
Comprehensive study of physical
unclonable functions on FPGAs:

correlation driven Implementation,
deep learning modeling attacks, and

countermeasures

by

Mahmoud KhalafAlla

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Mahmoud KhalafAlla 2020



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Basel Halak
Professor, Dept. of Electronics and Computer Science,
University of Southampton

Supervisor(s): Catherine Gebotys
Professor, Dept. Electrical and Computer Engineering,
University of Waterloo

Internal Member: Manoj Sachdev
Professor, Dept. Electrical and Computer Engineering,
University of Waterloo
Gordon Agnew
Professor, Dept. Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Alfred Menezes
Professor, Dept. of Combinatorics & Optimization,
University of Waterloo

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

For more than a decade and a half, Physical Uncolnable Function (PUF) have been
presented as a promising hardware security primitive. The idea of exploiting variabilities
in hardware fabrication to generate a unique fingerprint for every silicon chip introduced a
more secure and cheaper alternative. Other solutions using non-volatile memory to store
cryptographic keys, require additional processing steps to generate keys externally, and
secure environments to exchange generated keys, which introduce many points of attack
that can be used to extract the secret keys.

PUFs were addressed in the literature from different perspectives. Many publications
focused on proposing new PUF architectures and evaluation metrics to improve security
properties like response uniqueness per chip, response reproducibility of the same PUF
input, and response unpredictability using previous input/response pairs. Other research
proposed attack schemes to clone the response of PUFs, using conventional machine learn-
ing (ML) algorithms, side-channel attacks using power and electromagnetic traces, and
fault injection using laser beams and electromagnetic pulses. However, most attack schemes
to be successful, imposed some restrictions on the targeted PUF architectures, which make
it simpler and easier to attack. Furthermore, they did not propose solid and provable
enhancements on these architectures to countermeasure the attacks. This leaves many
open questions concerning how to implement perfect secure PUFs especially on Field Pro-
grammable Gate Arrays (FPGAs), how to extend previous modeling attack schemes to be
successful against more complex PUF architectures (and understand why modeling attacks
work) and how to detect and countermeasure these attacks to guarantee that secret data
are safe from the attackers.

This Ph.D. dissertation contributes to the state of the art research on physical unclon-
able functions in several ways. First, the thesis provides a comprehensive analysis of the
implementation of secure PUFs on FPGAs using manual placement and manual routing
techniques guided by new performance metrics to overcome FPGAs restrictions with min-
imum hardware and area overhead. Then the impact of Deep Learning (DL) algorithms is
studied as a promising modeling attack scheme against complex PUF architectures, which
were reported immune to conventional Machine Learning (ML) techniques. Furthermore,
it is shown that DL modeling attacks successfully overcome the restrictions imposed by
previous research even with the lack of accurate mathematical models of these PUF ar-
chitectures. Finally, this comprehensive analysis is completed by understanding why deep
learning attacks are successful and how to build new PUF architectures and extra cir-
cuitry to thwart these types of attacks. This research is important for deploying cheap
and efficient hardware security primitives in different fields, including Internet of Things

iv



(IoT) applications, embedded systems, automotive and military equipment. Additionally,
it puts more focus on the development of strong intrinsic PUFs which are widely proposed
and deployed in many security protocols used for authentication, key establishment, and
Oblivious transfer protocols.

v



Acknowledgements

I would like to thank God the most merciful and generous for helping me finish this
thesis. Nothing was possible without his grace and blessing.

I would like to thank my supervisor Professor Catherine Gebotys for her help and
guidance over the past five years. She was always available and I would not have completed
this work without her continuous support and advice.

I would like to express my appreciation to my committee professors, whom their notes
and insightful remarks were helpful and constructive to make this work better.

My appreciation is also extended to my lab colleagues Mustafa Faraj, Mahmoud El-
Mohr, and Liao HaoHao for their technical support and fruitful discussions that helped me
during my Ph.D. journey.

I would like to offer my special thanks to my friend Abdullah Rashwan for his assistance
and advice on solving some machine learning technical problems that I faced during my
Ph.D. studies.

I am ultimately grateful to my father Dr. Abdelrahman KhalafAlla and my mother
Sohair Megahed for their continuous support and love. I would not have reached this point
in my life without their help and care. I am so blessed and privileged that I have you by
my side.

I would like to thank my brother Dr. Mohamed KhalafAllah and my sister Dr. Marwa
KhalafAllah for their continuous support and guidance since my early childhood. It was
a privilege to be their younger brother and they never hesitated to help and support me
over every single stage in my life.

The final acknowledgment is for my wife, my soul mate, and my true love Kholoud
Shaban and my daughters Khadija and Layan. Your ultimate love and sacrifices day by
day is what kept me going on and finish my thesis. You were my shield and shelter during
the hard times and you were the source of joy and light that guided me through the way
until reaching the successful end.

vi



Dedication

To my fellow free Egyptians who paid the highest price to help our beloved Egypt be
free. You will always be remembered and your sacrifices will not go in vain.

vii



Table of Contents

List of Figures xii

List of Tables xvi

Abbreviations xviii

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem statement and objectives . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of Physical Unclonable Functions (PUFs) 5

2.1 PUF Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Non-Electronic PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Electronic PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 PUFs properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 PUF applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



3 Correlation driven PUF implementation on FPGAs using manual routing
and placement 28

3.1 Overview of PUF implementations on FPGAs . . . . . . . . . . . . . . . . 28

3.1.1 Delay lines technique . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Double arbiter PUF . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Randomly generated APUF . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 PUF implementation summary . . . . . . . . . . . . . . . . . . . . 35

3.2 Implementation of APUFs on FPGAs using manual routing and correlation
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Target FPGA and PUF setup . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Experimental terminology . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Experimental results of PUFs statistical metrics using LFSR gener-
ated CRPs set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Experimental results of PUFs correlation analysis using determinis-
tically generated CRPs set . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Modeling attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Deep learning modeling attacks 56

4.1 Overview of attacks on PUFs . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Machine learning based attacks . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Hybrid side channel/Machine learning attacks . . . . . . . . . . . . 61

4.1.3 Fault injection attacks . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Modeling attacks on double arbiter PUFs . . . . . . . . . . . . . . . . . . . 70

4.2.1 DAPUFs architectures and modeling attacks . . . . . . . . . . . . . 72

4.2.2 Methodology and Experimental Setup . . . . . . . . . . . . . . . . 73

4.2.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.4 Summary of DAPUF attacks . . . . . . . . . . . . . . . . . . . . . . 81

ix



4.3 Modeling attacks on bi-stable ring PUFs and its variants . . . . . . . . . . 82

4.3.1 Modeling attacks of BR PUFs family . . . . . . . . . . . . . . . . . 84

4.3.2 BR PUF implementation on FPGA and statistical properties . . . . 87

4.3.3 Deep Learning Network Architecture and Experimental Setup . . . 93

4.3.4 DL Modeling attack results . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Modeling attacks on obfuscated PUFs . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 Obfuscated PUF architecture 1 (Hierarchical XOR BR-PUF) . . . . 108

4.4.2 Obfuscated PUF architecture 2 (Hierarchical DAPUF) . . . . . . . 110

4.5 Discussion on successful DL attacks and countermeasures . . . . . . . . . . 111

4.6 The practicality of the DL attacks and applications . . . . . . . . . . . . . 113

4.6.1 Summary and Comparison with Previous Research . . . . . . . . . 114

5 Shuffled challenge Obfuscation technique to countermeasure deep learn-
ing modeling attacks 116

5.1 Overview of Countermeasure Techniques . . . . . . . . . . . . . . . . . . . 116

5.2 N-to-1 Shuffled-Challenge Hierarchical PUF . . . . . . . . . . . . . . . . . 118

5.2.1 Obtained results of 2-to-1 Shuffled-Challenge Hierarchical XOR BR-
PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusion and future work 123

6.1 PUF implementation on FPGAs . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Modeling attacks against PUFs using DL techniques . . . . . . . . . . . . . 125

6.3 Countermeasures against DL modeling attacks . . . . . . . . . . . . . . . . 126

6.4 Final conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

References 129

APPENDICES 140

x



A PUF manual routing steps 141

A.1 Manual placement of PUF stages . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Manual routing of PUFs inter-stage connections . . . . . . . . . . . . . . . 145

B Statistical metrics scripts 148

B.1 Majority counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 Inter-Chip hamming distance . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.3 Phi correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C DL scripts 155

D new-arch scripts 160

xi



List of Figures

2.1 Optical PUF [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Biological PUF [91] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Probability distribution for various categories of delay variation on a 90-nm
hardware chip: (a) wafer to wafer; (b) chip to chip; (c) within chip. The
y-axis on each plot represents the relative density of gates at a given delay
delta [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Wafer maps showing indicators of (a) source/drain resistance and (b) overlap
capacitance [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Coating PUF basic operation [58]. . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Basic operation of Arbiter PUF. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 The feed-forward PUF architecture [62]. . . . . . . . . . . . . . . . . . . . 15

2.8 Interleaved APUF architecture [62]. . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Lightweight secure PUF architecture [61]. . . . . . . . . . . . . . . . . . . . 16

2.10 Basic operation of Ring Oscillator PUF [58]. . . . . . . . . . . . . . . . . . 16

2.11 Ring oscillator with division compensation and comparator compensation
respectively [58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 Logical and electric representation of a RAM cell [58]. . . . . . . . . . . . . 19

2.13 ButterFly PUF schematic circuit [58]. . . . . . . . . . . . . . . . . . . . . . 20

2.14 Latch PUF schematic circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.15 BR-PUF architecture [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.16 PUFs deployed in identification process [10]. . . . . . . . . . . . . . . . . . 24

2.17 Authentication using PUFs with HW CRPs [10]. . . . . . . . . . . . . . . . 25

xii



2.18 Authentication using PUFs with SW CRPs [10]. . . . . . . . . . . . . . . . 25

2.19 Key generation scheme using PUFs [10]. . . . . . . . . . . . . . . . . . . . 26

3.1 Anderson’s PUF architecture [67]. . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Programmable delay line block using 3-input LUT [60]. . . . . . . . . . . . 30

3.3 PDL Delay characterization circuit [60]. . . . . . . . . . . . . . . . . . . . . 31

3.4 APUF with programmable delay lines [60]. . . . . . . . . . . . . . . . . . . 31

3.5 Double APUF architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 a) 2-1 double arbiter PUF architecture, b) 3-1 double arbiter PUF architec-
ture c) 4-1 double arbiter PUF architecture. . . . . . . . . . . . . . . . . . 33

3.7 Authentication procedure of smartfusion2 chip using randomly generated
APUF [80]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Row and Column Relationship between CLBs and Slices [5]. . . . . . . . . 36

3.9 a) Single PUF stage using two 3-input LUTs placed in one 6-input LUT, b)
Internal architecture of the 6-input LUT in Spartan 6 FPGA. . . . . . . . 39

3.10 Symmetric manual placement in experiment 1 . . . . . . . . . . . . . . . . 41

3.11 Experiment 1: a) Percentage of ’1’s in every single PUF response, b) Distri-
bution of intra-chip hamming weights, c)Distribution of inter-chip hamming
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Symmetric manual placement in experiment 2 . . . . . . . . . . . . . . . . 43

3.13 Experiment 2: a) Percentage of ’1’s in every single PUF response, b) Dis-
tribution of intra-chip hamming weights . . . . . . . . . . . . . . . . . . . 44

3.13 Experiment 2: c)Distribution of inter-chip hamming distance . . . . . . . . 45

3.14 Experiment 1: 8 PUFs responses correlation analysis on chip 1 . . . . . . . 46

3.15 Experiment 2: 8 PUFs responses correlation analysis on chip 1 . . . . . . . 46

3.16 Challenge bits correlation analysis with PUF 8 response on chip 1, a) Ex-
periments 1 & 2: b) Experiments 2 & 3 . . . . . . . . . . . . . . . . . . . . 48

3.17 Challenge bits correlation analysis with PUF 8 response on chip 1, a) Ex-
periments 3 & 4: b) Experiments 4 & 4-revisited . . . . . . . . . . . . . . . 50

3.18 Logistic regression accuracy results on PUF 8 of experiments 1, 2, 4, and
4-revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii



4.1 Modeling parameters of standard arbiter PUF . . . . . . . . . . . . . . . . 58

4.2 Step-by-step backside de-capsulation of an FPGA [66]. . . . . . . . . . . . 65

4.3 Accumulated frequency amplitude differences map [66]. . . . . . . . . . . . 66

4.4 Near-field probe close to FPGA die [66]. . . . . . . . . . . . . . . . . . . . 66

4.5 SRAM photonic emission fingerprint [38]. . . . . . . . . . . . . . . . . . . . 67

4.6 Controlling the DUT with the CB and capturing emitted photons from the
DUT by SI-CCD camera and InGaAs-SPAD [84]. . . . . . . . . . . . . . . 68

4.7 Points of laser attack for XOR-PUF [83] . . . . . . . . . . . . . . . . . . . 70

4.8 Points of laser attack for RO-PUF [83] . . . . . . . . . . . . . . . . . . . . 71

4.9 N-Branch Fully Connected with Multiplication Deep Neural Network . . . 76

4.10 1-Branch Fully Connected Deep Neural Network . . . . . . . . . . . . . . . 77

4.11 LR with Linear Decision Boundary Attack Results on 2-1 DAPUF . . . . . 79

4.12 LR and Deep Learning Attacks Results on 3-1 DAPUF . . . . . . . . . . . 80

4.13 Deep Learning Attacks Results on 4-1 DAPUF . . . . . . . . . . . . . . . . 81

4.14 density function of LDA feature analysis for 128 stage 4-input XOR BR PUF 87

4.15 PUF Ecosystem [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.16 BR PUF Optmization Layout on FPGA [21] . . . . . . . . . . . . . . . . . 89

4.17 TBR PUF Optmization Layout on FPGA [21] . . . . . . . . . . . . . . . . 90

4.18 The DNN network architecture used in modeling attacks. All layers are fully
connected layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.19 The Convolutional Layer. Small kernels are convoluted over the input image
and every convolutional window produces one output . . . . . . . . . . . . 95

4.20 Relu and Tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.21 Modeling Attacks Results Against 4-input XOR BR PUF . . . . . . . . . 98

4.22 Modeling Attacks Results Against 4-input XOR TBR PUF . . . . . . . . 100

4.23 5-input XOR BR PUF DL modeling accuracy(%) . . . . . . . . . . . . . . 102

4.24 6-input XOR BR PUF DL modeling accuracy(%) . . . . . . . . . . . . . . 102

4.25 DNN Scalability Analysis On 4-input XOR BR PUF. Showing Modeling
Accuracy of Every Network Configuration . . . . . . . . . . . . . . . . . . 104

xiv



4.26 DNN Scalability Analysis On 4-input XOR TBR PUF. Showing Modeling
Accuracy of Every Network Configuration . . . . . . . . . . . . . . . . . . 106

4.27 DNN Scalability Analysis On 5-input 64 stage XOR BR PUF. Showing
Modeling Accuracy of Every Network Configuration . . . . . . . . . . . . . 107

4.28 DNN Scalability Analysis On 6-input 64 stage XOR BR PUF. Showing
Modeling Accuracy of Every Network Configuration . . . . . . . . . . . . . 107

4.29 The Multi-PUF Architecture (MPUF) introduced in [53] . . . . . . . . . . 109

4.30 64-stage Hierarchical PUF modeling accuracy(%) using SVM and LR . . . 112

5.1 Authentication process using noise bifurcation [86]. . . . . . . . . . . . . . 118

5.2 The 2-to-1 Shuffled-Challenge Hierarchical XOR BR-PUF Architecture . . 119

5.3 Hamming distance between original and modified challenge bits. . . . . . . 121

5.4 The number of changes per challenge bit. . . . . . . . . . . . . . . . . . . . 121

A.1 Repetitive manual placement of PUF 8 . . . . . . . . . . . . . . . . . . . . 142

A.2 Delay difference example of stage 0 . . . . . . . . . . . . . . . . . . . . . . 142

A.3 Delay difference example of stage 12 . . . . . . . . . . . . . . . . . . . . . . 143

A.4 Delay difference example of stage 22 . . . . . . . . . . . . . . . . . . . . . . 143

A.5 Two 3-input LUTs placed into one 6-input LUT . . . . . . . . . . . . . . . 144

A.6 The delay difference between the 6-input LUT outputs . . . . . . . . . . . 144

A.7 Manual routing is done post mapping . . . . . . . . . . . . . . . . . . . . . 146

A.8 Automatic routing is configured to be delay driven . . . . . . . . . . . . . 146

A.9 Automatic routing is configured to be delay driven . . . . . . . . . . . . . 147

xv



List of Tables

2.1 PUFs properties and ideal values. . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Spartan 6 XC6SLX9 FPGA logic resources [4]. . . . . . . . . . . . . . . . . 37

3.2 Experiment 1: PUFs responses correlation on chip 1 . . . . . . . . . . . . . 45

3.3 Experiment 2: PUFs responses correlation on chip 1 . . . . . . . . . . . . . 47

3.4 Delay difference analysis of PUF8 on Chip 1 . . . . . . . . . . . . . . . . . 49

3.5 PUF 8 response correlation with other PUFs responses on chip 1 for exper-
iments 2, 3, 4, and 4-revisited . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 LR Attack results on APUFs in [75] and [76]. . . . . . . . . . . . . . . . . 52

3.7 PUF LR attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Attacks results of Ruhrmair U. et al in [75] and [76] . . . . . . . . . . . . 59

4.2 Attacks results of Tobisch H. et al [86]. . . . . . . . . . . . . . . . . . . . 61

4.3 Attacks results of Xu X. et al [94]. . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Summary of successfully attacked PUFs including ML technique used and
source of CRPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Attacks results of Mahmoud A. et al [59]. . . . . . . . . . . . . . . . . . . . 64

4.6 Summary of successfully attacked PUFs including Side channel techniques
used and source of CRPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Summary of successfully attacked PUFs using fault injection techniques and
source of CRPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 The randomness of 2-1 DAPUFs under attack. . . . . . . . . . . . . . . . . 78

xvi



4.9 The randomness of 3-1 DAPUFs under attack. . . . . . . . . . . . . . . . . 79

4.10 The Randomness of 4-1 DAPUFs under Attack. . . . . . . . . . . . . . . . 80

4.11 Reported results of SVM modeling attack on XOR BR PUF [94]. . . . . . 86

4.12 Implemented 4-input XOR BR & TBR PUFs characteristics . . . . . . . . 92

4.13 Implemented 5-input & 6-input XOR BR PUFs characteristics . . . . . . . 93

4.15 4-input XOR BR PUF modeling accuracy(%) on Chip-1. . . . . . . . . . . 99

4.17 4-input XOR TBR PUF modeling accuracy(%) on Chip-1. . . . . . . . . . 99

4.18 64-stage 5-input XOR BR PUF DL modeling accuracy(%). . . . . . . . . . 103

4.19 64-stage 6-input XOR BR PUF DL modeling accuracy(%). . . . . . . . . . 103

4.22 DNN Scalability Analysis On 4-input XOR BR and TBR PUFs. Showing
network configuration that achieved best accuracy and minimum training
time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.23 PUF characteristics of Hierarchical XOR BR-PUF . . . . . . . . . . . . . . 109

4.24 DL modeling accuracy(%) of obfuscated 64-Bit 4-input XOR BR PUF ar-
chitectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.25 PUF characteristics of Hierarchical DAPUF . . . . . . . . . . . . . . . . . 110

4.26 DL modeling accuracy(%) of obfuscated 64-Bit DAPUF architecture . . . . 111

5.1 PUF characteristics of 2-to-1 Shuffled-Challenge Hierarchical XOR BR PUF 120

5.2 DL modeling accuracy(%) of 2-to-1 Shuffled-Challenge Hierarchical XOR
BR PUF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xvii



Abbreviations

ANN Artificial Neural Network 21

APUF Arbiter PUF 13

ASIC Application-Specific Integrated Circuits 14

BR-PUF Bistable Ring PUF 21

CLBs configuration Logic Blocks 36

CMOS Complementary Metal–Oxide–Semiconductor 18

CRPs Challenge Response Pairs 2

DL Deep Learning iv, 1

ECC Error Correction Coding 2

ES Evolution Strategy 56

FC Fully Connected 75

FF-APUFs Feed-Forward Arbiter PUFs 14

FPGAs Field Programmable Gate Arrays iv, 1

FSM Finite State Machine 87

HD Hamming Distance 38, 110

IoT Internet of Things iv, 3

xviii



IP Intellectual Properties 1

LDA Linear Discriminant Analysis 86

LER Line Edge Roughness 9

LFSR Linear-Feedback Shift Register 37

LR Logistic regression 14

LTF Linear Threshold Function 83

LUT LookUp Table 29

ML Machine Learning iv

MOSFET Metal Oxide Semiconductor Field Effect Transistor 18

NVM Non-Volatile Memory 2

PDL Programmable Delay Lines 29

PGG Poly-Gate Granularity 9

PUF Physical Uncolnable Function iv

RDD Random Discrete Doping 9

RFID Radio-Frequency Identification 24

RO-PUFs Ring Oscillator PUFs 16

SPI Serial Peripheral Interface 37

SRAM Static Random-Access Memory 18

SVM Support Vector Machine 14

TBR-PUF Twisted Bistable Ring PUFs 21

XOR-APUF XOR Arbiter PUF 14

xix



Chapter 1

Introduction

This chapter presents a brief introduction to PUFs, followed by the dissertation motivation,
problem statement, and objectives.

The spread of technological applications that facilitate our tasks and improve interac-
tion and communication among people is ongoing in our world. These applications have
an essential role in our daily basis activities, covering a wide range of fields, from military
equipment to the personal applications used in cars and smart homes. This growth of our
dependence on technology has made security an important issue that needs to be handled
properly to maintain the safety of personal data and Intellectual Properties (IP). Hence,
security impacts the full stack of modern applications, starting from the top software layers
and communication protocols down to the hardware chips.

The field of hardware security focuses on providing cryptographic functionalities on
hardware and protecting hardware chips against different types of attacks. For example,
attacks may be launched to get an insight into the hardware implementation of a certain
intellectual property or read some protected and sensitive information to break crypto-
graphic implementations. This dissertation focuses on analyzing the implementation of se-
cure physical unclonable functions as a promising hardware security primitive on FPGAs.
Furthermore, it studies the impact of advanced modeling attacks using DL techniques on
complex PUFs architectures that showed significant resistance against conventional ma-
chine learning (ML) modeling techniques. Finally, based on the understanding of how DL
attacks work, new PUF architectures are implemented to countermeasure these attacks.

1



1.1 Background and motivation

For more than a decade now, PUFs remains one of the promising proposed approaches
to support secure and reliable solutions in hardware security. A PUF as defined in [10]
is: “A physical entity that uses production variability to generate a device-specific output
which usually is a binary number”. PUFs depend on the variability in the hardware
production (e.g. silicon fabrication) process, which cannot be controlled. This variability
produces local mismatches among various chip components. As a result, PUF circuits
exploit these local mismatches and device intrinsic properties to produce binary values that
are unique for every chip. Therefore, PUFs are a chip fingerprint and can be used in a wide
range of security applications, such as identification, authentication, and cryptographic key
generation.

PUFs have two main advantages compared to other hardware security mechanisms using
on-chip and off-chip storage. Firstly, PUFs are more secure because cryptographic keys
and secret information are inherently stored within the chip silicon not stored in a digital
form on the chip. This property makes PUFs less prone to physical attacks that allow the
attacker to read the content of registers and memories on-chip to extract the keys. Also,
using off-chip memory to store keys requires a more costly secure environment otherwise,
an attacker can listen to the data bus between the external memory and chip and easily
extract the keys. Secondly, PUFs are a cheaper solution than storage mechanisms that
use costly on-chip Non-Volatile Memory (NVM), or battery-backed RAMs [36]. Moreover,
additional costs are needed to provide a secure environment to transfer the generated key
back to the chip in case of using an off-chip storage mechanism. Consequently, using PUFs
minimizes the number of vulnerable points, at which an attack can be launched. On the
other hand, the main PUF disadvantage is that it cannot be erased, unlike key storage
schemes. Once a PUF is built on a chip, its outcome cannot be destroyed because it
is dependent on chip silicon. Hence, breaking PUF security causes permanent damage in
current architectures. PUFs can be used in three main types of applications, identification,
authentication, and key generation. PUFs are used to provide unique IDs for every chip
without the need to be externally generated and stored in an internal memory as discussed
before [30]. Authentication is related to identification since it is the process of verifying the
authenticity of a certain ID. This can be done by using Challenge Response Pairs (CRPs),
where challenges are the inputs to the PUF circuit, and responses are the designated PUF
output [35]. Furthermore, there are many proposals that suggested using PUFs to generate
cryptographic keys [79][32][18][57]. However, Error Correction Coding (ECC) techniques
and helper data are used to overcome PUFs noisy responses, because generated keys cannot
tolerate errors.

2



It is important to realize that PUFs are not perfect. There exist many challenges to de-
sign and deploy PUFs in different applications and these challenges are the key motivations
to our research. For example, implementing ideal PUFs on FPGAs faces several challenges
due to low-level placement and routing constraints, which affects PUFs architectures and
force routing differences to be more dominant on PUFs response than intrinsic chip prop-
erties. As a result, the randomness and non-predictability of PUFs response is reduced,
which facilitates cloning PUFs using modeling techniques. In addition, PUFs encounter
errors in their output due to circuit noise, environmental changes (temperature and voltage
differences), and aging effects. Hence, architectural enhancements must be implemented
to counter these effects and increase the PUFs reliability performance. Finally, PUFs
are not totally prone to attacks aiming at cloning its response. Many successful attack
schemes were proposed in the literature using machine learning algorithms, side-channel
techniques, and fault injection to break the PUF secret and clone its behavior. Ultimately,
although many PUF architectures were proposed in literature last decade, these previously
mentioned challenges are still present and PUFs remain active points of research in the
hardware security area.

1.2 Problem statement and objectives

Applications of the IoT and embedded devices exist in every aspect of our modern life.
Additionally, more personal and sensitive data are generated every minute that needs to be
protected against malicious use of unwanted parties. Hence, there is a real need for PUFs
as a cryptographic primitive to fulfill the increasing security demands of IoT applications
that have limited power and hardware resources.

Although PUFs have been there for nearly two decades now, they are not widely de-
ployed in security applications due to many challenges related to their reliability and vulner-
ability to attacks. Moreover, part of the PUF use cases requires additional post-processing
of helping data to overcome some of its shortcomings, which contradicts its main advantage
as a simple self-contained security primitive that can operate in a limited resource environ-
ment. In previous research, many modeling attacks were proposed using ML techniques to
break PUFs architectures and new PUFs were proposed to countermeasure these attacks.
however, there exists limited effort to understand the bounding limit of modeling attacks
and the reasoning behind their success in breaking PUFs security. Understanding the rea-
sons for successful attacks will clearly lead the efforts of designing new PUF architectures
that are immune to such attacks.

Hence, there are three main objectives of this research. The first objective is to provide

3



a comprehensive study on PUFs implementation on FPGAs driven by manual routing
techniques and statistical analysis. The second objective is to advance modeling attacks
using deep learning techniques against complex PUF architectures, which showed resistance
to conventional ML techniques. Furthermore, the research aims to understand why such
attacks work as an initial step to achieve the third objective of developing new PUF
architectures that countermeasure modeling attacks while minimizing the overhead needed.

These research objectives face a number of challenges. Firstly, the constraints imposed
by FPGAs, which affect implementing balanced and secure PUFs with minimum over-
head in terms of hardware, area, and power consumption. Another challenge is extending
modeling attacks on complex PUFs (e.g. XOR arbiter PUFs, feed-forward arbiter PUFs)
without adding constraints to ease architecture complexity like what was done in previous
research [75][76]. Furthermore, providing a modeling technique to attack PUF architec-
tures for which we cannot derive an accurate mathematical model for its operation. Finally,
finding computationally efficient techniques to hide the relationship between PUF input
challenge bits and delay function in delay-based PUFs is an additional challenge in order
to countermeasure attacks on PUFs.

Finally, the target PUFs in this research are delay-based and memory-based PUFs
and their variations because these are the types of PUFs that can be realized on FPGAs.
Additionally, they are considered among the strong performing PUFs in literature [57][42].

1.3 Dissertation overview

This Dissertation is divided into seven chapters. Chapter 2 gives an overview of PUFs. It
specifies PUF types, sources of mismatches in silicon that constitute the theoretical base
of electronic PUFs, PUFs properties and use of PUFs in different applications. Chapter 3
discusses the work done on implementing delay-based PUFs on FPGAs. Chapter 4 shows
the modeling attacks on PUFs using deep learning techniques. Chapter 5 gives details of
new PUF architectures to countermeasure modeling attacks. Chapter 6 is the conclusion
and future work.

4



Chapter 2

Overview of Physical Unclonable
Functions (PUFs)

This chapter provides a detailed overview of PUF types and applications. PUFs were
categorized from different perspectives in the literature. The first perspective focused
on how they function and their operation principle (e.g. electronic Vs. non-electronic
PUFs, analog measurement PUFs Vs. digital measurement PUFs, etc. . . ) [10][36]. Second
perspective categorized PUFs based on their strength against brute force attacks and the
complexity of input-output relation (e.g. Strong PUFs Vs. Weak PUFs) [76][32][77][94].
Both perspectives will be discussed in detail in the next subsection to provide reasoning
of which types were chosen in our research work. Another subsection gives an overview of
PUFs properties, which are used to assess PUFs performance. Finally, the last subsection
is dedicated to discussing the deployment of PUFs in different security applications and
modes of operation.

2.1 PUF Types

2.1.1 Non-Electronic PUFs

A non-electronic PUF is a one whose construction and/or operation is inherently non-
electronic. However, very often electronic and digital techniques will be used at some point
anyway to process and store these PUFs’ responses in an efficient manner. Optical PUF
was introduced by in [71]. As shown in Figure 2.1, its idea is based on reflecting a HeNe

5



Figure 2.1: Optical PUF [10]

laser beam on a surface to generate a speckle pattern that is captured by a CCD camera
for digital processing. A Gabor hash is applied to the observed speckle pattern as a feature
extraction procedure. Similarly, Paper PUFs introduced in [12][13], used the reflection of
a focused laser beam by the irregular fiber structure of a paper document as fingerprint
of that document to prevent forgery. Furthermore, there exist many non-electronic PUFs
proposed in literature like CD PUFs, which depends on deviations in measured lengths of
lands and pits on CDs [34], Magnetic PUFs [73], which exploit the uniqueness of the particle
patterns in magnetic media (e.g., in magnetic swipe cards where they are commercially used
to prevent credit card fraud [2]), and RF-PUFs, unlike optical PUFs, it observes near-field
scattering of electromagnetic waves using a matrix of RF antennas [19]. Finally, Biological
PUF was introduced in [91], which uses the spatio-temporal behavior of colonized T cells
as a source of randomness. Figure 2.2 shows the steps of biological PUF operation, where
the first step is to create individual wells that contain cultured and suspended T cells. The
T cells are allowed to form colonies for ∼ 20 hours. Finally, T cell population is imaged
using an imaging system with an on-stage incubator, and the processed image is used to
generate the Bio-PUF.

6



Figure 2.2: Biological PUF [91]

2.1.2 Electronic PUFs

Electronic PUFs depend on the measurement of an electronic quantity, unlike non-electronic
PUFs discussed in the previous subsection. The variations of measurements depend on the
mismatches between all the components within every chip to generate its unique binary
value. As previously mentioned, this value will also differ from chip to chip due to the
mismatches differences between chips. Although MOS transistors are the most common
circuit element source for mismatches used to realize silicon PUF circuits [10], there also
exist other elements used like memristors [65]. The two main types of mismatch sources
are extrinsic (global) mismatch sources and (intrinsic) mismatch sources [8]. Global mis-
matches occur due to unintentional shifts in contemporary process conditions, while local
mismatches occur due to the atomic-level differences between devices even though the
devices may have identical layout geometry and environment [8].

2.1.2.1 Global mismatches

As mentioned above, global mismatches are associated with the operating dynamics of a
modern fabricator. These mismatches include lot-to-lot, wafer-to-wafer, and chip-to-chip
variations depending on the cause of variability [8] [10]. Figure 2.3 shows that chip-to-chip
delay variation is more significant compared to wafer-to-wafer and within-chip variations,
hence chip-to-chip variations have more impact on overall global variations. There are dif-
ferent sources that cause chip-to-chip variability like temperature gradients during thermal
annealing, photoresist development, photolithographic variations, and etching [36].

