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Abstract

The work presented in this thesis focuses on improving the computational efficiency
when simulating viscous liquids and air bubbles immersed in liquids by designing new
discretizations to focus computational effort in regions that meaningfully contribute to
creating realistic motion. For example, when simulating air bubbles rising through a liquid,
the entire bubble volume is traditionally simulated despite the bubble’s interior being visually
unimportant. We propose our constraint bubbles model to avoid simulating the interior
of the bubble volume by reformulating the usual incompressibility constraint throughout
a bubble volume as a constraint over only the bubble’s surface. Our constraint method
achieves qualitatively similar results compared to a two-phase simulation ground-truth for
bubbles with low densities (e.g., air bubbles in water). For bubbles with higher densities,
we propose our novel affine regions to model the bubble’s entire velocity field with a single
affine vector field. We demonstrate that affine regions can correctly achieve hydrostatic
equilibrium for bubble densities that match the surrounding liquid and correctly sink for
higher densities. Finally, we introduce a tiled approach to subdivide large-scale affine regions
into smaller subregions. Using this strategy, we are able to accelerate single-phase free
surface flow simulations, offering a novel approach to adaptively enforce incompressibility
in free surface liquids without complex data structures.

While pressure forces are often the bottleneck for inviscid fluid simulations, viscosity can
impose orders of magnitude greater computational costs. We observed that viscous liquids
require high simulation resolution at the surface to capture detailed viscous buckling and
rotational motion but, because viscosity dampens relative motion, do not require the same
resolution in the liquid’s interior. We therefore propose a novel adaptive method to solve
free surface viscosity equations by discretizing the variational finite difference approach of
Batty and Bridson (2008) on an octree grid. Our key insight is that the variational method
guarantees a symmetric positive definite linear system by construction, allowing the use
of fast numerical solvers like the Conjugate Gradients method. By coarsening simulation
grid cells inside the liquid volume, we rapidly reduce the degrees-of-freedom in the viscosity
linear system up to a factor of 7.7× and achieve performance improvements for the linear
solve between 3.8× and 9.4× compared to a regular grid equivalent. The results of our
adaptive method closely match an equivalent regular grid for common scenarios such as:
rotation and bending, buckling and folding, and solid-liquid interactions.
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Chapter 1

Introduction

One of the major motivations in the field of computer graphics is the desire to recreate
photorealistic environments, including their motion. Creating realistic simulations can often
avoid expensive and dangerous practical effects. For example, filming a boat in a raging
storm or a plane engine catching fire in mid-flight is far too dangerous given the alternatives
of modern technology. Furthermore, since such simulations are too complex for an artist to
generate by hand, they must rely on computational physical models to make materials in
the scene move and behave realistically. Simulation research is therefore quickly adopted
by the film, TV, and video game industries.

Fluid simulation has been a staple topic in computer graphics for several decades.
Pioneering work achieved plausible motion of smoke and water and set the foundation for
the computer graphics branch of computational fluid dynamics (CFD) (Foster and Metaxas,
1996; Stam, 1999). Due to obvious safety concerns, CFD applications in engineering
primarily focus on the accuracy of both the physical model and the numerical methods
used to solve them. However, computer graphics applications are, in general, principally
concerned with qualitatively accurate behaviour and artistic control. Artists will often
run multiple iterations of a simulation to achieve a desired look, driving the need for a
fast turnaround of a given simulation. Given these different requirements in computer
graphics, computational efficiency and stability for large simulation time steps are typically
prioritized over accuracy, insofar as the simulation remains qualitatively believable. As an
example, fluids are often assumed to be incompressible, eschewing the need for capturing
shock waves and other complex phenomena that are computationally expensive and do not
significantly improve visual quality in the vast majority of practical scenarios. While this
assumption is not strictly true in the physical world, it is a reasonable assumption for many
of the types of fluid behaviour that artists endeavour to create. On the other hand, purely
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ad hoc or non-physical procedural methods break down for non-trivial three-dimensional
scenarios, so we prefer to design simplified models that are still grounded in the classical
Navier-Stokes model of fluid flow. Fundamentally, we follow the adage everything should be
made as simple as possible, but no simpler, where we are motivated to develop the simplest
model possible that still achieves qualitative believability. Despite invoking assumptions
to simplify the model, this balance between realism, efficiency, stability and even artist
controllability has made for a complex field of study. Indeed, even two decades since its
inception the research community is still working to recreate phenomena found in the real
world, in addition to designing new methods to improve simulation accuracy and efficiency.

The computational effort in a standard fluid simulation pipeline is largely focused
on solving for two fundamental fluid forces: pressure and viscosity. Pressure is essential
for enforcing incompressibility and interactions with solid boundaries; viscous forces are
essential for capturing damped relative motion expected from liquids like honey. Solving
these forces efficiently offers the artist faster turnaround time to iterate on the desired effect
or, alternatively, to simulate at higher resolutions. Our research contributions focus on
improving simulation efficiency of two phenomena: viscous liquids and bubbles immersed
in liquids. Both phenomena are ubiquitous in everyday life and yet they are extremely
costly to simulate using existing methods. Furthermore, one of our improvements to bubble
simulation relies on a new reduced model, and we subsequently show that this model
can also be applied as a general adaptive strategy to efficiently solve for pressure forces
in the traditional free surface liquid simulation. Combined, our research contributions
offer substantial performance improvements when solving pressure and viscous forces in an
industrial fluid simulation pipeline.

1.1 Thesis Contributions

1.1.1 Reduced-Model Bubbles and Liquids

For a simulation to capture the glugging behaviour of liquid pouring out of a bottle or
entrained air bubbles formed from splashy flows, the interaction between immiscible air
bubbles and the surrounding liquid must be accounted for in the physical model of the
fluids’ pressures. However, modelling this two-phase flow phenomena is computationally
expensive. Water and air differ in density by about three orders of magnitude, leading to
ill-conditioned linear systems that strain numerical solvers (MacLachlan et al., 2008). It is
therefore standard in computer graphics to ignore the air’s physics altogether and assume a
free surface boundary condition at the air-liquid interface (Bridson, 2015). Unfortunately,
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this treats air as a massless void that leads to bubbles collapsing when entrained by the
liquid, because there is no opposing force preserving its volume. Some previous methods
simplify the air-volume’s physical model by either enforcing incompressibility in the air
implicitly through a costly liquid-only stream function model (Ando et al., 2015a), or
explicitly with a weakly coupled compressible model that still requires advecting and solving
for pressures (i.e., pressure projection) throughout the entire air volume (Aanjaneya et al.,
2013; Patkar et al., 2013). We address this challenge with two new models: constraint
bubbles and affine regions.

We propose a constraint-based model for negligible-density air bubbles that considers
only the net flux into (and out of) a given bubble. This model entirely eliminates both
advection and pressure projection inside the bubble volume and requires just one Lagrange
multiplier per distinct bubble. This surface-only approach introduces minimal additional
overhead compared to a free surface method, easily integrates with existing free surface
flow solvers, and realistically captures many familiar bubble behaviors. It can even allow
for two or more distinct liquid bodies to correctly interact across completely unsimulated
air, such as water volumes separated by air in a tube, which is not possible with prior
bubble schemes (Aanjaneya et al., 2013; Ando et al., 2015a). Additionally, we augment our
constraint model with a per-bubble volume-tracking and correction framework to minimize
the effects of gradual volume drift.

Although our constraint-based model offers a practical solution to efficiently simulate
negligible-density bubbles interacting with liquids, the model fails for non-negligible densities.
For example, a stationary bubble with matching density to the surrounding liquid should
experience neutral buoyancy and remain stationary; a bubble with a higher density should
sink. However, our experiments demonstrate that the constraint method cannot capture
this behaviour because the single pseudo-pressure constraint throughout the bubble is an
insufficient model for larger bubble densities.

While nearly zero-density bubbles is a common situation, non-zero density coefficients
also arise in many compelling two-phase scenarios. Therefore, we also propose a novel
reduced model for an irregularly shaped fluid region over which we assume a single pointwise
incompressible affine vector field. This approach requires only 11 interior velocity degrees-of-
freedom per affine fluid region in 3D, and naturally handles the general case of non-negligible
density coefficients. Applied to the interior of a secondary fluid phase immersed in water,
our algorithm allows a sphere of neutrally buoyant (i.e., matching density) immiscible liquid
to remain perfectly stationary, while a heavier immiscible liquid sphere correctly sinks.
Thus, constraint bubbles and affine regions provide complementary treatments for two-phase
scenarios: constraint bubbles offer a simple and efficient mechanism for zero-density bubbles,
while affine regions accelerate the traditional two-phase approach (Kang et al., 2000; Hong
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and Kim, 2005) for non-negligible density settings by significantly reducing the number of
interior degrees-of-freedom.

Additionally, by enforcing an incompressible affine vector field over a coalesced set of
grid cells, we have effectively constructed an irregular coarse super-cell. Similar in spirit to
prior schemes exploiting tall-cell grids (Irving et al., 2006; Chentanez and Müller, 2011),
stretched grids (Zhu et al., 2013), and octree grids (Losasso et al., 2004), this technique
offers a convenient and flexible coarsening strategy that integrates readily with the usual
staggered uniform regular grid; yet unlike its predecessors, it supports coarsened regions
that are arbitrary voxelized shapes and provides an analytically divergence-free interior.
Compared to octree, tetrahedra, or nested grid adaptivity schemes, our method requires
simpler data structures and minimal overhead, and is more flexible than axially stretched
or tall-cell approaches. We demonstrate its effectiveness with a new adaptive free-surface
liquid solver whose interior affine regions are coarsened into a mix of tiles with regular and
irregular shapes.

The pressure projection step in all of the above schemes can be reduced down to solving
a symmetric and positive definite (SPD) linear system, which suggests the potential to
develop fast numerical solvers. Therefore, to achieve efficiency in practice, we propose several
Multigrid-based preconditioning schemes that are tailored to the particular characteristics
of our new discretizations.

To summarize, our primary contributions for reduced-model two-phase and single-phase
inviscid flow are:

• A constraint-based model for immersed zero-density bubbles, that entirely avoids
advection and pressure projection inside the bubble,

• A reduced fluid model based on pointwise divergence-free affine vector fields that
supports irregularly-shaped regions,

• A tile-based strategy for flexible and adaptive spatial coarsening that is built on top of
the above affine model, with applications to single- and multi-phase flow simulations,

• Efficient Multigrid-based preconditioners for the Conjugate Gradients method that
are tailored to the preceding models, and

• A region-tracking and volume-correction strategy to compensate for drift in multi-
component, topology-changing flows.

4



1.1.2 Adaptive Viscosity

We observe that liquids with high viscosity coefficients can be slow to simulate with standard
uniform resolution simulators, where solving viscous forces comprises up to 95% of the
total simulation time. Compared to computing pressure forces on the same domain, viscous
forces can often be slower by an order of magnitude or more. There are two main reasons
why solving for the effects of viscosity is slow: large viscosity coefficients give rise to stiff
linear systems that are generally slower to solve, and the boundary conditions necessary for
plausible free surface behavior couple the different components of velocity together, yielding
a system that is three times larger and contains twice as many non-zeros per row (Batty and
Bridson, 2008). This computational bottleneck discourages artists from simulating viscous
liquids at high resolutions, and in many cases, from simulating viscous liquids altogether.

Additionally, we observe that viscous simulations require a high simulation resolution
near the liquid surface to capture fine-scale details of buckling and rotational motion and
interactions with solid objects. However, because viscosity dampens relative motion, the
velocity field deeper within a viscous liquid is generally quite smooth and requires less
simulation resolution. Therefore, we propose to accelerate solving viscous forces by using
spatial adaptivity to focus simulation resolution at the liquid surface and solid boundaries,
and applying grid coarsening into the liquid’s interior.

Although adaptivity has been extensively explored for solving liquid pressure forces
(Losasso et al., 2004, 2006; Klingner et al., 2006; Chentanez et al., 2007; Batty et al.,
2010; Brochu et al., 2010; Ando et al., 2013; Ferstl et al., 2014; Setaluri et al., 2014;
Aanjaneya et al., 2017), there is surprisingly little previous work in computer animation
considering adaptive Eulerian viscosity (Hong and Kim, 2005; Batty and Houston, 2011).
Unfortunately, the viscosity model used by Hong and Kim (2005) does not support realistic
rotational or bending motion achieved in the regular grid method of Batty and Bridson
(2008), and the method of Batty and Houston (2011) uses tetrahedral meshes, which
imposes significant additional overhead compared to modern octrees (Setaluri et al., 2014).
Therefore, we propose and evaluate an efficient and practical adaptive viscosity solver
for octree-based liquids that supports free surfaces and variable viscosity, while being
geometrically compatible with the classic inviscid octree simulator of Losasso et al. (2004,
2006).

Our main contribution is the development and validation of a new adaptive variational
finite difference methodology for fluids, with solving viscous forces considered as a specific
case study. The regular grid variational finite difference framework was first proposed by
Batty et al. (2007) for solving pressure forces and solid-fluid coupling; this approach has
since been applied to a variety of uniform resolution fluid problems (Batty and Bridson, 2008;
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Narain et al., 2010; Ando et al., 2013, 2015b; Larionov et al., 2017). Our novel generalization
to the octree setting requires two core enhancements near T-junctions (i.e., borders between
differing octree grid resolutions): first, the definition of modified sample points and control
volumes for discretely approximating the necessary integrals; and second, the careful design
of accurate adaptivity-aware finite difference stencils for derivative operators appearing in
the problem’s variational form (in our case, stencils for velocity gradients). Compared to
direct finite difference/volume discretizations, our approach guarantees SPD linear systems
by construction. Compared to a (hypothetical) finite element alternative, our method yields
much sparser linear systems and reduces back to simple finite differences in uniform regions.
Furthermore, we confirm the accuracy of the proposed method with comparisons against
regular grids and with refinement studies showing velocity convergence at first order in L∞
and second order in L1. Although popular octree pressure projection schemes in graphics
offer second order accuracy in pressure, their velocity accuracy is only first order (Losasso
et al., 2006; Aanjaneya et al., 2017); our viscosity solver therefore offers comparable or
better convergence rates.

We demonstrate the practical benefits of our octree viscosity by replacing the viscosity
step of a standard regular grid simulator (Houdini) with our octree viscosity solver. Our
solver offers speed-up factors up to 9.4× for the linear solve and 8.8× for a full viscosity
step, and enables simulation at much higher resolutions than is currently feasible using
regular grids (Batty and Bridson, 2008; SideFX, 2021).

To summarize, our primary contributions to viscous liquid animation are:

• The introduction of a novel adaptive variational finite difference methodology for
octrees that guarantees symmetry,

• An efficient octree viscosity solver based on this methodology that handles free surfaces
and variable coefficients,

• Numerical experiments confirming convergence of the discretization under spatial
refinement, and

• The application of our method to dramatically increase the speed or resolution of
viscous flow simulations produced with a commercial regular grid simulator.
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Chapter 2

Related Work

Our work focuses entirely on grid-based fluid simulation methods for both viscous and
inviscid fluids. Grid-based methods are popular because the regular grid structure offers
algorithmic efficiencies over unstructured approaches like tetrahedral meshes or particle-
based methods, in addition to simpler discretizations of the differential operators. Because
the broader literature in CFD is vast, we focus our discussion primarily on computer
animation techniques. Where appropriate, however, we also highlight methods from
computational physics that are most directly relevant to our contributions. We introduce
foundational concepts for grid-based fluid simulation in Chapter 3 and highlight selected
related work below.

2.1 Free Surface Flow

Foster and Metaxas (1996) presented the first 3-D liquid (i.e., free surface flow) simulation
method to the computer graphics community. Their proposed method employs the staggered
marker-and-cell (MAC) grid (Harlow and Welch, 1965) that has become the industry
standard. Stam’s (1999) follow up work applied Chorin-style operator splitting (Chorin and
Marsden, 1993) to solve the Navier-Stokes equations, added unconditional stability using a
semi-Lagrangian backtracing method for advection, and a time-implicit integration scheme
for solving viscous forces. Foster and Fedkiw (2001) and Enright et al. (2002) extended
the method of Stam (1999) to liquid animation by combining liquid marker particles and
level sets to track the liquid surface. Because the liquid-air boundary can move freely
during a liquid animation, directly discretizing fluid pressures on the MAC grid will not
correctly capture the position of the liquid boundary and results in visible artifacts on the
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liquid surface. Gibou et al. (2002) introduced the ghost fluid method to properly capture
the liquid boundary inside a grid cell, achieve second order accurate pressures and, more
importantly, prevent grid artifacts from forming on the liquid surface. The semi-Lagrangian
backtracing method for advection offers unconditional stability over explicit integration with
finite differences, but the frequent interpolation required introduces significant numerical
viscosity and results in visible damping of the fluid motion. Fedkiw et al. (2001) tackled
this damping in smoke simulation by reinjecting lost vorticity into the simulation. Zhu
and Bridson (2005) reduced damping in incompressible liquid motion by employing the
fluid-implicit-particle (FLIP) method (Brackbill and Ruppel, 1986): an extension of the
traditional particle-in-cell (PIC) method (Harlow and Welch, 1965) that stores velocities
on fluid particles and offsets these particle-based velocities by the change of velocities
during the grid-based pressure projection step. The FLIP method tracks liquid regions
using particles and advects particles forward in time through the projected, divergence-free
grid-based velocity field. Because FLIP only interpolates the change in the velocity field on
the grid to the particles, only the change itself undergoes numerical damping. Indeed, the
FLIP method was so successful at removing numerical damping that it is still the industry
standard after a decade and half and we use it for all our results. For a thorough survey of
the standard fluid simulation pipeline, please refer to Bridson’s textbook (Bridson, 2015).

2.2 Multiphase Flow

2.2.1 Ghost Fluid Method

Popular immiscible two-phase flow methods in computer graphics are primarily derived from
the boundary condition-capturing approach of Kang et al. (2000). This approach simulates
both air and liquid regions, enforcing incompressibility through a pressure projection
scheme that uses a ghost fluid method to model the density discontinuity at the liquid-air
interface. Hong and Kim (2005) first made use of this scheme, with a variety of subsequent
enhancements following later (Losasso et al., 2006; Mihalef et al., 2006; Kim et al., 2007;
Boyd and Bridson, 2012). The work of Kim et al. (2007) is particularly relevant as it
focuses on animating bubbles, but it differs from our work in that their air bubbles are all
fully simulated. In contrast to these sharp interface approaches, authors such as Song et al.
(2005) and Zheng et al. (2006) have used a continuous variable-density pressure solve to
simulate multiphase flow, also referred to as a diffuse interface approach.
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2.2.2 Sub-grid Bubbles

The use of secondary sub-grid scale particles is another natural way to add bubble details
to free-surface flows; an early example is the work of Greenwood and House (2004). More
recent instances of this strategy include the work of Hong et al. (2008), Kim et al. (2010) and
Busaryev et al. (2012). An interesting recent hybrid is the approach of Patkar et al. (2013),
which unifies the treatment of sub-grid and grid-scale compressible bubbles to allow tiny
bubbles to oscillate and also coalesce into larger ones. Stomakhin et al. (2020) alternatively
model incompressible, sub-grid bubbles using a drag model and momentum exchange with
the surrounding bulk fluid. An approach along these lines is likely compatible with our
method, but we restrict our attention to grid-resolvable bubbles.

2.2.3 Augmented Free Surface

Our work is closely related to bubble simulation methods that augment a free-surface flow
solver with partially decoupled or fully unsimulated grid-scale bubbles (i.e., no computation
of fluid equations in the interior of a bubble). Aanjaneya et al. (2013) proposed an
equation-of-state approach to simulate two-way coupling of an incompressible liquid to
a compressible, fully simulated air phase. They also suggested a simplified variant that
assumes constant pressure in the air phase to approximate each bubble’s influence with
a single pressure degree of freedom (DOF) and thereby partially decouple the air phase.
This approach produces a linear system for liquid incompressibility with a similar structure
to our constraint bubbles. However, their method involves extra terms to support air
compressibility and assumes that bubbles possess non-negligible air mass that must be
tracked. This mass tracking necessitates a secondary pressure projection within each bubble
and conservative advection for the air mass. As such, the method’s computational cost
scales with the full domain volume, whereas our constraint-bubbles method scales with
the liquid volume. Furthermore, despite air density being present in the equations, we
show later that Aanjaneya et al.’s (2013) constant pressure model fails unless the bubbles
have densities close to zero. Lastly, while accurate bubble oscillations are critical to sound
generation (e.g., (Zheng and James, 2009; Langlois et al., 2016)), they are irrelevant for a
wide range of strictly visual applications, so we prefer a fully incompressible treatment.

Ando et al. (2015a) proposed a stream function approach for free-surface flows which
reformulates the pressure projection step in terms of a vector potential. Standard vector
calculus identities ensure that this representation provides incompressible velocities for the
air by construction, even while assuming an air density of zero and without simulating
air at all. This approach is quite elegant, yet potentially less attractive in practice for a
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few reasons. First, the stream function approach entails a radically different and relatively
complex discretization compared to standard solvers, requiring many standard fluid solver
features be re-developed from the ground up. Second and more fundamentally, because the
stream function is a three-component vector, the resulting linear systems are vector Poisson
equations three times as large as the usual scalar Poisson equations for pressure projection,
and are therefore significantly slower to solve. The method we propose instead requires
only one extra DOF per bubble and a small additional computational cost over a standard
pressure projection. Our constraint-bubble method also supports at-a-distance interactions
with solids or between two liquid bodies, mediated only through the unsimulated air. This
is not naturally supported by the stream function approach, since the air region contains
no stream function DOFs that could enable the disjoint bodies to communicate.

