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Abstract 

Urban roads, as one of the essential transportation infrastructures, provide considerable 

motivations for rapid urban sprawl and bring notable economic and social benefits. Accurate 

and efficient extraction of road information plays a significant role in the development of 

autonomous vehicles (AVs) and high-definition (HD) maps. Mobile laser scanning (MLS) 

systems have been widely used for many transportation-related studies and applications in road 

inventory, including road object detection, pavement inspection, road marking segmentation 

and classification, and road boundary extraction, benefiting from their large-scale data 

coverage, high surveying flexibility, high measurement accuracy, and reduced weather 

sensitivity. Road information from MLS point clouds is significant for road infrastructure 

planning and maintenance, and have an important impact on transportation-related 

policymaking, driving behaviour regulation, and traffic efficiency enhancement. 

Compared to the existing threshold-based and rule-based road information extraction 

methods, deep learning methods have demonstrated superior performance in 3D road object 

segmentation and classification tasks. However, three main challenges remain that impede 

deep learning methods for precisely and robustly extracting road information from MLS point 

clouds. (1) Point clouds obtained from MLS systems are always in large-volume and irregular 

formats, which has presented significant challenges for managing and processing such massive 

unstructured points. (2) Variations in point density and intensity are inevitable because of the 

profiling scanning mechanism of MLS systems. (3) Due to occlusions and the limited scanning 

range of onboard sensors, some road objects are incomplete, which considerably degrades the 

performance of threshold-based methods to extract road information. 

To deal with these challenges, this doctoral thesis proposes several deep neural 

networks that encode inherent point cloud features and extract road information. These novel 

deep learning models have been tested by several datasets to deliver robust and accurate road 

information extraction results compared to state-of-the-art deep learning methods in complex 

urban environments. First, an end-to-end feature extraction framework for 3D point cloud 
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segmentation is proposed using dynamic point-wise convolutional operations at multiple scales. 

This framework is less sensitive to data distribution and computational power. Second, a 

capsule-based deep learning framework to extract and classify road markings is developed to 

update road information and support HD maps. It demonstrates the practical application of 

combining capsule networks with hierarchical feature encodings of georeferenced feature 

images. Third, a novel deep learning framework for road boundary completion is developed 

using MLS point clouds and satellite imagery, based on the U-shaped network and the 

conditional deep convolutional generative adversarial network (c-DCGAN). Empirical 

evidence obtained from experiments compared with state-of-the-art methods demonstrates the 

superior performance of the proposed models in road object semantic segmentation, road 

marking extraction and classification, and road boundary completion tasks. 
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Chapter 1  

Introduction 

1.1 Motivations 

Urban roads, as one of the essential transportation infrastructures, provide considerable 

motivations for rapid urban sprawl and bring notable economic and social benefits (Wang et al., 

2012). Detailed road asset inventories are commonly applied to support extensive transportation 

applications, such as city planning, construction surveying, smart cities, high-definition (HD) maps, 

and autonomous vehicles (AVs) (Pu et al., 2011). Generally, road objects (e.g., roadside trees, 

buildings, power lines, road markings, and pavement cracks) and road geometries (e.g., lane width, 

curvatures, and slopes) are manually collected and generated by expert-annotated digital maps or 

field survey in large-scale road environments. However, such methods for inspecting road 

information and extracting road infrastructures are labour-intensive and cost-consuming.  

Mobile laser scanning (MLS) systems comprising Light Detection and Ranging (LiDAR) 

sensors can collect highly dense and accurate point clouds in urban roads and highways (Ma et a., 

2018). The point density collected by MLS systems can achieve over 10,000 pts/m2 with mm-level 

absolute measurement accuracy, while airborne and terrestrial laser scanning (ALS/TLS) cannot 

achieve such precision and flexibility (Chen et al., 2019a). Different from remotely sensed imagery 

collected through various platforms and sensors, such as drone-based imagery and satellite 

imagery, MLS systems are less sensitive to weather and ambient luminance conditions. They have 

been widely used for many transportation-related studies and applications in road information 

inventory, including road object detection and segmentation (Li et al., 2019a), pavement detection 

(Ye et al., 2019), road marking classification (Rastiveis et al., 2020), and road boundary extraction 

(Wen et al., 2019a). Thus, road information from MLS point clouds is significant for road 

infrastructure planning and maintenance, and have an important impact on transportation-related 

policymaking, driving behaviour regulation, and traffic efficiency enhancement. 

 Although the notable development in MLS systems has motivated a technical 

transformation for HD maps in both remote sensing and cartography communities, the massive 

and increasing point cloud data volume requires intelligent data processing and analysis methods. 

The MLS point clouds are usually unorganized with varying point densities and intensities, 
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resulting in the poor performance of many threshold-based and rule-based methods for road 

information extraction. Thus, to perform road infrastructure mapping and support the development 

of HD maps, intelligent point cloud processing techniques are required to solve many challenging 

problems, including road object semantic segmentation, road marking extraction and classification, 

and road boundary extraction and completion in complex urban conditions.  

 Road object segmentation usually serves as the first step to extract road information. Road 

object semantic segmentation classifies each point in the entire road point clouds into several 

homogeneous classes, and the points belonging to the same objects or regions will have the same 

semantic labels (Nguyen and Le, 2018). In practice, MLS systems capture different road objects 

in the form of 3D points. However, it is very challenging to achieve automated and effective point-

wise segmentation because of the high redundancy, inevitable distortion, and inexplicit structure 

of MLS point clouds (Wen et al., 2019b). Thus, it is significant to introduce an effective and robust 

method for point-wise road object segmentation.  

 Road markings play a significant role in guiding, regulating, and forbidding all road 

participants (Bétaille and Toledo-Moreo, 2010). It is necessary to extract and classify road 

markings from raw data and then assign specific class labels for their different categories.  Due to 

occlusions, distortions, and intensity variations from MLS systems, most of the existing threshold-

based extraction methods and rule-based classification methods cannot deliver accurate and robust 

results (Wan et al., 2019; Guan et al., 2014; Jung et al., 2019). Moreover, manual editing and post 

refinement operations are required to improve the completeness and accuracy of extracted road 

markings. Still, it is time-consuming and labour-intensive. Recently, deep learning (DL) is taking 

off in remote sensing and 3D vision communities (Zhu et al., 2017). Deep neural networks are 

firstly trained using manually annotated road marking samples as training samples, to learn 

inherent features and establish relationships between predictions and labels, which has indicated a 

promising solution for road marking extraction and classification tasks.  

 Road boundaries designate allowable driving zones and provide auxiliary road information 

to develop HD maps and fully autonomous driving (Holgado‐Barco et al., 2017). Road boundary 

extraction is generally implemented through segmenting road surfaces, followed by detecting road 

curbs from MLS point clouds. Although considerable improvement has been achieved, most of 

the off-the-shelf methods cannot completely and accurately extract road boundaries, due to 
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occlusions and point density variations during raw MLS data acquisition (Soilán et al., 2019). 

Accordingly, road boundaries collected by MLS systems are usually incomplete with many 

missing parts. It is still challenging to automatically obtain complete and accurate road boundaries.  

One of the most straightforward ways is to use MLS systems to collect incomplete data multiple 

times. A more practical and effective alternative is to restore such incomplete road boundaries by 

using deep learning-based methods.  

Furthermore, the point clouds obtained from MLS systems are in an irregular format and 

unstructured distribution, which requires upgrading not only the whole data collection 

infrastructure (i.e., platforms, workstations, processing software, network communication, and 

data analysis) but also intelligent point cloud processing algorithms to extract road information. 

Efficient road information extraction requires well-designed models that capture the inherent 

features of different road objects and additional information, taking advantage of the increased 

performance of computational resources. One promising solution is to use deep learning models, 

e.g., deep convolutional neural networks (CNNs), to encode deeper and more distinctive feature 

representations. Thus, benefiting from many publicly accessible MLS point cloud datasets, such 

as KITTI (Geiger et al., 2012), Paris-Lille-3D (Roynard et al., 2018), and Toronto3D (Tan et al., 

2020), both advanced MLS techniques and state-of-the-art deep learning networks (e.g., PointCNN)  

provide the underlying motivations for this thesis to develop robust and efficient road information 

extraction methods. 

Compared to the existing threshold-based and rule-based road information extraction 

methods, recent studies indicate that deep neural networks could achieve superior performance in 

3D road object segmentation and classification tasks. However, three main challenges remain that 

impede deep learning-based methods from precisely and robustly extracting road information from 

MLS point clouds:  

(1). Massive and unstructured point clouds: Point clouds captured by MLS systems are 

always in large-volume and irregular formats, which is significantly challenges for managing and 

processing such massive unstructured points. Various methods, including voxel-based methods 

(Maturana and Scherer, 2015), multiview-based methods (Chen et al., 2017a), auto-encoder-based 

methods (Wang et al., 2016), graph-cut-based methods (Simonovsky and Komodakis, 2017), and 

symmetric function-based methods (Qi et al., 2017a), have been proposed to use CNNs for 3D 

data analysis, object recognition, and point-wise semantic segmentation. However, it is still 
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challenging to effectively and automatically manipulate MLS point clouds with unstructured 3D 

points, various point densities, outliers, and occlusions, which are inevitable in complex urban 

environments. 

(2). Point density and intensity variations: Point clouds are usually acquired by vehicle-

mounted MLS systems that are driven through changing lanes at varying driving speeds. Because 

of the profiling scanning mechanism of MLS systems, the incident angle of laser beams grows 

larger with an increased scanning range. Consequently, point clouds have higher intensity values 

and point densities if they are closer to the trajectory of MLS systems. Still, it is difficult to 

effectively extract road information for most threshold-based methods, which assume that 

intensities and point densities are uniformly distributed. 

(3). Incomplete and worn road conditions: Due to occlusions and the limited scanning 

range of LiDAR sensors, some road objects are usually incomplete during data acquisition. Road 

surface damages caused by on-road overloaded trucks and severe weather conditions, such as acid-

alkali erosion, could lead to worn and decaying pavements. Moreover, occlusions from all road 

participants (e.g., vehicles and cyclists) also complicate the accurate extraction and classification 

of road objects. Accordingly, manual editing and post refinement can improve the completeness 

and accuracy of extracted road objects, but reducing the generalization ability and efficiency of 

proposed methods. 

1.2 Objectives and Contributions 

MLS point clouds have shown a promising solution for road information extraction, 

contributing to the generation of HD maps. To tackle the challenges mentioned above, this thesis 

proposes several deep neural networks that encode inherent point cloud features to deliver robust 

and accurate results in road information extraction, compared to state-of-the-art deep learning 

methods in complex urban conditions. More specifically, the three main objectives of this thesis, 

focusing on road object segmentation, road marking extraction and classification, and road 

boundary recovery, respectively, from MLS point clouds to support the HD map generation, are 

presented as follows: 

 (1). To develop a 3D semantic segmentation deep learning model, called MS-PCNN, that 

facilitates point-wise CNNs on unstructured 3D point clouds. Although there have been 

remarkable improvements in semantic HD map and fully autonomous driving domains, most of 
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the existing point cloud segmentation models cannot deliver high feature representativeness and 

remarkable robustness. The main difficulties lie in completely and efficiently extracting high-level 

3D point cloud features, specifically in large-scale urban road environments. The novel 

architecture of the proposed neural network can directly consume unstructured 3D points and 

implement a point-wise semantic label assignment network to learn fine-grained layers of feature 

representations and reduce unnecessary convolutional computations. Compared to existing point 

cloud segmentation methods based on traditional CNNs, the proposed method is less sensitive to 

data distribution and computational powers. The experimental results acquired by using different 

point cloud scenarios indicate that the MS-PCNN model can achieve state-of-the-art semantic 

segmentation performance in feature representativeness, segmentation accuracy, and technical 

robustness. 

 (2). To propose two capsule-based neural network architectures for road marking 

extraction and classification using MLS point clouds. Road markings captured by MLS systems 

are usually incomplete and worn, making it challenging to extract and classify accurately. To 

address this, a capsule-based deep learning framework is proposed for road marking extraction 

and classification from massive and unstructured MLS point clouds. The innovation of this study 

is to demonstrate the practical application of combing capsule networks with hierarchical feature 

encodings of georeferenced feature images for updating road information and supporting HD maps. 

The experimental results have demonstrated that capsule-based networks effectively extract 

inherent features from massive MLS point clouds and achieve superior performance in road 

marking extraction and classification tasks. 

 (3). To introduce a novel deep learning-based framework, called BoundaryNet, that uses 

MLS point clouds and satellite imagery to complete road boundaries and calculate road geometries. 

Still, the varieties and uncertainties of missing parts in urban road boundaries complicate whether 

these gaps should be filled or not. The innovation is to demonstrate the practical application of 

deep learning models for road boundary completion from multi-source data. By testing satellite 

imagery and MLS point cloud datasets with varying densities and road conditions in urban 

environments, the experimental results indicate that the BoundaryNet model can solve road 

boundary completion and road geometry estimation. 
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Figure 1. 1 Logical-flow framework of this thesis. 

1.3 Structure of This Thesis 

 This doctoral thesis aims to accurately and efficiently extract road information from MLS 

point clouds by employing deep neural networks. Figure 1.1 shows the logical-flow framework of 

this thesis. Accordingly, the main structure is provided in the following aspects: 

Chapter 2 presents a fundamental literature review of the existing studies on the object 

semantic segmentation, road marking extraction and classification, and road boundary completion 

by using MLS point clouds. 

Chapter 3 describes an end-to-end deep learning model, to be incorporated with 

Conditional Random Field (CRF) for point-wise semantic segmentation in multiple scales. By 

developing a revised point-based 3D convolution, the proposed models can directly consume 3D 

point clouds without data conversion and transformation. 
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Chapter 4 presents two capsule-based deep learning networks from massive and 

unstructured MLS point clouds for road marking extraction and classification, which provide a 

promising solution for HD map generation and autonomous driving.  

Chapter 5 introduces a novel deep learning framework to recover and complete road 

boundaries using MLS point clouds and satellite imagery, which effectively solves completeness 

reduction and curvature loss when processing massive MLS point clouds with many missing parts. 

Finally, Chapter 6 concludes this thesis and indicates future research directions.  
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Chapter 2  

Mobile LiDAR Point Clouds for Road Information Extraction: An 

Overview 

The MLS systems have indicated a superior strength in providing highly accurate and dense 

3D point clouds and attracted considerable attention in the interdisciplinary field at the interface 

between 3D vision and geodata intelligence, specifically for accurate and efficient road 

information extraction (Ma et al., 2018). Accordingly, to promote the development of HD maps 

and autonomous driving, there is an increasingly large number of studies and applications that 

have been designed to extract road information by using mobile LiDAR point clouds. Although 

various threshold-based and rule-based methods have delivered promising solutions for road 

information extraction, massive point clouds with high redundancy, point density and intensity 

variations, and irregular road structures still pose significant challenges to effectively and 

automatically manipulate MLS point clouds. Moreover, many deep learning-based methods have 

been developed to strengthen the feature descriptiveness and representation and learn inherent 

features by taking advantage of the increased performance of computational resources (Li et al., 

2020). However, it is still challenging to effectively and automatically manipulate MLS point 

clouds with unstructured 3D points, various point densities, outliers, and occlusions, which are 

inevitable in complex urban environments. Therefore, the accurate understanding and technical 

expression of 3D road information using deep learning methods have become an urgent demand 

in extensive intelligent transportation-related applications. 

2.1 High-definition Maps 

 Compared to conventional 2D navigation roadmaps, 3D HD maps provide highly precise 

and realistic representations of urban road networks with decimetre-level localization accuracy, 

which could record and update traffic information in real-time, including road hazards, traffic 

congestion, road construction, and driving speed limitations (Máttyus et al., 2016). Such HD maps 

are integrated and preloaded on autonomous vehicles by providing an extended monitoring range, 

which allows AVs to deal with challenging road conditions (e.g., intersections and roundabouts) 

far beyond the scanning ranges of onboard sensors more rapidly, accurately, and effectively 

(Bétaille and Toledo-Moreo, 2010). 
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     As shown in Figure 2.1, an HD map is a typical multi-layer structure that contains the base 

map layer, geometric layer, semantic layer, map priors layer, and dynamic perception layer (Seif 

and Hu, 2016). As the most significant element of HD maps and the bottom-most layer, the base 

map layer contains rich geometrical and semantic road information about the physical and static 

parts of the urban roads, which are well-organized in considerable details to support precise 

localization and navigation services.  

 

Figure 2. 1 Multi-layer structure of HD maps. 

Accordingly, many studies focus on extracting sub-lane level road information and highly 

detailed road inventories from survey-grade MLS systems with mm-level absolute measurement 

accuracy, including traffic signs, pole lights, roadside trees, lanes, boundaries, curbs, and all other 

essential road assets, contributing to the highly precise base map layer assembled in live HD maps 

(Chu et al., 2018). These road objects comprise essential metadata associated with them, including 

road widths and turn restrictions for road users. Thus, it is increasingly necessary to propose 

effective and robust segmentation and classification methods to identify and classify 3D points for 

different road objects, defined as the geometric and semantic road parts of HD base maps. 

2.2 Road Object Segmentation  

3D point-wise segmentation is to classify each point in the entire point clouds into several 

homogeneous classes, and semantic labels will be assigned to the points belonging to the same 

objects or regions (Nguyen and Le, 2018). For the past several years, many methods have been 

developed for 3D object segmentation (Ma et al., 2018; Che et al., 2019). This section provides an 

in-depth review and investigation from the perspectives of 3D point clouds. Generally, the 

Dynamic 
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Map priors layer

Semantic map layer

Geometric map layer

Base map layer
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commonly employed 3D point cloud segmentation methods are classified into two groups: hand-

designed feature related algorithms and deep learning related algorithms. 

2.2.1 Hand-designed Feature Related Studies 

Hand-designed feature descriptors, including both global feature descriptors (e.g., shape 

distribution descriptors) and local feature descriptors (e.g., the spin image feature descriptor), are 

created to derive inherent features from 3D point clouds, such features are afterward input into off-

the-shelf classifiers (e.g., random forests) (Dong et al., 2018). Global feature descriptors are 

commonly obtained from the geometrical information of entire 3D point clouds. A 3D statistical 

moment descriptor was developed for the coarse representation of shapes of 3D objects (Paquet et 

al., 2000). Furthermore, a shape distribution descriptor was proposed to measure geometrical 

information of 3D objects (Osada et al., 2002). The essential idea is to convert arbitrary 3D object 

models into parameterized functions that can be directly compared with others. This shape 

distribution descriptor can effectively eliminate shape segmentation problems to the comparison 

of probability distributions, which is more robust and straightforward than other shape 

segmentation methods that need data registration, model fitting, and feature matching. Yet the 

performance of these global feature descriptors is dramatically impacted by the selection of patch 

sizes and patch locations. These feature descriptors are highly vulnerable to occlusions, distortions, 

and background interferences (Luo et al., 2019a). Moreover, due to the complexity of 3D objects, 

especially for large-scale MLS point clouds, the computational cost will exponentially increase for 

the extraction of global feature descriptors. 

Compared to global feature descriptors, local feature descriptors generally calculate 

geometrical information and statistical distributions of key points in the local neighbourhoods to 

construct feature description vectors (Shen et al., 2018). As one of the most representative local 

feature descriptors, Spin Image feature descriptor (Johnson and Hebert, 1999) has been regarded 

as the benchmark for the performance evaluation of the other local feature descriptors. However, 

the feature representation ability of Spin Image is relatively poor (Ma et al., 2018). To enhance the 

feature descriptiveness, a 3D Shape Context feature descriptor (Frome et al., 2004) was proposed 

through reconstructing 2D shape context methods on 3D point clouds. Besides, the spatial 

transformation based feature descriptors, including Heat Kernel Signature (HKS) (Sun et al., 2009) 

and 3D Speeded Up Robust Feature (SURF) (Knopp et al., 2010), first transformed the spatial 
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domain to other domains (e.g., spectrum domain), then used the specific information in the 

transformed domains to describe the key points within local neighbourhoods.  

Accordingly, Rusu et al. (2009) developed the Fast Point Feature Histograms (FPFH) 

descriptor by taking the angle differences from a key seed to its neighbours into consideration. 

Meanwhile, Salti et al. (2014) proposed a histogram-based descriptor, called Signature of 

Histograms of OrienTations (SHOT), to extract local surface features. Guo et al. (2013) presented 

a Rotational Projection Statistics (RoPS) method, which has been included in the open-access 

Point Cloud Library (PCL). Rather than learning global and local features or constructing grid-

based data formats, Wang and Jia (2019) introduced a Frustum ConvNet (F-ConvNet) for 3D 

object segmentation on outdoor KITTI datasets. Firstly, F-ConvNet generated a collection of 

frustums to assemble points in local regions. Then, point-wise features represented by frustum-

level feature vectors were learned via a fully convolutional network within each frustum. Most 

significantly, F-ConvNet expects no prior knowledge of the data scenarios and is therefore dataset-

agnostic. 

Nevertheless, for the above methods, the unavoidable task of unstructured point clouds 

triangulation could lead to considerable computational complexity and original information loss. 

Other local feature descriptor generation methods based on the geometric information histograms 

and orientation gradient histograms depend on the first and second derivatives of the point cloud 

mesh surfaces, which are prone to noise interferences. Moreover, the majority of local feature 

descriptors require to first detect and extract key points and then construct the local reference 

frames (LRFs). Therefore, the robustness of an LRF has a great impact on the performance of the 

generated local feature descriptors. In addition, the larger size of local neighbourhoods, the more 

information the local feature descriptors describe, and the more sensitive to occlusions and 

background interferences. Moreover, such methods could capture few geometrical details (e.g., 

shape and pose information) of 3D objects. Hence, the representativeness of developed feature 

descriptors is yet far from satisfaction. 

2.2.2 Deep Learning Related Studies 

Compared to hand-designed feature descriptors, deep learning related algorithms follow 

end-to-end pipelines, where the multilayer architectures can learn inherent feature representations 

of high-dimensional data with multiple levels of abstraction (Lecun et al., 2015; Schmidhuber, 
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2015). Various DL-based methods have remarkably improved the state-of-the-art in many domains, 

including image recognition, machine translation, and environmental perception (Karpathy and Li, 

2015). However, the irregular format and uneven distribution of 3D point clouds make direct 

applications of traditional CNNs challenging. Thus, the fundamental problem of DL-based 

algorithms is to address feature representations of 3D point clouds. Several end-to-end DL-based 

methods have been investigated to deal with the dilemmas of irregular data formats and uneven 

distributions. They are usually categorized into three groups based on the following data 

processing methods: voxelization-based, multiview-based, and 3D point-based methods (Ma et al., 

2018). 

(1) Voxelization-based methods: Volumetric methods can transfer 3D point clouds with 

irregular format into structured voxel data, on which CNN-related neural networks are thus 

commonly performed. To overcome the over-segmentation and under-segmentation issues 

normally occurred in complex urban road environments, Luo et al. (2019b) introduced a 

probability occupancy grid-based method for real-time ground segmentation tasks by employing 

a single laser scanner. Maturana and Scherer (2015) proposed a VoxNet architecture by integrating 

volumetric occupancy grid representation with a supervised CNN framework for 3D object 

recognition and autonomous robot operation. Meanwhile, Wu et al. (2015) developed 3D 

ShapeNets to describe 3D geometric shapes as probability distributions of binary variables on 3D 

volumetric grids, then applied a convolutional deep belief network (DBN). However, such 

methods lead to sparse volumes and need lots of memory space and computational powers with an 

increasing voxel size. Accordingly, space partition methods including Octree-based methods 

(Riegler et al., 2017; Tatarchenko et al., 2017) and KD-tree-based methods (Klokov and Lempitsky, 

2017; Zeng and Gevers, 2018; Wang and Lu, 2019) were created to tackle voxel size and memory 

explosion problems. Nevertheless, the above methods solely depend on the partition of a bounding 

voxel rather than the locally geometrical structures. That is, if the point density is relatively low, 

there will be not enough points located in the sparsely sampling neighbourhoods for volumetric 

convolutional operation. It normally leads to an excessive requirement of memory footprints and 

high computation cost. 

(2) Multiview-based methods: To fully take advantages of well-developed DL-based 

models in image processing and computer vision fields, such as AlexNet (Krizhevsky et al., 2012) 

and Mask R-CNN (He et al., 2017), many studies converted 3D point clouds into 2D images. The 
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multiview CNN methods were proposed by projecting 3D point clouds into a set of 2D images 

derived from multiple views. A basic CNN architecture was then employed to train these rendered 

images and learn representative features (Su et al., 2015). In order to support autonomous driving, 

Chen et al. (2017a) developed Multi-View 3D (MV3D) networks for onboard sensor fusion and 

3D object detection based on the mechanism of multiple views. Bai et al. (2016) proposed a 3D 

shape matching and retrieval framework by using projective images of 3D objects. Wen et al. 

(2019b) first transformed mobile LiDAR point clouds into 2D georeferenced intensity images with 

4 cm2 resolution. An autoencoder-based U-Net was afterward proposed for road marking 

segmentation.  

Additionally, Qi et al. (2016) designed an automated pipeline by combining both 3D 

voxelization and multiview CNNs for 3D object classification and segmentation. Instead of 

constructing proposals from RGB-D images or converting point clouds into multiple views or 

volumetric data blocks, Shi et al. (2019) proposed the PointRCNN model that directly generates 

3D object proposals from raw point clouds using a bottom-up strategy. Then, the resampled points 

in each proposal were transformed into canonical coordinates to capture more local spatial features. 

Although these 3D-2D dimensional transformation methods can achieve dominating performances, 

they introduce the resulting data with redundant volumes and ignore the rich 3D geometric 

information and spatial correlation of points. Still, it is challenging to ascertain both the number 

and direction of views so that they can cover the whole 3D scenes for self-occlusion prevention. 

