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Abstract

As the number of subscribers in wireless networks and their demanding data rate are exponen-
tially increasing, multiple-input multiple-output (MIMO) systems have been scaled up in the 5G
where tens to hundreds of antennas are deployed at base stations (BSs). However, by scaling
up the MIMO systems, designing detectors with low computational complexity and close to the
optimal error performance becomes challenging. In this dissertation, we study the problem of
efficient detector designs for MIMO systems.

In Chapter 2, we propose efficient detection algorithms for small and moderate MIMO sys-
tems by using lattice reduction and subspace (or conditional) detection techniques. The proposed
algorithms exhibit full receive diversity and approach the bit error rate (BER) of the optimal
maximum likelihood (ML) solution. For quasi-static channels, the complexity of the proposed
schemes is cubic in the system dimension and is only linear in the size of the QAM modulation
used. However, the computational complexity of lattice reduction algorithms imposes a large
burden on the proposed detectors for large MIMO systems or fast fading channels.

In Chapter 3, we propose detectors for large MIMO systems based on the combination of
minimum mean square error decision feedback equalization (MMSE-DFE) and subspace detec-
tion tailored to an appropriate channel ordering. Although the achieved diversity order of the
proposed detectors does not necessarily equal the full receive diversity for some MIMO systems,
the coding gain allows for close to ML error performance at practical values of signal-to-noise
ratio (SNR) at the cost of a small computational complexity increase over the classical MMSE-
DFE detection. The receive diversity deficiency is addressed by proposing another algorithm in
which a partial lattice reduction (PLR) technique is deployed to improve the diversity order.

Massive multiuser MIMO (MU-MIMO) is another technology where the BS is equipped with
hundreds of antennas and serves tens of single-antenna user terminals (UTs). For the uplink of
massive MIMO systems, linear detectors, such as zero-forcing (ZF) and minimum mean square
error (MMSE), approach the error performances of sophisticated nonlinear detectors. However,
the exact solutions of ZF and MMSE involve matrix-matrix multiplication and matrix inversion
operations which are expensive for massive MIMO systems. In Chapter 4, we propose efficient
truncated polynomial expansion (TPE)-based detectors that achieve the error performance of the
exact solutions with a computational complexity proportional to the system dimensions.

The millimeter wave (mmWave) massive MIMO is another key technology for 5G cellular
networks. By using hybrid beamforming techniques in which a few numbers of radio frequency
(RF) chains are deployed at the BSs and the UTs, the fully-digital precoder (combiner) is ap-
proximated as a product of analog and digital precoders (combiners). In Chapter 5, we consider
a signal detection scheme using the equivalent channel consisting of the precoder, mmWave
channel, and combiner. The available structure in the equivalent channel enables us to achieve
the BER of the optimal ML solution with a significant reduction in the computational complexity.
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Chapter 1

Introduction

In the past decades, multiple-input multiple-output (MIMO) systems with multiple antennas at

the transmitter and receiver sides have gained significant interest in wireless communications.

MIMO systems can provide considerable improvements in capacity, link reliability, and power

efficiency when compared to single-input single-output systems [28, 67]. As a result, they have

been widely implemented in modern wireless communication standards, such as long-term evo-

lution (LTE) and WiFi (IEEE 802.11n/ac) [15,67]. However, the wireless products and standards

in the 3rd generation (3G) and 4th generation (4G) of wireless systems have implemented MIMO

technology by deploying small and moderate numbers of antennas mainly in the range of (2−8)

antennas. MIMO systems with such numbers of antennas have small or moderate spectral effi-

ciency and are not able to meet the high data rate demands of ever-increasing subscribers with

their data-hungry applications. Therefore, in the 5th generation (5G) of wireless systems and be-

yond, the numbers of antennas are scaled up to tens or hundreds of antennas in order to achieve

spectral efficiency of tens to hundreds of bps/Hz [15]. In the literature, such systems are referred

to as large-scale or massive MIMO systems.

Depending on the application, different configurations can be considered for MIMO systems,
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Figure 1.1: Point-to-point MIMO system.

such as point-to-point MIMO and multiuser MIMO (MU-MIMO) configurations [15]. Fig.1.1

indicates a point-to-point MIMO system where several antennas are deployed at both terminals.

When the terminals are equipped with a large number of antennas, we will have a large point-

to-point MIMO system which can be utilized for high-speed wireless backhaul connectivity be-

tween base stations (BSs). In MU-MIMO systems, the BS with multiple antennas simultaneously

serves several user terminals (UTs). The UTs can be small devices, such as single-antenna mo-

bile/smartphones or medium to large terminals, like laptops or TVs [15]. MU-MIMO systems

provide multiplexing gain to all users and robustness to the propagation environment. However,

the number of antennas and consequently, the spectral efficiency for such systems is moderate.

To meet the high data rate requirements of the 5G wireless networks, massive MU-MIMO sys-

tems have been proposed where the BS is equipped with hundreds of antennas simultaneously

communicating with tens of single-antenna UTs [5, 43, 67]. Fig.1.2 shows a multi-cell massive

MU-MIMO.

The optimal recovery of the transmitted signals at the receiver, which is corrupted by chan-

nel fading, noise, and interference, is a challenging issue in MIMO systems. It is known that

the MIMO detection problem can be translated to the closest lattice point search (CLPS) prob-

lem, which is NP-hard [1, 22]. The optimal maximum likelihood (ML) detection [22] of the

2



      

Figure 1.2: Massive MU-MIMO system.

transmitted signals imposes a huge computational complexity on the system, which increases

exponentially with the number of transmit antennas. Moreover, other well-known detection al-

gorithms and techniques that work well for small MIMO systems may not be practical for large

MIMO systems as they may not scale well with the dimensions of the system [15]. Therefore,

designing detectors with low computational complexity and close to optimal performance is of

great importance for moderate and large-scale MIMO systems.

In an effort to reduce the complexity compared to the ML solution, suboptimal receivers,

such as zero-forcing (ZF), decision feedback equalizer (DFE), and minimum mean square error

(MMSE) [26, 37, 72], have been extensively studied in the literature. However, the bit error rate

(BER) performances of these detectors are still far worse than that of the ML, especially at high

signal-to-noise ratios (SNRs) and for systems with comparable MIMO channel dimensions. A

typical example of such systems is the point-to-point MIMO or the MU-MIMO system when the

numbers of antennas at both terminals are comparable. For the uplink of massive MU-MIMO

systems, since the number of antennas at the BS is much larger than the number of UTs, linear

detectors, such as ZF and MMSE, perform sufficiently close to the ML solution [67,71]. We will

discuss detection techniques for massive MU-MIMO systems later in this section.

Lattice reduction aided (LRA) techniques [53, 99, 106] have been proposed to improve the

3



BER performances of suboptimal detectors. In these algorithms, efficient lattice reduction sub-

routines, such as Lenstra-Lenstra-Lovász (LLL) algorithm, are used. Although the maximum

receive diversity is guaranteed by LRA techniques [94], there is still a performance gap, i.e.,

a coding gain or horizontal shift in the error curves compared to the ML solution. Moreover,

the computational complexity of reduction algorithms imposes a large burden on the detectors,

especially when the dimension of the system increases.

The idea of splitting the transmitted symbol vector into two subsets where an exhaustive

search over a given constellation is performed for one subset and the detection process is com-

pleted by a suboptimal detector for the other subset, a.k.a. subspace detection or conditional

optimization detection [90], was initially considered for under-determined systems in [24]. In

the literature, conditional detection has also been referred to as subspace detection [14] or partial

marginalization (PM) [60]. Fixed-complexity sphere decoder (FSD) [7], parallel detection [63],

Chase detector [97], layered orthogonal lattice detector (LORD) [91], and channel puncturing

scheme [86] are all based on the same idea. The idea of conditional optimization detection in

conjunction with LRA techniques has been considered in [74]. The FSD was proposed to deal

with the variable complexity of the tree-based sphere decoding (SD) algorithms. In the FSD, the

branches are fully expanded for only a certain number of levels in the corresponding detection

tree (typically obtained via the QR decomposition (QRD) of the channel matrix).

The FSD scheme can achieve the optimal performance by performing some full search levels

over the constellation points according to the FSD ordering. However, the required number

of full search levels makes the scheme computationally prohibitive when the dimension of the

system increases or the size of the constellation is large. In [63] and [97], the parallel and the

Chase detectors are respectively introduced where a full search over the constellation along with

a specific channel ordering for detecting one symbol is conducted. These orderings rearrange the

channel matrix to find the best submatrix for conditional optimization detection and restrict the

performance improvement of the conditional MIMO detection, especially for soft-output MIMO
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systems.

The PM scheme in [60], or its extension for higher-order constellations [78], is a detection

scheme for soft-output MIMO detection which approximates the exact a-posteriori probability

(APP). The PM scheme marginalizes the posterior density for the received signal exactly over

a subset of the transmitted bits with the lower SNR. The summation in the max-log approxi-

mation for the remaining bits is approximated by a ZF-DFE solution. Their proposed ordering

(or permutation) of the channel matrix is exactly the FSD ordering proposed in [7, 52]. In order

to reduce the computational complexity of the ZF-DFE process, the achievable information rate

(AIR) based PM (AIR-PM) detector is proposed in [44].

In the subspace detection scheme proposed in [14], low-reliable data streams are considered

in several sub-MIMO systems by exchanging the columns of the channel matrix in order to

improve the error performance. Then, exhaustive APP detections are performed for the sub-

MIMO systems. The log-likelihood ratios (LLRs) of the overlapped part of the signal space are

summed while for other streams only a single APP is performed. In [86], a subspace detection

scheme is proposed in which a punctured QRD is employed instead of regular QRD in order to

reduce computational complexity and allow for joint detection of a subset of decoupled streams.

The QRD version of their proposed scheme is similar to the complex version of LORD [91].

Although the works in [90] - [86] are essentially based on the same idea, they differ in some

aspects, including the column ordering, column back substitution strategy, and hard/soft-output

detection. Each choice of these options affects the error performance and computational com-

plexity of the system such that in some cases they are far away from the optimal error perfor-

mance or achieve a near-optimal performance at the cost of huge computational complexity.

There exist other MIMO detection schemes like the work in [12], which is an ML tree search

detection algorithm based on differential metrics and their recursive calculations and does not

require the QRD and matrix inversion. Although the complexity of the proposed detector in [12]
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approaches to a constant at high SNRs, it suffers from a variant complexity at low SNRs. More-

over, the efficiency of the proposed scheme in [12] reduces for high order modulations even for

small MIMO systems. As a result, a near-optimal MIMO detection scheme with low computa-

tional complexity is still a challenging issue for moderate to large-scale MIMO systems.

In massive MU-MIMO systems, the design of practical signal detectors for the uplink is a

vital challenge. The optimal ML detector is unfeasible for such systems with large dimensions.

However, when the ratio of the antennas at the BS to the number of UTs is large, the signal pro-

cessing is simplified such that the error performances of linear detectors, such as ZF and MMSE,

are close enough to that of the optimal ML solution [67, 71]. However, the exact solutions of

ZF and MMSE involve O(NK2 + K3) 1 operations because of a matrix-matrix multiplication

- for the computation of the Gram channel matrix - and matrix inversion, respectively, with the

computational complexity of O(NK2) and O(K3) where N is the number of receive antennas

at the BS, and K is the number of UTs. Such operations become very expensive for massive

MIMO as N and/or K become very large. Several techniques have been proposed in the liter-

ature in order to reduce the computational complexity of these two operations. In an effort to

avoid direct matrix inversion, approximate algorithms using the truncated Neumann series ex-

pansion have been proposed in [31, 32, 101, 102, 108, 113]. The approximate inversion methods

are useful when the ratio of the BS antennas to the UTs is large, while an exact inversion is

preferred for small ratios. Further improvements have been achieved by replacing the Neumann

series approximation with other iterative algorithms, such as the Gauss-Seidel [21], successive

over-relaxation [32], Jacobi [92], Richardson [30], and conjugate gradient [45] methods. All

these methods reduce the complexity of the matrix inversion from O(K3) to O(K2), but they

still suffer from the complexity of O(NK2) due to the Gram matrix calculation [13].

Another class of approximate methods is the truncated polynomial expansion (TPE) in which

1O(·) is the big O notation that we use to evaluate how the computational complexity of detection algorithms
grows as the dimensions of the system grow.
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the matrix inversion is approximated with J finite terms of the Taylor series expansion. Such

methods reduce the overall complexity to a factor which is proportional to the number of BS

antennas and users, i.e., O(JKN). This is achieved by an iterative implementation of a series

of matrix-vector multiplications instead of the matrix-matrix multiplication. However, the con-

vergence speed of the TPE detector highly depends on a normalization factor in the polynomial

coefficients. The optimal normalization factor, in the sense of convergence speed, requires the

calculations of the largest and smallest eigenvalues of the Gram matrix [89]. The calculations of

the Gram matrix and its eigenvalues increase the computational complexity to O(NK2 + K3).

An approximate method has been proposed in [89] for the calculations of the eigenvalues of the

Gram matrix. This method reduces the complexity of the eigenvalues calculations to O(K2).

However, it still needs the calculations of the entries of the Gram matrix. Therefore, its overall

computational complexity is O(NK2 +K2). Consequently, efficient detectors with low compu-

tational complexity are required for the uplink of massive MIMO systems.

1.1 Summary of the Thesis

In this thesis, we deal with the problem of signal detection for MIMO systems. The objective is

to find low-complexity near-optimal detectors for such systems. We start with small and mod-

erate MIMO systems in Chapter 2. The proposed detectors exhibit essentially ML performance

as demonstrated in simulations. Moreover, it is shown that the proposed algorithms guarantee

full receive diversity. In the first algorithm, similar to what has been proposed in [74], a total

of M numbers of LLL reductions are performed on M submatrices, but the exhaustive searches

for detecting one symbol are conducted M times. Then, the solution that has the smallest Eu-

clidean distance to the received signals is selected. The main cost resides in performing the

lattice reduction M times. As a result, we propose a second algorithm to reduce the compu-

tational complexity due to M times lattice reduction. In the first algorithm, to find the best
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submatrix for LRA conditional detection, a separate lattice reduction is done on each submatrix.

However, the submatrices differ only in one column. Hence, one expects that their lattice reduc-

tion unimodular matrices are very close to each other. The second algorithm uses the unitary

transformation matrix obtained from the reduction of one of the submatrices for transforming all

the other submatrices. For our proposed algorithms, the overall computational complexity of the

preprocessing and detection stages is O(M4/NB + M3|X |)) where NB is the number of signal

vectors for which the channel is considered constant. For quasi-static channels, where the cost

of the preprocessing stage can be negligible over the whole packet over which the channel is

constant, the computational complexity of the detector is linear in the size of the QAM constel-

lation, i.e., O(M3|X |)). However, the cost is prohibitive for fast fading channels. Moreover, for

large MIMO systems, the computational complexity of the lattice reduction algorithms imposes

a large burden on the detectors.

In the first part of Chapter 3, we remove the lattice reduction algorithm and propose a detec-

tion algorithm that is based on the combination of MMSE-DFE and subspace detection tailored

to the V-BLAST ordering on the whole MIMO channel. The proposed detector achieves the same

diversity order as the FSD scheme with the FSD ordering and one full search level. However, the

search over all possible submatrices makes the proposed detector outperform the FSD scheme.

Although the diversity order of the proposed detector does not necessarily achieve the full ML

diversity for some MIMO systems, its coding gain compared to the FSD scheme with one full

search level allows for close to ML performance at practical values of SNR. The BER perfor-

mance is close to that of the ML while the FSD scheme needs a larger number of full searches

to achieve the optimal error performance. The proposed algorithm has a linear complexity in

the constellation size and a complexity of O(M4) in the system dimension M because of the

cost of M successive QRD of all M possible subdivisions of the backward filter obtained by the

MMSE-DFE filtering, even by a fast implementation procedure as described in [8, 37, 114] for

example. We show how the cost can be reduced to a cubic complexity in M using the Givens
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rotations method. Because of the structure of the submatrices and the fact that successive subma-

trices have M − 2 columns in common, there is no need to perform the QRD from scratch. For

the proposed detection algorithm, there is a performance gap to the ML BER at high SNRs when

we increase the dimension of the system and also the constellation order. Hence, we propose a

second algorithm that offers a modification on the first algorithm at the cost of a small increase

in the computational complexity yet linear in X and cubic in M . In the first algorithm, the whole

channel matrix is ordered whereas the remaining submatrix obtained by removing one column

at a time is not necessarily in the optimal order which results in performance degradation for

larger systems with high order constellations. To improve the performance, one can perform a

new greedy ordering on each submatrix; however, this increases the complexity of all QRD to

O(M4) due to destroying the upper triangular structure of the submatrices. Alternatively, we

suggest conducting the one-step V-BLAST ordering such that only the first index of the optimal

ordering of the corresponding submatrix is found. Then, the remaining of the detection is the

same as the proposed detector in the first algorithm. The overall computational complexity of

the second algorithm is also O(|X |.M 3). The proposed detectors can naturally be exploited for

soft-output MIMO detectors when concatenated with a soft-input soft-output (SISO) decoder for

MIMO systems with error-correcting codes. This detector gives a better list of candidate code-

words compared to the state of the art in [7, 63, 97]. It is shown that when the proposed detector

is accompanied by a SISO decoder, the error performance is close to that of the list sphere de-

coder (LSD) which uses a much larger list size. In addition, the proposed detector naturally lends

itself to parallel implementation and offers a unified framework with a fixed-complexity that is

applicable for all configurations of MIMO systems including under-determined MIMO systems.

In the second part of Chapter 3, we propose a detection scheme in order to improve the di-

versity order of conditional detection with one full search level. We deploy the partial lattice re-

duction (PLR) [64] which utilizes the lattice reduction with a tunable block size over the channel

matrix. With this technique, the diversity order improvement of the SIC detection equals to the
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block size of the PLR algorithm. The proposed detector outperforms the-state-of-the-art MIMO

detectors in terms of diversity order and error performance with comparable computational com-

plexity. By applying several efficient techniques, and also selecting an appropriate block size

for the PLR algorithm, a computational complexity cost of O(|X |.M 3) can be achieved for the

proposed detector.

In Chapter 4, we propose an efficient detector for the uplink of massive MU-MIMO sys-

tems. For such systems, suboptimal linear detectors, such as ZF and MMSE, exhibit a BER

performance close to that of the optimal ML solution. Two main operations in these linear de-

tectors are matrix inversion and matrix-matrix multiplication for the calculation of the Gram

channel matrix. These operations are expensive for massive MIMO systems as they require

O(KN2 + K3) operations where N is the number of antennas at the BS, and K is the number

of UTs. Therefore, we resort to the class of TPE methods as they avoid matrix inversion and

alternatively approximate it with J finite terms of the Taylor series expansion. Moreover, by

using an iterative implementation, the expensive matrix-matrix multiplication is replaced with a

series of matrix-vector multiplications. This reduces the overall computational complexity of the

TPE-based detector to a factor which is proportional to the number of antennas at the BS and also

the number of UTs, i.e., O(JKN). However, the optimal TPE-based detector, in the sense of

convergence speed, requires the calculations of the largest and smallest eigenvalues of the Gram

matrix [89] which increase the computational complexity to O(NK2 + K3). In this chapter, by

using the approximate extreme eigenvalues of the Gram matrix of massive MIMO systems, we

propose a constant normalization factor which depends on the dimensions of the system. This

normalization factor is calculated withO(1) operations and consequently, the overall complexity

of the proposed TPE-based detector is O(JNK). The proposed TPE-based detector exhibits an

error performance similar to that of the TPE with the optimal polynomial coefficients for small

loading factors β = K
N

. A modification is considered for systems with larger β’s in order to

remove the error performance degradation at high SNRs which happens due to the inaccuracy of
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the extreme eigenvalues approximations for such systems. An efficient algorithm based on the

power method is proposed for calculating the extreme eigenvalues of such systems. By selecting

an appropriate value for J , our proposed detectors achieve the BER performances of the ZF or

MMSE detectors while the computational complexity is significantly reduced.