7



Figure 2.3: Probability distribution for various categories of delay variation on a 90-nm
hardware chip: (a) wafer to wafer; (b) chip to chip; (c) within chip. The y-axis on each
plot represents the relative density of gates at a given delay delta [8].

Furthermore, hardware chips with the same delay can have different characteristics as
shown in Figure 2.4. This figure illustrates across-wafer variability in structures that are
indicators of two different transistor attributes: source-drain resistance and gate-to-source
and gate-to-drain overlap capacitance. A chip coming from the center of the wafer can
exhibit the same nominal delay as a non-center chip, although source/drain resistance,

8



overlap capacitance, and component transistor parameters are different. Such differences
may, in turn, cause divergence in circuit response to across-chip voltage and temperature
sensitivity. This global effect can lead to biased PUFs, which produce predicted outputs
and should be avoided.

2.1.2.2 Local mismatches

Local mismatches occur due to the stochastic atom level differences resulting from inher-
ently process variability [10]. MOSFETs are influenced by three major local mismatch
sources [87]:

• Random Discrete Doping (RDD) in the channel region.

• Line Edge Roughness (LER) which describes the gate length variation along the
width.

• Poly-Gate Granularity (PGG) which is the effect of poly-silicon grain boundary dis-
tribution on the threshold voltage.

Local mismatches are assumed to follow a Gaussian distribution [10], hence PUFs rely
on these types of mismatches to realize a random function and produce unique values for
every chip. There are other mismatches that are not a result of the variability of hardware
fabrication, but they show up during the operation of the hardware chip due to aging
effects, voltage drops, and temperature differences among electronic components. PUFs
designers must consider these temporal mismatches and make sure it will not affect the
correct operation of PUF cells.

2.1.2.3 Analog Electronic PUFs

As mentioned before, analog PUFs exploit the chip variability by constructing circuits that
measure analog quantities like voltage, current, power, capacitance, and constitute digital
binary output depending on measured values.

2.1.2.3.1 Vt PUFs

Vt PUFs proposed in [52] has a simple principle of operation. Many equally designed
transistors are laid out in an addressable array. The addressed transistor drives a resistive

9



load and because of the effect of manufacturing variations on the threshold voltages (Vt)
of these transistors, the current through this load will be partially random. The voltage
over the load is measured and converted to a bit string with an auto-zeroing comparator.

Figure 2.4: Wafer maps showing indicators of (a) source/drain resistance and (b) overlap
capacitance [8].

10



2.1.2.3.2 Power Distribution PUFs

Power distribution PUFs introduced in [39], are based on the resistance variations in the
power grid of a chip. Voltage drops and equivalent resistances in the power distribution
system are measured using external instruments. It is observed that these electrical pa-
rameters are affected by random manufacturing variability, which results in measurement
variations.

2.1.2.3.3 Coating PUFs

Coating PUFs were introduced in [88] by considering the randomness of capacitance mea-
surements in comb-shaped sensors in the top metal layer of an integrated circuit. Further-
more, random elements are explicitly introduced by means of a passive dielectric coating
sprayed directly on top of the sensors. Moreover, since this coating is opaque and chem-
ically inert, it offers strong protection against physical attacks as well. Figure 2.5 shows
the basic operation of coating PUF.

2.1.2.3.4 LC PUFs

LC PUFs proposed in [33] use capacitance as the analog value to measure. It is constructed
as a small (≈ 1mm2) glass plate with a metal plate on each side, forming a capacitor, se-
rially chained with a metal coil on the plate acting as an inductive component. Together
they form a passive LC circuit that will absorb an amount of power when placed in an
RF field. A frequency sweep reveals the resonance frequencies of the circuit, which depend
on the exact values of the capacitive and inductive component. Due to manufacturing
variations, this resonance peak will be slightly different for equally constructed circuits.

2.1.2.4 Intrinsic PUFs

The term intrinsic PUF was introduced in [58] to describe electronic PUFs which have two
main properties:

• All measurement equipment is fully integrated into the embedding device. So PUF
responses can be extracted by hardware without the need for external instruments
and without exchanging challenge and response messages outside the chip.

11



Figure 2.5: Coating PUF basic operation [58].

• PUF architecture should consist of procedures and primitives that are naturally avail-
able for the manufacturing process of the embedding device. So PUF construction
does not require additional overhead like extra manufacturing steps or specialized
components.

As a result, Intrinsic PUFs are the most widely proposed architectures in literature because
it is more secure and easier to realize on silicon chips without equipment and processing
overhead. There exist two main types of intrinsic PUFs, where they both depend on delay
measurements by either using an arbitration circuit or the bi-stability property of memory
cells.

12



2.1.2.4.1 Delay-Based Intrinsic PUFs

This subsection provides an overview of the main categories of delay-based intrinsic PUFs.

2.1.2.4.1.1 Arbiter PUF

The basic idea of Arbiter PUF (APUF) is to create two identical paths on a chip and
introduce a digital race between these paths. An arbiter circuit is realized to determine
the winner of this race. Since the paths are symmetrical, so the result will not be known
in advance. The variations in chip fabrications will affect the physical parameters that
control the exact delay of every path, hence the arbiter output will be random and unique
for every chip. Figure 2.6 shows the first design proposed in [51], [17] using switch blocks

Figure 2.6: Basic operation of Arbiter PUF.

to implement the identical paths and latch or flip-flop to implement the arbiter circuit.
Every switch block has two inputs and two outputs. A parameter challenge bit determines
if the switch block will allow a straight or switched connection to the next block. The
parameter settings of switch blocks are the PUF challenge, and the arbiter output is the
PUF response. After setting the paths using challenge bits, an input high signal is prop-
agated through the stages until it reaches the arbiter. An edge-triggered flipflop does the
arbitration by connecting one path to its input data and the other path to the input clock.
If the first path is faster, input data will be set to ‘1’ before the positive edge reaches
the input clock and PUF response becomes ‘1’. On the contrary, if the path feeding the
input clock is faster, the edge change will occur before the input signal is set to ‘1’ and
PUF response will be ‘0’. The main problem of the initial version of the arbiter PUF is
the assumed linear relationship between challenge bits and PUF response. The total path

13



delay may be represented by the sum of all switch blocks delays. Hence, this design was
easily broken by machine learning modeling attacks. Using conventional machine learning
techniques like Logistic regression (LR), and Support Vector Machine (SVM), mathemat-
ical models were built to successfully predict the PUF output after observing a number of
CRPs. These modeling attacks were successful and could achieve 99% prediction accuracy
after observing 6500 CRPs on Application-Specific Integrated Circuits (ASIC) and FPGA
implementations of 64 stage APUF and achieving the same accuracy using 78000 CRPs
on ASIC and FPGA implementations of 128 stage APUF [76]. Research on APUFs con-
tinued to find countermeasures against modeling attacks by increasing the complexity of
challenge response relationship. Adding non-linearities in the delay paths makes it harder
to predict APUF responses. Consequently, many variations of APUFs with more complex
architectures were proposed in the literature. For example, Feed-Forward Arbiter PUFs
(FF-APUFs), proposed in [17] [62] is shown in Figure 2.7. It adds non-linearity by adding
loops in the arbiter paths. This results in making some challenge inputs determined by
intermediate arbiters that evaluate the delay at an intermediate point of the delay path.
Hence these stages inputs are not directly dependent on input challenge bits, but they
depend on the accumulated delay of the previous stages. Another variation of APUF
architecture proposed in [82] is XOR Arbiter PUF (XOR-APUF). It introduces more pa-
rameters and increases the non-linearity of the PUF architecture using the XOR function.
The main idea is to use many standard APUFs in parallel. The same input challenge vector
is applied to all PUFs and their outcomes are XORed together to produce XOR-APUF re-
sponse. Furthermore, other proposals suggested adding non-linearity by combining the use
of XOR functions and complicate challenge response relationship as shown in Figure 2.8
of interleaved APUF architecture proposed by Majzoobi M. et al in [62]. Its architecture
uses R parallel rows of APUFs, where R is an even integer. The challenge bits are inter-
leaved between odd and even rows so that the last challenge bit of the PUFs located in
even-numbered rows are connected to the first challenge bit of the PUFs in the odd rows.
Generally, the i-th challenge bit of the PUFs in even rows are connected to the (N - i)-th
challenge bit of the PUFs in odd rows where N is the total number of challenges in one row.
Eventually, the outputs are combined using R-input XOR gates and leave-one-out logic so
that a structure consisting of R + 1 rows, R ‘R-input’ XORs generate R PUF responses.
These architectural modifications make it difficult to model the PUFs using conventional
machine learning techniques, but they don’t fully prevent it. More details on this matter
are provided in chapter 4.

14



Figure 2.7: The feed-forward PUF architecture [62].

Other approaches adopted the use of extra circuitry and/or hash functions to either
complicate challenge response relationship or use the output response as the input seed to
the hash function. Figure 2.9 shows lightweight secure PUF introduced in [61]. It is like
XOR PUFs in the sense that it includes several arbiter PUFs in parallel. The difference is
that it adds more logic at the input and output of the PUF to hide the details of challenge
response mapping. Hence, for every arbiter PUF, a unique challenge input is derived from
the global input challenge bits, opposite to the XOR arbiter case where all arbiter PUFs
have the same challenge input. It is obvious that this technique requires more resources in
terms of hardware and power consumption and takes more time to generate PUF output.

Figure 2.8: Interleaved APUF architecture [62].

15



Figure 2.9: Lightweight secure PUF architecture [61].

2.1.2.4.1.2 Ring Oscillator PUF

Ring Oscillator PUFs (RO-PUFs) use another approach to measure the delay difference
between symmetric paths. A ring oscillator circuit inverts the output of the digital delay
line and feeds it back to the input, hence measuring the frequency generated by every path
is likely the same as measuring the exact path delay. Furthermore, the exact frequency
will be partially random and dependent on every chip.

Figure 2.10: Basic operation of Ring Oscillator PUF [58].

16



Figure 2.11: Ring oscillator with division compensation and comparator compensation
respectively [58].

As shown in Figure 2.10 , the basic architecture of ring oscillator PUF includes an
edge detector of the positive oscillator edges, and a counter of these edges. The counter
output is considered the PUF response. The die temperature and supply voltage have
a non-negligible impact on delay-based PUFs [58]. It is more apparent in ring oscillator
PUFs than arbiter PUFs because, in the latter type, a differential measurement is im-
plicitly performed by considering the two delay lines simultaneously. In ring oscillator
PUFs, compensation is needed to overcome this impact. Figure 2.11 shows two compen-
sation techniques proposed in [28], [29]. The first one is to divide the obtained counter
values of two simultaneously measured oscillators. Hence, The PUF response will be more
robust. The second technique proposed in [82] implements several oscillators in paral-
lel and the challenge is to choose two of these oscillators to measure their frequency. A
comparator is used at the final level to determine the final response. The main problem
with ring-oscillator PUFs is their relatively small input challenges space, which is equal
to log2(number of oscillators). Hence, it is considered as a weak PUF and must use extra
processing (e.g. hash functions) to hide and protect the PUF output against modeling
and side-channel attacks. These attacks proved to be successful against this type of PUFs
as will be discussed in chapter 4. However, other variants like RO sum PUF [98] were
introduced to increase the PUF CRP space.

17



2.1.2.4.2 Memory-Based Intrinsic PUFs

Memory-based PUFs are another class of intrinsic PUFs, where unique responses are gen-
erated using settling state of digital memory primitives. A digital memory cell is typically
a digital circuit with more than one logically stable state. By residing in one of its stable
states it can store information, e.g., one binary digit in case of two possible stable states.
However, if the element is brought into an unstable state, it is not clear what will happen.
It might start oscillating between unstable states or it might converge back to one of its
stable states. In the latter case, it is observed that specific cells heavily prefer certain
stable states over others. Moreover, this effect can often not be explained by the logic
implementation of the cell, but it turns out that internal physical mismatch, e.g., caused
by manufacturing variation, plays a role in this. For this reason, the meta-stability nature
of memory cells is a good candidate for a PUF response.

2.1.2.4.2.1 SRAM PUFs

Static Random-Access Memory (SRAM) is a type of digital memory consisting of cells
each capable of storing one binary digit. An SRAM cell, as shown in Figure 2.12 is log-
ically constructed as two cross-coupled inverters. Hence, leading to two stable states. In
regular Complementary Metal–Oxide–Semiconductor (CMOS) technology, this circuit is
implemented with four Metal Oxide Semiconductor Field Effect Transistor (MOSFET)s,
and an additional two MOSFETs are used for read/write access as shown in Figure 2.12.
It is not clear from the logical description of the cell at what state it will be right after
the power-up of the memory. It is observed that some cells preferably power-up storing a
zero, others preferably power-up storing a one, and some cells have no real preference, but
the distribution of these three types of cells over the complete memory is random.

As it turns out, the random physical mismatch in the cell, caused by manufacturing
variability, determines the power-up behavior. It forces a cell to 0 or 1 during power-up
depending on the sign of the mismatch. If the mismatch is very small, the power-up state is
determined by stochastic noise in the circuit and will be random without a real preference.
The SRAM PUFs were proposed in [32] and [40] as a promising security primitive that
can be easily implemented on FPGAs, but it turns out that this type of PUFs faces two
problems:

• In most common FPGAs, all SRAM cells are hard-reset to zero directly after power-
up. Hence, all randomness is lost.

• It is not efficient to power-up the device every time a PUF response is required.

18



Figure 2.12: Logical and electric representation of a RAM cell [58].

However, memory-based PUFs are more resistant to modelling attacks [58], because
the physical random elements contributing to different CRPs are mostly independent of
each other. Consequently, other similar schemes were proposed to mimic SRAM operation
and avoid its previously mentioned problems.

2.1.2.4.2.2 Butterfly PUFs

Butterfly PUFs were introduced in [50]. The behavior of an SRAM cell is mimicked in
the FPGA reconfigurable logic by cross-coupling two transparent data latches. The but-
terfly PUF cell schematic is shown in Figure 2.13. The circuit allows two logically stable
states. However, using the clear/preset functionality of the latches, an unstable state can
be introduced after which the circuit converges back to one of the two stable states. This
is comparable to the convergence for SRAM cells after power-up but without the need
for an actual device power-up. The preferred stabilizing state of such a butterfly PUF
cell is determined by the physical mismatch between the latches and the cross-coupling
interconnect. It must be noted that due to the discrete routing options of FPGAs, it is not
trivial to implement the cell in such a way that the mismatch by design is small. This is a
necessary condition if one wants the random mismatch caused by manufacturing variability
to have any effect.

19



Figure 2.13: ButterFly PUF schematic circuit [58].

2.1.2.4.2.3 Latch PUFs

Latch PUF is an IC identification technique proposed in [81], which is very similar to
SRAM PUFs and butterfly PUFs. Instead of cross-coupling two inverters or two latches,
two NOR gates are cross-coupled as shown in Figure 2.14, constituting a simple NOR latch.
By asserting a reset signal, this latch becomes unstable and then converges to a stable state
depending on the internal mismatch between the electronic components. Equivalently to
SRAM PUFs and butterfly PUFs, this can be used to build a PUF. Also, Flip-Flop PUFs
introduced in [56] uses a similar technique.

Figure 2.14: Latch PUF schematic circuit.

20



Figure 2.15: BR-PUF architecture [16].

2.1.2.4.3 Hybrid Intrinsic PUFs
Proposals of new PUF architectures tried to merge between delay-based and memory-based
approaches to design a stronger PUF with more resistance against modelling attacks and
large challenge space, so CRPs cannot be exhaustively read by the attackers. One of these
proposals is Bistable Ring PUF (BR-PUF), introduced in [16][15]. Its basic idea is that the
output of any given inverter ring with an even number of inverters has only two possible
stable states. This is similar to memory-based PUFs operation except that challenge bits
are inserted to select which path to be used at every stage as shown in Figure 2.14. The
sequence of operations starts by setting reset signal to 1, then apply a 64-bit challenge
signal and wait for the bistable ring stages to be in 0 state, then set reset signal to low and
wait for the ring output to be stable before reading it out. One problem of BR-PUFs is that
it takes a longer time to stabilize, which is an undesirable property of PUFs. Furthermore,
BR-PUFs implementations on FPGAs showed an output bias problem as reported in [78].
As a result, other variations of BR-PUFs were proposed like Twisted Bistable Ring PUFs
(TBR-PUF) [78] and XOR BR-PUFs in [94]. The latter was proposed after successful
modeling attacks were reported against BR-PUFs and TBR-PUFs using SVM and single
layer Artificial Neural Network (ANN) (More details on these attacks in chapter 4).

21



2.1.2.5 Strong PUFs Vs. Weak PUFs

As mentioned earlier, the notation of strong PUFs vs. weak PUFs has been widely used in
literature to distinguish between different PUFs architectures based on their input-output
space and their vulnerability against brute force attacks. Weak PUFs essentially have
a limited challenge space, which allows an attacker to exhaustively read out all CRPs if
possible. Memory-based PUFs and some variations of RO-PUFs are examples of weak
PUFs. They are mainly used for internal key derivation in security hardware under the
assumption that attackers must not be able to access the internal response of the PUF.
Additional processing and circuitry might be needed to fulfill this assumption like using
hash functions to hide PUF response and hardware replications to overcome noisy outputs.
This adds timing, hardware, and power consumption overheads to realize the required
security function. On the other hand, strong PUFs, like APUF, BR-PUF, have a very large
challenge space that cannot be exhaustively read out by attackers. Their challenge-response
mechanism should be complex in the sense that it is hard to derive unknown CRPs from a
set of known CRPs using modeling attacks. Unlike weak PUFs, strong PUFs usually allow
access to its CRP interface, i.e., anyone holding the PUF or the PUF embedding hardware
can apply challenges and read out responses. Recently, strong PUFs have turned out to be a
very versatile cryptographic and security primitive [94]. It can be employed for internal key
derivation, like weak PUFs. They can also be deployed in different advanced cryptographic
protocols, ranging from identification [71][52] to key exchange [11][90] to oblivious transfer
[11]. Hence in this research, we focus our analysis on intrinsic PUFs because they can be
realized on FPGAs. Furthermore, we add more highlights on strong intrinsic PUFs because
they show a promising comprehensive solution in different cryptographic applications with
minimum hardware overhead and power consumption.

2.2 PUFs properties

PUFs must conform to some specific properties so that they can fulfill security requirements
to be deployed in cryptographic applications. These properties assess the uniqueness,
randomness, and unpredictability of PUFs. Table 2.1 gives a summary of these properties
and their values for an ideal secure PUF.

All performance metrics used to assess PUFs architecture compare their values to the
ideal values presented in Table 2.1. This research uses the same methodology to assess
implemented PUFs performance and suggests new metrics to guide the designer through
implementing more secure PUFs on FPGAs as will be demonstrated in chapter 3.

22



Table 2.1: PUFs properties and ideal values.

Property Description Identifier Ideal Value
Uniformity The percentage of 1’s and 0’s in PUF re-

sponse
µ 50%

Reliability The percentage of erroneous readings of
the same response bit (in normal condi-
tions and in environmental variations of
temperature and voltage).

N/A 0%

Correlation be-
tween bits

Correlation between PUFs responses on
the same chip. Ideal PUFs should not
have neighboring outputs that have influ-
ence on each other.

Rxx 0

Uniqueness Correlation between PUFs responses on
different chips.

HDinter 50%

2.3 PUF applications

As was mentioned in the previous chapter, PUFs have two main advantages over other
hardware security mechanisms that use on-chip and off-chip storage. Firstly, providing a
secure way to inherently store sensitive data within the chip silicon. Furthermore, PUFs
provide a cheaper solution than expensive storage mechanisms that use on-chip NVM.
Moreover, additional costs are needed to provide a secure environment to transfer the
generated key back to the chip in case of using an off-chip storage mechanism. Conse-
quently, using PUFs minimizes the number of vulnerable points, at which an attack can
be launched. Hence, there is a wide spectrum of applications, in which, PUFs can be
deployed. In this section, three main applications of PUFs are discussed [10][58]. Namely,
Identification, authentication, and key generation. This subsection gives a brief overview
of the use of PUFs in these applications

2.3.1 Identification

The identification process assigns IDs to unknown entities, so every entity must have its
unique ID. When PUFs are used in identification systems, they eliminate the need to
generate IDs externally and replace the internal NVM on which the ID would be stored.
Hence, PUFs can reduce costs by reducing fabrication complexity and by providing the
ID from the intrinsic properties of the chip. This is a huge advantage for applications

23



Figure 2.16: PUFs deployed in identification process [10].

requiring cheap chips and minimum processing and power consumption. For example, the
use of Radio-Frequency Identification (RFID) tags instead of bar codes. Figure 2.16 shows
how PUFs can be deployed in identification applications. The identification system must
be tolerant because the output of PUFs is noisy. Thus, the identification starts with the
enrollment phase, where the output of the PUF is stored in a database. During a regular
identification process, the PUF is read out again. The received response is accepted if its
hamming distance with a certain entry in the database is less than a specific tolerance
threshold.

2.3.2 Authentication

Authentication is the process of verifying a claimed ID of a certain entity. The use of PUFs
in the authentication process, introduce the idea of using CRPs within an authentication
protocol. Figure 2.17 shows an authentication process using PUFs with hardware CRPs.
Challenges are considered as questions sent to the concerned entity, and PUF response is
the correct answer to this question. This requires that PUFs must have a large challenge
space so an attacker cannot replay or readout all CRP pairs. Furthermore, error correction
codes and helper data are used to overcome noisy PUF responses because the identification

24



process is not error-tolerant.

Figure 2.17: Authentication using PUFs with HW CRPs [10].

Another approach using PUFs with SW CRPs (responses are not generated by hardware
PUF) suggested that PUF responses can be used as private keys to an encryption algorithm
whose output is the response to the identification question as shown in Figure 2.18. The
server side will decrypt the response using a public key to make sure it is the expected
value.

Figure 2.18: Authentication using PUFs with SW CRPs [10].

25



While it is harder to realize error-free PUF with hardware CRPs, the time, energy,
and hardware overhead introduced by PUF with software CRP is significantly higher.
Hence, it depends on the authentication application and the type of PUF architecture
used. Furthermore, the use of helper data and error correction mechanisms exposes the
system to attacks that target both data to reveal the secret information. The topic related
to these types of attacks is beyond the scope of this dissertation.

2.3.3 Key generation

PUFs can be used to generate keys for cryptographic algorithms. While cryptographic
applications have zero tolerance with errors, PUFs output are noisy and introduce some
errors. Hence, error correction codes and helper data are used together to guarantee that
PUFs give the exact correct response every time. Furthermore, helper data can be stored
on-chip or externally on a server. Figure 2.19 shows a basic concept of using PUFs in key
generation.

Figure 2.19: Key generation scheme using PUFs [10].

26



Finally, the work done in this dissertation puts more effort into the development of
new strong and hybrid PUF architectures. consequently, targeting authentication and
identification applications. However, strong PUFs with large CRP space can be deployed
in key generation schemes as well.

27



Chapter 3

Correlation driven PUF
implementation on FPGAs using
manual routing and placement

This chapter gives a detailed overview of two main aspects that have a direct relation to this
research. The first section reviews the proposed techniques to implement PUFs on FPGAs,
specifically delay-based intrinsic PUFs. Although there are reported implementations of
other types of PUFs on FPGAs (e.g. memory-based and RO PUFs), delay-based PUFs
remain in focus because of its large CRP space and complex input-output relationship. The
second and third sections discuss in detail our work of implementing delay-based arbiter
PUFs guided by manual routing and placement and using the phi coefficient to help route
the most influential stages on the PUF response.

3.1 Overview of PUF implementations on FPGAs

In modern hardware systems, FPGAs have been proposed as a reasonable candidate to pro-
vide co-processing functionalities like accelerating dedicated computations and/or imple-
ment cryptographic functionalities on hardware. The main justifications for using FPGAs
against ASICs are the flexibility and reconfigurability features of FPGAs. Moreover, the
short time to market, which enables designers to quickly implement competitive products
and easily reconfigure their design to solve any detected defects. Hence, FPGAs provide
a cheap and quick solution to investigate PUF different architectures in research. On

28



Figure 3.1: Anderson’s PUF architecture [67].

the other hand, FPGAs impose many constraints on designing PUFs because of routing
and placement of circuits in discrete locations, which requires more effort to handle this
properly. Many proposals of PUFs implementations on FPGAs were reported in the liter-
ature. This includes diverse types of PUF architecture like memory-based PUFs [50] and
delay-based PUFs [28][32]. Moreover, there were proposals for PUFs especially designed to
exploit FPGA architecture like Anderson’s PUF [67], which uses carry chain multiplexers
present in FPGA slices to construct the PUF architecture as shown in Figure 3.1.

Delay-based PUFs are the most challenging types to be implemented on FPGAs because
it requires identical path delays, which is challenging to realize under FPGA placement and
routing constraints. Next subsections present different techniques for implementing such
PUFs on FPGAs and discuss their defects, which is an important base for this research.

3.1.1 Delay lines technique

Programmable Delay Lines (PDL) technique was introduced in [60] and [63] by Majzoobi et
al to solve the problem of imbalanced delay paths of arbiter PUFs, which is caused by the
dominance of FPGA routing asymmetry. A programmable delay logic with picoseconds
resolution is implemented by LookUp Table (LUT) internal structure to cancel out the
path delay skews caused by asymmetric routing and systematic variations.

Figure 3.2 shows an example of programmable delay block using 3-input LUT. While

29



Figure 3.2: Programmable delay line block using 3-input LUT [60].

LUT input A1 is responsible for passing the logic value received from previous stages, inputs
A2 and A3 are responsible for determining which path will be used to propagate this value.
Hence, introducing extra delay to the path, which ranges from shortest delay marked in
red line (A2A3 = 00) to longest delay marked in dashed blue line (A2A3 = 11). A delay
characterization circuit is used to measure the LUT delay range as shown in Figure 3.3.
Obtained results from 5-input LUTs on Xilinx Virtex 5 FPGA suggests that maximum
delay difference (i.e. A = 00000 to A = 11111) is 9ps on average.

The architecture of APUF with programmable delay lines is shown in Figure 3.4. PUF
is split into two phases, the normal arbiter phase using the same input challenge bits on
both paths and the delay tuning phase using programmable delay lines where upper path
inputs are different from lower path inputs to compensate for asymmetric routing delay.

The programmable delay technique problem is that it needs a tuning phase to determine
the input values of programmable delay blocks. Hence, many CRP collection experiments
are required to build a single PUF. Furthermore, adding more LUTs to the PUF design to
realize the delay line logic increases the power consumption of the circuit, which is already
a limiting factor of FPGAs compared to ASICs.

30



Figure 3.3: PDL Delay characterization circuit [60].

Figure 3.4: APUF with programmable delay lines [60].

31



Figure 3.5: Double APUF architecture.

3.1.2 Double arbiter PUF

Double APUFs were introduced in [54], [55], and[85] to overcome routing constraints im-
posed by FPGAs when implementing delay-based PUFs. The main idea of this approach is
to use two identical APUFs placed near each other to eliminate routing differences. Every
delay path has identical routing delays compared to the matching path in the second PUF.
Hence, PUF response is determined by the race of the matching delay paths of the double
APUFs as shown in Figure 3.5.

The same authors extended the double PUF design to make it more complex and harder
to model by introducing XOR between PUF responses. Figure 3.6 shows the 2-to-1, 3-to-
1, and 4-to-1 double arbiter PUFs, where pairs of identical PUFs responses are XORed
together to generate the final response.

Although results show that double arbiter PUFs have better performance in terms of
uniqueness, randomness, and resistance against modeling attacks, the reported results also
show that PUF responses are not reliable and introduce a big fraction of error when ap-
plying the same challenge input (e.g. 35% error of one chip response using 4-to-1 double
APUF). Furthermore, there exist hardware overhead which will impact overall power con-
sumption and hardware resources utilization, especially in the cases where 128-bit PUF
responses or more are required by cryptographic systems. Moreover, randomness and
uniqueness results were collected using only three Xilinx Vertix-5 FPGA chips and 1000

32



(a)

(b)

(c)

Figure 3.6: a) 2-1 double arbiter PUF architecture, b) 3-1 double arbiter PUF architecture
c) 4-1 double arbiter PUF architecture.

33



CRPs were used for the modeling attacks, which is not sufficient to fully characterize the
new design and requires further investigation.

3.1.3 Randomly generated APUF

Another interesting idea proposed by Spenke et al in [80] was to construct arbiter PUFs on
FPGAs by randomly configuring the placement of FPGA stages. In this approach, many
placement configurations of APUFs are chosen randomly within a specific area of the chip.
Then for every placement, a CRP set is collected given that they introduce minimal delay
difference. The process of collecting these CRPs for every configuration is done using two
methods:

• Running randomly chosen CRPs on a reference chip and pick the CRPs with flipping
output response (i.e. response mostly changes using the same challenge)

• Using a machine learning technique to model the circuit and predict the delay differ-
ence between the two paths of APUF.

The pairs of placement configurations and 100 CRPs with minimal delay differences are
securely stored at an authentication server. As shown in Figure 3.7, The authentication
process is executed by first sending one of the placement configurations to the system con-
troller to configure the FPGA chip, then challenges paired to this placement configuration
are used for authentication.

Figure 3.7: Authentication procedure of smartfusion2 chip using randomly generated
APUF [80].

34



The main problem with this technique is that it requires storing the bitstream for every
placement configuration. Furthermore, this bitstream is sent through a secure environment
to a processor responsible for programming the FPGA to execute the authentication pro-
cedure. The size of the bitstream is 556Kb per placement configuration and it takes 28
seconds to program the FPGA as reported in [80]. There is also a preprocessing overhead
to choose the placement layout and the metastable CRP set.

3.1.4 PUF implementation summary

From its original inception [29], it was believed that the PUF offered random output data
since its design theoretically was focused on measurements of process variation. For exam-
ple, arbiter PUFs will in theory output random values based upon delay path differences
attributable to process variation alone (since it is assumed that the length of the two signal
paths is always equal). While this is easily attainable in ASIC designs, it is not clear how
to do this in FPGA technology, due to difficulties overcoming biases introduced by complex
routing on FPGA implementations (such as routing through switch boxes). In particular,
routing complexities along with the asymmetrical delays at the arbiter inputs were noted
as possibly preventing APUFs from functioning [68].

Thus, as was shown in this section, researchers have suggested different techniques such
as double arbiter PUF designs [85] and programmable delay line (PDLs), which require
additional circuitry for tuning response bit output [60]. Furthermore, the random responses
of PUFs on FPGAs were empirically found to be largely resulting from placement strategies
[18]. Therefore, others have suggested placement in specific different areas of FPGA [64],
even including spreading the PUF itself over different areas [80]. In this later research,
strong correlations of delay differences in consecutive stages were also found. Moreover,
recent research in [95] and [26] has determined that there are some influential challenge
bits in PUFs. They proposed an estimated probability formulation and illustrated how
an infinite group of challenge bits may influence the response in bistable ring PUFs and
suggested this would be the same case for APUFs.

As a result, The next sections discuss our experiments to implement strong delay-based
APUFs on FPGAs with metrics performance closer to ideal with minimum hardware and
power consumption overhead. We show that a significant performance can be achieved by
applying manual placement and guided manual routing using phi correlation coefficient
analysis.

35



3.2 Implementation of APUFs on FPGAs using man-

ual routing and correlation analysis

This section gives an overview of the experimental settings and equipment needed to ac-
complish research tasks.

3.2.1 Target FPGA and PUF setup

PUF circuits are implemented on MOJO V3 development boards [3], which contain Spartan
6 XC6SLX9 FPGA, a microcontroller (ATmega32U4) used for configuring the FPGA,
USB communications, and reading the analog pins. Furthermore, an Arduino compatible
bootloader to program the microcontroller and onboard flash memory to store the FPGA
configuration file. Spartan FPGA family including Spartan 6 has been widely used in
PUF research [76] [94]. Hence, it is reasonable to use it to facilitate comparisons with
previous work. The row and column relationships between different configuration Logic
Blocks (CLBs) and slices of Spartan 6 FPGA are shown in Figure 3.8.

Figure 3.8: Row and Column Relationship between CLBs and Slices [5].

Every slice contains four look-up tables (LUTs) and eight storage elements. These
elements are used by all slices to provide logic and ROM functions. SLICEX is the basic

36



Table 3.1: Spartan 6 XC6SLX9 FPGA logic resources [4].

