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Abstract

The incompressible Navier–Stokes equations are of major interest due to their importance
in modelling fluid flow problems. However, solving the Navier–Stokes equations is a difficult
task. To address this problem, in this thesis, we consider fast and efficient solvers. We are
particularly interested in solving a new class of hybridizable discontinuous Galerkin (HDG)
discretizations of the incompressible Navier–Stokes equations, as these discretizations result
in exact mass conservation, are locally conservative, and have fewer degrees of freedom than
discontinuous Galerkin methods (which is typically used for advection dominated flows).
To achieve this goal, we have made various contributions to related problems, as I discuss
next.

Firstly, we consider the solution of matrices with 2 × 2 block structure. We are in-
terested in this problem as many discretizations of the Navier–Stokes equations result in
block linear systems of equations, especially discretizations based on mixed-finite element
methods like HDG. These systems also arise in other areas of computational mathematics,
such as constrained optimization problems, or the implicit or steady state treatment of any
system of PDEs with multiple dependent variables. Often, these systems are solved itera-
tively using Krylov methods and some form of block preconditioner. Under the assumption
that one diagonal block is inverted exactly, we prove a direct equivalence between conver-
gence of 2 × 2 block preconditioned Krylov or fixed-point iterations to a given tolerance,
with convergence of the underlying preconditioned Schur-complement problem. In par-
ticular, results indicate that an effective Schur-complement preconditioner is a necessary
and sufficient condition for rapid convergence of 2 × 2 block-preconditioned GMRES, for
arbitrary relative-residual stopping tolerances. A number of corollaries and related results
give new insight into block preconditioning, such as the fact that approximate block-LDU
or symmetric block-triangular preconditioners offer minimal reduction in iteration over
block-triangular preconditioners, despite the additional computational cost. We verify the
theoretical results numerically on an HDG discretization of the steady linearized Navier–
Stokes equations. The findings also demonstrate that theory based on the assumption of
an exact inverse of one diagonal block extends well to the more practical setting of inexact
inverses.

Secondly, as an initial step towards solving the time-dependent Navier–Stokes equa-
tions, we investigate the efficiency, robustness, and scalability of approximate ideal restric-
tion (AIR) algebraic multigrid as a preconditioner in the all-at-once solution of a space-
time HDG discretization of the scalar advection-diffusion equation. The motivation for this
study is two-fold. First, the HDG discretization of the velocity part of the momentum block
of the linearized Navier–Stokes equations is the HDG discretization of the vector advection-
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diffusion equation. Hence, efficient and fast solution of the advection-diffusion problem is a
prerequisite for developing fast solvers for the Navier–Stokes equations. The second reason
to study this all-at-once space-time problem is that the time-dependent advection-diffusion
equation can be seen as a “steady” advection-diffusion problem in (d+ 1)-dimensions and
AIR has been shown to be a robust solver for steady advection-dominated problems. We
present numerical examples which demonstrate the effectiveness of AIR as a preconditioner
for time-dependent advection-diffusion problems on fixed and time-dependent domains, us-
ing both slab-by-slab and all-at-once space-time discretizations, and in the context of uni-
form and space-time adaptive mesh refinement. A closer look at the geometric coarsening
structure that arises in AIR also explains why AIR can provide robust, scalable space-time
convergence on advective and hyperbolic problems, while most multilevel parallel-in-time
schemes struggle with such problems.

As the final topic of this thesis, we extend two state-of-the-art preconditioners for the
Navier–Stokes equations, namely, the pressure convection-diffusion and the grad-div/augmented
Lagrangian preconditioners to HDG discretizations. Our preconditioners are simple to im-
plement and our numerical results show that these preconditioners are robust in h and
only mildly dependent on the Reynolds numbers.

vi



Acknowledgements

It has been a strenuous journey which seemed never-ending at times. I want to thank
everyone who encouraged me to push forward.

My supervisor, Dr. Sander Rhebergen, was always patient and supportive. He is one
of the most diligent and meticulous people I have ever met. I am grateful to him for the
guidance he provided.

Dr. Ben Southworth is a great research partner and we had many great talks. I would
like to thank him for being always ready to engage in meaningful and scholarly discussions.

To the great friends I made here, Giselle Sosa Jones, Tamás Horváth, Keegan Kirk, Eve
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Chapter 1

Introduction

The research presented in this thesis is on efficient solution techniques for the numerical so-
lution of the Navier–Stokes equations. The Navier–Stokes equations are useful in modelling
many fluid flows of interest and the efficient solution of these equations is an increasingly
important area of research. The goal of the research in this thesis is parameter-robust
preconditioners for linear systems resulting from the hybridizable discontinuous Galerkin
(HDG) discretization [89, 132] of the Navier–Stokes equations. The details of the HDG
discretizations are discussed in following chapters, while in the remainder of this chapter,
we provide a gentle discussion to emphasize the research problem.

The time-dependent incompressible Navier–Stokes problem is given by

∂t~u− ν∇2~u+ (~u · ∇)~u+∇p = ~f in Ω, (1.1a)

∇ · ~u = 0 in Ω, (1.1b)

~u|t=0 = ~u0, in Ω, (1.1c)

~u = ~gD on ∂ΩD, (1.1d)

ν
∂~u

∂~n
− ~np = 0 on ∂ΩN , (1.1e)

where ~u is a vector-valued function representing the velocity of a fluid, the scalar function
p represents the kinematic pressure, ν is a given constant called the kinematic viscosity,
~f is the given source term, ~gD is given boundary data, Ω ⊂ Rd is the domain of the
problem in dimension d = 2, 3, the boundary of Ω is partitioned as ∂Ω = ∂ΩD

⋃
∂ΩN with

∂ΩD

⋂
∂ΩN = ∅ and ~n denotes the outward normal vector to the boundary. In case of

large ν, there is a stable steady state solution as t→∞ which can be obtained by solving
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the stationary Navier–Stokes problem:

−ν∇2~u+ (~u · ∇)~u+∇p = ~f in Ω, (1.2a)

∇ · ~u = 0 in Ω, (1.2b)

~u = ~gD on ∂ΩD, (1.2c)

ν
∂~u

∂~n
− ~np = 0 on ∂ΩN . (1.2d)

Equation (1.2a) is called the momentum equation and Equation (1.2b) is called the continu-
ity equation. Note that, in the absence of Neumann boundary conditions, i.e. if ∂Ω = ∂ΩD,
the pressure p is only unique up to a constant. Therefore, if ∂Ω = ∂ΩD, we impose that
the pressure mean on Ω is zero for the problem to be well-posed.

Usually the equations are normalised with respect to the size of the domain and the
magnitude of the velocity to measure relative contributions of convection and diffusion. Let
L be the characteristic length of the domain, then ~ξ = ~x/L are the points in a normalised
domain where ~x are the points in Ω. Furthermore, let U be some reference value for the
magnitude of the velocity. We non-dimensionalize the velocity and pressure according to
~u = U~u∗ and p(L~ξ) = U2p∗(~ξ), respectively, where ∗ denotes the dimensionless variable.
Substituting these into Equation (1.2), we get

− 1

Re
∇2~u∗ + (~u∗ · ∇)~u∗ +∇p∗ =

L

U2
~f in Ω. (1.3)

Here Re := UL/ν is the Reynolds number which is used to measure the relative contri-
butions of convection and diffusion. Assuming L and U are chosen suitably, then Re ≤ 1
means that the flow is diffusion dominated. As Re grows, the flow becomes more convec-
tion dominated and it approaches the incompressible Euler equations as Re → ∞. We
will not directly use this form of the equations, however we will repeatedly refer to the
Reynolds number.

The Navier–Stokes equations can be solved using non-linear iterations, solving a linear
problem at each step. Given an initial guess (~u0, p0), a sequence of iterates are computed
which converges to the solution. These iterations most commonly take the form of
Newton or Picard linearizations. In this thesis, we use Picard iterations due to their large
radius of convergence and simplicity in implementation (see [37] and references therein for
a discussion on linearising the convection term (~u · ∇)~u).

Now we introduce the linearised Navier–Stokes equations, also known as the Oseen
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equations,

−ν∇2~u+ (~w · ∇)~u+∇p = ~f in Ω, (1.4a)

∇ · ~u = 0 in Ω, (1.4b)

in which the operator (~u · ∇) in Equation (1.2) has been replaced by (~w · ∇) in Equa-
tion (1.4a) and where ~w is a given velocity field. We define our Picard iterations by
choosing ~w = ~un−1 and solving

−ν∇2~un + (~un−1 · ∇)~un +∇pn = ~f in Ω, (1.5)

∇ · ~un = 0 in Ω, (1.6)

to generate a sequence of iterates (~ui, pi), for i = 1, 2, · · · , k. At each step, we compute
ε = max{||~ui − ~ui−1||/||~ui − ~u0||, ||pi − pi−1||/||pi − p0||}. When ε is less than some given
tolerance, we stop the iteration and set ~u = ~uk. Picard iterations are not likely to converge
if used to solve the strong form of the Navier–Stokes problem, however, some convergence
results for the Picard iterations applied to weak formulations of the Navier–Stokes problem
are available, for example, see [95, 37]. Furthermore, in the case of elliptic nonlinear weak
problems, we know that the number of Picard iterations required to convergence will be
independent of the mesh size given that the mesh is fine enough and the resulting linear
problem is solved sufficiently accurately [66, 70]. While the Navier–Stokes problem is not
elliptic, we observe the same phenomenon; as we refine the mesh, the number of Picard
iterations to convergence stay fixed.

The finite element method does not directly discretize the Oseen equations. Instead,
the finite element method discretizes the weak formulation of this problem. Letting V~α =
{~u ∈ [H1(Ω)]d|~u = ~α on ∂ΩD} and Q = L2(Ω) with H1(Ω) = {u ∈ L2(Ω)|∇u ∈ L2(Ω)},
the weak formulation of the Oseen equations is given by:

Find ~u ∈ VgD and p ∈ Q such that

a(~u,~v) + n(~w; ~u,~v)− b(p,~v) = (~f,~v)Ω for all ~v ∈ V0, (1.7)

b(q, ~u) = 0 for all q ∈ Q, (1.8)

where

a(~u,~v) = ν

∫
Ω

∇~u : ∇~v d~x,

n(~w; ~u,~v) =

∫
Ω

(~w · ∇~u) · ~v d~x,

b(p,~v) =

∫
Ω

p(∇ · ~v) d~x,

3



and where the dyadic operator : is the double dot product, and (·, ·) is the L2 inner product.

Conforming finite element methods are obtained by introducing finite-dimensional sub-
spaces V h

~α ⊂ V~α and Qh ⊂ Q. Here h signifies that the cardinality of these spaces depends
on the grid size. See [22, Chapters 0-2] for a good and in-depth explanation. The discrete
problem is: find ~uh ∈ V h

gD
and ph ∈ Qh such that

a( ~uh, ~vh) + n(~w; ~uh, ~vh)− b(ph, ~vh) = (~f, ~vh)Ω for all ~vh ∈ V h
0 , (1.9a)

b(qh, ~uh) = 0 for all qh ∈ Qh. (1.9b)

Remark 1.0.1. Here we would like to clarify what we mean by a grid. A grid is a non-
overlapping subdivision of the domain. We further impose the following conditions:

• shape-regularity: the ratios of the diameters of the inscribed and the circumscribed
circles for each element are bounded; and

• quasi-uniformity: the ratio of the sizes of any two elements in the subdivision is
bounded.

An example of a grid is given in Figure 1.1.

To obtain the underlying matrix formulation of this problem, let {~φi} and {ψi} be

bases, respectively, of the spaces V h and Qh so that ∃ui,pj s.t. ~uh =
∑n

i=1 ui~φi and
ph =

∑m
i=1 piψi. Since we are free to pick the test functions ~vh and qh from their respective

spaces, we can write the discrete problem Equation (1.9) as a square linear system of the
form [

A(ν) +N(~w) BT

B 0

][
U
P

]
=

[
F
0

]
, (1.10)

where U = [u0, · · · ,un]T and P = [p0, · · · ,pm]T . We will refer to the matrices A,N and
B, respectively, as the discrete vector Laplacian, the discrete vector convection and the
discrete divergence (the weak gradient is the adjoint of the weak divergence operator so
we simply denote it as BT ). These are named after the continuous operators they have
been derived from, namely, a(~u,~v), n(~w; ~u,~v) and b(p,~v) respectively. Note that while A is
symmetric, N is non-symmetric, and so the full system matrix is also non-symmetric.

We conclude this section by summarizing the discrete problem in Algorithm 1 and
pointing out the focus of my research. Picard iterations are used to solve the non-linear
Navier–Stokes equations. At every Picard iteration we need to solve the discrete form
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Figure 1.1: An example of a grid.

of the linearised Navier–Stokes equations (Equation (1.10)). Often, many Picard itera-
tions are required to obtain a solution for the non-linear Navier–Stokes problem. Since
Equation (1.10) needs to be solved at each of these Picard iterations, the efficiency of the
algorithm strongly depends on the efficiency of the solution of these linear systems. How-
ever, efficiency depends highly on two problem parameters, namely, the mesh size h and the
Reynolds number Re. The ultimate goal of this thesis is to find a solver for Equation (1.10)
that is robust both in h and Re.

1.1 Convergence of Krylov subspace methods

In this section, we discuss some error bounds of Krylov subspace methods, particularly
GMRES (Generalized Minimal RESidual method) [139, 137, 138] for the solution of linear
systems of the form Ax = b. A Krylov subspace method is a projection method: given the
linear system Ax = b with A ∈ Rn×n, initial guess x0 and two m-dimensional subspaces
Km and Lm, we seek

x̂ ∈ x0 +Km such that b− Ax̂ ⊥ Lm,
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Algorithm 1 An algorithm to solve the Navier–Stokes equations

Initialize i = 1, rres = 1. Given an initial guess (~u0, p0)
while rres > tol and i < maxit do

Create and solve the linear system[
A(ν) +N(~ui−1) BT

B 0

][
U (i)

P (i)

]
=

[
F
0

]
.

Construct ~uj =
∑n

i=1 u
(j)
i
~φi and pj =

∑m
i=1 p

(j)
i ψi using U (j) =

[
u

(j)
0 , · · · ,u(j)

n

]T
and

P (j) =
[
p

(j)
0 , · · · ,p(j)

m

]T
Compute rres = max{||~ui − ~ui−1||/||~ui − ~u0||, ||pi − pi−1||/||pi − p0||} and increment
i.

end while

where Km = span{r0, Ar0, . . . , A
m−1r0} with r0 = b − Ax0. As a result, Krylov subspace

methods look for an approximate solution xm in the search space Km with the condition
that the residual vector b − Axm is orthogonal to Lm. Depending on the choice of the
subspace Lm, we obtain different Krylov subspace methods (Lm = AKm for GMRES).
Moreover, the approximate solution obtained at the m-th iteration of a Krylov subspace
method can be written as xm = x0 + pm−1(A)r0 where pm−1 is a m− 1-st degree consistent
polynomial, i.e. pm−1(0) = 1.

The discussion on the error bounds is the foundation of work presented in this thesis, as
some of these error bounds are very similar to the error bounds of finite element methods
which allows us to use functional analysis tools to develop and analyze preconditioners. The
classical and most well-known results on the convergence of Krylov subspace methods are
the error bounds of the conjugate gradient method [138, pg. 176] given in Theorems 1.1.1
and 1.1.2.

Theorem 1.1.1. Given the problem Ax = b, where A is a real symmetric positive definite
matrix, after k steps of the conjugate gradient method, the following bound holds∥∥∥x− x(k)

∥∥∥
A
≤ min

pk∈Πk,pk(0)=1

∥∥∥pk(A)(x− x(0))
∥∥∥
A
≤ min

pk∈Πk,pk(0)=1
max
j
|pk(λj)|

∥∥∥(x− x(0))
∥∥∥
A
,

where x(k) and x(0) are, respectively, k-th and 0-th iterates, λi are the eigenvalues of A,
and Πk is the set of real polynomials up to and of degree k.
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Theorem 1.1.2. Given the problem Ax = b, where A is a real symmetric positive definite
matrix, after k steps of the conjugate gradient method, the following bound holds

∥∥∥x− x(k)
∥∥∥
A
≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k∥∥∥x− x(0)
∥∥∥
A
,

where x(k) and x(0) are, respectively, k-th and 0-th iterates, and κ(A) = λmax(A)/λmin(A)
which is called the condition number of A.

Theorem 1.1.2 implies that well-conditioned problems (e.g. the condition number κ of
A is small) will reach desired tolerance levels rapidly. However, it should be noted that
a large condition number does not necessarily imply slow convergence. For example, the
conjugate gradient method will solve the problem exactly in at most |σ(A)| iterations,
where σ(A) is the set of eigenvalues (spectrum) of A (see Theorem 1.1.1). Hence, if the
coefficient matrix has only two eigenvalues, the conjugate gradient method will converge
in two iterations independent of the condition number.

For finite element problems, the condition number of the coefficient matrix A depends
on the mesh size h. For example, in the case of a continuous Galerkin discretization of the
Poisson problem, κ(A) = O(h−2). Keeping in mind that the error bound in Theorem 1.1.2
is a pessimistic upper bound (and Theorem 1.1.1), this observation on κ(A) hints that
the number of iterations to convergence will increase as the grid is refined, i.e., as h→ 0.
Numerical experiments confirm this prediction; the number of iterations to convergence
doubles as the grid size h is halved. It is desirable to find a way to alleviate, or all together
eliminate, h-dependence, as many practical problems require very fine grids with h small.
We achieve this through preconditioning. A preconditioner, without loss of generality, is
an operator P such that κ(P−1/2AP−1/2) � κ(A) , see [119] for a survey. In this sense,
the matrix A itself is the “perfect” preconditioner as κ(A−1A) = 1 independent of h and
any other problem parameters. However, inverting A is equivalent to solving the original
system directly, therefore, defeating the purpose of iterative solvers. Hence, we additionally
want preconditioners to be cheap to apply.

We can use the concept of spectral equivalence to develop and rigorously analyze precon-
ditioners for finite element discretizations of some PDEs. Two symmetric positive definite
matrices A,P ∈ Rn×n are called spectrally equivalent if there exist constants C, c > 0
independent of some problem parameters such that

c ≤ 〈x,Ax〉〈x, Px〉 ≤ C ∀x ∈ Rn.
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Generally, the problem parameter of interest is the grid size h, hence, spectral equivalence
is commonly defined with respect to h.

We now include a very useful theorem which ties the concept of spectral equivalence to
the condition number.

Theorem 1.1.3 (Rayleigh, can be found in [79] pp. 234-235). The eigenvalues of an n×n
Hermitian matrix H, given in order λ1 ≥ λ2 ≥ · · · ≥ λn, can be characterized as

λ1 = max
06=x∈Cn

(x,Hx)

(x, x)
, λn = min

06=x∈Cn

(x,Hx)

(x, x)
.

Using Theorem 1.1.3 and the definition of the condition number, we see that, given two
symmetric positive definite matrices A and P of the same dimensions

κ(P−1/2AP−1/2) =
λmax(P−1/2AP−1/2)

λmin(P−1/2AP−1/2)
,

with

λmin(P−1/2AP−1/2) = min
06=x∈Cn

(x, P−1/2AP−1/2x)

(x, x)
= min

06=y∈Cn

(y, Ay)

(y, Py)
,

λmax(P−1/2AP−1/2) = max
06=x∈Cn

(x, P−1/2AP−1/2x)

(x, x)
= max

06=y∈Cn

(y, Ay)

(y, Py)
.

Therefore, given spectrally equivalent symmetric positive definite matrices A and P ,
κ(P−1/2AP−1/2) will be bounded from above by the constant C/c independent of the grid
size h and Theorem 1.1.2 implies that the conjugate gradient method will asymptotically
converge in the same number of iterations independently of the grid size. Such a precon-
ditioner P is called h-robust, or h-optimal.

Note that h-robustness itself may not be practical if the application of the precondi-
tioner is expensive (see the discussion related to the choice P = A above). Hence, we are
motivated to seek cheap, h-robust preconditioners. For example, for many discretizations
of the Poisson problem, it is well-known that appropriate multigrid cycles are spectrally
equivalent to the coefficient matrix (see, for example, [50, pp. 91-112]). This fact, together
with linear computational complexity of multigrid methods [138, pg. 443] with respect to
the mesh size, further motivates research in this direction.

Unfortunately, we can not appeal to these results directly in the case of the Navier–
Stokes equations because discretizations of this problem give rise to non-symmetric and
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indefinite coefficient matrices. Hence, the bounds in Theorems 1.1.1 and 1.1.2 are not
applicable. Fortunately, many Krylov subspace methods have been developed for solving
linear systems of equations where the coefficient matrix may be non-symmetric and in-
definite. Among these, we consider GMRES (and flexible GMRES) [139, 137] due to the
availability of many error bounds for these methods as we discuss next. We want to note
that if the coefficient matrix is symmetric then GMRES produces the same iterates as
MINRES (MINimal RESidual method) [120] (albeit at a higher computational cost), so
the bounds discussed below are also valid for MINRES.

The earliest GMRES error bounds (Theorem 1.1.4) are due to [48, 42]. Elman’s PhD
thesis [48] in 1982 is the first time the bounds are published, one year after the same bounds
appeared in his paper with Eisenstat and Schultz [42]. In both cases, however, these bounds
were presented for GCR. Saad and Schultz published their paper on GMRES [139] almost
three years later. They proved that GCR iterates are exactly GMRES iterates. Hence,
Elman’s bounds are also valid for GMRES.

Theorem 1.1.4 (Elman’s bound). Let A be a positive real matrix, that is, its symmetric
part M = 1

2
(A + AT ) is positive definite. Define its skew-symmetric part R = 1

2
(A− AT ).

If {rk}Nk=0 are the residuals generated by GMRES, then

||rk||2 ≤ min
pk∈Πk,pk(0)=1

||pk(A)||2||r0||2 ≤
[

1− λmin(M)2

λmax(ATA)

]k/2
||r0||2,

and

||rk||2 ≤
[

1− λmin(M)2

λmin(M)λmax(M) + ρ(R)2

]k/2
||r0||2,

where ρ(R)2 = ||RTR||2. If A is diagonalizable, i.e. A = XΛX−1, where X is the matrix
whose columns are the eigenvectors of A and Λ is a diagonal matrix whose diagonal entries
are the eigenvalues, then

||rk||2
||r0||2

≤ ||X||2||X−1||2 min
pk∈Πk,pk(0)=1

max
Λjj

|pk(Λjj)|.

Furthermore, this bound can be relaxed such that if the set E contains the eigenvalues of A
then

||rk||2
||r0||2

≤ ||X||2||X−1||2 min
pk∈Πk,pk(0)=1

max
λ∈E
|pk(λ)|.
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Proof. See [48, Theorems 5.4, 5.9] and [42, Theorems 3.3, 3.4].

Notice that the bounds given above require the coefficient matrix to be positive real
or diagonalizable. We can relax the conditions on the coefficient matrix A by introducing
field of values (FOV), W(A) = {〈Ax, x〉 : x ∈ Cn, ||x|| = 1}. It is known that ReW(A) =

W(A+AT

2
) and ImW(A) = W(A−A

T

2
), hence, if 0 /∈ W(A) Theorem 1.1.4 can be rewritten

as follows:

Theorem 1.1.5 (Elman’s FOV bound). Let A be a square matrix such that 0 /∈ W(A),
then the residual generated at the k-th step of GMRES satisfies

||rk||
||r0||

≤
[

1− µ(A)2

||A||2

]k/2
,

where µ(A) = min{|z| : z ∈ W(A)}.

If the ratio µ(A)2/||A||2 can be bounded by a constant independent of problem parame-
ters (e.g., h and Re for the Navier–Stokes equations), we can guarantee robust performance.

If A is positive real, then µ(A) = λmin(A+AT

2
) so Theorems 1.1.4 and 1.1.5 are equivalent,

but the latter is applicable under slightly more general conditions. However, these bounds
can be very pessimistic for some problems. In such cases, Theorem 1.1.5 is predictive
of the performance of GMRES in an asymptotical sense and usually convergence is ob-
served much earlier than predicted. Starke offers another bound [151] and Eiermann and
Ernst [41] show that it is an improvement over Theorem 1.1.5.

Theorem 1.1.6 (Starke). Let A be a square matrix such that 0 /∈ W(A), which implies
0 /∈ W(A−1), then the residual generated at the k-th step of GMRES satisfies

||rk||2
||r0||2

≤
[
1− µ(A)µ(A−1)

]k/2
,

where µ(A) = min{|z| : z ∈ W(A)}.

Proof. See [151, Theorem 3.2] or [41, Theorem 6.1, Corollary 6.2].

Remark 1.1.1. We remark that Starke’s paper considers a GMRES which minimizes a
different norm than the usual (discrete) `2-norm, similar to weighted GMRES of Pes-
tana [123]. The results demonstrate optimal convergence with respect to the chosen norm.
However, this is not a big problem as noted in [93, 92]. The idea is to minimize GMRES

10



residuals in a norm induced by one of the inner products, but measure these residuals in the
norm induced by the other inner product. Depending on the pair of norms, their equivalence
constants (or the ratio of the constants) may depend on h. Nevertheless, the equivalence
constants come in only by an additive logarithmic value into the estimate of the number
of iterations [93, pg. 581]. Therefore, optimal convergence in one norm implies almost
optimal convergence in the l2-norm.

Another improvement over Theorem 1.1.5 is by Beckermann et al. [9]. Their idea is to
find a circular segment K such that C ⊃ K ⊃ W(A) and

min
pk∈Πk,pk(0)=1

∥∥p(A)
∥∥ ≤ C min

pk∈Πk,pk(0)=1
max
z∈K
|p(z)|,

with C a constant. As a result, they obtain an asymptotically sharper bound, see in
particular [9, Corollary 2.4].

Theorem 1.1.7 (BGT Bound). Let A be a square matrix such that 0 /∈ W(A), and let
β ∈ (0, π

2
) with cos(β) = µ(A)/||A||2 and µ(A) is as defined in Theorem 1.1.5. Then the

residual generated at the k-th step of GMRES satisfies

||rk||2
||r0||2

≤ (2 + 2/
√

3)(2 + γβ)γkβ ,

where

γβ := 2 sin

(
β

4− 2β/π

)
.

Proof. See [9].

Theorem 1.1.7 has recently been improved by Tichy and Liesen [99, Theorem 3.1]. The
improvement is due to recent work by Crouzeix and Palencia [30] and the replacement of
||A||2 by r(A) = max{|z| : z ∈ W(A)}.
Theorem 1.1.8 (BGT Bound Improved). Let A be a square matrix such that 0 /∈ W(A),
and let β ∈ (0, π

2
) with cos(β) = µ(A)/r(A) and µ(A) is as defined in Theorem 1.1.5. Then

the residual generated at the k-th step of GMRES satisfies

||rk||2
||r0||2

≤ (1 +
√

2)(2 + γβ)γkβ ,

where

γβ := 2 sin

(
β

4− 2β/π

)
.
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Proof. See [99, 9, 30] for details.

Tichy and Liesen, in addition to Theorem 1.1.8, give a tighter bound under stricter
conditions on W(A). We will not repeat this bound here as it is not of interest to us.

Let Aξx = b be a linear system that depends on a parameter ξ, and let Pξ be a precon-
ditioner for this problem. Then the theorems in this section, under certain conditions on
W(P−1

ξ Aξ), show that it is possible to guarantee that GMRES applied to P−1
ξ Aξx = P−1

ξ b
will asymptotically converge in a fixed number of iterations independent of the param-
eter ξ. As mentioned previously, the ultimate goal of this thesis is to find a solver for
Equation (1.10) that is robust both in h and Re.

