
Scalable and Reliable Middlebox
Deployment

by

Milad Ghaznavi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2020

© Milad Ghaznavi 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Stefan Schmid
Professor
Department of Computer Science
University of Vienna

Supervisor: Raouf Boutaba
Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Bernard Wong
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Ali José Mashtizadeh
Assistant Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Wojciech Golab
Associate Professor
Department of Electrical and Computer Engineering
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contribu-
tions included in the thesis. This is a true copy of the thesis, including any required final revisions,
as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This dissertation includes first authored peer reviewed materials that have appeared in conference
and journal proceedings published by the Institute of Electrical and Electronics Engineers (IEEE)
and Association for Computing Machinery (ACM).

The ACM’s policy on reuse of published materials in a dissertation is as follows:

“Authors can include partial or complete papers of their own (and no fee is expected)
in a dissertation as long as citations and DOI pointers to the Versions of Record in
the ACM Digital Library are included.”

The following list serves as a declaration of the Versions of Record for works included in this
dissertation:

Portions of Chapter 2:

Milad Ghaznavi, Nashid Shahriar, Shahin Kamali, Reaz Ahmed, and Raouf Boutaba. Distributed
service function chaining. IEEE Journal on Selected Areas in Communications, 35(11):2479–2489,
November 2017. https://doi.org/10.1109/JSAC.2017.2760178

Portions of Chapter 3: Milad Ghaznavi, Ali Jose Mashtizadeh, Bernard Wong, and Raouf
Boutaba. Constellation: A high performance geo-distributed middlebox framework. Technical
Report arXiv:2003.05111 [cs.NI], ArXiV, March 2020. https://arxiv.org/abs/2003.
05111

Portions of Chapter 4:

Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong, Raouf Boutaba, and Ali Jose Mashtizadeh.
Fault tolerant service function chaining. In Proceedings of the 2020 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’20, New York, NY, USA, August 2020.
Association for Computing Machinery (ACM). To appear

iv

https://doi.org/10.1109/JSAC.2017.2760178
https://arxiv.org/abs/2003.05111
https://arxiv.org/abs/2003.05111

Abstract

Middleboxes are pervasive in modern computer networks providing functionalities beyond
mere packet forwarding. Load balancers, intrusion detection systems, and network address
translators are typical examples of middleboxes. Despite their benefits, middleboxes come with
several challenges with respect to their scalability and reliability.

The goal of this thesis is to devise middlebox deployment solutions that are cost effective,
scalable, and fault tolerant. The thesis includes three main contributions: First, distributed service
function chaining with multiple instances of a middlebox deployed on different physical servers to
optimize resource usage; Second, Constellation, a geo-distributed middlebox framework enabling
a middlebox application to operate with high performance across wide area networks; Third, a
fault tolerant service function chaining system.

v

Acknowledgements

I would like to express my special gratitude to my supervisor, Professor Raouf Boutaba, for his
support throughout my doctoral studies. Raouf has been amazingly patient with me allowing me
to mature as a researcher; he has been a wonderful source of knowledge and experience guiding
me through my graduate career.

I extend my thanks to my examining committee, Professor Stefan Schmid, Professor Wojciech
Golab, Professor Bernard Wong, and Professor Ali José Mashtizadeh, for reviewing my thesis
and participating in my defense during the COVID 19 pandemic. I have been incredibly fortunate
to have closely worked with and learned from Bernard and Ali.

I would thank my friends and colleagues, Benjamin Cassell, Shihab Rahman Chudhury, and
Shahin Kamali for their collaboration and friendship, in particular my friend, Ali Abedi. Big
thanks to Elaheh Jalalpour, my colleague and good friend, for all joyful and stressful moments we
experienced throughout our graduate studies.

My deepest appreciation goes to my parents, Touran and Nosratollah, for everything they
have done for me; my father will be forever in my heart. I am immensely grateful to my bothers
and sisters for their unconditional love, support, and confidence; special thanks to my brother,
Mahmoud, for his support over the past few years in Canada.

vi

To my father

vii

Table of Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Distributed Service Function Chaining . 2

1.2 Constellation: A Geo-Distributed Middlebox Framework 3

1.3 Fault Tolerant Service Function Chaining . 4

1.4 Dissertation Plan . 4

2 Distributed Service Function Chaining 5

2.1 Challenges . 7

2.1.1 System Implementation Challenges . 7

2.1.2 Optimization Challenges . 9

2.2 Distributed Service Function Chaining . 11

2.2.1 Definitions . 11

2.2.2 Mathematical Model: . 11

2.3 NP Hardness of Distributed Service Function Chaining 14

2.4 Kariz: Heuristic Solution . 16

2.4.1 Route and Middlebox Instances . 18

2.4.2 Solution Improvement Rounds . 20

viii

2.4.3 Update Layers . 22

2.4.4 Time Complexity Analysis . 23

2.5 Evaluation . 24

2.5.1 Experimental Setup and Methodology 24

2.5.2 Acceptance Ratio . 25

2.5.3 Resource Utilization . 27

2.5.4 Operational Costs . 27

2.6 Related Work . 30

2.7 Conclusion and Future Work . 31

3 Constellation: A Geo-Distributed Middlebox Framework 32

3.1 Background and Motivation . 34

3.1.1 Middlebox State . 35

3.1.2 Recent Work: State Management for LAN 35

3.1.3 Geo-distributed Middleboxes . 36

3.2 Design Overview . 38

3.2.1 Study of Common Middleboxes . 38

3.2.2 Constellation Design Choices . 40

3.3 Constellation Middlebox Framework . 41

3.3.1 State Objects . 42

3.3.2 Asynchronous State Replication . 44

3.3.3 Dynamic Scaling . 47

3.4 Implementation and Experience . 48

3.4.1 Network Address Translator . 49

3.4.2 Artifacts of Asynchronous Replication 49

3.5 Evaluation . 50

3.5.1 Experimental Setup and Methodology 50

3.5.2 Performance Breakdown . 51

ix

3.5.3 Performance in Normal Operation . 52

3.5.4 Dynamic Scaling . 57

3.5.5 Coalescing Benefits . 58

3.5.6 Inconsistency Artifacts . 58

3.5.7 Development Complexity . 59

3.6 Related Work . 61

3.7 Conclusion and Future Work . 62

4 Fault Tolerant Service Function Chaining 63

4.1 Background . 65

4.1.1 Challenges . 66

4.1.2 Limitations of Existing Approaches . 66

4.2 System Design Overview . 67

4.2.1 Requirements . 67

4.2.2 Design Choices . 68

4.3 FTC for a Single Middlebox . 69

4.3.1 Middlebox State Replication . 69

4.3.2 Concurrent Packet Processing . 72

4.3.3 Concurrent State Replication . 73

4.4 FTC for a Chain . 75

4.4.1 Normal Operation of Protocol . 76

4.4.2 Failure Recovery . 78

4.5 Implementation . 79

4.6 Evaluation . 79

4.6.1 Experimental Setup and Methodology 79

4.6.2 Micro-benchmark . 81

4.6.3 Fault Tolerant Middleboxes . 83

4.6.4 Fault Tolerant Chains . 85

x

4.6.5 Failure Recovery . 88

4.7 Related Work . 90

4.8 Conclusion and Future Work . 91

5 Conclusions 92

5.1 Thesis Summary . 92

5.2 Future Research Directions . 93

References 94

xi

List of Figures

2.1 Distributed Deployment of a Chain . 10

2.2 To send a flow of size nnn = 6 from s to t, a flow of size 3 is sent to nodes 1 and 5.
These nodes then send a flow of size 1 to any node that they dominate. Firewalls
are placed at dominating nodes 1 and 5. 15

2.3 Layers . 17

2.4 Routing as Single-Source Single-Sink MCFP 19

2.5 Actions . 21

2.6 Acceptance Ratio . 26

2.7 Resource Utilization Comparison . 28

2.8 Operational Costs . 29

3.1 The architecture of an NFV environment . 34

3.2 Firewall and asymmetric routing. The second accepts the response traffic because
the instances share state. 37

3.3 Constellation’s design components . 41

3.4 Total throughput of middleboxes: Compared to linear scaling, Constellation is
within 2–4% for NAT and 1–5% for IDPS. 53

3.5 Total throughput of two NAT instances in WAN. Constellation’s throughput is
largely independent of WAN latency, but synchronous accesses to remote state
slow down S6’s throughput by 6× to 32× going from 5 to 100 ms latency. 54

3.6 End-to-end Latency of the first instance of 2 NAT instances deployed in our LAN.
Constellation’s average and 99 percentile latency remain steady under sustainable
loads. Constellation’s latency increases by approaching to its saturation point. . . 56

xii

3.7 Throughput of the first instance of 2 NAT instances in a scale-out event. This
instance experiences a sub-millisecond throughput disruption during fork. The
throughput becomes unsteady for few milliseconds during state transmission. . . 57

3.8 Coalescing benefits. IXP-1 and IXP-2 are two traces of an internet exchange
point [108, 109]. We observe more compression for IXP-1 because IXP-1 has
fewer distinct flows compared to IXP-2. Because the counting bloom filter
operates on a smaller flow key space, more state updates can be coalesced for IXP-1. 59

3.9 Histogram shows the number of packets leaked beyond the target threshold for
Constellation’s IDPS. 60

4.1 Service function chain model in NFV . 65

4.2 Normal operation for a single middlebox . 70

4.3 Data dependency vectors. The head and the replica run two threads and maintain
a dependency vector for three state partitions. 74

4.4 Normal operation: chain of n middleboxes. 76

4.5 Throughput vs. state size . 81

4.6 Throughput of Monitor . 82

4.7 Throughput of MazuNAT . 83

4.8 Latency of middleboxes . 84

4.9 Throughput vs. chain length . 86

4.10 Latency vs. chain length . 87

4.11 Ch-3 per packet latency . 88

4.12 Replication factor . 89

4.13 Recovery time . 90

xiii

List of Tables

2.1 Middleboxes . 9

2.2 Off-the-shelf middleboxes . 24

3.1 Time to access state in different locations: The throughput of remote state across
a wide area network can be as low as 10 to 100 accesses per second. 37

3.2 Examples of common middleboxes: A list of common middlebox applications
are shown. For “Size (B)”, c and n are respectively the number of connec-
tions/sessions and hosts/servers. Note that we provide a representative set of
state for each middlebox, and the they are not exhaustive. Moreover, for each
middlebox application, we list the state of multiple implementations, and an
implementation does not necessarily include all the presented state. 38

3.3 Throughput of a pass-through middlebox in Mpps. S6 is built on DPDK, while
Constellation uses DPDK+Click that adds overhead to the toolkit baseline. Refer-
ence adds the overhead of finding which node owns a state object. We measure
the read and write costs separately and together. 51

3.4 NAT average latency. Constellation’s latency remains constant going from 2 to
3 NAT instances. Its latency increase going from 1 to 2 is due to the scheduling
overhead of Click. 55

4.1 Experimental middleboxes and chains . 81

xiv

Chapter 1

Introduction

Middleboxes, such as firewalls, WAN optimizers, and network address translators are pervasive
in computer networks. They enable modern networks to perform advanced functionalities that
are beyond packet forwarding. For example, they protect against threats by filtering malicious
traffic, improve network performance by optimizing resource usage, and mitigate scarcity of IPv4
addresses [131, 142, 147, 167].

Deploying and operating middleboxes have been hindered by employing hardware middlebox
appliances. A small number of vendors customize hardware and software of these appliances for
specific functionalities. At the beginning of their service life time, resources of these appliances are
under utilized, as they are over provisioned for peak loads [142]. On the other hand, fixed hardware
resources become obsolete quickly and unable to handle average network loads. Providing fault
tolerance, which is essential for middlebox applications, can be also burdensome for middlebox
hardware appliances. A backup infrastructure requires purchasing and configuring a duplicate set
of hardware appliances [145]

Network Function Virtualization (NFV) [44] aims to accelerate and facilitate innovations for
middleboxes by transforming the way they are provided. NFV decouples middlebox functionalities
from hardware by creating software instances, for example virtual machines or containers that run
on commodity servers. This allows network operators to install and remove middlebox instances
on demand in response to traffic loads. Network operators can also devise more general and
flexible mechanisms to provide fault tolerance for a diverse set of middlebox applications and
deployments.

NFV can revolutionize the networking industry; however, its realization in practice is chal-
lenging. It still has to face several theoretical and system design challenges on its path to success.

1

This dissertation presents three contributions aiming to bridge the gap between NFV promises
and practical realization:

• Cost reduction: Distributed service function chaining optimizes the cost of deploying
middleboxes in cloud infrastructures. Middleboxes are commonly chained together in an
ordered sequence, e.g., firewall→IDS→proxy, to meet high level service requirements. This
middlebox deployment is called a service function chain [130, 131]. Our approach places
middlebox instances of a chain distributedly where multiple instances of a single middlebox
can be deployed in different servers. Compared to prior approaches that do not allow such a
distributed deployment, our approach decouples the throughput of a middlebox from the
underlying hardware while utilizing resources more efficiently.

• Dynamic scaling: Constellation is a framework for a geo-distributed deployment of mid-
dleboxes. Constellation allows network operators to dynamically scale the number of
middlebox instances that cooperatively process traffic over a wide area network. Using
loosely coupled replication, Constellation enables middlebox instances to be deployed
across a geo-distributed sites with high latency links, while prior middlebox frameworks
are designed and optimized only for deployments in local area networks with low latency.

• Fault tolerance: Fault Tolerant service function Chaining (FTC) is a system that provides
fault tolerance to an entire chain of middleboxes. FTC’s design takes advantage of the
structure of a service function chain to provide fault tolerance. This design allows FTC to
support higher performance than can be achieved by prior systems; their design comes with
high performance overhead because they consider individual middleboxes as independent
fault tolerant units that together form a fault tolerant chain.

These contributions enable network operators to support middlebox deployments that are cost
efficient, scalable, and fault tolerant. Next, we briefly describe each contribution.

1.1 Distributed Service Function Chaining

The deployment of a service function chain involves selecting and instantiating a number of
middlebox instances, placing these instances, and routing traffic through them. In the current
optimization models of a chain deployment, instances of the same function are assumed to be
identical, while typical service providers offer middleboxes with heterogeneous throughput and
resource configurations. The instances of a middlebox are installed in a single server which limits

2

a chain to the throughput of a few instances that can be installed in a single physical machine.
Furthermore, the selection, placement, and routing problems are solved in isolation.

We present distributed service function chaining that coordinates these operations, places
instances of a middlebox distributedly, and selects appropriate instances from typical middlebox
offerings. This deployment uses network resources efficiently and decouples a chain’s throughput
from that of physical servers. Our specific contributions in this work are:

• Providing a mathematical model for the problem of distributed service function chaining
and proving its NP hardness.

• Proposing Kariz, a local search heuristic that solves this problem for large networks.

We implemented Kariz and evaluated its performance. In accepting requests for deploying
middlebox chains, our results show that Kariz achieves an acceptance ratio of 76–100% at an
extra cost of at most 24% compared with the optimal solution.

1.2 Constellation: A Geo-Distributed Middlebox Framework

Middleboxes are increasingly deployed across geographically distributed data centers. The
instances of a middlebox distributed across different sites maintain and share state information
to cooperatively process traffic. In these scenarios, the WAN latency between different sites can
significantly impact the middlebox performance. The deployment across such infrastructures can
even become impractical due to the high cost of remote state accesses over wide area networks.

Constellation is a framework for the geo-distributed deployment of middleboxes. Constellation
uses asynchronous state replication of specialized state objects to achieve high performance and
scalability. Our framework has the following key attributes:

• Highly scalable and performant state sharing using asynchronous state replication.

• Providing convergent state objects that can be independently updated across different
instances.

• Building an efficient and reliable multicast state replication layer that synchronizes conver-
gent state objects using their own properties.

Our evaluation of Constellation shows that compared to the state of art [173], Constellation
improves the throughput by a factor of 96 over wide area networks.

3

1.3 Fault Tolerant Service Function Chaining

Tolerating failures when they occur along chains is imperative to the availability and reliability
of enterprise applications. Service outages due to chain failures severely impact customers and
cause significant financial losses. Making a chain fault tolerant is challenging since, in the case of
failures, the state of faulty middleboxes must be correctly and quickly recovered while providing
high throughput and low latency.

We present FTC, a novel system design and protocol for fault tolerant service function
chaining. FTC provides strong consistency with up to f middlebox failures for chains of length
f + 1 or longer without requiring dedicated replica nodes. In FTC, state updates caused by packet
processing at a middlebox are collected, piggybacked into the packet, and sent along the chain to
be replicated. FTC makes the following specific contributions:

• Extending the replication protocol in [163] to support a chain of middleboxes.

• Improving the usability of multicore middleboxes by introducing transactional packet
processing where a middlebox thread processes each packet in a transaction.

• Improving the replication performance using data dependency vectors that track depen-
dencies between packet transactions with higher flexibility compared to prior thread-based
techniques.

We implemented and evaluated FTC. Our results for a chain of 2 to 5 middleboxes show that
FTC improves throughput by 2× to 3.5× compared with the state-of-the-art [146] with lower
latency per middlebox.

1.4 Dissertation Plan

This dissertation proceeds as follows to detail our contributions. In Chapter 2, we present
distributed service function chaining. We discuss Constellation in Chapter 3. Next in Chapter 4,
we present fault tolerant service function chaining. Finally, we discuss the future of middlebox
deployments and conclude this dissertation in Chapter 5.

4

Chapter 2

Distributed Service Function Chaining

A service-function chain, or simply a chain, is an ordered sequence of middleboxes composing a
service [131]. For example in a typical data-center network, traffic from a server passes through an
IDS, a firewall, and a NAT before reaching to the Internet [167]. Until recently, middleboxes have
been vertically integrated in dedicated hardware middleboxes, i.e., a chain of pricey hardware
middleboxes are provisioned to provide throughput for peak-load, and traffic must be routed
through fixed locations in which these middleboxes are placed [130].

By decoupling network functions from underlying hardware, NFV implements middleboxes
as software appliances – also known as virtual network functions – that run on commodity servers.
In this way, a chain of inexpensive middlebox instances provide the same packet-processing
functions at a desired throughput, and we can route traffic through appropriate locations in which
these instances are dynamically placed. Such a deployment reduces capital and operational costs
and optimizes network operations.

A chain deployment involves selecting and instantiating a number of middlebox instances,
placing these instances, and routing traffic through them. An optimal chain deployment coor-
dinates the selection, placement, and routing to minimize resources allocated while satisfies
the resource capacity and location constraints. Prior middlebox chaining models have several
limitations as follows.

Gaps in Selection: Most of the optimization models [6, 11, 171] do not consider the typical
middlebox offerings and assume that instances of the same middlebox are identical in their
resource consumption and throughput. Service providers offer middlebox instances with different
configurations to provide predictable quality of service. For example, HP offers virtual IPSec [73]
that provides throughputs of 268, 580, and 926 Mbps assuming respectively 1, 4, and 8 CPU cores.

5

Similarly, Riverbed offers WAN-optimizers [137] with throughputs of 10 and 50 Mbps given
respectively 2 and 4 CPU cores. Note that the correlation between the throughput and resource
consumption is not necessarily linear. In practice, predicting the performance of middlebox
software instances is not trivial [8, 39, 40].

Gaps in Placement and Routing: To process a traffic flow, some models use a single physical-
machine to place the instances of a same middlebox [6,11,93,104,112] or even all middleboxes of
a chain [142]. However, doing so severely limits throughput of a middlebox and a chain to a few
instances that can be instantiated in a physical-machine. The throughput of these instances might
not be sufficient to process the total traffic routed through them, and this problem is exacerbated
by the fact that traffic volume through middleboxes has an increasing trend [75, 170].

Gaps in Coordination: A middlebox instance cannot be selected if there is not sufficient
resources to place its instances. Further, it is impractical to place an instance in a given location
when adequate bandwidth is not available to route traffic from/to the location. To achieve an
optimal deployment of service chains, selection, placement, and routing must be performed in
a coordinated manner; otherwise, the deployment results in sub-optimal utilization of network
resources and quality of service. Most of existing solutions solve the placement and routing in
isolation [47, 56, 130, 175]. There are few solutions [11, 112] that coordinate the placement and
routing; however, they treat the selection of middlebox instances separately.

To fill the above gaps, we present distributed service function chaining (DSFC). For each
middlebox of a chain, DSFC selects from provided middlebox offerings and determines the
appropriate number of instances to be placed. DSFC places these instances in a way that instances
of a same middlebox can be installed distributedly in multiple machines. Such a placement
decouples a chain’s throughput from physical-machines. Further, DSFC, utilizing the global
knowledge of the network, routes traffic and distributes the load among the middleboxes instances.
DSFC coordinates selection, placement, and routing operations in such a way that network
resources are utilized more efficiently.

Specifically, our contributions in this chapter are:

• We model and solve DSFC using mixed integer programming (MIP), and prove its NP-
Hardness.

• For larger networks, we propose Kariz, a local search heuristic that employs a tuning
parameter to balance the speed-accuracy trade-off;

6

• We perform extensive simulations to evaluate Kariz against the MIP implementation for
various chain-lengths and throughput-demands. The results demonstrate that Kariz achieves
the competitive acceptance ratio of 76-100% at an extra cost of less than 24%, in comparison
to the MIP implementation.

2.1 Challenges

A chain specifies that the traffic originating from a source, is processed by an ordered sequence of
middleboxes, and finally is delivered to a target. To deploy a chain distributedly, several system
and optimization challenges have to be addressed.

2.1.1 System Implementation Challenges

Middleboxes often operate on data-packets at a flow granularity and maintain state information
on the flows and sessions they process [151, 166]. State information consists of configuration
and statistical data, and differs from one middlebox to another. If a middlebox is replaced with
multiple software instances, the functionality should not change, and these instances must act in
concert. Further, the traffic processed by a single middlebox, should now be processed by multiple
software instances. Thus, consistent state distribution and consistent traffic distribution among
the software instances are essential.

Consistent State Distribution

Deployment of multiple software instances to provide a middlebox requires distribution of the
state information. Hence, we need to model the state information and distribute it among the
middlebox instances consistently. The state information can be classified as internal or external.
The internal state is stored and used only by a single instance, while the external state is distributed
and shared across multiple instances.

Since the state information is stored in a key-value store [80, 151], data structures like
distributed hash-tables and technologies like remote direct memory access (RDMA) can fulfill
this challenge efficiently. Moreover, it might be required to modify the middleboxes to cope with
the defined model. There are abstraction models and system implementations that address this
challenge. Rajagopalan et al. [134] introduce a system-level abstraction called Split/Merge that
stores the internal state exclusively inside each middlebox instance, while the external state is

7

distributed and accessible by other instances. As a proof of concept, they implemented FreeFlow
as a Split/Merge system, and ported Bro IDS [123] inside it. Further, they analyzed and confirmed
the compatibility of two other middleboxes, i.e., application delivery controller and stateful
NAT64. In addition, Joseph and Stoica [80] provide a model to describe different middleboxes.
As concrete examples, firewall, NAT and layer4 and layer 7 load-balancer are described using
the proposed model. Further, Qazi et al. [57] and OpenNF [58] introduce a unified framework to
manage state information.

Consistent Traffic Distribution

Replacing a single middlebox with multiple software instances requires splitting and distributing
the traffic load among these instances. Per-flow traffic splitting distributes the traffic in the
granularity of flows, and packets of a flow have to be routed along the same path.

Split/Merge [134] utilizes a similar approach. However, this approach does not support
accurate load-distribution and is not always applicable. For instance, if the load of a flow is higher
than the throughput of an assigned middlebox instance, that instance cannot handle the load and
we have to split the traffic into a smaller granularity.

Flowlet switching [2,148] can be leveraged to split the traffic into a finer granularity. A flowlet
is a “burst of packets from the same flow followed by an idle interval” [148]. If the interval
between two flowlets is greater than the maximum delay difference between parallel paths, the
second flowlet – and consequently following flowlets – can be sent through different paths. Thus,
a single flow can be split into multiple paths without packet-reordering.

Furthermore, accurate load balancing is achieved using short flowlet intervals ([50, 100]ms) [148].
Specifically, flowlets are abundant in data-center networks since the latency is very low and the
traffic is intensively bursty [82]. In addition to these distributed methods, the central schemes
leveraging SDN and OpenFlow capabilities [101] can also be used. For instance, group tables [51]
can be used to split and balance the traffic.

We have shown the feasibility of distributed deployment of middlebox instances to provide
a middlebox and distributing traffic among these instances. Next, we state the assumptions that
ground our optimization model:

• The state information of a middlebox can be consistently distributed among multiple
middlebox instances. This assumption holds for the state information of a single flow.