2.3 Volume Correction

Small numerical errors in surface tracking and incompressibility inevitably lead to volume
changes in long-term liquid simulation. Kim et al. (2007) first proposed to use divergence
sources (Feldman et al., 2003) in a PID-style controller to recover lost volume. In particle-
based models, direct particle position/density corrections have also been incorporated
(Losasso et al., 2006; Takahashi and Lin, 2019; Kugelstadt et al., 2019). In the absence
of particles, global corrections can lead to the wrong material component being adjusted
(i.e., volume lost from one droplet spuriously being added to another). In a mesh-based
surface tracking context, Thürey et al. (2010) used explicit topological change information
to update per-component volume targets. In a volume-of-fluid (VOF) context, Langlois
et al. (2016) tracked bubble identities and volumes using scalar fields in order to use their
volumes for sound generation. These authors did not describe how to redistribute volume,
especially when multiple kinds of topological changes occur simultaneously among nearby
bubbles.

The VOF method provides unconditional mass conservation by storing volumes of
fluid present in each simulation grid cell and advecting the volume through the fluid’s
incompressible velocity field (Sussman, 2003). However, maintaining a sharp boundary at
the liquid-air interface is inherently challenging with this approach, leading to complex
methods such as coupling a level set with the VOF method (Sussman, 2003). Furthermore,
in contrast to the large time steps offered by semi-Lagrangian advection, the VOF method
inherently requires small time steps to accurately account for volume exchanges between
adjacent grid cells. In general, for computer graphics applications, the FLIP method offers
acceptable volume conservation given the tradeoffs in performance and implementation
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complexity associated with VOF methods.

2.4 Model Reduction

2.4.1 Solid-Fluid Coupling

The manner in which we couple grid-based fluids to our affine fluid model is related
to monolithic (or strong) two-way solid-fluid coupling, especially in the rigid-body case.
Specifically, as noted by Jiang et al. (2015), an affine vector field has a similar but more
general structure compared to a rigid-body vector field. Thus, requiring matching normal
fluxes at the boundary between the regular fluid and the reduced affine regions leads
to linear systems that have parallels with rigid-body coupling. Klingner et al. (2006)
first considered strong coupling of rigid bodies on tetrahedral meshes, though subsequent
work on monolithic coupling has largely focused on regular grid approaches. Batty et al.
(2007) considered rigid bodies, Robinson-Mosher et al. (2008, 2009) considered rigid bodies,
volumetric elastic objects and thin shells, and Lu et al. (2016) considered reduced deformable
solids. Aanjaneya (2018) recently proposed a fast solver for rigid-body coupling making
use of Multigrid ideas. Another coupling approach is that of Golas et al. (2012), who used
weak coupling between a vortex particle domain and a regular grid-based fluid simulator.

2.4.2 Fluid Model Reduction and Boundary-Based Approaches

Model reduction has been applied to smoke animation problems (Treuille et al., 2006;
De Witt et al., 2012; Cui et al., 2018), by simulating in a reduced, divergence-free basis.
The basis is typically global, specific to a particular domain, and precomputed for efficiency.
To extend reduced fluid models to large domains, Wicke et al. (2009) considered tiling the
space and applying coupling between tiles. Our incompressible affine fluid model could
be viewed as a particularly convenient, reduced (low order polynomial) basis, constructed
locally on the fly at each time step. Our reduced bubble models also share a philosophical
connection with recent boundary-based models for fluids, in that the goal is to minimize
the use of interior volumetric DOFs. Keeler and Bridson (2014) applied boundary integral
techniques to ocean dynamics, and Da proposed both a vortex-based model for soap bubbles
(Da et al., 2015), and a boundary element approach to surface-only liquids (Da et al., 2016).
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2.5 Viscous Liquids

Viscosity was originally incorporated into the foundational work of Foster and Metaxas
(1996) using explicit time integration. Because explicit integration of viscosity is subject to
a particularly stringent stability restriction, Stam (1999) modeled viscosity using implicit
diffusion (i.e., Laplacian smoothing) of velocity in the context of smoke simulation, and
Carlson et al. (2002) applied this model to spatially varying viscosity and liquids with free
surfaces. Fält and Roble (2003) used improved boundary conditions to support translation
of free-flying liquid bodies, and Rasmussen et al. (2004) proposed an implicit/explicit
integration method to properly treat spatially varying viscosity coefficients. Batty and
Bridson (2008) developed an implicit variational finite difference viscosity model to allow
for rotational motion of viscous free surfaces, thereby enabling realistic buckling and
folding along with improved stability for variable viscosity. Larionov et al. (2017) further
showed consistent viscous coiling can be achieved by treating viscosity and pressure terms
simultaneously via the unsteady Stokes equations. Viscous forces have also been considered
for multiphase flows, usually assuming constant viscosity per material (Hong and Kim,
2005; Losasso et al., 2006), and for specialized lower-dimensional mesh-based thread and
sheet models (e.g., (Bergou et al., 2010; Batty et al., 2012; Zhu et al., 2015)). Nearly all of
the discretizations above yield SPD linear systems, which allow for more efficient numerical
solvers; ours does the same.

More generally, hierarchically adaptive node-based finite element-style elasticity methods
(e.g., Capell et al. (2002); Grinspun et al. (2002)) could hypothetically be applied to our
problem by replacing the elastic constitutive law with the fluid viscosity equations. However,
our scheme adopts the staggered grids naturally preferred for incompressible fluids (Bridson,
2015), it does not require higher order basis function constructions, and finite difference
schemes can offer significantly sparser stencils even compared to low order finite elements.
For example, Zhu et al. (2010) used this last observation to motivate their staggered finite
difference scheme for regular grid elasticity. Observe that for a regular 2D staggered grid,
only 9 velocity DOFs are involved in a given matrix row (e.g., Batty and Bridson (2008),
Figure 10); for linear nodal FVM/FEM, each row involves both velocity component DOFs
of the 9 surrounding nodes (9×2 = 18). This ratio is significantly worse in 3D: 15 staggered
DOFs per row vs. 81 nodal DOFs per row.
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2.6 Adaptive Methods

2.6.1 Affine Region Adaptivity

Spatial adaptivity has a long history in liquid simulation. Many different strategies for
introducing adaptivity in the pressure projection have been proposed in the graphics
literature, including octrees (Losasso et al., 2004; Ando and Batty, 2020), tetrahedra
(Klingner et al., 2006; Batty et al., 2010; Ando et al., 2013), tall cells (Irving et al.,
2006; Chentanez and Müller, 2011), warped grids (Ibayashi et al., 2018), Chimera grids
(English et al., 2013), and Voronoi or Power diagrams (Brochu et al., 2010; de Goes
et al., 2015; Aanjaneya et al., 2017), among others. Some advantages of our affine regions
include relative simplicity of implementation, flexibility of element shapes, and exactly
divergence-free interior velocities. The use of p-adaptivity (i.e., elements with varying
degree polynomials) in computer graphics has been explored in a discontinuous Galerkin
(DG) framework (Edwards and Bridson, 2014), allowing for highly detailed surfaces to be
simulated; while we considered only affine fields, polynomial extensions of our method are
also possible. The model of Edwards and Bridson (2014) assumes a standard polynomial
basis, but a variety of pointwise divergence-free DG schemes have been developed outside of
computer graphics (e.g., (Rhebergen and Wells, 2018)). Traditional finite element methods
have considered divergence-free elements as well (Gustafson and Hartman, 1983). There has
also been recent interest in finite element variants that support general polyhedral elements
(Martin et al., 2008; Manzini et al., 2014; Edwards and Bridson, 2014). Our method has
the practical advantage of being easy to incorporate into standard fluid animation tools
based on regular grid finite volumes.

2.6.2 Octrees

The first successful inviscid octree-based free surface flow solver in computer graphics was
proposed by Losasso et al. (2004), although Shi and Yu (2004) had earlier proposed a
non-symmetric discretization for octree smoke. Losasso et al. (2004) developed a symmetric
positive definite finite volume Laplacian discretization for the pressure projection and a
semi-Lagrangian advection step relying on node-based trilinear velocity interpolation, but
omitted viscosity. This formulation relied on an inaccurate sloped gradient approximation,
leading to motion errors for hydrostatic scenarios. They later presented an enhanced version
that constructs a single axis-aligned gradient shared by all child faces at a T-junction
(Losasso et al., 2006). To improve its efficiency, Setaluri et al. (2014) proposed a memory-
efficient sparse paged grid (SPGrid) data structure that constructs the octree as a hierarchy
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of sparsely populated regular grids, rather than a standard pointer-based tree. They applied
it to smoke simulation, and later Aanjaneya et al. (2017) applied it to liquid simulation
using a finite volume power diagram discretization across T-junctions. We incorporate our
viscosity discretization into the SPGrid framework to demonstrate a fully adaptive solver
for viscous liquids.

There are relatively few octree-based fluid solvers that specifically address viscosity,
particularly in the case of free surfaces and variable coefficients. Hong and Kim (2005)
reused the octree Laplacian of Losasso et al. (2004) to add implicit viscosity via velocity
diffusion, though this simple model precludes support for rotational effects and variable
viscosity (Batty and Bridson, 2008). Ferstl et al. (2014) employed a cut-cell finite element
method with a Multigrid solver for adaptive liquid animation, focusing on inviscid scenarios
and pressure projection, but did not demonstrate nor elaborate on their treatment of
viscosity. Nielsen and Bridson (2016) alluded to tree-based finite element viscosity in the
BiFröst simulation toolkit for the 3D computer graphics application Maya (Autodesk, 2021),
but omitted details.

Looking beyond computer graphics to computational physics, there exist many adaptive
methods on nested regular grids that support viscosity, but most assume spatially constant
viscosity without free surfaces (e.g., (Almgren et al., 1998; Min and Gibou, 2006; Guittet
et al., 2015)). We discuss a few pertinent exceptions. In geophysics, Gerya et al. (2013)
proposed an adaptive implicit finite difference discretization for free surface variable viscosity
flows, though it is limited to 2D quadtrees. Their method also treats the free surface using
an approximate “sticky air” layer rather than a sharp boundary condition, and yields
non-symmetric systems. Nikitin et al. (2008; 2011) presented octree Navier-Stokes solvers
that consider the free surface conditions and treat viscosity explicitly, though explicit
viscosity methods can lead to stability issues. Olshanskii et al. (2013) proposed a related
implicit discretization, but it does not handle the free surface and its reliance on least-
squares fitting to construct adaptive stencils introduces asymmetry. Guittet et al. (2015)
achieved an SPD system for the Laplacian form on non-graded trees using a Voronoi
diagram of the staggered velocity face samples; however, this comes at the cost of frequent
unstructured mesh generation and highly non-local stencils. Moreover, neither Voronoi nor
power diagram discretizations of the Laplace operator can readily treat the cross-component
derivative terms that arise for the more general viscosity PDE needed for free surfaces and
variable coefficients. Lastly, setting aside viscosity, Horesh and Haber (2011) proposed a
non-symmetric finite volume discretization of Maxwell’s equations on octrees; their (adjoint
of) curl stencils share some geometric similarities with our vector gradient stencils.
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2.6.3 Tetrahedral Meshes

Tetrahedral meshes are another alternative for adaptive liquid simulation with either
Eulerian or Lagrangian approaches. In the Eulerian setting, Klingner et al. (2006) used
adaptive staggered tetrahedral meshes for smoke; Chentanez et al. (2007) extended this
approach to liquids. To the best of our knowledge, the subsequent node-based finite volume
viscosity scheme of Batty and Houston (2011) is the only prior Eulerian scheme to animate
high viscosity liquids on adaptive tetrahedral meshes that supports rotational surface motion
and spatially varying viscosity. However, earlier work supported Laplacian-style viscosity
on closed domains or used (nearly) uniform-resolution tetrahedral meshes (Wendt et al.,
2007; Elcott et al., 2007; Bonito et al., 2006).

The possibility of purely Lagrangian tetrahedral liquid animation was first hinted at
by the finite element viscoplastic solid approaches of Bargteil et al. (2007) and Wojtan
and Turk (2008). Subsequently, incompressible Lagrangian liquid simulation with surface-
conforming tetrahedral meshes was achieved by Misztal et al. (2010; 2014) and Clausen
et al. (2013), including natural handling of viscous free surfaces. However, while tetrahedral
methods flexibly support adaptive viscous flows, the computational expense, complexity,
and memory overhead of accessing, manipulating, and remeshing such structures makes
them less attractive compared to modern optimized octrees (Setaluri et al., 2014; Aanjaneya
et al., 2017).

2.7 Particle-based Models

For our overall framework, we prefer the hybrid grid-particle FLIP (see §2.1) method because
of the efficiencies offered by the grid structure. However, both viscous and multiphase
liquids have been modelled with the fluid state fully defined on the particles. We detail the
relevant previous work below.

2.7.1 Smoothed Particle Hydrodynamics

The smoothed particle hydrodynamics method (SPH) was first introduced to computer
graphics by Desbrun and Gascuel (1996) and popularized for liquid simulation and real-time
applications by Müller et al. (2003). This purely particle-based formulation uses smooth
kernels with compact support to represent continuum-based properties like fluid density and
velocity. To enforce incompressibility, pressure forces opposing compression and expansion

15



are derived from implied fluid densities based on the SPH particle distribution and are
integrated explicitly in time. This equation of state method leads to liquids appearing
squishy and requires small time steps to prevent instability. The predictor corrector SPH
method (Solenthaler and Pajarola, 2009) and, subsequently, the implicit imcompressible
SPH method (Ihmsen et al., 2014) solve pressure forces that remove compression and
ease the time step restrictions at the cost of more computation per time step. Adaptively
sized particles allow the simulator to focus computational effort at geometrically important
regions of the simulation (Adams et al., 2007; Solenthaler and Gross, 2011), with the added
complexity of coalescing many small particles to one big particle or splitting one big particle
into many small particles. Because pressure forces are derived from particle density, these
splitting and merging operations must be handled carefully to avoid inducing spurious
forces in the liquid. To simulate the effects of viscosity in SPH-based fluid, Takahashi et al.
(2015) solved for viscous forces implicitly in time using the full viscous tensor, applied to
the smooth kernel representation of the fluid’s velocity field. Although variations to this
approach have been proposed (Peer et al., 2015; Weiler et al., 2018; Peer and Teschner,
2017), the approach of Takahashi et al. (2015) is most similar to the variational method
of Batty and Bridson (2008) that we extend to adaptive grids. Simulating immiscible
air bubbles entrained in liquid was made possible by using particle densities for their
corresponding materials (Solenthaler and Pajarola, 2008) and modelling the interaction of
the two materials using drag forces (Ihmsen et al., 2011).

2.7.2 Material Point Method

The material point method (MPM) was originally proposed by Sulsky et al. (1995) as an
extension of the PIC method for simulating granular material and was first introduced to
computer graphics by Stomakhin et al. (2013) for simulating snow. An MPM material
is represented by a collection of particles that store material information such as mass,
momentum and the deformation gradient tensor. At each simulation time step, the material
parameters are transferred from the particles to the grid using finite element basis functions.
Forces acting on the material (e.g., elastic stress, contacts, etc.) are resolved at the grid
level and the updated material properties are transferred back to the particles. Finally, the
particles are integrated in time using their updated velocities. The benefit of this approach
for granular material is that topology changes are handled implicitly instead of requiring
tricky mesh operations common with tetrahedral-based finite element approaches (Bargteil
et al., 2007). MPM has since been applied to non-Newtonian fluids (Stomakhin et al., 2014;
Yue et al., 2015), viscoelastic fluids (Ram et al., 2015), granular materials such as sand (Klár
et al., 2016; Daviet and Bertails-Descoubes, 2016), and many more interesting phenomena
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(Jiang et al., 2016). Gao et al. (2017) recently developed an adaptive MPM scheme for
octrees using carefully designed basis functions with C1 continuity. Importantly, even
regular grid MPM schemes require higher order basis functions to avoid discontinuities in
forces and, as a result, suffer from relatively dense matrices that are inefficient to solve (Yue
et al., 2018). This limitation motivates MPM practitioners to use explicit time integration
methods, in contrast to our preference for stable implicit methods.
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Chapter 3

Background

In this chapter, we give a brief overview of a standard fluid animation pipeline that
our contributions build on, focusing primarily on solving for pressure and viscous forces.
Solving for pressure is essential for imposing the incompressibility constraint, capturing
momentum transfer between immiscible liquids (i.e., two-phase simulations), and enforcing
solid boundaries. Solving for viscous forces is essential for capturing damped relative motion
of viscous liquids, but more importantly, for capturing rotational buckling and folding
motion expected of highly viscous liquids such as honey. We assume the reader is familiar
with concepts from vector calculus, numerical linear algebra, and numerical differential
equations.

3.1 Navier-Stokes

Movement of fluids is described by the Navier-Stokes momentum equation (Chorin and
Marsden, 1993),

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + f , (3.1)

where u is the fluid’s velocity, ρ is the density, p is the pressure, τ is the deviatoric viscous
stress tensor, τ = µ

(
∇u+ (∇u)T

)
where µ is the dynamic viscosity coefficient, and f are

external forces (e.g., gravity). We make the simplification that our fluid is incompressible
by imposing a divergence-free constraint on the fluid’s velocity:

∇ · u = 0. (3.2)
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Given the non-linear term, u · ∇u, a numerical approach for solving the entirety of (3.1) as
a single operation is computationally expensive (Mullen et al., 2009). Instead, we adopt
the standard operator splitting technique to update the velocity field through a daisy chain
of operations (Chorin and Marsden, 1993; Stam, 1999):

• Advect fluid: ∂u
∂t

+ u · ∇u = 0,

• Integrate forces: ρ∂u
∂t

= f ,

• Apply viscosity: ρ∂u
∂t

= ∇ · τ ,

• Apply pressure: ρ∂u
∂t

= −∇p, s.t. ∇ · u = 0.

This splitting technique allows us to solve for pressure and viscous forces as solutions
to linear PDEs. Although this simplification does decrease the accuracy of the method
to first order with respect to time, the simplification of the numerical methods and the
accompanied performance improvement is a worthwhile (and widely adopted) tradeoff
(Chorin and Marsden, 1993; Bridson, 2015). Previous work has achieved higher order
accuracy within the operator splitting framework, albeit with additional overhead cost
(Narain et al., 2019). The advection step advances the simulation forward in time, moving
fluid attributes (e.g., density, level set surface, etc.) and its velocity field to the next
time step (Bridson, 2015). We adopt the particle-based method, FLIP, which stores fluid
velocities on each particle and moves these particles forward through the velocity field using
numerical integration (Zhu and Bridson, 2005). External forces are integrated into the
fluid’s velocity field with forward Euler, un+1 = un + ∆tf .

Solving for viscosity accounts for stress in the fluid caused by internal friction and
the effect of solid boundaries acting on the fluid. Advecting the fluid, adding forces and
incorporating viscosity typically leaves the velocity field in a divergent state; solving for
pressure returns the velocity field to the divergence-free state required by the constraint
in (3.2). Since our contributions build on the existing pressure and viscosity methods, we
detail their standard discretizations below.

3.2 Solving For Pressure

We transform a fluid velocity field, un, to a divergence-free state, un+1, through the internal
pressure of the fluid, where the gradient of pressure is a force acting on the velocity field,

un+1 = un − ∆t

ρ
∇p, (3.3)
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and ∆t is the size of our discrete simulation time step.1 However, since both pressure and
the final velocity are unknown, we cannot simply solve (3.3) directly. Using the constraint
that the final velocity must be divergence-free, we apply a divergence operator to both sides
of (3.3) to remove dependence on the unknown final velocity field:

−∆t∇ · 1

ρ
∇p = −∇ · un. (3.4)

Solving this Poisson equation provides us with the fluid pressure needed to ensure un+1

is divergence-free when recovered from (3.3). This operation is essentially a projection of
the fluid’s velocity field onto the divergence-free subspace and commonly referred to as the
pressure projection operation.

3.2.1 Discretization

We solve the pressure Poisson equation (3.4) discretely using finite differences to approximate
the gradient and divergence operators. We use the standard staggered grid approach to
place pressure scalars at grid cell centers and discrete velocity vector components at grid
cell edges in 2D or grid cell faces in 3D. This placement avoids instabilities that can occur
when pressure and velocity are co-located (Bridson, 2015). Figure 3.1a illustrates a 2D
staggered grid with the associated indices for each component (where u and v are the x-
and y-axis vector components of the velocity field, oriented along the face normals). This
grid format extends naturally to 3D with the three velocity vector components (u,v,w)
placed at centers of cell faces. Given our sampling scheme, we construct a linear system
of discrete approximations to (3.4) using centered differences. For example, axis-aligned
components of pressure gradients are co-located with velocity samples at cell edges,

(∇p)i− 1
2
,j =

pi,j − pi−1,j

∆x
, (3.5)

and the divergence of velocities are co-located with pressure samples at cell centers,

(∇ · u)i,j =
ui+ 1

2
,j − ui− 1

2
,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y
.