(3) 3D point-based methods: Compared to volumetric methods and multiview-based 

methods, 3D point-based methods could directly consume 3D points without data format 

transformation. Considering the permutation invariance and transformation invariance of point 

clouds, a CNN-based model, called PointNet (Qi et al., 2017a), was proposed to learn inherent 

features for classification and segmentation tasks. However, PointNet cannot capture local features 

of point clouds, which decreases its strength to identify fine-grained patterns and generalizability 

to large-scale point clouds. Subsequently, an improved version, called PointNet++ (Qi et al., 

2017b), was developed to learn more local features than the PointNet by calculating the metric 

space distances. PointNet++ used the farthest point sampling (FPS) and multi-scale grouping 

algorithms to leverage local features from coarse layers to fine layers at multiple scales for 

robustness improvement. In general, both PointNet and PointNet++ are pioneers in DL-based 

models that directly use 3D point clouds for classification and segmentation in complex scenes. 
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The fundamental structure developed in both PointNet and PointNet++ for feature aggregation 

from various input points is max-pooling operation. Nevertheless, a max-pooling layer uniquely 

remains the largest activation on different features in local neighbourhoods or global regions, 

which leads to inevitable information loss for segmentation tasks. Furthermore, the lack of 

deconvolution operation also limits their performances. 

To solve these problems, many PointNet-derived deep learning models apply PointNet 

recursively and optimize their performances to deliver state-of-the-art. Li et al. (2018) developed 

a PointCNN framework to use a hierarchical convolution structure and an X-Conv operator that 

aggregate input points into fewer points with richer features. However, PointCNN is not capable 

of achieving permutation invariance, which is significant for point cloud segmentation. Jiang et al. 

(2018) proposed the PointSIFT model applying a scale-invariant feature transform (SIFT) 

descriptor to capture the shape representation of input points. Additionally, dynamic graph CNN 

(DGCNN) implemented a framework that is able to dynamically update the graph of point clouds 

(Wang et al., 2019b).  

Moreover, Yi et al. (2019) introduced a Generative Shape Proposal Network (GSPN) for 

3D object segmentation by employing an analysis-by-synthesis approach and reconstructing 

shapes as object proposals from noisy observation, which achieves state-of-the-art performance on 

KITTI LiDAR datasets. Other methods, such as SpiderCNN (Xu et al., 2018), also have 

demonstrated their superior performance in point cloud object detection and semantic 

segmentation tasks. However, there are very few applications that apply CNN-based models for 

segmentation using MLS point clouds, especially in large-scale urban road environments due to 

high computational complexity and memory occupation. Besides, it is challenging to directly apply 

traditional CNNs on point clouds regarding to their irregular formats. Additionally, such CNN-

based methods always utilize fix-sized filters (e.g., 1 × 1 and 5 × 5) to apply convolution on 

unorganized point clouds, resulting in remarkably redundant convolutional operations and extra 

memory overhead. 

To summarize, most of the existing hand-designed feature descriptors or feature-related 

methods that only concentrate on either global or local statistical information, which leads to a 

performance reduction in representativeness and descriptiveness. Also, traditional CNN 

convolution applied to 3D point clouds could lead to high computational consumption and edge 
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information loss. Thus, it is necessary to propose an end-to-end deep learning framework that can 

directly consume 3D point clouds and implement a point-wise semantic label assignment network 

to learn fine-grained layers of feature representations and reduce unnecessary convolutional 

computations. 

2.3 Road Marking Extraction and Classification 

2.3.1 Road Marking Extraction 

Road markings are decorated on asphalt concrete pavements with highly light-reflective 

coatings, the intensities backscattered from road markings are considerably higher than 

surrounding pavements (Zai et al., 2017). Accordingly, threshold-related approaches have been 

widely applied to achieve road marking extraction (Soilán et al., 2017; Soilán et a., 2019). To 

overcome the unevenly distributed intensities and point densities, a multi-threshold approach was 

developed by first segmenting raw point clouds into data blocks with trajectory support. Next, each 

block was divided into different profiles with a certain width. Finally, road markings were 

extracted based on the peak values of intensity in each profile, followed by the spatial density 

filtering (SDF) algorithm for noise removal (Ma et al., 2019a). Combined with the multi-threshold 

method, Ye et al. (2019) employed geometric feature filtering to segment lane markings. 

Furthermore, by converting 3D point clouds into 2D georeferenced intensity images, a 

multiscale tensor voting (MSTV) algorithm was proposed by Guan et al. (2015) for discrete pixel 

elimination and road marking preservation. A weighted neighbouring difference histogram 

(WNDH) algorithm was first performed to compute the intensity histogram of raw point clouds 

and determine adaptive thresholds. Subsequently, the MSTV and upward region-growing 

approaches were applied to ascertain candidate road marking pixels, accompanied by a 

morphological nearest algorithm for road marking extraction. However, it is still very challenging 

for such methods to effectively extract road markings from unorganized and high-density point 

clouds, especially with distinctive concavo-convex features (Yu et al., 2014). 

Deep learning techniques have been widely applied in the domains of object segmentation 

and object classification. He et al. (2016) proposed a lane marking extraction method based on the 

CNNs from MLS point clouds. A CNN framework designed for learning hierarchical features from 

upsampling-downsampling modules was first introduced to detect lane-shaped markings 

effectively. Then, both the length and spatial information related filters were utilized to optimize 
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the extracted road markings. Moreover, Wen et al. (2019b) developed an improved U-Net encoder-

decoder framework by learning inherent features of road markings embedded in different data 

patches, which achieved promising flexibility and performance on point clouds with low-intensity 

contrast ratios. Nevertheless, these methods mainly concentrate on regular-shaped road markings 

(e.g., dashed lines and zebra crossings), it remains a challenge to deliver satisfactory results for 

complicated road markings (e.g., texts). Although it dramatically reduces the computational 

complexity by converting 3D point clouds into 2D rasterized images, these neural networks cannot 

capture pose or spatial information that is quite significant for road marking extraction in fluctuant 

terrain environments (Wen et al., 2019b).  

2.3.2 Road Marking Classification 

Following the extraction process, many classification methods were developed to classify 

road markings into various categories for specific applications (Guan et al., 2016; Che et al., 2019). 

Yu et al., (2014) implemented a Euclidean distance-based clustering approach, followed by a 

voxel-based normalized segmentation algorithm for clustering unorganized road marking point 

clouds into large-size and small-size clusters. Afterward, large-size road markings were classified 

with the assistance of trajectory data and curb-lines. Then, a jointly trained Deep Boltzmann 

Machine (DBM) neural network, followed by a multi-layer classifier, was developed to recognize 

and categorize small-size markings effectively. Additionally, based on the geometric parameters 

(e.g., perimeter, area, and calculated width), Cheng et al. (2017) classified the extracted road 

markings by constructing a manually defined decision tree. However, it is challenging for this rule-

based method to effectively classify complex road markings, such as words and arrows. Due to 

discrete noise, faded markings, and varied road environments, it is also difficult for these methods 

to accurately classify the incomplete road markings.  

To achieve the superior road marking classification performance, Soilán et al. (2017) 

designed a hierarchical classification framework by employing a multi-layer neural network to 

recognize arrows and pedestrian crossings. Then, the Structural Similarity Index (SSIM) algorithm 

was carried out to classify different types of arrows. Furthermore, Wen et al. (2019b) introduced 

a two-stage CNN-based hierarchical classification framework. At first, a multi-scale Euclidean 

clustering algorithm was implemented to classify large-size road markings (e.g., zebra crossing). 

Then, the remaining small-size road markings (e.g., texts and diamonds) were successfully 
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classified into different groups by using a four-layer convolution network, followed by an 

optimized conditional generative adversarial network (c-GAN) to enhance the completeness of the 

extracted road markings. Although their experimental results indicated a highly promising solution 

in road marking classification, it is still a challenge to eliminate the influences of small 

incompletions and deliver an end-to-end deep learning framework. Therefore, it is increasingly 

necessary to develop a deep learning framework capable of encoding more salient features 

embedded in intensity values and the pose and spatial information of the road markings for 

extraction and classification purposes. 

2.4 Road Boundary Extraction and Completion 

2.4.1 Road Boundary Extraction 

Generally, the commonly applied boundary extraction methods are categorized into three 

groups: remotely sensed image-driven methods (Chen et al., 2019b, Wang et al., 2015b, Zhang et 

al., 2019), 3D point-driven methods (Kang et al., 2012, Yang et al., 2013, Cabo et al., 2016, Lin et 

al., 2018), and multi-source data-driven methods (Homayounfar et al., 2018, Liang et al., 2019). 

Different kinds of remotely sensed imagery acquired by various platforms and sensors, such as 

drone-based imagery, satellite imagery, and synthetic aperture radar (SAR) imagery, provide 

significant spectral, spatial, and texture information for the robust and effective road feature 

extraction in large-scale terrains. For instance, Zhang et al. (2019) proposed a Multi-supervised 

Generative Adversarial Network (MsGAN) framework to extract road boundaries and centerline 

maps from satellite images, which is jointly trained by the topology and spectral information of 

road networks. By estimating an approximate prediction of the road edges for guidance, Zang et 

al. (2016) developed an anisotropic shock filtering framework to extract roads. Additionally, Chu 

et al. (2019) proposed a graph-driven neural turtle graphics network to detect urban road layouts 

on the SpaceNet dataset, while nodes in the graph indicate spatial control points of the road 

networks and edges represent road segments. However, various environmental and topological 

factors, including ambient lighting conditions, the complexity of road scenarios, and undulating 

terrains, have remarkable impacts on the performance of road boundary extraction from 2D images. 

Meanwhile, 3D point clouds acquired by MLS, ALS, and TLS systems have been an 

appropriate data source for road boundary extraction. Zai et al. (2017) developed a two-stage 

method for 3D road boundary extraction from MLS point clouds in complex road scenes. First, 
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super voxels were generated based on smooth seed points and different geometric and spatial 

attributes. Then, road boundaries were extracted by performing the α-shape algorithm, followed 

by the graph-cut related energy minimization algorithm. By partitioning roads to a collection of 

LiDAR point cloud blocks with the assistance of vehicle trajectory, Wang et al. (2015b) proposed 

a method to construct saliency maps and extract salient points for road boundary detection. 

Moreover, according to independent patches of the road network, Boyko and Funkhouser (2011) 

developed a method to generate 3D road maps by using Cardinal splines under continuity 

constrains and an attractor function for curb detection from both ALS and MLS point clouds. 

However, it is difficult to accurately and completely extract road boundaries regarding 

unstructured and noisy point clouds. The information loss is inevitable during the process of 

voxelization and occlusions. 

Furthermore, because of the limitations of employing a single data source, some methods 

that take multi-source data into consideration are essential to obtain rich road information and 

complete road boundaries with high accuracy and robustness. Li et al. (2019b) used a transfer-

learning-based neural network for road feature encoding and a U-Net framework for road 

centerline and edge extraction by integrating aerial images with taxi trajectories. Ravi et al. (2019) 

proposed an intensity-based multi-threshold method to extract lane markings (e.g., road 

boundaries), and then combined the extracted lane markings from MLS point clouds with RGB 

camera images for accurate lane width estimation and road boundary measurement. Although such 

methods have significantly improved the accuracy of road boundary extraction by introducing 

spectral or texture information, they still cannot address existing gaps in road boundaries. 

2.4.2 Road Boundary Completion 

To fill these existing gaps and enhance the completeness of road boundaries caused by 

occlusions and method drawbacks, Xu et al. (2016) employed an energy function for the candidate 

curb point segmentation from MLS point clouds and further refined these candidate points by 

conducting a least-cost path model. Likewise, Ma et al. (2019a) performed a B-spline least-square 

fitting method to generate smooth road boundaries from candidate road curb points. However, it 

is a challenging task for such methods to deal with compound or spiral curved road sections with 

changing curvatures (Ma et al., 2019a). Inspired by image inpainting, Wen et al. (2019a) first 

proposed a CNN-based model to complete gaps and recover road boundaries from 3D point clouds. 
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Then, a conditional generative adversarial network (cGAN) framework was implemented to deal 

with the uncertainties of missing parts of road boundaries and refine them accordingly. The 

existing methods have certain limitations and considerable challenges to provide promising 

solutions (Zai et al., 2017, Wen et al., 2019a). Accordingly, to tackle the problems of completeness 

reduction and curvature loss when processing massive MLS point clouds with many missing parts, 

a deep learning framework should be proposed to identify and restore the missing parts of road 

boundaries by using multi-source data (e.g., LiDAR points, camera images, and GNSS points) 

under challenging road scenes more accurately and robustly. 

2.5 Chapter Summary  

In this chapter, a variety of existing methods proposed for road object segmentation, road 

marking extraction and classification, and road boundary extraction and completion using MLS 

point clouds were comprehensively reviewed and discussed. It can be concluded that MLS point 

clouds are suitable for extracting highly precise road information in complex urban road conditions. 

Although various threshold-based and rule-based methods have delivered promising solutions for 

road information extraction, massive point clouds with high redundancy, point density and 

intensity variations, and irregular road structures still pose significant challenges to effectively and 

automatically manipulate MLS point clouds.  

More recently, based on the more and more publicly available point cloud datasets with 

labels, deep learning-based methods have demonstrated that they are capable of learning deeper 

and more distinctive feature representations of different road objects by taking advantage of the 

powerful computational resources. Accordingly, intelligent point cloud processing and road 

information extraction by using deep neural networks are investigated in the following aspects: a 

point-wise 3D convolution operation embedded in a U-shaped downsampling and upsampling 

framework is proposed for road object semantic segmentation in Chapter 3; two hybrid capsule-

based deep neural networks are developed to extract and classify different types of road markings 

in Chapter 4; followed by CNN-based and GAN-based networks for road boundary recovery in 

Chapter 5.  
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Chapter 3  

MS-PCNN: Multi-scale Point-wise Convolution for Road Object 

Segmentation 

Although significant improvement has been achieved in fully autonomous driving and 

semantic HD map domains, most of the existing 3D point cloud segmentation methods cannot 

provide high representativeness and remarkable robustness. The principally increasing challenges 

remain in completely and efficiently extracting high-level 3D point cloud features, specifically in 

large-scale road environments. This chapter provides proposed a novel end-to-end neural network, 

named MS-PCNN, by combining point-wise CNNs with dynamic edge convolutions in multiple 

scales for 3D point cloud segmentation. Compared to existing point cloud segmentation methods 

that are commonly based on traditional convolutional neural networks, the proposed method is less 

sensitive to data distribution and computational powers. The experimental results acquired by 

using different point cloud scenarios indicate the MS-PCNN method can achieve state-of-the-art 

semantic segmentation performance in feature representativeness, segmentation accuracy, and 

technical robustness. 

More specifically, Section 3.1 introduces the research backgrounds. Section 3.2 presents a 

stepwise algorithm framework in detail. The implementation details of deep neural networks are 

presented in Section 3.3. The datasets used in this study are presented in Section 3.4. The 

experimental results and discussions are presented in Section 3.5, followed by the efficiency 

evaluation in Section 3.6. Section 3.7 concludes this chapter. © [2020] IEEE. Reprinted, with 

permission, from [Lingfei Ma, Ying Li, Jonathan Li, Weikai Tan, Yongtao Yu, and Michael A. 

Chapman. Multi-scale Point-wise Convolutional Neural Networks for 3D Object Segmentation 

from LiDAR Point Clouds in Large-scale Environments. IEEE Trans. Intell. Transp. Syst., 

doi:10.1109/TITS.2019.2961060]. 

3.1 Introduction 

With the increasing market demands of the Advanced Driver-Assistance Systems (ADAS), 

Level-5 fully autonomous driving, autonomously operating robotics, smart cities, and semantic 

high-definition (HD) maps, mobile laser scanning (MLS) or mobile Light Detection and Ranging 

(LiDAR) systems have attracted extensive attention of many researchers over the past few years 
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(Bresson et al., 2017). Such MLS systems could effectively collect high-density and precise 3D 

point clouds in large-scale road environments (Yu et al., 2016). Accordingly, 3D point clouds have 

been commonly applied in many industrial applications, including 3D object extraction in urban 

road networks (Ye et al., 2019; Ma et al., 2019a), object registration, object tracking (Luo et al., 

2019c), object modeling and 3D reconstruction, object classification (Wen et al., 2019b), and 

semantic segmentation (Luo et al., 2015). As a significant requirement of 3D digital cities, 3D 

semantic segmentation aiming to assign the per point semantic label for all input point clouds is 

crucial in exploiting the informative values of point clouds for the aforementioned applications 

(Lin et al., 2018). Therefore, in this paper, it specifically concentrates on the foundational and 

theoretical problems of 3D semantic segmentation using MLS point clouds in large-scale urban 

environments. 

3D point-wise segmentation is to classify each point in the entire point clouds into several 

homogeneous classes, and semantic labels will be assigned to the points belonging to the same 

objects or regions. However, it is very challenging to achieve automated and effective point-wise 

segmentation regarding the high redundancy, uneven point density, and inexplicit structure of 

MLS point clouds (Wen et al., 2019b). Generally, 3D semantic segmentation is performed by 

creating hand-designed feature descriptors. The most representative feature descriptors are 

comprised of global feature descriptors and local feature descriptors. Such global feature 

descriptors, e.g. 3D statistical moment (Paquet et al., 2000) and spherical harmonics descriptor 

(Funkhouser et al., 2003), are commonly obtained using the geometrical information of entire MLS 

point clouds. However, these feature descriptors are very sensitive to occlusions, distortions, and 

background interferences, resulting in segmentation ambiguities (Wang et al., 2018). In addition, 

local feature descriptors including Spin Image (Johnson and Hebert, 1999), Signature of 

Histograms of OrienTations (SHOT) (Salti et al., 2010), Fast Point Feature Histograms descriptor 

(FPFH) (Rusu et al., 2009), and Fourier power spectrum (FPS) (Masuda, 2009), mainly 

concentrate on the descriptive information of point clouds in local regions. However, such methods 

could capture few geometrical information (e.g., shape and pose features) of 3D objects. Hence, 

the representativeness of developed feature descriptors is yet far from satisfaction. 

To strengthen the descriptiveness and feature representation of these existing methods, it 

is effective to learn features at middle and high levels for inherent and additional information 
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taking advantage of the increased performance of computational resources. One promising 

solution is to use deep learning (DL) models, e.g. deep convolutional neural networks (CNNs) and 

generative adversarial networks (GANs), to learn deeper and more distinctive feature 

representations (Zhu et al., 2017). Accordingly, various methods including voxel-based methods 

(e.g., VoxNet (Maturana and Scherer, 2015)), multiview-based methods (e.g., MV3D (Chen et al., 

2017a)), auto-encoder-based methods (e.g., CAE-ELM (Wang et al., 2016)), graph cut-based 

methods (e.g., ECCNet (Simonovsky and Komodakis, 2017)), and symmetric function-based 

methods (e.g., PointNet (Qi et al., 2017a)), have been proposed to use MLPs for 3D data analysis, 

object recognition, and semantic segmentation. Although these existing CNN-based methods have 

achieved a significant enhancement in the representativeness and descriptiveness on several 

publicly available datasets (e.g., ShapeNet-Part and ModelNet40), it is still challenging to 

effectively and automatically manipulate MLS point clouds with unstructured 3D points, various 

point densities, outliers, and occlusions, which are inevitable in complex urban environments. 

To overcome these challenges, the feasibility of embedding point-wise CNNs with 

hierarchical feature representations of point clouds is investigated. Yet CNNs were initially 

developed to deal with 2D images with structured pixel arrays. Such images are organized with 

regular lattice grids in a specific order, which can be directly fed into CNN-based architectures. It 

is not feasible to directly perform CNNs on 3d MLS point clouds since they are not in a regular 

data format or an inherent order. Therefore, to solve this dilemma, a 3D semantic segmentation 

model aiming to facilitate collaboration between point-wise CNNs and unstructured 3D point 

clouds is developed. The novel architecture of the proposed neural network is to directly consume 

unstructured 3D points and implement a point-wise semantic label assignment network to learn 

fine-grained layers of feature representations and reduce unnecessary convolutional computations. 

To this end, an end-to-end DL framework comprised of the following four modules is proposed: 

(1) point-based 3D convolution, (2) U-shaped downsampling-upsampling framework, (3) dynamic 

graph edge convolution, and (4) conditional random field (CRF)-based postprocessing. This 

proposed neural network is capable of robustly and efficiently extract global and local features of 

input point clouds in multiple scales. Furthermore, these proposed and revised models can directly 

consume 3D point clouds without data conversion and transformation. 
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The proposed model has been evaluated on publicly accessible large-scale MLS point 

cloud dataset. Experimental outputs conclusively demonstrate that the proposed method could 

achieve superior performance in feature representation, computational efficiency, and robustness. 

The significant contributions of this paper are described as follows: (1) the PointCONV as a multi-

scale density-based reweight convolution was revised, which can completely and efficiently 

approximate the 3D convolution on large-scale unstructured point clouds with an efficient 

computation fashion; (2) a hierarchical U-shaped downsampling-upsampling framework was 

designed to implement both PointCONV and PointDeCONV for better point-wise segmentation 

outcomes; (3) the Edge-Conv descriptor was revised by optimizing both symmetric aggregation 

function and edge function to achieve dynamically update the graph of edges and learn more 

representative features between adjacent points in local neighbourhoods; and (4) a CRF algorithm 

was performed for the label assignment refinement generated by the proposed end-to-end model. 

 

Figure 3. 1 Illustration of the proposed MS-PCNN model architecture. 

3.2 Algorithm Description 

 In this section, the theoretical and logical principles of the proposed model are presented 

for 3D road object segmentation from MLS point clouds. This novel model, named MS-PCNN, 

mainly contains four modules: convolution on 3D points, multi-scale feature extraction, dynamic 

edge feature extraction, and conditional random field post-processing. More specifically, Module 

I is designed to construct a revised convolutional kernel, particularly for 3D point clouds. A Monte 

Carlo approximation of the 3D continuous convolutional operators is first applied followed by 
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dynamic density scales to re-calculate the optimized weight functions. In Module II, a U-shaped 

downsampling-upsampling architecture is proposed to leverage both global and local features in 

multiple scales. Next, in Module III, high-level local edge features in 3D point neighbourhoods 

are further extracted by using an adaptive graph convolutional neural network based on the K-

Nearest Neighbour (KNN) algorithm. Finally, in Module IV, a conditional random field algorithm 

is developed for postprocess and segmentation result refinement, and 3D road objects are therefore 

segmented. Figure 3.1 presents the detailed workflow of the proposed MS-PCNN model. 

3.2.1 Convolution on 3D Points 

Although CNN-based methods have demonstrated the superior performance on recognition, 

classification and segmentation tasks using regular data formats, such as 2D images or 3D 

voxelized grids, it is very difficult to provide promising solutions that directly apply convolutions 

on 3D point clouds. Inspired by Wu et al. (2019), as a revised convolutional operation, MS-PCNN 

extending conventional 2D image convolutions into 3D point clouds is accordingly proposed. In 

general, convolutional operations are determined by using:  

(𝐹 ∗ 𝐺)(𝑥) = ∬ 𝐹(∆𝑥)𝐺(𝑥 + ∆𝑥)𝑑(∆𝑥) , ∆𝑥 ∈ ℝ𝑑                                         (3.1) 

where 𝐹(𝑥)  and 𝐺(𝑥)  are two functions, 𝑥  is a d-dimensional vector, and ℝ𝑑  denotes a d-

dimensional Euclidean space. 2D images represented by grid-structured matrices are normally 

regarded as discrete functions. In traditional CNNs, various kernel filters (e.g., 1 × 1, 5 × 5, and 7 

× 7) are assigned to focus on small-sized local neighbourhoods. Moreover, the relative positions 

among different pixels are always certain in each local region, as illustrated in Figure 3.2(a). 

Diverse filters can be effectively employed to calculate the sum of real-valued weights for different 

locations in the given local neighbourhood. 

 

                                (a)                                                                         (b) 

Figure 3. 2 Data format comparison between 2D images and 3D point clouds: (a) 2D images. (b) 

3D point clouds. 
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In contrast, point clouds are considered as a collection of discrete 3D points 𝑝𝑖 (𝑖 = 1, 2, . . . , 

𝑛) containing 𝑥𝑦𝑧 coordinate information and related characteristics including color, intensity, and 

normal. Compared to grid-structured images, point clouds have an irregular format with the 

unfixed arrangement. Hence, as shown in Figure 3.2(b), the relative positions of point clouds are 

different within different local regions, resulting in traditional convolutional filters used on regular 

data formats (e.g., images) cannot be directly utilized on point clouds. 

In order to make full use of convolutional operations on 3D point clouds, Wu et al. (2019) 

proposed a permutation-invariant convolutional filter, called PointCONV. The main idea of 

PointCONV is to define the 3D convolutions for continuous functions by the following equation: 

        3𝐷𝐶𝑜𝑛𝑣(𝐻, 𝐽)𝑥𝑦𝑧 = ∭ 𝐻(𝜑𝑥 , 𝜑𝑦 , 𝜑𝑧) ∙ 𝐽(𝑥 + 𝜑𝑥 , 𝑦 + 𝜑𝑦 , 𝑧 + 𝜑𝑧)𝑑𝜑𝑥𝜑𝑦𝜑𝑧 , (𝜑𝑥𝜑𝑦𝜑𝑧) ∈ 𝐸      (3.2) 

where 𝐻(𝑥)  and 𝐽(𝑥)  are two functions, 𝐽(𝑥 + 𝜑𝑥, 𝑦 + 𝜑𝑦, 𝑧 + 𝜑𝑧)  represents the feature of a 

point 𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑛) in the local neighbourhood 𝐸, where (𝑥, 𝑦, 𝑧) is the center position of this 

local region. Specifically, point clouds are interpreted as non-uniform samples in the continuous 

3D space. Therefore, PointCONV is defined as follows: 

        (𝐹, 𝐻, 𝐽)𝑥𝑦𝑧 = ∑ 𝐹(𝜑𝑥 , 𝜑𝑦, 𝜑𝑧)(𝜑𝑥𝜑𝑦𝜑𝑧)∈𝐸 𝐻(𝜑𝑥 , 𝜑𝑦, 𝜑𝑧) × 𝐽(𝑥 + 𝜑𝑥 , 𝑦 + 𝜑𝑦, 𝑧 + 𝜑𝑧)     (3.3) 

where  𝐹(𝜑𝑥, 𝜑𝑦, 𝜑𝑧) indicates the inverse density given the point (𝜑𝑥, 𝜑𝑦 , 𝜑𝑧). 𝐹(𝜑𝑥, 𝜑𝑦, 𝜑𝑧) is 

significant since the downsampled point clouds are non-uniformly distributed. However, the point 

densities in different local neighbourhoods are various across the entire point clouds. The key idea 

is to employ multi-layer perceptrons (MLPs) for the weight function approximation based on the 

3D positions (𝜑𝑥, 𝜑𝑦 , 𝜑𝑧) and the inverse density values 𝐹(𝜑𝑥, 𝜑𝑦, 𝜑𝑧) using a density estimation 

algorithm. However, Wu et al. (2019) considered the approximation of the density scale in a fixed 

threshold rather than multi-scale or dynamic scales, which leads to approximations of the 3D 

convolutional operator far from satisfactory. 

