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Abstract 

The topic of lake ice cover mapping from satellite remote sensing data has gained interest in 

recent years since it allows the extent of lake ice and the dynamics of ice phenology over large 

areas to be monitored. Mapping lake ice extent can record the loss of the perennial ice cover 

for lakes located in the High Arctic. Moreover, ice phenology dates, retrieved from lake ice 

maps, are useful for assessing long-term trends and variability in climate, particularly due to 

their sensitivity to changes in near-surface air temperature. However, existing knowledge-

driven (threshold-based) retrieval algorithms for lake ice-water classification that use top-of-

the-atmosphere (TOA) reflectance products do not perform well under the condition of large 

solar zenith angles, resulting in low TOA reflectance. Machine learning (ML) techniques have 

received considerable attention in the remote sensing field for the past several decades, but 

they have not yet been applied in lake ice classification from optical remote sensing imagery. 

Therefore, this research has evaluated the capability of ML classifiers to enhance lake ice 

mapping using multispectral optical remote sensing data (MODIS L1B (TOA) product).  

Chapter 3, the main manuscript of this thesis, presents an investigation of four ML 

classifiers (i.e. multinomial logistic regression, MLR; support vector machine, SVM; random 

forest, RF; gradient boosting trees, GBT) in lake ice classification. Results are reported using 

17 lakes located in the Northern Hemisphere, which represent different characteristics 

regarding area, altitude, freezing frequency, and ice cover duration. According to the overall 

accuracy assessment using a random k-fold cross-validation (k = 100), all ML classifiers were 

able to produce classification accuracies above 94%, and RF and GBT provided above 98% 

classification accuracies. Moreover, the RF and GBT algorithms provided a more visually 

accurate depiction of lake ice cover under challenging conditions (i.e., high solar zenith angles, 

black ice, and thin cloud cover). The two tree-based classifiers were found to provide the most 

robust spatial transferability over the 17 lakes and performed consistently well across three ice 

seasons, better than the other classifiers. Moreover, RF was insensitive to the choice of the 

hyperparameters compared to the other three classifiers. The results demonstrate that RF and 

GBT provide a great potential to map accurately lake ice cover globally over a long time-series. 
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Additionally, a case study applying a convolution neural network (CNN) model for ice 

classification in Great Slave Lake, Canada is presented in Appendix A. Eighteen images 

acquired during the the ice season of 2009-2010 were used in this study. The proposed CNN 

produced a 98.03% accuracy with the testing dataset; however, the accuracy dropped to 

90.13% using an independent (out-of-sample) validation dataset. Results show the powerful 

learning performance of the proposed CNN with the testing data accuracy obtained. At the 

same time, the accuracy reduction of the validation dataset indicates the overfitting behavior 

of the proposed model. A follow-up investigation would be needed to improve its performance. 

This thesis investigated the capability of ML algorithms (both pixel-based and spatial-

based) in lake ice classification from the MODIS L1B product. Overall, ML techniques showed 

promising performances for lake ice cover mapping from the optical remote sensing data. The 

tree-based classifiers (pixel-based) exhibited the potential to produce accurate lake ice 

classification at a large-scale over long time-series. In addition, more work would be of benefit 

for improving the application of CNN in lake ice cover mapping from optical remote sensing 

imagery. 
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Chapter 1 

General Introduction 

1.1 Motivation 

Lakes occupy approximately 2% of the Earth’s landscape (Brown and Duguay, 2010), and a 

total of about 3.3% of the land surface above latitude 58°N is seasonally ice covered (Duguay 

et al., 2015). Hence, lake ice is a major component of the cryosphere due to its large areal 

coverage in the high latitude regions. The extent and duration of lake ice cover have wide-

ranging socio-economic impacts such as navigation, winter transportation, resource 

development, and distribution of drinking water (Benson et al., 2012; Brown and Duguay, 

2010). In addition, lakes provide habitat for several floral and faunal species. The presence of 

lake ice has a significant effect on the composition and abundance of aquatic species 

(Livingstone, 1997). Lake ice also affects water-column oxygen concentration and water 

temperature by limiting heat and gas exchanges with the atmosphere. A reduction in the length 

of ice cover seasons may facilitate greater emissions of microbial methane (Greene et al., 

2014), which could further accelerate climate warming due to its role as a potent greenhouse 

gas. The spread of human-made pollutants (e.g. perfluorinated chemicals) is also influenced 

by the presence and absence of lake ice (Veillette et al., 2012; Wrona et al., 2016). 

Several European studies have revealed strong relationships between lake ice phenology 

and large-scale teleconnections, especially with atmospheric oscillation patterns such as the 

North Atlantic Oscillation (NAO) (Blenckner et al., 2004; George, 2007; Karetnikov and 

Naumenko, 2008; Korhonen, 2006). In Canada, Bonsal et al. (2006) show strongest links 

between the Pacific-related indices (El Ninõ/Southern Oscillation (ENSO), the Pacific Decadal 

Oscillation (PDO), the Pacific North American (PNA) pattern, and the North Pacific (NP) 

index) and ice dates over western Canada, particularly break-up dates. The impact of the NAO 

and the Arctic Oscillation (AO) is found to be generally less coherent over regions of Canada 

(Bonsal et al., 2006). Thus, variability and trends in lake ice during freeze-up and break-up can 

be useful indicators of climate change and variability. Additionally, the interactions of energy 

between atmosphere-water-ice occur during lake ice formation, growth, and decay. The 

processes of energy transition can significantly affect the magnitude and timing of evaporation 
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and precipitation rates in lake-rich and surrounding regions. Therefore, accurate estimation of 

lake ice cover is important for improving numerical weather forecasting in regions occupied 

by lakes (Brown and Duguay, 2010). Overall then, lake ice observations are useful for many 

biological, ecological and socio-economic purposes. 

In practice, some larger lakes do not form a complete ice cover (e.g. the Laurentian Great 

Lakes). On the other hand, some lakes located in the Arctic do not completely melt their ice 

cover in some years (i.e. perennially ice-covered lakes) (Latifovic and Pouliot, 2007). A more 

recent study, however, suggests that these lakes may be transitioning from perennially ice-

covered to seasonally ice-covered such as Lake Hazen on Ellesmere Island, Canada (Surdu et 

al., 2016). Hence, mapping ice cover extent/area is important for climate monitoring at high 

latitudes, and this can be best achieved using satellite remote sensing data. 

1.2 Significance of proposed research 

With the surface-based lake ice network having decreased dramatically over the last three 

decades (Duguay et al., 2006), the use of remote sensing has become the most logical means 

to establish a large-scale observational network of lake ice. Optical remote sensing products 

provide, at present, extensive multispectral data available for lake ice cover mapping. Moderate 

Resolution Imaging Spectroradiometer (MODIS) products from NASA’s Terra (2000-present) 

and Aqua (2002-present) satellite platforms have gained popularity for mapping lake ice cover 

and determining ice phenology dates (freeze-up, break-up, and ice duration) because they can 

provide a near twenty-year record of Earth observations at a daily temporal resolution. 

Various knowledge-driven (threshold-based) methods have been developed and applied on 

MODIS products to retrieve lake ice and examine changes in lake ice phenology. For example, 

studies by Gou et al. (2017), Qi et al. (2019), and Šmejkalová et al. (2016), applied threshold-

based approaches to detect lake ice and monitor ice phenology events using MODIS radiance 

or reflectance imagery. Besides the radiance and reflectance products, numerous studies 

employed MODIS snow products, produced using the normalized difference snow index 

(NDSI), to determine lake ice phenology (Brown and Duguay, 2012; Cai et al., 2019; Kropáček 

et al., 2013; Murfitt and Brown, 2017). However, the knowledge-driven algorithms may not 
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provide adequate classification results under complex conditions. Specifically, lakes located 

in high-latitude regions display lower top-of-the-atmosphere (TOA) reflectance in the visible-

infrared spectral range during the ice freeze-up period, due to low solar illumination (large 

solar zenith angle). Thus, existing threshold-based retrieval algorithms for lake ice-water 

classification using optical remote sensing data do not perform well under such conditions. 

Machine learning (ML) approaches have been applied in many studies of ice retrieval from 

remote sensing imagery (Han et al., 2016; Leigh et al., 2014; Su et al., 2015). The majority of 

these studies have employed microwave satellite data for sea ice classification. Hence, it is 

imperative to understand the performance of ML to lake ice classification from optical and 

microwave remote sensing imagery. Three aspects need to be carefully considered when 

applying ML for remote sensing classification. First, variable selection and importance 

measurement allow further understanding of the underlying classification processes by 

classifiers and improve their performance. Second, hyperparameter selection must be 

conducted to exploit the full capability of a classifier instead of evaluating simplex 

classification derived with only one set of hyperparameters. Finally, since remote sensing 

measurements over lake ice can vary in time (e.g. daily and seasonally between freeze-up and 

break-up) and in space (e.g. from one lake or lake region to another), the temporal and spatial 

transferability of classifiers should also be examined. 

1.3 Research objectives 

The overall objective of this research is to evaluate the performance of machine learning (ML) 

classifiers for lake ice classification from optical remote sensing data. This thesis assesses 

different ML approaches for lake ice cover mapping using MODIS data, thereby proposing an 

optimal classifier for lake ice cover mapping. Specifically, three sub-objectives are to: 1) 

determine the optimal combination of input variables, including variable importance, to obtain 

robust classification results; 2) perform hyperparameter selection and examine the sensitivity 

of the change in the hyperparameters; and 3) investigate the suitability of ML classifiers for 

lake ice cover mapping across different regions of the globe and over a relatively long time 

period (ca. 20 years). 
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1.4 Thesis structure 

This thesis has been written following the manuscript format where a paper is included 

as an individual chapter. Chapter 1 provides the motivation of this research and addresses the 

research objectives. Chapter 2 covers background knowledge regarding lake ice, ice 

classification of remote sensing, and remote sensing classification using ML. Chapter 3 

contains the paper and is entitled “Mapping Lake Ice Cover from MODIS Using Machine 

Learning Approaches”. A short paper titled “Lake Ice Classification from MODIS TOA 

Reflectance Imagery Using A Convolutional Neural Network: A Case Study of Great Slave 

Lake, Canada” is included in Appendix A. It has been submitted for publication in Proceedings 

of the 2020 IEEE International Geoscience and Remote Sensing Symposium and is to be 

presented at the related meeting in July 2020. Finally, Chapter 4 provides conclusions and 

recommendations for future work. 
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Chapter 2 

Background 

This chapter is divided into three main sections designed to present the background knowledge 

relevant to this research. First, the mechanisms of lake ice formation and decay are addressed, 

followed by a review of recent trends in lake ice phenology. Then, the need for lake ice 

mapping by remote sensing is also argued in the first section. Section 2.2 presents an extensive 

introduction to optical remote sensing of ice aimed at discussing previous remote sensing 

methods for lake ice retrieval and highlighting current classification challenges. A description 

of the MODIS L1B top-of-the-atmosphere (TOA) reflectance product, the main input data used 

in this research, is covered in section 2.3. Finally, a review on the application of machine 

learning (ML) in remote sensing classification is provided to show the potential of ML 

algorithms for lake ice classification; algorithms that are then tested in the research manuscript 

included in section 2.4. 

2.1 Lake Ice  

2.1.1 Lake Ice Phenology 

Lake ice phenology is the term used to define the stages of ice formation and decay, and the 

duration of ice cover on lakes. Freeze-up covers the period between initiation of ice formation 

on a lake surface until the time of complete ice cover, occurring in the fall and winter months 

(Brown and Duguay, 2010). Break-up, which is basically the progress of ice disintegration, 

refers to the period from the beginning of ice melt until the entire lake becomes completely 

ice-free, occurring in spring to summer depending on geographical location (Brown and 

Duguay, 2010). Ice season is defined as ice cover duration from the first day of ice presence to 

the day of complete ice disappearance (Kang et al., 2012).  

The formation, growth, and decay of ice are affected significantly by the surplus and deficit 

of the energy balance at the lake surface (Williams, 1965). The energy available for ice 

formation and decay is influenced by three factors: heat exchange between lake and 

atmosphere, the heat stored in the lake, and heat import from inflows of water (Williams, 
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1965). The exchanges with the atmosphere are governed by climatic factors (e.g., air 

temperature, precipitation, wind, and radiation), whereas the amount of heat storage is mainly 

controlled by non-climate factors such as lake morphometry (area and depth) (Brown and 

Duguay, 2010).  

Air temperature, in summer and fall, is the dominant climatic control on the timing of lake 

ice freeze-up (Williams, 1965). With more heat absorbed by the lake during ice-free months, 

ice formation can be delayed and vice versa. A study by Bonsal et al. (2006) indicates that 

freeze-up dates were delayed by up to 5 days in Western Canada during the warm anomalous 

years of El Niño events in the 1950 to 1999 period. When air temperatures drop in the fall, heat 

is lost at the surface, which causes vertical convection between the cooler denser water of the 

surface layer and the warmer water of the underlying layer (Brown and Duguay, 2010). With 

freshwater reaching its maximum density at 4℃, the lake surface cooling hampers convective 

overturning resulting in ice formation (Jeffries et al., 2005). Once surface water temperature 

has reached the freezing point, black ice, which is known as congelation ice, forms downward 

from the surface, generating layers of vertically orientated c-axis (column-like) ice crystals 

(Jeffries et al., 2005). When the weight of snow (the snow mass) is large enough to depress the 

ice below its hydrostatic level, water will seep through cracks in the congelation ice and wet 

the base of the snowpack which will result in slush formation. Slush freezing, afterward, will 

form snow ice, often referred to as white ice. Snow accumulation on the ice surface can also 

slow down the ice growth rate because it insulates the lake, thereby also reducing heat loss 

(Sturm et al., 1997). Additionally, during the freeze-up period, wind not only can promote the 

mixing of cooler water and warmer water which may delay the initial formation of skim ice 

(Soja et al., 2014; Williams, 1965), but it can also break the skim ice, which first forms, to 

delay the formation of a solid ice cover (Brown and Duguay, 2010). Another climatic variable 

that has been linked to ice formation and growth is cloud cover. The presence of cloud cover 

can lead to lower air temperatures, thus accelerating ice formation and growth, by reflecting 

incoming shortwave radiation away from the ice cover (Brown and Duguay, 2010; Wang et 

al., 2016). Conversely, Brown and Duguay (2010) indicate that clouds can trap longwave 

radiation to slow down ice growth by causing a warmer atmosphere, especially at night. 



