architectural extensions implement the three techniques de-
scribed in Section 6.4. Compared to the prior predictable cache protocol proposed by Hassan et
al. [74], CARP is criticality aware, and has additional transient states and transitions to eliminate
the blocking latency of level E cores on the WCL bounds of critical cores. CARP introduces
3-bits of additional hardware storage per core to store the criticality information of the task exe-
cuting on the core, and a 3-bit field in the PR LUT to support discarding of non-critical requests.
Hence, for an 8-core system, the hardware overhead of CARP is 27-bits.

6.6 Latency analysis
We derive the per-request worst-case latency (WCL) bound a core experiences when it accesses
data. The WCL bound of the requesting core has three latency components: (1) latency to
broadcast data request on the network (request latency), (2) latency for a remote core with an
updated copy of the requested data and/or the shared memory to place the data response on
the network (communication latency), and (3) the latency of the data response to arrive at the
requesting core (response latency). The arbitration scheme determines the request and response
latencies. The communication latency, however, depends on the simultaneous communication
between other cores in the system on the requested data. The WCL bound is the summation of
these latency components.

6.6.1 Preliminaries
We envision CARP to be deployed on prior MCS-specific arbitration schemes such as [27, 63]
that either combine different arbitration policies (TDM and RR) [27] or allocate different number
of slots based on the core’s criticality level (weighted TDM) [63]. The key features of these

130

cA0 cA0 cB1
T

X0

R

Y0
cA0 cB1 cA0 cA0 cB1cA0 cB1

TDM phase RR phaseSW

P

Figure 6.4: Generalized MCS arbitration scheme [27].

arbitration schemes are: (1) differential service guarantees to cores based on their criticality
levels [27,63], and (2) slack allocation for lower critical tasks [25,66]. We capture these features
in a representative arbitration scheme (shown in Figure 6.4), and use this scheme to derive the
WCL bounds. Computing details such as the allocation of slots to cores is beyond the scope of
this work; hence, these details are abstracted as arbitration parameters in the latency analysis.

The generic arbitration scheme consists of two arbitration phases: a weighted TDM arbitra-
tion phase (TDM-phase), and a RR arbitration phase (RR-phase). Levels A and B cores (CAB)
access the bus using TDM arbitration policy, and levels C and D cores (CCD) access the bus using
RR arbitration policy. We set the TDM slot width SW to be equal to completing one memory ac-
cess. This slot width takes into account the latency to communicate coherence messages and data
between cores and shared memory via the shared bus. We assume that the allocation of TDM
slots to cores (arbitration schedule) is computed off-line. We denote si as the number of slots al-
located to cli in the weighted TDM schedule. For example, s0 = 3 and s1 = 2 in Figure 6.4. For a
core cli, we use Xi to mean the maximum number of slots between its next dedicated slot, and Yi
as the next maximum number of slots between its next dedicated slot. A RR-phase consists of a
sequence of time slots that are distributed to cores in a work-conserving RR manner. Once a core
is granted access to the bus in a RR-phase, it relinquishes access when the request is completed
or a threshold amount of time (SW) elapses when the core is granted access to the bus. We
denote R as the number of slots between two RR-phases as shown in Figure 6.4. A RR-phase is
augmented with a reserve time slot to avoid bus interference between cores accessing the bus in
RR-phase and TDM-phase phases [27]. In-flight requests that accessed the bus in a RR-phase are
allowed to complete in the reserve slot. However, new requests from cores are not allowed to
access the bus in the reserve slot. The length of a RR-phase, which includes the reserve slot, is
denoted as T . The key difference between slots in the RR-phase and TDM-phase is that cores
can access the bus at any time instance in a RR-phase, whereas cores access the bus at the start of
a slot in a TDM-phase. The arbitration period is denoted as P . Level E cores are granted access
to the bus in slack. We denote the latency to transfer data from the shared memory to the core as
Lacc. Table 6.5 summarizes the symbols used in the latency analysis.

Note that CARP is not only designed for MCS-specific arbitration schemes, and can also be
deployed on a simple TDM arbitration scheme that allocates equal number of slots to all cores in

131

Table 6.5: Symbols used in latency analysis.

Symbol Description
SW Slot width
cli Core i running level l task
si Slots allocated to core cli
Xi Slots between two allocated slots of cli
Yi Slots between two allocated slots of cli
T Length of RR-phase (includes reserve slot)
R Slots between two RR-phases
P Arbitration period

the system. However, the latency analysis for levels C-D cores, and their impact on the analysis
of levels A-B cores will change as the analysis in the following section assumes RR allocation
for levels C-D cores.

6.6.2 Analysis
First, we derive the worst-case request and data response latencies of a request issued by a core
under analysis cua based on its criticality level (Theorems 6-7). Then, we present a critical
instance that results in the worst-case communication latency incurred by cua’s request (Lemma
10). The critical instance identifies the memory access pattern of cores of different criticality
levels that interfere with the data response of cua’s request to X. From this critical instance,
Lemma 11 derives the worst-case number of cores and their criticality levels that interfere with
cua’s request, and Theorems 8-9 derive the worst-case communication latencies of cua based on
the criticality levels of the interfering cores. The WCL bounds are computed for criticality levels
A-D. CARP does not provide any WCL bounds for level E cores; hence, we do not derive their
WCL bounds.

Theorem 6. The worst-case request latency for cua to X is given by:

WCLReq(cua) =

(2 +Xua + Yua)× SW : if l ∈ {A,B}
2×

(
d |C

CD|
T e × (1 +R)

+|CCD| − 1
)
× SW : if l ∈ {C,D}

Direct proof. Consider the following two cases. The first case is when l ∈ {A,B}, and the
second case is when l ∈ {C,D}. Suppose cua such that l ∈ {A,B} accesses the shared bus during
its pre-allocated TDM slot. In the worst-case, cua attempts to broadcast a request immediately
after the start of its TDM slot. Since requests must be broadcasted on the bus at the start of

132

the slot, cua can only successfully broadcast its request during its next pre-allocated TDM slot.
Thus, cua must wait for the duration of its own slot whose start it just missed, and all other
dedicated slots preceding its own next slot in the arbitration schedule (Xua) resulting in a latency
of (1 + Xua) slots. In the worst-case, this slot is allocated for servicing write-back responses.
As a consequence, cua must wait an additional (1 + Yua) for its next slot to broadcast its request.
Therefore, in the worst-case, the broadcast request latency for cua is (2 + Xua + Yua) slots.
Suppose cua such that l ∈ {C,D} accesses the shared bus. The worst-case scenario occurs when
cua attempts to broadcast a request when all other (|CCD| − 1) cores have pending requests.
Hence, cua is blocked from successfully broadcasting its request while the |CCD| − 1 pending
requests are serviced. These |CCD| − 1 cores can access the bus over multiple round-robin
arbitration rounds, which we compute by d |C

CD|
T
e. Therefore, cua must wait for (d |C

CD|
T
e) number

of reserve slots, and (d |C
CD|
T
e) number of R slots, which comprises of TDM slots of CAB cores.

After this delay, cua receives a slot to issue its request. However, in the worst-case, this slot
may be used to service cua’s write-back response. Consequently, cua must wait an additional
latency of (d |C

CD|
T
e × (1 +R) + |CCD| − 1) slots resulting in a total broadcast request latency of

2×
(
d |C

CD|
T
e × (1 +R) + |CCD| − 1

)
.

Theorem 7. The worst-case response latency for cua to receive X is given by:

WCLResp(cua) = WCLReq(cua) + Lacc

Direct proof. Data responses are also sent from shared memory at the start of the receiving core’s
slot. As a result, the worst-case response latency is equal to the worst-case request latency and
Lacc. We omit the proof of this theorem as it is similar to the proof of Theorem 6.

Lemma 10. The worst-case communication latency of cua where l ∈ {A,B,C,D} when data
is communicated across criticality levels occurs when cua issues a read or write request to line
X such that (1) α levels A and B cores broadcast write request to X before cua’s request is
broadcasted, and (2) β levels C and D cores broadcast write requests to X before cua’s request
is broadcasted.

Direct proof. There are two cases to consider. The first case proves by contradiction that a sce-
nario in which at least one A-D core broadcasts a read request instead of a write request to X
does not result in the worst-case communication latency. The second case proves by contradic-
tion that a scenario in which at least one A-D core broadcasts a write request after cua broadcasts
its request to X does not result in the worst-case interference latency. We use Figure 6.5 to assist
in the readability of the proof by contrasting these cases with the worst-case scenario for a 4-core
MCS multi-core platform.

133

Broadcast write A Receive A Request latencyBroadcast read A

WB

cA0 cA0 cB1 cA0cC2/cD3

Time

WB
WB

0 1 2 3 6 7 8 9 12 13 14 154 5 10 11 16 17 18 19 20 21 22 23 24 25 26 27 28 29

cA0 cA0 cB1 cA0cC2/cD3 cA0 cA0 cB1 cA0cC2/cD3 cA0 cA0 cB1 cA0cC2/cD3 cA0 cA0 cB1 cA0cC2/cD3

cA0
cB1
cC2
cD3

Figure 6.5: Worst-case instance for a 4-core system. cua is cA0 .

Suppose ∃ cli where l ∈ {A,B,C,D} that broadcasts a read request to X instead of a write
request. Recall from Section 6.2 that a read request from one core does not require write-backs
from other cores (SWMR invariant). As a result, cua will not experience any interference from
cli. Hence, cua’s data response will incur communication latency from α + β − 1 cores, which
is less than that from α + β cores. As an example, consider the following modification to the
worst-case scenario depicted in Figure 6.5: cC2 broadcasts a read request to X instead of a write
request. cC2 receives X in slot 16. Since cC2 ’s request is a read, and does not modify X, cD3 can
receive X and complete its write request in slot 17. cA0 waits for cD3 to complete the write-back
for X, and receives X in slot 24, which is less than the worst-case instance (30 slots).