Different from Wu et al. (2019), a multi-scale kernelized point density calculation 

algorithm is proposed in this study followed by a non-linear transformation algorithm, which is 

implemented during feature extraction stages. Different colors in Figure 3.3 represent different 

point densities. The MS-PCNN network is designed to capture multi-scale patterns by grouping 

3D points in multiple scales followed by according MLPs to extract inherent features within each 

scale. Then, features learned from various scales are concatenated together for the multi-scale 
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feature encoding purpose. The raw points are randomly dropped out with a randomized probability 

for each point. According to prior knowledge, the randomized dropout rate 𝜃 was ascertained in 

the range of [0, 𝜌 ], where 𝜌  = 0.9 to avoid the sampling deficiency. To achieve invariant 

permutation of 3D points, the weights learned from different MLPs in the revised PointCONV are 

shared in the whole point clouds. According to the proposed multi-scale kernel density estimation 

(MKDE) and non-linear transformation algorithms, the inverse density scales 𝐹(𝜑𝑥, 𝜑𝑦 , 𝜑𝑧) can 

be adaptively calculated with multi-scale point density estimation in local regions. 

 

Figure 3. 3 Illustration of the multi-scale kernelized point density estimation. 

Figure 3.4 indicates the revised PointCONV framework within a local neighbourhood. As 

can be seen, the white rectangles represent the features by concatenating interpolated features with 

features learned from MLPs with the same resolution using across-level skip connections. Blue 

color bars indicate feature extraction results by using MLPs, while light green bars denote the 

downsampling and grouping modules that are similar to the ones employed in PointNet++ (Qi et 

al., 2017b). More specifically, the iterative farthest point sampling was conducted to subsample 

the raw point clouds by calculating the Euclidean distances from 3D points to the given centroids, 

which can generate receptive fields in a data-dependent fashion. Assuming that 𝐶𝑖 and 𝐶𝑜 be the 

number of channels about the input features and output features, respectively. ( 𝑘, 𝐶𝑖 , 𝐶𝑜 ) is 

regarded as the index of 𝐾-th neighbour, 𝐶𝑖-th channel of input features and 𝐶𝑜-th channel of 

output features. The input 𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑛)  provide 3D coordinates 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) where 

𝑝𝑖 ∈ ℝ3×𝐾, which is calculated by subtracting the centroid coordinate and the input feature 𝑐 ∈

ℝ𝐶𝑖×𝐾 of the local neighbourhood. 1 × 1 convolutional kernel size is ascertained to perform MLPs. 

The outputs of the weight functions are 𝑊 ∈ ℝ(𝐶𝑖×𝐶𝑜)×𝐾. Accordingly, 𝑊(𝑘, 𝐶𝑖) ∈ ℝ𝐶𝑜 denotes a 

weight vector, and the density scale is 𝐹 ∈ ℝ𝐾. In order to capture more high-level local features 
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at multiple scales in each local region, the multiple thresholds of 𝐾 are selected based on the 

diverse distributions of point clouds, and the average value of MKDE is then estimated. According 

to prior knowledge and the accessible computation capability, 𝐾 is predefined as 128, 64, 32, and 

16, respectively. After convolutional operations, the input features 𝐹𝑖 captured in each local region 

with multi-scale 𝐾 points are fed into the following equation to obtain the output features 𝐹𝑜 ∈ ℝ𝐾: 

𝐹𝑜 = ∑ ∑ 𝐹(𝑘)𝑊(𝑘, 𝑐𝑖)𝐹𝑖(𝑘, 𝑐𝑖𝑐𝑖
)𝐾

𝑘=1                                           (3.4) 

 

Figure 3. 4 Revised PointCONV framework with feature encoding and propagation. 

However, such revised PointCONV operations are time-consuming and huge memory-

overhead, especially for the weight approximation. For a certain point cloud, each local 

neighbourhood is assigned to the equivalent weight functions that are encoded from MLPs. 

Nevertheless, the weights calculated by different weight functions from various point clouds are 

different. Accordingly, the sizes of the weight filters can be determined as follows: 

𝑆𝑤 = 𝐵 × 𝑁 × 𝐾 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡                                            (3.5) 

where 𝑆𝑤 is the size of weight filters computed by MLPs. 𝐵 is the mini-batch size, 𝑁 represents 

the number of points within each point cloud, 𝐾 indicates the number of points within each local 

neighbourhood, 𝐶𝑖𝑛  is the number of input channels, and 𝐶𝑜𝑢𝑡  denotes the number of output 

channels. For instance, if 𝐵 = 64, 𝑁 = 1024, 𝐾 = 64, 𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡 = 128, respectively, the memory 

size for the generated weight filters are over 16 GB for each layer, which results in huge memory 

consumption in the training phase. Therefore, to tackle this problem, the PointCONV 

implementation is further refined by optimizing matrix multiplication and 2D convolution 

operations. The revised PointCONV is equivalent to the following equation: 

𝐹𝑜𝑢𝑡 = 𝐶𝑂𝑁𝑉3×3(𝐻, (𝐹 ∙ 𝐹𝑖𝑛)𝑇⨂ 𝑀)                                             (3.6) 
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where 𝑀 ∈ ℝ𝐾×𝐶𝑚𝑖𝑑  denotes the inputs fed into the last layer of MLP to calculate the weight 

function, 𝐻 ∈ ℝ(𝐶𝑖𝑛×𝐶𝑜𝑢𝑡)×𝐶ℎ𝑖𝑑 is the weights in the last layer of MLP, 𝐹 indicates the density scale, 

and 𝐶𝑂𝑁𝑉3×3 is 3 × 3 convolutional operation. Since the last layers of MLPs are generally linear 

layers, 𝐹̃ = 𝐹 ∙ 𝐹𝑖𝑛 is therefore rewritten within each local neighbourhood. Accordingly, let the 

weight function 𝑊 =  𝐶𝑂𝑁𝑉3×3(𝐻, 𝑀) ∈ ℝ(𝐶𝑖𝑛×𝐶𝑜𝑢𝑡)×𝐾, 𝑘 is the index of points in local regions, 

and 𝑐𝑖𝑛, 𝑐ℎ𝑖𝑑, 𝑐𝑜𝑢𝑡 are the indices of the input, hidden and output layer, respectively. Therefore, 

the revised PointCONV can be expressed as follows: 

𝐹𝑜𝑢𝑡 = ∑ ∑ (𝑊(𝑘, 𝑐𝑖𝑛)𝐹𝑖𝑛̃(𝑘, 𝑐𝑖𝑛)
𝐶𝑖𝑛−1
𝑐𝑖𝑛=0 )𝐾−1

𝑘=0                                  (3.7) 

𝑊(𝑘, 𝑐𝑖𝑛) = ∑ (𝑀(𝑘,
𝐶ℎ𝑖𝑑−1
𝑐ℎ𝑖𝑑=0 𝑐ℎ𝑖𝑑)𝐻(𝑐ℎ𝑖𝑑 , 𝑐𝑖𝑛))                            (3.8) 

According to both Eqs. (3.7) and (3.8), the revised PointCONV is thus determined by: 

𝐹𝑜𝑢𝑡 = ∑ ∑ 𝐶𝑂𝑁𝑉3×3(𝐻, 𝐹𝑖𝑛
𝑇̃ 𝑀)

𝐶𝑖𝑛−1
𝑐𝑖𝑛=0

𝐾−1
𝑘=0                                      (3.9) 

Consequently, the previous PointCONV is equivalently converted into a 2D 3 × 3 

convolution and a matrix multiplication. In this revised model, the matrix multiplication is refined 

by dividing the weight filters into two parts: the convolutional kernel 𝐻 and the intermediate 

output 𝑀. In addition, instead of using the 1 × 1 convolution, the 3 × 3 convolution is employed 

to deliver promising outputs and effectively reduce computational costs. Assuming that 𝐶ℎ𝑖𝑑 = 64, 

the memory usage is about 0.251 GB for each layer, which is only 1/64 of the original PointCONV 

with the same parameters as shown in Figure 3.4. 

Therefore, this revised PointCONV operation can effectively construct a network and 

approximate the continuous weights for convolutions on point clouds. Compared to the traditional 

convolutions, the revised PointCONV-based convolution that only considers the relative 

coordinates as inputs could output multi-scale densities and weights across the whole point clouds, 

which considerably decreases the computational cost caused by traditional discretized and fix-

sized convolutions. 

3.2.2 U-shaped Downsampling-Upsampling Architecture 

After implementing PointCONV operations, the original input point clouds have been 

subsampled into various resolutions. However, for object segmentation task especially as semantic 
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labeling, the point wise segmentation for the entire point clouds is needed. To acquire high-level 

features for the whole point clouds in both global and local scales, a hierarchical framework that 

could propagate features from subsampled point clouds to relatively dense ones is required. 

Therefore, a U-shaped downsampling-upsampling architecture is proposed by taking PointCONV 

operations into consideration. According to the revised PointCONV mentioned in Section 3.2.1, 

more high-level features are captured by regarding a revised PointDeCONV layer as 

deconvolutional operations.  

As shown in Figure 3.4, PointDeCONV implementation mainly contains two processes: 

interpolation and revised PointCONV. First, the interpolation operation is conducted to assemble 

different level features from previous layers. According to the three nearest points, the 

interpolation is carried out to linearly interpolate features. Subsequently, such interpolated features 

are concatenated with features learned from MLPs with the same resolution using across-level skip 

links. Finally, the revised PointCONV is thus employed on the concatenated features to catch the 

final deconvolution outputs. Accordingly, this recursive process will not terminate until the 

features learned from all point clouds have been propagated back to the initial resolution. 

3.2.3 Dynamic Graph Edge Convolution 

Although the proposed MS-PCNN hierarchical framework embedded with revised 

PointCONV and PointDeCONV operations could obtain features for all input point clouds in 

multiple scales, edge features between a point and its adjacent neighbours have not been taken into 

consideration. To address this drawback, a PointCONV-based dynamic graph edge convolution 

operator is proposed to capture local geometrical edge structures based on the EdgeConv descriptor 

(Wang et al., 2019b). As shown in Figure 3.1, a local neighbourhood graph is constructed followed 

by PointCONV-based convolutional operations on the connected edges. Compared to 

conventional graph CNNs, the graphs introduced in this study are dynamically updated rather than 

fixed after feature extraction layer. Specifically, the K-nearest neighbours of a point dynamically 

change between two adjacent layers of the model and are accordingly calculated the sequence of 

embeddings. Figure 3.5 illustrates the principle of revised EdgeConv operation compared with 

revised PointConv operation. As can be perceived, by adding dynamic graph edge convolutions 

into the proposed model, not only point-wise geometric information but also edge informative 
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features between a certain point and its neighbours are considered to capture more descriptive 

features in a local region. 

 

Figure 3. 5 Illustration the principles of the revised PointCONV and EdgeConv operations. 

Assuming that a directed graph 𝐺 = (𝑉, 𝐸) denoting the local structure of each point cloud, 

𝑉 = (1, 2, … , 𝑛) and 𝐸 ⊆ 𝑉 × 𝑉 are the vertices and edges, respectively. To simplify this problem, 

a graph 𝐺 is built as the KNN-graph in 𝐷-dimensional space (generally 𝐷 = 3 representing 𝑥𝑦𝑧 

coordinates of point clouds) and edge features are defined as 𝑒𝑖𝑗 = 𝑔𝜙(𝑥𝑖 , 𝑥𝑗) , where 𝑔𝜙 ∈

ℝ𝐷 × ℝ𝐷 denote parameterized nonlinear functions with a collection of parameters 𝜙. After that, 

the EdgeConv operation is defined by conducting a channel-wise symmetric aggregation 

implementation (e.g., sum) on the edge features from each point. Therefore, the output of 

EdgeConv operation at the 𝑖-th vertex is performed as follows: 

𝑥𝑖
′ =⊡𝑗:(𝑖,𝑗)∈𝐸 𝑔𝜙(𝑥𝑖 , 𝑥𝑗)                                                (3.10) 

where  ⊡ represents a symmetric aggregation function. In this study, differently from Wang et al. 

(2019b), the max operation is applied as the aggregation function rather than the sum to reduce the 

computational consumption. Instead of 𝑔𝜙(𝑥𝑖 , 𝑥𝑗) = 𝑔𝜙(𝑥𝑖), 𝑔𝜙(𝑥𝑖 , 𝑥𝑗) = 𝑔𝜙(𝑥𝑗 − 𝑥𝑖) , or 

𝑔𝜙(𝑥𝑖 , 𝑥𝑗) = 𝑔𝜙(𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖)  tried in Wang et al. (2019b), 𝑔𝜙(𝑥𝑖 , 𝑥𝑗) = 𝑔𝜙(𝑥𝑖 , 𝑥𝑗 + 𝑥𝑖)/2  is 

defined in this study as an symmetric edge function. By combining both the global structures and 

local neighbourhood characteristics, such a function is capable of acquiring more inherent and 

high-level features in an effective manner. Moreover, due to the variations of the number of points 

in each local neighbourhood, the average-based asymmetric edge function 𝑔𝜙(𝑥𝑖 , 𝑥𝑗) =
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𝑔𝜙(𝑥𝑖 , 𝑥𝑗 + 𝑥𝑖)/2  is prone to error reduction and keep much information for further feature 

encodings. 

Furthermore, it is remarkably significant to recalculate a new graph using the KNN 

algorithm within the 𝐷-dimensional feature space generated by previous layers. Thus, a new graph 

𝐺𝑙 = (𝑉𝑙 , 𝐸𝑙)  is constructed at each layer. Consequently, the 𝐷𝑙+1 -dimensional outputs are 

calculated by using the revised EdgeConv to the 𝐷𝑙-dimensional outputs of the 𝑙-th layer from the 

following equation: 

𝑥𝑖
𝑙+1 =⊡𝑗:(𝑖,𝑗)∈𝐸𝑙 𝑔𝜙

𝑙 (𝑥𝑖
𝑙 , 𝑥𝑗

𝑙)                                            (3.11) 

where  𝑔𝜙
𝑙 ∈ ℝ𝐷𝑙

× ℝ𝐷𝑙
. Such revised EdgeConv can be easily fed into existing architectures to 

boost the segmentation performance. The revised EdgeConv is combined with the basic version of 

hierarchical PointCONV and PointDeCONV framework. As depicted in Figure 3.1, an EdgeConv 

layer is employed after each revised PointCONV layer, followed by a fully connected (FC) layer 

then fed back to PointDeCONV layers. Within each EdgeConv module, 𝑔𝜙
𝑙 (𝑥𝑖

𝑙 , 𝑥𝑗
𝑙) = 𝑔𝜙(𝑥𝑖

𝑙 ,

𝑥𝑗
𝑙 + 𝑥𝑖

𝑙)/2  is applied as a shared edge function, and the max operation is performed as the 

aggregation function. Moreover, the number of nearest neighbours 𝑘 is predefined to be 32 for the 

effective segmentation process. 

3.2.4 CRF-based Post-processing 

Both CNNs and CRFs have demonstrated dominating performance in semantic 

segmentation tasks for 3D point clouds (Roynard et al., 2018; Dai et al., 2017). Precise point-wise 

semantic segmentation requires completely understanding not only high-level features of road 

objects but also mid- or low-level details. Such details are essential to ensure the consistency of 

point-wise label prediction. For instance, if two points are close to each other and have similar 

reflectance values, it is reasonable that these two points pertain to the same road object and 

therefore have the same semantic label. Thus, a CRF algorithm is performed for the label map 

refinement produced by the proposed PointCONV. Typically, an energy function is applied to CRF 

models using the following equation: 

𝐸(𝑙) =  ∑ 𝑢𝑖(𝑙𝑖) + ∑ 𝑣𝑖,𝑗(𝑙𝑖 , 𝑙𝑗)𝑛
𝑖,𝑗

𝑛
𝑖=1                               (3.12) 
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where 𝑙𝑖 denotes the 𝑖-th predicted label, 𝑖 = 1, 2…, 𝑛, and 𝑛 is the total number of point clouds. 

Moreover, 𝑢𝑖(𝑙𝑖) = −𝑙𝑜𝑔𝑃(𝑙𝑖)  is defined as the predicted probability 𝑃(𝑙𝑖)  from the revised 

PointCONV. The second term in Eq. (3.12) indicates the penalty to assign labels to a couple of 

points and is therefore determined by 𝑣𝑖,𝑗(𝑙𝑖 , 𝑙𝑗) = 𝜇(𝑙𝑖 , 𝑙𝑗) ∑ 𝑤𝑝𝑘𝑝(𝑓𝑖 , 𝑓𝑗)𝑃
𝑝=1 , where 𝜇(𝑙𝑖 , 𝑙𝑗) = 1 

if 𝑙𝑖 ≠  𝑙𝑗 or 0 otherwise, 𝑘𝑝 represents the 𝑝-th Gaussian kernel depending on extracted features 

𝑓 from points 𝑖  and 𝑗, and 𝑤𝑝  denotes constant coefficients. Herein, two Gaussian kernels are 

chosen as follows: 

𝑘1 exp (
‖𝑝𝑖−𝑝𝑗‖

2

2𝜎𝛼
2 −

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎𝛽
2 ) + 𝑘2exp (

‖𝑝𝑖−𝑝𝑗‖
2

2𝜎𝛾
2 )                       (3.13) 

where 𝑘1 exp(∙) is determined by the 3D coordinates (𝑥, 𝑦, 𝑧) and angular positions 𝑝 of two 

adjacent points, and 𝑘2 exp(∙) is calculated only relying on angular positions. 𝜎𝛼, 𝜎𝛽, and 𝜎𝛾 are 

three predefined hyperparameters. Accordingly, the fine-grained point-wise label prediction is 

achieved by minimizing the CRF energy function defined in Eq. (3.12). Although accurate 

minimization of Eq. (3.12) is intractable, Chen et al.(2017b) developed and revised a mean-field 

iteration method to handle this problem effectively and appropriately. The CRF can effectively 

leverage the prediction and confidence produced by the PointCONV-based classifier, as well as 

semantic label assignment between two similar points in each local region. 

 To compute and minimize the loss generated by MS-PCNN model, the off-the-shelf 

softmax cross entropy loss function is utilized after implementing CRF-based post-processing. 

More specifically, the softmax cross entropy is defined as follows: 

𝐿𝑜𝑠𝑠 = 𝐿(𝑔, ℎ(𝑦)) = − ∑ 𝑔𝑖𝑙𝑜𝑔𝑆𝑖
𝑁
𝑖=1                               (3.14) 

where 𝑔𝑖 represents the one-hot label of 𝑖-th training sample, 𝑁 denotes the batch size, and 𝑆𝑖 =

𝑒𝑉𝑖/ ∑ 𝑒𝑉𝑗
𝑗  is the softmax prediction score vector. The main objective is to minimize the loss 

function expressed in Eq. (3.14). Finally, the point-wise semantic label is determined using the 

prediction score vector 𝑆𝑖.  

3.3 Implementation Details 

In all designed experiments, the proposed neural networks were tested using Tensorflow 

on Nvidia® GTX 1080 Ti GPU and 32 GB RAM. Moreover, the networks were optimized using 
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adaptive moment estimation (Adam) optimizer which is built-in in Tensorflow. Batch 

normalization (BN) and rectified linear unit (ReLU) were employed after each MLP layer, except 

for fully connected (FC) layers. Several hyperparameters such as the batch size and initial learning 

rate were optimized during the training phase to determine the optimal combination by using the 

grid search approach. Specifically, the batch size, initial learning rate, the momentum of Adam, 

and dropout rate were predefined in the range of [8, 16, 32], [0.01, 0.001, 0.001], [0.80, 0.85, 0.90], 

and [0.5, 0.6, 0.7], respectively.  

The Overall Accuracy (OA) and Intersection over Union (IoU) were used as the 

performance evaluation matrices. By implementing many experiments with all possible 

hyperparameter combinations, an optimal combination was determined as [8, 0.001, 0.9, 0.5]. 

Namely, MS-PCNN model was trained using Adam with a momentum of 0.9, a dropout rate of 

0.5, and a batch size of 8. The initial learning rate was 0.001 with a decrease rate of 50% in every 

25 iterations. Each test dataset was divided into 70%, 20%, and 10% subsets for training, testing, 

and validating, respectively. Finally, a total of 200 epochs was applied for training purpose. 

3.4 Datasets 

A large-scale outdoor MLS dataset was employed, called Paris-Lille-3D (Roynard et al., 

2018) collected in complex urban environments. Paris-Lille-3D point cloud dataset was collected 

in the two metropolitan areas, namely Paris and Lille, France, using an MLS system equipped with 

a Velodyne HDL-32E LiDAR. The Velodyne HDL-32E LiDAR sensor can obtain a maximal 

measurement rate of 700,000 points per second in an effective scanning range of 80 m to 120 m. 

Such a sensor is installed at the rear roof of the vehicle with an angle of 30▫ between the horizontal 

axis and rotation axis, which can achieve a 2 cm measurement accuracy at the speed of up to 60 

km/hr, resulting in MLS point densities ranging from 1,500-2,000 points/m2. 

In Paris-Lill3-3D, there are four data acquisition trajectories: Lille1_1 is a length of 620 m 

urban road segment with 30.2 million points, Lille1_2 is a length of 530 m urban road corridor 

with 30.1 million points, Lille 2 is a length of 340 m urban road with 26.8 million points, and Paris 

provides a 450 m length of urban road with 45.7 million points, respectively. There are 9 object 

classes were manually labeled as Ground, Buildings, Poles, Bollards, Trash Cans, Barriers, 

Pedestrians, Cars, and Natural with a total number of 2,479 object instances. Moreover, a total of 

30 million points without labels are released as official test datasets. This dataset is obtained from 



 

34 

 

complex urban road environments, it shows surveying conditions with occlusions and varying 

point densities in the real-world scenarios, thus resulting in considerable difficulties for road object 

segmentation using this dataset. 

3.5 Results and Discussion 

3.5.1 Hyperparameter Optimization 

The proposed MS-PCNN framework has two essential hyperparameters: 𝜎, the bandwidth 

in multi-scale kernel density estimation; and 𝑘, the number of points in each local neighbourhood. 

To achieve the optimal hyperparameter settings, MS-PCNN model performance was evaluated 

through multiple experiments based on two evaluation matrices, i.e., overall accuracy and 

intersection over union, which can be calculated as follows: 

𝑂𝐴 =
∑ 𝑐𝑖𝑖

𝑁
𝑖=1

∑ ∑ 𝑐𝑗𝑘
𝑁
𝑘=1

𝑁
𝑗=1

                                                           (3.15) 

𝐼𝑜𝑈 =
𝑐𝑖𝑖

𝑐𝑖𝑖+∑ 𝑐𝑖𝑗+∑ 𝑐𝑘𝑖𝑘≠1𝑗≠1
                                                 (3.16) 

where OA metric represents the overall accuracy of segmentation results, and IoU metric measures 

the percent overlap between the target mask and the segmentation output. N is the number of 

classes, 𝑐 ∈ ℝ𝑁×𝑁 is a confusion matrix of the segmentation method, where 𝑐𝑖𝑗 is the number of 

points from ground-truth class 𝑖 predicted as class 𝑗. 

Before conducting various experiments, the Paris-Lille-3D dataset was preprocessed by 

first downsampling input point clouds and then rotating and jittering them to enhance the 

robustness and applicability of the MS-PCNN network. Additionally, to ensure geospatial 

correlation among point clouds in the local neighbourhoods, the coordinates of all point clouds 

were normalized to [−1, 1] in a trajectory interval of 5 m. According to prior knowledge, the 

performance of MS-PCNN model was tested by using 5 (options of 𝜎) × 4 (options of 𝑘) = 20 

combinations. Since the number of combinations is relatively large, the different performance of 

each hyperparameter setting was evaluated through the variable-controlling approach. That is, only 

the value of one hyperparameter was changed each time, while remained the other hyperparameter 

values the same. To evaluate the influence of different hyperparameter combinations, the 𝑂𝐴-𝐼𝑜𝑈 

curve for all categories can be generated. Intuitively, the 𝑂𝐴-𝐼𝑜𝑈 curve would fall in the top-right 

region of the plot, which indicates the MS-PCNN model can produce both high 𝑂𝐴 and 𝐼𝑜𝑈. 
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(a) 

 

(b) 

 

(c) 

Figure 3. 6 Model performance evaluation through OA-IoU curves: (a) Using different σ values. 

(b) Using different k values. (c) Using different batch sizes. 

 (1) Size of 𝝈: The size of bandwidth 𝜎 has a significant impact on the performance of MS-

PCNN model. An appropriate value of 𝜎 enables the model to learn more local features from input 

point clouds. The value of 𝜎 varies in the range of [0, 1]. More specifically, the smaller 𝜎 is, more 

local information the model can capture, but more computational energy consumes. To achieve an 

optimal balance between model performance and computational costs, the performance of MS-
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PCNN network was tested by using different 𝜎 values, i.e., 0.05, 0.10, 0.15, 0.20, and 0.25 on three 

test datasets, while keeping 𝑘 = 32 all the time by running 200 training epochs. 