In Chapter 5, we propose a detection algorithm for millimeter wave (mmWave) massive

MIMO systems with hybrid beamforming. Hybrid beamforming is considered to be the viable

realization of massive MIMO systems in the mmWave bands as it offers low implementation

costs by utilizing a few RF chains at the BSs and/or the UTs. Hybrid beamforming structures

are designed by approximating the optimal fully-digital beamformer as a product of analog and

digital beamformers under Euclidean distance measure. Although such hybrid beamformers

exhibit relatively good performance in terms of spectral efficiency, their BER performance is

poor for some mmWave massive MIMO systems due to the approximation error. In this chapter,

we propose a signal detection scheme using the equivalent channel consisting of the precoder,

mmWave channel, and combiner in order to improve the error performance of such systems.

This equivalent channel is square with the dimension of up to 8 equal to the number of data

streams, i.e., Ns, in mmWave massive MIMO systems. This enables us to utilize the subspace

MMSE-DFE based detector proposed in Chapter 3. However, because of the available structures

in the equivalent channel matrix, the computational complexity can be reduced compared to the

detectors in Chapter 3. It is shown that the complexity of the proposed detector for the worst-

case scenario is O(N3
s |X |). On the other hand, the overall computational complexity of hybrid

beamforming techniques, such as orthogonal matching pursuit (OMP) [6], or its variants [66],

and alternating minimization (AM) [80, 109], are respectively O(M2NRFNs) and O(M(N +

N2
RF)Ns) where NRF is the number of RF chains. Consequently, for massive MIMO systems,

the computational complexity of our proposed detector is in the same order as that of the hybrid

beamforming technique. Our proposed detector achieves the optimal error performance while

the computational complexity is reduced compared to the ML or other detection schemes for

11



MIMO systems.

1.2 MIMO Detection Background

In this section, we introduce the system model as well as the main detection schemes that we

use in this thesis. We consider a MIMO system with M transmit and N receive antennas. The

received signal is

y = Hx + n, (1.1)

where x is the M × 1 transmitted symbols vector chosen from a given constellation, X , with the

average energy of Es. Moreover, H is the N ×M channel matrix whose entries are independent

and identically distributed (i.i.d.) following a complex Gaussian distribution with zero mean and

unit variance, and n is the complex Gaussian noise vector with zero-mean and i.i.d. entries of

variance N0. We further assume that the channel state information is perfectly known only at the

receiver. The ML solution to (1.1) is given by

x̂ = argmin
x∈XM

‖y −Hx‖2. (1.2)

This solution imposes a huge computational complexity on the system as it increases exponen-

tially with the number of transmit antennas. Hence, it is infeasible for large constellations or

large MIMO systems. SD is a more efficient implementation of the ML solution. The idea in SD

is to search over only lattice points located in a sphere with a certain radius around the received

vector [38] (See Fig. 1.3). Although SD is feasible for small lattice dimensions, its exponential

complexity makes this scheme impractical for systems with larger dimensions.

Therefore, approximate detection methods have been proposed in the literature in order to

reduce the computational complexity. ZF technique is a simple linear approximate method which
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Figure 1.3: Sphere decoding with radius d.

detects the signal vector as the closest lattice point to x̂ZF, where we have

x̂ZF = (HHH)−1HHy (1.3)

= x + (HHH)−1HHn, (1.4)

where HH is the Hermitian matrix of H. Then, the vector of closest constellation points to x̂ZF is

declared as the detected signal vector. ZF completely suppress the mutual interference between

the layers of the detection. This method reduces the computational complexity of the detection,

but it has a poor error performance due to noise amplification. When H has small singular values,

the effective noise is magnified significantly resulting in a poor error performance. In order to

improve over this issue, MMSE is utilized which considers the noise term in the design of linear

detector such that

x̂MMSE = (HHH + αIM)−1HHy, (1.5)

where α = N0

Es
. In contrast to ZF and MMSE that detect all entries of the transmitted signals

vector in parallel, there are other techniques that perform successive interference cancellation

(SIC) in which the signals are detected one after another [26, 33, 37]. One way to implement

SIC is to utilize the DFE technique by performing the QRD on the channel matrix. The MMSE
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Figure 1.4: Lattice reduction for a two-dimensional lattice.

counterpart of this SIC scheme, which is referred to as MMSE-DFE, is similarly implemented

when the channel matrix is replaced with the augmented (or regularized) channel matrix [22]

H̃ =

 H

√
α IM

 = Q̃R, (1.6)

where Q̃ ∈ C(N+M)×M is a matrix with orthonormal columns, and R ∈ CM×M is an upper

triangular matrix with real and positive diagonal elements. Multiplying F = QH as the forward

matrix on the received signal vector, where Q is the first N rows of Q̃, gives

y′ = QHy

= Rx + w,

(1.7)

where w = QHn − [R − QHH]x. Next, using the upper triangular structure of R, SIC can

be easily implemented by working from the last row upward. The drawback of this method is

error propagation because the detection of each symbol depends on the detection of previously

detected symbols.

LRA techniques [53, 99, 106] have been proposed to improve the BER performances of sub-

optimal detectors. Lattice reduction algorithms try to find a basis in which the vectors are short

and approximately orthogonal. See Fig. 1.4 for more illustration of a two-dimensional lattice

reduction. LLL [61] is a well-known lattice reduction algorithm which has a polynomial com-
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plexity in the dimension of the lattice. See Appendix A for more details. It is worth mentioning

that the original LLL algorithm was proposed for real-valued lattices while its complex-valued

version has been offered in [29]. A complex-valued basis B = [b1,b2, ...,bM ] is considered as

LLL-reduced if

|<{(pi,j}| ≤ 1/2, |={pi,j}| ≤ 1/2, for 1 ≤ j < i ≤M, (1.8)

‖ ĥi + pi,i−1ĥi−1 ‖2≥ κ ‖ ĥi−1 ‖2 1 < i ≤M, (1.9)

where 1/2 < κ ≤ 1 for complex LLL reduction and also H = ĤPT is the Gram-Schmidt

orthogonalization where Ĥ = [ĥ1, ĥ2, ..., ĥM ] and P = [pi,j] is a lower triangular matrix. In the

LLL algorithm, for a given channel matrix, a basis with smaller orthogonality defect factor is

determined. The orthogonality defect factor for matrix B is defined as

δ(B) ,
‖b1‖2‖b2‖2...‖bM‖2

det(BHB)
, (1.10)

in which bi’s are the columns of B. Note that δ(B) ≥ 1 with equality if and only if the basis

is orthogonal. In practice, for small to medium dimensions, the cost of the LLL reduction for a

square matrix is cubic in the dimension even though in theory it is higher.

The LRA detection algorithms perform a reduction on the channel matrix such that

B = HU, (1.11)

where B is the reduced channel matrix and U is anM×M unimodular transformation matrix, i.e.

it contains only complex entries with integer real and imaginary components and its determinant

is ±1, ±i. Hence, one may write

y = Bx′ + n, (1.12)
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where x′ = U−1x. x̂′ is detected using a suboptimal detectors like ZF or DFE. Then, the vector of

closest constellation points to x̂ = Ux̂′ is declared as the detected signal vector. LRA algorithms

provide better performances than suboptimal detectors alone. They also guarantee achieving

the full receive diversity [94] which is equal to the number of receive antennas. However, the

computational complexity of the lattice reduction algorithms impose a large burden on large

MIMO systems.

Conditional (subspace) detection is the idea of splitting the optimization sets into two subsets

where an exhaustive search over a given constellation is performed for one subset. Then, the

detection process is completed by a suboptimal detector in order to detect the entries of the

other subset. In this thesis, the term conditional detection is used interchangeably with subspace

detection. In this technique, the optimization set is split in such a way that the transmitted signal

vector and the channel matrix are divided into two subvectors and submatrices, respectively.

Hence, one can write (1.1) as

y = H1x1 + H2x2 + n,

x1 ∈ XM−p, x2 ∈ X p,

(1.13)

where H1 and H2 are chosen in such a way that they have M − p and p columns, respectively.

In this method, an exhaustive search for finding subset x2 is conducted. Then, for a given x2,

subvector x1 is computed by either linear detectors, such as ZF or MMSE, or SIC schemes like

DFE, or both. From the complexity perspective, the most interesting case is when p = 1 as the

number of exhaustively searched points is linear in the size of the constellation.

The FSD scheme can be considered as a special case of the family of conditional detectors.

The FSD algorithm consists of two stages; full expansion (FE) and single expansion (SE). In the

FE stage, all the constellation points are considered for the detection while in the SE stage, only

one branch is expanded. The FSD algorithm is tailored to the FSD channel ordering in which a

certain number of columns, p, corresponding to the signals with the maximum post-processing
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Figure 1.5: The FSD tree search for a 4× 4 MIMO system with 4-QAM constellation.

noise is used for the FE stage and the remaining columns corresponding to the signals with

minimum post-processing noise are sorted in the SE stage. Fig. 1.5 shows the tree representation

of the FSD algorithm for a 4× 4 MIMO system with 4-QAM constellation when p = 1.

The FSD can approach the optimal performance if at least a certain number of search levels

are fully expanded along with the FSD ordering [7, 52]. For a square channel matrix, pmin ≥
√
M − 1 full search levels are required to achieve the optimal receive diversity [52]. Therefore,

the detection computational complexity is in the order of O(|X |pmin) which could still be pro-

hibitive when a high order constellation with the size of |X | is used or the number of transmit

antennas is large.
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Chapter 2

Detection for Small and Moderate-Scale

MIMO Systems

2.1 Introduction

The optimal recovery of the transmitted signal at the receiver corrupted by channel fading, noise

and interference is a challenging issue for MIMO systems. To avoid the high computational

complexity of the optimal ML detection, suboptimum detectors, such as ZF, DFE, MMSE, and V-

BLAST detector [26,33,37], have been studied in the literature. Although these simple detection

algorithms reduce the computational complexity, their BER performances are far worse than

those of the ML, especially at high SNRs. LRA algorithms [53, 99, 106] have been proposed

where efficient lattice reduction sub-routines, such as LLL algorithm [61], in conjunction with

detectors like ZF and DFE provide better performances than ZF or DFE alone. On the other

hand, LRA conditional detection was proposed in [74] where the orthogonality defect factor

has been utilized as a metric for choosing the best LLL reduced submatrix for the conditional

detection. This combination of lattice reduction and conditional optimization further reduces the
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gap to the ML performance. In order to save in the computations and have the desirable case of

linear complexity in the size of QAM constellation, only one symbol is detected using exhaustive

search.

In this chapter 1, first, we propose a scheme which brings the BER performance closer to the

ML solution with a computational complexity which is linear in the size of a given constellation.

In the first algorithm, we search over all possible LLL reduced submatrices instead of consid-

ering the orthogonality defect factor to choose the best LLL reduced submatrix for conditional

detection. Then, to reduce the complexity of the proposed detection algorithm, we introduce

another scheme which performs lattice reduction only for one submatrix and the corresponding

transformation matrix is used for transforming other submatrices. While the complexity is re-

duced, the performance remains essentially ML. We also discuss the computational complexity

and error performance of the proposed detectors. Simulation results show the superiority of the

proposed schemes compared to those presented in the literature for small and moderate-scale

MIMO systems.

2.2 System Model

We consider a MIMO system with M transmit and N receive antennas. The received signal y is

y = Hx + n, (2.1)

where x is the vector of transmitted symbols whose entries are chosen from a QAM constellation,

X , with average energy of Es. Moreover, H is the N ×M channel matrix whose elements are

i.i.d. following a complex Gaussian distribution with zero mean and unit variance. Also, n

represents the noise vector which is a complex Gaussian random variable with zero mean and

1The results of this chapter have been published in [51].
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i.i.d. entries of variance N0. We consider the conditional detection

y = H1x1 + H2x2 + n,

x1 ∈ XM−p, x2 ∈ X p.

(2.2)

If P = M − p denotes the number of columns of the first submatrix, we are interested in

P = M−1 (or p = 1) because the exhaustive search is conducted only for detecting one symbol,

and thus, it has a linear complexity in the size of the corresponding QAM constellation [74]. For

p = 1, the submatrix selection set, S = {H[1],H[2], ...,H[M ]}, is the set of all submatrices of H

with M − 1 columns in which H[i] is the submatrix of H obtained by removing its i-th column.

Hence, (2.2) can be written as

y = H[i]x[i] + hixi + n,

x[i] ∈ XM−1, xi ∈ X ;

i = 1, 2, . . . ,M.

(2.3)

The performance of the conditional detection method mainly depends on the orthogonality of the

first submatrix. The orthogonality defect factor for a submatrix, e.g., H[M ] is defined as

δ(H[M ]) ,
‖h2

1‖‖h2
2‖...‖h2

M−1‖
det(HH

MHM)
, (2.4)

in which h1, . . . ,hM−1 are columns of H[M ]. In the LLL algorithm, for a given channel matrix,

a basis with smaller orthogonality defect factor is determined. By performing the LLL algorithm

on submatrix HM , we have

BM = H[M ]UM , (2.5)
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where UM is a (M − 1) × (M − 1) unimodular transformation matrix. In [74], the submatrix

which gives the smallest orthogonality defect factor, i.e.,

δmin = min
i=1,...,M

δ(Bi), (2.6)

is used for conditional detection where Bi = H[i]Ui is the LLL reduced matrix of submatrix

H[i]. Without loss of generality, we assume that BM is the submatrix corresponding to δmin.

Hence, conditional detection is performed using

y = BMx′[M ] + hMxM + n, (2.7)

However, according to the BER performance results reported in [74] there exists a performance

gap between such a conditional setting for P = M − 1 and the ML solution. For example, for

an 8× 8 MIMO system, when P = 7, there is about 1.5-dB gap to the ML performance and the

optimal performance is achieved for P = 6 (p = 2). In the next section, we propose two LRA

conditional detection schemes with p = 1 and a different submatrix selection strategy to close

this gap.

2.3 LRA Conditional Optimization Detector

In [74], the submatrix giving the smallest orthogonality defect factor is considered as the best

submatrix for conditional optimization and the exhaustive search is performed for detecting one

symbol for P = M − 1. For such a setting there exists a BER performance gap to the ML per-

formance. To reduce this gap, we first propose to perform M times (considering all submatrice

of size N × (M − 1)) LRA conditional detection with P = M − 1 and then choose the solution

that corresponds to the best metric. This is explained in more details next.
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Algorithm 2.1 The Proposed LRA Conditional Optimization Detector
1: Consider all possible submatrices H[i] ∈ S, i = 1, 2, ...,M.
2: hi is the remaining column of matrix H other than H[i].
3: Perform the LLL reduction: Bi = H[i]Ui.
4: Perform the conditional detection: y = Bix

′
[i] + hixi + n; x′[i] = U−1i x[i]

1. Fix x̂(j)i = aj; aj ∈ X ; j = 1, 2, ..., |X |.

2. Detect x̂
(j)
[i] : By having Bi, ZF or DFE is performed on y − hix̂

(j)
i and is denoted by

x̃
(j)
[i] . Then, x̂

(j)
[i] = Uix̂

′(j)
[i] = Ui

⌈
x̃
(j)
[i]

⌋
where d·c is the nearest integer function.

5: Calculate dk = ‖y −Bix̂
′(j)
[i] − hix̂

(j)
i ‖2; k = (i− 1)|X |+ j

6: Find dmin = min
k=1,..,M |X |

dk and declare the corresponding x̂ = [x̂
(j)
[i] , x̂

(j)
i ] after reordering as

detected symbol vector.

2.3.1 Algorithm 2.1

We consider all possible submatrices of the set S and for each one, conditional detection is

performed. Then, we choose the solution that has the smallest Euclidean distances to the received

signals. Note that in this scheme, similar to what has been proposed in [74], a total M numbers

of LLL reductions are performed on theM submatrices, but the exhaustive searches for detecting

one symbol are conductedM times. Consequently, the computational complexity is still linear in

the size of the QAM constellation. The main cost resides in performing the lattice reduction M

times (with a cost, in practice, of O(M4)). This cost can be negligible for quasi-static channels,

however, prohibitive for fast fading ones. We note that to obtain the LLL reduction of matrix

H[i], we start by H[i]U[i−1]. Since the difference of these two matrices is only one column, the

LLL computations will take a lot less than starting from scratch. In the next subsection, we

propose another algorithm to reduce the computational complexity due to lattice reductions but

still giving essentially ML performance as demonstrated in simulations.
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Algorithm 2.2 The Proposed LRA Conditional Optimization Detector
1: Consider M − 1 first columns of H, denoted by H[M ].
2: Perform the LLL reduction: BM = H[M ]UM .
3: For all other submatrices: Bi , H[i]UM , i = 1, 2, , ...,M − 1.
4: hi is the remaining column of matrix H other than H[i].
5: Perform the conditional detection: y = Bix

′
[i] + hixi + n; x′[i] = U−1i x[i]

1. Fix x̂(j)i = aj; aj ∈ X ; j = 1, 2, ..., |X |.

2. Detect x̂
(j)
[i] : By having Bi, ZF or DFE is performed on y − hix̂

(j)
i and is denoted by

x̃
(j)
[i] . Then, x̂

(j)
[i] = Uix̂

′(j)
[i] = Ui

⌈
x̃
(j)
[i]

⌋
.

6: Calculate dk = ‖y −Bix̂
′(j)
[i] − hix̂

(j)
i ‖2; k = (i− 1)|X |+ j

7: Find dmin = min
k=1,..,M |X |

dk and declare the corresponding x̂ = [x̂
(j)
[i] , x̂

(j)
i ] after reordering as

detected symbol vector.

2.3.2 Algorithm 2.2

In order to find the best submatrix for LRA conditional detection, a separate lattice reduction is

done on each submatrix. However, some of these submatrices are related to each other because

for P = M−1, there are submatrices that differ only in one column. Hence, one expects that their

lattice reduction unimodular matrices are very close to each other. Algorithm 2.2 uses the unitary

transformation matrix obtained from the reduction of one of the submatrices for transforming all

the other submatrices. In fact, we obtain UM using the LLL algorithm as

BM = H[M ]UM , (2.8)

and we use UM for the other submatrices:

Bi , H[i]UM , i = 1, 2, ...,M − 1. (2.9)
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2.4 Computational Complexity

In this subsection, the computational complexity of the proposed algorithms is discussed. Similar

to the LRA conditional detection in [74], when P = M − 1, Algorithm 2.1 requires M lattice

reductions and M consecutive exhaustive search over the QAM constellation. The complexity

is still linear in the size of the QAM constellation. In practice, for small to medium dimensions,

LLL reduction cost is cubic in the dimension (even though in theory it is higher). For example,

using the average complexity results for the LLL reduction in [36, 76], for an 8 × 8 MIMO

system, the LLL reduction of each submatrix requires around 2 × 104 floating point operations

(FLOPs) on average. In Algorithm 2.1, if we consider all submatrices and perform a separate

LLL reduction for each, a total 1.6 × 105 FLOPs are needed. However, we can save on FLOPs

by considering an already reduced submatrix as a starting point for LLL reduction of the next

submatrix. Algorithm 2.2 needs only one LLL reduction, i.e., 2 × 104 FLOPs on average, and

the reductions for other submatrices are replaced with matrix multiplications requiring 21, 952

FLOPs [17]. Hence, the overall numbers of FLOPs for the reduction and matrix multiplications

are about 2.4 × 104. To obtain further saving in computational complexity, one can implement

the LLL reduction in an efficient way such that the lattice reductions of different submatrices are

conducted in parallel because the submatrices differ only in one column and their reductions are

closely related to each other.

2.5 Diversity Order Analysis

To improve the reliability of MIMO systems, it must be ensured that the symbols that are sent

through multiple paths fade independently which is known as diversity technique. In [40, 72], it

is shown that the diversity order of ZF and the MMSE for separately encoded systems like the

V-BLAST transmission scheme is N−M +1. However, this diversity order is far away from the
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maximum receive diversity. In this subsection, the diversity order of the proposed detectors is

discussed. In the following theorem, we show that the proposed detectors achieve the maximum

receive diversity order under the V-BLAST transmission scheme.

Theorem 1 The LRA-conditional detectors using Algorithm 2.1 or Algorithm 2.2, under V-

BLAST transmission scheme achieve the maximum receive diversity order, i.e.

d , lim
snr→∞

− logPe
log snr

= N, (2.10)

where Pe is the probability of error and snr is the average SNR at each receive antenna.

Proof: See the proof in Appendix B. �

2.6 Numerical Results

In this section, we consider several MIMO system in order to investigate the error performance

of the proposed algorithms. Moreover, we use MMSE-DFE filtering [23] in the preprocessing

stage of the simulations. We evaluate the performance of the system by comparing the BER of

SD, MMSE-LLL-DFE, MMSE-DFECD and MMSE-LLL-DFECD2 detection methods [74].