Suppose ∃ cli where l ∈ {A,B,C,D} that broadcasts a write request after cua broadcasts
its request to X. As a result, cli will receive X after cua receives X. Hence, cua’s data response
will not incur any interference from cli resulting in communication latency less than that when
|α(l)|+|β(l)| cores broadcast write requests before cua broadcasts its request to X. As an example,
consider the following modification to worst-case scenario depicted in Figure 6.5: cB1 broadcasts
its write request to X after cA0 broadcasts its read request to X. Therefore, cA0 receives X before cB1
in slot 24, and does not incur the latency of cB1 to do a write-back resulting in a lower WCL.

Lemma 11. For cua where l ∈ {A,B,C,D}, the maximum number of level A-B cores (α(l)), and
the maximum number of level C-D cores (β(l)) that can broadcast requests before cua broadcasts
its request is given by:

α(l) =

{
|CAB \ {cua}| : if l ∈ {A,B}
|CAB| : if l ∈ {C,D}

β(l) =

 min(|CCD|, dWCLReq(cua)
P e × (T − 1)

+max(0, (O − |CE |))) : if l ∈ {A,B}
|CCD \ {cua}| : if l ∈ {C,D}

where O is the total number of slack slots in WCLReq(cua), and is computed as
O = WCLReq(cua)− dWCLReq(cua)

P e × T − α.

Direct proof. Suppose l ∈ {A,B}. From Theorem 6, WCLReq
ua comprises of Xua slots in which

|CAB|−1 cores can broadcast their requests to X. Hence, |α(l)| = |CAB\{cua}|when l ∈ {A,B}.

134

Suppose l ∈ {C,D}. From Theorem 6, WCLReq
ua comprises of at least R slots in which |CAB|

cores can broadcast their requests to X Hence, |α(l)| = |CAB| when l ∈ {C,D}.
Suppose l ∈ {A,B}. WCLReq

ua comprises of dWCL
Req
ua

P
e round-robin arbitration phases for CCD

cores to broadcast requests. Since the round-robin arbitration phase is of length T slots, and
consists of one reserve slot where cores are allowed to complete pending requests but cannot
broadcast requests, dWCL

Req
ua

P
e × (T − 1) level C-D cores can broadcast requests in WCLReq

ua .
Furthermore, we allow CCD cores to broadcast requests in slack slots that are not utilized by
CE cores. The total number of slack slots is denoted as O. If O − |CE| > 0, then there are
slack slots that can be utilized by CCD cores to broadcast requests. If O − |CE| ≤ 0, then there
are enough CE cores to utilize the slack slots. The maximum number of CCD cores that can
broadcast requests to X is bounded by |CCD|. Suppose l ∈ {C,D}. WCLReq

ua comprises of |CCD|
slots where all remaining |CCD|−1 receive a slot to broadcast requests. As a result, |CCD|\{cua}
cores can broadcast requests before cua broadcasts its request.

Theorem 8. The worst-case communication latency incurred by cua’s request to X where l ∈
{A,B} due to cmj ’s interfering write request to X is given by:

WCLComm
l,m =

{
d 2
sj
e × P × SW : if m ∈ {A,B}

(2× d |C
CD|
T e)× P × SW : if m ∈ {C,D}

Direct proof. cmj requires two allocated slots after broadcasting its request to receive the data for
X, and write-back X. This is because after cmj broadcasts its request to X, cmj receives X from
memory, and must write-back X in the next slot resulting in a latency of 2 allocated slots of cmj .
Suppose cmj such thatm ∈ {A,B}. Since cmj requires two slots to receive, update, and write-back
X, the total communication latency due to cmj ’s request to X is d 2

sj
e × P slots.

Suppose cmj such thatm ∈ {C,D}. Since cmj is granted access to the bus using RR arbitration

policy, cmj must wait (d |C
CD|
T
e−1)×P slots to receive X. Hence, the total communication latency

due to cmj ’s request to X is (2× d |C
CD|
T
e)× P slots.

Theorem 9. The worst-case communication latency incurred by cua’s request to X where l ∈
{C,D} due to cmj ’s interfering write request to X is given by:

WCLComm
l,m =

2×
(
d |C

CD|
T e × (1 +R)+

|CCD|
)
× SW : if m ∈ {A,B}

3×
(
d |C

CD|
T e × (1 +R)+

|CCD|
)
× SW : if m ∈ {C,D}

Direct proof. Suppose cmj such that m ∈ {A,B}. Recall that a core requires two allocated slots
to receive and modify X, and write-back X. As a result, cmj requires d 2

sj
e × P slots to complete

135

these operations on X. Since R denotes the number of slots between two successive round-robin
arbitration phases in the schedule, and |CCD| > T , 2 × (d |C

CD|
T
e × (1 + R) + |CCD|) > d 2

sj
e.

Hence, cua must wait 2 × (d |C
CD|
T
e × (1 + R) + |CCD|) slots to receive X. Suppose cmj such that

m ∈ {C,D}. When |CCD| > T , in the worst-case, cmj is allocated one slot in every round-robin

arbitration phase. As a result, cmj requires 2 × (d |C
CD|
T
e × (1 + R) + |CCD|) slots to receive and

modify X, and write-back X. Since cua is also allocated one slot in every round-robin arbitration
phase in the worst-case, cua must wait 3× (d |C

CD|
T
e × (1 +R) + |CCD|) slots to receive X.

Theorem 10. The total worst-case latency incurred by cua’s request to X where l ∈ {A,B,C,D}
is given by:

WCLTotal(cua) =
WCLReq(cua) +

∑
i∈α(l)+β(l)WCLComm

l,i

+WCLResp(cua)

Direct proof. The total WCL of cua’s request includes the worst-case request and data response
latencies, and the worst-case communication latency due to interfering cores |α(l)|+ |β(l)|.

6.6.3 Discussion
A key distinguishing feature between the WCL bounds of PMSI [74] and CARP is that WCL
bounds in CARP are independent of the number of level E cores. On the other hand, WCL
bounds in PMSI increase with level E cores as PMSI elevates level E cores to critical cores.
Hence, CARP provides tighter WCL bounds for critical cores compared to PMSI.

The above analysis derives the per-request WCL bound to shared data that has both read
and write permissions. On the other hand, the WCL bound of a request to shared data that has
only read permissions is SW cycles as there are no coherence transitions for read-only shared
data. Using static analysis tools, we envision the following process that utilizes the derived WCL
bounds to compute the end-to-end WCET of a task. Static analysis tools can provide information
on (1) the read/write patterns to a memory address and (2) the number of cores accessing a
memory address. Based on the read/write patterns to a memory address, the appropriate WCL
bound can be used, and the number of cores accessing a memory address can be used to substitute
the parameters α and β derived previously in the analysis. Hence, the WCET of the task can be
derived by applying this procedure to the memory addresses accessed by the task.

6.7 Methodology
We use gem5 [17] to evaluate CARP. gem5 is a micro-architectural simulator that models the
memory subsystem and coherence protocol with high precision. CARP is simulated on a multi-
core platform that comprises of 8 cores (c0-c7) running at 2GHz. Our simulated multi-core

136

Table 6.6: Hybrid arbitration policy parameters.

Parameter Value
P 15 slots

X0, X1, X2, X3 11, 11, 13, 13 slots
Y0, Y1, Y2, Y3 0 slots

R 12 slots
T 3 slots
SW 50 cycles

|α(A/B)|, |α(C/D)| 3 cores, 4 cores
|β(A/B)|, |β(C/D)| 2 cores, 2 cores

platform does not run an OS. The cores implement in-order pipelines, and cores can have a
single pending memory request. We allocate the following criticalities to the cores: cA0 , cA1 , cB2 ,
cB3 , cC4 , cC5 , cD6 , cE7 . Note that these allocations to cores are only done for empirical evaluation, a
different mapping is also possible. Each core has a private L1 32KB 4-way instruction cache and
32KB 4-way data cache. The access latency to each private cache is set to 3 cycles. All cores
share a 1MB set associative last-level cache (LLC). We configure the LLC such that all LLC
accesses are hits in order to isolate and focus on the impact of maintaining cache coherence on
the shared data access latencies. We set the LLC access latency to 50 cycles. Both the private L1
caches and shared LLC operate on cache line sizes of 64 bytes. The cores and the shared LLC
are connected via a shared snooping bus that deploys an instance of the generalized arbitration
policy described in Table 6.6.

We evaluate CARP against prior data communication mechanisms proposed for multi-core
real-time and MCS platforms such as (1) duplication of communicated data [60, 79], (2) cache
bypassing of communicated data [60,61,86], (3) mapping communicating tasks to the same core
[25], and (4) the recently proposed PMSI cache coherence protocol [74]. For the PMSI cache
coherence protocol, we elevate level E cores to critical cores as PMSI was designed for multi-
core real-time systems where all cores are of the same criticality level [74]. We also evaluate
CARP against MSI and MESI conventional cache coherence protocols [138]. Prior work showed
that that deploying conventional coherence protocols on a predictable bus arbitration scheme can
result in unbounded latencies for shared data accesses [74]. Hence, the conventional MSI and
MESI protocols are executed on a snooping bus that does not deploy a predictable arbitration
policy. We do not evaluate CARP against Pendulum [139] as it does not deal with tasks of
varying criticality levels, and does not provide enough guidance on setting timer values.

Our evaluation uses synthetic benchmarks and SPLASH-2 [157], a multi-threaded bench-
mark suite. In the synthetic benchmarks (Synth1-Synth9), all cores except cE

7 perform the same
sequence of operations (read/write) on shared data. cE

7 only performs read operations on shared
data. As a result, these benchmarks stress the states and transitions of CARP. The synthetic

137

Table 6.7: Observed WCL for synthetic benchmarks.

Level Analytical WCL (cycles) Observed WCL (cycles)
A 6600 4348
B 6800 3701

C/D 11200 6699

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
72

1.
76

1.
53 1.
64 1.
78

1.
58 1.
62 1.
72

1.
69

1.
67

2.
90 2.
98

2.
72 2.
92 3.
02

2.
75 3.

05 3.
13

3.
00

2.
943.