Figure. 3.6(a) presents the OA-IoU curve based on different 𝜎  values. Note that, the 

performance of MS-PCNN enhances with the decrease of 𝜎, which achieves the best performance 

(i.e., 𝑂𝐴 = 97.2% and 𝐼𝑜𝑈 = 68.4%) while setting 𝜎 = 0.10. The reason is that in the process of 

multi-scale kernel density estimation, MS-PCNN could capture more details with the decreasing 

values of 𝜎. However, point-wise semantic segmentation performance decreases by 1.1% when 

changing bandwidth values from 𝜎 = 0.10 (𝐼𝑜𝑈 = 68.4%) to 𝜎 = 0.05 (𝐼𝑜𝑈 = 67.3%), that is 

because the MS-PCNN model is overfitting due to much redundant information used in the training 

phase. Therefore, 𝜎 = 0.10 was determined as the optimal hyperparameter value in order that the 

MS-PCNN model can deliver high robustness and computational efficiency. 

 (2) Size of 𝒌: The number of points in each local neighbourhood, namely 𝑘, determines 

both the descriptiveness and robustness of MS-PCNN model in local feature extraction. It is 

normally predefined as 𝑘 = 8, 16, 32, or 64 based on the different point densities for different test 

datasets. Accordingly, the performance of MS-PCNN model was evaluated by using different 

predefined 𝑘 values on three test datasets, while keeping 𝜎 = 0.10 all through 200 training epochs. 

 Figure 3.6(b) shows the OA-IoU curve by using different 𝑘  values. Different point 

densities have a significant impact on the selection of 𝑘  values. More specifically, to obtain 

representative features in local regions, a relatively large 𝑘 value should be selected for point cloud 

scenes with high point densities. Note that, the MS-PCNN model can achieve the best performance 

(i.e., 𝑂𝐴 = 97.1% and 𝐼𝑜𝑈 = 70.5%) for point-wise segmentation while setting 𝑘 = 16 on Paris-

Lille-3D dataset. Obviously, for the per-point segmentation task, the mIoU increases by 2.1% by 

changing 𝑘 = 32 to 𝑘 = 16. Moreover, compared to 𝑘 = 32 or 64, the computational efficiency at 

the stages of k-nearest neighbour searching and edge convolutions is considerably improved by 

setting 𝑘 = 16. Thus, in MS-PCNN, 𝑘 = 16 was defined as the optimal hyperparameter value for 

high segmentation accuracy and relatively low computational costs. 

Moreover, the influence of using different batch sizes during the training phase was also 

evaluated. Figure 3.6(c) presents the OA-IoU curve by varying batch sizes from 4 to 24 (i.e., 4, 8, 

16 and 24) based on the accessible computational power, while keeping other hyperparameters the 

same (e.g., 𝜎 = 0.10 and 𝑘 = 16). Generally, the larger the batch size, the more global feature the 
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model captures (Qi et al., 2017a), yet the more computational power the model requires. As can 

be seen, the MS-PCNN model can deliver the best segmentation accuracy by setting the batch size 

to be 16 (𝑚𝐼𝑜𝑈 = 70.5%). However, the relatively low segmentation accuracy (𝑚𝐼𝑜𝑈 = 69.6%) is 

achieved when setting the batch size as 32, because the MS-PCNN model captures relatively fewer 

local features than global features resulting in lower model performance. Accordingly, an optimal 

hyperparameter combination was ascertained as 𝜎  = 0.10, 𝑘  = 16, and batch size to be 16, 

respectively. 

3.5.2 Segmentation Results on Paris-Lille-3D 

According to different experiments by using various combinations, the optimal 

combination was determined as 𝜎 = 0.10 and 𝑘 = 16 on the Paris-Lille-3D test dataset. Moreover, 

the initial learning rate, batch size, momentum of Adam, dropout rate and epochs are 0.001, 16, 

0.9, 0.5, and 200, respectively, which can deliver the best segmentation result. Since the design of 

the MS PCNN architecture depends on experience, other parameters are thus ascertained through 

trial and error. For instance, when determining the dimension of the output channel, it is common 

to utilize an increasing size (e.g., from 64 to 512) in the encoding layers and a decreasing size (e.g., 

from 512 to 128) in the decoding layers.  

 

Figure 3. 7 Point-wise segmentation results by using MS-PCNN network on Paris-Lille-3D 

dataset. 
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Figure 3.7 illustrates the experimental result by testing with Lille2 dataset, which 

demonstrates that MS-PCNN model is able to achieve promising solutions for point-wise 

segmentation tasks in large-scale urban environments. Although mobile LiDAR point clouds 

collected in urban road scenes are very different from small-scale CAD models, the segmentation 

results indicate a large number of road objects (e.g., buildings and poles) were effectively 

segmented and the road surfaces were completely extracted. However, some points failed to be 

segmented, which indicates that certain points were mis-assigned as other semantic labels, as 

illustrated in Figure 3.8 The complexity of road scenarios has a significant impact on the 

descriptiveness of the MS-PCNN network. Based on the zoom-in visual inspection, the decay, 

ground settlement, occlusion, and moving obstacles (e.g., cyclists) in the Paris-Lille-3D dataset 

could lead to the false point-wise label assignment. Figure 3.8 also shows some pedestrian points 

were misclassified as natural and some points belonging to cars were predicted as barriers. Such 

unavoidable errors evolving in the process of data preprocessing, such as batch normalization, also 

conduce to overall accuracy reduction of point cloud segmentation. 

 

Figure 3. 8 Two zoom-in views of point-wise segmentation results from Paris-Lille-3D dataset. 

Accordingly, based on the same testing protocols, the proposed MS-PCNN model was 

compared with these existing networks. Table 3.1 presents the performance comparison results by 

calculating the mean IoU (𝑚𝐼𝑜𝑈) matrix, which is the mean of IoU across all the object categories. 
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As can be perceived, the proposed method dramatically outperforms both PointNet (38.6% 𝑚𝐼𝑜𝑈) 

and PointNet++ (32.0% 𝑚𝐼𝑜𝑈), which are pioneers that directly consume point clouds using deep 

learning. In addition, compared to the DGCNN, the proposed MS-PCNN method could 

dynamically update K-nearest neighbours between two adjacent layers of the model and 

accordingly calculate the sequence of embeddings, resulting in a 17.6% 𝑚𝐼𝑜𝑈  improvement. 

Moreover, PointSIFT (62.7% 𝑚𝐼𝑜𝑈) obtain lower segmentation accuracy than MS-PCNN. Most 

importantly, for certain types of road objects including signages, bollards, pedestrians and cars, 

the proposed model can deliver the dominating performance in semantic segmentation. In 

conclusion, the MS-PCNN model can achieve state-of the-art point-wise segmentation 

performance in large-scale urban environments. Meanwhile, the comparative study inspires us to 

optimize the MS-PCNN model by using more low-level features of point clouds, e.g., RGB and 

normal vectors. 

Table 3. 1 Semantic segmentation results on Lille2 by using different methods. 

Methods Ground Building Signage Bollard Trash Can Barrier Pedestrian Car Natural mIouU(%) 

PointNet 97.3 90.4 22.9 8.7 3.2 2.5 24.3 71.9 26.3 38.6 

PointNet++ 96.6 78.6 15.2 4.3 1.2 0 19.3 46.3 26.1 32.0 

DGCNN 98.3 93.1 52.9 36.1 19.5 15.0 16.6 88.6 56.5 52.9 

PointSIFT 98.4 95.6 51.2 44.8 53.9 31.4 31.3 87.4 70.7 62.7 

MS-PCNN 98.1 95.4 57.6 64.6 63.0 34.1 57.7 95.2 68.3 70.5 

 

3.6 Efficiency Evaluation 

Although the CRF-based postprocessing could strengthen robustness, it would have a 

direct influence on the memory consumption and time complexity (i.e., forward and backward 

propagations) of the whole framework. Most notably, it may affect the segmentation results. To 

estimate these influences, the MS-PCNN network was tested using a desktop equipped with Intel® 

i7 8700K CPU @ 4.7GHz and Nvidia® GTX 1080 Ti GPU with and without the CRF module. 200 

epochs were run on the Paris-Lille-3D dataset. Additionally, the average processing time and the 

highest GPU memory size were recorded for two different models. 

Table 3.2 presents the comparison results. It is notable that the model size and GPU-

memory usage using the network architecture with CRF module is about 260 MB and 5,015 MB, 

respectively. The reason is that performing the CRF module could linearly increase the number of 
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parameters of MS-PCNN network. Besides, the mean IoU increases by 2.7% by introducing the 

CRF module into MS-PCNN architecture, which demonstrates the CRF module is capable of 

further achieving the point-wise segmentation refinement. Additionally, the time consumption of 

each forward and backward propagation process in MS-PCNN is over two times than that in the 

network without the CRF operation. Obviously, the point-wise semantic segmentation 

performance is greatly improved by employing a CRF post-processing module. Since CRFs are 

able to directly model spatial structures and capture more inherent geometric characteristics (e.g., 

connectivity between two adjacent points), the MS-PCNN model can be fine-tuned by formulating 

the CRF module. Furthermore, the proposed MS-PCNN network can achieve state-of-the-art 

point-wise segmentation performance in outdoor environments with different data distributions 

and requires less GPU memory usage. By predefining the batch size as 16, the proposed MS-

PCNN baseline only consumes 4,824 MB GPU memory space compared to 11,450 MB used in 

PointSIFT network, which demonstrates the MS-PCNN model is less sensitive to data distributions 

and computational consumptions. 

Table 3. 2 Performance evaluation of MS-PCNN network with and without the CRF module on 

Paris-Lille-3D dataset. 

Model 
Size 

(MB) 

GPU memory 

usage (MB) 

Time spend of each 

forward propagation (ms) 

Time spend of each 

backward propagation (ms) 

mIoU 

(%) 

MS-PCNN 224.3 4,824 108.06 307.25 67.8 

MS-PCNN 

+ CRF 
259.9 5,015 235.27 631.61 70.5 

 

3.7 Chapter Summary 

This paper tackles the problems related to 3D point cloud segmentation tasks, particularly 

in large-scale scenes. Such problems result in computation complexity and robustness reduction 

when dealing with 3D highly dense point clouds, most notably due to its various point density and 

irregular data format, as well as occlusion and background interference in the real world. In this 

paper, a novel end-to-end neural network, MS-PCNN, is proposed by combining point-wise CNNs 

with dynamic edge convolutions for 3D point cloud segmentation. The proposed network was 

evaluated by estimating efficiency and robustness on the real urban-scene LiDAR datasets, i.e., 

Pairs-Lille-3D. 
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In conclusion, the proposed neural network has four main strengths: First, the revised point-

wise convolutional filters that can learn spatial relationships and extract geometric information of 

point clouds in local regions contributing to permutation invariance and translation invariance. 

Second, MS-PCN applies a hierarchical PointCONV-based downsampling and DePointCONV-

based upsampling architecture in order that more high-level features are extracted in multiple 

scales. Third, by improving the dynamic graph edge convolution, MS-PCNN can learn edge 

features between a point and its adjacent neighbours to improve the descriptiveness. Finally, a 

CRF post-processing algorithm is used to ensure the consistency of point-wise label prediction and 

refine segmentation results. MS-PCNN model is robust to diverse point density and intensity 

distributions for the complex urban-scene point clouds. Therefore, this paper demonstrates that the 

MS-PCNN model can provide promising solutions in industrial applications, such as fully 

autonomous driving. Compared to other point-based networks, e.g., PointSIFT and PointCNN, 

MS-PCNN is less memory-consuming and time-consuming in both forward and backward 

propagations, which can considerably save the training time. Additionally, the comparative study 

certainly indicates that MS-PCNN is superior to other DL-based methods in the testing scenarios 

in segmentation accuracy and computational complexity. Overall, it is concluded that the proposed 

neural network can achieve dominating performance in 3D point cloud segmentation under large-

scale point cloud scenes more effectively and robustly. 
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Chapter 4  

Capsule-based Networks for Road Marking Extraction and 

Classification 

Accurate road marking extraction and classification play a significant role in the 

development of AVs and HD maps. Due to point density and intensity variations from MLS 

systems, most of the existing threshold-based extraction methods and rule-based classification 

methods cannot deliver high efficiency and remarkable robustness. This chapter details the 

theoretical and mathematical implementations of the developed capsule-based network 

architectures for road marking extraction and classification by using mobile LiDAR point clouds. 

Section 4.1 introduces the research backgrounds. Section 4.2 presents the detailed workflow of the 

proposed framework, which mainly contains three modules: data-preprocessing, road marking 

extraction, and road marking classification. Section 4.3 presents the datasets and implementation 

details. Section 4.4 presents the experimental results and discussion, followed by the 

computational efficiency evaluation in Section 4.5. A chapter summary is presented in Section 4.6. 

© [2020] IEEE. Reprinted, with permission, from [Lingfei Ma, Ying Li, Jonathan Li, Yongtao Yu, 

José Marcato Junior, Wesley Nunes Gonçalves, and Michael A. Chapman. Capsule-based 

Networks for Road Marking Extraction and Classification from Mobile LiDAR Point Clouds. 

IEEE Trans. Intell. Transp. Syst., doi: 10.1109/TITS.2020.2990120]. 

4.1 Introduction 

Nowadays, many leading digital mapping corporations (e.g., Here, TomTom, Google Maps, 

and Bing Maps) and multinational courier services companies (e.g., UPS, FedEx, and SF Express), 

are investing increasingly and dedicating themselves to produce high-definition (HD) maps. Such 

HD maps are capable of providing sub-lane level road information and highly detailed road 

inventories, including traffic signs, pole lights, roadside trees, lanes, boundaries, curbs, and all 

other essential road assets required for the development of autonomous vehicles (AVs) and 

intelligent service robotics (ISRs) (Chu et al., 2018). As a critical element in HD maps, road 

markings play a significant role in guiding, regulating, and forbidding all road participants 

(Bétaille and Toledo-Moreo, 2010). For instance, lane lines regulate driving zones, painted texts 

indicate traffic rules, and arrows show allowable driving directions. Therefore, accurately 
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extracting and classifying road markings have a significant impact on transportation-related 

policymaking, driving behaviour regulation, and traffic collision reduction. 

A series of research has been conducted for road marking segmentation and classification 

using 2D images obtained from vehicle-borne optical imaging systems (Jung et al., 2009). A group 

of geometric feature functions in a probabilistic Random Under Sampling Boost (RUSBoost) and 

Conditional Random Field (CRF) classification framework was employed to automatically learn 

the rules embodied in road markings from stereo images (Mathibela et a., 2015). A trainable multi-

task model was developed for pavement marking recognition and segmentation from images 

acquired under complex road topotaxy and varying traffic conditions (Lee et al., 2017). Moreover, 

line markings were extracted by creating a novel line proposal unit embedded in a fully 

convolutional network (FCN) for valid feature encodings (Li et al., 2019c), which achieved the 

promising performance on MIKKIand TuSimple image datasets. However, such image-related 

methods are highly susceptible to weather and illumination variations (Máttyus et al., 2016). 

Mobile laser scanning (MLS) systems comprising a combined Global Navigation Satellite 

System and Initial Measurement Unit (GNSS/IMU) subsystem, a Light Detection and Ranging 

(LiDAR) subsystem, a Radio Detection and Ranging (RADAR) subsystem, CCD cameras, and a 

central computing subsystem, can collect highly dense and accurate point clouds with intensity or 

reflectance information in largescale urban environments and highways (Ma et al., 2018). 

Compared to vehicle-mounted cameras, LiDAR sensors are less sensitive to ambient lighting 

conditions (Yang et al., 2017). The point density collected by MLS systems can achieve over 

10,000 pts/m2 with cm-level resolutions, while it is quite challenging for both terrestrial and 

airborne laser scanning (TLS/ALS) platforms to deliver such precision and flexibility (Chen et al., 

2019a). 

Therefore, many studies focusing on the road marking extraction and classification have 

been addressed by using MLS point clouds (Wan et al., 2019). However, massive and unevenly 

distributed 3D point clouds make the intelligent point cloud processing challenging. Occlusions 

and distortions, intensity variations, density variations, noisy points, and incomplete pavements 

during MLS data acquisition also result in considerable difficulties. Since threshold-based methods 

at a global scale cannot effectively extract road markings from georeferenced images with various 

point distributions, multi-threshold methods are accordingly proposed by partitioning road surface 
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point clouds into a set of data blocks and determining an adaptive threshold within each data block 

(Guan et al., 2014). Nevertheless, such methods highly rely on suitable data block sizes. 

Meanwhile, Jung et al., 2019 performed a normalized intensity-based approach to minimize the 

impacts of different intensity values due to varying distances from the onboard laser scanners to 

scanning objects. However, the normalization parameters defined in such methods are different 

from scene to scene. 

Generally, there exist three main challenges for road marking extraction and classification 

from mobile LiDAR data: (1) the contrast between pavements and road markings is relatively low. 

Road damage is inevitable regarding poor maintenance, which leads to the unevenly distributed 

intensity, thereby resulting in intensity-related methods ineffective. (2) The intensity values and 

point densities are varying. Point clouds are generally acquired by vehicle-based MLS systems 

that are driven through changing lanes at varying driving speeds. Depending on the profiling 

scanning mechanism of MLS systems, the incident angle of laser beams grows larger with an 

increased scanning range. Consequently, road markings have higher intensity values and point 

densities if they are closer to the trajectory of MLS systems. It is challenging for threshold-based 

extraction methods to effectively extract road markings by assuming that intensity and point 

density are uniformly distributed. (3) Some road markings are incomplete. The damage of road 

surfaces resulting from on-road overloaded trucks and severe weather conditions, such as acid-

alkali erosion, could create worn and decaying road markings. Moreover, occlusions from all road 

participants (e.g., vehicles and cyclists) also bring in dilemmas and uncertainties for the accurate 

extraction and classification of road markings. Accordingly, manual editing and post-refinement 

are required to improve the completeness and accuracy of extracted road markings. However, it is 

time-consuming and labour-intensive. 

To deal with these challenges, the feasibility of combing capsule networks with 

hierarchical feature encodings of georeferenced feature images is investigate. Compared to the 

conventional convolutional neural networks (CNNs), capsule networks have achieved superior 

performance in image segmentation and classification tasks, which captures more intrinsic features 

in pose and spatial relationships of different objects in images (Jaiswal et al., 2018, Duarte et al., 

2019). In this paper, two capsule-based neural network architectures are developed for road 

marking extraction and classification by using MLS point clouds. To this end, a pixel-wise U-
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shaped road marking extraction network is proposed to segment road markings from input images. 

At first, the road surface is partitioned into a collection of image patches. Then, the Intersection-

over-Union (IoU) loss is employed, rather than cross-entropy, to guide weight updates in the U-

shaped segmentation architecture. Finally, road markings are extracted based on binary 

classification. Moreover, combined with the fully connected (FC) capsule layers, a capsule-based 

network is constructed to classify road markings. First of all, the extracted road markings are 

resized to 28 × 28 pixels for computational complexity reduction. Then, two sibling classification 

networks (i.e., a capsule-based network and a fully connected capsule network) are trained to 

encode both low-level and high-level features for different road marking classes, followed by a 

revised dynamic routing algorithm. Meanwhile, a large-margin Softmax (L-Softmax) loss function 

is adopted in the capsule-based classification model to guide training, instead of a standard 

Softmax loss. Finally, road markings are effectively categorized into seven groups, including lane 

lines, dashed lines, zebra crossings, straight arrows, turn arrows, diamonds, and texts. 

The whole road marking extraction and classification framework provides a promising 

solution for preloaded HD map creation, which further produces an essential road inventory dataset 

for road marking updates to support the development of AVs. The significant contributions of this 

paper are as follows. (1) A novel U-shaped convolution-deconvolution capsule network is 

constructed to extract road markings. The impacts of low-intensity contrast between road markings 

and their surrounding pavements, as well as varying point densities, are remarkably decreased 

through encoding the image patches at various locations. (2) A hybrid capsule network is proposed 

to categorize road markings with the assistance of a revised dynamic routing algorithm. The sibling 

framework of the capsule model and the fully connected capsule model achieves more effective 

performance for road marking classification. (3) To date, it is the first use of capsule-based neural 

networks for road marking extraction and classification in literature. And (4) a road marking 

dataset containing both 3D point clouds and manually labeled reference data in three types of road 

scenes (i.e., urban roads, highways, and underground garages) is constructed, which will be 

publicly accessible to motivate relevant research. 
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4.2 Algorithm Description 

4.2.1 Data Pre-processing 

Since this study mainly concentrates on road markings, the off-ground point clouds (e.g., 

trees, traffic lights, fences, and buildings) are first filtered out to strengthen the computational 

efficiency and reduce GPU memory consumption in the following processes. In the previous work 

(Ma et al., 2019a), a revised curb-based road surface extraction method was introduced. Given the 

fact that urban roads are constructed with concrete curbs as road separation zones, road surface 

point clouds can be accurately and effectively segmented from the input point clouds depending 

on the fitted curb-lines. Herein, this curb-based extraction method is employed to segment road 

surface point clouds. 

 

Figure 4. 1 Intensity image generated by using IDW interpolation. 

Moreover, existing studies have demonstrated that the height information of road point 

clouds conduces little to road marking segmentation (Yang et al., 2013). Thus, in this study, road 

surface point clouds are projected to a 2D 𝑥𝑦-plane and transformed into georeferenced intensity 

raster images. To this end, an inverse distance weighting (IDW) interpolation algorithm was 

employed to produce 2D intensity images by calculating the grey-scale value of a specific cell 

from its surrounding neighbours. Two rules are designed to determine the weight associated with 

each point: (1) a point with a larger intensity value has a higher weight, and (2) a point closer to 

the trajectory has a higher weight. The grid cell size should adequately preserve the details of 

different road markings and dramatically decreases the number of data that should be handled. 

Theoretically, A larger grid cell size is selected when performed on point clouds with lower density. 
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Based on the prior knowledge (Cheng et al., 2016), several grid cell sizes from 2.5 cm to 10 cm 

were tested. The generated intensity images became blurred, and the computational cost was 

reduced. Moreover, with a grid cell size of 4 cm, the thinnest road markings (i.e., lane lines with a 

width of 15 cm) are well preserved in the generated intensity images, and the gaps among 3D point 

clouds are accordingly interpolated. 

Furthermore, a high-pass filtering operation with a suitable kernel size is performed on the 

generated intensity images to minimize the influence of varying intensity values. The kernel size 

of this high-pass filter is ascertained based on prior knowledge and multiple experiments. 

Specifically, this kernel size should be not only large enough to comprise both road marking and 

road surface pixels but small enough to reduce the influence of the spatial variance and uneven 

distribution of the intensity. Herein, the raster grid size of the generated intensity image and the 

kernel size of the high-pass filter are defined as 4 cm and 25 × 25, respectively. Figure 4.1 

indicates an example of the generated intensity image after implementing IDW interpolation and 

high-pass enhancement. 

4.2.2 U-shaped Capsule Network 

Since a rasterized cell either denotes some road marking pixels or pavement pixels in the 

intensity images, the road marking extraction process can be regarded as a basic binary 

classification task. Meanwhile, although capsule networks introduced by Sabour et al. (2017) have 

achieved remarkable success for a broad range of computer vision problems particularly for digit 

recognition and small image classification, no studies yet exist in literature that employs capsule 

networks for road marking extraction from MLS point clouds. Comparing with conventional 

CNNs, capsule networks utilize vectorial neurons rather than scalar neurons to encode entity 

features. The instantiation parameters of different capsules indicate varying types of entities, while 

different lengths of capsules encode the probabilities of the existence of these entities, and different 

directions indicate their pose information (Yu et al., 2019). Therefore, to demonstrate the effective 

performance of capsule networks in extracting road markings, a U-shaped capsule-based network 

is designed using the 2D georeferenced intensity images. 

In the training process, the generated intensity images are first manually labeled into two 

groups: positive training samples containing road marking pixels and negative training samples 

containing road surface pixels. Subsequently, a collection of local image patches with the size of 
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512 × 512 pixels are derived from the generated intensity image based on a sliding window 

mechanism. To ensure complete and extensive coverage of the training image, two adjacent image 

patches are generated with an overlapping size of 𝑝𝑠 pixels. Moreover, such patches are fed into 

the multi-layer capsule networks for intrinsic feature extraction. 

Figure 4.2 shows a U-shaped convolution-deconvolution capsule network, which can learn 

not only intensity variance from massive labeled image patches but the shape and position 

information of road markings. This U-shaped capsule network consists of traditional convolutional 

layers, primary capsule layers, convolutional capsule layers, and deconvolutional capsule layers. 

The traditional convolution layers are designed to encode locally shallow features (e.g., edges and 

shapes) from the input local image patches via convolutional encodings. Such low-level features 

are afterward fed into high order capsules to learn in-depth features. Herein, the commonly 

employed rectified linear unit (ReLU) is used as the activation function. 

 

Figure 4. 2 Architecture of the proposed U-shaped capsule network. 