The discrete divergence of pressure gradients in the Poisson equation follows directly from
divergence of velocities. These discretizations are applied at every grid cell in the liquid

1We use un+1 to represent the final velocity field after applying an individual operator. Likewise, we
will use un to represent the velocity field before applying the operator.
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ui− 1
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vi,j+ 1
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pi,j−1

pi,j+1

(a)

ΩA

ΩA
ΩL

ΩS

(b)

Figure 3.1: The fluid domain is discretized on a staggered grid (a), with pressure samples
at grid centers and velocity components at grid faces. For liquids with free surfaces (b)
the staggered grid fills the liquid volume, ΩL. The liquid boundary, ∂ΩL, is composed
of Dirichlet boundary conditions at the air-liquid boundary, ∂ΩL ∩ ∂ΩA, and Neumann
boundary conditions at the solid-liquid boundary, ∂ΩL ∩ ∂ΩS.
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volume and together form a linear system of equations that is SPD, relatively sparse, and
simple to implement. In Figure 3.1b, the bulk of the liquid volume ΩL can be discretized
using the above methods. However, we must modify the discretizations at the boundaries
of the liquid volume, ∂ΩL, to account for interactions with solid objects (∂ΩL ∩ ∂ΩS) and
other fluids (∂ΩL ∩ ∂ΩA).

3.2.2 Boundary Conditions

Accounting for boundaries inherently changes the discretization of (3.3) and (3.4) because
there are no valid liquid pressure or velocity samples outside of ΩL. We aim to modify our
linear system of discrete pressure equations to account for boundaries while still remaining
SPD, sparse, and simple to implement.

Free Surface

In the free surface model for the air-liquid boundary, we assume that air is substantially
less dense than liquid and provides vanishingly-small resistance to the liquid’s motion.
Given this assumption, we simplify our simulation by assigning air volumes, ΩA, a uniform
pressure of zero, i.e., pA = 0, which effectively removes air cells from the linear system for
pressures.

It is reasonable to wonder about the consequences of such a simplification. Would this
assumption cause air bubbles to simply collapse? Indeed it will, leaving artists with a
difficult trade-off. Simulating the entire atmosphere in a large ocean simulation would
be prohibitively expensive and may not add realism to the scene. On the other hand,
as demonstrated in Figure 4.14, water pouring through the neck of a container requires
simulated air resistance on the liquid to properly capture the expected glugging motion. For
sake of exposition, we begin by focusing only on the air-as-a-vacuum, free surface, approach
to liquid simulations and introduce the proper interacting two-phase flow method in a later
section.

At first glance, applying the zero-pressure Dirichlet boundary condition at the free-
surface seems trivial. Since we are assuming that air pressure is uniformly zero, any discrete
pressure samples that fall inside the air volume are no longer unknowns and can be removed
from the linear system. However, simply setting the air pressure to be zero at these discrete
samples fails to realize zero pressure precisely at the air-liquid boundary. Consider the
example presented in Figure 3.2 where the boundary does not pass directly through a
discrete pressure sample. In this case, pressure will vary linearly from the liquid sample,

22



pi,j pi+1,j

p = 0

Figure 3.2: A liquid-air boundary passes between liquid pressure sample pi,j and air sample
pi+1,j. The ghost fluid method extrapolates the liquid pressure to precisely place the zero
air pressure at the interface (red circle).

pi,j , to finally reach zero at the exterior air sample, pi+1,j = 0, implying a non-zero pressure
value at the actual air-liquid boundary (red circle). Failing to enforce zero-pressure directly
on the surface can generate stair-step artifacts on the surface, impacting the visual quality
of the simulation.

The ghost fluid method (Enright et al., 2003) treats the pressure sample in the air
volume as an extrapolation from the true, zero pressure at the interface. To enforce a
zero pressure at the liquid surface, consider a linear interpolation of pressure samples at
the free surface, (1 − θ)pi,j + θpi+1,j = 0, where θ is the normalized length fraction of
liquid between both pressures samples. The standard approximation for this fraction is the
normalized distance to the zero isosurface, given by θ =

φi,j
φi,j−φi+1,j

where φi,j and φi+1,j are

the associated signed distances to the liquid surface, located at the corresponding pressure
samples. We simply solve for the ghost pressure in terms of the active liquid pressure,
pi+1,j = θ−1

θ
pi,j. The pressure gradient used in (3.3) and (3.4) at the cell-face between the

air and liquid pressure samples reduces to (∇p)i+ 1
2
,j =

pi+1,j−pi,j
∆x

=
pi,j
θ∆x

.

Solid Boundaries

In contrast to the free surface model, where air imposes no resistance against the motion of
the surrounding liquid, scripted-motion solids provide an infinitely strong resistance to the
liquid’s motion, forcing the liquid to move in accordance with them. Although methods
for coupling liquid and dynamic rigid-body or deformable solids provide a more realistic
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Figure 3.3: Surface integrals (dark blue) for the fluid subregion (a) and solid subregion (b)
within a grid cell.

interaction between the liquid and solids (Carlson et al., 2004; Batty et al., 2007; Gibou and
Min, 2012; Zarifi and Batty, 2017), they are beyond the scope of our work. We assume that
the liquid cannot penetrate into the moving solid nor can it separate and create a vacuum
between the two regions, but liquids can freely flow tangentially along the solid boundary
(i.e., free-slip condition). We model this interaction by constraining the liquid velocity to
match the solid’s velocity in the normal direction of the solid boundary, un+1 ·nS = uS ·nS.

Enforcing this solid boundary condition in the pressure Poisson equations (3.4) is not as
straightforward as free surfaces. Consider the free-slip condition in the continuous setting
for the pressure update (3.3), (−∆t

ρ
∇p) · nS = (uS − un) · nS. Because pressure gradients

in the discrete setting are staggered and aligned to grid face normals, directly applying this
free-slip condition to the Poisson equations will fail to accurately capture solid boundary
normals in all but trivially grid-aligned solid boundaries. This mismatch of normals leads to
stair-step artifacts in the resulting velocity field and creates unrealistic motion when fluid
slides along a curved boundary. More advanced methods that account for solid geometry
passing through a grid cell successfully remove these artifacts (Batty et al., 2007; Ng et al.,
2009) with only a small modification to the discrete Poisson equation for pressure.

The finite volume approach of Ng et al. (2009) accurately enforces solid geometry that
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cuts through a grid cell using the aptly named cut-cell method. We briefly detail the
main concepts of the cut-cell method. First, consider the integral form of (3.4) over the
intersection of a liquid volume, ΩL, and a discrete grid cell, Ci:

−∆t

∫
Ci∩ΩL

∇ · 1

ρ
∇p dV = −

∫
Ci∩ΩL

∇ · un dV. (3.6)

Since both velocities and pressure gradients are defined at cell boundaries, we apply the
divergence theorem to transform (3.6) into a boundary integral. The grid cell illustrated
in Figure 3.3 is only partially occupied by the liquid volume, which breaks the boundary
integral into components along the cell boundary (∂C ∩ ΩL) and the interior solid-liquid
boundary (C ∩ ∂ΩL):

−∆t

∫
∂Ci∩ΩL

∇p
ρ
·nC dA−∆t

∫
Ci∩∂ΩL

∇p
ρ
·n dA = −

∫
∂Ci∩ΩL

un ·nC dA−
∫
Ci∩∂ΩL

un ·n dA.

(3.7)
The integrals along the cell boundary can straightforwardly be discretized using our
staggered grid and midpoint quadratures. However, we want to avoid integration along
solid boundaries interior to a cell. To remove the cell-interior integral, we first substitute
the pressure gradient along the solid boundary with the free-slip boundary condition:

−∆t

∫
Ci∩∂ΩL

∇p
ρ
· nS dA =

∫
Ci∩∂ΩL

(uS − un) · nS dA. (3.8)

We then substitute the left-hand side integral along the liquid-solid boundary in (3.7) with
(3.8) and replace the solid boundary normal with the equivalent liquid boundary normal,
nS = −n:

−∆t

∫
∂Ci∩ΩL

∇p
ρ
· nC dA = −

∫
∂Ci∩ΩL

un · nC dA−
∫
Ci∩∂ΩL

uS · n dA. (3.9)

Finally, we need to remove the right-hand side integral along the liquid-solid boundary.
We assume that the solid object’s velocity is divergence-free (which holds for any rigid
body motions) and apply the divergence theorem once more for the integral along the solid
domain inside the cell (see Figure 3.3b),∫

Ci∩∂ΩS

uS · nS dA = −
∫
∂Ci∩ΩS

uS · nC dA, (3.10)

and then substitute the solid-liquid boundary integral for the cell-boundary integral to
construct the cut-cell finite volume method in terms of velocities along the cell boundary:

−∆t

∫
∂Ci∩ΩL

∇p
ρ
· nC dA = −

∫
∂Ci∩ΩL

un · nC dA−
∫
∂Ci∩ΩS

uS · nC dA. (3.11)
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The discrete form of (3.11) applied to the staggered grid is simply the discrete Poisson
equation (3.4) using discrete pressure gradients (3.5), scaled by the area fraction (or length
fraction in 2D) of the grid face (edge) inside the fluid or solid volume,

−∆t
∑
∂Ci

1

ρ
∇p · nC dA = −

∑
∂Ci

un · nC dA−
∑
∂Ci

uS · nC dAS, (3.12)

where dA and dAS are the (finite) areas of the cell face inside the liquid and solid volumes,
respectively. The power of this approach arises from the liquid-solid boundary integral
cancellation when combining the two sub-regions: a solid boundary with complicated
geometry is implicitly handled with the cut-cell method.

Because the ghost fluid method modifies the gradient operator and the cut-cell method
modifies the divergence operator, cells with both air-liquid and liquid-solid boundaries can
straightforwardly enforce both boundary types. Additionally, because both methods modify
the weighted flux at boundaries between pressure samples, the linear system remains SPD.

Two-Phase Flow

For performance sake, industrial fluid simulators typically avoid simulating the ambient
air volume in addition to the liquid of interest. Modelling the air volume as a vacuum
offers significant performance benefits but also limits the range of phenomena that can be
captured. Below we detail how one might incorporate the air volume into a fluid simulator
to achieve the glugging effect of liquid pouring out of a bottle, air bubbles entrained in
liquids and many other desired effects resulting from two fluids interacting. We will focus
primarily on two-phase flow scenarios but the concepts directly generalize to multi-phase
flows with three or more fluids. We will also only consider incompressible fluids. Although
air is easier to compress than water, this effect is largely imperceptible for most applications
in computer graphics.

In order to capture the interaction between fluids and enforce incompressibility for each
fluid domain, pressure inside the air region can no longer be assumed zero. Within the air
volume, the resulting discrete Poisson equation for pressure is effectively the same as in
the liquid region, with a smaller density coefficient. Therefore, we only need to modify the
pressure system at the boundaries between the two materials. We assume the fluids are
immiscible, implying there is a sharp interface between the two fluids and a corresponding
discontinuity in fluid densities. Kang et al. (2000) modelled this discontinuity using the
ghost fluid method to construct a variable coefficient Laplacian as the discrete Poisson
equation across the two-phase fluid boundary. Similar to the free surface approach, the
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Figure 3.4: A two-phase fluid in 1D has a C0 continuous pressure at the interface, pI .
The length fraction θ to the interface from the pressure sample pi is used to construct the
pressure gradients on both sides of the interface: pI−pi

θ∆x
and pi+1−pI

(1−θ)∆x . (Adapted from Figure

12 in Boyd and Bridson (2012).)

resulting linear system remains SPD. Immiscibility of the fluids implies that the fluids
cannot separate from, or penetrate into, one another. A consequence of this restriction is
that the fluids must move in lockstep, meaning that the component of the fluid velocities
normal to the interface between them must be equal. Therefore, forces induced by pressure
at the interface must agree for both liquids, and pressure must be continuous across the
boundary.2 Figure 3.4 illustrates a pressure profile of a 1D two-phase simulation with a
material interface pressure, pI , between the discrete liquid pressure pi and the discrete air
pressure pi+1. In the discrete setting, the velocity at the face between materials defines the
motion of the interface. Therefore, the forces induced by pressure gradients must also be
continuous across the interface:

1

ρL

pI − pi
θ∆x

=
1

ρA

pi+1 − pI
(1− θ)∆x

, (3.13)

where ρL and ρA are the liquid and air densities, respectively, and θ is the length fraction
of liquid between the two pressure samples. By solving for pI and substituting it into either

2Pressure is discontinuous when surface tension is included in the model. We will ignore surface tension
effects in our models but they can easily be incorporated with simple level set operations and interpolation
at the interface if desired (Kang et al., 2000; Hong and Kim, 2005; Boyd and Bridson, 2012; Popinet, 2018).
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side of (3.13), we solve for the pressure gradient at the grid face:(
1

ρ
∇p

)
i+ 1

2

=
1

θρL + (1− θ)ρA
pi+1 − pi

∆x
. (3.14)

Because the normal of the interface for 2D and 3D simulations is often not aligned to a
grid face normal, this approach is only first-order accurate (Kang et al., 2000). However,
standard finite difference/volume second order accurate methods for solving elliptic PDEs
with sharp coefficient discontinuities inherently result in a non-symmetric linear system
(Crockett et al., 2011; Coco and Russo, 2018). For this reason, the first order, SPD, ghost
fluid method is typically preferred for multi-phase simulations in computer graphics (Boyd
and Bridson, 2012).

Incorporating the air volume into the fluid simulation can result in a significant increase
in computation time compared to an equivalent free surface method. This performance
impact is caused by the additional DOFs in the linear system associated with the air region
and the large density ratios between the two fluids that worsen the conditioning of the
linear system. As a result, iterative solvers like the diagonally preconditioned Conjugate
Gradients method are slow to converge.

3.2.3 Multigrid Preconditioners

Achieving modern cinematic-quality resolutions for fluid simulations often require hundreds
of millions of DOFs in the linear system for pressure, making direct solvers infeasible due to
both memory consumption and time cost. Alternatively, iterative solvers like the Conjugate
Gradients method scale much more efficiently. Although numerical solvers like the Multigrid
method generally offer fast convergence for elliptic PDEs, the irregular boundaries that arise
in free surface liquids simulators are known to impact efficiency and require special handling.
For this reason, Multigrid methods in free surface simulations are typically employed as a
preconditioner inside of Conjugate Gradients (McAdams et al., 2010; Setaluri et al., 2014).
Below we briefly review the main concepts of Multigrid schemes and how they are applied
to free surface liquids.

We aim to solve a discrete elliptic PDE, Ahxh = bh, defined over a uniform grid of size
h, where Ah is the discrete differential operator and xh is the unknown solution vector.
Beginning with an approximate solution, xnh, an iterative solver aims to reduce the residual
in the linear system:

rnh = bh −Ahx
n
h. (3.15)

28



Alternatively, we can view the current error in the system as the difference between the
true solution and our current approximation:

enh = xh − xnh. (3.16)

If we solve for the error in the system, we can simply offset the approximate solution to
recover the true solution. However, since both the error and the solution are unknown, we
are unable to solve for the error directly. Instead, by applying the differential operator to
both sides,

Ahe
n
h = Ahxh −Ahx

n
h = bh −Ahx

n
h = rnh, (3.17)

we can now solve for the error in terms of the current residual. Solving the linear system for
the error is unfortunately just as expensive as solving the original linear system. However,
because the error is smooth for elliptic PDEs, solving for the error at a coarse resolution
will yield a close approximation to the fine resolution error vector and will, ideally, be much
less expensive to solve.

Before sampling the residual rnh to a coarse representation, we want to smooth out any
high frequency modes by applying Jacobi smoothing to Ahx

n
h = bh. Next, we compute

the residual and downsample (restrict) it onto a coarse grid of size 2h. Using a coarse
discretization of the differential operator, the coarse error is determined by solving A2he

n
2h =

rn2h. The coarse error is then upsampled (prolonged) to the fine grid and applied as a
correction to our approximate solution. Finally, we apply Jacobi smoothing to the updated
solution to remove low frequency artifacts from the coarse error. The steps of this Multigrid
V-cycle are highlighted in Algorithm 1.

Algorithm 1 Two-level Multigrid V-cycle

1: Apply smoothing to Ahx
n
h = bh

2: Compute residual rh = bh −Ahx
n
h

3: Restrict residual rh to coarse grid, r2h

4: Solve coarse system A2he2h = r2h

5: Prolong error e2h to fine grid, eh
6: Add error correction to approximate solution xn+1

h = xnh + eh
7: Apply smoother to solution Ahx

n+1
h = bh

In practice, solving for the error at a grid size 2h is also slow. Typically, many levels
of coarsening will be applied, where steps 1-3 are iterated until the desired coarseness is
achieved. After solving the coarse linear system, steps 5-7 are repeated, propagating the
error correction vector back to the fine grid.

29



Irregular Boundaries For free surface liquids and simulations with irregular solid
boundaries, extra care must be taken to ensure that coarsening and smoothing near
boundaries do not introduce spurious errors. We follow the geometric Multigrid design of
McAdams et al. (2010) that proposes the following modifications to the canonical in-a-box
Multigrid method:

1. Label coarse cells based on the material labels of their fine-cell children,

2. Modify restriction and prolongation operators along boundaries,

3. Set ghost fluid and cut-cell weights for coarse grid differential operators,

4. Add additional smoothing along boundaries to reduce sampling errors, and

5. Apply Multigrid as a preconditioner to Conjugate Gradients.

The hierarchy of grids employed in a V-cycle are aligned such that each coarse parent cell
perfectly contains eight fine children cells. A coarse cell is then labelled using the following
criteria:

1. If any fine-cell children are air cells, the coarse-cell parent is labelled as an air cell,

2. Else, if any children are liquid cells, the parent is labelled as a liquid cell,

3. Else, the parent is labelled as a solid cell.

Figure 3.5 illustrates an example domain (Figure 3.5a) discretized at the finest grid
resolution in the Multigrid hierarchy (Figure 3.5b) and subsequently coarsened (Figures
3.5c-3.5d) using McAdams et al. (2010). In order to simplify implementation and avoid
out-of-bounds checks, every level in the grid hierarchy is padded with an outer layer of
solid cells. Using this coarsening scheme, if a restriction or prolongation operator includes
non-liquid cells, the contribution of that cell is set to zero. We do not apply the ghost fluid
or cut-cell method at coarse resolutions; instead the coarse discrete Poisson systems are
simply voxelized as if the boundary occurred at the face of the liquid cell. As the three
levels in Figure 3.5 illustrate, small-scale features of the liquid are eroded away by the
air region and small-scale features of the solid are eroded away by the liquid region. This
discrepancy in geometry leads to a poor coarse-scale approximation of the correction error
at irregular boundaries. In order to correct for this discrepancy, we apply additional Jacobi
smoothing iterations along the liquid boundary before and after the usual smoothing pass
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(a) Example domain (b) Finest level (c) Intermediate level

(d) Coarsest level (e) Boundary smoothing cells

Figure 3.5: A solid green bunny is partially submerged in the surrounding (blue) liquid (a).
The domain is discretized at the finest grid resolution in the Multigrid hierarchy (b) with
air cells labelled red. The Multigrid hierarchy is progressively coarsened using the strategy
of McAdams et al. (2010) (c-d). (e) At each level, additional smoothing operations are
applied within a thin layer of cells along the liquid boundary (grey).
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over the entire liquid domain (steps 1 and 7 in the V-cycle) for every level in the hierarchy.
We use a three-voxel wide layer of cells at the liquid boundary (see Figure 3.5e) and for
each boundary smoothing operation, we apply three iterations of Jacobi smoothing. We
note that other smoothing methods can alternatively be employed with the caveat that
they must be symmetric operations because a preconditioner to Conjugate Gradients must
be SPD.

3.3 Solving for Viscosity

The operator splitting method described in §3.1 isolates the force acting on the fluid velocity
due to viscous stress,

ρ
∂u

∂t
= ∇ · µ(∇u+ (∇u)T), (3.18)

where µ, the viscosity coefficient, may vary smoothly in space.

Initial methods for incorporating viscosity into the fluid simulation pipeline assumed a
constant viscosity coefficient and, by incorporating the divergence-free constraint for fluid
velocity, reduced the spatial derivatives to a standard, component-wise, Laplacian (Foster
and Metaxas, 1996). Because the Laplacian operator no longer includes the cross derivative
terms, (∇u)T, each set of velocity components can be solved independently rather than in
a single, coupled system. This simplification is effective for viscous fluids that are entirely
contained within a solid boundary (e.g., a smoke simulation in a box) but, as Batty and
Bridson (2008) demonstrate, this decoupled system cannot represent the boundary stress
at free surfaces. Improperly handling free surface boundary conditions can lead to artifacts
in fluid motion (Carlson et al., 2002) or fail to account for stress-induced rotational motion
(Fält and Roble, 2003). As illustrated in Figure 3.6, the Laplacian form fails to capture the
rotational motion of the canonical viscous beam example.