In our simulation figures, we present BER performances for different values of Eb/N0. For

a given constellation, we defined Es as the average energy per symbol 3. Since the fading coef-

ficients are assumed to be independent with unit variance, the average signal energy per receive

antenna is Es.M . Therefore, the total energy of Es.M.N is collected by N receive antennas.

R.M.k information bits are carried where R is the coding rate and k = log2 |X |. Note that for

2CD refers to conditional detection.
3In some works, the average energy per symbol is normalized by M such that the total transmitted energy is the

same for different MIMO configurations.
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uncoded systems we have R = 1. As a result, the signal energy per transmitted information bit

at the receiver is defined as [41]

Eb =
EsMN

RMk
, (2.11)

or we can express it as

Eb/N0(dB) = snr(dB) + 10 log10

N

RMk
, (2.12)

where snr = Es.M
N0

is the average SNR at each receive antenna. We use this term for our BER

simulation results throughout the thesis.

Fig. 2.1 and Fig. 2.2 show the performance results for an 8×8 MIMO system for 4-QAM and

16-QAM, respectively. As was expected, a better performance than [74], with a gain of 1.5 dB

at the BER of 10−5 for both constellations, is obtained which is very close to the ML solution.

Fig. 2.3 shows the performance results for a 16×16 MIMO system for the 4-QAM constellation.

For this system also a better performance than [74], with a gain of 5 dB at the BER of 10−5 is

achieved. Moreover, the full receive diversity of the proposed detectors, the slope of BER figure

at high SNRs, can be seen in all figures. It can be concluded that the use of exhaustive search for

all possible submatrices with LRA detection algorithm makes the performance essentially ML,

especially at high SNRs.
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Figure 2.1: BER performance of the LRA conditional detection by using Algorithm 2.1 and
Algorithm 2.2 for an 8× 8, 4-QAM MIMO system.
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Figure 2.2: BER performance of the LRA conditional detection by using Algorithm 2.1 and
Algorithm 2.2 for an 8× 8, 16-QAM MIMO system.
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Figure 2.3: BER performance of the LRA conditional detection by using Algorithm 2.1 and
Algorithm 2.2 for a 16× 16, 4-QAM MIMO system.
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2.7 Conclusion and Discussion

In this chapter, we proposed two detection algorithms for MIMO systems based on the combina-

tion of lattice reduction and conditional detection techniques. The first algorithm brings the BER

performance close to the ML solution (essentially ML as verified by simulations) while it has

the same computational complexity order as the previously reported LRA conditional detectors

in the literature. The computational complexity of the preprocessing stage of the first algorithm

is O(M4) due to M times lattice reduction of M submatrices. Moreover, its real-time detection

stage has a computational complexity of O(M3|X |) because of M |X | times conditional detec-

tions. In the second algorithm, we reduced the computational complexity of M times lattice

reduction. The second algorithm performs the lattice reduction only for one submatrix, and the

corresponding transformation matrix is used for transforming other submatrices. This reduces

the computational complexity of the preprocessing stage compared to the first algorithm. While

the computational complexity is largely reduced compared to the first algorithm, the BER per-

formance degradation is negligible. For quasi-static channels, the computational complexity of

the preprocessing stage in both algorithms becomes negligible, as it can be shared among many

channel realizations, and consequently, the overall complexity will be O(M3|X |). However, it

becomes prohibitive for fast fading channels as the computational complexity of the preprocess-

ing stage can be large. Moreover, for large MIMO systems, the deployment of lattice reduction

algorithms is not of interest as they impose a computational complexity burden on the system.

In the next chapter, we propose low-complexity near-optimal conditional based detectors, which

can be deployed for large MIMO systems.
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Chapter 3

Detection for Large-Scale MIMO Systems

3.1 Introduction

In Chapter 2, we proposed near-optimal LRA conditional detectors for MIMO systems. How-

ever, the computational complexity of reduction algorithms imposes a large burden on the detec-

tors, especially when the dimension of the system increases.

In this chapter 1, we propose detection algorithms which are mainly based on the idea of con-

ditional (subspace) detection. In the first part of this chapter, we propose an MMSE-DFE based

detection algorithm that performs exhaustive search on one symbol in a round-robin way. This

provides two advantages: First, the BER performance of the proposed scheme is almost optimal

at the cost of a small computational complexity increase over the classical MMSE-DFE detection

(further reduction in complexity is discussed). Second, the proposed detector can naturally be

exploited for soft-output MIMO detectors when concatenated with a SISO decoder for MIMO

systems with error correcting codes. This detector gives a better list of candidate codewords

compared to the state of the art in [7, 63, 97]. It is shown that when the proposed detector is

1The results of this chapter have been published in [46–50].
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accompanied by a SISO decoder, the error performance is close to that of the LSD which uses

a much larger list size. In addition, the proposed detector naturally lends itself to parallel im-

plementation and offers a unified framework with a fixed-complexity which is applicable for all

configurations of MIMO systems including under-determined MIMO systems.

In the second part of this chapter, we propose a partially reduced conditional detector for

large-scale MIMO systems. Conditional detection with only one exhaustive search level may

degrade the diversity order and error performance of the system. The PLR was proposed in [64]

for SIC detection where the reduction with a tunable block size is performed over the channel

matrix. The diversity improvement of SIC with the PLR algorithm equals to the block size of

the PLR scheme. As a result, in order to improve the diversity order, the PLR is performed on a

subchannel of non-exhaustive levels. Additionally, by considering other remaining non-reduced

columns for conditional detection, the error performance is improved.

3.2 System Model

We consider the system model in (1.1) for MIMO systems

y = Hx + n, (3.1)

where M and N are the transmit and receive antennas, respectively. In this chapter, we deploy

several main techniques which are briefly explain in the following. We consider the conditional

detection system model for p = 1 in (2.3)

y = H[i]x[i] + hixi + n,

x[i] ∈ XM−1, xi ∈ X ;

i = 1, 2, . . . ,M.

(3.2)
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We also implement the SIC scheme by utilizing MMSE-DFE technique in which the QRD is

performed on the augmented (or regularized) channel matrix

H̃ =

 H

√
α IM

 = Q̃R, (3.3)

where α = N0

Es
. Moreover, Q̃ ∈ C(N+M)×M is a matrix with orthonormal columns and R ∈

CM×M is an upper triangular matrix with real and positive diagonal elements. Multiplying F =

QH as the forward matrix on the received signal vector, where Q is the first N rows of Q̃, gives

y′ = QHy

= Rx + w,

(3.4)

where w = QHn− [R−QHH]x.

In the first part of this chapter, we propose detection schemes based on the integration of MMSE-

DFE filtering and best submatrix selection for conditional optimization detection.

In the second part of this chapter, in addition to two above techniques, we deploy the PLR

technique in order to improve the receive diversity order of conditional optimization detectors. In

the PLR scheme, the last K columns of the basis H are projected on the orthogonal complement

of the first M −K columns [64].

If we denote this projection by [πM−K(hM−K+1), πM−K(hM−K+2), ..., πM−K(hM)], we have

πM−K(hn) = hn −
M−K∑
i=1

pn,iĥi, (3.5)

for n = M −K + 1, ...,M where H = ĤPT is the Gram-Schmidt orthogonalization in which

Ĥ = [ĥ1, ĥ2, ..., ĥM ] and P = [pi,j] is a lower triangular matrix. Then, the projected vectors

are input to the LLL reduction algorithm. If UK denotes the corresponding K ×K unimodular
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matrix, one writes the partially reduced basis as [64]

B =
[
HN×(M−K), HN×K

] IM−K 0(M−K)×K

0K×(M−K) UK

 .
Note that directly reducing the last K columns of the channel matrix may not work because they

might be reduced perfectly, but their interference on the other channel columns can be important

which could affect the performance of the system. Hence, the projected vectors on the orthogonal

complements are reduced to make it suitable for SIC detection.

3.3 Part I: MMSE-DFE Conditional Optimization Detector

3.3.1 Algorithm 3.1

The columns of the channel matrix are ordered by V-BLAST greedy ordering. We denote

the set of all N × (M − 1) submatrices of B = R, the backward filter matrix, as SB =

{B[1],B[2], ...,B[M ]} where B[i] denotes the N × (M − 1) submatrix obtained by excluding

column i. The proposed detector transforms the received signal using the forward matrix ob-

tained from the QRD of the whole ordered channel matrix. Then, multiple conditional detection

is conducted such that for each submatrix of the selection set, an exhaustive search over the

constellation points is performed in order to detect one symbol and the remaining symbols are

detected by DFE (p = 1, giving a list of |X | symbols vector candidates along with their met-

rics for each submatrix). Among all possible submatrices, choose the one that has the minimum

Euclidean distance. Note that before performing the minimum Euclidean test, the candidates

are mapped back to the original constellation. The detailed steps are summarized in the table

containing Algorithm 3.1. Fig. 3.1 also shows the structure of the proposed detector (Algorithm

3.1).
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Algorithm 3.1 The Proposed MMSE-DFE Conditional Optimization Detector

1: Order the columns of matrix H according to the V-BLAST ordering; denote this ordered
matrix as HO.

2: Perform MMSE-DFE filtering by QRD on the augmented matrix of HO, i.e., H̃O = Q̃R.
Obtain the forward and backward matrices, i.e., QH and B = R, respectively (first QRD).

3: y′ = QHy = Bx + w.
4: Perform the conditional optimization detection on y′;

1. Consider all N × (M − 1) possible submatrices of B, i.e., B[i] ∈ SB, i = 1, 2, ...,M
and SB = {B[1],B[2], ...,B[M ]}.

2. bi is the i-th column of matrix B.

3. y′ = B[i]x[i] + bixi + w.

4. Perform QRD on B[i], i.e., B[i] = Q[i]R[i] (second QRD).

5. For all points of the constellation:

(a) Fix x̂(j)i = aj, aj ∈ X ; j = 1, 2, ..., Q = |X |.
(b) z = Q[i]H(y′ − bix̂

(j)
i ).

(c) x̂
(j)
[i] is detected using DFE on z and matrix R[i] and is sliced to the original con-

stellation points.
(d) Calculate

dk = ‖y′ −B[i]x̂
(j)
[i] − bix̂

(j)
i ‖2;

k = (i− 1)|X |+ j.

5: Find dmin = min
k=1,..,M.Q

dk and declare the corresponding x̂ = [x̂
(j)
[i] , x̂

(j)
i ] after reordering as

detected symbol vector.

The above algorithm has a linear complexity in the constellation size and a complexity of

O(M4) in the system dimension M (the cost of M successive QRD of all M possible subdivi-

sions of the backward filter even by a fast implementation procedure as described in [8, 37, 114]

for example). We will discuss how this cost can be reduced to a cubic complexity in M .
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Figure 3.1: Structure of the Proposed Detector (Algorithm 3.1).

3.3.2 Algorithm 3.2

One-step V-BLAST Ordering on Submatrices

As some simulations results show in Section 3.3.6, when we increase the dimension of the sys-

tem and also the constellation order, the error performance of the proposed detector degrades

such that there is a performance gap to the ML BER at high SNRs. For example, for an 8 × 8

MIMO system and 64-QAM constellation the proposed detector exhibits about 1-dB BER gap

to the ML error performance at BER of 10−5. We offer a modification of the proposed MMSE-
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DFE conditional optimization detector that exhibits an essentially ML BER performance with

a computational complexity which is linear in Q and cubic in M . In Algorithm 3.1, the whole

channel matrix is ordered whereas the remaining submatrix obtained by removing one column

at a time is not necessarily in the optimal order which results in a performance degradation for

larger systems with high order constellations. To improve the performance, one can perform a

new greedy ordering on each submatrix; however, this increase the complexity to O(M4) due

to destroying the upper triangular structure of the submatrices. Alternatively, we suggest con-

ducting the one-step V-BLAST ordering such that only the first index of the optimal ordering of

the corresponding submatrix is found. Then, the remaining of the detection is the same as the

proposed detector in Algorithm 3.1.

3.3.3 Computational Complexity

Computational Saving in V-BLAST Ordering

In V-BLAST greedy ordering, the signal to-interference-plus-noise ratio (SINR) for each layer

of the detection is maximized. We consider the scheme introduced in [104] which is the MMSE

extension of the V-BLAST ordering. With respect to the MMSE filtering in (3.3), the estimation

error covariance matrix is

α
(
H̃HH̃

)−1
= α

(
RHR

)−1
. (3.6)

Assuming perfect interference cancellation, the estimation error is given by α
|rkk|2

. Hence, in each

step, the optimal ordering chooses the column that maximizes |rkk|.

For the proposed detector, we obtain the V-BLAST ordering for the whole matrix of R using

the scheme in [104]: An efficient sub-optimal MMSE sorted QR algorithm with a computational

complexity of O(M3) is followed by a post-sorting algorithm with a complexity of O(M3).

Hence, by applying the post-sorting algorithm, the scheme in [104] gives the QRD of the
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optimally ordered augmented channel matrix with a complexity of O(M3). Moreover, since

R−1 is a byproduct of the scheme in [104], the matrix in (3.6) can easily be computed.

Computational Saving in the QRD

In the proposed detector, by using the scheme in [104], we first calculate the QRD of the aug-

mented channel matrix, H̃

H̃ = Q̃R,

where R is an M ×M upper triangular matrix:

B = R =



r11 r12 r13 . . . r1M

0 r22 r23 . . . r2M
...

...
... . . . ...

0 0 0 . . . rMM


.

Then, we calculate the QRDs of all M submatrices of R with M − 1 columns, where one

column is removed at a time (corresponding to the transmitted symbol over which an exhaustive

search is performed). Since R is upper triangular, the QRD of the M − 1 first columns of

R, i.e., B[M ], is already upper triangular. However, other submatrices in the set need to be

transformed into upper triangular forms. Because of the structure of the submatrices and the

fact that successive submatrices have M − 2 columns in common, there is no need to perform

the QRDs from scratch. Givens rotations method is an appropriate candidate for conducting the

QRDs because each rotation modifies only two rows of the operating matrix and also the order

of rotations could be interchanged for parallelized decompositions [34]. For instance, consider
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the following submatrix:

B[1] =



r12 r13 . . . r1M

r22 r23 . . . r2M
...

... . . . ...

0 0 . . . rMM


.

In order to make r22 equal to zero we apply rotation G1 on B[1], i.e., G1B[1], where G1 defined

as

G1 =



α β . . . 0

−β α . . . 0

...
... . . . ...

0 0 . . . 1


.

where |α|2 + |β|2 = 1 and −βr12 + αr22 = 0. Other entries are also made equal to zero by

obtaining the corresponding rotation matrices. Finally, we will have an upper triangular matrix

R[1] = GM−1 . . .G2G1B[1] and Q[1]H = GM−1 . . .G2G1 (Note that if we utilize Givens rota-

tions technique instead of the traditional QRD schemes, Q[1]H is used in step 4.4 of Algorithm

3.1 in order to have an upper triangular matrix). M − 1 rotations are required to make B[1] up-

per triangular. Each submatrix requires up to M − 1 rotations, equal to the number of non-zero

entries. Each rotation changes only two rows of the submatrix and it requires up to 4(M − 1)

multiplications and 2(M − 2) additions. Consequently, O(M3) operations are required for all

submatrices to be transformed into upper triangular forms. Moreover, since the first QRD needs

O(M3) operations, the total required operations associated with QRDs for the proposed detector

is O(M3).

Therefore, the overall computational complexity for QRDs and V-BLAST ordering, which

are done in the pre-processing stage, is in the order of O(M3). This cost can be negligible for

quasi-static fading channels where the channel matrix is fixed over the whole block length.

One can further reduce the search complexity as follows. For each column removed from
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the backward filter matrix R, instead of performing a full search over all the constellation points

for the corresponding symbol, one does a pruned search over the constellation X such that only

1 ≤ Q ≤ |X | nearest constellation points are considered (via zig-zagging around the ZF-DFE

solution or equivalently the Schnorr-Euchner enumeration procedure [22]). While such a pruning

strategy largely degrades the performance of FSD type algorithms [7], its effect on our algorithm

can be negligible since performing conditional optimization detection over all the columns com-

pensates for this degradation as will be demonstrated in Section 3.3.6 (e.g., it is shown thatQ = 4

is sufficient to achieve ML performance in a 16-QAM - 8× 8 MIMO system, see Fig. 3.8).

Remark 1 Another possible saving in implementation complexity can be obtained by mimicking

the SD algorithm [22] as one searches over the different candidates as follows. Assume one does

the exhaustive search on column k, then for each value of xk ∈ X , the algorithm calculates

the DFE solution for the remaining symbols x1, . . . , xk−1, xk+1, . . . , xM using the corresponding

upper triangular submatrix. One can define a threshold (or a radius) that is initialized by the

first Euclidean distance calculated, and then updated each time the algorithm finds a closer

point. To save complexity, one then stops the DFE algorithm whenever the associated metric

goes above the threshold. While this trick can save some complexity, it has the disadvantages

of making the complexity a random variable and not tailoring itself naturally to parallel and

soft-output implementations. Note that our original algorithm as described above has a fixed

complexity (linear in Q and cubic in M ), and naturally lends itself to parallel and soft-output

implementations as described in the sequel.

In the sequel, we discuss how the one-step V-BLAST ordering for the different submatrices,

i.e., Algorithm 3.2, can be conducted in an efficient manner with O(M2) operations in total in

order to avoid unnecessary computations. The error covariance matrix in (3.6) is a byproduct of

the scheme in [104] and needs O(M3) operations to be calculated. For the one-step V-BLAST

orderings of the submatrices, we need to look at the diagonal elements of the error covariance
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matrix corresponding to these submatrices. In each case, the diagonal element with the smallest

value is selected. In [84], the relationship between the inverse of a matrix and a submatrix is

discussed. Given the inverse matrix in (3.6), it can be shown that for each submatrix we need

O(M) operations to calculate the M − 1 diagonal elements of the corresponding inverse matrix,

and accordingly the one-step V-BLAST ordering for that submatrix. Therefore, the one-step V-

BLAST orderings of all submatrices need O(M2) operations. By taking the V-BLAST ordering

on the whole matrix into account, the total computational complexity is in the order of O(M3).

Moreover, one can show that the discussion in Subsection 3.3.3, regarding the computational

complexity of the QRDs, is still valid for this one-step V-BLAST ordering MMSE-DFE condi-

tional optimization detector. Because in the worst case we have O(M) elements to get zeroed,

hence, the computational complexity of the QRD for all submatrices still requires O(M3) oper-

ations. Therefore, the overall computational complexity for QRDs and the orderings is still in

the order of O(M3). In Section 3.3.6, we refer to this proposed scheme as Algorithm 3.2. The

computational complexity of the proposed algorithms is compared with that of the FSD scheme

in Table 3.1 in terms of number of FLOPs. We assume six FLOPs per complex multiplication

and two FLOPs per complex addition and the matrix operations from [34]. The following calcu-

lations are considered in the table:

• Multiplication of N ×M and M ×K complex matrices requires (8M − 2)NK FLOPs.

• The V-BLAST ordering (or similarly the FSD ordering) along with the first QRD needs

12M3 + 16M 2N + 83
3
M2 + 10MN + 38M − 14N − 60 FLOPs [104].

• According to Subsection 3.3.3, all second QRDs for Algorithm 3.1 require 56
3
M3−45M2+

91
3
M − 4 FLOPs.

• Given the inverse matrix in (3.6), which is a byproduct of the algorithm in [104], all one-

step V-BLAST orderings in Algorithm 3.2 require 14(M − 1)2 FLOPs [84].
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Table 3.1: Computational Complexity In Terms of FLOPs.