36

3.
28

3.
29

3.
32

3.
25

3.
23

3.
21 3.
42

3.
35

3.
30

4.
46

4.
28

4.
20 4.
25

4.
24 4.
32

4.
23 4.
39

4.
39

4.
31

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Synth-1 Synth-2 Synth-3 Synth-4 Synth-5 Synth-6 Synth-7 Synth-8 Synth-9 Average

Sp
ee

du
p

Cache bypassing Duplicate copy Task mapping PMSI CARP

Figure 6.6: Performance of design choices and CARP on synthetic workloads.

benchmarks vary with each other based on the proportion of read and write operations. For
these benchmarks, we run our simulation for 100,000 total memory operations across all cores.
The SPLASH-2 benchmark suite consists of multi-threaded benchmarks derived from various
domains such as graphics rendering, and scientific computation [157]. We use the SPLASH-2
benchmark suite due to a lack of available multi-threaded applications that operate on shared
data, and are representative of those used in MCS. We run all SPLASH-2 benchmarks until
completion. We used the SPLASH-2 benchmark to verify the data correctness of CARP, and
observed that all benchmarks terminated with correct data output when executed using CARP.

6.8 Results

6.8.1 Synthetic workloads
Observed WCL. Table 6.7 shows the per-request observed total WCL across synthetic bench-
marks deployed on CARP. CARP guarantees that the observed WCL are within the computed
WCL bounds for critical cores across all benchmarks. In all benchmarks, the maximum observed
request, data response, and communication latency components are within their respective ana-
lytical WCL bounds. We observe that the maximum request, and data response are equal to the
respective analytical WCL bounds, and the maximum observed communication latencies vary
across benchmarks as they are dependent on the memory activity on shared data. Benchmarks
do not reach the maximum communication latency derived from the analysis because cores com-
plete their requests earlier due to slack slots, and work conserving RR arbitration policies.
Average-case performance. Figure 6.6 shows the speedup in total execution time for the syn-
thetic benchmarks using the design choices described earlier and CARP. We normalize the exe-
cution time to the cache bypassing data communication mechanism. Duplicating communicated

138

data and mapping tasks to the same core offer better performance over private cache bypassing
as they allow communicated data to reside in the private caches. As a result, these techniques
offer 1.67x and 2.94x performance speedup over cache bypassing. Note that duplicating com-
municated data increases the arbitration period as it requires level A-D cores to communicate
updates to communicated data to the duplicate copies, and hence, does not perform as well as
the task mapping technique. Mechanisms that use cache coherence (PMSI and CARP) offer
better performance over task co-location technique as these mechanisms do not restrict task par-
allelism, and allow multiple copies of communicated data to reside in the private caches of all
cores. CARP performs better than PMSI (30% on average) due to slack allocation for level
E cores and the MCS arbitration schedule. Unlike PMSI, CARP is deployed on an arbitration
policy that allocates different number of slots to cores based on their criticality levels. As a re-
sult, level A-D communicate more than one data in an arbitration period, which improves their
communication throughput. CARP adds additional hardware logic such as looking up the PR
buffer for aborting and retrying level E cores’ requests, and identifying write-back candidates in
the non-critical PWB buffer. We evaluated CARP with slot width set to 55 cycles to model the
overhead of these lookups, and found that CARP still offered better performance improvements
over PMSI (10% on average).
Performance slowdown relative to MSI and MESI. We evaluate the performance slowdown
of CARP relative to the conventional MSI and MESI cache coherence protocols. Conventional
coherence protocols (MSI and MESI) are designed for average-case performance, and are not
designed to be predictable [49, 74]. These protocols are not deployed on a predictable bus ar-
bitration mechanism. As a result, a core can broadcast its request as soon as the CC generates
the request or immediately complete a write-back response on observing a remote write request.
CARP exhibits an average performance slowdown of 73% and 66% compared to the MESI and
MSI cache coherence protocols respectively. We find this slowdown reasonable for achieving
predictability.

6.8.2 SPLASH-2 workloads
For SPLASH-2 workloads, we run CARP with level A-D cores and no level E cores. This is
because, in SPLASH-2 workloads, all launched threads read and write on shared data structures
such as locks and conditional barriers during execution in order to maintain benchmark correct-
ness. We confirmed that the observed WCL bounds for level A-D cores are within the analytical
bounds (not shown). Figure 6.7 shows the performance speedup of CARP compared to PMSI
and the conventional MSI cache coherence protocol. The results are normalized to PMSI. We
observe that CARP offers a performance improvement of 4% over PMSI, and shows an average
slowdown of 60% compared to the conventional MSI protocol. In these benchmarks, thread bar-
riers force all threads to converge at the barrier before making forward progress. These barriers

139

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.
17

1.
03

1.
03 1.
08

0.
99

1.
01

0.
88 1.
01 1.
17

1.
04

1.
94

2.
66

1.
51 1.
63

1.
49

1.
31

1.
29

1.
14

2.
83

1.
67

0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3

Radiosity Radix FMM Cholesky Raytrace FFT Barnes LU Ocean Average

Sp
ee
du
p

PMSI CARP MSI

Figure 6.7: Performance of CARP on SPLASH-2.

are critical to maintain benchmark correctness. As a consequence, level A and B cores that may
benefit from the additional allocated slots end up waiting for level C and D cores that have fewer
allocated slots resulting in increased execution time.

6.9 Related works
There has been limited attention towards designing predictable data communication between
tasks of different criticality levels in a multi-core MCS platform [14, 25]. Chisholm et al. [25]
proposed a technique to allow data communication between levels A-C tasks in a multi-core
MCS platform. Their technique applied mechanisms such as cache bypassing, mapping commu-
nicating tasks to one core, cache locking, and data duplication to enable task communication. As
a result, their technique relies on OS and hardware support. In contrast, CARP is a hardware
technique that does not restrict the usage of caches, does not require a particular mapping of
tasks to cores, and does not duplicate communicated data. Becker et al. [14] proposed an alter-
native approach that constructed offline schedules of computation and memory phases of tasks
such that contending data communication between multiple tasks were not scheduled at the same
time. This approach relied on the availability of memory and compute details of the real-time
tasks. CARP on the other hand, does not require information about the compute and memory
behavior of the tasks.

Prior data communication techniques for multi-core real time systems used three main ap-
proaches: 1) disabled caching of communicated data in private caches [25, 61, 86], 2) replicated
communication data [79], and 3) scheduled tasks that communicate data with each other on the
same core through OS changes [23,25,52,79]. These approaches provided predictable data shar-
ing at the cost of reduced average-case performance. Alternatively, Pyka et al. [115] modified
the application such that data communication on the same data were protected using software
locks. The effect was that only one core performed data communication at any time instance.
CARP on the other hand allows multiple cores to carry out their data communication simultane-
ously. Hassan et al. [74] recently described a set of guidelines for predictable data communica-
tion between real-time tasks using hardware cache coherence, and proposed PMSI, a predictable
cache coherence protocol to that was built on these guidelines. CARP is also built using these

140

design guidelines, and includes additional features that enable CARP to be criticality-aware,
and satisfy requirements specific to MCS. Sritharan et al. [139] recently proposed Pendulum, a
time-based cache coherence protocol for dual-critical MCS systems. In this protocol, cores re-
tain lines in their private caches for a duration of time period irrespective of the remote memory
activity on the same lines, and the lines self-invalidate after the time period. The key novelty in
Pendulum was that the time periods for a line were configured based on (1) the owner’s criti-
cality level and (2) the remote cores’ criticality levels that issued memory requests to the same
line. As a consequence, in Pendulum, memory activity of non-critical cores on shared data con-
tributed to the WCL bounds of critical cores [139], which further requires an extension to the
safety guidelines put forward in the ISO-26262 and AUTOSAR standards. On the other hand,
CARP is designed to allow for data communication between critical and non-critical cores such
that memory activity of non-critical cores do not contribute to the WCL bounds of critical cores.

Recently, Sensfelder et al. [133] provided a formal framework to model and analyze the
latency interference in conventional bus based cache coherence protocols. We are motivated to
apply similar models to CARP in order to formally verify the sources of interference due to data
sharing in MCS, and reserve this exploration for future work.

6.10 Conclusion
As MCS platforms continue to integrate multiple complex tasks of varying criticality levels, en-
abling data communication between these tasks will be essential to realize added functionality
and improve the overall responsiveness of the MCS. In this work, we present CARP, a criticality-
aware hardware cache coherence protocol to realize predictable and high performance data com-
munication between tasks executing on a multi-core MCS without violating the safety require-
ments of critical tasks. Our evaluation of CARP using synthetic and real-world benchmarks
show that CARP guarantees the safety requirements of critical tasks, and improves average-case
performance of MCS compared to prior techniques.

141

Chapter 7

End-to-End Predictable and
High-Performance Real-Time Multi-Core
Platforms

Designing real-time multi-core platforms that deliver end-to-end timing predictability and high
average-case performance involves designing several pieces spanning across the software and
hardware compute stack. In this chapter, we show how the research contributions in this thesis
form a piece of this design exercise. We first describe the interaction between this thesis’s re-
search contributions and other timing compositional prior works to realize an end-to-end timing
predictable and high-performance multi-core compute architecture. Next, we discuss at a high
level how the timing analyses in this thesis can be incorporated into existing static timing analysis
techniques to compute a task’s total worst-case execution time (WCET).
Timing compositionality. Timing analysis of real-time multi-core platforms requires accounting
for all possible sources of timing interference when computing a task’s WCET. Prior approaches
to timing analysis used a non-compositional timing analysis approach that treated the multi-
core platform as a single indivisible unit. As a result, such timing analysis captured all possible
timing dependencies caused by accesses to shared resources (large state space), which made the
timing analysis extremely complex [59]. To deal with this complexity of the timing analysis,
recent works on achieving predictability in multi-core platforms rely on compositional timing
analysis that break away from the assumption that the multi-core platform is an indivisible unit
[59]. The key insight of compositional timing analysis is that a multi-core platform can be
decomposed into a set of independent components where the contribution of each component
to the total WCET can be analyzed separately [59]. The total WCET of a task on the multi-
core platform can be computed as a combination of the timing contributions. Prior works on
designing predictable memory hierarchies [60, 117], shared memory buses [63, 66, 132], and

142

Core0

Interconnect fabric
(Bus, NoC)

Shared LLC

Core2

Core1

Core3

Private
memories

Private
memories

DRAM
controller

1

Private
memories

Private
memories

2

3
4

5

Figure 7.1: Hardware compute stack of a real-time multi-core platform. Research contributions
in this thesis span across the highlighted layers.

predictable DRAM memory controllers [78, 159] relied on compositional timing analysis and
derived component specific contributions to the WCET. In this chapter, we decompose a task’s
WCET on a multi-core compute platform into two components: (1) time spent in cores’ compute
pipeline circuitry (WCLcompute) and (2) time spent on memory accesses and the interconnects to
access the shared memories (WCLmemory).