• The traffic can be consistently distributed into multiple paths among multiple middlebox
instances. This assumption holds for a single flow.

8

Middlebox Instance type Throughput CPU demand Memory demand

IDS IDS1 50 Mbps 1 core 24 GB
IDS2 80 Mbps 1 core 32 GB

Firewall FW1 100 Mbps 1 core 1.75 GB
FW2 200 Mbps 2 core 3.50 GB

Table 2.1: Middleboxes

2.1.2 Optimization Challenges

The optimization challenge is in computing an optimal allocation of host and bandwidth resources
to a chain. Each middlebox in a chain is replaced with a number of software instances providing
the requested throughput. These instances are placed in a set of chosen hosts. In addition,
the traffic is split and routed among the instances. Thus, certain decisions have to be made
optimally: number of middlebox instances (selection), placement of these instances, and routing
the traffic through the placed instances. These decisions are inter-dependent and must be made in
a coordinated manner.

Figure 2.1 shows a chain deployment. The network of Figure 2.1a includes 6 hosts, each with
an 8-core CPU and 64 GB residual memory. For simplicity, switches are not shown, and the
presented paths are disjoint in this example. All paths have 130 Mbps available bandwidth.

The chain of Figure 2.1b includes 2 middleboxes with 210 Mbps throughput: an IDS and a
firewall (FW). The flow comes from the host A, the source, is processed by IDS and FW, and then
sent to host F , the target. As listed in Table 2.1, there are 4 different instances for IDS and FW.

Figure 2.1c depicts the chain deployed in the network, and Figure 2.1d shows the logical
representation of this deployment: with 3 instances for IDS (1× IDS1 + 2× IDS2) and 2 instances
for FW (1 × FW1 + 1 × FW2). The IDS instances are installed in hosts B and D. The flow
splits, and 80 Mbps and 130 Mbps are routed from the source to hosts B and D, respectively. FW
instances are installed in hosts B and E. In host B, the flow after being processed by IDS2 is sent
to FW1. IDS1 and IDS2 forward the flow to host C in which instance FW2 is placed. Finally, the
flow from the FW instances is sent to the target. Note that it is possible to place the middlebox
instances in the source and target if sufficient host resources are available.

9

A

D

B

E

C

F

130

130130

130 130

130

(a) Network

A IDS FW F
210 210 210

(b) Chain

A C

F
IDS

2

IDS
2

IDS
1

FW
1

FW
2

80

50+80

805
0
+
8
0

8
0

130

80

(c) Deployed in Network

FA

IDS
2

IDS
1

IDS
2

FW
2

FW
1

50

80

80

80

80

50

80

13
0

(d) Logical Representation

Figure 2.1: Distributed Deployment of a Chain

10

2.2 Distributed Service Function Chaining

With the assumptions and challenges established, we now introduce the formal definitions and the
mathematical model.

2.2.1 Definitions

Physical Resources: R = {CPU, memory, storage, . . .} is a set of available physical resources.

Network: Graph G = (N,E) is the substrate network, where N and E are substrate nodes and
links, respectively. cmr ∈ R+ is the residual capacity of node m for resource r ∈ R. Set Em
denotes incident links on node m. Moreover, mn ∈ E is the link between node m ∈ N and node
n ∈ N and has a residual bandwidth capacity of cmn ∈ R+.

Chain: Symbols with over-line are for chain definitions. Forwarding graphG = (N,A) denotes
a chain. N includes middleboxes V ⊂ N , and two endpoints s and t. Traffic flow coming from
s ∈ N is processed by middleboxes in the chain, and is forwarded to t ∈ N . Respectively, s and t
are the source and target of the traffic. The corresponding substrate nodes for source and target
are respectively s ∈ N and t ∈ N .

Middlebox v = f(u) follows middlebox u. We define ring uv ∈ A as 2 consecutive
middleboxes u and v, where v = f(u). We assume that u generates traffic type u and v consumes
this traffic type. Each ring uv has the throughput demand b denoting integer traffic volume flow
generated or consumed by the ring nodes.

Middlebox instances: V denotes a set of middlebox instances. An instance u ∈ V has through-
put qu ∈ R+ showing the maximum traffic that u can process. dur ∈ R+ is the demand of u for
resource r. These demands include the overhead of accessing distributed state information. For s
and t, we assume that there are instances us and ut, respectively. These instances have throughput
b and no demand for any resource. Finally, instances of middlebox type u are identified by Vu.

2.2.2 Mathematical Model:

Variable xumn ∈ R is the traffic volume of type u ∈ N/{t} on substrate link mn. Target t is
excluded since it only consumes traffic; thus, no traffic of this type exists in the network. Variable

11

ymu ∈ Z is the number of instances u in substrate node m. Instances of Vu installed in node
m provide throughput of type u. Variable zmu ∈ R denotes the allocated throughput of these
instances.

A solution for the problem is shown by a tuple of allocation vectors (X, Y, Z), defined as
follows. Let vector Xu = {xumn : ∀mn ∈ E} be allocated bandwidth of links to traffic type u,
and X =

⋃
u∈N/{t}Xu. If Yu = {ymu : ∀m ∈ N, ∀u ∈ Vu} identifies the instances for middlebox

type u, let Y =
⋃
u∈N Yu. Finally, Zu = {zmu : ∀m ∈ N} denotes the allocated throughput of

type u in every node, and Z =
⋃
u∈N Zu.

Node Capacity Constraint: Equation 2.1 ensures that instances are placed with respect to the
substrate nodes capacities.

∀m ∈ N : ∀r ∈ R :
∑
u∈V

ymudur ≤ cmr (2.1)

Location Constraint: Equalities in Equation 2.2 ensure that an instance of us and an instance
of ut are placed only in s ∈ N and t ∈ N , respectively.

ysus = 1,
∑

m∈N/{s}

ymus = 0

ytut = 1,
∑

m∈N/{t}

ymut = 0
(2.2)

Substrate Link Capacity Constraint: Equation 2.3 makes sure that the capacities of substrate
links are not violated.

∀mn ∈ E,m < n :
∑
u∈N

(xumn + xunm) ≤ cmn (2.3)

Throughput Constraint: Equation 2.4 ensures that the aggregate throughput capacity of in-
stances of type u placed in substrate node m is more than allocated throughput zmu.

∀m ∈ N : ∀u ∈ N :
∑
u∈Vu

ymuqu ≥ zmu (2.4)

12

Throughput Demand Constraint: Equation 2.5 guarantees that for each middlebox u, through-
put b is allocated by instances Vu.

∀u ∈ N :
∑
m∈N

zmu = b (2.5)

Flow Conservation Constraint: Equation 2.6 is a modified version of the flow-conservation
constraint [161]. Let us say that in node m ∈ N , instances of middlebox types u and v = f(u)
are installed. Therefore, instances of Vv locally process a volume of traffic type u generated by
instances of Vu. This volume is zmv. Unprocessed traffic volume should exit the node m. This
constraint ensures this phenomenon.

∀m ∈ N : ∀u ∈ N/{t} : v = f(u) :∑
mn∈Em

(
xumn − xunm

)
=
(
zmu − zmv

) (2.6)

Bandwidth Allocation Cost: Equation 2.7 is the bandwidth allocation cost. Coefficient β ∈ R+

identifies the relative importance of bandwidth resources. The communication overhead to access
the distributed state information is negligible vs. the actual service traffic volume.

B(X) = β
∑

u∈N/{t}

∑
mn∈E

xumn (2.7)

Host Resource Allocation Cost: Equation 2.8 is the cost of allocating host resources to place
middlebox instances. Coefficient αr ∈ R+ is the relative importance of resource r ∈ R.

H(Y) =
∑
u∈V

∑
r∈R

αrdurymu (2.8)

Objective Function: Equation 2.9 minimizes the aggregate cost of allocating host and band-
width resources.

min
(
B(X) +H(Y)

)
(2.9)

13

2.3 NP Hardness of Distributed Service Function Chaining

In this section, we prove that the Distributed Service Function Chaining (DSFC) problem is NP
hard. We use a reduction from the NP hard minimum dominating set problem. Our reduction
technique is of independent interest and can be potentially applied to analyze the complexity of
other problems related to service function chaining.

A dominating set of a graph is a set of nodes so that each node is either a member or adjacent
to at least a member of this set. The goal is to find a dominating set with minimum size.

Given a graph GGG with nnn nodes as an instance of the dominating set problem, we create an
instance of DSFC and prove that there is a dominating set of size kkk if and only if there is a solution
of cost 3nnn+ kkk in the DSFC instance.

Recall from Section 2.2.1, an instance of DSFC is defined with resources, a network, a service
chain, and middleboxes. In our reduced instance, CPU is the only host resource. We define the
network to be the same asGGG with two extra nodes s and t. These two nodes are connected to all
nodes ofGGG. Nodes s and t have 1 CPU core, and others have 2 CPU cores. Incident links on s
have the capacity nnn, and the capacity of other links is 1. The chain is defined as s → FW → t.
Endpoints s and t respectively correspond to source s and target t in the network, and FW is a
firewall SF. Moreover, there is a single firewall instance demanding 2 CPU cores and providing
throughput capacity nnn. On this instance of DSFC, the goal is to install firewall instances to process
a flow of size nnn from s to t. Note that these middleboxes require 2 CPU cores and cannot be
placed in s or t. Here, by ‘flow’, we mean the traffic that is to be sent from s to t. We define αr
(r = CPU) and β to be 1, hence the total cost of DSFC is the total number of allocated CPU cores
(resource cost) and bandwidth. Figure 2.2 depicts this reduction. Clearly, the DSFC instance can
be constructed in polynomial time from the dominating set instance.

To prove the hardness, we show that there is a dominating set of size kkk if and only if there is a
solution for the DSFC instance with cost 3nnn+ kkk. We start with the easy direction:

Lemma 1. If there is a solution of size kkk for the dominating set problem, then there is a solution
of cost 3nnn+ kkk for the DSFC problem.

Proof. Let vvv1, . . . , vvvkkk denote the nodes in the dominating set, and aaaiii (1 ≤ iii ≤ kkk) denote the
number of nodes vvviii dominates. If a node is dominated by more than one node, we count it only
once (arbitrary assign it to one node in the dominating set). Note that we have

∑
iii aiaiai = nnn− kkk.

In the DSFC instance, we send a flow of size aiaiai + 1 from s to any vivivi. Doing so results in
bandwidth cost of nnn. We also send a flow of size 1 from vivivi to any of the nodes that it dominates;
this requires a bandwidth of aiaiai for vivivi and in total bandwidth of nnn− kkk for all dominating nodes.

14

1 3

6

5

42

(a) Dominating Set

1 3

6

5

42

s t

3/6

0/6

3/6

0/6

0/6

1/1

1/1

1/1

1/1

0/6

1/1

1/1

1/1 1/1 0/1 0/1

1/1

1/1

FW FW

(b) DSFC

Figure 2.2: To send a flow of size nnn = 6 from s to t, a flow of size 3 is sent to nodes 1 and 5.
These nodes then send a flow of size 1 to any node that they dominate. Firewalls are placed at
dominating nodes 1 and 5.

Finally, we send a flow of size 1 from all nodes (except s) to t. This results in bandwidth cost
of nnn (see Figure 2.2b). We install a FW for the service chain in each node in the dominating set,
resulting in resource cost of 2kkk. In total, the cost is nnn+ (nnn− kkk) + nnn+ 2kkk = 3nnn+ kkk.

To prove the other side of the reduction, we start with Lemma 2.

Lemma 2. Given a solution of the DSFC problem with cost ccc, one can achieve a solution of cost
no more than ccc in polynomial time, for which the following properties for each node other than
s, t hold: (1) the total inflow received through nodes other than s is at most 1; (2) the inflow
is through s or a node that receives inflow through s; moreover, (3) FWs are placed at nodes
receiving some flow directly from s; (4) each node receives either all or none of its inflow from s.

Proof. We modify the solution to satisfy properties (1)-(4) in the same order without affecting
previously satisfied properties. In this process, the cost of the solution is never increased. To
satisfy (1), assume there is node uuu with inflow xxx > 1 from node(s) other than s. This assumption
implies a bandwidth cost of at least 2xxx for the flow passing at least another node between s and uuu.
In the new solution, we remove this flow and send a flow of size xxx from s to uuu and place a FW at
uuu. Doing so gives a bandwidth cost of xxx and resource cost of 2. The increase in cost is no more
than xxx+ 2− 2xxx ≤ 0.

Property (2) follows directly from (1). To satisfy (3), note that by (1), the flow between nodes
excluding s and t form a forest. Placing FWs only in the roots in the forest does not increase the

15

cost. For (4), assume a node receives an inflow of xxx through s and an inflow of 1 through another
node. By (3), there is a FW at uuu. In the new solution, we send a flow of xxx + 1 from s to uuu and
remove the flow from the other node.

We use Lemma 2 to prove the other side of the reduction:

Lemma 3. If there is a solution of cost 3nnn+ kkk for the DSFC problem, then there is a solution of
size kkk for the dominating set problem.

Proof. First, we apply Lemma 2 to achieve a solution with the desired properties. We refer to the
nodes that receive flow through s as critical nodes. By property (4), a node receive all or none of
its inflow from s. By (3), there is a FW located in critical nodes. By (1), each non-critical node
has inflow of 1 and by (2), such node receives this inflow through a critical node. In other words,
the graph formed by flows (excluding t), is a tree of diameter 2 rooted at s.

Letmmm denote the number of critical nodes; the resource cost for FWs would be 2×mmm. The
bandwidth cost is 3nnn −mmm: a cost of nnn for the outflow of s, another cost of nnn for the inflow of
t, and an extra bandwidth cost of nnn −mmm for the flow from critical nodes to non-critical ones
(recall that the inflow of each non-critical node is 1). In conclusion, the total cost of the solution
is 3nnn+mmm, i.e., we have 3nnn+mmm = 3nnn+ kkk. In other words, the number of critical nodes is kkk. On
the other hand, by (1) and (2) each non-critical node has an inflow of exactly 1 through a critical
node. Hence, critical nodes form a dominating set of size kkk.

From Lemmas 1 and 3, Theorem 1 is direct.

Theorem 1. Finding the solution with minimum cost for DSFC is NP hard.

2.4 Kariz: Heuristic Solution

Before explaining our solution, we construct a visualization tool to simplify our description.
Let us assume that each u ∈ N is deployed in a layer. Each layer contains a set of nodes in
which instances of a corresponding middlebox type can be installed. In other words, in the layer
corresponding to u, we initially place a subset of nodes in which at least a middlebox instance
v ∈ Vu can be instantiated. L(u) denotes this layer. Figure 2.3c depicts the layers for the chain of
Figure 2.3b. As shown in Figure 2.3c, s and t are the only nodes present in layers L(s) and L(t),
respectively. Further, nodes {s,m} and {n, t} are respectively included in layers L(u) and L(v)
because these nodes have sufficient resources to host instances of these middleboxes. Figure 2.3d
presents a sample solution for the chain of Figure 2.3b.

16

s

n

m

t

(a) Network

u vs t

(b) Chain

s L(s)

s m L(u)

n t L(v)

t L(t)

(c) Layers

s L(s)

s m L(u)

n L(v)

t L(t)

(d) Sample Solution

Figure 2.3: Layers

17

Inspired by [69, 120], we develop a local search heuristic, Kariz, which routes traffic layer by
layer. We introduce the process first, and then provide a detailed overview.

Kariz is shown in Algorithm 1 and works as follows. We first initialize layers as described
above and set solution as empty (line 1). Starting from layer L(s) (line 2), iteratively route b
volume of traffic from layer S = L(u), the source-layer, to the next layer T = L(v), the sink-layer
(lines 3-11). After finding the optimal route between two layers (line 5), compute the number of
instances of Vv by considering the allocated throughput (line 6). Add the solution of the sink-layer
to the earlier solution (line 7). Improve the current solution (line 8), and update layers (line
9). Now, traffic has reached the sink-layer; consider this layer as new source-layer (line 10).
Repeat this procedure if traffic has not reached the last layer yet, and there are nodes in the new
source-layer (line 11).

Algorithm 1 Kariz Algorithm

1: init-layers(); (X, Y, Z)← (∅,∅,∅);
2: u← s; zss ← b; ztt ← b; S ← L(s);
3: do
4: v ← f(u); T ← L(v);
5: Xv, Zv ← route(S, T, b);
6: Yv ← instances(Zv);
7: (X, Y, Z)← (X ∪Xv, Y ∪ Yv, Z ∪ Zv);
8: improve(X, Y, Z);
9: update-layers();

10: u← v; S ← L(v);
11: while

(
u 6= t and S 6= ∅

)
;

Still to clarify are the traffic routing between two layers and the number of instances in the
sink-layer, how the solution is improved, and how the layers are updated.

2.4.1 Route and Middlebox Instances

Procedure route(.) in Algorithm 1 computes the route between two layers by solving the multi-
source multi-sink minimum cost flow problem (MCFP) [63]. MCFP is the problem of routing
a volume (say b) of a commodity (in our case traffic of type u) from multiple sources (say a
source-layer) to multiple sinks (in our case a sink-layer). Any multi-source multi-sink MCFP can
be modeled as a single-source single-sink MCFP that is solvable in polynomial time [63]. For

18

s

n

m

t

S=L(u)

T=L(v)

super

source

super

sink

max(znv)nv

zsu

Demand of b

max(znv)tv

zmu

Supply of b

Figure 2.4: Routing as Single-Source Single-Sink MCFP

our problem, this is achieved by representing the source- and sink-layers with imaginary nodes
super-source and super-sink, respectively.

Figure 2.4 depicts this model for layers S and T in Figure 2.3. The procedure is as follows.
Add a super-source and connect it to every node m ∈ S in the source-layer with a directed-link
whose capacity is zmu. For the sink-layer, add a super-sink node and connect every node n ∈ T
using a directed-link. The capacity of the directed-link connecting node n to the super-sink is
the maximum throughput max(znv) of the instances that can be installed in node n. There is no
cost to sending the traffic via these links. As the result, the minimum cost route of traffic from
super-source to super-sink gives the optimal routing between the two layers. If p denotes the
super-sink, the throughput allocation in each n ∈ L(v) is znv = xunp.

Finding the capacity of directed-links from the sink-layer to the super-sink is similar to
the problem of instances(.). The former is finding the maximum throughput max(znv) out of
instances that can be installed in node n. The latter is finding the minimum allocation of resources
to instances providing throughput of at least znv in each node n ∈ L(v).

In fact, these problems are dual and can be modeled as a multidimensional knapsack prob-
lem [26]. Think of the node as an |R|-dimensional knapsack, each dimension corresponding to a
resource r ∈ R. The items to be packed are instances with the profits of their throughputs and
weights of their host resource demands.

19

Though this problem is known to be NP-Hard [26], since the resources of a single machine,
especially the number of CPU cores, are limited, the problem size is small. Thus, we can solve it
efficiently. Instead, as CPU cores are the most pricey and restricted resources, a feasible solution
optimizing the number of allocated cores is a good optimum.

2.4.2 Solution Improvement Rounds

Routing between two layers focuses on the cost of traffic routing and does not consider the cost
of host resource allocation. Doing so may lead to high host resource cost. Hence, we need to
improve the solution.

Procedure improve(.), as shown in Algorithm 2, facilitates this: repeatedly search for some
actions to improve the solution (lines 2-8). If no such action is found, report the current solution
(line 4-6). Otherwise, perform the action with the greatest drop in cost, the best admissible
action (line 7), and continue with the adjusted solution. We define actions and admissibility in
Section 2.4.2 and Section 2.4.2, respectively.

Algorithm 2 Procedure improve(.)
1: procedure improve(X , Y, Z)
2: loop
3: a← best-action(X, Y, Z);
4: if not admissible(a) then
5: return (X, Y, Z);
6: end if
7: perform-action(X, Y, Z, a);
8: end loop
9: end procedure

Actions

An action is a local transformation intended to reduce the cost of solution. Let (X
′
, Y

′
, Z
′
) be the

modified solution after performing an action on a current solution (X, Y, Z). The cost difference
before and after performing an action is regarded as the action cost, as defined in Equation 2.10.
The best action has the lowest cost.

(
B(X

′
) +H(Y

′
)
)
−
(
B(X) +H(Y)

)
(2.10)

20

m L(u)

L(v)

L(w)p

n ……

…

…

z
n
v+

!
n
v

(a) add(n,L(v), δ)

L(u)

m L(v)

L(w)p

n ……

…

…

z
n
v+

"
n
v

x

x

x

(b) open(n, {m}, L(v), δ)

Figure 2.5: Actions

We define the below actions variants of actions used by [120]:

• add(n, L(v), δ): Include node n ∈ N in L(v) and allocate more δ > 0 units of throughput
in this node (znv ← znv + δ). Then, find the minimum cost routing from layer L(v) to the
next and previous layers in the current solution, given allocated throughputs of L(v)/{n}.
The next and previous layers are L(w) and L(u) if w = f(v) and v = f(u), respectively.
Finally, tune the allocated throughput of nodes L(v). This action is shown in Figure 2.5a.

• open(n,M,L(v), δ): Add node n ∈ N into layer L(v), remove nodes M ⊆ L(v), and
allocate more δ > 0 units of throughput in node n (znv ← znv + δ). Finally, reroute the
traffic either received or originated in layer L(v). This action replaces a set of fragmented
middlebox instances installed in different nodes M with instances collocated in one node n.
This action makes sense only if δ ≥

∑
m∈M(zmv). Figure 2.5b depicts an example of this

action.

Traffic routing in the above actions is a bit different from routing in route(.). The difference
lies in routing two different traffic types. Considering each traffic type as a commodity, still
this problem can be modelled it as a multi-commodity MCFP (real flows) that is solvable in
polynomial time [45].

We also need to examine actions and select the best in polynomial time and ensure that the
number of performed actions is not exponential. Particularly, we need to select the best action
with sufficient improvement efficiently. These criteria, efficient action selection and sufficient
improvement, are essential to assure that the algorithm terminates in polynomial time.

21

Efficient Action Selection

The number of add(.) actions is less than |N | × |V | × b under the assumption of integrality of b.
Thus, it is possible to check all actions and select the best in polynomial time. We can even do
better and select the value of δ considering the throughputs of middlebox instances Vv. However,
the number of possible open(.,M,L(v), .) actions is equal to the number of subsets M ⊆ L(v)
which is exponential (2|L(v)|). Thus, we need an efficient procedure to select a good open(.) action.

For a fixed layer L(v), fixed node n ∈ N and fixed δ, we find this subset in a greedy procedure
working as follows. Starting from empty set M , iteratively remove a node m from L(v) and
add it to M . Removing this node has the minimum cost vs. other nodes L(v)/m. Continue this
procedure while such a node m ∈ L(v) exists, the removal of m decreases the cost, and m’s
throughput is less than δ −

∑
p∈M zpv. This procedure repeatedly removes a node m ∈ L(v)

whose removal results in the greatest decrease in both bandwidth and host resource allocation
costs.

Sufficient Improvement

If we allow performing actions that yield minor improvements, the number of actions can be large.
Thus, only actions with sufficient cost improvement are allowed. An action yielding sufficient
improvement is said admissible. More precisely, we define an action as admissible if it improves
the solution no less than ε

5|N |

(
B(X) +H(Y)

)
for some tuning parameter ε > 0 [106]. Using ε,

we can control the trade-off between the accuracy and speed of our solution.

Let (X∗, Y ∗, Z∗) be the optimal solution. The number of actions performed will be at most
5|N |
ε

ln B(X)+H(Y)
B(X∗)+H(Y ∗)

because the optimal solution is the lower bound for our solution. Since
ln
(
B(X) + H(Y)

)
is polynomial in the size of the network and chain, the number of actions

performed is also polynomial.

2.4.3 Update Layers

As the last piece of the puzzle, procedure update-layers() updates nodes in layers as shown
in Algorithm 3. From a layer L(u) that traffic has already reached, every node m ∈ L(u) is
eliminated if this node does not allocate throughput of type u (lines 3-4). From other layers, nodes
whose resources are allocated and hereafter cannot host corresponding instances are excluded
(lines 5-7). Layers L(s) and L(t) are not updated.

22

Algorithm 3 Procedure update-layers()

1: procedure update-layers()
2: for u ∈ V do
3: if traffic has reached L(u) then
4: L(u)← {m|m ∈ L(u), zmu > 0}
5: else
6: L(u)← {m|m ∈ L(u), ∃v ∈ Vu,∀r : cmr ≥ drv}
7: end if
8: end for
9: end procedure

Through §2.4.1 to 2.4.2, we show that the running times of all route(.), instances(.),
improve(.), and update-layers(.) are polynomial in the size of the network and chain. Hence,
Kariz terminates in a polynomial time. Next, we analyze the time complexity of our algorithm.