1.2 Krylov subspace methods and block precondition-

ers

In Chapter 2, we explore the relations between block preconditioning and the corresponding
convergence of fixed-point and Krylov methods applied to nonsymmetric systems of the
form

Ax = b, x,b ∈ Rn, A ∈ Rn×n, (1.11)

where the matrix A has a 2× 2 block structure,

A =

[
A11 A12

A21 A22

]
. (1.12)

Such systems arise in numerous areas, including mixed finite elements [14, 31, 91, 167],
constraint optimization problems [141, 121, 40], and the solution of neutral particle trans-
port [148]. More generally, the discretization of just about any systems of PDEs with
multiple dependent variables can be expressed as a 2 × 2 block operator by the grouping
of variables into two sets. Although iterative methods for saddle-point problems, in which
A22 = 0, have seen extensive research, in this paper we take a more general approach,
making minimal assumptions on the submatrices of A.

The primary contribution of Chapter 2 is to prove a direct equivalence between the
convergence of a block-preconditioned fixed-point or Krylov iteration applied to Equa-
tion (1.11), with convergence of a similar method applied directly to a preconditioned Schur
complement of A, where the Schur complements of A are defined as S11 := A11−A12A

−1
22 A21

12



and S22 := A22−A21A
−1
11 A12. In particular, results in Chapter 2 prove that a good approx-

imation to the Schur complement of the 2× 2 block matrix Equation (1.12) is a necessary
and sufficient condition for rapid convergence of preconditioned GMRES applied to Equa-
tion (1.11), for arbitrary relative residual stopping tolerances.

The main assumption in derivations here is that at least one of A11 or A22 is non-
singular and that the action of its inverse can be computed. Although in practice it is
often not advantageous to solve one diagonal block to numerical precision every iteration,
it is typically the case that the inverse of at least one diagonal block can be reliably
computed using some form of iterative method, such as multigrid. The theory developed
in Chapter 2 provides a guide for ensuring a convergent and practical preconditioner for
Equation (1.11). Once the iteration and convergence are well understood, the time to
solution can be reduced by solving the diagonal block(s) to some tolerance. Numerical
results further demonstrate how ideas motivated by the theory, where one block is inverted
exactly, extend to inexact preconditioners.

1.2.1 Previous work

For nonsymmetric 2× 2 block operators, most theoretical results in the literature are not
necessarily indicative of practical performance. There is also a lack of distinction in the
literature between a Krylov convergence result and a fixed-point convergence result.

Theoretical results on block preconditioning generally fall in to one of two categories.
First are results based on the assumption that the inverse action of the Schur complement is
available, and/or results that show an asymptotic equivalence between the preconditioned
2 × 2 operator and the preconditioned Schur complement. It is shown in [85, 114] that
GMRES (or other minimal residual methods) is guaranteed to converge in two or four it-
erations for a block-triangular or block-diagonal preconditioned system, respectively, when
the diagonal blocks of the preconditioner consist of a Schur complement and the respec-
tive complementary block of A (A11 or A22). However, computing the action of the Schur
complement inverse is generally very expensive. In [6], it is shown that if the minimal poly-
nomial of the preconditioned Schur complement is degree k, then the minimal polynomial
of the preconditioned 2× 2 system is at most degree k+ 1. Although this does not require
the action and inverse of the Schur complement, it is almost never the case that GMRES
is iterated until the true minimal polynomial is achieved. As a consequence, the minimal
polynomial equivalence also does not provide practical information on convergence of the
2× 2 system, as demonstrated in the following example.
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Example 1.2.1. Define two matrices A1, A2 ∈ R1000×1000,

A1 :=

[
I500 0
0 D1

]
, A2 :=

[
I500 0
0 D2

]
,

where D1 ∈ R500×500 is tridiagonal with stencil [−1, 2,−1] and D2 ∈ R500×500 is tridiagonal
with stencil [−1, 2.0025,−1]. Note that the minimal polynomials of A1 and A2 in the `2-
norm have degree at most k = 501. Figure 1.2a shows results from applying GMRES
with no restarts to A1 and A2, with right-hand side b = (1, 2, ..., 1000)T/1000. Note that
neither operator reaches exact convergence in the first 500 iterations, indicating that the
minimal polynomial in both cases is degree k = 501. However, despite having the same
degree minimal polynomial (which is less than the size of the matrix), at iteration 250, A2

has reached a residual of ‖r‖ ≈ 10−5, while A1 still has residual ‖r‖ > 1.

(a) Minimal polynomial does not necessarily
provide practical information on convergence of
a 2× 2 system (Example 1.2.1).
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(b) Eigenvalues do not necessarily provide prac-
tical information on convergence of a 2× 2 sys-
tem (Example 1.2.2).

Figure 1.2: Convergence of GMRES.

Second, many papers have used eigenvalue analyses in an attempt to provide more
practical information on convergence. In the symmetric setting, this has proven effective
(see, for example, [116]). Spectral analyses have also been done for various nonsymmet-
ric 2 × 2 block matrices and preconditioners [45, 91, 5, 6, 94, 144] and eigenvectors for
preconditioned operators derived in [124]. However, eigenvalue analyses are asymptotic,
guaranteeing eventual convergence but, in the nonsymmetric setting, giving no guaran-
tee of practical performance. In certain cases, a nonsymmetric operator is symmetric in
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a non-standard inner product, and some papers have looked at block preconditioning in
modified norms [125, 163, 127, 111] that yield self-adjointness. Nevertheless, there are
many nonsymmetric problems that are not easily symmetrized and/or where eigenvalues
provide little to no practical information on convergence of iterative methods. The fol-
lowing provides one such example in the discretization of differential operators. A formal
analysis as in [69, 155] proves that for any set of eigenvalues, there is a matrix such that
GMRES converges arbitrarily slowly.

Example 1.2.2. Consider an upwind discontinuous Galerkin (DG) discretization of lin-
ear advection with Dirichlet inflow boundaries [24] and a velocity field b(x, y) := (cos(πy)2,
cos(πx)2) (see Figure 5a in [107]); more generally, similar results hold for any velocity field
with no cycles). In the appropriate ordering, the resulting matrix is block triangular, where
“block” refers to the DG element blocks. Then, if we apply block-diagonal (Jacobi) precon-
ditioning, the spectrum of the preconditioned operator is given by σ(M−1A) = {1}, and the
spectrum of the fixed-point iteration is given by σ(I−M−1A) = {0}. Despite all zero eigen-
values, block-Jacobi preconditioned fixed-point or GMRES iterations on such a matrix can
converge arbitrarily slowly, until the degree of nilpotency is reached and exact convergence
is immediately obtained. Figure 1.2b shows convergence of DG block-Jacobi preconditioned
GMRES applied to 2d linear transport, with 200× 200 finite elements. Convergence occurs
very rapidly at around 450 iterations (without restart), approximately the diameter of the
mesh (as expected [107]).

This is not the first work to recognize that eigenvalue analyses of nonsymmetric block
preconditioners may be of limited practical use. Norm and field-of-values equivalence are
known to provide more accurate measures of convergence for nonsymmetric operators, used
as early as [106], and applied recently for specific problems in [13, 93, 101, 104]. Here we
stay even more general, focusing directly on the relation between polynomials of a general
preconditioned 2× 2 system and the preconditioned Schur complement.

1.2.2 Overview of results of Chapter 2

A brief overview of theoretical contributions of Chapter 2 are listed next.

• Fixed-point and minimal residual Krylov iterations preconditioned with a 2×2 block-
triangular, block-Jacobi, or approximate block-LDU preconditioner converge to a
given tolerance Cρ after n iterations if and only if an equivalent method applied to
the underlying preconditioned Schur complement converges to tolerance ρ after n
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iterations, for constant C (Section 2.2). Such results do not hold for general block-
diagonal preconditioners [149].

• A symmetric block-triangular or approximate block-LDU preconditioner offers little
to no improvement in convergence over block-triangular preconditioners, when one
diagonal block is inverted exactly (Section 2.1.1.1). Numerical results demonstrate
the same behaviour for inexact inverses, suggesting that symmetric block-triangular
or block-LDU preconditioners are probably not worth the added computational cost
in practice.

• The worst-case number of iterations for a block-Jacobi preconditioner to converge to
a given tolerance ρ is twice the number of iterations for a block-triangular precon-
ditioner to converge to Cρ, for some constant factor C (Section 2.2.3). Numerical
results suggest that for non-saddle point problems (nonzero (2,2)-block), this double
in iteration count is not due to the staircasing effect introduced in [59] for saddle-point
problems.

• With an exact Schur-complement inverse, a fixed-point iteration with a block trian-
gular preconditioner converges in two iterations, while a fixed-point iteration with a
block-diagonal preconditioner does not converge (Section 2.1).

1.3 Iterative solution of time-dependent advection-

diffusion equations

After discretization, the (linearized) Navier–Stokes equations can be written as the linear
system in Equations (1.11) and (1.12). In Section 1.2, we discussed block-preconditioning
for this linear system. One of the main assumptions there is that the action of the inverse
of at least one of A11 or A22 can be computed. In practice, however, a good approximation
to the action of the inverse of A11 or A22 is sufficient.

In the case of the time-dependent Navier–Stokes equations, A11 corresponds to the
discretization of the vector advection-diffusion equation. For this reason, in Chapter 3, we
consider novel preconditioning for this equation. In particular, we present our investigation
in the fast parallel solution of the time-dependent advection(-diffusion) problem on a time-
dependent domain Ω(t),

∂tu+ a · ∇u− ν∇2u = f in Ω(t), t0 < t < tN , (1.13)
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where a is the advective velocity, f is a source term, and ν ≥ 0 is the diffusion constant.
We are particularly interested in the advection-dominated regime where 0 ≤ ν � 1.

To discretize Equation (1.13), we consider the space-time framework in which the
problem is recast into a space-time domain as follows. Let x = (x1, . . . , xd) be the
spatial variables in spatial dimension d. A point at time t = x0 with position x then
has Cartesian coordinates x̂ = (x0, x) in space-time. Defining the space-time domain
E := {x̂ : x ∈ Ω(x0), t0 < x0 < tN}, the space-time advective velocity â := (1, a) and the

space-time gradient ∇̂ := (∂t,∇), the space-time formulation of Equation (1.13) is given
by

â · ∇̂u− ν∇2u = f in E . (1.14)

There are multiple reasons to consider space-time finite element methods over tra-
ditional discretizations. First, space-time methods provide a natural framework for the
discretization of partial differential equations on time-dependent domains [83, 110, 156,
157, 161]. This is because the domain and mesh movement are automatically accounted
for by the space-time finite element spaces, which are defined on a triangulation of the
space-time domain E . Furthermore, since there is no distinction between spatial and tem-
poral variables, it is relatively straightforward to allow local time stepping and adaptive
space-time mesh refinement (see, for example [160]). This is particularly interesting from
an efficiency perspective for problems that require locally small time steps and fine mesh
resolution to achieve high levels of accuracy in only some parts of the domain. These prop-
erties are non-trivial within the context of traditional time-integration techniques. Finally,
space-time finite elements allow for greater parallelization by solving for the entire space-
time solution simultaneously, rather than in a sequential time-stepping process. This ends
up being particularly relevant for hyperbolic PDEs, as will be discussed later.

Space-time discontinuous Galerkin (DG) finite element methods are well suited for
solving Equation (1.14) in the advection-dominated limit (see [130, 147, 152, 153, 158,
159, 162] and references therein). This is because space-time DG methods incorporate
upwinding in their numerical fluxes, are locally conservative, and automatically satisfy
the geometric conservation law (GCL) [97], which requires that the uniform flow remains
uniform under grid motion. We point out that alternative discretizations (such as arbitrary
Lagrangian–Eulerian methods) may require additional constraints to satisfy the GCL [122].
One downside of space-time DG methods is the large number of globally coupled degrees-of-
freedom (DOFs) that arise when applying DG finite elements in (d+1)-dimensional space.
However, the space-time hybridizable discontinuous Galerkin (HDG) method [128, 129],
introduced as a space-time extension of the HDG method [28], can attenuate this problem.
The space-time HDG method, like the HDG method, introduces approximate traces of
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the solution on the element faces. The DOFs on the interior of an element are then
eliminated from the system, resulting in a (significantly smaller) global system of algebraic
equations only for the approximate traces. However, it should be noted that a reduction
in the number of globally coupled DOFs does not necessarily imply a more efficient time
to solution – the linear system still needs to be solved.

In practice, a slab-by-slab approach is almost exclusively used to obtain the solution of
space-time discretizations, which is analogous to traditional time-integration techniques:
the space-time domain is partitioned into space-time slabs and local systems are solved
sequentially one time step after the other (e.g. [86, 110, 159]). Although commonly used,
such an approach is limited to spatial parallelism, which eventually plateaus in the sense
that using more processors does not speed up the time to solution (see, e.g., [52]). With an
increasing number of processors available for use and stagnating core clock speeds, there
has been significant research on parallel-in-time (PinT) methods in recent years.

Some of the most effective PinT methods are multigrid-in-time methods, where a par-
allel multilevel method is applied over the time domain, which is then coupled with tra-
ditional spatial solves to perform time steps of varying sizes (in particular, see Parareal
[100] and multigrid-reduction-in-time [52]). Such methods are effective on parabolic-type
problems, but tend to not be robust or just not convergent on advection-dominated and
hyperbolic problems without special treatment (for example, see [136, 62, 36, 32, 35]). The
simplest explanation for the difficulties such methods have with hyperbolic problems is
the separation of space and time. By treating space and time separately, the multilevel
coarsening cannot respect the underlying characteristics that propagate in space-time.

A more general approach is to consider space-time multigrid, that is, multigrid methods
applied to the full space-time domain. To our knowledge, such an approach has only been
applied to parabolic problems, primarily the heat equation [164, 80, 65]. However, even
there, space-time multigrid has demonstrated superior performance over PinT methods
that use multigrid in space and time separately [53]. Recently, auxiliary-space precon-
ditioning techniques have also been proposed for space-time finite-element discretizations
[68], which has the potential to provide more general space-time solvers. Continuing with
the above discussion, the all-at-once approach to space-time finite elements constructs and
solves a single global linear system for the solution in the whole space-time domain. From
a solver’s perspective, we claim that the all-at-once approach is particularly well suited for
advective and hyperbolic problems.

The main contribution of Chapter 3 is demonstrating the suitability of the nonsym-
metric algebraic multigrid (AMG) method based on Approximate Ideal Restriction (AIR)
[107, 109] for the solution of slab-by-slab and, in particular, all-at-once space-time HDG dis-
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cretizations of the advection-diffusion problem in advection-dominated regimes. Advection-
dominated problems are typically difficult to solve due to the non-symmetric nature of the
problem. Nevertheless, significant developments in multigrid methods for non-symmetric
problems have been made in recent years [115, 168, 23, 140, 108]. In particular, AIR has
shown to be a robust solver for steady advection-dominated problems. This motivates us
to study AIR for a space-time HDG discretization of the advection-diffusion problem, since
Equation (1.14) can be seen as a “steady” advection-diffusion problem in (d+1)-dimensions.

1.4 State of the art for preconditioners

The HDG discretization of the linearised Navier–Stokes equations results in a generalized
saddle point problem. While there are many preconditioners developed for 2-by-2 saddle
point problems (see the surveys [11, 17, 126, 117]), these do not directly generalize to
our problem, particularly when static condensation is employed (see Chapters 2 and 4
for details), and further modifications are necessary. On the other hand, the literature
on preconditioners for HDG discretizations of partial differential equations is scarce. We
mention [27, 29, 64, 113, 76, 84, 63, 98, 102] for scalar elliptic problems, [21] for the Stokes
problem, and [38, 61] for the compressible Navier–Stokes and Euler equations. However, at
the time of writing, we are not aware of any preconditioners developed specifically for HDG
discretizations of the incompressible Navier–Stokes problem. In [133], the authors develop
and rigorously analyze a block preconditioner for an HDG discretization of the Stokes
equations by exploiting the properties of the discretization. Following a similar approach,
we will construct two preconditioners for the steady Navier–Stokes equations. In particular,
in Chapter 4, we extend the grad-div and augmented Lagrangian preconditioners and
the pressure convection-diffusion (PCD) framework to HDG discretizations, and present
numerical results. In the next two subsections, we review some of the existing literature
on these preconditioners.

1.4.1 Pressure Convection-Diffusion Preconditioners

It is well-known that the preconditioner

P =

[
A+N(u) X

0 1
ν
Mp

]
, (1.15)

whereX = BT orX = 0 and whereMp is the pressure mass matrix, is an h-robust precondi-
tioner [46] for the linear system of the form Equation (1.10) obtained from the Taylor–Hood
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discretization [154, 20] of the Navier–Stokes equations (Equation (1.2)). While this pre-
conditioner is efficient with respect to the mesh size in the low Reynolds number regime, as
the Reynolds number increases the number of GMRES iterations to convergence increases.
One framework of preconditioner to reduce the sensitivity of convergence on the Reynolds
number is the PCD preconditioner.

PCD preconditioners have been developed over a chain of papers. The main idea
is to replace 1

ν
Mp in Equation (1.15) by a better approximation to the pressure Schur

complement. To achieve this goal, Kay and Loghin [87] (later extended and published as
[88]) use Green’s tensors to find a continuous “inverse” to the pressure Schur complement
and discretize that continuous inverse. The result is the approximation X−1

G = M−1
p FpA

−1
p ,

where Fp and Ap are, respectively, the pressure convection-diffusion and pressure Poisson
matrices. While this is the first appearance of pressure convection-diffusion preconditioners,
Silvester et al. [145] proposed the approach we use in this thesis. The main idea comes
from the observation that the commutator on the differential operators

Ep = ∇(α + w · ∇ − ν∆)p − (α + w · ∇ − ν∆)u∇,

where Lp = (α + w · ∇ − ν∆)p is the convection-diffusion-reaction operator acting on the
pressure space and, similarly, Lu = (α + w · ∇ − ν∆)u is the convection-diffusion-reaction
operator acting on the velocity space, will be zero over unbounded domains and for constant
wind w. The equivalent discrete commutator is given by

Ep,h = (M−1
u BT )(M−1

p Fp)− (M−1
u F )(M−1

u BT ),

where Mu is the mass matrix defined on the velocity space. By assuming that these
commutator errors are small, either at the continuous level or the discrete level, we
can approximate (M−1

u BT )(M−1
p Fp) by (M−1

u F )(M−1
u BT ). By multiplying this expres-

sion with BF−1Mu from the left and with F−1
p Mp from the right, we obtain the follow-

ing approximation to the Schur complement, BF−1BT ≈ BM−1
u BTF−1

p Mp. Now, us-
ing reverse inf-sup stability of the Taylor–Hood discretization of the Navier–Stokes equa-
tions, which can be interpreted as BM−1

u BT ≈ Ap, we further obtain the approximation
(BF−1BT )−1 ≈M−1

p FpA
−1
p . The numerical results in [145] show robustness of the precon-

ditioner against the mesh size, and only a weak dependence on the Reynolds number.

Notice that the commutator above acts on the pressure space on which no boundary
conditions are enforced. Hence, both Ap and Fp are 1-rank-deficient operators and their
nullspaces contain the constant element. The construction of these operators in which we
do not impose boundary conditions on Ap and Fp is known as the do-nothing strategy.
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However, in some cases, there may be some benefit in imposing boundary conditions on
these operators [47] which is possible by using the commutator

Eu = (α + w · ∇ − ν∆)p∇ · −∇ · (α + w · ∇ − ν∆)u,

which is defined on the velocity space. The numerical results in [47] show a significant
improvement in efficiency when imposing boundary conditions over the do-nothing strategy.
We observed this also holds for our choice of HDG discretization, see Section 4.2 for a
discussion.

For the interested reader, other preconditioners based on minimizing the discrete com-
mutator include the BFBt preconditioner [49], the SPAC preconditioner [43], and the least
squares commutator preconditioner [44].

1.4.2 Grad-div and Augmented Lagrangian Preconditioners

Grad-div and augmented Lagrangian preconditioners present an alternative to the PCD
framework. However, the goal remains the same: find an accurate approximation to the
pressure Schur complement. Grad-div and augmented Lagrangian frameworks are closely
related, but we will discuss these two preconditioners separately.

For augmented Lagrangian preconditioners, we modify the block linear system in Equa-
tion (1.10) by multiplying the second block row (from the left) by γBTW−1, where W is
an SPD matrix of compatible dimensions and γ > 0, and adding the result to the first
block row to obtain [

A+N(u) + γBTW−1B BT

B 0

][
u
p

]
=

[
f
0

]
. (1.16)

Similar to the ideas discussed in Section 1.4.1, we are looking for a good preconditioner
based on the approximation of the Schur complement, i.e., we are looking for a precondi-
tioner of the form

P =

[
A+N(u) + γBTW−1B X

0 Ŝ

]
, (1.17)

where Ŝ is an approximation to the pressure Schur complementB(A+N(u)+γBTW−1B)−1BT

of Equation (1.16) and X = BT or X = 0. By the Woodbury matrix formula, we note
that

(B(A+N(u) + γBTW−1B)−1BT )−1 = (B(A+N(u))−1BT )−1 + γW−1.
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Hence, for large γ, we see that γW−1 is a good approximation to (B(A+N(u)+γBTW−1B)−1BT )−1.
By choosing Ŝ = γ−1W in Equation (1.17), we obtain the augmented Lagrangian precon-
ditioner.

Grad-div preconditioners employ a similar idea. However, rather than adding a con-
sistent term to the momentum block at the discrete level, grad-div preconditioners are
derived by first adding the consistent term −γ∇(∇ · ~u) with γ > 0 to the momentum
equation Equation (1.2a) and then discretizing this term. Since ∇ · ~u = 0, addition of
−γ∇(∇ · ~u) does not change the solution of the problem, however, at the discrete level it
changes the properties of the problem and the corresponding linear system becomes easier
to solve. Grad-div preconditioners further have the added benefit of penalizing the error
in the divergence ‖∇ · ~u‖ which improves the solution quality for appropriate choices of γ.

Grad-div and augmented Lagrangian preconditioners were a focus of research until the
early 2010s, see [60, 12, 34, 14, 13, 15, 77, 96, 16] among many others. Of particular
significance is [12], where the authors develop a highly specialized multigrid method for
“inverting” the augmented momentum block as a part of their preconditioner. Their nu-
merical results suggest that the preconditioner is both h and Re robust for isoP2 − P1
discretizations of the Navier–Stokes equations. In [13], the authors prove that the scaled
mass matrix approximation to the pressure Schur complement, indeed, results in an h and
Re robust preconditioner given that the parameter γ is chosen appropriately and the mo-
mentum block is solved exactly. Furthermore, they prove that if the momentum block is
approximated by its upper block-triangular part, the resulting preconditioner is h-robust.

Lately, there has been a new interest in grad-div and augmented Lagrangian precon-
ditioners, for example [26, 112, 118, 74, 75, 73, 58, 56, 55, 169, 57]. We summarize here
the contributions of some of these papers. In [74, 75, 73], the authors extend the aug-
mented Lagrangian preconditioners to finite volume discretizations of the Navier–Stokes
equations. They find that the augmented Lagrangian preconditioners are neither h nor Re
robust for their applications, however, it still outperforms other state-of-the-art precondi-
tioners, especially when combined with a second preconditioner such as SIMPLE. Next,
[58] generalizes the multigrid method of [12] to the Taylor–Hood discretization of the three
dimensional Navier–Stokes equations. The adoption of this multigrid method for different
discretizations and different equations is a continuing effort [56, 55, 169, 57].

22



Chapter 2

Krylov Subspace Methods and 2× 2
Block Preconditioners

In this chapter, we present our investigation of the relationship between Krylov subspace
methods and 2-by-2 block preconditioners. The results of our investigation are used to
design and justify our work in later chapters. In particular, Theorem 2.2.3 ties the efficiency
of Krylov subspace methods for a 2×2 block system, as given in Equations (1.11) and (1.12),
to the Schur complement of the problem.

Chapter 2 is structured as follows. Section 2.1 formally introduces various block precon-
ditioners, considers the distinction between fixed-point and Krylov methods, and derives
some relationships on polynomials of the preconditioned operators that define Krylov and
fixed-point iterations. Proofs and formal statements of results are provided in Section 2.2,
and numerical results are examined in Section 2.3, with a discussion on the practical im-
plications of theory developed here. We conclude in Section 2.4.

This chapter is published in [150].

2.1 Block preconditioners

This section considers 2 × 2 block preconditioners, where one diagonal block is inverted
exactly, and the other is some approximation to the Schur complement.

We consider four different kinds of block preconditioners: block diagonal, block upper
triangular, block lower triangular, and block LDU, denoted D, U , L, and M , respectively.
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If the preconditioners have no subscript, this implies the diagonal blocks of the precondi-
tioners are the diagonal blocks of A. If one of the diagonal blocks is some approximation to
the Schur complement Skk, k ∈ {1, 2}, then a 11- or 22- subscript denotes in which block
the approximation is used. For example, with a Schur-complement approximation in the
(1, 1)-block, preconditioners take the forms

L11 :=

[
Ŝ11 0
A21 A22

]
, U11 :=

[
Ŝ11 A12

0 A22

]
, (2.1)

D11 :=

[
Ŝ11 0
0 A22

]
, M11 :=

[
I A12A

−1
22

0 I

][
Ŝ11 0
0 A22

][
I 0

A−1
22 A21 I

]
.

The block-diagonal, block upper-triangular, and block lower-triangular preconditioners
with a Schur-complement approximation in the (2, 2)-block take an analogous form, with

Ŝ11 7→ A11 and A22 7→ Ŝ22, and the approximate block LDU preconditioner M22 is given
by

M22 :=

[
I 0

A21A
−1
11 I

][
A11 0

0 Ŝ22

][
I A−1

11 A12

0 I

]
. (2.2)

Most results here regarding block-diagonal preconditioning are for the specific case of block
Jacobi, where D11 = D22 = D is the block diagonal of A.

Preconditioners are typically used in conjunction with either a fixed-point iteration or
Krylov subspace method to approximately solve a linear system Equation (1.11). Krylov
methods approximate the solution to linear systems by constructing a Krylov space of
vectors and minimizing the error of the approximate solution over this space, in a given
norm. The Krylov space is formed as powers of the preconditioned operator applied to the
initial residual. For linear system Ax = b, (left) preconditioner M−1, and initial residual
r0, the dth Krylov space takes the form

Kd :=
{

r0,M
−1Ar0, ..., (M

−1A)d−1r0

}
.

Minimizing over this space is thus equivalent to constructing a minimizing polynomial
p(M−1A)r0, which is optimal in a given norm. This optimality can be in the operator
norm (that is, including a supr0 6=0) for a worst-case convergence over all initial guesses
and right-hand sides, or optimal for a specific initial residual. Examples include conju-
gate gradient (CG), which minimizes error in the A-norm, MINRES, which minimizes
error in the AM−1A-norm [4], left-preconditioned GMRES, which minimizes error in the
(M−1A)∗(M−1A)-norm, or right-preconditioned GMRES, which minimizes error in the
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A∗A-norm. Note that error in the A∗A-norm is equivalent to residual in the `2-norm,
which is how minimal-residual methods are typically presented. Fixed-point iterations
also correspond to polynomials of the preconditioned operator, but they are not necessar-
ily optimal in a specific norm.

Analysis in this chapter is focused on polynomials of block-preconditioned operators,
particularly deriving upper and lower bounds on minimizing Krylov polynomials of a fixed
degree. Section 2.1.1 begins by considering fixed-point iterations and the corresponding
matrix polynomials in the nonsymmetric setting, and discusses important differences be-
tween the various preconditioners in Equation (2.1) and Equation (2.2). Section 2.1.2
then examines general polynomials of the preconditioned operator, developing the theoret-
ical framework used in Section 2.2 to analyze convergence of block-preconditioned Krylov
methods. Due to the equivalence of a Krylov method and a minimizing polynomial of the
preconditioned operator, we refer to, for example, GMRES and a minimizing polynomial
of p(M−1A) in the `2-norm, interchangeably.