Detector Operation Number of FLOPs Example: 8× 8 MIMO
64-QAM 256-QAM

FSD

Preprocessing: FSD ordering of H+QRD of H̃o [104] 12M3 + 16M2N + 83
3

M2 + 10MN + 38M − 14N − 60
475, 630 7, 356, 900

B2x2;x2 ∈ Xp (8Mp− 2M)× |X|p (p = 2) (p = 2)

Detection:
y′ = QHy 8MN − 2M

1, 647, 088 26, 345, 968SIC (4(M − p)(M − p + 1) + 2p)|X|p
Euclidean Distance Test (4(M − p)(M − p + 1) + 8M − 2)× |X|p (p = 2) (p = 2)

Preprocessing:
V-BLAST ordering of H+QRD of H̃o [104] 12M3 + 16M2N + 83

3
M2 + 10MN + 38M − 14N − 60

48, 371 122, 100MMSE-DFE All second QRDs: R[i] , Q[i] 56
3

M3 − 45M2 + 91
3

M − 4
Conditional biaj 6M ×M.Q (Q = 64) (Q = 256)

Optimization

Detection:

y′ = QHy 8MN − 2M

493, 040 1, 970, 672Detector Q[i]T (y′ − biaj) (8M2 − 8M + 2)M.Q
(Algorithm 3.1) SIC (4(M − 1)M + 2)M.Q (Q = 64) (Q = 256)

Euclidean Distance Test (4(M − 1)M + 8M − 2)×M.Q

Preprocessing:

V-BLAST ordering of H+QRD of H̃o [104] 12M3 + 16M2N + 83
3

M2 + 10MN + 38M − 14N − 60

60, 453 66, 597All one-step V-BLAST orderings 14(M − 1)2

MMSE-DFE All second QRDs: R[i] , Q[i] 112M3 − 368M2 + 376M − 120 (Q = 16) (Q = 32)
Conditional biaj 6M ×M.Q

Optimization

Detection:

y′ = QHy 8MN − 2M

123, 632 246, 768Detector Q[i]T (y′ − biaj) (8M2 − 8M + 2)M.Q
(Algorithm 3.2) SIC (4(M − 1)M + 2)M.Q (Q = 16) (Q = 32)

Euclidean Distance Test (4(M − 1)M + 8M − 2)×M.Q

• All second QRDs in Algorithm 3.2 need up to 112M 3 − 368M 2 + 376M − 120 FLOPs.

It is worth mentioning that at the first glance, Algorithm 3.2 might seem more complex

than Algorithm 3.1. However, the error performance improvement of Algorithm 3.2 enables us

to reduce the search size over the constellation points. This computational complexity saving

is more than the complexity increase due to one-step V-BLAST orderings on the submatrices.

Therefore, the overall computational complexity of Algorithm 3.2 is less than that of Algorithm

3.1 (See Table 3.1).

3.3.4 Diversity Order Analysis

In this section, first, we extend the FSD to under-determined MIMO systems and discuss the

optimal FSD ordering for under-determined MIMO systems that we later use in our simulations

is Section 3.3.6. Then, we discuss the diversity order of the proposed MMSE-DFE conditional

optimization detectors.
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Fixed-complexity Sphere Decoder Ordering for Under-determined MIMO Systems:

As previously reported in the literature, e.g., [19, 79, 96], the diversity optimality of the conven-

tional FSD ordering cannot be insured for under-determined MIMO systems. When M > N ,

the matrix Q = HHH is a pseudo-Wishart matrix2 and is not a full-rank matrix as M−N eigen-

values are zero [68]. For under-determined MIMO systems, if the Gram channel matrix is used

for the FSD ordering, it does not satisfy the condition of [52, Lemma 2] because it is a positive

semi-definite matrix3. As a result, the corresponding FSD ordering is not optimal.

However, if we use the regularized (or augmented) channel matrix in (3.3) and accordingly the

Gram matrix Q̃ = H̃HH̃ = HHH + α IM and the conventional ordering in [7], a diversity opti-

mal ordering is achieved which is referred to hereafter as the RFSD ordering. We will deal with

this fact in the following theorem.

Theorem 2 For a UD-MIMO system (when M > N ) if the RFSD ordering is utilized, the diver-

sity order of the SE stage is given by

dUDSE = (M −N)(peq + 1) + (peq + 1)2 (3.7)

where peq = p− (M −N) and p ≥ (M −N).

Proof: See Appendix C. �

Now, we analyze the diversity order of the proposed MMSE-DFE conditional optimization

detectors. To this end, we will use results from antenna selection [54] and the diversity order of

the FSD [52] or RFSD scheme. One proves the following:

2The pseudo-Wishart distribution occurs when the Hermitian matrix generated from a complex Gaussian ensem-
ble is not full-rank [69].

3Although it has been mentioned as positive semi-definite in [52], by following the footsteps of the proof of the
lemma therein one can easily understand that it must be positive definite instead because otherwise the inverse of
the matrix does not exist.
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Proposition 1 In a MIMO system with N receive and M transmit antennas, under V-BLAST

transmission scheme, the diversity order of the proposed MMSE-DFE conditional optimization

detector is

d = min(N, 2(N −M) + 4), (3.8)

where,

d , − lim
ρ→∞

logPe
log snr

, (3.9)

in which Pe is the error probability of the detector and snr = MEs

N0
is the average SNR at a given

receive antenna.

Proof: See Appendix D. �

Proposition 1 asserts that the proposed detector achieves the same diversity order as the FSD

scheme with the FSD ordering and p = 1 full search level. However, the search over all possible

submatrices makes the proposed detector outperform the FSD scheme as shown in the simulation

results section. Although the diversity order of the proposed detector does not necessarily achieve

the full ML diversity for some MIMO systems, it is improved over that of ZF and the MMSE

which exhibit a diversity order of N −M + 1 under V-BLAST transmission scheme [40, 72].

Moreover, the coding gain of the proposed detector compared to the FSD scheme with p = 1

allows for close to ML performance at practical values of SNR. It is shown in Section 3.3.6 that

the BER performance is close to that of the ML while the FSD ordering needs a larger number

of full searches to achieve the optimal error performance.
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Figure 3.2: Soft-Output MIMO Detector and Decoder.

3.3.5 Soft-Output MMSE-DFE Conditional Optimization Detector

In this section, we discuss how the proposed detector can be utilized for soft-output detection

without imposing more computational complexity. The error performance of our detector will

be shown by simulations to outperform that of the LSD soft-output detector. First, we review the

system model for soft-output MIMO detection. Then, we provide some details on the soft-output

version of the proposed MMSE-DFE conditional optimization detector.

Soft-Output MIMO Detection

The concatenation of a SISO MIMO detector and a SISO channel decoder can significantly im-

prove the performance of MIMO systems. In such systems, in order to implement the iterative

joint detection and decoding, it is required that the soft information be exchanged between the

MIMO detector and SISO decoder (See Fig.3.2 for more details). Using a-posteriori probabil-

ities (APPs), soft-output MIMO detection can be implemented by an exhaustive or limited list
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size search. However, the optimal exhaustive search is not practical even for moderate MIMO

dimensions due to the high computational complexity. LSD schemes have been proposed in the

literature [41] to construct a suboptimal list. The list of candidates are constructed by a modi-

fied SD scheme by selecting the lattice points with the smallest distance to the received point.

However, such an LSD scheme is unstable in the list size when the received signal is outside

of the finite lattice constellation. This issue is highly probable, especially at low SNRs or for

large dimensional MIMO systems. In this work, we compare our results to the shifted LSD pro-

posed [11] in which the constructed list is centered around the ML point (or any other detected

point [75]) instead of the received signal to combat the instability issue.

At the transmitter M. log2 |X | bits are sent over the channel per each channel use after chan-

nel encoding and interleaving. The APP is usually expressed in terms of log-likelihood ratio

(LLR). The sign of the LLR is used for making a decision if the bit is one or zero. Moreover,

the magnitude of LLR indicates the reliability of the decision such that the LLR values close to

zero indicate unreliable decisions. The modulator associates each group of log2 |X | data bits to

a constellation point using Gray or natural mapping techniques [11, 41]. The LLR value of the

j-th bit is expressed as

L(bj|y) = ln
P [bj = +1|y]

P [bj = −1|y]
; j = 1, 2, ...,M. log2 |X |, (3.10)

where bj ∈ {−1,+1} is the representation of the logical zero and one mapped to −1 and +1,

respectively. Then, if we assume an additive zero mean white circularly symmetric complex

Gaussian noise, by using Bayes’ rule, the soft-output values L(bj|y) can be written as [41]

L(bj|y) = ln

∑
b∈B+1

j
exp(− 1

N0
‖ y −Hx ‖2 +1

2
bT[j].LA,[j])∑

b∈B−1
j

exp(− 1
N0
‖ y −Hx ‖2 +1

2
bT[j].LA,[j])

, (3.11)

where B+1
j and B−1j are the set of 2M. log2 |X |−1 bits such that bj = +1 and bj = −1, respectively.

46



Moreover, b[j] denotes the subvector of b by omitting its j-th element, and LA,[j] is also the vector

of a-priori LLR values of b after omitting bj . For the first iteration in iterative schemes (or for

non-iterative scenario) LA is set to zero because all bits are assumed to be equally probable. For

the exhaustive APP, the set size is 2M. log2 |X |−1 while for the LSD scheme the set size is equal to

the size of the list. Further simplifications can be achieved by using max-log approximation [82]

as follows

L(bj|y) ≈ max
b∈B+1

j

{− 1

N0

‖ y −Hx ‖2 +
1

2
bT[j].LA,[j]}

− max
b∈B−1

j

{− 1

N0

‖ y −Hx ‖2 +
1

2
bT[j].LA,[j]}. (3.12)

Then, after de-interleaving, the APPs are fed as a-priori to the SISO channel decoder.

In order to construct the list, we set the radius based on the statistical formula obtained

in [11] and list the Np closest point to the center point. If the number of points is less than Np,

we increase the radius until the desired list size is achieved.

Soft-output MMSE-DFE Conditional Optimization Detector

Our proposed algorithm lends itself naturally to soft-output implementation because its hard-

output version selects the symbol vector with the best metric among a list of M.|X | candidates

(for each selected column of R one performs an exhaustive search on the associated symbol

followed by a DFE on the remaining ones). Therefore, in the soft-output version, one can con-

sider these M.|X | candidates as the list for calculating the LLR values from (3.12). The resulted

list is more “balanced” than that obtained from LSD in the sense that one makes sure that for

each bit bj , there is at least two codewords in the list, one that has bj = −1 and the other has

bj = +1 whereas for the LSD, one has to resort to ad-hoc approaches when there is no codeword

in the list that contains the particular bit value at +1 or −1 [41]. The performance of soft-output
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MMSE-DFE conditional optimization detector is evaluated in Section 3.3.6 where it is shown

that the soft-output MMSE-DFE conditional optimization detector with a smaller list size has a

better error performance than that of the soft-output FSD with a larger list size.

3.3.6 Simulations Results: Part I

In this section, we compare our algorithm to the state of the art detectors for several N × M

MIMO systems with different input QAM constellations, with and without outer error correcting

codes. For the simulation results, we evaluate the error performance of our proposed detectors

for different configurations of small to large-scale MIMO systems. We consider MIMO systems

such as square 4 × 4, 8 × 8, 16 × 16, and 32 × 32, a non-square over-determined 8 × 6, and

an under-determined 5× 6 along with V-BLAST transmission scheme in order to investigate the

BER performance results of the proposed MMSE-DFE conditional optimization detector. The

SD, MMSE-DFE, and FSD schemes are reported for comparison. Moreover, the MMSE-DFE

filtering is performed for all simulations.

In Fig. 3.3, the classical MMSE-DFE has a diversity order of one. For this system, the

proposed detector achieves the full diversity and near ML performance for both 4-QAM and 16-

QAM constellations. Note that pmin is the minimum number of full search levels that the FSD

scheme needs to achieve the optimal diversity order.

Fig. 3.4 shows that for an 8×8 MIMO system, the proposed detector achieves near-ML error

performance and a diversity of min(8, 4) = 4 for both 4-QAM and 16-QAM constellations. An

improvement of about 2-dB over the FSD scheme with p = 1 is obtained for both constellations

at the BER of 10−5. In Fig. 3.5, for a 16 × 16 system, the diversity of the proposed detector is

min(16, 4) = 4 and the improvement over the FSD with p = 1 is about 4.5-dB. For this system,

although the FSD with p = 3 achieves the optimal diversity, it has a performance gap to the ML

performance for practical values of SNRs (we note that even a larger number of full search levels,
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Figure 3.3: Uncoded BER performance of the proposed MMSE-DFE conditional optimization
detector in Algorithm 3.1 for a 4× 4 MIMO system for both 4-QAM and 16-QAM; pmin = 1.

p = 4 cannot achieve the optimal performance at the reported SNRs). The proposed detector with

a detection complexity proportional to 16 × 4 = 64 outperforms the FSD with p = 4 and the

detection complexity proportional to 44 = 256. We also investigate the error performance for

non-square MIMO systems. According to Fig. 3.6, the diversity order of the proposed scheme

for the non-square 8× 6 MIMO system is min(8, 8) = 8.

For the under-determined 5×6 MIMO system in Fig. 3.7, the diversity result of conventional

FSD ordering is not valid, hence, we use the result of the RFSD ordering. As this figure shows,

the diversity order of the proposed detector ismin(5, 2) = 2 for p = 1 and the improvement over

the RFSD with p = 1 is around 2-dB at the BER of 10−5 and similar to the RFSD with p = 2, it
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Figure 3.4: Uncoded BER performance of the proposed MMSE-DFE conditional optimization
detector in Algorithm 3.1 for an 8× 8 MIMO system for both 4-QAM and 16-QAM; pmin = 2.

achieves the ML BER.

Fig. 3.8 indicates the BER performance of the proposed detector for an 8× 8 MIMO system

with 16-QAM constellation when different search sizes, Q, over the constellation are considered

as discussed in Subsection 3.3.3. According to this figure, Q = 4 suffices to achieve a near-

ML error performance. The detection complexity for the proposed detector with Q = 4 is

proportional to 8× 4 = 32 while that of the FSD with p = 2 is proportional to 162 = 256.

Fig. 3.9 and 3.10 indicate the BER performances for an 8 × 8 MIMO system, respectively

with 64-QAM and 256-QAM constellations. As these figures show, for the proposed detector

in Algorithm 3.1, there is a gap to the ML error performance while when the modification,
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Figure 3.5: Uncoded BER performance of the proposed MMSE-DFE conditional optimization
detector in Algorithm 3.1 for a 16× 16 MIMO system for 4-QAM constellation; pmin = 3

discussed in Subsection 3.3.2 and referred as Algorithm 3.2, is applied it achieves a near-ML

BER even with smaller search sizes, Q, over the constellation. According to Fig. 3.9, for 64-

QAM constellation, Algorithm 3.2 withQ = 16 suffices to achieve a near-ML error performance.

The detection complexity for this detector with Q = 16 is proportional to 8 × 16 = 128 while

that of the FSD with p = 2 is proportional to 642 = 4, 096. For 256-QAM constellation in Fig.

3.10, Algorithm 3.2 with Q = 32 suffices to achieve a near-ML BER. The detection complexity

of this detector with Q = 32 is proportional to 8 × 32 = 256 while the FSD with p = 2 has a

complexity about 2562 = 65, 536.

In order to evaluate the proposed soft-output MMSE-DFE conditional optimization detector,
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Figure 3.6: Uncoded BER performance of the proposed MMSE-DFE conditional optimization
detector in Algorithm 3.1 for an 8× 6 MIMO system for 4-QAM constellation; pmin = 1.

we consider a 4 × 4 MIMO system, where one uses the standard rate-1/2 convolutional code,

with generator polynomial (5, 7) with the 16-QAM constellation and Gray mapping. Fig. 3.11

indicates the error performances for different schemes. For this system, the list size of the pro-

posed soft-output detector is equal to 4×16 = 64 whereas the LSD scheme in [11] has a list size

of 512 and the soft-output FSD with p = 1 and p = 2 respectively have list sizes of 16 and 256.

As this figure shows the proposed scheme achieves the error performance of the conventional

LSD scheme while a considerable computational complexity is saved by the natural extension of

the proposed scheme to the soft-output detector. Moreover, the proposed detector with a list size

of 64 outperforms the soft-output FSD with list size of 256.
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Fig. 3.12 compares the BER performances of our proposed detectors, for a 32 × 32 large-

scale MIMO system with 16-QAM constellation, with those of several state-of-the-art detectors

for large-scale MIMO systems, such as the branch and bound (BB) quadratic programming (QP)-

based detector, i.e. BB(Ld,Mw) in [27], reactive tabu search (RTS) [93], multiple initial vectors

local ascent search (MIV-LAS) [62] which is a LAS algorithm with three initial inputs [27],

and LORD scheme [91]. In [27], some algorithms are developed from the conventional QP

detector in which the ML problem is rewritten as a QP optimization problem. They use some

techniques, such as BB tree search along with width and depth reductions in the tree search,

to further improve their proposed detectors. The computational complexity of the QP-based
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detector is O(nNνM
3) when M = N , where n is the number of iterations for the interior-

point algorithm. Moreover, Nν is a function of the controlled BB algorithm in which depth

and width reductions are considered. According to [27], Nν ≈ LdMw at low SNRs and Nν ≤

LdMw at high SNRs where Ld and Mw are depth and width sizes of the search tree, respectively.

They refer to this scheme as BB(Ld,Mw). On the other hand, the computational complexity of

our proposed detectors is in the order of O(Q.M3). In the QP-based scheme, the value of Nν

depends on SNR; hence; the scheme exhibits a variable complexity over a range of SNR while

our proposed detectors are fixed-complexity schemes for all range of SNR. Moreover, as Fig.

3.12 shows, Algorithm 3.2 with Q = 4 has almost the same error performance as Algorithm

3.1 with Q = 16. They both outperform the BB(32, 4) scheme (with n = 4 iterations) reported

in [27] by about 2-dB. The computational complexity of the QP-based scheme is proportional

to NνnM
3 = Nν × 4 × 323 and that of our proposed detector with Q = 4 is proportional to

QM3 = 4 × 323. Therefore, with proportionally less computational complexity , our proposed

detector outperforms the QP-based detector in [27].

The subspace detection scheme in [86] is a reduced-complexity version of LORD; hence, we

compare our proposed detector with LORD which has a better error performance than that of the

scheme in [86]. Like LORD, our proposed detector is a QRD-based detector that considers all

columns for exhaustive search over the constellation points to detect the corresponding symbol.

However, they differ in the some aspects: In LORD scheme, a cyclically shifting strategy is used

for column back substitution where the symbols corresponding to the problematic columns may

be detected at the early steps of the detection which will result in a performance degradation

which is evidenced in Fig. 3.12 . However, in our proposed scheme, the remaining columns

after selecting a column for conditional detection are in a relative ordering which is expected to

improve the error performance. In our proposed detection scheme, the computational complexity

of all operations including the QRD and the V-BLAST orderings are in the order O(M3) while

that of LORD is in the order of O(M4) [86]. According to the figure, our proposed detectors
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outperforms LORD scheme by about 2-dB with a smaller computational complexity than that of

LORD. Moreover, the proposed idea in Algorithm 3.2 allow us to reduce the search size over the

constellation which in turn reduces the computational complexity of the detection stage with a

small increase in the computational complexity of the preprocessing stage. Therefore, our pro-

posed detector, especially Algorithm 3.2, with a significantly reduced computational complexity

outperforms all the aforementioned schemes for this large-scale MIMO system.

3.4 Part II: Partially Reduced Conditional Optimization De-

tector

In this section, we propose a partially reduced conditional optimization detector motivated by

the work in [64] in order to improve the diversity order of conditional optimization detector with

p = 1. In the proposed conditional based detector we use p = 1 as well. However, the diversity

order degradation due to restricting the number of full search levels to one is compensated by

performing the PLR on the non-exhaustive search levels. The proposed detector is detailed in the

following section.

3.4.1 Algorithm 3.3

We continue with the model in (3.1). The detailed steps of the proposed detector are summarized

in the table containing Algorithm 3.3. The proposed detector consists of the following steps:

• Stage 1- Preprocessing:

– Channel Ordering: Motivated by the work in [7, 52], the channel matrix is ordered

such that the columns corresponding to the signal with maximum post-processing

noise is put at the end of the ordered channel matrix. The remaining M − 1 columns
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Algorithm 3.3 The Proposed PLR Conditional Optimization Detector
1: Order the columns of matrix H according to the FSD ordering for p = 1; denote this ordered

matrix as HO.
2: Perform MMSE-DFE filtering by QR decomposition on the augmented matrix of HO, i.e.,

H̃O = Q̃R. Obtain the forward and backward matrices, i.e., QH and R, respectively (first
QRD).

3: For a given block size K for the PLR, consider R = [R1N×(M−K−1)
,R2N×K

, rM ] where
R1 = [r1, . . . , rM−K−1] and R2 = [rM−K , . . . , rM−1].