 

 7 

The process of lake ice break-up is significantly dominated by temperature via heat gain 

from the atmosphere and solar radiation (Brown and Duguay, 2010; Williams, 1965). The 

break-up period can last a few days to several weeks after the 0℃ isotherm date is reached 

(Duguay et al., 2006). Moreover, ice break-up shows a stronger temporal coherence with 

changes in air temperature, compared to ice freeze-up timing which is also strongly influence 

by lake morphometry (described below). Jeffries and Morris (2007) show that a ± 1℃ change 

in air temperature results in a ± 1.86 days change in break-up dates for Alaskan ponds. Duguay 

et al. (2006) indicate significantly earlier break-up occurring over Canadian lakes due to 

climate warming in recent decades, but did not observe an apparent pattern of changes in 

freeze-up dates. Furthermore, ice/on-ice snow melt can be affected by the radiative processes. 

The albedo of the exposed surface (ice, snow, ponding water) controls the amount of solar 

radiation absorbed and heat available for melting (Brown and Duguay, 2010). Albedo falls 

typically in the range of 0.70 to 0.90 as fresh snow accumulates on the ice, and drops to 0.28-

0.54 as the presence of water increases (Heron and Woo, 1994; Howell et al., 2009; Petrov et 

al., 2005). Snow cover increases the albedo of the lake surface to hinder the lake from 

absorbing heat, resulting in a delay in the timing of break-up (Michel et al., 1986). Once the 

temperature rises, the melt of snow and ice occurs on the lake surface, exposing the underlying 

darker ice (for congelation ice) (Heron and Woo, 1994). The change of crystal orientation in 

the surface layer reduces the albedo so that more solar radiation is absorbed by the lake surface, 

meaning that more heat is available for melting (Brown and Duguay, 2010; Heron and Woo, 

1994). In addition to the radiative actions, wind also affects the break-up event since the 

mechanical process will lead to ice disintegration and the formation of large cracks (Williams, 

1965). 

The timing of lake ice phenology is additionally impacted by non-climatic factors including 

lake morphometry, lake elevation, and water inflow to the lake. Lake morphometry, linked to 

factors such as lake depth, area, volume, and fetch, determines the amount of heat storage in 

the water body that affects the time needed for the lake to lose heat and eventually freeze 

(Brown and Duguay, 2010; Korhonen, 2006). Deeper lakes can accumulate more heat during 

ice-free seasons (i.e. summer and fall) due to their large thermal inertia (Choiński et al., 2015). 
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Moreover, lake fetch, which is the longest distance over the lake surface that can generate 

wind-driven waves, influences the event of ice formation (Jeffries et al., 2012). At the initial 

timing of ice formation, the average bulk temperature on small lakes is around 2 to 3℃, which 

is higher than the bulk temperature on large lakes (lower than 1℃) (Jeffries et al., 2005; Scott, 

1964). The relationship between lake elevation and lake ice phenology has been described in 

a few studies (Brown and Duguay, 2010; Livingstone et al., 2010; Williams and Stefan, 2006). 

For example, Livingstone et al. (2010) reported ice cover duration increasing by 10.2 days per 

100 m altitude on alpine lakes, whose elevations range from 1,581 to 2,157 meters above sea 

level, located in the Tatra Mountains, Poland. Water generated from rivers or land runoff 

affects the ice events of break-up and freeze-up by breaking ice cover mechanically (Brown 

and Duguay, 2010; Howell et al., 2009; Williams, 1965). 

2.1.2 Recent Trends in Lake Ice Phenology 

The timing and duration of lake ice events are the main metrics sensitive to weather and climate 

conditions, thus ice phenology can be considered as a powerful indicator of climate change 

and variability (Duguay et al., 2014, 2006; Mishra et al., 2011). Trends in lake ice phenology 

over the Northern Hemisphere have attracted public interest recently for studies of climate 

change at large spatial scales. A study by Magnuson et al. (2000), examining the changes in 

the freshwater ice events from 1846 to 1995, shows a trend of 5.8 days later per decade for ice 

freeze-up and 6.5 days earlier per decade for ice break-up around the Northern Hemisphere. 

Benson et al. (2012) performed a linear regression analysis of ice phenology variables using 

the dataset of 75 Northern Hemisphere lakes over the period of 1855-2005. Their study shows 

0.3-1.6 days per decade trend towards later for freeze-up, 0.5−1.9 days per decade trend for 

earlier for break-up, and 0.7−4.3 days per decade trend towards shorter ice duration. A recent 

study by Du et al. (2017) reveals trends towards later ice-on dates in 43 of 73 study lakes 

located in the Northern Hemisphere among the period of 2002-2015, also demonstrating an 

increasingly shorter ice cover season. Meanwhile, they also indicate a latitudinal pattern of the 

changing trends. Specifically, lakes at higher latitudes (> 60° N) are more likely to experience 

trends of earlier ice break-up and shorter ice seasons compared to lakes at lower latitudes (< 



 

 9 

50° N) (J. Du et al., 2017). A prediction study on future trends of lake ice phenology by Dibike 

et al. (2012) shows that freeze-up will shift later by 5-20 days and break-up will shift earlier 

by 10-30 days around the Northern Hemisphere by 2040-2079 when compared to the baseline 

period of 1960 – 1999. The above analyses, as well as others, have indicated that warming 

climate conditions have led to the earlier occurrence of lake ice break-up dates broadly over 

the Northern Hemisphere. 

Several recent studies also present trends of lake ice phenology over more specific regions. 

Choiński et al. (2015) describe trends in later formation of complete ice cover and earlier 

disappearance of ice over 18 polish lakes between 1961 and 2010. Brown and Duguay (2011) 

performed simulations of lake ice phenology over the North America Arctic region applying 

the Canadian Lake Ice Model (CLIMo). The simulation results reveal a 10–30 day reduction 

for the ice cover duration by 2041-2070, compared to the period of 1961–1990. Cai et al. 

(2019a) analyze the characteristics of ice phenology over 58 lakes on the Tibetan Plateau from 

2001 to 2017. This study indicates that the freeze-up events have been delayed and ice cover 

duration has become shorter over the majority of the study lakes (Cai et al., 2019a). 

Furthermore, changing patterns of ice phenology associated with later freeze and shorter ice 

cover duration have been found in other studies on lakes located on the Tibetan Plateau (Gou 

et al., 2017; Qi et al., 2019) and Northeast China (Yang et al., 2019). 

2.1.3 The Need for Monitoring Lake Ice by Remote Sensing  

Diverse methods have been proposed for monitoring lake ice phenology, including surface-

based (government agencies or volunteers) and satellite-based networks (Brown and Duguay, 

2010, 2012; Duguay et al., 2014; Jeffries and Morris, 2007). Nationally, surface-based 

networks have mainly been supported by operations at meteorological or hydrological stations 

(Brown and Duguay 2010). However, the stations are distributed unevenly and sparsely with 

limited records available to support studies over remote regions. In addition, a cutback in 

surface-based observational networks has unfortunately occurred globally since the 1980s 

(Duguay et al., 2006; Key et al., 2007). The volunteer-based networks require volunteer 

observers to collect data for lake ice with digital camera imagery (Dyck, 2007; Jeffries and 
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Morris, 2007). Monitoring lake ice from the volunteer-based networks is challenging for two 

reasons. First, since lake ice can freeze and melt multiple times in winter and spring, definitive 

freeze-up and break-up dates are difficult to determine (Futter, 2003). Another reason is that 

long-term and wide-scale monitoring requires a lot of volunteers who will hold various 

definitions for freeze-up and break-up (Futter, 2003). Surface-based networks operated by 

volunteers provide quite limited measurements depending on the human experience and the 

observer scope.  

In contrast, remote sensing data provide large-scale and objective observations ranging 

from individual lakes to regional or even global scale. Hence, mapping lake ice from remote 

sensing data is vital to assess lake ice phenology over large spatial scales and over increasingly 

longer time periods. 

2.2 Optical Remote Sensing of Lake Ice 

2.2.1 Optical Properties of Lake Ice 

Lake ice is a relatively translucent material with an intricate structure and complex optical 

properties. The term “optical” refers to the portion of the electromagnetic spectrum of the 

wavelength (shortwave) range of radiation from the sun (roughly 0.25 to 2.50 µm). 

Understanding the reflection, absorption, and transmission of shortwave radiation by lake ice 

is useful to drive lake ice classification from optical remote sensing imagery. The optical 

properties of lake ice vary with ice type, the bubble content of ice, and incident radiation.  

Due to various physical structures, lake ice exhibits a variety of optical characteristics. A 

pilot study by Bolsenga (1969) investigated the broadband albedo (0.3~3.0 µm) of various 

types of snow-free ice over the Great Lakes at solar elevations ranging from 32° to 40°. Albedo 

ranged from 0.10 for clear ice to 0.46 for snow ice. Refrozen slush ice and brash ice also 

showed high albedos above 0.40, which are slightly higher than that of pancake ice (0.31) and 

slush curd ice (0.32). In a subsequent study by Bolsenga (1983), the spectral reflectance 

signatures of lake ice types from 0.340 to 1.100 µm were examined. Figure 2-1 shows selected 

results from Bolsenga (1983) (i.e., brash ice, refrozen slush ice, and clear ice). Overall, the 

spectral reflectance of lake ice types is quite uniform across the visible spectrum. There is a 
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slight rise from 0.340 to 0.550 µm and a faint decline from 0.550 to 0.700 µm, forming a wave 

peak at around 0.550 µm; however, a rapid decrease of reflectance (approx. 0.20 – 0.30) occurs 

from 0.700 to 1.100 µm (Bolsenga, 1983). Likewise, the measured surface reflectance of clear 

ice was around 0.10 across the spectrum. Other ice types (i.e., snow ice and refrozen slush ice) 

have remarkably high reflection compared to clear ice. Maslanik and Barry (1987) analyzed 

mean digital counts of different ice and open water types recorded by Landsat Thematic 

Mapper (TM) channels 1-4. The results show that snow-free black ice with low reflectance 

was not distinguishable clearly from turbid water in the spectral range of the four channels. 

Additionally, congelation ice presents very high radiation transmittance from 0.77 to 0.89 in 

the 0.400 – 0.700 µm range (Bolsenga, 1981), accompanying low reflection.  

 

 

Figure 2-1 Spectral reflectance factor of lake ice in VIS and NIR range. Figure 

reproduced based on observations by Bolsenga (1983). 
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As shown in Figure 2-2, snow ice (a.) has a white appearance, and clear ice (b.) is 

transparent visually. Snow ice consists of numerous spherical bubbles since air dissolved in 

the surface saturated water cannot be incorporated into the ice crystal lattice (Mullen and 

Warren, 1988). However, the concentration of bubbles in congelation ice is generally low for 

water bodies (i.e. excluding shallow Arctic/sub-Arctic lakes). In the case of the shortwave 

spectrum, the scattering of light by bubbles increases the albedo over the spectral range since 

specular reflection exits alone (Mullen and Warren, 1988). In addition to the effect of bubbles, 

as mentioned previously, the crystal orientation can also affect the albedo of ice. Heron and 

Woo (1994) found a significant decrease of albedo from 0.45 to 0.20 during the break-up 

period. The removal of the c-axis vertical ice resulted in exposure of the underlying c-axis 

horizontal crystals. Laboratory sea ice observations reveal that the reflectance of ice increases 

as ice thickness increases (Perovich, 1979; Perovich et al., 1998). 

Besides the effect of ice type, snow cover can also result in spectral variations of remote 

sensing imagery. Snow accumulation on lake ice occurs during the ice season. Snow-covered 

ice overall demonstrates very high reflectivity compared to snow-free ice, and thereby snow 

cover on top of the ice is clearly distinguishable from snow-free ice (Maslanik and Barry, 1987). 

According to the study by Bolsenga (1983), as shown in Figure 2-1, the reflectance values for 

ice are significantly lower than those of snow over ice. The variation of snow reflectance is 

highly dependent on grain size; specifically, snow reflectance decreases with an increase in 

grain size.  

Optical remote sensing instruments mounted on satellites typically measure solar radiation 

reflected by the Earth with narrow fields of view. Hence, parameters affecting incident 

radiation also influence the reflectance of ice. The daily variability of ice albedo is high due to 

changing solar elevation (Bolsenga, 1977; Leppäranta et al., 2010). With solar zenith angle 

increasing, the diffuse radiation flux increases, resulting in the attenuation of the radiation flux 

of incident sunlight at the surface (Coakley, 2003). Therefore, top-of-the-atmosphere (TOA) 

reflectance is very low due to the lack of solar radiation reflected by the surface. 
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a. b. 

Figure 2-2 Types of ice present on shallow sub-Arctic lakes, Churchill, Manitoba: (a.) 

snow (white) ice; (b.) clear (bubble-free) ice. Source: Duguay et al. (2002).  