Variational Method

In our propopsed octree viscosity framework, we adopt the variational method of Batty
and Bridson (2008) to solve for viscous forces and capture proper rotational motion and
buckling modes, ∫

Ω

(
ρ

2∆t
‖un+1 − un‖2

2 + µ

∥∥∥∥∇un+1 + (∇u)T

2

∥∥∥∥2

F

)
dV, (3.19)
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Figure 3.6: The same frame for different discretizations of an initially horizontal viscous
beam collapsing. Left pair: Our chosen viscosity model (Batty and Bridson, 2008) naturally
supports rotation and bending: (magenta) regular grid; (green) our proposed octree
framework. Right pair: The natural boundary conditions of simpler Laplacian models
(µ(∇u)n = 0) inhibit bending, leading instead to excessively stiff shearing. Nevertheless,
our proposed octree framework is effective when applied to this model as well.

where Ω is the liquid domain and ‖ · ‖F indicates the Frobenius norm. At solid boundaries
we apply a no-slip condition given by u = uS. We apply a zero traction condition given
by t = τn = µ(∇u+ (∇u)T)n = 0 at free surfaces, where t is the surface traction vector
and n is the free surface normal3. Two important features of the variational method are
that the free surface boundary condition is enforced automatically and the velocity that
minimizes the energy functional is the solution to the viscosity PDE (3.18). This method is
also time-implicit, allowing for large time steps, and yields an SPD linear system, allowing
the use of faster iterative solvers.

The continuous viscosity energy functional is discretized into volume elements around
each component of velocity and stress,

argmin
un+1

1

2∆t
(un+1 − un)TPWu(u

n+1 − un)− (Dun+1)TKMWτDun+1, (3.20)

where Wu and Wτ are diagonal matrices representing the volume of fluid inside each
volume element. Du ≈ (∇u+ (∇u)T) is the deformation rate operator that maps discrete
velocity samples to discrete stress components and DTK is the discrete divergence operator.
M is the diagonal matrix containing the dynamic viscosity coefficients, and K is a diagonal
matrix with the necessary coefficients to represent the Frobenius norm in (3.19). Taking
the gradient of (3.20) with respect to un+1 gives the discrete system for solving viscosity

3This assumption reduces the range of the simulation to the trivial boundary conditions p = 0 and
τn = 0, instead of the full stress-traction relationship (τ − pI)n = 0. This simplification can still recreate
viscous rotation and buckling, but it cannot recreate continuous coiling phenomena (Larionov et al., 2017).
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(a) (b) (c) (d) (e)

Figure 3.7: Staggered regular grid variable locations for velocities, (a) u, (b) v, and stresses,
(c) τxx = 2µ∂u

∂x
, (d) τyy = 2µ∂v

∂y
, (e) τxy = µ( ∂v

∂x
+ ∂u

∂y
), in two spatial dimensions, with

corresponding control volumes shaded in blue and axis-coloured velocity gradient stencils
for stresses.

implicitly:
(PWu + ∆tDTKWτMD)un+1 = PWuu

n. (3.21)

This discrete optimization problem is quadratic with positive material properties (i.e.,
positive diagonal matrices) and the linear system will be SPD by construction. We
emphasize that although the viscous stiffness term can contain a null-space for ballistic
liquids and is therefore only positive semi-definite, the diagonal mass term acts as a
regularizer that enforces positive-definiteness of the combined linear system. This SPD
property holds independent of the discretization of the deformation rate operator D and
eliminates the requirement for directly discretizing a symmetric divergence operator. We
briefly review the regular grid discretization of Batty and Bridson (2008).

2D Discretization

Batty and Bridson discretize their viscosity system using the same staggered grid layout as
the pressure projection. Velocity control volumes, Wu, are centered around each active
velocity sample and provide a measure of how much liquid is present in the volume element
(Figures 3.7a-3.7b). The viscous stress components, τxx and τyy, are placed at the center of
grid cells and τxy is placed at the corner of grid cells (since the stress tensor is symmetric,
τxy = τyx). Because stress components are derivatives of velocity, they are strategically
placed between their necessary velocity samples in accordance with our centered finite
difference approximation. Figures 3.7c-3.7e illustrate the placement of the τxx (cyan), τyy
(magenta), τxy (black), stress components, along with their associated control volumes, Wτ ,
and colour-coded velocity gradient stencils.
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3D Discretization

Stress components in 3D are similarly positioned between their necessary velocity samples.
Diagonal stress components, τxx (cyan), τyy (magenta), and τzz (yellow), still reside in
cell centers with axis-aligned velocity gradients (Figures 3.8a-3.8c). Given that velocity
samples are placed at grid face centers in 3D, off-diagonal stress components are equivalently
moved to grid edges. These off-diagonal stresses also expand to three different sets, τxy, τxz,
and τyz, with each set residing on a corresponding set of axis-aligned grid edges (Figures
3.8d-3.8f). Control volumes are similarly extended to 3D, forming cubes at grid faces for
velocity samples, and cell centers and edges for stress components (Figure 3.9).
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Staggered regular grid variable locations for face velocities in red, green,
blue, cell-centered stresses in cyan (a) (τxx = 2µ∂u

∂x
), magenta (b) (τyy = 2µ∂v

∂y
), yellow (c)

(τzz = 2µ∂w
∂z

), and edge-centered stresses in gray (d) (τxy = µ(∂u
∂y

+ ∂v
∂x

)), (e) (τxz = µ(∂u
∂z

+∂w
∂x

)),

(f) (τyz = µ(∂v
∂z

+ ∂w
∂y

)). Velocity gradient stencils for each stress component are coloured by
axis of differentiation.

36



(a) (b) (c)

Figure 3.9: Control volumes for velocities (a) center stresses (b) and edge stresses (c) in 3D.
The entire set of control volumes is easily generalized from these three examples.
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Chapter 4

Reduced Fluid Models

Figure 4.1: (Left) Our constraint bubble model allows distinct liquid (green) and solid (red)
bodies to physically interact across completely unsimulated air gaps. (Middle) Immersed
bubbles denser than water correctly sink, despite the interior degrees of freedom being
radically reduced with our affine region model. (Right) Our affine region model also enables
a convenient and flexible approach to liquid adaptivity with irregularly shaped coarse tiles
(green).

The two-phase flow method presented in §3.2.2 for simulating air-liquid interaction is
computationally expensive due to the additional pressure DOFs required throughout the
air volume and the large density ratios between the two fluids that lead to ill-conditioned
linear systems. We propose our constraint model that instead applies a single constraint
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per air volume to the single-phase liquid free surface method: the net velocity flow into and
out of an air bubble must be zero. Our constraint method effectively models incompressible,
zero-density air bubbles with no air density terms appearing in the linear system. However,
the constraint model breaks down for simulating fluids with non-neglible densities. We
instead propose our affine region method to model the velocity field of a bubble with a
single pointwise affine vector field. For large bubble volumes, a single affine vector field is
not expressive enough to capture all the large-scale modes of fluid motion. In this case,
we introduce a tiling strategy to subdivide a single monolithic affine region into smaller
subregions, connected by active pressure cells. Additionally, our affine regions using this
tiling strategy also generalize as an acceleration technique for single-phase free surface flows.

4.1 Constraint Bubbles

4.1.1 Continuous Setting

Our constraint-based bubble model augments the standard single-material pressure pro-
jection, (3.4), with support for incompressible air bubbles. As shown in Figure 3.1b, we
divide the simulation volume into three material domains, ΩA, ΩS, and ΩL, corresponding
to air, solid and liquid regions, respectively. We will refer to any closed continuous air
region as a “bubble”. A single liquid region may contain zero or more bubbles within it. A
liquid region may also be entirely surrounded by a single “bubble”; that is, we make no
distinction between exterior air and submersed air, viewing all as bubbles. Bubble and
liquid regions may also be arbitrarily nested.

Our desired behavior is that each bubble preserves its total volume. For the ith bubble,
we can express this as a linear velocity constraint,∫

∂ΩAi

uA · n dA = 0, (4.1)

which we can separate into liquid and solid parts,∫
ΩL∩∂ΩAi

u · n dA︸ ︷︷ ︸
Bi(u)

+

∫
ΩS∩∂ΩAi

uS · n dA︸ ︷︷ ︸
bSi

= 0. (4.2)

That is, the integrated flow through the entire boundary of a single continuous bubble
region, ΩAi

, must be zero. Enforcement of this constraint involves information about the
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velocity field everywhere on the bubble’s boundary (i.e., either liquid or solid velocities
touching the bubble), so we have denoted the contribution of the liquid surface to the ith

bubble as the linear operator Bi(u) and the prescribed solid’s contribution as bSi
. Crucially

however, no information about velocities interior to the bubble is required. In some ways
this is unsurprising; since we have assigned zero mass to the bubble, its momentum is
negligible and therefore a model for the velocity interior to the bubble can be completely
avoided.

Collecting all of the bubble constraints into a single vector operator B, our modified
pressure PDE takes the following form

ρ
∂u

∂t
= −∇p− ∂B

∂u

T

λ,

∇ · u = 0,

B(u) = −bS,

(4.3)

where λ is the vector of Lagrange multipliers having one component per bubble.

4.1.2 Discrete Setting

We begin by directly discretizing the single-phase pressure PDE following the finite volume
method described in §3.2.1, yielding the following indefinite linear system:(

1
∆t

M DT

D 0

)(
un+1

p

)
=

(
1

∆t
Mun

0

)
. (4.4)

Here p is the vector of discrete pressures, and un and un+1 are the vectors of velocity
components before and after projection, respectively. M and D are the usual diagonal fluid
mass matrix and discrete divergence operator, which incorporate irregular free surfaces via
the ghost fluid method (Enright et al., 2003) and irregular solid walls via cut-cells (Batty
et al., 2007; Ng et al., 2009). (Note that diagonal entries of M are zero for entirely air and
solid faces, so the corresponding rows and columns drop out.)

We use a row-vector Bi to represent the discretization of the ith bubble constraint from
(4.2), which sums the net flow across the bubble’s incident liquid faces such that:

Biu =
∑

liquid faces of ∂ΩAi

u · nface dAface. (4.5)

In this expression, nface is the cell face normal oriented out of the bubble region, and
dAface is the area of the relevant face. (Because we are employing the cut-cell methodology
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Figure 4.2: Our constraint-based approach allows two distinct liquid regions to correctly
interact across completely unsimulated air. A moving piston pushes liquid through the
tube indirectly through constraint-bubble regions.

(Batty et al., 2007; Ng et al., 2009), we account for only the partial area outside of solids.)
Effectively, this constraint measures the aggregate discrete divergence for the entire bubble;
the corresponding Lagrange multiplier λ will act as a collective pseudo-pressure enforcing
the bubble’s volume to be unchanging. Since Bi only involves liquid velocities touching the
bubble, the discretization is relatively sparse.

If the bubble touches any kinematically scripted moving solids, we appropriately modify
the right hand side of (4.5) to add contributions from the surfaces of those solids, i.e.,

bSi
=

∑
solid faces of ∂ΩAi

uS · nface dAface. (4.6)

Doing so allows moving solids to affect even liquid surfaces that they are not in direct
physical contact with, such as when an air bubble in an enclosed tube separates a liquid from
a moving piston: the force is communicated through the bubble, as expected (see Figure 4.2).
The same ideas can be extended in a straightforward fashion to model interactions with
strongly coupled, dynamic rigid or deformable bodies (Batty et al., 2007; Robinson-Mosher
et al., 2009).

Stacking the bubble constraints into a single wide matrix B, and incorporating them
into (4.4) yields a large sparse symmetric indefinite linear system that is the discrete version
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of (4.3):  1
∆t

M DT BT

D 0 0
B 0 0

un+1

p
λ

 =

 1
∆t

Mun

0
−bS

 . (4.7)

This indefinite system includes the pressure, constraint, and velocity degrees-of-freedom
and is therefore quite large. However, since M is diagonal and hence trivially invertible,
we can take the Schur complement (i.e., solve the first row for un+1 and substitute into
the latter two rows) to eliminate velocity and arrive at a smaller SPD system in terms of
pressure and the bubbles’ Lagrange multipliers:(

∆tDM−1DT ∆tDM−1BT

∆tBM−1DT ∆tBM−1BT

)(
p
λ

)
=

(
Dun

Bun + bS

)
. (4.8)

After solving this linear system for p and λ, the final velocity un+1 can be obtained using
the first row of (4.7). Since M is diagonal, this amounts to a simple matrix-vector multiply.
The upper-left block of (4.8) is the usual pressure Poisson system and the remaining blocks
account for interaction with the bubble constraints. Compared to the standard pressure
solve, the extra Lagrange multipliers have added one row and one column per bubble.

Our system has a similar structure to the one that arises in the compressible flow
method of Aanjaneya et al. (2013), but ours assumes zero density bubbles, does not require
terms related to bubble expansion or compression, and supports scripted moving objects.
Most importantly, we do not require a second advection step or pressure solve to determine
the (visually imperceptible) interior air motion, which allows us to cheaply simulate large
regions of empty air. For small air densities, our constraint method also qualitatively agrees
with a full two-phase flow simulation (see Figure 4.4).

Identifying the set of individual bubble regions can be done by determining connected
components through a simple flooding approach over air cells that share faces. The flooding
must be done over the air volume, rather than simply over connected surfaces, so that any
nesting of regions is properly identified and handled. For example, a single bubble might
contain a disconnected interior droplet; in this case the bubble should have a single volume
constraint accounting for both of these disconnected bubble-liquid surfaces.

For the purposes of the advection phase, we perform standard extrapolation of the liquid
velocity field into the empty air region (Enright et al., 2002). This form of extrapolation
does not preserve the divergence-free velocity constraint inside air regions, however, a
second pressure projection inside the air region (as done in Aanjaneya et al. (2013)) adds
significant additional cost. We explored approximately enforcing divergence-free velocities
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Figure 4.3: A zero-density air bubble inside a liquid column rises and breaks apart into
many small bubbles. Our per-bubble volume tracking and correction framework allows
small bubbles to persist over long periods of time, across complex topology changes, and
without explicit air particles.
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(a) Initial single bubble (b) Full two-phase (c) Constraint bubble

Figure 4.4: Our zero-density constraint-based simulation closely resembles a two-phase
simulation with a small air density of ρ = 1. The liquid density is ρ = 1000 for both
simulations.

by first extrapolating and then applying several Jacobi smoothing passes of the pressure
Poisson system throughout the air region, but ultimately found this to be unstable.

4.2 Affine Regions

4.2.1 Motivation

As our results will demonstrate, the preceding reduced model is ideal for the common case
of (approximately) zero-density bubbles, since it requires only one extra degree-of-freedom
per bubble and no model whatsoever for the interior air. However, if one is interested in
animating two-phase flows with more general density coefficients, so that the immersed
phase rises more slowly, remains neutrally buoyant, or even sinks, this choice is insufficient.
That is because its Lagrange multipliers are equivalent to one constant pressure value
on each bubble’s interior, even if one incorporates the bubble’s desired density into the
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Figure 4.5: Ideal pressure profiles for vertical one-dimensional multiphase fluids in hydro-
static balance with each other for three different density ratios. The pale yellow region is
the immersed bubble at ρ = 1, ρ = 1000 and ρ = 10000, while the pale magenta region
has constant density ρ = 1000. A single constant pressure is a good approximation for the
bubble region in the low-density (left) case, but would be inaccurate for the other cases.

equations (as the more complex compressible model of Aanjaneya et al. (2013) attempts
to do). Examining the expected pressure profile of a 1D two-phase flow scenario in a
vertical column at hydrostatic balance (Figure 4.5) provides useful intuition. For low bubble
densities, a single constant interior pressure value is a good approximation of the true
interior pressure field. However, for moderate to high bubble density coefficients, a constant
pressure cannot produce the correct velocity update.

This observation initially led us to consider imposing a linear model of interior pressure
based on the liquid pressures surrounding the bubble. Since a linear pressure field induces
a constant pressure gradient (i.e., velocity update) it can correct the global translation of
the bubble, and for example, recover hydrostatic balance for neutrally buoyant bubbles.
However, a constant velocity correction is still too limited in the vector fields it can describe.
For example, a bubble rising to collide with a boundary cannot spread out in opposing
directions. While a higher order pressure model might yield better results, we also found
this framework somewhat unwieldy and had difficulty preserving symmetry. Moreover, the
fact that the bubble density is no longer negligible in this setting suggests that a model for
interior momentum is necessary.

Therefore, rather than focusing on pressure and ignoring the interior velocity field, we
adopt an explicit model for the velocity inside a coalesced region by assuming it to be both
incompressible and affine. This turns out to have several attractive properties, including
ease of symmetry preservation, an analytically divergence-free interior flow, and a structure
very similar to well-known solid-fluid coupling models, while still enabling us to abstract
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(a) Full
two-phase

(ρB = ρL =
103)

(b) Constraint
bubble

(ρB = ρL =
103)

(c) Affine
bubble

(ρB = ρL =
103)

(d) Full
two-phase
(ρB = 104,
ρL = 103)

(e) Constraint
bubble

(ρB = 104,
ρL = 103)

(f) Affine
bubble

(ρB = 104,
ρL = 103)

Figure 4.6: Model Comparison in 2D: When the immersed fluid (i.e., bubble) has
non-negligible density, constraint bubbles yield incorrect motion compared to full two-
phase simulations; however, affine region-based bubbles exhibit correct buoyancy. Initial
conditions are a circular bubble; each image shows the same time instant shortly into the
simulation. Left trio: A neutrally buoyant bubble (i.e., bubble density ρB matches liquid
density ρL) should remain stationary. Right trio: A higher density bubble (ρB > ρL) should
sink. In (f), the blue simulation used a single interior affine region and the red simulation
used interior tiling (Section 4.3) for improved fidelity.

away large collections of adjacent fluid cells.

4.2.2 Continuous Setting

Consider a region of fluid ΩB that is constrained to possess an incompressible affine velocity
field. Such a body’s velocity uB at position x can be described by the relation,

uB(x) = uconst + A(x− xCOM), (4.9)

where A = ∇uB. That is, velocity at any point in the affine velocity field is computed
from the constant, translational velocity at the center of mass xCOM plus a linear correction
dictated by the velocity gradient. (The center of mass is used for convenience, but any
fixed reference point suffices.) Some representative examples (computed using (4.9)) are
shown in Figure 4.7 to highlight the perhaps surprising expressiveness of divergence-free
affine vector fields.
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Figure 4.7: Representative divergence-free affine velocity fields (plotted as streamlines)
generated by our model, highlighting its expressiveness.

To enforce incompressibility, the field must satisfy the usual condition ∇ · uB = 0.
Applying this constraint to (4.9) shows that the velocity gradient must be trace-free, i.e.,
Tr(A) = 0. This constraint leads to A having the following reduced form:

A2D =

[
a11 a12

a21 −a11

]
, A3D =

a11 a12 a13

a21 a22 a23

a31 a32 −(a11 + a22)

 . (4.10)

Our task now is to develop an understanding of the dynamics of a fluid body with such
a velocity field. Notice that if we were to instead require the velocity field to satisfy
∇u+∇uT = 0, i.e., zero strain rate (e.g., (Carlson et al., 2004)), we would recover a rigid
body motion, where the velocity consists of translational and rotational parts. This is a
useful analogy for understanding our model, similar to the relationship between the rigid
(RPIC) and affine (APIC) particle-in-cell models proposed by Jiang et al. (2015).

For simplicity we consider the 2D case and denote our generalized velocity vector as
vB = [u, v, a11, a12, a21]. We can then define the matrix C(x) that extracts the Euclidean
velocity uB at a point x:

uB = C(x)vB (4.11)

=

[
1 0 x− xCOM y − yCOM 0
0 1 −(y − yCOM) 0 x− xCOM

]
vB. (4.12)

The 3D case follows straightforwardly. Under our rigid body analogy, we will also require a
generalized mass matrix for the affine fluid body, which dictates how the body’s generalized
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velocity vB changes under applied forces. Since the kinetic energy of the fluid body can be
described by the integral∫

ΩB

ρB
2
‖uB‖2 dV =

∫
ΩB

ρB
2
‖CvB‖2 dV (4.13)

= 1
2
vT
B

(∫
ΩB

ρBC
TC dV

)
vB, (4.14)

the symmetric positive definite matrix MB =
∫

ΩB
ρBCTC dV is exactly our desired gener-

alized mass matrix.

Our intention is to immerse this affine fluid body within a regular grid-based fluid
solver, and enforce two-way coupling between them; we model our approach loosely on
the rigid-body coupling framework of Batty et al. (2007). Therefore, our next task is
to determine how the affine vector field of this fluid body is affected by the surrounding
pressure p of the regular fluid. As in the rigid body case, the net translational component
of the pressure force is simply the integral of pressure acting on the body’s surface:

f const =

∫
∂ΩB

pn dA, (4.15)

where n is the affine fluid body’s surface normal. We can similarly account for the effect
on the velocity gradient components of vB using

F linear =

∫
∂ΩB

pn(x− xCOM)T dA, (4.16)

which plays a role analogous to the net torque on a rigid body. (The expressions above can be
derived, for example, by differentiating the power that the surrounding fluid pressure applies
on the boundary,

∫
∂ΩB

uB · (pn) dA, by the affine velocity degrees of freedom.) By flattening
F linear into a vector to correspond with vB and combining these two contributions, we form
a linear operator J that transforms (regular grid) boundary fluid pressures into generalized
forces on the affine fluid body’s degrees of freedom. Together with our generalized mass
matrix, we have an (Eulerian) update rule for our affine fluid body in terms of our reduced
degrees of freedom: MB

∂vB

∂t
= Jp. (We have handled advection separately, hence this

expression does not use the material derivative, DvB

Dt
.)