 In primary capsule layers, the shallow scalar feature encodings are transformed into high-

order vectorized capsule representations. Assuming 𝐹𝑚 and 𝐷𝑐 are the number of feature maps and 

the dimension of capsules, respectively. Then, the kernels with the size of 𝐹𝑚 × 𝐷𝑐 are 

implemented in the following convolutional layer. Finally, the output feature maps are categorized 

as 𝐹𝑚 groups, each of which consists of 𝐷𝑐 feature maps. 
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 The following convolutional capsule networks focus on encoding high-level capsule 

features and orientations by using capsule convolution operations. In general, the whole inputs to 

a capsule 𝑗 are a weighted sum over all outputs from the capsules in the convolutional kernel in 

the previous layer: 

𝐶𝑗 = ∑ ℎ𝑖𝑗 ∙ 𝑉̂𝑗|𝑖𝑖                                                                  (4.1) 

where 𝐶𝑗 denotes the whole input to the capsule 𝑗, ℎ𝑖𝑗 is the coupling coefficient showing the level 

of significance that capsule 𝑖  in the previous layer activates capsule 𝑗 , and 𝑉̂𝑗|𝑖  indicates the 

predictions between capsule 𝑖 and capsule 𝑗, which is calculated by: 

𝑉̂𝑗|𝑖 = 𝑊𝑖𝑗𝑉𝑖                                                                        (4.2) 

where 𝑊𝑖𝑗 denotes the weight matrix and 𝑉𝑖 is the outcomes of capsule 𝑖. The sum of the weighting 

coefficients between capsule 𝑖 and all its linked capsules in the previous layer is equal to 1, which 

is ascertained through a dynamic routing mechanism (Sabour et al., 2017).  

Moreover, a nonlinear “Squashing” activation function is employed to guarantee that 

different lengths of vectors in capsules are shrunk in the range of [0, 1] and results in the different 

probabilistic predictions. This squashing function is calculated by: 

𝑆𝑗 =
‖𝐶𝑗‖

2

1+‖𝐶𝑗‖
2 ∙

𝑐𝑗

‖𝐶𝑗‖
                                                                       (4.3) 

where 𝐶𝑗 and 𝑆𝑗 is the total input and output vector of capsule 𝑗, respectively. Furthermore, three 

deconvolutional capsule layers are designed to construct a diverse set of capsule types and 

propagate learned features from downsampled images to the original images, thereby allowing the 

capsules to capture the most critical and intrinsic parameters of the input images. Based on the 

IDW interpolation algorithm, the feature propagation process is performed by interpolating feature 

values 𝑓 of 𝑝𝑛  pixels at coordinates of the 𝑝𝑛−1  pixels. Then, such interpolated features are 

locally-constrained and concatenated with skip linked pixel features from the convolution capsule 

layers. Since this process only focuses on the distributions of the positive input class (i.e., road 

marking pixels) and regard the remaining pixels as background, all capsules except whose class 

labels match to the input image patch are masked out. This reconstruction process is conducted by 

employing three 1 × 1 convolutional layers. 
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Compared to the standard capsule network, the parameters is iteratively updated by using 

the IoU as the cost function for model performance refinement, rather than binary cross-entropy. 

The IoU loss function, namely 𝐿𝐼𝑜𝑈, is calculated as follows: 

𝐿𝐼𝑜𝑈 = −
∑ (𝑝𝑝𝑟𝑒𝑑

𝑖  ∩ 𝑝𝑔𝑡
𝑖 )𝑁

𝑖=1

∑ (𝑝𝑝𝑟𝑒𝑑
𝑖  ∪ 𝑝𝑔𝑡

𝑖 )𝑁
𝑖=1

                                                        (4.4) 

where 𝑝𝑝𝑟𝑒𝑑
𝑖  and 𝑝𝑔𝑡

𝑖  is the 𝑖-th predicted road marking pixel and corresponding ground truth pixel, 

respectively. To minimize the 𝐿𝐼𝑜𝑈 , the proposed U-shaped capsule network can extract more 

accurate and complete road markings in image patches. Moreover, images with various intensity 

are utilized as training data to decrease the impacts of intensity variation. 

 

Figure 4. 3 Architecture of the proposed hybrid capsule network. 

4.2.3 Hybrid Capsule Network 

After road markings are segmented from the georeferenced intensity images, a hybrid 

capsule-based network is further proposed to categorize these road markings into seven classes, 

including lane lines, dashed lines, zebra crossings, straight arrows, turn arrows, diamonds, and 

texts. Figure 4.3 shows the workflow of the hybrid capsule framework, which mainly consists of 

two hierarchical networks (a convolutional capsule network and an FC capsule network) for, 

respectively, encoding high-level and low-level features from input images. As indicated in Figure 

4.3, the convolutional capsule network comprises a standard convolutional layer and a primary 

capsule layer, followed by two convolutional capsule layers. By taking advantage of convolutional 
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operation, the first convolutional layer functions to encode locally low-level features from the 

input images. Such extracted features are then fed into high order vectorial capsules for further 

feature encodings. 

 

To enhance the weight update efficiency and improve inter-class separability, a revised 

dynamic routing algorithm is proposed. Different from the dynamic routing method conducted by 

Sabour et al. (2017), the revised dynamic routing algorithm only route the child capsules within 

the user-specified kernel to the parent, rather than routing all child capsules to all parent capsules. 

The revised dynamic routing algorithm is described in Algorithm 1. Moreover, a large-margin 

Softmax loss (Liu et al., 2016) is adopted to emphasize intra-class compactness and overcome 

inter-class imbalance, which usually poses challenges by using standard Softmax loss. The large-

margin Softmax loss is calculated as follows: 

𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥 = −log (
𝑒

‖𝑊𝑦𝑖
‖‖𝑥𝑖‖𝜓(𝜃𝑦𝑖

)

𝑒
‖𝑊𝑦𝑖

‖‖𝑥𝑖‖𝜓(𝜃𝑦𝑖
)
+∑ 𝑒

‖𝑊𝑦𝑖
‖‖𝑥𝑖‖ cos(𝜃𝑗)

𝑗≠𝑦𝑖

)                (4.5) 

where 𝑊𝑦𝑖
 indicates the 𝑦𝑖 -th column of a FC-capsule layer 𝑊, 𝜃𝑗 (0 < 𝜃𝑗 < 𝜋) represents the 

angle between the vector 𝑊𝑗  and 𝑥𝑖 . Generally, 𝜑(𝜃) = cos(𝑚𝜃)  is defined, 0 ≤ 𝜃 ≤
𝜋

𝑚
 and 

𝜑(𝜃) = ℱ(𝜃), 
𝜋

𝑚
≤ 𝜃 ≤ 𝜋. 𝑚 presents an integer that is closely correlated to the classification 

margin. With smaller 𝑚, the classification margin becomes smaller, and the learning objective 

becomes easier accordingly. Based on prior knowledge, 𝑚 is defined as 5. Furthermore, ℱ(𝜃) is a 

function that monotonically decreases in the range of [0, 𝜋], while ℱ(
𝜋

𝑚
)  equals to cos(

𝜋

𝑚
). By 

such an introduction, the large-margin Softmax loss not only gains the main strengths from 

Softmax loss but encodes inherent features at a large angular margin between different classes. 
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 As perceived in Figure 4.3, the FC-capsule network contains a standard FC layer, a primary 

FC-capsule layer, and two FC-capsule layers. Intuitively, the FC layer is employed to encode 

shallow global features from the raw images. Then, such extracted global features are fed into high 

order capsules. Likewise, according to traditional fully-connected operations, the primary FC-

capsule layer is generated. The corresponding units are equally divided into categories to construct 

a group of capsules. Meanwhile, two FC-capsule layers focusing on extracting inherent capsule 

features on a global scale are employed. 

 The two hierarchical networks encoding both local and global capsule features are 

combined through flattening and concatenation operations and further input into three FC-capsule 

layers for the classification task. Finally, four FC layers are employed to rebuild the input images, 

thus enable capsules to learn the most intrinsic and critical instantiation parameters of the raw 

images. Accordingly, all classification capsules are masked out, except for the remaining capsules 

whose class labels correspond to the raw image. The instantiation parameters of these capsules are 

input to the reconstruction module for reconstruction. 

 The training parameters are effectively fine-tuned at the error back-propagation stage. 

Accordingly, the following multitask loss function is adopted to refine the whole framework: 

𝐿 =  ∑ ∑ 𝐿1
𝑐 + 𝛿 ∑ 𝐿2

𝑖𝑀
𝑖=1

𝑁
𝑐=1

𝑀
𝑖=1                                            (4.6) 

where 𝐿1
𝑐  and 𝐿2

𝑖  denote the classification loss and reconstruction loss, respectively. 𝑀 and 𝑁 are, 

respectively, the number of input training images and class-related capsules within the L-Softmax 

layer. 𝛿 indicates a regularization term. Accordingly, the classification loss for the specified class 

𝑐 is calculated as follows: 

𝐿1
𝑐 = 𝑇𝑐 ∙max(0, 𝑚+ − ‖𝑆𝑐‖)2 + 𝜆(1 − 𝑇𝑐) ∙max(0, ‖𝑆𝑐‖ − 𝑚−)2       (4.7) 

where 𝑇𝑐  = 1, if the training image corresponds to class 𝑐. Otherwise, 𝑇𝑐  = 0. 𝑚+  and 𝑚−  are 

thresholds, respectively, that determine if a training image belongs to class 𝑐 or not. In this study, 

𝑚+   = 0.93 and 𝑚−   = 0.07 are predefined based on a set of experiments. 𝜆  represents a 

regularization term. Additionally, a smooth-L loss proposed by Girshick (2015) is adopted to 

determine the reconstruction loss. 



 

53 

 

 In the classification process, a group of road marking training data is manually labeled. 

Then, such training samples are augmented through rotation, scaling, cropping, and illumination 

changes. In total, 7,000 training samples are generated, with 1,000 samples for each road marking 

type. Moreover, to reduce the computational cost, all training samples are resized to 28 × 28 pixels 

before feeding into the classification network. Finally, the class label of a road marking image is 

ascertained using the following equation: 

𝐾∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐‖𝑆𝑐‖                                                          (4.8) 

where ‖𝑆𝑐‖ denotes the output of the classification network. This class label is therefore assigned 

to the image as its predicted road marking type. 

4.3 Datasets and Implementation Details 

The mobile LiDAR point clouds were captured using a RIEGL VMX-450 MLS system in 

both urban and highway road sections with free-flowing traffic. The RIEGL VMX-450 MLS 

platform contains two full-circle RIEGL VQ-450 laser heads, which could achieve a 400 lines/sec 

scan frequency in a “Butterfly” configuration pattern. The average point density of these data is 

over 4,500 pts/m2, and the absolute measurement accuracy from laser heads can reach 8 mm. 

Additionally, some pavement point clouds were collected in underground garage environments 

using a self-assembled backpack laser scanning (BLS) system. This BLS system is equipped with 

two Velodyne VLP-16 laser heads, which can achieve a scanning distance of 100 m with 1,700 

pts/m2 point density and 3 cm measurement accuracy. Compared to point clouds obtained by MLS 

systems, the point clouds captured by the BLS system are of low quality with low point densities 

due to low-end LiDAR sensors and poor illumination conditions in underground garage 

environments. 

Moreover, the raw data was manually annotated to build a road marking benchmark dataset. 

To end this, all road markings were first labeled pixel-by-pixel on the generated intensity images 

based on visual interpretation. Then, all these road markings were segmented as separate training 

samples by employing a clustering method. Thus, each labeled image only contains one type of 

road marking. Finally, the 2D coordinates and class type of each road marking pixel were recorded. 

Since the number of some road markings in certain classes (e.g., different Chinese words) is limited, 
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such classes were merged and accordingly augmented through rotation, translation, and scaling 

operations. As listed in Table 4.1, a total of seven categories of road markings were generated. 

Table 4. 1 Category and quantity of labeled road markings. 

Category 
Quantity of labeled 

road markings 

Quantity of labeled road markings 

after augmentation 

Lane line 366 1, 000 

Dashed line 423 1, 000 

Zebra crossing 219 1, 000 

Straight arrow 330 1, 000 

Turn arrow 298 1, 000 

Diamond 305 1, 000 

Text 318 1, 000 

 

Since the road marking types in these three road scenes (e.g., urban roads, highways, and 

underground garages) are similar, 7,000 samples were utilized to extract and classify road 

markings. The whole dataset was split into 60%, 20%, and 20% subsets for training, validation, 

and testing, respectively. According to prior knowledge and multiple experiments, different 

hyperparameters, i.e., the batch size, initial learning rate, and dropout rate, were fine-tuned in the 

training process for the optimal combination. Accordingly, the batch size, initial learning rate, 

dropout rate, and epochs were [8, 0.0001, 0.80, 400] for the U-shaped road marking extraction 

model, respectively, and [32, 0.0005, 0.80, 300] for the hybrid capsule-based road marking 

classification model. The proposed models were tested using TensorFlow 2.0 on Intel® i7-8700K 

CPU @3.70 GHz, Nvidia® 1080-Ti GPU, and 32 GB RAM. 

4.4 Results and Discussion 

4.4.1 Road Marking Extraction Results 

In this study, according to the manually labeled reference data, the following three 

evaluation metrics, i.e., precision, recall, and F1-score (Powers, 2011), were adopted to conduct 

the quantitative performance evaluation of road marking extraction: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                              (4.9) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                     (4.10) 

𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2×Precision×Recall

Precision+Recall
                                                (4.11) 

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 present true positive, false positive, and false negative segmentation outputs, 

respectively. Specifically, the precision shows the percentage that the extracted road markings are 

valid, while the recall represents the completeness of the extracted road markings. Moreover, F1-

score is a weighted average score of by analyzing both precision and recall. 

 The U-shaped convolution-deconvolution capsule architecture was proposed for road 

marking extraction on the generated intensity image patches with 4 cm resolutions. Figure 4.2 

presents the fine-tuned network configurations based on multiple experiments, which details the 

number of capsules and the sizes of feature maps after standard or capsule-based convolutional 

operations. The training samples captured in urban roads, highways, and underground garages 

were used to evaluate the extraction performance. A series of experiments were performed to 

determine the optimal parameters, such as the overlapping size 𝑝𝑠 between two adjacent image 

patches. In fact, an increasing overlapping size can produce not only better classification 

performance but also more image patches resulting in slow training speed. Therefore, to balance 

the classification performance and computational burden, 𝑝𝑠 was defined as 512. 

 

Figure 4. 4 Road marking extraction results using the proposed U-shaped capsule network. (a) 

Highway scene, and (b) urban road scene. 

 Figure 4.4(a) indicates the road marking extraction results in a highway scene. These 

highways are newly built and well maintained with clear road markings (i.e., lane lines and dashed 

lines), which enables the vectorial capsules to effectively learn inherent road marking features (e.g., 
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varying intensities) at the training stage. Although the binary classification was conducted to 

minimize the influence of low intensity contrast between road surfaces and road markings, some 

pixels belonging to the lane lines were misclassified into road surfaces. Compared to highway road 

scenes, road markings painted on urban road surfaces are usually worn, which leads to dilemmas 

and uncertainties for high-accuracy road marking extraction. As shown in Figure 4.4(b), most road 

markings were successfully extracted, which demonstrates the proposed network in this study can 

effectively extract road markings even in complex urban road scenes. However, due to heavy 

traffic flow and pavement corrosion, some road markings are heavily worn and incomplete, which 

brings in enormous difficulties for road marking extraction. Besides, some road markings are 

covered by thick dust due to late maintenance, thus leading to varying intensities and low contrasts 

with the surrounding pavements. Although these conditions inevitably occurred in urban road 

scenes rather than highways, the proposed U-shaped capsule network could achieve reliable 

performance and deliver promising results for road marking extraction under various road 

conditions. 

 

Figure 4. 5 Road marking extraction results in an underground garage scene. 

 Additionally, Figure 4.5 illustrates the road marking extraction results by utilizing the 

proposed networks in a 50 × 40 m2 underground garage scene. Although the point density of these 

underground garage data is lower than point clouds obtained from the MLS systems, it can be 

solved by converting 3D point clouds into 2D images. The intensity value of a certain pixel is 

calculated based on its surrounding neighbours. Moreover, capsule convolutions encode not only 
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intensity contrast but pose (e.g., shape and position) information. Consequently, the majority of 

road markings were accurately detected and extracted, while only a few pixels belonging to arrows 

and zebra crossings were misclassified into road surfaces due to inevitable occlusions and poor 

illuminations. 

Table 4. 2 Accuracy assessment of road marking extraction in urban roads, highways, and 

underground garages. 

Test dataset Precision (%) Recall (%) F1-score (%) 

Urban scene 

1 94.97 90.16 92.50 

2 94.76 89.31 91.95 

3 95.03 91.28 93.12 

Average 94.92 90.25 92.52 

Highway scene 

1 97.08 92.03 94.49 

2 95.46 91.62 93.50 

3 95.89 89.74 92.71 

Average 96.14 91.13 93.57 

Underground scene 

1 91.87 89.93 90.89 

2 92.06 90.02 91.03 

3 92.84 90.55 91.68 

Average 91.26 90.17 91.20 

 

Table 4.2 indicates the quantitative accuracy assessment of the road marking extraction 

results in three different road scenes. Consequently, the proposed U-shaped capsule network 

delivered an average precision, recall, and F1-score of 94.92%, 90.25%, 92.52% in urban road 

scenes, and 96.14%, 91.13%, and 93.57% in highways, and 91.26%, 90.17%, and 91.20% in 

underground garages, respectively. Because of the high point density, few occlusions, and good 

illumination conditions in highways, the proposed U-shaped capsule network achieved more 

superior performance for road marking extraction in highway scenes than both urban roads and 

underground garages. The issue of intensity variation is considerably solved by learning the 

patches at different locations. The unavoidable errors occurring at the stage of manually annotated 

label generation could bring in challenges for robust and effective road marking extraction. 

Furthermore, some road markings are worn and incomplete, resulting in the sizes of such road 

markings smaller than the manually labeled reference data. Therefore, the road marking extraction 

performance of the developed model is underestimated in the experimental results. The multiple 

experiments demonstrated that the proposed U-shaped capsule-based model is able to learn 
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inherent features (e.g., intensity and shape) for road marking extraction by using different kinds of 

point clouds. Such data are obtained from complex road scenes, with low point densities, in poor 

illumination conditions, and with uneven intensity distributions. 

4.4.2 Comparative Study for Road Marking Extraction 

 A comparative study was conducted to evaluate the road marking extraction performance 

by using the developed models and existing algorithms, including Cheng et al. (2016), Ma et al. 

(2019a), and Wen et al. (2019b). The test datasets were collected from urban roads, highways, and 

underground garages with low-intensity contrast and incomplete point clouds, which contain many 

categories of road markings (e.g., lines, arrows, and texts). These three methods were re-

implemented on the testing datasets. Figure 4.6 shows the road markings on the large-scale 

roadways extracted using four methods. 

 

Figure 4. 6 Road marking extraction results using different methods. (a) Raw road surface, (b) 

Cheng et al. (2016), (c) Ma et al. (2019a), (d) Wen et al. (2019b), (e) the proposed method in this 

study, and (f) manually labeled reference data. 

 Accordingly, mobile LiDAR point clouds were transformed from 3D point clouds into 2D 

georeferenced images at the stage of road marking extraction in both Cheng’s (2016) and Wen’s 

(2019b) methods. Cheng’s method (2016) employed Otsu’s threshold approach (Otsu, 1979) for 

road marking segmentation according to the discriminant analysis, which requires the generated 
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intensity image should be bimodal with uniform illumination conditions. Thus, it is difficult to 

completely extract road markings from low-intensity contrast point clouds, especially from 

underground garage data with poor illuminations. Meanwhile, by projecting 3D point clouds onto 

a horizontal xy-plane, Wen’s method (2019b) performed a revised U-Net neural network to 

segment different types of road markings. However, the Softmax activation function used at the 

stage of road marking extraction cannot capture intra-class compactness, thereby resulting in 

limitations in road marking extraction from low-intensity contrast point clouds. Additionally, Ma’s 

method (2019) mainly concentrated on determining adaptive intensity thresholds on local scales 

for road marking extraction. Nevertheless, it is quite difficult to define suitable threshold values in 

different road scenes. 

Table 4. 3 Road marking extraction results by using different methods. 

Method Road scene Precision (%) Recall (%) F1-score (%) 

Cheng et al. (2016) Urban 27.35 33.82 30.24 

Highway 30.57 34.10 32.24 

Underground garage 24.52 29.03 26.59 

Average 27.48 32.32 29.69 

Ma et al. (2019a) Urban 62.63 53.19 57.53 

Highway 70.13 65.54 67.76 

Underground garage 68.73 59.42 63.74 

Average 67.16 59.38 63.01 

Wen et al. (2019b) Urban 92.15 89.33 90.72 

Highway 95.97 87.52 91.55 

Underground garage 91.95 90.07 91.00 

Average 93.36 88.97 91.09 

The proposed method Urban 94.92 90.25 92.52 

Highway 96.14 91.13 93.57 

Underground garage 91.26 90.17 91.20 

Average 94.11 90.52 92.43 

 

Table 4.3 shows the overall performance of different methods for road marking extraction 

by using precision, recall, and F1-score evaluation metrics. Cheng’s method (2016), Ma’s method 

(2019), and Wen’s method (2019b) achieved an average of precision, recall, and F1-score of 

27.48%, 32.32%, and 29.69%, 67.16%, 59.38%, and 63.01%, and 93.36%, 88.97%, and 91.09%, 
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respectively; while the proposed method in this study delivered an average of precision, recall, and 

F1-score of 94.11%, 90.52%, and 92.43%, respectively. As can be seen, the road markings were 

extracted incompletely or even lost information by using such three comparative methods. In 

contrast, the proposed U-shaped capsule network is capable of achieving better performance with 

higher accuracy and less noise in all road scenes. 

Moreover, the capsule-based convolutional operations in the proposed model can not only 

capture the salient features embedded in intensity values but also the shape and position 

information of the road markings, which makes the proposed model outperform than other 

methods in terms of correctness and completeness. However, some road markings were not 

correctly segmented from the generated intensity image patches because of the occlusions of other 

road users (e.g., vehicles and cyclists) during the data acquisition of MLS systems. Additionally, 

uneven intensity distribution and varying illumination conditions from different road scenes also 

make effective and accurate road marking extraction challenging. On the whole, the proposed U-

shaped capsule network designs a promising solution for road marking extraction from massive 

and unstructured 3D MLS point clouds. 

4.4.3 Road Marking Classification Results 

The experimental results of the hybrid capsule-based road marking classification neural 

network were evaluated based on the misclassification rate (MCR), which is calculated by: 

𝑀𝐶𝑅 =
∑ 𝑇𝑖

𝑁
𝑖=1

𝑁
                                                         (4.12) 

where 𝑁 is the total number of road marking pixels. Specifically, 𝑇𝑖 = 0, if the road marking is 

correctly classified. Otherwise, 𝑇𝑖  = 1. The proposed road marking classification method was 

evaluated in urban roads, highways, and underground garages. 

 Accurate and robust road marking classification is essential for fully autonomous driving 

to design efficient navigation paths and avoid accidents in changing road conditions. Based on the 

proposed hybrid capsule-based road marking classification method, the extracted road markings 

were further classified into seven categories, i.e., lane line, dashed line, zebra crossing, straight 

arrow, turn arrow, diamond, and text. Figure 4.3 details the optimal network configurations 

through computational complexity and classification accuracy analysis. In the revised dynamic 

routing algorithm, the number of routing iterations, namely 𝑟, plays a significant role to balance 
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between classification performance and computational complexity. Accordingly, multiple 

experiments were carried out to verify the robustness and convergence of the revised dynamic 

routing algorithm with different iterations. In fact, more routing iterations usually strengthen the 

classification performance but results in overfitting problems. 

 Additionally, to emphasize intra-class compactness and overcome inter-class imbalance, 

the L-Softmax was adopted to guide weight updates in the hybrid capsule-based classification 

architecture. By calculating different MCRs after 800 epochs from an urban road scene, Figure 4.7 

illustrates the classification performance of different loss functions (i.e., standard Softmax loss and 

L-Softmax loss) with varying routing iterations. Intuitively, the standard Softmax loss and L-

Softmax loss deliver minimal MCRs of 3.67% and 2.33%, respectively, by defining the routing 

iterations 𝑟 as 4. Consequently, the L-Softmax loss function can achieve a lower misclassification 

rate compared with the standard Softmax loss, which demonstrates the L-Softmax loss function 

can significantly boost the capsule-based classification network performance by using mobile 

LiDAR point clouds. 

 

Figure 4. 7 Road marking classification results by using Softmax loss and L-Softmax loss with 

different routing iterations. 

Table 4. 4 Misclassification rates of the proposed classification network in different road scenes. 

Evaluation metric 
Road scene 

Average 
Urban Highway Underground garage 

MCR 2.16% 4.87% 3.23% 3.42% 
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Table 4.4 shows that the proposed hybrid capsule-based network can achieve an average 

of 3.42% MCR, which demonstrates that most road markings were correctly classified in three 

road scenes. Figure 4.8 shows the road marking classification results from a complex urban road 

environment. This scenario is a typical urban road that consists of zebra crossings, lane lines, 

diamonds, and texts, etc. Various colors denote different road marking types, while the 

misclassified markings are identified with black boxes. As can be seen, most road markings were 

correctly classified with a 2.16% MCR. Some lane lines are broken due to moving overloaded 

trucks and late road maintenance, resulting in broken lane lines similar to dashed lines. Therefore, 

such lane lines were inaccurately grouped into dashed lines. Additionally, some zebra crossings 

and straight arrows were misclassified as lane lines due to the erroneous results obtained in the 

process of road marking extraction. Similarly, Figure 4.9 indicates the classification results from 

highway point cloud data with a 4.87% MCR. Intuitively, the proposed model is capable of 

correctly classifying most road markings. However, some lane lines were incorrectly identified as 

dashed lines, resulting from the incomplete extraction of road markings. Additionally, the shapes 

of some broken lane lines are very similar to straight arrows, which also leads to false classification 

results. 

 

Figure 4. 8 Road marking classification results from an urban road scene. (a) Classification 

results, and (b) manually labeled reference data. 
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Moreover, the road marking classification performance of the proposed hybrid capsule-

based network was evaluated in underground garage scenes. As shown in Figure 4.10, the proposed 

classification method can deliver satisfactory classification results from low-intensity contrast 

point clouds in poor illumination and GNSS-signal denied environments. However, some lane 

lines were misclassified into dashed lines, because these lane lines were not thoroughly extracted 

at the stage of road marking extraction. The hybrid capsule road marking classification model 

regarded them as independent dashed lines and incorrectly trained. Besides, a turn arrow was 

incorrectly identified as straight arrows since the shape of this turn arrow looks much like straight 

arrows. The MCR of road marking classification in underground garage environments is 3.23%. 