4: Perform the PLR algorithm on R2 using the orthogonal complement [R1, rM ]. The reduced
submatrix is B2 = R2U2. We have RPLR = [R1N×(M−K−1)

,B2N×K
, rM ].

5: y′ = QHy = Rx + w = RPLRxPLR + w; xPLR = [x1,x
′
2, xM ].

6: Perform the conditional optimization detection on y′;

1. Consider all M −K possible orderings of SO.

2. For each i-th ordering in SO, perform QRD on the corresponding ordered ma-
trix of RPLR. Denote the equivalent factorized matrices as {Q(i),R(i)} where i =
1, 2, . . . , |SO| = M −K (second QRD).

3. ỹ(i) = Q(i)Hy′.

4. For all points of the constellation:

(a) Fix x̂(i,j)M = aj, aj ∈ X ; j = 1, 2, ..., Q = |X |.
(b) By Using DFE, [x̂

(i,j)
[M ],1, x̂

(i,j)
[M ],2] is detected and is sliced to the original constellation

points where x̂
(i,j)
[M ],2 = U2dx̂(i,j)′

[M ],2c.
(c) Calculate dk = ‖y′ − R(i)x̂(i,j)‖2 where k = (i − 1)|X | + j and x̂(i,j) =

[x̂
(i,j)
[M ],1, x̂

(i,j)
[M ],2, x̂

(i,j)
M ].

7: Find dmin = min
k=1,..,(M−K).Q

dk and declare the corresponding x̂(i,j) after reordering as de-

tected symbol vector.

are ordered according to the V-BLAST ordering. This ordering is known as the FSD

ordering. Without loss of generality, we assume that the corresponding ordering is

[1, 2, ...,M ]. Hence, one may rewrite the ordered channel matrix as

HO = [h1, . . . ,hM ]. (3.13)
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– MMSE-DFE Filtering: The QRD is applied to the augmented matrix of the ordered

channel in (3.13). Hence, we have

y′ = Rx + w, (3.14)

where

R = [R1N×(M−K−1)
,R2N×K

, rM ], (3.15)

where R1 = [r1, . . . , rM−K−1] and R2 = [rM−K , . . . , rM−1].

– PLR: Submatrix R2 with K columns is partially reduced by projecting its columns

to the orthogonal complement, i.e. [R1, rM ] with M − K columns and performing

PLR algorithm explained in Subsection 3.2. Hence, we have B2 = R2U2 and

RPLR = [R1N×(M−K−1)
,B2N×K

, rM ]. (3.16)

– Column Selection Strategy: We search over all non-reduced columns, i.e. [R1, rM ],

for conditional detection. There exist M − K possibilities. When the conditional

detection is performed on a column other than rM , we keep rM at the beginning of

the matrix because this column corresponds to the signal with the maximum post-

processing noise. We denote the set of all possible orderings as SO. Note that the

ordering of columns of B2 are fixed for all possible conditional detections. For ex-

ample, for a 5× 5 channel matrix with K = 2 the set of orderings is

SO =
{
{1, 2, 3, 4, 5}, {5, 1, 3, 4, 2}, {5, 2, 3, 4, 1}

}
.
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– QRD for Submatrices: After the PLR, the reduced matrix B2 may not be upper tri-

angular. By using some matrix operations we can obtain the QRD. Moreover, for

conditional detection on a column other than rM , we need to make some elements

zero in order to obtain an upper triangular matrix for SIC scheme. We denote the cor-

responding equivalent QRD matrices for each ordering in SO as {Q(i),R(i)} where

i = 1, 2, . . . , |SO| = M −K. One may write

R(i) = [R
(i)
1N×(M−K−1)

,R
(i)
2N×K

, r
(i)
M ]. (3.17)

• Stage 2 - Detection:

– Conditional Detection: For all possible orderings of SO, we perform the conditional

detection. Hence, we have

ỹ(i) =Q(i)Hy′

=R
(i)
1 x

(i)
[M ],1 + R

(i)
2 x

(i)′
[M ],2 + r

(i)
Mx

(i)
M + z(i),

(3.18)

where, z(i) = Q(i)Hw and i = 1, 2, . . . ,M −K.

An exhaustive search over the constellation for finding subset x(i)M is conducted. Then,

the DFE detection is performed to find the subset [x̂
(i)
[M ],1, x̂

(i)
[M ],2] where x̂

(i)
[M ],2U2dx̂(i)′

[M ],2c

in which d·c is the function that maps the real and imaginary parts of its argument

to the nearest integers. In each step, the detected signal is sliced back to the origi-

nal constellation. If we denote the candidate list for the detected symbol vector after

reordering by L, we have:

L = {x̄(i,j)};

i = 1, . . . , (M −K);

j = 1, . . . , |X |.

(3.19)

63



Hence, the list size is (M −K)|X |.

• Stage 3- Post-processing:

– Minimum Euclidean Distance Evaluation:

Among all possible candidates for x̂ in (3.19), we choose the one that gives the best

performance, i.e., the minimum Euclidean distance to the received signal. Hence, we

have

x̂ = argmin
x∈L

‖y −Hx‖2. (3.20)

It is worth mentioning that by considering the candidate list in (3.19), the proposed detector can

be naturally extended for soft-output detection of MIMO systems.

3.4.2 Computational Complexity

In the proposed detector, the computational complexity of the preprocessing and detection stages

depends on the block size in the PLR scheme, i.e. K. The number of tested columns for the

proposed detector is M −K, hence, the number of visited constellation points is (M −K)|X |.

Therefore, a larger value for K decreases the computational complexity of the detection stage.

This reduction is transferred to the preprocessing stage where the reduction algorithm and the

QRD are performed. In practice, the LLL reduction cost is cubic in the dimension for small-to-

moderate dimensions. However, a larger K implies a more complex reduction algorithm which

can be computationally prohibitive for large block sizes in the PLR.

Moreover, if K increases the number of column permutations for conditional detection de-

creases which consequently reduces the computational complexity of the QRD updates for sub-

matrices. After the PLR, the QRD on the reduced submatrix is required. In a similar manner

to what was discussed in Subsection 3.3.3, Givens rotations method is an appropriate technique
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to make the matrix upper triangular. This technique can also be used for updating the QRD for

submatrices with different channel orderings. It can be shown that the overall computational

complexity of all QRD operations is in the order of O(M3) when M = N . Moreover, the al-

gorithm proposed in [104] can be modified to give the FSD ordering along with the QRD in the

MMSE-DFE filtering with O(M3) operations. As a result, for small values of K, the overall

computational complexity of the preprocessing stage is O(M3).

3.4.3 Simulation Results: Part II

In this section, we provide some computer simulations in order to investigate the performance of

the proposed partially reduced conditional detector. In the provided simulation results,

• MMSE-DFE filtering is applied for all detection schemes.

• The number of exhaustive levels is one, i.e. p = 1, for all conditional detectors.

Fig. 3.13 shows the BER performance for a 32 × 32 MIMO system with 16-QAM constel-

lation. The error performance results for different block sizes in the PLR have been provided.

The proposed detector with K = 5 outperforms the FSD and LORD by about 6-dB and 1.5-dB,

respectively. By comparing the BER result of the proposed detector with that of the FSD scheme,

it is clear that the diversity order is improved. It is worth mentioning that the FSD scheme with

p exhaustive search levels gives a diversity order of (p + 1)2 for square MIMO systems which

is equal to 4 in our simulations. Note that the channel puncturing based scheme in [86] is a

reduced-complexity version of LORD scheme and its error performance has a gap to that of

LORD. Hence, we compare our proposed detector with LORD.

Fig. 3.14 shows the BER performance for a 64 × 64 MIMO system with 16-QAM constel-

lation. The same behaviour is observed for the proposed detector. The proposed detector with

K = 5 outperforms the FSD and LORD by about 2.5-dB and 1.5-dB, respectively.
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Figure 3.13: BER performance of the proposed PLR conditional optimization detector in Algo-
rithm 3.3 for a 32× 32 MIMO system for 16-QAM.
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Figure 3.14: BER performance of the proposed PLR conditional optimization detector in Algo-
rithm 3.3 for a 64× 64 MIMO system for 16-QAM.
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3.5 Conclusion and Discussion

In Chapter 2, we proposed low-complexity near-optimal LRA conditional optimization detectors

for MIMO systems. Although their computational complexity is of O(M3|X |) for small and

moderate-scale MIMO systems, they become impractical for large-scale MIMO systems due to

the computational complexity of the lattice reduction algorithms. As a result, in this chapter, we

proposed efficient detection schemes that are applicable to large-scale MIMO systems as well.

In the first part of this chapter, we proposed low-complexity near-optimal detectors that do

not use lattice reduction algorithms. In our proposed detectors, the integration of MMSE-DFE

filtering and best submatrix selection for conditional optimization detection tailored to an appro-

priate channel ordering achieves a near-ML error performance with a fixed complexity which is

linear in the size of the constellation and cubic in the system dimension, i.e., O(M3|X |). Our

proposed detector outperforms the state-of-the-art detection algorithms for MIMO systems with

different configurations, such as square, under-determined, and over-determined MIMO systems.

Moreover, the proposed detector lends itself naturally to provide soft-outputs where simulation

results have shown improvement in performance over the conventional list detector albeit using

a much smaller list size. Our algorithm has also a straightforward parallel implementation that

further reduces its running time.

In the second part, we proposed an efficient detector for large-scale MIMO systems with the

computational complexity of O(M3|X |). Our proposed detector is mainly based on the con-

ditional optimization detection and PLR algorithm tailored to an appropriate channel ordering.

The conditional detection for finding one symbol through an exhaustive search over the constel-

lation points is considered. Then, part of the channel is reduced by the PLR technique in order

to compensate for the degradation of diversity due to limiting the exhaustive search levels to

one. To improve the error performance, all other remaining non-reduced columns are also con-

sidered for conditional detection. In the proposed detector, part of the detection complexity is
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transferred to the preprocessing stage where the PLR algorithm is implemented. Consequently,

for quasi-static channels where the channel is constant over a long block, the cost of PLR can

be negligible. Moreover, for fast fading channels, since the lattice reduction is performed on

a block of the channel matrix columns, by appropriately selecting the block size in the PLR

technique, the computational complexity of O(M3) for the preprocessing stage can be achieved.

Our proposed detector exhibits error performance improvement over those of the state-of-the-art

detection schemes for large-scale MIMO systems.
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Chapter 4

Detection for Uplink Multiuser Massive

MIMO Systems

4.1 Introduction

We consider a practical multiuser MIMO system where a BS equipped with an antenna array

simultaneously serves several cheap single-antenna UTs [71]. To meet the high data rate demand

of the different users, massive MIMO technology has been proposed where the BS is equipped

with a large number of antennas and serves tens of single-antenna UTs [59,67,71,85]. This also

simplifies the signal processing such that linear detectors, such as ZF and MMSE, in the uplink

perform sufficiently close to sophisticated non-linear detectors [67, 71].

However, the exact solutions of ZF and MMSE involve O(NK2 + K3) operations with a

matrix-matrix multiplication for the computation of the Gram matrix and a matrix inversion,

respectively, with the computational complexity ofO(NK2) andO(K3) where N is the number

of receive antennas at the BS and K is the number of UTs. Such operations become extremely

expensive for massive MIMO systems as N and/or K are very large. Several techniques have
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been proposed in the literature in order to reduce the computational complexity of these two

operations. In an effort to avoid the direct matrix inversion, approximate algorithms with the

help of a truncated Neumann series expansion have been proposed [3, 101, 102, 108]. Further

improvements have been achieved by replacing the Neumann series approximation with other

iterative algorithms, such as the Gauss-Seidel (GS) [21], successive over-relaxation (SOR) [32],

Jacobi [92], and Richardson [30] methods. All these methods reduce the complexity of the matrix

inversion fromO(K3) toO(K2), but they still suffer from complexityO(NK2) due to the Gram

matrix calculation [13].

Another class of approximate methods uses truncated polynomial expansion (TPE) in which

the matrix inversion is approximated with J finite terms of the Taylor series expansion [9, 42,

57, 73, 110]. Such methods reduce the overall complexity to a factor which is proportional to

the number of BS antennas and the number of users, i.e., O(JKN). This is achieved by an

iterative implementation of a series of matrix-vector multiplications instead of the matrix-matrix

multiplication. However, the convergence speed of the TPE detector highly depends on a nor-

malization factor in the polynomial coefficients. The optimal normalization factor, in the sense of

convergence speed, requires the calculations of the largest and smallest eigenvalues of the Gram

matrix [89]. Thus, calculating the Gram matrix and its eigenvalues increases the computational

complexity to O(NK2 +K3).

In this work, we propose a TPE-based detector where a constant normalization factor calcu-

lated using the dimensions of the system is tuned for massive MIMO systems with small loading

factors β = K
N

. We use the approximate eigenvalues of the Gram matrix of the massive MIMO

channel for tuning the normalization factor. The proposed TPE-based detector exhibits an er-

ror performance similar to that of the TPE with optimal polynomial coefficients. However, for

large loading factors of massive MIMO systems, there exists an error performance degradation at

high SNRs due to the inaccuracy of the approximate eigenvalues for such systems. An efficient

algorithm based on the power method is proposed for calculating the extreme eigenvalues of
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such systems. This method is also utilized for massive MIMO channels with spatial correlations

at the BS. The resultant approximate extreme eigenvalues are used for tuning the normaliza-

tion factor such that the TPE-based detector can achieve the error performance of ZF or MMSE

which requires an expensive exact matrix inversion. The overall computational complexity of

our proposed TPE-based detector is O(JNK) for both small and large loading factors.

In the literature, there exist detection schemes with a computational complexity ofO(mNK)

wherem is the number of iterations of the schemes. Approximate message passing (AMP)-based

detectors [55,98,103,112] offer a computational complexity of O(mNK) by deploying matrix-

vector multiplications instead of the matrix-matrix multiplication. However, AMP-based detec-

tors require the knowledge of noise variance and consequently, inappropriate noise variance ad-

justments can lead to performance degradation. Moreover, they suffer from severe performance

degradation for massive MIMO systems with large loading factors, or a realistic scenario when

the MIMO channels are spatially correlated such that for some scenarios they may not converge

even with a large number of iterations. In contrast to AMP-based detectors, our proposed TPE-

based detector ensures convergence for both small and large loading factors of massive MIMO

systems for both scenarios of uncorrelated and correlated massive MIMO channels.

The optimized coordinate descent (OCD)-based detector [100] offers a fast converging per-

formance with a computational complexity of O(mNK). In this scheme, a series of coordinate-

wise updates are performed to solve the main optimization problem. Although OCD-based de-

tectors exhibit fast converging performance, the main challenge of this scheme, or coordinate

descent (CD)-based techniques in general, resides in the data dependency of successive updates

such that the update of each coordinate, which corresponds to a user, depends on the previous

coordinates’ updates. Such a dependency prevents fully-parallel implementation [100] and also

increases the processing delay of each user to a number which is proportional to the number

of users and iterations, i.e., mK. Pipeline interleaving is deployed to address this challenge by

simultaneously processing multiple coordinates. However, this approach results in a significant
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hardware overhead [100]. On the other hand, our proposed TPE-based detector may need a larger

number of iterations to achieve the error performance of ZF or MMSE. However, the detections

for all users are simultaneously calculated in each iteration resulting in a processing delay which

is independent of the number of users and scales only with the number of iterations. This prop-

erty enables our proposed TPE-based detector to be implemented in a fully-parallel manner with

architecture pipelining.

4.2 System Model

We consider an uplink multiuser massive MIMO system with N receive antenna at the BS and

K single-antenna UTs. The transmitted signal vector is x ∈ XK×1 whose entries are chosen

from a given constellation, X , such that E[xxH ] = EsIK . The entries of the channel matrix

H = 1√
N

[h1,h2, . . . ,hK ] ∈ CN×K are assumed to be i.i.d. ∼ CN (0, 1/N). Hence, the received

signal is

y = Hx + n, (4.1)

where n ∈ CN×1 is the noise vector at the BS with i.i.d. entries following CN (0, N0). We denote

β = K
N

as the loading factor of the massive MIMO system. Simple solutions for multiuser uplink

massive MIMO are the ZF detector

x̂ZF = WZFy = (HHH)−1HHy, (4.2)

and the MMSE detector

x̂MMSE = WMMSEy = (HHH +
1

snr
IK)−1HHy, (4.3)
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where snr = Es

N0
is the transmit SNR. Both detectors require a matrix inversion with O(K3)

operations and a matrix-matrix multiplication with O(NK2) operations.

An alternative approach to the inverse calculation is the TPE since the inverse of the Gram matrix

can be expressed as a matrix polynomial [73] where the low-order terms are the most dominant

ones.

Lemma 3 ( [73]) For any positive definite Hermitian matrix X,

X−1 = α(I− (I− αX))−1 = α
∞∑
l=0

(I− αX)l (4.4)

where the second equality holds when 0 < α < 2
λmax(X)

such that λmax(X) is the largest eigen-

value of X. α is referred to as the normalization factor.

By using this lemma and X = HHH, the ZF can be approximated as

WZF = (HHH)−1HH

≈
J−1∑
l=0

(
α
J−1∑
n=l

(
n

l

)
(−α)l

)
(HHH)lHH . (4.5)

Similarly, using X = HHH + 1
snr

IK , the MMSE detector can be expanded as

WMMSE (4.6)

= (HHH +
1

snr
IK)−1HH (4.7)

≈
J−1∑
l=0

(
α

J−1∑
n=l

(
n

l

)
(1− 1

snr
)n−l(−α)l

)
(HHH)lHH . (4.8)

We denote WTPE as the TPE detector such that

WTPE =
J−1∑
l=0

wl

(
HHH

)l
HH , (4.9)
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where

wl = α
J−1∑
n=l

(
n

l

)
(1− 1

snr
)n−l(−α)l, (4.10)

and J is the TPE order. Note that when N � K, the matrix-matrix multiplication is even

more expensive than the matrix inversion. Hence, the matrix-matrix multiplication is avoided by

implementing an iterative computations of the J terms where a series of matrix-vector multipli-

cations are performed to detect the transmitted symbols vector. Hence, one can write

x̂l =

{
w0H

Hy, l = 0

wlH
H(Hx̂l−1), 1 ≤ l ≤ J − 1.

(4.11)

From (4.9) and (4.11), it can be shown that the calculation of

x̂TPE = WTPEy, (4.12)

requires (16J − 8)KN − (2J − 2)N + (J − 2)K FLOPs. Moreover, the calculations of wl’s

needs some additional operations. For a given α, all coefficients require J2 + 25J − 12 and

J2 + 37J − 16 FLOPs respectively for ZF and MMSE versions of the TPE detector.

4.3 Proposed Low-Complexity TPE-based Detectors

The normalization factor α has a key impact on the convergence of the TPE detector. The con-

vergence condition in Lemma 3 results in the following condition

0 < α <
2

λmax(G)
, (4.13)
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for ZF and

0 < α <
2

λmax(G) + 1
snr

, (4.14)

for MMSE where λmax(G) denotes the maximum eigenvalue of G = HHH. This normalization

factor is used to shift the eigenvalues of G to the convergence area as they may lie outside of the

area. A coarse choice for the normalization factor can be α = 2
Trace(G)

as one can write

∑
n

λn(G) =
∑
n

gn,n = Trace(G) > λmax(G), (4.15)

where λn(G) is the n-th eigenvalue of G. However, the convergence of the TPE with this value

of α is slow. This approximation needs 8NK−2 operations for the calculations of the summation

of the diagonal entries of G. It is shown in [88] that the fastest convergence happens when the

two extreme cases αλmin(X) and αλmax(X) are equally distant to unity. Hence, one can write

αopt =
2

λmin(G) + λmax(G)
, (4.16)

for ZF and

αopt =
2

λmin(G) + λmax(G) + 1
snr

. (4.17)

for MMSE. However, the calculation of G itself requires O(NK2) operations. In addition, the

calculations of λmin(G) and λmax(G) require O(K3) operations. An approximate method is

proposed in [89] by offering intervals for the eigenvalues of G. This method reduces the com-

plexity of the extreme eigenvalues calculations toO(K2). However, it still needs the calculations

of the entries of G.
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4.3.1 Proposed Normalization Factor for Small Loading Factors

In an effort to reduce the computational complexity pertaining to the calculations of the optimal

normalization factor, we here propose to set the normalization factor based on approximations

for the extreme eigenvalues of G. Since G is a complex central Wishart matrix, when N and K

grows we have [65]

λmax(G) ≈ (1 +
√
β)2,

λmin(G) ≈ (1−
√
β)2.