Finally, if uF denotes the velocity field of the surrounding regular fluid, the combined
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pressure projection PDE that we seek to solve is

ρ
∂uF
∂t

= −∇p

∇ · uF = 0

MB
∂vB
∂t

= Jp

(4.17)

subject to uF = uB on their shared boundary. Incompressibility of ΩB does not appear
explicitly in these expressions because it is enforced implicitly through the reduced velocity
model. This PDE will take tentative values for uF and vB after advection and application
of forces, and simultaneously ensure incompressibility of both regions while handling the
exchange of forces between them.

The motivating application for our reduced model is simulating entrained bubbles,
but bubbles tend to be highly deformable near their interface, especially with low surface
tension. As such, the affine model alone is inadequate for this case because it lacks the
necessary flexibility to capture the rapidly emerging surface details formed during bubble
break-up. However, the affine approximation is often effective for the smoother (and
invisible) interior air motion away from the interface itself. We therefore adopt a standard
ghost-fluid two-phase flow model (Hong and Kim, 2005) to handle the interface conditions
and a narrow interior band of air, while replacing only the slightly deeper interior air
region(s) with our affine model. Figure 4.8 compares our grid setup for constraint bubbles
and affine bubbles.

4.2.3 Discrete Setting

To discretize the coupling problem above, we adopt a standard finite volume approach for
the surrounding regular grid fluid. We assume that the boundary between the affine and
regular grid regions lies exactly on grid-aligned faces, recalling that it does not correspond
to a physical boundary but rather a change of representations. (However, one could adopt
a cut-cell formulation (Ng et al., 2009) to generalize to irregular shapes, if this was deemed
beneficial.)

Directly discretizing the PDE (4.17) yields a symmetric indefinite linear system: 1
∆t

MF DT 0
D 0 JT

0 J − 1
∆t

MB

un+1
F

p
vn+1
B

 =

 1
∆t

MFunF
0

− 1
∆t

MBvnB

 . (4.18)

49



(a) Constraint bubble (b) Affine bubble

Figure 4.8: Constraint bubbles use no interior fluid cells; affine bubbles pad the interior
affine region with a thin band of uniform cells to capture detailed surface deformations.
Legend:  = liquid cells, #= constraint bubble region,  = exterior bubble cells,  =
interior affine region,  = solid boundary.
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The first row is the usual velocity update for the regular fluid region ΩF , where MF

is a diagonal mass matrix with entries corresponding to regular fluid faces and −DT is
the pressure gradient operator across those faces. The second row represents the discrete
divergence of regular fluid cells, with contributions from regular fluid faces given by Dun+1

F

and from coupled affine fluid faces given by JTvn+1
B . Finally, the third row gives the effect

of the pressure on the affine region’s velocity. The variables unF and vnB represent the
provisional velocities after applying external forces and advection.

It remains only to define the discrete mass matrix MB and discrete pressure force
operator J. The discrete mass matrix is

MB =
∑
a,i

ρCa(xi)
TCa(xi) dV, (4.19)

where a iterates over the axis directions (x, y, z), i iterates over all faces in that axis having
one or both of its two incident cells inside the affine region, xi is the midpoint of the face,
and dV is the volume of a cell. The notation Ca(x) indicates the row of C corresponding
to the axis a, evaluated at x. The discrete J operator (matrix) is

Jp =
∑
a,j

Ca(xj)
TpjnjdA, (4.20)

where a iterates over the three axis directions, j iterates over the faces on the boundary of
the affine region, xj is the center of the associated face, pj is the pressure at the center of
the incident regular fluid cell, nj is the normal to that face, and dA is the area of a grid
face.

To reduce the system size of (4.18), we can form the Schur complement to eliminate
fluid velocity un+1

F as we did for constraint bubbles:[
−∆tDM−1

F DT JT

J − 1
∆t

MB

] [
p

vn+1
B

]
=

[
−Dun

− 1
∆t

MBvnB

]
. (4.21)

This system is still symmetric indefinite, with a form that closely mirrors the rigid-body
coupling approaches of Robinson-Mosher et al. (2008; 2009); as such, it will require an
indefinite solver such as MINRES or QMR. However, if desired, a second Schur complement
can be applied with respect to the block-diagonal lower-right block, which eliminates vn+1

B

and yields a smaller symmetric positive definite system in terms of fluid pressure alone,

−∆t(DM−1
F DT − JTM−1

B J)p = −Dun − JTvnB. (4.22)
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This system’s structure matches that of Batty et al. (2007) and, being SPD, is amenable
to solution with Conjugate Gradients. However, this transformation comes at the cost of
introducing the dense block JTM−1

B J, which mutually couples all pressures incident on the
boundary of the affine region. Depending on the numerical strategies chosen to solve this
problem, one of these two forms may be preferable. We defer discussion of our numerical
solver to §4.4.2.

At each application of the above projection, we first recover the input vnB for the affine
region using a simple least squares fit over the region’s fluid grid faces. These are computed
from standard advection on the grid (e.g., by semi-Lagrangian, particle-based, etc.) The
least squares problem has the form

argmin
vn
B

∑
a,i

(ua,i −Ca(xi)v
n
B)2 , (4.23)

where a iterates over the axes, i iterates over all grid faces of the affine region, and xi is
the face midpoint (velocity sample point).

We conclude this section by observing that, despite our original motivation being
bubbles, our divergence-free affine fluid model makes no assumptions that are specific to
the two-phase setting. It can therefore also be applied to the interior of a free-surface flow
with the same benefit of reducing its active degrees-of-freedom.

4.3 Tiled Affine Regions for Adaptivity

The preceding affine model provides an effective approximation for the interior of fluid
bodies with modest sizes, both for single-phase free-surface and multiphase flow scenarios.
At the same time, a single affine region is inherently limited in the complexity of velocity
fields that it can describe. Therefore, to further extend our model’s usefulness to even
larger interior regions, we propose a simple tiling strategy that uses multiple medium-sized
affine regions, stitched together by thin layers of uniform regular grid cells. As can be
seen in Figure 4.10, this leads to fine uniform cells in a band around interfaces, irregularly
shaped affine tiles next to them, and finally large rectangular tiles filling the deeper regions.
On the interior, a one-layer band of uniform cells is placed between affine tiles. Our tiling
approach drastically reduces the degrees-of-freedom needed to capture a large domain, while
providing a good qualitative match to fully uniform regular grid flows, as in Figures 4.11
and 4.12.

There are several additional advantages to this approach. Compared to an octree,
tetrahedral mesh, or Chimera grid approach, it is much simpler to integrate into a regular
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Figure 4.9: A bubble with higher density than the surrounding liquid correctly sinks in 3D.
Its interior is tiled with multiple affine regions, as in §4.3.

grid simulation pipeline, since it requires no elaborate data structures or complex (re)meshing.
It provides more effective and general coarsening than tall cells or stretched grids. Notably,
it provides analytically divergence-free fields in the coarsened regions, a feature which may
be useful for some applications that no competing adaptivity method for fluid animation
provides. The J and MB matrices needed for perfectly rectangular tiles can be precomputed
and reused for efficiency.

4.4 Simulator Design

4.4.1 Volume Tracking and Correction

To foster adoption in existing industrial pipelines, we have intentionally chosen to extend the
standard free-surface FLIP method (Zhu and Bridson, 2005). Whereas previous Eulerian (or
hybrid) methods for bubbles employ multi-material level sets or particles to directly track
both the liquid and bubble regions, we instead extend basic FLIP by simply labeling any
simultaneously non-solid and non-liquid region as a bubble. However, it is well-known that
accumulated numerical advection errors cause liquid FLIP particles to separate or condense
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Figure 4.10: Left: A free-surface flow with a single interior affine region (green). Right:
The same flow subdivided into a mix of regular (square) and irregular affine tiles for greater
flexibility.

(a) (b) (c) (d)

Figure 4.11: (a) A 2D ball of free-surface fluid is released under gravity, and falls to
collide with the circular domain boundary. (b) Ground truth regular grid simulation. (c)
A simulation with a single interior affine region (green) is insufficiently flexible for this
scenario. (d) A simulation using tiled affine regions provides a much closer match to the
ground truth.
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Figure 4.12: A high resolution splashing scenario. Top-left: Initial conditions. Top-right:
Regular grid simulation. Bottom-left: A simulation with interior tiled affine regions offers a
close qualitative match. Bottom-right: Cutaway view of the interior tiling.
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over time (Kugelstadt et al., 2019), inducing erroneous volume change and occasionally
creating spurious empty gaps or voids. Since we do not explicitly track the air geometry,
liquid volume drift destructively modifies the implied bubble volume with it, while artificial
voids give birth to false bubbles that begin to rise. In turbulent simulations along solid
boundaries, this can even give the appearance of solid surfaces boiling. Explicit tracking of
the bubble material could prevent voids and somewhat reduce volume change, but would
also add nontrivial overhead. To address these issues, we propose to track bubbles implicitly
by augmenting each FLIP particle with a new bubble ID attribute.

We build a mapping of bubble identities from one time step to the next using the old
bubble IDs stored on the FLIP particles from the previous step and the bubble IDs assigned
to new bubble regions that those particles end up next to in the current step. In Figure
4.13, particles are initially assigned the ID of their adjacent bubble and, after advection,
the particle IDs are used to map the old bubble IDs to the new bubble IDs. This mapping
forms a bipartite graph, where nodes represent bubble regions and edges indicate whether
bubbles have simply advected or undergone more complex merging and splitting.

Removing Spurious Void Bubbles Using this mapping, void bubbles correspond to
new bubble ID nodes with no incoming edges. We seek to collapse them away by applying
a negative (rather than zero) divergence (Feldman et al., 2003). A bubble’s volume change
relates to its divergence by ∫

ΩB

∇ · udV ≈ V n+1
B − V n

B

∆t
, (4.24)

where a bubble is driven to collapse by setting V n+1
B = 0.

Volume Correction Equation 4.24 can also be used to correct volume drift by setting
a bubble’s target volume to its initial rest volume, V n+1

B = V 0
B. For old-new bubble pairs

having a one-to-one map, we simply copy the rest volume from the old bubble to the new.
For more complex scenarios where bubbles have possibly split and/or merged, it is not
possible to directly assign rest volumes. Instead, we find connected components in the
bipartite graph of bubble mappings and redistribute the current rest volumes for all old
bubble regions in the set. Updated rest volumes are assigned according to the volume of
each new bubble relative to the accumulated volume of each new bubble region in the set,

V 0
Bi

=
V n
Bi∑

k∈Gn
i
V n
Bk

∑
j∈G0

i

V 0
Bj
, (4.25)
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(c) Bubble graph.

Figure 4.13: Based on empty regions and their surrounding particle labels (a) before and
(b) after advection, we construct a bipartite graph (c) to conservatively redistribute target
rest volumes. Two cases of note are: (1) bubble A splits while partially merging with B; (2)
bubble H is a spurious void formed by minor particle advection errors, which should be
collapsed away.

where V 0
Bi

and V n
Bi

are the rest and current volumes of the ith new bubble, and Gn
i and G0

i

are the set of new and old bubbles in the connected component containing the ith bubble,
respectively.

This componentwise volume tracking and correction approach is very general in nature,
and so can also be applied to the liquid-phase to good effect, or even free surface FLIP
simulations without bubbles.

4.4.2 Optimized Linear Solver

Faster Matrix-Vector Multiplication As with rigid-body coupling, the affine contri-
bution JᵀM−1J in the SPD system (4.22) is a dense block that mutually couples all cells
on an affine region’s boundary, quickly becoming a bottleneck. We adopt the suggestion of
Bridson (2015) to exploit this block’s low rank (Batty et al., 2007) by storing it in factored
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form and, when needed during PCG, performing three sparse matrix-vector multiplications
in place of a single much denser one.

Multigrid Preconditioning Both constraint bubbles and affine fluid regions are reduced
models that represent immersed bubbles either with one Lagrange multiplier, or a small
layer of exterior cells with an interior affine velocity field. This reduction in the total
number of degrees of freedom increases simulation performance. However, our experiments
using a parallelized diagonal preconditioned Conjugate Gradients solver indicate that the
major computational bottleneck is ultimately the much larger liquid domain. Recent
work by Aanjaneya (2018) proposed an efficient solver for multi-domain systems using
a Schur-complement method that applies a direct solver on the reduced model and a
geometric Multigrid V-cycle for the liquid domain. Because our affine bubble model
includes exterior cells at the bubble’s boundary, the cost of a direct solve per solver iteration
can be prohibitively expensive. Instead, we propose a simplified preconditioner that couples
a lightweight smoothing routine over the bubble’s domain and a Multigrid V-cycle over the
liquid domain.

The preconditioner computes an approximate solution to As = r, where A is the
linear system from either (4.8) for constraint bubbles, or (4.22) for affine fluid regions. We
partition the degrees of freedom into liquid regions ΩL, and bubble regions ΩB, which we
denote by sL and sB, respectively. We found that extending the bubble domain to overlap
with the liquid domain in a three voxel-wide narrow band gave faster convergence and
better performance, so the minor additional cost was a worthwhile trade-off.

We first apply several iterations of damped Jacobi smoothing over the bubble region,
denoted by the approximate inverse operator A‡B in Algorithm 2. Then, we apply a
geometric Multigrid V-cycle to ΩL, denoted by A†L, closely following McAdams et al. (2010).
To account for the intermediate values in the bubble domain, we modified the right-hand
side vector as rL −ALBsn−1

B , where ALB is the subsystem of A that couples the bubble
regions with the liquid domain. After applying a V-cycle, the same smoothing routine A‡B
is applied to each bubble region, this time accounting for intermediate values from the
liquid domain, by modifying the right-hand side vector as rB −ABLsnL (where ABL is the
transpose of ALB). Note that each V-cycle A†L is sandwiched between two applications of
the smoother A‡B, preserving the symmetry of our preconditioner.

Throughout the Multigrid V-cycle, we employ a variation of red-black Gauss-Seidel to
apply smoothing over the liquid domain in parallel. We found that a red-black coloring
scheme applied at the cell level offered no meaningful improvement in convergence compared
to a Jacobi smoother. However, applying a red-black scheme at the tile level of Houdini’s
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sparse grids resulted in 2× faster convergence than Jacobi smoothing (SideFX, 2021). A
tile is a 163 collection of grid cells and we apply red-black coloring to divide tiles between
threads. Gauss-Seidel smoothing is then applied to each cell within a single tile in serial
per thread. We found this strategy offers the full benefit of parallelism with the improved
convergence of Gauss-Seidel when compared to Jacobi smoothing.

Intuitively, Algorithm 2 is trying to solve a two-way coupled system by performing
outer iterations on a partitioned solver until convergence. This is also similar in spirit to
the iterative scheme proposed by Aanjaneya (2018) to approximate the solution to the
Schur-complement system. Moreover, like Aanjaneya (2018), we observed that increasing
the total number of iterations N inside the preconditioner improved solver convergence.
However, in our experiements we found that the additional cost of applying subsequent
V-cycles outweighed the reduction in the total number of PCG iterations. For this reason,
we used N = 1 for all our simulations.

Algorithm 2 Coupled Preconditioner As = r

s0
B = A‡BrB

for n = 1 . . . N do
snL = A†L(rL −ALBsn−1

B )
snB = A‡B(rB −ABLsnL)

end for

4.5 Simulations Results

To demonstrate that our proposed models can be implemented as direct extensions to a
standard single-phase FLIP-based liquid simulator, we developed our models as plugins to
Houdini’s FLIP solver (SideFX, 2021). All our 3D examples were simulated on a 16-core
Ryzen 1950x CPU. The linear systems were solved using a custom Conjugate Gradients
method using double precision, with a relative tolerance of 10−5 for all examples. All our
timings are listed in Table 4.1.

4.5.1 Water Cooler

Figure 4.14 illustrates the familiar glugging effect of a water cooler scenario. The traditional
single-phase free surface approach simply allows the liquid to pour rapidly through as
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Figure 4.14: (Top) Our constraint-bubble approach recovers the familiar glugging motion
of liquid pouring through the neck of the water cooler. (Bottom) A standard free surface
liquid simulation fails to recreate the expected motion.
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Table 4.1: Timing breakdowns: Timings for all our 3D examples. “Linear Solve Time”
refers strictly to the time to solve the pressure projection linear system itself; “Pressure
Projection Overhead” involves all the components of our extended constraint bubble / affine
region pressure projection process that are not the linear system solver, i.e., flood-filling to
find regions, setting up tiling structures, etc.

Simulation Resolution Method Linear Pressure Total
Solve Projection Simulation
Time Overhead Time

Water Cooler 200x450x200 Free Surface 1h21m 10m 4h07m
Constraint 1h49m 15m 4h42m

Rising Bubbles 200x400x200 Constraint 8h44m 40m 12h03m
Bubble Tube 350x390x180 Constraint 1h40m 15m 2h42m
Sinking Bubbles 200x400x200 Two-phase 40h38m 1h58m 45h49m

Affine (bubble only) 13h06m 2h13m 18h35
Affine (both fluids) 9h59m 1h47m 15h02

Splash Tank 500x350x500 Regular Grid 29h04m 51m 33h04m
Affine (163 tiles) 6h29m 1h39m 11h54m
Affine (323 tiles) 3h46m 1h32m 8h37m

if both chambers were open to the outside air. By enforcing the incompressible bubble
constraints, the downward flow of liquid must match the upward flow of air, generating a
sequence of rising bubbles that are constantly being created and pinched off.

Because of the large air regions in the simulation, our constraint method greatly reduces
the number of DOFs in the pressure projection when compared to a full two-phase simulation.
For the first frame of this example, an equivalent two-phase simulation would contain 8.7M
DOFs. For the same substep, our constraint method reduces the total DOFs in the linear
system to 2.5M unreduced DOFs and 2 bubble DOFs. Although the bubble region DOF
count fluctuates throughout the simulation due to small bubbles being entrained, it is only
in the hundreds.

Despite this example containing 3× more air volume than liquid volume, the solver
overhead associated with adding bubbles to the linear system, flood-filling, and bubble ID
tracking is insignificant. For example, solving the linear system comprises 87% of the total
pressure projection time. Flood-filling to build bubble connected components and tracking
bubble IDs both comprise less than 1% of the total pressure projection. The lion’s share of
overhead was dedicated to building the linear system, which would be significantly slower if
a full two-phase linear system was constructed with 3.5× more DOFs.
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A possible shortcoming of the constraint method is that the row and column correspond-
ing to a given bubble’s constraint can be relatively dense depending on the bubble’s surface
area. This is because each bubble constraint involves all liquid face velocities incident on
that bubble; elimination of the velocity variables leads to coupling between the bubbles
Lagrange multiplier and the pressures of all its incident cells. This adds overhead compared
to a pure free-surface flow solver (in addition to the cost of identifying bubble regions), but
we found it to be relatively minor. The (Multigrid preconditioned) free-surface method
took a total of 4h07m to simulate the water cooler vs. our constraint-bubble method at
4h42m, i.e., bubbles were 14% slower. Although the free-surface and constraint bubble
water coolers exhibit wildly differing behaviors which affects their efficiency (notably, the
former settles down quickly), this data nevertheless suggests that artists can expect to add
air bubble effects to scenes for only a small additional cost.

4.5.2 Rising Bubbles

In Figure 4.3, we simulate a zero-density constraint bubble immersed in water. The
incompressibility constraint applied to the bubble prevents the surrounding liquid from
collapsing it. As the surrounding liquid flows downwards under gravity, the massless bubble
is forced to rise. Subsequently, turbulent velocities cause it to break apart into many small
bubbles. Although we use FLIP particles only for the liquid, and the bubbles undergo
frequent splitting and merging, our method is able to track these bubble volumes and
correct their volume drift.

This example contains a large liquid body consisting of 13.7M liquid DOFs, compared
to only a would-be 2.6M bubble DOFs needed for proper a two-phase simulation. Although
reducing 2.6M DOFs to only a few constraint DOFs is a significant reduction, it is still
relatively small compared to the remaining size of the liquid-region pressure Poisson linear
system. This example motivates our coupled Multigrid preconditioner (see §4.4.2) in
an effort to optimize the residual reduction for the large liquid body. A single substep
comparison shows that our coupled Multigrid preconditioner outperforms a traditional
diagonal preconditioner for Conjugate Gradients by 6.3×, converging in 15 iterations over
15.9s, compared to 750 iterations over 1m38s using the diagonal preconditioner. The large
density ratio between liquid and air regions, 1000:1, for an equivalent two-phase flow solver
leads to poorly conditioned linear systems. We observed that over the first five frames,
a standard two-phase method required an average of 1752 iterations using the diagonal
preconditioner and was 17.6× slower than our Multigrid-preconditioned constraint method.
A two-phase Multigrid preconditioner such as Wan and Liu (2004) could offer improved
convergence but would still require pressure DOFs throughout the bubble volume.
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4.5.3 Bubble Tube

Figure 4.2 demonstrates how kinematically scripted moving solid boundaries interact with
our constraint-based air bubbles. When the red piston pushes down through the glass
tube, it creates a net flux at the solid-air boundary (and corresponding right-hand-side
terms in the pressure solve) that must be compensated by an opposing flux at the air-liquid
boundary. This flux on the liquid surface pushes the liquid volume through the tube, despite
it never having come into direct contact with the solid. Similarly, the fully disconnected
liquid regions interact through the second air pocket and the resulting chain of interactions,
driven by the moving piston, forces liquid out of the spout and into the beaker below. As
the piston pulls back to its initial position, it creates a negative flux that draws the liquid
back into the tube along with it.

