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Abstract

Over the last two decades, we have seen a dramatic improvement in the efficiency of
conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers over industrial
problems from a variety of applications such as verification, testing, security, and AI.
The availability of such powerful general-purpose search tools as the SAT solver has led
many researchers to propose SAT-based methods for cryptanalysis, including techniques
for finding collisions in hash functions and breaking symmetric encryption schemes.

A feature of all of the previously proposed SAT-based cryptanalysis work is that they
are blackbox, in the sense that the cryptanalysis problem is encoded as a SAT instance and
then a CDCL SAT solver is invoked to solve said instance. A weakness of this approach
is that the encoding thus generated may be too large for any modern solver to solve it
efficiently. Perhaps a more important weakness of this approach is that the solver is in
no way specialized or tuned to solve the given instance. Finally, very little work has been
done to leverage parallelism in the context of SAT-based cryptanalysis.

To address these issues, we developed a set of methods that improve on the state-of-
the-art SAT-based cryptanalysis along three fronts. First, we describe an approach called
CDCL(Crypto) (inspired by the CDCL(T ) paradigm) to tailor the internal subroutines
of the CDCL SAT solver with domain-specific knowledge about cryptographic primitives.
Specifically, we extend the propagation and conflict analysis subroutines of CDCL solvers
with specialized codes that have knowledge about the cryptographic primitive being an-
alyzed by the solver. We demonstrate the power of this framework in two cryptanalysis
tasks of algebraic fault attack and differential cryptanalysis of SHA-1 and SHA-256 crypto-
graphic hash functions. Second, we propose a machine-learning based parallel SAT solver
that performs well on cryptographic problems relative to many state-of-the-art parallel
SAT solvers. Finally, we use a formulation of SAT into Bayesian moment matching to
address heuristic initialization problem in SAT solvers.
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Chapter 1

Introduction

Boolean satisfiability (SAT) is a fundamental problem in computer science, that asks
whether there exists an assignment to variables of a Boolean formula that evaluates it
to true (satisfiable). Boolean SAT solvers are programs that accept a SAT instance in con-
junctive normal form and determine their satisfiability. Over the last two decades, we have
seen a dramatic improvement in the efficiency of conflict-driven clause-learning (CDCL)
SAT solvers, enabling them to routinely solve very large instances obtained from real-world
applications. Modern SAT solvers are now well-known as powerful general purpose search
tools. They have been used in solving problems from many different domains, such as
verification [CGP+08], AI [Rin09], and cryptography [MZ06]. They get their power from
reasoning components like clause learning [MSS99] and many different search heuristics,
like VSIDS1 [MMZ+01] or LRB2 branching [LGPC16a], clause deletion [AS09b], restarts
[AS12] and lazy data structures [MMZ+01].

The availability of such powerful search tool has led many researchers to propose the
use of SAT solvers for cryptanalysis of hash functions and symmetric encryption schemes,
referred to as SAT-based Cryptanalysis [MM00]. For example, SAT solvers are used in
preimage attacks [MS13], [Nos12], collision attacks [MZ06], [Pro16], and linear and dif-
ferential cryptanalysis of lightweight block ciphers[ADWL17], [KLT15]. SAT solvers are
increasingly an important tool in the toolbox of the practical cryptanalyst and designer of
hash functions and encryption schemes.

Although in some of the approaches, the heuristics of the solver are altered to improve
their efficiency, e.g. branching heuristics [Pro16], [SZBP11] and restart policy [NLG+17],

1Variable State Independent Decaying Sum
2Learning-Rate Branching
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most of these approaches used a direct encoding of the said problems into a satisfiability
problem and used SAT solvers as a blackbox. The changes are limited to the search
heuristics and do not alter the logic reasoning components of the solver. The one notable
exception is the CryptoMiniSAT solver [SNC09], that adds reasoning over XOR clauses
to the solver to improve the solving of cryptographic instances that heavily use XOR
operations.

The current work on SAT-based cryptanalysis is similar to the eager approach in solving
Satisfiability Modulo Theories (SMT) formulas, where the formula is directly translated
into a SAT instance and then a SAT solver is invoked on it. The benefit of this approach
is that we can use any SAT solver as-is and leverage the performance of the solver and
its improvement capacity over time. The downside of this approach is the loss of the
high-level semantics of the underlying theories. This means that the SAT solver needs to
perform extra computations to prove facts that are readily available in the higher level
logic (e.g. x + y = y + x in the integer arithmetic). The other main approach to solving
SMT instances, called lazy approach, integrates the CDCL style search with theory-specific
solvers (T -solvers). This architecture is referred to as CDCL(T ). Generally speaking, a T -
solver is useful only if it participates in propagation and conflict analysis reasoning engines
of the SAT solver they extend.

Thesis Statement: Black-box SAT-based cryptanalysis has limited power.
CDCL-based solvers can be enhanced with cryptographic reasoning components
and tailored search heuristics in a white-box fashion for cryptanalysis tasks.
These enhancements enable the CDCL SAT solvers to traverse the trade-off
between the flexibility and search power of SAT solvers on one hand and the
performance of dedicated tools for specific cryptanalysis tasks on the other
hand.

To address this issue, we developed a set of methods that improve the state-of-the-art
SAT-based cryptanalysis. We made contributions in both search heuristics and reasoning
components of CDCL SAT solvers which can be divided into three main lines. First, we
present a framework called CDCL(Crypto) (inspired by CDCL(T ) paradigm) to extend
the functionality of propagation and conflict analysis components of CDCL SAT solvers
with cryptographic reasoning coming from the cryptanalysis problem being encoded into
SAT. Second, we propose a machine-learning based parallel SAT solver that performs well
on cryptographic problems compared to many state-of-the-art parallel SAT solvers. Finally,
we used Bayesian moment matching to initialize the solver heuristics and find a promising
starting point for solving a cryptographic problem.

2
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Figure 1.1: Overview of our contribution within a divide-and-conquer parallel SAT solver
with sequential CDCL backend solvers. The colored blocks show the extensions to their
neighboring CDCL components. blocks are described in Chapter 3, blocks
in Chapter 4, and blocks in Chapter 5.

Figure 1.1 shows a high-level block diagram of a divide-and-conquer parallel SAT solver
(a master node talking to multiple sequential CDCL backend solvers), and a peek inside a
CDCL SAT solver. The figure highlights which components of the CDCL solver we have
extended or improved (Pre-processing, Unit propagation, Conflict Analysis, and Splitting).
The colored-dashed blocks are our extensions/implementations and the neighboring solid
blocks are the original components that have been enhanced. The contributions are color-
coded with the respective chapter that describes them.
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1.1 Extending Reasoning Components

for Cryptographic Problems

Although modern CDCL solvers are capable of handling a large number of constraints
coming from many different domains, there are still many problems that could benefit
from the search capabilities of SAT solvers, but face a representational challenge. In
converting these problems into Boolean logic, either some high-level properties are lost,
or a blowup in problem size happens when the desired properties are also encoded. Some
of the basic operations in cryptographic primitives fall into this category of problems. In
other words, there are some implications in the original problem that are not found by the
implication engine in the Boolean level. This problem especially affects instances encoding
symmetric block cipher and cryptographic hash functions, because they are constructed
by repeating a small round function several times to achieve high levels of diffusion. Thus
a lost implication at a round function level can break a long chain of implications.

In this work, we present a method and a prototype tool, called CDCL(Crypto),
that uses a programmatic SAT design to extend the functionality of propagation and
conflict analysis components with the domain knowledge of the cryptographic problems.
We demonstrate the power of this framework in two cryptanalysis tasks. First, we show
how we can speed up algebraic fault attack on SHA cryptographic hash functions, and
effectively reducing the number of required faults to recover the embedded secret message
bits in a hardware implementation of the said functions. Second, we improve the results on
state-of-the-art SAT-based differential cryptanalysis of SHA-256. In each of these tasks, the
propagation and conflict analysis are programmatically extended specific to that problem.
However, the underlying framework is exactly the same. This shows that cryptographers
can use this tool to program their cryptanalysis techniques on top of a flexible and powerful
search engine.

1.2 Improving Splitting Heuristics

in Parallel SAT Solvers

There has been a great body of work on sequential Boolean SAT solvers. The emergence
of many-core machines, however, opens new possibilities in this domain, and parallel SAT
algorithms constitute a natural next step in SAT solver research. Unfortunately, developing
practically efficient parallel SAT solvers that scale well with an increasing number of cores
has shown to be a much harder challenge than anticipated. Furthermore, there are very
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few prior works on parallel SAT solvers that target cryptographic instances. The two most
widely used architectures for parallel SAT solvers are portfolio and divide-and-conquer
(and its variants) approaches.

For our second line of contribution, we focused on divide-and-conquer solvers. These
types of solvers split the formula into smaller sub-formulas and solve the resultant sub-
formulas in parallel using sequential CDCL solvers. We studied the splitting heuristic in
divide-and-conquer solvers. Splitting heuristics pick a variable and set it to both True
and False within the original formula, thus generating two sub-formulas. Effectively they
try both branches of the search space branched at the splitting variable in parallel. This
process can be further applied to the generated sub-formulas to create many sub-formulas.
The goal of splitting heuristics is to identify the variables that generate easier sub-formulas
for CDCL backend solvers, in other words, they try to answer this question: How to divide,
so the conquer becomes easier?

In this work, we first present an ad-hoc splitting heuristics based on how well setting
the splitting variable propagates to other variables and generates smaller sub-formulas. We
show that this heuristic performs very well on cryptographic instances compared to other
state-of-the-art parallel SAT solvers. Next, we look at the problem more abstractly and
frame the splitting problem as a ranking problem. We give a quality metric for splitting
candidates to define the splitting as a runtime optimization problem more formally. We
then present a machine learning technique that generates a ranking of variables according to
their splitting quality. We show that in an apple-to-apple comparison with other splitting
heuristics, we improve the performance of the baseline solver over application benchmarks
of the SAT competition, and solve more instances than leading divide-and-conquer solvers
in the competition.

1.3 Initializing SAT Solver Heuristics

It is well-known that the initial order and value assignment to the variables of an input
formula can have a huge impact on the performance of a CDCL SAT solver. By initial
order, we mean the order chosen by the solver at the beginning of its search before making
the first decision (we can similarly define the notion of initial value assignment). The
problem then is “find the optimal order (resp., value assignment) for a given input formula
such that the solver’s runtime is minimized”.

In this work, we used the encoding of SAT problem into a Bayesian inference setting.
We start from a random prior describing an assignment to the variables of the given
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formula. Each formula clause is then observed as evidence, and the distribution is updated
using Bayesian inference and moment matching. Bayesian inference by itself could result
in a mixture model that grows exponentially in the number of models. We use moment
matching to approximate a distribution with a single model. Bayesian moment matching
finds a posterior distribution that approximates a solution to the input SAT formula, that
ideally satisfies most of the clauses (if not all of them). This method might not scale to
solve large SAT instances, however, we use the posterior to find a close-to-solution starting
point. We pre-process the formula and encode the derived posterior probabilities into initial
values for value selection (polarity heuristic) and variable order (branching heuristic). We
further improve the initialization by using newly generated clauses (implied by the formula)
during the search and guide the search toward paths that are highly likely leading to a
solution. This formulation is very well-suited for satisfiable instances because the posterior
is describing a solution. All of our cryptographic problems are satisfiable (there exists a
secret key or hash preimage, and the task is to find the solution), therefore we studied this
technique on cryptographic instances as an important class of satisfiable instances.

We show that with the combination of polarity and branching initialization, not only
we get a significant speedup in cryptographic instances, but also we get considerable per-
formance improvements in other application instances, compared to 4 other initialization
methods that we have experimented with.
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1.4 Supporting Code Contributions

This dissertation is partially based on the following codes:

• CDCL(Crypto): We developed a programmatic SAT system called CDCL(Crypto),
which provides programmatic propagation and conflict analysis callbacks on top of
MapleSAT SAT solver [LGPC16a]. The system callbacks contain pre-implemented
propagation for multi-operand addition and SHA message recovery, and can easily
be adapted to other use cases.
Source code: https://github.com/saeednj/CDCL-Crypto.

• MapleAmpharos and MaplePainless : We developed a parallel SAT solver called
MapleAmpharos, that implements propagation-rate heuristic on top of Ampharos
parallel SAT solver [ALST16]. Also developed two machine learning based ranking
methods for splitting heuristic on top of Painless parallel SAT framework [LFBSK19].
Source code: https://github.com/saeednj/MaplePainless-DC.

• BMM-SAT : We instrumented MapleSAT, Glucose, CryptoMiniSAT, MapleCOMSPS
and MapleLCMDistChronoBT to add Bayesian moment matching based polarity and
variable order initialization.
Source code: https://github.com/saeednj/BMMSAT.

• SAT Encoding : We developed an encoder for translating various cryptanalysis tasks
into SAT instances.
Source code: https://github.com/saeednj/SAT-encoding.

1.5 Supporting Publications

This dissertation contains material from the following published, under review documents:

[NNS+17] S Nejati, Z Newsham, J Scott, JH Liang, C Gebotys, P Poupart, V Ganesh.
A propagation rate based splitting heuristic for divide-and-conquer solvers.
International Conference on Theory and Applications of Satisfiability Testing (SAT)
2017.

[NLG+17] S Nejati, JH Liang, C Gebotys, K Czarnecki, V Ganesh.
Adaptive Restart and CEGAR-based Solver for Inverting Cryptographic Hash Func-
tions.
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Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE)
2017.

[NHGG18] S Nejati, J Horáček, C Gebotys, V Ganesh.
Algebraic Fault Attack on SHA Hash Functions Using Programmatic SAT Solvers.
International Conference on Principles and Practice of Constraint Programming (CP)
2018.

[NG19] S Nejati, V Ganesh.
CDCL(Crypto) SAT Solvers for Cryptanalysis.
Proceedings of the 29th Annual International Conference on Computer Science and
Software Engineering (CASCON) 2019.

[NDT+20] S Nejati/H Duan, G Trimponias, P Poupart, V Ganesh.
Online Bayesian Moment Matching based SAT Solver Heuristics.
Submitted to ICML 2020.

[NLFG20] S Nejati, L Le Frioux, V Ganesh.
A Machine Learning based Splitting Heuristic for Divide-and-Conquer Solvers.
In preparation for CP 2020.
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Chapter 2

Background

In this chapter we introduce definitions and preliminary material for the following chapters.
The three main lines of preliminary materials that is covered in this chapter are from Par-
allel SAT solving (Sections 2.1,2.2,2.4), Machine Learning (2.5.1,2.5.2), and Cryptography
(Sections 2.6,2.8,2.9) topics that are related to our work.

2.1 Boolean SATisfiability

A Boolean variable is a variable that only accepts True and False values. A literal (l)
is a Boolean variable (v) or its negation (¬v). A clause (C) is a disjunction of literals
(l1 ∨ l2 ∨ · · · ∨ ln). A clause with a single literal is called a unit clause. A Boolean formula
(φ) in conjunctive normal form (CNF) is a conjunction of clauses (C1 ∧ C2 ∧ · · · ∧ Cm).
Boolean satisfiability problem is, given a Boolean formula determine if it is satisfiable, in
other words: is there an assignment to the Boolean variables in the formula that makes
the formula evaluate to True? A Boolean SAT solver is a program that determines the
satisfiability of a given Boolean formula, typically in CNF.

We refer to set of all of the variables (resp. clauses) in a formula φ, using vars(φ)
(resp. clauses(φ)). For a given formula φ, an assignment α, to the variables of φ, is a
mapping α : vars(φ) → {False, True}. An assignment is complete when all of variables
are assigned a truth value, otherwise it is partial. A literal l (resp. ¬l) is satisfied by α, if
it maps it to true (resp. false). A clause is satisfied by alpha, if at least one of the literals
in that clause is satisfied by α. We denote simplification of formula φ over assignment α
with φ[α], which means removing all satisfied clauses by α and all falsified literals by α in
the remaining clauses of φ.
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Algorithm 1 Pseudocode of a basic CDCL SAT solver.