(4.18)

The approximations in (4.18) are accurate when K and N are large and the loading factor is

small. Suppose we are using the ZF version of the TPE detector. If we select

α =
2

(1−
√
β)2 + (1 +

√
β)2

(4.19)

=
1

(1 + β)
, (4.20)

then this normalization factor satisfies the convergence condition in Lemma 3 as one can write

α =
2

(1−
√
β)2 + (1 +

√
β)2

(4.21)

≈ 2

λmin(G) + λmax(G)
<

2

λmax(G)
. (4.22)

The computational complexity of calculating the proposed normalization factor in (4.20) is of

O(1) as it only needs one addition and one division. Moreover, as will be shown in Section 4.6,

by using this normalization factor, the TPE converges fast such that its behaviour is similar to

that of the TPE detector with the optimal normalization factor in (4.16).
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Algorithm 4.1 The Power Method for Extreme Eigenvalues
Input: H, y, J
Output: λmax(G), λmin(G)

1: x0 = HHy
2: xmax = x0, xmin = x0

3: for l = 1, · · · , J − 2 do
4: vmax = HHHxmax
5: xmax = vmax
6: if l = 1 then
7: λ̂max = (HHHxmax)Hxmax

xmax
Hxmax

8: end if
9: vmin = (HHH− λ̂maxI)xmin

10: xmin = vmin
11: end for
12: λmax(G) = (HHHxmax)Hxmax

xmax
Hxmax

13: λmin(G) = (HHHxmin)
Hxmin

xmin
Hxmin

4.3.2 Massive MIMO Systems with Large Loading Factors

The approximations for the extreme eigenvalues of G in (4.18) are accurate when K and N

are large, and β is small. For large β’s, the actual extreme eigenvalues may differ from the

approximations which will affect the error performance of the system. As will be shown in

Section 4.6, for a large β, e.g, β = 16
64

= 0.25, the BER performance of the proposed TPE detector

diverges from that of the TPE detector with αopt. As a result, we propose another approximate

method with low-computational complexity for calculating the extreme eigenvalues of G for

such systems. These approximate extreme eigenvalues are used for tuning the normalization

factor for massive MIMO systems with large loading factors.

The Power Method for Extreme Eigenvalues Calculations

The power method [34] is an iterative algorithm for approximating the largest eigenvalue of a ma-

trix with linearly independent eigenvectors and also with a dominant eigenvalue. The algorithm
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starts with a non-zero initialization vector iteratively multiplied by the matrix, i.e.,

x1 = Gx0,

x2 = Gx1 = G2x0,

...

xm = Gxm−1 = Gmx0.

(4.23)

For large powers of m, a good approximation of the dominant eigenvector of G is obtained. The

corresponding eigenvalue is obtained by the Rayleigh quotient

λmax(G) ≈ (Gxm)Hxm
xmHxm

. (4.24)

Here, we propose initiating the algorithm with x0 = HHy and also limiting the number of

iterations of the power method in (4.23) to m = J − 2 in order to use the already calculated TPE

terms in (4.11) for approximating the largest eigenvalue. By comparing (4.11) and (4.24), one

can write

λmax(G) ≈
x̂HJ−1x̂J−2

x̂HJ−2x̂J−2
. (4.25)

With these choices of initialization and number of iterations, the power method only needs 16K+

2 additional FLOPs for computing λmax(G). We note that since we utilize the TPE terms for the

calculation of λmax(G), it can be implemented in parallel to the TPE terms calculations without

imposing further processing delays on the system.

In the following, we discuss how efficiently we can obtain an approximation for λmin(G).

As G is a positive definite matrix, matrix G′ = G − λmax(G)IK is a negative definite matrix

with the dominant eigenvalue λmin(G)−λmax(G). As a result, by giving matrix G′ to the power
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method, an approximation of λmin(G) can be achieved after shifting the output by λmax(G), i.e.,

λmin(G) ≈ ((G− λmaxI)xm)Hxm
xmHxm

+ λmax(G). (4.26)

For this approach, the approximation of λmin(G) requires a prior knowledge of λmax(G). The

straightforward solution is to calculate λmin(G) after obtaining λmax(G) in (4.24) using two sep-

arate instances of the power method. However, this approach increases the processing delay by

the number of iterations of the power method for calculating λmin(G). As a result, we propose to

calculate both λmin(G) and λmax(G) simultaneously where a coarse approximation of λmax(G),

which is obtained at the early steps of the power method, is used for λmin(G) approximation.

Algorithm 4.1 contains the detailed steps of the proposed approach.

Remark 2 For massive MIMO systems with large loading factors, the number of TPE terms, i.e.,

J , is such that an accurate approximation of λmax(G) is attained. However, for some channel

realizations, the achieved λmin(G) might be different from the actual smallest eigenvalue. This

mismatch can be reduced by increasing the number of iterations or selecting an appropriate ini-

tialization at the cost of an increase in computational complexity. However, for our application,

as will be shown in Section 4.6, such a mismatch does not affect the error performance of the

system.

4.3.3 Spatially Correlated Massive MIMO Channels

In realistic wireless communication environments, the error performance of the uplink of massive

MIMO systems is affected by the spatial correlation between the antennas at the BS. We consider
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the specially correlated channel model in [16, 20] such that

Hsc = R1/2H, (4.27)

where R ∈ RN×N is the correlation matrix defined as

R =



1 ρ . . . ρN−1

ρ 1 . . . ρN−2

...
... . . . ...

ρN−1 ρN−2 . . . 1


.

where ρ is the correlation coefficient. In Section 4.6, we evaluate the error performance of our

proposed TPE-based detector for the spatially correlated MIMO channels. In our evaluation, we

replace the channel matrix H in (4.1) with Hsc in (4.27). We also normalize Hsc in (4.27) by the

norm of R1/2 in order to have a consistent SNR adjustment with the uncorrelated MIMO channel

scenario. We also note that for such channels, we use the TPE-based detectors with the proposed

normalization factor using Algorithm 4.1 as the extreme eigenvalues approximations in (4.18)

are not valid for such channels.

4.4 Computational Complexity Analysis

In this section, we analyze the computational complexity of the proposed TPE-based detectors.

We assume six and two FLOPs, respectively, per complex multiplication/division and complex

addition/subtraction. We note that the multiplication of matrices of size K × N and N × M

requires (8N − 2)KM FLOPs [34]. For a given massive MIMO system, one can show that:

• The calculation of α requires 8 FLOPs.
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Table 4.1:
Computational Complexity In Terms of Complex Multiplications

Detector Complex Multiplications Complexity Order Complex Multiplications (N=128, K = 16, 16-QAM)
ZF/MMSE 1

2
NK2 + 1

2
K3 + 3

2
NK + 5

2
K2 O(NK2 +K3) 22, 144

AMP [13] m(2NK +N +K) O(2mNK) 16, 960 (m = 4)
OCD [100] m(2NK +K) O(2mNK) 12, 336 (m = 3)

CG (m+ 1)NK + 6mK +m O((m+ 1)NK) 10, 628 (m = 4)
Proposed TPE-based (m = J , αconstant) 2mNK −NK +mK O((2m− 1)NK) 18, 512 (m = J = 5)

• For a given α, the calculations of all wl’s require J2 +25J−12 and J2 +37J−16 FLOPs,

respectively, for ZF and MMSE versions of the TPE.

• The iterative computations of J terms in (4.11) require (16J−8)KN − (2J−2)N +(J−

2)K FLOPs.

Consequently, the computational complexity of our proposed TPE-based detector when the con-

stant normalization factor in (4.20) is used is O(JKN).

For massive MIMO systems with large loading factors, one also needs to add the computational

complexity of Algorithm 4.1. One can show that:

• By using the already calculated TPE terms in (4.11), the calculation of λmax(G) only needs

16K + 2 FLOPs.

• The calculation of λ̂max needs 16K + 2 FLOPs.

• We need to calculate

(G− λ̂maxI)lHHy =
l∑

k=0

(
n

l

)
(−λ̂max)kGl−kHHy, (4.28)

for l = 1, · · · , J − 1. For all iterations, the calculations of the required powers of λ̂max

and the coefficients need 12(J − 2) FLOPs.
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• Given the coefficients, the calculation of the expression in (4.28) needs J(J−1)
2

additions

and J(J+1)
2
− 1 multiplications for all iterations. Hence, it needs K(4J2 + 2J − 6) FLOPs.

• The calculation of λ̂min needs 2K + 4 FLOPs.

As a result, compared to the constant normalization factor, Algorithm 4.1 increases the com-

putational complexity by O(J2K). Hence, for both cases of small and large loading factors

of massive MIMO systems, the overall computational complexity of our proposed TPE-based

detectors is O(JKN).

In Table 5.1, we compare the complexity of different detection schemes. Our proposed TPE-

based detector has the same computational complexity of O(mNK) as AMP-based and OCD-

based detectors if we consider m = J for our TPE-based detector. The last column of the table

indicates the required number of complex multiplications for a 128 × 16 massive MIMO with

16-QAM modulation when different schemes with sufficient number of iterations used to achieve

an error performance close to the ZF or MMSE solution. In Section 4.6, for different massive

MIMO systems, we compare the error performance of our proposed TPE-based detector with

those of AMP-based and OCD-based detectors.

The AMP-based detector fails to converge for large loading factor of massive MIMO systems or

spatially correlated massive MIMO channels while with our proposed TPE-based detector, con-

vergence to the ZF or MMSE detector is ensured. Moreover, an inappropriate adjustment of the

noise variance can degrade the error performance of the AMP-based detector. However, the ZF

version of the proposed TPE-based detector does not require the knowledge of noise variance.

The OCD-based detector is able to converge fast for different scenarios of massive MIMO sys-

tems. However, the main drawback of the OCD-based scheme lies in the delay of processing

associated with this scheme as the update of each coordinate (corresponding to each user) de-

pends on the updates of previous coordinates. This dependency increases the processing delay to

a number which is proportional to the number of users and iterations, i.e., mK, and also prevents
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fully-parallel implementation of the scheme. However, although our proposed TPE-based detec-

tor may need a larger number of iterations to approach the error performance of ZF or MMSE,

it can be implemented in a fully-parallel manner as in each iteration, the estimates of all users

are calculated simultaneously resulting in a processing delay which is proportional only to the

number of iterations (or TPE terms), i.e, m = J .

4.5 Discussion on the Conjugate Gradient-Based Detector

Conjugate gradient (CG) is an efficient iterative algorithm to solve the problem of signal detec-

tion for the uplink of massive MIMO systems. One key advantage of the CG-based detector

is that it converges at K iterations and it can even be terminated with a fewer number of itera-

tions than K while the solution is sufficiently close to the exact solution [107]. However, one

disadvantage of the CG-based detector is that it does not provide the post-processing SINR in-

formation for the calculations of LLR values for the soft-output version of the detector. In [107],

a CG-based soft-output detection scheme is proposed for massive MIMO systems. It is worth

mentioning that in some works in the literature, for example [45], it is assumed that the Gram

matrix (or its regularized version) is given as an input to the CG-based detector which requires

a matrix-matrix multiplication. However, one can easily verify that the corresponding matrix-

matrix multiplication can be replaced with matrix-vector multiplications. Therefore, as Table

5.1 shows, the overall computational complexity of the CG-based detector is O(mKN). In the

following, we describe the steps of the CG-based detector.

We can rewrite the ZF solution in (4.2) as

x̂ZF = G−1HHy

= G−1b,

(4.29)
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or the MMSE solution in (4.3) as

x̂MMSE = (G +
1

snr
IK)−1HHy

= (G +
1

snr
IK)−1b,

(4.30)

where b = HHy. These solutions can be seen as the solutions of linear equations. For example,

for the ZF solution, we have

Gx = b. (4.31)

This linear equation can be transformed into the following quadratic optimization function

min
x∈CK×1

f(x) ,

(
1

2
xHGx− bHx

)
. (4.32)

Since G is a symmetric and positive definite matrix, the gradient of f(x) at the optimal

point x̂ is zero. If D , {d(0),d(1), · · · ,d(K−1)} denotes the CG with respect to G, we have

d(i)HGd(j) = 0; ∀i 6= j. The detailed steps of the CG-based detector for the ZF solution have

been described in Algorithm 4.2. One can show that this algorithm requires (m + 1)NK +

6mK + m complex multiplications and (m + 1)NK − mN + (6m − 1)K − 3m complex

additions. Therefore, the overall computational complexity is O(8(m + 1)NK) in terms of

FLOPs. In Section 4.6, we compare the error performance of the CG-based detector with that of

our proposed TPE-based detector.

4.6 Simulation Results

In this section, we consider several massive MIMO systems in order to investigate the error per-

formance of the proposed TPE-based detectors. For all simulations of the TPE-based detectors in

this section, we refer to the proposed constant normalization factor in (4.20) and using Algorithm
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Algorithm 4.2 The Conjugate Gradient-Based Detector
Input: H, y
Output: x̂

1: Initialization: b = HHy, x̂ = 0, r0 = b, p0 = r0
2: for k = 1, . . . , K do
3: ek−1 = HHHpk−1
4: αk = ||rk−1||2/(pHk−1ek−1)
5: x̂k = x̂k−1 + αkpk−1
6: rk = rk−1 − αkek−1
7: βk = ||rk||2/||rk−1||2
8: pk = rk + βkpk−1
9: end for

4.1, respectively, as αconstant and αpower.

Fig. 4.1 shows the average mean square error (MSE) between the exact inverse of G and its

approximation using the TPE for 10, 000 channel realizations. Different normalization factors

and TPE orders are considered in order to investigate the convergence of the TPE. Our proposed

normalization factor αconstant exhibits an MSE similar to that of the TPE with αopt. Moreover,

α = 2
Trace(G)

has a very slow convergence. Also, α = 1
λmax(G)

shows a better convergence speed,

but it still is far from the optimal convergence speed. The simple choice of α = 1 diverges

at large TPE orders when the loading factor is large. It is worth mentioning that the provided

results in Fig. 4.1 is the average MSE for 10, 000 channel realizations while the worst-case MSE

is also important, especially for the BER of wireless communication systems, where one coarse

approximation can result in a poor error performance; especially at high SNRs.

As Fig. 4.2-4.5 show, the BER performance of the TPE-based detector with αconstant is similar

to the case when αopt is used for 128 × 16, 256 × 16, and 512 × 16 massive MIMO systems.

Moreover, J = 5, J = 4, and J = 3 are sufficient for these systems, respectively, to approach

the BER performances of ZF and MMSE detectors with the exact inversion. However, for a

64× 16 massive MIMO system, although the TPE-based detector with αconstant performs similar

to the TPE-based detector with αopt at low and moderate SNRs, there is a performance gap at
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high SNRs. It happens due to the inaccuracy of the extreme eigenvalues approximations in (4.18)

for systems with large loading factors.

In Fig. 4.6, we use the TPE-based detector with αpower in order to resolve the convergence

issue when αconstant is used for the 64 × 16 massive MIMO systems which has a large loading

factor. As Fig. 4.6a shows, the TPE-based detector converges with αpower and it requires J = 10

to approach the BER of ZF or MMSE for 16-QAM modulation. In Fig. 4.6b, we evaluate our

proposed TPE-based detector for the higher order modulation 64-QAM. For this system, a similar

convergence behaviour is observed, and αpower with J = 12 is required to approach the BER of

the ZF or MMSE detector.

In Fig. 4.7, we compare our proposed TPE-based detector with AMP-based and OCD-based

detectors. We consider a 64 × 16 massive MIMO system with a large loading factor of β =

0.25, and a 256 × 16 massive MIMO system with a small loading factor of β = 0.0625. The

proposed TPE-based detector converges for these two systems. However, although the AMP-

based detector converges with m = 3 for the massive MIMO system with the small β in Fig.

4.7b, it fails to converge for the massive MIMO system with the large β in Fig. 4.7a such that it

cannot approach the BER of MMSE, and after a certain point increasing the number of iterations

will not improve the BER performance.

According to Fig. 4.7, the OCD-based detector converges to the BER of MMSE with m = 6

and m = 3 iterations, respectively, for 64 × 16 and 256 × 16 massive MIMO systems while

the proposed TPE-based detector requires m = J = 10 and m = 4 iterations, respectively.

However, the processing delay associated with the OCD-based detector for these two systems

with the mentioned required number of iterations is proportional to mK = 96 and mK = 48,

respectively, while those of our proposed TPE-based detector is proportional to m = 10 and

m = 4, respectively. Such smaller processing delays are achieved because of the fully-parallel

implementation capability of our proposed TPE-based detector.
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In Fig. 4.8, we consider a 128 × 16 massive MIMO system with two different correlation

coefficients of ρ = 0.2 and ρ = 0.3. For these two systems, the AMP-based detector suffers

from a severe performance degradation such that it is not able to approach the BER of MMSE

detector even with a large number of iterations. The proposed TPE-based detector approaches

the BER of the MMSE detector, respectively with J = 12 and J = 16. Although the OCD-

based detector can achieve such BER performances with approximately half of the iterations

required for the TPE-based detector, the processing delays of the OCD-based detector for these

two systems are 96 and 128, respectively, while those of our proposed TPE-based detectors are

12 and 16, respectively.

In Fig. 4.9, we compare our proposed TPE-based detector with the CG-based detector for a

128× 16 massive MIMO system with 16-QAM modulation. As Fig. 4.9a shows, for this system

with the uncorrelated channel matrix, the proposed TPE-based detector with αconstant requires

m = J = 5 while the CG-based detector requires m = 4 in order to approach the ZF or MMSE

solution. For the system with the spatial correlation of ρ = 0.2 between BS antennas in Fig.

4.9b, the CG-based detector converges with m = 6 while our proposed TPE-based detector

needs m = J = 12 in order to approach the ZF or MMSE solution. Similar to our proposed

TPE-based detectors, in each iteration, the CG-based detector updates the detected signal vector

for all users simultaneously. As a result, it can be considered as a promising alternative to our

proposed TPE-based detectors.
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Figure 4.1: Convergence evaluation of TPE-based detector with different normalization factors.
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Figure 4.8: BER performances comparison of the proposed TPE-based detector with AMP-based
and OCD-based detectors for a spatially correlated 128 × 16 massive MIMO channel with (a)
ρ = 0.2 and (b) ρ = 0.3 with 16-QAM modulation. The normalization factor of the TPE-based
detector is obtained using Algorithm 4.1.

96



0 5 10 15

E
b
/N

0
(dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

LMMSE

ZF

TPE-ZF, J=2, α
constant

TPE-ZF, J=3, α
constant

TPE-ZF, J=4, α
constant

TPE-ZF, J=5, α
constant

CG-ZF, m=2

CG-ZF, m=3

CG-ZF, m=4

(a) 128× 16 - 16QAM.

6 8 10 12 14 16 18 20 22

E
b
/N

0
(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

LMMSE

TPE-ZF, J=6, α
power

TPE-ZF, J=8, α
power

TPE-ZF, J=10, α
power

TPE-ZF, J=12, α
power

CG-ZF, m=2

CG-ZF, m=4

CG-ZF, m=6

(b) 128× 16 - 16QAM, ρ = 0.2

Figure 4.9: BER performances comparison of the proposed TPE-based detector with the CG-
based detector for a 128×16 massive MIMO channel with 16-QAM modulation; (a) uncorrelated
and (b) spatially correlated with ρ = 0.2.
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4.7 Conclusion and Discussion

In massive MIMO systems, the number of antennas at the BS is much larger than the number

of UTs. As a result, linear detectors, such as ZF and MMSE, are used for the uplink as they

exhibit BER performances close to those of non-linear detectors. However, the exact solutions

for ZF and MMSE involve matrix-matrix multiplication and matrix inversion operations, re-

spectively, with O(N2K) and O(K3) operations which become computationally expensive for

massive MIMO systems. Therefore, efficient detectors are vital for the uplink of massive MIMO

systems. In this chapter, with the help of TPE-based detectors, we proposed an efficient detec-

tion scheme for the uplink multiuser massive MIMO systems. The advantage of the TPE-based

detectors is that the inverse of the Gram channel matrix can be written as a weighted summa-

tion of J finite terms. This enables us to implement the detection scheme in an iterative manner

such that the matrix-matrix multiplication and matrix inversion are replaced with a finite series

of matrix-vector multiplications. Consequently, for a given set of optimal weights, the compu-

tational complexity of the TPE-based detector is O(JKN). However, the convergence speed of

the TPE-based detectors depends on a normalization factor which is optimally calculated from

the maximum and minimum eigenvalues of the Gram channel matrix. The exact calculations of

these eigenvalues, or the proposed approximate methods in the literature, require O(K3) oper-

ations. In our proposed TPE-based detector, we offer a constant normalization factor for small

loading factors of massive MIMO systems calculated from the dimensions of the system with a

complexity ofO(1). For massive MIMO systems with large loading factors, an efficient approx-

imate algorithm for calculating the extreme eigenvalues was proposed. The proposed TPE-based

detector achieves the error performance of ZF and MMSE for both small and large loading fac-

tors as well as spatially correlated massive MIMO channels with a computational complexity

that is proportional to the number of BS antennas and users.
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Chapter 5

Detection for Millimeter Wave Massive

MIMO Systems

5.1 Introduction

The mmWave has gained a great interest in the 5G cellular networks because of the higher band-

width communication channels it offers by using the spectrum from 30 GHz to 300 GHz com-

pared to the wireless systems operating at carrier frequencies below 6 GHz [39]. The increase

in the carrier frequency results in a higher free-space pathloss. Massive MIMO technology en-

ables stacking a large number of antenna elements providing beamforming gain to combat the

increased pathloss [6]. A broad range of technologies of the 5G, such as machine to machine,

Internet of vehicles, device to device, backhaul, access, and small cell, will utilize mmWave

massive MIMO [2].