The ambient air region surrounding the glass tube is 21× larger than the volume of
liquid in the simulation implying a huge potential speed-up; including this body of air in
a full-two phase simulation would clearly be prohibitively expensive. Fortunately in this
case, one could choose to treat the ambient region as a Dirichlet condition and remove
it from the two-phase pressure system, since it does not affect the tube’s inner dynamics
(though the interior air gaps would still require full two-phase air DOFs). However, if
two liquid bodies were to be hydraulically connected across a potentially huge ambient air
region, only our approach will suffice. To identify connected air components on which to
apply our constraint bubbles, a flood-fill operation across all such potentially active cells is
required, which could hypothetically be a bottleneck. We found, though, that despite the
ambient region being very large in this problem our reasonably optimized/parallel flood-fill
comprised only 2% of the total pressure projection time.

We observed that our geometric Multigrid preconditioner did not perform well for this
example. This is a well-known limitation of Multigrid schemes like that of McAdams
et al. (2010) for simulations with maze-like solid boundary conditions. Employing a
topology-aware coarsening scheme could alleviate this problem (Dick et al., 2016).

4.5.4 Sinking Bubbles

As demonstrated in Figure 4.6, our proposed affine velocity method is able to maintain
hydrostatic equilibrium for bubbles with density coefficients matching the surrounding
liquid, as well as capturing the expected sinking motion of bubbles with even higher density.
This same sinking behavior is further illustrated in Figure 4.9, in which a dense bubble
falls through the surrounding liquid into a pool of dense bubble material initially at rest at
the bottom of the tank.
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Similar to the rising bubble example, the liquid volume is significantly larger than the
bubble volume and simply reducing the DOF count in the bubble regions would offer only
a small relative performance increase. We employ a Multigrid preconditioner similar to the
constraint method, but with a small layer of exterior bubble cells included in the bubble
smoothing routine. In a single time step comparison, a diagonal preconditioned Conjugate
Gradients solve converges in 1274 iterations and takes 3m01s, compared to 50 iterations
in 1m08s for our coupled Multigrid preconditioner, giving a performance improvement of
2.7×. We believe the lower performance improvement compared to the constraint-based
examples is in part due to the use of a pointwise smoother in the exterior bubble region.
Although a Multigrid V-cycle is incredibly effective at reducing the residual in the linear
system for the liquid domain, a pointwise smoother over the exterior domain is not. We
believe a box smoother, that would perform local direct solves over a group of DOFs, might
offer improved performance (Aanjaneya et al., 2019).

We also experimented with applying the tiled affine method to both materials. Similar
to the bubble-only affine method, we keep a layer of exterior cells at the two-phase and
solid boundaries. We found that using the same layer thickness as the bubble-only method
resulted in subtle grid artifacts as the bubble sank. Doubling the thickness from three
voxels to six voxels on each side of the two-phase boundary was enough to remove these
artifacts. This approach offered a moderate performance improvement of 1.2× over the
bubble-only affine coupled Multigrid method.

Both affine methods significantly outperform the two-phase equivalent by 3.1× for the
affine method on the bubble only, and 4.1× for the affine method on both fluids. However,
the performance increase is not as dramatic as the rising bubbles example because the
density ratio, 10:1, of the two fluids is not as extreme.

4.5.5 Splash Tank

Figure 4.12 demonstrates that our affine model generalizes from the two-phase flows to
the more common single-phase free-surface case, and can be used to create highly detailed
results. In this example, both the spheres and liquid pool maintain a 9-voxel thick band
at the liquid-air boundary, a 2-voxel thick band at the liquid-solid boundary, and their
interiors are filled with tiled affine regions that are (at most) 163 voxels in size with a single
layer of voxels between each tile. The affine regions lead to a reduction from 21.5M DOFs
in the regular grid setting to 6.4M unreduced cells and 5.2K affine interior regions. The
linear solve time of our affine free-surface model outperforms the regular grid method by
3.7× using a diagonal preconditioned Conjugate Gradients solver for both. We further
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compared methods at 2× resolution, doubling the affine region size and boundary thickness,
and observed a 6.1× performance improvement for a single time step. This suggests that
our proposed method offers much better scaling than the regular grid for high resolutions.
We emphasize that existing methods for improving the performance of a regular grid
method, such as Multigrid or octree adaptivity, often involve complex data structures and
implementations. By comparison, our proposed affine method requires minimal additional
implementation.

We also investigated the effect of changing the size of the voxel layer at the free surface
and the size of the affine tiles (see Figure 4.15). Reducing the voxel layer the free surface
from a 9-voxel thick band to only 3 voxels thick offers a moderate performance improvement
of 1.2×, however, the thin band resulted in grid artifacts (see Figure 4.15d). Instead,
maintaining a 9-voxel thick band and doubling the tile size to 323 offers a 5.6× performance
improvement over the regular grid and 1.5× over the 163 tile-sized affine method with only
slightly damped motion and no surface artifacts.
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(a) 9-voxel surface layer. 163 tile size. (b) 9-voxel surface layer. 323 tile size.

(c) 3-voxel surface layer. 163 tile size. (d) Grid artifacts due to a thin voxel layer.

Figure 4.15: Our baseline configuration (a) employs a 9-voxel thick layer at the free surface
and an affine region tile size of 163. Increasing the tile size (b) to 322 offers a performance
improvement of 1.5×, whereas reducing the free-surface voxel layer to 3-voxels instead (c)
only offers a performance improvement of 1.2× and results in grid artifacts at the surface
(d).
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Chapter 5

Adaptive Viscosity

(a) (b) (c) (d)

(e) (f)

Figure 5.1: Our adaptive viscosity discretization is constructed on a graded octree structure
(a), and achieves speed-up factors for the linear solve ranging from 3.8× to 9.4× compared to
the regular grid approach. Our method supports rotational effects observed with a buckling
sheet of viscous liquid (b-d), spatially varying viscosity coefficients (e), and kinematic
objects (f).

In §3.3, we introduced the variational method of Batty and Bridson (2008) to solve for
viscous forces,

argmin
un+1

∫
Ω

(
ρ

2∆t
‖un+1 − un‖2

2 + µ

∥∥∥∥∇un+1 + (∇un+1)T

2

∥∥∥∥2

F

)
dV, (5.1)
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where the discrete linear system of its solution is SPD by construction:

(PWu + ∆tDTKWτMD)un+1 = PWuu
n. (5.2)

Most importantly, the SPD property holds independent of the actual discretization, allowing
us to define the deformation rate operator D and volume weights Wu and Wτ using our
proposed adaptive framework.

Solving for viscosity is often substantially slower than solving for pressure, in part,
because the viscosity linear system is significantly larger due to the three velocity vector
components that are necessarily coupled by the free surface boundary condition. Therefore,
as our results will show, adaptively coarsening the simulation grid interior to liquid offers a
significant reduction in both the velocity DOFs of the linear system as well as simulation time.
Because viscous forces dampen the liquid motion in the interior, our coarse approximation
still closely matches equivalent regular grid simulations.

The variational finite difference framework was proposed for pressure and solid-fluid
coupling problems (Batty et al., 2007), and has since been applied to viscosity, stream
functions, granular flow, and more (Batty and Bridson, 2008; Narain et al., 2010; Larionov
et al., 2017; Ando et al., 2015a,b). The typical advantage of this approach is its simpler
handling of difficult irregular boundary conditions on regular Cartesian grids, while reducing
to standard staggered finite differences on the interior and preserving symmetric positive-
definiteness. Rather than only using it to handle boundary conditions, however, we
propose to further apply this variational finite difference perspective to support octree-based
adaptivity. Doing so hinges on discretizing the integrals of the variational form in the
presence of transitions between grid levels, which in practice involves two key changes near
T-junctions: first, selecting appropriate variable locations and control volumes to integrate
over, and second, designing finite difference operators to approximate derivative terms.
While the variational form ensures symmetry and hints that a valid numerical scheme
should exist, these discretization choices must nevertheless be approached carefully if one
wishes to achieve consistent, accurate solutions and compact stencils that will be efficient
in three dimensions.

To form the discrete viscous energy (3.20), the only derivative is the deformation rate
operator D, which implies that we must modify the finite difference velocity gradient (or
stress) stencils. Since symmetry follows from the variational form, the corresponding discrete
tensor divergence operator arises implicitly as the (scaled) transpose of D. Similarly, the
final linear system for octree viscosity remains SPD with no additional effort. By contrast,
typical direct staggered finite difference/volume approaches on octrees almost invariably
lead to asymmetry even for simple Poisson problems, as discussed by previous authors
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(Losasso et al., 2004; Batty, 2017). Prior derivations of symmetric octree schemes for Poisson
problems relied on a combination of subtle intuition and trial and error (Losasso et al., 2004,
2006; Aanjaneya et al., 2017). Our more systematic adaptive variational finite difference
framework instead preserves symmetry naturally and, with judicious discretization choices,
yields accurate, efficient solutions on the challenging variable viscosity PDE.

For simplicity of implementation, similar to prior work (Ferstl et al., 2014; Aanjaneya
et al., 2017), we assume that the octree is graded, i.e., cells sharing a face differ by no
more than one level of resolution. (Note that this does not preclude cells that share only a
node or edge from differing by more than one level, which allows for slightly more rapid
coarsening.) We further assume that the free surface occurs only within the finest grid
resolution and that resolution changes occur only in the interior of the liquid; this avoids
any potential interactions between T-junctions and boundary conditions. In regions of
the octree without resolution changes, the variable locations, control volumes, and stencil
structures all follow the template of the regular grid method described in §3.3, adjusting
for the cell size in the corresponding level of the octree. We now adapt this regular grid
template to discretize (3.21) near T-junctions, beginning with the simpler two dimensional
case.

5.1 Two Dimensions

5.1.1 Variable Locations and Control Volumes

Our 2D quadtree layout is designed to follow naturally from the 2D regular grid setting
presented in Figure 3.7. Similar to Losasso et al. (2004; 2006), we place velocity samples
on each fine grid face at level transitions (see Figure 5.2). Similarly, we place stresses at
cell centers and nodes, including the new T-junction (“dangling”) nodes arising at level
transitions.

To ensure the velocity and stress control volumes for each variable separately cover the
entire integrable fluid volume, we stretch the control volumes into the adjacent coarse-grid
cells at T-junctions (see Figures 5.2 and 5.3). Unlike the regular grid case in which absolute
cell volumes can be completely factored out such that volume fractions suffice, all quadtree
control volumes must be appropriately scaled to reflect the relative grid cell size at the
corresponding level of the quadtree. The rectangular control volumes shown in Figure 5.2c
can partially overlap in one case at a T-junction. We tested a correction that modifies
the control volume shapes to avoid this double-counting, but it had no discernible effect
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(a) (b) (c)

Figure 5.2: Quadtree variable locations for velocities: (a) u, and (b) v, with corresponding
control volumes shaded in blue. At T-junctions (c) the control volumes partially overlap
(dark blue). Our investigation determined that this double-counting had no effect on visual
results or convergence rates.

on either the observed convergence rate or the visual results, so we prefer the rectangular
volumes for simplicity.

5.1.2 Finite Difference Stencils

To compute stresses at level transitions, we desire adaptive grid finite difference velocity
gradient stencils that mimic the regular grid stencils of Figure 3.7; once again, we need not
explicitly discretize the tensor divergence operator, as it arises implicitly through symmetry.
We will consider cell-centered and node-centered stress stencils in turn.

Since only fine velocity samples are present on transition faces, coarse cell-centered
stresses (τxx, τyy) incident on T-junctions will not have coarse velocity samples that align
with their regular finite difference stencil. As shown in Figures 5.3b and 5.3c, we address
this by creating a coarse “ghost” velocity sample on the T-junction, which can be used
in the regular stencil. This ghost sample does not exist as a real degree of freedom,
but is simply an interpolated value constructed as the average of the two fine velocity
samples. The remaining cross-derivative node-centered stresses (τxy) at transitions are of
two types: irregular junctions, where different resolutions meet diagonally (Figure 5.3d),
and T-junctions (Figure 5.3e).
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(a) Example layout. (b) τxx (c) τyy

(d) τxy, irregular junction. (e) τxy, T-junction.

Figure 5.3: Quadtree stress placement, stencils, and control volumes in two spatial dimen-
sions. Gray squares indicate ghost samples constructed by averaging.

71



Irregular junction stencil The irregular junction stencil in Figure 5.3d is similar to
the regular grid case (Figure 3.7e), except that the velocity samples are no longer evenly
spaced. We simply adjust the denominator of the finite difference estimate to reflect the
distance between the sample points. While no longer a true centered difference, this does
not pose an issue: our linear system remains symmetric, and the 2D numerical results in
§5.5.3 confirm the convergence of our discretization.

T-junction stencil The T-junction stresses encounter a problem similar to the cell-
centered stresses: the finite difference stencil required to compute the ∂v

∂x
component in

Figure 5.3e does not find a velocity sample when reaching out into the neighboring coarse
cell. Once again, we create a ghost velocity sample by averaging the v-velocity faces of the
coarse cell. However, a further wrinkle can arise if either one or both of the cells above and
below the coarse cell are also subdivided. Figure 5.3e shows the case of one coarse face and
two fine faces in the v-velocity direction. In such cases, we average the velocity values at
the two fine faces to create an intermediate ghost velocity sample, and then average this
ghost sample with the opposing coarse velocity sample to create a final ghost sample that
completes the stencil.

Discussion Because only a discrete velocity gradient D is required, our symmetry-
preserving method possesses an attractive degree of conceptual simplicity. By contrast,
Gerya et al. (2013) applied direct finite difference constructions separately to the vector
gradient and tensor divergence operators on 2D quadtrees and arrived at a variety of
possible viscosity discretizations, all of which exhibit asymmetry.

5.2 Three Dimensions — Basic Method

We now describe the essentials of our new discretization in three dimensions (i.e., on
octrees), deferring an additional key accuracy enhancement to §5.3. Despite the apparent
complexity of the task, we will show that the necessary stencil set reduces to a few classes
of 3D configurations, which are unique up to appropriate rotations and reflections.

5.2.1 Variable Locations and Control Volumes

Similar to the quadtree case, velocity samples are placed at all fine faces surrounding
T-junctions (Figure 5.4a). Stresses are placed at all cell centers and (fine) edge midpoints
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(a) u (b) τxz, irregular junction. (c) τxz, T-junction.

Figure 5.4: Octree velocity samples, stress placement, and control volumes.

(Figures 5.4b and 5.4c); this creates four edge-based stresses per T-junction in 3D, as
compared to the single nodal stress per T-junction in 2D. These figures also illustrate how
the rectangular cuboid control volumes for fine cell samples are expanded into the adjacent
coarse cells. As in 2D, these control volumes overlap slightly in some cases, but modifying
the control volumes to correct for this did not affect the observed motion or convergence
rate.

5.2.2 Finite Difference Stencils

In constructing our 3D velocity gradient stencils, we aim to prioritize simplicity and
compactness for the sake of ease of implementation and computational efficiency. Our
stencil for the cell-centered stress τxx at a level transition is shown in Figure 5.5a. This
stencil requires creating ghost velocity samples at coarse velocity positions on T-junctions by
averaging the four inset fine velocity samples. For cross-derivative edge-centered stresses, τxz,
there are two basic scenarios, with similarities to their 2D counterparts: irregular junction
stresses, on edges that are shared diagonally between coarse and fine cells (Figure 5.5b),
and T-junction stresses, for edges that lie on a subdivided coarse face (Figure 5.5c).

Irregular junction stencil Figure 5.5b shows the stress stencil for an irregular junction.
In contrast to the 2D case, the stress sample does not lie in the same plane as the necessary
velocity samples, leading to sloped velocity gradient estimates. We revisit this issue in §5.3,
but for now we note that this is consistent with the sloped gradients for pressure adopted
by Losasso et al. (2004) and that it does converge in practice. This is the only irregular
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(a) τxx (b) τxz, irregular junction.

(c) τxz, T-junction. (d) τxz, T-junction, alternate case.

Figure 5.5: Octree stress stencils for cell-centered and edge-centered locations. Gray squares
indicate ghost velocity samples constructed by averaging.
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junction case to consider; although face-grading allows cells sharing an edge diagonally to
differ by two levels, the faces adjacent to the edge can only differ by one, which is covered
by our stencil.

T-junction stencil Figure 5.5c shows the τxz stress stencil on a T-junction face; it likewise
has one sample out of alignment so we treat it with a similar sloped stencil. However, there
is also no coarse velocity sample at the center of the coarse cell, as required for the ∂w

∂x

finite difference stencil. Therefore, we create a ghost velocity sample by averaging the two
opposing w-velocity faces of the coarse cell. In Figure 5.5d, we illustrate a slight variation
in which one of the two coarse faces is also subdivided. In this case, we create another
intermediate ghost velocity sample at the coarse face, which is subsequently averaged with
the other coarse w-velocity sample (which may itself be a ghost sample as well) to generate
the final cell-centered ghost sample. This completes our 3D stencil set.

Losasso et al. (2004) discussed a few choices for the distance value used for the denomi-
nator of their sloped gradient estimates, and observed that they are all equally effective;
we used the in-plane distance between the sample points. Despite these sloped gradient
estimates, our 3D numerical results exhibit approximately first order convergence under
grid refinement (§5.5.3).

5.3 Three Dimensions — Enhanced Gradients

Using the method described so far we observed both numerical convergence and plausible
viscous flows; however, we can improve the discretization further still. Close inspection
of the fluid motion shows artificial damping of bending and rotation compared to regular
grid simulations (see Figures 5.6a vs. 5.6b), and we traced the source of this issue back
to the sloped gradient estimates. Prior authors studying adaptive discretizations for the
Poisson problem also observed that orthogonality of pressure gradient stencils with respect
to grid faces is critical to accuracy, especially in hydrostatic cases (Losasso et al., 2006;
Batty et al., 2010; Aanjaneya et al., 2017). These observations motivate our enhanced
orthogonality-preserving construction for discrete velocity gradients.

Sloped gradients occur for stress variables on the midpoint of fine edges at resolution
transitions, both in the irregular and T-junction cases (i.e., Figures 5.5b-5.5d). A 2D
cross-section is shown in Figure 5.7a. Letting ∆L be the large cell width, ∆s be the small
cell width, and ∆ = (∆L + ∆s)/2, then our sloped estimate for the top vertical edge is
∂u
∂z
≈ (uc − ua)/∆.
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(a) Reference. (b) Sloped gradients. (c) Enhanced gradients.

Figure 5.6: The same frame of animation from three discretizations of a horizontal viscous
beam released under gravity. (a) A regular grid reference simulation. (b) Our basic octree
discretization with a two-level coarsened interior shows artificial stiffness due to sloped
gradients. (c) Our enhanced octree discretization with corrected gradients matches the
motion and detail of the reference (a), but its linear solve is 4.2× faster than that of the
regular grid discretization.

ua

ub

uc

(a) Basic sloped.

ua

ub

uc

ug1

ug2

(b) Linear ghosts.

ua

ub

uc
ug

(c) Enhanced (ours).

Figure 5.7: Possible velocity gradient stencils at irregular junctions and T-junctions, shown
as 2D slices of the 3D geometry. (a) Our basic method (§5.2) uses a low-quality sloped
estimate. (b) One improved option would be to construct axis-aligned fine ghost points;
however, the necessary additional linear interpolations (not shown) would involve several
more cases and neighbor cell data. (c) In our proposed enhanced method (§5.3), fine face
components are averaged together to create a coarse ghost; an axis-aligned estimate is then
constructed at the node and used for both fine edges.
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A direct approach to form the desired axis-aligned gradients would be to apply additional
(and in some cases nested) linear interpolations to yield fine ghost values ug1 and ug2 directly
opposite each existing fine velocity sample (Figure 5.7b). Although this would provide
an accurate estimate (ug1 − ua)/∆ for the top edge and symmetry would be preserved by
construction, forming ug1 requires complicated stencils involving additional neighboring
velocities and several geometric cases depending on the local refinement pattern. We offer
a simpler and more compact solution.

We average the two fine face velocity components ua and ub together to create a coarse
ghost velocity ug = (ua + ub)/2 at the midpoint between them (Figure 5.7c); this enables a
standard finite difference gradient estimate ∂u

∂z
≈ (uc − ug)/∆ between the existing coarse

velocity uc and the new ghost ug. Because they lie in the same plane, this estimate is
properly axis-aligned and measures (only) the correct component of the velocity gradient,
unlike the sloped estimate. The stencil is also nearly as compact as the sloped estimate,
requiring just a single additional velocity sample.

The velocity gradient components assigned to the two fine edges in this way share the
same axis-aligned gradient estimate from the node. This approach is therefore conceptually
similar to the method that Losasso et al. (2006) adopted to replace their earlier sloped
pressure gradients, i.e., they construct a single axis-aligned gradient estimate at the center
of the T-junction face, and assign it to all four surrounding fine faces. (However, it differs in
that we construct orthogonal edge-based velocity gradients, whereas Losasso et al. construct
face-based pressure gradients.)

To implement this change, we modify the D operator accordingly and our method
again guarantees symmetry by construction. This small but vital enhancement effectively
eliminates spurious discretization-dependent stiffness, as shown in Figures 5.6c and 5.15,
while the spatial convergence rate improves to second order in the L1 norm (Figure 5.8).
Applications in computer graphics are often balancing between visual realism and computa-
tional efficiency. This a demonstrable example of a quantitative accuracy improvement in
our numerical method directly improving the visual quality of the simulation and therefore
a meaningful improvement in the computer graphics setting.