  

2.2.2 Reviews of Lake Ice Cover Retrieval Approaches  

Various knowledge-driven, threshold-based, methods have been developed to retrieve lake 

ice from optical remote sensing imagery. The main idea of the knowledge-driven algorithms 

is to develop generic rules using inference from empirical observations.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) snow products in 

collection 5 (C5) and 6 (C6) also include retrieved lake ice. The MODIS snow product was 

developed using MODIS Level 1B (TOA), MODIS Cloud Mask products and geolocation 

fields. In the C5 product, snow cover was classified by a set of decision rules with the 

thresholds (Riggs et al., 2006) shown in equation 1. 

𝑁𝐷𝑆𝐼 =  
(𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 6)

(𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 6)
≥ 0.4 

𝐵𝑎𝑛𝑑  2 > 0.11 

 𝐵𝑎𝑛𝑑 4 > 0.1  (1) 
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where Band 2: reflectance at 0.865 μm; Band 4: reflectance at 0.555 μm; Band 6: reflectance 

at 1.640 μm. Lake ice is detected in the C5 product using the same criteria as for snow on land 

and a lake mask. The Normalized Difference Snow Index (NDSI) serves as the basis for the 

MODIS snow product. The ice phenology retrieved by the MODIS snow C5 product from 

2000 – 2011 for Quebec, Canada is comparable to the simulation derived by the 1-D Canadian 

Lake Ice Model (Brown and Duguay, 2012). Furthermore, the snow C5 imagery was found to 

present lake ice conditions similar to that of the Interactive Multi-sensor Snow and Ice 

Mapping System (IMS) product, produced from multiple remote sensing sources (Brown and 

Duguay, 2012). Chen et al. (2018) employed the MODIS snow C5 product to calculate the 

daily fraction of ice cover on alpine lakes of the Tibetan Plateau (TP) to detect the change of 

ice phenology from 2002 to 2015. Likewise, Cai et al. (2019a) applied the snow products from 

Aqua and Terra to determine ice phenology over eight lakes on the TP using the same 

calculation method of ice fraction. The accuracy of the MODIS snow cover products has been 

validated against other sources (i.e., Landsat imagery, AMSR-E/2, SSM/I), and shows varying 

agreements (Cai et al., 2019a). Moreover, using the MODIS snow C5 products, Murfitt and 

Brown (2017) investigated short term trends in lake ice phenology for Ontario and Manitoba 

in Canada. The validation results against in-situ data show an average mean absolute error 

(MAE) of 9 days for both ice-on and ice-off dates (Murfitt and Brown, 2017). In addition to 

the daily snow product, the MODIS 8-day composite snow products in C5 have been used to 

monitor lake ice phenology over the TP region (Kropáček et al., 2013).  

Compared to the snow C5 product, the MODIS snow C6 product presents a NDSI value 

higher than 0 in each pixel (Riggs and Hall, 2015). Moreover, a number of data screens have 

been developed as filter criteria to further identify snow (Riggs and Hall, 2015). When any 

pixel with a valid NDSI value fails on one of the screens, the pixel is flagged as no snow or 

uncertain snow (Riggs and Hall, 2015). The MODIS snow C6 product has been applied to 

determine lake ice phenology using band thresholds on the TP (Qiu et al., 2019), Northeast 

China (Yang et al., 2019), and Xinjiang, China (Cai et al., 2019b). However, the classification 

by the MODIS snow product shows confusion between clouds and ice/snow due to the 

occurrence of omission when the MODIS cloud mask misclassifies regions of snow/ice as a 
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certain cloud. Similarly, the retrieval algorithm using NDSI was applied using the Visible 

Infrared Imaging Radiometer Suite (VIIRS) to perform lake ice classification with bias range 

from 0.25% to 3.2% in comparison with the AMSR2 product (Dorofy et al., 2016). 

Besides the MODIS snow products, the MODIS surface reflectance product has been 

employed commonly to examine lake ice phenology. Šmejkalová et al. (2016) built daily 

surface-reflectance time series for 2000–2013 from MODIS band 2 (0.865 μm) data to 

determine ice phenology in the Arctic region. The results present a root-mean-square-error 

(RMSE) of 6.16 days in comparison to in-situ data; the authors also indicate that cloud cover 

and low sun angle during freeze-up significantly affect the quality of the estimation 

(Šmejkalová et al., 2016). A threshold-based approach using MODIS bands 1 (0.645 μm) and 

2 (0.865 μm) was developed to discriminate lake ice and open water, thus identifying ice 

phenology events on the TP with combing the MODIS surface temperature products (Gou et 

al., 2017). Furthermore, the MODIS snow product has been utilized with surface reflectance 

bands 3-5 to calculate the ice fraction in the study area (Gou et al., 2017). In this research, a 

pixel is classified as ice only if all three sources indicate ice, resulting in cautious perdition 

(Gou et al., 2017). Likewise, Qi et al. (2019) developed another threshold-based algorithm 

using MODIS surface reflectance bands 1 and 2 for ice monitoring on Qinghai Lake. However, 

instead of applying two bands respectively, the difference between bands 1 and 2 was used as 

a criterion of the algorithm to label pixels as lake ice (Band 1 − Band 2 > 0.028); another 

criterion was a threshold of band 1 only (Band 1 > 0.05) (Qi et al., 2019). Additionally, Zhang 

and Pavelsky (2019) used dynamic thresholds of MODIS band 2 to discriminate lake ice based 

on the size of lakes.  

The MODIS top-of-the-atmosphere (TOA) reflectance product was applied by Reed et al. 

(2009) to provide a more accurate lake ice classification by manual interpretation as compared 

to various digital analysis techniques. The TOA reflectance product has also been combined 

with MODIS sea surface temperature data to identify the occurrence of water-clear-of-ice by 

a threshold-based approach for Lake Baikal, Russia (Nonaka et al., 2007). Making use of 

Geostationary Operational Environmental Satellite GOES imagery, Dorofy et al. (2016) 

identified two lake ice classes (i.e., thick ice, gray ice) in the Great Lakes region by a threshold-
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based approach developed using Mid-Infrared Sea and Lake Ice Index (MISI), incorporating 

reflectance of the mid-infrared and visible bands. They indicated that MISI considers the 

spectral differences between thick ice and the relatively darker, gray ice so that it is useful for 

distinguishing the two types of lake ice (Dorofy et al., 2016). 

The knowledge-driven algorithms have generally exploited variations of the optical 

properties of ice, water, and cloud to define specific spectral criteria to classify these features. 

NDSI has not only been employed for the development of the MODIS snow product, but also 

utilized as the main means to perform lake ice estimation from optical remote sensing data. 

Additionally, the ability of ice to reflect high radiation of NIR wavelengths (MODIS band 2) 

to the atmosphere was found as a useful characteristic for detecting lake ice from open water, 

having therefore been used for lake ice investigations frequently (Oke, 1987; Svacina et al., 

2014). However, the varying agreements of the MODIS snow products and validation data 

indicate the limitation of lake ice classification from the products. Moreover, most studies 

using the MODIS reflectance products to classify lake ice employed the MODIS cloud mask, 

known as MOD35, to filter cloudy pixels. However, previous assessments of the MODIS snow 

and cloud products have shown confusion between ice and cloud (Hall and Riggs, 2007; 

Leinenkugel et al., 2013; Tekeli et al., 2005). The confusion significantly affects the quality of 

lake ice cover estimations. 

2.2.3 Challenges for Lake Ice Classification 

A series of knowledge-driven algorithms have been developed to monitor lake ice in many 

regions. However, the existing knowledge-driven algorithms have difficulties dealing with 

complex conditions to provide highly accurate classification results. For example, the 

condition of high solar zenith angles in high-latitude regions results in lower TOA reflectance 

over lakes in the visible-infrared spectral range during the ice freeze-up period. Thus, 

threshold-based retrieval algorithms for lake ice-water classification using TOA satellite data 

do not perform well under such a condition. Šmejkalová et al. (2016) indicated that freeze-up 

dates for high latitude lakes are difficult to identify due to problems with high solar zenith 

angles. High solar zenith angles prevent the solid classification of snow/ice cover, which is 
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important when studying freeze-up at northern latitudes (Brown and Duguay, 2012). 

Moreover, traditional threshold-based approaches for cloud detection still face severe 

challenges over ice-covered areas in the Arctic and sub-Arctic (Chen et al., 2018). As pointed 

out earlier, the confusion between ice and cloud exists in the MODIS cloud product, therefore 

introducing uncertainty in lake ice maps (Hall and Riggs, 2007; Leinenkugel et al., 2013; 

Tekeli et al., 2005). The classification challenge due to the low reflectance contrast of black 

ice with turbid water has been indicated in numerous studies regarding ice monitoring 

(Bolsenga, 1983; Liu et al., 2016; Mullen and Warren, 1988; Perovich, 1979). Additionally, 

the threshold-based approaches significantly rely on particular sensors that are not directly 

applicable to data obtained with other sensors. This is especially true for cloud detection 

algorithms because these algorithms strongly depend on the thermal bands. However, unlike 

MODIS, the majority of optical remote sensing data with high spatial resolution, do not have 

sufficient thermal bands. Therefore, the threshold-based algorithms lack generalization ability 

to transfer to mutiple sensors (Hagolle et al., 2010; Roy et al., 2010).  

2.3 MODIS Level 1B Product 

The MODIS sensors, onboard the Terra and Aqua satellites, launched in 1999 and 2002 

respectively, scan the majority of the entire Earth’s surface every day. The two satellites are in 

a Sun-synchronous orbit at a 705 km altitude, such as Terra at a 10:30 AM equatorial crossing 

time, descending node, and Aqua at a 1:30 PM equatorial crossing time, ascending node 

(Wolfe, 2006). MODIS takes measurements with a whiskbroom electro-optical instrument to 

provide scans in the along-track direction (Wolfe, 2006). Since launch, both MODIS 

instruments have been delivering near-continuous observations and yielding scientific and 

environmental products useful to study the Earth’s system of atmosphere, land, ocean, and 

cryosphere (Xiong et al., 2015). As shown in the last section, the MODIS products have gained 

popularity for delineating lake ice cover by the threshold-based algorithms.  

The MODIS Level 1B (L1B) product, the main input data product used in the ML 

algorithms tested in this thesis, is comprised of calibrated Earth view data of 36 spectral bands 

ranging from 0.41 to 14.4 µm, stored in three HDF files corresponding to three spatial 
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resolutions. The MODIS 36 spectral bands are bands 1 and 2 at a nadir spatial resolution of 

250 m, bands 3-7 at a nadir spatial resolution of 500 m, and all other bands at a nadir spatial 

resolution of 1 km. Specifically, bands 1-19 and 26 are the reflective solar bands, and bands 

20-25 and 27-31 are the thermal emissive bands. The L1B calibrated data include TOA 

reflectance for the reflective solar bands, and radiances for both the reflective solar and thermal 

emissive bands.  

The now twenty-year record of MODIS data from the Terra satellite (2000-present) is 

useful for investigating changes in lake ice phenology over a relatively long time period. The 

MODIS L1B product allows monitoring lake ice conditions at a high temporal resolution 

(daily).  Moreover, the 36 bands provide sufficient spectral information of the Earth surface 

helpful to map lake ice extent. The powerful capability of Earth coverage and the highest 

spatial resolution of 250 m are allow for lake ice mapping at the global scale. 

2.4 Machine Learning in Remote Sensing 

2.4.1 Review of Machine Learning for Ice Classification 

The overall challenge for lake ice mapping using optical imagery is to identify two features 

with similar optical properties, such as thin cloud against ice, black ice against water, turbid 

water against ice. Machine learning (ML) techniques, known as data-driven algorithms, are 

generally able to model complex class signatures with a variety of input variable data. Hence, 

ML classification has received considerable attention for the past several decades and 

researchers in the field of remote sensing are increasingly applying these classifiers for ice 

detection. 

Several ML models have been developed for ice retrieval from Synthetic Aperture Radar 

(SAR) imagery. In order to provide sea ice observations with a high level of confidence for 

data assimilation of a climate change prediction system, Komarov and Buehner (2017) 

proposed a technique using logistic regression (LR) for automated detection of ice and open 

water using RADARSAT-2 ScanSAR images. Three input features computed from SAR and 

wind speed data are used in the proposed LR model. A rigorous probability threshold of 0.95 

was adopted to determine ice pixels, producing 79.41% ice-class accuracy. A further study by 
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Komarov and Buehner (2018) introduced an adaptive probability thresholding approach to 

improve this technique. The authors applied sequential RADARSAT-2 imagery to examine 

the performance of the improved technique and indicated that 98.93% of collected sea ice 

observations were retrieved correctly (Komarov and Buehner, 2019). Shen et al. (2017) 

compared the performance of six ML classifiers for sea ice classification from Cryosat-2 data. 

Random forest (RF) achieved the best performance (about 90% classification accuracy), 

followed by Support Vector Machine (SVM), back propagation neural network (BPNN), and 

Bayesian, with K nearest-neighbor (KNN) performing the worst (Shen et al., 2017). SVM has 

been tested for detection of multiple sea ice types using RADARSAT-2 imagery with above 

86% classification accuracy (Liu et al., 2015). The SVM model requires three input variables, 

i.e., HH, HV, and the gray-level co-occurrence matrix (GLCM) feature, which is also an 

approach to extract textural features (Liu et al., 2015). Due to the limited number of SAR 

bands, Han et al. (2017) generated 12 texture features from KOMPSAT-5 applied on a RF 

model, producing a 99.24% overall accuracy of ice detection in the Chukchi Sea. In addition 

to extracting spatial patterns with GLCM, an image segmentation technique, named iterative 

region growing using semantics (IRGS), was employed for sea ice retrieval from single and 

dual polarization SAR imagery (Leigh et al., 2014; Ochilov and Clausi, 2012). IRGS is able to 

minimize the impact of the incidence angle variations through conducting segmentation 

separately on smaller polygons (Ochilov and Clausi, 2012). Furthermore, Leigh et al. (2014)  

combined IRGS and SVM results using 28 textural features from dual polarization SAR 

imagery to map sea ice with an overall classification accuracy of 96.42%. Wang et al. (2018) 

applied the IRGS technique but with manual labeling on ice mapping in Lake Erie, producing 

an overall accuracy of 89.5% from RADARSAT-2 scenes.  