Logic
Cells

Total
Slices

SLICEMs SLICELs SLICEXs Number
of 6-input
LUTs

Maximum
distributed
RAM (Kb)

Shift
registers
(Kb)

Number
of Flip-
Flops

9152 1430 360 355 715 5720 90 45 11440

slice, but Some slices, called SLICELs, also contain an arithmetic carry structure that can
be concatenated vertically up through the slice column and wide function multiplexers.
The SLICEMs contain the carry structure and multiplexers, and add the ability to use the
LUTs as 64-bit distributed RAM and as variable-length shift registers (maximum 32-bit).
Table 3.1 shows the available logic resources on Spartan 6 XC6SLX9 FPGA.

Communication with the chip is done using a USB cable and Serial Peripheral Inter-
face (SPI) communication protocol between the microcontroller and the FPGA to handle
reading and writing requests. All CRPs set are generated on-chip by either using Linear-
Feedback Shift Register (LFSR) or other logic in the case of deterministic CRP set (more
details on that in the experimental terminology subsection 3.2.2). A python script is used
from a desktop machine to communicate with the chip and collect the CRPs. Although the
challenge bits used can be calculated by the software script, but the script collects them
from the FPGA chip to verify that challenges are applied as expected and the obtained
response belongs to this specific challenge bits. In the case of eight 64-bit APUF imple-
mentation, the script requests the read of the applied challenge (1 byte at a time using
SPI), then the final byte is the 8-bit response of the 8 PUFs. That is a total of 9 bytes per
one CRP (More details on the software script is presented in appendix B).

Every stage path is implemented using 3-input LUT (Challenge bit and 2 paths signals
from the previous stage), therefore every stage is implemented using two 3-input LUTs
for both paths and can be placed in one 6-input LUT as shown in Figure 3.9 a). There
exists a delay difference between the two paths inside the LUT architecture as shown in
Figure 3.9 b), where Path 1 going through LUT O6 (the upper output inside the red
rectangle) has less delay than Path 2 going through LUT O5 path (The lower output).
Hence, LUT placement of the two paths is flipped every stage to balance this internal
delay difference. Consequently, the routing delay between stages dominates the overall
paths delay difference and manual routing is used to reduce this difference as will be
discussed the results section 3.3.

37



3.2.2 Experimental terminology

Some terminology will be defined for quantifying PUF randomness and correlations. Let
the inter-chip hamming distance be defined as the Hamming Distance (HD) between two
n-bit responses of two PUFs (using the same challenge), where each PUF is located on
a different chip. The histogram may be used to show the inter-chip HD using PUF re-
sponses (one n-bit PUF response per chip and the same challenge) from all pairs of chips.
Histograms may also be used to show the distribution of the hamming weight of all n-bit
responses from an n-bit PUF on one chip.

Each PUF has a set of challenge input bits (jth challenge bit j=0,1,...,(S-1), where
S=64 stages), and 1-bit response output bit. These values are referred to as challenge-
response pairs, specifically, the ith CRP has S challenge bits and one response bit ( i =
1,2,..., N, where N=1,000,000). Let nj

c,r represent the number of CRPs where the value
of the jth challenge bit is c (c ∈ ’0’, ’1’, ’-’ where ’-’ represents don’t care) and the value
of the response bit is r (r ∈ ’0’, ’1’, ’-’). The estimated probabilities of challenge bit j
predicting response bit have been previously used in [95] and [26] and are now defined as
equation 3.1 for challenge bit values of ‘1’ and ‘0’ predicting a response bit of ‘1’ as Ej

1,1

and Ej
0,1, respectively. Let the ‘actual’ probabilities relative to the set of CRPs be defined

in equation 3.2 for challenge bit value b predicting response bit value b or b̄ as P j
b,b and

P j

b,b̄
, respectively. Finally, the phi coefficient is a statistical measure of two binary signals

association. In the PUFs context, its value ranges from +1 to -1 representing perfect
agreement/disagreement and 0 value indicates both binary signals have no relationship.
Hence, measuring the phi correlation of the challenge bit j with the response bit is shown
in equation 3.3 as φj. Note that φ may be used in general (ignoring superscript j), for
example, to correlate two sets of binary numbers, where for example 1-bit responses from
one PUF are correlated with another set of 1-bit responses from a different PUF, both
generated from the same set of challenges.

Ej
1,1 =

nj
1,1

n−1,−
, Ej

0,1 =
nj

0,1

n−0,−
, andEj

1,0 =
nj

1,0

n−1,−
, Ej

0,0 =
nj

0,0

n−0,−
(3.1)

P j
b,b =

nj
0,0 + nj

1,1

N
,P j

b,b
=
nj

0,1 + nj
1,0

N
(3.2)

φj =
nj

0,0n
j
1,1 − n

j
0,1n

j
1,0√

nj
0,− − n

j
1,− − n

j
−,0 − n

j
−,1

(3.3)

38



(a)

(b)

Figure 3.9: a) Single PUF stage using two 3-input LUTs placed in one 6-input LUT, b)
Internal architecture of the 6-input LUT in Spartan 6 FPGA.

39



As previously mentioned, Five Mojo V3 development boards with Spartan 6 XC6SLX9
FPGA (45nm process technology), were utilized to collect real CRPs. All readings were
performed under normal voltage and temperature conditions. For every Spartan 6 chip,
the process of collecting 1M CRPs was repeated 11 times. A majority vote of each 11
readings was used to create a final 1M CRPs per chip, similar to [94]. Most previous
research does not disclose how CRPs are generated apart from some which use LFSRs [60]
and there are not any known publically available CRPs. Hence, the experiments used two
sets of CRPs, one random CRP set generated using a linear-feedback shift register (LFSR)
as in [75] and another deterministic CRP set. The deterministic CRP set was generated by
first randomly choosing 100 64-bit challenge starting points. The minimum step between
every two starting points was set to be 65535. Next, 100 sets of consecutive 10K CRPs
were created, via incrementing from every starting point. Also note that all challenges are
generated within the hardware (inside the FPGA), using HW LFSR or memory to store
the challenge starting points. Finally, The Xilinx ISE Design Suite 14.7, Xilinx PlanAhead
14.7, and Xilinx FPGA editor are utilized to implement, manually place and route the
arbiter PUF designs.

3.3 Results

Four experiments are presented using the LFSR generated CRP set, each analyzed in terms
of the PUF metrics presented in chapter 2. The implementation of one 64-stage arbiter
PUFs with 1-bit response required approximately 2.5 rows of slices for manually placing
the stages horizontally in the Spartan 6 XC6SLX9 (whose slice array spans X0Y2 in the
lower left corner to X23Y61 in the upper right corner). Fig 38. a,b illustrates a part of the
schematic and placement. Eight APUFs were implemented on each chip.

3.3.1 Experimental results of PUFs statistical metrics using LFSR
generated CRPs set

Experiment 1 utilized symmetric manual placement (referred to as Fixed MP) where each
PUF started at the same horizontal position in a row and successive rows were used as
shown in Figure 3.10. In addition, the bitstream used to program each FPGA chip was
identical. As shown in Figure 3.11 a), all APUFs show close to ideal 50% ’1’s responses.
In contrast, previous research [42] using ASIC implementations of APUFs obtained 40%
’1’s responses in normal conditions. In other cases [60] on average 50% 1s responses were

40



Figure 3.10: Symmetric manual placement in experiment 1

achieved using additional PDL circuitry with tuning level 14, however, results are not clear
(see Fig. 10 and 11 in [60] where results show >90% 1s in 6 response bits and <10% 1s in
2 response bits out of a total of 16 response bits). In [54] and [85], similar results close to
50% ’1’s were reported for the 2-1 and 3-1 double arbiter PUFs, except for one deviation of
one Xilinx Virtex-5 FPGA instance that had 31.4% 1s. Remote random re-configurations
of arbiter PUFs on FPGA also showed similar 50% 1’s results as well [80]. To assess the
randomness of the 8-bit PUF response of every chip, we calculated the hamming weight
representing the number of ’1’s and ’0’s in an 8-bit PUF response for every chip. Figure 3.11
b) illustrates the number of CRPs versus hamming weight of the 8-bit response per chip
(e.g. all 0’s response corresponds to HW = 0%, and all 1’s response corresponds to HW =
100%). It is obvious that the fraction of all 0’s and all 1’s outputs exceeds 50% of collected
CRPs in all chips. Moreover, the case of HW = 50% has the lowest fraction of CRPs,
which is opposite to the ideal case. This result shows a strong correlation between the
eight PUF responses, which is an undesirable property of a secure PUF. The inter-chip
hamming distance between the responses of the same challenge was also calculated, and
the results illustrated in Figure 3.11 c) showed approximately 78% of identical responses
across the five chips (18% having HD=1, 3% with HD=2, and 1% with HD>2). This
result is also consistent with the relatively flat top across chips in Figure 3.11 a). Similar
hamming distance results have been reported [54] and [85] which was their motivation to
propose a double arbiter PUF.

41



(a)

(b)

(c)

Figure 3.11: Experiment 1: a) Percentage of ’1’s in every single PUF response, b) Distri-
bution of intra-chip hamming weights, c)Distribution of inter-chip hamming distance

42



In conclusion, the previous results indicate that APUF implementation in experiment 1
lacks the unpredictability and uniqueness properties. Hence, in experiment 2, the horizon-
tal and vertical placement of PUFs were modified on each FPGA to improve the inter-chip
and intra-chip correlation measurements (referred to as rand MP). In addition, the hori-
zontal and vertical placements were varied per chip (so different bitstreams were utilized)
as shown in Figure 3.12. In particular, the first stage of each PUF started from a different
horizontal position (different X value for the first SliceXY). See Figure 3.12 as an example
where the red box illustrates a 1-bit PUF whose first stage starts at the lower left and the
1-bit PUF above it (not enclosed in the red box) has its first stage shifted to the right in
comparison. Also, as illustrated in Figure 3.12, the area between every two consecutive
PUFs was also sometimes varied (so successive rows were not always utilized, thus creating
a variation in vertical placement as well).

Figure 3.12: Symmetric manual placement in experiment 2

Figure 3.13 illustrates the %’1’s, hamming weight distributions and inter-chip hamming
distance distribution for the 5 chips. Although the results obtained in Figure 3.13 a)
show slight deviation in two instances of PUF 7 and PUF 4 from the ideal 50% ’1’s
response, it is still within the accepted range compared to the results reported in [42],

43



which showed APUFs with a range of 60% - 40% 1’s. A large improvement was achieved in
the distribution of the 8-bit PUF hamming weights as shown in Figure 3.13 b), indicating
an average hamming weight of 50% as needed. Also, a significant improvement in inter-chip
HD measurement was achieved as shown in Figure 3.13 c) (mean HD=36.7%), although
the ideal case (50%) was not reached. Other researchers [52] [76] also showed low mean
HD (mean HD= 4.72%) for their APUF implementation on Xilinx Virtex-5 and Kintex-7.
Researchers in [54] and [85] reported better hamming distance results using dual arbiter
PUFs (mean HD = 45%). More recently nearly 50% hamming distance was achieved using
random re-configurations on FPGAs [80].

(a)

(b)

Figure 3.13: Experiment 2: a) Percentage of ’1’s in every single PUF response, b) Distri-
bution of intra-chip hamming weights

44



(c)

Figure 3.13: Experiment 2: c)Distribution of inter-chip hamming distance

Phi correlations of 1-bit responses for the same challenge between all pairs of PUFs
responses on the same chip were also performed. Equation 3.3 was utilized where the value
of the jth challenge bit is respectively the PUFj response and the value of the response
bit l is respectively the PUFk response (kj). In experiment 1, as shown in Table 3.2 and
Figure 3.14, the maximum phi correlation was 80% (between PUF7 and PUF8) whereas
in experiment 2 this maximum dropped to 45% (between PUF5 and PUF8) as shown in
Table 3.3 and Figure 3.15. Experiments 1 and 2 have an average correlation between PUF
pair responses of 53% and 12% respectively. The low phi correlation shows good uniqueness,
indicating experiment 2 created an improved PUF. Additionally, These numbers confirm
the previously mentioned hamming weight analysis results.

Table 3.2: Experiment 1: PUFs responses correlation on chip 1

PUF 8 PUF 7 PUF 6 PUF 5 PUF 4 PUF 3 PUF 2 PUF 1
PUF 8 1.000 0.801 0.467 0.387 0.490 0.506 0.643 0.775
PUF 7 0.801 1.000 0.452 0.437 0.529 0.498 0.679 0.712
PUF 6 0.467 0.452 1.000 0.525 0.674 0.501 0.478 0.448
PUF 5 0.387 0.437 0.525 1.000 0.509 0.557 0.446 0.322
PUF 4 0.490 0.529 0.674 0.509 1.000 0.538 0.457 0.421
PUF 3 0.506 0.498 0.501 0.557 0.538 1.000 0.406 0.446
PUF 2 0.643 0.679 0.478 0.446 0.457 0.406 1.000 0.632
PUF 1 0.775 0.712 0.448 0.322 0.421 0.446 0.632 1.000

45



Figure 3.14: Experiment 1: 8 PUFs responses correlation analysis on chip 1

Figure 3.15: Experiment 2: 8 PUFs responses correlation analysis on chip 1

46



Table 3.3: Experiment 2: PUFs responses correlation on chip 1

PUF 8 PUF 7 PUF 6 PUF 5 PUF 4 PUF 3 PUF 2 PUF 1
PUF 8 1.000 0.051 0.054 0.453 0.110 0.041 0.122 0.212
PUF 7 0.051 1.000 0.180 0.069 -0.082 0.154 0.087 0.027
PUF 6 0.054 0.180 1.000 0.078 -0.011 0.146 0.238 0.104
PUF 5 0.453 0.069 0.078 1.000 0.065 0.163 0.112 0.281
PUF 4 0.110 -0.082 -0.011 0.065 1.000 0.077 0.024 0.073
PUF 3 0.041 0.154 0.146 0.163 0.077 1.000 0.138 0.256
PUF 2 0.122 0.087 0.238 0.112 0.024 0.138 1.000 0.082
PUF 1 0.212 0.027 0.104 0.281 0.073 0.256 0.082 1.000

3.3.2 Experimental results of PUFs correlation analysis using
deterministically generated CRPs set

Analysis of PUFs using the deterministic CRP set was performed to further study the
influence of challenge bits with large delay differences. Using this CRP set, stages with
higher delay differences and PUFs with higher path delay difference (e.g., Exp-1, Exp-2 in
Table 3.4) are observed and stages which require manual routing are determined.

Correlation analysis between challenge bits and PUF 8 response bit was run on the
experiments 1 and 2 using phi correlation coefficient and equation 3.3. Figure 3.16 a) illus-
trates the correlation between the challenge bits and response bit of PUF 8 in experiments
1 and 2. The phi correlations of challenge bits 63 through 0 are plotted left to right on the
x-axis, where stage 63 outputs the response bit. It is evident that the first 10 stages of the
PUF (last 10 on the x-axis) have little to no correlation to the response bit, as expected
since these bits are varied all the time.

Based on the correlation analysis results and instead of manually routing all stages,
experiment 3 manually routes, some PUF stages of the most influential challenge bits,
specifically, bits 55, 50, 45, 35, 25, to reduce the delay difference between the two arbiter
PUF paths (referred to as path 1 and path 2). For example, the wire connections between
stages 55 and 56 were manually routed to try to minimize the phi correlation of challenge
bit 55. In many cases, significant APUF delay differences could be reduced through manual
routing. For example, manual routing of stage 55 modified path 1 delay from 0.500ns to
0.664ns and path two delay from 0.825ns to 0.663ns. These changes reduced the wiring
delay difference from 0.325ns to 1ps respectively. This delay difference is within the pre-
viously researched process variation of 3.5% [71] and the 5% timing analysis accuracy, as

47



(a)

(b)

Figure 3.16: Challenge bits correlation analysis with PUF 8 response on chip 1, a) Exper-
iments 1 & 2: b) Experiments 2 & 3

48



Table 3.4: Delay difference analysis of PUF8 on Chip 1

Exp-1 Exp-2 Exp-4 Exp-4 revisited
Total 64-stage delay difference between
path 1 and path 2

4.61ns 1.24ns 0.28ns 0.1ns

Average (stage delay difference / total
stage delay)

33% 33% 6.4% 6.4%

Number of stages with path1 delay >
path 2 delay

23 32 29 27

Number of stages with path1 delay <
path 2 delay

41 32 33 35

Number of stages with path1 delay =
path 2 delay

0 0 2 2

required for ideal PUFs. As another example, for one set of challenge bits, the accumulated
entire PUF wiring delay was 33.62ns and 31.389ns, and thus the value of the response bit is
undetermined under assumed variations (e.g. it may be positive, 33.62-31.389>0, or nega-
tive, (33.62-x%) – (31.389+x%) <0, within the variation, x=3.5% or 5%). In this example,
even the asymmetrical delays to the arbiter were included. However not all accumulated
and inter-stage delay paths of the PUFs had these properties.

The phi correlations resulting from selective manual routing are shown in Figure 3.16
b) in comparison with experiment 2. In all cases, the maximum, range, and standard
deviation of the phi correlation coefficients have decreased significantly in experiment 3
compared to experiment 2. Also note that some other bits have become more influential
(e.g. bit 62, 33). However, as will be shown in subsection 3.3.3, the PUFs produced in
experiment 3 did not show a significant performance against modeling attacks.

In experiment 4, repetitive manual placement was applied on PUF 8 to find better rout-
ing choices. Consequently, the PUF was manually routed to reduce the delay differences
in every stage and balance the overall delay paths. Further analysis was conducted on
delay difference for every stage, total delay difference between PUF paths, and the average
delay difference across all PUF stages as shown in Table 3.4. Obtained results show that
experiment 4 has better results in terms of the total paths delay difference and the average
delay difference. It is also shown that using specific manual placements allowed us to have
some stages with 0ps delay difference. results in subsection 3.3.3 will show more details of
how the PUFs produced in experiment 4 is more resistant to modeling attacks.

The same correlation analysis was done on the PUF produced in experiment 4 and

49



(a)

(b)

Figure 3.17: Challenge bits correlation analysis with PUF 8 response on chip 1, a) Exper-
iments 3 & 4: b) Experiments 4 & 4-revisited

50



Table 3.5: PUF 8 response correlation with other PUFs responses on chip 1 for experiments
2, 3, 4, and 4-revisited

PUF 7 PUF 6 PUF 5 PUF 4 PUF 3 PUF 2 PUF 1 Avg. Corr.
Exp. 2 0.051 0.054 0.453 0.110 0.041 0.122 0.212 0.149
Exp. 3 0.103 0.178 0.418 0.196 0.033 0.058 0.407 0.199
Exp. 4 0.007 0.013 -0.027 0.027 -0.063 -0.029 0.029 -0.006
Exp.4
-revisited

0.071 0.011 -0.042 0.120 -0.019 0.023 0.097 0.037

is compared to the influential bits in experiment 3 as shown in Figure 3.17 a). Results
obtained did not show significant influential bits in experiment 4 except for challenge bit
63. which showed 35% positive correlation with PUF 8 response. The high correlation of
challenge bit 63 in experiment 4 is largely due to stage 62 having a relatively large delay
difference compared to other stages. This stage 62 was rerouted manually to minimize its
delay difference as shown in the Experiment-4 revisited column. Consequently, challenge
bit 63 correlation went down from 35% to 12% as shown in Figure 3.17 b). The maximum
delay difference overall stages in experiment-4 revisited was 0.072ns and two stages 22,
45 have 0ns delay difference. Correlation analysis of PUF 8 response with respect to
other PUFs responses was conducted for experiments 3, 4, and 4-revisited. Results in
Table 3.5 show that the correlation between PUF 8 and PUF 5 that existed in experiment
2 instance is drastically decreased. Furthermore, the average correlation between PUF 8
and other PUFs is decreased to 0.6 and 3.7% in experiment 4 and 4-revisited respectively.
This confirms the role of repetitive manual placement and correlation-driven routing in
improving overall PUFs correlation.

3.3.3 Modeling attacks

Modeling attacks against implemented PUFs were invoked to show their resistance to such
attacks. For the sake of comparison with previous research in [75] and [76], The logistic
regression (LR) technique is utilized for the model building of a single bit PUF in all 4
experiments using LFSR generated CRPs. The mathematical model derived in [75] is used
to get the input features of the LR model for training (more details on the mathematical
model in Chapter 4). The dataset size is 1M CRPs, and training size is varied between 600
to 100K CRPs. The test dataset is always 1M - Training set size. The results of LR attacks
against PUF 8 in the four experiments are in Table 3.7, which shows the training, test
accuracy scores and elapsed time to finish the training process. Results show that PUFs

51



developed in experiments 1 to 3 could be modeled with accuracy close to the numbers
reported in previous research as shown in Table 3.6, which shows the modeling accuracy
of 64 stages APUFs implemented on FPGAs (using programmable delay line technique),
ASIC, and software simulated PUFs. However, the PUFs developed in experiments 4 and
4-revisited showed better resistance to LR modeling attack with accuracy 7% less than
what was previously reported as illustrated in Figure 3.18. Although the exploitation of
manual placement and correlation-driven manual routing resulted in implementing better
APUF instances on FPGAs, these types of PUFs have been shown to be architecturally
vulnerable to modeling attacks. Hence, these implementation techniques can be used to
realize more secure strong PUF types that are resistant to all types of modeling attacks as
will be shown in the next two chapters.

Table 3.6: LR Attack results on APUFs in [75] and [76].

Training size Training Time Test Accuracy

FPGA (PDL)
650 0.12s >95%
6500 0.83s >99%

ASIC
640 0.01s >95%
6500 0.76s >99%

Simulated CRPs
640 0.01s >95%
2555 0.13s >99%
18050 0.6s 99.9%

Figure 3.18: Logistic regression accuracy results on PUF 8 of experiments 1, 2, 4, and
4-revisited

52



Table 3.7: PUF LR attacks.

Training
size

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
4 revisited

600
98.1% 97.7% 98% 95.7% 95.3% Training accuracy
93.7% 92.7% 95% 90.5% 88.3% Test accuracy
< 0.1s < 0.1s < 0.1s < 0.1s < 0.1s Training time

700
98.6% 97.9% 98.1% 95.7% 95% Training accuracy
94.1% 93.5% 95.1% 91.1% 89% Test accuracy
< 0.1s < 0.1s < 0.1s < 0.1s < 0.1s Training time

2000
98.5% 99.2% 98.3% 94.3% 93.4% Training accuracy
97.1% 96.6% 97.4% 92.4% 91.3% Test accuracy
< 0.1s < 0.1s < 0.1s < 0.1s < 0.1s Training time

3000
98.6% 98.8% 98.5% 94.3% 92.7% Training accuracy
97.5% 97.3% 97.6% 92.6% 91.7% Test accuracy
< 0.1s < 0.1s < 0.1s < 0.1s < 0.1s Training time

5000
98.6% 98.6% 98.8% 93.4% 92.2% Training accuracy
97.8% 97.6% 98.1% 92.9% 91.9% Test accuracy
< 0.1s < 0.1s < 0.1s < 0.1s < 0.1s Training time

6000
98.5% 98.7% 98.8% 93.5% 92.2% Training accuracy
97.9% 97.7% 98.3% 92.9% 92% Test accuracy
< 0.1s < 0.1s < 0.1s < 0.1s < 0.1s Training time

6500
98.6% 98.7% 98.7% 93.2% 92.1% Training accuracy
97.9% 97.7% 98.3% 92.9% 92% Test accuracy
0.3s 0.1s 0.1s 0.1s < 0.1s Training time

10K
98.4% 98.6% 99% 93.5% 92.3% Training accuracy
98% 97.9% 98.5% 93% 92.2% Test accuracy
0.3s 0.1s 0.1s 0.1s < 0.1s Training time

30K
98.3% 98.3% 99% 93.4% 92.5% Training accuracy
98.1% 98.1% 98.9% 93.1% 92.3% Test accuracy
0.3s 0.5s 0.5s 0.3s 0.3s Training time

50K
98.2% 98.2% 99% 93.3% 92.4% Training accuracy
98.1% 98.2% 98.9% 93.1% 92.4% Test accuracy
0.7s 0.7s 0.8s 0.9s 0.8s Training time

100K
98.2% 98.2% 99% 93.2% 92.4% Training accuracy
98.2% 98.2% 99% 93.2% 92.4% Test accuracy
1.3s 1.3s 1.7s 1.1s 1.5s Training time

53



3.3.4 Summary

In summary, APUFs implemented in Spartan 6 FPGA have been analyzed with existing
and new metrics. In experiment 1 which used one bitstream on 5 different chips, inter-chip
HDs indicated that approximately 22% of pairs of 8-bit responses (from the same challenge)
of the APUFs on different chips differed in one or more bits. This was likely due to either
the process variation being very low or most delay differences in APUFs were large enough
to be unaffected by process variation. In experiment 2, it was demonstrated that changing
the horizontal and vertical placement of every single PUF on every chip, improved the
randomness of every chip’s 8-bit PUF response, and the inter-chip hamming distance (HD
improved to 37%). This effect is likely largely due to the variation in routing performed
by the tools, although the process variation is also known to vary spatially within-die.
Experiment 3 used correlation driven manual routing to decrease the delay difference at
the stages that showed more influence on PUF response. However, results indicated that it
was not sufficient to resist machine learning modeling attacks. Hence, Experiment 4 applied
repetitive manual placement to facilitate the manual routing of stages with minimum delay
difference, and correlation analysis was used to further tweak the PUF 8 implementation
in the revisited experiment 4 to decrease the influence of specific challenge bits. Statistical
analysis showed that this hybrid technique improved the PUF properties (i.e. overall delay
difference, average delay difference) and allowed to have two stages with 0s routing delay
difference. Additionally, the correlation between PUF 8 response and PUF 5 is decreased
from 45% to 4%. Furthermore, the PUF instances in experiment 4 and 4-revisited showed
more resistance to LR modeling attacks compared to the instances developed in the other
experiments, and the results reported in previous research. However, APUFs architectural
design allows modeling attacks to successfully clone its response, which is a motivation for
the rest of our research in chapters 4 and 5 to study the limit of modeling attacks and new
architectures to counter them. More details on the placement and routing specific steps
and the scripts used to calculate statistical metrics are presented in appendices A and B.

Generating PUFs without manual routing supports portability across different FPGA
technologies, however, some manual routing may be crucial for good PUF performance.
In general, tweaking PUF designs is complex since many metrics are sensitive to design
changes (%1s, inter-chip HD, HW, Phi plots). Phi correlations are proposed as a concise
metric guiding the performance tweaking of the PUF, showing promise for identifying
stages that require manual rerouting. This is unlike previous research that requires higher
cost overheads, specifically utilizing additional PDL circuitry [60], doubling the area[85], or
spreading placement of stages across entire FPGA and storing the bitstream configurations
at the authentication server [80]. This research also showed that manually routed inter-

54



stage wiring delay differences can be within assumed tool accuracy and process variation
(e.g. as low as 0ps), thus only the wiring symmetry at the arbiter stage remains to be
improved in order to support an ideal fully manually-routed APUF.

55



Chapter 4

Deep learning modeling attacks

This chapter discusses in detail the deep learning modeling attacks of previously provable
resistant PUFs against conventional machine learning techniques. The first section gives
an overview of different types of attacks reported in the literature, then the next chapters
will provide details and results of deep learning modeling attacks against double arbiter
PUFs, bi-stable ring PUFs, and obfuscated schemes.

4.1 Overview of attacks on PUFs

4.1.1 Machine learning based attacks

Numerical Modeling attacks against PUFs were one of the earliest attacking techniques
proposed in the literature. Given a set of CRPs and using machine learning techniques
like SVM, LR, and Evolution Strategy (ES), it is possible to accurately predict the PUF
outcome for the whole challenge-response space. Although different variants of the arbiter
and ring oscillator PUFs were proposed to add non-linearity to the circuit and counter-
measure the modeling attacks, it was shown that PUFs security against modeling attacks
was questionable. In [75] and [76] Ruhrmair U. et al a comprehensive study was provided
on machine learning attacks on PUFs. This study showed that using LR, SVM, and ES
techniques, the security of different types of PUFs could be broken up to a given size and
complexity. Their attacks involved APUFs, RO PUFs, XOR APUFs, feedforward APUFs,
and lightweight secure PUFs. CRPs used in [75] were collected using a model generating
the delay values for PUF architectures randomly. The basic idea of this type of attack is to

56



use machine learning techniques to solve the additive linear mathematical model of delay-
based PUFs. Equations 4.1 to 4.6 shows the mathematical base to model the total delay
difference between two paths of a K-stage APUF [75]. The first term in the right hand
side of equation 4.1 ’w’ is a vector of size K+1 that encodes the information of every stage
delay as shown in Figure 4.1. Equation 4.3 shows the value of every element in w in terms
of ’δ

0/1
i ’, which denotes the delay difference at stage ’i’ for crossed and uncrossed signal

paths respectively as shown in Figure 4.1. The second term in equation 4.1 ’ϕ’ is a vector
of size K+1 that encodes the impacts of stages delay difference on the overall circuit delay
as shown in equations 4.4 and 4.6. Every element in ’ϕ’ indicates whether it contributes
to the first or second path depending on how many crosses it will encounter based on the
values of the subsequent input challenge bits. Hence, the product of both vectors results
in the summation of the delay differences of all PUF stages. Consequently, PUF outcome
is represented by the sign of this summation (i.e. PUF response = 0 if ~wT ∗ ~ϕ = -value,
PUF response = 1 if ~wT ∗ ~ϕ= +value). Conventional ML techniques like LR and SVM
try to learn the effect of every stage delay difference by assigning values for ~wT elements
based on the CRPs training sample and calculate a separating plane to accurately predict
the APUF response.

∆Delay = ~wT ∗ ~ϕ (4.1)

~wT = (w1, w2, ...wK+1)T (4.2)

w1 =
δ0

1 − δ1
1

2
, wi =

δ0
i−1 + δ1

i−1 + δ0
i − δ1

i

2
for all i=2 ,..,k, wK+1 =

δ0
K + δ1

K

2
(4.3)

~ϕ(~C) = (ϕ1(~C), ϕ2(~C), ...ϕK(~C), 1) (4.4)

ϕj(~C) = (
K∏
i=j

(1− 2Ci))
T (4.5)

Tresponse = Sign(~wT ∗ ~ϕ) (4.6)

This parametric model can be expanded for other delay-based PUFs. For example, XOR
PUF model can be easily derived from APUF model as shown in equation 4.7. The term
’J’ denotes the number of XOR inputs (i.e. the number of parallel APUFs). Similarly, the
machine learning algorithm tries to find the ~wT

i vectors hyperplane of dimension (K + 1)J

to accurately predict the XOR PUF outcome.

Txor response = Sign(
J∏

i=1

(~wT
i ∗ ~ϕ)) (4.7)

57



Figure 4.1: Modeling parameters of standard arbiter PUF

The work in [75] and [76] included also RO PUFs in the attack list. RO PUF under
attack consists of K ring oscillators with different frequencies. The PUF inputs are two
oscillators indices (i,j) to select two oscillators for the comparison. Hence it is easy to
model this architecture by keeping track of all oscillators’ frequencies order (f1, f2, ..., fk)
and changing this order using a sorting algorithm by applying all possible inputs (i,j) while
monitoring the output (e.g.: output = ‘0’ if fi > fj , output = ‘1’ otherwise). As previously
mentioned, machine learning attacks were executed on model generated CRPs in [75] and
it was extended in [76] to include hardware generated CRPs for APUFs and XOR PUFs
using 45 nm ASICs and Spartan-6 FPGAs. Table 4.1 shows a summary of obtained results
in terms of the number of CRPs and the machine learning technique used to obtain 99%
accuracy.

The results show that modeling attacks against APUFs are successful using LR algo-
rithm for up to 128 stages using model generated CRPs and 64 stages using hardware
generated CRPs. Similarly, XOR APUFs could be modeled using LR for up to 5 APUFs
and 128 stages. The main difference from standard APUF is that LR is not guaranteed
to find a global minimum from the first trial because XOR APUF decision boundary is
non-linear. Hence, LR needs to be restarted several times (Ntrials) to reach a global mini-
mum, which will be dependent on PUF parameters and the size of the training set (CRPs).
Furthermore, lightweight PUF (LF PUF) showed significant resistance against machine
learning attacks compared to standard and XOR APUFs, although the tested architecture

58



Table 4.1: Attacks results of Ruhrmair U. et al in [75] and [76]

PUF
Type

No of XORs/
FF loops/
Ring Osc.