2.4.4 Time Complexity Analysis

Kariz routes traffic and installs instances layer by layer. For each layer, Kariz (i) finds a feasible
initial solution, (ii) improves this solution, and (iii) updates layers accordingly.

One can verify that the second step dominates the time complexity for the computation
performed in each layer. In this step, Kariz performs repeatedly either best add(.) or best open(.).
The number of performed actions depends on the quality of the initial solution and is at most
5|N |
ε

ln B(X)+H(Y)
B(X∗)+H(Y ∗)

. In the worst case, the initial solution is O(|N |) worse than the optimal
solution (placing an ‘almost’ idle instance in each substrate node). Thus, the number of performed
actions is in O(|N | log |N |).

Finding the best add(.) action is examining at most b|N ||V | actions each of which entails
MCFP problem. Let Ψ(G) be time complexity of solving an instance of MCFP problem [14]. The
complexity of finding the best add(.) action is b|N ||V |Ψ(G). Each open(.) action also involves
solving MCFP problem.

For the best open(.,M,L(v), .), Kariz finds a subset M in L(u) that at worst is in O(|N |2).
Thus the complexity of finding the best open(.) action is in O(|N |2)Ψ(G). In total, the time
complexity of running the second step for each layer is O(|N |2 log(|N |))Ψ(G).

23

Middlebox Instance types Throughput CPU demand

firewall [13]
Level 1 100 Mbps 1 core
Level 5 200 Mbps 2 core
Level 10 400 Mbps 4 core

IDS Bro [18] 80 Mbps 1 core

IPSec [73]
VSR1001 268 Mbps 1 core
VSR1004 580 Mbps 4 core

WAN-opt. [137]
CCX770M 10 Mbps 2 core
CCX1555M 50 Mbps 4 core

Table 2.2: Off-the-shelf middleboxes

2.5 Evaluation

We start with describing our experimental setup and methodology in Section 2.5.1. We evaluate
the performance of Kariz in terms of its acceptance ratio in Section 2.5.2. Then in Section 2.5.3,
we evaluate the resource utilization of Kariz. Finally, we measure the operational costs of Kariz
in Section 2.5.4.

2.5.1 Experimental Setup and Methodology

Simulated Network: The 6-ary Fat-tree, a common data-center topology, is used as the sim-
ulated network, and contains 99 nodes (54 hosts and 45 switches) and 162 links providing full
bi-sectional bandwidth. Hosts are equipped with a 20-core CPU and 2 Gbps network-adapter.
The link capacities are 2 Gbps. This network is the largest network that we could run the im-
plementation of DSFC model, as explained in Section 2.5.1, in a manageable time. The relative
importance of allocating 1 Mbps of bandwidth over one link vs. one core CPU is 1% (i.e.,
number of CPU cores of a host
bandwidth capacity of a host).

Middlebox instances: We select the firewall, IDS, IPsec and WAN-opt. as middleboxes.
Table 2.2 reveals the middlebox instances used in the simulation. Since the CPU is the most
restricted host resource and dominates the cost, we ignore memory and storage requirements.

Chains: Sources and targets are uniformly distributed in the network. Poisson distribution
with the average of 1-chain per 100-seconds simulates the arrival rate. Chain lifetimes follow

24

exponential distribution with an average of 3 hours.

Parameters: We asses Kariz in respect to throughput-demand and length of chains. In each
experiment, the throughput-demand is fixed to one of {200, 250, 300, . . . , 500}Mbps, and one of
the following chains is selected. Note that Len-i contains all middleboxes of Len-i-1.

• Len-1: {firewall},

• Len-2: {firewall→ IDS},

• Len-3: {firewall→ IDS→ IPSec}, and

• Len-4: {firewall→ IDS→ IPSec→WAN-opt.}

Evaluation Method: We compare Kariz with the model in Section 2.2.2 reffered as MIP. We
implemented MIP using CPLEX. Note that MIP optimally deploys a single chain. Moreover, the
tuning parameter of Kariz is set to ε = 32. Thus, an action is performed if it improves the current
solution by ∼ 6%. With fixed parameters, we repeat each experiment 10 times for every 1000
chains generated, and report the average.

2.5.2 Acceptance Ratio

Figure 2.6a and Figure 2.6b depict the acceptance ratios of Kariz and MIP, respectively. The
values are the average acceptance ratios from 10 experiments. As expected, the longer chains with
higher throughput-demand have less chance to be accepted. The low acceptance ratio for Len-4 is
due to the resource hunger of these chains, especially for WAN-opt. instancess.

The range of numbers of chains accepted by Kariz vs. MIP in Figure 2.6c are: 100-100% for
Len-1, 82-99% for Len-2, 76-96% for Len-3, and 89-97% for Len-4. Considering the chain length
and throughput-demand impacts in Figure 2.6c, Kariz performs closely to MIP.

It might be expected that increasing the length of chain and throughput-demand should cause
Kariz to have a lower acceptance ratio than MIP. However, Kariz has better results for Len-4 than
Len-3 and Len-2, especially for 500 Mbps throughput-demand. Recall from Section 2.4.2 that
Kariz attempts to improve the solution after deployment of every middlebox of a chain. Since,
Len-4 includes all middleboxes of Len-3 and Len-2 chains (see Section 2.5.1), the expense of
more improvement rounds increases the chance of adjusting the earlier solution. All in all, Kariz
has a competitive acceptance ratio, within 76-100% of MIP.

25

1.0

Len-1 Len-2 Len-3 Len-4

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

nc
e

R
at

io

(a) Kariz Acceptance Ratio

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

nc
e

R
at

io

(b) MIP Acceptance Ratio

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

0.75

0.80

0.85

0.90

0.95

1.00

(K
ar

iz
/M

IP
)

(c) Acceptance Ratio Comparison

Figure 2.6: Acceptance Ratio

26

2.5.3 Resource Utilization

Figure 2.7 compares the resource utilization of Kariz with MIP’s. Bandwidth/CPU utilization
for Kariz and MIP are the ratio of allocated bandwidth/CPU resources over aggregated band-
width/CPU capacities in the network. For Middlebox resources, the reports are the average of
per-middlebox throughput utilization.

The bandwidth utilization ratios as depicted in Figure 2.7a are 100-101% for Len-1, 86-102%
for Len-2, 83-104% for Len-3, and 125-134% for Len-4. Figure 2.7a and Figure 2.6c show
that Kariz efficiently utilizes the bandwidth resources for Len-1, Len-2, and Len-3 for various
throughput-demands. Regarding Len-4, Kariz’s efficiency in utilizing bandwidth resources
decreases.

The CPU utilization ratios are in the range of 100-100% for Len-1, 82-98% for Len-2, 76-96%
for Len-3, and 98-101% for Len-4, as observed in Figure 2.7b. According to Figure 2.7b and
Figure 2.6c, Kariz utilizes CPUs efficiently, close to MIP’s.

Finally, the instance utilization ratios vs. MIP are shown in Figure 2.7c. The following ranges
are reported: 100-100% for Len-1, 99-100% for Len-2, 98-106% for Len-3, and 102-107%. Kariz
utilizes middlebox instances with an efficiency close to that of MIP for different lengths and
throughput demands.

2.5.4 Operational Costs

Figure 2.8 shows Kariz’s costs vs MIP’s. We collect Kariz’s and MIP’s average of per-chain costs.
The reported values are the ratio of Kariz’s and MIP’s costs.

As shown in Figure 2.8a on average, Kariz allocates bandwidth resource vs. MIP in the
range 100-101% for Len-1, 104-108% for Len-2, 108-113% for Len-3, and 132-141% for Len-4.
Regarding CPU as presented in Figure 2.8b, on average, the same number of CPU cores is
allocated for Len-1, Len-2, and Len-3. For Len-4, Kariz allocates 3-8% more CPU cores.

Finally, in respect to the total operational cost in Figure 2.8c, the following cost ratios vs MIP
are observed: 100-101% for Len-1, 103-105% for Len-2, 105-108% for Len-3, and 117-124%
for Len-4. Kariz is more cautious to allocate CPUs than to allocate bandwidth showing that
improvement rounds (see Section 2.4.2) optimize the total cost by releasing CPUs while allocating
more bandwidth. In summary, Kariz incurs a competitive per-chain cost that is less than 124% of
MIP’s.

27

1.0

Len-1 Len-2 Len-3 Len-4

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

0.8

0.9

1.0

1.1

1.2

1.3

(K
ar

iz
/M

IP
)

(a) Bandwidth Utilization

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

0.8

0.9

1.0

1.1

1.2

1.3

(K
ar

iz
/M

IP
)

(b) CPU Utilization

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

0.8

0.9

1.0

1.1

1.2

1.3

(K
ar

iz
/M

IP
)

(c) VNF Utilization

Figure 2.7: Resource Utilization Comparison

28

1.0

Len-1 Len-2 Len-3 Len-4

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

1.0

1.1

1.2

1.3

1.4

(K
ar

iz
/M

IP
)

(a) Bandwidth Allocation Cost

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

1.0

1.1

1.2

1.3

1.4

(K
ar

iz
/M

IP
)

(b) CPU Resource Allocation Cost

200 250 300 350 400 450 500

Throughput-Demand (Mbps)

1.0

1.1

1.2

1.3

1.4

(K
ar

iz
/M

IP
)

(c) Total Cost

Figure 2.8: Operational Costs

29

2.6 Related Work

In this section, we discuss our work compare to the related work.

Selection: VNF-P [112] studies a hybrid deployment scenario using hardware-middleboxes
and software middleboxes to provide a requested service. VNF-OP [11], [74], JoraNFV [168],
and [104] model batch-deployments of multiple chains. [121] is a scheduling framework for
deploying middlebox instances. These papers assume that instances of the same middlebox are
identical. Slick [6] is a framework that allows users to write fine-grained elements to perform
custom packet-processing. Predicting the performance of such arbitrary packet-processing element
is not trivial. In contrast to these studies, we select appropriate middlebox instances from different
typical offerings providing predictable performance.

Placement: Split/Merge [134] and OpenNF [58] redistribute packet-processing across a col-
lection of instances. In contrast to DSFC, they do not focus on placement optimization models.
Stratos [56] orchestrates instances on a remote cloud. It uses a rather simple technique that places
instances of middleboxes in a chain as closely as possible to each other. JVP [93] considers
the relation of bandwidth usage and host resource usage in the deployment of chains. However,
JVP instantiates a single VM for each middlebox type. VNF-OP [11] and VNF-P [112] place
all instances of a middlebox on a single machine. In contrast to these works, we place multiple
instances of each middlebox distributedly. Luizelli et al. [103] only optimize the placement of mid-
dleboxes and does not consider the routing. CoMb [142] is an architecture designed to consolidate
the chain deployment. In contrast to DSFC, CoMb places all instances of middleboxes in a chain
that deal with the same session at a fixed location. Such deployments consolidate middleboxes of
a chain on the same server to multiplex substrate resources and reuse processing modules of a
server across multiple middleboxes. However, these deployments limit chain performance to the
resources of an individual server.

Routing: Unlike our work, [47, 130, 175] optimize only bandwidth usage. In processing a
network flow, Slick [6] uses a single instance for each middlebox. On the contrary, DSFC routes
traffic among multiple instances for each middlebox. Stratos [56] solves the routing separately
after placing instances. LightChain [74] optimizes the number of switches between ingress and
egress points of chains. The authors of [62] solve the joint placement and routing problem using a
dynamic programming algorithm. E2 [121] instantiates instances in certain servers to optimize
the inter-server communication. Although [11, 62, 112, 121] coordinate the placement and routing,

30

they still treat the selection separately. We jointly optimize routing, placement, and selection that
was not the focus of these studies.

Virtual network embedding: Our problem has similarities to virtual network embedding
(VNE) problem that deals with mapping virtual nodes and links onto a substrate network [49,138].
However, our problem is fundamentally different; virtual links are part of the input to the VNE
problem, while communication links between middlebox instances are unknown in our problem,
and the solution must find these links.

2.7 Conclusion and Future Work

The limitations of current optimization models restrict a chain’s throughput to resources of a
physical-machine and result in sub-optimal resource utilization and service performance. In this
chapter, we presented distributed service function chaining (DSFC) to overcome these limitations.
DSFC decouples a chain’s throughput from physical servers by placing instances of a middlebox
in multiple servers. Furthermore, DSFC optimizes network utilization by coordinating the
deployment operations.

We formulated DSFC using a mixed integer programming (MIP) model and proved its NP-
Hardness for substrate networks with general graph topologies. An interesting future research
direction is to analyze the complexity of our problem for specific datacenter topologies, such as
fat-tree and VL2 [66].

For larger scales, we proposed and evaluated a heuristic called Kariz. The experimental results
for various chain lengths and throughput demands demonstrate that Kariz achieves competitive
cost and acceptance ratio compared to the MIP model. Kariz can be also adapted to deploy reorder
compatible chains [9], i.e., their middleboxes can be reordered without affecting the semantics
of the chains. The number of valid chains generated using reordering are small because service
function chains are short, commonly with less than six middleboxes [92], and many reorderings
are invalid because they result in changing the chain semantics [9]. Thus, we can generate possible
valid chains, compute their deployment costs using Kariz, and select a chain with the lowest cost.

31

Chapter 3

Constellation: A Geo-Distributed
Middlebox Framework

Middleboxes, such as firewalls, load balancers, and intrusion detection systems are pervasive
in computer networks [3, 41, 135, 147]. The network function virtualization vision enables
middleboxes to be flexibly deployed across a network and provisions new instances on demand.
Middleboxes may have multiple instances to satisfy traffic demand and share state across instances
to cooperatively process traffic.

Although the instances of a middlebox are typically deployed in the same data center, there
has been an increasing demand for deploying middlebox instances across wide area networks [5,
12, 44, 121]. This growth stems from the trend towards building multi-data center applications,
which necessitates global scale network management.

In many cases, even though the instances are connected by high latency wide area links, it
is still necessary for them to share state [7, 33, 105, 111, 132, 174]. Examples include distributed
rate limiters that share traffic information to monitor and limit the traffic of multi-data center
applications [33,132], intrusion detection systems with instances across an ISP network that share
statistics to detect attacks [7, 105, 174], and proxies in a content delivery network that actively
share their health statuses [169].

Existing middlebox frameworks that support state sharing have focused on optimizing for local
area network deployments [58, 85, 134, 173]. Full control over routing allows these frameworks
to maintain affinity between traffic flows to middlebox instances. This results in fewer remote
accesses since per-flow state remains mostly local to an instance [85, 134, 173]. However, in wide
area networks, traffic can span multiple administrative domains, giving a middlebox framework
much less control over routing. Asymmetric routing and multipath protocols [119,156] compound

32

this issue because a single flow may traverse multiple instances, thus requiring state sharing
to process such flows. The result is more remote accesses to shared state across wide area
links, which increases packet latency and reduces middlebox throughput. These frameworks use
synchronous state access for correctness, which is only practical within a local area network as it
can add a network roundtrip delay to each packet.

In this chapter, we introduce Constellation, a framework for geo-distributed middlebox deploy-
ments. Constellation provides a state management system that is highly scalable and performant
even when middlebox instances are deployed across wide area networks. It separates the middle-
box state from its application logic and abstracts shared state using convergent state objects, which
can be independently updated yet still converge. Transparent to the middlebox application logic,
Constellation asynchronously replicates state objects to other middlebox instances. Replication
makes the state local to each instance, and convergence allows a middlebox instance to mutate
state with only lightweight coordination.

Asynchronous replication of convergent state enables more flexible load balancing. Replication
subsumes the need for flow-instance affinity, and enables any middlebox instance to process any
packet with high performance, as the instance already has the required state. Replication also
provides seamless dynamic scaling since traffic load can be rebalanced among instances without
waiting for state migration.

Standard conflict free replicated data types (CRDTs) [143, 144] are convergent objects that
can be used to represent the shared state for a class of common middleboxes. However, to support
middleboxes such as intrusion detection systems and network monitors [19, 34, 46, 100, 102], we
also develop new CRDTs including a counting bloom filter and count-min sketch. These CRDTs
rely on an ordering property that is provided by our framework. Moreover, state updates in some
middleboxes may necessitate violating CRDT properties. To address this limitation, Constellation
support multi-object updates for packet processing where the same set of objects are always
updated together. This is commonly used in network address translators and load balancers.

The properties of convergent state objects offer unique opportunities for us to build an efficient
and reliable multicast state replication layer. Using the idempotence and commutativity properties
of state objects, this layer coalesces state updates for more efficient utilization of wide area
network bandwidth. It also provides higher tolerance for straggler instances, as they can receive
and apply batched updates to reduce bandwidth and processing resources compared with executing
uncoalesced operations.

We implemented Constellation using Click [87], and evaluated our framework by comparing
its performance with S6 [173], the state-of-the-art middlebox framework for local area networks.
Our results show that Constellation scales linearly with throughput and experiences no overhead
due to network end-to-end latency. Over wide area networks, Constellation can process 96× the

33

Instance

1

Instance

2

Orchestrator

Forwarding
rules

Control
messages

Packets

Figure 3.1: The architecture of an NFV environment

bandwidth of S6, which was not designed to tolerate latency. In local area networks, Constellation
can process up to 11× the bandwidth of S6, which comes from eliminating the heavyweight
mechanisms that S6 uses to hide remote state accesses (see Section 3.5.2). Finally, we show that
the complexity of our middleboxes is similar to synchronous approaches when compared to S6.

3.1 Background and Motivation

Figure 3.1 shows a typical network function virtualization (NFV) environment, where an orches-
trator manages middlebox instances deployed on servers and the network connecting these servers.
In response to traffic load, the orchestrator dynamically adds or removes middlebox instances,

34

and installs forwarding rules in the network to redistribute traffic.

The above operations are sufficient to scale stateless middleboxes, e.g., firewalls that pass or
block individual packets based on static rules. However, scaling stateful middleboxes becomes
challenging, since in addition to the aforementioned operations, the middlebox state must be
migrated simultaneously with the new workload distribution [121, 134, 173].

3.1.1 Middlebox State

Stateful middlebox instances maintain dynamic state regarding traffic flows, which changes
how they process packets [67, 133, 151]. For example, stateful firewalls filter packets based on
information collected about flows [10].

The middlebox state consists of partitionable and shared state. The partitionable state is
accessed by a single instance, for example the cache in a web proxy [152]. Shared state can be for
a single flow or a collection of flows processed across middlebox instances, and multiple instances
query and mutate them. For example, IDS instances read and update port-counts per external host
to detect attacks.

3.1.2 Recent Work: State Management for LAN

Existing frameworks that manage shared state are optimized for local area networks and support
synchronous accesses to state [58,81,85,134,173]. State sharing using this model leads to remote
accesses that incur performance cost relative to the network latency.

Two main approaches exist. One approach separates middlebox state into a remote data
store [81, 85]. Remote state accesses increase packet latency and can reduce throughput by
∼60% [81], since extra CPU and bandwidth resources are consumed for remote I/Os. Another
approach [58,134,173] distributes state across middlebox instances. For non-local state, instances
query remote instances [173]. Frequent remote accesses can significantly degrade performance.
Full control over routing allows them to reduce remote accesses by consistently routing a traffic
flow to the same instance so that the flow state remains local to that instance.

Synchronous remote accesses of shared state lead to decreased performance for both ap-
proaches. These frameworks introduce several optimizations to maintain performance of their
middlebox implementations. The state-of-the-art framework, S6 [173], masks the overhead of
remote accesses using concurrency. An instance creates a microthread per packet to enable context
switching to other packets while waiting on synchronous requests. However, as we will discuss

35

in Section 3.5.2, our results show that the overhead of using a microthread per packet halves the
maximum throughput of the framework.

Another optimization is to trade consistency for performance. An instance caches state and
performs reads and writes locally [85, 173]. To avoid permanent divergence, cached state copies
must be merged periodically. Doing so naïvely can result in the consistency anomalies, such as
lost updates.

These optimizations complicate the middlebox design. To achieve acceptable levels of
performance and scalability, developers may need to use a combination of these mechanisms.
Reasoning about their correctness is complicated; an incorrect usage can be a source of subtle
bugs in middlebox applications.

3.1.3 Geo-distributed Middleboxes

Middleboxes are increasingly being deployed across wide area networks, e.g., ISP networks,
multiple data centers, and content delivery networks. In such deployments, middlebox instances
share state to cooperatively process traffic.

For example, rate limiter instances monitor and limit traffic loads from multiple locations in a
content delivery network [33, 132, 169]. They share their state to be able to limit the global traffic
load of multi-data center applications [132], limit the load at the edge [33], and control the impact
of traffic spreaders [169].

IDS instances deployed across an ISP network [7] share their local statistics to detect intru-
sions [7, 105, 174]. Using network-wide statistics collected from different network locations
is essential to detect attacks, such as port scanning and denial of service [105, 149, 165, 174].
Moreover, multiple NAT instances share the same flow table to translate network addresses across
an ISP network [89].

In the CoDeeN peer-to-peer content delivery network [169], distributed proxies share their
health status. To handle a cache miss, a proxy redirects a content request to another peer that is
healthy based on this information.

These middlebox deployments face two challenges. The first challenge is due to characteristics
of wide area network traffic. Traffic can span multiple administrative domains with less control
over routing. This increases shared state hindering scalability and performance. Moreover,
asymmetric routing and multipath routing [119, 156, 160] undermine the flow-instance affinity. In
asymmetric and multipath routing, a traffic flow, e.g., sub-flows of a MPTCP session [119], may
traverse different paths and consequently different middlebox instances. For a correct operation,
the instances must share even per-flow state.

36

Network domain

DestinationFirewall

instance 1

Source

R
e
q
u
e
s
t

R
e
s
p
o
n
s
e

Firewall

instance 2

Figure 3.2: Firewall and asymmetric routing. The second accepts the response traffic because the
instances share state.

State Location Latency Throughput

Local Machine 1–100× ns [17] 10 M–1 G
Remote LAN 10–100× µs [50, 127] 10 k–100 k
Remote WAN 10–100× ms [28, 88] 10–100

Table 3.1: Time to access state in different locations: The throughput of remote state across a
wide area network can be as low as 10 to 100 accesses per second.

Figure 3.2 shows an example asymmetric routing scenario where the traffic of a connection
passes through two firewall instances. A firewall commonly allows connections to initiate only
from protected zones, e.g., “Source” in Figure 3.2. State sharing among firewall instances is
essential, since the second instance allows the response stream only if the first instance shares that
it has observed the request stream [64, 111].

The second challenge is wide area network latency making state sharing extremely costly.
Table 3.1 lists the access times to shared state when it is stored locally, or remotely over a
local and wide area networks. Existing frameworks [81, 85, 173], designed for infrequent state
sharing in local area networks, cannot tolerate frequent state sharing over networks with higher
latency [23, 28, 88, 107].

37

Middlebox State Purpose Shared Abstract data type Size (B)

IDS/IPS
[18, 34, 91, 100]

Session context
Connection context
Bloom filter
Flow size distribution
Port scanning counter

Session inspection
Connection inspection
String rule matching
Traffic summaries
Port scan detection

X
X
×
X
X

Map
Map
Bloom filter
Count-min sketch
Counters

96×c
∼250×c
6250
20 k–200 k
112×n

Firewall
[10, 118, 136, 164]

Flow table
Connection context

Dynamic rules
Connection inspection

X
X

Map
Map

32×c
264×c

Network monitor
[68, 76, 77, 149]

Traffic dispersion graph
Heavy hitters

Anomaly detection
Tracking top heavy flows

X
X

Graph
Count-min sketch

256×n
-

Load balancer
[41, 72, 83]

Flow table
Server pool
Server pool usage

Connection persistence
Available backend servers
Usage of backend servers

X
×
X

Map
-
Vector

28×c
20×n
28×n

NAT [5, 118]
Flow table
Available address pool

Address mapping
Tracking available addresses

X
X

Map
Set

74×c
80×c

Web proxy
[46, 153]

Stored entries
Cache contents
Cache digests

Metadata of cached contents
In memory or storage cache
Compact cache summary

×
×
X

Map
-
Counting bloom filter

104×c
Dynamic
20×c

Table 3.2: Examples of common middleboxes: A list of common middlebox applications
are shown. For “Size (B)”, c and n are respectively the number of connections/sessions and
hosts/servers. Note that we provide a representative set of state for each middlebox, and the
they are not exhaustive. Moreover, for each middlebox application, we list the state of multiple
implementations, and an implementation does not necessarily include all the presented state.