Input: CNF formula φ
Output: SAT/UNSAT

1: function CDCL(φ)
2: T ← {} . trail of decision and implied literals.
3: while true do
4: T ← unitPropagate(φ, T )
5: if (φ, T ) is in conflict then . unit propagation derives an empty clause.
6: if T = {} then . the conflict is at the top decision level.
7: return UNSAT
8: c← analyzeConflict(φ, T ) . derive a conflict clause.
9: m← assertionLevel(c)

10: T ← Tm . remove any decisions/propagations after decision level m.
11: φ← φ ∪ {c}
12: else
13: if RestartCondition() = true then
14: T ← {}
15: l← pickBranchingLiteral()
16: if l = null then . there is no unassigned variables.
17: return SAT
18: T ← T ∪ {l} . add the decision literal to the trail

2.2 Conflict-Driven Clause-Learning SAT Solvers

We refer the readers to [BHvM09] for a detailed description of conflict-driven clause-
learning (CDCL) SAT solvers and only review a high-level overview of these solvers in
this section. CDCL solvers traverse the search space of assignments to the variables of the
given formula by setting values to variables (decision), finding implied literals (unit prop-
agation), pruning the search space by learning from conflicting decisions (clause learning)
and backtracking to undo the bad decisions. The pseudocode of a basic CDCL SAT solver
is given in Algorithm 1.

Branching. The solver picks an unassigned variable (variable selection heuristic) and
assign a value to it (polarity heuristic). Typically the combination of these two is referred
to as branching heuristic. The heuristically picked variable is called a decision variable,
and together with its value, it is referred to as decision literal. The decision literal is then
appended to a sequence called trail. The decision level of a literal on the trail is defined
as the number of decision variables that come before it on the trail.
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Unit Propagation. A unit clause is satisfied when the literal in it is satisfied. During
the search, if all but one of the literals in a clause are set to false, the clause becomes unit
and implies that the unassigned literal should be set to true. These last literals are referred
to as implied literals. The implied literals are added to the trail with the decision level set
to the same value as the last decision level in the trail. The solver simplifies the formula
after setting literals in unit clauses to true, by removing the satisfied clauses and falsified
literals. This simplification might create new unit clauses, where the simplification can be
applied again. This process is repeated until there are no implied literals.

Conflict Analysis. If during the unit propagation, all of the literals in a clause are
falsified, that clause is falsified with respect to the current partial assignment. In other
words, if the simplification removes all of the falsified literals and derives a clause that is
empty, we are in a conflicting state. If the trail is empty, then the formula is unsatisfiable
by itself. Otherwise a conflict analysis routine, looks at the decisions and implications
that led to this conflict and derives a conflict clause that explains the cause of this conflict.
The process of deriving this particular clause is referred to as clause learning, and thus
the derived clause is also called a learnt clause. The assertion level m is defined as the
second highest decision level of the literals appearing in the conflict clause. The solver
backjumps to the decision level m, by removing any literals in the trail that has a decision
level greater than m. The learnt clause is implied by the formula, therefore it can be
added to the formula. This learnt clause prevents the solver from getting to the same
partial assignment in the future.

Restart. A search restart is clearing the trail entirely while retaining the learnt clauses.
When the unit propagation terminates without a conflict, the solver may choose to restart.
Technically, a restart is a backjump to decision level 0. The choice of whether to perform
a restart or not is typically guided by a heuristic.

2.3 Arc Consistency and SAT

The following definition is adapted from general arc consistency definition given in [BBR09].

Definition 2.3.1. Let R be an inference rule of propositional logic. Let φ be a Boolean
formula which encodes a constraint C in CNF. We say that the encoding of C into φ R-
maintains Generalized Arc Consistency (GAC) if for all partial assignments α, i.e.,
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a conjunction of literals, and for all literal ` the following holds

C ∧ α ` `⇒ φ ∧ α `R ` (i.e., ` is derived from φ ∧ α by R).

The following example illustrates the fact that some encodings do not maintain GAC
under unit propagation (UP), which is the propagation procedure in CDCL SAT solvers.

Example 2.3.1. Consider the pseudo-Boolean constraint: x + y ≤ 0, i.e., x, y ∈ {0, 1}
and “+” denotes integer addition. We can encode this constraint into a CNF formula φ
by using a half-adder with inputs x and y and forcing the outputs to be zero. The half-
adder relations for carry and sum outputs c and s are x ∧ y, x⊕ y. The final encoding of
C = (c↔ x∧y)∧ (s↔ x⊕y)∧ (¬s∧¬c) in CNF is φ = (¬x∨y)∧ (x∨¬y)∧ (¬x∨¬y). It
is clear that x and y should be set to zero. But these values are not discovered by applying
UP on φ.

One would naturally expect that the assignment α to the input variables, fully unit
propagate to the output bits, but this may not always be the case and depends on the
encoding φ.

2.4 Parallel SAT Solvers

The general approach for utilizing many-core systems for CDCL SAT solvers is to have
several sequential CDCL solvers as workers running on different computing cores and have
them work cooperatively or competitively (or a mix of both) to solve the input problem.
There are two main strategies that parallel SAT solvers use: portfolio and divide-and-
conquer.

Portfolio. In parallel portfolio solvers, the original formula is given to all of the workers.
Portfolio solvers rely on two main techniques, namely: diversification, where the worker
solvers are configured with different heuristics and/or initial parameters and clause shar-
ing, where workers periodically share the learnt clauses they generate during the search.
Diversification helps the solvers to dive into different parts of the search space and make
use of the complementary power of different heuristics. Clause sharing helps to have useful
information about each sub-space in all solvers, thus alleviating the need to explore any
sub-space multiple times. The input formula is SAT (resp. UNSAT) if any of the solvers
return SAT (resp. UNSAT).
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Figure 2.1: Splitting a formula φ into smaller sub-formulas φ1, φ2 and φ3, and the corre-
sponding splitting tree. Each node is a variable in φ and edges labeled with F are setting
that variable to False (and T for True). Each sub-formula is a the original formula con-
strained with a cube (conjunction of literals from root to the corresponding leaf). Some
paths could be unsatisfiable.

2.4.1 Divide-and-Conquer Solvers

Divide-and-conquer solvers first split the search space of the input formula into many
smaller sub-spaces and then solve the resulting sub-formulas in parallel using CDCL solvers.
The input formula is SAT if one of the worker solvers returns SAT. However, to prove that
the input formula is UNSAT, all of the workers need to return UNSAT for their sub-
formulas.

Search Space Splitting

There are different approaches to search space splitting. Commonly the splitting is done
by a function which maps a formula φ to n constraints p1, · · · , pn, such that, φ ≡ (φ∧p1)∨
· · · ∨ (φ∧ pn) (sub-formulas cover the search space of the input formula), and φ∧ pi ∧ pj is
unsatisfiable for all i 6= j. The process of splitting the formula can be done statically (all
of the constraints are generated together), or iteratively (the formula is split into two sub-
formulas and the splitting is recursively applied to the sub-formulas) [HM12]. A common
splitting strategy is guiding path [ZBH96]. The splitting is done iteratively and at each
splitting point, the formula φ is divided into two sub-formulas φ1 = φ∧x and φ2 = φ∧¬x,
where x ∈ vars(φ). We refer to x as the splitting variable. Usually, these solvers are
implemented in a master-slave architecture, where the master maintains the search space
splitting in the form of a binary tree (splitting tree). Each node in this tree is a splitting
variable. The left branch represents setting parent variable to False and right branch is for
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setting it to True. The path from the root to each of the leaves represents a conjunction
of literals called cube (representing a splitting constraint pi). Figure 2.1 shows a splitting
tree and its corresponding cubes. Each sequential solver receives the formula with literals
in its cube as an assumption set.

Splitting Heuristic

The splitting heuristic is the problem of choosing a splitting variable. The target of splitting
heuristic is to generate balanced sub-spaces and reduce the overall runtime of the solving
process. Splitting heuristics are commonly one of these two main approaches: Look-ahead
and Look-back.

Look-ahead. This type of heuristics looks into the question of “what would happen
if we pick variable x for splitting?” and picks the variable that has the largest effect.
The difference between original formula and formula after simplifying it over both x and
¬x (picking x for splitting) is measured using a so-called DIFF metric, which for exam-
ple computes a weighted average of reduced clauses (clauses that were touched and not
satisfied). Another heuristic (MIXDIFF metric) mixes the values for x and ¬x branches
to arrive at a single value for each variable x. Analyzing all of the variables to compute
their value can become expensive as the number of variables increases. Cube-and-Conquer
solvers [HKWB11] use look-ahead heuristics for splitting the formula into many smaller
sub-formulas and solve them using CDCL solvers in parallel. The main benefit of perform-
ing look-ahead first and CDCL next is that look-ahead techniques scan a big subset (if not
all) of the variables, and this provides them with a global view of the formula, compared
to CDCL solvers that analyze the formula very locally. In other words, using a global view
they split the formulas into very focused and compact sub-spaces that can be handled very
easily by CDCL solvers.

Look-back. This approach looks at how important is a variable when participated in
the search exploration (according to some heuristic measure, e.g. contribution to clause
learning). We let the sequential solvers work on their sub-formulas and gather search
related statistics. If the sub-formula is easy, the solver returns a result, otherwise, we need
to break it down, and at this point, the solver looks back at the gathered statistics and
according to the splitting heuristics picks the best splitting variable. The main benefit
of these types of heuristics is their dynamic nature that adapts to the problem and the
statistics are often very cheap to compute and handle. For example, Ampharos [ALST16]
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uses VSIDS activities (maintained for branching). Painless-DC [LFBSK19] uses number of
flips for each variable. A flip is the number of times that unit propagation sets a variable
to a value that is different than its previous propagated value.

The notation tS(φ) refers to the time to solve a Boolean formula φ with a sequential
worker CDCL SAT solver S (We drop the subscript if it is clear from context). We
denote the reduced formula after setting v to False (respectively to True) with φ[v = F ]
(respectively, φ[v = T ]). By reducing a formula we mean simplification via unit propagation
(i.e., removal of satisfied clauses from the formula, falsified literals from clauses).

Performance Metric. The term performance metric, with respect to a given solver S,
refers to a function pm : φ × v → R, over a formula φ and a variable v ∈ vars(φ), that
characterizes the “quality” of splitting φ over v. Minimizing this metric ideally should
correlate with minimizing solver runtime.

More precisely, the general goal of designing a splitting heuristic is twofold: first, to
come up with a metric that correlates with minimizing solver runtime, and second to design
a function to compute said metric. Researchers have proposed a variety of performance
metrics in the context of splitting heuristics. Below are definitions of three such perfor-
mance metrics and the intuition behind each of them. In previous work, researchers have
found that these metrics are good proxies for minimizing runtime in the context of splitting
in DC solvers. Further, to state the obvious, it is ideal to split on a variable that minimizes
these metrics over all variables of an input formula. Let φ1 = φ[v = F ] and φ2 = φ[v = T ],
be the sub-formulas after splitting φ over v.

• pm1(φ, v) = max{t(φ1), t(φ2)}: This metric aims to capture the runtime of a DC
solver executed in parallel over the sub-formulas φ1 and φ2.

• pm2(φ, v) = t(φ1) + t(φ2): This function gives higher priority to splitting variables
that make the problem easier even in a single core setting.

• pm3(φ, v) = −(t(φ)− t(φ1)) ·(t(φ)− t(φ2)): The idea behind this metric is to measure
runtime “progress” in each branch (by comparing the runtime of sub-formulas with
the original formula) and also aims to balance the hardness of the two branches.
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2.5 Machine Learning

2.5.1 Supervised Learning

Consider a function f : D → R. Supervised learning is a machine learning method of
learning a function that maps inputs from domain D (x ∈ D) to the outputs from range
R (y = f(x) ∈ R), based on given input-output examples. Each example pair < x, f(x) >
used for learning is called a training example, and a set of these examples is referred to
as labeled training data. In other words, supervised learning is the process of inferring
a function f̃ from labeled training data, which approximates the function f . We say f̃
fits the training data if the learned function outputs the correct values for input values
from training data with a high probability. The hope is that f̃ is not only fitting the
training data but also can correctly find the output of unseen examples or in other words
generalizes.

Supervised learning can be categorized into two types of Regression and Classification,
based on the range of the output. In regression, the output is a continuous value, and in
classification, we have categorical output. In this work, we only work with classification
algorithms and more specifically binary classification, where the function that we want
to learn has a signature of f : D → {0, 1}. To learn a binary classifier we used logistic
regression and random forest techniques.

Logistic regression [Cox58] is of type f̃ : Rn → [0, 1], where the input is vector of
features extracted from the example input object and the output is the probability of class
1. The function implements a linear regression (a weighted sum of input values), followed
by a sigmoid function σ to squeeze the output to be between 0 and 1.

f̃([x1, x2, · · · , xn]) = σ(w0 + w1x1 + w2x2 + · · ·+ wnxn), σ(x) =
1

1 + e−x

Random forest [LW+02] is an ensemble learning method, that constructs a set of de-
cision trees at training time and outputs the class that appears most often as the output
of decision trees. Decision trees are a popular method for various machine learning tasks.
However, trees that are grown very deep tend to learn highly irregular patterns: they overfit
their training sets, i.e. have a low bias, but very high variance. Random forests are a way
of averaging multiple deep decision trees, trained on different parts of the same training
set, with the goal of reducing the variance. This comes at the expense of a small increase
in the bias and some loss of interpretability, but generally greatly boosts the performance
in the final model.
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2.5.2 Bayesian Moment Matching and SAT

In this section, we give an overview of the Bayesian moment matching algorithm using the
näıve Bayes model.

Bayesian Inference. Bayesian inference is a method of statistical inference, where
the Bayes’ theorem is used to update the probability distribution of a hypothesis as more
and more evidence about that hypothesis becomes available. Bayesian inference derives a
posterior distribution P (H|E) about a hypothesis H, given a prior distribution P (H) and
a likelihood function P (E|H), after observing an evidence E.

P (H|E) =
P (E|H).P (H)

P (E)

Method of Moments. The method of moments is a statistical method to estimate
the parameters of a population. Moments are the expected values of the powers of the
random variables under consideration (E[X], E[X2], · · · ). This method first expresses the
moments as a function of parameters of interest. Then each expression is set equal to
(matched with) the sample moments. Solving this equation set gives us an estimation of
the parameters. The number of equations in this equation system is equal to the number
of parameters that we want to estimate.

Bayesian Moment Matching. Bayesian Moment Matching (BMM) for mixture mod-
els was proposed to prevent the exponential growth of mixture components in online
Bayesian learning [JP16, RZP16]. A distribution belonging to the same family as the
prior is used to approximate the posterior by matching the sufficient moments, in order
to reduce the complexity of posterior distributions. BMM has been successful in the con-
text of topic modelling [Oma16, HP16], hidden Markov models [JCC+16] and sum-product
networks [RZP16].

Problem Setup. Let Z represent a binary hidden variable and X represent a binary
observable variable. Let {X1, . . . , Xn} be a set of binary i.i.d observations from X. The
conditional distribution of X|Z is completely known. We use c1 to denote P (X = 0|Z = 0)
and c2 to denote P (X = 0|Z = 1). Let θ represent the unknown probability of the hidden
variable P (Z = 0), the quantity we wish to infer from {X1, . . . , Xn} in an online and
Bayesian fashion.