7.1 POTPOURRI: A (hypothetical) timing predictable and high-
performance real-time multi-core platform

The research contributions of this thesis focus on achieving timing predictability and high-
performance of one component of the compute stack, which is the shared data communication
between multiple cores. Hence, this thesis adopts the predictable computer architecture design
philosophy, which we described in Section 1.3.2 in Chapter 1. In this section, we show how our
research contributions fit in a real-time multi-core compute stack that is fitted with components
from other prior works that adopt the same predictable computer architecture design philosophy.

Figure 7.1 shows the hardware compute stack of a 4-core multi-core platform. For each
layer of the hardware compute stack (cores, private memories, and shared memories) we list
different designs that can be used. Table 7.1 describes one instance of POTPOURRI that chooses
a specific prior work for a hardware compute layer along with our predictable cache coherence
mechanisms.
Core architecture 1 . This level consists of the compute pipelines and control circuitry in the
cores. A recent work by Hahn and Reineke [58] presented the SIC core, a provably timing

143

Compute layer Design technique Description Contribution to WCET
Core 1 SIC cores by Hahn and Reineke

[58]
In-order cores free from timing
anomalies

WCLcompute

Private memories 2 Private split L1 caches with selfish
LRU replacement [119]

Improved identification and analy-
sis of cache hits and cache misses

WCLmemory

Shared interconnect fabric
3

Shared bus with work-conserving
TDM based arbitration [66]

Temporal isolation of shared
memory accesses while improving
average-case performance due to
work-conserving nature

WCLmemory

Shared LLC 4 Cache locking and cache partition-
ing support [25, 87]

Cache locking for frequently ac-
cessed shared data and cache parti-
tioning for per-core private data

WCLmemory

Shared data communica-
tion 2 , 3 , 4

PMESI* protocol from Chapter 4 Predictable and high-performance
shared data communication mecha-
nism

WCLmemory

Shared DRAM main-
memory 5

Conservative open-page policy
DRAM memory controller [48]

Better average-case performance
due to performance optimized
page-policy while providing timing
predictable

WCLmemory

Table 7.1: An instance of POTPOURRI using different related works that adopt predictable com-
puter architecture design philosophy.

predictable pipelined processor core. A SIC core has an in-order pipeline and is designed to
be free of timing anomalies [147]. Evaluation of the SIC core showed that it retains 93%-94%
of the average-case performance of a conventional in-order core while enabling precise timing
analysis. Hence, the four cores in Figure 7.1 can be designed as SIC cores. Other candidates for
the cores include the ones used in the PRET [33, 91] and T-CREST [128] projects.
Private memories 2 . A core’s private memories are exclusive memory components accessed
by the tasks running on the core. These can include private caches such as the L1 instruction and
data caches, unified L2 cache, and software programmable memories (scratchpad memories).
Software programmable memories are memory components that are managed by the software
application; the data contents of these memories are loaded and flushed by the software ap-
plication. Hence, software programmable memories offer better predictability (tighter WCET)
guarantees than hardware managed caches [123, 137, 143, 154]. However, hardware managed
caches offer advantages such as better average-case performance and software application porta-
bility. As a result, prior research works have focused on improving the timing predictability of
caches by designing better cache replacement policies [119], cache writing policies [15] (write-
through vs write-back), and data placement techniques [131]. Given the complimentary benefits
of caches and software programmable memories, we envision a core’s private memory hierarchy
to have both caches and software programmable memories.
Shared interconnect fabric 3 . The shared interconnect fabric is the interface between the
private memory components (private caches, software programmable memory) and the shared
memory components (shared LLC and shared main-memory). As discussed in Section 1.2 in
Chapter 1, the shared interconnect fabric is a source of timing interference that renders the timing

144

analysis of real-time applications on multi-core platforms challenging. There is a large body of
research focused on improving the timing predictability of this shared interconnect fabric, which
can either be a shared bus for small core counts [27, 47, 63, 66, 67, 109] or a network-on-chip
(NoC) for large core counts [46, 73, 83, 129, 130, 155].

Note that while the timing analysis of the predictable cache coherence mechanisms presented
in this thesis assume a shared snooping bus, snooping bus cache coherence protocols can also be
deployed on NoCs provided they exhibit snooping bus behavior [2]. As a result, the snooping
predictable cache coherence protocols proposed in this thesis can also be deployed on timing
predictable NoCs with appropriate extensions to support snooping bus behavior.
Shared memories 4 , 5 . The shared memories include the shared LLC and DRAM based main-
memory. Similar to the shared interconnect fabric, the shared memories are sources of timing
interference that complicate the timing analysis. For shared LLC, a number of research works
have focused on designing techniques such as data bypassing, cache partitioning and locking
and partitioning miss status handling registers (MSHRs) to improve their timing predictability
[20,86,87,94,141,150,153]. The DRAM based main-memory is controlled by a DRAM memory
controller. This memory controller is responsible for enforcing different policies of the DRAM
operation such as data placement (address mappings), page policy (open-page vs close-page), and
command scheduling (first-come first-serve first-ready FCFS, round-robin) [69]. These policies
operate within the timing constraints placed by the DRAM. To improve the timing predictability
of DRAM accesses, several works have focused on designing predictable DRAM controllers
[4, 48, 56, 64, 78, 118].

7.2 Deriving WCET under predictable cache coherence
In this section, we present a high-level description on computing a task’s WCET with predictable
cache coherence enabled. The objective of this section is to not provide a complete analysis
technique that integrates the timing analyses presented in this thesis with prior static timing
analysis techniques and tools such as [54,68,120,140,156]. Rather, we discuss some key insights
about the impact of predictable cache coherence on a task’s WCET. These insights can ultimately
lead to the integration of the timing analyses in this thesis into existing static analysis tools.

Recall that a task’s WCET is decomposed of WCLcompute and WCLmemory latency com-
ponents among which predictable cache coherence affects the latter component. WCLmemory

accounts for the worst-case memory access latency of all memory accesses issued by the task.
One derivation of WCLmemory is to assume that each memory access generated by a task takes
WCLcoherence cycles, which is the worst-case latency of a memory access under predictable
cache coherence; the total number of memory accesses generated by a task can be extracted
through static analysis of the task. However, such a WCLmemory is grossly pessimistic for two

145

key reasons. First, such a derivation assumes all memory accesses are subjected to the worst-case
scenarios under predictable cache coherence mechanisms. However, this need not be true as a
task may generate different types of memory accesses such as uncacheable memory accesses,
accesses to cacheable memory regions shared across multiple cores or accesses to cacheable
memory regions private to a core. A cacheable memory access looks up the contents of the
private cache levels and depending on whether the access is a cache hit or cache miss, looks
up subsequent cache levels and finally the shared memory. An uncacheable memory access
bypasses the cache hierarchy and directly accesses the shared main-memory. Different types of
memory accesses have different WCL. For example, a private memory region is accessed by only
one core. As a result, the worst-case scenarios under predictable cache coherence mechanisms
derived in this thesis do not apply to accesses to private memory regions as multiple cores cannot
access a memory region private to a core. Second, this derivation does not take into account that
some accesses during the execution of the task may be cache hits, which have significantly lower
WCL. Prior works on static cache analysis techniques such as [54,68,120,140] used information
about the cache organization (cache structure, replacement policy) and the task’s control flow to
precisely identify memory accesses that will result in cache hits (must-analysis) or cache misses
(may-analysis). Such static cache analyses are key towards deriving tighter WCLmemory com-
pared to a derivation that assumes all memory accesses are cache misses and are resolved by the
shared main-memory. Note that existing static cache analyses are limited to memory accesses to
memory regions that are private to a task; these techniques do not take into account changes to a
core’s cache state due to shared memory region accesses from other cores.

To this end, deriving a tight WCLmemory requires some classification of memory regions
such that prior must-and-may cache analysis techniques and the timing analyses presented in this
thesis can be appropriately applied. One such classification classifies a task’s memory regions
into uncacheable, private, and shared memory regions. We denote these regions as Mu, Mp

and Ms sets where Mu ∩Mp ∩Ms = φ. This classification can be done through static analysis
of the task. Equation 7.1 computes WCLmemory by applying the appropriate latency analysis
techniques based on this classification.

WCLmemory = Σm∈MuWCLsmem

+ Σm∈Mp

(
ISCACHEHIT(m,CI)×WCLcHit

+ (1− ISCACHEHIT(m,CI))×WCLcMiss

)
+ Σm∈MsWCLcoherence

(7.1)

For memory accesses to uncacheable memory regions Mu, Σm∈MuWCLsmem is the total
worst-case memory latency for such accesses. Since such accesses cannot be cached in the cache
hierarchy, all accesses will access the shared main-memory; WCLsmem is the worst-case shared

146

main-memory (DRAM) access latency. For memory accesses to private memory regions Mp, the
function ISCACHEHIT(m,CI) takes as input the memory access address and information about
the cache organization and replacement policy, which is denoted as CI and returns whether the
access is a cache hit or a cache miss. We rely on prior works such as [54, 68, 120, 140] for the
implementation of ISCACHEHIT(m,CI). A cache hit takes WCLcHit cycles and a cache miss
takes WCLcMiss cycles to complete (WCLcHit < WCLcMiss). Note that WCLcMiss includes
cache look-up and fill latency and the latency to access the shared main-memoryWCLsmem. For
memory accesses to shared memory regions Ms, WCLcoherence is the worst-case latency under
predictable cache coherence mechanisms derived in this thesis. For a task that makes accesses
to different types of memory regions, clearly the computation of WCLmemory in Equation 7.1 is
tighter than a derivation that assumes each memory access takes WCLcoherence cycles.