ML
method

Bit
Length

CRP
Source

CRPs
(×1K)

Training
Time

Prediction
Rate

128 Simulation 39.2 2.1 sec 99.9%
APUF N/A LR 64 ASIC 6.5 0.83 sec 99%

64 FPGA 6.5 0.76 sec 99%
128 Simulation 39.2 17 hrs 99%

XOR 5 LR 64 ASIC 6.5 39 mins 99%
APUF 64 FPGA 6.5 18 mins 99%
Light
weight
PUF

5 LR 128 Simulation 1000 267
days

99%

FF
APUF

8 ES 128 Simulation 50 3:15 hrs 99%

RO
PUF

1024 Quick
Sort

N/A Simulation 83.9 N/A 99%

was limited and experiments targeted the prediction of only one response bit. For the case
of 128 stages and five parallel APUFs, LF PUFs needed ∼ 386x more training time and
2x more CRPs compared to XOR arbiter PUF. This is expected because, in LF PUFs,
output bits are not directly mapped to input challenge bits nor parallel arbiter responses.
Additionally, every APUF has different challenge bits from the other parallel APUFs. The
FF PUF architecture under attack was restricted to ease the architecture complexity (i.e.,
restricting the number of forward loops in FF PUFs up to 8 non-overlapping loops with
equal length and regularly distributed over the PUF path). Opposite to other PUF types,
ES outperformed LR and SVM techniques and ES could break the security of FF PUFs
architectures with up to eight loops and 128 stages, given the architectural restrictions
mentioned earlier. Finally, the quick sort algorithm was used to order the oscillator fre-
quencies of the RO PUF under attack depending on randomly chosen CRPs. The upper
bound of needed CRPs to achieve the obtained prediction rate is given by equation 4.8,
where K is the number of ring oscillators used, and ε is the classification error rate.

Ncrp ≈
K(K − 1)(1− 2ε)

2 + ε(K − 1)
(4.8)

Furthermore, Hospodar G. et al in [41], executed machine learning attacks on 64 stage

59



APUFs and 2-input XOR PUFs, which were physically implemented on 65 nm CMOS.
Attacks were launched using artificial neural networks (ANN) and SVM and hardware
collected CRPs to model the target PUFs. Obtained results showed successful modeling
of a standard APUF with accuracy > 90% using 1000 CRPs, and reaching nearly 100%
using 5000 CRPs. Moreover, their attack achieved 90% modeling accuracy of two-input
XOR PUFs using 9000 CRPs.

Tobisch H. et al [86] introduced a more efficient implementation of the same machine
learning technique used in [75] and [76]. The LR algorithm with resilient backpropagation
solver (RProp) was optimized in terms of memory requirements and execution paralleliza-
tion to reduce the training time needed for attacking more complex APUFs. CRPs used
in experiments were generated using a model implemented by Matlab, which assumed
Gaussian distribution of all PUF delay differences ’δi

0/1’. The attack results are shown in
Table 4.2, which shows the successful modeling of XOR APUFs of 64 stages with up to
9 parallel APUFs and 128 stages with up to 7 parallel APUFs. Furthermore, although
obtained results agree with the conclusion in [75] that number of CRPs needed to model
the PUFs increases exponentially with the increase of PUF complexity but it also sug-
gested that every PUF instance has a direct impact on machine learning complexity and
convergence (i.e. LR is not stuck at local minimum). A countermeasure was proposed to
resist machine learning attacks using a technique called noise bifurcation [97]. The main
idea of this technique is to prevent the attacker from pairing challenge bits with the cor-
responding response bit. More details on countermeasures will be discussed later in the
countermeasure subsection.

Finally, there exist several reported machine learning attacks against BR PUFs and
TBR PUFs. For example, Xu X. et al in [94] could build a model and applied SVM
modeling attacks against the implementations of both PUF types on Xilinx Spartan -6
FPGA. The architectures under attack involved 32, 64, 128, 256-bit length PUFs, and
collection of 1M CRPs formulated using majority votes of 11 repeated measurements.
Attacks were launched using SVM with linear kernel and the target correct modeling
accuracy is 95%. Table 4.3 shows the obtained results for both architectures.

As a result of the successful attacks against BR and TBR PUFs, XOR BR PUFs
were proposed to resist the machine learning attacks [94]. The results of SVM attacks
against XOR PUFs are shown in table 4.3 and suggests that an architecture with more
than 2-input XOR is more resistant and could not be modeled using the SVM algorithm.
Gangi F. et al [26] proposed a new attack against BR and TBR PUFs that does not
require deriving a mathematical model of the PUF parameters. The main idea is to
exploit the challenge bits with higher influence on PUF response (influential challenge bits)
to construct a machine learning based boosted model that can predict the PUF outcome

60



Table 4.2: Attacks results of Tobisch H. et al [86].

PUF
Type

Bit
Length

ML
method

No of
XOR
inputs

CRP
Source

CRPs
(×1K)

Training
Time

Prediction
Rate

4 10 16 sec
5 45 2:46 mins
6 210 30:24 mins

64 LR 7 Simulation 3K 2:43 hrs >98%
XOR 8 40K 6:31 hrs
APUF 9 350K 37:46 hrs

4 22 2:24 min
128 LR 5 Simulation 325 12:11 mins >98%

6 15K 4:54 hrs
7 400K 66:53 hrs

with high probability. Experiments conducted using 30K CRPs collected from 64-stage BR
and TBR PUF implementations on Altera Cyclone IV FPGAs. Adaptive boost algorithm
[24] was used to create the boosted classifier built over the initial weak learners, which
depends on single influential bits. Obtained results showed that boosting technique could
successfully model both PUFs up to 99% prediction accuracy using 50 boosting iterations.
Table 4.4 gives a summary of PUFs successfully attacked by machine learning techniques
and the source of CRPs used in training.

4.1.2 Hybrid side channel/Machine learning attacks

As discussed in the previous subsection, machine learning based modeling attacks provided
an effective way to break PUFs security. This effectiveness led to proposing variants of
delay-based PUFs architecture to increase the non-linearity in the delay path and make the
PUF more resilient to modeling attacks. Modeling attack results suggest that lightweight
PUFs and FF PUFs introduced more restrictions on this type of attack and limit its ability
to correctly predict the PUF outcome (i.e. only successful on restricted architectures
with a specific number of stages and loops). Hence, Hybrid techniques were introduced
by extracting side-channel leaked information to help ease the constraints on modeling
parameters. Side-channel leaked information include power side-channel [48], timing side-
channel [47], electromagnetic side-channel [66] and differential fault analysis [20]. The
main purpose of combining side-channel with machine learning attacks on PUFs is to

61



Table 4.3: Attacks results of Xu X. et al [94].

PUF
Type

Bit
Length

ML
method

# XOR
inputs

CRP
Source

CRPs Training
Time

Prediction
Rate

32 800
BR 64 SVM N/A FPGA 1350 Not >95%
PUF 128 (Linear 2400 reported

256 kernel) 5500
32 420

TBR 64 SVM N/A FPGA 720 Not >95%
PUF 128 (Linear 1300 reported

256 kernel) 2700
32 800 3 sec
64 SVM 2 FPGA 4000 10 sec >95%
128 (Polynomial 18000 6 min
256 kernel) — — 50.8%

XOR 32 1200 5 sec >95%
BR 64 SVM 3 FPGA 7200 24 sec >95%
PUF 128 (Polynomial — — 50.1%

256 kernel) — — 50.1%
32 — — 50.1%
64 SVM 4 FPGA — — 50.3%
128 (Polynomial — — 49.8%
256 kernel) — — 50.1%

decrease the workload of building machine learning based models, the latter is still the
key applicable solution on the Strong PUFs [93]. In [59], Mahmoud A. et al combined
ML with power consumption side-channel information (SPA) to substantially improve the
reach of modeling attacks on electrical Strong PUFs. Targeted architectures included XOR
APUFs and lightweight PUFs, which showed resilience against pure machine learning based
modeling attacks. Their power side-channel scheme informs the attacker of every single
arbiter outcome that is input to the final XOR gate of the XOR Arbiter PUF or Lightweight
PUF. The attack scheme depends on what is called “good” CRPs which result in all “ones”
or all “zeros” responses. These types of responses can be identified using the power side
channel and allow the attacker to easily build a model for every single APUF, then predict
the XOR/lightweight PUF outcome correctly. Experiments were conducted using synthetic
CRPs generated by PSPICE simulation. Table 4.5 shows the obtained results on XOR and

62



Table 4.4: Summary of successfully attacked PUFs including ML technique used and source
of CRPs.

PUF Type # of
XORs/
FF loops/
Ring Osc.

ML method Bit
Length

CRP
Source

Refs.

LR 128 Simulation [75],[76]
APUF N/A LR, SVM, ANN 64 ASIC [75],[76],[86]

LR 64 FPGA [75],[76]
128 Simulation [75],[76],[86]

XOR APUF UPTO 9 LR 64 ASIC [75],[76]
64 FPGA [75],[76],[86]

Lightweight
PUF

5 LR 128 Simulation [75],[76]

FF APUF 8 ES 128 Simulation [75],[76]
RO PUF 1024 Quick Sort N/A Simulation [75],[76]
BR PUF N/A SVM (Linear

kernel), Adap-
tive boost

Up to
256

FPGA [94], [97]

lightweight PUFs.

Apart from using synthetic CRPs, the dependency on ”good” CRPs that produce either
all ’1’s or ’0’s limits the number of useful CRPs, which is inefficient when attacking more
complex PUF architectures that require more CRPs for training. Note that the number of
CRPs shown in Table 4.5 include both useful and non-useful CRPs. On the other hand,
although the prediction rates are slightly less than the numbers obtained in [75], combining
SPA with machine learning could extend the attack to successfully model XOR/lightweight
PUFs with a higher number of parallel APUFs and stages in less computational time. An-
other work by Merli D. et al [66] proposed the use of electromagnetic side-channel leaked
information to break the security of RO PUFs. Using near-field electromagnetic cartog-
raphy methods, a full model of an RO PUF could be extracted from EM measurements.
The measurements are taken from the backside of the chip under attack to obtain stronger
EM radiation.

Figure 4.2 shows the de-capsulation steps on the Xilinx Spartan XC3S200 FPGA chip
under test. 256 RO oscillators were implemented on-chip to examine the effect of the de-
capsulation process by measuring their frequency before and after applying de-capsulation.

63



Table 4.5: Attacks results of Mahmoud A. et al [59].

PUF Type ML
method

# of stages # of
XORs

Prediction
accuracy

CRPs
(×1K)

Training
time

4 97.3% 40 18 sec
5 96.6% 80 22 sec

64 6 96.6% 200 44 sec
7 96.6% 500 91 sec
8 96.6% 1000 98 sec
9 96.6% 2000 105 sec
4 97.4% 80 46 sec
5 97.6% 200 122 sec

Lightweight LR 128 6 97.4% 500 191 sec
PUF 7 96.8% 1000 200 sec

8 96.4% 2000 238 sec
9 96.1% 4000 303 sec
4 97.6% 200 200 sec
5 97.4% 500 340 sec

256 6 96.8% 1000 400 sec
7 96.4% 2000 490 sec
8 96.1% 4000 580 sec
9 96.1% 8000 700 sec
4 95% 40 10 sec

64 5 95% 80 37 sec
6 95% 200 160 sec

XOR APUF LR 7 95% 500 247 sec
4 95% 80 34 sec

128 5 95% 200 170 sec
6 95% 500 374 sec

64



Figure 4.2: Step-by-step backside de-capsulation of an FPGA [66].

Obtained results of RO frequency maps did not show significant change, therefore the attack
can be considered of semi-invasive type. The first step of the side channel EM analysis
was to determine the frequency range of ROs on the chip, then identify the area of high-
frequency leakage to distinguish between every two distinct RO frequencies. This is done by
applying a differential analysis of frequency amplitudes measured on-chip while launching
comparisons between every two RO PUFs. For example, Light areas in Figure 4.3 indicate
amplitude differences between comparisons and therefore represent points of interest for
an attacker.

Measurements were done using Langer ICR near-field EM probe, which has 150µm
diameter and 100µm resolution as shown in Figure 4.4. The chip under attack was divided
into a grid of 50×42 measurement points over the 4.8mm×4.0mm die to obtain a map of
location-dependent EM radiation of RO PUFs and fully model the eight ROs PUF in the
experiment.

Additionally, other proposals suggested that photonic emissions by CMOS transistors
during logic transitions can be used as a side-channel to gain information about PUF
behavior. Helfmeier C. et al proposed the use of photonic emissions analysis (PEA) to
physically characterize and clone SRAM PUFs [38]. The experiment was conducted on
Atmel ATmega328P microcontroller as the chip under test after removing the packaging
and the bulk silicon of the device backside. The characterization of SRAM cells was done
by capturing their near-infrared photonic emission using Hamamatsu Phemos 1000 NIR-

65



Figure 4.3: Accumulated frequency amplitude differences map [66].

Figure 4.4: Near-field probe close to FPGA die [66].

66



Figure 4.5: SRAM photonic emission fingerprint [38].

CCD. The program loop on the chip was executed with high frequency to increase the
photonic emissions generated and facilitate the characterization of SRAM PUFs as shown
in Figure 4.5 a) and b). Consequently, The SRAM PUF could be cloned using a Focused
Ion Beam (FIB), which can trim individual transistors to alter their dynamic performance
and leakage characteristics, hence clone the SRAM startup behavior as in Figure 4.5 d).

Another research analysis by Tajik S. et al [84] used photonic emissions with timing
side-channel analysis to fully characterize arbiter PUF delays. Furthermore, this attack
could measure every PUF internal delay with a 6ps resolution. Hence, it only requires a
minimal number of physical measurements to solve the linear additive system of delay-
based PUFs. Moreover, it does not require direct access to a large CRP set to model
PUF like previously discussed techniques. The main idea is to measure the time between
enabling the operation of the PUF and the photonic emission of the output at the last
stage. By using CRPs with Hamming Distance (HD) = 1 with a reference CRP at every
stage, the delay difference between the two paths can be identified. Figure 4.6 shows the
setup of Experiments conducted on 8-bit PUFs implemented on Altera MAX V CPLD and
used an optimized infrared microscope equipped with a scientific near-infrared (NIR) Si-
CCD camera for spatial analysis of circuit components. A free-running InGaAs avalanche
detector in Geiger Mode (SPAD) is used for the temporal analysis of the photonic emission.
Its sensitivity covers a wavelength range between 1 to 1.6µm with a peak quantum efficiency
of 20%. Results showed that the 8-bit PUF could be fully characterized using 9 CRPs,

67



Figure 4.6: Controlling the DUT with the CB and capturing emitted photons from the
DUT by SI-CCD camera and InGaAs-SPAD [84].

which is far less than required CRPS by modeling attacks. On the other hand, this attack
scheme requires direct access to the device under test and applying the same challenge a
million times to provide enough photonic emission. Table 4.6 provides a summary of PUF
types broken by hybrid attack schemes.

4.1.3 Fault injection attacks

Fault injection is the last type of attack proposed in the literature to clone PUFs. The
behavior of the system after a fault is injected can lead to a side-channel leak used by
the attacker to break the system security. A fault can be injected in different ways, either
by changing operating environmental conditions (e.g. temperature, operating voltage), or
using the glitching of clock/power, electromagnetic pulses, or laser pulses. These injection
methods cause bits values to flip, masking of clock cycles, change of response times and
many other changes that affect the chip overall behavior. The first fault injection attack
on delay-based PUFs has been conducted by changing the environment temperature of the
chip to increase the number of unreliable CRPs [70]. The attacker can utilize unreliable
CRPs as side-channel information to enhance the efficiency of modeling attacks. Their
approach showed significant performance for 64-bit APUFs and RO PUFs with 40 inverters.
Both PUFs were implemented on 65nm CMOS technology and CRPs were collected from

68



Table 4.6: Summary of successfully attacked PUFs including Side channel techniques used
and source of CRPs.

PUF Type # of
XORs/
FF loops/
Ring Osc.

ML method Bit
Length

CRP
Source

Refs.

64
LF PUF 9 PSA + LR 128 Simulation [59]

256
XOR 7 PSA + LR 64

APUF 6 128 Simulation [59]
RO PUF 7 EMA 8 FPGA [66]
SRAM PUF — PESA — Micro-

controller
[38]

APUF — PESA + Tim-
ing side channel
analysis

8 CPLD [84]

the silicon chip. This idea is further extended by changing the supply voltage for specific
responses and observe if they flip [7]. Using unreliable responses as new information enables
the attacker to model a controlled arbiter PUF using power side-channel information. This
is helpful since controlled arbiter PUFs limit the number of accepted CRPs. Experiments
conducted in [7] used simulated CRPs generated by an HSpice model of 128 APUF in 45
nm technology. The result of using ES technique after applying +/-0.1V fault injection
showed 97

Another fault injection attack was proposed in [83] by Tajik S. et al. The attack
scheme uses laser beams to inject a fault into a point of interest to help accelerate machine
learning attacks on complex non-linear PUF architectures. The points of interest in PUFs
are identified and localized by applying spatial photonic emission analysis from the IC
backside. As shown in Figure 4.7, Fault is injected to disable all chain outputs by disabling
clock input signal except for only one APUF. Hence, the XOR PUF output is a copy of
this APUF response and every single PUF can be modeled at a time. Experiments on two-
input XOR PUF showed that an XOR or lightweight secure arbiter PUF can be modeled
in a few seconds with far fewer numbers of CRPs, unlike pure ML attacks, which requires
a lot of time and CRPs to accurately model complex PUFs.

The same technique was applied against RO-PUF as shown in Figure 4.8. The ex-

69



Figure 4.7: Points of laser attack for XOR-PUF [83]

periments on RO PUF showed that the entropy can drastically be decreased by disabling
several ROs in the PUF. Experiments were conducted on real implementations of RO PUF
with 3 inverters and 2-XOR APUF (number of stages were not reported) on Altera MAX V
CPLD. Moreover, photonic emission analysis was done using a Hamamatsu PHEMOS 1000
photon emission and laser scanning microscope. Table 4.7 summarizes the fault injection
attacks on PUFs and the source of CRPs used.

4.2 Modeling attacks on double arbiter PUFs

As previously mentioned in subsection 3.1.2, DAPUF was especially proposed in [85] and
[54] to overcome the routing constraints on FPGA chips and complicate the relationship
between input challenges and responses with minimum hardware overhead. In a typical
DAPUF design, using N APUFs leads to a response that is the output of N(N-1)-input
XOR. Hence, DAPUFs showed more resistance against modeling attacks using conventional
machine learning (ML) techniques and its security could not be broken as reported in
previous research [85],[96].

70



Figure 4.8: Points of laser attack for RO-PUF [83]

Table 4.7: Summary of successfully attacked PUFs using fault injection techniques and
source of CRPs.

PUF Type # of
XORs/
FF loops/
Ring Osc.

ML method Bit Length CRP
Source

Refs.

XOR APUF 2 Laser pulses Not reported CPLD [83]
RO PUF — Voltage change 40 ASIC [70]

RO PUF 4 Laser pulses 3 CPLD [83]
APUF — Voltage 64 CPLD [7]

APUF — change 128 Simulation

71



The contributions of this research with respect to DAPUFs attacks are as follows:

1. Successfully modeling 2-1 DAPUFs using conventional ML techniques with CRPs
collected from a real DAPUF hardware implementation.

2. The first reported successful modeling attacks against 3-1 DAPUFs using deep learn-
ing (DL) techniques which shows it performs better than conventional ML algorithms.

3. Suggest DL techniques to enhance the modeling accuracy of 4-1 DAPUF compared
to previous research [96].

4.2.1 DAPUFs architectures and modeling attacks

As was shown in Figure 3.5, the main idea of this approach is to use two identical APUFs
placed adjacent to each other to eliminate routing differences. Every delay path has identi-
cal routing delays compared to the matching path in the second PUF. Hence, PUF response
is determined by the matching delay paths race of the DAPUFs

The DAPUF design is further extended to make it more complex and harder to model by
introducing an XOR operation between PUF responses. As mentioned earlier, DAPUFs
designs use minimum hardware overhead and can produce O(N2) input XOR response
using O(N) APUFs. For example, Figure 3.5 and Figure 3.6 show that the 2-1 DAPUF,
3-1 DAPUF, and 4-1 DAPUF are equivalent to 2-input XOR APUF, 6-input XOR APUF,
12-input XOR APUF respectively.

Modeling attacks using conventional ML techniques against DAPUFs and equivalent
XOR PUFs have been reported in the literature. For example, Machida, T., et al [85]
showed that LR attacks against DAPUFs were not successful. Furthermore, modeling
accuracy was in range 56% - 80% for 2-1 DAPUF, ∼ 56% for 3-1 and 4-1 DAPUFs.
However, their training sample was small (1K CRPs) and did not provide sufficient evidence
of DAPUFs resistance. On the other hand, Yashiro, R., et al. [96] provided a more
comprehensive analysis using 50K CRPs and their attacks were executed using SVM and
DL. Their reported results showed 2-1 DAPUF could be successfully modeled using DL
techniques with accuracy 90% and ∼ 85% using SVM. However, it was not clear how many
PUF instances were under attack. Additionally, their results showed that DL and SVM
could not successfully model 3-1 and 4-1 DAPUFs with modeling accuracy is 68% and 62%
respectively.

Finally, as mentioned in subsection 4.1, modeling attacks against XOR PUFs were
reported successfully in literature. However, these attacks were executed against maximum

72



6-input XOR PUFs using real PUF implementations and 200K CRPs [76] and 9-input XOR
PUFs using simulated PUFs and 350K CRPs [86]. Therefore, the security performance
of 3-1 DAPUF was tested by applying the same modeling technique used in [76] against
6-input XOR PUF. The poor results based on this test justifies shifting our focus to exploit
DL techniques to break 3-1 DAPUF security.

4.2.2 Methodology and Experimental Setup

This subsection discusses in detail the mathematical models, network architectures, and
the environment setup used to attack the DAPUFs.

4.2.2.1 The Mathematical Model of DAPUFs

As previously discussed, the DAPUF response is the output of an XOR. Therefore, the
model used to attack DAPUFs is the same mathematical model used for XOR arbiter
PUFs [76]. Consequently, The output response of a DAPUF is the multiplication of every
single path response as shown in equation 4.9.

Txor =
l∏

i=1

sign( ~wt
i
~φi) (4.9)

As was discussed in section 4.1 The ( ~wt
i) is the delay difference vector of a single APUF

and responsible for encoding delay difference at every stage [75], whereas ~φi is the feature
vector that represent the impact of every stage delay difference on the overall PUF response.
If (δ) is the delay difference between the upper and lower path at a certain stage then its
impact will be (+) or (-) depending on how many times paths will go straight or crossed
after this stage. Hence, it is a function of input challenge bits and is a string of (1) and
(-1) as depicted in equation 4.10 [75]. Note that ’k’ represents the number of stages, ’l’ is
the stage position in APUF and ’Ci’ is the challenge bit value at the ith position.

~φ(~C) = (φ1(~C), ...φk(~C), 1), φ1(~C) =
k∏
i=l

(1− 2Ci) (4.10)

The final value of Txor is either (1) or (-1) representing (1) or (0) responses respectively.
Hence, modeling the DAPUF response can be considered as a binary classification prob-
lem, which can be solved by conventional machine learning techniques (e.g. LR, SVM).

73



Equations 4.11 and 4.12 are derived from equation 4.9 to calculate the decision bound-
ary needed to classify the PUF response. Equation 4.11 is doing the classification by
determining a non-linear decision boundary, which requires l × (k + 1) parameters (l is
the number of XOR inputs and k is the number of PUF stages). Whereas equation 4.12
takes a further step and calculates the linear decision boundary by applying outer prod-
uct among the wights and features of all XOR input PUFs. The latter approach requires
(k + 1)l parameters for every single CRP, which scales exponentially when increasing the
XOR inputs. Please note that ’l’ represents the number of XOR inputs in equations 4.9,
4.11, and 4.12.

Txor = sign(
l∏

i=1

( ~wt
i
~φi)) (4.11)

Txor = sign(
l⊗

i=1

~wt
i

l⊗
i=1

~φi) (4.12)

The 64 stage 2-1 DAPUF is similar to 64 stage 2-input XOR PUF, thus the number of
parameters for every single CRP is (64 + 1)2 = 4225. Due to this relatively low number of
parameters, building a model for the 2-1 DAPUF using logistic regression is a reasonable
choice and was adopted in this work. However, deep learning techniques were used in
attacking 3-1 and 4-1 DAPUFs because the number of parameters scales exponentially
(656 in the case of 3-1 DAPUF and 6512 in case of 4-1 DAPUF). Furthermore, attacks
against 3-1 and 4-1 DAPUFs were invoked using LR with non-linear decision boundary
as a proof that conventional machine learning techniques are not successful in breaking
larger DAPUFs. This is in contrast to the same technique performance against similar
XOR-PUFs, which were accurately modeled using non-linear decision boundary in previous
research [76][86].

4.2.2.2 The Architectures of The Deep Neural Networks

Deep neural networks (DNNs) are artificial networks with multiple hidden layers between
the input and output that can model complex non-linear relationships among inputs better
than shallow ANNs. They have been on the rise for some time now and widely used in
many applications and complex tasks (e.g. object recognition, classification, text processing
tasks). These types of networks start to build up a complete inference about the complex
problem by gaining partial knowledge through the multiple hidden layers and aggregate
them together at the end to provide an accurate classification/decision. For example, when

74



a specific network tries to classify an object, its shallow layers extract features of edges and
contours. Then, the deeper layers connect between features to construct shapes and classify
the object at the output layer. Hence, the problem of modeling a complex PUF architecture
may be solved using this approach. The DNN can learn the complex relationships among
different stages by discovering the easier correlations between challenge features first and
build upon that through the network to classify the final PUF response. The type of DNN
used in this work is the feed-forward network, which means the flow of data goes in one
direction through multiple layers from input to output as shown in Figure 4.10.

Many deep neural network architectures and configurations have been investigated in
the experiments invoked to find the network that can successfully learn the complex re-
lationships of 3-1 and 4-1 DAPUF architecture. The main idea is to build a network
that emulates the DAPUF architecture, which makes the training process easier for the
network to learn the non-linear relationships among different stages of DAPUF from the
same/different paths.

The first architecture is illustrated in Figure 4.9 where every path handles one APUF
of the six PUFs contributing to 3-1 DAPUF output. The final result equals the six PUFs
multiplication and the output of the probability of the response being ’1’ or ’0’. All
layers are fully connected because convolutional layers did not produce good results on this
problem and could not capture all the relationships among different stages. Furthermore,
the number of neurons in every layer is 2000 after running many experiments to tune the
network. Although after using 65 × 6 = 390 neurons results were enhanced but the best
accuracy performance obtained when using 2000 neurons in every layer. Also, note that
for 4-1 DAPUF the network has 12 branches instead of six.
The second architecture is shown in Figure 4.10 and it is 12 Fully Connected (FC) layers
for 3-1 DAPUF and the number is increased for the case of 4-1 DAPUF to be 18 layers.
At the end of the network, there is a dropout layer to avoid over-fitting problems and train
a more generalized model. The second architecture introduced nearly the same accuracy
results while taking nearly 40% less training time. Hence, the reported results in the
next section are based on the second architecture. Furthermore, both architectures used
adaptive moment estimation (Adam) optimization algorithm proposed by Kingma, D. and
Ba, J. [46] because experiments showed that it converges faster and introduces better
accuracy results than the normal gradient descent algorithm. More details on the training
parameters and activation functions are provided in subsection 4.3.3.

75



Figure 4.9: N-Branch Fully Connected with Multiplication Deep Neural Network

76



Figure 4.10: 1-Branch Fully Connected Deep Neural Network

4.2.2.3 Hardware and Software Experimental Setup

DAPUF architectures were implemented on Mojo V3 development boards, each containing
a Spartan 6 XC6SLX9 FPGA [5] (45nm process technology). Real CRPs were collected
from the boards and all readings were performed under normal voltage and temperature
conditions. The experiments used a random CRP set generated using a linear-feedback
shift register (LFSR) as in [76]. The only difference is that LFSR is implemented on chip.
Finally, The Xilinx ISE Design Suite 14.7, Xilinx PlanAhead 14.7, and Xilinx FPGA editor
are utilized to implement, manually place and route the DAPUF designs.

Logistic regression attacks were executed on Intel 8th Gen I7-8250 CPU with 16GB
RAM of memory. The code for LR with a non-linear decision boundary is implemented
by Ruhrmair, U. et al [75] and is available online [1]. Their implementation with RProp
optimization algorithm was successful in attacking up to 6-input XOR PUFs. Hence, it
was used to attack 3-1 DAPUF to prove The PUF resistance against conventional ML
techniques and justify the need for deep learning algorithms.

Deep learning attacks were executed on a Nvidia GeForce GTX 1080 Ti GPU card with
11GB RAM and worth around 800$. The code implementation for network architectures,
training, and evaluation was done using Tensorflow v1.2. The CRP set was generated using

77



Table 4.8: The randomness of 2-1 DAPUFs under attack.

Chip-A Chip-B Chip-C
Response Randomness 43.9% 40.2% 57.3%

the same HW LFSR. However, a set of 20M CRPs were collected to have enough samples
to train the massive deep neural networks.

4.2.3 Empirical Results

This section shows in detail the statistical properties of the PUFs under attack and the
obtained results of the modeling attacks against 2-1, 3-1, and 4-1 DAPUFs.

4.2.3.1 LR Attacks Against 2-1 DAPUFs

Three 64 stages 2-1 DAPUFs were implemented on three Mojo V3 boards using the same bit
configuration for all FPGA chips. The inter-chip hamming distance is 45% and randomness
of every PUF response (percentage of ’1’ responses) is shown in Table 4.8. As discussed
before, the CRP set size is 1M and all accuracy results shown are using a test set size =
1M - training set size.

Figure 4.11 shows the modeling attack results against the three 2-1 DAPUF instances.
The maximum accuracy performance using 100K CRPs for training is 93.4%, 81.7% , and
82.4% for Chip A, B, and C respectively. The graph shows that at training size equal to
20K CRPs, accuracy could reach ∼ 80% - 90%. By comparing these results with what was
reported in [85] by Machida, T. et al (2-1 DAPUF accuracy 56%, 69%, 80%), It is obvious
that 2-1 DAPUFs are not secure against LR with a linear decision boundary modeling
attacks. Furthermore, Yashiro, R. et al reported a successful modeling attack on 2-1
DAPUF using deep learning with 90% accuracy using 40K CRPs [96]. However, obtained
results show that using LR with linear decision boundary can achieve better accuracy with
half the number of CRPs and less cost because of no need to use deep learning techniques
and GPUs.

4.2.3.2 LR and Deep Learning Attacks against 3-1 DAPUFs

Similar to the previous experiments, three 64 stage 3-1 DAPUFs were implemented on
three Mojo V3 boards. The inter-chip hamming distance is ∼ 39% and the randomness

78



Figure 4.11: LR with Linear Decision Boundary Attack Results on 2-1 DAPUF

Table 4.9: The randomness of 3-1 DAPUFs under attack.

Chip-A Chip-B Chip-C
Response Randomness 54.4% 46.7% 47.9%

of every PUF response is shown in Table 4.9. The maximum training set size is 17M and
The training/test set ratios is 90/10%. LR attacks were stopped after using 4M training
set because it took a long time and increasing the training data did not seem to help the
model to converge.

Figure 4.12 shows the modeling attack results against 3-1 DAPUFs. The maximum
accuracy performance using 17M CRPs for training is ∼ 86%. Moreover, The models could
reach at least 83% accuracy using only 4M CRPs for training. On the other hand, the LR
with non-linear decision boundary failed to converge and achieve more than 76% accuracy
and took a long time because it is run on CPU. Typically, in all cases with a huge training
set, it took ∼ 1hr-2hrs to reach 80% accuracy then within 3-5 hrs to reach the maximum
accuracy. Note that this time is taken while training on one GPU. Furthermore, results
show that the LR with non-linear decision boundary and the deep learning architectures
used in this work are more successful than the conventional ML and DL techniques used
in [55] and [96] respectively. Their reported attack results show a modeling accuracy of

79



Figure 4.12: LR and Deep Learning Attacks Results on 3-1 DAPUF

Table 4.10: The Randomness of 4-1 DAPUFs under Attack.

Chip-
A

Chip-
B

Chip-
C

Response Ran-
domness

48.7% 40.9% 51.8%

56% - 68% using LR, SVM, and DL techniques.

4.2.3.3 Deep Learning Attacks against 4-1 DAPUFs

The same experiments were run on three instances of 4-1 DAPUFs on three different Mojo
V3 boards. The inter-chip hamming distance among the three instances is ∼ 50.9% and
the randomness of every PUF response is shown in Table 4.10. Similarly, The maximum
training set size is 17M and The training/test set ratios is 90/10%.