17



Let Pk(θ) be the probability of θ after observing k evidences and consider a beta
distribution as the prior over θ. More specifically, P0(θ) = 1

B(α0,β0)
θα0−1(1− θ)β0−1, where

B(α0, β0) represents a beta function of α0 and β0. The posterior after observing the first
evidence is:

P1(θ|X1 = 0) ∝ P0(θ)P (X1 = 0|θ)
∝ θα0−1(1− θ)β0−1[θc1 + (1− θ)c2]
∝ c1θ

α0(1− θ)β0−1 + c2θ
α0−1(1− θ)β0

P1(θ|X1 = 1) ∝ (1− c1)θα0(1− θ)β0−1 + (1− c2)θα0−1(1− θ)β0 (2.1)

The equation 2.1 shows that the posterior is a mixture of two beta distributions after
the first point is observed. Therefore, the number of mixture components in the posterior
distributions will grow exponentially by a factor of two for each new observation, which
makes inference intractable. To solve this problem, BMM approximates the mixture pos-
terior P1(θ) with a single Beta distribution P̃1(θ) = Beta(ã1, b̃1) by matching the first and
second moments. ã1 and b̃1 can be derived by solving the equations system below:

ã1

ã1 + b̃1
= Eθ|X1(θ)

ã1(ã1 + 1)

(ã1 + b̃1)(ã1 + b̃1 + 1)
= Eθ|X1(θ

2)

where, Eθ|X1(f(θ)) =
∫
f(θ)P1(θ|X1)dθ

Bayesian formulation for SAT. Poupart, Jaini and Duan introduced a novel Bayesian
perspective to solve the SAT problem [NDT+20]. In their Bayesian formulation, each
variable in the SAT formula is a Bernoulli random variable with an unknown probability
being assigned to T (true) and each clause is treated as evidence. The objective is to learn
the unknown probability associated with each variable by BMM, which is illustrated with
a toy SAT instance:

C1 : x ∨ y ∨ ¬z
C2 : x ∨ y ∨ z
C3 : x ∨ ¬y ∨ z
C4 : ¬x ∨ ¬y ∨ ¬z
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θi = P (xi = T ) ∼ Beta(αi, βi),
for 1 ≤ i ≤ n

P (Ci = T |x1, · · · , xn)

P (xi = T |Ci = T ),
for 1 ≤ i ≤ n

Pick a clause Ci

Bayes’ theorem

Project onto

Beta
distributions
by matching

moments

Figure 2.2: A Beta prior is assigned to each variable in the beginning. The posteriors are
then calculated each time when encountering a new clause. We project the posteriors back
to Beta distributions using BMM, which serves as priors for the next clause.

They use θx, θy, θz to denote P (x = T ), P (y = T ), P (z = T ) respectively. To estimate
θx, θy, θz by Bayesian inference, they assume that each of them is initially distributed
according to a Beta prior and that they are mutually independent. Concretely, the prior
for the joint distribution is:

P (θx, θy, θz) =
∏

i=x,y,z

Beta(θi;αi, βi).

An instance is satisfiable if all of its clauses are satisfied. To satisfy a clause at least one
of the literals needs to be satisfied, which can be done in many different ways if we have
many literals in a clause. However, there is only one way to falsify the clause. Therefore,
they define the likelihood function as the complement probability of falsifying the observed
clause. For example, to falsify clause C1, we should have x = F, y = F, z = T , and thus:
P (C1|θx, θy, θz) = 1− (1− θx) · (1− θy) · θz. The posterior after seeing the first clause C1 is:

P (θx, θy, θz|C1) ∝ P (θx, θy, θz)P (C1|θx, θy, θz)
∝ P (θx, θy, θz)[1− (1− θx)(1− θy)θz]
∝ Beta(θx;αx, βx) ·Beta(θy;αy, βy) ·Beta(θz;αz, βz)

− βx
αx + βx

βy
αy + βy

βz
αz + βz

Beta(θx;αx, βx + 1)

·Beta(θy;αy, βy + 1) ·Beta(θz;αz + 1, βz)

Since the likelihood 1− (1− θx)(1− θy)θz can also be expressed as the sum of joint prob-
abilities, we can see that the posterior is a mixture of products of Beta distributions. The
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number of mixture components will grow exponentially as more clauses are encountered.
To solve this intractability issue, we approximate the true mixture P (θx, θy, θz|C1) by a
single product of Beta distributions using BMM:

P̃ (θ̃x, θ̃y, θ̃z) =
∏

i=x,y,z

Beta(θ̃i; α̃i, β̃i)

The parameters α̃x, β̃x are then computed by matching the first and second moments of
the marginal distribution of θx:

Eθ̃x∼Beta(θ̃x;α̃x,β̃x)[θ̃x] = Eθx∼Pθx (θx|C1)[θx]

Eθ̃x∼Beta(θ̃x;α̃x,β̃x)[θ̃
2
x] = Eθx∼Pθx (θx|C1)[θ

2
x],

where Pθx(θx|C) =
∫ 1

0

∫ 1

0
P (θx, θy, θz|C)dθydθz. The parameters α̃y, β̃y, α̃z, β̃z are computed

similarly. Subsequently, P̃ (θ̃x, θ̃y, θ̃z) is used as the prior when C2 is observed. During one
epoch, the above update is repeated once for each clause.

2.6 Cryptographic Hash Functions

A hash function maps an arbitrary length input string to a fixed length output string.
There are three main properties that are desired for a cryptographic hash function [LM93].
Informally, they are:

• Preimage Resistance: Given a hash value H, it should be computationally infeasible
to find a message M , where H = hash(M).

• Second Preimage Resistance: Given a message M1, it should be computationally
infeasible to find another message M2, where hash(M1) = hash(M2) and M1 6= M2.

• Collision Resistance: It should be computationally infeasible to find a pair of mes-
sages M1 and M2, where hash(M1) = hash(M2) and M1 6= M2. (There is a subtle
difference between second pre-image resistance and collision resistance, in that the
message M1 is not fixed in the case of collision resistance).

Preimage resistance implies that the hash function should be hard to invert. The
terms preimage attack and inversion attack are used interchangeably. Usually standard
cryptographic hash functions at their core have a compression function, which takes as
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input a fixed length input and outputs a fixed length (with smaller length) output. For
making a hash function able to accept arbitrary long messages as input, one can use Merkle-
Damgard (MD) construction, where the compression functions are chained together, each
processing a block of the input. It is shown that if one block is collision resistant, then the
whole structure is collision resistant [Mer89]. More formally a t-bit compression function is
an efficiently computable function F : Ft2×Fb2 → Ft2, that maps a t-bit chaining value Hi−1
and a b-bit message block Mi to a t-bit output chaining value Hi (Hi = F (Hi−1,Mi)). MD
construction breaks the input message M into fixed equal sized blocks Mi and repeatedly
applies the compression function F . The initial chaining value (H0) is a fixed number,
known as initialization vector (IV), which is defined in the description of the hash function.
For a t-bit compression function, the generic complexity of finding a collision is 2t/2 and
2t for preimage. In the context of MD-based hash functions (e.g. SHA-1, SHA-2), the
collision attack can be relaxed in terms of constraints on the input chaining value. The
task is to find M1 and M2, M1 6= M2 such that hash(CV1,M1) = hash(CV2,M2). For
collision we should have: CV1 = CV2 = IV , for Semi-Free-Start collision we should have:
CV1 = CV2, and for Free-Start collision there is no constraint on CV1 and CV2.

2.6.1 Description of SHA-1

SHA-1 was designed by NSA and standardized by NIST in 1995 (see the standard in [FIP11]).
It was widely used in many applications, but after the recent full collision reported in
[SBK+17], security practitioners moved away to stronger alternatives such as SHA-2 or
SHA-3, although SHA-1 seems to be still resistant against preimage and second preimage
attacks.

SHA-1 uses the Merkle-Damg̊ard construction, where each block has 512 bits. Each
block is given to a compression function that outputs 160 bits, which is used as part of
the input to the next block. We recall only a part of the SHA-1 specification. For the full
description of SHA-1, we refer to [FIP11]. The internal state of SHA-1 is 160 bits. More
precisely, five 32-bit words ai, . . . , ei for each round i. There are 80 rounds, and in each
round a 32-bit message word Wi will be mixed in to update the state bits. The round
function for the round i = 0, . . . , 79 is defined as follows

(ai+1, bi+1, ci+1, di+1, ei+1)←(
f(bi, ci, di)� ei � (ai≪ 5)�Wi �Ki, ai, bi≪ 30, ci, di

)
, (2.2)

where≪ is left rotation, � is addition modulo 232 and Ki is the round constant. The
function f is a Boolean map operating on three 32-bit words and generating a 32-bit word.
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Figure 2.3: Alternative diagram of SHA-1’s round function.

This function changes every 20 rounds and will be one of these:

f(x, y, z) =


IF (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), 0 ≤ r ≤ 19

XOR(x, y, z) = x⊕ y ⊕ z, 20 ≤ r ≤ 39

MAJ(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), 40 ≤ r ≤ 59

XOR(x, y, z) = x⊕ y ⊕ z, 60 ≤ r ≤ 79

(2.3)

The message expansion relation for expanding the initial message words W0, . . . ,W15

from the 512 input bits to 32-bit message words for 80 rounds of SHA-1 is defined by

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)≪ 1, for i ∈ {16, . . . , 79}. (2.4)

Equation 2.2 is the original description of the SHA-1 round function. We often use a
more compact formulation of this function. The state words are labeled with ais where
bi, ci, di and ei are represented with ai−1, ai−2, ai−3 and ai−4. The round function gets as
input ai . . . ai−4 and outputs ai+1. Figure 2.3 depicts this rounds function.
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2.6.2 Description of SHA-256

SHA-256 is in the standard hash function family of SHA-2 [ErH11]. Its structure is similar
to SHA-1, but with a more complex round function and message expansion. The input
block size is 512 bits and it has 64 rounds. Using the following message expansion relation,
the 16 32-bit input words, will be expanded to 64 32-bit words.

Wi = σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16, for i ∈ {16, . . . , 63}, (2.5)

where

σ0(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3),

σ1(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10).
(2.6)

The internal state is 256 bits consisting of eight 32-bit words labeled as ai, bi, . . . , hi
for each round i. In this document, we use a more compact alternative labeling, as many
of these values, similar to SHA-1, are copied to next state words and only two words are
updated. The state update relations is described with the following equations:

Ti = Ei−4 + Σ1(Ei−1) + IF(Ei−1, Ei−2, Ei−3) +Ki +Wi

Ei = Ti + Ai−4

Ai = Ti + Σ0(Ai−1) + MAJ(Ai−1, Ai−2, Ai−3)

(2.7)

where

Σ0(x) = (x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22)

Σ1(x) = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25)

and the functions IF and MAJ are the same as in SHA-1, Ki denotes the SHA-2 round
constant, and Wi denotes the processed expanded message block.

2.7 Encoding SHA-1 and SHA-256 into SAT

A common method of encoding a function into a SAT instance is to use Tseitin trans-
formation on the circuit implementation of the function. In this method, we introduce
variables for inputs, outputs, and intermediate values. Each gate or block is translated
into a CNF formula, which encodes φ : y ↔ f(x). Other encoding methods take an im-
perative approach where an explicit encoding for the higher level variables and constraints
are given. In this work, we took the SHA-1 encoding of Nossum [Nos12] and tweaked it
for our SHA-1 use cases and adapted it to generate instances for SHA-256. Our encoding
is a mix of circuit and imperative encoding.
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Basic blocks. Here we describe the encoding of building blocks in SHA-1 and SHA-256
described in sections 2.6.1 and 2.6.2. Other than the modular addition and rotation, all
of the round-dependent logic functions are bitwise function. We need to apply the same
operation for each bit in the 32-bit word, and hence the loop over bits in the encodings.

f = IF (x, y, z) ≡
31∧
i=0

fi ↔ (xi ∧ yi) ∨ (¬xi ∧ zi)

≡
31∧
i=0

(fi ∨ ¬xi¬yi) ∧ (fi ∨ xi ∨ ¬zi)∧

(¬fi ∨ xi ∨ zi) ∧ (¬fi ∨ ¬xi ∨ yi)

(2.8)

f = XOR(x, y, z) ≡
31∧
i=0

fi ↔ (x⊕ y ⊕ z)

≡
31∧
i=0

(¬fi ∨ ¬xi ∨ ¬yi ∨ zi) ∧ (¬fi ∨ ¬xi ∨ yi ∨ ¬zi)∧

(¬fi ∨ xi ∨ ¬yi ∨ ¬zi) ∧ (¬fi ∨ xi ∨ yi ∨ zi)∧
(fi ∨ ¬xi ∨ ¬yi ∨ ¬zi) ∧ (fi ∨ ¬xi ∨ yi ∨ zi)∧
(fi ∨ xi ∨ ¬yi ∨ zi) ∧ (fi ∨ xi ∨ yi ∨ ¬zi)

(2.9)

f = MAJ(x, y, z) ≡
31∧
i=0

fi ↔ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

≡
31∧
i=0

(¬fi ∨ xi ∨ yi) ∧ (¬fi ∨ xi ∨ zi) ∧ (¬fi ∨ yi ∨ zi)∧

(fi ∨ ¬yi ∨ ¬zi) ∧ (fi ∨ ¬xi ∨ ¬zi) ∧ (fi ∨ ¬xi ∨ ¬yi)

(2.10)

Modular addition. The addition operations are modulo 232, therefore we just need to
ignore any carry value beyond 32nd bit position. To encode these adders, one can encode a
full-adder by generating CNF formulas of Majority function (for carry output) and 3-input
XOR function (for sum output) using the equations 2.10 and 2.9, respectively, and then
chain the full-adders together to create a ripple carry adder. Each round of SHA-1 has a 5-
operand 32-bit adder, which can be encoded using four additions. Tseitin transformation of
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ripple carry adder circuit, typically introduces a lot of auxiliary variables, and the chain of
propagating information would be long. One way to optimize this is to instead of encoding
multiple 2-operand additions, encode a multi-operand addition operation, to reduce the
intermediate Tseitin variables.

Table 2.1: Applying column addition to multi-operand addition of five bitvectors.

c′2 c′1 c′0

c2 c1 c0

x3 x2 x1 x0

y3 y2 y1 y0

z3 z2 z1 z0

t3 t2 t1 t0

+ w3 w2 w1 w0

= s3 s2 s1 s0

Consider the following schema for a 4-bit 5-operand addition of x, y, z, t and w, and
their sum s. The sum of five bits is a number between 0 and 5, thus it can be encoded
as a 3-bit number. The least significant bit of this number goes to be the sum bit in that
column, and the other two bits will be carried to the next columns (represented as c′ici
in table 2.1). Each column receives at most two carry bits, so there are at most 7 input
bits at each column, which is still representable with 3 bits (two carries and a sum bit).
Therefore if we construct a counter function that accepts 7 bits of the same weight and
adds them up and output a weighted 3-bit number, we can chain these counters (similar to
ripple carry) to build a 5-operand addition (f(xi, yi, zi, ti, wi, ci−1, c

′
i−2) = c′icisi). Nossum

[Nos12] proposed using a heuristic logic minimizer called Espresso, to find the CNF
formulation for such a function. Espresso accepts the truth table of a Boolean function
and gives out a minimized formula implementing that table. Our target function has 7
inputs, therefore it is feasible to enumerate the input possibilities and create the table. This
encoding compared to a plain Tseitin encoding of SHA-1, reduces the number of variables
by one fourth, at the cost of doubling the number of clauses. The resultant instances are
shown to be easier to solve for CDCL solvers on average.

We implemented and analyzed different ways of encoding the multi-operand addition.
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First, we encoded the counter function, using half-adders and full-adders, however, it was
slightly worse than using Espresso. Next, we implemented the addition using Wallace
matrix reduction that is commonly used in implementing multiplications. This method
was on par with Nossum’s method, and none of the two were significantly better than the
other.

Consider a round reduced SHA-1 function y = Hash(x) and let E be its CNF encoding.
We can derive CNF encoding of related cryptanalysis problems by adding appropriate
constraints to E. For the preimage of a hash value h, we need to force the output variables
of Hash to be equal to h using unit clauses and conjunct them with E (E ∧ (y ↔ h)).
For encoding collision, we can have two copies of E with different Boolean variables and
forcing the output variables to have the same value, while having at least one of the input
variables to be different.