The worst-case timing analyses in this thesis computes the WCL under predictable cache
coherence for the worst-case access pattern, which is when multiple cores simultaneously modify
the same shared data. However, a task may exhibit different memory access patterns that are
different from the worst-case access pattern. Examples of such access patterns include read-
only, migratory sharing, and producer-consumer access patterns. Such patterns have lower WCL
compared to that under the worst-case access pattern. Hence, the combination of knowledge
about a task’s access pattern and deriving access pattern specific WCLs provides opportunities to
further tighten the derivation of the task’s WCET. In particular, by extracting information about
the access pattern across cores to memory addresses and applying the appropriate WCL for that
access pattern, we can further tighten the total worst-case memory latency of accesses to shared
memory regions, which in turns tightens the total task’s WCET.

147

Chapter 8

Conclusion and Future Works

As societal demands for more complex and integrated functionalities from real-time systems
continue to rise, reconciling average-case performance and timing predictability will become a
crucial design consideration for real-time compute platform manufacturers. This thesis advocates
the design and adoption of predictable hardware cache coherence mechanisms for achieving
high average-case performance and high timing predictability for shared data communication
between tasks deployed on multiple cores. The research contributions in this thesis shed light on
the timing and design intricacies associated with hardware cache coherence and propose deign
guidelines, techniques, and tools to design predictable and high-performance hardware cache
coherence mechanisms. The key contributions of this thesis include:

1. Bringing to attention different timing unpredictable scenarios that can arise when cores’
can cache copies of shared data in their private memories in a multi-core platform deployed
in hard real-time systems and MCS.

2. A design template in the form of design guidelines to design timing predictable hardware
cache coherence mechanisms. We present several cache coherence mechanisms using this
design template and validate their timing predictability and average-case performance ben-
efits.

3. A formal treatment and understanding of the relationship between predictable hardware
cache coherence mechanism design and their timing predictable and average-case perfor-
mance trade-offs.

4. A technique to design predictable hardware cache coherence mechanisms that exhibit high
timing predictability, which is on-par with state-of-the-art communication mechanisms,
while exhibiting significant average-case performance speedup over state-of-the-art com-
munication mechanisms.

148

5. A tool that automates the construction of predictable and high-performance cache coher-
ence protocols.

The research contributions in this thesis present the following future extensions.

1. Designing low power and secure hardware cache coherence mechanisms: The de-
sign trifecta for today’s compute systems (real-time and conventional) include: high-
performance, low power and security. This thesis is primarily concerned with achieving
timing predictability and high-performance. However, low-power and security are impor-
tant design goals for real-time systems given their deployment environment and safety-
critical nature respectively.

For example, low-power compute systems are crucial for automotive domains [89, 92].
Low-power compute systems do not stress the vehicles’ electrical power supply, which
in turn manifests in longer driving ranges. Given that data communication in compute
platforms contributes to a significant portion of the total power consumption [19], there
is merit in designing energy-efficient predictable hardware cache coherence mechanisms.
Energy-efficient predictable hardware cache coherence mechanisms can reduce the power
consumption footprint of data communication by limiting the number of cache lookups by
a core and the number of interactions with the DRAM main-memory. For example, explor-
ing the use of snoop filters to reduce the number of cache look-ups by a core on observing
memory activity on the snooping bus is one way to reduce the power consumption from
the cache coherence mechanism [100, 125].

Recent work by Yao et al. [160] highlighted the existence of a timing side-channel in exist-
ing hardware cache coherence mechanisms that can be exploited to leak sensitive informa-
tion stored in the compute platform. Such security breaches can translate to catastrophic
consequences in a safety-critical real-time setting. Hence, it is important to couple the pre-
dictable hardware cache coherence mechanisms presented in this thesis with RTOS-level
memory access and permission controls to prevent such security breaches [160].

2. Multi-processor predictable hardware cache coherence mechanisms: The slowdown
of Moore’s law and the emergence of data-intensive computations such as machine learn-
ing workloads have capped the performance benefits provided by traditional multi-core
compute platforms [32, 34]. To counter the slowdown of Moore’s law and accommo-
date emerging and dominant application designs, compute platforms are now integrating
multiple accelerators in the form of GPUs, programmable FPGAs, and custom machine
learning compute engines. For example, the MPSoC deployed in Tesla vehicles features
a conventional multi-core compute complex, a GPU, a neural-network accelerator (NNA),
and custom hardware for image signal processing and video encoding [145]. While the

149

research contributions presented in this thesis focus on achieving predictable cache coher-
ence within a multi-core compute platform, cache coherence extends across these multiple
processors [6, 110, 113, 169]. These heterogeneous processors on an MPSoC share the
same main-memory (DRAM) and have private memory hierarchies. As a result, data com-
munication between these processors must be handled in a coherent manner, which makes
cache coherence a natural solution. For MPSoCs deployed in safety-critical real-time sys-
tems, handling this data communication in a timing predictable manner while keeping in
mind different latency and throughput sensitivities of different processors is crucial.

150

References

[1] Advanced Micro Devices. AMD64 architecture programmer’s manual volume 2: System
programming, 2006.

[2] N. Agarwal, L. Peh, and N. K. Jha. In-network snoop ordering (inso): Snoopy coher-
ence on unordered interconnects. In 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, pages 67–78, 2009.

[3] Niket Agarwal, Li-Shiuan Peh, and Niraj K Jha. In-network coherence filtering: Snoopy
coherence without broadcasts. In Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 232–243, 2009.

[4] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: A predictable sdram
memory controller. In Proceedings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS ’07, page 251–256,
New York, NY, USA, 2007. Association for Computing Machinery.

[5] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert Ian
Davis. An empirical survey-based study into industry practice in real-time systems. In
2020 IEEE Real-Time Systems Symposium (Proceedings). York, 2020.

[6] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. Spandex: A flexible interface for
efficient heterogeneous coherence. In 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 261–274. IEEE, 2018.

[7] Sebastian Altmeyer, Robert I Davis, Leandro Indrusiak, Claire Maiza, Vincent Nelis, and
Jan Reineke. A generic and compositional framework for multicore response time anal-
ysis. In Proceedings of the 23rd International Conference on Real Time and Networks
Systems, pages 129–138, 2015.

[8] ARM, 2018.

151

[9] AUTOSAR. Autosar model constraints. volume 4.3.1, 2017.

[10] AUTOSAR. Overview of functional safety measures in autosar. volume 4.4.0, 2018.

[11] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt
Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, et al. Building timing
predictable embedded systems. ACM Transactions on Embedded Computing Systems
(TECS), 13(4):1–37, 2014.

[12] Thomas G. Baker. Lessons learned integrating cots into systems. In Proceedings of
the First International Conference on COTS-Based Software Systems, ICCBSS ’02, page
21–30, Berlin, Heidelberg, 2002. Springer-Verlag.

[13] A. Bansal, J. Singh, Y. Hao, J.Y. Wen, R. Mancuso, and M. Caccamo. Reconciling pre-
dictability and coherent caching. In 9th Mediterranean Conference on Embedded Com-
puting (MECO 2020), pages 1–6, Budva, Montenegro, June 2020.

[14] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte. Contention-free
execution of automotive applications on a clustered many-core platform. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 14–24, 2016.

[15] Pedro Benedicte, Carles Hernandez, Jaume Abella, and Francisco J. Cazorla. HWP:
Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET Es-
timates in Multicore Real-Time Systems. In Sebastian Altmeyer, editor, 30th Euromicro
Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 3:1–3:22, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[16] Jingyi Bin, Sylvain Girbal, D Gracia Perez, Arnaud Grasset, and Alain Merigot. Studying
co-running avionic real-time applications on multi-core COTS architectures. In Embedded
Real Time Software and Systems Conference, 2014.

[17] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. The Gem5 Simulator. ACM SIGARCH Computer Architecture News, 2011.

[18] Vamsi Boppana, Sagheer Ahmad, Ilya Ganusov, Vinod Kathail, Vidya Rajagopalan, and
Ralph Wittig. Ultrascale+ mpsoc and fpga families. In 2015 IEEE Hot Chips 27 Sympo-
sium (HCS), pages 1–37. IEEE, 2015.

152

[19] Shekhar Borkar. Thousand core chips: A technology perspective. In Proceedings of the
44th Annual Design Automation Conference, DAC ’07, page 746–749, New York, NY,
USA, 2007. Association for Computing Machinery.

[20] Eric Bost. Hardware support for robust partitioning in freescale qoriq multicore socs
(p4080 and derivatives). Freescale Semiconductor, Inc., Tech. Rep., 2013.

[21] Garo Bournoutian and Alex Orailoglu. Dynamic, multi-core cache coherence ar-
chitecture for power-sensitive mobile processors. In 2011 Proceedings of the Ninth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), pages 89–97. IEEE, 2011.

[22] Alan Burns and Robert I. Davis. A Survey of Research into Mixed Criticality Systems.
ACM Computing Surveys, pages 82:1–82:37, 2018.

[23] J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In ECRTS. IEEE, 2009.

[24] Francisco J Cazorla, Jaume Abella, Enrico Mezzetti, Carles Hernandez, Tullio Vardanega,
and Guillem Bernat. Reconciling time predictability and performance in future computing
systems. IEEE Design & Test, 35(2):48–56, 2018.

[25] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and F. D. Smith. Rec-
onciling the Tension Between Hardware Isolation and Data Sharing in Mixed-Criticality,
Multicore Systems. In RTSS. IEEE, 2016.

[26] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand,
Sarita V Adve, Vikram S Adve, Nicholas P Carter, and Ching-Tsun Chou. Denovo: Re-
thinking the memory hierarchy for disciplined parallelism. In 2011 International Confer-
ence on Parallel Architectures and Compilation Techniques, pages 155–166. IEEE, 2011.