2.1.1 Observations on fixed-point iterations

For some approximate inverse P to linear operator A, error propagation of a fixed-point
iteration takes the form E := I − P−1A and residual propagation takes the form R :=
AE−1A = I − AP−1. Define

E11 := I − Ŝ−1
11 S11, R11 := I − S11Ŝ

−1
11 ,

E22 := I − Ŝ−1
22 S22, R22 := I − S22Ŝ

−1
22 .

(2.3)

Consider first block-triangular and approximate block-LDU preconditioners. Powers of
fixed-point error and residual propagation with these block preconditioners take the fol-
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lowing forms:

(I − L−1
11 A)d =

[
I

−A−1
22 A21

]
Ed−1

11

[
I − Ŝ−1

11 A11 −Ŝ−1
11 A12

]
,

(I − AL−1
22 )d =

[
−A12Ŝ

−1
22

I − A22Ŝ
−1
22

]
Rd−1

22

[
−A21A

−1
11 I

]
,

(I − AU−1
11 )d =

[
I − A11Ŝ

−1
11

−A21Ŝ
−1
11

]
Rd−1

11

[
I −A12A

−1
22

]
,

(I − U−1
22 A)d =

[
−A−1

11 A12

I

]
Ed−1

22

[
−Ŝ−1

22 A21 I − Ŝ−1
22 A22

]
,

(2.4)

(I − AL−1
11 )d =

[
Rp

11 −Rd−1
11 A12A

−1
22

0 0

]
, (I − L−1

22 A)d =

[
0 −A−1

11 A12Ed−1
22

0 Ed22

]

(I − AU−1
22 )d =

[
0 0

−Rd−1
22 A21A

−1
11 Rd

22

]
, (I − U−1

11 A)d =

[
Ed11 0

−A−1
22 A21Ed−1

11 0

]
,

(I −M−1
11 A)d =

[
Ed11 0

−A−1
22 A21Ed11 0

]
, (I − AM−1

11 )d =

[
Rd

11 −Rd
11A12A

−1
22

0 0

]
,

(I −M−1
22 A)d =

[
0 −A−1

11 A12Ed22

0 Ed22

]
, (I − AM−1

22 )d =

[
0 0

−Rd
22A21A

−1
11 Rd

22

]
.

Let‖·‖ be a given norm on A and‖·‖c be a given norm on the Schur-complement prob-
lem.1 Note that any of the above fixed-point iterations is convergent in ‖·‖ for all initial
error or residual, if and only if the corresponding Schur-complement fixed-point iteration
in Equation (2.3) is convergent in‖·‖c. Moreover, it is well-known that for block-triangular
preconditioners with an exact Schur complement, minimal residual Krylov methods con-
verge in two iterations [85, 114]. However, convergence in two iterations actually follows
from fixed-point convergence rather than Krylov iterations.

Proposition 2.1.1 (Block triangular-preconditioners with Schur complement). If Ŝkk =
Skk, for k ∈ {1, 2}, then fixed-point iteration with a (left or right) block upper or block
lower-triangular preconditioner converges in two iterations.

1In the case of `p-norms, ‖·‖ = ‖·‖c, but in general, such as for matrix-induced norms, they may be
different.
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Proof. The proof follows by noting that if Ŝkk = Skk, for k ∈ {1, 2}, then all terms defined
in (2.3) are zero.

Now consider block-diagonal preconditioners. Then,

I −D−1
11 A =

[
I − Ŝ−1

11 A11 −Ŝ−1
11 A12

−A−1
22 A21 0

]
, I − AD−1

11 =

[
I − A11Ŝ

−1
11 −A12A

−1
22

−A21Ŝ
−1
11 0

]
,

I −D−1
22 A =

[
0 −A−1

11 A12

−Ŝ−1
22 A21 I − Ŝ−1

22 A22

]
, I − AD−1

22 =

[
0 −A12Ŝ

−1
22

−A21A
−1
11 I − A22Ŝ

−1
22

]
.

If we simplify to block Jacobi (that is, Ŝkk := Akk for k ∈ {1, 2}), both diagonal blocks are
zero, and a closed form for powers of block-diagonal preconditioners can be obtained for
an arbitrary number of fixed-point iterations,

(I −D−1A)2d =

[
A−1

11 A12A
−1
22 A21 0

0 A−1
22 A21A

−1
11 A12

]d
,

(I − AD−1)2d =

[
A12A

−1
22 A21A

−1
11 0

0 A21A
−1
11 A12A

−1
22

]d
.

(2.5)

Noting that if Ŝ11 := A11 and Ŝ22 := A22 in Equation (2.3), then

(I −D−1A)2d =

[
E11 0
0 E22

]d
, (I − AD−1)2d =

[
R11 0
0 R22

]d
.

It follows that block Jacobi converges if and only if block upper- and lower-triangular
preconditioners, with diagonal blocks given by A11 and A22, both converge. Furthermore,
the expected number of iterations of block Jacobi to converge to a given tolerance are
approximately double that of the equivalent block-triangular preconditioning, give or take
some independent constant factor (e.g., A−1

11 A12) from the fixed-point operators. A similar
result is later shown for preconditioning Krylov methods with block Jacobi (see Theo-
rem 2.2.5). This relation of twice as many iterations for Jacobi/block-diagonal precondi-
tioning has been noted or observed a number of times, perhaps originally in [59] where
MINRES/GMRES are proven to stall every other iteration on saddle-point problems.

Remark 2.1.1 (Non-convergent block-diagonal fixed-point). As mentioned above, fixed-
point iteration converges in two iterations for a block-triangular preconditioner if the Schur
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complement is inverted exactly. However, the same does not hold for block Jacobi. Let D22

be a block diagonal preconditioner with Ŝ22 := S22. In the case of a saddle-point matrix,
say B, where B22 = 0,

(I −D−1
22 B)3d =

[
0 −B−1

11 B12

−S−1
22 B21 I

]3d

= (−1)d

[
−B−1

11 B12S
−1
22 B21 0

0 I

]
,

where S22 := −B21B
−1
11 B12. Here we see the interesting property that as we continue to

iterate, error-propagation of block-diagonal preconditioning does not converge or diverge.
In fact, (I − D−1

22 B)3d is actually a periodic point of period two under the matrix-valued
mapping (I − D−1

22 B)3, for d ≥ 1. The general 2 × 2 case is more complicated and does
not appear to have such a property. However, expanding to up to four powers gave no
indication that it would result in a convergent fixed-point iteration, as it does with GMRES
acceleration [85].

Remark 2.1.2 (Non-optimal block-diagonal Krylov). It was recently shown that for 2× 2
systems with nonzero diagonal blocks, block-diagonal preconditioning of minimal-residual
methods with an exact Schur complement does not necessarily converge in a fixed number of
iterations, in contrast to block-triangular preconditioners or block-diagonal preconditioners
for matrices with a zero (2,2) block [149].

2.1.1.1 Symmetric block-triangular preconditioners

The benefit of Jacobi or block-diagonal preconditioning for SPD matrices is that they are
also SPD, which permits the use of three-term recursion relations like conjugate gradient
(CG) and MINRES, whereas block upper- or lower-triangular preconditioners are not ap-
plicable. Approximate block-LDU preconditioners offer one symmetric option. Another
option that might be considered, particularly by those that work in iterative or multigrid
methods, is a symmetric triangular iteration, consisting of a block-upper triangular iter-
ation followed by a block-lower triangular iteration (or vice versa), akin to a symmetric
(block) Gauss–Seidel sweep. Interestingly, this does not appear to be an effective choice.
Consider a symmetric block-triangular preconditioner with approximate Schur complement
in the (2,2)-block. The preconditioner can take two forms, depending on whether the lower
or upper iteration is done first. For example,

(I − L−1
22 A)(I − U−1

22 A) = I − L−1
22 (L22 + U22 + A)U−1

22 A,

(I − U−1
22 A)(I − L−1

22 A) = I − U−1
22 (L22 + U22 + A)L−1

22 A.
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Define H−1
22 := L−1

22 (L22 +U22 +A)U−1
22 and G−1

22 := U−1
22 (L22 +U22 +A)L−1

22 , corresponding to
upper-lower and lower-upper, symmetric preconditioners respectively. Expanding in block
form, we see that preconditioners associated with a symmetric block-triangular iteration
are given by

H−1
22 :=

[
I 0

−Ŝ−1
22 A21 I

][
A−1

11 0

0 2Ŝ−1
22 − Ŝ−1

22 A22Ŝ
−1
22

][
I −A12Ŝ

−1
22

0 I

]
,

G−1
22 :=

[
I −A−1

11 A12

0 I

][
A−1

11 0

0 2Ŝ−1
22 − Ŝ−1

22 A22Ŝ
−1
22

][
I 0

−A21A
−1
11 I

]
.

Notice that each of these preconditioners can be expressed as a certain block-LDU type
preconditioner; however, it is not clear that either would be as good as or a better precondi-
tioner than block LDU. In the simplest (and also fairly common) case that Ŝ22 = A22, then
H−1

22 and G−1
22 are exactly equivalent to the two variants of block-LDU preconditioning in

Equation (2.1) and Equation (2.2), respectively, with diagonal blocks used to approximate
the Schur complement. As we will see in Section 2.1.2.3, this is also formally equivalent to
a block-triangular preconditioner.

Adding an approximation to the Schur complement in the (2,2)-block, G−1
22 , is equivalent

to block-LDU preconditioning with Schur-complement approximation in the (2,2)-block,

except that now we approximate S−1
22 with the operator 2Ŝ−1

22 − Ŝ−1
22 A22Ŝ

−1
22 , as opposed

to Ŝ−1
22 in block-LDU preconditioning Equation (2.2). It is not clear if such an approach

would ever be beneficial over standard LDU, although it is possible one can construct
such a problem. For Ŝ22 6= A22, it is even less clear that H−1

22 would make a good or
better preconditioner compared with LDU or block triangular. Analogous things can be
said about Schur-complement approximations in the (1,1)-block. Numerical results in
Section 2.3 confirm these observations, where symmetric block-triangular preconditioners
offer at best a marginal reduction in total iteration count over block upper- or lower-
triangular preconditioners, and sometimes observe worse convergence, at the expense of
several additional (approximate) inverses.

2.1.2 Krylov and polynomials of the preconditioned matrix

This section begins by considering polynomials applied to the approximate block-LDU
and block-triangular preconditioned operators in Section 2.1.2.1 and Section 2.1.2.2, re-
spectively (the block-diagonal preconditioner is discussed in Section 2.2.3). These results
are used in Section 2.1.2.3 to construct a norm in which fixed-point or Krylov iterations
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applied to approximate block-LDU or block-triangular preconditioned operators are equiv-
alent to the preconditioned Schur complement. Section 2.1.2.4 uses this equivalence to
motivate the key tool used in proofs provided in Section 2.2.

2.1.2.1 Approximate block-LDU preconditioner

In this section we apply a polynomial to the block-LDU preconditioned operator. For an
approximate block-LDU preconditioner with approximate Schur complement in the (2, 2)-
block,

M−1
22 A =

[
I −A−1

11 A12

0 I

][
I 0

0 Ŝ−1
22 S22

][
I A−1

11 A12

0 I

]
:= P1

[
I 0

0 Ŝ−1
22 S22

]
P−1

1 . (2.6)

The three-term formula reveals the change of basis matrix, P1, between the LDU-preconditioned
operator and the Schur-complement problem. This allows us to express polynomials p of
the preconditioned operator as a change of basis applied to the polynomial of the precon-
ditioned Schur complement and the identity,

p(M−1
22 A) =

[
I −A−1

11 A12

0 I

][
p(I) 0

0 p(Ŝ−1
22 S22)

][
I A−1

11 A12

0 I

]

=

p(I) A−1
11 A12

(
p(I)− p(Ŝ−1

22 S22)
)

0 p(Ŝ−1
22 S22)

 . (2.7)

Using right preconditioning, the polynomial takes the form

p(AM−1
22 ) =

[
I 0

A21A
−1
11 I

][
p(I) 0

0 p(S22Ŝ
−1
22 )

][
I 0

−A21A
−1
11 I

]

=

 p(I) 0(
p(I)− p(S22Ŝ

−1
22 )
)
A21A

−1
11 p(S22Ŝ

−1
22 )

 .
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Similarly, polynomials of the left and right preconditioned operator by a block LDU with
approximate Schur complement in the (1, 1)-block take the form

p(M−1
11 A) =

 p(Ŝ−1
11 S11) 0

A−1
22 A21

(
p(I)− p(Ŝ−1

11 S11)
)

p(I)

 ,
p(AM−1

11 ) =

p(S11Ŝ
−1
11 )

(
p(I)− p(S11Ŝ

−1
11 )
)
A12A

−1
22

0 p(I)

 .
(2.8)

2.1.2.2 Block-triangular preconditioner

We now consider polynomials of a block-triangular preconditioned operator. Notice that
error- and residual-propagation operators for four of the block-triangular preconditioners in
Equation (2.4) take a convenient form, with two zero blocks in the 2× 2 matrix. We focus
on these operators in particular, looking at the left and right preconditioned operators

U−1
11 A =

[
Ŝ−1

11 S11 0
A−1

22 A21 I

]
, AL−1

11 =

[
S11Ŝ

−1
11 A12A

−1
22

0 I

]
,

L−1
22 A =

[
I A−1

11 A12

0 Ŝ−1
22 S22

]
, AU−1

22 =

[
I 0

A21A
−1
11 S22Ŝ

−1
22

]
.

These block triangular operators are easy to raise to powers; for example,

(U−1
11 A)d =

[
(Ŝ−1

11 S11)d 0

A−1
22 A21

∑d−1
`=0 (Ŝ−1

11 S11)` I

]
, (2.9)

with similar block structures for (AL−1
11 )d, (L−1

22 A)d, and (AU−1
22 )d.

Now consider some polynomial p(t) of degree d with coefficients {αi} applied to the
preconditioned operator. Diagonal blocks are given by the polynomial directly applied to
the diagonal blocks, in this case p(Ŝ−1

11 S11) and p(I). One off-diagonal block will be zero
and the other (for p(U−1

11 A)) takes the form A−1
22 A21F , where

F :=
d∑
i=1

αi

i−1∑
`=0

(Ŝ−1
11 S11)`. (2.10)
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Assume that p(t) is a consistent polynomial, p(0) = 1, as is the case in Krylov or fixed-point
iterations. Then α0 = 1, and

F (I − Ŝ−1
11 S11) =

d∑
i=1

αiI −
d∑
i=1

αi(Ŝ
−1
11 S11)i

= p(I)− I − (p(Ŝ−1
11 S11)− I)

= p(I)− p(Ŝ−1
11 S11).

(2.11)

If I − Ŝ−1
11 S11 is invertible, not uncommon in practice as preconditioning often does not

invert any particular eigenmode exactly, then

p(U−1
11 A) =

[
I − Ŝ−1

11 S11 0
0 I

] p(Ŝ−1
11 S11) 0

A−1
22 A21

(
p(I)− p(Ŝ−1

11 S11)
)

p(I)

[(I − Ŝ−1
11 S11)−1 0
0 I

]
.

(2.12)

Analogous derivations hold for other block-triangular preconditioners.

2.1.2.3 Equivalence of block-triangular and LDU preconditioners

Notice from Equation (2.8) that the middle term in Equation (2.12) exactly corresponds
to p(M−1

11 A). Applying similar techniques to the other triangular preconditioners above
yield the following result on equivalence between consistent polynomials of approximate
block-LDU preconditioned and block-triangular preconditioned operators. In particular,
this applies to polynomials resulting from fixed-point or Krylov iterations.

Proposition 2.1.2 (Similarity of LDU and triangular preconditioning). Let p(t) be some
consistent polynomial. Then

p(U−1
11 A)

[
I − Ŝ−1

11 S11 0
0 I

]
=

[
I − Ŝ−1

11 S11 0
0 I

]
p(M−1

11 A),

p(L−1
22 A)

[
I 0

0 I − Ŝ−1
22 S22

]
=

[
I 0

0 I − Ŝ−1
22 S22

]
p(M−1

22 A),[
I − S11Ŝ

−1
11 0

0 I

]
p(AL−1

11 ) = p(AM−1
11 )

[
I − S11Ŝ

−1
11 0

0 I

]
,[

I 0

0 I − S22Ŝ
−1
22

]
p(AU−1

22 ) = p(AM−1
22 )

[
I 0

0 I − S22Ŝ
−1
22

]
.
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If the Schur-complement fixed-point, for example I − Ŝ−1
11 S11, is invertible, then the above

equalities are similarity relations between a consistent polynomial applied to an LDU-
preconditioned operator and a block-triangular preconditioned operator.

Proof. The proof follows from derivations analogous to those in Section 2.1.2.1 and Sec-
tion 2.1.2.2.

Combining with a three-term representation of block LDU preconditioners yields the
change of basis matrix between block triangular preconditioner operators and the precon-
ditioned Schur complement. For example, consider p(L−1

22 A). From Equation (2.6) and
Proposition 2.1.2,

Qp(L−1
22 A) = p

[I 0

0 Ŝ−1
22 S22

]Q, where Q :=

[
I A−1

11 A12(I − Ŝ−1
22 S22)

0 I − Ŝ−1
22 S22

]
.

If we suppose that I − Ŝ−1
22 S22 is invertible, then Q is invertible and we can construct

the norm in which fixed-point or Krylov iterations applied to L−1
22 A are equivalent to the

preconditioned Schur complement. For any consistent polynomial p(t),

‖p(L−1
22 A)‖ =

∥∥∥∥∥∥∥p
[I 0

0 Ŝ−1
22 S22

]
∥∥∥∥∥∥∥

(QQ∗)−1

,

∥∥∥∥∥∥∥p
[I 0

0 Ŝ−1
22 S22

]
∥∥∥∥∥∥∥ = ‖p(L−1

22 A)‖Q∗Q.

Similar results are straightforward to derive for p(U−1
11 A), p(AL−1

11 ), and p(AU−1
22 ).

2.1.2.4 On bounding minimizing Krylov polynomials

To motivate the framework used for most of the proofs to follow in Section 2.2, consider
block-LDU preconditioning (for example, Equation (2.8)). Observe that a polynomial p(t)
of the preconditioned operator is a block-triangular matrix consisting of combinations of
p(t) applied to the preconditioned Schur complement, and p(I). A natural way to bound
a minimizing polynomial from above is to then define

q(t) := ϕ(t)(1− t), (2.13)

for some consistent polynomial ϕ(t). Applying q to the preconditioned operator eliminates

the identity terms, and we are left with, for example, terms involving ϕ(Ŝ−1S)(I − Ŝ−1S).
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This is just one fixed-point iteration applied to the preconditioned Schur complement, and
some other consistent polynomial applied to the preconditioned Schur complement, which
we can choose to be a certain minimizing polynomial.

Proposition 2.1.2 shows that such an approximation is also convenient for block tri-
angular preconditioning. The (1 − t) term applies the appropriate transformation to the
off-diagonal term as in Equation (2.11). As in the case of block-LDU preconditioning, we
are then left with a block triangular matrix, with terms consisting of ϕ applied to the
preconditioned Schur complement.

In terms of notation, in this chapter ϕ(d) denotes some form of minimizing polynomial,
with superscript (d) indicating the polynomial degree d. Subscripts, e.g., ϕ

(d)
22 , indicate

a minimizing polynomial for the corresponding (preconditioned) (2, 2)-Schur complement,
and q denotes a polynomial of the form in Equation (2.13).

2.2 Minimizing Krylov polynomials

This section uses the relations derived in Section 2.1.2 to prove a relation between the
Krylov minimizing polynomial for the preconditioned 2 × 2 operator and that for the
preconditioned Schur complement. Approximate block-LDU preconditioning is analyzed
in Section 2.2.1, followed by block-triangular preconditioning in Section 2.2.2, and block-
Jacobi preconditioning in Section 2.2.3. As mentioned previously, the Krylov method,
such as left-preconditioned GMRES, is referred to interchangeably with the equivalent
minimizing polynomial.

2.2.1 Approximate block-LDU preconditioning

This section first considers approximate block-LDU preconditioning and GMRES in Theo-
rem 2.2.1, proving equivalence between minimizing polynomials of the 2×2 preconditioned
operator and the preconditioned Schur complement. Although we are primarily interested
in nonsymmetric operators in this chapter (and thus not CG), it is demonstrated in The-
orem 2.2.2 that analogous techniques can be applied to analyze preconditioned CG. Due
to the induced matrix norm used in CG, the key step is in deriving a reduced Schur-
complement induced norm on the preconditioned Schur complement problem.

Theorem 2.2.1 (Block-LDU preconditioning and GMRES). Let ϕ(d) denote a minimizing
polynomial of the preconditioned operator of degree d in the `2-norm, for initial residual
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r = [r1; r2] (or initial preconditioned residual for right preconditioning). Let ϕ
(d)
kk be the

minimizing polynomial for Ŝ−1
kk Skk in the `2-norm, for initial residual rk, and k ∈ {1, 2}.

Then,

‖ϕ(d)
11 (Ŝ−1

11 S11)r1‖ ≤ ‖ϕ(d)(M−1
11 A)r‖ ≤

∥∥∥∥∥∥
[

I

−A−1
22 A21

]
(I − Ŝ−1

11 S11)ϕ
(d−1)
11 (Ŝ−1

11 S11)r1

∥∥∥∥∥∥ ,
1√
2

∥∥∥ϕ(d)
11 (S11Ŝ

−1
11 )r̂1

∥∥∥ ≤ ‖ϕ(d)(AM−1
11 )r‖ ≤

∥∥∥(I − S11Ŝ
−1
11 )ϕ

(d−1)
11 (S11Ŝ

−1
11 )r̂1

∥∥∥ ,
‖ϕ(d)

22 (Ŝ−1
22 S22)r2‖ ≤ ‖ϕ(d)(M−1

22 A)r‖ ≤

∥∥∥∥∥∥
[
−A−1

11 A12

I

]
(I − Ŝ−1

22 S22)ϕ
(d−1)
22 (Ŝ−1

22 S22)r2

∥∥∥∥∥∥ ,
1√
2

∥∥∥ϕ(d)
22 (S22Ŝ

−1
22 )r̂2

∥∥∥ ≤ ‖ϕ(d)(AM−1
22 )r‖ ≤

∥∥∥(I − S22Ŝ
−1
22 )ϕ

(d−1)
22 (S22Ŝ

−1
22 )r̂2

∥∥∥ .
where r̂1 := r1 − A12A

−1
22 r2 and r̂2 := r2 − A21A

−1
11 r1.

Now let ϕ(d) and ϕ
(d)
kk denote minimizing polynomials of degree d over all vectors in the

`2-norm. Then,

‖ϕ(d)
11 (Ŝ−1

11 S11)‖ ≤ ‖ϕ(d)(M−1
11 A)‖ ≤

∥∥∥∥∥∥
[

I

−A−1
22 A21

]∥∥∥∥∥∥
∥∥∥(I − Ŝ−1

11 S11)ϕ
(d−1)
11 (Ŝ−1

11 S11)
∥∥∥ ,

‖ϕ(d)
11 (Ŝ−1

11 S11)‖ ≤ ‖ϕ(d)(AM−1
11 )‖ ≤

∥∥∥∥[I −A12A
−1
22

]∥∥∥∥ ∥∥∥(I − S11Ŝ
−1
11 )ϕ

(d−1)
11 (S11Ŝ

−1
11 )
∥∥∥ ,

‖ϕ(d)
22 (Ŝ−1

22 S22)‖ ≤ ‖ϕ(d)(M−1
22 A)‖ ≤

∥∥∥∥∥∥
[
−A−1

11 A12

I

]∥∥∥∥∥∥
∥∥∥(I − Ŝ−1

22 S22)ϕ
(d−1)
22 (Ŝ−1

22 S22)
∥∥∥ ,

‖ϕ(d)
22 (Ŝ−1

22 S22)‖ ≤ ‖ϕ(d)(AM−1
22 )‖ ≤

∥∥∥∥[−A21A
−1
11 I

]∥∥∥∥ ∥∥∥(I − S22Ŝ
−1
22 )ϕ

(d−1)
22 (S22Ŝ

−1
22 )
∥∥∥ .

Proof. First, recall that left-preconditioned GMRES is equivalent to minimizing the ini-
tial residual based on a consistent polynomial in M−1

22 A. Let ϕ
(d)
22 (t) be the minimizing

polynomial of degree d for Ŝ−1
22 S22, where ϕ(0) = 1. Define the degree d + 1 polynomial

q(t) := ϕ
(d)
22 (t)(1− t). Notice that q(0) = 1, q(1) = 0, and from Equation (2.7) we have

q(M−1
22 A) =

[
0 −A−1

11 A12q(Ŝ
−1
22 S22)

0 q(Ŝ−1
22 S22)

]
.
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Let ϕ(d+1) be the minimizing polynomial in M−1
22 A of degree d + 1 for initial residual r.

Then,

‖ϕ(d+1)(M−1
22 A)r‖ ≤ ‖q(M−1

22 A)r‖ =

∥∥∥∥∥∥
[
−A−1

11 A12

I

]
(I − Ŝ−1

22 S22)ϕ
(d)
22 (Ŝ−1

22 S22)r2

∥∥∥∥∥∥ .
Taking the supremum over r and noting that ‖r‖ ≥ ‖r2‖, this immediately yields an ideal
GMRES bound as well, where the minimizing polynomial of degree d+ 1 in norm, ϕ(d+1),
is bounded via

‖ϕ(d+1)(M−1
22 A)‖ ≤

∥∥∥∥∥∥
[
−A−1

11 A12

I

]∥∥∥∥∥∥
∥∥∥(I − Ŝ−1

22 S22)ϕ
(d)
22 (Ŝ−1

22 S22)
∥∥∥ .

Right-preconditioned GMRES is equivalent to the `2-minimizing consistent polynomial
in AM−1

22 applied to the initial preconditioned residual. A similar proof as above for right
preconditioning yields

‖ϕ(d+1)(AM−1
22 )r‖ ≤ ‖(I − S22Ŝ

−1
22 )ϕ

(d)
22 (S22Ŝ

−1
22 )r̂2‖,

‖ϕ(d+1)(AM−1
22 )‖ ≤

∥∥∥∥[−A21A
−1
11 I

]∥∥∥∥ ∥∥∥(I − S22Ŝ
−1
22 )ϕ

(d)
22 (S22Ŝ

−1
22 )
∥∥∥ .

where r now refers to the initial preconditioned residual, ϕ refers to minimizing polynomials
for AM−1

22 , and r̂2 := r2 − A21A
−1
11 r1.

For a lower bound, let ϕ(d) be the minimizing polynomial of degree d in M−1
22 A for r.

Then, for an `p-norm with p ∈ [1,∞],

‖ϕ(d)(M−1
22 A)r‖ =

∥∥∥∥∥∥
ϕ(d)(I)r1 + A−1

11 A12

(
ϕ(d)(I)− ϕ(d)(Ŝ−1

22 S22)
)

r2

ϕ(d)(Ŝ−1
22 S22)r2

∥∥∥∥∥∥
≥ ‖ϕ(d)(Ŝ−1

22 S22)r2‖
≥ ‖ϕ(d)

22 (Ŝ−1
22 S22)r2‖.