Besides SAR data, optical satellite imagery has been used to perform ice classification 

using ML techniques. Han et al. (2018) proposed a framework combining active learning and 

transductive SVM for sea ice detection. The framework achieved retrieval results of above 90% 

accuracy from Landsat-8 and above 85% accuracy from EO-1 (Han et al., 2018). Similar to 

the SAR applications, Su et al. (2015) derived texture features (GLCM) and surface 

temperature from MODIS images for ice detection in the frozen Bohai Bay, China. SVM was 
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adopted to identify sea ice and open water pixels, producing an 87.13% overall accuracy. Tom 

et al. (2018) applied SVM to obtain an accuracy range from 75 to 100% on ice-water 

classification within four lakes located in Switzerland using the MODIS TOA reflectance 

product. Research by Barbieux et al. (2018) employed the decision tree (DT) technique to 

optimize a threshold-based algorithm of ice classification using radiometric indexes and TOA 

reflectance bands on five different lakes from the Landsat-8 OLI multispectral data. The range 

of accuracy varied from 93 to 97% among the selected study zones except for one showing an 

84.4% accuracy (Barbieux et al., 2018). Moreover, MODIS, AMSR-E and SSM/I data were 

cobined to monitor landfast sea ice in the Antarctic using DT and RF (Kim et al., 2015). The 

accuracy assessment shows comparable results between RF (94.77%) and DT (93.09%) (Kim 

et al., 2015). 

Overall (Table 2-1), the majority of studies applying ML techniques on ice detection are 

based on microwave remote sensing images, for instance RADARSAT-2 (Komarov and 

Buehner, 2017; Leigh et al., 2014; Liu et al., 2015), TerraSAR-X (Han et al., 2016), and 

Cryosat-2 data (Shen et al., 2017). Nevertheless, in fact, optical remote sensing imagery 

provides abundant spectral information on Earth’s surface for ice detection. Additionally, only 

a few studies (Barbieux et al., 2018; Tom et al., 2018; Wang et al., 2018) have explored the 

feasibility and performance of ML models in lake ice mapping. Actually, the retrieval of lake 

ice using ML algorithms from optical remote sensing data has received much less attention 

than for sea ice. Hence, an examination of the capability of ML algorithms for lake ice cover 

mapping is very much a new topic that merits investigation. 
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Table 2-1 Studies on ice classification by ML approaches. 

Study Objective Data Algorithm Result 

Barbieux et al. (2018) 
Lake ice classification 

(5 lakes in Europe and North America) 
Landsat 8 OLI DT Five testing areas: 84.40% to 97.30 % 

Han et al. (2017) 
Sea ice classification  

(Chukchi Sea) 

KOMPSAT-5  

HH-Pol. EW 
RF Overall accuracy: 99.24% 

Han et al. (2018) 
Multiple sea ice classification 

(Baffin, Liaodong, Bohai Bays) 

EO-1 

Landsat-8 
TSVM Three testing areas: 87 % - 97 % 

Kim et al. (2015) 
Landfast sea ice classification 

(Antarctic) 
MODIS IST/AMSR-E 

DT 

RF 

Overall accuracy of DT: 93.09% 

Overall accuracy of RF: 94.77% 

Komarov and Buehner 

(2017, 2018, 2019) 

Sea ice classification 

(Labrador Sea & Baffin Island) 

RADARSAT-2  

Dual-Pol ScanSAR 
LR 

Ice classification accuracy:79.41% (2017),  

88.23% (2018), 98.93% (2019) 

Leigh et al. (2014) 
Sea ice classification  

(Alaskan coast) 

RADARSAT-2  

Dual-Pol ScanSAR 
IRGS/SVM 

Ice classification accuracy: 98.21% 

Water classification accuracy: 92.72% 

Liu et al. (2015) 
Multiple sea ice classification 

(Beaufort Sea) 

RADARSAT-2  

Dual-Pol ScanSAR 
SVM 

Overall accuracy of two testing areas: 

91.74%, 91.43%  

Shen et al. (2017) 
Multiple sea ice classification 

(Arctic) 
Cryosat-2 6 classifiers 

RF achieved the best, followed by SVM, 

BPNN, Bayesian, with KNN the worst 

Su et al. (2015) 
Sea ice classification 

(Bohai Bay) 
MODIS TOA (L1B) SVM Overall accuracy: 84.73% 

Tom et al. (2018) 
Lake ice classification 

(4 Swiss lakes) 

MODIS TOA (L1B) 

VIIRS TOA (L1B) 
SVM 

Four testing lakes (MODIS): 99.50%~100% 

Four testing lakes (VIIRS): 99.30%~100% 

Wang et al. (2018) 
Lake ice classification 

(Lake Erie) 

RADARSAT-2  

Dual-Pol ScanSAR 
IRGS Overall accuracy: 90.4% 
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2.4.2 Applications of Machine Learning 

The examination of variable importance and variable selection has become an apparent need 

in remote sensing applications using ML techniques. In the studies reviewed in the previous 

section, the comparison of the impact of different input variables on the algorithms has been 

the main object of analysis. Specifically, the tree-based algorithms provide a measurement of 

the relative importance values of input variables to the final model. The importance values 

have been used to present their attribute usage to the classifications as shown by Han et al. 

(2017) and Kim et al. (2015). Similar to the importance calculation by the tree-based models, 

permutation-based variable importance (PBVI)- another variable importance measurement- 

was implemented to evaluate individual variable importance to ML models (Shen et al., 2017; 

Xu et al., 2014). In addition to the variable importance measurement, Su et al. (2015) examined 

the accuracy performance of several input variable combinations for SVM, therefore 

identifying the most useful input variables. Additionally, a forward feature search approach 

proposed by Guyon and Elisseeff (2003) has been applied to extract the useful SAR textural 

features for SVM (Leigh et al., 2014). The objective of the variable importance measurement 

and selection is manifold: (a) to avoid overfitting and improve algorithm performance; (b) to 

provide faster and more cost-effective variables; (c) to allow a better insight of the underlying 

processes that generated the data (Guyon and Elisseeff, 2003). 

In addition to variable selection, hyperparameter selection is necessary for exploiting the 

full capacity of a classifier for a given retrieval purpose. Moreover, lack of testing of different 

combinations of the hyperparameters could result in bias or improper perceptions of different 

classifiers (Shih et al., 2019). Shih et al. (2019) indicate the importance of testing the 

combinations of the two hyperparameters for SVM by their review of two articles. Specifically, 

the article by Foody and Mathur (2004) only compared the crop classifications of several 

Gamma values with only one given Cost value for SVM. Another research by Maxwell et al. 

(2018) presents that SVM derived by the optimal hyperparameter (Gamma and Cost) 

combination was found to have the highest overall accuracy for all testing datasets among all 

tested classifiers (RF, KNN, DT, ANN, etc.). Moreover, Mountrakis et al. (2011), in a review 

article of SVM with remote sensing, concluded that over-small and over-large hyperparameters 
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may lead to overfitting or underfitting. Thus, the selection of SVM hyperparameters should be 

implemented with a trial-and-error approach when new data are introduced (Mountrakis et al., 

2011). 

The overfitting behavior is a major challenge in implementing ML classification from 

remote sensing data. With a model suffering from overfitting, the accuracy from a training 

dataset is far higher than that of the validation dataset. When overfitting occurs, the training 

dataset is usually too small or biased to represent the actual data distribution and variation. 

Nonetheless, in practice, the characteristics of retrieved features in remote sensing variables 

can differ significantly from one location to another. Additionally, features at the same location 

can present varying characteristics in remote sensing variables at different temporal steps due 

to the impact of climatic conditions and intra-annual changes (Karpatne et al., 2016). 

Meanwhile, the actual distribution of remote sensing observations for a ground feature is 

typically unknown. The ML models are prone to overfitting due to the presence of such 

heterogeneity in remote sensing observations across space and time. Therefore, the 

examination of spatial and temporal transferability of models is essential when performing 

classification over large spatial-scales in long-term timescales. Waske and Braun (2009) 

separated the whole study area into different clusters in terms of the spatial and temporal 

relationship, and afterward performed cross-validations across the spatial and temporal data 

clusters to examine the transferability of RF for land cover mapping.  

Feature engineering, known as feature extraction, is able to capture domain and meaningful 

information from raw data via data mining techniques or prior knowledge. For example, the 

GLCM feature, a textural analysis, has been employed for ice detection in numerous SAR 

applications using ML classifiers (Leigh et al., 2014; Liu et al., 2015; Zhang et al., 2019). The 

optimal window size of GLCM has been generally exploited in those studies. Besides spatial 

features, radiometric features have been adopted in ML applications. Barbieux et al. (2018) 

proposed a new radiometric index (developed using Red, NIR, and SWIR bands from Landsat 

8 imagery) for ice detection based on the understanding of ice optical properties. Subsequently, 

DT was applied to compute the optimal threshold of the index used to classify ice and water 

(Barbieux et al., 2018). To obtain efficient and promising retrieval, Discriminant Analysis 
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(DA) and Principal Component Analysis (PCA) have been applied with ML classifiers on 

multispectral or hyperspectral imagery (Ishida et al., 2018; Kang et al., 2014). These 

techniques can reduce high dimensional remote sensing data to extract the most useful and 

informative features by developing a new feature space.  

Model comparison has been performed to indicate the optimal ML classifier in comparative 

studies of remote sensing classification (Cracknell and Reading, 2014; Shen et al., 2017; Xu 

et al., 2014). Instead of showing a classification performance by a single classifier, the 

comparative studies provide various analytical aspects to present a comprehensive evaluation 

of the classifier capability. Until now, no previous study has involved a comparison with 

classification results of different ML classifiers for lake ice mapping from optical remote 

sensing imagery. Therefore, an examination of the capability of classifiers through multi-tier 

comparison is needed on this topic. 
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Chapter 3  

Mapping Lake Ice Cover from MODIS Using Machine Learning 

Approaches 

3.1 Introduction 

Lakes cover approximately 2% of the Earth’s land surface (Brown and Duguay, 2010), and a 

total of about 3.3% of the land surface above latitude 58°N is seasonally ice covered (Duguay 

et al., 2015). Lakes play a significant role in local/regional weather and climate at high 

latitudes. Two-way energy interactions (feedbacks) between the atmosphere-water-ice have an 

impact of regional weather and climate as well as the timing of lake ice formation (freeze-up) 

and melt (break-up), and the duration of ice growth, which are referred to as lake ice phenology 

(Kang et al., 2012). Ice phenology dates and ice duration are known to be particularly sensitive 

to changes in near-surface air temperatures. Several studies have documented trends and 

variability in lake ice phenology in response to climate (e.g. Duguay et al., 2006; Brown and 

Duguay, 2010; Howell et al., 2009; Kang et al., 2012) and changes in large-scale atmospheric 

teleconnection patterns; the North Atlantic Oscillation (NAO) in Europe (Blenckner et al., 

2004; George, 2007; Karetnikov and Naumenko, 2008; Korhonen, 2006) and Pacific-related 

indices (El Ninõ/Southern Oscillation, the Pacific Decadal Oscillation, the Pacific North 

American pattern, and the North Pacific index) and, to a lesser extent, NAO/Arctic Oscillation 

in North America (e.g. Bonsal et al., 2006). Unfortunately, a cutback in the ground-based 

observation networks that formed the basis for documenting changes in ice cover has occurred 

globally since the 1980s (Duguay et al., 2006; Key et al., 2007). Hence, satellite remote sensing 

has assumed a greater role in recent years for the monitoring of lake ice cover, an essential 

climate variable (ECV) (GCOS, 2016).  

Moderate Resolution Imaging Spectroradiometer (MODIS) products from NASA’s Terra 

(2000-present) and Aqua (2002-present) satellites have gained popularity for monitoring lake 

ice cover since they provide Earth observations over ca. 20 years and with at least daily 

temporal resolution. Knowledge-driven (threshold-based) algorithms have been developed to 

retrieve lake ice from MODIS top-of-atmosphere (TOA) and surface reflectance products. This 



 

 26 

type of algorithm relies on variations of the spectral signature of ice, water, and clouds to define 

thresholds to classify these features. Several studies (Gou et al., 2017; Qi et al., 2019; Riggs 

and Hall, 2015; Riggs et al., 2006; Šmejkalová et al., 2016; Zhang and Pavelsky, 2019) have 

applied threshold-based methods to retrieve lake ice cover and monitor ice phenology events 

using MODIS radiance or reflectance data. In addition to MODIS radiance and reflectance 

products, MODIS Terra/Aqua snow products, produced from the normalized difference snow 

index (NDSI), have been used to determine the presence of lake ice and lake ice phenology 

(Brown and Duguay, 2012; Cai et al., 2019; Kropáček et al., 2013; Murfitt and Brown, 2017). 

The main idea behind knowledge-driven algorithms is to develop generic rules using inference 

from empirical observations. However, such algorithms may fail to provide robust 

classification results under complex conditions. For example, lakes located in high-latitude 

regions exhibit lower TOA reflectance in the visible-infrared spectral range during the ice 

freeze-up period due to low solar illumination (i.e. large solar zenith angles). Existing 

threshold-based retrieval algorithms for lake ice-water classification using optical remote 

sensing data do not perform well under such condition. Šmejkalová et al. (2016), for example, 

indicate that freeze-up dates for high latitude lakes are difficult to determine due to problems 

with high solar zenith angles. This is one of the reasons as to why most studies using data from 

MODIS tend to focus on the break-up period instead; a time of the year when low solar 

illumination does not present a significant issue. Moreover, traditional threshold-based cloud 

detection approaches still face severe challenges over ice-covered areas in the Arctic and sub-

Arctic (Chen et al., 2018). Finally, threshold-based algorithms develop for one sensor lack 

generalization ability for direct transfer to other sensors (Hagolle et al., 2010; Roy et al., 2010). 