The modeling attack results against 4-1 DAPUFs are shown in Figure 4.13. The max-
imum accuracy performance using 17M CRPs for training is 71.3%, 81.5%, and 73.2% for
chip A, B, and C respectively. The results show that models reach 70%-80% accuracy
at training set size of only 6M CRPs. The increase of training set size from 6M to 17M

80



Figure 4.13: Deep Learning Attacks Results on 4-1 DAPUF

causes modeling accuracy to rise only 1%-3%. Hence, after a specific training set size,
attackers should consider doing architectural modifications in their networks to strengthen
the model accuracy instead of depending only on increasing the training set size. Although
results show that the deep learning architectures used to attack 4-1 DAPUFs were not as
successful as those used against 3-1 DAPUFs, but they still achieve better accuracy per-
formance than the conventional ML and DL techniques used in [85] and [96] respectively.
Their reported attack results show a modeling accuracy of 56% - 63% using LR, SVM and
DL techniques. Hence, this work presents a step forward in fully modeling 4-1 DAPUFs
and investigates more efficient techniques against PUFs with complex architectures.

4.2.4 Summary of DAPUF attacks

This section discussed the successful modeling attacks, which have been executed against
different DAPUFs architectures. Obtained results show that 2-1 DAPUF can be modeled
using LR with a linear decision boundary. Moreover, it achieves better accuracy (93.4%)
using less CRPs and cheaper computing resources than ML & DL attacks reported in
previous research [96]. Additionally, results proved that DL techniques can successfully
model 3-1 DAPUF and achieved better accuracy than ML and DL attacks reported in

81



literature (86% Vs. 68%) [85], [96]. Furthermore, experiments showed that the same LR
technique that was successful against equivalent XOR PUFs failed to achieve the same
performance with 3-1 DAPUF. Hence, using DL techniques is justified to achieve better
modeling accuracy. Although obtained results of 4-1 DAPUF attacks did not show the
same success but the DL network used achieved better accuracy than previous research
(71.3%-81.5% Vs. 63%) [96]. Other DL architectures and techniques should be investigated
to achieve better results on 4-1 DAPUFs.

One concern that might arise is the practicality of modeling attacks using DL tech-
niques, which requires a huge set of CRPS for training. However, experiments were run on
Mojo V3 boards running at 50MHZ frequency (clock period = 20ns), and the delay time
of implemented DAPUFs ranges between 32-45ns. This means that reading one response
with eased timing constraints can take less than 100ns, thus collecting 20M CRPs is a
matter of several minutes. Furthermore, with the AI hype and the race to introduce more
efficient hardware, it is easy and even cheaper to use many GPU cards in parallel using
cloud computing services and train huge CRP sets in parallel.

Finally, these attacks draw attention to the fact that corresponding challenge and re-
sponse bits should not be revealed no matter how complex the PUF architecture is, since
attacks are possible using the available DL techniques and hardware can be successfully
attacked and broken. This problem was addressed in the literature by proposing obfusca-
tion schemes to hide the challenge response relationship as will be discussed in section 4.4.
Furthermore, the ability to model multi-input XOR PUFs may enhance other hybrid at-
tack schemes, which inject faults to disable part of the XOR inputs. Consequently, if
the available modeling attacks can successfully model XOR PUFs with a larger number
of inputs, then the fault injections needed will be minimized and equipment used will be
cheaper (no need to accurately disable one input at a time). Hence, hiding the challenge
response relationship should be the first priority for PUF designers before introducing
new complex architectures. The next two sections will discuss more deep learning mod-
eling attacks against PUF architectures without accurate mathematical models or using
obfuscation techniques to hide the challenge-response relationship.

4.3 Modeling attacks on bi-stable ring PUFs and its

variants

As mentioned in subsection 2.1.2.4.3, BR PUF was introduced in [78] and [15] as a new
PUF architecture to merge between delay-based and memory-based approaches. The aim

82



was to design a stronger PUF with more resistance against modeling attacks and large
challenge space, so CRPs cannot be exhaustively read by the attackers. Its basic idea
is that the output of any given inverter ring with an even number of inverters has only
two possible stable states. This is similar to memory-based PUFs operation except that
challenge bits are inserted to select which path to be used at every stage. One problem
of BR-PUFs is that it takes a longer time to stabilize, which is an undesirable property
of PUFs. Furthermore, BR-PUFs implementations on FPGAs showed an output bias
problem as reported in [78]. As a result, other variations of BR-PUFs were proposed like
TBR-PUF [78] and finally XOR BR-PUFs in [94]. The latter was proposed after successful
modeling attacks were reported against BR-PUFs and TBR-PUFs using SVM and single-
layer artificial neural network (ANN). XOR-BR PUFs showed significant resistance against
modeling attacks and set an example that the approach of complicating the relationship
between input challenges and responses can somehow countermeasure conventional ML
modeling techniques used to break the security of previous architectures. However, it was
shown in [26] that BR PUF families have a finite set of influential challenge bits and can be
considered a Linear Threshold Function (LTF) similar to APUFs. Hence, an XOR version
of BR PUFs can be modeled using a single-layer perceptron function as was reported in
[27] against XOR APUFs. In this subsection, we show that XOR BR and XOR TBR PUFs
cannot be modeled using a single layer NN and we needed to use deeper architecture along
with a simplified mathematical model to fully break their security.

Our motivation to attack the XOR BR PUF family is based on the current status
of PUFs design efforts, which part of it focuses on introducing new architectures solely
depending on more complex challenge-response relationships or building an architecture
that no accurate mathematical model can be derived for. Furthermore, measuring the
architectural enhancement by how resistant these PUFs are to conventional ML modeling
attacks. However, the development in deep learning (DL) techniques and the hardware
running it with acceptable timing performance puts more pressure and challenges on the
PUF architectures resistant to conventional modeling techniques. The contributions of BR
PUF DL attacks are as follows:

1. Showing that XOR BR and XOR TBR PUFs cannot be modeled using single NNs
and justifying the necessity to use deeper networks.

2. Applying deep learning modeling techniques to attack 4-input, 5-input,6-input XOR
BR PUF, XOR TBR PUF, and an obfuscated version of XOR BR PUF and success-
fully breaking its security with different stage sizes (e.g. 64, 128, 256) and achieving
a remarkable modeling accuracy > 99%.

83



3. Taking the first step to connect between DL theory and our empirical results to
understand why DL attacks work successfully and based on that we introduced a new
obfuscated version of XOR BR PUF as a countermeasure (more details in chapter
5).

4. Providing detailed analysis on the scalability of DL modeling techniques in terms
of layers number and hidden neurons needed with respect to the PUF architecture
complexity and number of PUF stages.

4.3.1 Modeling attacks of BR PUFs family

4.3.1.1 Bistable ring PUFs

Since the BR-PUF architecture is operating like memory-based PUFs, it was expected
that no mathematical model could be built for such architecture. However, there exist
several reported machine learning attacks against BR PUFs by either using a simplified
mathematical model [94][78] or without model [26]. Furthermore, it was found that its
responses were not uniform and are biased [94]. Hence, twisted BR-PUF (TBR PUF) was
introduced by Schuster D. and Hesselbarth R. after successfully breaking the security of
BR-PUF using a single layer NN and a simplified mathematical model (i.e. replacing every
’0’ challenge bit with ’-1’) [78]. This new variant of BR PUF makes all inverters involved
in the closed loop and input challenge bits are responsible for determining the positions of
inverters inside the ring (odd or even).

Although this architectural modification showed more resistance against ANN attacks
and more uniform responses, in the same paper, it was noted that NNs were learning the
correlation between challenge bits and responses and there might exist more influential
bits that helped in modeling BR PUFs. Another study built on this note and showed
that TBR PUFs could be modeled and cloned. Gangi F. et al [26] proposed a new attack
against BR and TBR PUFs that does not require deriving a mathematical model of the BR
PUF family. The main idea is to exploit the challenge bits with higher influence on PUF
response (influential challenge bits) to construct a machine learning based boosted model
that can predict the PUF outcome with high probability. Experiments conducted using
30K CRPs collected from 64 stages BR and TBR PUF implementations on Altera Cyclone
IV FPGAs. Adaptive boost algorithm [25] was used to create the boosted classifier built
over the initial weak learners, which depends on single influential bits. Obtained results
showed that boosting technique could successfully model both PUFs up to 99% prediction
accuracy using 50 boosting iterations. Furthermore, they suggested that BR and TBR

84



PUFs have a small set of influential bits and their polynomial threshold function (PTF)
can be approximated by an LTF.

4.3.1.2 XOR Bistable ring PUFs

In [94], Xu X. et al could build a simplified mathematical model to attack BR and TBR
PUFs using SVM modeling technique. Instead of deriving an accurate non-linear model of
PUF delays, A simplified additive model was adopted to represent the difference between
the pull-up and pull-down strength of every inverter. Hence, the PUF response can be
re-written as the summation of all stages’ strength difference and therefore, SVM works by
learning the weights assigned to every inverter strength difference. Equations 4.13 to 4.15
explain the model parameters, where ’ti’ and ’bi’ are the pull-up and pull-down strength
difference for the upper and bottom NOR gate at the ith stage. Hence, an even stage will
contribute to a positive PUF response with strength ti or bi depending on the challenge bit
value and odd stages will contribute with strength −ti or −bi. A generalization of these
terms can be used to represent the odd and even stages contribution in this form ’−1iti’
and ’−1ibi’. In equation 4.14, Xu X. et al defined two terms ’αi’ and ’βi’ to facilitate the
writing of PUF response summation equation with respect to input challenge bits. Hence,
PUF response can be represented as a linear summation as shown in equation 4.15, where
’K’ is the number of PUF stages and ’Ci’ ∈ −1, 1 is the challenge bit at this stage (note
that 0 value is interpreted as -1 to select the bottom NOR gate). Furthermore, the term
’αi’ can be discarded because it yields the same value for all CRPs training samples.

∆Strengthiupper = −1iti, ∆Strengthibuttom = −1ibi (4.13)

αi + βi = −1iti , αi − βi = −1ibi , hence

αi = −1i(
ti + bi

2
) , βi = −1i(

ti − bi
2

)
(4.14)

Tresponse = Sign(
K∑
i=0

(αi + Ciβi)) (4.15)

The experimental results showed that BR and TBR PUFs could be successfully attacked
using SVM with modeling accuracy > 95%. Hence, XOR BR PUF was introduced to
countermeasure this attack and the results showed that the SVM modeling technique with
polynomial kernel was not successful in breaking architectures with XOR input > 3 as
shown in Table 4.11.

85



Table 4.11: Reported results of SVM modeling attack on XOR BR PUF [94].

No. of XOR inputs No. of Stages No. of training CRPs Modeling Accuracy
3 32 1200 > 95%
3 64 7200 > 95%
3 128, 256 N/A 50.1%
4 32,64,128,256 N/A 50.1%

4.3.1.3 Motivation for deep learning attacks

Gangi F. et al [27] showed that XORed LTFs (e.g. APUFs) with the number of XOR
inputs < ln(number of PUF stages) can be learned using single-layer perceptron function
in polynomial time. Consequently, if BR PUFs can be approximated by an LTF because
of the finite set of influential bits as discussed earlier, then it is expected that using a
single layer NN can model XOR BR PUFs. However, we conducted an analysis on the
implemented XOR BR and TBR PUF instances using Linear Discriminant Analysis (LDA)
to confirm if both classes representing PUF response are linearly separable or not. LDA
is a supervised linear transformation technique used to reduce features dimensionality by
computing the linear discriminants or the directions of the axes at which, the separation
between multiple classes is maximized [37]. As a result, all XOR BR and TBR PUF
instances with different sizes (64, 128, 256) showed similar behavior to the example in
Figure 4.14. It shows the density function of 1M data samples representing both PUF
response classes ’0’ and ’1’. It is clear that both curves are overlapping and hence, they
are not linearly separable, and a single layer perceptron algorithm cannot model this type
of architectures. One might attribute the different behavior of XOR BR PUFs compared
to XOR APUFs to the fact that we could derive an accurate additive linear model for the
latter. On the other hand, the mathematical model of XOR BR PUFs is a simplified one.
It is shifting from modeling delay difference to a more abstract concept of modeling the
strength difference of every stage as discussed earlier. Furthermore, this also justifies why
SVM with polynomial kernel could not break XOR BR PUF security while it was reported
in previous literature that similar XOR LTFs (i.e. APUFs) could be broken using logistic
regression technique (LR)[75][76].

Hence, there was a motivation behind this work to explore the ability of deep learning
modeling techniques to break the security of XOR BR PUFs. Furthermore, experiments
were executed to attack XOR TBR PUFs because TBR PUFs showed more resistance to
ANN modeling attacks compared to BR PUFs as mentioned earlier. Therefore, XOR TBR
PUF was expected to be harder to break and introduces an extra challenge to confirm the

86



Figure 4.14: density function of LDA feature analysis for 128 stage 4-input XOR BR PUF

obtained results from attacking XOR BR PUFs.

4.3.2 BR PUF implementation on FPGA and statistical proper-
ties

In this subsection, we show how the PUFs under attack were implemented and its statistical
properties. The implementation techniques used are based on the work of M. A. Elmohr
in [21]

4.3.2.1 Overall system architecture

The Mojo V3 Board which features a Spartan-6 XC6SLX9 Xilinx FPGA is used alongside
an ATmega32U4 AVR Microcontroller. Figure 4.15 shows the system architecture in which,
PUF instances are implemented on the FPGA side and a Finite State Machine (FSM)
and a UART module to control the communication between FPGA and host machine for
receiving challenges and sending responses. The UART module on top of the FPGA is
connected to the UART of the AVR Microcontroller, which in return transfers the data
through the USB port of the Mojo board to and from an external PC.

Challenges are generated using a Galois Linear-Feedback Shift Register (Galois LFSR)
pseudo-random number generator by a script on the PC side and sent to the PUF through

87



UART Module

TxRx

FPGA

AVR 
Microcontroller

TxRx

D+

D-

U
A
R
T

U
A
R
T

USB

D+

D-

USB

Mojo V3 Board

USB

PUF
XOR

FSM
Challenges Responses

Figure 4.15: PUF Ecosystem [21]

serial communication to the FPGA byte by byte. A predetermined constant time is config-
ured before which, the PUF must converge to a stable state and its response is captured.
In our implementation, all the stages’ outputs are derived to confirm that all stages have
the same capacitive load, otherwise one stage would have a different load than others,
which might bias the PUF as was noted in [95]. Another advantage of deriving all stages’
outputs is to distinguish between converged and non-converged responses. This is done by
ORing response bytes together forming one byte output that is sent to the PC side. For a
converged ring, that byte should be either ‘10101010’ (0xAA) representing ’1’ or ‘01010101’
(0x55) representing ’0’, other than that, it indicates a non-converged ring, which won’t be
added to the CRPs database.

4.3.2.2 BR PUF implementation technique

Every BR-PUF stage as introduced in [16] should have one MUX, one DEMUX and two
inverting elements such as NOR gates. An FPGA implementation would result in five Look
Up Tables (LUTs) as in Figure 4.16a similar to what was reported in [95]. however, an
optimization is introduced in our implementation by removing the DEMUX. The BR-PUF
functionality is not affected because the MUX chooses between the output of either NOR
gates, which is the important issue for the BR-PUF functionality. Hence, it does not make
a difference whether supplying the input to only one NOR gate as in the original design or

88



to both NOR gates as in our optimized version. This optimization technique reduces the
number of LUTs to be three as in Figure 4.16b.

Reset

Challenge

In
Out

DEMUX

2-1 
LUT

2-1 
LUT

NOR

2-1 
LUT

NOR

2-1 
LUT

MUX

3-1 
LUT

(a)

Reset

Challenge

In
Out

NOR

2-1 
LUT

NOR

2-1 
LUT

MUX

3-1 
LUT

(b)

Figure 4.16: BR PUF Optmization Layout on FPGA [21]

Similarly, the TBR-PUF design of every single stage in [78] and [26], uses 2 MUxes
feeding the 2 NOR gates and two other MUXes choosing between the outputs of the two
NOR gates. hence, a direct implementation transforms each component of the PUF stage
into a separate LUT as in Figure 4.17a resulting in a total of 6 LUTs per TBR-PUF
stage. However, in our implementation, each NOR gate is merged with its preceding MUX
as shown in Figure 4.17b resulting in a total of only 4 LUTs per TBR-PUF stage. This
optimization does not affect the functionality of the TBR-PUF as it maintains two inverting
elements and two different paths. Furthermore, the merged LUT has the same logic of the
two separate LUTs combined.

The main reason behind these optimizations is that both PUFs with 128-bit and 256-bit
challenge wouldn’t fit on the FPGA due to the limited number of LUTs. Moreover, Prelim-
inary experiments were conducted over the non-optimized implementations for 64-bit BR
and TBR PUFs to empirically confirm that the optimizations presented for both BR and
TBR PUFs do not affect their security. The obtained results showed that non-optimized
architectures performed similarly against both SVM and Deep learning techniques. Hence,
these optimizations do not change the PUFs’ architectures and empirically do not affect
their security.

89



s

Reset

Challenge

NOR

2-1 
LUT

NOR

2-1 
LUT

MUX

3-1 
LUT

In
FW

In
BW Out

BW

MUX

3-1 
LUT

MUX

3-1 
LUT

MUX

3-1 
LUT

Out
FW

(a)

Reset

Challenge

MUX

3-1 
LUT

In
FW

In
BW

Out
BW

MUX

3-1 
LUT

MUX + NOR

4-1
LUT

MUX + NOR

4-1
LUT

Out
FW

(b)

Figure 4.17: TBR PUF Optmization Layout on FPGA [21]

4.3.2.3 PUF characteristics

As mentioned in 2.2 reliability, unpredictability, and uniqueness are three main statistical
properties that we use to measure the quality of implemented PUFs [14]. In this subsection,
we give some details on how these three properties are measured and provide the actual
characteristics for the implemented PUFs. These metrics are PUF noise, PUF bias, and
Inter-Chip hamming distance. We also considered another important characteristic which
is individual challenge bits influence on the PUF response.

1. PUF Noise: A reliable PUF would give a consistent response to a certain challenge
per each chip, however, in reality, a PUF might give inconsistent responses for the
same challenge. To measure noise, we apply the same challenge to the same chip for
many iterations, take the majority vote to determine the supposedly right response
and repeat that for all challenges. Thus we can calculate the noise as

N =

∑
# wrong responses

# iterations×# challenges

A reliable PUF would have an ideal noise of 0.

90



2. PUF Bias: PUF bias represents the tendency of the PUF to respond with 0 or 1
more likely to different challenges. Bias can be calculated as

B =
# responses of ′1′

# challenges

An unpredictable PUF would have an ideal bias of 0.5.

3. Inter-Chip Hamming Distance: Different chips should give different responses to
the same challenge. Inter-chip hamming distance represents how many responses
were dissimilar for the same challenge on different chips. The normalized hamming
distance between two different chips would be calculated as

NHD =
# dissimilar responses

# challenges

A unique PUF would have an ideal normalized inter-chip hamming distance of 0.5.

4. Individual Challenge Bits Influence: Challenge bits should ideally contribute equally
to the resulted response, not only some of the challenge bits. For each challenge bit,
its influence is calculated as

Infl(i, 0) =
# responses of ′1′

# challenges with ith bit = 0

Infl(i, 1) =
# responses of ′1′

# challenges with ithbit = 1

A good PUF would have an ideal influence of each bit as 0.5.

To obtain the actual characteristics of the implemented PUFs detailed in Table 4.12,
we used three typical Mojo boards, loaded the same PUF design on all of them and applied
1 Million different challenges each for three iterations. All experiments were conducted in
room temperature.

An important note is that as we had the ability to distinguish between converged and
non-converged responses in our implementation, we excluded the non-converged responses
from characteristics calculations. Moreover, training and testing sets contained only the
converged responses after the majority vote, thus eliminating PUFs noise for the neural
networks. It is important to note that all results presented in Table 4.12 are for the XORed
PUFs treated as a black box, not for individual PUFs. Also, the reported characteristics
are averages over the three chips, except for the bias, since averages will not be sufficient.

91



Table 4.12: Implemented 4-input XOR BR & TBR PUFs characteristics

Characteristic
PUF Size & Type

BR PUF TBR PUF
64 128 256 64 128 256

Non-converged Chip 1 (%) 19 18 14 28 22 32
Non-converged Chip 2 (%) 18 17 15 24 33 33
Non-converged Chip 3 (%) 21 18 15 27 26 27

Bias Chip 1 (%) 48 50 47 51 47 53
Bias Chip 2 (%) 49 49 54 54 52 47
Bias Chip 3 (%) 47 48 53 53 53 49
Noise Chip 1 (%) 1 2 1 3 3 3
Noise Chip 2 (%) 1 2 1 3 3 3
Noise Chip 3 (%) 1 2 1 3 3 3

Hamming Distance Chips 1&2 (%) 55 56 47 52 49 54
Hamming Distance Chips 1&3 (%) 48 51 50 55 46 55
Hamming Distance Chips 2&3 (%) 43 52 59 44 47 46
Hamming Distance Average (%) 49 53 52 50 47 52

Max Infl. Chip 1 (%) 46 51 45 55 44 53
Max Infl. Chip 2 (%) 45 51 58 59 56 45
Max Infl. Chip 3 (%) 43 47 56 59 55 46

As shown in Table 4.12, the implemented PUFs have near-ideal characteristics for bias
and inter-chip hamming distance. Even noise is negligible because we eliminated the non-
converged responses. The non-converged responses ranged from 14% to 31% corresponding
to convergence rates between 86% and 69%, which is one of the drawbacks of BR and TBR
PUFs. The reported cycles spent waiting for convergence before capturing responses (the
evaluation time) are the minimum cycles needed to achieve the corresponding convergence
rates, (waiting for more time would not lead to any significant improvement in the conver-
gence rates).

Also as shown there are no individual influential bits. The maximum influence a chal-
lenge bit can get is 59% which is not a huge influence compared to the ideal influence of
50%.

Table 4.13 shows the characteristics of 5-input and 6-input 64-stage XOR BR PUFs. We
calculated the influence among XOR inputs to prove that the implemented PUFs responses

92



Table 4.13: Implemented 5-input & 6-input XOR BR PUFs characteristics

Characteristic
PUF Size & Type

64-stage 5-input
XOR BR PUF

64-stage 6-input
XOR BR PUF

Non-converged Chip 1 (%) 12.7 16.1
Non-converged Chip 2 (%) 13.03 16.8
Non-converged Chip 3 (%) 14.4 17.65

Bias Chip 1 (%) 49.8 50.2
Bias Chip 2 (%) 49.6 49.88
Bias Chip 3 (%) 50.2 50.02
Noise Chip 1 (%) 1.9 2.25
Noise Chip 2 (%) 1.9 2.3
Noise Chip 3 (%) 2.05 2.37

Hamming Distance Chips 1&2 (%) 58.22 60.18
Hamming Distance Chips 1&3 (%) 54.78 57.81
Hamming Distance Chips 2&3 (%) 54.64 57.52
Hamming Distance Average (%) 55.88 53

Max Influence between two XOR inputs on Chip 1 (%) 55.4 58.3
Max Influence between two XOR inputs on Chip 2 (%) 58.1 62.09
Max Influence between two XOR inputs on Chip 3 (%) 58.86 62.3

are the outputs of true 5-input and 6-input XOR functions. As shown in the characteristics
results, maximum influence between two XOR inputs does not exceed 62.3% compared to
an ideal 50%.

4.3.3 Deep Learning Network Architecture and Experimental
Setup

4.3.3.1 Deep neural network architecture

Figure 4.18 shows the deep neural network architecture used in the modeling attacks against
XOR BR PUF and XOR TBR PUF. All layers of the network are fully connected, which
means that every hidden neuron in layer n is connected to all neurons in layer n+1. Ev-
ery connection represents a weight that reflects the neuron effect from the preceding layer

93



Figure 4.18: The DNN network architecture used in modeling attacks. All layers are fully
connected layers.

on the output produced by the neuron in the next layer. In the graph, ’m’ represents the
number of input features which is one of the values 64, 128, and 256 depending on the PUF
number of stages. The number of hidden neurons in every layer is represented by ’K’ and
the network depth is denoted by ’N’, which corresponds to the number of fully connected
layers in the network. Although the values of K and N were varied in the experiments to
study the DNN scalability, the network used to report the modeling accuracies results is
setting N = 12 and K = 2000. Finally, a dropout layer was placed between the last fully
connected layer and the output to help the network generalization and avoid the problem
of over-fitting.

4.3.3.2 Convolutional Layer Vs. Fully Connected Layer

In DNN, convolutional layers are used for extracting desired features from input data. It
applies a convolution process using a set of filters on input data to detect important fea-
tures related to the task as shown in Figure 4.19. Hence, the shallow layers are usually
convolutional layers to extract primitive features and reduce input size then deeper layers

94



Figure 4.19: The Convolutional Layer. Small kernels are convoluted over the input image
and every convolutional window produces one output

are fully connected. This approach works in object recognition and classification tasks
because of two main reasons. Firstly, features in input images have a locality property
therefore, it is more efficient to apply smaller feature sized windows to find pixels corre-
lations. Secondly, the convolutional layers are less computation-intensive. However, the
locality property does not exist in the context of modeling complex PUF architectures.
There might be correlations between different PUF stages with distant positions or even
among stages from different PUFs (In case of having XOR PUF architecture like XOR
BR PUF). Furthermore, these correlations will change from one PUF instance to another,
which makes using convolutional layers not practical. Hence, using fully connected layers
in the network is like the brute-force technique to extract features that help in modeling
PUF response.

4.3.3.3 Activation function: Tanh Vs. RELU

Activation functions are applied to every layer output to determine the effect of every
neuron on the next layers. Although there are many types of functions, Tanh and RELU
are the most used transfer function because of their good performance. RELU restricts the
values to be between 0 and +ve, while Tanh ranges from -1 to 1 as shown in Figure 4.20.
Tanh is better in the PUF modeling context because it preserves a negative value for nega-
tive inputs, which is important to differentiate between stages contributing to or against a
positive response. Furthermore, the PUF output in the mathematical model outputs either
1 or -1 (as shown earlier in equation 4.15), which improved our results when using the tanh
activation function in the shallower layers and the last layer of the DNN architecture used.

95



Figure 4.20: Relu and Tanh

4.3.3.4 DNN training parameters

In this subsection, we discuss the DNN parameters used in our training processes. Firstly
we used the logistic function in our classification layer. it outputs a probability distribution
of the problem binary classes, which in our case a two-class PUF response. The logistic
function (σ) defined in equation 4.16 maps the input x to an output between 0 and 1. This
value represents the probability that problem output will belong to a specific class given
the input x value as shown in equation 4.17. The cross-entropy is used as the loss function,
which measures the likelihood of a given set of parameters θ of the model can result in
a prediction of the correct class of each input sample. The network tries to maximize
this likelihood function by using an adaptive moment estimation (Adam) optimization
algorithm proposed by Kingma, D. and Ba, J. [46]. As was mentioned in subsection 4.2,
experiments showed that it converges faster and introduces better accuracy results than
the normal gradient descent algorithm. The learning rate is usually between 0.0001 and
0.00001 for the training accuracy to be stable. For every run we do 1M iterations and
a stopping condition if training accuracy is not changing to the 4th fractional digit for 5
consecutive times. Furthermore, if there is no conversion after 1M iterations, we re-run it
again but for almost every training process convergence would occur within the first 100K
iterations. We evaluate our models using the accuracy metrics, which measures how many
correct prediction cases out of the whole test set.

σ(x) =
1

1 + e−x
(4.16)

P (t = 1|x) = σ(x) =
1

1 + e−x
, P (t = 0|x) = 1− σ(x) =

1

1 + e−x
(4.17)

96



4.3.3.5 Modeling attacks using SVM with polynomial kernel

Experiments will include attacks using SVM to test the resistance of implemented XOR BR
and XOR TBR PUFs against conventional ML attacks and to further justify the need for
using DL techniques. A script is written using python and scikit-learn library to provide
SVM modeling functionality. Note that a grid search was conducted first to tune the
SVM model parameters. Moreover, a polynomial kernel with degree four (equivalent to
the number of XOR inputs) is used as was done by Xu et al in [94].

4.3.3.6 Hardware and software experimental setup

Experiments are conducted using three Mojo V3 boards, each containing a Spartan 6
XC6SLX9 FPGA [5](45nm process technology). All CRPs are generated using a linear-
feedback shift register (LFSR). SVM attacks were executed on Intel 8th Gen I7-8250 CPU
with 16GB RAM of memory. DL attacks were executed using Nvidia GeForce GTX 1080
Ti GPU card with 11GB RAM. PUFs were implemented using the Xilinx ISE Design
Suite 14.7, Xilinx PlanAhead 14.7, and Xilinx FPGA editor. Additionally, the Tensorflow
platform was used to develop the network architectures, training, and evaluation tasks.
Finally, scikit-learn library was used to implement SVM.

4.3.4 DL Modeling attack results

4.3.4.1 DL attack results on 4-input XOR BR and TBR PUFs

As mentioned earlier, modeling attacks were launched on 24 instances of 4, 5, and 6-input
XOR BR & TBR PUF with varying stage size (64, 128, 256), which all were implemented
on three mojo V3 boards. The DNN used for the attack had 12 fully connected layers and
2000 hidden neurons in every layer. The training set size was varied between 5K to 1M
CRPs. Furthermore, The same PUF instances were attacked using SVM with a polynomial
kernel of degree four to account for the 4-input XOR function [94]. Finally, the test set
size was 100K CRPs for all experiments and CRPs were randomly generated as discussed
in subsection 4.3.2. Figure 4.21 and Table 4.15 show the modeling accuracy results for
all 4-input XOR BR PUF instances implemented on chip-1 using both approaches (DL,
SVM). Note that similar results were obtained for the instances implemented on Chips 2
and 3.

It is shown that DL modeling was successful in breaking the security of all XOR BR
PUF instances. Furthermore, training using 100K CRPs was enough to reach the accuracy

97



(a) DNN and SVM Modeling Accuracy for 64 Stage 4-input XOR BR PUF

(b) DNN and SVM Modeling Accuracy for 128 Stage 4-input XOR BR PUF

(c) DNN and SVM Modeling Accuracy for 256 Stage 4-input XOR BR PUF

Figure 4.21: Modeling Attacks Results Against 4-input XOR BR PUF

98



Table 4.15: 4-input XOR BR PUF modeling accuracy(%) on Chip-1.

64-Bit 128-Bit 256-Bit

Train-size DL SVM DL SVM DL SVM

5K 67.6% 53.2% 51.8% 51.1% 88.8% 53.3%

10K 98.1% 54.1% 85.9% 51.8% 94.6% 53.3%

20K 99.2% 54.6% 96.7% 52.4% 96.4% 53.3%

50K 99.1% 55.2% 98.2% 53.7% 96.4% 53.4%

100K 98.1% 56.3% 98.8% 54.3% 96.7% 53.4%

1M 99.5% N/A 99.1% N/A 99.3% N/A

boundary of 99% in the case of 64 stages and 1M CRPs to reach this accuracy value
for 128 and 256 stages. On the other hand, the SVM technique failed to successfully
model the PUFs and its accuracy matched what was reported in previous literature for the
same training size [94]. The maximum modeling accuracy that could be reached by SVM
was 62.4% for the 64 stages PUF implemented on chip-2 using 100K CRPs for training.
Moreover, SVM performance got worse when attempting to model PUFS with bigger stage
sizes, while DNN did not seem to be affected by that. Instead, The DL modeling technique
was powerful enough to get an accuracy > 95% using 20K CRPs for training. This is
relatively a small dataset size and generally, deep networks need more samples to train on.
In contrast, results show that SVM failed to get higher than the 62% accuracy using up to
100K CRPs.

Table 4.17: 4-input XOR TBR PUF modeling accuracy(%) on Chip-1.

64-Bit 128-Bit 256-Bit

Train-size DL SVM DL SVM DL SVM

5K 84.4% 56.7% 63.3% 53.7% 71.5% 59.4%

10K 85.9% 58.5% 76.4% 55.3% 87.2% 60.9%

20K 94.2% 59.8% 85.7% 57.7% 94.9% 62.4%

50K 97.1% 60.6% 95.6% 59.4% 97.1% 63.5%

100K 97.3% 60% 96.7% 62.5% 97.7% 62.9%

1M 98.8% N/A 98.8% N/A 98.7% N/A

99



(a) DNN and SVM Modeling Accuracy for 64 Stage 4-input XOR TBR PUF

(b) DNN and SVM Modeling Accuracy for 128 Stage 4-input XOR TBR PUF

(c) DNN and SVM Modeling Accuracy for 256 Stage 4-input XOR TBR PUF

Figure 4.22: Modeling Attacks Results Against 4-input XOR TBR PUF

100



Figure 4.22 and Table 4.17 show the modeling attacks results against 4-input XOR
TBR PUF on Chip-1 with varying stage size (64, 128, 256). Similarly, DL modeling
techniques could break the security of the XOR TBR PUF, while SVM showed nearly
the same performance as in XOR BR PUFs. However, the models could achieve accuracy
> 95% using more CRPs for training than XOR BR PUFs (50K CRPs). Furthermore,
the maximum accuracy achieved was slightly less than or equal to 99%. This is expected
because TBR PUFs involve all inverters in its operation, hence a slightly more complicated
architecture than BR PUFs with the same number of challenge bits. In addition, all
instances implemented on chips 2 and 3 showed similar behavior as the PUFs realized on
chip 1.