To reduce the implementation costs of massive MIMO systems in the mmWave bands, hy-

brid beamforming techniques have been proposed in the literature. Hybrid beamforming has

demonstrated applicability in a wide range of applications, including autonomous driving cars
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and machine to machine technology [2]. In hybrid beamforming techniques, the optimal fully-

digital beamformers are approximated using a fewer number of RF chains at BSs and/or UTs

at the price of some performance degradation. Such approximations are evaluated using the

Euclidean distance between the hybrid beamformers and the optimal fully-digital ones. Mini-

mizing the Euclidean distance, which under some strict assumptions is translated to minimizing

the mutual information loss due to hybrid beamforming, does not directly imply its efficacy in

terms of more practical metrics like error performance. One reason is that the spectral efficiency

performance depends on the largest eigenvalues of the channel while the error performance is

practically dictated by the stream with the lowest SNR. Therefore, such approximations for hy-

brid beamforming can result in poor error performances.

Consequently, in this chapter, we improve the error performance of hybrid beamforming

mmWave massive MIMO systems. We consider a signal detection scheme using an equivalent

channel consisting of the precoder, mmWave channel, and combiner. Then, the proposed detec-

tion schemes proposed in Chapter 3 are applied for the equivalent MIMO system. Our proposed

detectors achieve an error performance close to that of the optimal ML detector with significantly

reduced computational complexity by exploiting the available structure in the equivalent chan-

nel. In [4], SD is proposed for mmWave massive MIMO systems by considering the diagonal

matrix of the singular values as an effective channel. However, our equivalent channel matrix

considers the effect of off-diagonal elements on the detection process. Moreover, SD suffers

from varying complexity with an exponential average complexity whereas our proposed detector

has fixed polynomial complexity with fully-parallel implementation with reduced complexity.

5.2 System Model

We consider a single-user MIMO system with large antenna arrays and a limited number of

RF chains in an mmWave environment where the transmitter and receiver are equipped with M
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Figure 5.1: System model of hybrid beamforming and detection for mmWave massive MIMO
systems.

and N antenna array elements, respectively, as shown in Fig. 5.1. The transmitter sends Ns

independent data streams to the receiver with the help of NRF RF chains. The data vector s is

of size Ns × 1 where E[ssH ] = 1
Ns

INs . The data vector is processed by a hybrid beamforming

technique where a digital (baseband) precoder FBB of size NRF×Ns followed by an analog (RF)

precoder FRF of size M × NRF are applied. Therefore, the vector x = FRFFBBs is sent over

the channel where the total transmitted power is normalized such that ‖FRFFBB‖2F = Ns. The

received vector of size N × 1 is given by

y =
√
ρHFRFFBBs + n, (5.1)

where ρ is the average received power and n is the white Gaussian noise vector with CN (0, N0)

i.i.d. entries. H is the fading channel matrix which is widely modeled in the mmWave literature

by the clustered model [6, 66, 80, 109]. In the clustered model, the channel is represented as the

sum of all propagation paths that are scattered in Ncl clusters with each cluster contributing Nray
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rays, and it is given by

H =

√
MN

NclNray

∑
i,l

αilar(φ
r
il, θ

r
il)at(φ

t
il, θ

t
il)
H , (5.2)

where αil is the complex gain of the j-th ray in the i-th cluster, and at(φ
t
il, θ

t
il) is the transmit

antenna array response vector of length M for given azimuth and elevation angles of departure,

respectively, denoted by φtil and θtil. Similarly, ar(φ
r
il, θ

r
il) is the receive antenna array response

vector of length N for given azimuth and elevation angles of arrival denoted by φril and θril,

respectively. We consider uniform planar array (UPA) at the transmitter and the receiver.

We assume that the received signal vector is processed by two linear combining stages of the

hybrid combining followed by a (non-linear) detection stage. Particularly, the received vector is

processed by WRF, i.e., the analog combiner, then by WBB, the digital precoder and thereby the

output of combiners is

ỹ =
√
ρWH

BBWH
RFHFRFFBBs + WH

BBWH
RFn. (5.3)

We note here that both the analog precoder and combiner have RF hardware constraints where

their entries have unit magnitudes since they are implemented by constant magnitude phase

shifters. After that, the signal combining stage is followed by a detection stage to estimate

the transmitted data vector ŝ.

The optimal fully-digital precoder and combiner under mutual information performance met-

ric is given by [87]

Fopt = V̄Ns ,Wopt = ŪNs , (5.4)

where V̄Ns and ŪNs are the Ns largest right and left singular vectors of the channel matrix,
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respectively. Most prior works on hybrid beamforming designs adopted the approach of decom-

posing the optimal beamforming (precoding/combining) matrix into two matrices, i.e., analog

and digital beamforming ones [6, 56, 66, 80, 109] using the following approximation

argmin
FRF,FBB

‖ Fopt − FRFFBB ‖2F

subject to FRF ∈ UM×NRF ,

‖ FRFFBB ‖2F= Ns,

(5.5)

where UM×NRF is the space of M × NRF matrices that have unit magnitude entries. The same

problem formulation is applied to the receiver side for approximating Wopt as WRFWBB. We

note that there is no closed form solution for this non-convex optimization problem and all the

prior works have provided sub-optimal solutions.

Orthogonal matching pursuit (OMP) and its variants [6, 66], and alternating minimization

(AM) are well-known techniques for hybrid beamforming [80, 109]. The Euclidean distance

has been widely used for hybrid beamforming designs for maximizing the spectral efficiency.

However, the Euclidean distance is not necessarily the best metric to be utilized in measuring

the closeness of the hybrid beamformers to the optimal one as to minimize the BER. This di-

rectly results in high errors in approximating the optimal beamformer by the hybrid ones which

in turn causes inter-stream interference affecting the stream with the lowest SNR and aggra-

vating the total BER performance as will be shown using computer simulations in Section 5.5.

Therefore, we propose adding a low-complexity detection stage after the hybrid beamforming

(precoding/combining) stage to enhance the BER performance of the system.
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5.3 Signal Detection

5.3.1 Equivalent Channel Matrix

Consider the output of the combiner in (5.3). The equivalent channel of size Ns ×Ns consisting

of the precoder, mmWave channel, and combiner, i.e.,

Heq = WH
BBWH

RFHFRFFBB (5.6)

is considered for the detection process. Hence, one can write

ỹ =
√
ρHeqs + n′, (5.7)

where n′ = WH
BBWH

RFn. When the optimal fully-digital singular value decomposition (SVD)-

based precoder and combiner are used, this equivalent channel will be Σ1, the Ns ×Ns partition

of Σ, obtained by the SVD of H, i.e., H = UΣVH . For this diagonal matrix, the optimal

solution can be obtained using a symbol by symbol demodulation. However, for the hybrid

beamforming structure, there is a difference between the optimal precoder/combiner and the

hybrid precoder/combiner due to the approximations. We denote eF and eW as the error matrices

due to such approximations, respectively. Hence, one can write

eF = Fopt − FRFFBB, (5.8)

eW = Wopt −WRFWBB. (5.9)

Because of these error matrices, the off-diagonal entries of the equivalent channel in (5.6) will

not be zero. These non-zero off-diagonal entries are problematic for signal detection, especially

for the symbols corresponding to the last columns of the equivalent channel as the diagonal
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entries are in descending order as a result of the SVD operation. The error matrices depend

on the ability of hybrid beamforming in approximating the optimal precoder/combiner. L and

NRF are two parameters which affect the approximation. As we will discuss in Section 5.5,

for OMP, the approximation becomes worse whenever NRF decreases or L increases. The error

performance of the AM hybrid beamforming technique degrades with decreasing L. The quality

of the approximation for each technique affects the error gap between a simple detector and the

optimal ML solution. In the next subsection, we address the design of low-complexity signal

detectors that achieve the optimal ML error performance.

5.3.2 Detection for the Equivalent MIMO System

In practical mmWave massive MIMO systems, the number of data streams, i.e., Ns is up to

8 [81]. Consequently, the conventional techniques for small and moderate MIMO systems can

be utilized for the equivalent channel matrix. However, because of the near-diagonal structure of

the equivalent channel in (5.6), it is expected that the conventional detection techniques, such as

the FSD [7] and multiple subspace detection proposed in Chapter 3, can be extensively simplified.

We consider the regularized (or augmented) channel matrix, i.e.,

H̃eq =

 Heq

√
α INs

 , (5.10)

where α = N0

ρ
, and we perform the QRD such that

H̃eq = Q̃R, (5.11)

where Q̃ is a 2Ns×Ns matrix with orthonormal columns, and R is an Ns×Ns upper triangular

matrix with positive diagonal entries. By considering Q as the Ns ×Ns part of Q̃, consisting of
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the first Ns rows, one writes [22]

y′ = QHy = Rs + w, (5.12)

where w = QHn′ − [R − QHHeq]s. SIC is implemented using the upper triangular structure

of R. In Algorithm 5.1, we propose a multiple subspace detector for the subspace detection of

one symbol tailored to an appropriate channel ordering for SIC with complexity saving consid-

erations. After ordering the columns, first, a search over the constellation symbols is performed.

Then, SIC is conducted for the detection of the remaining symbols. In the case of multiple

detections, i.e., c > 1, we examine c worst columns in a round-robin fashion.

By changing the parameters of the algorithm, it will be converted to some detection schemes

with reduced complexity. For example, for c = 1, it is equivalent to the FSD scheme with p = 1,

and for c = Ns, other than the ordering, it is similar to the multiple subspace detection proposed

in Chapter 3. Moreover, by skipping the subspace detection, the algorithm is equivalent to the

MMSE-SIC scheme along with the V-BLAST ordering. Consequently, as will be shown later

in Section 5.5, by properly selecting the parameters in this algorithm, an appropriate detection

scheme can be implemented to achieve a near-optimal error performance while the computational

complexity is maintained as low as possible.

For the case of multiple detections, i.e., c > 1, if we want to simply swap the next column

with the previously examined one, another QRD operation - with a complexity of O(N3
s ) - will

be required due to intermediate fill-in [83] in the Givens rotations process as the current column

is usually located at the first columns of the optimal ordering. However, if we order the columns

such that the c worst columns place at the c first columns of the ordered matrix, and we perform

QRD on this matrix, for each next QRD operation we require up to Ns − 1 rotations, equal

to the number of non-zero entries below the main diagonal, in order for the matrix to get the

upper triangular form. Each rotation changes two rows of the matrix and needs up to 4(Ns − 1)
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Algorithm 5.1 The Proposed Multiple MMSE-DFE Subspace Detector
Inputs: Heq ∈ CNs×Ns , y ∈ CNs×1, X .
Parameters: 1 ≤ c ≤ Ns.

Channel Ordering:

1. Find c worst columns of matrix Heq for multiple subspace detection of one symbol.

2. If c = 1 keep this worst column at the end of the ordered matrix denoted as HO.
Otherwise, i.e., if c > 1 put these c worst columns at the c first column of the ordered
matrix for the sake of complexity saving for multiple QRD operations.

3. Then, place the Ns − c best remaining columns in order at the remaining columns of
HO.

Perform QRD on H̃O; H̃O = Q̃R.
y′ = QHy = Rs + w.
For all i = 1, 2, . . . , c perform the subspace detection on y′(multiple detection)

1. y′ = R[i]s[i] + ris[i] + w.

2. If c > 1 perform QRD on [R[i], r[i]]; i.e., [R[i], r[i]] = Q[i]B[i].

3. For all points of the constellation:

(a) If c > 1 obtain y′′ = Q[i]Hy′.
(b) Fix ŝ(j)i = aj, aj ∈ X ; j = 1, ..., Q = |X |.
(c) Perform SIC to detect ŝ

(j)
[i] .

(d) Calculate dk = ‖y′ −R[i]ŝ
(j)
[i] − riŝ

(j)
i ‖2;k = (i− 1)|X |+ j.

Find dmin = min
k=1,..,c.Q

dk and declare the reordered corresponding ŝ = [ŝ
(j)
[i] , ŝ

(j)
i ] as detected

symbol vector.
Output: ŝ

multiplications and 2(Ns − 1) additions. As a result, O(N2
s ) operations are required for all c

matrices to be transformed into the upper triangular form. Moreover, the QRD along with the

orderings can be obtained by a slight modification of the sorted QRD scheme in [104] with

O(N3
s ) operations (See Table 5.1 for more details). Additionally, by rounding small off-diagonal

entries of the equivalent channel to zero, sparse QRD techniques [83] can be used for further

simplifications of the proposed detector.
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Table 5.1: Computational Complexity In Terms Of FLOPs

Detector Operation Number of FLOPs Ns = 8
64-QAM

FSD

Preprocessing: FSD ordering+ QRD [104] 28N3
s + 113

3
N2

s + 24Ns − 60 475, 630
R2x2;x2 ∈ Xp for p worst column of R (8Nsp− 2Ns).|X|p (p = 2)

Detection:
y′ = QHy (8Ns − 2)Ns

SIC (4(Ns − p)(Ns − p + 1) + 2p).|X|p 1, 647, 088

Euclidean Distance Test (4N2
s + 4Ns − 2).|X|p (p = 2)

Preprocessing:
Ordering + QRD [104] 28N3

s + 113
3

N2
s + 24Ns − 60

19, 951 26, 935Multiple QRD of R[i] ; i = 1, . . . , c (if c > 1) c.(6N2
s − 14Ns + 8)

MMSE-SIC riaj ; i = 1, . . . , c 6Ns.c.|X| (c = 1) (c = 3)

Subspace

Detection:

y′ = QHy 8N2
s − 2Ns

33, 264 100, 288Detector y′′ = Q[i]Hy′; i = 1, . . . , c (if c > 1) (8N2
s − 2Ns).c

(Algorithm 5.1) SIC (4N2
s − 4Ns + 2).c.|X| (c = 1) (c = 3)

Euclidean Distance Test (4N2
s + 4Ns − 2).c.|X|

5.4 Computational Complexity

In this section, we discuss the computational complexity of the proposed algorithm. The main

operations in Algorithm 5.1 are QRD and ordering both requiring O(N3
s ) operations. For multi-

ple subspace detection, Algorithm 5.1 requires an additionalO(N2
s ) operation for multiple QRD.

By bringing each column to the last column of the matrix, the resultant matrix has up to Ns − 1

elements below the main diagonal to get annihilated to have the upper triangular form. By us-

ing Givens rotations, each element requires O(Ns) operations. Hence, the matrix needs O(N2
s )

operation, and all c matrices require O(N2
s ) operations. Table 5.1 shows the detailed complexity

of the proposed algorithm compared to the FSD scheme in terms of FLOPs. We assume six and

two FLOPs per complex multiplication and addition, respectively. It is worth mentioning that

the complexity of the proposed detector is O(N3
s |X |) for the worst-case scenario.

The computational complexity of the OMP hybrid beamforming technique or its variants

is O(M2NRFNs) as it is mainly dominated by the successive orthogonal projections (pseudo-

inverse) [18]. AM hybrid beamforming techniques require O(MN2
RFNs) operations mainly due

to partial SVD computations using rank revealing QRD [35]. One has to add the computation
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complexity of calculating the optimal beamformers; this requires O(MNNs) operations when

using rank revealing QRD to calculate U and V [35]. Hence, the overall computational com-

plexity of the hybrid beamforming processes is O(M(N +N2
RF)Ns).

5.5 Simulation Results

In this section, we provide some simulation results to investigate the error performance of the

proposed scheme for both OMP and AM hybrid beamforming techniques. For AM, we set

the number of iterations to NRF to have the same complexity order as OMP. We consider the

clustered channel model given in (5.2). The azimuth angles of departure and arrival are i.i.d.

with Laplacian distribution with means assumed to be uniformly distributed between 0 and 2π,

and the angular spreads are 7.5◦ [6]. For our simulations, we use L ∈ {12, 30}, Ns ∈ {4, 6, 8},

with 64-QAM or 256-QAM modulation. In all simulations, we perform hybrid beamforming for

both precoding and combining. We compare our proposed scheme with the optimal linear MMSE

receiver in the sense of minimizing error [6, 87]. This optimal MMSE receiver is equivalent to

our system model when Wopt = ŪNs is used for the combiner followed by MMSE applied on

the output of the combiner.

Fig. 5.2 shows the error performance for Ns = 4, NRF = 6 and L = 12. In this figure, the

MMSE-SIC detector with the optimal V-BLAST ordering achieves a performance close to that

of the SD for both AM and OMP hybrid algorithms. Note that the MMSE-SIC with V-BLAST

ordering can be implemented by skipping the subspace detection in Algorithm 5.1. By using the

proposed detection scheme, gains of about 2-dB and 4-dB are achieved, respectively, for OMP

and AM at the BER of 10−4.

Fig. 5.3 shows the error performance for the system with Ns = NRF = 4 and L = 30. In this

figure, Algorithm 5.1 with c = 1 achieves the ML error performance for OMP. However, for the

AM technique, the system exhibits a good performance even with the MMSE detector, and the
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Figure 5.2: BER performance of hybrid precoding and beamforming with detection in Algorithm
5.1 for a 64× 16 UPA mmWave MIMO system for Ns = 4, NRF = 6, L = 12, and 256-QAM.

SD cannot add improvement.

In Fig. 5.4, Ns = NRF = 6 and L = 12. The proposed algorithm significantly improves the

error performance for both OMP and AM techniques. For AM, the SIC-VBLAST suffices to

achieve the SD error performance while OMP needs Algorithm 5.1 with c = 1. Hence, by using

the proposed scheme, the computational complexity is reduced compared to the FSD scheme for

a conventional 6 × 6 MIMO system where p = 2 full-search levels are required to achieve the

optimal error performance.

In Fig. 5.5, we increase the number of streams to Ns = NRF = 8. The proposed algorithm with

c = 1 improves the error performance for both OMP and AM techniques. c = 1 is sufficient

for the AM technique to achieve the SD error performance. For OMP, however, by selecting
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Figure 5.3: BER performance of hybrid precoding and beamforming with detection in Algorithm
5.1 for a 64× 16 UPA mmWave MIMO system for Ns = 4, NRF = 4, L = 30, and 256-QAM.

c = 1 in the proposed algorithm, there is about 1-dB gap at high SNRs. This gap is removed

by performing multiple subspace detections be selecting c = 3. As Table 5.1 shows, for this

system, the computational complexity of the proposed algorithm is significantly reduced, even

with c = 3, compared to the FSD scheme.

From the simulation results, it is observed that the OMP technique has a poor error performance

when L is large, or NRF is minimal, i.e., NRF = Ns. And, the error performance of the AM

technique is highly susceptible to the parameter L such that for a large L, the gap between

MMSE and the SD becomes smaller even for the edge-case Ns = NRF while for a small L,

there will be a performance gap. Note that in Fig. 5.5, although L is large, a performance gap

is observed for AM. For this system, since Ns is large, small eigenvalues can degrade the error
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Figure 5.4: BER performance of hybrid precoding and beamforming with detection in Algorithm
5.1 for a 64× 16 UPA mmWave MIMO system for Ns = 6, NRF = 6, L = 12, and 256-QAM.

performance. Hence, Algorithm 5.1 improves the BER.