Machine learning (ML), also known as data-driven, approaches have become increasingly 

popular in the remote sensing community due to their ability to learn complex representations 

in the data and achieve excellent gains in classification accuracy. Su et al. (2015) employed a 

support vector machine (SVM) algorithm to detect sea ice cover from MODIS images in Bohai 

Bay, China, and achieved an overall accuracy of 87 %. Shen et al. (2017) compared five ML 

classifiers for sea ice detection using Cryosat-2 SAR data and found a random forest (RF) 

algorithm to provide the best overall classification accuracy at 89.15 %. Other studies (Han et 



 

 27 

al,, 2017; Han et al., 2016; Han et al., 2018; Komarov and Buehner, 2017; Liu et al., 2015) 

have proposed valuable applications to sea ice mapping from remote sensing data using 

machine learning algorithms. In contrast to the knowledge-driven retrieval algorithms that rely 

on the physical concepts of spectroscopy, ML approaches provide a mathematical rigorous 

way to extract information from reference data. Hence, machine learning models can learn and 

delineate complex class signatures under various conditions. To date, the retrieval of lake ice 

cover using ML algorithms from remote sensing data has received much less attention than for 

sea ice. Tom et al. (2018) applied a SVM for ice-water classification on four lakes in 

Switzerland using the MODIS TOA reflectance product and achieved ranging from 75% to 

100%. The study conducted a binary classification of ice and water with cloud masking 

provided by the MODIS cloud product (MOD35) instead of performing a multiclass 

classification with cloud cover. The low quality of the MODIS cloud product over ice cover in 

some cases (Hall and Riggs, 2007; Leinenkugel et al., 2013; Tekeli et al., 2005) can introduce 

uncertainty in the classification.  

The primary aim of this study is to investigate the capability of ML algorithms in multiclass 

feature (i.e. ice, water, and cloud) extraction of large northern lakes using MODIS Terra L1B 

TOA data. The classification performance of multinomial logistic regression (MLR), support 

vector machine (SVM), random forest (RF), and gradient boosting trees (GBT) is evaluated 

and compared. Specific objectives are to: 1) find the optimal input variables (bands) to obtain 

best classification results and rank the importance of each variable; 2) examine the impact of 

internal hyperparameters on classification accuracy for the four classifiers with the best 

variable selection 3) to compare the performance of classifiers based on statistical and visual 

assessments; and 4) assess the spatial and temporal transferability of the classifiers. 

3.2 Data and methods 

3.2.1 Data and study area 

The MODIS instrument aboard NASA’s Terra satellite, launched in 1999, has been providing 

data since 2000. The instrument can view the majority of the entire Earth’s surface every day, 

acquiring data in 36 spectral bands from visible to thermal infrared wavelengths. The MODIS 
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Level 1B calibrated radiances product (MOD02), Collection 6, provides TOA reflectance data 

stored in three separate files as a function of spatial resolution: MOD02QKM (250 m, bands 

1-2), MOD02HKM (500 m, bands: 3-7), and MOD021KM (1 km, bands 8-36). The algorithm 

proposed by Trishchenko et al. (2006) was applied to downscale MODIS bands 3-7 (500 m) 

to the same grid resolution as bands 1-2 (250 m). 

Seventeen lakes (Table 3-1, Figure 3-1) distributed across the Northern Hemisphere 

(Eurasia and North America), which present different characteristics regarding area, latitude, 

altitude, freezing frequency, and ice-on duration, were selected to collect sample data (i.e. sets 

of pixels for training and validation of classifiers). For each lake, one image during ice freeze-

up and one image during break-up were chosen if available for each of three ice seasons (2002-

2003, 2009-2010, 2016-2017) over the length of the MODIS/Terra record. We used false color 

RGB composites (R: band 2, G: band 2, B: band 1) at 250 m grid resolution as reference images 

to manually collect areas of interest (AOI) with labels (lake ice, open water, and cloud). In 

total, 54 images (20 from freeze-up and 34 from break-up periods) were sampled which 

resulted in 276,003 pixels that were  relatively evenly distributed in number between images. 

 

Figure 3-1 Lakes in the study shown in WGS 84/Arctic Polar Stereographic projection 
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Table 3-1 List of lakes selected for this study. 

No. Lake Country 
Latitude 

(°) 

Longitude 

(°) 

Elevation 

(m a.s.l.) 

Area 

(km2) 

1 Amadjuak Canada 64.925 -71.149 113 3,115 

2 Athabasca Canada 59.424 -109.340 213 7,900 

3 Baikal Russia 53.525 108.207 456 31,500 

4 Erie Canada/USA 42.209 -81.246 174 25,821 

5 Great Bear Canada 66.024 -120.610 186 31,153 

6 Great Slave Canada 61.579 -114.196 156 28,568 

7 Huron Canada/USA 44.918 -82.455 176 59,570 

8 Inari Finland 69.048 27.876 118 1,040 

9 Ladoga Russia 60.830 31.578 5 18,135 

10 Michigan USA 43.862 -87.093 177 58,016 

11 Nettilling     Canada 66.420 -70.280 30 5,542 

12 Onega Russia 61.750 35.407 35 9,890 

13 Ontario Canada/USA 43.636 -77.727 75 19,009 

14 Superior Canada/USA 47.945 -87.320 183 82,367 

15 Taymyr Russia 74.538 101.639 6 4,560 

16 Vanern Sweden 58.880 13.220 44 5,650 

17 Winnipeg Canada 52.421 -97.677 217 23,750 

 

3.2.2 Variable selection and variable importance measurement 

Four input band configurations (Table 3-2) were evaluated to find the optimal input variables 

for lake ice, water, and cloud classification from the ML classifiers. All configurations include 

solar zenith angle (SZA) as an additional band to cope with low TOA reflectance, which is 

prevalent at higher latitudes during the freeze-up period. The ability of snow-covered ice and 

ice to reflect a significant amount of radiation at visible and near-infrared (NIR) wavelengths 

is a useful characteristic for discriminating lake ice from open water (Oke, 1987; Svacina et 
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al., 2014). Reference images used for visual collection of samples therefore consisted of false 

color RGB images produced from a combination of red (band 1, 0.645µm) and NIR (band 2, 

0.858µm) bands. Hence, the first configuration was a 3-band combination with red, NIR, and 

SZA as input bands. In addition to these three bands, blue (band 3, 0.469µm) and green (band 

4, 0.555µm) bands are helpful for distinguishing ice from open water in areas of lakes with 

high turbidity that can result in similar NIR reflectance values between the two classes. Thus, 

the second band configuration tested used five bands (blue, green, red, NIR, and SZA). Shorter 

wavelengths are more affected by atmospheric aerosols (mainly in the visible spectrum), 

whereas shortwave infrared (SWIR) wavelengths show enhanced atmospheric transparency 

which facilitates the discrimination between clouds and ice. SWIR2 (band 6, 1.640µm) and 

SWIR3 (band 7, 2.130µm) are introduced into the third, 7-band, configuration. Since stripe 

noise remains in SWIR1 (band 5, 1.240µm) in the MODIS Terra product (Wang et al., 2011), 

we excluded this band from the study. Hence, the 7-band configuration contains spectral bands 

over visible, NIR, and SWIR wavelengths. Finally, Metsämäki et al. (2015)  showed  that 

MODIS thermal infrared (TIR) bands 20 (3.750µm), 31 (11.030µm), and 32 (12.055µm) are 

useful for detecting clouds. Hence, the fourth configuration examined consisted of 10 bands 

(seven bands from the third configuration plus three thermal bands). 

 

Table 3-2 MODIS band configurations. 

Configuration Spectral bands 

3-band Red + NIR + SZA 

5-band Red + NIR + Green + Blue + SZA 

7-band Red + NIR + Green + Blue + SWIR2 + SWIR3 + SZA 

10-band Red + NIR + Green + Blue + SWIR2 + SWIR3 + Band20 + Band31 + Band32 + SZA 

 

The determination of variable importance is of interest to many practitioners since it allows 

for a better understanding of variable contribution and classifier underlying process. However, 

it is challenging to quantify the importance of a variable in a complicated classification model 
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developed from multiple variables since the evaluation scheme could affect the performance 

of variable importance. Moreover, the variables that significantly contribute to a particular 

model may be useless for other models, and vice versa. We therefore implemented the 

permutation-based variable importance (PBVI) approach to measure the importance of each 

individual variable. This approach has previously been applied to multiple classification 

problems (Xu et al., 2014). The idea of this approach is to measure the degree of accuracy 

degradation when the tested variable is not available. The first step of the approach is to replace 

the tested variable with random noise and subsequently compute the cross-validation (CV) 

accuracy. The k-fold (k=100) CV method was applied to calculate accuracy, and each variable 

was permutated 10 times. Then, the importance was calculated by the reduction in CV 

accuracy. To normalize the output, the importance value was divided by the largest CV 

accuracy reduction value to represent the relative importance of each variable. Compared to 

the univariate importance measurement, PBVI takes into account the interaction amongst 

covariate of a variable in the context of others in the evaluation of variable importance. Hence, 

this approach can provide a useful measurement of the variable importance for the four 

classifiers evaluated herein. 

3.2.3 Machine learning algorithms 

Four ML algorithms were evaluated with the four configurations described above:  

multinomial logistic regression (MLR),  support vector machine (SVM), random forest (RF), 

and gradient boosting trees (GBT). The characteristics of each ML algorithm are described 

below. 

Logistic regression is used as an approach to develop a model of the log odds of binary 

class probabilities as a linear function of one or more explanatory variables (Murphy, 2013). 

Then, the model can inversely compute the probability of each class using the explanatory 

variables of a given unknown sample. Multinomial logistic regression (MLR) is an extension 

of logistic regression applied to multiple response variables. One of the response variables is 

designated as the baseline class. In this manner, the probability of membership in the different 

classes is related to the probability of membership in the baseline class. The optimal values of 
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the function parameters are computed using the training data. The MLR probability estimate 

for each class falls within a range from 0 to 1, resulting in a realistic probability surface. The 

maximum probability among the classes is the predicted class for an unknown sample. 

Another algorithm is support vector machine (SVM). SVM’s basic idea is to determine 

support vectors to build an optimal boundary separating the given observations in terms of 

classes (Burges, 1998; Vapnik, 1998; Weston and Watkins, 1999). The distance from the 

support vectors to a hyperplane is known as the margin. SVM, in its simplest form, is a linear 

binary classifier that labels a given sample using a hyperplane in the original input space. 

However, to solve the inseparability problem in the original space, SVM maps 

multidimensional data into an enlarged feature space to build a hyperplane using a kernel 

function (e.g., polynomial, radial basis, sigmoid). Since the radial basis function (RBF) kernel 

has a promising ability in non-linear classification, the RBF kernel was adopted in this 

research. Additionally, we applied the one-vs-one scheme to handle the multiclass problem. 

SVM is sometimes called a soft margin classifier because training samples could lie on the 

incorrect side of the hyperplane, thereby creating a violation. The model hyperparameter, Cost, 

is a regularization constant controlling the violation degree. Another model hyperparameter, 

Gamma, is the kernel width of RBF.  

Random forest (RF), an ensemble approach, integrates decision trees developed by bagging 

samples to improve the limitations of the single-tree structure (Breiman, 2001). The bagging 

creates randomly several subsets from training samples with replacement, i.e., a sample can be 

collected several times in the same subset whereas other samples are probably not selected in 

this subset. Subsequently, each data subset is used to train a decision tree. For building a single 

tree, a random sample with a number of variables is chosen as split candidates from all 

variables. The number of variables available to a split is one of key RF hyperparameters, 

denoted as mtry. For the whole RF model, the number of trees (ntree) is defined a priori to 

develop various independent classifier outputs. The final class of each unknown sample is 

assigned by the majority vote of all outputs from the trees.  
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Gradient boosting trees (GBT) is another ensemble classifier inspired by the boosting 

technique developed by Freund and Schapire (1996). In contrast to RF, GBT applies the entire 

training dataset on classification rather than resampling partial samples. The training samples 

are initially assigned equal weights in the first iteration to develop the first tree, and afterwards 

the weights are altered based on the fitting performance to the training dataset. Misclassified 

samples in the previous iteration are assigned a higher weight in subsequent iterations. Each 

tree is also given a weight based on the fitting error. The final class of an unknown observation 

is assigned by computing the output of all trees multiplied by their weights. The term, gradient, 

is associated with iterative functional gradient descent algorithms used to optimize cost 

functions. Similar to RF, the hyperparameters of GBT, as a tree-based classifier, include 

number of variables available to a split (mtry) and number of trees (or iterations) (ntree). 

Moreover, an additional hyperparameter, learning rate (lr), controls overfitting in the range 

between 0 and 1 via shrinkage. The higher lr drives a faster learning process, and vice versa. 

All four classifiers were implemented using the scikit-learn package in Python (Pedregosa 

et al., 2011). The functions invoked for classifier development are presented in Table 3-3. The 

table also shows the testing values of each hyperparameter to examine the sensitivity of 

classifiers to the classification accuracy. Generally, MLR does not have user-defined 

hyperparameters. However, the scikit-learn package provides several parameters to define 

MLR functions. The two parameters, solver and niter, concern the convergence performance 

of functions, which influence significantly the classification performance of the MLR 

classifier. solver is the algorithm used in the optimization problem (see details in the user guide 

(Scikit-learn, 2020)). niter is the maximum number of iterations to solve the optimization 

problem. For implementing ML classifiers, the internal parameter setting could be erratic when 

applying a big dataset with high variability. Thus, it is meaningful to investigate the effect of 

hyperparameters changes to classifier performance. The results of this sensitivity study appear 

in section 3.3.2. 
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Table 3-3 Classifier functions of the scikit-learn package and their hyperparameters. 