4.3.4.2 DL attack results on 5-input and 6-input XOR BR PUFs

Figures 4.23, 4.24 and Tables 4.18, 4.19 show the modeling attacks results against 5-input
and 6-input 64 stage XOR BR PUFs. As was mentioned in 4.3.2.3, the correlation among
the XOR inputs were measured to confirm that no BR PUFs are correlated with each
other. Hence, the PUF instances under attack represent real 5-input and 6-input XOR
function. The results show that DL modeling techniques could break the security of both
PUFs and reach an accuracy of ∼ 98.5%. However, the number of CRPs needed for the
trained model to achieve at least 98% accuracy has increased to be 50K CRPS for the
5-input XOR instances and 100K - 150K CRPs for the 6-input XOR instances. This shows
that increasing the number of independent XOR inputs produces similar if not a harder
PUF than increasing the number of stages. Moreover, an important outcome of these
results is the ability of DL techniques to break a PUF architecture that has the number
of XOR inputs > ln(number of stages) in a polynomial time. This contradicts with the
upper bound set by Ganji F. et al in [27], which triggers open questions about the upper
bounds of deep learning techniques.

4.3.4.3 DNN Scalability Vs. increasing PUF stages and XOR input

The DNN architecture is built to mimic the way PUFs operate to facilitate the learning
process therefore, the hidden neurons in one layer can be considered as the stages of one
PUF. Similarly, the number of layers can be used to reflect the number of XOR inputs.
Consequently, a question arises about the network parameters and whether they should be
the same as the number of PUF stages and XOR inputs or not. Note that increasing the
network size can enhance or complicate the task for the network to learn the non-linear
relationships among all stages. Accordingly, more experiments were executed to study the

101



Figure 4.23: 5-input XOR BR PUF DL modeling accuracy(%)

Figure 4.24: 6-input XOR BR PUF DL modeling accuracy(%)

102



Table 4.18: 64-stage 5-input XOR BR PUF DL modeling accuracy(%).

Train-size Chip1 Chip2 Chip3

10K 50.63% 54.07% 50.32%

20K 53.44% 96.12% 51.90%

30K 97.20% 97.54% 97.63%

50K 97.87% 98.10% 98.26%

100K 98.22% 98.49% 96.79%

1M 98.95% 99.25% 99.31%

Table 4.19: 64-stage 6-input XOR BR PUF DL modeling accuracy(%).

Train-size Chip1 Chip2 Chip3

50K 51.63% 61.62% 57.26%

100K 53.44% 98.05% 98.29%

150K 97.83% 98.26% 98.43%

200K 98.54% 98.38% 98.61%

500K 98.33% 98.77% 98.79%

1M 98.75% 98.49% 99.04%

DNN parameters scalability (i.e. number of layers and number of hidden neurons per layer)
with respect to the PUFs complexity and number of stages. Hence, the same modeling
attack was invoked while varying the DNN number of layers (1,4,8,12) and the hidden
neurons per layer (64, 128, 256, 512, 1024, 2048). Then, observe what the maximum
accuracy will be and how long the network will take to converge. The training set size
was chosen to be 1M CRPs in order to guarantee that obtained results depend on how
the network architecture is varied not because of not enough training samples to train
on. Total 540 training processes were run on all the 4-input XOR BR and XOR TBR
PUF, 5-input XOR BR PUF, and 6-input XOR PUF instances. Figures 4.25, 4.26, 4.27.
and 4.28 show the accuracy results of all PUF instances for all network configurations on
chip 1. Additionally, Table 4.22 shows the network configurations that achieved maximum
accuracy with minimum train time for every type. Obtained results for 4-input XOR BR
and TBR PUFs show many interesting findings. Firstly, single layer NNs failed to model

103



(a) DNN Modeling Accuracy for 64 Stage 4-input XOR BR PUF with varying DNN parameters

(b) DNN Modeling Accuracy for 128 Stage 4-input XOR BR PUF with varying DNN parameters

(c) DNN Modeling Accuracy for 256 Stage 4-input XOR BR PUF with varying DNN parameters

Figure 4.25: DNN Scalability Analysis On 4-input XOR BR PUF. Showing Modeling
Accuracy of Every Network Configuration

104



any instance successfully and modeling accuracy ranged between 55% - 62% except for
one 256 XOR BR PUF instance that achieved 70% accuracy. This confirms the results
obtained from LDA analysis discussed in Subsection 4.3.1.3, which showed that response
classes are linearly inseparable for these PUF types. Furthermore, Table 4.22 shows that
for most cases maximum accuracy could be achieved using smaller networks than the one
used in our initial experiments. This means the same results could have been achieved in
less training time than the bigger DNN. This is important because it affects the model
size and the time needed to predict the PUF responses when operating in inference mode.
Moreover, obtained results showed that network configurations with 4 layers and 2048
hidden neurons and 8 layers with any hidden size can achieve modeling accuracy > 90% for
all PUF sizes. Note that there is a trade-off between convergence (number of iterations)
and time, therefore for the 256 XOR TBR case in Table 4.22 a network with 4 layers
converged slower than a similar one with 12 layers but it still could finish faster because
it has way less number of computations. Hence, given a constant number of XOR inputs,
the network scales linearly in terms of layers and hidden neurons with respect to XOR BR
PUF stage size.

# of Weights = (m×K) + ((N − 1)×K2) + (K × 2) (4.18)

The number of weights to be updated in the network architecture shown in Figure 4.18 can
be calculated using equation 4.18. Note that ’m’ is the number of PUF stages, ’K’ is the
hidden neurons per layer, and ’N’ is the number of fully connected layers. Therefore, adding
a new layer has K2 effect on the number of weights and consequently the computations.
Hence, a balanced approach of constructing the DNN network for similar PUF architectures
is by giving more priority to increase neurons per layer first. The following step is to slightly
increase the number of layers to achieve the best accuracy/time trade-off.

The training time shown in Table 4.22 is for achieving the maximum accuracy. Using
smaller network configurations could achieve a reasonable accuracy of 95% in much less
training time. Hence, these timing figures are limited by the hardware used and the
acceptable accuracy desired.

The results of 5-input and 6-input XOR BR PUFs showed similar behavior as shown
in Figures 4.27 and 4.28. However, some 4-Layer networks had difficulty to achieve better
accuracy as in the 4-input XOR BR PUF case. Moreover, the time needed to achieve
similar accuracy increased by ∼ 3X for the 5-input and 6-input cases. Furthermore, these
results empirically indicate that increasing the number of XOR inputs did not affect the
number of layers needed to model such architectures. Hence, the depth of the network
scales linearly with the increase of XOR inputs.

105



(a) DNN and SVM Modeling Accuracy for 64 Stage 4-input XOR TBR PUF

(b) DNN and SVM Modeling Accuracy for 128 Stage 4-input XOR TBR PUF

(c) DNN and SVM Modeling Accuracy for 256 Stage 4-input XOR TBR PUF

Figure 4.26: DNN Scalability Analysis On 4-input XOR TBR PUF. Showing Modeling
Accuracy of Every Network Configuration

106



Figure 4.27: DNN Scalability Analysis On 5-input 64 stage XOR BR PUF. Showing Mod-
eling Accuracy of Every Network Configuration

Figure 4.28: DNN Scalability Analysis On 6-input 64 stage XOR BR PUF. Showing Mod-
eling Accuracy of Every Network Configuration

107



Table 4.22: DNN Scalability Analysis On 4-input XOR BR and TBR PUFs. Showing
network configuration that achieved best accuracy and minimum training time

PUF Type Accu.(%) # of Layers # of hidden neurons training time (min)

64-XOR-BR 99.5% 8 1024 4.8

128-XOR-BR 99.2% 8 1024 20

256-XOR-BR 99.1% 12 2048 15

64-XOR-TBR 98.8% 8 1024 6.8

128-XOR-TBR 98.8 8 1024 7.6

256-XOR-TBR 99% 4 2048 9.6

5-input 64-XOR-BR 99.2% 12 64 15.04

6-input 64-XOR-BR 99% 8 256 15.19

4.4 Modeling attacks on obfuscated PUFs

This section provides an overview of two obfuscated PUFs architectures implemented to
show how DL modeling attacks perform against challenge obfuscation techniques and how
to develop countermeasures resistant to such attacks. the obfuscation logic elements in-
cluding memory-based PUFs are implemented in software as a proof of concept. Hence,
the original challenge is supplied as input to the obfuscation logic and the output modified
challenge is sent normally to the hardware XOR BR-PUFs. For the obfuscated APUFs
architecture, the memory-based PUFs responses are assumed to be generated as a binary
string and the XORing with the original challenge is done on hardware. We adopted this
approach because it is easier to implement and reuse the deployed XOR BR-PUF and
APUF instances with no impact on hardware functionality. Furthermore, We are inter-
ested in the logical reasoning of how to design a new architecture to thwart DL modeling
attacks.

4.4.1 Obfuscated PUF architecture 1 (Hierarchical XOR BR-
PUF)

This architecture adopts a similar obfuscation technique to the one introduced in [53] by
using a pool of memory-based PUFs responses to XOR with the original challenge. Note
that memory-based PUFs should have a 50% randomness (50% responses are ’1’), therefore,

108



Figure 4.29: The Multi-PUF Architecture (MPUF) introduced in [53]

Table 4.23: PUF characteristics of Hierarchical XOR BR-PUF

PUF characteristic Chip 1 Chip 2 Chip 3
Bias 53.3% 46.3% 1.5%
Noise 3.3% 1.4% 31.4%

Hamming Distance with Chip 1 — 66.05% 50.18%
Hamming Distance with Chip 2 66.05% — 58.37%
Hamming Distance with Chip 3 50.18% 58.37% —

nearly half of the challenge bits will be inverted and the rest will pass through without
change. The XOR output result will be the new challenge to the 4-input XOR-BR PUF as
shown in Fig 4.29. The PUF statistical properties are shown in Table 4.23 and it is similar
to the 4-input XOR PUFs because the same PUF instances were used.

Although this technique hides the input PUF challenge, it suffers from two conceptual
issues. It does not solve the problem of the limited set of influential bits for every BR PUF
[26]. The relationship between the final and original challenges is not complex enough
because their hamming distance will be constant all the time. Hence, only half of the
challenge bits will change all the time. Therefore, It is expected that DL modeling attacks
can overcome this obfuscation because it can learn the appropriate transformation of input
features to correctly predict the target as we will see in the obtained results.

Table 4.24 shows the modeling attacks results against the obfuscated 4-input XOR
BR PUF architectures with stage size = 64. Similar to non-obfuscated architectures, DL
attacks could break the obfuscated PUF Architecture 1 (Hierarchical XOR BR-PUF). DL

109



Table 4.24: DL modeling accuracy(%) of obfuscated 64-Bit 4-input XOR BR PUF archi-
tectures.

Training Size 10K 20K 50K 100K
Chip 1 94.6% 97.1% 98% 99.1%
Chip 2 99.4% 99.4% 99.6% 99.7%
Chip 3 96.1% 96.2% 99.5% 99.7%

Table 4.25: PUF characteristics of Hierarchical DAPUF

Chip 1 Chip 2 Chip 3 Chip 4 Chip 5 Chip 6
Bias 53.6% 40.67% 34.22% 50.65% 34.77% 38.7%

Average inter-chip HD 44.61%

networks can learn the hidden relationship between the original and final challenges because
the number of inverted bits and their positions is always constant. Hence, It is easy for
the DNN to realize the transformation of input features.

4.4.2 Obfuscated PUF architecture 2 (Hierarchical DAPUF)

As mentioned before, The PUF architecture under attack is the same PUF introduced in
[53]. Furthermore, the strong PUF used is a 64-stage arbiter PUF implemented using the
Double arbiter PUF technique explained in subsection 3.1.2. Three modeling techniques
were used in the attacks. LR technique was used to confirm the reported results in previous
research in [53]. SVM with a polynomial kernel with degree 4 was applied to check if more
sophisticated conventional ML techniques can break the PUF security. Finally, DNNs were
applied to check the capability of DL techniques to overcome the obfuscation as was the
case in obfuscated XOR BR PUFs. Attacks were launched against six PUFs implemented
on six mojo v3 chips and Table 4.25 shows the bias and inter-chip hamming distance
characteristics of the PUFs under attack. The dataset size is 1M CRPs and the testing set
size is always 1M - training set size.

The results of DL modeling attacks are shown in Table 4.26 and Figure 4.30 illustrates
the difference in modeling performance between SVM and LR techniques. Please note

110



Table 4.26: DL modeling accuracy(%) of obfuscated 64-Bit DAPUF architecture

Training Size Chip 1 Chip 2 Chip 3 Chip 4 Chip 5 Chip 6
100K 86.91% 89.70% 92.18% 82.86% 91.8% 91.71%
200K 87.74% 90.73% 92.765% 84.67% 92.37% 91.95%
300K 88.71% 90.95% 93.23% 85.41% 92.56% 92.42%
400K 89.48% 91.27% 93.17% 85.66% 92.93% 92.60%
500K 89.22% 91.01% 93.13% 85.96% 92.88% 92.49%
600K 89.33% 91.27% 93.45% 86.03% 92.89% 92.97%
700K 89.90% 90.02% 93.39% 86.14% 93.12% 92.82%
800K 90.15% 91.58% 93.55% 86.57% 93.31% 92.91%
900K 91.27% 91.60% 93.57% 87.21% 93.25% 93.43%

that for every chip the dotted line represents LR results and SVM is represented by the
continuous line and both have the same color.

Obtained results shown in Figure 4.30 confirm the same modeling performance of LR
against this type of PUFs. The maximum accuracy is between 52% - 65% using training set
= 100K CRPS. Furthermore, SVM with polynomial kernel outperformed the LR technique
and could achieve maximum accuracy between 76% - 90% using 100K CRPs training.
However, training SVM on 100K CRPs takes > 1hr for every PUF response. Hence, DL
attacks were applied because it can use larger training sets and finish in a few minutes. The
results in Table 4.26 show that DL attacks outperformed both LR and SVM techniques with
maximum achieved accuracy between 87% - 94% using 900K CRPS for training. These
results show that DL techniques could overcome the obfuscation technique suggested in
[53] for both BR and APUF architectures.

4.5 Discussion on successful DL attacks and counter-

measures

In order to understand why DL networks could model the previously mentioned PUF
architectures while conventional ML techniques like SVM and single layer NN failed, the
sources of modeling errors should be identified. Hence, let E(f) and En(f) be the test error
and the training error for any classifier f respectively. Furthermore, let F be the space of

111



Figure 4.30: 64-stage Hierarchical PUF modeling accuracy(%) using SVM and LR

functions that can be expressed by deep neural networks, f ∗F is the best classifier in the F

space and f ∗ is the best possible classifier. If f̂ is the classifier function returned by the
training algorithm, then its excess error from the best possible classifier ε , E(f̂)−E(f ∗)
can be attributed to two main terms as shown in equation 4.19 [23].

ε = [E(f ∗F )− E(f ∗)] + [E(f̂n)− E(f ∗F )] (4.19)

The first term is called the approximation error and measures how well the desired func-
tion can be approximated by a neural network using training samples. DNNs decrease
the approximation error because they can express the composition of nonlinear functions
effectively through their stacked layers (near zero training error. ∼ 0.0001 in our case).
It was shown in [72] (theorem 4.1) that deep networks have a linear relationship with the
input data dimension with respect to hidden neurons per layer, while shallow networks
require an exponential number of neurons. This, in fact, was confirmed in our scalability
analysis, where networks with a deeper number of layers could reach the 99% accuracy
using neurons in the range of O(n) with respect to n-stage PUFs. The second term in
equation 4.19 refers to the estimation error, which measures how well the trained model
performs on out of sample data (generalization capability). DNNs with a large number of
parameters and fully connected layers can control the generalization gap (small test error,
<1% in our case), if the complexity of all functions in F space is not large (Theorems 6
and 7) in [23].

112



As a result, the successful DL attacks against the BR-PUF family and DAPUF family
can be attributed to several reasons. Firstly the effect of influential bits that was re-
ported in [26], which decreased the architecture complexity. Hence, introducing the XOR
relationship was not sufficient to increase the complexity and counter the DL attacks. Fur-
thermore, despite the use of a simplified mathematical model that does not represent the
PUF operation accurately, DNNs could overcome that because it can learn the appropri-
ate transformation of input features to correctly predict the target. Moreover, the lack of
randomness when attempting to hide the challenge bits to counter DNNs modeling capa-
bilities. Consequently, the obfuscated architectures could be attacked and modeled with
accuracy similar to non-obfuscated ones.

4.6 The practicality of the DL attacks and applica-

tions

The discussion of DL modeling attacks involves the access to PUF, the number of CRPs
required for a successful attack, and the power needed to read CRPs and perform the DL
training and build a model. In the context of strong PUFs(i.e. BR PUF family), they
are usually not protected against the process of sending out challenges and reading out
the response to collect the CRPs necessary for the attack [76][49][6][92]. However, there
have been other authentication protocols that hide the response using hash functions or
other cryptographic schemes [31][99]. Therefore, for the DL modeling attacks to work
successfully against these types of controlled PUF environment, The assumption is that
the attacker gains physical access to the PUF. Furthermore, the response hiding technique
may be overcome by probing the digital signals coming out of the PUF before being input
to the cryptographic logic used to hide the response [75] and [76].

The results showed that an accuracy of 95% could be achieved using 20K and 50K, 100K
CRPs for 4-input, 5-input, 6-input XOR BR-PUFs and XOR TBR-PUFs. This number is
surprisingly small given the network architecture and large parameters used for training.
However, it is comparable to the number of CRPs used in modeling attacks against 4-
input XOR arbiter PUFs, which used 12K and 20K CRPs to break the 64 and 128-bit
PUFs respectively[76]. Additionally, it is normal that electrical strong PUFs operate at
frequencies of a few MHZ[75]. For example, the mojo FPGA chips operate at 50 MHZ and
the maximum number of cycles needed for evaluation is 19K as mentioned in Table 4.12.
Hence, with eased conditions and assuming it takes 20K cycle to read a response, it takes
∼ 7 mins to read 1M CRPs. Therefore, attacks against the DAPUF family, which required
millions of CRPs for training could be achieved successfully.

113



The task of collecting CRPs is not computationally intensive, therefore, reading CRPs
from chips with limited hardware resources as in [99] is applicable under the above-
mentioned assumption. Additionally, as far as we know, there was not any power analysis
for CRPs collection task in the previously published attacks. Although, the DNN training
task is computationally intensive it is possible now to execute training tasks with mini-
mized time and power cost using GPUs & ASIC chips (e.g. Tensor processing unit TPU
and other accelerators). For cases where PUF attacks are not possible ( the CRPs are hid-
den, silicon probing is not possible, or battery-power limits the number of CRPs), DNNs
may be useful to measure post-silicon PUF security validation before the chip is employed
in the field.

In our research, DL attacks were invoked against variants of BR and DAPUFs, which
means that DL modeling attacks can be considered as a powerful tool in breaking the
security of strong PUFs (i.e. APUF variants and XOR BR PUF family including obfuscated
versions) using a simplified mathematical model. Furthermore, these attacks are practical
with respect to the number of CRPs and the power needed to execute the attack. It is
applicable to break wide range of security protocols that use strong PUFs for authentication
[6][92][99], key establishment[89], and Oblivious transfer protocols[74].

4.6.1 Summary and Comparison with Previous Research

In this chapter, the deep learning modeling technique was introduced as a powerful tool
to attack and break the security of complex strong PUF architectures implemented on
real FPGAs. These architectures were reported to be resistant against conventional ML
modeling techniques in previous research [94][53][85]. It was shown that DNN can be used
along with a simplified mathematical model to attack 2-1, 3-1, 4-1 DAPUFs and 4-input,
5-input, 6-input XOR BR PUFs and 4-input XOR TBR PUF with varying number of
stages (64, 128, 256). Furthermore, DNN attacks were invoked against 64-stage obfuscated
Hierarchical XOR BR-PUF and DAPUF and could successfully model most of their re-
sponses with modeling accuracy > 90%. The DL attacks on strong PUFs are practical and
easy to launch because of the hardware and software support that enables training tasks
in a matter of minutes as discussed in subsection 4.6. Even with the lack of an accurate
mathematical model, DNNs were shown to provide better performance than conventional
ML techniques like SVM with polynomial kernel and single layer NNs likely due to the
ability of the nonlinear stacked layers to learn the appropriate data transformations needed
(as discussed at subsection 4.5). Additionally, a detailed analysis was conducted to study
the scalability of DNNs used to model XOR BR and TBR PUF architectures. This anal-
ysis included 486 modeling attacks on all PUF instances using 24 network configurations

114



for every instance. Results showed that maximum accuracy can be achieved using smaller
network architectures and the number of hidden neurons per layer scale linearly with the
increase of PUFs stage size (given that the number of XOR inputs is constant), which
agrees with the approximation theory of DNN as discussed in subsection 4.5. Further-
more, when increasing the number of XOR inputs, the same observation is repeated and
the DNN network depth scales linearly as was shown in the 5-input and 6-input XOR BR
PUFs.

115



Chapter 5

Shuffled challenge Obfuscation
technique to countermeasure deep
learning modeling attacks

This chapter will overview previous research countermeasures on PUF attacks as well as
propose a new countermeasure which is empirically shown to thwart DL attacks. The
proposed countermeasure is designed using the knowledge of how the DL attacks work.

5.1 Overview of Countermeasure Techniques

The previous research on PUF countermeasures focused on either proposing new complex
architectures that are resilient against modeling attacks or introducing extra hardware
circuits to detect and/or eliminate side-channel information leakage. The new proposed
architectures to counteract modeling attacks can be summarized by two main approaches.
First approach is by adding non-linearities in the mathematical relationship of PUFs chal-
lenges and response (e.g. XOR PUFs, FF PUFs) [17] [82]. This technique aimed at making
it harder for conventional ML techniques to find a function that can approximate the PUF
behavior. The other approach is to eliminate the accurate mathematical models of the
PUFs under attack. This was done by either introducing PUF architectures for which we
cannot derive an accurate mathematical model for (e.g BR PUF family), or using obfus-
cation techniques to hide PUF input challenge and complicate its relationship with the
PUF response (e.g. controlled PUFs, lightweight PUFs, and interleaved PUFs, multiPUF

116



[62][61][16][53]). Additionally, some proposals from the application level tried to elimi-
nate modeling attacks by hiding the response using hash functions or other cryptographic
schemes as was done in [31][99]. Moreover, the authors in [86] proposed the use of noise bi-
furcation introduced in [97] as a countermeasure against modeling attacks on XOR APUFs.
The main idea of this technique is to prevent the attacker from pairing challenge bits with
the corresponding response bit. The authentication protocol assumes that the verifier has
a software model of the PUF under test. Furthermore, the challenge C1 sent from the
authentication server is used along with another challenge C2 computed using a challenge
control logic to apply different m challenges on the PUF. Then, the m response bits are
divided into m/d groups where d is the bit length of each group and both the response
and C2 challenge are sent back to the verifier. The authentication server generates the m
challenges using C1 and C2 and generates the PUF response using the already stored PUF
models. The authentication server compares the responses with the response groups that
have all ‘1’s or all ‘0’s to authenticate the chip. Hence, the attacker has no knowledge of the
challenge-response relationship to build the machine learning model. Figure 5.1 shows the
authentication system using noise bifurcation with response group length = 2. However,
this approach has many vulnerable points like the challenge control logic and the random
number generator, which may be attacked to reveal the hidden information [43][22]. Apart
from strong PUFs, memory-based PUFs are resilient against modeling attacks because the
physical random elements contributing to different CRPs are mostly independent of each
other [58].

On the other hand, countermeasures proposed against side-channel attacks focus on
adding extra noisy signals to stop the leakage. A countermeasure was proposed in [59]
against PSA attacks against APUFs, which depends on CRPs with all ‘1’s and all ‘0’s.
The main idea is to add APUF replications and use a differential approach to average the
number of ones and zeros in every CRP. Another countermeasure proposed against EM
side-channel attacks against RO PUFs in [66] is to force the application of parallel RO
comparisons and place a restriction that a certain RO can be used once in two consecutive
comparisons. Moreover, the same authors proposed the use of ripple counters instead of
synchronous ones to reduce the number of clocked registers and consequently reduce the
EM radiation.

As was discussed in chapter 4, it is obvious that proposed countermeasures were not
successful against different attack schemes, although some of the attacks were successful
given some restrictions on PUF architectures (e.g. FF PUFs, lightweight PUFs, maximum
9-input XOR PUF). Additionally, it adds more hardware overhead to store some infor-
mation on the server-side, and to hide the challenge-response relation or to add noise to
hide side-channel leakage. Consequently, this leads to more power consumption, which is a

117



Figure 5.1: Authentication process using noise bifurcation [86].

crucial limiting factor in hardware design, especially in FPGAs. Furthermore, our research
showed that using DL techniques one can extend the modeling attacks to break the security
of complex PUFs that don’t have an accurate mathematical model like BR PUFs or by
using obfuscation techniques. Hence, in this chapter, we investigate the development of
a new obfuscation technique as a countermeasure to resist DL modeling attacks with less
hardware and power consumption overhead.

5.2 N-to-1 Shuffled-Challenge Hierarchical PUF

In this obfuscation technique, we try to improve the architecture in terms of the limited
number of influential bits and the relationship between the original and final challenges.
Firstly the N-to-1 term denotes that every N bits of the original challenge are responsible
for determining the value of one final challenge bit. Fig 5.2 shows an example of a 2-
to-1 shuffled-challenge hierarchical PUF, where every final challenge bit is derived by a
multiplexer. Its select inputs are a pair of the original challenge bits selected randomly.
The condition is no pairs are repeated and every bit is involved in determining the value
of two different final challenge bits. For this architecture, there is no single bit responsible
for determining the value of any specific PUF stage. Furthermore, every bit impacts two
different bits of the final challenge. Hence, the number of influential bits should increase
and their relationship is more complex. Furthermore, it is apparent that the number of

118



challenge bits that change their values is not constant and their positions are dependent
on the original challenge value as will be shown in the results. Additionally, in order to
increase the randomness between the original and final challenges, the position of every
final challenge bit at which a pair of bits determine its value is randomly assigned for
every chip. Moreover, the four memory-PUF connected to every multiplexer inputs must
represent 50% ’1’ values and their ordering is randomly selected from the six available
choices that have two ’1’s and ’0’s. Finally, these design rules allowed this architecture to
show a significant resistance against DL modeling attacks as will be shown in the results
section.

Figure 5.2: The 2-to-1 Shuffled-Challenge Hierarchical XOR BR-PUF Architecture

In this chapter, we introduce one variant of this architecture using 64-stage 4-input
XOR BR PUF as the strong PUF underlying the obfuscation architecture.

5.2.1 Obtained results of 2-to-1 Shuffled-Challenge Hierarchical
XOR BR-PUF

DL modeling attacks were invoked against 64-stage 4-input XOR PUFs. The three in-
stances are implemented on the mojo v3 board similar to what was done in the previous

119



Table 5.1: PUF characteristics of 2-to-1 Shuffled-Challenge Hierarchical XOR BR PUF

PUF characteristic Chip 1 Chip 2 Chip 3
Bias 47.8% 47.69% 46.5%
Noise 1.3% 1.2% 1.3%

Average inter-chip HD 49.17%

Table 5.2: DL modeling accuracy(%) of 2-to-1 Shuffled-Challenge Hierarchical XOR BR
PUF.

Training Size = 20K Training Size = 50K Training Size = 100K
Chip 1 58.2% 76.5% 82.3%
Chip 2 70.4% 77.1% 83.7%
Chip 3 65.2% 76.8% 83.9%

chapter in section 4.4. Hence, the multiplexer logic is implemented in software using a
python script and the original challenge is applied to the obfuscation function and the
output modified challenge is sent to the PUF hardware as was discussed in section 4.3.2.
Finally, Table 5.1 shows the characteristics of the PUFs under attack. The meaning of
every specific characteristic is previously discussed in section 4.3.2.

Figure 5.3 shows a histogram of the hamming distance between original and modified
challenge after the obfuscation over 1M CRPs. The graph shows that the average HD is
between 33 and 34 bits out of 64 bits, which is close to the ideal desired value (32 bits).
Furthermore, Figure 5.4 shows the number of value changes per challenge bit position out
of the 1M CRPs. It is apparent that all challenge bits changed values 50% of the time
except for bit 16, which changed all the time. The ideal desired case is for every challenge
bit to change 50% of the time, unlike the obfuscation used in 4.4, where a constant set of
the challenge bit will change all the time and the rest will retain their original values all
the time.

Table 5.2 shows the modeling attacks results. The 2-to-1 Shuffled-Challenge Hierarchi-
cal XOR BR-PUF showed significant resistance against DL attacks. Reducing accuracy by
nearly 30% - 40% using 20K training CRPs and maximum accuracy achieved is 84% using
100K CRPs. This is compared to the previous results in chapter 4, where 99% accuracy
was achieved for the same PUF architectures even using another obfuscation technique.

120



Figure 5.3: Hamming distance between original and modified challenge bits.

Figure 5.4: The number of changes per challenge bit.

121



Furthermore, it was noted that training error was small in all cases but test error of the
trained model was worse, which means that the obtained model generalization gap was
increased. This shows that the obfuscation technique used is relatively successful in in-
creasing the randomness between the original and final challenges and reducing the effect
of influential bits. Further analysis is required to enhance the resistance of this architec-
ture against DL attacks and study the hardware and power overhead. However, it is worth
mentioning that the multiplexers used to modify the challenge can be used for all PUF
instances on the same chip, which reduces their overhead in terms of both hardware and
power.

5.2.2 Summary

In this research, the design of the new countermeasure architecture was based on under-
standing how the DL attack works. Previous proposals of obfuscated PUF architectures
like [53] did not take the DL attacks into account. Hence, The 2-to-1 Shuffled-Challenge
Hierarchical XOR BR-PUF was introduced as a new architecture to countermeasure the
DL attacks by overcoming the inherent problem of influential bits in BR PUFs and in-
creasing the randomness between the original and final challenge bits. Hence, increasing
the architecture complexity and the generalization gap of the DL model. Attacks on 64-
stage instances showed significance resistance and a promising first step towards an ideal
resilience against DL attacks. It showed far better resistance against the DL attacks be-
cause it was built to minimize the effects of the above-mentioned reasons. This could be
achieved by allowing more than one bit from the original challenge to determine the value
of every bit of the final input challenge supplied to the PUF. Additionally, every original
challenge bit affects two different positions of the final input challenge. These modifica-
tions resulted in increasing the randomness between the original and final challenges and
the architecture complexity due to spreading the influence of every challenge bit over more
than one position. Hence, the deep learning generalization gap was increased and the test
accuracy of DL attacks was worse despite the low training error achieved. Further analysis
is needed to develop more complex versions of this obfuscated PUF and statistical metrics
that measure the desired complexity of architectures to increase the generalization gap and
counter these types of DL attacks. Finally, the obfuscation multiplexers used to modify
the challenge can be used for all PUF instances on the same chip, which reduces their
hardware and power overhead.

122



Chapter 6

Conclusion and future work

This dissertation has helped to address the important open questions related to how to
securely implement strong PUFs on FPGAs and overcome the imposed constraints with
minimum hardware, area, and power consumption overhead. Furthermore, this research
investigated the ability to extend machine learning attacks to successfully break the security
of more complex PUFs with less cost. Moreover, the research results have increased our
state of the art understanding of how new PUF architectures and design techniques may
be developed to thwart attacks. This section will provide a summary, and discussion of
limitations, contributions, and future work.