[27] B. Cilku, B. Frömel, and P. Puschner. A dual-layer bus arbiter for mixed-criticality systems
with hypervisors. In International Conference on Industrial Informatics (INDIN), pages
147–151. IEEE, July 2014.

[28] ARM Cortex. Cortex-A9 MPCore. Technical Reference Manual, 2009.

[29] D. Dasari, B. Akesson, V. Nélis, M. A. Awan, and S. M. Petters. Identifying the sources
of unpredictability in cots-based multicore systems. In 2013 8th IEEE International Sym-
posium on Industrial Embedded Systems (SIES), pages 39–48, 2013.

153

[30] B. D. de Dinechin, R. Ayrignac, P. Beaucamps, P. Couvert, B. Ganne, P. G. de Massas,
F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and T. Strudel. A clustered manycore
processor architecture for embedded and accelerated applications. In High Performance
Extreme Computing Conference (HPEC), pages 1–6. IEEE, Sep. 2013.

[31] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. Under-
standing and optimizing asynchronous low-precision stochastic gradient descent. In Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture, pages
561–574, 2017.

[32] Chris Edwards. Moore’s law: What comes next? Commun. ACM, 64(2):12–14, January
2021.

[33] Stephen A. Edwards and Edward A. Lee. The case for the precision timed (pret) ma-
chine. In Proceedings of the 44th Annual Design Automation Conference, DAC ’07, page
264–265, New York, NY, USA, 2007. Association for Computing Machinery.

[34] L. Eeckhout. Is moore’s law slowing down? what’s next? IEEE Micro, 37(04):4–5, jul
2017.

[35] M. Elver, C. J. Banks, P. Jackson, and V. Nagarajan. Verc3: A library for explicit state
synthesis of concurrent systems. In DATE, 2018.

[36] Marco Elver and Vijay Nagarajan. Tso-cc: Consistency directed cache coherence for tso.
In 2014 IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA), pages 165–176. IEEE, 2014.

[37] Marco Elver and Vijay Nagarajan. Rc3: Consistency directed cache coherence for x86-
64 with rc extensions. In 2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 292–304. IEEE, 2015.

[38] Pak Eunji. Revisiting Resource Partitioning for Multi-core Chips: Integration of Shared
Resource Partitioning on a Commercial RTOS. 2017.

[39] Federal Aviation Administration (FAA). Position Paper CAST-32A. 2016.

[40] Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Christine Rochange, Tullio Var-
danega, and Francisco J Cazorla. Contention in multicore hardware shared resources:
Understanding of the state of the art. In 14th International Workshop on Worst-Case Exe-
cution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

154

[41] Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati, Marco Zulianello,
and Francisco J Cazorla. Assessing the suitability of the ngmp multi-core processor in the
space domain. In Proceedings of the tenth ACM international conference on Embedded
software, pages 175–184, 2012.

[42] International Organization for Standardization. ISO 26262, 2011.

[43] Takeshi Fukuda, Tasuku Ishigooka, and Fumio Narisawa. Multicore Migration Study in
Automotive Powertrain Domain. 2017.

[44] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-Biller,
Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange. Autosar–a world-
wide standard is on the road. In 14th International VDI Congress Electronic Systems for
Vehicles, Baden-Baden, volume 62, page 5, 2009.

[45] Phani Kishore Gadepalli, Gregor Peach, Gabriel Parmer, Joseph Espy, and Zach Day.
Chaos: a System for Criticality-Aware, Multi-core Coordination. In Real-Time and Em-
bedded Technology and Applications Symposium (RTAS). IEEE, 2019.

[46] Tushar Garg, Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. Hoplitebuf: Network
calculus-based design of fpga nocs with provably stall-free fifos. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 13(2):1–35, 2020.

[47] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele.
Scheduling of Mixed-criticality Applications on Resource-sharing Multicore Systems. In
International Conference on Embedded Software (EMSOFT), pages 17:1–17:15. ACM,
2013.

[48] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for mixed
time-criticality memory controllers. In 2013 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), pages 525–530, 2013.

[49] G. Gracioli and A. A. Fröhlich. On the influence of shared memory contention in real-
time multicore applications. In Brazilian Symposium on Computing Systems Engineering,
pages 25–30, Nov 2014.

[50] G. Gracioli and A. A. Fröhlich. Two-phase colour-aware multicore real-time scheduler.
IET Computers Digital Techniques, 2017.

[51] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and
Rodolfo Pellizzoni. A Survey on Cache Management Mechanisms for Real-Time Embed-
ded Systems. ACM Computing Surveys, 2015.

155

[52] Giovani Gracioli and Antônio Augusto Fröhlich. On the Design and Evaluation of a
Real-Time Operating System for Cache-Coherent Multicore Architectures. ACM SIGOPS
Operating Systems Review, 2016.

[53] Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni,
and Marco Caccamo. Designing Mixed Criticality Applications on Modern Heteroge-
neous MPSoC Platforms. In Euromicro Conference on Real-Time Systems (ECRTS).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[54] Daniel Grund and Jan Reineke. Toward precise plru cache analysis. In 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2010). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

[55] Daniel Grund, Jan Reineke, and Reinhard Wilhelm. A template for predictability def-
initions with supporting evidence. In Bringing Theory to Practice: Predictability and
Performance in Embedded Systems, pages 22–31. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, March 2011.

[56] Danlu Guo and Rodolfo Pellizzoni. A requests bundling DRAM controller for mixed-
criticality systems. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 247–258. IEEE, 2017.

[57] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Comparing cache archi-
tectures and coherency protocols on x86-64 multicore smp systems. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42,
page 413–422, New York, NY, USA, 2009. Association for Computing Machinery.

[58] S. Hahn and J. Reineke. Design and analysis of sic: A provably timing-predictable
pipelined processor core. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages
469–481, 2018.

[59] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in exe-
cution time analysis: Definition and challenges. ACM SIGBED Review, 2015.

[60] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Com-
munication Centric Design in Complex Automotive Embedded Systems. In ECRTS.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[61] D. Hardy, T. Piquet, and I. Puaut. Using Bypass to Tighten WCET Estimates for Multi-
Core Processors with Shared Instruction Caches. In RTSS. IEEE, 2009.

156

[62] M. Hassan. Heterogeneous MPSoCs for Mixed-Criticality Systems: Challenges and Op-
portunities. IEEE Design Test, pages 47–55, 2018.

[63] M. Hassan and H. Patel. Criticality- and requirement-aware bus arbitration for multi-core
mixed criticality systems. In RTAS. IEEE, 2016.

[64] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling DRAM memory
accesses for multi-core mixed-time critical systems. In RTAS. IEEE, 2015.

[65] Mohamed Hassan. Discriminative coherence: Balancing performance and latency bounds
in data-sharing multi-core real-time systems. In Euromicro Conference on Real-Time Sys-
tems (ECRTS). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

[66] F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding the shackles of time-division
multiplexing. In Real-Time Systems Symposium (RTSS), pages 456–468. IEEE, Dec 2018.

[67] Salah Hessien and Mohamed Hassan. The Best of All Worlds: Improving Predictability
at the Performance of Conventional Coherence with No Protocol Modifications. In IEEE
Real-Time Systems Symposium (RTSS), pages 1–12, October 2020.

[68] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache analy-
sis for wcet estimation. In 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 203–212. IEEE, 2011.

[69] Bruce Jacob, David Wang, and Spencer Ng. Memory systems: cache, DRAM, disk. Mor-
gan Kaufmann, 2010.

[70] Natalie D Enright Jerger. Chip multiprocessor coherence and interconnect system design.
PhD thesis, Citeseer, 2008.

[71] Natalie D Enright Jerger, Li-Shiuan Peh, and Mikko H Lipasti. Virtual tree coher-
ence: Leveraging regions and in-network multicast trees for scalable cache coherence.
In 2008 41st IEEE/ACM International Symposium on Microarchitecture, pages 35–46.
IEEE, 2008.

[72] Matthias Jung, Sally A. McKee, Chirag Sudarshan, Christoph Dropmann, Christian Weis,
and Norbert Wehn. Driving into the memory wall: The role of memory for advanced
driver assistance systems and autonomous driving. In Proceedings of the International
Symposium on Memory Systems (MEMSYS), pages 377–386, New York, NY, USA, 2018.
ACM.

157

[73] Evangelia Kasapaki and Jens Sparsø. Argo: A time-elastic time-division-multiplexed
noc using asynchronous routers. In 2014 20th IEEE International Symposium on Asyn-
chronous Circuits and Systems, pages 45–52. IEEE, 2014.

[74] A. M. Kaushik, M. Hassan, and H. Patel. Designing predictable cache coherence protocols
for multi-core real-time systems. IEEE Transactions on Computers, pages 1–1, 2020.

[75] Anirudh Mohan Kaushik and Hiren Patel. Automated synthesis of predictable and high-
performance cache coherence protocols. In Design, Automation, and Test in Europe Con-
ference (DATE), 2021.

[76] Anirudh Mohan Kaushik and Hiren Patel. A systematic approach to achieving tight worst-
case latency and high-performance under predictable cache coherence. In Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, 2021.

[77] Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. CARP: A Data
Communication Mechanism for Multi-Core Mixed-Criticality Systems. In Real-Time Sys-
tems Symposium (RTSS). IEEE, 2019.

[78] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A predictable and
command-level priority-based DRAM controller for mixed-criticality systems. In Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages 317–326.
IEEE, April 2015.

[79] N. Kim, M. Chisholm, N. Otterness, J. H. Anderson, and F. D. Smith. Allowing shared
libraries while supporting hardware isolation in multicore real-time systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 223–234. IEEE,
2017.

[80] Namhoon Kim, Bryan C Ward, Micaiah Chisholm, James H Anderson, and F Donelson
Smith. Attacking the one-out-of-m multicore problem by combining hardware manage-
ment with mixed-criticality provisioning. Real-Time Systems, 53(5):709–759, 2017.