2.8 Algebraic Fault Attack

Implementation attacks. Implementation attacks are a type of attack on cryptographic
primitives, where the attacker has access to an implementation of the cryptographic prim-
itive (either on a hardware device or as a software running a computing platform), and
the secret information is embedded within the implementation (or is a fixed input to the
implementation). The attacker is able to query the implementation multiple times with
chosen input messages (as plaintext to be encrypted or message to be tagged). There are
two basic approaches to implementation attacks, namely, passive and active implementa-
tion attacks. In passive attacks, the attacker measures some aspect of the computations
on a target implementation via side-channel such as power consumption or timing, to find
patterns that can be exploited. By contrast, in active attacks, the target implementation
is manipulated as part of the attack. In this dissertation, we consider only active attacks.
Fault injection analysis is a form of active attacks, where the attacker intentionally intro-
duces faults in the operation of cryptographic function and analyzes the incorrect outputs
to recover the embedded secret key. These faults could be injected via a variety of methods,
like heating or varying the voltage of the power supply in a controlled fashion to attack
hardware implementing these functions [ADN+10, BECN+06, BBKN12]. Fault attacks
were first proposed in 1997 as a way to break RSA-CRT cipher (cf. [BDL97]). There are
broadly two classes of fault attacks that researchers have studied, namely, differential fault
attacks (DFA) and algebraic fault attacks (AFA).
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Differential Fault Attack. The DFA method was first proposed for breaking DES
cipher [BS97] and has been applied to many other block ciphers [AMT13, JL12, LLG09],
stream ciphers [HR08], and hash functions [HH11, FR12, LFZD16]. At a high level, the
DFA method exploits the differences in the relation between the faulty outputs and the
intermediate variables compared to the correct outputs in order to recover an inner state.
Propagation of induced faults in the forward direction and deduction of fault differences,
backward from the output to the fault location, so-called fault equations, is examined
manually by a cryptanalyst.

Algebraic Fault Attack. AFA methods combine fault injections with algebraic crypt-
analysis [CJW10]. In this approach, the cryptographic function and faults are translated
into algebraic equations over a finite field, and the secret key or message is recovered by
solving these equations using a SAT or SMT solver. Fault equations refer in this case to
an algebraic representation of the cryptographic function starting from the injected fault
location up to its output. The advantage of AFA over DFA is that the solver takes care
of propagation of the fault, and thus significantly reducing the human effort required to
launch a successful attack. AFA has been used to automate DFA methods on block ciphers
[ZGZ+13, ZZG+13], stream ciphers [MBB11a] and hash functions [HLMS14, LAFW17].
Figure 2.4 shows a high level view of AFA on SHA-1 hash function. Figure 2.4a depicts
injection of faults on a hardware implementation of SHA-1, where the faults are induced
before the last 16 rounds, and causing the device to output a faulty value.

Figure 2.4b shows how the faults are seen in an algebraic view, where all cryptographic
relations are encoded as algebraic equations and each injected fault is encoded by XORing
a random and unknown value to the variable corresponding to the fault location. It can be
seen that all of the unfaulty equations (from input to fault location) are just a repetition
of the original SHA-1 relations. Figure 2.4c shows how these duplicated relations are
abstracted away and the remaining parts are the ones that actually get encoded into AFA
equations. Because we are abstracting equations, after solving the equations, we need to
recover the actual messages and verify whether the solution is spurious or not.

2.9 Differential Cryptanalysis

Broadly speaking, differential cryptanalysis [BS91] is the analysis of how a difference in the
input values of a cryptographic function can affect the resultant difference at the output.
Block ciphers and cryptographic hash functions are typically comprised of chaining of
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(a) Fault injection (b) Algebraic View (c) Abstracted View

Figure 2.4: The hardware fault injection in the input of last 16 rounds of SHA-1 and the
algebraic encoding of faulty runs.

smaller functions. In these cases, differential cryptanalysis looks at the trace of differences
of values through the chain of transformations to find non-random behaviors of the function
and exploiting it to find input messages or secret keys.

For systems defined over finite field of characteristic 2, the difference is often defined
with the XOR operation (∆x = x ⊕ x′). We are interested in relations between ∆x and
∆y = f(x ⊕∆x) ⊕ f(x), for a cryptographic function f . The differential probability of a
vectorial Boolean function is defined as follows:

Definition 2.9.1. Let ∆x ∈ Fn2 be the input difference and ∆y ∈ Fm2 be the output
difference. For a vectorial Boolean f : Fn2 → Fm2 , the differential probability of ∆x → ∆y
is defined as:

dp(∆x→ ∆y) =
|{x ∈ Fn2 |f(x)⊕ f(x⊕∆x) = ∆y}|

2n

Difference distribution table (DDT) is a table that contains the number of pairs for all
input/output differences. For functions with a small domain size (e.g. an S-box) the DDT
can be efficiently populated. For large block ciphers and hash functions it is infeasible to
generate the DDT. However, block ciphers and hash functions are often iterative functions
that are build by applying small round functions repeatedly. Therefore the differentials
over the smaller steps of f is analyzed and chained together to derive differentials over
input/outputs of f . This trail of differentials is called a differential characteristics :

Definition 2.9.2. For an r-round iterative function f = fr−1o · · · of1of0, a sequence of
differences

Ω : δ0
f0→ δ1

f1→ δ2 → · · · → δr−1
fr−1→ δr
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is called an r-round differential characteristics of f . For a differential ∆x → ∆y over f ,
we have δ0 = ∆x and δr = ∆y.

2.10 Terminology

Cactus plots. Most of the plots presented in this document are cactus plots. In these
types of plots, each data point (X, Y ) shows that X instances are solved under Y seconds.
This means that solvers that are further to the right are solving more instances and solvers
that are further to the bottom are solving instances faster.

PAR-k. Penalized Average Reward, is an evaluation measure that is being used in recent
SAT competitions to rank SAT solvers. We also use this metric in some of our experiments
to compare solvers on a specific benchmark. PAR-k of solver S on a benchmark B is the
sum of runtimes of S on all instances in B, counting each timeout as k times the running
time cutoff. In the competition and in our experiments k = 2 is used.
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Chapter 3

CDCL(Crypto) SAT Solvers

Boolean satisfiability (SAT) solvers are well-known powerful general purpose search tools,
that have been used in solving problems from many different domains, such as verification,
AI, and cryptography [CGP+08], [Rin09], [MZ06]. They get their power from reasoning
components like clause learning [MSS99] and many different search heuristics, like VSIDS
or machine-learning based LRB branching [MMZ+01], [LGPC16a] clause deletion [AS09b]
and restarts [AS12].

SAT-based Cryptanalysis. The availability of such powerful search tools has led
many researchers to propose the use of SAT and SMT solvers for cryptanalysis of hash
functions and symmetric encryption schemes, for example in preimage attacks [MS13],
[Nos12], collision attacks [MZ06], [Pro16] and linear and differential cryptanalysis of block
ciphers[ADWL17], [KLT15].

Although in some of the approaches, the heuristics of the solver are altered to improve
their efficiency, e.g. branching heuristics [Pro16], [SZBP11] and restart policy [NLG+17],
most of these approaches used a direct encoding of the said problems into a satisfiability
problem and used SAT solvers as a blackbox, and the changes are limited to the search
heuristics and do not alter the logic reasoning components of the solver. The one notable
exception is the CryptoMiniSat solver [SNC09], that adds reasoning over XOR clauses
to the solver to improve the solving of cryptographic instances that heavily use XOR
operations.

The current work on SAT-based cryptanalysis is similar to the eager approach in solving
Satisfiability Modulo Theories (SMT) formulas, where the formula is directly translated
into a SAT instance and then a SAT solver is invoked on it. The benefit of this approach
is that we can use any SAT solver as-is and leverage the performance of the solver and
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its improvement capacity over time. The downside of this approach is the loss of the
high level semantics of the underlying theories. This means that the SAT solver needs to
perform extra computations to prove facts that are readily available in the higher level
logic (e.g. x + y = y + x in the integer arithmetic). The other main approach of solving
SMT instances, called lazy approach, integrates the CDCL style search with theory-specific
solvers (T -solvers). This architecture is referred to as CDCL(T ). Generally speaking, a T -
solver is useful only if it participates in propagation and conflict analysis reasoning engines
of the SAT solver they extend.

3.1 Contributions

The main research question that we pose in this chapter is:
Q: Are there methods that can surpass blackbox SAT-based cryptanalysis in terms of scal-
ability and ability to break complex real-world cryptographic primitives?

1. CDCL(Crypto) framework. Inspired by the CDCL(T ) paradigm, we propose a
framework for SAT-based cryptanalysis that we call CDCL(Crypto). It extends the
propagation and conflict analysis of the core SAT solver using the higher level domain
knowledge about the cryptographic problem that is being analyzed. To be more
flexible, and to have simpler implementation and be able to customize the extended
functionalities to different cryptographic problems, we use the Programmatic SAT
[GOS+12] architecture, where the solver provides callbacks for extending propagation
and conflict analysis to be implemented by the user.

2. Case study 1: Algebraic Fault Attack. We first review an application of this
framework that has been successfully applied to algebraic fault analysis of SHA-1 and
SHA-256 cryptographic hash functions [NHGG18], enabling the attacker to recover
the secret bits with only 11 faults in SHA-1 and 48 faults in SHA-256, which is a
significant improvement over previous algebraic fault attacks.

3. Case Study 2: Differential Cryptanalysis. Then we demonstrate that this
framework can be applied to other cryptographic problems, more specifically differ-
ential cryptanalysis of round reduced SHA-256. We present preliminary results on
increasing the number of rounds in the collision finding of SHA-256 compared to the
previous SAT-based differential cryptanalysis of SHA-256.
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3.2 CDCL(Crypto) Framework

In this section, we describe the CDCL(Crypto) framework, based on a programmatic
SAT solver, illustrated in Figure 3.1.

3.2.1 Programmatic Interface in SAT Solvers

We call a SAT solver programmatic [GOS+12] if it is augmented with a set of callback
functions that allow the user to add functionality to the solver’s propagation and conflict
analysis routines. The idea is inspired by the CDCL(T ) architecture, in which a theory
solver provides support for theory propagation and theory conflict analysis to the base
Boolean CDCL solver. Programmatic SAT solving differs from the general concept in 3
ways: First, the theory solver in the context of programmatic SAT can be an arbitrary
piece of code, in that we place no requirements on its completeness; second, this code might
be particularized to every input to the solver. That is, unlike the T -solver in CDCL(T )
which remains invariant for all formulas from the language of T , the code added via the
programmatic interface in a programmatic SAT solver can be specific and unique to each
input; and finally, the interface of programmatic SAT solvers is much simpler than that of
SMT solvers.

The main advantage of using programmatic SAT is that it allows easy customization of
the SAT solver to specific Boolean instances rather than an entire theory. The developer
thus has more fine-grained control over the power of the SAT solver. This architecture has
also shown to be useful in solving problems in combinatorics [BGH+16], and much more
effective than only using a normal CNF encoding. Figure 3.1 shows the block diagram of
a CDCL SAT solver and the connection of programmatic components (shaded blocks) to
the main components.

Programmatic propagation has the role of providing clauses similar to theory prop-
agation clauses. As can be seen in the figure, there is a close interaction loop between
unit propagation and programmatic propagation, in which when the unit propagation is
done, if there is no conflict, programmatic propagation analyzes the partial assignment and
determines whether any other literal is implied according to the logic of the cryptographic
function. If any literal is implied but missed by the unit propagation, an appropriate reason
clause is returned to empower the unit propagation. Consider that α is a subset of literals
in the partial assignment that implies another literal L, and this implication is missed by
unit propagation. The added reason clause will be simply α→ L (in CNF format). Then
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the unit propagation is invoked to set those literals and possibly find more implications
that are caused by the new literals. Added reason clauses can be reused when the solver
unassigns some of the variables and assigns them again (due to backjump or restart).

Programmatic conflict analysis in a similar fashion, is invoked when the propagation
is done (a combination of unit and programmatic) and no conflict is detected. It analyzes
the partial assignment to check if there is conflicting information according to the domain
knowledge. The user can return single or multiple conflict clauses if a conflict is detected.
The core solver then looks at the variables that are in the conflict clause, and by examining
the implication graph that has been built during the run of the solver, attempts to find a
minimized root cause of the conflict.

We have implemented this framework on top of MapleSAT [LGPC16a]. Programmatic
routines need to know the mapping of the high level variables to the Boolean variable IDs.
This is necessary to be able to verify the value of a predicate when the corresponding
Boolean variables are set. In order to keep the variable ID mapping intact, we do not use
any pre-processing that re-indexes the variables. During the search, the size of the conflict
clause database only increases and this might negatively impact the performance of unit
propagation. To handle this challenge, modern SAT solvers regularly delete some of the
lower quality clauses. In the programmatic SAT, the same problem could happen for the
reason clause database. In our implementation, we use the same clause deletion strategy
of MapleSAT to prevent the overgrowth of the reason clause database.

3.2.2 Cryptographic Reasoning in Programmatic Callbacks

Even for cryptographic functions that use very simple operations, like addition-rotation-
xor (ARX) block ciphers and hash functions, some high level properties like commutativity
of addition, is lost when translated into the Boolean level, let alone much more complex
cryptographic properties. One can specifically encode these properties, but it will result
in a very large SAT instance (e.g. commutativity of multi-operand additions in ARX).
The programmatic approach enables us to express those properties concisely using a piece
of code (C++ in our case), that are being used by the SAT solver through the program-
matic interfaces. We will give more detailed use of these interfaces in two cryptanalysis
applications. In section 3.3, we present an algebraic fault attack on SHA hash functions
[NHGG18] and also present preliminary results on differential cryptanalysis of SHA-256 in
section 3.7.
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Figure 3.1: Block Diagram of a CDCL SAT solver with the Programmatic components
that implement cryptographic related reasoning (shaded blocks).

3.3 Algebraic Fault Attack

Cryptographic hash functions, such as the SHA family, play a critical role in a variety of
settings in cryptography (e.g., authenticated encryption, pseudo random number genera-
tion, digital signatures, etc.) [MVOV96]. While there is some recent progress on practical
collision attacks on SHA-1 [SBK+17], inversion attacks on the full version of the standard
SHA family of functions are still impractical [DEM14]. Given that these functions seem
highly resistant to direct inversion attacks, many researchers have turned to implementa-
tion inversion attacks, wherein, the attacker gathers information on implementations of
these hash functions (or any cryptographic primitive) in an attempt to reduce the size
of search space. One form of this type of attack called fault injection analysis involves
intentionally introducing faults in the operation of cryptographic devices and analyzing
the incorrect outputs to recover the embedded secret key.

Algebraic fault attack methods combine fault injections with algebraic cryptanalysis
[CJW10]. In this approach, the cryptographic function and faults are translated into
algebraic equations over a finite field, and the secret key or message is recovered by solving
these equations using a SAT or SMT solver. Fault equations refer in this case to an algebraic
representation of the cryptographic function starting from the injected fault location up
to its output. The advantage of algebraic fault attack over differential fault attack is that
the solver takes care of propagation of the fault, and thus significantly reducing the human
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effort required to launch a successful attack.

AFA methods are a powerful way of empirically verifying the strength of cryptographic
function’s implementation through fault analysis. AFA methods have significant advan-
tages over previous approaches since they leverage the continuous scalability improvements
in SAT and SMT solvers. Having said that, it is well known that merely using the solver
as a blackbox (à la the eager approach) is not going to yield the best results. The efficacy
of AFA methods broadly relies on three important factors that any SAT/SMT solver user
would readily recognize, namely, the type of encoding of the cryptographic primitive in
Boolean or suitable SMT logic, the underlying solver, and the effectiveness with which the
user is able to tune or modify the underlying solver’s heuristics.