5.4 Implementation and Applications

We integrated our proposed octree-based viscosity solver into two completely independent
liquid simulators. To demonstrate that our method can significantly accelerate existing
regular grid simulation pipelines, we implemented it as a plugin for Houdini (SideFX, 2021);
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it acts as a drop-in replacement for Houdini’s viscosity step, leaving the rest of its regular
grid simulator untouched. To demonstrate that our method can alternatively be used to add
viscous effects to existing inviscid, purely octree-based liquid simulators, we incorporated it
into the method of Aanjaneya et al. (2017).

In both implementations, we follow Setaluri et al. (2014) in constructing our octree
as an aligned pyramid of regular grids instead of a conventional pointer-based tree. This
allows querying neighboring elements (cells, faces, edges, nodes) at differing refinement
levels with simple grid index offsets and scaling, eschewing pointer-based traversals. This
structure also provides localized memory accesses within a single level. We use sparse grid
structures to restrict memory allocations to active regions of each level. For our Houdini
implementation, we use its internal compressed-tile design as a sparse grid structure, and
for our implementation of the Aanjaneya et al. (2017) method, we use SPGrid.

Both implementations also employ the standard optimization of constructing the final
system (3.21) in a single pass, rather than forming and multiplying the individual sparse
matrices that compose it. A single pass is more involved for the adaptive viscosity system
than for regular grids, since the transposition DT requires “reversing” the velocity gradient
stencils whose transposes implicitly yield the discrete tensor divergence. Nevertheless, we
found it to be much faster than the matrix multiplication approach.

5.4.1 Accelerating Regular Grid Simulators

Viscosity is a significant bottleneck in regular grid simulators: for some scenes using Houdini
the viscosity step was up to two orders of magnitude slower than pressure projection.
Fortunately, viscous flows possess smooth interior velocity fields, making this an ideal
setting for spatial adaptivity without noticeable quality loss. This motivated us to accelerate
Houdini’s regular grid fluid solver by replacing its viscosity step with our octree-based
version. To do so, we sandwich our method between a pair of interpolation operators that
transfer velocities between the regular and octree grids. The smoothness of the interior
flow also enables a relatively simple refinement strategy: we set a band of finest resolution
regular grid cells near interfaces and boundaries, and coarsen into the interior as rapidly as
possible while respecting the face-grading rule.

5.4.2 Interpolation

We align the finest octree level with the source regular grid, allowing finest level velocity
samples to be directly copied into the octree. We construct interior coarsened velocities
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in the octree by recursive weighted averaging of the next finer level samples, using the
restriction operator proposed by Zhu et al. in the context of Multigrid elasticity ((Zhu
et al., 2010), §6). To transfer the octree velocity data back to the regular grid, we adopt
the low-dissipation octree velocity interpolant of Setaluri et al. (2014). We confirmed that
interpolating to and from the octree induces a negligible amount of additional artificial
dissipation for viscous flows by adding a round-trip grid-to-octree-to-grid transfer(-only)
step to a regular grid solver, and comparing it against a standard regular grid solver on
a beam bending scenario; any differences were visually indiscernible. The close match
between our octree and regular grid results (e.g., Figure 5.6) further confirms this fact.

5.4.3 Additional Details

We use Houdini’s multithreaded implementation of Jacobi-preconditioned Conjugate Gradi-
ents to solve the linear system in equation (3.21). Likewise, we used Houdini’s multithreaded
library to iterate over its sparse grid structure in parallel. Lastly, again following Houdini,
we exploited parallelism throughout our implementation, including during octree adaptation,
both interpolation steps, and linear system construction.

5.4.4 Laplacian model

The speed of the simpler Laplacian model of viscosity (Carlson et al., 2002; Fält and
Roble, 2003) may be desirable in some cases, despite the clear limitations illustrated in
Figure 3.6. Hong and Kim applied this model to octrees using Losasso’s discrete octree
Laplacian (Losasso et al., 2004), but this requires interpolating staggered face velocities
to cell centres and back to faces. Our methodology enables a purely face-based Laplacian
viscosity discretization by applying it to the simplified smooth energy∫

Ω

( ρ

∆t
‖un+1 − un‖2

2 + µ
∥∥∇un+1

∥∥2

F

)
dV, (5.3)

which can be compared with (3.19). This form leads to one SPD linear system per velocity
component.

5.4.5 Adding Viscosity to an Octree Liquid Simulator

We also incorporated our octree viscosity solver as a plugin into the fully adaptive inviscid
simulator of Aanjaneya et al. (2017). This required the minor modification that velocity
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values be interpolated from the slanted faces of the power diagram to the regular octree
faces, and then interpolated back again after the viscous update.

5.5 Convergence Studies

Even though our variational finite difference approach is SPD by construction and the
minimum of the energy functional (3.19) is the solution to the viscosity PDE (Batty
and Bridson, 2008), we have only discretized the deformation rate operator D. It is not
intuitively obvious that DT is a consistent discretization of the tensor divergence operator
and therefore is it essential that we study the convergence properties of our method. To
quantitatively evaluate the spatial accuracy of our octree method, we constructed analytical
tests representing a single time step of the viscosity PDE (3.18) on a closed box domain in
2D and 3D for a particular vector field and spatially varying viscosity function. Beginning
from an irregular initial refinement pattern, we recursively subdivided every cell, evaluating
the velocity error at each refinement step. The results are plotted in Figure 5.8; the specific
test cases, their derivations and data for the plots are given below.

Approximately first order convergence is consistently observed in the L∞ norm, with
our enhanced approach exhibiting lower error than the sloped approach in 3D. However,
under the L1 norm the enhanced approach achieves full second order accuracy, whereas
the sloped approach remains first order. Note that first order accurate velocity solutions
are consistent with previous staggered octree schemes for pressure (Losasso et al., 2006;
Aanjaneya et al., 2017). While these methods offer second order accuracy in the pressure,
the pressure gradient and velocity field remain first order.

5.5.1 2D Test Case

Consider the square domain [0, π]2. Our methodology will be to choose an end-of-step
velocity field at time t = ∆t that satisfies the no-slip boundary condition u = 0 on the
domain boundaries. There are many valid options; to simplify boundaries, we use a product
of sinusoids as the final velocity field,

u(x, y, t = ∆t) = sin(x) sin(y),

v(x, y, t = ∆t) = sin(x) sin(y).

Next, we choose a spatially varying function to determine the viscosity coefficient,

µ(x) =
x

π
+

1

2
.
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(a) 2D L∞ error (b) 2D L1 error

(c) 3D L∞ error (d) 3D L1 error

Figure 5.8: Log-log plots of L1 and L∞ velocity error (labelled E1 and E∞, respectively)
vs. cell count N under refinement in two (top) and three (bottom) dimensions. Dashed
and dotted guide lines indicate ideal first and second order slopes. In 3D, comparing the
sloped (purple diamonds) and enhanced (green circles) gradient discretization error behavior
confirms that the enhanced method experiences significantly improved convergence.
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Figure 5.9: The initial tree refinement pattern in 2D.

Once again, many options are possible, provided the function remains non-negative over
the domain. Finally, using analytical differentiation, we can take one step backwards in
time to t = 0 following the viscosity equations, (semi-)discretized in time as in our method,

un+1 = un −∆t
1

ρ
∇ · µ(∇un + (∇un)T). (5.4)

This yields the initial conditions for our problem:

u(x, y, t = 0) = sin(x) sin(y)−∆t

(
2

π
cos(x) sin(y)+(

x

π
+

1

2

)
(cos(x+ y)− 2 sin(x) sin(y))

)
,

v(x, y, t = 0) = sin(x) sin(y)−∆t

((
x

π
+

1

2

)
(cos(x) cos(y)− 3 sin(x) sin(y))

+
1

π
sin(x+ y)

)
.

We used a time step of ∆t = 1. The initial refinement pattern of the 2D domain is shown
in Figure 5.9.
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5.5.2 3D Test Case

Our 3D problem follows the same general approach, but over the domain [0, π]3. The final
velocity field is

u(x, y, z, t = ∆t) = sin(x) sin(y) sin(z),

v(x, y, z, t = ∆t) = sin(x) sin(y) sin(z),

w(x, y, z, t = ∆t) = sin(x) sin(y) sin(z),

and the associated viscosity function is

µ(x, y) =
x

π
+ y + 1.

The resulting initial velocity field is given by:

u(x, y, z, t = 0) = sin(x) sin(y) sin(z)(1 + 2∆tµ(x, y))−
∆t(sin(z)(cos(x) sin(y) + sin(x) cos(y)+

2

π
cos(x) sin(y)) + µ(x, y)(cos(x+ y) sin(z) + cos(x+ z) sin(y))),

v(x, y, z, t = 0) = sin(x) sin(y) sin(z)(1 + 2∆tµ(x, y))−
∆t(2 sin(x) cos(y) sin(z)+

1

π
sin(x+ y) sin(z) + µ(x, y)(cos(x+ y) sin(z) + sin(x) cos(y + z)))

w(x, y, z, t = 0) = sin(x) sin(y) sin(z)(1 + 2∆tµ(x, y))−
∆t(sin(x)(cos(y) sin(z) + sin(y) cos(z))+

1

π
sin(x+ z) sin(y) + µ(x, y)(cos(x+ z) sin(y) + sin(x) cos(y + z))).

We used a time step of ∆t = 1. The initial refinement pattern of the domain (Figure
5.10) is generated from a union of two implicit spheres placed at (0, 0, 0) and (π, π, π), with

radii of
√

3
2
π. Grid cells at the finest level are activated if their cell centers are within a

distance ∆x
2

of the surface of the spheres. We then proceed to grade the octree using our
face-grading criteria. We chose this refinement pattern because it exercises all the relevant
octree stencils.
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Figure 5.10: Two slices of the initial tree refinement pattern in 3D. Both slices are on a
yz-plane, at x = 0 and x = π

2
, respectively.

Table 5.1: Convergence of 2D discretization in L∞ on a quadtree grid, exhibiting approxi-
mately first order behavior.

Grid ‖u− uh‖∞ Order ‖v − vh‖∞ Order

322 1.8929 E -2 2.0159 E -2
642 1.1169 E -2 0.76 1.1377 E -2 0.83
1282 5.6016 E -3 1.00 5.4032 E -3 1.07
2562 2.5636 E -3 1.13 2.5145 E -3 1.10
5122 1.2273 E -3 1.06 1.1995 E -3 1.07
10242 6.2867 E -4 0.97 6.2013 E -4 0.95

5.5.3 Detailed Numerical Results

Beginning from the initial refinement pattern, we recursively subdivided every cell, evaluating
the L∞ and L1 velocity errors at each step. The 2D results are presented in Tables 5.1
and 5.2, and 3D results for sloped and enhanced gradients in Tables 5.3, 5.5, 5.4, and 5.6,
respectively; the corresponding convergence plots are illustrated in Figure 5.8. The grid
size listed in these tables corresponds to the finest virtual grid size of the tree structure (i.e.
the effective grid resolution).
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Table 5.2: Convergence of 2D discretization in L1 on a quadtree grid, exhibiting approxi-
mately second order behavior.

Grid ‖u− uh‖1 Order ‖v − vh‖1 Order

322 4.2504 E -2 4.5429 E -2
642 1.3526 E -2 1.65 1.3805 E -2 1.72
1282 3.6910 E -3 1.87 3.7281 E -3 1.89
2562 9.4728 E -4 1.96 9.5028 E -4 1.97
5122 2.3910 E -4 1.99 2.3933 E -4 1.99
10242 6.0214 E -5 1.99 6.0514 E -5 1.98

Table 5.3: Convergence of 3D octree discretization in L∞ with sloped gradients, exhibiting
approximately first order behavior.

Grid ‖u− uh‖∞ Order ‖v − vh‖∞ Order ‖w − wh‖∞ Order

163 4.0994 E-2 3.6799 E-2 4.1257 E-2
323 2.2438 E-2 0.87 2.2182 E-2 0.73 2.2709 E-2 0.86
643 1.2464 E-2 0.85 1.2338 E-2 0.85 1.2538 E-2 0.86
1283 6.6379 E-3 0.91 6.5528 E-3 0.91 6.6554 E-3 0.91
2563 3.4793 E-3 0.93 3.4317 E-3 0.93 3.4818 E-3 0.93
5123 1.8087 E-3 0.94 1.7859 E-3 0.94 1.8082 E-3 0.95

Table 5.4: Convergence of 3D octree discretization in L∞ with enhanced gradients, exhibiting
approximately first order behavior.

Grid ‖u− uh‖∞ Order ‖v − vh‖∞ Order ‖w − wh‖∞ Order

163 3.4294 E-2 2.8760 E -2 3.4065 E -2
323 2.5290 E-2 0.44 2.6265 E -2 0.13 2.4756 E -2 0.46
643 1.0322 E-2 1.30 1.0698 E -2 1.30 1.0301 E -2 1.27
1283 4.1865 E-3 1.30 4.3085 E -3 1.31 4.2229 E -3 1.29
2563 1.8039 E-3 1.21 1.8412 E -3 1.23 1.8227 E -3 1.21
5123 8.2871 E-4 1.13 8.3664 E -4 1.14 8.3273 E -4 1.13
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Table 5.5: Convergence of 3D octree discretization in L1 with sloped gradients, exhibiting
approximately first order behavior.

Grid ‖u− uh‖1 Order ‖v − vh‖1 Order ‖w − wh‖1 Order

163 2.2728 E -1 2.2728 E -1 2.2846 E -1
323 8.3192 E -2 1.45 8.4643 E -2 1.43 8.3151 E -2 1.46
643 3.4742 E -2 1.26 3.5813 E -2 1.24 3.4676 E -2 1.26
1283 1.7170 E -2 1.02 1.7768 E -2 1.01 1.7126 E -2 1.02
2563 8.6849 E -3 0.98 8.9916 E -3 .98 8.6589 E -3 .98
5123 4.1313 E -3 1.07 4.2207 E -3 1.09 4.1245 E -3 1.07

Table 5.6: Convergence of 3D octree discretization in L1 with enhanced gradients, exhibiting
approximately second order behavior.

Grid ‖u− uh‖1 Order ‖v − vh‖1 Order ‖w − wh‖1 Order

163 2.0364 E-1 2.0128 E -1 2.0504 E -1
323 5.2047 E-2 1.97 5.1960 E -2 1.95 5.2332 E -2 1.97
643 1.2568 E-2 2.05 1.2622 E -2 2.04 1.2617 E -2 2.05
1283 3.0287 E-3 2.05 3.0522 E -3 2.05 3.0355 E -3 2.06
2563 7.1526 E-4 2.08 7.2298 E -4 2.08 7.1639 E -4 2.08
5123 1.4614 E-4 2.29 1.4797 E-4 2.29 1.4630 E -4 2.29
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Table 5.7: Timing breakdowns for our simulations on regular and octree grids. Only active
voxels are included in the voxel counts.

Scene Regular grid Octree grid Grid Linear Solve Viscosity Viscosity Simulation Simulation
voxel count voxel count type solve speed-up total speed-up total speed-up

Viscous 137K (initial) - 76K (initial) - Regular 3h47m 3h50m 4h32m
Buckling 2.7M (final) 587K (final) Octree 59m48s 3.8× 1h05m 3.5× 1h47m 2.5×

Viscous
757K 227K

Regular 2h30m 2h31m 2h40m
Beam Octree 35m34s 4.2× 37m20s 4× 46m35s 3.4×

Melting 2.2M (initial) - 422K (initial) - Regular 50h05m 50h19m 52h43m
Bunny 3.2M (final) 1.3M (final) Octree 13h11m 3.8× 13h32m 3.7× 15h25m 3.4×

Letter 139K (initial) - 65K (initial) - Regular 71h20m 72h59m 96h23m
Mixer 4.8M (final) 952K (final) Octree 12h56m 5.5× 15h27m 4.7× 39h02m 2.5×

Gooey
4.8M 976K

Regular 26h20m 26h28m 27h55m
Armadillo Octree 2h49m 9.4× 3h00m 8.8× 4h25m 6.3×

Bunny
9.0M 1.1M

Regular — — —
Drop Octree 73h01m N/A 76h32m N/A 96h00m N/A

5.6 Simulation Results

5.6.1 Timings

To evaluate the efficiency and effectiveness of our octree-based viscosity plugin for Houdini,
we simulated a variety of viscous scenarios involving buckling, rotation, variable viscosity,
and moving solids. The Bunny Drop (§5.6.7) and Viscous Buckling (§5.6.2) examples
and the performance comparison in Figure 5.17 were simulated with a 32-core Ryzen
2990wx CPU; all remaining examples were simulated with a 16-core Xeon E5-2630 CPU.
The Conjugate Gradients routine used double precision and a relative tolerance of 10−3

for all examples. We emphasize that only Houdini’s viscosity step was replaced with
an octree method; every other step remains on a regular grid using Houdini’s standard
implementation. Four-level octrees were used in all cases except where stated otherwise,
since additional coarse levels yielded minimal benefit (see §5.6.5). To eliminate extraneous
factors and ensure a consistent baseline, we implemented and used our own purely regular
grid viscosity step (Batty and Bridson, 2008) for all comparisons. (Performance profiling
showed that our regular grid implementation was approximately 2% slower than Houdini’s
on a representative scene; the simulation results were visually indistinguishable.)

Performance numbers for the octree and regular grid are presented in Table 5.7, with
the octree linear solve being faster by factors ranging from 3.8× to 9.4×. As expected
in comparing the overall time between the regular grid and octree implementations, the
additional overhead of the octree slightly reduces its net benefit: the total viscosity solve,
including octree adaptation, interpolation, and matrix construction, yields speed-up factors
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of 3.5× to 8.8×. Although viscosity is just one component of the complete liquid simulator,
overall speed-up factors ranged from 2.4× to 6.3×. In one case the simulation time dropped
from more than a full day to just over four hours, which is a far more practical turn-around
time. It should be noted that these speed-up factors are only available for scenes where
the regular grid simulation succeeded; nevertheless, the octree enables simulations at even
higher effective resolutions than are possible with the regular grid, as demonstrated by the
Bunny Drop (§5.6.7) example.

5.6.2 Viscous Buckling

Figure 5.11 shows that our method can reproduce the familiar viscous buckling phenomenon.
The octree and regular grid results match closely throughout the simulation despite the
octree’s lower computational cost, with only slight drifts out of phase. We investigated
increasing the width of the fine grid cell layer at the liquid surface and found it offers a
small perceptible improvement towards matching the regular grid example, but it comes
with a significant computational cost. The viscosity steps for two-, three-, and four-voxel
wide fine layer examples took 1h05m, 2h05m, and 2h25m with a DOF count in the final
frame of 1.9M, 2.2M, and 2.7M, respectively.

This example also illustrates that the degree of timing improvement is inherently
problem- and geometry-dependent, since coarsening becomes possible only with volumes of
sufficient depth. Because the volume of the pile gradually increases, the benefit increases
in correspondence. In the initial frame, the two-voxel fine layer octree reduced the active
DOFs in the viscosity solve from 412K to 277K, while the last frame went from 8.2M
velocity samples to 1.9M.

5.6.3 Melting Bunny (Variable Viscosity)

Next, we melt a highly viscous bunny by pouring hot liquid onto it, showcasing our
variable viscosity support (Figure 5.12). We define the viscosity coefficient as a function
of per-particle temperatures. We mimic heat diffusion at each time step by transferring
temperature from the particles to the grid, applying a simple blurring pass over the grid-
based temperature field, and finally transferring the updated temperature back to the
particles (more intricate thermodynamics could be incorporated if desired, e.g., (Carlson
et al., 2002; Stomakhin et al., 2014)).
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Figure 5.11: Viscous Buckling: A buckling viscous sheet exhibits qualitatively consistent
motion using a regular grid (red) and our octree-based (blue) viscosity solver. The motion
matches closely over a long period.
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Figure 5.12: Melting Bunny: Hot liquid is poured onto a viscous bunny, melting holes
into it. The viscosity is a function of the liquid temperature, visualized with a pseudocolor
map. Linear solve speed-up factor: 3.8×.

5.6.4 Letter Mixer

Viscous letters are piled up and mixed together with scripted moving solids in Figure 5.13.
A standard no-slip condition applied to the discrete viscosity equations forces the fluid
velocity to match the solid, causing the viscous liquid to be dragged alongside moving
solids.

This example also highlights conditions under which we see large benefits (see Figure
5.14). Since strong viscous forces are working hard to oppose gravity when all of the letters
are fully stacked up, these earlier frames are approximately three times as costly for the
regular grid (red) and twice as costly for the octree (blue) compared to when the letters
have settled into the container. At that point, the velocity field is no longer changing
dramatically between time steps so warm-starting the solver allows both regular grid and
octree methods to reach convergence more quickly. Regardless, the octree-based simulation’s
total time is faster by a factor of 2.5×.

5.6.5 Viscous Beam

High frequency velocity modes are quickly damped out in viscous liquids, resulting in a
smooth field with small variation across many grid cells. Because of this effect, we observe
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Figure 5.13: Letter Mixer: Viscous letters are piled into a container and stirred by
scripted moving solids. Linear solve speed-up factor: 5.5×.