[81] Rakesh Komuravelli, Sarita V Adve, and Ching-Tsun Chou. Revisiting the complexity of
hardware cache coherence and some implications. ACM Transactions on Architecture and
Code Optimization (TACO), 11(4):1–22, 2014.

[82] Rakesh Komuravelli, Matthew D Sinclair, Johnathan Alsop, Muhammad Huzaifa, Maria
Kotsifakou, Prakalp Srivastava, Sarita V Adve, and Vikram S Adve. Stash: Have your
scratchpad and cache it too. ACM SIGARCH Computer Architecture News, 43(3S):707–
719, 2015.

158

[83] Adam Kostrzewa, Selma Saidi, and Rolf Ernst. Slack-based Resource Arbitration for
Real-time Networks-on-chip. In Design, Automation & Test in Europe (DATE), pages
1012–1017. EDA Consortium, 2016.

[84] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. Run-time control to
increase task parallelism in mixed-critical systems. In Euromicro Conference on Real-
Time Systems (ECRTS), pages 119–128. IEEE, July 2014.

[85] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. A communication-centric ap-
proach for designing flexible dnn accelerators. IEEE Micro, 38(6):25–35, 2018.

[86] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared Data Caches Conflicts Re-
duction for WCET Computation in Multi-Core Architectures. In RTNS, 2010.

[87] Benjamin Lesage, Isabelle Puaut, and André Seznec. PRETI: Partitioned real-time shared
cache for mixed-criticality real-time systems. In RTNS. ACM, 2012.

[88] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A.
Lee. Predictable programming on a precision timed architecture. In Proceedings of the
2008 International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’08, page 137–146, New York, NY, USA, 2008. Association for Com-
puting Machinery.

[89] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia Tang,
and Jason Mars. The architectural implications of autonomous driving: Constraints and
acceleration. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’18, page
751–766, New York, NY, USA, 2018. Association for Computing Machinery.

[90] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 1973.

[91] Isaac Liu, Jan Reineke, David Broman, Michael Zimmer, and Edward A Lee. A pret
microarchitecture implementation with repeatable timing and competitive performance.
In 2012 IEEE 30th international conference on computer design (ICCD), pages 87–93.
IEEE, 2012.

[92] Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot. Caad: Computer architecture
for autonomous driving. arXiv preprint arXiv:1702.01894, 2017.

159

[93] Pejman Lotfi-Kamran, Michael Ferdman, Daniel Crisan, and Babak Faisafi. Turbotag:
lookup filtering to reduce coherence directory power. In 2010 ACM/IEEE International
Symposium on Low-Power Electronics and Design (ISLPED), pages 377–382. IEEE,
2010.

[94] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time
cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 45–54, 2013.

[95] Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun. Wcet
(m) estimation in multi-core systems using single core equivalence. In 2015 27th Euromi-
cro Conference on Real-Time Systems, pages 174–183. IEEE, 2015.

[96] Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo. Wcet
derivation under single core equivalence with explicit memory budget assignment. In 29th
Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[97] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip cache coherence is
here to stay. Communications of the ACM, 2012.

[98] Lucia G Menezo, Valentin Puente, and Jose-Angel Gregorio. Flask coherence: A mor-
phable hybrid coherence protocol to balance energy, performance and scalability. In
2015 IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), pages 198–209. IEEE, 2015.

[99] Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K. Baruah, and
John A. Scoredos. Mixed-criticality real-time scheduling for multicore systems. In Inter-
national Conference on Computer and Information Technology (CIT), pages 1864–1871,
Washington, DC, USA, 2010. IEEE Computer Society.

[100] Andreas Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-based co-
herence. In 32nd International Symposium on Computer Architecture (ISCA’05), pages
234–245. IEEE, 2005.

[101] Andreas Moshovos, Gokhan Memik, Babak Falsafi, and Alok Choudhary. Jetty: Filtering
snoops for reduced energy consumption in smp servers. In Proceedings HPCA Seventh In-
ternational Symposium on High-Performance Computer Architecture, pages 85–96. IEEE,
2001.

[102] Ann Steffora Mutschler. Car industry changing under the hood. 2021.

160

[103] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in avionics.
In European Dependable Computing Conference. IEEE, 2012.

[104] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. Multi-
core interference-sensitive wcet analysis leveraging runtime resource capacity enforce-
ment. In 2014 26th Euromicro Conference on Real-Time Systems, pages 109–118, 2014.

[105] NVIDIA. JETSON TK1: Unlock the power of the GPU for embedded systems applica-
tions, 2016.

[106] NXP. QorlQ® T4240, T4160 and T4080 Multicore Processors, 2018.

[107] N. Oswald, V. Nagarajan, and D. J. Sorin. ProtoGen: Automatically Generating Directory
Cache Coherence Protocols from Atomic Specifications. In ISCA, 2018.

[108] N Oswald, V Nagarajan, and D J Sorin. Hieragen: Automated generation of concurrent,
hierarchical cache coherence protocols. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 888–899, 2020.

[109] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and Mateo
Valero. Hardware support for WCET analysis of hard real-time multicore systems. In
ISCA. ACM, 2009.

[110] Songwen Pei, Myoung-Seo Kim, Jean-Luc Gaudiot, and Naixue Xiong. Fusion coher-
ence: scalable cache coherence for heterogeneous kilo-core system. In Advanced Com-
puter Architecture, pages 1–15. Springer, 2014.

[111] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for cots-based embedded systems. In 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 269–279, 2011.

[112] Jon Perez Cerrolaza, Roman Obermaisser, Jaume Abella Ferrer, Francisco Javier Ca-
zorla Almeida, Kim Grüttner, Irune Agirre, Hamidreza Ahmadian, and Imanol Allende.
Multi-core devices for safety-critical systems: A survey. ACM Computing Surveys, 53(4),
2020.

[113] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M Beckmann, Mark D
Hill, Steven K Reinhardt, and David A Wood. Heterogeneous system coherence for in-
tegrated cpu-gpu systems. In 2013 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 457–467. IEEE, 2013.

161

[114] Roger Pujol, Hamid Tabani, Jaume Abella, Mohamed Hassan, and Francisco J. Cazorla.
Empirical Evidence for MPSoCs in Critical Systems: The Case of NXP’s T2080 Cache
Coherence. In IEEE Design Automation and Test in Europe (DATE), pages 1–4, December
2020.

[115] A. Pyka, M. Rohde, and S. Uhrig. Extended performance analysis of the time predictable
on-demand coherent data cache for multi- and many-core systems. In SAMOS. IEEE,
2014.

[116] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and
Francisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded
cots processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4),
January 2012.

[117] Syed Aftab Rashid, Geoffrey Nelissen, Sebastian Altmeyer, Robert I Davis, and Eduardo
Tovar. Integrated analysis of cache related preemption delays and cache persistence reload
overheads. In 2017 IEEE Real-Time Systems Symposium (RTSS), pages 188–198. IEEE,
2017.

[118] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET DRAM controller: Bank
privatization for predictability and temporal isolation. In CODES+ISSS. IEEE, 2011.

[119] Jan Reineke, Sebastian Altmeyer, Daniel Grund, Sebastian Hahn, and Claire Maiza.
Selfish-lru: Preemption-aware caching for predictability and performance. In 2014 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
135–144. IEEE, 2014.

[120] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing predictability
of cache replacement policies. Real-Time Systems, 37(2):99–122, 2007.

[121] Alberto Ros and Alexandra Jimborean. A dual-consistency cache coherence protocol. In
2015 IEEE International Parallel and Distributed Processing Symposium, pages 1119–
1128. IEEE, 2015.

[122] Alberto Ros and Stefanos Kaxiras. Complexity-effective multicore coherence. In Pro-
ceedings of the 21st international conference on Parallel architectures and compilation
techniques, pages 241–252, 2012.

[123] Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. Hiding com-
munication delays in contention-free execution for spm-based multi-core architectures.

162

In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[124] RTCA Inc. Software Considerations in Airborne Systems and Equipment Certification.
1992.

[125] Valentina Salapura, Matthias Blumrich, and Alan Gara. Design and implementation of
the blue gene/p snoop filter. In 2008 IEEE 14th International Symposium on High Perfor-
mance Computer Architecture, pages 5–14. IEEE, 2008.

[126] C. E. Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and A. Wasicek. The ACROSS
MPSoC – A New Generation of Multi-core Processors Designed for Safety-Critical Em-
bedded Systems. In Euromicro Conference on Digital System Design, pages 105–113.
IEEE, Sept 2012.

[127] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. System level
performance analysis for real-time automotive multicore and network architectures. IEEE
TCAD, 2009.

[128] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso,
Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, et al.
T-CREST: Time-predictable multi-core architecture for embedded systems. Journal of
Systems Architecture, pages 449–471, 2015.

[129] Martin Schoeberl, David Vh Chong, Wolfgang Puffitsch, and Jens Sparsø. A time-
predictable memory network-on-chip. In 14th International Workshop on Worst-Case
Execution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[130] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. Patmos: A time-predictable microprocessor. Real-Time Systems, 54(2):389–
423, 2018.

[131] Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-predictable
data caches for chip-multiprocessors. In Software Technologies for Embedded and Ubiq-
uitous Systems. Springer Berlin Heidelberg, 2009.

[132] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. Timing analysis for tdma arbitra-
tion in resource sharing systems. In 2010 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 215–224. IEEE, 2010.

163

[133] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling Cache Coherence
to Expose Interference. In ECRTS. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019.

[134] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling Cache Coherence to
Expose Interference. In Euromicro Conference on Real-Time Systems (ECRTS 2019).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[135] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. On How to Identify Cache Co-
herence: Case of the NXP QorIQ T4240. In ECRTS, 2020.

[136] Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike O’Connor, and Tor M
Aamodt. Cache coherence for gpu architectures. In 2013 IEEE 19th International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 578–590. IEEE, 2013.

[137] Muhammad Refaat Soliman and Rodolfo Pellizzoni. Wcet-driven dynamic data scratch-
pad management with compiler-directed prefetching. In 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[138] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency and
cache coherence. Synthesis Lectures on Computer Architecture, 2011.