3.2 Design Overview

Table 3.2 shows a list of popular middleboxes and a representative selection of their state. This
list is not exhaustive but provides a representative set of abstract data types used by middleboxes.
To better understand the needs of middleboxes in wide area networks, we start by examining the
needs of these popular middleboxes.

3.2.1 Study of Common Middleboxes

Our study reveals two key observations. First, most middleboxes maintain shared state for collect-
ing traffic statistics, resource ownership, and resource usage. Second, middleboxes mostly operate
on relativity small shared state and trade off precision for higher scalability and performance [7].

38

A corollary is that most operations on shared state are simple even when the middleboxes are
not [81, 85].

Purpose of sharing state: Middleboxes collect statistics about traffic for detection and miti-
gation purposes. As shown in Table 3.2, an IDS/IPS track statistics of traffic connections and
sessions to detect abnormal or malicious communications. The instances of a signature based
IDS need to share their statistics to detect advanced attacks that can exploit multi-path routing
in a wide area network. These attacks split their signatures across multiple paths to circumvent
traditional signature based detection approaches [105]. A stateful firewall inspects the collected
statistics to block malicious connections and maintain dynamic rules for outgoing connections.
As mentioned before, the firewall instances may be required to share their state to handle asym-
metric flows [111]. A network monitor maintains a traffic dispersion graph that embodies the
communications between network nodes. A network wide representation can monitor thousands
of hosts to detect large scale attacks [77, 155]

Middleboxes also track resource ownership and resource usage for resource management
purposes. For example, a load balancer manages backend servers, and distributes the load among
them based on their usage. A NAT manages a set of available public addresses and allocates these
addresses among network flows. NAT instances in an ISP network share their state to correctly
route asymmetric flows [89].

Shared state implementation: Shared state tends to be small, which reduces communication
overheads between instances [105] and per-packet processing costs. For the middleboxes shown
in Table 3.2, to serve millions of flows, the shared state requires only a few 100 MB of the
memory. For example, the most memory intensive middleboxes are web proxies that keep a large
cache local to each instance [152]. Advanced proxies share a compact summary of their cached
contents [46] to allow redirecting content requests to nearby instances. This improves the quality
of service in serving content requests in a content delivery network.

Although many middleboxes make complex decisions based on shared state, their operations
on shared state are simple. Others have also observed that middleboxes operate on shared
state with a simple set of operations [81, 85]. For example, an IDS collects lightweight packet
summaries, but performs complex detection operations locally. Rate limiter instances share their
observed flow rates [132] and use probabilistic analysis to shape traffic of multiple data centers.

Middleboxes collect approximate statistics when collecting precise statistics is too costly
in terms of memory or processing overheads. They sometimes use compact and approximated
statistics for a faster request serving. For example, IDSes and network monitors often use count-

39

min sketches or bloom filters, which are probabilistic data structures, to track top heavy hitters.
Web proxy uses cache digests to quickly check local contents when serving requests.

3.2.2 Constellation Design Choices

Our observations lead us to design Constellation. Constellation is a geo-replicated middlebox
framework that deploy a cluster of middlebox instances distributed across a wide area network.
Constellation provides for the management of shared state across the entire deployment.

Constellation separates the design of middleboxes into middlebox logic and middlebox state
to hide the complexity of state sharing from the middlebox logic. Transparent to the logic,
Constellation asynchronously replicates updates to shared state from each middlebox instance.
Using convergent state, Constellation eliminates most of the complexity of managing asynchrony.
Our key design choices are as follows.

Asynchronous state replication: Constellation replicates middlebox state to all instances asyn-
chronously. Each middlebox instance collects and sends its updates of shared state to all other
instances in near real time, and they apply these updates to their state locally. All instances access
shared state locally without querying remote instances.

Asynchronous access to local state allows middlebox instances to share state over high latency
links of a wide area network. Replication also supports flexible load distribution and seamless
dynamic scaling by subsuming the need for flow-instance affinity. If a middlebox instance is
overwhelmed, traffic can be immediately rerouted to an existing instance that is under utilized.
In removing an excess instance, the orchestrator can reassign traffic load from this instance to
another without waiting for state migration.

Storing a replica of shared state requires more memory than that of existing frameworks, but
the overhead is not substantial. As we observed in Section 3.2.1, many middleboxes operate on
lightweight shared state with small memory requirement. Even larger memory usage does not
change the cost of running middleboxes in the cloud, where computation to memory ratios are
fixed. Middlebox applications already require substantial compute resources that usually goes
hand-in-hand with more than enough memory.

Asynchronous state replication also trades the consistency of state across instances for perfor-
mance. For many cases, our state model framework automatically resolves inconsistencies using
convergent state objects.

40

Log store

Middlebox application logic

Middlebox instance

State objects

Constellation

Other middlebox
instances

State synch.
protocol

State synch.

Outgoing packets

…

Incoming packets

…

Figure 3.3: Constellation’s design components

Convergent state objects: Constellation provides a set of state objects to develop the middlebox
state. These objects are guaranteed to be convergent, i.e., middlebox instances will observe
the same local value for a state object after they receive and perform the same set of state
updates applied in other instances. Convergence eliminates complexities that may arise due to
asynchronous state replication assuring developers about the correctness of shared state.

As we discussed in Section 3.2.1, most middleboxes perform simple operations on shared state.
For these middleboxes, Constellation’s builtin convergent state objects can be used to implement
their shared state. For more complex cases, Constellation provides mechanisms for developers to
customize state objects to reconcile conflicting state updates.

Asynchronous state replication even when using convergent state objects may introduce some
artifacts. We discuss these artifacts and their impact on middleboxes in Section 3.4.2.

Centralized orchestration: A logically centralized orchestrator [24, 54, 113, 126] monitors
traffic load, scales the number of instances according to load variations, and distributes the load
among the instances. Constellation does not involve the orchestrator in state replication to avoid
creating a potential performance bottleneck.

3.3 Constellation Middlebox Framework

Constellation is designed to allow developers to create geo-distributed middlebox applications
with seamless scalability and network latency tolerance. Figure 3.3 shows a middlebox instance
and the main components of the Constellation framework. Our framework works as follows.

41

The middlebox logic registers a set of state objects that model the middlebox state. The state
objects provide APIs to access and mutate state, which are used by the middlebox logic during its
packet processing (discussed in Section 3.3.1).

Constellation internally tracks local state updates by recording them into its log store. The
state synchronization component replicates the recorded state updates to other instances concur-
rent with packet processing. All other instances will apply state updates received by the state
synchronization component to their local state objects (discussed in Section 3.3.2).

During adding or removing of middlebox instances, Constellation adjusts the membership
of the middlebox cluster while keeping other instances to process traffic. Constellation selects
only one existing instance as a source of the state in bringing a new instance up-to-speed; other
instances experience almost no performance disruption by this membership change (discussed in
Section 3.3.3).

3.3.1 State Objects

A state object encapsulates a set of variables and operations to access and update their values.
Operations are designed to guarantee that state objects remain convergent, which simplifies
reasoning about asynchronous state replication.

To ensure convergence, Constellation uses data structures based on CRDTs [143, 144] for its
state objects. Two general types of CRDTs exist [143]: i) state-based CRDTs where a state update
is performed completely local, and the entire state object is disseminated for state synchronization;
ii) an operation-based CRDTs where operations are propagated. Due to the high bandwidth
overhead of state-based CRDTs, we opt for operation-based CRDT.

For convergence, each instance sends its local update operations to other instances, and
each downstream instance applies the received operations. All operations are idempotent and
commutative so instances can safely apply the operations out-of-order and still converge [143].

We create a library of convergent state objects based on our study of various middleboxes
shown in Table 3.2. The library consists of a collection of abstract data types based on operation-
based CRDTs, for instance different flavors of map, set, register, and counter objects.
These convergent objects can implement the basic state of common middleboxes.

Constellation addresses two limitations of existing CRDTs in implementing the state of
middleboxes. First, Constellation provides atomic updates across multiple objects to address
which are not supported by CRDTs. Second, Constellation develops a convergent counting bloom
filter and count-min sketch which are common in intrusion detection systems, network monitors,

42

and proxies (see Table 3.2). These objects have not been proposed in prior work to the best of our
knowledge.

Multi object updates: Middleboxes need to mutate multiple objects simultaneously, but this
may violate the properties of CRDTs. This limitation is because convergence is guaranteed
for operations on individual CRDT objects [143]. Reasoning about the convergence of general
multi-object operations is complicated, because the objects may diverge when mutations on
multiple objects do not commute.

In operating on multiple state objects, there are middleboxes that always update the objects
together. This is common in managing resources where middleboxes update resource usage or
ownership when they allocate or release the resources. For example, a NAT updates an address
pool and a flow table object together in processing a new flow, and a load balancer updates the
server pool usage and its flow table together in assigning a new flow to a backend server.

Operations on multiple state objects do not violate convergence when two conditions hold.
First, such a multi-object operation commutes with other operations defined for the objects.
Second, the operation is idempotent.

Constellation supports multi-object operations by defining a derivative object that contains
multiple state objects, and performs operations on its state objects simultaneously. Constellation
atomically replicates this derivative object in a downstream instance to ensure convergence. We
discuss using derivative state objects to develop a NAT in Section 3.4.1.

Counting bloom filter: A counting bloom filter (CBF) is a memory efficient object for ap-
proximate counting. CBF is used in packet classification, deep packet inspection, and network
monitoring [19, 34, 46, 102] where keeping accurate statistics with fine granularity does not scale
to traffic load.

A CBF represents a large set of n counters using a smaller vector of m counters. It uses
k hash functions to update the counters. A CBF exposes count and value operations. The
count(x) operation computes k hash values for an operand x (e.g., x can be a five tuple flow
identifier). Each hash value provides an index 0 ≤ i < m, and the CBF increments the counter at
k computed indices. On value(x) operation, the CBF computes the same set of k hashes and
returns the minimum value among the relevant counters. The returned value is an approximation,
since the exact value of x’s counter is less than or equal to this value.

For convergence, value and count operations must be commutative and idempotent [143].
As value does not mutate any counter, we focus on count operation. Addition commutes, thus
count also commutes; however, addition is not idempotent. Idempotence can be provided using

43

Constellation’s ordering feature. This feature prevents applying a duplicate count operation,
thus a local count operation performed in a middlebox instance is only applied once at any other
instance across the entire middlebox cluster.

Count-min sketch: A count-min sketch (CMS) is a probabilistic data structure similar to
counting bloom filter and has application in packet classification and deep packet inspections [100,
141].

A CMS has k arrays of n counters. A CMS uses k hash functions to update the counters,
one hash function per array. A CMS provides the same set of operations as a counting bloom
filter. To provide convergence, we use the same technique as that of a counting bloom filter. The
idempotence of CMS is provided using Constellation’s ordering feature.

3.3.2 Asynchronous State Replication

An efficient replication system for convergent state objects has two requirements. First, we
must deliver and apply all operations to all other instances quickly to achieve fast convergence.
Convergent state objects require a one-to-all dissemination of updates and allow commutativity
of updates. Constellation uses multicast to build a replication system that allows unordered
delivery of state updates. Multicast uses bandwidth efficiently compared to having O(n2) point to
point transports and reduces latency compared to other topologies, e.g., forwarding state updates
through middlebox instances one by one.

Second, we must mitigate straggler instances that can slow down the replication for the entire
middlebox cluster. Instances may fall behind because of insufficient bandwidth or processing
power. We use the idempotence and commutativity properties of CRDTs to build a congestion
control scheme that coalesces state updates to adaptively meet bandwidth and processing con-
straints of stragglers. This congestion control can bound how far behind any given instance is
from others. Increasing coalescing can reduce bandwidth requirements, but state updates fall
further behind.

Multicast replication: During a middlebox operation, Constellation records state updates into
a log store. For each state object, the log store allocates a queue of log records and maintains a
sequence number to track these records. A log record tracks an operation by recording the local
order at which it is performed. Specifically, a log record denotes that an operation was performed
on a set of operands at a particular sequence number. For example, for an IDS’s port counter,

44

log record (inc,{22},7) shows that a counter was incremented for SSH port 22 at sequence
number 7.

The state synchronization component allocates a multicast group per state object. Via this
group, middlebox instances share and exchange their local log records of the object. For conver-
gence, all log records must be delivered and applied to other instances. Log records are released
once delivered.

Constellation runs two threads at the sender and receiver sides to transmit log records. Send
threads use multicast to send local log records to other instances. Receive threads receive and
apply log records, send acknowledgements, and prunes log records delivered to all other instances.

For each state object, the send thread continuously retrieves outstanding log records, i.e., log
records that have not yet replicated in other instances, from the queue of this object, creates a
state message from the records, and sends the message to the associated multicast group. The
send thread round-robins between queues belonging to different objects.

A state message carries a list of log records, and an acknowledgement vector. Each instance
maintains the acknowledgement vector to track log records received from other instances. This
vector contains the highest sequence numbers seen for each instance.

The receive thread uses the acknowledgement vector to track external log records. Upon
receiving a state message, the receive thread applies the operations from the message, and updates
the instance’s acknowledgement vector. The receive thread increments a sequence number of the
vector when all log records up and including this sequence number have been received.

Since operations are idempotent and commutative, state objects converge even when applying
duplicate or out of order log records [143]. The receive thread can be also configured to apply log
records in order to provide idempotence for an easier implementation of state objects that are not
intrinsically idempotent. We used this property to provide idempotence for count operation of
counting bloom filter and count-min sketch in Section 3.3.1.

The receive thread also prunes the log store according to received state messages. For each
object, this thread records the last acknowledgement that it has received from other instances. The
smallest acknowledgement shows the latest log record that has been replicated in all instances.
Accordingly, the receive thread prunes all log records up to the smallest acknowledgement.

We provide reliable multicast by retransmitting lost log records due to packet drops. If a log
record has not been acknowledged, the send thread retransmits the record after a timeout based
on the maximum round trip time of any instance. If a multicast channel is idle, the send thread
periodically transmits keep-alive messages containing the latest acknowledgement vector.

45

Adaptive bandwidth optimization: There are cases when middlebox instances may fall behind
in replication due to transient events, such as temporary congestion in the network. In these cases,
Constellation uses coalesced log records instead of sending individual log records. Coalescing
can significantly reduce the bandwidth usage of state replication.

The idempotence and commutativity properties of state objects allows Constellation to coalesce
related log records, i.e., the records of state operations modifying the same object. For example, a
series of increments and decrements to a single counter can be represented as adding the sum of
the operations. To coalesce related operations, the send thread calls back into to the associated
state object.

Constellation detects instances that are falling behind by monitoring the round trip time (RTT)
of each instance in the multicast group. The receive thread measures the minimum and average
RTTs for each instance using acknowledgements. When the average RTT is higher than the
minimum RTT by a set threshold, the instance is marked as congested.

Upon detection, the send thread starts to send coalesced log records using an adaptive looka-
head window based on RTT. The instance continuously monitors the average RTT to increase
or decrease the lookahead window. The larger the lookahead window, the more coalescing
opportunity.

Constellation adjusts the lookahead window to trade-off the bandwidth reduction from coa-
lescing and the increased synchronization latency from delaying the transmission of log records.
The lookahead window size is set based on the throughput. An instance coalesces log records
up to a maximum lookahead or when an acknowledgement is received. If the acknowledgement
arrives early, the instance immediately transmits any already coalesced updates, which effectively
reduces the lookahead size.

Coalescing can handle the majority of cases when middlebox instances fall behind. In
rare events, some middlebox instances may become stragglers due to significant bandwidth or
processing limitations and can slow down Constellation’s replication system.

Constellation detects stragglers using the same RTT based mechanism. Upon detection of such
straggler, the instance starts to transmit its log records over a TCP connection for this instance,
rather than multicast. First, the send thread transmits any outstanding log records over the TCP
connection to assure that the straggler has received all log records up to a particular sequence
number. Then, the send thread can transmit coalesced updates from this sequence number. If the
RTT to the straggler becomes small and has no coalescing benefit, the instance must no longer be
straggling and can rejoin the multicast group. Before switching back to multicast, the instance
drains its TCP buffers to ensure that no log record transmission is missed.

46

3.3.3 Dynamic Scaling

A scaling event changes the members of multicast groups and consequently impacts state repli-
cation. For a correct state replication during and after this membership change, Constellation
ensures three properties: i) unique identification: with a new set of members, each active instance
remains uniquely identifiable; ii) membership agreement: instances agree upon active members so
that their send threads and receive threads can work in harmony; and iii) convergence: the new set
of members still remain convergent for all state objects.

We assume that the orchestrator is fault tolerant. If a failure occurs during scale-out or scale-in,
the orchestrator reliably detects and notifies all instances of the change.

Scale-out event: A new instance joins replication groups and copies a snapshot of middlebox
state from an existing instance before starting to process traffic. Adding a new instance is broken
down into four steps.

First, the orchestrator deploys a new instance with unique identifier. To ensure uniqueness, it
is sufficient that the orchestrator generates a new identifier or reuses the identifier of a removed
instance.

Second, the new instance joins the replication groups and starts to record state messages.
It sends a join message containing its identifier to the multicast groups to announce that its
joining. Existing instances confirm receiving a join message by adding the instance to the
acknowledgement vector of its state messages. Upon receiving this confirmation, the new instance
starts acknowledging state messages received from existing instances. It does so by sending
empty state messages with an acknowledgement vector. The new instance retransmits the join
message until all existing instances confirm receiving the message. This ensures the membership
agreement property.

Third, the new instance requests an existing instance for a snapshot of the state and metadata
(includes the acknowledgement vector of each state object). The existing instance executes a
fork system call [97] to duplicate its process to take a state snapshot and transmit it to the new
instance. For the snapshot consistency, fork is synchronized with packet processing and state
synchronization.

Finally, upon receiving the state snapshot, the new instance applies relevant log records from
state messages recorded since the second step. Lastly, the new instance notifies the orchestrator to
redistribute traffic load to it.

Taking snapshots using fork is fast, since memory is not immediately copied. The memory is
marked as copy-on-write; the operating system copies memory after the original or child process

47

modifies it. Constellation further reduces this overhead by using madvise [98]. Since the
duplicated process does not process incoming packets, Constellation tells the operating system to
excludes memory pages reserved for receiving incoming packets. This significantly reduces the
pause time of fork as this is typically a large savings.

Scale-in event: Another benefit of Constellation is that it can scale-in with no state loss and
virtually zero packet loss. Removing an excess instance takes four steps.

First, the orchestrator reroutes the traffic load of the excess instance to other instances. Due
to state replication, other instances have the state necessary to process this load. Second, the
orchestrator notifies the excess instance and the instance waits for remaining inflight traffic to
arrive. After some time, the instance drains its outstanding log records to ensure convergence.
Third, the excess instance sends a leave message to a multicasting group to announce that it is
leaving. The instance will retry until all instances acknowledge receiving this message, which
ensures membership agreement. Finally, once all other instances have acknowledged the leave
message, the excess instance notifies the orchestrator to reclaim all resources.

3.4 Implementation and Experience

We built Constellation using the Click modular router. It consists of 6141 SLOC for the runtime
and 2155 SLOC for the middlebox implementations. We discuss our development experience
in using our system compared to exiting frameworks that provide synchronous middlebox state
management. We dive into the implementation of a flow table and a NAT. Lastly, we discuss the
artifacts caused by the use of asynchronous replication.

Convergent flow table: A flow table is used to track network flows and has application in
several middleboxes as shown in Table 3.2. A flow table is a mapping keyed on a hashing of
packet headers with values that can be network addresses or some attributes regarding the flows.

A flow table supports add and value operations. The add(k,v) operation either inserts
flow k and value v, or updates the value of flow k with v. The value(k) operation returns a
value associated with key k.

For convergence, we focus on add operation, since value does not mutate the state. The add
operation is idempotent but not commutative. Enforcing a deterministic ordering on concurrent
add operations “artificially” makes add commutative. Specifically, a global ordering across the

48

middlebox cluster determines the winner in a race between two add operations modifying the
same key k.

The object exposes a callback that allows developers to customize this ordering. By default,
the object uses a numerical comparison, where (k,v) wins against (k,v′) only if the binary
value of v is greater than that of v′.

3.4.1 Network Address Translator

A NAT bridges two address spaces [5, 70, 154]. NAT instances share two state objects. Using a
flow table object, a NAT instance maps traffic flows coming from one address space to another
address space. A NAT instance identifies each flow by a unique port number from an available
port pool object [154]. Both flow table and port pool are updated together, thus we can use
Constellation’s derivative state object feature to support multi object operations on these two
objects.

In rare incidents, due to asynchronous local accesses, NAT instances may concurrently allocate
an identical port number for different flows. This violates the NAT’s unique port assignment
invariant, and flow translations may collide.

Constellation’s convergent flow table enable us to resolve this inconsistency. We use its
callback so that among two collided flows, a flow with larger numerical value of its five tuple
wins the race enabling all instances to converge.

3.4.2 Artifacts of Asynchronous Replication

Asynchronous replication may cause middleboxes to experience temporary inconsistencies until
instances converge. We study a number of middleboxes including the ones shown in Table 3.2 for
their possible artifacts. There are three categories of artifacts: lag or reduced precision; packet
loss; and duplicates and collisions. In practice, these artifacts are non-issues, as they are rare and
are already mitigated by existing protocols or end user applications. Our design makes the tradeoff
of dealing with small artifacts for substantial performance gains on both local area networks and
wide area networks.

Lag or reduced precision: The most common problem for most middleboxes is that asyn-
chronous replication induces a lag in measurement or reduces the measurement precision. For
example, an IDPS may set a threshold for when it blocks traffic and may lag by approximately the

49

round-trip time between instances. A distributed rate limiter may be imprecise in its ability to set
a limit, but for longer flows it can still maintain a tight bounded error.

Packet loss: Packet loss issues can arise for stateful firewalls, NATs and load balancers. This
may occur when traffic passes through a different instance while a connection is being established
but before state is synchronized between instances. For example in Figure 3.2, the second firewall
instance may receive the response traffic before its state is synchronized with the first instance.
Since most protocols will retry dropped packets, this artifact will only result in a small increase in
latency.

Duplicates and collisions: NATs and load balancers may also suffer from collisions or duplicate
mappings, if two instances simultaneously generate conflicting mappings. For example, two NAT
instances might reuse the same public IP and port for two connections to the same destination IP
and port. In this scenario we can terminate one connection and have the client to reconnect. For
even very large networks this is exceedingly rare and disconnects from other issue sources would
be orders of magnitude more common.

An alternative approach is to design a NAT with an extra table to allow instances to acquire
leases on regions of the public IP and port space. When a connection arrives the instance would
allocate out of one of these pools, thus preventing collisions. This would require the middlebox to
eagerly reserve new ranges when it is running low on the current pool.

3.5 Evaluation

We start with a description of our setup and methodology in Section 3.5.1, and then we measure the
overhead of Constellation framework in Section 3.5.2. We measure Constellation’s performance
during its normal operation and dynamic scaling in Section 3.5.3 and Section 3.5.4, respectively.
We measure the benefits of coalescing in Section 3.5.5. Then in Section 3.5.6, we measure the
impact of Constellation’s artifacts in our IDPS example. Finally, we discuss the implementation
complexity in Section 3.5.7.

3.5.1 Experimental Setup and Methodology

We compare Constellation with S6 [173] and Sharded. S6 is the-state-of-art in elastic scaling
of middleboxes. We use the publicly available implementation of S6 [172]. An S6’s middlebox

50

Toolkit No Operation Reference Read Write Read + Write

S6 11.80 5.96 3.66 2.52 2.08 1.38
Constellation 10.00 9.28 N/A 9.26 9.20 9.20

Table 3.3: Throughput of a pass-through middlebox in Mpps. S6 is built on DPDK, while
Constellation uses DPDK+Click that adds overhead to the toolkit baseline. Reference adds
the overhead of finding which node owns a state object. We measure the read and write costs
separately and together.

application runs as a process that uses DPDK toolkit [78]. Sharded is a baseline system used
to measure the performance upper bound, as middlebox traffic is sharded with no shared state.
Moreover, we use two middleboxes, a NAT and an IDPS. Our implementation of IDPS includes
only the port-scan detection/mitigation functionality.

We use a server cluster each equipped with a single Intel D-1540 Xeon with 8 cores and
64 GiB of memory. The servers are connected with an Intel Ethernet Connection X557 10 Gbps
NIC to a Supermicro SSE-X3348T switch. A separate 10 Gbps Mellanox ConnectX-3 NIC
connected to a Mellanox switch is used as the state channel for state synchronization. All servers
run Ubuntu 18.04.