This also yields an ideal GMRES bound, where the minimizing polynomial in norm is
bounded via ‖ϕ(d)(M−1

22 A)‖ ≥ ‖ϕ(d)
22 (Ŝ−1

22 S22)‖. For right preconditioning,

‖ϕ(d)(AM−1
22 )r‖ =

∥∥∥∥∥∥
[

ϕ(d)(I)r1

ϕ(d)(I)r1 + ϕ(d)(S22Ŝ
−1
22 )(r2 − A21A

−1
11 r1)

]∥∥∥∥∥∥ . (2.14)
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The ideal GMRES bound follows immediately by noting that the supremum over r is
greater than or equal to setting r1 = 0 and taking the supremum over r2, which yields

‖ϕ(d)(AM−1
22 )‖ ≥ ‖ϕ(d)(Ŝ−1

22 S22)‖ ≥ ‖ϕ(d)
22 (Ŝ−1

22 S22)‖.

Then, note the identity∥∥∥∥∥∥
[

x
x + y

]∥∥∥∥∥∥
2

= 2‖x‖2 + ‖y‖2 + 〈x,y〉+ 〈y,x〉

≥ 2‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ ≥ ‖y‖
2

2
.

(2.15)

Applying Equation (2.15) to Equation (2.14) with x := ϕ(d)(I)r1 and y := ϕ(d)(S22Ŝ
−1
22 )(r2−

A21A
−1
11 r1) yields the lower bound on ‖ϕ(d)(AM−1

22 )r‖.
Appealing to Equation (2.8) and analogous derivations yield similar results for the

block-LDU preconditioner with Schur-complement approximation in the (1,1)-block.

Remark 2.2.1 (Left vs. right preconditioning). Interestingly, there exist vectors x and
y such that Equation (2.15) is tight, suggesting there may be specific examples where

‖ϕ(d)(AM−1
22 )r‖ ≤

∥∥∥ϕ(d)
22 (S22Ŝ

−1
22 )r̂2

∥∥∥. If this is the case (rather than a flaw elsewhere in the

line of proof), it means there are initial residuals where the preconditioned 2× 2 operator
converges faster than the corresponding preconditioned Schur complement, a scenario that
is not possible with left-preconditioning.

Although the focus of this chapter is general nonsymmetric operators, similar techniques
as used in the proof of Theorem 2.2.1 can be applied to analyze CG, resulting in the
following theorem.

Theorem 2.2.2 (LDU preconditioning and CG). Let ϕ(d) be a minimizing polynomial in
M−1

kk A, of degree d, in the A-norm, for initial error vector e = [e1; e2], and k ∈ {1, 2}. Let

ϕ
(d)
kk be the minimizing polynomial for Ŝ−1

kk Skk in the Skk norm, for initial error vector ek.
Then,

‖ϕ(d)
kk (Ŝ−1

kk Skk)ek‖Skk
≤ ‖ϕ(d)(M−1

kk A)e‖A
≤ ‖(I − Ŝ−1

kk Skk)ϕ
(d−1)
kk (Ŝ−1

kk Skk)ek‖Skk
.
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Now, let ϕ(d) denote minimizing polynomials over all vectors in the appropriate norm (A-
norm or Skk-norm), representing worst-case CG convergence. Then,

‖ϕ(d)
kk (Ŝ−1

kk Skk)‖Skk
≤ ‖ϕ(d)(M−1

kk A)‖A
≤ ‖(I − Ŝ−1

kk Skk)ϕ
(d−1)
kk (Ŝ−1

kk Skk)‖Skk
.

Proof. Here we prove the case of k = 2. An analogous derivation appealing to Equa-
tion (2.8) yields equivalent results for k = 1.

Recall that CG forms a minimizing consistent polynomial of M−1
22 A in the A-norm.

Let ϕ(d) be the minimizing polynomial of degree d in M−1
22 A for error vector e in the A-

norm. Then, expressing A in a block LDU sense to simplify the term Aϕ(d+1)(M−1
22 A), we

immediately obtain a lower bound:

‖ϕ(d)(M−1
22 A)e‖2

A = 〈Aϕ(d)(M−1
22 A)e, ϕ(d)(M−1

22 A)e〉

=

〈[
A11 0
0 S22

][
ϕ(d)(I)(e1 + A−1

11 A12e2)

ϕ(d)(Ŝ−1
22 S22)e2

]
,

[
ϕ(d)(I)(e1 + A−1

11 A12e2)

ϕ(d)(Ŝ−1
22 S22)e2t

][
e1

e2

]〉
≥ 〈S22ϕ

(d)(Ŝ−1
22 S22)e2, ϕ

(d)(Ŝ−1
22 S22)e2〉

= ‖ϕ(d)(Ŝ−1
22 S22)e2‖2

S22

= ‖ϕ(d)
22 (Ŝ−1

22 S22)e2‖2
S22
,

where ϕ
(d)
22 is the minimizing polynomial of degree d in Ŝ−1

22 S22 for error vector e2. A lower
bound on the minimizing polynomial of degree d in norm follows immediately by noting
that

‖ϕ(d)(M−1
22 A)‖A = sup

e 6=0

‖ϕ(d)(M−1
22 A)e‖A
‖e‖A

≥ sup
e2 6=0,

e1=−A−1
11 A12

‖ϕ(d)(M−1
22 A)e‖A
‖e‖A

= ‖ϕ(d)(Ŝ−1
22 S22)‖S22 ≥ ‖ϕ(d)

22 (Ŝ−1
22 S22)‖S22 .

For an upper bound, let ϕ
(d)
22 be the minimizing polynomial of degree d in Ŝ−1

22 S22 for

error vector e2 in the S22-norm. Define the degree d+ 1 polynomial q(t) := (1− t)ϕ(d)
22 (t),

and let ϕ(d+1) be the minimizing polynomial of degree d+ 1 in M−1
22 A for error vector e in

38



the A-norm. Then

‖ϕ(d+1)(M−1
22 A)e‖2

A ≤ ‖q(M−1
22 A)e‖2

A

=

〈[
A11 0
0 S22

][
0 0

0 q(Ŝ−1
22 S22)

][
e1

e2

]
,

[
0 0

0 q(Ŝ−1
22 S22)

][
e1

e2

]〉
= 〈S22q(Ŝ

−1
22 S22)e2, q(Ŝ

−1
22 S22)e2〉

= ‖(I − Ŝ−1
22 S22)ϕ

(d)
22 (Ŝ−1

22 S22)e2‖2
S22
.

For a bound in norm, note that for a fixed e2, ‖e‖2
A is a quadratic function in e1, with

minimum obtained at e1 := −A−1
11 A12. Then,

‖ϕ(d+1)(M−1
22 A)‖2

A = sup
e6=0

‖ϕ(d+1)(M−1
22 A)e‖2

A

‖e‖2
A

≤ sup
e6=0

‖q(M−1
22 A)e‖2

A

‖e‖2
A

= sup
e2

‖(I − Ŝ−1
22 S22)ϕ

(d)
22 (Ŝ−1

22 S22)e2‖2
S22

infe1 ‖e‖2
A

= sup
e2

‖(I − Ŝ−1
22 S22)ϕ

(d)
22 (Ŝ−1

22 S22)e2‖2
S22

‖e2‖2
S22

= ‖(I − Ŝ−1
22 S22)ϕ

(d)
22 (Ŝ−1

22 S22)‖2
S22
.

From Theorem 2.2.2 we note that for CG, upper and lower inequalities prove that after
d iterations, the preconditioned 2× 2 system converges at least as accurately as d− 1 CG
iterations on the preconditioned Schur complement, Ŝ−1

kk Skk, plus one fixed-point iteration,
and not more accurately than d CG iterations on the preconditioned Schur complement.
Because there are operators for which convergence of fixed-point and CG are equivalent,
this indicates there are cases for which the upper and lower bounds in Theorem 2.2.2 are
tight. Note, these bounds also have no dependence on the off-diagonal blocks, a result
not shared by other preconditioners and Krylov methods examined in this chapter. It is
unclear if the larger upper bound in GMRES in Theorem 2.2.1 is a flaw in the line of proof,
or if CG on the preconditioned 2×2 system can achieve slightly better convergence (in the
appropriate norm) with respect to the preconditioned Schur complement than GMRES.

2.2.2 Block-triangular preconditioning

In this section we consider block-triangular preconditioning. In particular, we prove equiva-
lence between minimizing polynomials of the 2×2 preconditioned operator and the precon-
ditioned Schur complement for block-triangular preconditioning. We consider separately
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left preconditioning in Theorem 2.2.3 and right preconditioning in Theorem 2.2.4. Theo-
rems are stated for the preconditioners that take the simplest form in Equation (2.4) (left vs.
right and Schur complement in the (1,1)- or (2,2)-block), the same as those discussed in Sec-
tion 2.1.2. However, note that, for example, any polynomial p(U−1

22 A) = U−1
22 p(AU

−1
22 )U22.

Thus, if we prove a result for left preconditioning with U−1
22 , a similar result holds for right

preconditioning, albeit with modified constants/residual. Such results are not stated here
for the sake of brevity.

Theorem 2.2.3 (Left block-triangular preconditioning and GMRES). Let ϕ(d) denote a
minimizing polynomial of the preconditioned operator of degree d in the `2-norm, for initial
residual r = [r1; r2]. Let ϕ

(d)
kk be the minimizing polynomial for Ŝ−1

kk Skk in the `2-norm, for
initial residual rk, and k ∈ {1, 2}. Then,

‖ϕ(d)
11 (Ŝ−1

11 S11)r1‖ ≤ ‖ϕ(d)(U−1
11 A)r‖ ≤

∥∥∥∥∥∥
[
I − Ŝ−1

11 S11

−A−1
22 A21

]
ϕ

(d−1)
11 (Ŝ−1

11 S11)r1

∥∥∥∥∥∥ ,
‖ϕ(d)

22 (Ŝ−1
22 S22)r2‖ ≤ ‖ϕ(d)(L−1

22 A)r‖ ≤

∥∥∥∥∥∥
[
−A−1

11 A12

I − Ŝ−1
22 S22

]
ϕ

(d−1)
22 (Ŝ−1

22 S22)r2

∥∥∥∥∥∥ .
Now let ϕ(d) and ϕ

(d)
kk denote minimizing polynomials of degree d over all vectors in the

`2-norm (instead of for the initial residual). Then,

‖ϕ(d)
11 (Ŝ−1

11 S11)‖ ≤ ‖ϕ(d)(U−1
11 A)‖ ≤

∥∥∥∥∥∥
[
I − Ŝ−1

11 S11

−A−1
22 A21

]∥∥∥∥∥∥
∥∥∥ϕ(d−1)

11 (Ŝ−1
11 S11)

∥∥∥ ,
‖ϕ(d)

22 (Ŝ−1
22 S22)‖ ≤ ‖ϕ(d)(L−1

22 A)‖ ≤

∥∥∥∥∥∥
[
−A−1

11 A12

I − Ŝ−1
22 S22

]∥∥∥∥∥∥
∥∥∥ϕ(d−1)

22 (Ŝ−1
22 S22)

∥∥∥ .
Proof. Recall left-preconditioned GMRES is equivalent to the minimizing consistent poly-
nomial in the `2-norm over the preconditioned operator, for initial residual r. Consider
lower-triangular preconditioning with an approximate Schur complement in the (2,2)-block,

L−1
22 A =

[
I A−1

11 A12

0 Ŝ−1
22 S22

]
. (2.16)

Let ϕ(t) be some consistent polynomial, and define a second consistent polynomial q(t) :=
(1− t)ϕ(t). Plugging in t = L−1

22 A and expanding the polynomial ϕ analogous to the steps
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in Equation (2.9) and Equation (2.10) yields

q(L−1
22 A) =

[
0 −A−1

11 A12

0 I − Ŝ−1
22 S22

][
ϕ(I) F

0 ϕ(Ŝ−1
22 S22)

]

=

[
0 −A−1

11 A12ϕ(Ŝ−1
22 S22)

0 (I − Ŝ−1
22 S22)ϕ(Ŝ−1

22 S22)

]
,

where F is the upper left block of q(L−1
22 A), similar to Equation (2.10).

Now let ϕ(d) be the minimizing polynomial in L−1
22 A of degree d for initial residual

r = [r1; r2], and ϕ
(d)
22 be the minimizing polynomial in Ŝ−1

22 S22 of degree d for initial residual

r2. Define the degree d polynomial q(t) := (1− t)ϕ(d−1)
22 (t). Then

‖ϕ(d)(L−1
22 A)r‖ ≤ ‖q(L−1

22 A)r‖ =

∥∥∥∥∥∥
[
−A−1

11 A12

I − Ŝ−1
22 S22

]
ϕ

(d−1)
22 (Ŝ−1

22 S22)r2

∥∥∥∥∥∥ .
Taking the supremum over r and appealing to the submultiplicative property of norms
yields an upper bound on the minimizing polynomial in norm as well,

‖ϕ(d)(L−1
22 A)‖ ≤

∥∥∥∥∥∥
[
−A−1

11 A12

I − Ŝ−1
22 S22

]∥∥∥∥∥∥
∥∥∥ϕ(d−1)

22 (Ŝ−1
22 S22)

∥∥∥ .
A lower bound is also obtained in a straightforward manner for initial residual r,

‖ϕ(d)(L−1
22 A)r‖ =

∥∥∥∥∥∥
[
ϕ(I)(d)r1 + Fr2

ϕ(d)(Ŝ−1
22 S22)r2

]∥∥∥∥∥∥ ≥
∥∥∥ϕ(d)(Ŝ−1

22 S22)r2

∥∥∥ ≥ ∥∥∥ϕ(d)
22 (Ŝ−1

22 S22)r2

∥∥∥ ,
which can immediately be extended to a lower bound on the minimizing polynomial in
norm as well,

‖ϕ(d)(L−1
22 A)‖ ≥

∥∥∥ϕ(d)
22 (Ŝ−1

22 S22)
∥∥∥ .

Analogous derivations yield bounds for an upper-triangular preconditioner with ap-
proximate Schur complement in the (1,1)-block.

We next consider right block-triangular preconditioning.
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Theorem 2.2.4 (Right block-triangular preconditioning and GMRES). Let ϕ(d) denote a
minimizing polynomial of the preconditioned operator of degree d in the `2-norm, for initial
preconditioned residual r = [r1; r2]. Let ϕ

(d)
kk be the minimizing polynomial for Ŝ−1

kk Skk in
the `2-norm, for initial residual r̂k, and k ∈ {1, 2}. Then,

‖ϕ(d)(AL−1
11 )r‖ ≤

∥∥∥ϕ(d−1)
11 (S11Ŝ

−1
11 )r̂1

∥∥∥ ,
‖ϕ(d)(AU−1

22 )r‖ ≤
∥∥∥ϕ(d−1)

22 (S22Ŝ
−1
22 )r̂2

∥∥∥ ,
where r̂1 := (I − S11Ŝ

−1
11 )r1 − A12A

−1
22 r2 and r̂2 := (I − S22Ŝ

−1
22 )r2 − A21A

−1
11 r1.

Now let ϕ(d) and ϕ
(d)
kk denote minimizing polynomials of degree d over all vectors in the

`2-norm (instead of for the initial preconditioned residual). Then,

‖ϕ(d)
11 (S11Ŝ

−1
11 )‖ ≤ ‖ϕ(d)(AL−1

11 )‖ ≤
∥∥∥∥[I − S11Ŝ

−1
11 −A12A

−1
22

]∥∥∥∥ ∥∥∥ϕ(d−1)
11 (S11Ŝ

−1
11 )
∥∥∥ ,

‖ϕ(d)
22 (S22Ŝ

−1
22 )‖ ≤ ‖ϕ(d)(AU−1

22 )‖ ≤
∥∥∥∥[−A21A

−1
11 I − S22Ŝ

−1
22

]∥∥∥∥ ∥∥∥ϕ(d−1)
22 (S22Ŝ

−1
22 )
∥∥∥ .

Proof. Recall right-preconditioned GMRES is equivalent to the minimizing consistent poly-
nomial in the `2-norm over the right-preconditioned operator, for initial preconditioned
residual r. Consider

AL−1
11 =

[
S11Ŝ

−1
11 A12A

−1
22

0 I

]
.

Defining q(t) = ϕ(t)(1− t) we note that

q(AL−1
11 ) = ϕ(AL−1

11 )(I − AL−1
11 )

=

[
ϕ(S11Ŝ

−1
11 ) F

0 ϕ(I)

][
I − S11Ŝ

−1
11 −A12A

−1
22

0 0

]

=

[
(I − S11Ŝ

−1
11 )ϕ(S11Ŝ

−1
11 ) −ϕ(S11Ŝ

−1
11 )A12A

−1
22

0 0

]
.
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Then,

‖ϕ(d)(AL−1
11 )r‖ ≤ ‖q(AL−1

11 )r‖

=

∥∥∥∥ϕ(d−1)
11 (S11Ŝ

−1
11 )
(

(I − S11Ŝ
−1
11 )r1 − A12A

−1
22 r2

)∥∥∥∥ ,
‖ϕ(d)(AL−1

11 )‖ ≤
∥∥∥∥[I − S11Ŝ

−1
11 −A12A

−1
22

]∥∥∥∥ ∥∥∥ϕ(d−1)
11 (S11Ŝ

−1
11 )
∥∥∥ .

The lower bound on the minimizing polynomial in norm is obtained by noting

‖ϕ(d)(AL−1
11 )‖ = sup

r6=0

∥∥∥∥∥∥
[
ϕ(d)(S11Ŝ

−1
11 ) F

0 ϕ(I)

][
r1

r2

]∥∥∥∥∥∥
‖r‖

≥ sup
r1 6=0

∥∥∥∥∥∥
[
ϕ(d)(S11Ŝ

−1
11 ) F

0 ϕ(I)

][
r1

0

]∥∥∥∥∥∥
‖r1‖

= ‖ϕ(d)
11 (S11Ŝ

−1
11 )‖.

Analogous derivations as above yield bounds for the right upper triangular preconditioner
with Schur complement in the (2,2)-block, AU−1

22 .

As discussed previously, similar results as Theorem 2.2.4 hold for preconditioning with
U−1

11 and L−1
22 . However, it is not clear if a lower bound for specific initial residual, as

proven for block-LDU and left block-triangular preconditioning in Theorem 2.2.1 and The-
orem 2.2.3, holds for right block-triangular preconditioning. For block-LDU precondition-
ing, the lower bound is weaker for right preconditioning, including a factor of 1/

√
2.

2.2.3 Block-Jacobi preconditioning

In this section we prove equivalence between minimizing polynomials of the 2×2 precondi-
tioned operator and the preconditioned Schur complement for block-Jacobi precondition-
ing.

Let q(t) be some polynomial in t, where q(0) = 1. Note that q can always be written
equivalently as a polynomial p(1 − t), under the constraint that the sum of polynomial
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coefficients for p, say {αi}, sum to one (to enforce q(0) = 1). Thus let ϕ(2d)(D−1A) be the
minimizing polynomial of degree 2d in the `2-norm, and let us express this equivalently as
a polynomial p, where

p(I −D−1A) :=
2d∑
i=0

αi(I −D−1A)i

=
d∑
i=0

α2i(I −D−1A)2i +
d−1∑
i=0

α2i+1(I −D−1A)2i+1

=
d∑
i=0

α2i(I −D−1A)2i + (I −D−1A)
d−1∑
i=0

α2i+1(I −D−1A)2i.

From Equation (2.5), even powers of I − D−1A take a block diagonal form, and we can
write

p(I −D−1A) =

[
p̂(A−1

11 A12A
−1
22 A21) 0

0 p̂(A−1
22 A21A

−1
11 A12)

]

+

[
0 −A−1

11 A12

−A−1
22 A21 0

][
p̃(A−1

11 A12A
−1
22 A21) 0

0 p̃(A−1
22 A21A

−1
11 A12)

]

=

[
p̂(A−1

11 A12A
−1
22 A21) −A−1

11 A12p̃(A
−1
22 A21A

−1
11 A12)

−A−1
22 A21p̃(A

−1
11 A12A

−1
22 A21) p̂(A−1

22 A21A
−1
11 A12)

]

=

[
p̂(I − A−1

11 S11) −A−1
11 A12p̃(I − A−1

22 S22)
−A−1

22 A21p̃(I − A−1
11 S11) p̂(I − A−1

22 S22)

]
, (2.17)

where p̂ and p̃ are degree d and d − 1 polynomials with coefficients {α̂i} ←[ {α2i} and
{α̃i} ← [ {α2i+1}, respectively. This is the primary observation leading to the proof of
Theorem 2.2.5. Also note the identities that for any polynomial q,

A−1
11 A12q(I − A−1

22 S22) = q(I − A−1
11 S11)A−1

11 A12, (2.18a)

A−1
22 A21q(I − A−1

11 S11) = q(I − A−1
22 S22)A−1

22 A21, (2.18b)

which will be used with Equation (2.17) in the derivations that follow.

Theorem 2.2.5 (Block-Jacobi preconditioning & ideal GMRES). Let ϕ(D−1A) be the
worst-case consistent minimizing polynomial of degree 2d, in the `p-norm, p ∈ [1,∞], for
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D−1A. Let ϕ
(d)
11 and ϕ

(d)
22 be the minimizing polynomials of degree d in the same norm, for

A−1
11 S11 and A−1

22 S22, respectively. Then,

‖ϕ(D−1A)‖ ≥
min

{
‖ϕ(d)

11 (A−1
11 S11)‖, ‖ϕ(d)

11 (A−1
22 S22)‖

}
1 + min

{
‖A−1

11 A12‖, ‖A−1
22 A21‖

} ,

‖ϕ(D−1A)‖
‖A−1

22 A21‖+ ‖A−1
11 A12‖

≤ min
{
‖ϕ(d−1)

11 (A−1
11 S11)‖, ‖ϕ(d−1)

22 (A−1
22 S22)‖

}
.

Similarly, now let ϕ
(d)
11 and ϕ

(d)
22 be the minimizing polynomials of degree d for S11A

−1
11

and S22A
−1
22 , respectively. Then,

‖ϕ(AD−1)‖ ≥
min

{
‖ϕ(d)

11 (S11A
−1
11 )‖, ‖ϕ(d)

22 (S22A
−1
22 )‖

}
1 + min

{
‖A21A

−1
11 ‖, ‖A12A

−1
22 ‖
} ,

‖ϕ(AD−1)‖
‖A12A

−1
22 ‖+ ‖A21A

−1
11 ‖
≤ min

{
‖ϕ(d−1)

11 (S11A
−1
11 )‖, ‖ϕ(d−1)

22 (S22A
−1
22 )‖

}
.

Proof. Recall preconditioned GMRES is equivalent to the minimizing consistent polyno-
mial in the `2-norm over the preconditioned operator. We start with the lower bounds.
Let ϕ(2d) be the consistent minimizing polynomial (in norm) of degree 2d for D−1A, and
let p(t) be a polynomial such that p(I − D−1A) = ϕ(D−1A), where coefficients of p, say
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{αi} are such that
∑
αi = 1. From Equation (2.17) and Equation (2.18),

‖p(I −D−1A)‖ = sup
r6=0

∥∥∥∥∥∥
[

p̂(I − A−1
11 S11) −p̃(I − A−1

11 S11)A−1
11 A12

−p̃(I − A−1
22 S22)A−1

22 A21 p̂(I − A−1
22 S22)

][
r1

r2

]∥∥∥∥∥∥
‖r‖

≥ sup
r1 6=0

∥∥∥∥∥∥
[

p̂(I − A−1
11 S11) −p̃(I − A−1

11 S11)A−1
11 A12

−p̃(I − A−1
22 S22)A−1

22 A21 p̂(I − A−1
22 S22)

][
r1

0

]∥∥∥∥∥∥
‖r1‖

≥ max

{
sup
r1 6=0

∥∥p̂(I − A−1
11 S11)r1

∥∥
‖r1‖

, sup
r1 6=0

∥∥p̃(I − A−1
22 S22)A−1

22 A21r1

∥∥
‖r1‖

}

≥ max

sup
r1 6=0

∥∥p̂(I − A−1
11 S11)r1

∥∥
‖r1‖

, sup
A−1

11 A12r̃2 6=0

∥∥p̃(I − A−1
22 S22)A−1

22 A21A
−1
11 A12r̃2

∥∥
‖A−1

11 A12r̃2‖


≥ max

{
sup
r1 6=0

∥∥p̂(I − A−1
11 S11)r1

∥∥
‖r1‖

, sup
r̃2 6=0

∥∥p̃(I − A−1
22 S22)(I − A−1

22 S22)r̃2

∥∥
‖A−1

11 A12‖‖r̃2‖

}
.

Note that the step introducing the maximum in the third line holds for `p-norms, p ∈ [1,∞].

Now recall that to enforce ϕ(2d)(0) = 1, it must be the case that coefficients of p sum
to one. Thus, it must be the case that for coefficients of p̂ and p̃, say {α̂i} and {α̃i},∑

i α̂i +
∑

i α̃i := ŝ + s̃ = 1. Let us normalize such that each polynomial within the
supremum has coefficients of sum one, which yields

‖p(I −D−1A)‖

≥ max

{
|ŝ| sup

r1 6=0

∥∥p̂(I − A−1
11 S11)r1

∥∥
|ŝ|‖r1‖

, |s̃| sup
r̃2 6=0

∥∥p̃(I − A−1
22 S22)(I − A−1

22 S22)r̃2

∥∥
|s̃|‖A−1

11 A12‖‖r̃2‖

}

≥ max

{
|ŝ|
∥∥∥ϕ(d)

11 (A−1
11 S11)

∥∥∥ , |1− ŝ|‖A−1
11 A12‖

∥∥∥ϕ(d)
22 (A−1

22 S22)
∥∥∥}

:= max

{
|ŝ|C1,

|1− ŝ|
‖A−1

11 A12‖
C2

}
, (2.19)

where ϕ
(d)
11 is the minimizing polynomial of degree d of A−1

11 S11, and similarly for ϕ
(d)
22

and A−1
22 S22. In the 22-case, note that p̃(I − A−1

22 S22)(I − A−1
22 S22) can be expressed as
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a polynomial of degree d in A−1
22 S22. Furthermore, in expressing the two polynomials,

p̃(I −A−1
22 S22) and the product p̃(I −A−1

22 S22)(I −A−1
22 S22), as polynomials in A−1

22 S22, the
identity coefficients are equal. In particular, when scaling by 1/|s̃|, both polynomials are
equivalent to consistent polynomials in A−1

22 S22 of degree d − 1 and d, respectively. This
allows us to bound the polynomials in A−1

22 S22 (as well as A−1
11 S11) from below using the

true worst-case minimizing polynomial (in norm).

To derive bounds for all p, we now minimize over ŝ. If ŝ ≥ 1, it follows that ‖p(I −
D−1A)‖ ≥ C1, and for ŝ ≤ 0, we have ‖p(I − D−1A)‖ ≥ C2

‖A−1
11 A12‖

. For ŝ ∈ (0, 1), the

minimum over ŝ of the maximum in Equation (2.19) is obtained at ŝ such that ŝC1 =
1−ŝ

‖A−1
11 A12‖

C2, or ŝmin := C2

‖A−1
11 A12‖C1+C2

. Evaluating yields

‖ϕ(2d)(D−1A)‖ = ‖p(I −D−1A)‖ ≥ C1C2

‖A−1
11 A12‖C1 + C2

≥ min{C1, C2}
1 + ‖A−1

11 A12‖
.

An analogous proof as above, but initially setting r1 = 0 rather than r2 yields a similar
result,

‖ϕ(2d)(D−1A)‖ = ‖p(I −D−1A)‖ ≥ min{C1, C2}
1 + ‖A−1

22 A21‖
.

Right preconditioning follows an analogous derivation, where ϕ(2d)(AD−1) = p(I −
AD−1) instead takes the form

p(I − AD−1) =

[
p̂(I − S11A

−1
11 ) −A12A

−1
22 p̃(I − S22A

−1
22 )

−A21A
−1
11 p̃(I − S11A

−1
11 ) p̂(I − S22A

−1
22 )

]
.