Classifier Function 

Hyperparameter 

Name Testing values 

MLR LogisticRegression 

solver newton-cg, lbfgs, sag, saga 

niter 100, 500, 1000, 3000, 5000 

SVM svm.SVC 

Cost 0.1, 1, 10, 100 

Gamma 0.01, 0.1, 1, 2, 3 

RF RandomForestClassifier 

mtry 2, 4, 6 

ntree 50, 100, 500, 1000, 2000, 3000 

GBT GradientBoostingClassifier 

mtry 2, 4, 6 

ntree 50, 100, 500, 1000, 2000, 3000 

lr 0.1, 0.05, 0.01 

 

3.2.4 Cross-validation strategies 

In machine learning, using the same dataset for both model training and validation can produce 

over-optimistic assessments of model performance. The assessment method should guarantee 

that the data used to validate models are independent from the data used to train models. In 

this research, therefore, we applied three cross-validation (CV) strategies to provide a 

comprehensive comparison of classifiers for global lake ice mapping over long time-series. 

The first one is the random k-fold CV, which has been employed to obtain bias-reduced 

accuracy measurement of classifiers with remote sensing data (Hand, 1997). This CV strategy 

randomly separates a data set into k subsamples of equal size. Subsequently, of the k 

subsamples, one single subsample is retained to validate the classifier developed using k-1 

subsamples. The validation process is repeated k times until each subsample has been used 

once as a testing data. The overall classification accuracy is averaged over the accuracy of all 
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k subsamples. The 100-fold CV was used in this research and the results are presented in 

section 3.3.3. 

We also implemented spatial and temporal CV strategies to enhance the interpretability 

of the classifiers’ capability to cope with spatiotemporal heterogeneity in data. Spatial CV, also 

named leave-location-out CV, has been applied to assess the performance of classifiers in 

previous studies (Gasch et al., 2015; Ho et al., 2014; Meyer et al., 2016). In spatial CV, models 

are repetitively built by leaving the data from one location or a group of locations out and using 

the remaining one for model validation. We grouped the study areas into 11 clusters (lake or 

set of lakes falling into a particular lake region) shown in Table 3-4. The spatial CV accuracy 

can, therefore be considered a valuable performance indicator to examine a classifier’s ability 

to cope with spatiotemporal issues. Similar to the spatial CV, the temporal CV approach 

separates the data based on time steps. Subsequently, a subsample of one-time step is removed, 

and the model is trained on the subsamples of the reminding time steps. For this CV strategy, 

we selected three ice seasons (2002-2003, 2009-2010, 2016-2017) separated by seven years 

across the full Terra/MODIS record. One reason for selecting such a spread was to assess the 

stability of the classifiers’ performance over time which could be affected, for example, by 

MODIS sensor degradation. Results of the spatial and temporal transferability of the four 

classifiers are described in section 3.3.4. 
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Table 3-4 The clusters for spatial CV. 

Clusters Lakes 

AN Nettilling Lake, Amadjuak Lake 

Ath Lake Athabasca 

Bai Lake Baikal 

GBL Great Bear Lake 

GLs Lake Ontario, Lake Superior, Lake Huron, Lake Erie, Lake Michigan 

GSL Great Slave Lake 

Ina Lake Inari 

OL Lake Onega, Lake Ladoga 

Tay Lake Taymyr 

Van Lake Vanern 

Win Lake Winnipeg 

 

3.3 Results and discussion 

3.3.1 Comparison of variables combinations 

The effect of changes in the number of input spectral bands on overall accuracy was assessed. 

As Figure 3-2 shows, the overall accuracy improves for each classifier along with the number 

of input bands used. The accuracy increases from the 5-band to the 7-band configuration in 

each classifier (i.e. MLR: 8.38%; SVM: 6.62%; RF: 5.65%; GBT: 1.59%). However, applying 

the 10-band configuration into the classifiers leads to results comparable to the 7-band 

configuration. Wieland et al. (2019), for example, have shown a slight improvement in 

accuracy for cloud detection when TIR bands are added into the input feature space of a 

convolutional neural network. Taking into account the potential for transferability of the 

classifiers across multispectral remote sensing datasets that do not provide TIR bands (e.g., 

Sentinel-2, Worldview1-3, Gaofen-1&2), we decided to retain the 7-band configuration 

instead of the 10-band configuration that includes the TIR bands in the subsequent steps of this 

research. The difference between the minimum and maximum accuracy (3- to 10-band 

configuration) is above 8% for MLR, SVM, and RF. However, for GBT it is only a 2.81% 
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difference in accuracy over the four configurations. It is especially noticeable that GBT with 

only the 3-band configuration was still able to produce a 96.05% accuracy, which is superior 

to the best performance of MLR trained with the 10-band configuration. Thus, GBT is least 

influenced by the input band configurations among the proposed models. 

Figure 3-3 shows the permutation-based variable importance (PBVI) measurement derived 

from the 7-band configuration. NIR and SWIR-3 bands have very high PBVI values for all 

classifiers. Additionally, SWIR-2 has higher PBVI values in three of the four classifiers (SVM, 

RF, and GBT). The two tree-based models (RF and GBT) depict the same pattern of variable 

importance, where NIR and two SWIR bands are the most dominant variables in the 

classification, and the visible bands (red, green, and blue) show very small importance values. 

However, both MLR and SVM achieved predominant usage of red and green bands. 

Interestingly, none of the four classifiers yielded a higher PBVI value on the SZA. This may 

be due to the fact that overall few of the sampled images and only a few lakes, particularly 

during the freeze-up period, are affected by low TOA reflectance due to high SZA. 

The major accuracy improvement from the 5-band configuration to the 7-band configuration 

indicates that SWIR bands significantly add to the classification accuracy. This is also revealed 

in the variable importance measurement results of Figure 3-3. Previous studies on image 

classification from optical remote sensing data have shown that adding SWIR bands into ML 

models can increase classification accuracy due to more accurate cloud detection than with 

Visible-NIR bands alone (Chai et al., 2019; Chen et al., 2018; Wieland et al., 2019). In addition, 

in terms of the water-ice classification, the accuracy produced by the 7-band configuration did 

not outperform that obtained with the 5-band configuration. This is because the NIR band 

dominates in the discrimination between ice and open water consequent to the ice’s ability to 

reflect more radiation in this part of the spectrum (Brown and Duguay, 2012; Jönsson and 

Eklundh, 2004; Nonaka et al., 2007; Šmejkalová et al., 2016). High PBVI values also indicate 

the significance of the NIR band in all classifiers for lake ice mapping with multispectral 

remote sensing data. Meanwhile, given the high sensitivity of NIR reflectance to the presence 

of lake ice, previous studies using knowledge-driven (threshold-based) approaches have 
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widely employed the MODIS NIR band alone or in combination with other bands and indices 

to detect ice phenology dates. 

 

 

Figure 3-2 Comparison of classification accuracies (%) obtained with different band 

configurations across classifiers. 
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Figure 3-3 Comparison of permutation-based variable importance for the input bands 

across classifiers based on 7-band configuration. 

 

3.3.2 Sensitivity to classifier hyperparameters 

We employed a 100-fold cross-validation (CV) strategy to examine the impact of internal 

hyperparameters on classification accuracy for the four classifiers with the 7-band 

configuration. Figure 3-4 shows results of the sensitivity study of classifier hyperparameters. 

According to Figure 3-4-a, the MLR classification performance is sensitive to solver. The 

newton-cg solver can produce stable classification accuracies (94.01% - 94.44%) over the 

tested iterations. The other three solvers require a large number of iterations to produce high 

CV accuracy. However, even under high iterations, they still perform worse than the newton-

cg solver. 
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Figure 3-4 Comparison of classification accuracies (%) as a function of classifier 

hyperparameters based on 7-band configuration. (a) MLR, (b) SVM, (c) RF, and (d) 

GBT. 

 

Cost and Gamma are two key hyperparameters of SVM with the radial basis function 

(RBF) kernel. Cost controls the margin width to trade-off misclassified samples in order to 

generate a robust classifier. A small value for Cost leads to a broader margin with high training 

a. b. 

c. d. 
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errors, while a large value results in a severe margin identical to the hard margin. Gamma is a 

free hyperparameter of the radial basis function. Figure 3-4-b shows that low Cost and Gamma 

values lead to low accuracy, whereas increasing the values of the two hyperparameters result 

in higher classification accuracy. The accuracy range obtained is between 75.23% and 96.99% 

over all hyperparameter combinations. The results indicate that the performance of SVM is 

highly sensitive to both hyperparameters. Additionally, previous studies have shown that 

Gamma is less effective than Cost on classification performance; furthermore, the 

hyperparameters are also sensitive to the size and variation of training data (Huang et al., 2002; 

Kavzoglu and Colkesen, 2009). Mountrakis et al. (2011), in a review article on SVM in remote 

sensing, conclude that over-small and over-large hyperparameters may lead to over-fitting or 

over-smoothing. Thus, the selection of SVM hyperparameters should be implemented with a 

trial-and-error approach when new data are introduced (Mountrakis et al., 2011). 

Concerning RF, we tested the sensitivity of ntree and mtry parameters to classification 

accuracy. As Figure 3-4-c shows, as ntree increases RF can reach higher classification 

accuracies, particularly as the number of trees increases from 50 to 500. Random variable 

selection is helpful to minimize the tree-based model’s bias when a few variables are overused 

to develop the splitting nodes (Breiman, 2001). Regarding mtry, random 4 variables for a split 

achieves the best performance in each value of ntree compared to the other two testing values 

of mtry. The square root of the entire variable number has usually been used to obtain optimal 

classifier performance (Breiman, 2001; Ghosh et al., 2014; Rodriguez-Galiano et al., 2012). 

However, in this experiment, the accuracy only varies by 0.015% with different ntree. In fact, 

the number of trees does not significantly affect the performance of RF, as long as the number 

is sufficiently large. In other words, the accuracy tends to be stable once a sufficient number 

of trees has been reached (Maxwell et al., 2018). That 50 trees are sufficient to stabilize the 

classification accuracy has been reported in couple of recent studies (Ghimire et al., 2012; Shi 

and Yang, 2016), whereas Rodriguez-Galiano et al. (2012) demonstrate that 100 trees are 

needed. Belgiu and Drăgu (2016) list numerous articles applying RF with 5000 trees to achieve 

promising classification results. Hence, the optimal ntree is likely case specific. We therefore 

investigated six testing values for ntree that are commonly used in practice. Taking computing 
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resources into account, ntree has been set to 500 to process large-scale data. In addition, the 

different values of mtry only resulted in 0.031% accuracy difference that, nonetheless, is larger 

than that of ntree. Similar findings have been reported by others whereby the classification 

accuracy has been shown to be more sensitive to mtry than to ntree (Du et al., 2015; Ghosh et 

al., 2014; Kulkarni and Sinha, 2012) . However, herein, changes in mtry still lead to a marginal 

difference in accuracy (< 0.05%). Hence, the impact of changes in these two hyperparameters 

was quite limited for RF. 

With respect to GBT, the sensitivity of three hyperparameters (i.e. mtry, ntree, lr) was 

examined. As Table 3-2 shows, ntree has six testing values, and each of mtry and lr has three 

testing values, resulting in 54 hyperparameter combinations. The accuracy ranges from 95.01% 

to 98.62% over all combinations. ntree and lr led to 3.72% and 3.76% accuracy differences, 

respectively, whereas mtry resulted in a lower accuracy difference (1.78%). Hence, the 

accuracy was highly related to ntree and lr. Figure 3-4-d shows the accuracy as a function of 

ntree and lr at mtry of four. Under smaller ntree (< 1000), GBT with faster lr (0.1) can yield 

relatively more accurate classification results, whereas when using large ntree (2000, 3000), 

0.1 lr was not the optimal parameter for GBT. Moreover, overall, GBT appears to require large 

ntree to produce high accuracy. Similar to the studies by Freeman et al. (2015) and Filippi et 

al. (2014), shrinking learning rate (lower lr) requires a higher iteration (ntree) to produce 

preferable classification using GBT; however, overlarge iterations (ntree) appear to result in 

overfitting under fast learning rates (Elith et al., 2008). Generally, compared to faster lr values, 

slower values can shrink the contribution of each tree more to help the classifier to produce 

reliable estimated responses. However, it is noticeable in our experiment that GBT with 0.05 

lr rather than the lowest lr (0.01), under 2000 and 3000 ntree, was able to produce the best 

performance. Hence, the optimal pair of lr and ntree is flexible for different datasets. 

3.3.3 Statistical and visual accuracy assessments 

Figure 3-5 shows the accuracies achieved by the four classifiers with the 7-band configuration 

using a 100-fold CV. The four classifiers, overall, were able to produce high classification 

accuracies above 94%. MLR performs worst with 94.44% overall accuracy (OA), followed by 
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the SVM with 96.99%. The two tree-based classifiers (RF and GBT) considerably outperform 

the two function-based classifiers (MLR and SVM) and reach comparable classification 

performances (RF: 98.57%; GBT: 98.62%). Based on boxplots, the results of RF and GBT 

show less variance of OA. Furthermore, the performance of the two tree-based classifiers is 

only strong when examining class-specific accuracies (Figure 3-5). All class accuracies (cloud, 

water, ice) produced by RF and GBT are above 98.00% and more stable with less than 0.30% 

accuracy difference compared to other classifiers. More specifically, MLR yielded a cloud 

detection accuracy of only 90.49% which is 7.92% lower than its water classification accuracy, 

resulting in a poorer OA. SVM provided a moderate ability in every aspect of the classification 

amongst the classifiers. Additionally, the quality of all classifiers is highest for the water class 

accuracy, which is above 98.00%. 