 

Figure 4. 9 Road marking classification results from a highway road scene. (a) Classification 

results, and (b) manually labeled reference data. 

 

Figure 4. 10 Road marking classification results from an underground garage scene. (a) 

Classification results, and (b) manually labeled reference data. 
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To further demonstrate the effectiveness and robustness of the proposed models in this 

study, the road marking extraction and classification performance was further evaluated by using 

low-quality point cloud data. Accordingly, Figures 4.11(a)-(c) presents the road surface with low-

intensity contrast between road markings and their surrounding environments, the generated 

intensity image with diverse point densities, and the road surface with worn and incomplete road 

markings, respectively. Figures 4.11(d)-(f) indicates the corresponding road marking extraction 

and classification results, respectively. As can be perceived, the proposed capsule-based deep 

learning networks are capable of effectively extracting and classifying road markings from low-

quality input data. On the whole, the proposed capsule-based networks can deliver accurate road 

marking extraction and classification results on complex road environments, which provides a 

promising solution in fully autonomous driving and HD map creation. 

 

Figure 4. 11 Road marking extraction and classification results on low-quality data. (a) road 

surface with low-intensity contrast between road markings and their surrounding environments, 

(b) generated intensity image with varied point densities, (c) road surface with worn and 

incomplete road markings, and (d)-(f) are corresponding road marking extraction and 

classification results. 
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4.5 Computational Efficiency Evaluation 

In this study, the proposed framework mainly contains three modules: data-preprocessing, 

U-shaped capsule network for road marking extraction, and hybrid capsule network for road 

marking classification. Table 4.5 lists the computational cost for each module, as well as the 

average time complexity across all over three road scenes. The average processing time of data-

preprocessing, road marking extraction, and road marking classification are 36.47s, 3.07s, 2.58s, 

respectively. In fact, most of the processing time is spent in the data-preprocessing phase. 

Accordingly, multiple threads and GPU parallel computing techniques can be further applied to 

not only boost the computational efficiency in the process of 3D point cloud projection but 

dramatically accelerate capsule-based networks. 

Table 4. 5 Computational efficiency of the proposed methods in different road scenes. 

Processing module 
Road scene 

Average 
Urban Highway Underground garage 

Data processing (s) 40.25 31.36 37.80 36.47 

Road marking extraction (s) 3.37 2.74 3.11 3.07 

Road marking classification (s) 2.77 2.35 2.63 2.58 

 

4.6 Chapter Summary 

This paper handles the dilemmas related to threshold-based methods for road marking 

extraction and classification. Such dilemmas result in robustness reduction and computational 

complexity when dealing with 3D unstructured and high-density point clouds captured by MLS 

systems, most remarkably due to its varying point density and intensity, as well as low-intensity 

contrast between road markings and their neighbouring pavements. In this paper, two novel 

capsule-based network architectures are designed for road marking extraction and classification, 

respectively, from highly dense MLS point clouds with an irregular data format. Moreover, a road 

marking dataset containing both 3D point clouds collected by both MLS and BLS systems and 

manually labeled reference data is created from three types of road environments, including urban 

roads, highways, and underground garages, while the proposed models were accordingly evaluated 

by estimating robustness and efficiency using this self-built dataset. 

In the extraction process, a U-shaped capsule-based network was designed to extract road 

markings using 2D georeferenced intensity images. The experimental results demonstrated that 

the proposed extraction model is capable of effectively encoding high-level features (e.g., 
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changing intensity and pose information) with significantly enhanced road marking extraction 

performance. The comparative study indicated that the developed method achieved better 

performance than other threshold-based and U-Net based methods, while delivered an average of 

precision, recall, and F1-score of 94.11%, 90.52%, and 92.43%, respectively, in three different 

road scenes. 

In the classification process, a hybrid capsule-based network was proposed to classify 

seven types of road markings. Compared to those manually defined rule-based classification 

methods, the proposed method can automatically learn more salient features embedded in intensity 

values, as well as the shape information of the road markings by using the revised dynamic routing 

algorithm and powerful L-Softmax loss function. The quantitative evaluation indicated that the 

hybrid capsule-based network achieved an average of 3.42% MCR in changing road environments. 

In conclusion, the multiple experimental results have demonstrated that capsule-based 

networks are capable of effectively extracting inherent features from massive MLS point clouds 

and achieving superior performance in road marking extraction and classification tasks. For further 

research, the feasibility of a point-wise end-to-end deep learning framework should be investigated 

for robust and effective road marking extraction and classification purposes. 
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Chapter 5  

BoundaryNet: Extraction and Completion of Road Boundaries with 

Deep Learning 

 This chapter presents a novel deep learning framework, named BoundaryNet, to extract 

and complete road boundaries by using both MLS point clouds and high-resolution satellite 

imagery. In this network, first, road boundaries are extracted by conducting a curb-based extraction 

method. Such extracted 3D road boundary lines are used as inputs to feed into a U-shaped network 

for erroneous boundary denoising. Then, a CNN model is proposed to complete the road 

boundaries. Next, to achieve more complete and accurate road boundaries, a conditional deep 

convolutional generative adversarial network (c-DCGAN) with the assistance of road centerlines 

extracted from satellite images is developed. Finally, according to the completed road boundaries, 

the inherent road geometries are calculated. The experimental results indicate that the 

BoundaryNet model can provide a promising solution for road boundary completion and road 

geometry estimation. © [2020] IEEE. Reprinted, with permission, from [Ma L, Li Y, *Li J, Junior 

J, Gonçalves W, Chapman M. A., 2020. BoundaryNet: Extraction and completion of road 

boundaries with deep learning using MLS point clouds and satellite imagery. IEEE Trans. Intell. 

Transp. Syst. (under minor revision)]. 

5.1 Introduction 

 Urban roads, as one of the essential public infrastructures, provide significant motivations 

for rapid urban sprawl and create notable economic and social benefits (Wang et al., 2012). 

Moreover, detailed road inventories are commonly applied to support extensive applications, such 

as city planning, construction surveying, smart cities, and advanced driver-assistance systems 

(ADAS) (Pu et al., 2011). Mobile laser scanning (MLS) systems that comprise Light Detection 

and Ranging (LiDAR) sensors can capture high-density 3D point clouds with mm-level accuracy 

in large-scale urban environments (Ma et al., 2018). Such point clouds have been widely used for 

many transportation-related studies, including pavement inspection (Ye et al., 2019), road marking 

classification (Rastiveis et al., 2020), road object detection and segmentation (Li et al., 2019a), 

road geometry modeling (Pradhan and Sameen, 2020), and road boundary extraction (Wen et al., 

2019). As a crucial component of road topological networks, road boundaries designate allowable 

driving zones and provide auxiliary road information to promote the development of high-
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definition (HD) maps and fully autonomous vehicles (AVs). Accordingly, road boundary 

extraction is generally implemented through extracting road surfaces, followed by road curb 

detection from MLS point clouds. Although remarkable improvement has been achieved, most of 

the off-the-shelf methods cannot accurately and completely extract road boundaries, due to 

occlusions and point density variations during raw MLS data acquisition (Soilán et al., 2019). Thus, 

in this paper, the theoretical and methodological problems of road boundary extraction and 

completion are investigated by using MLS point clouds and satellite imagery. 

Many studies have been conducted to estimate and recover incomplete road boundaries 

(Holgado‐Barco et al., 2017; Zai et al., 2017; Wen et al., 2019; Ma et al., 2019). One of the most 

straightforward ways is to collect point clouds multiple times by using MLS systems. However, it 

is considerably cost-intensive and labour-consuming. Moreover, some interpolation methods, such 

as linear interpolation, polynomial interpolation, and B-spline curves, cannot deliver the robust 

solutions for road boundary recovery, especially in complicated crossroads and curved road 

sections (Ma et al., 2019). Many researchers concentrated on extracting road surfaces or road 

centerlines from aerial and orbital remotely sensed imagery. In urban environments, roads 

extracted from satellite and aerial images are usually inaccurate and incomplete because of the 

complicated imaging conditions, various terrain factors, and partial occlusions caused by roadside 

trees (Zhang et al., 2019). Furthermore, different image resolutions have significant impacts on 

road boundary extraction. Specifically, images captured with low resolutions could result in fuzzy 

ground object features, while high-resolution images also bring in dilemmas and uncertainties 

regarding various influential factors (e.g., weather sensitivity and limited temporal resolutions). 

Compared to camera-based mobile mapping systems, MLS systems are less sensitive to 

weather and ambient luminance conditions. The point density obtained from high-end MLS 

systems can reach up to 10,000 pts/m2 at a wide moving speed range of 40-100 km/h in both urban 

and highway road scenes, while it poses enormous difficulties for both terrestrial and airborne laser 

scanning (TLS/ALS) systems to provide such high surveying adaptability and measuring precision 

(Yan et al., 2015). Roads extracted from ALS point clouds are usually broken lines because of the 

distortions, point density and intensity variations, and noisy outliers (Kumar et al., 2013; Hu et al., 

2014). Moreover, sparse and unevenly distributed TLS point clouds make effective and robust 

road extraction quite challenging. Global Navigation Satellite System (GNSS) data, which 
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provides spatial trajectory and the full coverage of roads, have been typically employed to extract 

road boundaries and centerlines (Huang et al., 2015). Nevertheless, both accuracy and 

completeness of extracted road boundaries using spatial trajectory data and crowd-sourced GNSS 

data (e.g., taxi GNSS data) are still unsatisfied because of the inevitable system positioning error 

and multipath effects in urban road scenarios. 

Urban roads, segmented from various data sources, indicate various strengths and 

limitations. There are three key challenges to efficiently and robustly extract and complete road 

boundaries from MLS point clouds: (1) Road boundary data is incomplete due to occlusions caused 

by road participants (e.g., pedestrians and cyclists) and roadside infrastructures, or the limited 

scanning ranges from onboard sensors; (2) Some urban roads with low curbs or worn curbs also 

lead to incomplete road boundaries by using different extraction methods; (3) Besides, the varieties 

and uncertainties of missing parts in urban road boundaries bring significant difficulties to 

ascertain if these gaps should be completed or not. To overcome these challenges, the practicability 

of road boundary extraction and completion through embedding MLS point clouds with satellite 

images is investigated. More complete and correct road boundaries with a wealth of road 

information are obtained if an MLS point cloud related road boundary is generated with the 

assistance of satellite images. However, these data captured by different sensors at different times, 

in varying ambient illumination conditions, and with changing point densities, cause the effective 

data fusion and road boundary recovery challenging (Qin and Gruen, 2014). 

Regarding previous road boundary extraction studies showed the potential of multi-sensor 

combination (Li et al., 2019b; Ravi et al., 2019). However, such methods have significantly 

improved the accuracy of road boundary extraction by introducing spectral or texture information, 

they still cannot deal with existing gaps in road boundaries. For road boundary completion, the 

existing methods have certain limitations (Wen et al., 2019). Considerable challenges still exist to 

provide promising solutions for road boundary completion, especially in complex curved road 

scenes. Therefore, it is increasingly necessary to introduce an effective and robust method for road 

boundary completion.   

A novel deep learning based framework is proposed, named BoundaryNet, comprising the 

following four modules: (1) curb-based road boundary extraction, (2) CNN-based road boundary 

completion, (3) the D-LinkNet-based road centerline extraction, and (4) the conditional deep 
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convolutional generative adversarial network (c-DCGAN)-based road boundary refinement. 

Figure 5.1 shows the detailed workflow of BoundaryNet. More specifically, 3D road boundaries 

are segmented from point clouds as the inputs of the whole framework. The extracted road 

boundaries that always contain many erroneous lines, are firstly removed using a revised U-shaped 

encoder-decoder neural network, according to the images projected from 3D point clouds of road 

boundaries. Next, a CNN-based downsampling and upsampling model enabling to capture more 

distinctive features of line segments, such as curvature and connectivity, is developed to identify 

and restore the missing parts. Then, because of the imperfect local details of road boundaries 

resulting from the CNN-based completion model, such road boundaries are further refined using 

a c-DCGAN model, with the assistance of the road centerlines obtained from high-resolution 

satellite images. Finally, according to the completed road boundaries, inherent road geometries, 

including both horizontal and vertical road alignment parameters, are thus estimated to support 

road maintenance and traffic safety. Different from 3D point-based methods that suffer from 

incomplete data collection and point density and intensity variations, a deep learning-based 

framework combining both MLS point clouds and satellite images is developed, which can more 

robustly extract and complete road boundaries, and accurately estimates the road characteristics in 

large-scale urban environments. 

 

Figure 5. 1 Workflow of the proposed BoundaryNet model. 
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5.2 Algorithm Description 

5.2.1 Road Boundary Extraction 

According to the previous work (Ma et al., 2019a), a revised curb-based road boundary 

extraction method was proposed by using a data slicing structure from 3D point clouds. Firstly, 

according to the trajectory of the MLS system, the raw mobile LiDAR data were horizontally 

divided as a series of point cloud blocks, in which corresponding data profiles were created at 

predefined widths. Then, the point clouds in these data profiles were projected onto the plane that 

is vertical to the moving direction of the MLS system. Such data profiles were gridded to generate 

pseudo scan lines, and principal points were accordingly ascertained in grid cells. Next, road curb 

points were segmented from pseudo scan lines by taking both slope and elevation differences into 

consideration. Finally, a B-spline interpolation algorithm was used to fit the extracted road curb 

points into continuous boundary lines. Therefore, this curb-based method is adopted for road 

boundary extraction. 

For complex urban road environments, the extracted road boundaries have multiple objects 

(e.g., road markings, cracks, and roadside objects) and erroneous lines with occlusions from road 

users, which brings in considerable difficulties in road boundary extraction. Due to varying road 

design standards across different regions and the morphological irregularity of erroneous lines, it 

is quite challenging to completely and effectively extract road boundaries from massive and 

unstructured 3D point clouds by using the existing rule-based methods (Kumar et al., 2014, Soilán 

et al., 2017, Jung et al., 2019). 

Based on the symmetric encoder-decoder framework and skip connection operations, the 

U-Net model (Ronneberger et al., 2015) has demonstrated that it enables the delivery of promising 

solutions for biomedical image segmentation. Herein, a revised U-shaped encoder-decoder deep 

learning framework is introduced that learns inherent features to separate road boundaries from 

the erroneous lines (see Figure 5.1). To this end, the extracted 3D road boundaries are first 

transformed into a 2D image in a horizontal XY plane with a pixel size 𝑆𝜖1. Thus, the complicated 

erroneous line removal problem is perceived as a straightforward binary image classification task. 

That is, road boundaries are regarded as foreground and other lines as background. The proposed 

U-shaped neural network contains encoder and decoder sections. Each encoder layer performs 2D 

convolutions with a kernel size of 3 × 3 for spatial feature encodings, while each decoder layer 
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conducts 2D deconvolution (2 × 2  kernel size) and convolution (3 × 3 kernel size) operations for 

segmentation feature map construction. As shown in Figure 5.2, instead of only using skip 

connection in the U-Net model, the pooling indices connection is employed to feed max-pooling 

indices (2 × 2  filter size) derived from the corresponding encoders into decoders for non-linear 

upsampling operations. Such max-pooling indices can significantly decrease the number of 

parameters facilitating end-to-end training. To reduce the over-fitting problem, the dropout 

operation is therefore carried out. The binary cross-entropy (BCE) function is employed to guide 

the model refinement, which is calculated by: 

L(y, 𝑦̂) =
1

𝑁
∑ (𝑦 × log 𝑦̂𝑖 + (1 − 𝑦) × log(1 − 𝑦̂𝑖))𝑁

i=1                                   (5.1) 

where 𝑁 indicates the total number of pixels in input images, y is the real value, and 𝑦̂𝑖 represents 

the predicted value. The rasterized 2D images, as training data, are augmented through crop, 

rotation, scaling, and lighting condition changes, and then resized to 512 × 512 pixels before 

feeding into the road boundary denoising network. The training samples are generated by selecting 

the segmented road boundary pixels as inputs, such pixels in 2D images are manually labeled. In 

the training stage, the initial learning rate, batch size, dropout rate, and epoch are set as 0.0001, 4, 

0.5, and 300, respectively.  

 

Figure 5. 2 Structures of the U-shaped network and the CNN-based completion network. 
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5.2.2 CNN-based Network for Road Boundary Completion 

Therefore, road boundaries are successfully extracted from MLS point clouds by using the 

curb-based road boundary extraction method, followed by the U-shaped road boundary denoising 

neural network. Still, the gaps in extracted road boundaries with varying structures (e.g., lengths 

and curvatures) cause considerable dilemmas in direct and robust road boundary completion. To 

date, many researchers are dedicating themselves to image recovery and inpainting based on deep 

learning-based methods (Isola et al., 2017; Yu et al., 2019; Nazeri et al., 2019), which have 

achieved high performance. Sasaki et al. (2018) presented an end-to-end deep learning framework 

to detect gaps in deteriorated line drawings and recover them accordingly. This method has 

indicated superior performance in line drawing restoration and curvature and thickness 

conservation. Inspired by line inpainting, a novel CNN-based model is proposed to complete road 

boundaries in 2D space. 

As shown in Figure 5.2, a CNN-based downsampling and upsampling model is developed 

to identify and fill the missing parts based on the road boundary extraction results obtained after 

the erroneous line removal. This model contains convolution, max pooling, and upsampling layers. 

More specifically, all the convolution layers employ a 3 × 3 kernel size, aside from the first layer, 

conducting a 5 × 5 kernel size. Moreover, all convolution layers utilize the Rectified Linear Unit 

(ReLU) as activation functions, aside from the last one, where the Sigmoid function is employed 

instead. In the training stage, batch normalization is conducted after each convolution operation, 

except for the final one. The 2 × 2 max pooling layers, downsampling by 1/2 size of the feature 

maps, are utilized for feature encoding and structure recognition of road boundaries from a larger 

region. Instead of deconvolution layers, the nearest neighbour upsampling method is used to 

enlarge the image resolution of the outputs. Notably, fully connected (FC) layers are not employed 

in this process, the image sizes of inputs and outputs are not fixed, resulting in output images of 

the same size as the inputs. The model is trained by employing the mean squared error (MSE) as 

the cost function, which calculates the difference between input 𝑆 and output 𝑆𝑝
′  as follows: 

𝑙𝑜𝑠𝑠(𝑆, 𝑆̂ ) =  
1

𝑀
∑ (𝑆𝑝 − 𝑆𝑝

′  )2
𝑝∈𝑀                                            (5.2) 

where 𝑀 is the total number of pixels in the input image, and 𝑆𝑝 and 𝑆𝑝
′  represent the values at 

pixel 𝑝 in the input and the output images, respectively. Because of the limited number of training 
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data, the same training dataset employed in the work of Sasaki et al. (2018) is used. Finally, to 

obtain smooth and continuous boundary lines, only the completed 2D pixels by the CNN-based 

completion model are utilized to convert and add back to 3D road boundary point clouds. 

5.2.3 Road Boundary Refinement 

Because of the complexities and uncertainties of urban roads, the experimental results 

obtained from the CNN-based completion method cannot fully complete the missing parts in 

images, particularly for large gaps. As shown in Figure 5.3, the dilemmas are concluded in the 

following aspects: (1) some large missing parts should be completed (see blue boxes), (2) regular 

gaps should not be completed (see red boxes), and (3) irregular road structures should be refined 

(see green boxes). Therefore, the road boundaries that are completed by using the above 

completion method should be further refined. 

Rapid data collection, large area coverage, and detailed feature characteristics on the 

ground are strengths of remotely sensed imagery. Therefore, the high-resolution satellite images 

are employed to determine gaps, whether they should be further completed or not. Herein, satellite 

images are used to extract road centerlines, which represents urban road structures in some ways, 

for the road boundary refinement in case of complexities and uncertainties. 

 

Figure 5. 3 Results of road boundary completion obtained from CNN-based network. 
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Figure 5. 4 Dilation module of D-LinkNet. It comprises dilated convolution in both parallel 

mode and cascade mode, and the receptive fields are different in different layers, enabling this 

model to combine features at various levels. From bottom to top, the receptive field is 1, 3, 7, 15, 

and 31, respectively. 

The high-resolution satellite images are utilized to extract road centerlines that indicate a 

geometric topology of the road. Such centerlines are therefore used to handle the uncertainties of 

missing parts and guide the boundary refinement. To this end, the D-LinkNet method (Zhou et al., 

2018a) is employed to segment roads from satellite imagery. This network comprises three 

modules, namely encoder, dilation part, and decoder. Specifically, the encoder module contains 

five downsampling layers that use ResNet34 (He et al., 2016) pretrained on the ImageNet dataset 

to learn shallow features and generate feature maps. The 2 × 2 max pooling layers are used to 

downsample the inputs from the size of 1024 × 1024 to 32 × 32. Then, as shown in Figure 5.4, 

the dilation module comprises dilated convolution in both parallel mode and cascade mode to 

increase the receptive field and preserve the detailed spatial information. All the dilated 

convolution layers employ a 3 × 3 kernel size, with a dilation rate of 1, 2, 4, 8 in the center, 

respectively. The transposed convolution layers are used to restore the feature maps to the 

resolution of 1024 × 1024. Each convolution layer uses ReLU as the activation function, except 

for the last layer, which uses the Sigmoid function. Adam is used as the optimizer. Moreover, this 

model applies BCE and dice coefficient as the loss function. BCE is calculated by using Eq. 5.1, 

and the dice coefficient loss is computed as follows: 
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𝐷𝑖𝑐𝑒 =
2 ∑ 𝑝𝑖𝑔𝑖

𝑁
𝑖

∑ 𝑝𝑖
𝑁
𝑖 +∑ 𝑔𝑖

𝑁
𝑖

                                                                            (5.3) 

where 𝑁 is the total number of pixels in the input image, and 𝑝𝑖 and 𝑔𝑖 indicate the values at pixel 

𝑖 in the predicted binary segmentation images and ground truth images, respectively. 

To increase the number of training data, the DeepGlobe Road Extraction Dataset (Demir 

et al., 2018) is used as the training dataset. The testing images were acquired from Google Earth 

with a pixel size of 50 cm. During the training phase, the initial learning rate, batch size, and epoch 

are set as 0.0001, 2, and 150, respectively.  

 

Figure 5. 5 Schema of the eight-connected morphological thinning algorithm. (a) A road pixel pi 

and its eight neighbours. (b)-(i) indicate various discriminant conditions, respectively. 

Based on the extracted road segments from satellite images, a morphological thinning 

algorithm (Shi et al., 2013) is employed to generate road centerlines. Given each road pixel 𝑝1 and 

its eight-connected neighbours, i.e., 𝑝2  to 𝑝9  (see Figure 5.5(a)), the main procedure of this 

thinning algorithm is to traverse each pixel of the road segment images. In each pass, the road 

pixels 𝑝𝑖 is removed if it meets the following criteria:  

i. 2 ≤ 𝑁(𝑝1) ≤ 6; 
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ii. δ(𝑝1) = 1; 

iii. 𝑝2 × 𝑝4 × 𝑝8 = 0 or 𝛿(𝑝2) ≠ 1; 

iv. 𝑝2 × 𝑝6 × 𝑝8 = 0 or 𝛿(𝑝8) ≠ 1; 

where 𝑁(𝑝1)  indicates the crossing number of road pixels among pixels 𝑝2  to 𝑝9 , and 𝛿(𝑝𝑖) 

represents the discriminant condition, 𝑖 = 1, 2, and 8, respectively. As shown in Figure 5.5(b), the 

following condition is examined: the upper-left neighbour and the upper neighbour of the pixel 𝑝𝑖 

is a road pixel (with a pixel value of 1) and an empty pixel (with a pixel value of 0), respectively. 

Meanwhile, Figures 5.5(c)-(i) illustrate different eight-connected discriminant conditions. 

Accordingly, δ(𝑝𝑖) is set to 1, if only one condition is satisfied. Otherwise, δ(𝑝𝑖) is equal to 0. 

Thus, based on the eight-connected schema, road centerlines are generated from the extracted road 

segments. 

The strengths of this thinning algorithm are both straightforward and fast to conduct. 

However, the extracted road centerlines usually generate some spurs that decrease the correctness 

and smoothness of roads. Thus, the least-squares curve fitting (LSCF) algorithm is performed to 

obtain smooth and accurate road centerlines for irregular road networks. The least-square fitting 

algorithm takes the following form for each road segment: 

𝑚𝑖𝑛 ∑ 𝑦𝑖 − (𝑝1𝑥𝑖
𝑛 + 𝑝2𝑥𝑖

𝑛−1 + ⋯ + 𝑝𝑛𝑥𝑖 + 𝑝𝑛+1)𝑁
𝑖=1                (5.4) 

where 𝑁 denotes the total number of pixels in road segments, 𝑥𝑖 and 𝑦𝑖 are the row number and 

the column number of the pixel 𝑖, respectively. After solving Eq. 5.4, the estimation is afterward 

determined by: 

𝑦𝑖̂ = 𝑟𝑜𝑢𝑛𝑑(𝑝1𝑥𝑖
𝑛 + 𝑝2𝑥𝑖

𝑛−1 + ⋯ + 𝑝𝑛𝑥𝑖 + 𝑝𝑛+1)                      (5.5) 

where 𝑦𝑖̂ denotes the column number of the pixel 𝑖 after curve fitting.  

Depending on the global coordinate system of satellite images, the generated road 

centerlines from these images are transformed to 3D point clouds by setting the height values to 

zero and then merged with road boundaries. Although some urban roads in satellite imagery are 

inevitably occluded by high-rise objects and roadside trees, the generated road centerlines can still 
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refine the structure of road networks and provide significant guidance for road boundary 

refinement.  

To tackle the complexities of missing parts and restore incomplete road boundaries, it is 

necessary to decide whether the restored gaps are refined with the assistance of the road centerlines. 