In their original paper on AFA [CJW10], the authors describe a lazy approach to AFA,
wherein, part of the cryptographic primitive (more precisely, the fault-injected part) is
translated into a Boolean formula, and the rest of the primitive is used to verify solutions
generated by the solver. If the solution is incorrect, their tool blocks it by adding an
appropriate clause to the solver and repeats until the correct solution is found. While
their method is clearly sound, complete, and terminating, the authors do not exploit the
solver’s power in a whitebox fashion nor do they explore encodings that may be best suited
for an algebraic fault attack. While researchers have explored different kinds of encodings
subsequent to the paper by Courtois et al. [CJW10], none of them use the underlying
SAT/SMT solver in CDCL(T ) fashion (cf. [ZGZ+13, ZZG+13, HLMS14]).

3.3.1 High-level Overview of Our Method to Algebraic Fault At-
tack

In this work, we propose a programmatic SAT solver-based method [GOS+12] for AFA,
wherein, we extend both the Boolean constraint propagator (BCP) and the conflict-analysis
in a state-of-the-art SAT solver, MapleSAT [LGPC16b]. Our extension of BCP is similar
to theory propagation in CDCL(T ), and we refer to this extension as the SHA propagator.
The conflict-analysis extension is similar to the theory conflict analysis in CDCL(T ), and
we refer to this extension as the SHA conflict analyzer.

How our Method Works. At a high level, in our method, the fault-injected part of
the hash function, along with a target, is translated into a Boolean formula (which is
then fed as input to the SAT solver), while the full implementation of SHA is encoded
via a programmatic interface as part of the SAT solver’s propagation and conflict analysis
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routines. Such an approach enables the addition of conflict clauses to the appropriate
database in an on-demand and lazy fashion. We refer to our addition to the solver’s
propagation routine as the SHA propagator, and the one to the solver’s conflict analysis
routine as the SHA conflict analyzer. We evaluate our tool under a variety of fault models
and show that we can recover the secret bits (in our setting, the secret bits correspond
to any message that hashes to the given target) with a fewer number of injected faults
compared to previous best work (reducing the cost of attack). Although fault injections
are done on hardware devices, in this work we are simulating the fault injection process in
software, by picking a random value as embedded secret bits and XORing random values
to the intermediate state words as fault injection.

SHA Propagator. While analyzing different encodings of the SHA hash functions in
Boolean logic, we noticed that the native BCP in SAT solvers does not propagate all
the input bits (once set) all the way to the output bits of the SHA function for certain
kinds of encodings of SHA in Boolean logic. More precisely, given a Boolean function f
over input variables x and output variables y, there exist encodings φf (in conjunctive
normal form) such that the standard-issue BCP does not propagate the values assigned
to x all the way to y. In other words, the encoding φf is not preserving the generalized
arc consistency. A natural and cost-effective way to strengthen the native BCP in SAT
solvers would then be to add a SHA propagator that propagates inputs to the encoding
of SHA to all its output bits, and adds clauses to the clause database appropriately. In
our experiments, this method alone gave a massive boost to the performance of MapleSAT
over AFA instances.

SHA Conflict Analyzer. As alluded to above, the SHA conflict analyzer is the checker
that verifies whether the solution found by the solver is indeed a valid message for the given
target. If not, a conflict clause is added to the conflict clause database of the solver. This
mechanism prunes the search space dramatically according to our experiments. Otherwise,
the validated solution is output by the solver. Unlike the AFA method proposed by Courtois
et al. [CJW10], our SHA conflict analyzer is called in the inner loop of the SAT solver thus
taking advantage of both its inherent incrementality and conflict analysis capabilities.
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3.4 Programmatic Callbacks for Algebraic Fault At-

tack

In this section, we explain what is the role of each callback in the context of our program-
matic SAT solver solving algebraic fault analysis equations.

3.4.1 Programmatic Conflict Analysis

We are only interested in the values of message bits, which are a very small subset of all of
the variables needed to encode the algebraic fault equation system into CNF. Whenever we
solve the instance and find the message bits, we should check if it is a legitimate solution
(hashes to the same correct hash output). Normally one could wait for the solver to finish
solving the whole equation set and then check for the correctness, but we can do this
verification as soon as the variables corresponding to the message bits are set. The sooner
we reject a spurious solution, the faster the search process becomes. The programmatic
conflict analysis callback is invoked when the solver’s Boolean propagation routine reaches
an inconclusive state or all of the variables are assigned, and there is no conflict. First, it
recovers the original input message bits, if all message bit variables are set, then hashes the
input message bits and checks it against the correct hash output. In case of mismatch, a
conflict clause that blocks the current spurious message bits will be returned to the solver.
The solver has the reason clauses that led to this partial assignment, thus it can further
optimize the returned clause using the implication graph, which makes the blocking clause
more effective. The solver then goes through the procedure of backjumping, as in the
typical conflict analysis.

3.4.2 Programmatic Propagation

It is known that when encoding a problem into CNF, we might lose some structural infor-
mation about the original problem. For example, setting a subset of variables in a CSP
instance might imply the value of another variable. But if the encoding of that CSP prob-
lem into CNF is not UP-maintaining GAC, then by setting the corresponding variables in
the Boolean formula, BCP may not be able to derive the value for the target variables. An
example of such an encoding is listed in Example 2.3.1 in Section 2. It is also mentioned
in [PS15] and [ES06] that encoding of a pseudo-Boolean constraint into CNF using adder
networks does not maintain GAC, although these encodings are small and scalable. To
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overcome this problem, one might use arc-consistent encodings for a particular constraint
or use enhanced propagation routines, e.g., bitvector propagators [WSS16].

In this work, we deal with cryptographic functions having multi-operand additions in
each round. There are several encodings for these operations in the literature. Nossum’s
encoding [Nos12] gives a very compact CNF, which works very well in practice. Unfortu-
nately, a curious side effect of having this minimal encoding is that after setting all of the
input bits, BCP might not be able to set all output bits. There are two options to work
around this problem, either empower the encoding or strengthen the unit propagation.
Based on our initial experiments and experiments in [Nos12] with straightforward Tseitin
encoding of adders, empowered encoding of adders can become very expensive (reaching
time limit on all instances). Better propagation (based on SHA-1) would be effective no
matter the encoding. We, therefore, explored the latter option in this work.

Our programmatic propagation (PP) is called in the main search loop of the solver
after BCP is done, and no conflicts are detected. The callback looks at the least significant
bits of the operands and output in each of the multi-operand additions. If all bits up to
some bit position k are set, it checks if the k least significant bits of the output are set
as well. If they are not set, it returns clauses that encode the direct implication between
input bits and output bit in the missing output bit positions. For an example of encoding
implications, if x = T , y = F is an assignment to the inputs of z = x + y relation, and
z is not set, we return x = T ∧ y = F → z = T or ¬x ∨ y ∨ z. These implications force
the solver to set the output bits in the next cycle. Although our implementation finds
more implications than unit propagation does, it is not guaranteed that every encoding
PP-maintains GAC according to Definition 2.3.1.

Definition 3.4.1. Let φ be a CNF encoding of a Boolean function f , and let R be an
inference rule of propositional logic. We say that φ R-maintains Input/Output GAC1

if for an assignment α that contains assignments to the input variables of f , the assignment
of the output variables of f are derived from φ ∧ α by R.

For example, a direct Tseitin encoding of a CIRCUIT-SAT instance to CNF has the
property given in Definition 3.4.1. Our implementation of programmatic propagation looks
at the inputs of the multi-operand addition and generates direct implications between input
and output bits. If any subset of the input bits is set, and a subset of the output bits can
be determined (through addition), those output bits are set either by unit propagation
through formula clauses or through the direct implication clauses. Therefore we can say
that any CNF encoding of multi-operand addition PP-maintains Input/Output GAC.

1GAC refers to Generalized Arc-Consistency defined in Definition 2.3.1.
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3.5 Algebraic Fault Attack on SHA-1 and SHA-256

Here we describe how the attack is mounted on the SHA-1 and SHA-256 compression
functions, and where programmatic callbacks fit in. For encoding of SHA in CNF, we used
an adapted version of Nossum’s encoding [Nos12], which is described in Section 2.7.

3.5.1 Algebraic Fault Notations

In practice, faults are induced on a hardware implementation using a device that can
generate perturbation, e.g., radiation, heat, laser, etc. The attacker chooses a specific
register and applies the fault, which changes the input to the subsequent operations. The
choice of which register to apply fault is important, and we refer to that register by fault
location. The change to the targeted register’s value is usually unknown. But with more
sophisticated (and more expensive) devices it is possible to narrow down the number of
bits in the state that the fault injector is affecting. Therefore the number of bits that
can be flipped is a parameter that represents how strong is the attacker. The number of
flipped bits shows the hamming weight of the fault vector applied and is usually referred
to as the fault model. Another parameter in our AFA model is the number of faults that
the attacker is capable of injecting. This parameter represents the cost of the attack, and
thus the fewer injections the better.

In the algebraic setting, the transformations from the fault location to the output are
encoded as constraints (in our case in CNF), and we refer to it as correct equations. For
each injected fault, the transformations from the fault location to the output are again
encoded but the output value is fixed to the corresponding faulty output, and we refer
to them as faulty equations. The variables corresponding to the secret message bits are
shared between all of these equation sets. Depending on the device that is used for fault
injection, the attacker can assume an upper bound on the hamming weight of the difference
between correct and faulty values of the fault location register. This can also be encoded
as a constraint.

3.5.2 Attack Model

We assume that the attacker picks and knows the location of the fault, but does not
have control over the value of the fault. We also assume that the chaining value at the
input of the compression function is fixed to the initialization vector. Note that we do
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Algorithm 2 AFA-SHA (An Algebraic Fault Attack on SHA)

Input: f : a SHA compression function, g: a reverse message expansion of SHA, d: the
maximal weight of faults, L: a list of fault locations, k: the number of faults (k is
divisible by #L), H: the correct SHA hash image.

Output: M ′: a message, such that f(M ′) = H.
1: function AFA(f, g, d, L, k,H)
2: Let M represent the embedded secret SHA message
3: Let n be the number of rounds in f .
4: Let φ be a CNF encoding of H = f(n−15)..n(x).
5: Φ := φ
6: for ` in L do
7: for i = 1, . . . , k/#L do
8: Generate a random fault value δi with wH(δi) ≤ d.
9: H ′i := f(`+1)..n(f1..`(M)⊕ δi) . Calculate the faulty output

10: Let φi be a CNF encoding of H ′i = f(`+1)..n(x⊕ δi).
11: Φ := Φ ∧

∧
φi.

12: repeat
13: Find a model α for Φ.
14: Extract the assignment for Wn−15, . . . ,Wn from α.
15: for j = n− 16, . . . , 1 do
16: Wj := g(Wj+1, . . . ,Wj+16)

17: M ′ := W0‖ . . . ‖W15

18: Φ := Φ ∧ ¬M ′

19: until f(M ′) = H
20: return M ′

21:

22: function g-SHA-1(W0, . . . ,W15) . SHA-1 Message expansion in reverse
23: return ((W15≫ 1)⊕W12 ⊕W7 ⊕W1) . see Equation 2.4

24:

25: function g-SHA-2(W0, . . . ,W15) . SHA-256 Message expansion in reverse
26: return (W15 − σ1(W13)−W8 − σ0(W0)) . see Equation 2.5

not perform actual hardware fault injections and the process is simulated in software by
XORing random values to the inner state variables.
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3.5.3 Attack on SHA-1

In our attack described in Algorithm 2, we target the last 16 rounds of SHA-1. The message
expansion is invertible, provided we have 16 consecutive words (see Equation 2.4). This
means that recovering the last 16 expanded message words enable us to recover all message
bits. Therefore we inject faults to the input of the last 16 rounds, and more particularly
in b64. This fault location is more desirable because of the way the fault propagates in the
next rounds. For more details, we refer to [HH11].

Let f be the compression function of SHA-1. Let f1..64 (resp. f65..82) be the Boolean
map representing the first 64 rounds of f (resp. the last 16 rounds of f). Thus we have
the following composition f = f65..80 ◦ f1..64. Let M be a SHA-1 message. Consider the
correct hash value H = f(M). We can encode fault outputs as H ′i = f65..80(f1..64(M)⊕ δi),
where δi is a random fault value. These are the steps that we follow:

• We obtain the correct hash output H and several faulty outputs H ′i for the given M .

• Then we encode the set of correct and faulty equations for the last 16 rounds in CNF.
Figure 3.2 shows the parts of the compression function that are being encoded into
CNF.

• The composed formula Φ is then given to the SAT solver to find a solution for the
last 16 message words.

• The verification loop is implemented in the SHA conflict analyzer. As soon as the
corresponding variables to W65, . . . ,W80 are set, the analyzer will derive the first 16
message words M ′ by applying the Equation 2.4 in reverse (see g-SHA-1 in Algo-
rithm 2). This value is given to the compression function to see if it hashes to H. If
there is a match, the found M ′ is the final solution, otherwise, the last 16 message
words will be returned as conflict clauses to the SAT solver, and the search loop
continues.

The attack is run by calling the AFA function from Algorithm 2 with the following argu-
ments: AFA(fSHA1, d, g-SHA-1, L:{64}, k, H), where fSHA1 is the SHA-1 compression
function.

3.5.4 Attack on SHA-256

Our attack on SHA-256 shares the same framework as in the SHA-1 attack. Our approach
is outlined in Algorithm 2. Just like in the SHA-1 attack, we target the last 16 rounds of
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Figure 3.2: A high-level diagram of the SHA-1 attack. The values δ1 and δ2 represents the
injected faults. H denotes the correct hash output and H ′1 and H ′2 are the faulty outputs.
The dashed box is the part that is being encoded into CNF. The shaded boxes are copies
of the white 16 rounds, and W64, · · · ,W79 variables are shared between all of them.

SHA-256 and the deepest fault location is c48. For details on the impact of choosing this
location, we refer to [HLMS14]. Since the state update operations in SHA-256 are more
complex, the size of encoding is much bigger and the instances are harder to solve. We
set a higher time limit and use a multi-stage fault injection approach to limit the effect of
fault propagation.

Hao et al. [HLMS14] presented an AFA on SHA-256. They first target the last four
rounds, inject faults and solve the equations to recover W61, . . . ,W64. Then they fix the
message words to the found solution and repeat the same procedure for the next four mes-
sage words. This means that with another set of fault injections, they recover W57, . . . ,W60,
and so on, to find the last 16 message words. We follow the same approach to keep the size
of instances small. An immediate challenge in this approach is to check the consistency
of the solutions for each set of four message words with the hash values. In our approach
when we encode all of the relations from the fault injection location to the output, in-
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Figure 3.3: A high-level diagram of the fault attack on SHA-256.

stead of solving the instances in each step and fixing the solution in other instances, we
conjunct all of the encoded instances together and let the solver handle the consistency
of solutions. Following this method, we target the last four message words by injecting
faults in round 60 and encoding the fault equations. Next, we inject faults in round 56 to
target the last 8 rounds. Similarly, we target the last 12 rounds and the last 16 rounds.
All of the encoded fault equations together with the correct hash function relations for
the last 16 rounds make our SAT instance. We inject the same number of faults in each
of those fault locations. Similar to SHA-1, the verification process is implemented in the
SHA conflict analysis callback, with the difference of using Equation 2.5 (see g-SHA-2 in
Algorithm 2), for deriving the first 16 words of M ′ and SHA-256 compression function is
applied to check with the correct output H. Using the AFA function from Algorithm 2, the
attack is launched with this call:
AFA(fSHA2, d, g-SHA-2, L:{60, 56, 52, 48}, k, H), where fSHA2 is the SHA-256 compression
function.
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3.6 Experimental Results

3.6.1 Experimental Setup

All experiments were conducted on Intel Xeon CPUs at 3.2 GHz and 16 GB of RAM. We
used MapleSAT [LGPC16b] to implement the programmatic callbacks. There are other
SAT solvers like CryptoMiniSAT and lingeling that implement XOR reasoning which could
be beneficial in solving ARX2 cryptographic functions like SHA-1 and SHA-2. Also, SMT
solvers that handle bitvectors, like STP, are a good candidate in solving these kinds of in-
stances. But in practice, according to the study in [NLG+17], MapleSAT outperforms them
on SHA-1 preimage instances. Because of the similarity of SHA-1 preimage instances to our
fault instances we picked the best solver and implemented our programmatic interface in
it. We have also decided to use the multi-armed bandit restart (MABR) policy [NLG+17]
in MapleSAT, which adds an additional performance gain on cryptographic instances. We
experimented with various assumptions on the number of the injected faults and on the
maximal weight of the faults. For each experiment, we generated 100 random message-
target pairs, and the timeout was set at 4 hours for SHA-1 instances and 12 hours for
SHA-256 instances. For the sake of completeness and fair comparison, we have added
an external loop around MapleSAT that does the verification (repeat-until loop in Algo-
rithm 2) and adds blocking clauses to the solver if an inconsistent solution is found. In this
section, whenever we mention the base version of MapleSAT, we mean MapleSAT with the
verification loop.