 

 

Figure 3-5 Comparison of accuracies (%) obtained using random 100-fold CV across 

classifiers for the ice, water and cloud classes individually, and overall (OA). 
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The visual assessment of the classification results confirms the findings from the above 

statistical assessment. Figure 3-6, Figure 3-7, and Figure 3-8 show examples of lake ice maps 

during the break-up period produced by the four classifiers. Overall, the two tree-based 

classifiers were able to discern more accurately lake ice cover compared to MLR, and SVM 

achieved a moderate performance. As shown in Figure 3-6, the classifiers can all detect 

accurately the majority of lake ice cover. However, MLR underestimates the ice edge, whereas 

RF, GBT, and SVM provide more precise ice edge delineation. Figure 3-7 illustrates a 

noticeable classification drawback of MLR during the advanced stage of ice melt. MLR 

misclassified decaying ice mostly as water, while the other three classifiers discriminated the 

two classes accurately according to the false color composite image. Another error source of 

MLR arises from the confusion between cloud and ice. As Figure 3-8 shows, thin cloud cover 

highlighted by the black rectangle was misclassified as ice by MLR, while RF and GBT could 

retrieve the cloudy area correctly. Despite a more accurate detection by SVM compared to 

MLR, it cannot delineate features with as good details in contrast to the two tree-based 

classifiers. For example, compared to the lake ice maps produced by RF and GBT, SVM 

slightly underestimates cloud cover in the area highlighted by the red rectangle. Moreover, in 

the same area, SVM cannot retrieve the ice edge and floe as accurately as the tree-based 

classifiers can. The visual inspection supports the moderate classification capability of SVM 

revealed in the statistical assessment. Figure 3-9 presents an example of lake ice mapping by 

the classifiers during the freeze-up period under high SZA (84-85 degrees). SVM and MLR 

were unable to classify cloud cover accurately under such illumination condition. MLR 

underestimates the black (snow-free) and grey ice highlighted by the black rectangle. In 

contrast, the tree-based classifiers perform quite well in detecting this ice under low solar 

illumination conditions. 

During the break-up period, lake ice can appear from bright (white ice or snow-covered 

ice) to dark (snow-free black ice or surface melt/ponding on the ice surface). In the early melt 

stage, white ice with high reflectance in the visible spectrum is gradually exposed once snow 

cover has been melted (Jeffries et al., 2005). On the other hand, black ice appears darker in the 
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visible bands against the water background (Jeffries et al., 2005). The four classifiers can all 

discriminate grey/white ice from open water accurately (Figure 3-6); however, MLR failed to 

detect black ice (Figure 3-7). The poorer classification performance of MLR is likely the result 

of overlap in the input variable space between features. The linear boundary of MLR was 

limited its discrimination of open water from black ice due to their similar VIS-NIR-SWIR 

reflectance. It also resulted in the confusion between ice and thin cloud (Figure 3-8). By 

contrast, the RBF kernel allowed the SVM to produce a non-linear separation plane via 

enlarging the input variable space; thus, the classifier can distinguish two features with similar 

spectral signatures at VIS-NIR-SWIR. In the case of RF and GBT, both bagging and boosting 

techniques are of help to tree-based classifiers in discriminating features with high spectral 

variability. In addition, random variable selection for the splitting nodes also improve the 

classification of the three features where the relationships between variables are complicated. 

Similar to the statistical assessment, RF and GBT produced comparable lake ice maps for 

different cases. The four classifiers performed comparably well for open water detection since 

water shows low and relatively stable reflectance at VIS-NIR-SWIR wavelengths. During the 

freeze-up period, mapping of lake ice can be problematic due to large solar zenith angles, 

especially in the Arctic. The reflectance of all surface types can be very low under such 

condition. Moreover, during that period, new ice often forms as black ice free of snow presence 

which can result in extremely low reflectance. For example, in Figure 3-9, the reflectance of 

ice in the NIR band is lower than 0.05, and cloud cover also shows low reflectance values. 

However, under this extreme case, RF and GBT were still able to provide a strong ability to 

detect ice. 

 

  



 

 46 

 

Figure 3-6 Ice maps of Lake Onega (Russia) during break-up (11 May 2003, UTC 09:25) 

produced by the four classifiers. (a) RGB false color composite, (b) RF, (c) GBT, (d) SVM, 

and (e) MLR. 
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Figure 3-7 Ice maps of Lake Vänern (Sweden) during break-up (30 March 2003, UTC 

10:30) produced by the four classifiers. (a) RGB false color composite, (b) RF, (c) GBT, 

(d) SVM, and (e) MLR. 
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Figure 3-8 Ice maps of Great Slave Lake (Canada) during break-up (5 June 2003, UTC 

19:15) produced by the four classifiers. (a) RGB false color composite, (b) RF, (c) GBT, 

(d) SVM, and (e) MLR. 

 



 

 49 

 

Figure 3-9 Ice maps of Great Slave Lake (Canada) during freeze-up (2 December 2009, 

UTC 18:50) produced by the four classifiers. (a) RGB false color composite, (b) RF, (c) 

GBT, (d) SVM, and (e) MLR. The black pixels correspond to no data (NaN value in input 

spectral bands). 
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3.3.4 Spatial and temporal transferability assessments 

Table 3-5 summarizes the accuracy assessment with regards to spatial transferability of the 

four classifiers. RF (mean accuracy (MA) = 95.64%, standard deviation (SD) = 0.0447) and 

GBT (MA = 95.26 %, SD = 0.0478) appear to be the most robust classifiers in terms of the 

spatial transferability, followed by MLR (MA = 90.98%, SD = 0.0861) and SVM (MA = 

79.36%, SD = 0.1244). RF and GBT achieved the best performance for six and four spatial 

lake clusters, respectively, and mostly produced above 95% classification accuracy over all 

clusters. The accuracy of SVM ranges from 63.17% to 98.03% with 0.1244 SD, and this 

classifier yielded below 80% accuracy in half of all lake clusters. Thus, SVM particularly 

suffered from the spatial variation of training and testing data. 

A performance pattern similar to that of spatial transferability was also obtained with the 

temporal transferability evaluation (Table 3-6). RF and GBT provided above 95% MA and a 

stable accuracy (SD less than 0.02) over the three ice seasons examined, resulting in less 

variance of the accuracy. SVM performed the worst with 83.00% MA and 0.0312 SD. MLR 

achieved a moderate performance of 93.21% MA and 0.0227 SD. Hence, RF and GBT provide 

the most stable classification behavior over ice seasons. 
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Table 3-5 Accuracy assessment using spatial CV for lake clusters across classifiers. MA: 

mean accuracy, SD: standard deviation. The maximum accuracy in each cluster is bold. 

Clusters MLR SVM RF GBT 

AN 97.07% 85.03% 99.70% 99.29% 

Ath 69.54% 63.17% 91.20% 86.44% 

Bai 96.33% 72.70% 95.66% 97.06% 

GBL 96.46% 98.03% 99.60% 99.02% 

GLs 97.94% 64.54% 98.54% 98.62% 

GSL 80.36% 64.80% 93.92% 94.22% 

Ian 92.62% 77.86% 99.70% 98.80% 

OL 93.37% 90.54% 97.13% 96.45% 

Tay 90.74% 90.07% 85.20% 86.44% 

Van 91.45% 92.01% 93.57% 93.31% 

Win 94.94% 74.20% 97.79% 98.22% 

MA 90.98% 79.36% 95.64% 95.26% 

SD 0.0861 0.1244 0.0447 0.0478 

 

Table 3-6 Accuracy assessment using temporal CV in the clusters across classifiers. MA: 

mean accuracy, SD: standard deviation. The maximum accuracy in each ice year is bold. 

Ice Year MLR SVM RF GBT 

2002-2003 91.85% 81.31% 93.91% 93.37% 

2009-2010 95.83% 86.60% 96.36% 96.40% 

2016-2017 91.95% 81.10% 96.19%  95.67% 

MA 93.21% 83.00% 95.49% 95.15% 

SD 0.0227 0.0312 0.0137 0.0158 

 

For lake ice mapping over large spatial and long temporal scales, ML models should 

be able to handle spatiotemporal heterogeneity in satellite datasets. Our results are in general 



 

 52 

agreement with previous studies (Micheletti et al., 2014; Ruß and Brenning, 2010) to the effect 

that ML models do not perform as well when applying spatial and temporal CV compared to 

using random k-fold CV alone. The two tree-based classifiers (RF and GBT) were able to 

produce mean classification accuracies above 95% in both spatial and temporal CV; a ca. 3% 

decrease in performance from random k-fold CV. MA produced by SVM with the spatial and 

temporal CV, in contrast, dropped by more than 13% compared to the results using random k-

fold CV. Thus, SVM is considerably sensitive to the spatial and temporal variations of the 

training and validation data. In a study on the mapping of maximum air temperature from 

MODIS, RF was found to slightly outperform SVM with respect to the spatial CV (Ho et al., 

2014). Findings from our study indeed suggest that tree-based classifiers are better candidates 

than SVM and MLR for global lake ice mapping from relatively long historical data records 

such as the one available from MODIS Terra (2000-present). 

3.4 Conclusion 

We conducted a comprehensive assessment of four machine learning algorithms in multiclass 

feature (i.e. ice, water, and cloud) extraction of large northern lakes using MODIS Terra L1B 

TOA data. Results from k-fold CV reveal that MLR is the least promising classifier, 

particularly for cloud and ice cover compared to SVM, RF and GBT. SVM, on the other hand, 

is found to be less consistent in terms of spatial and temporal transferability; its spatial (79%) 

and temporal (83%) CV accuracies differ greatly from the random k-fold CV (97%) accuracy. 

Moreover, SVM is over-sensitive to the change of hyperparameter sets. RF and GBT did better 

than MLR and SVM in all aspects of the study. The two tree-based classifiers performed 

similarly in terms of overall and class specific accuracies as well as in spatiotemporal 

transferability; however, they showed differences in two aspects. First, compared to GBT, the 

performance of RF is less sensitive to the choice of the hyperparameters. However, changes of 

input band configurations (three to 10 bands) were not expressively influential on GBT results. 

GBT could potentially be applied to optical data from other satellite platforms with less 

spectral bands, as revealed from its overall performance of 96% with only three MODIS bands, 

and high spatial resolutions for lake ice mapping on smaller lakes (e.g. Landsat, Sentinel-2). 
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Overall, results show the strong potential of RF for global lake ice mapping using TOA 

reflectance data from MODIS and other satellite platforms that offer similar band 

configurations such as Sentinel-3 (OLCI/SLSTR synergy). 
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Chapter 4  

General Conclusion 

4.1 Summary 

To date, remote sensing is the most efficient and reliable means to achieve lake ice 

observations, which are useful for many biological, ecological and socio-economic 

applications. MODIS imagery has become indispensable data for the development of a global 

lake ice network across long time-series. However, previous studies applying threshold-based 

algorithms in lake ice classification from MODIS products have face some difficulties in 

correctly identifying ice, particularly under high solar zenith angles, certain cloud cover 

conditions and clear (black) ice. While machine learning (ML) techniques have recently been 

employed for sea ice classification and microwave remote sensing applications, ML has not 

yet been applied in lake ice classification from optical remote sensing data. Hence, the overall 

objective of this study was to exploit the capability of ML algorithms to enhance lake ice 

classification using the MODIS Level 1B product.  

Chapter 3 presented a comparative study of the performance of four ML classifiers in lake 

ice classification from MODIS L1B imagery. Overall, all four algorithms produced above 94% 

accuracy classification. According to the visual examination, Random Forest (RF) and 

Gradient Boosting Tree (GBT) can overcome a number of challenges (i.e. black ice, high solar 

zenith angles), thereby performing satisfactory classification. Despite showing comparable 

performance with RF and GBT in terms of the visual assessment, Support Vector Machine 

(SVM) is too sensitive to the parameterization to conduct large-scale lake ice cover mapping. 

Conversely, RF was the most insensitive to the change of the hyperparameters. The experiment 

results also showed that Multinomial Logistic Regression (MLR) was less powerful for 

providing accurate classification compared to the other three classifiers. For the transferability 

examination, RF and GBT outperformed other two classifiers. The two function-based 

classifiers (MLR and SVM) generate a separating boundary to classify remote sensing 

observations as a label. However, according to the results, the separating boundary shows weak 

classification capability of lake ice (MLR) and unstable transferability (SVM) in spatial and 
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temporal aspects. On the contrary, in the case of RF and GBT, the two ensemble techniques 

(bagging and boosting) are of help to tree-based classifiers in discriminating features with high 

spectral variability and coping with the spatial and temporal heterogeneity of remote sensing 

data. Additionally, the MODIS reflectance bands at Visible-NIR-SWIR wavelengths were 

found to be the most useful and efficient input variable combination for the four algorithms. 

In summary, this research demonstrated the potential of ML algorithms to perform lake 

ice classification at a global scale across a long time-series. The tree-based classifiers (RF and 

GBT) provided the most promising results. 

4.2 Limitations and Recommendations for Future Work 

The primary limitation of this research is the limited study dataset. This research focused on 

lake ice classification during the ice freeze-up and break-up periods. However, the 

performance of the classifiers during the completely ice-free (open water) and full-ice periods 

was not investigated. Due to the lack of “training” samples over these two periods, the 

classifiers may fail under some severe cases. For example, high algal bloom concentration and 

extreme high sediment (even almost dried-out lakes) during the ice-free season (summer), 

could result in extreme high reflectance of open water, which is homogenous to the ice 

reflectance. Additionally, during the complete freeze over period, extremely high TOA values 

over snow/ice might be misclassified as cloud cover. Besides, the study lakes in this research 

are large at the global scale (the minimum is 1,040 km2). To determine whether the classifiers 

are as promising for the mapping of lake ice on smaller lakes than the one investigated herein, 

more studies are needed. Therefore, in follow-up investigations, a larger sample from the two 

periods (ice-free and fully ice covered) and small-scale lakes would need to be collected and 

input into the classifiers to examine their performance.  