In this study, the road boundaries are restored to the complete road structure if the road centerline 

across the gaps. Therefore, the mistaken completions can be handled. Still, it is challenging to 

solve the dilemmas of incomplete gaps and irregular completion structures.   

Generative adversarial network (GAN) models (Goodfellow et al., 2014) has indicated the 

extensive applications in image translation and image restoration domains. The conditional deep 

convolutional GAN (c-DCGAN) network is adopted, as an extended work of the DCGAN model, 

to deal with the issues of irregular completion structures (i.e., an image translation task) and 

incomplete gaps (i.e., an image restoration task). With the assistance of the road centerline, the c-

DCGAN model is capable of restoring the incomplete road boundaries with detailed information, 

particularly for curved road sections, which makes the rule-based refinement methods challenging.  

The DCGAN model consists of two adversarial modules, i.e., generator model 𝐺 , and 

discriminator model 𝐷 . Specifically, a generator 𝐺  generates outputs, and a discriminator 𝐷 

distinguishes them as “real/fake” samples as much as possible. The adversarial competition 

between 𝐺 and 𝐷 is determined by: 

min
𝐷

max
𝐺

𝐿(𝐷, 𝐺) = 𝔼𝑋~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝔼𝑧~𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]        (5.6) 

where the generator endeavors to maximize the loss value, i.e., 𝐷𝐺
∗ = 𝑎𝑟𝑔 max

𝐺
𝐿(𝐺, 𝐷𝐺

∗ ), while the 

discriminator minimizes it, i.e., 𝐺∗ = 𝑎𝑟𝑔 min
𝐷

𝐿(𝐺, 𝐷). In the process of training 𝐷, 𝐺 operates in 

a feed-forward pattern without backpropagation, and vice versa to process 𝐺.  

Compared to the standard GAN model, the DCGAN model is more stable to train, resulting 

in generators that produce reasonable outputs. Briefly, all convolutional net is performed by 

replacing deterministic spatial pooling operations (e.g., max pooling) with strided convolutions, 

enabling the model to encode inherent features in both spatial downsampling and upsampling 

processes. Moreover, batch normalization is adopted to solve the problems of poor initialization 

and improve gradient flows in deep hidden layers. Instead of ReLU, 𝐷 uses Leaky ReLU as 
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activation functions. 𝐺 uses ReLU, except for the output layer, where a 𝑇𝑎𝑛ℎ function is used 

instead. 

The c-DCGAN network extends the DCGAN model by generating feature maps from a 

random noise vector 𝑣 and a condition 𝑐 to an output 𝑦. For c-DCGAN, road boundary refinement 

is performed by transforming images with incomplete road boundary lines and centerlines, into 

refined images with ground-truth road boundary lines. Herein, the condition 𝑐 defines images with 

incomplete road boundary lines and centerlines. 𝑣 is a random noise vector. The result 𝑦 indicates 

images with ground-truth road boundary lines. This c-DCGAN model can be easily applied to 

other road types by using a different condition 𝑐. Furthermore, only a small number of training 

samples are required to feed into the c-DCGAN model for road boundary refinement. Such training 

samples are: (1) cropped complete road boundaries and centerlines, (2) imperfect boundary lines 

(i.e., incomplete gaps and irregular completion structures) and centerlines, and (3) manually 

editing imperfect boundary lines and centerlines by hand drawings.  

 

Figure 5. 6 Structure of the c-DCGAN road boundary refinement network. 

Since the c-DCGAN model requires 2D images as the inputs, road boundary lines and 

centerlines in 3D point clouds are converted into 2D images with a pixel size 𝑆𝜖2. The incomplete 

road boundaries are broken lines, which are different from the road boundaries with irregular 

completion structures. Thus, the different training data is manually grouped into two categories, 

and then separately fed into the different c-DCGAN models for refinement (see Figure 5.6). To 

obtain satisfactory completion results, the refinement results are fed into the model again to solve 
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the problem of irregular completion structures. Finally, the road boundary refinement results are 

transformed back to 3D point clouds with complete structures. 

5.3 Road Geometry Calculation 

Geometric inventories of roads have remarkable impacts on road safety. Accurate road 

characteristics estimation, such as road width, curvature, and slope, is a vital strategy for 

minimizing traffic hazards and enhancing traffic efficiency. Therefore, the geometric inventory of 

complex urban roads (especially for curved road corridors) to estimate road characteristics 

contributes to road maintenance and traffic safety (Holgado‐Barco et al., 2017). Based on the 

completed road boundaries obtained from the BoundaryNet model, some fundamental road 

geometries, including horizontal and vertical road alignment parameters, are calculated.  

 

Figure 5. 7 (a) Elements of horizontal road geometry. (b) Elements of vertical road geometry. 

Table 5. 1 Descriptions and equations for road geometry estimation. 

Road geometry Descriptions Equations 

Horizontal curve parameters 

Horizontal curve 𝑓ℎ(𝑥𝑖 , 𝑦𝑖) = 0 

Radius of curvature 𝑅 =
5729.58

𝜃
  

Length of horizontal curve 𝐿ℎ = 0.0174533 × θ × R 

Curvature of horizontal curve 𝐶 = |
𝜋−𝜃

𝐿ℎ
| 

Vertical curve parameters 

Vertical curve 𝑓𝑣(𝑥𝑖 , 𝑧𝑖) = 0 

Length of vertical curve 
𝐿𝑣 = ∫ 𝑓𝑣(𝑥𝑖 , 𝑧𝑖)𝑑𝑠 

Flatness of vertical curve 
𝐾 =

𝐿𝑣

∆𝑠
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As illustrated in Figure 5.7(a), the horizontal road geometry includes the length of 

horizontal curves, road width, the radius of curvature, the curvature of horizontal curves, and 

intersection angles (McCornmac et al., 2013). The length of a horizontal curve 𝐿ℎ denotes the arc 

length from the point of curvature 𝑃𝑐 to the point of tangency 𝑃𝑡, while the radius of curvature 𝑅 

is the radius of the arc. The curvature of a horizontal curve 𝐶 represents the average curvature 

value between 𝑃𝑐 and 𝑃𝑡. The intersection angle 𝜃 is the interior angle at the intersection of the two 

tangents.  

Meanwhile, vertical road geometry (see Figure 5.7(b)), including the length of vertical 

curves, slope changes, and the flatness of vertical curves, are also estimated (McCornmac et al., 

2013). The length of a vertical curve 𝐿𝑣 is calculated by using the curve integral of 𝑓𝑣(𝑥𝑖 , 𝑧𝑖). The 

changes in slope ∆𝑠 is the algebraic difference of the gradient between two adjacent points. The 

flatness of a vertical curve 𝐾, also called K-value, is the flatness of the vertical arc between 𝑃𝑣𝑐 

and 𝑃𝑣𝑡. The road geometry parameters and their corresponding equations are listed in Table 5.1. 

5.4 Results and Discussion 

5.4.1 Datasets 

The experimental data contains MLS point clouds and high-resolution satellite imagery. 

The MLS point clouds were collected from the HaiCang Industrial Park (HCIP), the Coastal Ring 

Road (CRR), and the International Conference and Exhibition Center (ICEC) in Xiamen, China, 

by using a RIEGL VMX-450 MLS system. By integrating two full-view RIEGL VQ-450 laser 

heads, such VMX-450 MLS system is capable of producing a maximal effective measurement rate 

of 1.1 million measurements/sec and a maximal scanning range up to 800 m (@150 kHz). The 

average point density of these data is over 4,600 pts/m2, and the absolute measurement accuracy 

and precision can reach 8 mm and 5 mm, respectively. The HCIP consists of complex road 

corridors and structures, the IECE has complicated urban road conditions with multiple road types, 

and the CRR contains multi-lane urban expressways with many roadside trees. Such road scenarios 

result in incomplete road boundary extraction, which makes these datasets suitable for road 

boundary completion evaluation. Moreover, satellite images with a ground sample distance (GSD) 

of 50 cm were obtained from Google Maps. 
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5.4.2 Hyperparameter Optimization 

The proposed BoundaryNet has two essential hyperparameters: 𝑆𝜖1, the pixel cell size in 

the revised U-shaped encoder-decoder for road boundary extraction; and 𝑆𝜖2, the pixel cell size in 

the c-DCGAN model for road boundary refinement. To determine the optimal hyperparameter 

values, the performance of different configurations of these two parameters was evaluated on the 

CRR dataset during the process of road boundary line denoising and road boundary completion, 

respectively. The grid cell size was tested in the range of [20, 100] with an interval of 10 cm. The 

following three evaluation metrics, i.e., precision, recall, and quality, were utilized to 

quantitatively analyze the performance of road boundary extraction and refinement. 

Precision: 𝑃𝑅 =
𝑇𝑃

𝐿𝑓𝑐
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                             (5.7) 

Recall: 𝑅𝐸 =
𝑇𝑃

𝐿𝑔𝑡
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (5.8) 

Quality: 𝑄𝑈 =
𝑇𝑃

𝐿𝑓𝑐+𝐹𝑁
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                    (5.9) 

where 𝑇𝑃 is the length of correctly extracted boundary lines, 𝐹𝑃 is the length of the extracted 

boundaries that do not exist in the data, and 𝐹𝑁 is the length of the ground truth boundaries that 

are not extracted. 𝐿𝑔𝑡  indicates the whole length of the ground truth boundary lines, and 𝐿𝑓𝑐 

represents the whole length of completed boundary lines.  

 

(a) 
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(b) 

Figure 5. 8 Performance evaluation and time cost of the proposed models using different grid cell 

sizes. (a) U-shaped model for road boundary extraction. (b) c-DCGAN model for road boundary 

refinement. 

Figure 5.8 indicates that different grid cell sizes could deliver different performance during 

the phase of road boundary extraction and refinement. As shown in Figure 5.8(a), all the evaluation 

metrics, i.e., precision, recall, and quality, achieve better results than others when setting 𝑆𝜖1 at 20 

cm. Although it is the most time-consuming, the time cost is still low and reasonable. Therefore, 

in this study, 𝑆𝜖1  is defined as 20 cm. Figure 5.8(b) shows the recall of the completed road 

boundaries increases in the range of [0.2m, 0.4m], and then reduces with an increase in grid cell 

size 𝑆𝜖2. Typically, larger grid cell sizes lead to smaller road boundary gaps. The proposed c-

DCGAN model delivers better completion performance on the missing parts of smaller sizes. Still, 

if the grid cell size is too large, the generated road boundary images are in coarse resolutions, 

resulting in incorrect gap detection and completion results. With an increase in grid cell size, 

precision gradually decreases. Because larger grid cell sizes indicate that all lines in an image are 

thicker and coarser, it leads to the lack of boundary details. Regarding some missing parts in curved 

roads with small curvature, it is straightforward to restore them with straight lines directly. 

Moreover, as shown in Figure 5.8(b), completion performance is almost the same when setting the 

grid cell size 𝑆𝜖2 at 20 cm and 30 cm, respectively. Nevertheless, if 𝑆𝜖2 is set to be 20 cm, the time 

cost for the c-DCGAN model is much higher than that of setting 30 cm. Hence, to achieve a balance 

between road boundary completion and computation efficiency, 𝑆𝜖2 is set at 30 cm. Herein, to 

obtain a high-performance model, the segmented road boundary point clouds are first converted 

to the 2D images with a grid cell size of 20 cm, in which a U-shaped boundary denoising model is 

then conducted. Next, the correct road boundary lines are transformed back to 3D point clouds and 

re-projected onto the 2D images with a 30 cm grid cell size for the c-DCGAN based refinement. 
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5.4.3 Extraction Results 

To quantitatively evaluate the proposed BoundaryNet model, the road boundary points 

were first manually extracted on the testing datasets. Considering the missing parts of road 

boundaries, points were manually added based on the road design standards and actual road 

conditions. To demonstrate the efficiency and robustness of BoundaryNet model for road boundary 

extraction and completion in complex road environments, road boundaries with varying 

completeness and curvatures were extracted by using several approaches, i.e., projection-related 

(Serna and Marcotegui, 2013), saliency-related (Wang et al., 2015a), supervoxel-related (Zai et al., 

2017), and curb-related (Ma et al., 2019a). Figure 5.9 shows the road boundary extraction results 

from the ICEC dataset. Accordingly, the recalls of these methods are 59.25%, 81.30%, 90.88%, 

and 91.12%, respectively. The higher recall of the curb-based method (Ma et al., 2019a) indicates 

that it is capable of robustly extracting road boundaries under various curvatures with the 

assistance of trajectory data in urban road scenes. 

 

Figure 5. 9 Road boundary extraction results in the ICEC dataset. (a) Ground truth data (in 

black). (b) Road boundary extraction results derived from Serna and Marcotegui (2013) (in 

green), (c) Wang et al. (2015a) (in red), (d) Zai et al. (2017) (in pink), and (e) Ma et al. (2019a) 

(in navy), respectively. (f) Road boundary completion results in the ICEC dataset based on the 

extracted road boundaries from Ma et al. (2019a). 
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5.4.4 Completion Results 

Moreover, by adopting the same evaluation metrics used in Section 5.4.2, i.e., precision, 

recall, and quality, the road boundary completion results were then evaluated.  Figures 5.10 and 

5.11 present the boundary line completion results in the HCIP and CRR, respectively. Several 

common road scenarios, including straight roads, curved roads, and road intersections, were 

accordingly presented in zoom-in views. Although the completeness and curvatures vary in these 

road scenarios, the experimental results indicate that the BoundaryNet obtains high performance 

in road boundary completion. According to three parts of initial road boundaries with varying 

completeness and curvatures obtained from four different methods, Table 5.2 indicates the initial 

quantitative completion results, and Table 5.3 presents the quantitative assessment on the 

completion results of three evaluation metrics, respectively.  

 

Figure 5. 10 Road boundary completion results using the BoundaryNet model in the HCIP 

dataset. (a)-(b) Straight line road sections. (c)-(d) Curved road sections. (e)-(f) Road 

intersections. 
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Figure 5. 11 Road boundary completion results using the BoundaryNet model in the CRR 

dataset. (a)-(c) Completion results in different road scenes. (d)-(f) Different road boundary 

patterns are shown in green boxes, which indicate road curbs, fences, and parapets, respectively. 

Regarding the BoundaryNet tested on the both HCIP and CRR datasets, depending on road 

boundaries extracted by using the approach of Ma et al. (2019a), the precision, recall, and quality 

obtained on HCIP and CRR datasets are as follows: 89.89% and 96.06% in precision, respectively; 

91.40% and 92.23% in recall, respectively; and 82.88% and 88.86% in quality, respectively. Based 

on the experimental results, it demonstrates that the road boundary denoising process is remarkably 

conducive to the completion results. Additionally, the quality of initial road boundary extraction 

results has a significant impact on the completion performance. The lower recall of the extracted 
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boundary lines shows a more considerable information loss in the structure of these boundaries, 

which causes increasing uncertainties and difficulties for road boundary completion. That is, if the 

initial road boundary recall is low, the length of the final boundaries that exclude the ground truth 

boundaries (i.e., false positive) and the length of the ground truth boundaries that excludes the final 

completed boundaries (i.e., false negative) are large. Still, despite worn and incomplete road 

boundaries with a completeness rate of 59%, the BoundaryNet delivers increasing true positive 

results and significantly enhances recall. Therefore, the BoundaryNet achieves superior 

performance in road boundary completion, which can deal with incomplete road boundaries with 

varying rates of completeness. However, some roads have occlusions and various patterns, i.e., 

road curbs, fences, and parapets (see Figures 5.11(d)-(f)), it is challenging for the revised curb-

based boundary extraction approach to extract boundary lines accurately in such places. To address 

this problem, multiple scans can be conducted at varying scan directions to collect more point 

clouds of roads, which remarkably increases the strength of the BoundaryNet model. 

Furthermore, the influence of using different distance intervals was also evaluated in HCIP 

and CRR datasets during the process of road boundary extraction. Distance interval is determined 

depending on the average distance between manually edited points and their neighbouring points 

from ground truth boundary lines. According to prior knowledge and experimental results, the 

distance interval defined in the results presented in Tables 5.2 and 5.3 is 50 cm. As illustrated in 

Figure 5.12, the increasing distance interval values contribute to the substantial improvement in 

precision, recall, and quality for the HCIP and CRR datasets, which indicates that manually edited 

points correspond well with the ground truth boundaries. 

 

(a)                                                                                       (b)  

Figure 5. 12 Quantitative evaluation results of varying distance intervals in (a) HCIP dataset and 

(b) CRR dataset. 
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Table 5. 2 Initial boundary line completion results with varying completeness and curvatures in 

HCIP and CRR datasets. 

Dataset Procedure Evaluation 

metric (m) 

Method 

Projection-

related 

(Serna and 

Marcotegui, 

2013) 

Saliency-

related 

(Wang et 

al., 2015a) 

Supervoxel-

related (Zai 

et al., 2017) 

Curb-

related 

(Ma et al., 

2019a) 

HCIP 

 

(𝑳𝒈𝒕 = 

9129.97 

m) 

Extraction results TP 5033.91 6721.87 7879.85 8184.45 

FP 807.06 1462.56 2138.73 2039.31 

FN 3852.27 2233.03 1213.82 1238.68 

𝐿𝑓𝑐 5840.97 8184.43 10018.58 10223.76 

Extraction + boundary 

denoising results 

TP 5010.53 6590.36 7570.41 7741.27 

FP 160.83 346.13 444.85 423.13 

FN 4069.45 2487.27 1570.96 1550.19 

𝐿𝑓𝑐 5171.36 6936.49 8015.26 8164.40 

Extraction + boundary 

denoising + completion 

results 

TP 7924.29 8033.85 8303.14 8399.04 

FP 971.45 985.18 935.92 944.50 

FN 1064.24 995.99 787.22 790.12 

𝐿𝑓𝑐 8895.74 9019.03 9239.06 9343.54 

CRR 

 

(𝑳𝒈𝒕 = 

4150.75 

m) 

 

Extraction results TP 2160.01 2862.42 3644.34 3762.16 

FP 129.39 165.06 209.53 142.28 

FN 1884.75 1157.60 380.43 390.42 

𝐿𝑓𝑐 2289.40 3027.48 3853.87 3904.44 

Extraction + boundary 

denoising results 

TP 2126.39 2850.24 3486.77 3558.86 

FP 33.11 46.65 78.34 83.03 

FN 2004.36 1250.50 586.57 599.20 

𝐿𝑓𝑐 2159.50 2896.89 3565.11 3641.89 

Extraction + boundary 

denoising + completion 

results 

TP 3063.61 3561.38 3820.40 3864.83 

FP 464.05 390.98 167.20 158.70 

FN 564.43 446.94 326.36 325.63 

𝐿𝑓𝑐 3527.66 3952.36 3987.60 4023.53 

 

Table 5. 3 Quantitative assessment on boundary line completion results in HCIP and CRR 

datasets. 

Dataset Procedure Evaluation 

metric (%) 

Method 

Projection-

related (Serna 

and 

Marcotegui, 

2013) 

Saliency-

related 

(Wang et 

al., 2015a) 

Supervoxel-

related (Zai 

et al., 2017) 

Curb-

related 

(Ma et 

al., 

2019a) 

HCIP 
Extraction results PR 86.18 82.13 78.65 80.05 

RE 56.65 75.06 86.65 86.85 
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QU 51.93 64.53 70.15 71.40 

Extraction + boundary 

denoising results 

PR 96.89 95.01 94.45 94.81 

RE 55.18 72.60 82.81 83.31 

QU 54.22 69.93 78.97 79.69 

Extraction + boundary 

denoising + completion 

results 

PR 89.08 89.08 89.87 89.89 

RE 88.16 88.97 91.34 91.40 

QU 79.56 80.22 82.81 82.88 

CRR 

Extraction results PR 94.35 94.55 94.56 96.36 

RE 53.40 71.20 90.55 90.60 

QU 51.75 68.40 86.07 87.60 

Extraction + boundary 

denoising results 

PR 98.47 98.38 97.80 97.72 

RE 51.48 69.51 85.60 85.59 

QU 51.07 68.72 83.98 83.91 

Extraction + boundary 

denoising + completion 

results 

PR 86.85 90.11 95.81 96.06 

RE 84.44 88.85 92.13 92.23 

QU 74.87 80.95 88.56 88.86 

 

5.4.5 Refinement Results 

In this study, road centerlines extracted from high-resolution satellite imagery were utilized 

to enhance the completeness of extracted road boundaries in urban roadways. Figure 5.13 shows 

the results of road centerline extraction. Due to the missing parts (e.g., large gaps and irregular 

road structures) in the extracted road boundaries, 1,000 training samples were manually generated 

depending on road centerlines and boundaries, where each category has 250 positive samples and 

250 negative samples. The negative samples were merged with extracted road centerlines as new 

training inputs to feed into the c-DCGAN boundary refinement model. Specifically, the batch size 

and epochs were defined as 4 and 300, respectively.   

 

Figure 5. 13 Road centerline extraction from Google Map imagery. (a) High-resolution Google 

Map image captured in Xiamen, China. (b) Road extraction results using the D-LinkNet model. 

(c) Road centerline extraction results using the morphological thinning algorithm. 
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In the testing phase, 400 negative samples were employed to examine the performance of 

the c-DCGAN boundary refinement model. The generated road boundaries were evaluated by 

adopting the buffer-overlay-statistics (BOS) approach (Tveite, 1999). By specifying different 

buffer sizes around the manually annotated road boundaries (i.e., ground truth boundaries), the 

generated road boundaries after refinement were compared with ground truth boundaries through 

overlaying and statistics. Accordingly, the accuracy of completed road boundaries was evaluated 

by the miscoding, which indicates what percentage of the completed road boundaries are located 

outside of the reference buffers. The miscoding is determined as follows: 

𝑀𝑖𝑠𝑐𝑜𝑑𝑖𝑛𝑔 =
𝐿𝑒𝑛𝑔𝑡ℎ (𝐿 outside 𝐶𝑖𝑅 in 𝐿𝐶𝑖𝑅)

𝐿𝑒𝑛𝑔𝑡ℎ (𝐿)
                            (5.10) 

where 𝐿 is the completed road boundaries, 𝐶𝑖𝑅 is the generated buffer zones, and 𝐿𝐶𝑖𝑅 is a mixed 

dataset by overlaying 𝐿 and 𝐶𝑖𝑅.  

Table 5. 4 Quantitative assessment of road boundaries after refinement in a part of the CRR 

dataset. 

Buffer size Miscoding 

Large gaps Irregular road structures 

3 cm 3.98 % 4.55 % 

5 cm 0  2.35 % 

7 cm 0  0  

 

Table 5.4 presents the quantitative assessment in miscoding for different gap categories in 

a part of the CRR dataset. Consequently, the miscoding in large gaps and irregular road structures 

is 3.98% and 4.55%, respectively, when setting the buffer size as 3 cm. The miscoding significantly 

decreases with increased sizes of reference buffers. Notably, for large gaps, the miscoding reduces 

to 0% by changing the buffer size to 5 cm, which indicates that all road boundaries after refinement 

have located inside 5 cm reference buffers. Additionally, the refinement model delivers a 0% 

miscoding for irregular road structures by setting the buffer size as 7 cm. The results demonstrate 

that the refinement model achieves high performance for straight road boundaries. However, it is 

challenging to manually annotated ground truth boundary lines in curved road sections, a slight 

difference between the manually labeled boundary lines and real ground truths can lead to a large 

miscoding. Thus, the overall performance of the c-DCGAN refinement model is underestimated. 
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5.4.6 Evaluation on Paris-Lille-3D dataset 

 

Figure 5. 14 Boundary line completion results using the BoundaryNet model in Paris-Lille-3D 

dataset. 

To further demonstrate the robustness and efficiency of the BoundaryNet in relatively low-

quality point clouds with low point densities and measurement accuracy, the BoundaryNet 

performance was evaluated using the Paris-Lille-3D dataset (Roynard et al., 2018).  Paris-Lille-

3D point clouds were acquired in the two metropolitan cities in France, i.e., Paris and Lille, by 

using a vehicle-borne MLS system comprising a Velodyne HDL-32E LiDAR sensor. Compared 

to the RIEGL VQ-450 laser scanners equipped in VMX-450 MLS systems, the Velodyne HDL-

32E laser scanner is capable of delivering a maximal effective measurement rate of 0.7 million 

measurements per second in a scanning range up to 120 m. The average point density is over 1,500 

pts/m2, and the absolute measurement accuracy can achieve 2-5 cm. This Paris-Lille-3D dataset 

contains typical urban roadway scenarios with occlusions and various point densities and 

intensities, resulting in significant challenges for accurate road boundary completion. Moreover, 

the trajectory data was generated by using the tightly coupled GNSS-RTK/INS extended Kalman 

filter (EKF) method assembled in the Inertial Explorer software. Thus, the road boundaries were 

extracted using the curb-based method (Ma et al., 2019a) with fine-tuning parameters. The 

boundary line completion results are shown in Figure 5.14, in which two samples of typical road 

corridors with occlusions are enlarged for visual interpretation. Although the initial road 

boundaries are incomplete due to occlusions caused by street parking cars and moving trucks (see 
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red boxes in Figure 5.14), the proposed completion model can robustly and accurately recover 

such boundary lines. Consequently, the BoundaryNet achieves 89.31% in precision, 87.65% in 

recall, and 84.89% in quality in the Paris-Lille-3D dataset, respectively. Remarkably, the recall 

increases by 29.33% for the Paris-Lille-3D dataset after conducting road boundary denoising and 

completion operations, which demonstrates that the BoundaryNet can deliver a promising solution 

for road boundary completion in the low-quality point clouds.   