Next, we prove the upper bounds. Similar to previously, from Equation (2.17) we have

‖p(I −D−1A)‖ =

∥∥∥∥∥∥
[

p̂(I − A−1
11 S11) −p̃(I − A−1

11 S11)A−1
11 A12

−A−1
22 A21p̃(I − A−1

11 S11) p̂(I − A−1
22 S22)

]∥∥∥∥∥∥
≤

∥∥∥∥∥∥
[

q̂(I − A−1
11 S11) −q̃(I − A−1

11 S11)A−1
11 A12

−A−1
22 A21q̃(I − A−1

11 S11) q̂(I − A−1
22 S22)

]∥∥∥∥∥∥ ,
for polynomials q̂ and q̃ of degree d and d−1 such that coefficients satisfy

∑
i α̂i+

∑
i α̃i = 1.
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Let q̂ = 0. Then,

‖p(I −D−1A)‖ ≤

∥∥∥∥∥∥
[

0 −q̃(I − A−1
11 S11)A−1

11 A12

−A−1
22 A21q̃(I − A−1

11 S11) 0

]∥∥∥∥∥∥
≤

∥∥∥∥∥∥
[

0 0
−A−1

22 A21q̃(I − A−1
11 S11) 0

]∥∥∥∥∥∥+

∥∥∥∥∥∥
[
0 −q̃(I − A−1

11 S11)A−1
11 A12

0 0

]∥∥∥∥∥∥
= ‖A−1

22 A21q̃(I − A−1
11 S11)‖+ ‖q̃(I − A−1

11 S11)A−1
11 A12‖

≤ ‖q̃(I − A−1
11 S11)‖

(
‖A−1

22 A21‖+ ‖A−1
11 A12‖

)
.

Recalling that q̃(I −A−1
11 S11)A−1

11 A12 = A−1
11 A12q̃(I −A−1

22 S22) and A−1
22 A21q̃(I −A−1

11 S11) =
q̃(I − A−1

22 S22)A−1
22 A21 for any polynomial q̃, we also have the equivalent result

‖p(I −D−1A)‖ ≤ ‖q̃(I − A−1
22 S22)‖

(
‖A−1

22 A21‖+ ‖A−1
11 A12‖

)
.

Let ϕ
(d−1)
11 (t) and ϕ

(d−1)
22 (t) denote the consistent worst-case minimizing polynomials of

degree d − 1 for A−1
11 S11 and A−1

22 S22, respectively. Note, q̃ is also a polynomial of degree
d − 1 in (without loss of generality) A−1

11 S11. Because coefficients of q̃ satisfy
∑

i α̃i = 1,
q̃(I −A−1

11 S11) can equivalently be expressed as a consistent polynomial in (A−1
11 S11). Thus

let q̃(I − A−1
11 S11) := ϕ

(d−1)
11 (A−1

11 S11). Analogous steps for A−1
22 S22 yield bounds

‖ϕ(2d)(D−1A)‖ ≤ ‖ϕ(d−1)
11 (A−1

11 S11)‖
(
‖A−1

22 A21‖+ ‖A−1
11 A12‖

)
,

‖ϕ(2d)(D−1A)‖ ≤ ‖ϕ(d−1)
22 (A−1

22 S22)‖
(
‖A−1

22 A21‖+ ‖A−1
11 A12‖

)
.

Similar to the proof of a lower bound, an analogous derivation as above yields right
preconditioning bounds

‖ϕ(2d)(AD−1)‖ ≤ ‖ϕ(d−1)
11 (S11A

−1
11 )‖

(
‖A12A

−1
22 ‖+ ‖A21A

−1
11 ‖
)
,

‖ϕ(2d)(AD−1)‖ ≤ ‖ϕ(d−1)
22 (S22A

−1
22 )‖

(
‖A12A

−1
22 ‖+ ‖A21A

−1
11 ‖
)
,

where ϕ now denotes minimizing polynomials associated with right preconditioning.

Remark 2.2.2 (General block-diagonal preconditioner). This section proved results for
block-Jacobi preconditioners, where the preconditioner inverts the diagonal blocks of the
original matrix, and convergence is defined by the underlying preconditioned Schur comple-
ment. However, such results do not extend to more general block-diagonal preconditioners
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with Schur-complement approximation Ŝ22 6= A22. In [149], examples are constructed where
block-diagonal preconditioning with an exact Schur complement take several hundred iter-
ations to converge, while block-triangular preconditioning with an exact Schur complement
requires only three iterations (the extra iteration over a theoretical max of two is likely due
to floating point error).

2.3 The steady linearized Navier–Stokes equations

To demonstrate the new theory in practice, we consider a finite-element discretization of the
steady linearized Navier–Stokes equations, which results in a nonsymmetric operator with
block structure, to which we apply various block-preconditioning techniques. The finite-
element discretization is constructed using the MFEM finite-element library [2], PETSc is
used for the block-preconditioning and linear-algebra interface [7], and hypre provides the
algebraic multigrid (AMG) solvers for various blocks in the operator [54].

Let Ω ⊂ R2 be a polygonal domain with boundary ∂Ω. We consider the steady
linearized Navier–Stokes problem for the velocity field u : Ω → R2 and pressure field
p : Ω→ R, given by

−ν∆u+∇ · (w ⊗ u)− γ∇∇ · u+∇p = f in Ω, (2.20a)

∇ · u = 0 in Ω, (2.20b)

u = g on ∂Ω, (2.20c)

where w : Ω→ R2 is a given solenoidal velocity field, ν ∈ R+ is the kinematic viscosity, γ ≥
0 is a constant, g ∈ R2 is a given Dirichlet boundary condition, and f : Ω→ Rd is a forcing
term. The consistent grad-div term −γ∇∇ · u is added to Equation (2.20a) to improve
convergence of the iterative solver when solving the discrete form of Equation (2.20).

As a test case in this section we set γ = 1000, ν = 10−4, and f = −ν∆u+∇ · (w ⊗
u) +∇p and g = u are derived from the exact solution

u =

[
sin(3x1) sin(3x2)
cos(3x1) cos(3x2)

]
, p = (1− 3x1)x2, in Ω = [0, 1]2,

with w = u.

We discretize the linearized Navier–Stokes problem Equation (2.20) using the pointwise
mass-conserving hybridizable discontinuous Galerkin (HDG) method introduced in [132].
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This HDG method approximates both the velocity and pressure separately on element
interiors and element boundaries. As such, we make a distinction between interior element
degrees-of-freedom (DOFs) and the facet DOFs. We discuss this HDG method next, with
required modifications for grad-div term.

Let T = {K} be a tessellation of the domain Ω into non-overlapping simplices K.
The boundaries of elements K are denoted by ∂K and the outward unit normal vectors
on each ∂K are denoted by n. We set h = maxK∈T hK , where hK is the characteristic
length of an element K. We also need the notion of facets: an interior facet is defined as
FI := ∂K+ ∩ ∂K− for neighbouring elements K+, K− and a boundary facet is defined as
FB := ∂K ∩ ∂Ω. The sets of interior facets FI and boundary facets FB are respectively
denoted by FI and FB. The set of all facets is F = FI ∪FB while Γ0 denotes the union of
all facets.

We introduce the following discontinuous finite element spaces for the velocity and
pressure on T and their restriction to Γ0:

Vh =
{
vh ∈

[
L2(T )

]d
, vh ∈

[
Pk(K)

]d
, ∀K ∈ T

}
, (2.21)

V̄h =
{
v̄h ∈

[
L2(F)

]d
, v̄h ∈

[
Pk(F )

]d
, ∀F ∈ F , v̄h = gD on ΓD

}
, (2.22)

Qh =
{
qh ∈ L2(T ), qh ∈ Pk−1(K), ∀K ∈ T

}
, (2.23)

Q̄h =
{
q̄h ∈ L2(F), q̄h ∈ Pk(F ), ∀F ∈ F

}
, (2.24)

where Pl(D) is the space of polynomials of degree l > 0 on a domain D and d is the dimen-
sionality of the problem. Note that Vh and Qh are defined everywhere on the tessellation
T and that V̄h and Q̄h are defined only on facets F ∈ F . For ease of notation we define
also V h = Vh × V̄h, Qh = Qh × Q̄h and Xh = V h ×Qh, and denote function pairs in V h

and Qh by boldface, for example, uh = (uh, ūh) ∈ V h and ph = (ph, p̄h) ∈ Qh. We will
also frequently use the space

V div
h :=

{
vh ∈ Vh ∩H(div,Ω) : ∇ · vh = 0 ∀x ∈ K, ∀K ∈ T

}
. (2.25)

The HDG formulation for the linearized Navier–Stokes problem Equation (2.20) is given

by: given f ∈ [L2(Ω)]
d
, ν > 0 and wh ∈ V div

h , find (uh,ph) ∈Xh such that

B(uh,ph;vh, qh) =
∑
K∈T

∫
K

f · vh dx ∀(vh, qh) ∈Xh, (2.26)

where

B(uh,ph;vh, qh) =ah(uh,vh) + oh(wh;uh,vh) + γdh(uh, vh)

+ bh(ph,vh)− bh(qh,uh),
(2.27)
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and where

ah(u,v) :=
∑
K∈T

∫
K

ν∇u : ∇v dx+
∑
K∈T

∫
∂K

αν

hK
(u− ū) · (v − v̄) ds, (2.28a)

−
∑
K∈T

∫
∂K

[
ν(u− ū) · ∂nv + ν∂nu · (v − v̄)

]
ds,

oh(w;u,v) :=−
∑
K∈T

∫
K

u⊗ w : ∇v dx+
∑
K∈T

∫
∂K

1
2
w · n(u+ ū) · (v − v̄) ds (2.28b)

+
∑
K∈T

∫
∂K

1
2
|w · n| (u− ū) · (v − v̄) ds,

dh(u, v) :=
∑
K∈T

∫
K

(∇ · u)(∇ · v) dx, (2.28c)

bh(p,v) :=−
∑
K∈T

∫
K

p∇ · v dx+
∑
K∈T

∫
∂K

(v − v̄) · np̄ ds. (2.28d)

In Equation (2.28a) α > 0 is a penalty parameter that needs to be chosen sufficiently large
to ensure stability [131, 165].

To obtain the equivalent linear system, let u ∈ Rnu be the vector of discrete velocity
with respect to the basis for Vh, let ū ∈ Rnū be the vector of the discrete velocity with
respect to the basis for V̄h, and let u := [uT ūT ]T . Similarly, let p ∈

{
q ∈ Rnp |q 6= 1

}
be

the vector of discrete pressure with respect to the basis for Qh, let p̄ ∈ Rnp̄ be the vector
of the discrete pressure with respect to the basis for Q̄h, and let p := [pT p̄T ].

Let v := [vT v̄T ]T be any vector with v ∈ Rnu and v̄ ∈ Rn̄u and let q := [qT q̄T ]T

be any vector with q ∈
{
q ∈ Rnp|q 6= 1

}
and q̄ ∈ Rn̄q . We then define the matrix A ∈

R(nu+nū)×(nu+nū) by

ah(vh,vh) =‖v‖2
A where A :=

[
Auu ATūu
Aūu Aūū

]
, (2.29)

where we used the notation ‖v‖2
A = 〈Av,v〉 = vTAv. Similarly, we define the matrices

N,D, J ∈ R(nu+nū)×(nu+nū) by

oh(wh;vh,vh) = 〈Nv,v〉 where N :=

[
Nuu Nuū

Nūu Nūū

]
, (2.30)

dh(vh, vh) = 〈Dv,v〉 where D :=

[
Duu 0

0 0

]
. (2.31)
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We define the matrix B ∈ R(nq+n̄q)×(nu+n̄u) as

bh(qh,vh) = 〈Bv,q〉 where B :=

[
Bpu 0
Bp̄u 0

]
, (2.32)

and we define the vector L ∈ R(nu+nū) as∑
K∈T

∫
K

vh · f dx = vTL where L :=

[
Lu
0

]
. (2.33)

Defining Fij = Aij +Nij + γDij and separating the interior DOFs and facet DOFs, the
HDG linear system takes the form

Fuu Fuū BT
pu BT

p̄u

Fūu Fūū 0 0
Bpu 0 0 0
Bp̄u 0 0 0



u
ū
p
p̄

 =


L
0
0
0

 . (2.34)

The HDG method in [132] is such that element DOFs are local; a direct consequence is
that Fuu is a block diagonal matrix. Using this, we eliminate u from Equation (2.34) and
get the statically-condensed systemFūū − FūuF−1

uu Fuū −FūuF−1
uu B

T
pu −FūuF−1

uu B
T
p̄u

−BpuF
−1
uu Fuū −BpuF

−1
uu B

T
pu −BpuF

−1
uu B

T
p̄u

−Bp̄uF
−1
uu Fuū −Bp̄uF

−1
uu B

T
pu −Bp̄uF

−1
uu B

T
p̄u


ūp
p̄

 =

−FūuF−1
uu L

−BpuF
−1
uu L

−Bp̄uF
−1
uu L

 . (2.35)

In this section we verify the theory developed in Section 2.1 and Section 2.2 by solving the
statically-condensed block system Equation (2.35). Note that this is a 3× 3 block system
while the theory developed in this chapter is for a 2 × 2 block system Equation (1.11)–
Equation (1.12). For this reason, we lump together the pressure DOFs p and p̄ and write
Equation (2.35) in the form Equation (1.11)–Equation (1.12) with

A11 = Fūū − FūuF−1
uu Fuū, A12 =

[
−FūuF−1

uu B
T
pu −FūuF−1

uu B
T
p̄u

]
,

A21 =

[
−BpuF

−1
uu Fuū

−Bp̄uF
−1
uu Fuū

]
, A22 =

[
−BpuF

−1
uu B

T
pu −BpuF

−1
uu B

T
p̄u

−Bp̄uF
−1
uu B

T
pu −Bp̄uF

−1
uu B

T
p̄u

]
,

(2.36)

and

x =

[
ū
P

]
, P =

[
p
p̄

]
, b =

[
−FūuF−1

uu L
bp

]
, bp =

[
−BpuF

−1
uu L

−Bp̄uF
−1
uu L

]
.
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2.3.1 Block preconditioning

We consider block upper- and lower-triangular (respectively, U22 and L22), block-diagonal
(D22), approximate block-LDU (M22), and both versions of symmetric block-triangular
preconditioners discussed in Section 2.1.1.1. In all cases the Schur complement S22 of
Equation (1.12) is approximated by

Ŝ22 =

[
−BpuF

−1
uu B

T
pu 0

0 −Bp̄uF
−1
uu B

T
p̄u

]
. (2.37)

In Chapter 4 we show that Ŝ22 is a good approximation to the corresponding Schur com-
plement S22. Note that the diagonal block on p, −BpuF

−1
uu B

T
pu, is block diagonal and can

be inverted directly. Furthermore, for large γ the diagonal block on p̄, −Bp̄uF
−1
uu B

T
p̄u, is a

Poisson-like operator which can be inverted rapidly using classical AMG techniques. Fi-
nally, the momentum block A11 in all preconditioners is an approximation to an advection-
diffusion equation. To this block we apply the nonsymmetric AMG solver based on approx-
imate ideal restriction (AIR) [109, 107], a recently developed nonsymmetric AMG method
that is most effective on advection-dominated problems. Altogether, we have fast, scalable
solvers for the diagonal blocks in the different preconditioners.

Theory in this chapter proves that convergence of Krylov methods applied to the block-
preconditioned system is governed by an equivalent Krylov method applied to the precon-
ditioned Schur complement. Since Ŝ22 is a good approximation to the corresponding Schur
complement S22, we consider block preconditioners based on the diagonal blocks {A11, Ŝ22}:

1. An (approximate) inverse of the momentum block A11 using AIR and a block-diagonal

inverse of the pressure block for Ŝ22.

2. An (approximate) inverse of the momentum block A11 using AIR and a negative

block-diagonal inverse of the pressure block for Ŝ22.

The diagonal inverses computed in the pressure block Ŝ22 are solved to a small tolerance.
The sign is swapped on the pressure block, a technique often used with symmetric systems
to maintain an SPD preconditioner, to study the effect of sign of Ŝ−1

22 on convergence.

Although theory developed here is based on an exact inverse of the momentum block,
we present results ranging from an exact inverse to a fairly crude inverse, with a reduction
in relative residual of only 0.1 per iteration, and demonstrate that theoretical results extend
well to the case of inexact inverses in practice. Although AIR has proven an effective solver
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for advection-dominated problems, solving the momentum block can still be challenging.
For this reason, a relative-residual tolerance for the momentum block is used (as opposed
to doing a fixed number of iterations of AIR) as it is not clear a priori how many iterations
would be appropriate. Since this results in a preconditioner that is different each iteration,
we use FGMRES acceleration (which uses right preconditioning by definition) [137]. This
is used as a practical choice, and we demonstrate that the performance of FGMRES is also
consistent with theory.

2.3.2 Results

Figure 2.1 shows iterations to various global relative-residual tolerances as a function of
relative-residual tolerance of the momentum block for block upper- and lower-triangular,
block-diagonal, approximate block-LDU, and both versions of symmetric block triangular
preconditioners. In general, theory derived in this chapter based on the assumption of an
exact inverse of one diagonal block extends well to the inexact setting. Further points to
take away from Figure 2.1 are:

1. For four different relative-residual tolerances of the 2×2 block system, block-diagonal
preconditioning takes very close to twice as many iterations as block-triangular pre-
conditioning. For larger tolerances such as 10−3, it is approximately twice the aver-
age number of iterations of block upper- and block lower-triangular preconditioning,
which is consistent with the derivations and constants in Theorem 2.2.5. Moreover,
this relationship holds for almost all tolerances of the momentum block solve, with
the exception of considering both large momentum tolerances (> 10−3) and large
global tolerances (see Figure 2.1d).

2. At no point does a symmetric block-triangular or approximate block-LDU precondi-
tioner offer improved convergence over a block-triangular preconditioner, regardless
of momentum or 2 × 2 system residual tolerance, although the solve times are sig-
nificantly longer due to the additional applications of the diagonal blocks of the
preconditioner. In fact, for a global tolerance of 10−3 symmetric block-triangular
preconditioning is actually less effective than just block triangular.

3. The block lower-triangular preconditioner is more effective than the block-upper-
triangular preconditioner. However, they differ in iteration count by roughly the
same 30–40 iterations for all four tolerances tested, indicating it is not a difference
in convergence rate (which the theory says it should not be), but rather a difference
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(a) 10−11 (global) relative residual tolerance.
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(b) 10−8 (global) relative residual tolerance.
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(c) 10−5 (global) relative residual tolerance.
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Figure 2.1: Number of iterations for the 2× 2 block preconditioned system to converge to
10−11, 10−8, 10−5, and 10−3 relative residual tolerance, as a function of the relative resid-
ual tolerance to solve the momentum block. Results are shown for block lower-triangular
(LT), block upper-triangular (UT), symmetric lower-then-upper block-triangular (ST-I),
symmetric upper-then-lower block-triangular (ST-II), block-diagonal (BD), and approxi-
mate block-LDU (LDU) preconditioners.

in the leading constants. Interestingly, it cannot be explained by the norm of off-
diagonal blocks (which are similar for upper- and lower-triangular preconditioning in

this case). We hypothesize it is due to the initial residual, where for r(0) = [r
(0)
1 , r

(0)
2 ],

we have ‖r(0)
1 ‖ = 19.14 and ‖r(0)

2 ‖ = 0.0063. Heuristically, it seems more effective in
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terms of convergence to solve directly on the block with the large initial residual (in
this case the (1,1)-block) and lag the variable with a small initial residual (in this case
the (2,2)-block), which would correspond to block-lower triangular preconditioning.
However, a better understanding of upper vs. lower block-triangular preconditioning
is ongoing work.

A common approach for saddle-point problems that are self-adjoint in a given inner
product is to use an SPD preconditioner so that three-term recursion formulae, in particular
preconditioned MINRES, can be used. For matrices with saddle-point structure, the Schur
complement is often negative definite, so this is achieved by preconditioning S22 with some
approximation−Ŝ−1

22 . Although this is advantageous in terms of being able to use MINRES,
convergence can suffer compared with GMRES and an indefinite preconditioner.

Results of this chapter indicate a direct correlation between the minimizing polynomial
for the 2 × 2 system and the preconditioned Schur complement. Moreover, convergence
on the preconditioned Schur complement should be independent of sign, because Krylov
methods minimize over a Krylov space that is invariant to the sign of M−1. Together, this
indicates that if the (1,1)-block is inverted exactly, convergence of GMRES applied to the
2× 2 preconditioned system should be approximately equivalent, regardless of sign of the
Schur-complement preconditioner.

Figure 2.2 demonstrates this property, considering FGMRES iterations on the 2×2 sys-
tem to relative-residual tolerances of 10−11 and 10−5, as a function of momentum relative-
residual tolerance. Results are shown for block-diagonal, block lower-triangular, and block-
upper-triangular preconditioners, with a natural sign Ŝ−1

22 (solid lines) and swapped sign

−Ŝ−1
22 (dotted lines). For accurate solves of the momentum block, we see relatively tight

convergence behaviour between ±Ŝ−1
22 . As the momentum solve tolerance is relaxed, con-

vergence of block-triangular preconditioners decay for −Ŝ−1
22 . Interestingly, the same phe-

nomenon does not appear to happen for block-diagonal preconditioners, and rather there is
a fixed difference in iteration count between ±Ŝ−1

22 . This is likely because a block-diagonal
preconditioner does not directly couple the variables of the 2× 2 matrix, while the block-
triangular preconditioner does. An inexact inverse loses a nice cancellation property of the
exact inverse, and the triangular coupling introduces terms along the lines of I ± Ŝ−1

22 A22

(see Equation (2.4)), which clearly depend on the sign of Ŝ−1
22 .

In [59] it is proven that minimal residual methods applied to saddle-point problems
with a zero (2,2)-block and preconditioned with a block-diagonal preconditioner observe a
staircasing effect, where every alternate iteration stalls. This results in approximately twice
as many iterations to convergence as a similar block-triangular preconditioner. Although
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(a) 10−11 relative residual tolerance.
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Figure 2.2: Number of iterations for the 2× 2 block preconditioned system to converge to
10−11 and 10−5 relative residual tolerance, as a function of the relative residual tolerance
to solve the momentum block. Results are shown for block lower-triangular (LT), block
upper-triangular (UT), and block-diagonal (BD) preconditioners, as in Figure 2.1 (solid
lines) and with the sign swapped on the pressure Schur-complement approximation (dotted
lines).

the proof appeals to specific starting vectors, the effect is demonstrated in practice as
well. Theorem 2.2.5 proved block-diagonal preconditioning is expected to take twice as
many iterations as block-triangular preconditioning to reach a given tolerance (within
some constant multiplier). Figure 2.3 looks at the GMRES convergence factor as a function
of iteration for block-diagonal preconditioning and block lower-triangular preconditioning,
with ±Ŝ−1

22 . Interestingly, with −Ŝ−1
22 (see Figure 2.3b), the staircasing effect is clear, where

every alternate iteration makes little to no reduction in residual. Although convergence
has some sawtooth character for block-diagonal with Ŝ−1

22 as well, it is much weaker, and
the staircasing effect is not truly observed. It is possible this explains the slightly better
convergence obtained with Ŝ−1

22 in Figure 2.2b, regardless of momentum relative-residual
tolerance.
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Figure 2.3: Convergence factor as a function of FGMRES iteration for block-diagonal
(BD) and block lower-triangular (LT) preconditioning. Figure 2.3a uses the natural sign

on Ŝ−1
22 , while Figure 2.3b adds a negative to Ŝ−1

22 .

2.4 Conclusions

This chapter analyzes the relationship between Krylov methods with 2 × 2 block precon-
ditioners and the underlying preconditioned Schur complement. Under the assumption
that one of the diagonal blocks is inverted exactly, we prove a direct relationship between
the minimizing Krylov polynomial of a given degree for the two systems, thereby prov-
ing their equivalence and the fact that an effective Schur complement preconditioner is a
necessary and sufficient condition for an effective 2 × 2 block preconditioner. Theoretical
results give further insight into choice of block preconditioner, including that (i) symmetric
block-triangular and approximate block-LDU preconditioners offer a minimal reduction in
iteration count over block-triangular preconditioners, at the expense of additional compu-
tational cost, and (ii) block-diagonal preconditioners take about twice as many iterations
to reach a given residual tolerance as block-triangular preconditioners.

Numerical results on an HDG discretization of the steady linearized Navier–Stokes
equations confirm the theoretical contributions, and show that the practical implications
extend to the case of a Schur-complement approximation coupled with an inexact inverse
of the other diagonal block. Although not shown here, it is worth pointing out we have
observed similar results with inexact block preconditioners in other applications. For HDG
discretizations of symmetric Stokes and Darcy problems, if the pressure Schur complement
is approximated by a spectrally equivalent operator, applying two to four multigrid cycles to
the momentum block yields comparable convergence on the larger 2×2 system as applying
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a direct solve on the momentum block. Classical source iteration and DSA preconditioning
for SN discretizations of neutron transport can also be posed as a 2×2 block preconditioning
[148]. There we have also observed that when applying AMG iterations to the (1,1)-
block and Schur complement approximation, only 2-3 digits of residual reduction yields
convergence on the larger 2× 2 system as fast as applying direct solves to each block. In
each of these cases, convergence of minimal residual methods applied to the 2× 2 system
is defined by the preconditioning of the Schur complement.
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Chapter 3

Time-Dependent Advection-Diffusion
Problems

In Chapter 2, we discussed block-preconditioning for the 2×2-block system Equations (1.11)
and (1.12) under the assumption that at least one of the blocks can be inverted exactly,
or very accurately (see Figures 2.1 and 2.2). The long term goal of our research is to
solve the case where Equations (1.11) and (1.12) represent an HDG discretization of the
time-dependent Navier-Stokes equations:

~ut − ν∇2~u+ (~u · ∇)~u+∇p = ~f in Ω(t),

∇ · ~u = 0 in Ω(t),

where Ω(t) denotes that the domain of the problem may be time-dependent. The tradi-
tional approach to discretize in time is to use a classical (implicit or explicit) time stepping
strategy, e.g., Euler methods, backwards differentiation formulas, and Runge-Kutta meth-
ods, in combination with the HDG discretization of spatial components. More recently,
however, the paradigm is shifting towards employing space-time discretizations where time-
dependent problems are cast onto a space-time domain, and time variables are treated in
the same way as spatial variables. Hence, we use an HDG discretization in both space and
time. Advantages of space-time methods over traditional time-stepping techniques include
the possibility of local time stepping, adaptive space-time mesh refinement, and natural
handling of problems on time-dependent domains.

As discussed previously in Chapter 1, we use Picard iterations to deal with the non-
linearity of the Navier–Stokes equations. This results in having to solve the time-dependent
Oseen equations at each Picard iteration. The space-time HDG discretization of the Oseen
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equations results in a linear system of the form Equations (1.11) and (1.12). However, to
apply the results from Chapter 2, we need a good solver for the diagonal block correspond-
ing to the time-dependent vector advection-diffusion equation,

~ut − ν∇2~u+ (~w · ∇)~u =

[
u1,t − ν∇2u1 + (~w · ∇)u1

u2,t − ν∇2u2 + (~w · ∇)u2

]
, (3.1)

which, in turn, is the concatenation of two time-dependent scalar advection-diffusion equa-
tions. Hence, the problem of finding a good preconditioner for the velocity block of space-
time HDG discretizations of the time-dependent Navier–Stokes equations can be reduced
to finding a good preconditioner for space-time HDG discretizations of the time-dependent
advection-diffusion equation. This is the topic of this chapter.

Chapter 3 is organised as follows. In Section 3.1, we present the space-time HDG
discretization of the advection-diffusion equation, and approximate ideal restriction (AIR)
algebraic multigrid [107, 109] is presented in Section 3.2. A discussion on why AIR can
be effective as a space-time solver of advection-dominated problems, while most PinT
methods struggle, is provided in Section 3.2.1. Numerical results in Section 3.3 indeed
demonstrate that AIR is a robust and scalable solver for space-time HDG discretizations
of the advection-diffusion equation. Scalable preconditioning is demonstrated with space-
time adaptive mesh refinement (AMR) and on time-dependent domains, and speedups over
sequential time stepping are obtained on very small processor counts. We draw conclusions
in Section 3.4.