6.1 PUF implementation on FPGAs

For the PUF implementation study, APUFs implemented in Spartan 6 FPGA have been
analyzed with existing and new metrics using four experiments. In experiment 1 which
used one bitstream (same manual placement configuration) on 5 different chips, inter-
chip HDs indicated that approximately 22% of pairs of 8-bit responses (from the same
challenge) of the APUFs on different chips differed in one or more bits. This was likely
due to either the process variation being very low or most delay differences in APUFs were
large enough to be unaffected by process variation. In experiment 2, it was demonstrated
that changing the horizontal and vertical placement of every single PUF on every chip,
improved the randomness of every chip’s 8-bit PUF response, and the inter-chip hamming
distance (HD improved to 37%). This effect is likely largely due to the variation in routing
performed by the tools, although the process variation is also known to vary spatially
within-die. Experiment 3 used correlation driven manual routing to decrease the delay

123



difference at the stages that showed more influence on PUF response. However, results
indicated that it was not sufficient to resist machine learning modeling attacks. Hence,
Experiment 4 applied repetitive manual placement to facilitate the manual routing of stages
with minimum delay difference and correlation analysis was used to further tweak the PUF
implementation in the revisited experiment 4 to decrease the influence of specific challenge
bits. Statistical analysis showed that this hybrid technique improved the PUF properties
(i.e. overall delay difference, average delay difference) and produced two stages with a
reported routing delay difference of zero. Additionally, the intra-chip PUF correlation was
drastically decreased from 45% to 4%. Furthermore, the PUF instances in experiment 4
and 4-revisited showed more resistance to LR modeling attacks compared to the instances
developed in the other experiments and the results reported in previous research [75].
However, APUFs architectural design allows modeling attacks to successfully clone its
response, which was the motivation behind our work in chapters 4 and 5 to study the limit
of modeling attacks and new architectures to counter them.

Generating PUFs without manual routing supports portability across different FPGA
technologies, however, some manual routing may be crucial for good PUF performance.
Although tweaking PUF designs is complex since many metrics are sensitive to design
changes (%1s, inter-chip HD, HW, Phi plots), but automating the steps of finding the
appropriate manual placement and routing will help this solution to be scalable and can
be adopted for similar delay-based PUF architectures. Furthermore, once the perfect PUF
implementation is done on one chip it can be exported to other chips with no change.
Additionally, Phi correlations are proposed as a concise metric guiding the performance
tweaking of the PUF, showing promise for identifying stages that require manual rerouting.
This is unlike previous research that requires higher cost overheads, specifically utilizing
additional PDL circuitry [60], doubling the area[85], or spreading placement of stages
across entire FPGA and storing the bitstream configurations at the authentication server
[80]. This research also showed that manually routed inter-stage wiring delay differences
can be within assumed tool accuracy and process variation (e.g. as low as 0ps), thus only
the wiring symmetry at the arbiter stage remains to be improved in order to support an
ideal fully manually-routed APUF.

The task of finding the best manual placement and routing configurations is time con-
suming because it is done manually. Hence, this is one of our research main limitations.
Therefore, future work will focus on providing more tooling support to automatically deter-
mine the best placement and routing configuration to modify the constraint configurations
of the FPGA design. Hence, reduce the time needed to implement more ideal strong PUFs
on FPGAs. Furthermore, we will extend our study by applying similar implementation
techniques on other types of strong PUFs.

124



6.2 Modeling attacks against PUFs using DL tech-

niques

For the modeling attack study, the deep learning modeling technique was introduced as
a powerful tool to attack and break the security of complex strong PUF architectures
implemented on real FPGAs. It was shown that DNN can be used along with a simplified
mathematical model to attack 2-1, 3-1, 4-1 DAPUFs and 4-input, 5-input, 6-input XOR
BR PUFs and 4-input XOR TBR PUF with varying number of stages (64, 128, 256).
Furthermore, DNN attacks were invoked against 64-stage obfuscated Hierarchical XOR
BR-PUF and DAPUF and could successfully model most of their responses with modeling
accuracy > 90%. The DL attacks on strong PUFs are practical and easy to launch because
of the hardware and software support that enables training tasks in a matter of minutes
as discussed in subsection 4.6.

Even with the lack of an accurate mathematical model, DNNs were shown to provide
better performance than conventional ML techniques like SVM with polynomial kernel
and single layer NNs likely due to the ability of the nonlinear stacked layers to learn the
appropriate data transformations needed (as discussed at subsection 4.5). Additionally,
a detailed analysis was conducted to study the scalability of DNNs used to model XOR
BR and TBR PUF architectures. This analysis included 486 modeling attacks on all
PUF instances using 24 network configurations for every instance. Results showed that
maximum accuracy can be achieved using smaller network architectures and the number
of hidden neurons per layer scale linearly with the increase of PUFs stage size (given that
the number of XOR inputs is constant), which agrees with the approximation theory of
DNN as discussed in subsection 4.5. Furthermore, when increasing the number of XOR
inputs, the same observation is repeated and the DNN network depth scales linearly as
was shown in the 5-input and 6-input XOR BR PUFs.

One limitation of this type of attack is that the CRPs used for training are assumed
to be available to the attacker. However, recent authentication protocols have been in-
troduced, which hide the CRPs [31][99]. Hence, future work will focus on investigating
hybrid attacking techniques using side-channel leaks (e.g. photonic emissions) along with
ML modeling to break the security of such protocols. Furthermore, more experiments
using other DL network architectures like recurrent neural networks (RNNs) and residual
networks (Resnet) should be conducted to observe their modeling capability compared to
feed-forward DNNs and investigate if there exists a better DL technique that uses fewer
CRPs to achieve similar modeling results. Finally, we will focus on applying DL modeling
attacks on PUF architectures that use other obfuscation techniques.

125



6.3 Countermeasures against DL modeling attacks

For the countermeasure study, the 2-to-1 Shuffled-Challenge Hierarchical XOR BR-PUF
was introduced as a new architecture to countermeasure the DL attacks. This new design
was shown to overcome the inherent problem of influential bits in BR PUFs and increased
the randomness between the original and final challenge bits, at the expense of increasing
the architecture complexity and the generalization gap of the DL model. Attacks on 64-
stage instances showed significance resistance and a promising first step towards an ideal
resilience against DL attacks. It showed a far better resistance against the DL attacks (40%
to 16% less modeling accuracy) because it was built to minimize the effects of the above-
mentioned reasons. This could be achieved by allowing more than one bit from the original
challenge to determine the value of every bit of the final input challenge supplied to the
PUF. Additionally, every original challenge bit affects two different positions of the final
input challenge. These modifications resulted in increasing the randomness between the
original and final challenges and the architecture complexity due to spreading the influence
of every challenge bit on more than one position. Hence, the deep learning generalization
gap was increased and the test accuracy of DL attacks was worse despite the low training
error achieved. It is assumed that the attacker has no access to the obfuscation circuit
and can only read the input original challenge and its corresponding response. Moreover,
the memory-based PUFs mimic the behavior of SRAM PUFs (e.g. butterfly PUFs) and
are used as inputs of the multiplexers. These PUFs are characterized for every chip to
guarantee that all multiplexers have 50% 0’s and 1’s inputs. This is not a significant
overhead because all implemented PUFs should always be characterized to make sure they
meet the ideal statistical properties. After the characterization step is done, the obfuscation
technique is automatically implemented by rerouting within our PUF design, for example
routing each memory-based PUF to an input of a multiplexer. Note the FPGA bitstream
is encrypted hence it would be difficult for attackers to modify the design exposing the
internal nets of the obfuscated PUF. Further analysis is needed to develop more complex
versions of this obfuscated PUF and statistical metrics that measure the desired complexity
of architectures to increase the generalization gap and counter these types of DL attacks.
Finally, the obfuscation multiplexers used to modify the challenge can be used for all PUF
instances on the same chip, which reduces their hardware and power overhead. This is an
important observation because, in many IoT applications with scarce hardware resources,
the use of an encryption scheme to hide the PUF input challenge may not be feasible since
it may require too large a resource cost.

Future work will focus on using strong PUFs other than the BRPUF family and research
the effect of the shuffled-challenge obfuscation technique on their resistance. Furthermore,

126



new variants of this obfuscation technique will be developed using larger multiplexers to
make more challenge bits involved in determining the new modified challenge bit values
and observe their effect on hardening the modeling attacks against such architectures.

Another limitation of this research is that only one type of FPGAs (45nm technol-
ogy) was used in the experiments. Current PUF research appears to lack investigations
of the effect of technology scaling on the implemented PUF performance and randomness.
Technology scale down may decrease the sources of randomness generated by hardware
fabrication and affect PUF behavior. Hence, experiments on chips with smaller technology
(e.g. 27nm and less) should be conducted to characterize the implemented PUFs. More-
over, it was shown in the literature that strong PUFs like APUFs suffer from a reliability
issue under the voltage and temperature variation [9][42]. Hence, it is necessary to study
the effect of temperature and voltage variations on the newly proposed strong PUFs.

6.4 Final conclusion

Finally, this dissertation is concluded by providing a brief summary of the main contribu-
tions as follows:

• Introducing an implementation technique of PUFs on FPGAs using repetitive manual
placement, manual routing, and correlation analysis. We could introduce better
APUFs compared to previous research in terms of statistical properties and resistance
against ML attacks.

• Using deep learning techniques to successfully attack three families of architectures,
which were resistant to ML modeling techniques in previous research:

– 2-1, 3-1, and 4-1 DAPUFs [45]

– 4-input & 5-input XOR BR and TBR PUFs (64, 128, 256 stages) [44]

– Hierarchical obfuscated PUF using 4-input 64-bit XOR BR-PUF [44] and 64-bit
APUF.

• Providing the first analysis of DL modeling networks scaling with respect to the PUF
architecture variations (number of stages [44], number of XOR inputs).

• Empirically showing that PUF architectures with a number of XOR inputs > ln(
number of stages) can be successfully attacked (using 5-input and 6-input 64-bit
XOR BR PUF).

127



• providing a new Hardware countermeasure based on understanding how DL modeling
attacks work, unlike previous research that did not account for DL attacks. the N-to-
1 Shuffled-challenge was introduced as an obfuscation technique, in which the 2-to-1
design proved to be (16% to 40%)more resilient to DL modeling attacks [44].

128



References

[1] LR with non-linear decision boundary and RProp optimization. http://www.pcp.

in.tum.de/code/lr.zip. Accessed: 2018-08-30.

[2] Magnetek(r), magneprint(r). http://www.magneprint.com/. Accessed: 2020-02-15.

[3] Mojo v3 development board. https://embeddedmicro.com/products/mojo-v3.

html. Accessed: 2020-02-15.

[4] Spartan-6 family overview. https://www.xilinx.com/support/documentation/

data_sheets/ds160.pdf. Accessed: 2020-02-15.

[5] Spartan-6 fpga configurable logic block user guide. https://www.xilinx.com/

support/documentation/user_guides/ug384.pdf. Accessed: 2020-02-15.

[6] Mete Akgün and M. Ufuk Çaglayan. Providing destructive privacy and scalability in
rfid systems using pufs. Ad Hoc Netw., 32(C):32–42, September 2015.

[7] Georg T. Becker and Raghavan Kumar. Active and passive side-channel attacks on
delay based puf designs. IACR Cryptology ePrint Archive, 2014:287, 2014.

[8] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J.
Nowak, D. J. Pearson, and N. J. Rohrer. High-performance cmos variability in the 65-
nm regime and beyond. IBM Journal of Research and Development, 50(4.5):433–449,
July 2006.

[9] Mudit Bhargava, Cagla Cakir, and Ken Mai. Comparison of bi-stable and delay-based
physical unclonable functions from measurements in 65nm bulk CMOS. Proceedings
of the Custom Integrated Circuits Conference, pages 0–3, 2012.

[10] Christoph Bhm and Maximilian Hofer. Physical Unclonable Functions in Theory and
Practice. Springer Publishing Company, Incorporated, 2012.

129

http://www.pcp.in.tum.de/code/lr.zip 
http://www.pcp.in.tum.de/code/lr.zip 
http://www.magneprint.com/
https://embeddedmicro.com/products/mojo-v3.html
https://embeddedmicro.com/products/mojo-v3.html
https://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
https://www.xilinx.com/support/documentation/user_guides/ug384.pdf
https://www.xilinx.com/support/documentation/user_guides/ug384.pdf


[11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physi-
cally uncloneable functions in the universal composition framework. In Phillip Rog-
away, editor, Advances in Cryptology – CRYPTO 2011, pages 51–70, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg.

[12] James Buchanan, Russell Cowburn, Ana-Vanessa Jausovec, Dorothee Petit, Peter
Seem, Gang Xiong, Del Atkinson, Kate Fenton, Dan Allwood, and M. Bryan. Forgery:
‘fingerprinting’ documents and packaging. Nature, 436:475, 08 2005.

[13] P. Bulens, F.-X. Standaert, and J.-J. Quisquater. How to strongly link data and its
medium: the paper case. IET Information Security, 4:125–136(11), September 2010.

[14] Urbi Chatterjee, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. A puf-
based secure communication protocol for iot. ACM Transactions on Embedded Com-
puting Systems (TECS), 16(3):67, 2017.

[15] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair. Characterization
of the bistable ring puf. In 2012 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1459–1462, March 2012.

[16] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich Rührmair.
The bistable ring puf: A new architecture for strong physical unclonable functions. In
2011 IEEE International Symposium on Hardware-Oriented Security and Trust, pages
134–141. IEEE, 2011.

[17] Lim D. Extracting secret keys from integrated circuits. Master’s thesis, MIT, 2004.

[18] Daihyun Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas.
Extracting secret keys from integrated circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 13(10):1200–1205, Oct 2005.

[19] Gerald DeJean and Darko Kirovski. Rf-dna: Radio-frequency certificates of authentic-
ity. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007, pages 346–363, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[20] J. Delvaux and I. Verbauwhede. Side channel modeling attacks on 65nm arbiter pufs
exploiting cmos device noise. In 2013 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 137–142, 2013.

130



[21] Mahmoud A Elmohr. Embedded systems security: On em fault injection on risc-v
and br/tbr puf design on fpga. Master’s thesis, University of Waterloo, 2020.

[22] S. Ergün. Attack on a microcomputer-based random number generator using auto-
synchronization. In 2019 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), pages 1–4, 2019.

[23] Jianqing Fan, Cong Ma, and Yiqiao Zhong. A Selective Overview of Deep Learning.
arXiv e-prints, page arXiv:1904.05526, Apr 2019.

[24] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119 – 139, 1997.

[25] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August
1997.

[26] Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert. Strong machine
learning attack against pufs with no mathematical model. Cryptology ePrint Archive,
Report 2016/606, 2016. http://eprint.iacr.org/2016/606.

[27] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. Why attackers win: On the
learnability of xor arbiter pufs. In Mauro Conti, Matthias Schunter, and Ioannis
Askoxylakis, editors, Trust and Trustworthy Computing, pages 22–39, Cham, 2015.
Springer International Publishing.

[28] B. Gassend. Physical random functions. Master’s thesis, MIT, 2003.

[29] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon phys-
ical random functions. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS ’02, pages 148–160, New York, NY, USA, 2002. ACM.

[30] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas.
Identification and authentication of integrated circuits. Concurrency - Practice and
Experience, 16:1077–1098, 09 2004.

[31] P. Gope, J. Lee, and T. Q. S. Quek. Lightweight and practical anonymous authenti-
cation protocol for rfid systems using physically unclonable functions. IEEE Transac-
tions on Information Forensics and Security, 13(11):2831–2843, Nov 2018.

131

http://eprint.iacr.org/2016/606


[32] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. Fpga intrinsic
pufs and their use for ip protection. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, pages 63–80, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[33] Jorge Guajardo, Boris Škorić, Pim Tuyls, Sandeep S. Kumar, Thijs Bel, Antoon H. M.
Blom, and Geert-Jan Schrijen. Anti-counterfeiting, key distribution, and key storage
in an ambient world via physical unclonable functions. Information Systems Frontiers,
11(1):19–41, Mar 2009.

[34] Ghaith Hammouri, Aykutlu Dana, and Berk Sunar. Cds have fingerprints too. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded
Systems - CHES 2009, pages 348–362, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

[35] Ghaith Hammouri, Erdinç Öztürk, Berk Birand, and Berk Sunar. Unclonable
lightweight authentication scheme. In Liqun Chen, Mark D. Ryan, and Guilin Wang,
editors, Information and Communications Security, pages 33–48, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[36] Helena Handschuh, Geert-Jan Schrijen, and Pim Tuyls. Hardware Intrinsic Secu-
rity from Physically Unclonable Functions, pages 39–53. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[37] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[38] C. Helfmeier, C. Boit, D. Nedospasov, and J. Seifert. Cloning physically unclonable
functions. In 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pages 1–6, 2013.

[39] R. Helinski, D. Acharyya, and J. Plusquellic. A physical unclonable function de-
fined using power distribution system equivalent resistance variations. In 2009 46th
ACM/IEEE Design Automation Conference, pages 676–681, July 2009.

[40] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. Initial sram state as a fin-
gerprint and source of true random numbers for rfid tags. In In Proceedings of the
Conference on RFID Security, 2007.

132



[41] G. Hospodar, R. Maes, and I. Verbauwhede. Machine learning attacks on 65nm arbiter
pufs: Accurate modeling poses strict bounds on usability. In 2012 IEEE International
Workshop on Information Forensics and Security (WIFS), pages 37–42, Dec 2012.

[42] Stefan Katzenbeisser, Ünal Kocabaş, Vladimir Rožić, Ahmad-Reza Sadeghi, Ingrid
Verbauwhede, and Christian Wachsmann. Pufs: Myth, fact or busted? a security
evaluation of physically unclonable functions (pufs) cast in silicon. In Proceedings of
the 14th International Conference on Cryptographic Hardware and Embedded Systems,
CHES’12, pages 283–301, Berlin, Heidelberg, 2012. Springer-Verlag.

[43] John Kelsey, Bruce Schneier, David Wagner, and Counterpane Systems. Cryptanalytic
attacks on pseudorandom number generators. Lecture Notes in Computer Science,
1372, 11 2000.

[44] M. Khalafalla, M. A. Elmohr, and C. Gebotys. Going deep: Using deep learning
techniques with simplified mathematical models against xor br and tbr pufs (attacks
and countermeasures). In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), December 2020.

[45] M. Khalafalla and C. Gebotys. Pufs deep attacks: Enhanced modeling attacks using
deep learning techniques to break the security of double arbiter pufs. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 204–209, March
2019.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[47] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96,
pages 104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[48] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’99, page 388–397, Berlin, Heidelberg, 1999. Springer-Verlag.

[49] L. Kulseng, Z. Yu, Y. Wei, and Y. Guan. Lightweight mutual authentication and
ownership transfer for rfid systems. In 2010 Proceedings IEEE INFOCOM, pages 1–5,
March 2010.

133



[50] S. S. Kumar, J. Guajardo, R. Maes, G. Schrijen, and P. Tuyls. Extended abstract:
The butterfly puf protecting ip on every fpga. In 2008 IEEE International Workshop
on Hardware-Oriented Security and Trust, pages 67–70, June 2008.

[51] J. W. Lee, , B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. A technique to
build a secret key in integrated circuits for identification and authentication applica-
tions. In 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat.
No.04CH37525), pages 176–179, June 2004.

[52] K. Lofstrom, W. R. Daasch, and D. Taylor. Ic identification circuit using device
mismatch. In 2000 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers (Cat. No.00CH37056), pages 372–373, Feb 2000.

[53] Qingqing Ma, Chongyan Gu, Neil Hanley, Chenghua Wang, Weiqiang Liu, and Máire
O’Neill. A machine learning attack resistant multi-PUF design on FPGA. Proceed-
ings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 2018-
Janua:97–104, 2018.

[54] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama. A new mode of operation
for arbiter puf to improve uniqueness on fpga. In 2014 Federated Conference on
Computer Science and Information Systems, pages 871–878, Sep. 2014.

[55] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama. Implementation of double
arbiter puf and its performance evaluation on fpga. In The 20th Asia and South Pacific
Design Automation Conference, pages 6–7, Jan 2015.

[56] Roel Maes, Pim Tuyls, Ingrid Verbauwhede, and Leuven Esat-cosic. Intrinsic pufs
from flip-flops on reconfigurable devices,” in wissec, 2008.

[57] Roel Maes, Vincent Van Der Leest, Erik Van Der Sluis, and Frans Willems. Secure
key generation from biased PUFs. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9293:517–534, 2015.

[58] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Functions: A Study on
the State of the Art and Future Research Directions, pages 3–37. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[59] Ahmed Mahmoud, Ulrich Rührmair, Mehrdad Majzoobi, and Farinaz Koushanfar.
Combined modeling and side channel attacks on strong pufs. IACR Cryptology ePrint
Archive, 2013:632, 2013.

134



[60] M. Majzoobi, F. Koushanfar, and S. Devadas. Fpga puf using programmable delay
lines. In 2010 IEEE International Workshop on Information Forensics and Security,
pages 1–6, Dec 2010.

[61] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Lightweight secure pufs. In 2008
IEEE/ACM International Conference on Computer-Aided Design, pages 670–673, Nov
2008.

[62] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Testing techniques for hardware
security. In 2008 IEEE International Test Conference, pages 1–10, Oct 2008.

[63] Mehrdad Majzoobi, Akshat Kharaya, Farinaz Koushanfar, and Srinivas Devadas. Au-
tomated design, implementation, and evaluation of arbiter-based puf on fpga using
programmable delay lines. IACR Cryptology ePrint Archive, 2014:639, 2014.

[64] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Techniques for
design and implementation of secure reconfigurable pufs. ACM Trans. Reconfigurable
Technol. Syst., 2(1):5:1–5:33, March 2009.

[65] Jimson Mathew, Rajat Chakraborty, Durga Sahoo, Yuanfan Yang, and Dhiraj Prad-
han. A novel memristor based physically unclonable function. Integration, the VLSI
Journal, 51, 05 2015.

[66] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg Sigl. Semi-invasive em
attack on fpga ro pufs and countermeasures. In Proceedings of the Workshop on
Embedded Systems Security, WESS ’11, New York, NY, USA, 2011. Association for
Computing Machinery.

[67] A. Mills, S. Vyas, M. Patterson, C. Sabotta, P. Jones, and J. Zambreno. Design and
evaluation of a delay-based fpga physically unclonable function. In 2012 IEEE 30th
International Conference on Computer Design (ICCD), pages 143–146, Sep. 2012.

[68] Sergey Morozov, Abhranil Maiti, and Patrick Schaumont. Comparative analysis of
delay based puf implementations on fpga. IACR Cryptology ePrint Archive, 2009:629,
01 2009.

[69] Sergey Morozov, Abhranil Maiti, and Patrick Schaumont. An analysis of delay based
puf implementations on fpga. In Proceedings of the 6th International Conference
on Reconfigurable Computing: Architectures, Tools and Applications, ARC’10, pages
382–387, Berlin, Heidelberg, 2010. Springer-Verlag.

135



[70] P. H. Nguyen, D. P. Sahoo, R. S. Chakraborty, and D. Mukhopadhyay. Efficient
attacks on robust ring oscillator puf with enhanced challenge-response set. In 2015
Design, Automation Test in Europe Conference Exhibition (DATE), pages 641–646,
March 2015.

[71] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way
functions. Science, 297(5589):2026–2030, 2002.

[72] David Rolnick and Max Tegmark. The power of deeper networks for expressing natural
functions. CoRR, abs/1705.05502, 2017.

[73] Marcel W. Muller Ronald S. Indeck. Method and apparatus for fnger printing magnetic
media, u.s. patent no. 5365586, November 1994.

[74] Ulrich Rührmair. Oblivious transfer based on physical unclonable functions. In Pro-
ceedings of the 3rd International Conference on Trust and Trustworthy Computing,
TRUST’10, pages 430–440, Berlin, Heidelberg, 2010. Springer-Verlag.

[75] Ulrich Rührmair, Frank Sehnke, Jan S ölter, Gideon Dror, Srinivas Devadas, and
J ürgen Schmidhuber. Modeling attacks on physical unclonable functions. Proceedings
of the 17th ACM conference on Computer and communications security - CCS ’10,
page 237, 2010.

[76] Ulrich Ruhrmair, Jan Solter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud, Vera
Stoyanova, Gideon Dror, Jurgen Schmidhuber, Wayne Burleson, and Srinivas Devadas.
Puf modeling attacks on simulated and silicon data. Trans. Info. For. Sec., 8(11):1876–
1891, November 2013.

[77] U. Rührmair and D. E. Holcomb. Pufs at a glance. In 2014 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 1–6, March 2014.

[78] Dieter Schuster and Robert Hesselbarth. Evaluation of bistable ring pufs using single
layer neural networks. In International Conference on Trust and Trustworthy Com-
puting, pages 101–109. Springer, 2014.

[79] B. Škorić, P. Tuyls, and W. Ophey. Robust key extraction from physical uncloneable
functions. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, Applied
Cryptography and Network Security, pages 407–422, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

136



[80] Alexander Spenke, Ralph Breithaupt, and Rainer Plaga. An arbiter puf secured by re-
mote random reconfigurations of an fpga. In Michael Franz and Panos Papadimitratos,
editors, Trust and Trustworthy Computing, pages 140–158, Cham, 2016. Springer In-
ternational Publishing.

[81] Y. Su, J. Holleman, and B. Otis. A 1.6pj/bit 96variations. In 2007 IEEE International
Solid-State Circuits Conference. Digest of Technical Papers, pages 406–611, Feb 2007.

[82] G. E. Suh and S. Devadas. Physical unclonable functions for device authentication
and secret key generation. In 2007 44th ACM/IEEE Design Automation Conference,
pages 9–14, June 2007.

[83] S. Tajik, H. Lohrke, F. Ganji, J. Seifert, and C. Boit. Laser fault attack on physi-
cally unclonable functions. In 2015 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 85–96, Sep. 2015.

[84] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Nedospasov,
Clemens Helfmeier, Christian Boit, and Helmar Dittrich. Physical characterization
of arbiter pufs. In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2014, pages 493–509, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[85] Mitsugu Iwamoto Takanori Machida, Dai Yamamoto and Kazuo Sakiyama. A new
arbiter puf for enhancing unpredictability on fpga. The Scientific World Journal,
2015.

[86] Johannes Tobisch and Georg T. Becker. On the scaling of machine learning attacks
on pufs with application to noise bifurcation. In Stefan Mangard and Patrick Schau-
mont, editors, Radio Frequency Identification, pages 17–31, Cham, 2015. Springer
International Publishing.

[87] H. P. Tuinhout, A. H. Montree, J. Schmitz, and P. A. Stolk. Effects of gate de-
pletion and boron penetration on matching of deep submicron cmos transistors. In
International Electron Devices Meeting. IEDM Technical Digest, pages 631–634, Dec
1997.

[88] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven, Nynke Verhaegh, and
Rob Wolters. Read-proof hardware from protective coatings. In Louis Goubin and
Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES
2006, pages 369–383, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

137



[89] P.T. Tuyls and B. Skoric. Strong authentication with physical unclonable functions,
pages 133–148. Data-Centric Systems and Applications. Springer, Germany, 2007.

[90] M. E. Van Dijk. System and method of reliable forward secret key sharing with
physical random functions, us patent 7653197, jan 2010.

[91] Akshay Wali, Akhil Dodda, Yang Wu, Andrew Pannone, Likhith Kumar Reddy
Usthili, Sahin Ozdemir, Ibrahim Ozbolat, and Saptarshi Das. Biological physically
unclonable function. Communications Physics, 2, 12 2019.

[92] He Xu, Jie Ding, Peng Li, Feng Zhu, and Ruchuan Wang. A lightweight rfid mutual
authentication protocol based on physical unclonable function. Sensors, 18(3):760,
Mar 2018.

[93] X. Xu and W. Burleson. Hybrid side-channel/machine-learning attacks on pufs: A new
threat? In 2014 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1–6, March 2014.

[94] Xiaolin Xu, Ulrich Rührmair, Daniel E. Holcomb, and Wayne Burleson. Security eval-
uation and enhancement of bistable ring pufs. In Revised Selected Papers of the 11th
International Workshop on Radio Frequency Identification - Volume 9440, RFIDsec
2015, pages 3–16, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[95] Dai Yamamoto, Masahiko Takenaka, Kazuo Sakiyama, and Naoya Torii. Security
evaluation of bistable ring pufs on fpgas using differential and linear analysis. In 2014
Federated Conference on Computer Science and Information Systems, pages 911–918.
IEEE, 2014.

[96] Risa Yashiro, Takanori Machida, Mitsugu Iwamoto, and Kazuo Sakiyama. Deep-
learning-based security evaluation on authentication systems using arbiter puf and
its variants. In Kazuto Ogawa and Katsunari Yoshioka, editors, Advances in Infor-
mation and Computer Security, pages 267–285, Cham, 2016. Springer International
Publishing.

[97] M. Yu, D. M’Räıhi, I. Verbauwhede, and S. Devadas. A noise bifurcation architecture
for linear additive physical functions. In 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pages 124–129, 2014.

[98] Meng-Day Yu and Srinivas Devadas. Recombination of physical unclonable functions.
In 35th Annual GOMACTech Conference, pages 22–25, 2010.

138



[99] Feng Zhu, Peng Li, He Xu, and Ruchuan Wang. A lightweight rfid mutual authenti-
cation protocol with puf. Sensors, 19:2957, 07 2019.

139



APPENDICES

140



Appendix A

Steps for manual placement and
routing of PUFs on FPGA

A.1 Manual placement of PUF stages

As was mentioned in section 3.3 of chapter 3, a repetitive placement technique was used to
determine the best configuration that allows manual routing with smaller delay difference.
Please note that FPGA architecture are repetitive by nature, hence, the connections among
stages tend to repeat itself. Therefore, there is a constant set of placement cases that need
to be accounted for. Every stage of the 64-stages PUF will use one of these limited cases.
For every placement case, we manually try alter the stage position on the FPGA layout and
check the routing options to determine the best configuration that provides better delay
difference results. Figure A.1 shows PUF 8 after doing the repetitive manual placement
compared to other PUFs. The stopping condition was to find a routing configuration that
reduces delay difference to be < 50 ps. Figures A.2, A.3, and A.4 show examples of
routed stages with delay differences 32ps, 5ps, and 0ps respectively.

The function of every path in a specific stage can be realized using 3-input lookup
table (LUT). Hence, every stage can be implemented using two 3-input LUTs, however,
we found that placing the two LUTs into one 6-input LUT as shown in Figure A.5 eases
the manual routing task.

Finally, We found that paths inside every LUT will have different delays as shown
in Figure A.6, which cannot be modified or controlled. Therefore, we interchanged the
placement of both paths LUTs in half the number of stages. Hence, every path will go

141



Figure A.1: Repetitive manual placement of PUF 8

Figure A.2: Delay difference example of stage 0

142



Figure A.3: Delay difference example of stage 12

Figure A.4: Delay difference example of stage 22

143



Figure A.5: Two 3-input LUTs placed into one 6-input LUT

through O5 and O6 for the same number of times to balance the delay difference inside
the LUTs

Figure A.6: The delay difference between the 6-input LUT outputs

144



A.2 Manual routing of PUFs inter-stage connections

The steps of manual routing are as follows:

• The manual routing step is done post mapping to have all routing resources free and
give priority to the PUFs components as shown in Figure A.7.

• For every stage, both paths are automatically routed with routing option configured
to be ”delay driven” as shown in Figure A.8. Hence, we get the shortest routing
delay for both paths.

• We cannot optimize the delay of both paths because the delay-driven routing will get
the shortest delay for every path. Hence, we will pick the path with shortest delay
and try other routing options to make it longer and closer to the other path delay
and reduce overall delay difference.

• Record the steps of the manual routing into a script to repeat it with other stages
that have the same placement.

• After finishing the manual routing, the overall routing step is executed with option
”Reentrant Route” as shown in Figure A.9 to consider the modifications done in our
previous steps.

145



Figure A.7: Manual routing is done post mapping

Figure A.8: Automatic routing is configured to be delay driven

146



Figure A.9: Automatic routing is configured to be delay driven

147



Appendix B

Python Scripts used to calculate
statistical metrics

Providing code snippets for the statistical metrics used in the dissertation.