We use MoonGen [42] to generate traffic and measure performance. Traffic from a generator
server is sent through a middlebox instance then back to the generator. We measure latency and
total throughput at the traffic generators. The packet size in our experiments is 64 B. MoonGen
measures end-to-end latency by sending timestamped 128 B packets while it is simultaneously
sending load of 64 B packets. We also developed a tool that can accurately timestamp received
packets at microsecond granularity, which allows us to accurately measure throughput changes.
In Section 3.5.4 using this tool, we capture the impact of Constellation’s dynamic scaling.

Unless stated otherwise, we run 5 second experiments and repeat each experiment 10 times.
The confidence intervals of our results are all within 5%. As a result, we do not report them in our
plots.

3.5.2 Performance Breakdown

Table 3.3 shows a performance breakdown for a pass through middlebox operating on a counter
object. Using this middlebox, we benchmark S6 and Constellation to breakdown the performance
cost of common middlebox operations. We configure the middlebox to either perform no operation,
or perform a read, a write, or a read and write per packet.

51

S6 runs directly on DPDK, while Constellation is built using DPDK+Click which reduces
baseline throughput by ∼ 15%. The no-operation measurement shows the cost from the S6 and
Constellation frameworks. S6 processes each packet in a separate microthread, using Boost corou-
tines [16], allowing an independent microthread to process a packet while another microthread is
blocked on a remote state access. Context switching between microthreads results in 49% loss of
S6’s performance.

The remaining columns measure the cost of reading and writing shared state. The reference
column measures the time required for S6 to discover which instance owns the key of a flow.
The read and write costs are measured separately and together. S6 slows down by a further 76%
percent over the no-operation column, excluding the cost of microthreads.

3.5.3 Performance in Normal Operation

We measure the maximum aggregated throughput and the end-to-end latency of NAT and IDPS.
For wide-area experiments, we deploy our NAT instances in a simulated WAN. Using tc [99], we
configure the servers running instances to artificially add WAN latency [23, 88, 107] to the state
channel. For both our LAN and WAN, we use a traffic load where each NAT instance receives
2000 new flows per second.

Throughput in LAN. Figure 3.4 shows the maximum aggregated throughput of the NAT and
IDPS instances deployed in our LAN. For IDPS, we configure S6 in two modes. In the first mode,
labeled “S6,” the state updates are immediately synchronized. In the second mode, labeled “S6
W-behind,” the remote counters are updated by a 10 ms delay.

As shown for both middleboxes, Constellation’s throughput scales linearly with increasing
the number of instances (within 2–4% of the ideal scaling for NAT and within 1–5% for the
IDPS). For S6, per instance throughput of the NAT drops up to 21% due to the overhead of state
synchronization. The throughput of IDPS drops for S6 and flattens for “S6 write-behind” going
from 2 to 3 instances. In the S6 system, each instance has to query other instances to retrieve the
values of their state objects. IDPS instances pay this overhead once every few packets (i.e., 50%
and 66% of packets for 2 and 3 IDPS instances), while NAT instances incur this cost once every
few flows (i.e., 50% and 66% of flows for 2 and 3 IDPS instances).

Compared to S6 for NAT, Constellation improves throughput by 2.5–3.2× and is within 2–4%
of Sharded’s aggregated throughput. For IDPS, Constellation achieves a 3.4–6.3× and 3.4–11.2×
higher throughput compared to that of “S6 write-behind” and S6, respectively.

52

1 2 3 4 1 2 3
0

5

10

15

20

25

30

35

To
ta

lt
hr

ou
gh

pu
t

(M
pp

s)

S6 W-behind S6 Constellation Sharded

NAT instances IDPS instances

Figure 3.4: Total throughput of middleboxes: Compared to linear scaling, Constellation is within
2–4% for NAT and 1–5% for IDPS.

53

5 10 50 100
Simulated latency (ms)

0

5

10

15

20

To
ta

lt
hr

ou
gh

pu
t

(M
pp

s)

S6 Constellation Sharded

Figure 3.5: Total throughput of two NAT instances in WAN. Constellation’s throughput is largely
independent of WAN latency, but synchronous accesses to remote state slow down S6’s throughput
by 6× to 32× going from 5 to 100 ms latency.

54

1 instance 2 instances 3 instances

S6 21± 1µs 25± 1µs 26± 1µs
Constellation 31± 1µs 44± 3µs 46± 2µs
Sharded 31± 1µs 32± 1µs 34± 2µs

Table 3.4: NAT average latency. Constellation’s latency remains constant going from 2 to 3 NAT
instances. Its latency increase going from 1 to 2 is due to the scheduling overhead of Click.

Throughput in WAN. We evaluate the impact of the state channel with WAN delay on the
NAT throughput. As shown in Figure 3.5, the aggregated throughput of Constellation’s NAT is
independent of the WAN delay of the state channel. However, S6’s throughput drops significantly.
Compared to our LAN measurements, Constellation’s WAN throughput is within 2–3% of its
LAN throughput, while S6 becomes 6 to 32× slower. Constellation’s throughput is 17 to 96× of
S6’s and is within 2–5% of Sharded’s.

Constellation accesses the state locally and does not perform immediate state synchronization
when a NAT instance writes or queries the state of flows. This asynchrony allows Constellation’s
NAT instances to operate at the same throughput level over the WAN as its local area network. On
the other hand, S6’s middlebox instances access state stored in a distributed hash table. Due to
state distribution in this hash table, an instance owns a half of the state and must remotely query
the other instance to operate on the other half. The overhead of this synchronous remote access is
the root cause of S6’s performance drop.

Latency in LAN. Table 3.4 presents the average end-to-end latency of the NAT in our LAN.
For a fair comparison, the NAT instances are under S6’s sustainable load of 1 Mpps with 2 k new
flows per second. Going from one middlebox instance to two or more instances, both S6 and
Constellation enable their state synchronization mechanisms between instances.

As shown in Table 3.4, going from 2 to 3 instances, Constellation’s latency overhead does not
increase. Compared to Sharded, Constellation adds 12 µs overhead. In our implementation, the
receive thread of the state synchronization and the middlebox logic run on the same processor core,
and we use Click’s scheduler [87] to schedule them. The latency increase from 1 to 2 instances
is due the overhead of Click scheduler [87]. S6’s latency slightly increases going from 1 to 2
and 3 instances. Its latency is lower than Sharded, since S6’s middleboxes run on DPDK, while
Sharded’s middleboxes uses DPDK+Click which adds Click’s overhead to the baseline DPDK
(recall from Section 3.5.2).

To investigate the latency overhead in more details we report the latency of the first instance
of the 2 NAT instances in Figure 3.6 under different traffic loads. Figure 3.6a shows that average

55

1 2 3 4 5 6 7 8

Traffic load (Mpps)

101

102

103

104
L

at
en

cy
(µ
s)

S6 Constellation Sharded

(a) Average end-to-end latency

1 2 3 4 5 6 7 8

Traffic load (Mpps)

101

102

103

104

L
at

en
cy

(µ
s)

S6 Constellation Sharded

(b) 99 percentile end-to-end latency

Figure 3.6: End-to-end Latency of the first instance of 2 NAT instances deployed in our LAN.
Constellation’s average and 99 percentile latency remain steady under sustainable loads. Constel-
lation’s latency increases by approaching to its saturation point.

56

Time
0

1

2

3

4

5

6

7

8

T
hr

ou
gh

pu
t

(M
pp

s)

0.7 ms fork
disruption

Packet processing
resumes

State transmission (33 ms)

Figure 3.7: Throughput of the first instance of 2 NAT instances in a scale-out event. This instance
experiences a sub-millisecond throughput disruption during fork. The throughput becomes
unsteady for few milliseconds during state transmission.

latency remains steady for all systems as the traffic load increases until they approach their
respective saturation points. Near these points, packets start to be queued, and latency rapidly
spikes. The average latency of Constellation and Sharded remain under 209 µs, while S6’s average
latency spikes up to 500 µs. As shown in Figure 3.6b, 99-percentile latency has a trend similar
to that of the average latency. Constellation’s and Sharded’s peak latency values are 451 µs and
539 µs, and S6 exhibits a peak latency of up to 2.1 ms.

3.5.4 Dynamic Scaling

We use our cluster of two NAT instances to quantify the performance of Constellation during
dynamic scaling. Each instance is under a 5 Mpps load with 2 k new flows per second. We use
our tool to measure throughput at microsecond scale resolution. We discuss only the performance
of the instance that is involved in state transmission to the new instance. This instance reside in
the same local area network as the new instance.

As shown in Figure 3.7, the first instance does not experience notable throughput degradation.

57

Packet drop is also zero. Excluding unnecessary memory pages from copy-on-write protection
allows fork to complete in only a fraction of a millisecond. In a separate experiment, not shown
here, we measured that fork lasts for 10 ms without this optimization.

Once packet processing resumes, we observe a throughput burst for packets queued during
fork pause time. During state transmission, the throughput temporarily fluctuates. This is due to
state updates in processing the first packets of new flows, since they dirty copy-on-write memory
pages containing the state and incur memory copying overheads.

3.5.5 Coalescing Benefits

We evaluate coalescing benefits by measuring bandwidth savings achieved using coalescing state
updates of a counting bloom filter. This state object counts the number of packets per network
flow. Using network flows as keys is common in middleboxes.

Figure 3.8 shows coalescing benefits for two traffic traces, IXP-1 and IXP2, with different
packet rates from an internet exchange point (IXP) [108, 109]. These traces represent traffic loads
that a middlebox instance may receive in a wide area network. IXP-1 and IXP-2 are 15 minutes
long with 4.2 M and 38.9 M unidirectional flows.

Figure 3.8 reports compression percentages achieved for different look ahead windows based
on the number of packets. As shown, coalescing yields a saving of 45–96% for IXP-1 and 24–50%
for IXP-2. IXP-1 has a higher saving rate compared with IXP-2 due to its flow distribution;
packets are distributed across a less number of flows providing more coalescing opportunities.
A larger lookahead window size makes coalescing more effective with the cost of staler state
synchronization. Not shown here, we measure a 72% saving rate with a look ahead window of
1 M for IXP-2.

3.5.6 Inconsistency Artifacts

We measure the impact of Constellation’s asynchronous replication in mitigating flooding a port
number. We deploy two IDPS instances in a simulated WAN with 5 ms delay and configure them
with a mitigation policy as follows. An instance blocks traffic destined to a port number if the
traffic volume passes the threshold of 1024 Mbits. Two traffic generators flood the instances at
1 Mpps. For each instance, we measure the number of its leaked packets, i.e., the number of
packets that pass through an instance in the distributed deployment compared with a theoretical
centralized IDPS with infinite packet processing that receives the aggregated traffic and filters
packets after crossing a given threshold.

58

10 100 1000 10000 100000
Lookahead window size (number of packets)

0

20

40

60

80

100

C
om

pr
es

si
on

pe
rc

en
ta

ge

IXP-1 IXP-2

Figure 3.8: Coalescing benefits. IXP-1 and IXP-2 are two traces of an internet exchange point [108,
109]. We observe more compression for IXP-1 because IXP-1 has fewer distinct flows compared
to IXP-2. Because the counting bloom filter operates on a smaller flow key space, more state
updates can be coalesced for IXP-1.

Figure 3.9 shows a histogram of the number of leaked packets. Asynchronous replication
delays blocking the attack. Constellation IDPS reacts to the flood within 5 ms and leaks on
average 3.2 k packets.

Delaying an IDPS response by a few milliseconds is a good trade-off as it allows the system to
keep up with the throughput demands of high speed networks. Previous work has shown that IDSes
unable to keep up with the traffic can be bypassed to successfully launch attacks [30, 129, 150].

3.5.7 Development Complexity

Comparing the complexity of different middlebox frameworks is extremely difficult. Using the
lines of code, we provide a rough estimation of the complexity.

59

0 1000 2000 3000 4000 5000

Leaked packets

0

2

4

6

8

10

F
re

qu
en

cy

Figure 3.9: Histogram shows the number of packets leaked beyond the target threshold for
Constellation’s IDPS.

60

We compared the code of the NAT implemented in S6 to the one implemented in Constellation
as described in Section 3.4. Both NATs are roughly the same size, with 361 lines of code for
Constellation and 283 lines for S6. We measured S6’s code before the source-to-source translator
that provides syntactic sugar to simplify the system implementation. This result illustrates that it
is not significantly difficult to build middleboxes with asynchronous replication.

3.6 Related Work

We have discussed existing frameworks that support state sharing for general middleboxes in
Section 3.1.2. As mentioned, they are not optimized for wide area networks. Next, we compare
Constellation with two other lines of related work.

Middlebox specific frameworks: Some systems are highly specialized for particular middle-
boxes. Most of them deploy middlebox instances as shards with no shared state [5,41,55,116]. Un-
like others, vNIDS [95], a microservice based network intrusion detection system, and Yoda [55],
an application layer load balancer, share their state in a central data store.

Database replication protocols: Two phase commit is a common protocol to replicate transac-
tions in distributed databases [29]. This protocol supports general transactions using synchronous
coordination. However, it does not scale for geo-distributed transactions as a transaction involves
multiple rounds of message passing between a coordinator and replicas residing in different sites.

Multi datacenter consistency (MDCC) [88] optimizes performance by involving a coordinator
only when transactions may conflict or violate constraints. For example, MDCC allows concurrent
deposits and withdraws from a bank account only when the account balance is far from becoming
zero.

Highly available databases relax generality of transactions or consistency guarantees for
higher scalability and performance. Some systems split data into shards and restrict updates to
only a single shard. Eventually consistent databases [32] allow asynchronous state replication
with complex resolution mechanisms to resolve conflicts; however, these mechanisms can cause
consistency anomalies.

61

3.7 Conclusion and Future Work

WAN latency can significantly impact the performance of a stateful middlebox whose instances
are deployed across dispersed network infrastructures. In this chapter, we introduce Constellation,
a framework for middlebox geo-distributed deployment. Using asynchronous state replication
of convergent state objects, Constellation achieves high performance and scalability. Our results
show that Constellation can improve middlebox performance by almost two orders of magnitude
compared to state of the art.

Constellation can also be augmented to tolerate the failures of middlebox instances. Constel-
lation can make each instance fault tolerant using existing systems, such as FTMB [146] and
pico [133] that have addressed middlebox fault tolerance. These systems synchronously take
state snapshots and replicate these snapshots into standby replicas. To recover from a failure,
one of the replicas replaces the failed instance and joins the multicast channels of the middlebox
cluster. The replica can reuse the identifier of the failed instance to hide the failure from other
alive instances.

62

Chapter 4

Fault Tolerant Service Function Chaining

Middleboxes are widely deployed in enterprise networks, with each providing a specific dataplane
function. These functions can be composed to meet high-level service requirements by passing
traffic through an ordered sequence of middleboxes, forming a service function chain [130, 131].
For instance, data center traffic commonly passes through an intrusion detection system, a firewall,
and a network address translator before reaching the Internet [167].

Providing fault tolerance for middleboxes is critical as their failures have led to large network
outages, significant financial losses, and left networks vulnerable to attacks [27, 128, 158, 159].
Existing middlebox frameworks [81, 85, 90, 133, 146] have focused on providing fault tolerance
for individual middleboxes. For a chain, they consider individual middleboxes as fault tolerant
units that together form a fault tolerant chain. This design introduces redundancies and overheads
that can limit a chain’s performance.

Independently replicating the state of each middlebox in a chain requires a large number
replica servers, which can increase cost. Part of that cost can be mitigated by having middleboxes
share the same replica servers, although oversharing can affect performance. More importantly,
replication causes packets to experience more than twice its normal delay, since each middlebox
synchronously replicates state updates before releasing a packet to the next middlebox [81, 85, 90,
133].

Current state-of-the-art middlebox frameworks also stall as they capture a consistent snapshot
of their state leading to lower throughput and higher latency [90, 133, 146]. These stalls signifi-
cantly increase latency with packets experiencing latencies from 400 µs to 9 ms per middlebox
compared to 10–100 µs without fault tolerance [90, 133]. When these frameworks are used in a
chain, the stalls cause processing delays across the entire chain, similar to a pipeline stall in a

63

processor. As a result, we observed a ∼40% drop in throughput for a chain of five middleboxes as
compared to a single middlebox (see Section 4.6.4).

In this chapter, we introduce a system called fault tolerant chaining (FTC) that provides fault
tolerance to an entire chain. FTC is inspired by chain replication [163] to efficiently provide fault
tolerance. At each middlebox, FTC collects state updates due to packet processing and piggybacks
them onto the packet. As the packet passes through the chain, FTC replicates piggybacked state
updates in servers hosting middleboxes. This allows each server hosting a middlebox to act as a
replica for its predecessor middleboxes. If a middlebox fails, FTC can recover the lost state from
its successor servers. For middleboxes at the end of the chain, FTC transfers and replicates their
state updates in servers hosting middleboxes at the beginning of the chain. FTC does not need any
dedicated replica servers.

We extend chain replication [163] to address challenges unique to a service function chain.
Unlike the original protocol where all nodes run an identical process, FTC must support a
chain comprised of different middleboxes processing traffic in the service function chain order.
Accordingly, FTC allows all servers to process traffic and replicate state. Moreover, FTC’s failure
recovery instantiates a new middlebox at the failure position to maintain the service function chain
order, rather than the traditional protocol that appends a new node at the end of a chain.

Furthermore, FTC improves the usability and performance of multicore middleboxes. We
introduce packet transactions to provide a simple programming model to develop multithreaded
middleboxes that can effectively make use of multiple cores. Concurrent state updates to mid-
dlebox state result in non-deterministic behavior that is hard to restore. A transactional model
for state updates allows serializing concurrent state accesses that simplifies reasoning about both
middlebox and FTC correctness. The state of the art [146] relies on complex static analysis that
supports unmodified applications, but can have worse performance when its analysis falls short.

FTC also tracks dependencies among transactions using data dependency vectors that define a
partial ordering of transactions. The partial ordering allows a replica to concurrently apply state
updates from non-dependent transactions to improve replication performance. This approach has
two major benefits compared to thread-based approaches that allow concurrent state replication
by replaying the operations of threads [146]. First, FTC can support vertical scaling by replacing
a running middlebox with a new instance with more CPU cores or failing over to a server with
fewer CPU cores when resources are scarce during a major outage. Second, it enables a middlebox
and its replicas to run with a different number of threads.

FTC is implemented on Click [87] and uses the ONOS SDN controller [15]. We compare its
performance with the state of the art in [146]. Our results for a chain of two to five middleboxes
show that FTC improves the throughput of the state of art [146] by 2× to 3.5× with lower latency
per middlebox.

64

Orchestrator

!"!" Middlebox

!"!"
!"!"!"!"

Packet

SDN Network

Figure 4.1: Service function chain model in NFV

4.1 Background

In an NFV environment, as shown in Figure 4.1, an orchestrator manages and steers traffic through
a chain of middleboxes. Each middlebox runs multiple threads and is equipped with a multi-queue
network interface card (NIC) [37, 124, 142]. A thread receives packets from a NIC’s input queue
and sends packets to a NIC’s output queue. Figure 4.1 shows two threaded middleboxes processing
two traffic flows.

Stateful middleboxes keep dynamic state for packets that they process [67, 151]. For instance,
a stateful firewall filters packets based on statistics that it collects for network flows [10], and a
network address translator (NAT) maps internal and external addresses using a flow table [70,154].

Middlebox state can be partitionable or shared [10, 52, 58, 133]. Partitionable state variables
describe the state of a single traffic flow (e.g., MTU size and timeouts in stateful firewalls [10,52])
and are only accessed by a single middlebox thread. Shared state variables are for a collection of
flows, and multiple middlebox threads query and update them (e.g., port-counts in an intrusion
detection system).

A stateful middlebox is subject to both hardware and software failures that can cause the
loss of its state [128, 146]. The root causes of these failures are for example CPU overloads, bit
corruptions, cable problems, software bugs, and server failures due to maintenance operations and

65

power failures [55, 128]. We model these failures as fail-stop in which failures are detectable, and
failed components are not restored.

4.1.1 Challenges

To recover from a middlebox failure, traffic must be rerouted to a redundant middlebox where the
state of the failed middlebox is restored. State replication has two challenges that affect middlebox
performance.

First, in a multithreaded middlebox, the order in which interleaving threads access shared state
is non-deterministic. Parallel updates can lead to observable states that are hard-to-restore. The
difficulty in achieving high performance multithreaded middleboxes is how we capture this state
for recovery. One approach to accommodate non-determinism is to log any state read and write,
which allows restoring any observable state from the logs [146]. However, this complicates the
failure recovery procedure because of record/replay, and leads to high performance overheads
during normal operation.

Second, to tolerate f failures, a packet is released only when at least f+1 replicas acknowledge
that state updates due to processing of this packet are replicated. In addition to increasing
latency, synchronous replication reduces throughput since expensive coordinations between packet
processing and state replication are required for consistency (e.g., pausing packet processing until
replication is acknowledged [81, 85, 90, 133]). The overhead of this synchrony for a middlebox
depends on where its replicas are located, and how state updates are transferred to these locations.
For a solution designed for individual middleboxes, the overheads can accumulate for each
middlebox of a chain.

4.1.2 Limitations of Existing Approaches

Existing middlebox frameworks provide fault tolerance for individual middleboxes. Using these
frameworks for a chain whose middleboxes are deployed over multiple servers significantly
impacts the chain’s performance. These frameworks use one of two approaches.

A class of frameworks take snapshots of middlebox state for state replication [90, 133, 146].
While taking snapshot, middlebox operations are stalled for consistency. These frameworks
take snapshots at different rates. They take snapshots per packet or packet-batch introducing
400 µs to 8–9 ms of per packet latency overhead [90, 133]. Periodic snapshots (e.g., at every
20–200 ms intervals) can cause periodic latency spikes up to 6 ms [146]. We measure that per

66

middlebox snapshots cause 40% throughput drop going from a single middlebox to a chain of five
middleboxes (see Section 4.6.4).

Other frameworks [81,85] redesign middleboxes to separate and push state into a fault tolerant
backend data store. This separation incurs high performance penalties. Accessing state takes
at least a round trip delay. Moreover, a middlebox can release a packet only when it receives
an acknowledgement from the data store that relevant state updates are replicated. Due to such
overheads, the middlebox throughput can drop by ∼60% [81] and reduce to 0.5 Gbps (for packets
with 1434 B median size) [85].

4.2 System Design Overview

The limitations of existing work lead us to design fault tolerant chaining (FTC); a new approach
that replicates state along the chain to provide fault tolerance.

4.2.1 Requirements

We design FTC to provide fault tolerance for a wide variety of middleboxes. FTC adheres to four
requirements:

Correct recovery: FTC ensures that the middlebox behavior after a failure recovery is consistent
with the behavior prior to the failure [157]. To tolerate f failures, a packet can only be released
outside of a chain once all necessary information needed to reconstruct the internal state of all
middleboxes is replicated to f + 1 servers.

Low overhead and fast failure recovery: Fault tolerance for a chain must come with low
overhead. A chain processes a high traffic volume and middlebox state can be modified very
frequently. At each middlebox of a chain, latency should be within 10 to 100 µs [146], and the
fault tolerance mechanism must support accessing variables 100 k to 1 M times per second [146].
Recovery time must be short enough to prevent application outages. For instance, highly available
services timeout in just a few seconds [25].

Resource efficiency: Finally, the fault tolerance solution should be resource efficient. To isolate
the effect of possible failures, replicas of a middlebox must be deployed on separate physical

67

servers. We are interested in a system that dedicates the fewest servers to achieve a fixed replication
factor.

4.2.2 Design Choices

We model packet processing as a transaction. FTC carefully collects updated values of state vari-
ables modified during a packet transaction and appends them to the packet. As the packet passes
through the chain, FTC replicates piggybacked state updates in servers hosting the middleboxes.

Transactional packet processing: To accommodate non-determinism due to concurrency, we
model the processing of a packet as a transaction, where concurrent accesses to shared state are
serialized to ensure that consistent state is captured and replicated. In other systems, the interleaved
order of lock acquisitions and state variable updates between threads is non-deterministic, yet
externally observable. Capturing and replaying this order is complex and incurs high performance
overheads [146]. FTC uses transactional packet processing to avoid the complexity and overhead.

This model is easily adaptable to hybrid transactional memory, where we can take advantage of
the hardware support for transactions [35]. This allows FTC to use modern hardware transactional
memory for better performance, when the hardware is present.

We also observe that this model does not reduce concurrency in popular middleboxes. First,
these middleboxes already serialize access to state variables for correctness. For instance, a load
balancer and a NAT ensure connection persistence (i.e., a connection is always directed to a
unique destination) while accessing a shared flow table [21, 154]. Concurrent threads in these
middleboxes must coordinate to provide this property.