5.4.7 Road Geometry Calculation Results 

Due to the lack of intuitive vertical curved road sections in three surveying areas (i.e., ICEC, 

HCIP, and CRR), only horizontal road alignments were estimated and evaluated. In the study of 

Wen et al. (2019a), the horizontal road alignments were measured by using a Leica TS-15 total 

station and a Leica Viva GS-15 base and rover system, which can achieve millimeter-level absolute 

measurement accuracy. Therefore, by using the same testing MLS point clouds used in Wen’s 

study, such manual field measurements are used as ground truth data to evaluate the performance 

of the proposed approach quantitatively. Table 5.5 shows the horizontal road geometries calculated 

from four roads. Consequently, the experimental results delivered a maximum error of 49′04′′ for 

the intersection angle θ, 0.12 m for the length of horizontal curve 𝐿ℎ, and 0.0004 for the curvature 

of horizontal curve 𝐶, respectively.  

Table 5. 5 Horizontal road geometry calculation results using four sample road sections. 

Road 

sections 

𝛉 (°,′ , ′′) 𝑳𝒉  (m) 𝑪 

Calculation GT Error Calculation GT Error Calculation GT Error 

1 120°59′56′′ 121°35′14′′ -35′18′′ 166.27 166.15 0.12 0.0062 0.0061 0.0001 

2 115°18′26′′ 114°29′22′′ 49′04′′ 213.90 214.01 -0.11 0.0053 0.0053 0 

3 104′25′04′′ 104°14′54′′ 10′10′′ 26.80 26.69 0.11 0.0492 0.0495 0.0003 

4 95°30′42′′ 96°00′36′′ -29′54′′ 28.69 28.77 -0.08 0.0514 0.0510 0.0004 

Max Error  49′04′′ 0.12  0.0004 

 

5.5 Efficiency Evaluation 

Road boundary extraction module in the developed BoundaryNet framework, programmed 

with C++, was debugged on a Dell desktop with an Intel® i5-7500 CPU (@3.40 GHz) and a 16 

GB RAM. All CNN-based road boundary denoising, c-DCGAN based boundary completion, and 

D-LinkNet based road centerline extraction modules were tested using a workstation equipped 

with a Nvidia® Geforce 1080Ti graphic card with 12 GB memory and a 32 GB RAM. The detailed 

discussion about initial road boundary extraction was provided by Ma et al. (2019a). Herein, this 
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study mainly concentrates on the time cost in the process of road boundary denoising and 

completion. Table 5.6 indicates that the c-DCGAN based road boundary refinement module, 

running on the GPU, consumes most of the total computational cost. In this study, only the size of 

input images is considered as the primary factor that determines the time cost. The sizes of the 

projected road boundary lines onto 2D images in three road scenes, i.e., HCIP, CRR, and Paris-

Lille-3D, are 3980 × 3660, 1876 × 5980, and 2540 × 1678, respectively. Accordingly, the HCIP 

dataset has the highest computational cost. Benefiting from the acceleration of the GPU, this c-

DCGAN model has been boosted in a 40× faster fashion, instead of using CPU computation. 

Consequently, the total processing time for datasets HCIP, CRR, and Paris-Lille-3D are 164.14 s, 

95.30 s, and 70.91 s, respectively.  

Table 5. 6 Computational cost of different phases for road boundary completion in three datasets. 

Dataset Boundary completion process Time cost (s) 

CNN-based boundary line 

denoising (s) 

c-DCGAN based boundary line 

refinement (s) 

HCIP 30.85 133.29 164.14 

CRR 4.97 90.33 95.30 

Paris-Lille-3D 3.45 67.46 70.91 

 

 

Figure 5. 15 Experimental results on road boundary refinement. (a-b) Training inputs of large 

gaps, and their boundary refinement results with and without the assistance of the road centerline 

(in red color), respectively. (c-d) Training inputs of irregular structures, and their boundary 

refinement results with and without the assistance of the road centerline (in red color), 

respectively. 
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To estimate the influence of high-resolution satellite imagery, the BoundaryNet completion 

performance was further evaluated with or without the assistance of road centerlines. More 

specifically, 150 epochs were run on the HCIP dataset, the precision, recall, and quality were 

accordingly recorded in Table 5.7. By introducing road centerlines into BoundaryNet framework 

for road boundary refinement, the precision, recall, and quality increase by 1.59%, 2.48%, and 

2.74%, respectively. Figure 5.15 illustrates some testing results of road boundary refinement with 

or without using road centerlines. As can be perceived, it is very challenging to complete the 

missing parts, especially for irregular road structures, without the guidance of road centerlines. 

With the assistance of road centerlines, the c-DCGAN boundary refinement model can refine the 

curved roads with gaps based on the geometric characteristics of the road centerlines (e.g., 

connectivity and curvature). The experimental results demonstrate such road centerlines extracted 

from high-resolution satellite imagery can significantly improve the completeness of extracted 

road boundaries in urban roadways. 

Table 5. 7 Performance evaluation of the BoundaryNet framework with and without road 

centerlines on HCIP dataset. 
Model Evaluation metric 

Precision  

(%) 

Recall  

(%) 

Quality  

(%) 

Extraction + boundary denoising + c-DCGAN completion (without 

centerlines) 

88.30 88.92 80.14 

Extraction + boundary denoising + c-DCGAN completion (with 

centerlines) 

89.89 91.40 82.88 

 

5.6 Chapter Summary 

This paper proposes a deep learning framework to deal with road boundary extraction and 

completion in complex urban road environments. These problems lead to completeness reduction 

and curvature loss when processing massive MLS point clouds with many missing parts, most 

remarkably because of the occlusions caused by road users, background interference, and 

incomplete data collection. A novel deep learning based framework is developed, named 

BoundaryNet, to restore 3D road boundaries by employing MLS point clouds and high-resolution 

satellite imagery. This BoundaryNet model provides a promising solution for 3D road boundary 

completion by performing a U-shaped neural network for the boundary denoising, a CNN-based 

network for the boundary completion, and a c-DCGAN based network with the assistance of road 
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centerlines extracted from satellite images for the boundary refinement. Based on the completed 

road boundaries, the inherent road geometries are calculated.  

The proposed methods have been evaluated by determining robustness and efficiency in 

varying road conditions (e.g., incomplete data collection and worn road curbs), which has 

demonstrated the superior performance of the BoundaryNet model in road boundary completion. 

For three highly dense MLS point clouds (i.e., HCIP, ICEC, and CRR) and a relatively low-density 

dataset (i.e., Paris-Lille-3D), the precision, recall, and quality obtained from HCIP, ICEC, CRR, 

and Paris-Lille-3D are as follows: precision: 89.89%, 89.64, 96.06%, and 89.31%, respectively; 

recall: 91.40%, 91.12%, 92.23%, and 87.65%, respectively; and quality: 82.88%, 82.43%, 88.86%, 

and 84.89%, respectively. Overall, it can be concluded that the developed BoundaryNet model can 

restore the missing parts of road boundaries under challenging road scenes more robustly, 

accurately, and efficiently. Further studies will concentrate on boosting the BoundaryNet model 

performance by developing an end-to-end deep learning framework for 3D road boundary 

restoration and employing more multi-source data (e.g., open street maps and camera images) to 

solve the occlusions caused by roadside objects. Moreover, various data distributions obtained 

from different road environments (e.g., rural roads) should be further used to demonstrate the 

generalizability of the proposed BoundaryNet model. 
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Chapter 6  

Conclusions and Recommendations 

6.1 Conclusions 

This thesis proposes several deep neural networks for road information extraction by using 

MLS point clouds. Due to the significant advantages of high flexibility, large-scale data coverage, 

improved measurement efficiency, less weather sensitivity, and low labour cost, MLS systems are 

being widely used at an increasing rate in many transportation-related applications. However, 

because of point density and intensity variations and occlusions caused by road participants, huge 

challenges remain in completely and efficiently extracting high-level 3D point cloud features, 

particularly in large-scale and complex road environments. Based on the publicly available point 

cloud benchmarks with labels and powerful computational resources, deep learning-based 

methods have demonstrated that they are capable of learning deeper and more distinctive feature 

representations of different road objects. 

This thesis provides a promising solution for intelligent road information extraction and 

HD map generation with three novel algorithms: (1) road object semantic segmentation, (2) road 

marking extraction and classification, and (3) road boundary completion. This doctoral thesis 

intelligently and efficiently extracts road information and explores road inventories from MLS 

point clouds by using deep neural networks, which further shows the capabilities and extensive 

applications of advanced MLS systems in road planning and construction surveying.  

To deal with the challenges of relatively low feature representativeness and robustness of 

the most 3D point cloud segmentation methods, an end-to-end feature extraction framework, called 

MS-PCNN, is developed for 3D point cloud segmentation by using dynamic point-wise 

convolutional operations in multiple scales. Accordingly, the proposed MS-PCNN network has 

four main strengths. First, the revised point-wise convolutional filters can learn spatial 

relationships and extract geometric information of point clouds in local regions, contributing to 

permutation and translation invariances. Second, MS-PCNN applies a hierarchical PointCONV-

based downsampling and DePointCONV-based upsampling architecture so that more high-level 

features can be extracted in multiple scales. Third, by improving the dynamic graph edge 

convolution, MS-PCNN can improve feature descriptiveness by learning edge features between a 
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point and its adjacent neighbours. Finally, a CRF post-processing algorithm is used to ensure the 

consistency of point-wise label prediction and refine segmentation results. The MS-PCNN model 

is robust to occlusions and diverse point densities for urban scene point clouds. Overall, it is 

concluded that the MS-PCNN network can achieve dominating performance in 3D point cloud 

semantic segmentation under large-scale point cloud scenes more effectively and robustly. 

Then, to minimize the impacts of intensity and point density variation problems, two novel 

capsule-based network architectures are proposed for road marking extraction and classification, 

respectively, from highly dense MLS point clouds with an irregular data format. Moreover, a road 

marking dataset, containing both 3D point clouds collected by both MLS and BLS systems and 

manually labeled reference data, is created from three types of road environments, including urban 

roads, highways, and underground garages. The proposed models are accordingly evaluated by 

estimating robustness and efficiency using these self-built datasets. In the extraction process, a U-

shaped capsule-based network is developed to extract road markings using 2D georeferenced 

intensity images. The experimental results demonstrated that the proposed model could effectively 

encode high-level features (e.g., changing intensity and pose information) with significantly 

enhanced road marking extraction performance. In the classification process, a hybrid capsule-

based network is proposed to classify seven types of road markings. Compared to those manually 

defined rule-based classification methods, the proposed methods can automatically learn more 

salient features embedded in intensity values, as well as the shape information of the road markings 

by using a revised dynamic routing algorithm and powerful L-Softmax loss function. The 

experimental results have indicated that capsule-based networks are capable of effectively 

extracting inherent features from massive MLS point clouds and achieving superior performance 

in road marking extraction and classification tasks. 

Finally, to deal with the varieties and uncertainties of missing parts in urban road 

boundaries, a novel deep learning-based framework is developed, named BoundaryNet, to restore 

3D road boundaries by employing MLS point clouds and high-resolution satellite imagery. In this 

network, road boundaries are first extracted by conducting a curb-based extraction method. Such 

extracted 3D road boundary lines are fed into a U-shaped network for the erroneous boundary 

denoising purpose. Then, a CNN model is proposed to complete the road boundaries. Next, to 

achieve more complete and accurate road boundaries, two c-DCGAN models with the assistance 
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of road centerlines extracted from satellite images are developed. Then, according to the completed 

road boundaries, the inherent road geometries are calculated. More complete and correct road 

boundaries with a wealth of road information are obtained if an MLS point cloud related road 

boundary is generated with the assistance of satellite images. Overall, it can be concluded that the 

developed BoundaryNet model can restore the missing parts of road boundaries under challenging 

road scenes more robustly, accurately, and efficiently. 

In summary, this thesis proposes three novel deep learning frameworks for accurate and 

robust road information extraction by using MLS point clouds, which effectively address the 

research gaps of intelligent road information extraction, especially in complex urban road 

scenarios. Multiple experiments have provided highly accurate multi-object segmentation results 

and feature extraction results, contributing to road marking extraction, classification, and road 

boundary recovery tasks, which typically pose enormous difficulties for both threshold-based and 

rule-based methods in the literature. These three novel deep learning methods indicate a promising 

solution for intelligent road information extraction by using mobile LiDAR point clouds, which 

remarkably support the development of high-definition maps and autonomous driving. 

6.2 Contributions 

Deep learning methods have achieved state-of-the-art performance in the domains of 

computer vision and remote sensing that both CNNs and discriminative/generative models are 

capable of exploring feature representation and extracting road information from MLS point 

clouds. This thesis presents a promising solution for automated and efficient road information 

extraction. In summary, the main contributions of this thesis are as follows: 

• A multi-scale point-wise convolution algorithm, named MS-PCNN, is proposed for 

road object semantic segmentation, which can directly consume unstructured 3D points 

and implement a point-wise semantic label assignment network to learn fine-grained 

layers of feature representations and reduce unnecessary convolutional computations. 

The MS-PCNN effectively handles the problems of low feature descriptions and low 

robustness suffered by the most 3D point cloud segmentation algorithms. As 

demonstrated by the experimental results, the MS-PCNN is superior to other DL-based 

methods under large-scale point cloud scenes in both segmentation accuracy and 

computational complexity.  
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• Two capsule-based neural networks are developed for road marking extraction and 

classification. The impacts of low-intensity contrast between road markings and their 

surrounding pavements, as well as varying point densities, are remarkably decreased 

through encoding the image patches at various locations. The whole road marking 

extraction and classification framework provides a promising solution for preloaded 

HD map creation, which further produces an essential road inventory dataset for road 

marking updates to support the development of AVs. 

• A CNN- and c-DCGAN-based method, named BoundaryNet, is proposed for road 

boundary recovery. Different from 3D point-based methods suffering from incomplete 

data collection and point density and intensity variations, the BoundaryNet framework 

combining both MLS point clouds and satellite images can more robustly extract and 

complete road boundaries, and accurately estimates the road characteristics in large-

scale urban environments. 

• Furthermore, several training datasets with labels are created. More specifically, a road 

marking dataset containing both 3D point clouds and manually labeled reference data 

in three types of road scenes (i.e., urban roads, highways, and underground garages) is 

constructed. Moreover, a road boundary dataset consisting of 2D intensity imagery and 

manually edited reference imagery with large gaps and irregular road structures are 

accordingly built. Such datasets will be publicly released to motivate relevant research. 

6.3 Recommendations for Further Research  

The proposed MS-PCNN, BoundaryNet, and capsule-based networks have established a 

solid foundation for intelligent road information extraction in the context of MLS point cloud 

processing. Such methods have achieved state-of-the-art performance in road object extraction, 

segmentation, and classification. By taking advantage of such methods developed in this thesis, 

several further research interests are thus summarized:  

(1). Multi-source data fusion: Instead of using a single data source, many studies (Liang 

et al., 2018; Wen et al., 2019a)  are employing multi-source data including LiDAR point clouds, 

drone-based imagery, and airborne or satellite synthetic aperture radar (SAR) imagery to provide 

significant spectral, spatial, and texture information for the robust and effective road feature 

extraction in large-scale terrains. However, these data obtained from multiple platforms at several 
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times, in different weather situations, under various lighting conditions, and with diverse sampling 

densities, make the rapid and robust data calibration and data fusion challenging. Additionally, the 

point cloud data fusion between high-end LiDAR sensors (e.g., RIEGL VQ-45) and low-end 

LiDAR sensors (e.g., Velodyne VLP-16) also indicates a valuable research direction for HD map 

generation and real-time update. 

(2). Graph neural networks (GNNs): Recent studies (Zhou et al., 2018b; Landrieu and 

Simonovsky, 2018; Te et al., 2018) indicate that graph neural networks can deliver a convincing 

performance and high interpretability for pattern recognition and object extraction from 

complicated and powerful graphs, including social media networks, physical systems, knowledge 

graphs, and other related networks. The traditional CNNs applying on irregular 3D point clouds, 

such as SegCloud (Tchapmi et al., 2017) and SnapNet (Boulch et al., 2017), cannot learn the 

inherent features, resulting in poor discrimination performance. Graph convolutions have provided 

an effective method to deal with large-scale 3D point clouds, in which the nodes indicate simple 

features while the edges represent their adjacent relationship encoded by rich-attributed edge 

features, as demonstrated by the revised edge convolution operations in the MS-PCNN model. 

Moreover, the extended GNN-CRF methods with graph-based constraints also provide 

powerful functionalities to graph neural networks. Because point clouds are unorganized and 

point-like graphs, deep graph-based networks that use graphs as inputs can be designed for object 

extraction, segmentation, and classification purposes. Notably, GNNs can capture not only the 

pose information but also the spatial relationships among points. Thus, developing GNNs that 

directly consume 3D point clouds and encode graph features in the fields of road information 

extraction remains an interesting and challenging task.  

(3). Domain adaption: To support the advancement of HD maps and AVs, the proposed 

deep learning methods that focus on intelligent road information extraction and environmental 

perception are required to adapt different road scenarios in the real world. Domain adaption 

techniques have been commonly applied by using state-of-the-art deep neural networks (Sun et al., 

2013; Silver et al., 2017; Sung et al., 2018). Specifically, deep neural networks embedding with 

prior knowledge are first trained by using one specific dataset. New deep learning models are then 

trained using different datasets with various data distributions, which have more learning 

capacities than those trained from scratch. Due to the limited amount of labelled data and huge 
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data distribution differences in various datasets, adapting the existing knowledge encoded from 

these labelled samples from one specific dataset to massive unlabelled data from different data 

distributions poses a considerable challenge. Thus, domain adaption techniques can be further 

employed to effectively test the generalizability of the proposed neural networks in this thesis, by 

evaluating the model performance based on different data distributions collected by different 

LiDAR sensors and in various road scenarios.   

(4). Semi-supervised learning: Most state-of-the-art deep neural networks (Yang et al., 

2018; Li et al., 2019a) are usually designed under supervised methods using labelled training 

samples, such as point-wise segmentation labels and 3D object bounding boxes. However, because 

of the limited accessibility of high-quality, large-scale, and massive road object datasets and 

benchmarks, fully supervised learning models are sensitive to model generalization capability, 

resulting in non-robust for untrained samples. In contrast, semi-supervised learning methods are 

capable of improving the generalization capability of different deep neural networks and solving 

the data absence problem.  

(6). Intelligent processing for other road objects: Apart from road markings and road 

boundaries in urban road scenes, both on-ground and off-ground road objects, such as traffic lights, 

roadside trees, manhole covers, and road cracks, are significant for road participants and 

autonomous vehicles to provide necessary traffic guidance and improve traffic safety. However, 

due to the variations of intensity and point density and incompleteness of scanned objects, 

accurately and robustly detecting and classifying these road objects with detailed context 

information are still in enormous challenges. AI-based and multi-scale feature fusion methods (Xie 

et al., 2018; Dong et al., 2018) have delivered a promising solution to extract road objects and 

context information. Intelligent road object processing and analysis embedded in end-to-end 

trainable frameworks also present meaningful research directions to promote the development of 

smart cities and HD maps, such as GNN-based road crack detection and capsule-based manhole 

cover classification. 
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Appendix A  

Point-wise Semantic Segmentation in Indoor Environments 

To test the robustness and scalability of the developed MS-PCNN model, two highly dense 

indoor LiDAR datasets, i.e., ScanNet (Dai et al., 2017) and S3DIS (Armeni et al., 2017), were 

further used. Figure A.1 indicates several sample data, and Table A.1 details the descriptions of 

different test datasets. 

 

Figure A. 1 Samples of test datasets used in Chapter 3. 

Table A. 1 Detailed descriptions of different test datasets used in Chapter 3. 

Datasets Types No. of classes No. of objects No. of points Scale Sensor 

Paris-Lille-3D Urban 9 2,479 143.8 M 1,940 m Velodyne HDL-

32E 

ScanNet Indoor 20 >100,000 2.5 M (views) - RGB-D sensor 

S3DIS Indoor 13 6,005 215 M 6,020 m2 RGB-D sensor 

 

A1. ScanNet and S3DIS Datasets 

The ScanNet dataset was generated from over 1,500 scans using RGB-D video streaming 

in indoor environments, including offices, apartments, and conference rooms. There is a total of 

over 100,000 CAD instances retrieved and placed on the surface reconstructions for semantic 

voxel labeling. This dataset was manually interpreted and labeled into 20 classes, such as Floor, 

Desk, Curtains, and Bathtubs.  
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The S3DIS dataset contains 13 object categories and 6,005 object instances with structural 

elements including Ceiling, Floor, Wall, Beam, Column, Window, Door, and moveable elements 

including Table, Chair, Sofa, Bookcase, Board, and others, which were collected in 11 scene 

categories (e.g., hallways and lobbies) and accordingly labeled. This dataset was generated from 

6 different building sections with a total area of 6,020 m2, 1.2 million of mesh faces, and a total 

number of 695 million 3D points, respectively. Both ScanNet and S3DIS datasets are commonly 

applied for object semantic segmentation tasks, which conduces to implement a comparative study 

between the MS-PCNN model proposed in this study and other existing methods. 

A2. Segmentation results on ScanNet and S3DIS 

According to the same hyperparameter settings and testing protocols as using the Paris-

Lille-3D dataset, the optimal combination was determined as 𝜎 = 0.10 and 𝑘 = 32 on both ScanNet 

and S3DIS test datasets. Additionally, the initial learning rate, batch size, momentum of Adam, 

dropout rate and epochs were [0.001, 16, 0.9, 0.5, 200] in ScanNet, and [0.001, 8, 0.9, 0.5, 250] in 

S3DIS, respectively, which can achieve the superior performance through multiple experiments. 

Other parameters, such as the radius in point density estimation and dimensions of the output 

channels, were experimentally determined through trial and error. 

Table A. 2 Semantic segmentation results on ScanNet by using different methods. 

Methods mIoU (%) OA (%) 

ScanNet 30.6 - 

PointNet++ 38.3 71.4 

SPLATNet 39.3 - 

PointSIFT 41.5 86.2 

PointCNN 52.2 85.1 

MS-PCNN 56.8 87.6 

 

Table A.2 shows the segmentation results on ScanNet by using different point-based deep 

learning methods. Note that, the ScanNet model as the pioneer DL-based method proposed for the 

ScanNet dataset achieves 30.6% mIoU, which is far from satisfactory in terms of robustness and 

segmentation accuracy. Although PointNet++ utilized farthest point sampling and multi-scale 

grouping algorithms to leverage local features from high-density point clouds, it only obtained 
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38.3% mIoU and 71.4% OA due to the non-uniform distributions and varying point densities in 

different input scenarios. The proposed MS-PCNN method is superior to both SPLATNet (Su et 

al., 2018) and PointSIFT even though they capture hierarchical and spatially aware features of 

input point clouds. Additionally, the MS-PCNN method outperforms PointCNN that ignores edge 

information among adjacent points in a local region. Compared to other methods, the proposed 

MS-PCNN model achieves the best performance in the sense of per-object segmentation accuracy. 

Furthermore, the semantic segmentation performance on S3DIS by using different deep 

learning networks is presented in Table A.3. As can be perceived, MS+CU (Engelmann et al., 

2017), G+RCU (Engelmann et al., 2017), and SegCloud (Tchapmi et al., 2017) slightly outperform 

PointNet, while PointNet++ is superior to them. Compared to DGCNN and SPGraph methods, the 

proposed MS-PCNN method outperforms them by a significant margin. Additionally, the MS-

PCNN network achieves competitive performance compared with the PointSIFT (i.e., 67.2% 

mIoU for PointSIFT and 67.8% mIoU for MS-PCNN) on the S3DIS dataset. The experimental 

results indicate the strengths and robustness of the proposed MS-PCNN method in semantic 

segmentation, particularly in complex indoor environments with highly dense point clouds. 

Table A. 3 Semantic segmentation performance on S3DIS by using different methods. 

Methods mIoU (%) OA (%) 

PointNet 47.7 78.6 

PointNet++ 54.5 81.0 

MS+CU 47.8 79.2 

G+RCU 49.7 81.1 

SegCloud 48.9 - 

DGCNN 56.1 84.1 

SPGraph 62.1 85.5 

PointSIFT 67.2 - 

MS-PCNN 67.8 87.3 

 

A3. Segmentation on ShapeNetPart 

To evaluate the extensive applicability of the revised PointCONV convolutional operator 

in small-scale 3D point cloud scenes, the ShapeNetPart (Chang et al., 2015) dataset was further 

employed. ShapeNetPart datasets consist of 16,881 3D CAD instances, which are classified into 
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16 categories and 50 part annotations. The majority of 3D objects are labeled with two to five parts. 

Moreover, ground truths are labeled on down-sampled points on all categories. Thus, the part 

segmentation task was regarded as a point-wise segmentation problem. 

Table A. 4 Segmentation results on ShapeNetPart by using different methods. 

Methods mIoU (%) Processing time (ms) 

PointNet 83.7 26.4 

PointNet++ 85.1 168.8 

SPLATNet 84.6 260.1 

DGCNN 85.1 95.6 

SpiderCNN 85.3 184.2 

PointCNN 86.1 77.3 

MS-PCNN 86.6 69.0 

 

According to the same hyperparameter settings and testing protocols as using the Paris-

Lille-3D dataset, the optimal combination was ascertained as σ  = 0.10 and k  = 16 on the 

ShapeNetPart dataset. Additionally, the initial learning rate, batch size, momentum of Adam, 

dropout rate, and epochs were 0.001, 16, 0.9, 0.5, and 200, respectively, which can achieve 

superior performance through experimental tests. Table A.4 shows the point-wise segmentation 

results on ShapeNetPart by using various deep learning methods. Notably, MS-PCNN obtains an 

object instance average mIoU of 86.6%, which is on par with the state-of-the-art methods, e.g., 

PointNet, DGCNN, SpiderCNN, and PointCNN only considering xyz coordinate information of 

point clouds as inputs. Although 2D rendered images used in SPLATNet, MS-PCNN could 

provide more accurate and efficient segmentation results by directly consuming point clouds 

without data conversion. Furthermore, the processing time presented in Table A.4 indicates the 

time consuming for both forward and backward propagations through the entire testing dataset, 

which demonstrates the proposed MS-PCNN can achieve higher computational efficiency and 

lower time complexity compared to other DL-based methods. 
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