3.6.2 Attack on SHA-1 and SHA-256

Table 3.1 shows the results of applying AFA on SHA-1 and SHA-2. Its rows correspond to
the maximal weight of the injected faults. Its columns correspond to the number of injected
faults during the attack. Starting from a single bit, going to a nibble, a single byte, single
word, and the most relaxed one is the 32-bit random fault model. Each element in Table 3.1
represents the number of instances out of 100 randomly generated AFA instances that our
solver was able to solve within the time limit. From Table 3.1a we can see that we are
able to recover the message bits with as few as 8 faults in the single byte fault model. In
previous attacks on SHA-1, Hemme et al. [HH11], apply a DFA that uses 1002 faults. In
the same fault model (32-bit fault model), we use only 11 faults.

2Addition-Rotation-XOR
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Table 3.1: The number of solved AFA instances out of 100 for different number of faults
and maximal weight of the faults

(a) SHA-1

Number of faults

8 11 12 16 20

F
au

lt
w

ei
gh

t

1 65 69 70 64 43

2 85 82 82 73 61

4 95 95 94 87 72

8 100 100 100 91 86

16 90 100 100 90 80

32 75 100 100 89 75

(b) SHA-256

Number of faults

32 40 48 56

F
au

lt
w

ei
gh

t

8 28 20 8 0

12 32 21 8 2

16 69 60 28 9

20 90 75 31 10

24 100 95 72 20

28 95 71 70 34

32 71 82 100 48

As described in Section 3.5.4, we inject faults in four different rounds and collect in-
formation about the correct and faulty hashes. We experimented with an equal number
of faults in each of those four rounds. As listed in Table 3.1b, we were able to recover the
target bits using 32 faults in the 24-bit fault model. While Hao et al. [HLMS14] use 65
faults in a 32-bit random fault model, our method is able to finish the search with 48 faults
in the same fault model. These two data points are highlighted in Table 3.1b.

3.6.3 Performance of the Solver

Here we discuss the performance of our programmatic AFA solver on solving SHA fault
instances. In Figures 3.4 and 3.5 you can see the cactus plot of MapleSAT solver and the
extended versions of MapleSAT with the programmatic interface. We have turned each
of the programmatic callbacks on and off to see which of them contributes more to the
performance of the solver. There are four solvers compared in the plot. The base version of
MapleSAT, MapleSAT with the SHA propagator, MapleSAT with SHA conflict analyzer
and MapleSAT with both of these callbacks. We also experimented with Opturion CPX
[Opt], which is a constraint solver that combines CP and SAT solving techniques, and won
several medals in Minizinc challenge 2015. But unfortunately, it performed very poorly on
our benchmark and could solve only a few instances of 32-bit fault model. The timings in
the plot belong to the 32-bit fault model with 11 faults injected in SHA-1, and 48 faults
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Figure 3.4: Comparison of MapleSAT and its programmatic versions on 32-bit fault model
AFA on SHA-1.

in SHA-2. The plot shows that by embedding the external verification loop inside the
SHA conflict analyzer and early detection of inconsistent solutions (rather than waiting
for the instance to be completely solved), we can solve two more instances in SHA-1 and
14 more instances in SHA-2. But the main performance boost belongs to the propagation
enhancement, in which the solver solves 6 more instances within the time limit in SHA-1,
and 28 more instances in SHA-2. From the point of view of the number of faults, the
lowest number of faults that base version of MapleSAT can recover the secret bits for all
of the random messages is 14, wherewith the programmatic MapleSAT, it is 11. For the
case of SHA-2, the gap is larger and the base version needs at least 64 faults, versus 48
faults needed by programmatic MapleSAT. Comparing the total timings for solving all of
the instances in a fault model, between MapleSAT and programmatic MapleSAT, if we
set the runtime of timed out instances to the time limit, we can see a 2.48x speedup in
SHA-1 and 7.73x speedup in SHA-256. If we use the PAR-2 method (penalizing the timed
out instances by setting their runtime to double the time limit), which was used in SAT
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Figure 3.5: Comparison of MapleSAT and its programmatic versions on 32-bit fault model
AFA on SHA-256.

competition 2017, we see a 3.16x speedup in SHA-1 and 14.3x speedup in SHA-2.

3.6.4 Discussion

Our results show the versatility of programmatic SAT solver architecture. The key insight
is that by taking a state-of-the-art general purpose SAT solver and tailoring it to our
cryptographic problem, we achieved considerable performance improvement. Looking at
Table 3.1, one can observe that the data in certain rows suggests that when more faults are
injected, fewer instances are solved. At first, it might seem counter-intuitive because adding
more faults helps restrict the search space and hence should improve solver performance.
However, note also that with every added fault equation, the number of clauses in the
input to the solver grows rapidly (especially in the case of SHA-256), which can crucially
slow down propagation. Thus there is a trade-off between search space reduction and
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formula size that the cryptanalyst has to contend with. In our work we have limited the
hash functions to a one-block version of Merkle-Damåard, i.e., we assume that the input
message fits into the block size. Therefore the chaining value is set to the initialization
vector value. One of the most practical applications of fault attacks on hash functions is
the key recovery of HMACs. In that case, the input size is more than one block, and the
internal chaining values dependent on the secret key and the message, which are given to
generate a HMAC tag. Fortunately, our framework can be easily adapted to this scenario.
Targeting the last block of the HMAC, an almost universal forgery attack as explained
in [HLMS14] can be mounted on the HMAC-SHA-1 or HMAC-SHA-256.

AFA framework, in general, is much more flexible than DFA and it can usually be
mounted with fewer faults in the same fault model, but comparing to the DFA it can be
seen that the simulation time is significantly higher. That is because DFA equations are
crafted by cryptanalysts that are specially designed to make the search space very small,
and on the other hand, AFA equations are more generic. Therefore a longer search time is
required. It is clear that the success of AFA partly relies on the power of the search tool
it is using. Thus a more powerful (and maybe dedicated) search tool is desirable.

In this work, we tackled the arc-consistency problem of encoding of multi-operand
adders by strengthening the propagation routine via a programmatic approach. However,
the other method for coping with the arc-consistency problem is to use a different encoding
that is arc-consistent. We have encoded our instances of AFA on both SHA-1 and SHA-256
using reduction of multi-operand addition to a series of two-operand additions and then
using ripple carry encoding for each two-operand addition. These encodings were all I/O
arc-consistent (according to definition 3.4.1). The instances were significantly larger than
the base Nossum encoding and our solver had timed out on all of the generated instances
with this method.

3.7 Differential Cryptanalysis

A naive way of encoding an algebraic collision attack is to have two copies of a function f
that have constraints for having the same output and different inputs (f(x) = f(y)∧x 6= y).
To improve upon this encoding, we can add a set of difference variables for all of the input,
output, and intermediate variables in the two copies, where each difference variable is the
XOR of the two corresponding variables in the two copies. These difference variables are
building the differential characteristics (or path).

To express the set of possible combinations of a pair of bits x and x′, the generalized
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conditions [DCR06] is commonly used. It allows us to describe and encode the propagation
of information through a differential characteristic. This notation is listed in the table 3.2.

Table 3.2: Notation for all generalized conditions. Each character represents the set of
possible values for a pair of bits.

(xi, x
′
i) ? - x 0 u n 1 # 3 5 7 A B C D E

(0, 0) + + + + + + + +
(1, 0) + + + + + + + +
(0, 1) + + + + + + + +
(1, 1) + + + + + + + +

Just having the differential characteristics does not necessarily make the problem eas-
ier. However, by selecting a sparse differential path that is highly probable, the allowed
combinations for variables in the two copies will reduce drastically. Note that for any
operation, when we have - (no difference) in the input variables, we will have - at the out-
put variables as well, i.e. running a function on the same input twice results in the same
output. A sparse differential path means that most of the difference variables are forced
to be -, and there should be few “difference”s (x), to ensure different inputs and keep the
possible combinations throughout the differential path limited. We put “unknown” (?) in
the places that the effect of having difference in earlier steps can potentially be canceled (to
be found by the solver). The common approach to differential cryptanalysis of hash func-
tions is to find a differential path first (starting from a sparse path, find the values for ?s),
then use these constraints to find a conforming pair of messages that go through the two
copies of the function that we had. It is possible that there are no pairs of messages that
follow the path. In that case, we have to go back to the path and modify it. An important
step in this process is the propagation of information throughout the differential path. In
other words, having difference in the input of smaller operations, what is the possible set of
combinations at the output of those operations (output difference). The implication from
input differentials to output differentials is referred to as propagation rules.

Mendel et al. [MNS13] developed a dedicated tool for differential cryptanalysis of SHA-
256. Prokop [Pro16] took their work and encoded their differential tables into SAT and
studied the performance of different SAT solvers on them. Prokop shows collisions on
SHA-256 up to 24 rounds, which is not matching the performance of Mendel’s solver that
gives a collision up to 31 rounds in the same attack model. Prokop is using bitwise XOR
differences for encoding the difference possibilities. This means that he is using only ?

(unassigned), - and x values for a difference variable. The advantage of this approach
is that each difference variable can be encoded with a single Boolean variable. But the
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disadvantage is that the propagation of information is less concrete in many cases. That is
because a condition of for example A can not be expressed and thus it needs to fall back to
the under-specified condition of ?. To address this problem one can use multiple Boolean
variables to encode each of the difference variables to cover all the possible information that
is being propagated. The advantage of this approach is having more concrete possibilities
and a more constrained set of values for pairs of message bits, but the disadvantage is that
the instance becomes very large in terms of variables and clauses and the gain of having
differential path constraints will be overshadowed by the complexity of the encoding. This
is an opportunity for a programmatic component to implement the multi-valued logic
of generalized conditions for difference variables while keeping the encoding of differential
path simple. For example when using single Boolean variables, we can derive 2 propagation
rules for the Boolean function IF(x, y, z) = (x ∧ y) ∨ (¬x ∧ z), that are “--- → -” and
“-xx → x”, and for the rest of input difference combinations, we can not imply any
differential information for the output. But considering a multi-valued logic, we can have
very fine-grained rules that rule out certain combinations for the pairs of bits at the output.
Enumerating all of them gives us 1846 rules, which is expensive to encode in CNF.

In our implementation of programmatic propagation, simply put, we provide a truth
table for each operation, that given input differences, determines and enforces the output
difference if it is not ?. Programmatic conflict analysis checks if the implied set of combina-
tions of a difference variable does not have an intersection with a currently decided/deduced
combination set. In other words, it looks whether after applying a propagation rule the
difference variable becomes #.

We took the differential path starting points from Prokop [Pro16], but used our own
encoding to translate the SHA-256 relations and differential path information into SAT.
For encoding multi-operand addition we used Nossum’s encoding [Nos12]. We ran Maple-
SAT (with and without the programmatic components) on these instances with a 24-hour
time limit on Intel Core i7 CPU @ 3.4GHz and 16 GB of RAM. In the table 3.3, Maple-
SAT(Crypto) refers to the version of MapleSAT that we instrumented with programmatic
callbacks. As timings show, not only we can increase the number of rounds from 24 to 25,
but also we can solve the instances of 25 rounds roughly 2.3 times faster when we use the
programmatic interface.

3.8 Related Work

Early works on the use of SAT solvers for cryptanalysis like finding cryptographic keys
[Mas99], modular root finding [FMM03], or collision attack on MD5 [MZ06], only used
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Table 3.3: CPU times (in seconds) for SAT-based differential cryptanalysis (finding colli-
sions) in 25 rounds of SHA-256.

Solver Encoding Runtime (s)
MapleSAT Prokop [Pro16] 29771.80
MapleSAT Our encoding 21926.60

MapleSAT(Crypto) Our encoding 12532.32

direct encoding of their problem to employ the power of SAT solvers. Subsequent works
studied different ways of encoding the same problems into SAT to find formulas that are
easier for a SAT solver in practice. Nossum [Nos12] and Morawiecki et al. [MS13] presented
instance generators for preimage attack on SHA-1 and SHA-3. To make the SAT-based
attacks more powerful, De et al. [DKV07] made use of Dobbertin’s attack. They encoded
the additional constraint alongside the main function to improve the base preimage attack
on MD4. These types of cryptanalytic techniques can be encoded inside cryptographic
reasoning components of the CDCL(Crypto) to keep the size of instance small, but still
have the benefit of reducing the size of search space.

The problem of finding the highest probable linear/differential trail has been studied
for lightweight ciphers like Simon [KLT15] and Speck [ADWL17]. In these works, the task
of finding an optimal trail is defined as an optimization problem, and at each step, an SMT
solver (in particular STP [GD07]) is queried with a trail and a parameter. If the solver
returns SAT the parameter is increased and the process is repeated until the optimal value
is reached.

Not all of the SAT-based cryptanalysis works have been completely blackbox. There
were limited attempts to change the heuristics of the solver to improve the runtime. For
example, Semenov et al. [SZBP11] changed the default activities and decay factor of VSIDS
branching heuristics of Minisat and got better results. Although it should be mentioned
that one can see this approach as configuring the parameters of the solver and not changing
the algorithm. Prokop [Pro16] changed the branching heuristic of Lingeling to focus on
the differential variables first in differential cryptanalysis of SHA-256. Furthermore, he
studied value selection heuristics. For improving runtime of preimage attack on SHA-1
instances, an adaptive restart policy [NLG+17] and a splitting heuristics for divide-and-
conquer parallel SAT solvers [NNS+17] has been proposed.

Notable SAT-based tools that have been developed specifically for cryptanalysis (at
least initially), include CryptLogVer [MS13] and Transalg [OSG+16] which are tools for
encoding cryptographic functions into SAT, CryptoMiniSat [SNC09] which includes XOR
reasoning, and CryptoSAT [LNJVH14] and CryptoSMT [Ste] that provide higher level
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languages for expressing cryptographic relations. For solving the algebraic equation set
of the cryptosystem, SAT and SMT solvers are usually used. But other types of solvers
have also been shown beneficial. Mouha et al. [MWGP11] use Mixed Integer Linear
Programming solvers to find security boundaries in block ciphers.

Other than using off-the-shelf solvers, researchers have developed dedicated solvers to
attack cryptographic primitives. Mostly these dedicated tools are based on guess-and-
determine approach [Bar09], which is a method in algebraic cryptanalysis. In this method,
we pick one variable with unknown value, guess a probable value for it, and then propagate
the guessed information through the algebraic equation set that represents the crypto-
graphic function, and in case of conflicting information, undo the guesses until the conflict
is resolved. This is very similar to the process that a CDCL SAT solver follows (decision
followed by unit propagation, and backtracking), but can be implemented specific to the
function and not necessarily be in Boolean level. Mendel et al. [MNS11] developed a tool
for differential cryptanalysis of SHA-256. They used random branching, problem specific
propagation, and backtracking. They improved their results by improving the search strat-
egy, better local collisions, and extra constraints [MNS13]. Eichlseder et al. [EMS14] took
it further and improved the tool for SHA-512, by studying different branching heuristics.
Although this tool is dedicated to this particular problem, it borrows many ideas from
SAT solving. However, it is missing one of the most powerful components of a CDCL
solver, which is conflict analysis. CDCL(Crypto) has the potential to implement the
higher level logic on the propagation of information, and at the same time, use the under-
lying conflict analysis of the core CDCL solver on the Boolean level representation of the
relations.