Moreover, most middleboxes share only a few state variables [81, 85]. Kablan et al. surveyed
five middleboxes for their access patterns to state [81]. These middleboxes mostly perform only
one or two read/write operations per packet. The behavior of these middleboxes allow packet
transactions to run concurrently most of the time.

In-chain replication: Consensus-based state replication [94, 117] requires 2f + 1 replicas for
each middlebox to reliably detect and recover from f failures. A high-availability cluster approach
requires f + 1 replicas as it relies on a fault tolerant coordinator for failure detection. For a chain
of n middleboxes, these schemes need n× (2f + 1) and n× (f + 1) replicas. Replicas are placed
on separate servers, and a naïve placement requires the same number of servers.

FTC observes that packets already flow through a chain; each server hosting a middlebox of
the chain serves as a replica for the other middleboxes. Instead of allocating dedicated replicas,

68

FTC replicates the middleboxes state across the chain. In this way, FTC tolerates f failures
without the cost of dedicated replica servers.

State piggybacking: To replicate state modified by a packet, existing schemes send separate
messages to replicas. In FTC, a packet carries its own state updates. State piggybacking is
possible, as a small number of state variables [86] are modified with each packet. Since state
updated during processing a packet is replicated in servers hosting the chain, relevant state is
already transferred and replicated when the packet leaves the chain.

No checkpointing and no replay: FTC replicates state values at the granularity of packet
transactions, rather than taking snapshots of state or replaying packet processing operations.
During normal operation, FTC removes state updates that have been applied in all replicas to
bound memory usage of replication. Furthermore, replicating the values of state variables allows
for fast state recovery during failover.

Centralized orchestration: In our system, a central orchestrator manages the network and
chains. The orchestrator deploys fault tolerant chains, reliably monitors them, detects their
failures, and initiates failure recovery. The orchestrator functionality is provided by a fault tolerant
SDN controller [15, 84, 122]. After deploying a chain, the orchestrator is not involved in normal
chain operations to avoid becoming a performance bottleneck.

In the following sections, we first describe our protocol for a single middlebox in Section 4.3,
then we extend this protocol for a chain of middleboxes in Section 4.4.

4.3 FTC for a Single Middlebox

In this section, we present our protocol for a single middlebox. We first describe our protocol with
a single threaded middlebox where state is replicated by single threaded replicas. We extend our
protocol to support multithreaded middleboxes and multithreaded replication in Section 4.3.2 and
Section 4.3.3.

4.3.1 Middlebox State Replication

We adapt the chain replication protocol [163] for middlebox state replication. For reliable state
transmission between servers, FTC uses sequence numbers, similar to TCP, to handle out-of-order

69

!!

!"!" !"!" !"#$!"#$

Head Tail

Packet + piggyback log

Log-entries

Packet

Replica

!! Middlebox

!"!"

Figure 4.2: Normal operation for a single middlebox

deliveries and packet drops within the network.

Figure 4.2 shows our protocol for providing fault tolerance for a middlebox. FTC replicates
the middlebox state in f + 1 replicas during normal middlebox operations. Replicas r1, . . . , rf+1

form the replication group for middleboxm where r1 and rf+1 are called the head and tail replicas.
Each replica is placed on a separate server whose failure is isolated. With state replicated in f + 1
replicas, the state remains available even if f replicas fail.

The head is co-located with the middlebox in the same server. The middlebox state is
separated from the middlebox logic and is stored in the head’s state store. The head provides a
state management API for the middlebox to read and write state during packet processing.

Normal operation of protocol: As shown in Figure 4.2, the middlebox processes a packet, and
the head constructs and appends a piggyback log to the packet. The piggyback log contains a
sequence number and a list of state updates during packet processing. As the packet traverses the
chain, each subsequent replica replicates the piggyback log and applies the state updates to its
state store. After replication, the tail strips the piggyback log and releases the packet.

The head tracks middlebox updates to state using a monotonically increasing sequence number.
After a middlebox finishes processing a packet, the head increments its sequence number only
if state was modified during packet processing. The head appends the state updates (i.e., state
variables modified in processing the packet and their updated values) and sequence number to the
packet as a piggyback log. If no state was updated, the head adds a no-op piggyback log. The

70

head then forwards the packet to the next replica.

Each replica continuously receives packets with piggyback logs. If a packet is lost, a replica
requests its predecessor to re-transmit the piggyback log with the lost sequence number. A replica
keeps the largest sequence number that it has received in order (i.e., the replica has already
received all piggyback logs with preceding sequence numbers). Once all prior piggyback logs are
received, the replica applies the piggyback log to its local state store and forwards the packet to
the next replica.

The tail replicates state updates, strips the piggyback log from the packet, and releases the
packet to its destination. Subsequently, the tail periodically disseminates its largest sequence
number to the head. The sequence number is propagated to all replicas so they can prune their
piggyback logs up to this sequence number.

Correctness: Each replica replicates the per-packet state updates in order. As a result, when a
replica forwards a packet, it has replicated all preceding piggyback logs. Packets also pass through
the replication group in order. When a packet reaches a replica, prior replicas have replicated the
state updates carried by this packet. Thus, when the tail releases a packet, the packet has already
traversed the entire replication group. The replication group has f + 1 replicas allowing FTC to
tolerate f failures.

Failure recovery: FTC relies on a fault tolerant orchestrator to reliably detect failures. Upon
failure detection, the replication group is repaired in three steps: adding a new replica, recovering
the lost state from an alive replica, and steering traffic through the new replica.

In the event of a head failure, the orchestrator instantiates a new middlebox instance and
replica, as they reside on the same server. The orchestrator also informs the new replica about
other alive replicas. If the new replica fails, the orchestrator restarts the recovery procedure.

Selecting a replica as the source for state recovery depends on how state updates propagate
through the chain. We can reason about this using the log propagation invariant: for each replica
except the tail, its successor replica has the same or prior state, since piggyback logs propagate in
order through the chain.

If the head fails, the new replica retrieves the state store, piggyback logs, and sequence number
from the immediate successor to the head. If other replicas fail, the new replica fetches the state
from the immediate predecessor.

To ensure that the log propagation invariant holds during recovery, the replica that is the
source for state recovery discards any out-of-order packets that have not been applied to its state

71

store and will no longer admit packets in flight. If the contacted replica fails during recovery, the
orchestrator detects this failure and re-initializes the new replica with the new set of alive replicas.

Finally, the orchestrator updates routing rules in the network to steer traffic through the new
replica. If multiple replicas have failed, the orchestrator waits until all new replicas acknowledge
that they have successfully recovered the state. Then, the orchestrator updates the necessary
routing rules from the tail to the head.

4.3.2 Concurrent Packet Processing

To achieve higher performance, we augment our protocol to support multithreaded packet process-
ing and state replication in the middlebox and the head. Other replicas are still single threaded.
Later in Section 4.3.3, we will support multithreaded replications in other replicas.

In concurrent packet processing, multiple packets are processed in interleaving threads. The
threads can access the same state variables in parallel. To accommodate this parallelism, FTC
must consistently track parallel state updates. We introduce transactional packet processing that
effectively serializes packet processing. This model supports concurrency if packet transactions
access disjoint subsets of state.

Transactional Packet Processing: In concurrent packet processing, the effects on state vari-
ables must be serializable. Further, state updates must be applied to replicas in the same order so
that the system can be restored to a consistent state during failover. To support this requirement,
replay based replication systems, such as FTMB [146], track all state accesses, including state
reads, which can be challenging to perform efficiently.

In transactional packet processing, state reads and writes by a packet transaction have no
impact on another concurrently processed packet. This isolation allows us to only keep track of
the relative order between transactions, without needing to track all state variable dependencies.

We realize this model by implementing a software transactional memory (STM) API for
middleboxes. When a packet arrives, the runtime starts a new packet transaction in which
multiple reads and writes can be performed. Our STM API uses fine grained strict two phase
locking (similar to [36]) to provide serializability. Our API uses a wound-wait scheme that aborts
transaction to prevent possible deadlocks if a lock ordering is not known in advance. An aborted
transaction is immediately re-executed. The transaction completes when the middlebox releases
the packet.

Using two phase locking, the head runtime acquires necessary locks during a packet transaction.
We simplify lock management using state space partitioning, by using the hash of state variable

72

keys to map keys to partitions, each with its own lock. The state partitioning is consistent across
all replicas, and to reduce contention, the number of partitions is selected to exceed the maximum
number of CPU cores.

At the end of a transaction, the head atomically increments its sequence number only if state
was updated during this packet transaction. Then, the head constructs a piggyback log containing
the state updates and the sequence number. After the transaction completes, the head appends the
piggyback log to the packet and forwards the packet to the next replica.

Correctness: Due to mutual exclusion, when a packet transaction includes an updated state
variable in a piggyback log, no other concurrent transaction has modified this variable, thus the
included value is consistent with the final value of the packet transaction. The head’s sequence
number maps this transaction to a valid serial order. Replicated values are consistent with the
head, because replicas apply state updates of the transaction in the sequence number order.

4.3.3 Concurrent State Replication

Up to now FTC provides concurrent packet processing but does not support concurrent replication.
The head uses a single sequence number to determine a total order of transactions that modify
state partitions. This total ordering eliminates multithreaded replication at successor replicas.

To address the possible replication bottleneck, we introduce data dependency vectors to
support concurrent state replication. Data dependency tracking is inspired by the vector clocks
algorithm [48], but rather than tracking points in time when events happen for processes or threads,
FTC tracks the points in time when packet transactions modify state partitions.

This approach provides more flexibility compared to tracking dependencies between threads
and replaying their operations to replicate the state [146]. First, it easily supports vertical scaling
as a running middlebox can be replaced with a new instance with different number of CPU
cores. Second, a middlebox and its replicas can also run with different number of threads. The
state-of-the-art [146] requires the same number of threads with a one-to-one mapping between a
middlebox and its replicas.

Data dependency vectors: We use data dependency vectors to determine a partial order of
transactions in the head. Each element of this vector is a sequence number associated to a state
partition. A packet piggybacks this partial order to replicas enabling them to replicate transactions
with more concurrency; a replica can apply and replicate a transaction in a different serial order
that is still equivalent to the head.

73

W(1)

0,x,x

1,x,4

2,3,50,3,4 1,3,4

T
h
e
 h

e
a
d

A
 re

p
lic

a

1

2

3

4

The head’s

dependency vector:

1 2

2,3,50,3,4 1,3,4

The replica’s

dependency vector:

4 5

5

held

0,3,4 ≥ 0,x,x

0,3,4 ≥ 1,x,4 1,3,4 ≥ 1,x,4

R(i) denotes reading

state partition i.

W(i) denotes writing

state partition i.

R(1),W(3)

x in a vector shows

“don’t care”

Figure 4.3: Data dependency vectors. The head and the replica run two threads and maintain a
dependency vector for three state partitions.

The head keeps a data dependency vector and serializes parallel accesses to this vector using
the same state partition locks from our transactional packet processing. The head maintains its
dependency vector using the following rules. A read-only transaction does not change the vector.
For other transactions, the head increments the sequence number of a state partition that received
any read or write.

In a piggyback log, we replace the sequence number with a dependency vector that represents
the effects of a transaction on state partitions. If the transaction does not access a state partition,
the head uses a “don’t-care” value for this partition in the piggyback log. The head obtains the
sequence number of other partitions from the head’s dependency vector before incrementing their
sequence numbers.

Each successor replica keeps a dependency vector MAX that tracks the latest piggyback log
that it has replicated in order, i.e., it has already received all piggyback logs prior to MAX . In
case a packet is lost, a replica requests its predecessor to retransmit missing piggyback logs.

Upon receiving a packet, a replica compares the piggybacked dependency vector with its
MAX . The replica ignores state partitions with “don’t care” from this comparison. Once all prior
piggyback logs have been received and applied, the replica applies and replicates the piggyback

74

log. For other state partitions, the replica increments their associated sequence numbers in MAX .

Example: Figure 4.3 shows an example of using data dependency vectors in the head and a
successor replica with two threads. The head and the replica begin with the same dependency
vector for three state partitions. First, the head performs a packet transaction that writes to state
partition 1 and increments the associated sequence number. The piggyback log belonging to
this transaction contains “don’t care” value for state partitions 2 and 3 (denoted by x), since the
transaction did not read or write these partitions. Second, the head performs another transaction
and forwards the packet with a piggyback log.

Third, as shown the second packet arrives to the replica before the first packet. Since the
piggybacked dependency vector is out of order, the replica holds the packet. Fourth, the first
packet arrives. Since the piggybacked vector is in order, the replica applies the piggyback log and
updates its local dependency vector accordingly. Fifth, by applying the piggyback log of the first
packet, the replica now can apply the piggyback log of the held packet.

4.4 FTC for a Chain

In this section, we describe our protocol for a chain to enable every middlebox to replicate the
chain’s state while processing packets. To accomplish this, we extend the original chain replication
protocol [163] during both normal operation and failure recovery.

A chain consists of different middlebox applications. Thus, FTC must allow different middle-
boxes to run across the chain, while the original chain replication protocol supports running an
identical process across the nodes. FTC’s failure recovery instantiates a new middlebox at the
failure position to maintain the chain order, while the traditional protocol appends a new node at
the end of a chain.

Figure 4.4 shows our protocol for a chain of n middleboxes. Our protocol can be thought of as
running n instances (per middlebox) of the protocol developed earlier in Section 4.3. FTC places
a replica per each middlebox. Replicas form n replication groups, each of which provides fault
tolerance for a single middlebox.

Viewing a chain as a logical ring, the replication group of a middlebox consists of a replica
and its f succeeding replicas. Instead of being dedicated to a single middlebox, a replica is shared
among f +1 middleboxes and maintains a state store for each of them. Among these middleboxes,
a replica is the head of one replication group and the tail of another replication group. For instance
in Figure 4.4, if f = 1 then the replica r1 is in the replication groups of middleboxes m1 and mn,

75

Packet with piggybacked message
Replica

Piggybacked message

Packet
!"!"

!"!"

Middlebox

Buffer!"!" !"!"Forw.

!"!" !"!" !"!"

rn

Figure 4.4: Normal operation: chain of n middleboxes.

and r2 is in the replication groups of m1 and m2. Subsequently, the replicas rn and r1 are the head
and the tail of middlebox mn.

FTC adds two additional elements, the forwarder and buffer at the ingress and egress of a
chain. The forwarder and buffer are also multithreaded, and are collocated with the first and last
middleboxes. The buffer holds a packet until the state updates associated with all middleboxes
of the chain have been replicated. The buffer also forwards state updates to the forwarder for
middleboxes with replicas at the beginning of the chain. The forwarder adds state updates from
the buffer to incoming packets before forwarding the packets to the first middlebox.

4.4.1 Normal Operation of Protocol

Figure 4.4 shows the normal operation of our protocol. The forwarder receives incoming packets
from the outside world and piggyback messages from the buffer. A piggyback message contains
middlebox state updates. As the packet passes through the chain, a replica detaches and replicates
the relevant parts of the piggyback message and applies associated state updates to its state stores.
A replica ri tracks the state updates of a middlebox mi and updates the piggyback message to
include these state updates. Replicas at the beginning of the chain replicate for middleboxes

76

at the end of the chain. The buffer withholds the packet from release until the state updates of
middleboxes at the end of the chain are replicated. The buffer transfers the piggyback message to
the forwarder that adds it to incoming packets for state replication.

The forwarder receives incoming packets from outside world and piggyback messages from
the buffer. A piggyback message consists of a list of piggyback logs and a list of commit vectors.
The tail of each replication group appends a commit vector to announce the latest state updates
that have been replicated f + 1 times for the corresponding middlebox.

Each replica constantly receives packets with piggyback messages. A replica detaches and
processes a piggyback message before the packet transaction. As mentioned before, each replica is
in the replication group of f preceding middleboxes. For each of them, the replica maintains a de-
pendency vector MAX to track the latest piggyback log that it has replicated in order. The replica
processes a relevant piggyback log from the piggyback message as described in Section 4.3.3.
Once all prior piggyback logs are applied, the replica replicates the piggyback log, applies state
updates to the associated state store, and updates the associated dependency vector MAX .

Once the middlebox finishes the packet transaction, the replica updates and reattaches the
piggyback message to the packet, then forwards the packet. For the replication group where the
replica is the head, it adds a piggyback log containing the state updates of processing the packet.
If the replica is a tail in the replication group of a middlebox m, it removes the piggyback log
belonging to middlebox m to reduce the size of the piggyback message. The reason is that a tail
replicates the state updates of m for f + 1-th time. Moreover, it attaches its dependency vector
MAX of middlebox m as a commit vector. Later by reading this commit vector, the buffer can
safely release held packets. Successor replicas also use this commit vector to prune obsolete
piggyback logs.

To correctly release a packet, the buffer requires that the state updates of this packet are
replicated, specifically for each middlebox with a preceding tail in the chain. The buffer withholds
a packet from release until an upcoming packet piggybacks commit vectors that confirm meeting
this requirement. Upon receiving an upcoming packet, the buffer processes the piggybacked
commit vectors to release packets held in the memory.

Specifically, let m be a middlebox with a preceding tail, and V2 be the end of updated range
from a piggyback log of a held packet belonging to m. Once the commit vector of each m from
an upcoming packet shows that all state updates prior to and including V2 have been replicated,
the buffer releases the held packet and frees its memory.

Other considerations: There may be time periods that a chain receives no incoming packets.
In such cases, the state is not propagated through the chain, and the buffer does not release packets.

77

To resolve this problem, the forwarder keeps a timer to receive incoming packets. Upon the
timeout, the forwarder sends a propagating packet carrying a piggyback message it has received
from the buffer. Replicas do not forward a propagating packet to middleboxes. They process and
update the piggyback message as described before and forward the packet along the chain. The
buffer processes the piggyback message to release held packets.

Some middlebox in a chain can filter packets (e.g., a firewall may block certain traffic), and
consequently the piggybacked state is not passed on. For such a middlebox, its head generates a
propagating packet to carry the piggyback message of a filtered packet.

Finally, if the chain length is less than f + 1, we extend the chain by adding more replicas
prior to the buffer. These replicas only process and update piggyback messages.

4.4.2 Failure Recovery

Handling the failure of the forwarder or the buffer is straightforward. They contain only soft state,
and spawning a new forwarder or a new buffer restores the chain.

The failure of a middlebox and its head replica is not isolated, since they reside on the same
server. If a replica fails, FTC repairs f + 1 replication groups as each replica replicates for f + 1
middleboxes. The recovery involves three steps: spawning a new replica and a new middlebox,
recovering the lost state from other alive replicas, and steering traffic through the new replica.

After spawning a new replica, the orchestrator informs it about the list of replication groups
in which the failed replica was a member. For each of these replication group, the new replica
runs an independent state recovery procedure as follows. If the failed replica was the head of a
replication group, the new replica retrieves the state store and the dependency vector MAX from
the immediate successor in this replication group. The new replica restores the dependency matrix
of the failed head by setting each of its row to the retrieved MAX . For other replication groups,
the new replica fetches the state from the immediate predecessors in these replication groups.

Once the state is recovered, the new replica notifies the orchestrator to update routing rules to
steer traffic through the new replica. For simultaneous failures, the orchestrator waits until all new
replicas confirm that they have finished their state recovery procedures before updating routing
rules.

78

4.5 Implementation

FTC builds on ONOS SDN controller [15] and Click [87]. The forwarder and buffer are imple-
mented as Click elements.

A replica consists of control and data plane modules. The control module is a daemon that
communicates with the orchestrator and the control modules in other replicas. In failover, the
control module spawn a thread to fetch state per each replication group. Using a reliable TCP
connection, the thread sends a fetch request to the appropriate member in the replication group
and waits to receive state.

The data plane module processes piggyback messages, sends and receives packets to and from
a middlebox, constructs piggyback messages, and forwards packets to a next element in the chain
(the data-plane module of the next replica or the buffer).

FTC appends the piggyback logs to the end of a packet, and inserts an IP option to notify
our runtime that a packet has a piggyback message. As a piggyback message is appended at the
end of a packet, its process and construction can be performed in-place, and there is no need to
actually strip and reattach it. Before sending a packet to the middlebox, the relevant header fields
(e.g., the total length in IP header) is updated to not account for the piggyback message. Before
forwarding the packet to next replica, the header is updated back to reconsider the piggyback
message. For middleboxes that may extend the packet, the data plane module operates on the
copy of a piggyback message.

4.6 Evaluation

We evaluate FTC in this section. We describe our setup and methodology in Section 4.6.1 and
evaluate FTC’s performance for middleboxes and chains in Section 4.6.3 and Section 4.6.4,
respectively. Finally, we evaluate failure recovery in Section 4.6.5.

4.6.1 Experimental Setup and Methodology

We compare FTC with NF, a non fault-tolerant baseline system, and FTMB, our implementation
of [146]. Our FTMB implementation is a performance upper bound of the original work that
performs the logging operations described in [146] but does not take snapshots. Following the
original prototype, FTMB dedicates a server in which a middlebox master (M) runs, and another
server where the fault tolerant components input logger (IL) and output logger (OL) execute.

79

Packets go through IL, M, then OL. M tracks accesses to shared state using packet access logs
(PALs) and transmits them to OL. In the original prototype, no data packet is released until all
corresponding dropped PALs are retransmitted. Our prototype assumes that PALs are delivered
on the first attempt, and packets are released immediately afterwards. Further, OL maintains only
the last PAL.

We used two environments. The first is a local cluster of 12 servers. Each server has an
8-core Intel Xeon CPU D-1540 clocked at 2.0 Ghz, 64 GiB of memory, and two NICs, a 40 Gbps
Mellanox ConnectX-3 MT27500 and a 10 Gbps Intel Ethernet Connection X552/X557. The
servers run Ubuntu 14.04 with kernel 4.4 and are connected to 10 and 40 Gbps top-of-rack
switches. We use MoonGen [42] and pktgen [162] to generate traffic and measure latency and
throughput, respectively. Traffic from the generator server, passed in the 40 Gbps links, is sent
through middleboxes and back to the generator. FTC uses a 10 Gbps link to disseminate state
changes from Buffer to Forwarder.

The second environment is a distributed Cloud comprised of several core and edge data-centers
deployed across a continent1. We use virtual machines (VMs) with 4 virtual processor cores
and 8 GiB memory running Ubuntu 14.04 with Kernel 4.4. We use the published ONOS docker
container [115] to control a virtual network of OVS switches [114] connecting these VMs. We
follow the multiple interleaved trials methodology [1] to reduce the variability that come from
performing experiments on a shared infrastructure.

We use the middleboxes and chains shown in Table 4.1. The middleboxes are implemented in
Click [87] (read and write accesses to shared state variables are explicitly specified). MazuNAT
is an implementation of the core parts of a commercial NAT [110], and SimpleNAT provides
basic NAT functionalities. They represent read-heavy middleboxes with a moderate write load
on the shared state (i.e., a flow table mapping private and public addresses). Monitor is a
read/write heavy middlebox that counts the number of packets in a flow or across flows. It takes
a sharing level parameter that specifies the number of threads sharing the same state variable.
For example, no state is shared for the sharing level 1, and 8 Monitor’s threads share the same
state variable for sharing level 8. Gen represents a write-heavy middlebox that takes a state size
parameter, which allows us to test the impact of a middlebox’s state size on performance. Gen is
a write-heavy middlebox that takes a size parameter. Gen updates a state variable with this size
per packet allowing us to test the impact of a middlebox’s state size on performance. Firewall
is a stateless firewall. Our experiments also test three chains (Ch-n, Ch-Gen, Ch-Rec) that are
composed of combinations of these middleboxes.

For experiments in the first environment, we report latency and throughput. For a latency
data-point, we report the average of hundreds of samples taken in a 10 second interval. For a

1The name of this Cloud is withheld to comply with the anonymity policy of the conference.

80

Table 4.1: Experimental middleboxes and chains

Middlebox State reads State writes Chain Middleboxes in chain

MazuNAT Per packet Per flow Ch-n Monitor1 → · · · → Monitorn
SimpleNAT Per packet Per flow Ch-Gen Gen1 → Gen2

Monitor Per packet Per packet Ch-Rec Firewall→ Monitor→ SimpleNAT
Gen No Per packet

Firewall N/A N/A

throughput data-point, we report the average of maximum throughput values measured every
second in a 10-second interval. Unless shown, we do not report confidence intervals as they are
negligible. Unless otherwise specified, the packet size in our experiments is 256 B, and f = 1.