This chapter has recently been submitted for publication, and a preprint is available
on arXiv [146].

3.1 The space-time HDG method for the advection-

diffusion equation

3.1.1 The advection-diffusion problem on time-dependent do-
mains

Let Ωh(t) ⊂ Rd, an approximation to the domain Ω(t) in Equation (1.13), be a polygonal
(d = 2) or polyhedral (d = 3) domain whose evolution depends continuously on time
t ∈ [t0, tN ]. We will present numerical results only for the case d = 2, but remark that the
space-time HDG discretization and solution procedure also hold for d = 3. We partition
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the boundary of Ωh(t), ∂Ωh(t), into two sets ΓD(t) (the Dirichlet boundary) and ΓN(t)
(the Neumann boundary) such that ∂Ωh(t) = ΓD(t) ∪ ΓN(t) and ΓD(t) ∩ ΓN(t) = ∅.

As discussed in Section 1.3, a point in space-time at time t = x0 with position x
has Cartesian coordinates x̂ = (x0, x). Throughout this chapter, we will use t and x0

interchangeably. We introduce the (d + 1)-dimensional computational space-time domain
Eh := {x̂ : x ∈ Ωh(x0), t0 < x0 < tN} ⊂ Rd+1. The boundary of Eh is comprised of the
hyper-surfaces Ωh(t

0) := {x̂ ∈ ∂Eh : x0 = t0}, Ωh(t
N) := {x̂ ∈ ∂Eh : x0 = tN}, and QEh :=

{x̂ ∈ ∂Eh : t0 < x0 < tN}. We also introduce the partitioning ∂Eh = ∂ED ∪ ∂EN where
∂ED := {x̂ : x ∈ ΓD(x0), t0 < x0 < tN} and
∂EN := {x̂ : x ∈ ΓN(x0) ∪ Ω(t0), t0 < x0 ≤ tN}. The outward unit space-time normal
vector to ∂Eh is denoted by n̂ = (nt, n), where nt ∈ R is the temporal part of the space-
time vector and n ∈ Rd the spatial part.

Given the viscosity ν ≥ 0, forcing term f : Eh → R, and advective velocity a : Eh → Rd,
the advection-diffusion equation for the scalar u : Eh → R is given by

∂tu+ a · ∇u− ν∇2u = f in Eh, (3.2a)

−ζu(nt + a · n) + ν∇u · n = gN on ∂EN , (3.2b)

u = gD on ∂ED, (3.2c)

where gN : QN → R is a suitably smooth function and ζ is an indicator function for
the inflow boundary of E , i.e., where (nt + a · n) < 0. Note that the initial condition
u(0, x) = gN(0, x) is imposed by Equation (3.2b). Using the definition of the space-time
advective velocity and the space-time gradient introduced in Section 1.3, the space-time
formulation of Equation (3.2) is given by

â · ∇̂u− ν∇2u = f in Eh, (3.3a)

−ζuân + ν∇u · n = gN on ∂EN , (3.3b)

u = gD on ∂ED, (3.3c)

where ân = n̂ · â = nt +a ·n. We see that the time-dependent advection-diffusion problem
Equation (3.2) is a steady state problem in (d+ 1)-dimensional space-time.

3.1.2 Space-time meshes

The two approaches to meshing a space-time domain Eh are the slab-by-slab approach
and the all-at-once approach. In the slab-by-slab approach, the time interval [t0, tN ] is
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partitioned into time levels t0 < t1 < · · · < tN . The n-th time interval is defined as
In = (tn, tn+1) and its length is the “time-step”, denoted by ∆tn = tn+1−tn. The space-time
domain Eh is then divided into space-time slabs Enh = Eh∩ (In×Rd). Note that each space-
time slab Enh is bounded by Ωh(t

n), Ωh(t
n+1), and QnEh = ∂Enh \(Ωh(t

n)∪Ωh(t
n+1)). A space-

time triangulation T nh is then introduced for each space-time slab Enh using standard spatial
meshing techniques. In this chapter, we use space-time simplices (see, e.g. [81, 82, 162])
as opposed to space-time hexahedra (see e.g. [3, 159, 160]).

In the all-at-once approach, a space-time triangulation Th := ∪jKj of the full space-
time domain Eh is introduced. This triangulation consists of non-overlapping space-time
simplices K ⊂ Rd+1. There are no clear time levels except for the time level at x0 = t0 and
x0 = tN and the space-time mesh may be fully unstructured. In particular, this naturally
allows for arbitrary adaptive mesh refinement (AMR) in space and time. Note, we do
not consider hanging nodes in this chapter although hanging nodes in space and time are
possible within the space-time framework.

In Figure 3.1 we plot space-time elements in a slab-by-slab approach and in an all-at-
once approach in (1 + 1)-dimensional space-time.

x0

x

Ωh(t
n)

Ωh(t
n+1)

tn

tn+1

Kl

Kj

Kn+1
j

Kn
l

x0

x

Kl
Kj

Figure 3.1: Examples of two neighboring elements in (1 + 1)-dimensional space-time. Left:
An example of space-time elements in a slab-by-slab approach. The space-time mesh is
layered by space-time slabs. Here the elements lie in space-time slab Enh . Right: An
example of space-time elements in an all-at-once approach. There are no clear time levels
for t0 < x0 < tN .

3.1.3 The space-time HDG method

Consider a space-time element K ∈ Th in an all-at-once or slab-by-slab mesh. On the
boundary of a space-time element ∂K we will denote the outward unit space-time normal
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vector by n̂K = (nKt , n
K). Two adjacent space-time elements K+ and K− share an interior

space-time facet S := ∂K+∩∂K−. A facet of ∂K that lies on the space-time boundary ∂Eh
is called a boundary facet. The set of all facets is denoted by F and the union of all facets
by Γ0. For ease of notation, we will drop the subscripts and superscripts when referring to
space-time elements, their boundaries, and outward unit normal vectors in the remainder
of this chapter.

We require the following finite element spaces:

Vh := {vh ∈ L2(Eh) : vh|K ∈ Pp(K), ∀K ∈ Th} ,
Mh := {µh ∈ L2(F) : µh|S ∈ Pp(S), ∀S ∈ F , µh = 0 on ∂ED} ,

where Pp(D) is the set of polynomials of degree p on a domain D. We furthermore introduce
V ?
h := Vh ×Mh. The space-time HDG method for Equation (3.3) is given by [90]: find

(uh, λh) ∈ V ?
h such that

Bh
(
(uh, λh), (vh, µh)

)
=
∑
K∈Th

∫
K
fvh dx̂+

∫
∂EN

gµh ds ∀(vh, µh) ∈ V ?
h , (3.4)

where the bilinear form is defined as

Bh
(
(u, λ),(v, µ)

)
:=
∑
K∈Th

∫
K

(
−uâ · ∇̂v + ν∇u · ∇v

)
dx̂+

∫
∂EN

1
2

(ân + |ân|)λµ ds

+
∑
K∈Th

∫
∂K
σ(u, λ, n̂)(v − µ) ds−

∑
K∈Th

∫
∂K
ν(u− λ)∇v · n ds.

(3.5)

Here σ(u, λ, n̂) := σa(u, λ, n̂) + σd(u, λ, n) is the “numerical flux” on the cell facets. The
advective part of the numerical flux is an upwind flux in both space and time, given by

σa(u, λ, n̂) := 1
2

(
ân(u+ λ) + |ân|(u− λ)

)
.

The diffusive part of the numerical flux is similar to that of an interior penalty method
and is given by

σd(u, λ, n) := −ν∇u · n+
να

hK
(u− λ), (3.6)

with hK the length measure of the element K, and α > 0 a penalty parameter. It is shown
in [90] that α needs to be sufficiently large to ensure stability of the space-time HDG
method.
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3.1.4 Sequential time-stepping using the slab-by-slab discretiza-
tion

The space-time HDG method Equation (3.4) is the same for both the slab-by-slab and
all-at-once space-time approaches. However, for the slab-by-slab approach we may write
Equation (3.4) in a form similar to traditional time-integration techniques. For this we
require the following finite element spaces:

V n
h := {vh ∈ L2(Enh ) : vh|K ∈ Pp(K), ∀K ∈ T nh } ,

Mn
h := {µh ∈ L2(Fn) : µh|S ∈ Pp(S), ∀S ∈ Fn, µh = 0 on ∂EnD} ,

where Fn is the set of all facets in the slab Enh . We furthermore define V n,?
h := V n

h ×Mn
h . For

the slab-by-slab approach, we may write the space-time HDG method for Equation (3.2)
as: for each space-time slab Enh , n = 0, 1, · · · , N − 1, find (uh, λh) ∈ V n,?

h such that

Bnh
(
(uh, λh), (vh, µh)

)
=
∑
K∈T n

h

∫
K
fvh dx̂+

∫
∂EnN

gµh ds, (3.7)

for all (vh, µh) ∈ V n,?
h , where Bnh(·, ·) is defined as Equation (3.5) but with Th and ∂EN

replaced by, respectively, T nh and ∂EnN . The slab-by-slab approach is similar to traditional
time-integration techniques in that the local systems are solved one space-time slab after
another. The linear systems arising from space-time finite elements resemble those that
arise from fully implicit Runge–Kutta methods (e.g., see [105, 142]).

Well-posedness and convergence of the slab-by-slab space-time HDG method Equa-
tion (3.7) was proven in [90]. Furthermore, motivated by the fact that the spatial mesh
size hK and the time-step ∆t may be different, an a priori error analysis was presented in
[90], resulting in optimal error bounds that are anisotropic in hK (a measure of the mesh
size in spatial direction) and ∆t. It is shown, however, that ∆t and hK need to be refined
simultaneously to obtain these optimal error bounds, and that refining only in time or only
in space may lead to divergence of the error. To this end, all-at-once solvers seem like the
natural solution for efficient parallel simulations, where simultaneous local adaptivity in
space and time is easily handled.

3.1.5 The discretization

Let U ∈ Rr be the vector of expansion coefficients of uh with respect to the basis for Vh
and let Λ ∈ Rq be the vector of expansion coefficients of λh with respect to the basis for
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Mh. The space-time HDG method Equation (3.4) can then be expressed as the all-at-once
system of linear equations [

A B
C D

][
U
Λ

]
=

[
F
G

]
, (3.8)

where A, B, C, and D are matrices obtained from the discretization of Bh((·, 0), (·, 0)),
Bh((0, ·), (·, 0)), Bh((·, 0), (0, ·)), and Bh((0, ·), (0, ·)), respectively.

For the slab-by-slab approach, the linear system Equation (3.8) can be decoupled into
smaller linear systems that are solved in each time slab Enh . In this case, U ∈ Rr is the
vector of expansion coefficients of uh with respect to the basis for V n

h and Λ ∈ Rq is the
vector of expansion coefficients of λh with respect to the basis for Mn

h . Furthermore, A,
B, C, and D are then the matrices obtained from the discretization of Bnh((·, 0), (·, 0)),
Bnh((0, ·), (·, 0)), Bnh((·, 0), (0, ·)), and Bnh((0, ·), (0, ·)), respectively.

The space-time HDG discretization is such that A is a block-diagonal matrix. Using
U = A−1(F − BΛ) we eliminate U from Equation (3.8) resulting in the following reduced
system for Λ:

SΛ = H, (3.9)

where S = D − CA−1B is the Schur complement of the block matrix in Equation (3.8),
and H = G − CA−1F . Having eliminated the element degrees-of-freedom via static con-
densation, the linear system Equation (3.9) is significantly smaller than Equation (3.8).
However, for the space-time HDG method to be efficient, we still require a fast solver for
the reduced non-symmetric problem Equation (3.9), which is discussed in the following
section.

3.2 Approximate ideal restriction (AIR) AMG

AMG is traditionally designed for elliptic problems in space or sequential time stepping
of parabolic problems, where the resulting linear systems are (nearly) symmetric posi-
tive definite or M-matrices. However, a number of papers in recent years have consid-
ered extensions of AMG to the nonsymmetric setting, e.g., [115, 168, 23, 140, 108]. In
particular, a new AMG method based on a local approximate ideal restriction (`AIR;
moving forward we simply refer to it as AIR) was developed in [107, 109] specifically for
advection-dominated problems and upwinded discretizations. Noting that Equation (3.3)
is a “steady” advection-dominated problem in (d + 1)-dimensional space-time, and that
AIR is a robust solver for advection dominated problems, motivates the use of AIR as a
preconditioner for the space-time linear system Equation (3.9).
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We discuss AIR in Appendix A in more detail for the interested reader. As a brief
review, recall that multigrid methods solve Ax = b by applying a coarse-grid correction
based on interpolation and restriction operators, x(i+1) = x(i) +P (RAP )−1Rr(i), for matrix
A, interpolation P , restriction R, and residual r(i) = b−Ax(i). Classical AMG is based on
a partitioning of DOFs into fine (F-) and coarse (C-) points, where A can then be expressed
in block form as

A =

[
Aff Afc
Acf Acc

]
.

AIR is a reduction method based on the principle that if we use the so-called ideal re-
striction operator, Rideal = [−AcfA−1

ff I] with any interpolation (in MATLAB notation)
P = [W ; I], coarse-grid correction eliminates all errors at C-points; following this with an
effective relaxation on F-points will guarantee a rapidly convergent method [107, Section
2.3]. Due to the A−1

ff term in Rideal, it is not practical to form Rideal explicitly. However,
AIR appeals to the observation that for upwinded advective discretizations, one can achieve
cheap, accurate, and sparse approximations R ≈ Rideal.

3.2.1 Coarsening in space-time

For problems with strong anisotropy or advective components, it is often helpful or even
necessary to semi-coarsen along the direction of anisotropy/advection for an effective multi-
grid method (e.g., [166]). On a high-level, we claim that one of the primary difficulties in
applying common (multilevel) PinT schemes to advective/hyperbolic problems is the sepa-
rate treatment of temporal and spatial variables. A natural result of this is that coarsening
performed separately in space and time is often unable to align with hyperbolic character-
istics in space-time. Conversely, by treating space and time all-at-once, it is natural for
coarsening to align with characteristics, which provides an important piece of a scalable
multilevel method.

Figure 3.2 demonstrates how classical AMG coarsening [135] applied to a hyperbolic
2d-space/1d-time HDG discretization naturally applies semi-coarsening along the direc-
tion of (space-time) characteristics. For clarity, examples are shown in two-dimensional
subdomains for the problem described in Section 3.3.2, with plots for the advective field
and the corresponding CF-splitting. The velocity fields given in (a) and (b) correspond to
CF-splittings in (d) and (e), respectively. Note that for both cases, we largely see stripes
of fine and coarse points orthogonal to the flow direction, which is exactly semi-coarsening
along the characteristics. Similarly, in (c), note that in the [0, 0.2] × [0, 0.2] spatial sub-
domain (for all time), there is effectively no spatial advection, and thus the space-time
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advective field is only traveling forward in time. Plots (f)–(i) demonstrate an effective
semi-coarsening in time, where we mark coarse points on the time levels (see (f) and (i))
and fine points on interior time DOFs (see (g) and (h)).

(a) Velocity field, x = 0.1861 (b) Velocity field, x = 0.5790 (c) Velocity field, any fixed t

(d) x = 0.1861 (e) x = 0.5790 (f) t = 0.3571

(g) t = 0.3646 (h) t = 0.3853 (i) t = 0.3928

Figure 3.2: Red points are C-points and black points are F-points for the hyperbolic
problem from Section 3.3.2. Distribution of the C- and F- points follow the velocity fields,
showing semi-coarsening along characteristics.
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3.2.2 Relaxation and element ordering

Upwinded discontinuous discretizations of linear hyperbolic problems have the benefit that
the mesh elements can typically be reordered to be (element) block lower triangular. The
corresponding linear system can then be solved directly using a forward solve. Although
this is not scalable in parallel (because each process must wait for the previous to finish
its solve), it provides an excellent relaxation scheme when each core inverts the subdomain
stored on-process. Such a method is commonly used in the transport community to avoid
the parallel cost and complexity of a full forward solve, and was shown to provide strong
convergence when used with AIR in [71].

Here, we show that an analogous property holds for HDG discretizations of advection
(steady or space-time). We do so by noting that the existence of such an ordering is
equivalent to proving that the graph of the discretization matrix is acyclic. Assume all
mesh elements are convex, let {Ki} denote the set of all ne elements for a given mesh, and
let E denote the graph of connections between elements, where Eij = 1 if ∃ a connection
from Ki 7→ Kj with respect to the given velocity field and Eij = 0 otherwise. Let {Sij}
denote the set of all nf outgoing faces, with the subscript Sij indicating a connection
Ki 7→ Kj ∈ E, and F denoting the graph of connections between faces. Moreover note that

Sij 7→ Sjk if and only if Ki 7→ Kj and Kj 7→ Kk. (3.10)

Lemma 3.2.1. Suppose E is a directed acyclic graph, and the elements {Ki} are ordered
such that E is lower triangular. Furthermore, numerate faces Sij with respect to index i
and then j, for example, {S01,S02,S12,S23, ...}. Then, F is also a directed acyclic graph
and lower triangular in this ordering.

Proof. Because E is lower triangular, 6 ∃ Ki 7→ Kj if i > j. It follows by definition that
i < j for all faces Sij. Now, suppose there exists a path Sij 7→ Sjk in F such that i > k. By
Equation (3.10), this is true if and only if Ki 7→ Kj 7→ Kk. However, this is a contradiction
to the assumption of E being lower triangular. In addition note that by the convexity
of elements, 6 ∃ connections Sij 7→ Sik, that is, connections between outgoing faces with
respect to the velocity field on the same element. Enumerating {Sij} first by index i, then

(arbitrarily) by index j as the set of faces {Ŝ`} implies 6 ∃ path gij ∈ F, g : Ŝi 7→ Ŝj, such
that i > j, which completes the proof.

Lemma 3.2.1 is useful in that an ordering can be determined for an on-process block
Gauss–Seidel relaxation which exactly inverts the advective component in the case of no
cycles in the mesh, where the block size is given by the number of DOFs in a given element
face. Such a relaxation scheme is explored numerically in Section 3.3.2.
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3.3 Numerical simulations

This section demonstrates the effectiveness of AIR as a preconditioner for BiCGSTAB
to solve the linear system Equation (3.9), including on moving time-dependent domains
(Section 3.3.1), and when applying space-time AMR to an interior front problem (Sec-
tion 3.3.2). All test cases have been implemented in the Modular Finite Element Method
(MFEM) library [2] with solver support from HYPRE [1]. Furthermore, we choose the
penalty parameter in Equation (3.6) as α = 10p2 where p is the order of the polynomial
approximation (see, for example [134]). Unless otherwise specified, AIR is constructed
with distance-one connections for building R, with strength tolerance 0.3; 1-point interpo-
lation [107]; no pre-relaxation; post-forward-Gauss-Seidel relaxation (on process), first on
F-points, followed by all points; Falgout coarsening, with strength tolerance 0.2; and as an
acceleration method for BiCGSTAB (Bi-Conjugate Gradient STABilised), applied to the
HDG space-time matrix, scaled on the left by the facet block-diagonal inverse. All parallel
simulations are run on the LLNL Quartz machine.

3.3.1 Rotating Gaussian pulse on a time-dependent domain

We first consider the solution of a two-dimensional rotating Gaussian pulse on a time-
dependent domain [129]. We set a = (−4x2, 4x1)T and f = 0. The boundary and initial
conditions are chosen such that the analytical solution is given by

u(t, x1, x2) =
σ2

σ2 + 2νt
exp

(
−(x̃1 − x1c)

2 + (x̃2 − x2c)
2

2σ2 + 4νt

)
, (3.11)

where x̃1 = x1 cos(4t)+x2 sin(4t), x̃2 = −x1 sin(4t)+x2 cos(4t), and (x1c, x2c) = (−0.2, 0.1).
Furthermore, we set σ = 0.1 and consider both a diffusion-dominated case with ν = 10−2

and an advection-dominated case with ν = 10−6. The deformation of the time-dependent
domain is based on a transformation of the uniform space-time mesh (t, xu1 , x

u
2) ∈ [0, T ]×

[−0.5, 0.5]2 given by

xi = xui + A(1
2
− xui ) sin(2π(1

2
− x∗i + t)) i = 1, 2, (3.12)

where (x∗1, x
∗
2) = (xu2 , x

u
1), A = 0.1, and T is the final time. We show the solution on the

time-dependent domain at different time slices and on the full space-time domain (taking
T = 1) in Figure 3.3.
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(a) The solution at t = 0.2. (b) The solution at t = 0.5.

(c) The solution at t = 0.8. (d) The solution over the space-time domain Eh.

Figure 3.3: The solution of the rotating Gaussian pulse test case as described in Sec-
tion 3.3.1 at different time slices and on the full space-time domain when ν = 10−6.

Rates of convergence of the space-time error

In Table 3.1 we compute the rates of convergence of the error in the space-time L2-norm,
i.e.,

‖u− uh‖Eh :=

(∫
Eh

(u− uh)2 dx̂

)1/2

.71



We compute this error taking T = 1 and using linear, quadratic, and cubic polynomial
approximations to u. We observe optimal rates of convergence, that is, the error in the
space-time L2-norm is of order O(hp+1) when using a p-th order polynomial approximation,
for both the all-at-once and slab-by-slab discretizations. This conclusion is true for both
the advection- and diffusion-dominated problem.

Table 3.1: Error in the space-time L2-norm and rate of convergence of a space-time HDG
discretization of the advection-diffusion problem described in Section 3.3.1, with T = 1.

Slab-by-slab

p = 1 p = 2 p = 3

ν Slabs Elements Error Rate Error Rate Error Rate
per slab

10−2

8 384 1.1e-2 - 2.9e-3 - 8.4e-4 -
16 1,536 3.4e-3 1.7 4.7e-4 2.6 5.8e-5 3.9
32 6,144 8.4e-4 2.0 5.9e-5 3.0 3.7e-6 4.0
64 24,576 2.1e-4 2.0 7.4e-6 3.0 2.3e-7 4.0

10−6

8 384 1.9e-2 - 5.3e-3 - 1.3e-3 -
16 1,536 6.1e-3 1.6 8.5e-4 2.7 1.3e-4 3.4
32 6,144 1.6e-3 2.0 1.1e-4 3.0 9.0e-6 3.8
64 24,576 3.8e-4 2.0 1.4e-5 3.0 5.9e-7 3.9

All-at-once

p = 1 p = 2 p = 3

ν Elements Error Rate Error Rate Error Rate

10−2

2,760 2.0e-2 - 6.0e-3 - 1.7e-3 -
22,080 5.8e-3 1.8 8.2e-4 2.9 1.2e-4 3.8

176,640 1.3e-3 2.1 9.5e-5 3.1 7.5e-6 4.0
1,413,120 3.0e-4 2.1 1.2e-5 3.1 4.6e-7 4.0

10−6

2,760 5.5e-2 - 2.1e-2 - 8.9e-3 -
22,080 2.0e-2 1.4 3.6e-3 2.6 7.2e-4 3.6

176,640 5.1e-3 2.0 3.8e-4 3.2 4.5e-5 4.0
1,413,120 1.0e-3 2.3 4.3e-5 3.2 2.6e-6 4.1
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Performance of BiCGSTAB with AIR as preconditioner

This section demonstrates the performance of BiCGSTAB with AIR as a preconditioner in
both the advection- and diffusion-dominated regimes. We will use the number of iterations
to convergence as the indicator of performance as we know that the setup time and cost
of applying AIR per BiCGSTAB iteration are linear with respect to the matrix size, i.e.
O(N) [109, 107]. Hence, the total cost to solve the space-time HDG problem will be
linearly dependent on the number of BiCGSTAB iterations. In Table 3.2 we list the total
number of BiCGSTAB iterations that are required to reach a relative residual of 10−12 in
an all-at-once discretization with T = 1 and using linear, quadratic, and cubic polynomial
approximations to u.

When the problem is close to hyperbolic (when ν = 10−6) we observe perfect scalability,
that is, the number of iterations required to converge does not change with the problem size.
In the advection-dominated regime, ν = 10−4 and ν = 10−3, the iteration count increases
slightly with problem size, but the increase is slow, the iteration counts remain quite low.
When more significant diffusion is introduced, ν = 10−2 and ν = 10−1, the iteration count
starts to grow more rapidly with increasing problem size. These observations hold for all
polynomial degrees considered. It is worth pointing out that for ν = 10−2 and ν = 10−1,
using a classical P TAP AMG approach rather than AIR did result in lower iteration counts
(not shown), however, the total time to solution remained notably longer than that of AIR,
likely due to denser coarse-grid matrices. Alternatively, an approach similar to [8] could be
used to improve the robustness of our approach, by (locally) switching between AIR and a
classical AMG approach depending on the parameter ν. However, such an implementation
is not available to us at the moment.

From the above observations, we may conclude that BiCGSTAB with AIR as the pre-
conditioner is an excellent iterative solver for the solution of all-at-once space-time HDG
discretizations of the advection-diffusion problem in the advection-dominated regime. Un-
surprisingly, the solver is suboptimal in the diffusion-dominated regime. To see why, note
that we may write Equation (3.3a) as

â · ∇̂u− ∇̂ · (ν̂∇̂u) = f in Eh,

where ν̂ = diag(0, ν, ν) (note that there is no diffusion in the time direction). This is a
“steady” advection-diffusion problem in (d + 1)-dimensional space-time with completely
anisotropic diffusion in d dimensions and advection in one dimension. Problems with
anisotropic diffusion are known to pose a challenge to multilevel solvers (see, for example,
[143] for a literature review on the challenges of using multilevel solvers for problems with
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Table 3.2: The number of BiCGSTAB iterations (with AIR as the preconditioner) required
to reach a relative residual of 10−12 for the test case described in Section 3.3.1 with T = 1.
The stopping tolerance was not reached within 5000 iterations if a value is missing.

p = 1

DOFs

ν

10−6 10−4 10−3 10−2 10−1

17,496 7 7 7 8 12
136,224 8 7 8 10 17

1,074,816 8 8 10 13 54
8,538,624 8 9 12 18 -

p = 2

DOFs

ν

10−6 10−4 10−3 10−2 10−1

34,992 11 8 9 11 19
272,448 8 9 10 14 30

2,149,632 9 11 13 18 46
17,077,248 9 14 15 30 83

p = 3

DOFs

ν

10−6 10−4 10−3 10−2 10−1

58,320 9 8 10 14 26
454,080 9 11 12 18 38

3,582,720 9 13 15 25 73
28,462,080 10 17 18 46 144
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anisotropic diffusion). Robust solvers for the mixed regime of advection and strongly
anisotropic diffusion are ongoing work.

Remark 3.3.1 (Stopping tolerance). Our main goal is to test the performance of BiCGSTAB
with AIR as a preconditioner. For this reason, we chose the stopping criteria for BiCGSTAB
to be a relative residual of 10−12. In practice, however, the stopping tolerance need not be
chosen this small (see, for example [51, pages 73, 77–79]). We demonstrate this also in
Table 3.3 where, for the case p = 2 for a problem with 272,448 degrees of freedom. We note
that the error in the space-time L2-norm does not improve after the first full BiCGSTAB
iteration although it takes 8 iterations to reach a relative residual of 10−12 (see Table 3.2).

Table 3.3: Error in the space-time L2-norm as a function of BiCGSTAB iteration number
for the test case from Table 3.2. We use a quadratic (p = 2) polynomial approximation and
the linear system has 272,448 degrees of freedom. The preconditioned residual presented
in the table is the residual of the full-step.