Figure 5.14: Simulation time per frame for the Letter Mixer (§5.6.4) example. The early
frames of letters piling up and deforming are significantly slower (up to 3× slower) for
the regular grid (red) simulation compared to the octree simulation (blue). Even after the
letters have settled into the container, the octree simulation is 2× faster than the regular
grid.
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(a) Regular grids. (b) Sloped gradients. (c) Enhanced gradients.

Figure 5.15: Viscous Beam: (Left) Overlaid strictly regular grid viscous beams released
under gravity exhibit no significant differences in bending rates at different resolutions
( =base simulation,  =half-resolution,  =quarter-resolution). (Middle) With our basic
sloped gradient discretization, interior-coarsened octrees yield noticeable over-stiffening ( ,
 ,  , indicate 0, 1, 2, and 3 levels of interior coarsening). (Right) With our enhanced
axis-aligned gradients (same color-coding), the octree simulations are dramatically improved,
closely matching the reference regular grid results in magenta. Linear solve speed-up factor
for the coarsest octree: 4.2×.

in Figure 5.15 that our enhanced octree discretization experiences no visually significant
difference in rotation rates compared to regular grids on a viscous beam test. The basic
(sloped) discretization is significantly more damped due to the poor gradient estimates.

Examining the timings for these beam tests reveals that the majority of the performance
improvement is often achieved after only a single level of interior coarsening. The viscosity
step in the magenta (regular grid) simulation averaged 75.8 seconds per frame, cyan (1-
level coarsened) averaged 27.6 seconds, yellow (2-levels) averaged 19.8 seconds, and green
(3-levels) averaged 18.7 seconds. This reflects a natural diminishing of returns: every
subsequent step leaves far fewer active DOFs available to be coarsened.

5.6.6 Gooey Armadillo

In Figure 5.16 a strongly viscous armadillo is released from a standing position and slowly
collapses. The large yet compact liquid volume, strong viscous forces, and high degree of
deformation under gravity make this our most accelerated example: we see a speed-up
factor of 9.4× for the linear solve and 8.8× for the entire viscosity solve. Furthermore,
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Figure 5.16: Gooey Armadillo: A highly viscous armadillo released from a standing
position slowly collapses. Linear solve speed-up factor: 9.4×.

because the viscosity solve is a significant bottleneck in this scenario, the entire simulation
performance improved by a factor of 6.3×.

Figure 5.17a plots the linear solve time as a function of fine-grid (effective) resolution for
a single frame in the armadillo example for the regular grid (red) and octree (blue) methods,
illustrating that our method is more beneficial for higher resolution problems. For the same
resolution the smaller systems generated by our method also require fewer iterations, as
shown in Figure 5.17c. Convergence of the Conjugate Gradients routine stalled completely
at around 14M DOFs for the regular grid, even when periodically recomputing the residual
to reduce round-off effects. By contrast, the octree system succeeded up to an equivalent of
140M regular DOFs, i.e., even beyond the range of the graphs. If the regular grid viscosity
had converged at higher resolutions, these performance trends suggests that octree viscosity
would yield even larger speed-up factors. Figure 5.17b shows that the overhead of both
discretizations entails only a small additional computational cost compared to that of the
linear solver and is not much worse for the octree.

5.6.7 Bunny Drop

Our proposed method can simulate viscous liquids at higher (effective) grid resolutions
than the regular grid. In Figure 5.18, a high resolution fine grid is necessary to capture
the collision between the falling viscous bunny and the two stationary thin wires. The
corresponding linear system for the regular grid is so poorly conditioned that Conjugate
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(a) Linear solve cost. (b) Solver overhead. (c) CG iteration counts.

Figure 5.17: Performance of the first frame for Gooey Armadillo (§5.6.6). The X-axis
indicates the number of active DOFs for the regular grid; for the corresponding octree,
this is the effective resolution. (a) The linear system solve for the regular grid (red)
requires significantly more compute time than for the equivalent octree (blue). The regular
grid also failed at higher resolutions for which the octree succeeds. (b) The overhead for
the octree solve (matrix setup, interpolation, etc.) is slightly larger than for the regular
grid, but still inexpensive relative to the large improvement of the solve time. (c) The
number of Conjugate Gradients iterations also increases more slowly for the octree than
the corresponding regular grid.

Figure 5.18: Bunny Drop: A viscous bunny is dropped on two thin wires. The regular
grid viscosity failed to solve at this grid resolution.
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Gradients fails to converge. Our method significantly reduces the size of the linear system
from 27.9M DOFs for the regular grid to 4.1M for the octree grid and allows Conjugate
Gradients to succeed. Because our adaptive method maintains a fine grid resolution at the
liquid surface, it is also able to capture the bunny’s collisions along the wires.

5.6.8 Pure Octree Simulator Examples

Figure 5.19 demonstrates that our method also works seamlessly in a purely adaptive
setting, as a viscosity plugin for the inviscid octree framework of Aanjaneya et al. (2017).
Figure 5.19 (left) shows a source pouring (Newtonian) ketchup. Figure 5.19 (right) shows
four armadillos initially stacked together falling under gravity and collapsing into a pile.
We use our basic (sloped gradient) octree viscosity method here, illustrating that even this
simpler approach can yield qualitatively plausible motion in many cases. Both examples
use an effective finest octree resolution of 5123 with 4 levels, and a level-set based interface
tracking resolution of 20483. Table 5.8 gives a timing breakdown.

Table 5.8: Average timing breakdown (in seconds) for pure octree examples.

Source Armadillos
Level set advection 7.2 17
Reinitialization 6.2 18
Velocity advection 1.9 1.98
Viscous update 18.4 50.3
Projection 9.6 22.7
Velocity extrapolation 1.2 2.2
Grid adaptation 3 4.2
Total time step 48 117

5.6.9 Degrees of Freedom and Matrix Sparsity

Our method achieves its efficiency by reducing the number of active DOFs. For example,
the octree viscosity DOF count for the Gooey Armadillo (§5.6.6) was 7.7× smaller than
for the regular grid. Although velocity samples at transition regions have more non-zeros
per matrix row than in uniform regions, T-junctions are a relatively small subset of the
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Figure 5.19: Pure Octree Simulator: (Left) A source pours (Newtonian) ketchup. (Right)
A stack of armadillos falls into a pile.

domain and our stencils are compact so the average number of non-zeros per DOF is still
comparable to a regular grid. For example, in the first frame of Figure 5.16 each matrix
row contained, on average, 14.67 non-zeros for the regular grid and 16.03 non-zeros for the
octree. Hence, the sparsity of our octree linear systems is not appreciably worse than for
regular grids.

If one were to derive a hexahedral finite element viscosity discretization on an octree, it
could also provide a DOF reduction. However, a typical node-based linear FEM would lead
to much denser matrices than ours. In the first frame of Figure 5.16 our octree consists of
3.39M active face DOFs, and assuming roughly 15 non-zeros per DOF, this yields about
50.85M non-zeros for our proposed method. The same octree has 1.06M active nodes,
and each FEM node would contain three velocity DOFs, resulting in 3.18M node-based
DOFs. Because regular grid FEM would require 81 non-zeros per DOF on uniform regions
(Zhu et al., 2010) (and T-junctions would worsen this) the linear system would contain
approximately 257.8M non-zeros, i.e., more than a factor of five more matrix non-zeros
than our method for about the same number of unknowns.
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Chapter 6

Conclusion

Our research focuses primarily on improving fluid simulation performance by strategically
reducing computational effort in fluid regions that do not meaningfully contribute to visual
quality. These efficiency gains are motivated by the visual effects industry’s perpetual drive
for better quality simulations and faster turn around times to iterate on a director’s vision.
To emphasize this point, in collaboration with SideFX, our constraint bubbles and adaptive
viscosity contributions have been implemented as features in their industry standard software,
Houdini, versions 16.5 (SideFX, 2017) and 18.5 (SideFX, 2020), respectively. Additionally,
we have released all of our research code as free, open source plug-ins to Houdini to both
encourage researchers to build upon our work and visual effects artists to utilize our research
tools in industry (Goldade, 2019, 2020).

6.1 Summary

The goal of our work is to significantly improve simulation efficiency for viscous liquids
and entrained bubbles. Our novel variational finite difference discretization of the viscosity
PDE on adaptive grids is convergent in analytical tests, SPD by construction, and up
to 9.4× faster to solve than an equivalent regular grid discretization. The significant
reduction in degrees-of-freedom, up to 7.7×, also allows for higher resolution simulations
than is achievable with regular grids, due to Conjugate Gradients failing to converge. We
demonstrate that our adaptive method still closely matches the regular grid, confirming
our hypothesis that interior flows are dampened due to viscosity and can be approximated
coarsely without impacting visual quality.
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Our novel reduced models for bubbles consists of a constraint-based approach to remove
the interior DOFs for zero-density bubbles and affine regions to model the interior, pointwise
divergence-free, velocity field of non-negligible density bubbles. Our constraint method
allows for interesting effects like solid-liquid coupling at-a-distance through monolithic
constraint regions without incurring the substantial increase in air volume DOFs required
for a standard two-phase method. Our bubble volume tracking method enables the use
of the standard liquid-only FLIP implementation that correctly removes spurious voids
and corrects volume drift caused by numerical errors during advection. Our affine regions
correctly achieve hydrostatic equilibrium for matching bubble-liquid densities and for
bubbles with greater density than the liquid, bubbles correctly sink. The affine method
offers performance improvements of 4.1× over a full two-phase method. We extend our affine
region method to act as a generalized coarsening strategy to accelerate free surface liquid
simulations, offering a performance improvement of 6.1× while remaining qualitatively
similar to the regular grid equivalent.

6.2 Discussion and Future Work

6.2.1 Reduced Model Liquids

We have proposed two new reduced fluid models that integrate with and extend the widely
adopted staggered grid paradigm, and we have fruitfully applied these models in a range
of compelling two-phase and free-surface flow scenarios. Affine regions, while powerful,
cannot always be applied in the same situations as constraint bubbles. For example, a
single constraint bubble suffices for each air gap in the winding tube geometry (§4.5.3),
but multiple affine regions would be needed for comparable non-zero density flows because
their explicit interior velocity field cannot represent several twists. Unsurprisingly, we also
observed that a too-thin layer of regular cells between the free surface and the affine tiles can
cause grid-dependent motion artifacts (see Figure 4.15c), similar to prior adaptive schemes
(e.g., (Irving et al., 2006) discuss the notion of problem-dependent “optical depth”).

Uniform affine tiling is perhaps the simplest adaptivity strategy that one might con-
sider; because of the geometric flexibility inherent in our affine regions, alternative grad-
ing/shaping/sizing patterns could yield even further speed-ups. For example, quickly
ramping tile sizes away from the surface, as in octrees, is an obvious next step. Because we
already compute a least-squares fit of the provisional affine velocity field, the error of this
fit is a potential oracle to determine if affine tiles can be locally coarsened. We assumed
voxelized affine regions for simplicity, but as with rigid bodies, irregular regions could be

98



supported via cut-cells (Ng et al., 2009). We also assumed that affine tiles were separated
by a layer of regular cells, for simplicity and to avoid velocity discontinuities between tiles

— it would be interesting to explore direct tile-tile coupling.

Coupling instead to a boundary element-type (e.g., harmonic) velocity field (Da et al.,
2016) is also an exciting avenue, though such models have many velocity degrees of freedom
that cover the entire surface, rather than being coefficients of a low order polynomial.
Surface tension effects could be added with a standard ghost-fluid approach (Enright et al.,
2003; Hong and Kim, 2005). Since we copy the affine velocity field back to the regular
grid, if a closer match to regular-grid pressure-projected velocities was desired, we could
additionally apply several Jacobi smoothing iterations of the pressure projection system
over the resulting velocity field.

Compressible Affine Fluids

Our constraint bubbles assume incompressibility for simplicity. However, if air compressibil-
ity is desired, our bubble-tracking could straightforwardly be extended with a per-bubble
mass variable to inform a density-based equation of state model. Such terms are used by
Aanjaneya et al. (2013), but our approach would again circumvent their explicit interior
projection or (mass-conserving) advection. Relatedly, it would be interesting to introduce
divergence-control for affine regions, which could be useful for explosion effects (Feldman
et al., 2003) and volume correction, as well as the extension to equation of state models
for compressible bubbles. This could be incorporated through a modified constraint of
∇ · uB = Tr(A) = const, leading to additional terms in the right hand side vector.

Affine Region Advection

We only exploited affine regions during pressure projection (because it is often the dominating
cost for inviscid fluids in practice) and used standard grid-based advection in their interiors.
This might become a bottleneck for sufficiently large regions. However, it may be possible
to radically reduce this cost, perhaps through a reduced affine advection model, in the vein
of prior model reduced advection treatments (Wicke et al., 2009; Cui et al., 2018), or by
carefully recovering (approximate) affine velocities from surrounding grid velocities, in the
spirit of our constraint bubbles.
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6.2.2 Reduced Model Framework

Affine regions for two-phase and free surface flows are interesting proof-of-concepts for
a more general reduced model framework. The flexiblity of handling irregular geometric
regions and the simplicity of the implementation suggest a promising new framework to
quickly add adaptivity to other simulations. Recently, Panuelos et al. (2020) extended our
affine regions to unsteady-Stokes (Larionov et al., 2017) by modelling velocities with a
quadratic vector field. Their investigation determined that for viscous stresses, an affine
field was insufficient. To that end, adopting higher order polynomial vector fields, as
in PolyPIC (Fu et al., 2017), would improve the velocity field’s flexibility at the cost of
(rapidly) increasing degree-of-freedom counts per region. We are also interested in applying
our reduced model to MPM simulations. The flux splitting method (Stomakhin et al.,
2014; Fang et al., 2020; Bonet and Wood, 2008) for modelling nearly incompressible elastic
materials employs a pressure Poisson problem similar to Aanjaneya et al. (2013) which, as
discussed above, is a potential extension of our affine method. A more general extension of
our reduced model for MPM is to model the deformation gradient tensor as a polynomial
tensor field over a reduced region and therefore solve elastic forces in a reduced framework.

6.2.3 Adaptive Viscosity

Our performance numbers for our adaptive viscosity method confirm its efficiency relative
to regular grids, our numerical experiments verify that our adaptive discretization converges
to analytical viscosity PDE solutions and our visual experiments demonstrate both the
key importance of orthogonal gradients and the method’s ability to achieve high-quality
results. A commonly held belief of adaptive methods was that the performance benefits are
outweighed by both their overhead cost and complexity. We hope our work, like that of
Setaluri et al. (2014), will help to further dispel this perception. We consciously designed a
new method that can work as a drop-in replacement for an existing regular grid viscosity
solver which eschews the need for an entire simulation pipeline to be redeveloped to support
adaptive grids.

We retained Houdini’s parallelized Jacobi-preconditioned Conjugate Gradients for our
tests because, despite the large number of iterations it required, alternative off-the-shelf
solvers that we tried (e.g., algebraic Multigrid) did not exhibit competitive performance.
Aanjaneya et al. (2019) investigated geometric Multigrid methods for solving the regular
grid viscosity problem and discovered that Jacobi smoothing performs poorly. Instead,
they employed a local box smoother over each velocity DOF. Our guarantee of symmetric
positive definiteness is essential in extending their preconditioned Multigrid method to the
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adaptive setting. Adapting the distributive smoothing concepts from staggered Multigrid
elasticity schemes (e.g., (Zhu et al., 2010)) may also be a viable avenue.

For simplicity, we adopted a uniformly refined grid at the liquid’s surface and a (face-)
graded interior of coarse grid cells. Lifting these restrictions could offer greater flexibility
and faster coarsening, but at the cost of increased stencil complexity. Additionally, as
illustrated in Figure 5.1, the face-grading scheme rapidly transitions from the fine magenta
grid cells at the liquid surface to the much coarser green grid cells. A non-graded scheme
would only achieve at most one extra layer of green cells.

Relatedly, compared to a more classical finite difference/volume approach, our method
has two potential error sources: first, our various stencils are often not centered differences,
and second, near level transitions the discrete tensor divergence operator constructed by
symmetry does not have an obvious finite difference/volume interpretation. More complex
but non-symmetric stencils would likely enable second order convergence in L∞ (e.g., Horesh
and Haber (2011) describe a non-symmetric second order octree scheme for Maxwell’s
equations).

6.2.4 Adaptive Variational Finite Difference Framework

We consider our octree discretization for viscous liquids as a demonstration of a more
general novel adaptive variational finite difference framework that is symmetric positive
definite by construction. For example, the unsteady-Stokes method of coupling pressure and
viscous stresses (Larionov et al., 2017) imposes a large trade-off of simulation performance
for better viscous coiling effects and surface details. This method is already presented
in the variational form, requiring only the adaptive finite difference discretizations to
extend the regular grid method to octrees. It would be interesting to compare solving the
Stokes method using our adaptive variational framework against the quadratic regions of
Panuelos et al. (2020) in terms of both implementation complexity and overall performance
improvements. Looking beyond viscosity, regular grid variational finite differences have
also been applied to solid-fluid interaction (Batty et al., 2007), granular flow (Narain et al.,
2010), and stream functions (Ando et al., 2015a) among other problems; Zhu et al. (2010)
similarly used staggered finite differences for elasticity, which can likewise be expressed in a
variational form. Our work naturally opens the door to systematic, symmetry-preserving
extensions of all such staggered finite difference methods to octrees.
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Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2015b. A Dimension-Reduced Pressure
Solver for Liquid Simulations. Comput. Graph. Forum 34, 2 (May 2015), 473480.
https://doi.org/10.1111/cgf.12576

Inc Autodesk. 2021. Maya.

Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. 2007. A Finite
Element Method for Animating Large Viscoplastic Flow. In ACM SIGGRAPH 2007
Papers (SIGGRAPH 07). Association for Computing Machinery, New York, NY, USA,
16es. https://doi.org/10.1145/1275808.1276397

Christopher Batty. 2017. A cell-centred finite volume method for the Poisson problem on
non-graded quadtrees with second order accurate gradients. J. Comput. Phys. 331 (2017),
49 – 72. https://doi.org/10.1016/j.jcp.2016.11.035

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational
Framework for Accurate Solid-Fluid Coupling. In ACM SIGGRAPH 2007 Papers
(SIGGRAPH 07). Association for Computing Machinery, New York, NY, USA, 100es.
https://doi.org/10.1145/1275808.1276502

Christopher Batty and Robert Bridson. 2008. Accurate Viscous Free Surfaces for Buckling,
Coiling, and Rotating Liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA 08). Eurographics Association, Goslar, DEU,
219228.

Christopher Batty and Ben Houston. 2011. A Simple Finite Volume Method for Adaptive
Viscous Liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA 11). Association for Computing Machinery, New York,
NY, USA, 111118. https://doi.org/10.1145/2019406.2019421

Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete
Viscous Sheets. ACM Trans. Graph. 31, 4, Article 113 (July 2012), 7 pages. https:

//doi.org/10.1145/2185520.2185609

103

https://doi.org/10.1145/2766935
https://doi.org/10.1145/2461912.2461982
https://doi.org/10.1111/cgf.12576
https://doi.org/10.1145/1275808.1276397
https://doi.org/10.1016/j.jcp.2016.11.035
https://doi.org/10.1145/1275808.1276502
https://doi.org/10.1145/2019406.2019421
https://doi.org/10.1145/2185520.2185609
https://doi.org/10.1145/2185520.2185609


Christopher Batty, Stefan Xenos, and Ben Houston. 2010. Tetrahedral Embedded Boundary
Methods for Accurate and Flexible Adaptive Fluids. Comput. Graph. Forum 29 (05
2010), 695–704. https://doi.org/10.1111/j.1467-8659.2009.01639.x

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.
2010. Discrete Viscous Threads. In ACM SIGGRAPH 2010 Papers (SIGGRAPH 10).
Association for Computing Machinery, New York, NY, USA, Article 116, 10 pages.
https://doi.org/10.1145/1833349.1778853

Javier Bonet and Richard D. Wood. 2008. (2 ed.). Cambridge University Press. https:

//doi.org/10.1017/CBO9780511755446

Andrea Bonito, Marco Picasso, and Manuel Laso. 2006. Numerical simulation of 3D
viscoelastic flows with free surfaces. J. Comput. Phys. 215, 2 (2006), 691 – 716. https:

//doi.org/10.1016/j.jcp.2005.11.013

Landon Boyd and Robert Bridson. 2012. MultiFLIP for Energetic Two-phase Fluid
Simulation. ACM Trans. Graph. 31, 2, Article 16 (April 2012), 12 pages. https:

//doi.org/10.1145/2159516.2159522

J.U. Brackbill and H.M. Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986), 314 – 343.
https://doi.org/10.1016/0021-9991(86)90211-1

Robert Bridson. 2015. Fluid simulation for computer graphics, 2nd edition. AK Peters /
CRC Press.

Tyson Brochu, Christopher Batty, and Robert Bridson. 2010. Matching Fluid Simulation
Elements to Surface Geometry and Topology. In ACM SIGGRAPH 2010 Papers (SIG-
GRAPH 10). Association for Computing Machinery, New York, NY, USA, Article Article
47, 9 pages. https://doi.org/10.1145/1833349.1778784

Oleksiy Busaryev, Tamal K. Dey, Huamin Wang, and Zhong Ren. 2012. Animating Bubble
Interactions in a Liquid Foam. ACM Trans. Graph. 31, 4, Article 63 (July 2012), 8 pages.
https://doi.org/10.1145/2185520.2185559

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002. A
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