The research on fault attacks on SHA-like cryptographic structures was started by Li
et al. [LLG09], where they applied a DFA on SHACAL-1, a block cipher based on the
structure of SHA-1. Hemme et al. [HH11] extended their attack to SHA-1. The challenge
of applying DFA on SHA-1 is the following: after applying the compression function of
SHA-1 on the initialization vector (IV) and the message words, the value of IV is added
to the output to make the chaining value for the next block. Hemme et al. handled
this addition layer with separate fault injections and then launched an attack similar to
[LLG09]. This is a key reason why their attack needs more than a thousand faults to be
applicable. Our results show that an AFA can succeed with a far fewer number of injected
faults. In the same fault model of 32 bits, we can find the secret bits with 11 faults.

Jeong et al. [JLSH13] proposed a fault attack on the HMAC setting of SHA-2 and
showed that key values of size n can be recovered with approximately n/3 faults. Hao et
al. [HLMS14] presented an AFA on SHA-2. They first perform a round of fault injections
to recover the last internal state before the final addition. Then they inject some more
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faults, encode and solve 4 rounds of SHA-256 at a time, fixing the found values at each
step for the next solving step. This approach keeps the size of each fault instance small,
but the problem is that if the found solution is inconsistent with the chaining input and
correct hash value in the final solution, there is no comeback and no fixing mechanism is
used. They use 65 faults in total for recovering the last 16 message words and hence full
state recovery of SHA-256. They use STP [GD07] for solving the algebraic equations. For
the same fault model, we can recover the secret bits with far fewer faults than their work.
In the 32-bit fault model, we achieve the same results with 48 faults.

3.9 Chapter Summary

We presented a framework for SAT-based cryptanalysis inspired by the CDCL(T ) paradigm.
CDCL(Crypto) consists of a core Boolean SAT solver that is instrumented with pro-
grammatic callbacks for propagation and conflict analysis. These callbacks will contain
user-provided cryptographic reasoning, similar to a T -solver in CDCL(T ). This framework
helps to have the higher level semantics of the cryptographic primitive available while keep-
ing the size of the encoded function into SAT small and practical for the core SAT solver.
CDCL(Crypto) enables the researchers to implement their cryptanalytic techniques on
top of a powerful search engine. This framework has been applied to algebraic fault anal-
ysis of SHA cryptographic hash functions and resulted in much more effective search that
requires far fewer number of injected faults compared to the previous best fault attack
methods aimed at SHA-1 and SHA-256. Our programmatic solver (MapleSAT solver with
SHA-enhanced conflict clause analysis and propagation) can achieve a speedup of up to 14x
compared to the baseline solver. Also, a work in progress on the application of this frame-
work on differential cryptanalysis has been demonstrated in this paper, which improves
the number of rounds and the runtime of finding a collision for a round-reduced version of
SHA-256 with 25 rounds. Symmetric cryptographic function designers usually test their
designs against known attacks and cryptanalysis techniques. Automating these techniques
helps with speeding up the design cycle. We believe that this framework has a great po-
tential for improving the blackbox SAT-based cryptanalysis and therefore a valuable step
toward automating cryptanalysis of cryptographic primitives.
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XKCD (https://xkcd.com/2059/)

Chapter 4

Initialization of SAT Heuristics

In recent years, it has been shown that machine learning (ML) based heuristics for branch-
ing and restarts can dramatically improve the performance of SAT solvers [LGPC16a,
LVP+17, LOM+18]. This impact has been forcefully demonstrated by the success of the
MapleSAT solver and its variants (e.g., MapleCOMSPS) [LGPC16a, LVP+17, LOM+18]
in winning medals at the highly-competitive SAT competition in 2016 and 2017 [BH+16,
HJB17]. Many solvers that have won medals in subsequent years also use the ML-based
branching and/or restart heuristics developed first in MapleSAT [LGPC16a].

This impact can best be explained via the view that solvers are fundamentally proof
systems, and machine learning methods are powerful ways of initializing, sequencing and
selecting proof rules to optimally and adaptively solve formulas. Inspired by the success
of machine learning in the context of the MapleSAT solver (and variants), in this work we
propose a set of online Bayesian Moment Matching (BMM) based methods to solve the
initialization problem in SAT solvers.

The Initialization Problem in SAT Solvers. We define the initialization problem
as follows: given a SAT formula φ, compute an initial order over the variables of φ and
values/polarity for them such that the runtime of CDCL solvers on input φ is minimized.
By initial order, we mean a total order over variables chosen by the CDCL solver S (and
similarly, by initial value assignment we mean a mapping from variables to truth values) at
the beginning of its search, i.e., before any variables have been branched upon by the solver
S. Solver developers have known for a long time that the initial order and value assignment
to the variables of an input formula can have a significant impact on the performance of
CDCL SAT solvers.
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BMM-based Method to Solve the Initialization Problem in SAT Solvers. The
BMM method proposed in this chapter is used as a pre-processor to a CDCL SAT solver.
Our method takes as input a SAT formula φ and outputs a total order and assignment over
the variables of φ. The method assigns a Bernoulli random variable to each variable of the
input formula φ, associated with an unknown probability p of the variable being set to true
(and 1−p represents its probability of being false). For every clause C in the input formula
φ, the belief about p is updated using Bayesian inference and moment matching. After our
BMM method has scanned all the input clauses, it arrives at a posterior distribution that
suggests an assignment that ideally satisfies most of the clauses (if not all of them).

The posterior distribution thus obtained is used to construct an assignment A that is
most likely to satisfy the formula φ. One could treat such an assignment as a good guess
for a satisfiable assignment to the formula φ (assuming it is satisfiable). Even if the formula
is unsatisfiable, the hypothesis of our work is that the assignment A can be used as a good
initial value (aka, polarity) selection for the variables in φ, as the CDCL solver starts its
search. Further, the variables can be ranked in decreasing order based on the probability
associated with their truth value in A (more certain the BMM is about a variable’s value,
the higher it is in the variable selection ranking). This ranking can be used as an initial
variable selection order by the CDCL SAT solver’s branching heuristic.

An additional important point about our approach is that when the clause-learning
method in the BMM-enhanced CDCL solver deductively learns a unit or a binary clause,
it is used to update the posterior probability of the variables appropriately. The motivation
behind this corrective feedback method from clause learning to the posterior probabilities
of variables is that these BMM-based polarities are used to guide the solver’s polarity/value
selection heuristic during the run of the solver (not merely during the initialization), and
thus get a further boost in performance.

We perform extensive experiments to test the efficacy of our BMM-based heuristics
against state-of-the-art solvers. We show that BMM-based initialization of variable order
and value selection in the context of CDCL SAT solvers can be effective for real-world
instances obtained from verification, program analysis, software engineering and crypt-
analysis.

4.1 Contributions

1. BMM-based Initialization Method. We present the design and implementation
of a novel BMM-based initialization method to address the “initialization problem”
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for value selection and variable order in CDCL SAT solvers. The key idea is to use
clauses in the input formula as evidence to update a probability distribution of value
assignment for each variable in the input formula. Our method can incrementally
update and improve the posterior probability during the search by taking into account
unit and binary learnt clauses in a corrective feedback loop. (Section 4.2)

2. Evaluation on Cryptographic Instances. We perform an apple-to-apple com-
parison of BMM-based versions of CryptoMiniSAT, MapleSAT, and Glucose against
their respective configurations using 4 other initialization methods on a set of hard
cryptographic benchmarks encoding round reduced SHA-1 inversion attacks, with a
timeout of 4 hours. We used these solvers since they are among the best solvers
for hard cryptographic instances. More precisely, for each solver, we compared our
BMM-based method against 4 other initialization methods (namely, default, ran-
dom, Jeroslow-Wang [JW90], and Survey-propagation [BMZ05]). Our BMM-based
method significantly outperforms all other methods, where BMM-based MapleSAT
inverts all of the given targets and BMM-based CryptoMiniSAT solves the instances
50% faster on average. (Sec. 4.4.1)

3. Evaluation on SAT 2018 and 2019 Application Instances [HJS18a, HJS16].
We further compare the efficacy of BMM-based versions of MapleLCMDistChronoBT
(winner of SAT 2018 competition) and MapleCOMSPS (Gold/Silver medalist in SAT
2016/2017 competition), against the corresponding respective versions with 4 other
initialization methods (listed above). We observe that our BMM-based method out-
performs all other versions with 12 additional instances solved and an average run-
time speedup of 15.2%, compared to the next best method, namely, Jeroslow-Wang.
(Section 4.4.2)

4.2 Bayesian Moment Matching as a SAT Solver Com-

ponent

We adopt the algorithm designed by Poupart, Jaini and Duan described in 2.5.2, for the
formulation of finding a solution to a satisfiable instance of Boolean SAT problem in a
BMM setting. We show how the posterior distribution learned by BMM can help solve the
initialization problem in SAT solvers.

The learned probabilities collectively represent an assignment to the variables that
maximizes the number of satisfied clauses. For a relatively small Boolean formula, the
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Figure 4.1: Overview of BMM as a component in a SAT Solver.

BMM algorithm can converge to a solution, if it has one. As the problem size grows,
the chance of approximating a correct assignment decreases, and the computation time
increases. Thus we might not be able to use this method as a standalone SAT solver
for large scale problems with millions of variables and clauses. However, as we show, the
learned probabilities are very valuable for a CDCL search to arrive at a solution significantly
faster than starting at random or using other initialization methods.

Modern CDCL SAT solvers commonly use look-back heuristics, which means that they
collect statistics about their variables and clauses during the search, and maintain scores
for variables so that they can make educated guesses in the future. For example, we
know that CDCL solvers (e.g., VSIDS or LRB branching heuristics) tend to pick branches
that are more likely to prove a subspace unsatisfiable faster than methods that don’t
maintain such statistics [LGZ+15]. At each decision step, SAT solvers ask two questions:
which unassigned variable to pick (Branching/Variable order heuristics) and what value
to assign to that variable (Polarity/Value selection heuristics). It is well known that these
heuristics have a huge impact on the performance of a SAT solver. An important question
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as described in the introduction is how to initialize the variable values and the variable
selection order at the start of the search where there are no previously seen data. This
question is generally referred to as the initialization problem.

BMM-based Initial Value Selection. As the learned probabilities collectively repre-
sent an assignment to the variables of the input formula that satisfies most of the clauses,
it is natural to hypothesize that they can be used as initial preferred values. We use BMM
as a pre-processor that scans the clauses and computes the preferred initialization values
before the search starts. We use 10 epochs for application instances (each clause is seen ten
times), and empirically observed that it results in a good initial point while being efficient.
We simply set the preferred value of a variable to True if the first moment E(θx) > 0.5 and
False otherwise.

BMM-based Initial Variable Selection. Successful branching heuristics like VSIDS
[MMZ+01] and LRB [LGPC16a] that are widely used in modern SAT solvers, keep a score
for each variable, called activity, which represents how much that variable was involved in
conflict analysis recently. The variable with the highest score will be picked as the decision
variable. At the start of the search, we do not have any information about the variables
and which one is preferred over the others. Therefore it is very common to start from zero
scores for all variables and build the ranking of variables based on the search statistics.
However, having the learned probabilities, we can prioritize the variables before the search
starts. In our experiments, we give higher priority to the variables with less uncertainty
about a polarity (high probability of being either True or False). For each variable x, we
define the score(x) to be a number in the range [0.5, 1] as follows:

score(x) =

{
1− E(θx), E(θx) < 0.5

E(θx), E(θx) ≥ 0.5

This is the same as saying for a variable x with theBeta(αx, βx) distribution: score(x) =
max(αx, βx)/(αx + βx). The score will be 1, if BMM is certain that the variable x is False
(E(θx) = 0), or True (E(θx) = 1), in a satisfying assignment.

Updating Posterior During Search. During a CDCL search, the solver might reach
a conflicting state, where the partial assignment to the variables cannot be extended to
a full assignment. At that point, the solver analyzes the root cause of this conflict and
encodes this information as a clause (conflict clause). Conflict clauses are implied by the
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original formula, so they can be added to the original formula. The conflict clauses can
thus be treated as new evidence. In the case that we use BMM probabilities to initialize
polarities, the partial assignment that led to a conflict is derived from the BMM posterior
distribution. This means that the new evidence has the necessary information to fix an
inaccurate posterior. We update the posterior using this corrective feedback. However, we
do this only for unit and binary clauses to keep the overhead low. We directly update the
polarity of variables in the conflict clause.

Figure 4.1 shows a high level block diagram of where BMM fits in as a component in
a CDCL SAT solver. The “Propagation + Decision” block is responsible for expanding
the partial assignment by assigning values to unassigned variables and propagating this
information to other variables. This block receives initial values for the order of variables
and their preferred values from BMM. The “Conflict analysis + Backjump” is responsible
for correcting the mistakes made by the explorer component. The BMM Update unit gets
a copy of the conflict clause returned by this component and updates the probabilities. In
other words, an approximate solution proposed by BMM is checked on the formula (by
propagation), and if it does not satisfy the formula, the conflict analysis component gives
corrective feedback about the inaccuracy of the probabilities.

4.3 Description of Other Initialization Methods

Default. Most CDCL solvers simply initialize the activity scores of variables with zeroes
and set the preferred polarity of variables to false. In this work whenever we say default
or do not explicitly mention the initialization method, we mean the all zero and all false
initialization.

Random. To verify that our proposed initialization method indeed improves the search
and not randomly shuffles the variables and values, we compare with random initialization
as a control experiment. In this method, polarities are randomly picked with 0.5 probability
between true and false, and activity scores are set to a number between 0 and 1 picked
uniformly at random.

Survey Propagation. Survey propagation is a message passing algorithm that was de-
signed to find solutions for random k-SAT problems [BMZ05]. They are mostly believed
to be the hardest to solve when their clause to variable ratio is close to the experimen-
tal threshold of SAT-UNSAT regions. Survey propagation works over the factor graph
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representation of SAT instances. It generates messages that survey over clusters of ordi-
nary messages and then uses these surveys to fix variables and simplify the problem by
decimation.

Jeroslow-Wang. Jeroslow and Wang proposed a static branching heuristic [JW90],
which in some modern solvers is used for computing initial scores for literals. It assigns a
score to each variable such that the variables that appear in shorter clauses get a higher
score. The intuition is that these variables when assigned by the solver, create unit clauses
sooner than others, and allow unit propagation to imply many other literals. The score for
each variable is computed as score(x) =

∑
x∈C,C∈φ 2−|C|, where φ is the input formula and

C is a clause in φ.

4.4 Experimental Results

In this section, we present and discuss the experimental evaluation of our BMM-based
initialization method and compare it against 4 other initialization methods described in
Section 4.3. We implemented the initialization methods in all of the solvers in a modular
way. In other words, we kept all the implementation of solvers intact except for the
initialization methods, so we can have an apple-to-apple comparison, between different
versions of one solver.

For each combination of (solver, initialization method), we experimented with 3 con-
figurations: initializing 1) polarities only, 2) activities only, and 3) both of polarity and
activity. For each combination, we report the best performing configuration. We observed
that generally on SAT 2018 and Cryptographic benchmark the third configuration performs
the best, except survey propagation, where initializing polarity only performs better than
the other two configurations. On SAT 2019 benchmark the best performing configuration
was different for each initialization method, which is reported in Section 4.4.2.