Iteration Preconditioned ‖u− uh‖L2(Eh)Number Residual

0 2.5e-4 1.6e-3
1 8.4e-6 3.6e-3
2 1.0e-6 3.6e-3
3 6.1e-9 3.6e-3
4 1.6e-10 3.6e-3

Remark 3.3.2 (GMRES and other Krylov). In this section we considered the performance
of BiCGSTAB with AIR as a preconditioner. Of course, we may replace BiCGSTAB
with any other iterative method for non-symmetric systems of linear equations. GMRES
performed equally well in most cases; however, there were several examples that stalled
significantly upon GMRES restart, and which also required a moderately high number of it-
erations to convergence, limiting the use of full-memory GMRES. In our tests, BiCGSTAB
has appeared to be slightly more robust and, thus, is used for all numerical tests presented
here.

Scalability and parallel-in-time on moving domains

The current paradigm in scientific computing is to use multiple computing units simulta-
neously to lower runtime. Hence, the scalability of an algorithm is an important measure
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of performance. Ideally, the runtime should be inversely proportional to the number of
computing units. Unfortunately, this is not always achievable due to limited fast access
memory (caches), limited memory bandwidth, and inter-process and inter-node communi-
cation. One advantage of the all-at-once space-time approach over the slab-by-slab space-
time approach is the better communication to computation ratio. This is because it is
possible to parallelize both in space and time simultaneously, as opposed to the standard
parallel-in-time approach of treating space and time separately.

To test the scalability of BiCGSTAB with AIR as a preconditioner applied to the space-
time HDG discretization, we will measure the total wall-clock time spent on solving the
rotating Gaussian pulse problem discussed at the beginning of this section. For this, we
consider a final time of T = 16, we consider both an advection- (ν = 10−6) and a diffusion-
dominated (ν = 10−2) problem, and we consider both an all-at-once and a slab-by-slab
discretization. For the all-at-once discretization, we consider two unstructured space-time
meshes; the coarse mesh consists of 45576 tetrahedra and the fine mesh consists of 364608
tetrahedra. For the slab-by-slab approach, we consider a coarse mesh in which the space-
time domain is divided into 128 space-time slabs and each slab consists of 384 tetrahedra.
The fine slab-by-slab mesh consists of 256 slabs and each slab consists of 1536 tetrahedra.
Note that the slab-by-slab meshes were created to have a similar number of tetrahedra as
the all-at-once space-time meshes.

The total wall-clock times we measure are the combination of time spent on the follow-
ing four stages: setup, assembly, solving, and reconstruction. During the setup stage, the
mesh is read from a file and refined sequentially and finite element spaces and linear and
bi-linear forms are created. We remark that this stage is not parallelizable and it affects the
speedup we obtain. The assembly stage contains the computation of elemental matrices,
computation of elemental Schur complements, and the assembly of the global linear system
Equation (3.9). This stage is almost embarrassingly parallel. The next stage is the solve
stage in which the global linear system is solved using BiCGSTAB with AIR as the pre-
conditioner. This stage is weakly scalable. Finally, the element solution U = A−1(F −BΛ)
is reconstructed in the reconstruction stage (see Section 3.1.5). This step, in theory, does
not require any communication as it can be done completely locally.

Parallel speedup in a strong-scaling sense for each combination of mesh resolution
and diffusion coefficient is shown in Figure 3.4. We see that, in all cases, the all-at-once
approach is the best algorithm sequentially. Hence, the speedups are calculated relative
to the sequential timing of the solutions using all-at-once approach for different order of
approximations. The best speedup we achieve at 256 processes is slightly more that 100,
and just less than 50% efficiency. This can be mostly attributed to the sequential nature of
the setup stage, for example, it takes up to 10% of wall-clock time spent for large problems
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solved with many (64-256) cores. In addition to this, there is a significant loss of scalability
during the solve stage, which is largely due to the algorithm becoming communication
bound and thereby less efficient in parallel. For example, the speedup observed on the fine
mesh at 256 processes is close to 2× larger than that observed on the coarse mesh. Hence,
for larger problems, we expect better speedup with the primary bottleneck being the setup
stage. It is worth pointing out that a number of recent works have developed architecture-
aware communication algorithms for sparse matrix-vector operations and AMG that can
significantly improve scalability in the communication-bound regime (e.g., [18, 19]), but
we do not exploit such methods here.

Figure 3.5 plots the relative speedup of the all-at-once approach to the slab approach
with respect to wall-clock time, that is, Timeall-at-once(n)/Timeslab-by-slab(n). We see that,
generally, the all-at-once approach is 20% to 50% faster than the slab-by-slab approach,
although in some cases it is up to 2× faster. Note that this comparison is imperfect, and
an accurate measure of speedup is nuanced – for example, the slab mesh here has roughly
8% more elements than the all-at-once mesh; however, the slab mesh is also structured
in time, while the all-at-once mesh is fully unstructured in space and time, which can
degrade performance of multigrid solvers on a fine-grained/memory-access level. They
also differ algorithmically; for example, the all-at-once approach does one setup phase for
AIR, followed by the solve phase, while using the slab-by-slab approach requires rebuilding
the solver each time step. In general, we do not try to isolate where the speedup comes
from in this chapter. Rather, we highlight here that by using AIR as a full space-time
solver, we are able to see speedups over sequential time stepping for low core counts, a
property that is not shared by most parallel-in-time schemes.

3.3.2 Moving internal layer problem

We now consider the moving internal layer problem proposed in [33]. We solve Equa-
tion (3.3) on the unit cube space-time domain (Eh = [0, 1]3) with a = (x2,−x1)T , f = 0,
and with ν = 0 (the hyperbolic limit). We impose a Neumann boundary at t = 0, on which
we set gN = 0, and an outflow boundary at the final time t = 1. On the boundary x2 = 0
we set gD = 1 and we set gD = 0 on the remaining boundaries. For the time interval of
interest, the exact solution is given by

u(t, x1, x2) =

{
1 when ‖(x1, x2)‖2 < 1 and atan2(x2, x1) > π/2− t,
0 otherwise,

which describes a front that rotates around the origin as time evolves.
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Figure 3.4: Parallel scalability. Top left: ν = 10−6, coarse mesh, top right: ν = 10−6, fine
mesh, bottom left: ν = 10−2, coarse mesh, bottom right: ν = 10−2, fine mesh

78



Figure 3.5: Relative speedup of all-at-once approach against slab-by-slab approach. Top
left: ν = 10−6, coarse mesh, top right: ν = 10−6, fine mesh, bottom left: ν = 10−2, coarse
mesh, bottom right: ν = 10−2, fine mesh
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Space-time adaptive mesh refinement

To efficiently solve this problem, we use space-time adaptive mesh refinement (AMR) in an
all-at-once discretization, where we refine locally in both space and time. The Zienkiewicz–
Zhu (ZZ) error estimator [170, 171, 172] is used to mark space-time elements that need
to be refined. Although the ZZ error estimator is not theoretically efficient or reliable for
many problems, it is often used heuristically in adaptive finite element codes due to its
simplicity, low computational cost, and wide availability. See Figure 3.6 for a plot of the
mesh and the solution at two different time slices. A plot of the adaptively refined mesh
in space-time is given in Figure 3.7.

In Figure 3.8 we compare the convergence of the error in the space-time L2-norm using
space-time AMR to using uniformly refined meshes. Let N be the total number of globally
coupled DOFs. We see that the error on uniform meshes is approximately O(N−1/9)
while the error on the space-time AMR meshes is approximately O(N−1/6), i.e., we obtain
faster convergence using space-time AMR than when using uniformly refined meshes. We
remark that the error when using an efficient and reliable error estimator for this problem
is expected to be O(N−1/3) (see, for example, [25] for the analysis of an a posteriori error
estimator for a DG discretization of the steady advection equation). However, we are not
aware of any efficient and reliable error estimators for space-time HDG discretizations of
the time-dependent advection equation.

Performance of AIR and on-process solves

Last, we consider the performance of BiCGSTAB with AIR as a preconditioner within
the context of space-time AMR, and demonstrate the application of Lemma 3.2.1. It is
well known that upwind DG discretizations of advection on convex elements yield matrices
that are block triangular in some element ordering. This can serve as a robust on-process
relaxation routine, where the triangular element ordering is obtained and an ordered block
Gauss–Seidel exactly inverts the on-process subdomain [71]. AIR also relies, in some sense,
on having a matrix with dominant lower triangular structure, where it can be shown that
triangular structure allows for a good approximation to ideal restriction [107]. Although
HDG discretizations are not always thought of as block linear systems in the same way that
DG discretizations are, Lemma 3.2.1 proves that by treating DOFs on a given facet as a
block in the matrix, an analogous result holds, that is, the matrix is block lower triangular
in some ordering. With AIR preconditioning, the block structure can be accounted for by
using a block implementation of AIR (e.g., [109]) coupled with block relaxation or, in the

80



(a) Mesh slice at t = 0.5 (b) Solution slice at t = 0.5

(c) Mesh slice at t = 1 (d) Solution slice at t = 1

Figure 3.6: The numerical solution to the interior layer problem at two different time slices.
The non-triangular polygons in the top left figure are because we are slicing the space-time
mesh at t = 0.5; we are cutting through space-time tetrahedra.
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Figure 3.7: Left: the space-time AMR mesh obtained using the ZZ error estimator for the
test case described in Section 3.3.2. Right: only the elements below the median element
size are shown. Note that the mesh is refined along the space-time interior layer.

Figure 3.8: We compare the convergence of the error in the space-time L2-norm using
space-time AMR to using uniformly refined space-time meshes. The test case is described
in Section 3.3.2. Here N is the total number of globally coupled DOFs.
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advection-dominated regime, scaling on the left by the block-diagonal inverse, wherein the
scaled matrix is then scalar lower triangular.

Figure 3.9 demonstrates each of these points in practice, applying AIR to a succession of
adaptively refined space-time problems with various relaxation and block inverse strategies.
The number of DOFs on the x-axis corresponds to successive levels of adaptive space-
time mesh refinement (with correspondingly larger number of DOFs). First, note that
accounting for the block structure in the matrix is important for scalable convergence at
larger problem sizes. Not scaling by the block inverse (“No Block Inv”) can lead to an
increase in iteration count by more than 3× for the largest problem size, and likely worse
as DOFs further increase. On the other hand, after applying the block inverse scaling,
even pointwise Jacobi relaxation yields near perfectly scalable convergence. Furthermore,
because we are considering a hyperbolic equation with cycle-free space-time velocity field
â = (1, x2,−x1)T , from Lemma 3.2.1 the scaled matrix is lower triangular. A topological
sort of the on-process matrix yields the triangular ordering, and an ordered Gauss–Seidel
relaxation then exactly inverts the on-process block. Simulations in Figure 3.9 are run on
128 cores, and we see that with an on-process solve as relaxation, the number of iterations
required to converge is half of the second-best relaxation method we tested, forward Gauss–
Seidel (although both are still quite good).1

Remark 3.3.3 (Relation to PinT). It is worth pointing out the relation of the on-process
solve to PinT methods. In MGRiT and Parareal, the relaxation scheme corresponds to
solving the time-propagation problem between F-time-points. If you assign one F-point per
process, this is solving the time-propagation problem exactly on process and is coupled with
a coarsening in time. Similar to the discussion in Section 3.2.1 here, we actually solve
the space-time problem exactly along the characteristics on each process, which is then
coupled with a coarsening that aligns with the characteristics (see Figure 3.2). Again, we
believe this more holistic treatment of space and time is what allows for perfectly scalable
parallel-in-time convergence on hyperbolic problems.

3.4 Conclusions

AIR algebraic multigrid is known to be a robust preconditioner for discretizations of steady
advection-dominated advection-diffusion problems. This research was motivated by the

1Note that the moving domain considered in Section 3.3.1 introduces cycles in the matrix-graph, and
the resulting matrix is not necessarily block triangular. However, cycle-breaking strategies such as used in
[72] for DG transport simulations on curvilinear meshes can find a “good” ordering and provide comparable
performance as a direct on-process solve when coupled with the larger AIR algorithm.
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Figure 3.9: A comparison of the number of BiCGSTAB iterations to convergence using
AIR as preconditioner with different relaxation strategies. We plot the number of iterations
against the number of globally coupled DOFs at different levels of refinement within the
AMR algorithm.
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question whether AIR AMG is robust as an all-at-once solver for space-time HDG dis-
cretizations of time-dependent advection-diffusion problems, since such problems can be
seen as “steady” advection-diffusion problems in (d+ 1)-dimensions. By numerical exam-
ples, we have indeed demonstrated that AIR provides fast, effective, and scalable precon-
ditioning for space-time discretizations of advection-dominated problems, including robust
convergence on space-time AMR and moving, time-dependent domains.

Advection-dominated problems are notoriously difficult for parallel-in-time methods,
motivating a number of efforts to develop specialized techniques that can handle advection
on coarse time-grids (e.g., [35, 32]). Here, we claim that the best way to provide time
parallelism for hyperbolic problems is by treating space and time together. In particular,
a critical component in multigrid methods is constructing an effective coarse grid. By
applying AIR all-at-once to a space-time discretization, coarsening is able to align with
hyperbolic characteristics in space-time and provide a coarse-grid that naturally captures
these characteristics. Moreover, we proved that for purely hyperbolic problems, the space-
time HDG discretization on convex elements is block triangular in some ordering. Using
this ordering, a relaxation scheme can be designed that exactly solves along the charac-
teristics on-process, complementing the coarse-grid alignment. Classical parallel-in-time
multigrid methods that coarsen in space and time separately are typically unable to align
with hyperbolic characteristics, often resulting in slow convergence or divergence for time-
dependent advection-dominated problems.
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Chapter 4

Preconditioners for an HDG
discretization of the Navier–Stokes
problem

In this chapter, we introduce two novel preconditioners for an HDG discretization of the
stationary Navier–Stokes equations. These preconditioners are based on grad-div (or aug-
mented Lagrangian) preconditioners and pressure convection-diffusion preconditioners, re-
spectively, discussed in Sections 1.4.1 and 1.4.2.

There are multiple challenges when developing preconditioners for HDG discretizations
of the Navier–Stokes problem. One of the main challenges is related to static condensation:
directly developing preconditioners for the reduced systems obtained after static condensa-
tion is difficult due to complexity of the operators involved, especially if both the element
velocity and the element pressure unknowns are eliminated. That being said, there are
some approaches which can be used to overcome this challenge, see [27] and [133] for two
examples. Here, we propose a third approach where we develop preconditioners for the full
problem, and modify the preconditioners to apply them to the reduced problems. This is
possible by Lemma 4.0.1 together with Theorem 1.1.8.

Lemma 4.0.1. Let

A =

A11 A12 A13

A21 A22 A23

A31 A32 0

 ,
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and

Ā =

[
A22 − A21A

−1
11 A12 A23 − A21A

−1
11 A13

A32 − A31A
−1
11 A12 −A31A

−1
11 A13

]
,

be non-singular real matrices, where A11 and A22 are non-singular square matrices, and
each Aij is compatible with Aji. Let

P =

A11 A12 0
A21 A22 0
A31 A32 K

 ,
for some non-singular square matrix K and let

P̄ =

[
A22 − A21A

−1
11 A12 0

A32 − A31A
−1
11 A12 K

]
.

Then W(P̄−1Ā) ⊆ W(P−1A).

Proof. Let I1 ∈ Rn1×n1 , I2 ∈ Rn2×n2 , and I3 ∈ Rn3×n3 be identity matrices. We then define
the following block matrices,

E1 =

A−1
11 0 0
0 I2 0
0 0 I3

 , E2 =

 I1 0 0
−A21 I2 0
−A31 0 I3

 , (4.1)

and let P̃ = E2E1P and Ã = E2E1A. We then observe that

P̃−1Ã = P−1E−1
1 E−1

2 E2E1A = P−1A. (4.2)

Noting furthermore that

P̃ =

I A−1
11 A12 0

0 A22 − A21A
−1
11 A12 0

0 A32 − A31A
−1
11 A12 K

 , (4.3)

and that

Ã =

I A−1
11 A12 A−1

11 A13

0 A22 − A21A
−1
11 A12 A23 − A21A

−1
11 A13

0 A32 − A31A
−1
11 A12 −A31A

−1
11 A13

 , (4.4)
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it follows through direct calculation that the bottom-right 2× 2-block principal submatrix
of P̃−1Ã is P̄−1Ā. Hence, the bottom-right 2× 2-block principal submatrix of P−1A also
equals P̄−1Ā. It is well-known (for example, see [78, 1.2.11] or [10, Submatrix inclusion])
that W(A′) ⊆ W(A) where A′ is a principal submatrix of A ∈ Cn×n.

Lemma 4.0.1 implies that if P is a good preconditioner for A, P̄ is at least as good
of a preconditioner for Ā, if not better. This lemma further predicts that the optimality
of P with respect to the problem parameters h and/or Re is preserved under static con-
densation. In addition, we can interpret Theorems 2.2.3 and 2.2.4 (and other results from
Chapter 2) as a relation between the full problem and the statically condensed problem
in the context of HDG; observe that the coefficient matrix in Equation (2.35) is the Schur
complement of the coefficient matrix in Equation (2.34). Moreover, as discussed at the
beginning of Section 2.1, minimizing the residual over a d-dimensional Krylov subspace
Kd = {r0, Ar0, . . . , A

d−1r0}, obtained at the d-th iteration of the corresponding Krylov
subspace method, is equivalent to constructing a consistent polynomial p which minimizes
‖p(A)r0‖ or ‖p(A)‖ = supr0 6=0 ‖p(A)r0‖. Therefore, we know that the minimizing polyno-

mials ψ(d) and ϕ(d) satisfy

‖ψ(d)(P̄−1Ā)‖ ≤ ‖ϕ(d)(P−1A)‖,

i.e., the number of GMRES iterations k required to guarantee that ‖ψ(k)(P̄−1Ā)‖ < tol is
less than or equal to d given that ‖ϕ(d)(P−1A)‖ < tol.

The rest of this chapter is organized as follows. First, in Section 4.1, we introduce
grad-div preconditioners for the HDG discretization of Navier–Stokes, followed by required
modifications for the statically condensed (reduced) problem. Second, in Section 4.2, we
generalize PCD preconditioners for the full and reduced linear system problems. Finally,
in Section 4.3, we present our numerical results.

4.1 Grad-div preconditioners for HDG

As discussed in Section 1.4.2, augmented Lagrangian preconditioners are obtained by mod-
ifying the linear system [

X BT

B 0

][
u
p

]
=

[
f
g

]
,
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by adding γBTW−1B and γBTW−1g, respectively, to the top left block of the coefficient
matrix and the top block of the right hand side vector, where W is an SPD matrix of
compatible dimensions and γ > 0:[

X + γBTW−1B BT

B 0

][
u
p

]
=

[
f + γBTW−1g

g

]
.

Given that the initial linear system is the result of a mixed finite element discretization
of the (Navier–)Stokes equations, and choosing W = Mp, where Mp is the mass matrix
defined on the pressure space, it is not difficult to show that γBTW−1B has the following
integral representation: ∑

K

γ

∫
K

ΠQh
(∇ · u)ΠQh

(∇ · v)dx,

where ΠQh
(f) is the L2 projection of a scalar valued function f onto the space Qh. Fur-

thermore, if ∇ · Vh ⊂ Qh then ΠQh
(qh) = qh for all qh ∈ ∇ · Vh, in which case, γBTW−1B

simply has the following integral representation:∑
K

γ

∫
K

(∇ · u)(∇ · v)dx,

and we obtain grad-div preconditioners. Since we are solely focusing on the HDG dis-
cretization of the Navier–Stokes equations and ∇ · Vh ⊂ Qh for the HDG method [132],
we consider our preconditioners as grad-div preconditioners. However, they can also be
classified as augmented Lagrangian preconditioners by the argument above.

We first confirm the relationship between the matrix γBTW−1B and its integral rep-
resentation

∑
K γ
∫
K

(∇ · u)(∇ · v)dx for HDG.

Lemma 4.1.1. Let D and Bpu be defined, respectively, as in Equations (2.31) and (2.32)
and let Mp be the mass-matrix on Qh. Then D can be factorized in terms of Bpu and M−1

p

as follows: D = BT
puM

−1
p Bpu.

Proof. Consider first the following grad-div problem for u : Ω→ Rd:

−γ∇∇ · u+ µu = g in Ω, (4.5a)

u · n = 0 on ∂Ω, (4.5b)
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where γ ∈ R+, µ ∈ R+ and g ∈ [L2(Ω)]
d

are given. A hybridized divergence-conforming
discretization of Equation (4.5) is given by: find (uh, p̄h) ∈ Vh × Q̄h such that

γ
∑
K∈T

∫
K

(∇ · uh)(∇ · vh) dx+ µ
∑
K∈T

∫
K

uh · vh dx

−
∑
K∈T

∫
∂K

p̄hvh · n ds =

∫
Ω

g · vh dx ∀vh ∈ Vh, (4.6a)

and

−
∑
K∈T

∫
∂K

q̄huh · n ds = 0 ∀q̄h ∈ Q̄h. (4.6b)

This can be expressed as the following system of linear equations:[
γD + µMu BT

p̄u

Bp̄u 0

][
u
p̄

]
=

[
G
0

]
, (4.7)

where Mu is the mass matrix on Vh.

By introducing the auxiliary variable p = −γ∇ · u, we may write Equation (4.5) also
as:

µu+∇p = g in Ω, (4.8a)

∇ · u+ γ−1p = 0 in Ω, (4.8b)

u · n = 0 on ∂Ω. (4.8c)

A hybridized discretization of a conforming finite element method for this problem is given
by: find (uh,ph) ∈ Vh ×Qh such that

µ
∑
K∈T

∫
K

uh · vh dx+ bh(ph, vh) =
∑
K∈T

∫
K

g · vh dx ∀vh ∈ Vh, (4.9a)

−bh(qh, uh) + γ−1
∑
K∈T

∫
K

phqh dx = 0 ∀qh ∈ Qh, (4.9b)

where bh(·, ·) is defined by Equation (2.28d). The corresponding linear system to this
discretization is given by µMu BT

pu BT
p̄u

−Bpu γ−1Mp 0
−Bp̄u 0 0


up
p̄

 =

G0
0

 . (4.10)
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Eliminating the auxiliary variable p at the algebraic level from Equation (4.10), we find[
γBT

puM
−1
p Bpu + µMu BT

p̄u

Bp̄u 0

][
u
p̄

]
=

[
G
0

]
. (4.11)

Comparing now Equation (4.7) and Equation (4.11), the result follows.

Using Lemma 4.1.1 and [67, Proposition 2.1], we can write,
Fuu Fuū BT

pu BT
p̄u

Fūu Fūū 0 0
Bpu 0 0 0
Bp̄u 0 0 0


−1

=


Auu +Nuu + γD Fuū BT

pu BT
p̄u

Fūu Fūū 0 0
Bpu 0 0 0
Bp̄u 0 0 0


−1

=


Auu +Nuu Fuū BT

pu BT
p̄u

Fūu Fūū 0 0
Bpu 0 0 0
Bp̄u 0 0 0


−1

+ γ


0 0 0 0
0 0 0 0
0 0 M−1

p 0
0 0 0 0

 .
Defining

Sγ = −
[
Bpu 0
Bp̄u 0

][
Fuu Fuū
Fūu Fūū

]−1 [
BT
pu BT

p̄u

0 0

]
=

[
Sγ,pp Sγ,p̄p
Sγ,pp̄ Sγ,p̄p̄

]
,

and

S = −
[
Bpu 0
Bp̄u 0

][
Auu +Nuu Fuū

Fūu Fūū

]−1 [
BT
pu BT

p̄u

0 0

]
,

and using [103, Theorem 2.1(i)], we have

S−1
γ = S−1 + γ

[
M−1

p 0
0 0

]
.

Now, consider the following:

S−1
γ = S−1 + γ

[
M−1

p 0
0 0

]
=

[
(S−1)pp (S−1)pp̄
(S−1)p̄p (S−1)p̄p̄

]
+ γ

[
M−1

p 0
0 0

]
(4.12)

=
√
γ

[
M
−1/2
p 0
0 I

][γ−1M
1/2
p (S−1)ppM

1/2
p γ−1/2M

1/2
p (S−1)pp̄

(S−1)p̄pγ
−1/2M

1/2
p (S−1)p̄p̄

]
+

[
I 0
0 0

]√γ [M−1/2
p 0
0 I

]
.

(4.13)
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Assuming γ is large, we now approximate S−1
γ by:

S−1
γ ≈

√
γ

[
M
−1/2
p 0
0 I

][0 0
0 (S−1)p̄p̄

]
+

[
I 0
0 0

]√γ [M−1/2
p 0
0 I

]

=

[
γM−1

p 0
0 (S−1)p̄p̄

]
=

[
γM−1

p 0
0 (S−1

γ )p̄p̄

]
≈
[
γM−1

p 0
0 (Sγ,p̄p̄)

−1

]
.

The last equality is due to the first equality in Equation (4.12) and [103, Theorem 2.1(i)],
and the last approximation is valid as γ →∞. Therefore, we have

Sγ ≈ Ŝγ =

[
γ−1Mp 0

0 Sγ,p̄p̄

]
.

There are two advantages to the approximation Ŝγ over Sγ. First, it decouples the blocks

of the Schur complement, hence the application of Ŝγ is much cheaper than the application
of Sγ. Second, both Mp and Sγ,p̄p̄ are easily invertible; Mp is a block diagonal matrix with
small and fixed-size blocks and Sγ,p̄p̄ can be inverted using standard algebraic multigrid
methods since it is a Laplacian-like matrix for large γ, see [39, Section 3.2].

With these results, we introduce our preconditioner for the full linear system Equa-
tion (2.34) as follows:

PGD :=


Fuu Fuū 0 0
Fūu Fūū 0 0
Bpu 0 γ−1Mp 0
Bp̄u 0 0 Sγ,p̄p̄

 . (4.14)

The preconditioner for the reduced problem Equation (2.35) can then be obtained from
Equation (4.14) resulting in:

P̄GD1 :=

Fūū − FūuF−1
uu Fuū 0 0

−BpuF
−1
uu Fuū −BpuF

−1
uu B

T
pu 0

−Bp̄uF
−1
uu Fuū 0 −Bp̄uF

−1
uu B

T
p̄u

 .
Here, we used Lemma 4.0.1, but with−BpuF

−1
uu B

T
pu instead of γ−1Mp. Note that−BpuF

−1
uu B

T
pu =

Sγ,pp and −Bp̄uF
−1
uu B

T
p̄u = Sγ,p̄p̄. We make this choice because it improves the convergence
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of GMRES by virtue of diag(Sγ,pp, Sγ,p̄p̄) being a better approximation to Sγ than Ŝγ. This
preconditioner was used in Chapter 2.

For P̄GD1 to be a practical preconditioner, we need a suitable solver to “invert” Fūū −
FūuF

−1
uu Fuū when γ 6= 0. Significant effort has been spent for other discretizations on

that front as discussed in Section 1.4.2. In Chapter 2, we used AIR to implement the
action of the inverse, and rather than stopping at a fixed number of multigrid cycles, we
iterated until a residual tolerance is reached, see for example Figure 2.2. We chose this
approach since fine-tuning the number of fixed iterations for each problem is at best a
hassle and at worst a fool’s errand due to the large numerical null-space introduced by
γD when γ is large. However, using the same null-space argument, we can approximate
F−1
uu ≈ (Auu +Nuu)

−1 and since Fūū − Fūu(Auu +Nuu)
−1Fuū is simply the hybridization of

the vector advection-diffusion equations, we know that a fixed number of AIR iterations
will be optimal. Therefore, with the choice of Auu +Nuu, AIR is an efficient and practical
solver for Fūū − Fūu(Auu +Nuu)

−1Fuū and it can be used as a part of the preconditioner:

P̄GD2 :=

Fūū − Fūu(Auu +Nuu)
−1Fuū 0 0

−BpuF
−1
uu Fuū −BpuF

−1
uu B

T
pu 0

−Bp̄uF
−1
uu Fuū 0 −Bp̄uF

−1
uu B

T
p̄u

 . (4.15)

4.2 Pressure convection-diffusion preconditioners for

HDG

In this section, we present an alternative to the grad-div preconditioner Equation (4.15).
The preconditioner in this section is based on pressure convection-diffusion preconditioners,
see Chapter 1 for the detailed literature review. For this, consider Equation (2.34) with
γ = 0, i.e., 

Auu +Nuu Fuū BT
pu BT

p̄u

Fūu Fūū 0 0
Bpu 0 0 0
Bp̄u 0 0 0



u
ū
p
p̄

 =


L
0
0
0

 . (4.16)

Similar to the grad-div preconditioners presented in the previous section, we want to find
a good approximation to the pressure Schur complement of the system matrix in Equa-
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tion (4.16), i.e., for

S = −
[
Bpu 0
Bp̄u 0

][
Auu +Nuu Fuū

Fūu Fūū

]−1 [
BT
pu BT

p̄u

0 0

]
.