Although the tree-based classifiers produced above 98% classification accuracy using the 

random K-fold CV, they still yielded lower accuracy (about 95%) via the temporal and spatial 

CV strategies. The accuracy degradation indicates the effect of temporal and spatial variation 

on classifier performance. Recent studies of transfer learning for remote sensing have proposed 

the use of domain adaptation (Bruzzone and Marconcini, 2009; Matasci et al., 2015), covariate 
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shift (Persello and Bruzzone, 2014) or multi-task learning (Leiva-Murillo et al., 2013) 

techniques to tackle the variation problems to enhance the transferability of pixel-based 

classifiers. In future investigations, it is recommended that these techniques would be applied 

alongside the classifiers to enhance the performance of lake ice cover mapping. 

Additionally, since the MODIS Terra sensor has missing acquisitions/detections from time 

to time, the input band configuration of classifiers lacks complete reflectance values for the 

classification. Therefore, the produced lake ice cover maps present absence of labels (NoData). 

Interpolation approaches could be applied to tackle this issue so that the produced maps would 

more comprehensively capture lake ice spatial conditions. 

Recently, convolutional neural network (CNN), which is a state-of-the-art approach, has 

been shown to be successful for sea ice classification and the estimation of ice concentration 

from SAR remote sensing imagery (Wang et al. , 2016; Zhang et al., 2019). The retrieval of 

ice cover from optical remote sensing imagery using a CNN has been rarely performed. In 

particular, until now, no previous study had applied CNN in lake ice classification from 

MODIS imagery. A case study of lake ice classification from MODIS TOA reflectance 

imagery using a CNN model in Great Slave Lake, Canada, was presented in Appendix A. The 

proposed CNN produced a 98.03% accuracy with the testing dataset; however, accuracy 

dropped to 90.13% using an independent (out-of-sample) validation dataset. Overfitting 

apparently occurred in this case. A collection of a larger sample from more years and other 

lake sites would improve the representativeness of training data. Meanwhile, some advanced 

techniques of label-preserving transformations, such as rotation and flipping, could be 

employed to enlarge training sample augmentation artificially. Additionally, a more 

comprehensive study and evaluation of other CNN architectures and configurations, such as 

the number of layers, kernel size, and patch size, would be beneficial. 

 



57 

Appendix A.  

Lake Ice Classification from MODIS TOA Reflectance Imagery 

Using A Convolutional Neural Network: A Case Study of Great 

Slave Lake, Canada 

I. Introduction 

Lake ice cover is highly responsive to changes in weather and climate as shown in (Duguay et 

al., 2003, 2006). Ice phenology dates associated with freeze-up and break-up, and ice duration 

are useful for assessing trends and variability in climate, particularly due to their sensitivity to 

changes in near-surface air temperature (Howell et al., 2009; Kang et al., 2012). Lake ice 

mapping from satellite remote sensing data allows for the investigation of ice phenology over 

large areas, and provides an alternative for filling gaps of sparse ground-based networks of 

lake ice observations globally (Duguay et al., 2006). The Moderate Resolution Imaging 

Spectroradiometer (MODIS), aboard NASA’s Terra and Aqua satellite platforms, provides a 

continuous stream of daily Earth surface records available for the monitoring of lake ice 

dynamics. However, it remains challenging to perform lake ice-water classification well using 

existing knowledge-driven (threshold-based) retrieval algorithms that use top-of-the-

atmosphere (TOA) reflectance data, particularly under the condition of large solar zenith 

angles resulting in low TOA reflectance. Recently, convolutional neural network (CNN), 

which is a state-of-the-art approach, has been shown to be successful for sea ice classification 

and the estimation of ice concentration from SAR remote sensing imagery (Wang et al., 2016; 

Zhang et al., 2019). A CNN is comprised of a stack of alternating convolution layers and 

pooling layers, followed by a number of fully connected layers. Compared to traditional neural 

networks, CNN enforces weight sharing and local connectivity between layers (Lecun et al., 

1998). The retrieval of lake ice cover from MODIS TOA reflectance imagery using a CNN has 

not been yet performed. Hence, this study designed a CNN architecture applied to lake ice 

cover mapping using Great Slave Lake, Canada, as a case study. 
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II. Study area and data 

This research was carried at Great Slave Lake (GSL). The lake is located in the Northwest 

Territories, Canada, within the Mackenzie River Basin (Figure A-1). GSL has a surface area 

of 28.6 × 103 km2. It is bounded in the east-west direction by longitudes 108° and 116° W, and 

lies between 63° to 67° N in the south-north direction.  

 

 

Figure A-1 The location of Great Slave Lake, Canada 

 

The MODIS instrument onboard Terra, launched in 1999, has been delivering data 

since 2000. The sensor scans the majority of the entire Earth’s surface every day, recording 

observations in 36 spectral bands from visible to thermal infrared wavelengths. The MODIS 

Level 1B product (MOD02) provides top-of-the-atmosphere (TOA) reflectance data stored in 

three separate files based on spatial resolution; MOD02QKM (250m: bands 1-2), 

MOD02HKM (500m: bands: 3-7), and MOD021KM (1km: bands 8-36). 

In this study, five images during the freeze-up period and 13 images from the break-up 

period were acquired for GSL over the ice season of 2009-2010. Sample pixels were collected 

manually from MODIS false color composite images (R: Band 2; G: Band 2; B: Band 1). The 
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sample classes were labelled as lake ice, open water, and cloud cover. We then separated the 

18 images into two groups. Group A (13 images) was used for CNN model training and testing. 

The samples of group A were randomly split into training data (70%) and testing data (30%).  

Group B (five images) was used for validation.  

III. Methodology 

i. Preprocessing 

The MOD02 product records Earth observations in a 5-min orbital swath format including 

latitude and longitude without projection. Thus, the images were projected into an 

equirectangular projection. All MOD02 bands were resampled onto this grid using the nearest 

neighbor method.  

Since the input of CNN is an image patch, we used each sample pixel as a central point, 

generating a three-dimensional matrix of n × 11 × 11 where n corresponds to the number of 

input spectral bands. The width and height of patches are 11 pixels. Each patch was labelled 

based on the class of the central sampled pixel. 

ii. Input band configurations 

In order to investigate the optimal input bands, we tested four band configurations as shown 

in Table A-1. 

 

Table A-1 MODIS band configuration. 

Configuration Spectral bands 

3-band Red, NIR, SZA 

5-band Red, NIR, Green, Blue, SZA 

7-band Red, NIR, Green, Blue, SWIR2, SWIR3, SZA 

10-band 
Red, NIR, Green, Blue, SWIR2, SWIR3, 

Band20, Band31, Band32, SZA 
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All configurations include solar zenith angle (SZA) to address low reflectance, 

particularly relevant during the freeze-up period in fall at this high-latitude lake location. In 

addition to SZA, the 3-band configuration contained the red and near infrared (NIR) bands that 

provide observations at the highest spatial resolution (250 m) in the MOD02 product. 

Moreover, the NIR band has been applied to retrieve ice frequently since the surface 

reflectance of ice and snow-covered lake ice is relatively high in the NIR (Brown and Duguay, 

2012; Nonaka et al., 2007; Šmejkalová et al., 2016). The 5-band configuration additionally 

includes MODIS green and blue bands, which are helpful in identifying open water with high 

sediment concentration in suspension. Two shortwave infrared bands at 500 m resolution were 

introduced to the 7-band configuration. Additionally, the 10-band configuration includes three 

more thermal infrared (TIR) bands. 

iii. CNN Architecture 

The architecture of the CNN used this study is shown in Table A-2. It consists of five 

convolutional layers (Conv), two max-pooling layers (Pool), and seven fully connected layers 

(FC). The input patch is a 3-D matrix of n × 11 × 11. In convolutional layers, a number of 2-

D filters (kernels) of size 3×3 are applied to the input patch, producing intermediate image 

patches which are processed in the next layer. Rectified Linear Unit (ReLU) is used as the 

activation function in the convolutional layers. ReLU can enhance nonlinearity by reassigning 

zero to negative values outputted by the previous layer (Gonzalez, 2007). The max-pooling 

layers subsample the intermediate image patches by 2×2 windows, thus selecting the maximum 

value in the windows. The fully connected layer, which functions is identical to the basic neural 

network, has a 1-D vector of neurons. Each neuron in a fully connected layer is linked to all 

the neurons of its preceding layer. The last fully connected layer using the softmax function 

computes the probabilities of the three classes. The workflow of the proposed CNN was 

implemented using Pytroch with NVIDIA T4 GPUs in Python 3.7. 
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Table A-2 Architecture of the proposed CNN. 

Layer Structure 

Input patch n × 11 × 11 

Conv1 

64 × n ×  3 × 3 

stride 1, pad 1, ReLU 

64 × 11 × 11 

Conv2 

64 × n ×  3 × 3 

stride 1, pad 1, ReLU 

64 × 11 × 11 

Pool1 

2 × 2 

stride 2, pad 0, Max 

64 × 5 × 5 

Conv3 

128 × 64 ×  3 × 3 

stride 1, pad 1, ReLU 

12 × 5 × 5 

Conv4 

128 × 64 ×  3 × 3 

stride 1, pad 1, ReLU 

128 × 5 × 5 

Conv5 

256 × 128 ×  3 × 3 

stride 1, pad 1, ReLU 

256 × 5 × 5 

Pool2 

2 × 2 

stride 2, pad 0, Max 

256 × 2 × 2 

FC1 
512 × 256 ×  2 × 2, Linear 

512 × 1 

FC2 
256 × 512, Linear 

256 × 1 

FC3 
128 × 256, Linear 

128 × 1 

FC4 
64 × 128, Linear 

64 × 1 

FC5 
48 × 64, Linear 

48 × 1 

FC6 
16 × 48, Linear 

16 × 1 

FC7 
16 × 512, Softmax 

3 × 1 

Note: Each row for a given convolutional or pooling layer corresponds to: the kernel configuration (top 

row), the layer configuration (middle row) and the dimension of the output (bottom row). (e.g. there 

are 64 filters of n × 3 × 3 in Conv1 that used the input patch of n × 11 × 11 with a stride of 1 and a pad 

of 2; the dimension of the output is 64 × 11 × 11) 



 

 62 

IV. Results and discussion 

i. Band Configuration Comparison 

As shown in Table A-3, the testing accuracy improves along with an increase in the number of 

input bands used. 

 

Table A-3 Testing accuracy of band configurations. 

Configuration Testing accuracy 

3-band 90.23 % 

5-band 93.64 % 

7-band 98.03 % 

10-band 98.18 % 

 

The 3-band configuration produced the lowest (testing) classification accuracy at 

90.23%. The accuracy increases by 3.41% using the 5-band configuration compared to the 3-

band configuration. Furthermore, the accuracy is improved significantly from the 5-band 

configuration to the 7-band configuration. Applying the 10-band configuration on the proposed 

CNN led to a result comparable to the 7-band configuration. Therefore, for assessing the 

transferability of the proposed CNN to an independent set of MODIS images,  the study only 

applied the 7-band configuration (i.e. without including TIR bands) for validation. 

ii. Testing and Validation Accuracy Comparison 

Classification results for two examples from the validation dataset are shown in Figure A-2 for 

the break-up and freeze-up periods, respectively. It can be seen that the performance of the 

proposed CNN is visually accurate overall. In both figures, the majority of ice and water pixels 

were retrieved correctly. The CNN produced a spatially smooth distribution of water-ice, 

which is reasonable since CNN with deep networks extracts more abstract texture features 

resulting in predictions that are less sensitive to pixel-based spectral values.  



 

 63 

  

  

Figure A-2 Lake ice cover maps produced by the processed CNN. Left: Example during 

break-up period (15 May 2010, UTC 2000; top: RGB composite image from MOD02 

product bands 1 and 2; bottom: Lake ice map from CNN); Right: Example during freeze-

up period (15 November 2009, UTC 1945; top: RGB composite image from MOD02 

product bands 1 and 2; bottom: Lake ice map from CNN). 

 

However, the accuracy of the validation dataset produced by the trained CNN with the 

7-band configuration is 90.13%, which is considerably less than the 98.03% testing accuracy. 

As seen in Figure A-2 left, the model somewhat underestimated thin cloud cover. Likewise, in 

Figure A-2 right (close to the top section of the lake), the edge of cloud cover was misclassified 

as ice and the cloud shallow over ice was misclassified as water.   

The different results between the testing and validation data indicate the overfitting of 

the CNN in the two datasets. Nevertheless, the high testing accuracy demonstrates the powerful 

learning and classification capability of the CNN given that the training and testing data are 
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independent and identically distributed. Hence, the variation between testing and validation 

data makes the CNN prone to overfitting. 

V. Conclusions and Future Work 

This research investigated the classification performance of a CNN in mapping lake ice cover 

from MODIS TOA reflectance imagery. The input variable configuration of SZA, visible, 

near-infrared and shortwave infrared bands produced optimal classification results. The 

proposed CNN model performed well when assessed with the testing dataset with 98.03% 

accuracy; accuracy which dropped to 90.13% using an independent (out-of-sample) validation 

dataset.  

To further reduce overfitting, we plan to collect a larger sample from more years and 

other lake sites as to increase the diversity of the training data. On the other hand, performing 

label-preserving transformations, such as rotation and flipping, enlarges training sample 

augmentation artificially. Additionally, a more comprehensive study and evaluation of other 

CNN architectures and configurations, such as the number of layers, kernel size, and patch 

size, is required.  
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