[139] Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, and Hiren Patel. Enabling
predictable, simultaneous and coherent data sharing in mixed criticality systems. In Real-
Time Systems Symposium (RTSS). IEEE, 2019.

[140] Gregory Stock, Sebastian Hahn, and Jan Reineke. Cache persistence analysis: Finally
exact. In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 481–494. IEEE, 2019.

[141] Vivy Suhendra and Tulika Mitra. Exploring Locking & Partitioning for Predictable Shared
Caches on Multi-cores. In DAC. ACM/IEEE, 2008.

[142] Abdulaziz Tabbakh, Xuehai Qian, and Murali Annavaram. G-tsc: Timestamp based co-
herence for gpus. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 403–415. IEEE, 2018.

[143] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Cac-
camo. A real-time scratchpad-centric os for multi-core embedded systems. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11,
2016.

164

[144] C. Takahashi, S. Shibahara, K. Fukuoka, J. Matsushima, Y. Kitaji, Y. Shimazaki, H. Hara,
and T. Irita. 4.5 a 16nm finfet heterogeneous nona-core soc complying with iso26262
asil-b: Achieving 107 random hardware failures per hour reliability. In 2016 IEEE Inter-
national Solid-State Circuits Conference (ISSCC), pages 80–81, 2016.

[145] E. Talpes, D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering, A. Jalote,
C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev. Compute solution for tesla’s full self-
driving computer. IEEE Micro, 40(02):25–35, mar 2020.

[146] ARM Technology. Arm expects vehicle compute performance to increase 100x in next
decade, 2015.

[147] Lothar Thiele and Reinhard Wilhelm. Design for timing predictability. Real-Time Systems,
28(2-3):157–177, 2004.

[148] V. Tran, Dar-Biau Liu, and B. Hummel. Component-based systems development: chal-
lenges and lessons learned. In Proceedings Eighth IEEE International Workshop on Soft-
ware Technology and Engineering Practice incorporating Computer Aided Software En-
gineering, pages 452–462, 1997.

[149] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K.
Martin, and Rajeev Alur. Transit: Specifying protocols with concolic snippets. In PLDI,
2013.

[150] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–12. IEEE, 2016.

[151] Dana Vantrease, Mikko H Lipasti, and Nathan Binkert. Atomic coherence: Leveraging
nanophotonics to build race-free cache coherence protocols. In 2011 IEEE 17th Interna-
tional Symposium on High Performance Computer Architecture, pages 132–143. IEEE,
2011.

[152] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of
Execution Time Assurance. In Real-Time Systems Symposium (RTSS), pages 239–243.
IEEE, Dec 2007.

[153] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making Shared Caches More
Predictable on Multicore Platforms. In ECRTS. IEEE, 2013.

165

[154] S. Wasly and R. Pellizzoni. A dynamic scratchpad memory unit for predictable real-time
embedded systems. In 2013 25th Euromicro Conference on Real-Time Systems, pages
183–192, 2013.

[155] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. Hoplitert: An efficient fpga noc for
real-time applications. In 2017 International Conference on Field Programmable Tech-
nology (ICFPT), pages 64–71. IEEE, 2017.

[156] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
et al. The worst-case execution-time problem—overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems (TECS), 7(3):1–53, 2008.

[157] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In ISCA. IEEE, 1995.

[158] Chun Wah Wallace Wu, Deepak Kumar, Borzoo Bonakdarpour, and Sebastian Fischmeis-
ter. Reducing monitoring overhead by integrating event- and time-triggered techniques.
In Runtime Verification, pages 304–321. Springer Berlin Heidelberg, 2013.

[159] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst Case Analysis of DRAM Latency in Multi-
requestor Systems. In RTSS. IEEE, 2013.

[160] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence protocol states
vulnerable to information leakage? In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 168–179. IEEE, 2018.

[161] G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. Schedulability analy-
sis for memory bandwidth regulated multicore real-time systems. IEEE Transactions on
Computers, 65(2):601–614, 2016.

[162] Yuan Yao, Guanhua Wang, Zhiguo Ge, Tulika Mitra, Wenzhi Chen, and Naxin Zhang.
Efficient timestamp-based cache coherence protocol for many-core architectures. In Pro-
ceedings of the 2016 International Conference on Supercomputing, pages 1–13, 2016.

[163] Xiangyao Yu and Srinivas Devadas. Tardis: Time traveling coherence algorithm for dis-
tributed shared memory. In 2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 227–240. IEEE, 2015.

[164] Xiangyao Yu, Hongzhe Liu, Ethan Zou, and Srinivas Devadas. Tardis 2.0: Optimized time
traveling coherence for relaxed consistency models. In 2016 International Conference on
Parallel Architecture and Compilation Techniques (PACT), pages 261–274. IEEE, 2016.

166

[165] H. Yun, R. Pellizzon, and P. K. Valsan. Parallelism-aware memory interference delay
analysis for COTS multicore systems. In ECRTS. IEEE, 2015.

[166] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory Ac-
cess Control in Multiprocessor for Real-Time Systems with Mixed Criticality. In Euromi-
cro Conference on Real-Time Systems (ECRTS), pages 299–308. IEEE Computer Society,
2012.

[167] Jason Zebchuk, Vijayalakshmi Srinivasan, Moinuddin K Qureshi, and Andreas Moshovos.
A tagless coherence directory. In Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 423–434, 2009.

[168] Guowei Zhang, Webb Horn, and Daniel Sanchez. Exploiting commutativity to reduce
the cost of updates to shared data in cache-coherent systems. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 13–25, 2015.

[169] Hongzhou Zhao, Arrvindh Shriraman, Snehasish Kumar, and Sandhya Dwarkadas. Pro-
tozoa: Adaptive granularity cache coherence. ACM SIGARCH Computer Architecture
News, 41(3):547–558, 2013.

[170] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez. BraceAssertion: Runtime Verification
of Cyber-Physical Systems. In International Conference on Mobile Ad Hoc and Sensor
Systems, pages 298–306. IEEE, Oct 2015.

[171] X. Zheng, C. Julien, R. Podorozhny, F. Cassez, and T. Rakotoarivelo. Efficient and
Scalable Runtime Monitoring for Cyber–Physical System. IEEE Systems Journal, pages
1667–1678, June 2018.

[172] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar Phanishayee,
Bianca Schroeder, and Gennady Pekhimenko. Tbd: Benchmarking and analyzing deep
neural network training. arXiv preprint arXiv:1803.06905, 2018.

[173] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. Intel® quick-
path interconnect architectural features supporting scalable system architectures. In Sym-
posium on High Performance Interconnects. IEEE, 2010.

167

	List of Figures
	List of Tables
	List of Publications
	Introduction
	Multi-Core Real-Time Systems
	Timing Predictability of Multi-Core Real-Time Systems
	Thesis Focus: Achieving Predictable and High-Performance Shared Data Communication Between Multiple Cores
	Motivation: Existing Predictable Shared Data Communication Mechanisms Constrain Application Performance
	Design Dilemma: Reconciling Predictability and High-Performance
	Our Approach: Predictable and High-Performance Shared Data Communication through Hardware Cache Coherence

	Key Benefits of Proposed Approach
	Thesis Contributions
	Structure of Thesis

	Background and Related Works
	Multi-Core Platforms
	Hardware Cache Coherence
	Related works
	Predictable management of shared hardware resources
	Predictable shared data communication mechanisms
	Hardware cache coherence mechanisms

	Designing Predictable Cache Coherence Mechanisms for Hard Real-Time Systems
	Introduction
	Main contributions
	Related Work
	System Model
	Design Invariants for Predictable Cache Coherence
	Inter-core Coherence Interference
	Intra-core Coherence Interference

	Predictable Cache Coherence Protocols
	Architectural Modifications
	Cache coherence protocol state machine modifications

	Latency Analysis
	Evaluation
	Verification
	Observed worst-case latencies
	Comparison against prior predictable approaches
	Comparison of PMSI, PMESI, and Opt-PMESI protocols

	Conclusion

	Balancing Predictability and High-Performance in Cache Coherence Mechanisms
	Introduction
	Main contributions
	Related work
	Motivation
	High level understanding behind the WCL gap
	Techniques to tighten the WCL

	System model
	Analyzing Predictable Cache Coherence Protocols
	Formal model of coherence protocols
	Design principles of cache coherence protocols

	Worst-case Asymptotic Latency Analysis (WCAL)
	Applying the formal model and analysis

	Tightening WCL bounds
	Evaluation
	Observed WCL
	Average-case performance

	Conclusion

	Automatic Construction of Predictable and High-Performance Cache Coherence Protocols
	Introduction
	Main contributions
	Related works
	Predictable hardware cache coherence
	Cache coherence protocol synthesis

	Synthia implementation
	Protocol specification in SynthiaDSL
	Constructing t-states and transitions due to shared bus communication
	Constructing t-states and transitions due to interleaving memory operations
	Handling replacements, transition actions, and shared memory protocol construction
	Correctness of protocols constructed by Synthia
	Limitations of Synthia

	Case study: Predictable MESIF (PMESIF) cache coherence protocol
	Results
	Conclusion

	CARP: A Hardware Cache Coherence Mechanism for Multi-Core Mixed-Criticality Systems
	Introduction
	Motivation
	System Model
	High level overview of CARP
	Interference due to data responses from shared memory
	Interference due to write-back responses

	CARP implementation
	Implementing abort-and-retry for level E cores
	Implementing PWB partitioning and slack scheduling for non-critical write-back responses
	Hardware overhead

	Latency analysis
	Preliminaries
	Analysis
	Discussion

	Methodology
	Results
	Synthetic workloads
	SPLASH-2 workloads

	Related works
	Conclusion

	End-to-End Predictable and High-Performance Real-Time Multi-Core Platforms
	Potpourri: A (hypothetical) timing predictable and high-performance real-time multi-core platform
	Deriving WCET under predictable cache coherence

	Conclusion and Future Works
	References