B.1 Majority counting

de f PrepareCRPData ( s t a r t I dx , endIdx , CRPData , Chal lengeLength ,
ResponseLength , procnum) :

2 FormattedCrpData = l i s t ( )
f o r i in range ( s ta r t Idx , endIdx , 1) :

4 temp = CRPData [ i ] . s t r i p ( ) . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
Chal lenge = temp [ 0 ] . s p l i t ( ”0b” )

6 Response = temp [ l en ( temp) − 1 ] . r ep l a c e ( ”0b” , ”” )
FormattedResp = ””

8 f o r j in range (1 , 9 , 1 ) :
FormattedResp += Chal lenge [ j ] . z f i l l ( Chal lengeLength )

10 FormattedResp += ” ” + Response . z f i l l ( ResponseLength ) + ”\n”
FormattedCrpData . append ( FormattedResp )

12 ou tF i l e = open ( ”CRPs−Read−64Bit−Chip1−Modified−” + s t r ( procnum) + ” . txt ”
, ”w” )
f o r l i n e in FormattedCrpData :

14 ou tF i l e . wr i t e ( l i n e )
ou tF i l e . f l u s h ( )

16 ou tF i l e . c l o s e ( )

18

148



20 de f MajorityCounting ( s t a r t I dx , endIdx , CRPData1 , CRPData2 , CRPData3 ,
CRPData4 , CRPData5 , CRPData6 , CRPData7 , CRPData8 , CRPData9 , CRPData10 ,
CRPData11 , ResponseLength , Analys i sStat , procnum) :
MajorityCRPData = l i s t ( )

22 f o r i in range ( s ta r t Idx , endIdx , 1) :
temp1 = CRPData1 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

24 temp2 = CRPData2 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
temp3 = CRPData3 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

26 temp4 = CRPData4 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
temp5 = CRPData5 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

28 temp6 = CRPData6 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
temp7 = CRPData7 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

30 temp8 = CRPData8 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
temp9 = CRPData9 [ i ] . r e p l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

32 temp10 = CRPData10 [ i ] . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
temp11 = CRPData11 [ i ] . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

34 MajorityResp = temp1 [ 0 ] + ” ”
f o r j in range (0 , ResponseLength , 1 ) :

36 count = in t ( temp1 [ 1 ] [ j ] ) + in t ( temp2 [ 1 ] [ j ] ) + in t ( temp3 [ 1 ] [ j ] ) +
in t ( temp4 [ 1 ] [ j ] ) + in t ( temp5 [ 1 ] [ j ] ) + in t ( temp6 [ 1 ] [ j ] ) + in t ( temp7 [ 1 ] [ j

] ) + in t ( temp8 [ 1 ] [ j ] ) + in t ( temp9 [ 1 ] [ j ] ) + in t ( temp10 [ 1 ] [ j ] ) + in t ( temp11
[ 1 ] [ j ] )

MajorityResp += s t r ( i n t ( count /6) )
38 i f ( count>= 6) :

Ana lys i sS ta t [ count − 6 ] = Ana ly s i sS ta t [ count −6] + 1
40 e l s e :

Ana ly s i sS ta t [ 11 − count − 6 ] = Ana ly s i sS ta t [ 11 − count −6] +
1

42 MajorityResp += ”\n”
MajorityCRPData . append (MajorityResp )

44 ou tF i l e = open ( ”CRPs−Read−64Bit−Chip1−Majority−” + s t r ( procnum) + ” . txt ”
, ”w” )
f o r l i n e in MajorityCRPData :

46 ou tF i l e . wr i t e ( l i n e )
ou tF i l e . f l u s h ( )

48 ou tF i l e . c l o s e ( )

50 i f name == ’ ma in ’ :
f o r i in range (0 , 11 , 1 ) :

52 CRPmodif = open ( ”CRPs−Read−64Bit−Chip1−”+s t r ( i +1)+”−Modif ied . txt ” , ”
w” )

crpData = CRPorig [ i ] . r e a d l i n e s ( )
54 ctx = mul t i p ro c e s s i ng . g e t con t ex t ( ’ spawn ’ )

149



p1 = ctx . Process ( t a r g e t=PrepareCRPData , args =(0 ,250000 , crpData , 8 , 8 ,
1) )

56 p2 = ctx . Process ( t a r g e t=PrepareCRPData , args =(250000 ,500000 , crpData
, 8 , 8 , 2) )

p3 = ctx . Process ( t a r g e t=PrepareCRPData , args =(500000 ,750000 , crpData
, 8 , 8 , 3) )

58 p4 = ctx . Process ( t a r g e t=PrepareCRPData , args =(750000 ,1000000 ,
crpData , 8 , 8 , 4) )

p1 . s t a r t ( )
60 p2 . s t a r t ( )

p3 . s t a r t ( )
62 p4 . s t a r t ( )

p1 . j o i n ( )
64 p2 . j o i n ( )

p3 . j o i n ( )
66 p4 . j o i n ( )

r e s1 = open ( ”CRPs−Read−64Bit−Chip1−Modified −1. txt ” , ” r ” ) . r e a d l i n e s ( )
68 r e s2 = open ( ”CRPs−Read−64Bit−Chip1−Modified −2. txt ” , ” r ” ) . r e a d l i n e s ( )

r e s3 = open ( ”CRPs−Read−64Bit−Chip1−Modified −3. txt ” , ” r ” ) . r e a d l i n e s ( )
70 r e s4 = open ( ”CRPs−Read−64Bit−Chip1−Modified −4. txt ” , ” r ” ) . r e a d l i n e s ( )

f o r j in range ( l en ( r e s1 ) ) :
72 CRPmodif . wr i t e ( r e s1 [ j ] )

f o r j in range ( l en ( r e s2 ) ) :
74 CRPmodif . wr i t e ( r e s2 [ j ] )

f o r j in range ( l en ( r e s3 ) ) :
76 CRPmodif . wr i t e ( r e s3 [ j ] )

f o r j in range ( l en ( r e s4 ) ) :
78 CRPmodif . wr i t e ( r e s4 [ j ] )

CRPmodif . f l u s h ( )
80 CRPmodif . c l o s e ( )

CRPorig [ i ] . c l o s e ( )
82

## Do major i ty vote
84 CRPData1 = open ( ”CRPs−Read−64Bit−Chip1−1−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )

CRPData2 = open ( ”CRPs−Read−64Bit−Chip1−2−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )
86 CRPData3 = open ( ”CRPs−Read−64Bit−Chip1−3−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )

CRPData4 = open ( ”CRPs−Read−64Bit−Chip1−4−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )
88 CRPData5 = open ( ”CRPs−Read−64Bit−Chip1−5−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )

CRPData6 = open ( ”CRPs−Read−64Bit−Chip1−6−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )
90 CRPData7 = open ( ”CRPs−Read−64Bit−Chip1−7−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )

CRPData8 = open ( ”CRPs−Read−64Bit−Chip1−8−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )
92 CRPData9 = open ( ”CRPs−Read−64Bit−Chip1−9−Modif ied . txt ” , ” r ” ) . r e a d l i n e s ( )

CRPData10 = open ( ”CRPs−Read−64Bit−Chip1−10−Modif ied . txt ” , ” r ” ) . r e a d l i n e s
( )

150



94 CRPData11 = open ( ”CRPs−Read−64Bit−Chip1−11−Modif ied . txt ” , ” r ” ) . r e a d l i n e s
( )
majCounter1 = [ 0 , 0 , 0 , 0 , 0 , 0 ]

96 MajorityCounting (0 ,1000000 ,CRPData1 , CRPData2 , CRPData3 , CRPData4 ,
CRPData5 , CRPData6 , CRPData7 , CRPData8 , CRPData9 , CRPData10 , CRPData11 ,
8 , majCounter1 , 1 )
r e s1 = open ( ”CRPs−Read−64Bit−Chip1−Majority −1. txt ” , ” r ” ) . r e a d l i n e s ( )

98 Majout = open ( ”CRPs−Read−64Bit−Chip1−Major ity . txt ” , ”w” )
f o r j in range ( l en ( r e s1 ) ) :

100 Majout . wr i t e ( r e s1 [ j ] )
Majout . f l u s h ( )

102 Majout . c l o s e ( )
p r i n t (majCounter1 )

Listing B.1: Majority counting calaculation script

B.2 Inter-Chip hamming distance

de f CalculateHD (PUFRes , startIDX , HDRes) :
2 f o r pu f l i n e in range ( startIDX , l en (PUFRes) , 4) :

PUF = PUFRes [ p u f l i n e ] . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
4 #pr in t (PUF[ 1 ] )

#pr in t (PUF [ 1 ] [ 0 ] )
6 f o r pu f l i n e 2 in range ( pu f l i n e + 1 , l en (PUFRes) , 1) :

counter = 0
8 b i tPo in t e r = 0

TempPUF = PUFRes [ pu f l i n e 2 ] . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )
10 i f (PUF[ 1 ] == TempPUF[ 1 ] ) :

HDRes [ 0 ] = HDRes [ 0 ] + 1
12 cont inue

f o r b i tPo in t e r in range (0 , 8 , 1 ) :
14 i f (PUF [ 1 ] [ b i tPo in t e r ] == TempPUF [ 1 ] [ b i tPo in t e r ] ) :

cont inue
16 e l s e :

counter = counter + 1
18

HDRes [ counter ] = HDRes [ counter ] + 1
20

pr in t ( ” f i n i s h e d ” + s t r ( pu f l i n e ) + ”\n” )
22

i f name == ’ ma in ’ :
24

PUFRes = open ( ”CRPs−Read−64Bit−Chip1−Major ity . txt ” , ” r ” ) . r e a d l i n e s ( )

151



26 HDCounter1 = mu l t i p ro c e s s i ng . Array ( ’ i ’ , range (9 ) )
HDCounter2 = mu l t i p ro c e s s i ng . Array ( ’ i ’ , range (9 ) )

28 HDCounter3 = mu l t i p ro c e s s i ng . Array ( ’ i ’ , range (9 ) )
HDCounter4 = mu l t i p ro c e s s i ng . Array ( ’ i ’ , range (9 ) )

30 #AutoCor = mul t i p ro c e s s i ng . Array ( ’ f ’ , range (32768) )
ctx = mu l t i p ro c e s s i ng . g e t con t ex t ( ’ spawn ’ )

32 #mul t i p ro c e s s i ng . s e t s t a r t method ( ’ spawn ’ )

34 p1 = ctx . Process ( t a r g e t=CalculateInterHD , args=(P1File1 , P1File2 , P1File3 ,
P1File4 , P1File5 , HDCounter1 ) )
p2 = ctx . Process ( t a r g e t=CalculateInterHD , args=(P2File1 , P2File2 , P2File3 ,
P2File4 , P2File5 , HDCounter2 ) )

36 p3 = ctx . Process ( t a r g e t=CalculateInterHD , args=(P3File1 , P3File2 , P3File3 ,
P3File4 , P3File5 , HDCounter3 ) )
p4 = ctx . Process ( t a r g e t=CalculateInterHD , args=(P4File1 , P4File2 , P4File3 ,
P4File4 , P4File5 , HDCounter4 ) )

38 p1 . s t a r t ( )
p2 . s t a r t ( )

40 p3 . s t a r t ( )
p4 . s t a r t ( )

42 p1 . j o i n ( )
p2 . j o i n ( )

44 p3 . j o i n ( )
p4 . j o i n ( )

46

f o r i in range (0 , l en (HDCounter ) , 1 ) :
48 HDCounter [ i ] = HDCounter1 [ i ] + HDCounter2 [ i ] + HDCounter3 [ i ] +

HDCounter4 [ i ]
p r i n t (HDCounter )

Listing B.2: Hamming distance calaculation script

B.3 Phi correlation

import sk l e a rn . met r i c s as sk
2

i n f i l e = open ( ”CRPs−Read−64Bit−Chip1−Major ity . txt ” , ” r ” ) . r e a d l i n e s ( )
4 o u t f i l e = open ( ” corrOut . txt ” , ”w” )
Chal lengeCorr = l i s t ( )

6 RespCorr = l i s t ( )

8 f o r i in range (8 ) :
f o r j in range (64) :

152



10 cha l l eng e = l i s t ( )
re sp = l i s t ( )

12

f o r l i n e in i n f i l e :
14 temp = l i n e . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

cha l l eng e . append ( i n t ( temp [ 0 ] [ j ] ) )
16 re sp . append ( i n t ( temp [ 1 ] [ i ] ) )

18 co r r = sk . matthews corrcoe f ( cha l l enge , re sp )
#pr in t ( co r r )

20 Chal lengeCorr . append ( co r r )
de l cha l l eng e

22 de l re sp
p r in t ( s t r ( i ) + ” i s f i n i s h e d ” )

24

f o r i in range (8 ) :
26 f o r j in range (8 ) :

Resp1 = l i s t ( )
28 Resp2 = l i s t ( )

30 f o r l i n e in i n f i l e :
temp = l i n e . r ep l a c e ( ”\n” , ”” ) . s p l i t ( ” ” )

32 Resp1 . append ( i n t ( temp [ 1 ] [ i ] ) )
Resp2 . append ( i n t ( temp [ 1 ] [ j ] ) )

34

co r r = sk . matthews corrcoe f (Resp1 , Resp2 )
36 #pr in t ( co r r )

RespCorr . append ( co r r )
38 de l Resp1

de l Resp2
40

f o r i in range (8 ) :
42 s t r ou t = ”PUF Resp” + s t r (8 − i )+ ” Chal lenge b i t s Corr :\n”

f o r j in range (64) :
44 s t r ou t += s t r ( Chal lengeCorr [ ( 64∗ i ) + j ] ) + ” , ”

s t r ou t += ”\n”
46 o u t f i l e . wr i t e ( s t r ou t )

48 o u t f i l e . wr i t e ( ”=======================================================\n” )

50 f o r i in range (8 ) :
s t r ou t = ”PUF Resp” + s t r (8 − i )+ ” PUF Resps Corr :\n”

52 f o r j in range (8 ) :
s t r ou t += s t r ( RespCorr [ ( 8∗ i ) + j ] ) + ” , ”

54 s t r ou t += ”\n”

153



o u t f i l e . wr i t e ( s t r ou t )
56

o u t f i l e . f l u s h ( )
58 o u t f i l e . c l o s e ( )

Listing B.3: Phi correlation calaculation script

154



Appendix C

Python Scripts used for DL modeling

The script used for training a PUF model.

2 from f u t u r e import abso lu te impor t
from f u t u r e import d i v i s i o n

4 from f u t u r e import p r i n t f u n c t i o n

6 import numpy as np
import t en so r f l ow as t f

8 import random

10 t f . l o gg ing . s e t v e r b o s i t y ( t f . l o gg ing . INFO)

12

de f cnn model fn ( f e a tu r e s , l ab e l s , mode) :
14 ”””Model func t i on f o r CNN. ”””

# Input Layer
16 # Reshape X to 4−D tenso r : [ ba t ch s i z e , width , height , channe l s ]

i npu t l a y e r = t f . reshape ( f e a t u r e s [ ”x” ] , [−1 , 6 5 ] )
18

num neurons = 2000
20

FC 1 = t f . l a y e r s . dense ( inputs=input l aye r , un i t s=num neurons , a c t i v a t i o n=
t f . nn . tanh )

22 FC 2 = t f . l a y e r s . dense ( inputs=FC 1 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
tanh )

FC 3 = t f . l a y e r s . dense ( inputs=FC 2 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
tanh )

24 FC 4 = t f . l a y e r s . dense ( inputs=FC 3 , un i t s=num neurons , a c t i v a t i o n=t f . nn .

155



tanh )
FC 5 = t f . l a y e r s . dense ( inputs=FC 4 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

26 FC 6 = t f . l a y e r s . dense ( inputs=FC 5 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

FC 7 = t f . l a y e r s . dense ( inputs=FC 6 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

28 FC 8 = t f . l a y e r s . dense ( inputs=FC 7 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

FC 9 = t f . l a y e r s . dense ( inputs=FC 8 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

30 FC 10 = t f . l a y e r s . dense ( inputs=FC 9 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

FC 11 = t f . l a y e r s . dense ( inputs=FC 10 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

32 FC 12 = t f . l a y e r s . dense ( inputs=FC 11 , un i t s=num neurons , a c t i v a t i o n=t f . nn .
r e l u )

34

# Add dropout opera t i on ; 0 . 8 p r obab i l i t y that element w i l l be kept
36 dropout = t f . l a y e r s . dropout (

inputs=FC 12 , ra t e =0.2 , t r a i n i n g=mode == t f . e s t imator .ModeKeys .TRAIN)
38

# Log i t s l a y e r
40 l o g i t s = t f . l a y e r s . dense ( inputs=dropout , un i t s =2, a c t i v a t i o n=t f . nn . tanh )

42 p r ed i c t i o n s = {
# Generate p r e d i c t i o n s ( f o r PREDICT and EVAL mode)

44 ” c l a s s e s ” : t f . argmax ( input=l o g i t s , ax i s=1) ,
# Add ‘ so f tmax tensor ‘ to the graph . I t i s used f o r PREDICT and by the

46 # ‘ logg ing hook ‘ .
” p r o b a b i l i t i e s ” : t f . nn . softmax ( l o g i t s , name=” so f tmax tensor ” )

48 }
i f mode == t f . e s t imator .ModeKeys .PREDICT:

50 re turn t f . e s t imator . EstimatorSpec (mode=mode , p r e d i c t i o n s=p r ed i c t i o n s )

52 # Calcu la te Loss ( f o r both TRAIN and EVAL modes )
l o s s = t f . l o s s e s . s pa r s e s o f tmax c r o s s en t r opy ( l a b e l s=l ab e l s , l o g i t s=l o g i t s
)

54

# Conf igure the Train ing Op ( f o r TRAIN mode)
56 i f mode == t f . e s t imator .ModeKeys .TRAIN:

opt imize r = t f . t r a i n . AdamOptimizer ( l e a r n i n g r a t e =0.0001)
58 t r a i n op = opt imize r . minimize (

l o s s=lo s s ,

156



60 g l o b a l s t e p=t f . t r a i n . g e t g l o b a l s t e p ( ) )
t r a i n me t r i c op s = {

62 ” t r a i n a c cu ra cy ” : t f . met r i c s . accuracy (
l a b e l s=l ab e l s , p r e d i c t i o n s=p r ed i c t i o n s [ ” c l a s s e s ” ] ) }

64 re turn t f . e s t imator . EstimatorSpec (mode=mode , l o s s=lo s s , t r a i n op=
t ra i n op )

66 # Add eva lua t i on metr i c s ( f o r EVAL mode)
eva l me t r i c op s = {

68 ” accuracy ” : t f . met r i c s . accuracy (
l a b e l s=l ab e l s , p r e d i c t i o n s=p r ed i c t i o n s [ ” c l a s s e s ” ] ) }

70 re turn t f . e s t imator . EstimatorSpec (
mode=mode , l o s s=lo s s , e va l me t r i c op s=eva l me t r i c op s )

72

74 de f main ( unused argv ) :
# Load t r a i n i n g and eva l data

76 xor num = 1 # number o f input XOR
num features = 65 # number o f f e a t u r e s = number o f PUF s tag e s + 1

78 Se tS i z e = 990000
Tes tSe tS i z e = 90000 # number o f t e s t s e t CRPs

80 Tra inSetS i ze = 900000 # number o f t r a i n s e t CRPs
trainDataPos = l i s t ( ) # A l i s t to hold random t r a i n i n g i n d i c e s

82

i npu t a r r = np . empty ( [ Tra inSetS ize , xor num∗num features ] , dtype=np . f l o a t 3 2 )
# the t r a i n i n g s e t cha l l eng e b i t f e a t u r e s

84 t a r g e t a r r = np . empty ( Tra inSetS ize , dtype=np . in t32 ) # The outcome o f
cha l l eng e ca s e s in t r a i n i n g s e t

86 t e s t a r r = np . empty ( [ TestSetS ize , xor num∗num features ] , dtype=np . f l o a t 3 2 ) #
The t e s t i n g s e t cha l l eng e b i t f e a t u r e s

t e s t t a r g e t a r r = np . empty ( TestSetS ize , dtype=np . in t32 ) # The outcome o f
cha l l eng e ca s e s in t e s t s e t

88

i n f i l e = open ( ”CRPs−Read−64Bit−Chip6−Majority−Features . txt ” , ” r ” ) .
r e a d l i n e s ( ) # f i l e conta in ing a l l the 1M Chal lenge f e a t u r e s

90 i n f i l e 2 = open ( ”CRPs−Read−64Bit−Chip6−Major ity . txt ” , ” r ” ) . r e a d l i n e s ( ) # A
f i l e conta in s the r e sponse s o f the PUF to the same 1M cha l l e ng e s

92

94 f o r i in range ( Se tS i z e ) :
tempstr = i n f i l e [ i ]

96 temp = tempstr . r ep l a c e ( ’ \n ’ , ’ ’ ) . s p l i t ( )
f o r k in range ( xor num ) :

157



98 f o r j in range ( l en ( temp) ) :
i f ( i < Tra inSetS i ze ) :

100 i npu t a r r [ i ] [ k∗num features + j ] = f l o a t ( temp [ j ] )
e l s e :

102 t e s t a r r [ i − Tra inSetS i ze ] [ k∗num features + j ] = f l o a t (
temp [ j ] )

i f ( i % 100000 == 0) :
104 pr in t ( ’ f i n i s h e d ’ + s t r ( i /10000)+ ’%\n ’ )

f o r i in range ( Se tS i z e ) :
106 temp2 = i n f i l e 2 [ i ] . r e p l a c e ( ’ \n ’ , ’ ’ ) . s p l i t ( )

i f ( i < Tra inSetS i ze ) :
108 t a r g e t a r r [ i ] = in t ( temp2 [ 1 ] [ 7 ] )

e l s e :
110 t e s t t a r g e t a r r [ i − Tra inSetS i ze ] = in t ( temp2 [ 1 ] [ 7 ] )

112 pr in t ( ’ F in i shed t r a i n datase t ’ )
t r a i n da t a = inpu t a r r

114 t r a i n l a b e l s = t a r g e t a r r
p r i n t ( t r a i n l a b e l s . shape )

116 eva l da ta = t e s t a r r
e v a l l a b e l s = t e s t t a r g e t a r r

118 my checkpo int ing con f i g = t f . e s t imator . RunConfig (
s av e ch e ckpo i n t s s t ep s =6000 , # Save checkpo int s every 6000 s t ep s .

120 keep checkpoint max = 2 , # Retain the 10 most r e c ent checkpo int s .
)

122 p u f c l a s s i f i e r = t f . e s t imator . Estimator (
model fn=cnn model fn , mode l d i r=” . /PUF−Model” , c on f i g=

my checkpo int ing con f i g )
124

# Set up l ogg ing f o r p r e d i c t i o n s
126 # Log the va lue s in the ”Softmax” tenso r with l a b e l ” p r o b a b i l i t i e s ”

t e n s o r s t o l o g = {” p r o b a b i l i t i e s ” : ” so f tmax tensor ”}
128 l ogg ing hook = t f . t r a i n . LoggingTensorHook (

t en so r s=t en s o r s t o l o g , e v e r y n i t e r =1000000)
130

# Train the model
132 t r a i n i n pu t f n = t f . e s t imator . inputs . numpy input fn (

x={”x” : t r a i n da t a } ,
134 y=t r a i n l a b e l s ,

b a t ch s i z e =200 ,
136 num epochs=None ,

s h u f f l e=True )
138 e v a l i n pu t f n = t f . e s t imator . inputs . numpy input fn (

x={”x” : eva l da ta } ,
140 y=ev a l l a b e l s ,

158



num epochs=1,
142 s h u f f l e=Fal se )

144 f o r i in range (20) :
p u f c l a s s i f i e r . t r a i n (

146 i npu t fn=t r a i n i npu t f n ,
s t ep s =6000 ,

148 hooks=[ logg ing hook ] )
# Evaluate the model and pr in t r e s u l t s

150 e v a l r e s u l t s = p u f c l a s s i f i e r . eva luate ( i npu t fn=eva l i n pu t f n )
p r i n t ( e v a l r e s u l t s )

152

154

156

158

i f name == ” main ” :
160 t f . app . run ( )

Listing C.1: DL training script

159



Appendix D

Python Scripts used to generate
multiplexer parameters of the N-to-1
Shuffled-Challenge Hierarchical XOR
BR-PUF

import random as rd
2 import numpy as np
import c o l l e c t i o n s

4 import math

6

#These are the two paramters f o r the s c r i p t . Changing them w i l l change
everyth ing#

8

#how many s e l e c t o r b i t s are r equ i r ed
10 mux sel = 4

12 #The number o f PUF s tag e s
num stage = 64

14 #############################################

16 #Every element o f mask arr i s the 2ˆmux sel input binary s t r i n g that has 50%
’1 ’ and 50% ’0 ’

# f o r example i f we are us ing 2−b i t mux s e l e c t o r , then the mux input w i l l be
4 b i t s and there are 6 ca s e s at which there are exac t l y two 1 ’ s and two

0 ’ s

160



18 mask arr = [ ]

20 # The number o f e lements in c h a l l e n g eB i t s s e l e c t p o s = mux sel e lements .
Each element i s an array that conta in the cha l l eng e i n d i c e s that a f f e c t
the output modi f i ed Chalenge at the corre spond ing array po s i t i o n

#f o r example c h a l l e n g eB i t s s e l e c t p o s [ 0 ] = [ 1 , 2 , 3 , 4 , 5 ] ,
c h a l l e n g eB i t s s e l e c t p o s [ 1 ] = [ 6 , 7 , 8 , 9 , 1 0 ] then cha l l eng e b i t 1 and 6 are
the s e l e c t b i t s f o r the mux that a f f e c t s modi f i ed cha l l eng e b i t 0 , . . e t c

.
22 c h a l l e n g eB i t s s e l e c t p o s = [ ]

24 #o r i g i n a l cha l l eng e
cha l l eng e = np . random . rand int (2 , s i z e=num stage )

26

28 f o r i in range ( mux sel ) :
cha l l enge1 = np . arange ( num stage )

30 np . random . s h u f f l e ( cha l l enge1 )
c h a l l e n g eB i t s s e l e c t p o s . append ( cha l l enge1 )

32

######################### important ##################################
34 ## This code i s commented and can be used to make sure that no cha l l eng e b i t

i s used more than once at every mux s e l e c t input .
######################################################################

36

##pr in t ( c h a l l e n g eB i t s s e l e c t p o s )
38 ##fo r i in range (64) :

## i f ( c h a l l e n g eB i t s s e l e c t p o s [ 0 ] [ i ] == ch a l l e n g eB i t s s e l e c t p o s [ 1 ] [ i ] or
c h a l l e n g eB i t s s e l e c t p o s [ 0 ] [ i ] == ch a l l e n g eB i t s s e l e c t p o s [ 2 ] [ i ] or

c h a l l e n g eB i t s s e l e c t p o s [ 2 ] [ i ] == ch a l l e n g eB i t s s e l e c t p o s [ 1 ] [ i ] ) :
40 ## pr in t ( i )

## pr in t ( c h a l l e n g eB i t s s e l e c t p o s [ 0 ] [ i ] )
42 ## pr in t ( c h a l l e n g eB i t s s e l e c t p o s [ 1 ] [ i ] )

## pr in t ( c h a l l e n g eB i t s s e l e c t p o s [ 2 ] [ i ] )
44

46

# determining which b i t w i l l take which mask c on f i g u r a t i o n s
48 # The number o f mask c on f i g u r a t i o n s that has 50% 0 ’ s and 1 ’ s are determined

by n ! / ( n−r ! ∗ r ! ) = 2ˆmux sel / (2ˆmux sel−1)ˆ2
mask d i s t r i bu t i on = np . random . rand int ( i n t (math . f a c t o r i a l (2∗∗mux sel ) /math .

f a c t o r i a l (2∗∗ ( mux sel−1) ) ∗∗2) , s i z e=num stage )
50

#loop over over a l l p o s s i b l e binary va lue s o f a l ength 2ˆmux sel
52 f o r i in range (2∗∗(2∗∗ mux sel ) ) :

161



#check i f t h i s va lue conta in s 50% 1 ’ s and 50% 0 ’ s
54 i f ( bin ( i ) . count ( ’ 1 ’ ) == (2∗∗ ( mux sel−1) ) ) :

va lue = s t r ( bin ( i ) ) . r ep l a c e ( ”0b” , ”” ) . z f i l l (2∗∗mux sel )
56 mask = [ ]

f o r j in range ( l en ( va lue ) ) :
58 mask . append ( i n t ( va lue [ j ] ) )

mask arr . append (mask)
60

62

64

66 #the ta r g e t cha l l eng e a f t e r apply ing masking to the o r i g i n a l LFSR cha l l eng e
cha l l eng e mod i f i e d = np . random . rand int (2 , s i z e = num stage )

68

#counter to know how many b i t s are d i f f e r e n t in the generated cha l l eng e from
the o r i g i n a l cha l l eng e

70 count = 0

72 #fo r loop to generate the new cha l l eng e
f o r i in range ( l en ( cha l l e ng e mod i f i e d ) ) :

74 index = 0
# Every modi f i ed cha l l eng e b i t depends on mux sel cha l l eng e b i t s from
the o r i g i n a l cha l l eng e

76 # the o r i g i n a l cha l l eng e b i t s at c h a l l e n g eB i t s s e l e c t p o s [ k ] [ i ]
determine cha l l eng e b i t i o f modi f i ed cha l l eng e
# For example o f mux sel = 2 , i t i s l i k e a mux with s e l e c t i s cha l l enge2
cha l l enge1 = b1b0 that ’ s why we mult ip ly by 2ˆ0 and 2ˆ1 to determine

the index i n s i d e the mask
78 f o r k in range ( mux sel ) :

index += cha l l eng e [ c h a l l e n g eB i t s s e l e c t p o s [ k ] [ i ] ] ∗ (2∗∗k )
80

#choos ing value from s p e c i f i c mask c on f i gu r a t i on depending on the
cha l l eng e value at t h i s p o i s i t i o n i

82 cha l l e ng e mod i f i e d [ i ] = mask arr [ mask d i s t r i bu t i on [ i ] ] [ index ]
i f ( cha l l eng e mod i f i e d [ i ] != cha l l eng e [ i ] ) :

84 count += 1

86 pr in t ( c o l l e c t i o n s . Counter ( mask d i s t r i bu t i on ) )
p r i n t ( c o l l e c t i o n s . Counter ( cha l l eng e ) )

88 pr in t ( c o l l e c t i o n s . Counter ( cha l l e ng e mod i f i e d ) )
p r i n t ( mask d i s t r i bu t i on )

90 pr in t ( cha l l eng e )
p r i n t ( cha l l eng e mod i f i e d )

162



92 pr in t ( count )

Listing D.1: N-to-1 Shuffled-Challenge Hierarchical PUF parameters generation script

163


	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background and motivation
	 Problem statement and objectives
	Dissertation overview

	Overview of Physical Unclonable Functions (PUFs)
	PUF Types
	Non-Electronic PUFs
	Electronic PUFs

	PUFs properties
	PUF applications
	Identification
	Authentication
	Key generation


	Correlation driven PUF implementation on FPGAs using manual routing and placement
	Overview of PUF implementations on FPGAs
	Delay lines technique
	Double arbiter PUF
	Randomly generated APUF
	PUF implementation summary 

	Implementation of APUFs on FPGAs using manual routing and correlation analysis
	Target FPGA and PUF setup
	Experimental terminology

	Results
	Experimental results of PUFs statistical metrics using LFSR generated CRPs set
	Experimental results of PUFs correlation analysis using deterministically generated CRPs set
	Modeling attacks
	Summary


	Deep learning modeling attacks
	Overview of attacks on PUFs
	Machine learning based attacks
	Hybrid side channel/Machine learning attacks
	Fault injection attacks

	Modeling attacks on double arbiter PUFs
	DAPUFs architectures and modeling attacks
	Methodology and Experimental Setup
	Empirical Results
	Summary of DAPUF attacks

	Modeling attacks on bi-stable ring PUFs and its variants
	Modeling attacks of BR PUFs family
	BR PUF implementation on FPGA and statistical properties
	Deep Learning Network Architecture and Experimental Setup
	DL Modeling attack results

	Modeling attacks on obfuscated PUFs
	Obfuscated PUF architecture 1 (Hierarchical XOR BR-PUF)
	Obfuscated PUF architecture 2 (Hierarchical DAPUF)

	Discussion on successful DL attacks and countermeasures
	The practicality of the DL attacks and applications
	Summary and Comparison with Previous Research


	Shuffled challenge Obfuscation technique to countermeasure deep learning modeling attacks
	Overview of Countermeasure Techniques
	N-to-1 Shuffled-Challenge Hierarchical PUF
	 Obtained results of 2-to-1 Shuffled-Challenge Hierarchical XOR BR-PUF
	Summary


	Conclusion and future work
	PUF implementation on FPGAs
	Modeling attacks against PUFs using DL techniques
	Countermeasures against DL modeling attacks
	Final conclusion

	References
	APPENDICES
	PUF manual routing steps
	Manual placement of PUF stages
	Manual routing of PUFs inter-stage connections

	Statistical metrics scripts
	Majority counting
	Inter-Chip hamming distance
	Phi correlation

	DL scripts
	new-arch scripts