128 256 512
Packet size (Bytes)

0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t

(M
pp

s)

State size 16
State size 64
State size 128
State size 256

Figure 4.5: Throughput vs. state size

4.6.2 Micro-benchmark

We use a micro-benchmark to determine the impact of a state size on the performance of FTC.
We measured the latency overhead for the middlebox Gen and the chain Ch-Gen. We observed

81

that under 2 Mpps for 512 B packets, varying the size of the generated state from 32-256 B has a
negligible impact on latency for both Gen and Ch-Gen (the difference is less than 2 µs). Thus,
we focus on the throughput overhead.

1 2 4 8
Sharing level

0

2

4

6

8

10

T
hr

ou
gh

pu
t

(M
pp

s)

NF FTC FTMB

Figure 4.6: Throughput of Monitor

Throughput: Figure 4.5 shows the impact of state size generated by Gen on throughput. Gen
runs a single thread. We vary the state size from 16 to 256 B and measure Gen’s throughput
for packet sizes 128, 256, and 512 B. As expected, the size of piggyback messages impacts
the throughput only if it is proportionally large compared to packet sizes. For 128 B packets,
throughput drops by only 9% when Gen generates states that are 128 B in size or less. The
throughput drops by less than 1% with 512 B packets and state up to 256 B in size. We expect
popular middleboxes to generate state much smaller than some of our tested values. For instance,
a load balancer and a NAT generate a record per traffic flow [21, 80, 154] that is roughly 32 B in
size (2×12 B for the IPv4 headers in both directions and 8 B for the flow identifier).

82

1 2 4 8
Threads

0

2

4

6

8

10
T

hr
ou

gh
pu

t
(M

pp
s)

NF FTC FTMB

Figure 4.7: Throughput of MazuNAT

4.6.3 Fault Tolerant Middleboxes

Throughput: Figures 4.6 and 4.7 show the maximum throughput of 2 middleboxes. In Fig-
ure 4.6, we configure Monitor to run with 8 threads and measure its throughput with different
sharing levels. As the sharing level for Monitor increases, the throughput of all systems, includ-
ing NF, drops due to the higher contention in reading and writing the shared state. For sharing
levels of 8 and 2, FTC achieves a throughput that is 1.2-1.4 × that of FTMB’s and incurs an over-
head of 9-26% compared to NF. These overheads are expected since Monitor is a write-heavy
middlebox, and the shared state is modified non-deterministically per packet. For sharing level 1,
NF and FTC reach the NIC’s packet processing capacity2. FTMB does not scale for sharing level
1, since for every data packet, a PAL is transmitted in a separate message, which limits FTMB’s
throughput to 5.26 Mpps.

For Figure 4.7, we evaluate the throughput of MazuNAT while varying the number of threads.

2Although the 40 GbE link is not saturated, our investigation showed that the bottleneck is the NIC’s packet
processing power. We measured that the Mellanox ConnectX-3 MT 27500, at the receiving side and working under
the DPDK driver, at most can process 9.6-10.6 Mpps for varied packet sizes. Though we have not found any official
document by Mellanox describing this limitation, similar behavior (at higher rates) has been reported for other
vendors (see Sections 5.4 and 7.5 in [42] and Section 4.6 in [71]).

83

0.5 1.0 1.5 2.0 2.5 3.0

Traffic load (MPPS)

24

25

26

27

28

29

210

L
at

en
cy

(µ
s)

NF FTC FTMB

(a) Monitor – Sharing level 8

0.5 1.0 1.5 2.0 2.5 3.0

Traffic load (MPPS)

24

25

26

27

28

29

210

L
at

en
cy

(µ
s)

NF FTC FTMB

(b) MazuNAT – 1 thread

1 2 3 4 5 6 7 8 9

Traffic load (MPPS)

24

25

26

27

28

29

210

L
at

en
cy

(µ
s)

N
IC

’s
lim

it

NF FTC FTMB

(c) MazuNAT – 8 threads

Figure 4.8: Latency of middleboxes

84

FTC’s throughput is 1.37-1.94× that of FTMB’s for 1-4 threads. Once a traffic flow is recorded
in the NAT flow table, processing the next packets of this flow only requires reading the shared
record (until the connection terminates or times out). The higher throughput compared for
MazuNAT is because FTC does not replicate these reads, while FTMB logs them to provide fault
tolerance [146]. We observe that FTC incurs 1-10% throughput overhead compared to NF. Part
of this overhead is because FTC has to pay the cost of adding space to packets for possible state
writes, even when state writes are not performed. The pattern of state reads and writes impacts
FTC’s throughput. Under moderate write workloads, FTC incurs 1-10% throughput overhead,
while under write-heavy workloads, FTC’s overhead remains less than 26%.

Latency: Figure 4.8 illustrates the latency of Monitor (8 threads with sharing level 8) and
MazuNAT (two configurations, 1 thread and 8 threads) under different traffic loads. For both
Monitor and MazuNAT, the latency remains under 0.7ms for all systems as the traffic load
increases until the systems reach their respective saturation points. Past these points, packets start
to be queued, and per-packet latency rapidly spikes.

As shown in Figure 4.8a, operating under sustainable loads, FTC and FTMB respectively add
overhead within 14-25 µs and 22-31 µs to the per-packet latency, out of which 6-7 µs is due to
the additional one-way network latency to forward the packet and state to the replica. For this
write-heavy middlebox, FTC introduces a smaller latency overhead compared to FTMB.

Figure 4.8b shows that, when running MazuNAT with a single thread, FTC can sustain nearly
the same traffic load as NF, and FTC and FTMB have similar latencies.

For 8 threads shown in Figure 4.8c, both FTC and NF reach the packet processing capacity
of the NIC. The latency of FTC is largely independent of the number of threads, while FTMB
experiences a latency increase of 24-43 µs when going from 1 to 8 threads.

4.6.4 Fault Tolerant Chains

In the following experiments, we evaluate the performance of FTC for a chain of middleboxes
during normal operation. For a NF chain, each middlebox is deployed in a separate physical
server. We use the same number of servers for FTC, while we dedicate 2× the number of servers
to FTMB: A server for each middlebox (Master in FTMB) and a server for its replica (IL and OL
in FTMB).

Chain length impact on throughput: Figure 4.9 shows the maximum traffic throughput pass-
ing in 4 chains (Ch-2 to Ch-5 listed in Table 4.1). Monitors in these chains run 8 threads with

85

2 3 4 5
Chain Length

0

2

4

6

8

10
T

hr
ou

gh
pu

t
(M

pp
s)

NF FTC FTMB FTMB+Snapshot

Figure 4.9: Throughput vs. chain length

sharing level 1. We also report for FTMB+Snapshot that is FTMB with snapshot simulation. To
simulate the overhead of periodic snapshots, we add an artificial delay (6 ms) periodically (every
50 ms). We get these values from [146].

As shown in Figure 4.9, FTC’s throughput is within 8.28-8.92 Mpps and 4.83-4.80 Mpps
for FTMB. FTC imposes a 6-13% throughput overhead compared to NF. The throughput drop
from increasing the chain length for FTC is within 2-7%, while that of FTMB+Snapshot is
13-39% (its throughput drops from 3.94 to 2.42 Mpps). This shows that throughput of FTC is
largely independent of the chain length, while, for FTMB+Snapshot, periodic snapshots taken
at all middleboxes significantly reduce the throughput. No packet is processed during a snapshot.
Packet queues get full at early snapshots and remain full afterwards because the incoming traffic
load is at the same rate. More snapshots are taken in a longer chain. Non-overlapping (in time)
snapshots cause shorter service time at each period and consequently higher throughput drops. An
optimum scheduling to synchronize snapshots across the chain can reduce this overhead; however,
This is not trivial [22].

Chain length impact on latency: We use the same experimental settings as the previous
experiment, except we run single threaded Monitors due to a limitation of the traffic generator.

86

2 3 4 5
Chain Length

0

50

100

150

200

250

300
L

at
en

cy
(µ

s)
NF FTC FTMB

Figure 4.10: Latency vs. chain length

The latter is not able to measure the latency of the chain beyond size 2 composed of multi-threaded
middleboxes. We resort to experimenting with single threaded Monitors under the load of
2 Mpps, a sustainable load by all systems.

As shown in Figure 4.10, FTC’s overhead compared to NF is within 39-104 µs for Ch-2
to Ch-5, translating to roughly 20 µs latency per middlebox. The overhead of FTMB is within
64-171 µs, approximately 35 µs latency overhead per middlebox in the chain.

As shown in Figure 4.11, the tail latency of individual packets passing through Ch-3 is only
moderately higher than the minimum latency. FTC incurs 16.5-20.6 µs per middlebox latency
which is respectively three and two orders of magnitudes less than Pico’s and REINFORCE’s,
and is around 2/3 of FTMB’s. In-chain replication eliminates the communication overhead with
remote replicas. Doing so also does not cause latency spikes unlike snapshot-based systems. In
FTC, packets experience constant latency, while the original FTMB reports up to 6 ms latency
spikes at periodic checkpoints (e.g., at every 50 ms intervals) [146].

Replication factor impact on performance: For replication factors of 2-5 (i.e., tolerating 1-4
failures), Figure 4.12 shows FTC’s performance for Ch-5 in two settings where Monitors run

87

40 60 80 100 120 140 160 180

Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ck
et

s
(C

D
F

)
NF FTC FTMB

Figure 4.11: Ch-3 per packet latency

with 1 or 8 threads. We report the throughput of 8 threaded Monitor, while only report the
latency of 1 threaded Monitor due to a limitation of our test harness.

To tolerate 2.5× failures, FTC incurs only 3% throughput overhead as its throughput decreases
to 8.06 Mpps. The latency overhead is also insignificant as latency only increases by 8 µs. By
exploiting the chain structure, FTC can tolerate a higher number of failures without sacrificing
performance. However, the replication factor cannot be arbitrarily large as encompassing the
resulting large piggyback messages inside packets becomes impractical.

4.6.5 Failure Recovery

Recall from Section 4.5, failure recovery is performed in three steps that incure initialization,
state recovery, and rerouting delays. To evaluate FTC during recovery, we measure the recovery
time of Ch-Rec (see Table 4.1). Each middlebox is placed in a different region of our Cloud
testbed. As Orch detects a failure, a new Replica is placed in the same region as the failed
middlebox. The Head of Firewall is deployed in the same region as Orch, while the Heads
of SimpleNAT and Monitor are respectively deployed in a neighboring region and a remote
region compared to Orch’s region. Since Orch is also a SDN controller, we observe negligible

88

2 3 4 5
Replication Factor

0

50

100

150

200

250
L

at
en

cy
(µ

s)
Latency

0

1

2

3

4

5

6

7

8

9

T
hr

ou
gh

pu
t

(M
pp

s)

Throughput

Figure 4.12: Replication factor

values for the rerouting delay, thus we focus on the state recovery delay and initialization delay.

Recovery time: As shown in Figure 4.13, the initialization delays are 1.2, 49.8, and 5.3 ms for
Firewall, Monitor, and SimpleNAT, respectively. The longer the distance between Orch
and the new Replica, the higher the initialization delay. The state recovery delays are in the
range of 114.38±9.38 ms to 270.79±50.47 ms3. FTC replicates the values of state variables, and
its state recovery delay is bounded by the state size of a middlebox. Moreover, upon any failure, a
new Replica fetches state from a remote region. The WAN latency between two remote regions
becomes the dominant delay during failover. Using ping, we measured the network delay between
all pairs of remote regions, and the observed RTTs confirmed our results. Finally, since in FTC, a
new instantiated Replica fetches state in parallel from other Replicas (see Section 4.5), the
replication factor has a negligible impact on recovery time.

3The large confidence intervals reported are due to latency variability in the wide area network connecting different
regions.

89

Firewall Monitor SimpleNAT

100

101

102

103
D

el
ay

(m
s)

State Recovery Initialization

Figure 4.13: Recovery time

4.7 Related Work

We already discussed NFV related work in Section 4.1.2. Next, we position FTC related to three
lines of work.

Fault tolerant storage: Prior to FTC, the distributed system literature used chain and ring
structures to provide fault tolerance. However, their focus is on ordering read/write messages
at the process level (compared to, middlebox threads racing to access shared state in our case),
at lower non-determinism rates (compared to, per-packet frequency), and at lower output rates
(compared to, several Mpps releases).

A class of systems adapt the chain replication protocol [163] for key-value storages. In
HyperDex [43] and Hibari [53], servers shape multiple logical chains replicating different key
ranges. NetChain [79] replicates in the network on a chain of programmable switches. FAWN [4],
Flex-KV [125], and parameter server [96] leverage consistent hashing to form a replication ring
of servers. Unlike these systems, FTC takes advantage of the natural structure of service function
chains, uses transactional packet processing, and piggybacks state updates on packets.

90

Primary backup replication: In active replication [140], all replicas process requests. This
scheme requires determinism in middlebox operations, while middleboxes are non-deterministic
[37, 71]. In passive replication [20], only a primary server processes requests and sends state
updates to other replicas. This scheme makes no assumption about determinism. Generic virtual
machine high availability solutions [31, 38, 139] pause a virtual machine per each checkpoint.
These solutions are not effective for chains, since the chain operations pauses during long
checkpoints.

Consensus protocols: Classical consensus protocols, such as Paxos [94] and Raft [117] are
known to be slow and cause unacceptable low performance if used for middleboxes.

4.8 Conclusion and Future Work

Existing fault tolerant middlebox frameworks can introduce high performance penalties when they
are used for a service function chain. This chapter presented FTC, a system that takes advantage of
the structure of a chain, transactional packet processing, and data dependency vectors to provide
efficient fault tolerance. Our evaluation demonstrates that FTC can provide high degrees of fault
tolerance with low overhead in terms of latency and throughput of a chain. As future work, we plan
to rigorously prove the serializability of our data dependency vectors using conflict equivalence
approach [65].

91

Chapter 5

Conclusions

5.1 Thesis Summary

In this thesis, we have presented three projects aiming to realize some of the main NFV promises:
cost efficiency, dynamic scaling, and fault tolerance.

With DSFC, presented in Chapter 2, we optimized the cost of middlebox chain deployments.
DSFC places middlebox instances distributedly and decouples the chain’s performance from
underlying hardware. By proving the NP-Hardness of a such deployment, we provided a better
theoretical understanding of the complexity of a middlebox chain deployment. Kariz, our heuristic
solution, enables operators to distribute a chain of middleboxes over a large network infrastructure
with competitive performance.

With Constellation, discussed in Chapter 3, we designed a framework for the dynamic de-
ployment of middleboxes across geo-distributed network infrastructures. Constellation uses
asynchronous state replication of convergent state objects to achieve high performance and scala-
bility for middleboxes. Constellation improves the packet processing throughput of competing
designs by two orders of magnitude.

Lastly, we presented FTC in Chapter 4, where we made a chain of middleboxes fault tolerant.
FTC considers the entire chain as a fault tolerant unit, instead of making individual middleboxes
fault tolerant. FTC provides a simpler design for a fault tolerant chain and reaches 2–3.5×
throughput of the state of art, with a performance overhead on the order of only tens of micro-
seconds.

In the following, we discuss future research directions.

92

5.2 Future Research Directions

Fault tolerance for a chain of multi-instance middleboxes: To scale to large traffic load, a
chain can compose multi-instance middleboxes. Achieving fault-tolerance with high-performance
for such a chain deployment is a challenging problem. The difficulty lies in the fact that stateful
middlebox instances share state. A distributed set of middleboxes – that can be deployed across
separate physical servers – must be able to read and write shared state with high performance –
e.g., per packet or per flow – while the requirements for fault tolerance of that state – which can
be with high performance overhead – must be met.

In accessing shared state information, fault tolerance demands expensive co-ordinations among
middlebox instances, while high performing packet processing avoids such costly synchronizations.
Co-ordinations and synchronizations provide consistency guarantees but deteriorate performance
drastically. Specifically, a fault tolerant system design for such chain deployment must find a
trade-off between desired levels of consistency and concurrency.

Middlebox framework with multi-state object convergence: Many middlebox applications
contain a collection of state objects. In some applications, concurrent updates across middlebox
instances must hold collective invariants for a subset of state objects. Although such invariants
can be specific to a particular middlebox application, the middlebox framework can provide
mechanisms that facilitate resolving the conflicting state updates that may lead to violating such
invariants.

The Constellation framework dedicates a state channel per state object. Alternatively, we can
allocate a state channel per subset of state objects. State updates that are relevant to a subset
of state objects are exchanged over the associated state channel. The transmission and delivery
of relevant state updates can be performed transparently. Moreover, the framework can expose
certain APIs to facilitate the task of developers in resolving conflicting updates.

93

References

[1] Ali Abedi and Tim Brecht. Conducting repeatable experiments in highly variable cloud
computing environments. In Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering, ICPE ’17, pages 287–292, New York, NY, USA, 2017.
ACM.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin
Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and
George Varghese. Conga: Distributed congestion-aware load balancing for datacenters.
SIGCOMM Comput. Commun. Rev., 44(4):503–514, August 2014.

[3] Amazon. Elastic load balancing. https://aws.amazon.com/
elasticloadbalancing/. [Online].

[4] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan,
and Vijay Vasudevan. Fawn: A fast array of wimpy nodes. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 1–14, New
York, NY, USA, 2009. ACM.

[5] Fabien André, Stéphane Gouache, Nicolas Le Scouarnec, and Antoine Monsifrot. Don’t
share, don’t lock: Large-scale software connection tracking with krononat. In Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC
’18, pages 453–465, Berkeley, CA, USA, 2018. USENIX Association.

[6] Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin. Programming slick
network functions. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15, pages 14:1–14:13, New York, NY, USA, 2015.
ACM.

[7] Azeem Aqil, Karim Khalil, Ahmed O.F. Atya, Evangelos E. Papalexakis, Srikanth V.
Krishnamurthy, Trent Jaeger, K. K. Ramakrishnan, Paul Yu, and Ananthram Swami. Jaal:

94

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/

Towards network intrusion detection at isp scale. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’17, pages
134–146, New York, NY, USA, 2017. ACM.

[8] Katerina Argyraki, Salman Baset, Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Eddie Kohler, Maziar Manesh, Sergiu Nedevschi, and Sylvia Ratnasamy. Can
software routers scale? In Proceedings of the ACM Workshop on Programmable Routers
for Extensible Services of Tomorrow, PRESTO ’08, pages 21–26, New York, NY, USA,
2008. ACM.

[9] S. Ayoubi, S. R. Chowdhury, and R. Boutaba. Breaking service function chains with
khaleesi. In 2018 IFIP Networking Conference (IFIP Networking) and Workshops, pages
64–72, May 2018.

[10] P Ayuso. Netfilter’s connection tracking system. ;login, 31(3), 2006.

[11] Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba. On
orchestrating virtual network functions. In Proceedings of the 2015 11th International
Conference on Network and Service Management (CNSM), CNSM ’15, pages 50–56,
Washington, DC, USA, 2015. IEEE Computer Society.

[12] Barracuda. Barracuda cloudgen firewall. https://www.barracuda.com/
products/cloudgenfirewall. [Online].

[13] Barracuda. Barracuda WAF. https://goo.gl/QmLv8E. [Online].

[14] Ruben Becker, Maximilian Fickert, and Andreas Karrenbauer. A novel dual ascent al-
gorithm for solving the min-cost flow problem. In 2016 Proceedings of the Meeting on
Algorithm Engineering and Experiments (ALENEX), pages 151–159, 01 2016.

[15] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio
Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, and Guru Parulkar.
Onos: Towards an open, distributed sdn os. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 1–6, New York, NY, USA,
2014. ACM.

[16] Boost.org. boost.coroutine. https://github.com/boostorg/coroutine. [On-
line].

[17] Bevin Brett. Memory performance in a nutshell. https://software.intel.com/
en-us/articles/memory-performance-in-a-nutshell, jun 2016. [On-
line].

95

https://www.barracuda.com/products/cloudgenfirewall
https://www.barracuda.com/products/cloudgenfirewall
https://goo.gl/QmLv8E
https://github.com/boostorg/coroutine
https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell
https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell

[18] Bro. The bro network security monitor. https://www.bro.org. [Online].

[19] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2004.

[20] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Distributed systems
(2nd ed.). In Sape Mullender, editor, Distributed Systems (2Nd Ed.), chapter The Primary-
backup Approach, pages 199–216. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1993.

[21] B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues. RFC 3234, RFC Editor,
2002.

[22] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, March 1996.

[23] Chen Chen, Changbin Liu, Pingkai Liu, Boon Thau Loo, and Ling Ding. A scalable
multi-datacenter layer-2 network architecture. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR ’15, pages 8:1–8:12, New
York, NY, USA, 2015. ACM.

[24] Chen Chen, Changbin Liu, Pingkai Liu, Boon Thau Loo, and Ling Ding. A scalable
multi-datacenter layer-2 network architecture. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR ’15, pages 8:1–8:12, New
York, NY, USA, 2015. ACM.

[25] Elden Christensen. Tuning failover cluster network thresholds. https://bit.ly/
2NC7dGk, 2020. [Online].

[26] P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack problem.
Journal of Heuristics, 4(1):63–86, Jun 1998.

[27] Adrian Cockcroft. A closer look at the christmas eve outage. http://techblog.
netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.
html. [Online].

[28] P. Coelho and F. Pedone. Geographic state machine replication. In 2018 IEEE 37th
Symposium on Reliable Distributed Systems (SRDS), pages 221–230, Oct 2018.

[29] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems:
Concepts and Design. Addison-Wesley Publishing Company, USA, 5th edition, 2011.

96

https://www.bro.org
https://bit.ly/2NC7dGk
https://bit.ly/2NC7dGk
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html

[30] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity attacks.
In Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12,
SSYM’03, pages 3–3, Berkeley, CA, USA, 2003. USENIX Association.

[31] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and
Andrew Warfield. Remus: High availability via asynchronous virtual machine replication.
In 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI 08),
San Francisco, CA, 2008. USENIX Association.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, October 2007.

[33] Julien Desgats. How we built rate limiting capable of scaling
to millions of domains. https://blog.cloudflare.com/
counting-things-a-lot-of-different-things, 2017. [Online].

[34] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep packet inspection
using parallel bloom filters. In 11th Symposium on High Performance Interconnects, 2003.
Proceedings., pages 44–51, Aug 2003.

[35] Dave Dice, Yossi Lev, Virendra J. Marathe, Mark Moir, Dan Nussbaum, and Marek Ol-
szewski. Simplifying concurrent algorithms by exploiting hardware transactional memory.
In Proceedings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’10, page 325–334, New York, NY, USA, 2010. Association for
Computing Machinery.

[36] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of the
20th International Conference on Distributed Computing, DISC’06, page 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag.

[37] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gianluca
Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. Routebricks: Exploiting
parallelism to scale software routers. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 15–28, New York, NY, USA, 2009.
ACM.

[38] YaoZu Dong, Wei Ye, YunHong Jiang, Ian Pratt, ShiQing Ma, Jian Li, and HaiBing Guan.
Colo: Coarse-grained lock-stepping virtual machines for non-stop service. In Proceedings

97

https://blog.cloudflare.com/counting-things-a-lot-of-different-things
https://blog.cloudflare.com/counting-things-a-lot-of-different-things

of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 3:1–3:16, New York,
NY, USA, 2013. ACM.

[39] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. Predicting the resource
consumption of network intrusion detection systems. In Richard Lippmann, Engin Kirda,
and Ari Trachtenberg, editors, Recent Advances in Intrusion Detection, pages 135–154,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[40] Norbert Egi, Mihai Dobrescu, Jianqing Du, Katerina Argyraki, Byung-Gon Chun, Kevin
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, Laurent Mathy, et al. Under-
standing the packet processing capability of multi-core servers. Technical report, Technical
Report, 2009.

[41] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-
Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein.
Maglev: A fast and reliable software network load balancer. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), pages 523–535, Santa Clara,
CA, 2016.

[42] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg
Carle. Moongen: A scriptable high-speed packet generator. In Proceedings of the 2015
Internet Measurement Conference, IMC ’15, pages 275–287, New York, NY, USA, 2015.
ACM.

[43] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hyperdex: A distributed, searchable
key-value store. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’12,
pages 25–36, New York, NY, USA, 2012. ACM.

[44] ETSI. NFV Whitepaper. Technical report, European Telecommunications Standards
Institute, 2017.

[45] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-commodity flow
problems. In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975),
pages 184–193, Oct 1975.

[46] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: A scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–293, June 2000.

[47] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox actions using

98

flowtags. In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 543–546, Seattle, WA, 2014. USENIX Association.

[48] Colin J Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Australian National University. Department of Computer Science, 1987.