Note that for some mmWave systems, we may achieve the optimal error performance with

further complexity reduction if we consider smaller search size over the constellation, i.e., Q for

the subspace detection in Algorithm 5.1.
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5.6 Conclusion and Discussion

In this chapter, we proposed a detection scheme for hybrid beamforming mmWave massive

MIMO systems in order to improve the error performance of the systems. The approxima-

tion error introduced due to the hybrid beamforming structures can largely degrade the error

performance of the systems. As a result, first, we discussed the effect of the mmWave channel

parameters and hybrid beamforming settings on the equivalent channel consisting of the pre-

coder, mmWave channel, and combiner. Then, we proposed a signal detection scheme for the

equivalent channel matrix. By considering the dimension of the equivalent channel matrix, the

detection algorithms that we proposed for MIMO systems, especially the ones in Chapter 3, were

utilized for the equivalent MIMO system. By using computer simulations, it was shown that the

error performance of the system can be significantly improved with reduced computational com-

plexity compared to the state-of-the-art MIMO detection schemes. Such complexity reductions

were achieved by exploiting the available structure in the equivalent channel. Our proposed de-

tector approaches the optimal ML error performance and has a fixed and polynomial complexity

with parallel implementation.

The complexity of our proposed detector for the worst-case scenario isO(N3
s |X |). In the recently

released specifications for mmWave massive MIMO systems, the number of data streams, i.e.,

Ns is up to 8, and the 16-QAM or 64-QAM modulation is used [81]. On the other hand, the over-

all computational complexity of OMP and AM hybrid beamforming techniques is O(MNNs).

Consequently, our proposed detector will not impose a burden on the system as its computational

complexity order is the same as that of the hybrid beamforming techniques.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Signal detection is of great importance for MIMO systems as they have become an essential

technology for wireless communication systems. However, designing signal detectors with low

computational complexity and close to optimal performance becomes challenging as the system

dimension increases.

We introduced tow efficient LRA conditional detectors. The proposed LRA conditional de-

tectors exhibit close to optimal error performance and achieve maximum receive diversity. For

quasi-static channels, the overall computational complexity of the proposed LRA conditional

detectors is cubic in the system dimension and linear in the size of the constellation for small

and moderate-scale MIMO systems. However, for large-scale MIMO systems, the computa-

tional complexity of the lattice reduction algorithms imposes a large burden on the system. To

address this challenge, we proposed two MMSE-DFE subspace detectors for large-scale MIMO

systems. In the proposed detectors, the search over all columns of the channel matrix along

with an appropriate channel ordering has the advantages of improving the performance of the
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hard-output version of the detector and refining the list of candidates for efficient implementa-

tion of the soft-output detector for MIMO systems with error-correcting codes. In particular, it

was shown that the hard-output detectors exhibit near-optimal error performance with a computa-

tional complexity that is cubic in system dimension and linear in the constellation size. Moreover,

the soft-output system is comparable to that of the LSD but with a much smaller list size, and

hence, smaller complexity than the latter. However, the proposed MMSE-DFE detectors may not

achieve the full receive diversity for some MIMO systems. A subspace detector with PLR was

proposed in order to improve the diversity order of subspace detectors restricted to one level of

full search over the constellation points. The proposed subspace detector with PLR is of interest,

especially for quasi-static fading channels as the PLR algorithm is performed in the preprocess-

ing stage which is shared among many channel realizations. All proposed detectors discussed

above can be used for point-to-point and the uplink of multipoint-to-point MIMO systems that

the system dimensions are comparable.

For the uplink of massive MIMO systems in which the number of antennas at the BS is much

larger than the number of served UTs, we proposed a low-complexity TPE-based detector in

order to avoid the expensive matrix-matrix multiplication and matrix inversion operations asso-

ciated with the ZF and MMSE detectors. The proposed TPE-based detector achieves the error

performance of the ZF and MMSE detectors while its computational complexity is proportional

to the system dimensions.

Massive MIMO is also a key technology for communication systems in the mmWave band.

A viable realization for such systems is hybrid beamforming in which the implementation cost is

reduced by limiting the number of expensive RF chains at the cost of performance losses, which

can be huge in some cases. We proposed a detection scheme for such systems to compensate

for the error performance degradation due to the approximation errors associated with the hybrid

beamforming techniques.
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In summary, in this thesis, we proposed low-complexity near-optimal detectors for differ-

ent applications of MIMO systems. By exploiting appropriate techniques, we designed novel

algorithms to save in computational complexity and provide practical yet efficient detectors.

6.2 Future Works

Extra-Large MIMO Systems

One possible future direction for the works studied in this thesis is to extend the proposed de-

tectors for extra large-scale MIMO (XL-MIMO) systems. XL-MIMO is a promising technology

for the 6th generation of wireless communications [10] where extra large-scale antenna arrays

are integrated into large infrastructures like the walls of stadiums or large shopping malls [70].

In such systems, as the dimensions of the system become very large, non-stationarities start to

appear [25]. This results in the appearance of a visibility region (VR) where users can see only

a portion of the antenna array at the BS. Each user has its specific VR, and depending on the

position of the users and their surrounding environment, their VRs can be partially or completely

overlapped [105]. Users’ signals are detected using subarrays or distributed units with local

processors that are connected to a central unit. When there are overlapped VRs, multiple users

are served by consecutive subarrays which will create inter-user interference. Considering the

non-stationary properties, signal detection techniques are needed to be adapted for such systems.

Since the dimensions of the system become very large in XL-MIMO systems, designing sig-

nal detectors at the receiver with low computational complexity is a challenging issue especially

when the system is serving a large number of users. Our proposed TPE-based detector in Chapter

4 is a promising candidate for such systems as its computational complexity scales linearly with

the number of BS antennas and users.
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Application of Machine/Deep Learning

One promising future research direction for the works introduced in this thesis is the application

of the state-of-the-art deep learning (DL) techniques to assist with a further reduction of the com-

putational complexity or the improvement of the techniques associated with our proposed MIMO

detectors. Model-driven DL approaches are commonly used for designing iterative algorithms

using NNs where an iterative algorithm is unfolded such that each layer of the NN represents

one iteration of the algorithm. Then, the parameters are optimized and additional parameters are

learned by DL in order to improve the performance of the system. In our proposed detectors in

this thesis, we have used several iterative algorithms, including lattice reduction, channel order-

ing, SIC, and TPE. Hence, a model-driven approach can be deployed for the implementation of

these iterative techniques.

Joint Detection and Hybrid Beamforming

We proposed a detection scheme in order to improve the error performance of mmWave massive

MIMO systems. In the literature, hybrid beamforming structures are designed to be as close

as possible to the optimal fully-digital solutions. For such designs, we proposed a detection

scheme by considering the equivalent channel consisting of the precoder, mmWave channel,

and combiner. Hence, in our proposed detection scheme, the hybrid beamforming structure

and detection are separately designed. One future research direction for this line of work is to

consider the joint design of hybrid beamforming and detection for minimizing the BER of the

system.
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Appendix A

The LLL Algorithm

The following table contains the LLL algorithm [17,61] for a real-valued basis H = [h1,h2, ...,hM ].

Two sub-routines, i.e., SIZE REDUCE and SWAP, are called during the execution of the algo-

rithm. The resultant reduced basis B from this algorithm satisfy the following conditions

|pi,j| ≤ 1/2 for 1 ≤ j < i ≤M, (A.1)

‖ ĥi + pi,i−1ĥi−1 ‖2≥ κ ‖ ĥi−1 ‖2 1 < i ≤M, (A.2)

where 1/4 < κ ≤ 1 for real-valued LLL reduction and also H = ĤPT is the Gram-Schmidt

orthogonalization where Ĥ = [ĥ1, ĥ2, ..., ĥM ] and P = [pi,j] is a lower triangular matrix. In is

worth noting that a larger κ results in a stronger but slower reduction. This algorithm has been

extended for complex-valued lattices in [29] where the following condition

|<{(pi,j}| ≤ 1/2, |={pi,j}| ≤ 1/2, for 1 ≤ j < i ≤M, (A.3)

‖ ĥi + pi,i−1ĥi−1 ‖2≥ κ ‖ ĥi−1 ‖2 1 < i ≤M, (A.4)

are satisfied by the LLL-reduced complex-valued basis where 1/2 < κ ≤ 1.
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Algorithm A.1 The LLL Algorithm
Input: basis H = [h1,h2, ...,hM ], 1/4 < κ ≤ 1 (commonly κ = 3/4)
Output: LLL-reduced basis B, transformation matrix U

Step 1: Initialization
1: k ← 2, kmax ← 1, ĥ1 ← h1,H1 ← 〈h1h1〉, and U← IM

Step 2: Incremental Gram-Schmidt
2: if k ≤ kmax then
3: go to Step 3
4: else
5: kmax ← k
6: ĥk ← hk
7: for j = 1, · · · , k − 1 do
8: pk,j ← 〈hk, ĥj〉/Hj

9: ĥk ← ĥk − pk,jĥj
10: end for
11: Hk ← 〈ĥk, ĥk〉
12: end if
Step 3: Test LLL Condition
13: H, U,H, [p]i,j ← SIZE REDUCE(H,U, [p]i,j, k, k − 1)
14: ifHk < (κ− p2k,k−1)Hk−1 then
15: H, U, Ĥ, [p]i,j ,Hk,Hk−1← SWAP(H, U, Ĥ, [p]i,j ,Hk,Hk−1, k)
16: k ← max(2, k − 1)
17: go to Step 3
18: else
19: for l = k − 2, k − 3, · · · , 1 do
20: H, U,H, [p]i,j ← SIZE REDUCE(H,U, [p]i,j, k, l)
21: end for
22: k ← k + 1
23: end if
Step 4: Termination
24: if k ≤M then
25: go to Step 2
26: else
27: return B = H, U
28: end if
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Algorithm A.2 Sub-routine SIZE REDUCE
Input: H, U, [p]i,j , indices k, l
Output: H, U, [p]i,j

1: if |pk,l| > 1/2 then
2: q ← dpk,lc
3: hk ← hk − qhl
4: uk ← uk − qul
5: pk,l ← pk,l − q
6: for i = 1, · · · , l − 1 do
7: pk,i ← pk,i − qpl,i
8: end for
9: end if

Algorithm A.3 Sub-routine SWAP

Input: H, U, Ĥ, [p]i,j ,Hk,Hk−1, index k
Output: H, U, Ĥ, [p]i,j ,Hk,Hk−1

1: exchange the vectors hk and hk−1, uk and uk−1
2: if k > 2 then
3: for j = 1, · · · , k − 2 do
4: exchange pk,j with pk−1,j
5: end for
6: end if
7: p← pk,k−1
8: H ← Hk + p2Hk−1
9: pk,k−1 ← p.Hk−1/H

10: h← ĥk−1
11: ĥk−1 ← ĥk + p.h
12: ĥk ← −pk,k−1ĥk +Hk/Hh
13: Hk ← Hk−1Hk/H
14: Hk−1 ← H
15: for i = k + 1, · · · , kmax do
16: t← pi,k,
17: pi,k ← pi,k−1 − pt
18: pi,k−1 ← t+ pk,k−1pi,k
19: end for
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Appendix B

Proof of Theorem 1

In Algorithm 2.1, since all submatrices are LLL reduced following the approach in [74] the max-

imum receiver diversity is achieved (more details below). We consider two cases for Algorithm

2.2:

• Case 1: In the first part of the detection, the submatrix with the best performance metric

is the one that has been reduced using the LLL algorithm and one symbol is detected by

exhaustive search in the second part. This case happens when BM is chosen as the first

submatrix. We denote the probability of error corresponding to this case as Pe|case1.

• Case 2: In some cases the best submatrix is not actually LLL reduced. Since in the algo-

rithm the submatrix with the best performance metric is chosen, its error probability is less

than or equal to the case when the LLL reduced submatrix is chosen. The error probability

of this case is denoted by Pe|case2.

If we denote the probability of cases 1 and 2 as pcase1 and pcase2, respectively, the error
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probability of Algorithm 2.2 is defined as

Pe,Algorithm2.2 = Pe(x̂Algorithm2.2 6= x) (B.1)

= Pe|case1.pcase1 + Pe|case2.pcase2

≤ Pe|case1.pcase1 + Pe|case1.pcase2

= Pe|case1, (B.2)

where x̂Algorithm2.2 is the detected signal vector using Algorithm 2.2. Note that Pe|case1

relates to the error probability of LLL reduced submatrices. Based on Theorem 3 of [94],

because the submatrix is LLL reduced, the error probability of the first part of the detection,

Pe1 is bounded by

Pe1 ≤ α1snr
−N , (B.3)

where α1 is a constant independent of H1. Moreover, because of the exhaustive search

over all possible symbols, the probability of error of the second part given that the first part

is detected correctly is bounded by the error probability of the ML detection for the whole

signal, i.e.

Pe2|c1 ≤ α2snr
−N , (B.4)

where α2 is a constant independent of the channel. As a result the error probability of the

detection of both parts is bounded by

Pe = Pe|case1 ≤ Pe1 + Pe2|c1 ≤ (α1 + α2)snr
−N , (B.5)

where Pe1 is the error probability of the first subvector and Pe2|c1 is the error probability

of the second subvector of the conditional optimization detection assuming that the first

subvector is detected correctly. Note that since all submatrices of Algorithm 2.1 are LLL
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reduced, such an upper bound can be obtained for it. Consequently, for Algorithm 2.1 and

Algorithm 2.2 the receive diversity order is

d = lim
snr→∞

− logPe
log snr

= N. (B.6)
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Appendix C

Proof of Theorem 3.7

For the proof, we follow the footsteps of [52] and apply the required modifications. In [111]

it is shown that the maximum diversity order of an antenna selection systems with L selected

transmit antennas is

dAS,opt = (N − L+ 1)(M − L+ 1), (C.1)

where the diversity order d is defined as

d , lim
snr→∞

− logPe
log snr

, (C.2)

where snr is the average SNR at a given receive antenna.

It is obvious that p ≥ (M −N) because otherwise the second step of the FSD scheme which

is equal to ZF or DFE path is still under-determined and the diversity is zero. If such p full

expansion levels are performed, (C.1) provides an upper-bound on the dUDSE with L = M − p, i.e.

dUDSE ≤ dAS,opt = (N −M)(p+ 1) + (p+ 1)2 (C.3)

= (M −N)(peq + 1) + (peq + 1)2. (C.4)
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Note that peq ∈ {0, 1, ..., N}. Suppose that Ho = [Ho1, Ho2] is the ordered channel matrix. In

the SE stage, we consider ZF or ZF-DFE detector.

The diversity order of the ZF and ZF-DFE receivers is lower-bounded as

dUDSE ≥ − lim
snr→∞

logP (ρ
(ZF )
min ≤ γth)

log snr
, (C.5)

where γth is a given threshold SNR at the receiver and ρ(ZF )
min is the minimum post-processing

SNR of ZF detector which is given by

ρ
(ZF )
min , min

j

snr

L.[(HH
o1Ho1)−1]j,j

. (C.6)

On the other hand, ρZFmin is lower-bounded by the minimum eigenvalue1 of HH
o1Ho1 as

ρ
(ZF )
min ≥ λ1(H

H
o1Ho1)

snr

L
. (C.7)

Note that Ho1 is the remained submatrix after removing p ≥ M − N columns. From (C.5) and

(C.7) the diversity order corresponding to this submatrix is written as

dUDSE ≥ − lim
snr→∞

logP (λ1(H
H
o1Ho1).

snr
L
≤ γth)

log snr
. (C.8)

In order to provide a lower-bound on dUDSE we need to find an expression for λ1(HH
o1Ho1).

From block matrices multiplication we have:

H̃H
o H̃o = HH

o Ho +
1

snr
IM (C.9)

=

 HH
o1Ho1 HH

o1Ho2

HH
o2Ho1 HH

o2Ho2

+
1

snr
IM . (C.10)

1λ1(Q) ≤ ... ≤ λn(Q) denote the ordered eigenvalues of the n× n matrix Q.
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If we denote Q̃o1 = HH
o1Ho1 + 1

snr
IM−p, we have λ1(Q̃o1) = λ1(H

H
o1Ho1) + 1

snr
. Therefore,

λ1(H
H
o1Ho1) = λ1(Q̃o1)−

1

snr
. (C.11)

Moreover, by performing the ordering on Q̃, according to [52, corollary 3] we have

λ1(Q̃o1) ∼ λp+1(Q̃), (C.12)

which implies that the minimum eigenvalue of Q̃o1 behaves similarly to p+ 1-th smallest eigen-

value of Q̃. The eigenvalues of the channel Gram matrix relate to the eigenvalues of the aug-

mented channel Gram matrix by the following equation

λk+1(H̃
HH̃) = λk+1(H

HH) +
1

snr
; k = 0, 1, ...,M. (C.13)

Hence, from (C.12) and (C.13), we have

λ1(Q̃o1) ∼ λp+1(Q̃) = λp+1(H
HH) +

1

snr
. (C.14)

Moreover, the N non-zero eigenvalues of HHH have the same distribution as the N eigenvalues

of the full-rank matrix HHH [69]. Hence, one may write

λp+1(H
HH) = λpeq+1(HHH); peq = p− (M −N). (C.15)

Note that the {λM−N(HHH), ..., λ2(H
HH), λ1(H

HH)} are zero. From (C.11), (C.14) and

(C.15) we have

λ1(H
H
o1Ho1) ∼ λpeq+1(HHH); peq = p− (M −N). (C.16)
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By inserting (C.16) into (C.8) and some manipulations we have

dUDSE ≥ lim
x→0

logP (λ1(H
H
o1Ho1) ≤ x)

log x
(C.17)

= lim
x→0

logP (λpeq+1(HHH) ≤ x)

log x
(C.18)

= (M −N)(peq + 1) + (peq + 1)2, (C.19)

where the last equality is obtained from the pdf of the eigenvalues of the Wishart matrix HHH

given in [58, 77]. Since the lower-bound and the upper-bound coincide, the proof is completed.
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Appendix D

Proof of Proposition 1

We prove here Proposition 1 for a more general scenario where conditional optimization detec-

tion is done on all selections of p columns (p = 1 is used in the proposed MMSE-DFE detector).

The proof follows in the footsteps of [7, 74] and is included here for completeness (the differ-

ence with [7, 74] is the use of the regularized channel matrix and the round robin selection of

the different columns for exhaustive search). The decoding error probability of the conditional

optimization detectors [74] is upper bounded by

Pe ≤ Pe1 + Pe2|c1 , (D.1)

where Pe1 is the error probability of the first subvector and Pe2|c1 is the error probability of the

second subvector of the conditional optimization detection assuming that the first subvector is

detected correctly. Assuming a correct detection for the first part, the error probability of the

second part is [74, 95]

Pe2|c1 ≤ α1snr
−N , (D.2)

and,

Pe1 ≤ α2snr
−d1 , (D.3)
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where, α1 and α2 are two constants which are independent of the channel. Moreover, d1 is the

diversity order corresponding to the first subvector of the detection.

At high SNRs, using (D.2) and (D.3) the diversity order is lower bounded as

d ≥ min(N, d1). (D.4)

Similar to [52], this implies

d = min(N, d1). (D.5)

Since in the proposed detector, a search is performed over all possible submatrices, hence, the

detector outperforms the FSD [7] or RFSD scheme with p full search levels along with the FSD

ordering and RFSD ordering, respectively. Therefore, we have

d1 ≥ dFSD = (N −M)(p+ 1) + (p+ 1)2, (D.6)

where the right hand side of inequality (D.6) is the diversity of the FSD scheme or RFSD scheme

with p full search levels. On the other hand, based on the concept of antenna selection [54], by

choosing l antennas out of M transmit antennas, the maximum diversity order is

d1 ≤ d1,max , (M − l + 1)(N − l + 1). (D.7)

Because of the p full search levels, our scheme is equivalent to the problem of antenna selection

with l = M − p. Hence, from (D.7) we have

d1 ≤ (N −M)(p+ 1) + (p+ 1)2. (D.8)
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Since the lower bound and the upper bound in (D.6) and (D.8) coincide, we can write

d = min(N, (N −M)(p+ 1) + (p+ 1)2). (D.9)

The diversity order of the proposed detector is obtained when p = 1, which completes the proof.
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