For this purpose, we modify the PCD preconditioner of [51] and extend it to HDG dis-
cretizations of the Navier–Stokes equations. First, we give the HDG discretization of the
scalar advection-diffusion problem as it is necessary in the construction of the precondi-
tioner.

In conservative form, the scalar advection-diffusion equation is given by

∇ · (~cp− ν∇p) = f in Ω, (4.17a)

(−ζp~c+ ν∇p) · n = 0 on ΓN , (4.17b)

p = gD on ΓD, (4.17c)

where ν > 0 is constant, and ζ = 0 if ~c · n ≥ 0, otherwise ζ = 1, ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. Assuming ∇ · ~c = 0, we get the non-conservative form of the equation:

~c · ∇p− ν∆p = f in Ω.

Similar to the discretization of the Navier–Stokes equations, we define T = {K} as the
tessellation of the domain Ω into non-overlapping simplices K. ∂K, n, and hK denote,
respectively, the boundary, the outward unit normal, and the characteristic length of an
element K and we set h = maxK∈T hK . The set of all facets contained in the mesh is
denoted by F = {F} while Γ0 denotes the union of all facets.

Let Pl(D) denote the space of polynomials of degree l ≥ 1 on a domain D. We then
introduce the following discontinuous finite element spaces for the pressure on T and the
restriction of the pressure to Γ0:

Qh :=
{
qh ∈ L2(Ω), qh ∈ Pk−1(K) ∀K ∈ T

}
, (4.18a)

Q̄h :=
{
q̄h ∈ L2(F), q̄h ∈ Pk(F ) ∀F ∈ F , q̄h = gD on ∂Ω

}
. (4.18b)
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Furthermore, let Qh = Qh× Q̄h and ph = (ph, p̄h) ∈ Qh, and introduce the bilinear forms

aph(ph, qh) :=
∑
K∈T

∫
K

ν∇ph · ∇qh dx+
∑
K∈T

∫
∂K

αν

hK
(ph − p̄h)(qh − q̄h) ds (4.19a)

−
∑
K∈T

∫
∂K

[
ν(ph − p̄h)∇qh · n+ ν(qh − q̄h)∇ph · n

]
ds,

oph(~c;ph, qh) :=−
∑
K∈T

∫
K

~cph · ∇qh dx+
∑
K∈T

∫
∂K

1
2
~c · n(ph + p̄h) · (qh − q̄h) ds (4.19b)

+
∑
K∈T

∫
∂K

1
2
|~c · n| (ph − p̄h) · (qh − q̄h) ds.

The HDG discretization of Equation (4.17) is given by: given f ∈ L2(Ω), ν > 0 and ~c with
∇ · ~c = 0, find ph ∈ Qh such that

Bp(ph, qh) =
∑
K∈T

∫
K

f · vh dx ∀qh ∈ Qh, (4.20)

where
Bp(ph, qh) = aph(ph, qh) + oph(~c;ph, qh). (4.21)

The resulting linear system is of the block form

Fp

[
p
p̄

]
=

[
Fpp Fpp̄
Fp̄p Fp̄p̄

][
p
p̄

]
=

[
L
0

]
. (4.22)

If ~c = 0 then we use the notation

Ap

[
p
p̄

]
=

[
App App̄
ATpp̄ Ap̄p̄

][
p
p̄

]
=

[
L
0

]
, (4.23)

to distinguish the advection-diffusion problem from the Poisson problem and to emphasize
symmetry of the Poisson problem. Now, we can follow the same procedure as [51] and use
the commutator

E = ∇ · (−ν∆ + ~w · ∇)− (−ν∆ + ~w · ∇)p∇·, (4.24)

where (−ν∆ + ~w · ∇)p =: Lp is the convection-diffusion operator in the pressure space.
The discrete analogue to this commutator will be called Eh. We next derive the expression
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for the discrete commutator. For this, we define the following mesh-dependent norm on
Qh:

|||qh|||2p :=‖qh‖2
Ω +‖q̄h‖2

p where ‖q̄h‖2
p :=

∑
K∈T

hK‖q̄h‖2
∂K . (4.25)

Now we define the element and facet pressure mass matrices, M ∈ Rnp×np and M̄ ∈ Rn̄p×n̄p ,
respectively, as

|||qh|||2p =‖q‖2
M = 〈Mq, q〉+ 〈M̄ q̄, q̄〉, (4.26)

where M := bdiag(M, M̄).

Proposition 4.2.1. Take bh as it is defined in Equation (2.28d). Let Dh denote the
discrete divergence operator defined on V h by

(Dhuh,ph) = bh(ph,uh) ∀ph ∈ Qh,

with the condition Dhuh ∈ Qh. Then Dh has the matrix representation M−1B, where M
is as defined in Equation (4.26) and B is as defined in Equation (2.32).

Proof. Define qh := Dhuh. Expanding qh, ph in terms of the basis {ψi} of Qh and uh in

terms of the basis {~φi} of V h, we obtain the discrete problem,

Mq = Bu.

The result follows from the definition qh = Dhuh and the observation that qh =
∑

i qiψi.

The following two propositions can be proven similarly to Proposition 4.2.1. Therefore,
we omit their proofs.

Proposition 4.2.2. Let aph and oph be as defined in Equation (4.19). Let Fph denote the
discrete convection-diffusion operator defined on Qh by

(Fphph, qh) = aph(ph, qh) + oph(w;ph, qh) ∀qh ∈ Qh,

with the condition Fphph ∈ Qh. Then Fph has the matrix representation M−1Fp, where M
is as defined in Equation (4.26) and Fp is as defined in Equation (4.22).

Proposition 4.2.3. Let ah and oh be as defined in Equation (2.28). Let Fh denote the
discrete convection-diffusion operator defined on V h by

(Fhuh,vh) = ah(uh,vh) + oh(w;uh,vh) ∀vh ∈ V h,

with the condition Fhuh ∈ V h. Then Fh has the matrix representation M−1
u F , where

Mu is the mass matrix defined on the combined velocity space Vh similar to M, and
F = A+N + γD, see Equations (2.29) to (2.31).
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Using Propositions 4.2.1 to 4.2.3, we can express the discrete commutator as the matrix
representation of (Euh, qh) = ([∇ · (−ν∆ + ~w · ∇)− (−ν∆ + ~w · ∇)p∇·]uh, qh) as

Eh = (M−1B)(M−1
u F )− (M−1Fp)(M−1B). (4.27)

If ‖Eh‖ is small in some sense (or, equivalently, if ‖E‖ is small), we can approximate
(M−1B)(M−1

u F ) by (M−1Fp)(M−1B). By multiplying this expression with MF−1
p M

from the left and with F−1BT from the right, we obtain the following approximation to
the Schur complement,

BF−1BT ≈MF−1
p BM−1

u BT . (4.28)

We conjecture that the HDG discretization we use is reverse inf-sup stable, i.e., there exists
a constant βp,2, independent of the mesh size h, such that for all qh ∈ Qh

βp,2 ≤ sup
vh∈V h

bh(qh,vh)

|||vh|||v∗|||qh|||p∗
,

where the norms are defined as

|||vh|||v∗ =
∑
K∈T

‖vh‖2
K +

∑
K∈T

hK‖v̄h‖2
∂K ,

|||qh|||p∗ =
∑
K∈T

‖∇qh‖2
K +

∑
K∈T

αh−1
K ‖qh − q̄h‖2

∂K .

A consequence of this reverse inf-sup condition is that the HDG diffusion matrix on the
pressure space Ap (Equation (4.23)) can be shown to be a good approximation to BM−1

u BT .
Therefore, we replace BM−1

u BT by Ap which simplifies Equation (4.28) and reduces the
cost of the preconditioner:

BF−1BT ≈MF−1
p Ap.

As discussed in the literature review (Section 1.4.1), the boundary conditions of the
convection-diffusion problem on the pressure space affects the performance of the PCD
preconditioner significantly. When constructing the matrices Ap and Fp, special care must
be taken. According to the current literature, the proper way of setting the respective
scalar problems on the pressure space requires enforcing natural boundary conditions on
the boundaries where a Dirichlet boundary condition is enforced for the Navier–Stokes
equations and by enforcing homogeneous Dirichlet (essential) boundary conditions along
Neumann and outflow boundaries of the Navier–Stokes problem. While this is also true in
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our experience (see Section 4.3), we furthermore observed that using this strategy for the
Navier–Stokes problems with Dirichlet conditions everywhere on the boundary (which is
equivalent to the do-nothing strategy) may cause divergence. In such cases (for example,
Section 4.3.2), we set the boundary conditions for the pressure problems as homogenous
Dirichlet everywhere, similar to the Navier–Stokes problem, to obtain a working precondi-
tioner.

To conclude this section, we propose the following HDG variant of the PCD precondi-
tioner

PPCD =


Fuu Fuū
Fūu Fūū

0 0
0 0

Bpu 0
Bp̄u 0

MS

 , (4.29)

where the approximation MS to the Schur complement S is chosen as

MS =MF−1
p Ap, (4.30)

with no boundary conditions prescribed on the scalar advection-diffusion and diffusion
problems. Using Lemma 4.0.1 once more, we obtain the following preconditioner for the
reduced problem Equation (2.35) with γ = 0:

P̄PCD =

Fūū − FūuF−1
uu Fuū 0 0

−BpuF
−1
uu Fuū

−Bp̄uF
−1
uu Fuū

MS

 . (4.31)

4.3 Numerical Tests

The following numerical tests will be used to demonstrate the efficiency of our precondi-
tioners to solve Equation (2.35), i.e., the statically condensed HDG discretization of the
Navier–Stokes problem Equation (1.2), in terms of number of iterations. In all runs, we use
FGMRES without restart as our iterative solver with stopping criteria on the absolute tol-
erance ‖rk‖ < 10−11, the relative tolerance ‖rk‖/‖r0‖ < 10−8 and the number of iterations
k < 1000. The zero initial guess is used every time the linear solver is called. Also, we
want to note that the number of Picard iterations required for convergence are dependent
on the viscosity and the problem, but not the mesh size. This is similar to observations of
[66, 70]. Hence, the cost of the solution process is determined by the complexity of the sub-
solvers necessary in the application of the preconditioner and the number of preconditioned
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GMRES iterations. The cost of the application of the preconditioner depends on the mesh
size (O(n) to O(n3) depending on the choice of subsolvers). Therefore, in this section, by
demonstrating that the number of GMRES iterations to convergence is independent of the
mesh size, we show that our proposed preconditioner is an optimal preconditioner with
respect to the mesh size h in the sense that the total solution cost is a linear function of
the number of DoFs N ≈ h−d with d being the dimensionality of the problem.

4.3.1 Flow over a Backward Facing Step

In our first test problem, we consider a fast moving fluid in a rectangular pipe with a sudden
expansion. The domain of this problem is given by Ω = (−1, 5)× (−1, 1)\ [−1, 0]× [−1, 0].
A Dirichlet boundary condition with parallel parabolic profile ~u = [4y(1−y), 0]T is enforced
on the inflow boundary ∂ΩDin

= {−1} × [0, 1] and the homogeneous Neumann boundary
condition ν ∂~u

∂~n
− ~np = 0 is imposed along the outflow boundary ∂ΩDout = {5} × (−1, 1).

Finally, the no-flow boundary condition ~u = [0, 0]T is imposed on the walls ∂ΩDwall
=

∂Ω \ (∂ΩDin

⋃
∂ΩDout). The source term is chosen as ~f = 0. We plot the velocity and

pressure solutions to this problem for reference in Figure 4.1 when ν = 1/100.

Figure 4.1: The velocity and pressure solutions to the backward facing step problem de-
scribed in Section 4.3.1.

Note that if we take L equal to the height of the outflow boundary and U = 1, the
maximum inflow speed, then the viscosity parameter must be ν > 1/1000 for the steady
solution to this problem to be stable [51]. In Table 4.1, we present the number of GMRES
iterations required to reach the stopping criteria set at the beginning of Section 4.3. Note
that the performance of the grad-div preconditioners depend on the choice of γ. We found
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that the performance can be quite sensitive with respect to the value of γ. In Table 4.1,
we present the results for each ν with γ chosen (by trial and error) such that the iteration
counts are minimal.

For the grad-div preconditioner P̄GD1, we see h-optimal behaviour for ν = 1/5 and ν =
1/50. For ν = 1/100, the iteration count increases slightly with each level of refinement,
however, the increase does not seem to be proportional to the mesh size h.

For the PCD preconditioner P̄PCD, first, we see that the number of iterations increase
slightly as the viscosity ν decreases. This observation is in line with the existing literature;
see [51] for the standard Taylor–Hood discretization of the Navier–Stokes problem. Second,
for all tested values of the viscosity ν, we observe h-optimal behaviour. Moreover, the
number of GMRES iterations to convergence decreases as the mesh is refined. We expect
that this is because MS in Equation (4.30) approximates the pressure Schur complement
better with each new level of refinement.

Table 4.1: The number of GMRES iterations required to reach a relative tolerance of 10−8

averaged over the number of iterations of the Picard solver for the problem described in
Section 4.3.1 for different values of ν.

P̄GD1 P̄PCD
#DOFs ν = 1/5 1/50 1/100 ν = 1/5 1/50 1/100

γ = 2 1/2 1/2

1,596 29 40.0 46.0 93 128.8 155.0
6,096 30 45.1 57.0 85 108.5 123.7

23,808 30 47.1 67.8 80 88.5 98.7
94,080 29 48.1 73.8 77 76.3 82.7

4.3.2 Lid-driven Cavity Flow

We next consider a leaky version of the lid-driven cavity flow problem. The domain is a
square centred at the origin: Ω = (−1, 1)2. We enforce the Dirichlet boundary condition
~u = [1, 0]T on ∂ΩDlid

= [−1, 1] × {1} and the no-flow boundary condition ~u = [0, 0]T on

the rest of the boundary ∂ΩDwall
= ∂Ω \ ∂ΩDlid

. The source term is chosen as ~f = 0. We
plot the velocity and pressure solutions to this problem for reference in Figure 4.2 when
ν = 1/500.
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Figure 4.2: The velocity and pressure solutions to the lid-driven cavity problem described
in Section 4.3.2.

The steady flow solution in a two-dimensional cavity is stable only for larger values of
viscosity. For this reason, we consider 1/500 ≤ ν < 1 to guarantee that the steady solution
we find is physically meaningful. In Table 4.2, we present the number of GMRES iterations
required to reach the stopping criteria set in Section 4.3. Similar to the backward facing
step problem (Section 4.3.1), the results for P̄GD1 are presented for each ν together with
the “best” value of γ which we found by trial-and-error.

For the grad-div preconditioner P̄GD1, we again see h-optimal behaviour for larger values
of viscosity: ν = 1/5 and ν = 1/50. For ν = 1/500, similar to the backward facing step
case, we see a small increase in the number of iterations required for convergence as the
mesh is refined.

For this problem, FGMRES combined with the PCD preconditioner P̄PCD converges
independently of the mesh size h for the tested values of viscosity. However, as the viscosity
decreases, the number of iterations to convergence increases.

4.4 Conclusion

In this chapter, we introduced two novel preconditioners for the HDG discretization of
the Navier–Stokes problem. The challenge of obtaining efficient preconditioners for the
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Table 4.2: The number of GMRES iterations required to reach a relative tolerance of 10−8

averaged over the number of iterations of the Picard solver for the problem described in
Section 4.3.2 for different values of ν.

P̄GD1 P̄PCD
#DOFs ν = 1/5 1/50 1/500 ν = 1/5 1/50 1/500

γ = 1/4 1/20 1/20

2,256 29.0 29.1 71.8 80.0 99.0 287.0
8,736 28.0 29.1 86.5 76.0 90.9 264.1

34,368 27.0 28.1 94.3 75.0 85.1 212.8
136,320 26.0 27.1 99.1 73.0 82.8 191.5

statically condensed problem (Equation (2.35)) is solved using Lemma 4.0.1, and we nu-
merically tested the resulting preconditioners: P̄GD1 and P̄PCD. We observed that both
these preconditioners are h-robust and only mildly dependent on Re.

For each problem and each value of the viscosity ν, we found that there are values
γ such that P̄GD1 is h-robust and the number of GMRES iterations to convergence is
minimal. The function determining these γ values does not seem to be a simple function of
ν. We suspect that the optimal choice of γ will also be dependent on the domain and the
velocity field (rather than the characteristic speed). We also found that choosing γ large
deteriorates the convergence in terms of iterations. However, we expect that if the mesh
can be refined to a point close to the asymptotic limit, the resulting preconditioner would
be h and Re robust, albeit less practical than choosing γ heuristically for each problem
and each ν.

Finally, from our simulations, we observed that if the Navier–Stokes problem has Dirich-
let boundary conditions prescribed everywhere on the boundary of the domain, building
the preconditioner P̄PCD according to conventional wisdom (i.e., the “do-nothing” strat-
egy) results in a divergent preconditioner. We solved this issue by enforcing homogeneous
Dirichlet boundary conditions everywhere on the boundary for the pressure subproblems.
The lack of convergence is to be investigated as future work. If the Navier–Stokes prob-
lem has both natural and essential boundary conditions prescribed, then the strategy of
imposing boundary conditions described in [145] works for our problem as well.
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Chapter 5

Conclusions

In this thesis, we presented our work on different building blocks for preconditioning of
HDG discretizations of the incompressible Navier–Stokes equations. In this chapter, we
summarize this work and present recommendations for future work.

5.1 Summary

In Chapter 2, we developed a framework to analyze 2-by-2 block preconditioners combined
with Krylov subspace methods. Assuming that one of the blocks is inverted exactly, we
showed that a good approximation to the Schur complement is fundamental in obtaining an
effective 2-by-2 block preconditioner. Moreover, the theory in Chapter 2 shows that block
LDU preconditioning offers minimal improvement over block triangular preconditioning in
terms of iterations while having larger computational cost. Block diagonal precondition-
ers are computationally cheaper than block triangular preconditioners, but the number of
iterations to convergence suffer. Hence, if preserving symmetry is not a concern, block
triangular preconditioners should be preferred over block diagonal and block LDU pre-
conditioners. These theoretical results are confirmed numerically, hence their predictive
power has practical application. Furthermore, we numerically showed that the assumption
of availability of the exact inverse of one of the blocks can be relaxed.

In Chapter 3, we concentrated on solving an HDG discretization of a time-dependent
advection-diffusion problem on potentially moving domains. Our interest in this problem
stems from the fact that “inverting” the momentum block of the linearized Navier–Stokes
problem is equivalent to solving a decoupled vector advection-diffusion equation. Hence,
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an efficient solver for this problem is crucial in developing a good preconditioner for the
time-dependent Navier–Stokes equations. We investigated AIR as preconditioner for this
problem, since it has been shown to be effective in solving DG discretizations of time-
dependent advection-diffusion problems on fixed domains. We showed, theoretically, that
AIR is also effective for HDG discretizations of advection-diffusion problems and that static
condensation will not degrade the efficiency of AIR. We furthermore showed, by numerical
tests, that AIR is a more efficient and scalable solver/preconditioner in an all-at-once
approach to solving space-time formulations of advection-diffusion problems than when
used in a slab-by-slab approach. We hypothesize that this is true because combining AIR
with the all-at-once approach allows coarsening along space-time characteristics which is
a property not enjoyed by other approaches in solving these problems.

Lastly, in Chapter 4, we presented two novel preconditioners for an HDG discretiza-
tion of the stationary Navier–Stokes equations. These preconditioners are based on two
state-of-the-art preconditioners, namely grad-div and pressure convection-diffusion precon-
ditioners. In both cases, the objective is to find an approximation to the pressure Schur
complement. First, we showed that if we can find a good preconditioner for the full prob-
lem, we can directly obtain a good preconditioner for the reduced problem through static
condensation (Lemma 4.0.1). Next, we extended the grad-div and PCD preconditioners to
HDG discretizations of the Navier–Stokes problem. For grad-div preconditioners, a consis-
tent grad-div term is added to the momentum equation to aid in finding an approximation
to the pressure Schur complement. In our case, we showed that the discrete form of this
grad-div term can be factorized into very simple and already available matrices, which
leads to a simple approximation of the pressure Schur complement. Finally, we considered
the PCD preconditioner. This preconditioner is based on assuming small commutators
in approximating the pressure Schur complement. We extended this framework to HDG
discretizations. Our numerical results show that these preconditioners are h-optimal and
mildly dependent on the Reynolds number of the problem.

5.2 Future work

In this thesis we considered different aspects of preconditioning for an HDG discretization
of the Navier–Stokes equations. However, preconditioning for discretizations of the Navier–
Stokes equations is still far from being a solved problem. Here I will discuss a few topics
which are a direct extension of this thesis.

First, in Chapter 4, we derived grad-div and PCD preconditioners for HDG discretiza-
tions of the stationary Navier–Stokes problem. Numerical examples showed that for mod-

104



erate Reynolds numbers these are effective preconditioners, however, a theoretical analysis
of these preconditioners is still missing. Of special interest is to rigorously show whether
these preconditioners are h and Re robust.

The final goal, however, is a preconditioner for space-time HDG discretizations of the
time-dependent Navier–Stokes equations on moving domains. Two major components for
an effective preconditioner for such a problem is a good approximation to the (pressure)
Schur complement of the discretization (see Chapter 2) and an effective solver for the
(velocity) momentum block. For the latter, we already made a big step forward by demon-
strating in Chapter 3 the effectiveness of AIR as a preconditioner for space-time HDG
discretizations of time-dependent advection-diffusion equations on moving domains. The
former, i.e., a good approximation to the (pressure) Schur complement of the discretization
remains a major challenge. This is because it is not clear if the results from Chapter 2 for
the stationary problem can directly be extended to the time-dependent problem.
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Appendix A

Approximate Ideal Restriction
Algebraic Multigrid

In this chapter, we present a brief introduction to approximate ideal restriction (AIR)
algebraic multigrid method as proposed in [109]. We particularly focus on the variant
called local AIR (`AIR) as it is our choice of preconditioner. As discussed in Chapter 3,
algebraic multigrid methods solve the problem Ax = b by partitioning the DOFs into fine
(F-) and coarse (C-) points, creating interpolation P and restriction R operators and then
iterating using the formula

x(i+1) = x(i) + PA−1
c Rr(i),

where the coarse “grid” operator Ac = RAP , and the residual r(i) = b − Ax(i). We can
row-column permute the matrix A so that the F-points are ordered first

A =

[
Aff Afc
Acf Acc

]
.

Furthermore, we can assume that C-points are interpolated and restricted using injection
which simplifies the forms of P and R:

P =

[
W
Inc

]
, R =

[
Z Inc

]
,

for some full-rank matrices W ∈ Rnf×nc and Z ∈ Rnc×nf where nc and nf are, respectively,
the number of C- and F-points. Defining the error at the ith iteration as e(i) = x − x(i),
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we see that r(i) = Ae(i) and that

e(i+1) = e(i) + PA−1
c RAe(i)

=

[
e

(i)
f

e
(i)
c

]
+ PA−1

c RA

[
e

(i)
f

e
(i)
c

]
.

Since W is a full rank matrix, any error vector e can be decomposed as:

e =

[
ef
ec

]
=

[
Wec + δef

ec

]
=

[
W
Inc

]
ec +

[
δef
0

]
= Pec +

[
δef
0

]
,

where ef ∈ Rnf , ec ∈ Rnc and δef = ef −Wec is that part of the F-point error which is
not in the range of interpolation. From these relationships, we obtain:

e(i+1) =

[
e

(i)
f

e
(i)
c

]
+ PA−1

c RA

[
e

(i)
f

e
(i)
c

]

=

[
e

(i)
f

e
(i)
c

]
+ PA−1

c RA

Pe(i)
c +

[
δe

(i)
f

0

]
=

[
δe

(i)
f

0

]
− PA−1

c RA

[
δe

(i)
f

0

]
.

Now, we observe that if we choose Z = −AcfA−1
ff then

RA

[
δe

(i)
f

0

]
= 0,

for any δe
(i)
f , and the resulting restriction operator R is called the ideal restriction op-

erator Rideal. Using ideal restriction, we effectively prevent the error at F-points, e
(i)
f ,

from corrupting the coarse-grid problem: find v s.t. Acv = RidealAe
(i), since RidealAe

(i) =
RidealAPe

(i)
c . However, A−1

ff is usually dense, hence it is not practical to construct Rideal

and an approximation is necessary. The algorithm we used in this thesis is called `AIR
[107, 109], and the idea is to locally eliminate the contribution of all F-point error within
a prescribed distance to the coarse-grid problem. To this end, for each i-th C-point a
set of “nearby” F-points, Ri, is chosen using a distance criterion (we used at most graph

126



distance 2) and a strength-of-connection criterion. Then, to determine the i-th row of Z,
corresponding to the i-th C-point, we solve a set of equations∑

k∈Ri

zikakj = aij ∀j ∈ Ri,

where zij and aij are the i-th row and j-th column entries of the matrices, respectively,
Z and A. As a result, we need to solve a |Ri| × |Ri| linear system to construct each row
of Z, hence the setup cost of the `AIR restriction operator is O(nc) since the cardinality
of the sets Ri is bounded from above by a constant independent of the C-point i and the
mesh size [109]. We want to note that while choosing a higher graph distance improves
the robustness and convergence of AIR when used as a preconditioner, the benefits are not
worth the computational cost.

Now, we want to discuss why `AIR is a good preconditioner for our problem of in-
terest. First of all, our HDG discretization guarantees that, in the absence of diffusion,
each block of facet DOFs only has neighbours in the direction of the velocity field. This
means that the cardinalities of the sets Ri are bounded from above and the bound is
not large. Combinatorics of the problem becomes difficult depending on the strength of
diffusion and the anisotropy of the problem; however, we have seen experimentally that
`AIR can still be a good option for weakly diffusion dominated flows. Secondly, if the
velocity field does not have cycles, then the full coefficient matrix can be permuted into
a block-triangular form with small block-sizes, and static condensation does not change
this property (Lemma 3.2.1). This property is more beneficial in a parallel setting, as each
process can find such an ordering for their local problem (on-process) and use it as a part
of block Gauss-Seidel relaxation, which amounts to a direct solve at the maximum cost
O(N2). Such a reordering can be found using an on-process depth-first-search at the cost
O(Np) where Np is the number of DOFs local to the process.

A clear example of these benefits is given in Section 3.3.2. The moving internal layer
problem has no diffusion, and the velocity field does not have any cycles. As a result, the
resulting preconditioner is robust; looking at Figure 3.9, it can be seen that block-diagonal
scaling (block-inv) combined with on-process solves has the least amount of iterations
and the most robust performance since the advective component is inverted exactly under
these conditions. We also see that applying block diagonal scaling is enough to improve the
quality of forward Gauss-Seidel (FGS) and Jacobi relaxation techniques to a competitive
level.
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