[49] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach. Virtual network
embedding: A survey. IEEE Communications Surveys Tutorials, 15(4):1888–1906, Fourth
2013.

[50] Mario Flajslik and Mendel Rosenblum. Network interface design for low latency request-
response protocols. In Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 333–346, San Jose, CA, 2013. USENIX.

[51] Open Networking Foundation. Openflow switch specification v.1.3.1. https://goo.
gl/llwvyE. [Online].

[52] N. Freed. Behavior of and requirements for internet firewalls. RFC 2979, RFC Editor,
2000.

[53] Scott Lystig Fritchie. Chain replication in theory and in practice. In Proceedings of the 9th
ACM SIGPLAN Workshop on Erlang, Erlang ’10, pages 33–44, New York, NY, USA, 2010.
ACM.

[54] Fujitsu. Onos e-cord proof of concept demonstrates open disaggregated roadm. https:
//www.fujitsu.com/us/Images/ONOS-E-CORD-use-case.pdf. [Online].

[55] Rohan Gandhi, Y. Charlie Hu, and Ming Zhang. Yoda: A highly available layer-7 load
balancer. In Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys ’16, pages 21:1–21:16, New York, NY, USA, 2016. ACM.

[56] Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert Grandl, Xiaoyang Gao, Ashok
Anand, Theophilus Benson, Aditya Akella, and Vyas Sekar. Stratos: A network-aware
orchestration layer for middleboxes in the cloud. CoRR, abs/1305.0209, 2013.

[57] Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella. Toward software-
defined middlebox networking. In Proceedings of the 11th ACM Workshop on Hot Topics
in Networks, HotNets-XI, pages 7–12, New York, NY, USA, 2012. ACM.

[58] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl, Junaid
Khalid, Sourav Das, and Aditya Akella. Opennf: Enabling innovation in network function

99

https://goo.gl/llwvyE
https://goo.gl/llwvyE
https://www.fujitsu.com/us/Images/ONOS-E-CORD-use-case.pdf
https://www.fujitsu.com/us/Images/ONOS-E-CORD-use-case.pdf

control. In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 163–174, New York, NY, USA, 2014. ACM.

[59] Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong, Raouf Boutaba, and Ali Jose Mashti-
zadeh. Fault tolerant service function chaining. In Proceedings of the 2020 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’20, New York, NY, USA,
August 2020. Association for Computing Machinery (ACM).

[60] Milad Ghaznavi, Ali Jose Mashtizadeh, Bernard Wong, and Raouf Boutaba. Constel-
lation: A high performance geo-distributed middlebox framework. Technical Report
arXiv:2003.05111 [cs.NI], ArXiV, March 2020.

[61] Milad Ghaznavi, Nashid Shahriar, Shahin Kamali, Reaz Ahmed, and Raouf Boutaba.
Distributed service function chaining. IEEE Journal on Selected Areas in Communications,
35(11):2479–2489, November 2017.

[62] Chaima Ghribi, Marouen Mechtri, and Djamal Zeghlache. A dynamic programming
algorithm for joint vnf placement and chaining. In Proceedings of the 2016 ACM Workshop
on Cloud-Assisted Networking, CAN ’16, pages 19–24, New York, NY, USA, 2016. ACM.

[63] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles. J. ACM, 36(4):873–886, October 1989.

[64] M. G. Gouda and A. X. Liu. A model of stateful firewalls and its properties. In 2005
International Conference on Dependable Systems and Networks (DSN’05), pages 128–137,
June 2005.

[65] J. N. Gray, R. A. Lorie, and G. R. Putzolu. Granularity of locks in a shared data base. In
Proceedings of the 1st International Conference on Very Large Data Bases, VLDB ’75,
page 428–451, New York, NY, USA, 1975. Association for Computing Machinery.

[66] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: A
scalable and flexible data center network. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, SIGCOMM ’09, page 51–62, New York, NY, USA,
2009. Association for Computing Machinery.

[67] Y. Gu, M. Shore, and S. Sivakumar. A framework and problem statement for
flow-associated middlebox state migration. https://tools.ietf.org/html/
draft-gu-statemigration-framework-03, 2013.

100

https://tools.ietf.org/html/draft-gu-statemigration-framework-03
https://tools.ietf.org/html/draft-gu-statemigration-framework-03

[68] Guanyao Huang, A. Lall, C. Chuah, and Jun Xu. Uncovering global icebergs in distributed
monitors. In 2009 17th International Workshop on Quality of Service, pages 1–9, July
2009.

[69] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network design
problems. In Proceedings 41st Annual Symposium on Foundations of Computer Science,
pages 603–612, 2000.

[70] T. Hain. Architectural implications of nat. RFC 2993, RFC Editor, 11 2000.

[71] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: A gpu-
accelerated software router. SIGCOMM Comput. Commun. Rev., 40(4):195–206, August
2010.

[72] HAProxy. Haproxy load balancer’s development branch. https://github.com/
haproxy/haproxy. [Online].

[73] Hewlett-Packard. HP Virtual Router Series. http://goo.gl/hPWrTt. [Online].

[74] A. Hirwe and K. Kataoka. Lightchain: A lightweight optimisation of vnf placement for
service chaining in nfv. In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages
33–37, June 2016.

[75] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, and
Hideyuki Tokuda. Is it still possible to extend tcp? In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, IMC ’11, pages 181–194,
New York, NY, USA, 2011. ACM.

[76] Marios Iliofotou, Michalis Faloutsos, and Michael Mitzenmacher. Exploiting dynamicity
in graph-based traffic analysis: Techniques and applications. In Proceedings of the 5th In-
ternational Conference on Emerging Networking Experiments and Technologies, CoNEXT
’09, pages 241–252, New York, NY, USA, 2009. ACM.

[77] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzenmacher, Sumeet
Singh, and George Varghese. Network monitoring using traffic dispersion graphs (tdgs). In
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC ’07,
pages 315–320, New York, NY, USA, 2007. ACM.

[78] DPDK Intel. Data plane development kit, 2015.

101

https://github.com/haproxy/haproxy
https://github.com/haproxy/haproxy
http://goo.gl/hPWrTt

[79] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé, Changhoon
Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages 35–49, Renton, WA,
2018. USENIX Association.

[80] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network, 22(5):20–25, September
2008.

[81] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. Stateless network functions:
Breaking the tight coupling of state and processing. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 97–112, Boston, MA,
2017. USENIX Association.

[82] Rishi Kapoor, Alex C. Snoeren, Geoffrey M. Voelker, and George Porter. Bullet trains: A
study of nic burst behavior at microsecond timescales. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’13, pages
133–138, New York, NY, USA, 2013. ACM.

[83] Katran. Katran, a high performance layer 4 load balancer. https://github.com/
facebookincubator/katran. [Online].

[84] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. Ravana: Controller
fault-tolerance in software-defined networking. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR ’15, pages 4:1–4:12, New
York, NY, USA, 2015. ACM.

[85] Junaid Khalid and Aditya Akella. Correctness and performance for stateful chained network
functions. In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 501–516, Boston, MA, 2019. USENIX Association.

[86] Junaid Khalid, Aaron Gember-Jacobson, Roney Michael, Anubhavnidhi Abhashkumar,
and Aditya Akella. Paving the way for nfv: Simplifying middlebox modifications using
statealyzr. In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 239–253, Santa Clara, CA, 2016. USENIX Association.

[87] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The
click modular router. ACM Trans. Comput. Syst., 18(3):263–297, August 2000.

[88] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. Mdcc:
Multi-data center consistency. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 113–126, New York, NY, USA, 2013. ACM.

102

https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran

[89] Jeff Kronlage. Asymmetric routing and firewalls. http://brbccie.blogspot.
com/2013/03/. [Online].

[90] Sameer G Kulkarni, Guyue Liu, KK Ramakrishnan, Mayutan Arumaithurai, Timothy Wood,
and Xiaoming Fu. Reinforce: Achieving efficient failure resiliency for network function
virtualization based services. In 15th USENIX International Conference on emerging
Networking EXperiments and Technologies (CoNEXT) 18). USENIX Association, 2018.

[91] Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and Jia Wang. Data streaming algorithms
for efficient and accurate estimation of flow size distribution. In Proceedings of the
Joint International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’04/Performance ’04, pages 177–188, New York, NY, USA, 2004. ACM.

[92] S Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma. Service function chaining use
cases in data centers. Internet draft, RFC Editor, 2 2017.

[93] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai. Deploying chains of virtual network
functions: On the relation between link and server usage. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, pages 1–9,
April 2016.

[94] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, December 2001.

[95] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn, and Fuqiang Zhang. vnids: Towards
elastic security with safe and efficient virtualization of network intrusion detection systems.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 17–34, New York, NY, USA, 2018. ACM.

[96] Mu Li, David G. Anderson, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In Operating Systems Design and Implementation
(OSDI), pages 583–598, 2014.

[97] Linux. fork - create a child process. http://man7.org/linux/man-pages/
man2/fork.2.html. [Online].

[98] Linux. madvise - give advice about use of memory. http://man7.org/linux/
man-pages/man2/madvise.2.html. [Online].

[99] Linux. tc - show / manipulate traffic control settings. https://linux.die.net/
man/8/tc. [Online].

103

http://brbccie.blogspot.com/2013/03/
http://brbccie.blogspot.com/2013/03/
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/madvise.2.html
http://man7.org/linux/man-pages/man2/madvise.2.html
https://linux.die.net/man/8/tc
https://linux.die.net/man/8/tc

[100] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Fried-
man, and Vyas Sekar. Nitrosketch: Robust and general sketch-based monitoring in software
switches. In Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, pages 334–350. ACM, 2019.

[101] H. Long, Y. Shen, M. Guo, and F. Tang. Laberio: Dynamic load-balanced routing in
openflow-enabled networks. In 2013 IEEE 27th International Conference on Advanced
Information Networking and Applications (AINA), pages 290–297, March 2013.

[102] Y. Lu, B. Prabhakar, and F. Bonomi. Perfect hashing for network applications. In 2006
IEEE International Symposium on Information Theory, pages 2774–2778, July 2006.

[103] Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, Luciana S. Buriol, and
Luciano Paschoal Gaspary. A fix-and-optimize approach for efficient and large scale virtual
network function placement and chaining. Computer Communications, 102:67 – 77, 2017.

[104] Tamás Lukovszki, Matthias Rost, and Stefan Schmid. It’s a match!: Near-optimal and
incremental middlebox deployment. SIGCOMM Comput. Commun. Rev., 46(1):30–36,
January 2016.

[105] J. Ma, F. Le, A. Russo, and J. Lobo. Detecting distributed signature-based intrusion: The
case of multi-path routing attacks. In 2015 IEEE Conference on Computer Communications
(INFOCOM), pages 558–566, April 2015.

[106] Mohammad Mahdian and Martin Pál. Universal facility location. In Giuseppe Di Battista
and Uri Zwick, editors, Algorithms - ESA 2003, pages 409–421, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[107] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency multi-datacenter databases using replicated commit. Proc. VLDB
Endow., 6(9):661–672, July 2013.

[108] MAWI. Mawi working group traffic archive - 2019. https://mawi.wide.ad.jp/
mawi/ditl/ditl2019-G/201904090900.html, 2019. visited on April 2020.

[109] MAWI. Mawi working group traffic archive - 2020. https://mawi.wide.ad.
jp/mawi/samplepoint-F/2020/202002161400.html, 2020. visited on April
2020.

[110] MazuNAT. mazu-nat.click, 2019. https://github.com/kohler/click/blob/
master/conf/mazu-nat.click.

104

https://mawi.wide.ad.jp/mawi/ditl/ditl2019-G/201904090900.html
https://mawi.wide.ad.jp/mawi/ditl/ditl2019-G/201904090900.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2020/202002161400.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2020/202002161400.html
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://github.com/kohler/click/blob/master/conf/mazu-nat.click

[111] Microsoft. Asymmetric routing with multiple network paths.
https://docs.microsoft.com/en-us/azure/expressroute/
expressroute-asymmetric-routing. [Online].

[112] H. Moens and F. D. Turck. Vnf-p: A model for efficient placement of virtualized network
functions. In 10th International Conference on Network and Service Management (CNSM)
and Workshop, pages 418–423, Nov 2014.

[113] Juniper Networks. Contrail sd-wan. https://www.juniper.net/us/en/
products-services/sdn/contrail/contrail-sd-wan. [Online].

[114] NiciraNetworks. Openvswitch: An open virtual switch. http://openvswitch.org.

[115] NiciraNetworks. The published onos docker images. https://hub.docker.com/
r/onosproject/onos/.

[116] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. Stateless
datacenter load-balancing with beamer. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 125–139, Renton, WA, 2018. USENIX
Association.

[117] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319, 2014.

[118] OpenBSD. pf — packet filter. https://man.openbsd.org/pf.4. [Online].

[119] Christoph Paasch and Olivier Bonaventure. Multipath tcp. Commun. ACM, 57(4):51–57,
April 2014.

[120] M. Pal, T. Tardos, and T. Wexler. Facility location with nonuniform hard capacities. In
Proceedings 2001 IEEE International Conference on Cluster Computing, pages 329–338,
Oct 2001.

[121] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. E2: A framework for nfv applications. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 121–136, New
York, NY, USA, 2015. ACM.

[122] Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott Shenker.
SCL: Simplifying distributed SDN control planes. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17), pages 329–345, Boston, MA, 2017.
USENIX Association.

105

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-asymmetric-routing
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-asymmetric-routing
https://www.juniper.net/us/en/products-services/sdn/contrail/contrail-sd-wan
https://www.juniper.net/us/en/products-services/sdn/contrail/contrail-sd-wan
http://openvswitch.org
https://hub.docker.com/r/onosproject/onos/
https://hub.docker.com/r/onosproject/onos/
https://man.openbsd.org/pf.4

[123] Vern Paxson. Bro: A system for detecting network intruders in real-time. Comput. Netw.,
31(23-24):2435–2463, December 1999.

[124] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. Improving
network connection locality on multicore systems. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages 337–350, New York, NY, USA,
2012. ACM.

[125] Amar Phanishayee, David G. Andersen, Himabindu Pucha, Anna Povzner, and Wendy
Belluomini. Flex-kv: Enabling high-performance and flexible kv systems. In Proceedings
of the 2012 Workshop on Management of Big Data Systems, MBDS ’12, pages 19–24, New
York, NY, USA, 2012. ACM.

[126] Open Network Automation Platform. Onap architecture overview. https:
//www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_
CaseSolution_Architecture_112918FNL.pdf. [Online].

[127] Diana Popescu, Noa Zilberman, and Andrew Moore. Characterizing the impact of network
latency on cloud-based applications’ performance, 2017.

[128] Rahul Potharaju and Navendu Jain. Demystifying the dark side of the middle: A field study
of middlebox failures in datacenters. In Proceedings of the 2013 Conference on Internet
Measurement Conference, IMC ’13, pages 9–22, New York, NY, USA, 2013. ACM.

[129] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, SECURE NETWORKS INC
CALGARY ALBERTA, 1998.

[130] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan
Yu. Simple-fying middlebox policy enforcement using sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 27–38, New York,
NY, USA, 2013. ACM.

[131] Paul Quinn and Thomas Nadeau. Problem Statement for Service Function Chaining.
Internet-draft, IETF, 2015.

[132] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum, and Alex C.
Snoeren. Cloud control with distributed rate limiting. SIGCOMM Comput. Commun. Rev.,
37(4):337–348, August 2007.

106

https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf

[133] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. Pico replication: A high avail-
ability framework for middleboxes. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 1:1–1:15, New York, NY, USA, 2013. ACM.

[134] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13),
pages 227–240, Lombard, IL, 2013. USENIX.

[135] Karthikeyan Ranganathan. Netflix shares cloud load balancing and failover tool: Eureka!
https://bit.ly/2Xa9PBW. [Online].

[136] Mindaugas Rasiukevicius. Npf: packet filter with stateful inspection, nat, ip sets, etc.
http://rmind.github.io/npf/. [Online].

[137] riverbed. Steelhead Product Family Spec Sheet. http://goo.gl/g2XfNs. [Online].

[138] M. Rost and S. Schmid. On the hardness and inapproximability of virtual network embed-
dings. IEEE/ACM Transactions on Networking, 28(2):791–803, April 2020.

[139] Daniel J Scales, Mike Nelson, and Ganesh Venkitachalam. The design and evaluation of
a practical system for fault-tolerant virtual machines. Technical report, Technical Report
VMWare-RT-2010-001, VMWare, 2010.

[140] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[141] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches for
efficient and accurate change detection over network data streams. In Proceedings of the
4th ACM SIGCOMM Conference on Internet Measurement, IMC ’04, pages 207–212, New
York, NY, USA, 2004. ACM.

[142] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi. Design
and implementation of a consolidated middlebox architecture. In NSDI 12, pages 323–336,
2012.

[143] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Research Report RR-7506,
Inria – Centre Paris-Rocquencourt ; INRIA, January 2011.

107

https://bit.ly/2Xa9PBW
http://rmind.github.io/npf/
http://goo.gl/g2XfNs

[144] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free repli-
cated data types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, Stabilization,
Safety, and Security of Distributed Systems, pages 386–400, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[145] Justine Sherry. Middleboxes as a Cloud Service. PhD thesis, EECS Department, University
of California, Berkeley, November 2016.

[146] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishnamurthy,
Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi Rizzo, and
Scott Shenker. Rollback-recovery for middleboxes. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIGCOMM ’15, pages
227–240, New York, NY, USA, 2015. ACM.

[147] Justine Sherry, Sylvia Ratnasamy, and Justine Sherry At. A survey of enterprise middlebox
deployments, 2012.

[148] S. Sinha et al. Harnessing TCPs Burstiness using Flowlet Switching. In HotNets, 2004.

[149] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and
Jennifer Rexford. Heavy-hitter detection entirely in the data plane. In Proceedings of the
Symposium on SDN Research, SOSR ’17, pages 164–176, New York, NY, USA, 2017.
ACM.

[150] R. Smith, C. Estan, and S. Jha. Backtracking algorithmic complexity attacks against a
nids. In 2006 22nd Annual Computer Security Applications Conference (ACSAC’06), pages
89–98, Dec 2006.

[151] Robin Sommer, Matthias Vallentin, Lorenzo De Carli, and Vern Paxson. Hilti: An abstract
execution environment for deep, stateful network traffic analysis. In Proceedings of the
2014 Conference on Internet Measurement Conference, IMC ’14, pages 461–474, New
York, NY, USA, 2014. ACM.

[152] Squid. Squid frequently asked questions - memory. http://www.comfsm.fm/
computing/squid/FAQ-8.html. [Online].

[153] Squid. Squid: Optimising web delivery. http://www.squid-cache.org. [Online].

[154] P. Srisuresh and K. Egevang. Traditional ip network address translator (traditional nat).
RFC 3022, RFC Editor, 2001.

108

http://www.comfsm.fm/computing/squid/FAQ-8.html
http://www.comfsm.fm/computing/squid/FAQ-8.html
http://www.squid-cache.org

[155] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. Grids - a graph-based intrusion detection system for large
networks. In In Proceedings of the 19th National Information Systems Security Conference,
pages 361–370, 1996.

[156] R. Stewart. Stream control transmission protocol. RFC 4960, RFC Editor, September 2007.

[157] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst., 3(3):204–226, August 1985.

[158] The AWS Team. Summary of the october 22, 2012 aws service event in the us-east region.
https://aws.amazon.com/message/680342/. [Online].

[159] The Google Apps Team. Data center outages generate big losses. http:
//static.googleusercontent.com/external_content/untrusted_
dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf.
[Online].

[160] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford. Dynamics of hot-potato
routing in ip networks. SIGMETRICS Perform. Eval. Rev., 32(1):307–319, June 2004.

[161] J. A. Tomlin. Minimum-cost multicommodity network flows. Oper. Res., 14(1):45–51,
February 1966.

[162] Daniel Turull, Peter Sjödin, and Robert Olsson. Pktgen: Measuring performance on high
speed networks. Computer Communications, 82:39 – 48, 2016.

[163] Robbert Van Renesse and Fred B Schneider. Chain replication for supporting high through-
put and availability. In OSDI, volume 4, pages 91–104, 2004.

[164] Guido VAN ROOIJ. Real stateful tcp packet filtering in ip filter. SANE 2000, 2000.

[165] Shobha Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. New streaming
algorithms for fast detection of superspreaders. Technical report, CARNEGIE-MELLON
UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2004.

[166] Javier Verdú, Mario Nemirovsky, and Mateo Valero. Multilayer processing - an execution
model for parallel stateful packet processing. In Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, ANCS ’08,
pages 79–88, New York, NY, USA, 2008. ACM.

109

https://aws.amazon.com/message/680342/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf

[167] O. Huang M. Boucadair N. Leymann Z. Cao J. Hu W. Liu, H. Li. Ser-
vice function chaining use-cases. https://tools.ietf.org/html/
draft-liu-sfc-use-cases-01. [Online].

[168] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta. Joint optimization of service function
chaining and resource allocation in network function virtualization. IEEE Access, 4:8084–
8094, 2016.

[169] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peterson. Reliability
and security in the codeen content distribution network. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’04, page 14, USA, 2004.
USENIX Association.

[170] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang. An untold
story of middleboxes in cellular networks. SIGCOMM Comput. Commun. Rev., 41(4):374–
385, August 2011.

[171] T. Wen, H. Yu, G. Sun, and L. Liu. Network function consolidation in service function
chaining orchestration. In 2016 IEEE International Conference on Communications (ICC),
pages 1–6, May 2016.

[172] Shinae Woo. S6: Elastic scaling of stateful network functions. https://github.com/
NetSys/S6. [Online].

[173] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and Scott Shenker.
Elastic scaling of stateful network functions. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), pages 299–312, Renton, WA, 2018. USENIX
Association.

[174] Jiarong Xing, Wenqing Wu, and Ang Chen. Architecting programmable data plane defenses
into the network with fastflex. In Proceedings of the 18th ACM Workshop on Hot Topics in
Networks, HotNets ’19, pages 161–169, New York, NY, USA, 2019. ACM.

[175] Ying Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Pat-
neyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, and M. Tatipamula. Steering: A
software-defined networking for inline service chaining. In 2013 21st IEEE International
Conference on Network Protocols (ICNP), pages 1–10, Oct 2013.

110

https://tools.ietf.org/html/draft-liu-sfc-use-cases-01
https://tools.ietf.org/html/draft-liu-sfc-use-cases-01
https://github.com/NetSys/S6
https://github.com/NetSys/S6

	List of Figures
	List of Tables
	Introduction
	Distributed Service Function Chaining
	Constellation: A Geo-Distributed Middlebox Framework
	Fault Tolerant Service Function Chaining
	Dissertation Plan

	Distributed Service Function Chaining
	Challenges
	System Implementation Challenges
	Optimization Challenges

	Distributed Service Function Chaining
	Definitions
	Mathematical Model:

	NP Hardness of Distributed Service Function Chaining
	Kariz: Heuristic Solution
	Route and Middlebox Instances
	Solution Improvement Rounds
	Update Layers
	Time Complexity Analysis

	Evaluation
	Experimental Setup and Methodology
	Acceptance Ratio
	Resource Utilization
	Operational Costs

	Related Work
	Conclusion and Future Work

	Constellation: A Geo-Distributed Middlebox Framework
	Background and Motivation
	Middlebox State
	Recent Work: State Management for LAN
	Geo-distributed Middleboxes

	Design Overview
	Study of Common Middleboxes
	Constellation Design Choices

	Constellation Middlebox Framework
	State Objects
	Asynchronous State Replication
	Dynamic Scaling

	Implementation and Experience
	Network Address Translator
	Artifacts of Asynchronous Replication

	Evaluation
	Experimental Setup and Methodology
	Performance Breakdown
	Performance in Normal Operation
	Dynamic Scaling
	Coalescing Benefits
	Inconsistency Artifacts
	Development Complexity

	Related Work
	Conclusion and Future Work

	Fault Tolerant Service Function Chaining
	Background
	Challenges
	Limitations of Existing Approaches

	System Design Overview
	Requirements
	Design Choices

	FTC for a Single Middlebox
	Middlebox State Replication
	Concurrent Packet Processing
	Concurrent State Replication

	FTC for a Chain
	Normal Operation of Protocol
	Failure Recovery

	Implementation
	Evaluation
	Experimental Setup and Methodology
	Micro-benchmark
	Fault Tolerant Middleboxes
	Fault Tolerant Chains
	Failure Recovery

	Related Work
	Conclusion and Future Work

	Conclusions
	Thesis Summary
	Future Research Directions

	References