4.4.1 Evaluation over Hard Cryptographic Instances

Experimental Setup. All jobs were run on Intel Xeon E5-2667 CPUs at 3.20GHz and
8GB of RAM. We used cryptographic instances encoding preimage of round reduced SHA-
1 hash function. We encoded 22 rounds of SHA-1 and used 50 randomly generated hash
values to be inverted. Time and memory limit for cryptographic instances was 4 hours and
8GB respectively.
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Figure 4.2: Performance comparison of MapleSAT, Glucose and CryptoMiniSAT solvers
with default, and BMM initialization methods on hard cryptographic benchmarks.

Solver Descriptions. The solvers we used were MapleSAT [LGPC16a], Glucose-4 [AS18]
and CryptoMiniSAT-5 [Soo18]. From the experiments performed on SHA-1 instances in
the literature [Nos12, NLG+17, NNS+17], we know that these solvers are top performing
solvers in this benchmark. We used 100 epochs for pre-processing and 1 epoch for updating
BMM posterior.

Results. Table 4.1 gives details on the number of solved instances out the 50 hard cryp-
tographic instances, where it can be seen that BMM version of MapleSAT is the only
variant of MapleSAT that can solve all of the instances with much lower average runtime
compared to other initialization methods. Also, BMM version of CryptoMiniSAT solves
the instances around 50% faster than the default version on average. Figure 4.2 shows how
MapleSAT-BMM and CryptoMiniSAT-BMM have a clear advantage over other versions of
these three solvers.
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Table 4.1: Number of solved instances out of 50 hard cryptographic instances and average
runtime (in seconds) of MapleSAT, Glucose and CryptoMiniSAT with different initializa-
tion methods.

Initialization Total Avg. time

M
a
p
le
S
A
T

Default 48 3645.08
Random 48 3180.42
Survey Propagation 40 3405.20
Jeroslow-Wang 47 3389.27
BMM 50 2238.85

G
lu
co

se

Default 33 4817.69
Random 32 5741.74
Survey Propagation 30 5386.74
Jeroslow-Wang 32 6334.71
BMM 38 4563.08

C
ry
p
to
M
in
iS
A
T Default 50 3475.06

Random 50 3223.48
Survey Propagation 41 3501.00
Jeroslow-Wang 49 5387.20
BMM 50 1706.63

4.4.2 Evaluation over SAT Competition 2018 and SAT Race 2019
Application Instances

Experimental Setup. All jobs were run on StarExec environment with Intel(R) Xeon(R)
CPU E5 at 2.40GHz [SST14]. We used the main track of the SAT competition 2018, which
contains 400 instances coming from a variety of real-world application domains, like verifi-
cation, graph problems, scheduling, and combinatorics [HJS19]. The SAT race benchmark
is partitioned into “new” and “old” subsets, marking newly submitted instances to the
competition and re-used instances from the past competitions. We used the “new” subset
of the instances containing 200 instances. The time limit for solving each instance was
5000 seconds (the same as SAT competitions) and the memory limit was 8GB.

Solver Descriptions. The solvers that we used to incorporate BMM were MapleCOM-
SPS (gold / silver medalist of SAT competition 2016 / 2017) [LOG+17] and MapleL-
CMDistChronoBT (winner of SAT competition 2018) [RN18]. We used 10 epochs to com-
pute the posterior in the pre-processing phase and 1 epoch for each learned unary and
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Figure 4.3: Performance comparison of different version of MapleCOMSPS on SAT com-
petition 2018 benchmark.

binary clause. MapleLCMDistChronoBT, switches between Distance, VSIDS, and LRB
branching heuristics. We initialized activity scores of all of these heuristics. Similarly, we
initialized both VSIDS and LRB in MapleCOMSPS.

Results. Table 4.2 shows the number of solved instances out of 400 instances by the
two solvers described above, comparing BMM with other methods. Figure 4.3 depicts
that BMM-based initialization beats all other methods, by solving more instances, and
having lower average runtime on the solved instances. The closest performing method
is the Jeroslow-Wang, which solves 4 more than the default, but still, BMM solves 8
more instances than Jeroslow-Wang. In the case of MapleLCMDistChronoBT, BMM-based
initialization does not improve the number instances, however, it solves the instances 15%
faster on average.

Table 4.3 shows the number of solved instances out of 200 instances by the two solvers
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Table 4.2: Number of solved instances (out of 400) and average runtime (in seconds) of
MapleCOMSPS and MapleLCMDistChronoBT and their variations on SAT competition
2018 benchmark. SAT column shows how many of the solved instances were satisfiable.

Initialization Total SAT Avg. time
M
a
p
le
C
O
M
S
P
S Default 218 124 674.43

Random 214 121 678.09
Survey Propagation 157 100 862.30
Jeroslow-Wang 222 128 654.05
BMM 230 136 646.18

M
a
p
le
L
C
M
D
is
t Default 240 138 769.85

Random 232 131 673.02
Survey Propagation 173 109 885.50
Jeroslow-Wang 235 134 655.98
BMM 240 139 652.80

described above, comparing BMM with other methods. Unlike the SAT 2018 benchmark,
the best performing configuration was different among the initialization methods, which
is listed in Table 4.3. For MapleCOMSPS BMM-polarity was the best configuration, and
for MapleLCMDistChronoBT BMM-activity was the best performing configuration. In
both of the solvers, BMM-based initializations are the best version of their respective
solvers, beating the default version by 5 instances in MapleCOMSPS and 2 instances
in MapleLCMDistChronoBT. It should be noted that BMM-based versions solve 5 more
satisfiable instances compared to default MapleCOMSPS and 4 more satisfiable instances
compared to default MapleLCMDistChronoBT.

4.4.3 Discussion of Experimental Results

SAT vs. UNSAT. The posterior distribution that BMM learns, is supposed to form a
solution to the input formula. Therefore we expect to see better performance in satisfiable
instances rather than unsatisfiable instances, and in fact that is what we have observed in
our experiments. Tables 4.2 and 4.3 show that the BMM-initialized MapleCOMSPS, solves
12 more (5 more in 2019) satisfiable instances compared to the vanilla MapleCOMSPS, and
solving the same number of unsatisfiable instances. All instances in our hard cryptographic
benchmark are satisfiable (there exists a preimage to each hash target, and the task is to
find it), and we specifically wanted to study this benchmark as an important class of
satisfiable instances.
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Table 4.3: Number of solved instances (out of 200) and average runtime (in seconds)
of MapleCOMSPS and MapleLCMDistChronoBT and their variations on SAT race 2019
benchmark. SAT column shows how many of the solved instances were satisfiable.

Initialization Total SAT Avg. time Best config.

M
a
p
le
C
O
M
S
P
S Default 120 89 696.310 default

Random 119 88 732.489 Activity-Polarity
Survey Propagation 115 84 813.637 Polarity
Jeroslow-Wang 123 92 712.904 Activity
BMM 125 94 841.985 Polarity

M
a
p
le
L
C
M
D
is
t Default 120 88 604.368 default

Random 119 89 685.499 Polarity
Survey Propagation 115 83 946.500 Polarity
Jeroslow-Wang 120 88 830.279 Activity-Polarity
BMM 122 92 665.060 Activity

Impact of BMM Update. As described in Section 4.2, we also update the posterior
with the new evidence (conflict clauses that are implied by the formula) that the solver gen-
erates. This update, had a positive impact on the performance, although not a significant
impact. On average the solving times are reduced by 11.2% in application benchmark, but
no additional instances were solved. The results in the tables and figures are with using
the BMM update.

Sub-category Analysis for SAT 2018 Application Instances. We analyzed cate-
gories of problems in the SAT competition benchmark [HJS19], to further study which
types of problems, BMM is more effective, and in which types it is less effective. The cate-
gories that we extracted from this benchmark were: Combinatorics, Cryptography, Graph
theory, Verification, Number theory, Scheduling and Hard 3-SAT. In most categories, the
BMM-based version of MapleCOMSPS performs on par with the default version. How-
ever, it solves one more instance in the verification category and one less instance in hard
3-SAT and scheduling problems, and a large leap of 16 more instances in the cryptography
category.

Computational Overhead. In each epoch, all clauses are processed and for each clause,
all of the literals in the clause are linearly processed, which means that the overall com-
plexity is linearly proportional to the total number of literals appearing in the formula. 10
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Figure 4.4: Comparison of total time a SAT solver took to solve an instance vs BMM
preprocessing of the formula with 100 epochs on the SAT 2016 competition benchmark.

epochs over the largest formula in our benchmarks with 12 million clauses and 2 million
variables, takes 80 seconds. On average BMM pre-processing constitutes 6% of the total
running time of MapleCOMSPS on the SAT 2018 benchmark. This number is negligible
in hard cryptographic instances even with 100 epochs.

4.5 Related Work

Unfortunately, the initialization problem has not been studied as extensively as other
components of the SAT solvers. Jeroslow-Wang [JW90] proposed a scoring system for each
literal based on the length of the clauses that the literal appears in, where the literals
that are appearing in shorter clauses are preferred. Initially, this was proposed as a static
branching heuristic, but this was later also used as a way of giving initial preference to
the literals. However, as the Boolean formula gets larger and more complicated, it might
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not capture the information about the underlying structure. In contrast, BMM updates
the prior hypothesis with the target of satisfying all of the clauses and does not use a
proxy for guessing a good measure. Despite being an approximation, BMM takes us to a
relatively useful starting point. Most of the modern solvers, set the polarities and activities
either to a fixed value (all zero, all False or all True), or a random value and let the search
engine explore the search space. Some solvers in their initial phase of exploring, use a
different branching heuristic (e.g. Distance [XLL+19]) to get to a fruitful state and then
use the main branching heuristics. However, all such solvers that use hybrid branching
methods, only get to that desired state by collecting conflict clauses and do not re-use
the intermediate activity scores. Kibria et al. [KL06], proposed a genetic programming
approach to find initialization of activities that minimizes runtime, where they had mixed
results on a small set of electronic design automation instances.

4.6 Chapter Summary

We used the design of a novel BMM-based algorithm for the initialization problem of
value selection (polarity) and variable order (branching) heuristics in conflict-driven clause-
learning SAT solvers. We implemented our methods alongside other initialization meth-
ods (random, survey propagation, Jeroslow-Wang and default) in state-of-art solvers such
as MapleCOMSPS, MapleLCMDistChronoBT, MapleSAT, Glucose and CryptoMiniSAT,
and showed significant improvement over these already leading solvers. We evaluated our
methods on the main track benchmark of SAT competition 2018 and 2019, consisting of
real-world application instances, as well as a set of hard cryptographic instances (inversion
attacks) obtained from a round-reduced version of SHA-1 hash function. The BMM-
enhanced version of MapleCOMSPS with both value selection and value order initialized,
solves 12 more instances with lower average runtime compared to the baseline version, and
is also faster than the random, survey propagation and Jeroslow-Wang initializations. Fur-
thermore, the BMM-enhanced version of MapleSAT solves all of the hard cryptographic
instances encoding preimage attacks on SHA-1 in our benchmark, and BMM-based Cryp-
toMiniSAT solves them around 50% faster on average than the default version.
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Chapter 5

Machine Learning based Parallel SAT

The availability of many-core machines has led to a considerable effort in parallel SAT
solver research in recent years [BS18]. Broadly speaking, researchers have developed two
parallel SAT solver strategies, namely, portfolio and divide-and-conquer (DC) solvers. A
portfolio SAT solver consists of a set of sequential worker solvers, each implementing a
different collection of heuristics, and all of them attempting to solve the same instance
running on different cores of a many-core machine. The key principle behind a portfolio
solver is that of diversity of heuristics, i.e., by leveraging a diverse set of heuristics to solve
an instance one may be more efficient than just using a single heuristic given the well-known
fact that different classes of formulas are often best solved by distinct methods [HJS08]. On
the other hand, DC solvers partition the search space of the input formula and solve each
sub-formula using a distinct sequential worker solver. Each sub-formula is a restriction
of the input formula with a set of assumptions [ZBH96]. In both the portfolio and DC
settings, the sequential worker solvers may share clauses to exchange useful information
they learn about their respective search spaces.

In the context of DC solvers, a splitting heuristic is a method aimed at choosing
the “next variable” to add to the current list of assumptions (also known as guiding
paths [ZBH96]). A bit more formally, one can define a splitting heuristic as a function
that takes as input features of a given formula φ and/or statistics of a DC solver’s state
and outputs a variable to split. Splitting heuristics are typically dynamic, i.e., they re-rank
variables at regular intervals throughout the run of a DC solver. The process of splitting
itself can be described as follows: for a given input formula φ, consider that a variable v
is chosen for splitting. The solver generates φ[v = F ] (resp. φ[v = T ]) by setting v to
False (resp. True) and appropriately simplifying the resultant sub-formulas using Boolean
constraint propagation. These two sub-formulas are then solved in parallel. Each of these
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sub-formulas can be further split into smaller sub-formulas recursively. Many heuristics
for splitting have been studied in the literature [HKWB11, ALST16, AHJP14, NNS+17].

Splitting heuristics can be broadly categorized as look-ahead and look-back. Look-
ahead heuristics choose some subset of variables in the input formula, analyze the impact
of splitting on these variables, and rank them based on some measure that correlates well
with minimizing runtime1 of the solver on the sub-formulas thus obtained. By contrast,
look-back heuristics compute statistics on “how well a variable participated in the search
exploration in the past” (e.g., in clause learning, propagation, etc.), rank them appropri-
ately and split on the highest-ranked variable. Examples of look-back heuristics include
VSIDS activity [ALST16], number of flips [LFBSK19].

While considerable work has been done on splitting heuristics, almost all previous
approaches share the following characteristics: they compute some features of the input
formula and/or statistics over the solver state at appropriate intervals during the solver’s
run, and then use these as input to a “hand-coded” function (a splitting heuristic designed
by the solver designer), that in turn computes a metric correlated with solver runtime to
pick the “best” variable to split. By metric we mean a quantity that can be used to rank
variables of the input formula such that splitting on the highest-ranked variable ideally
corresponds to minimizing solver runtime. We argue that the design of splitting heuristics
can be dramatically improved by leveraging a data-driven machine learning (ML) approach,
especially for families of formulas (e.g., cryptographic instances) where it can be hard for
human designers to come up with effective “hand-coded” splitting heuristic.

In this chapter we focused on the splitting heuristic in divide-and-conquer parallel SAT
solvers and present three look-back heuristics. We first present propagation-rate, an ad-
hoc heuristic based on how much a variable impact other variables, when set. Next, we
propose two ML-based methods, namely pairwise ranking, and min-rank. The pairwise
ranking model takes as input features of a given formula φ, aspects of solver state, as well
as features of a pair of variables v and u, and ranks them in descending order based on
some splitting metric. This ML-based “comparator” is in turn used by our DC solver to
rank variables for splitting at regular intervals during its run. The min-rank model, takes
as input features of a given formula φ, aspects of solver state, and features of a variable v,
and outputs whether the variable v has the minimum rank among all variables of the input
formula (i.e is it the best variable to split?). Both of these models are binary classifiers
implemented using random forest. We implemented our heuristics in the Painless parallel
solver framework [LFBSK17] (we refer to our solver as MaplePainless), and compared it
with top parallel SAT solvers from recent SAT competitions. We find that our ML-based

1Runtime is the wallclock time of solving a formula.
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method out-performs the best DC solvers on both SAT 2018/2019 competition as well as
cryptographic instances. We only compare our MaplePainless solver against the state-
of-the-art DC solvers for the following reasons: first, it is well-known that DC solvers often
outperform the most notable portfolio and sequential solvers on cryptographic instances.
On the other hand, DC solvers are known to perform poorly relative to the portfolio and
sequential solvers over application instances.

5.1 Contribution

1. Propagation Rate Splitting Heuristic. We present a new splitting heuristic
based on the propagation rate, where a formula is broken into two smaller sub-
formulas by setting the highest propagating variable to True and False. We evaluate
the improved solver against the top parallel solvers from the SAT 2016 competition
on the Application benchmark and a benchmark of cryptographic instances obtained
from the encoding of preimage attacks on the SHA-1 cryptographic hash function.
Our solver, called MapleAmpharos, outperforms the baseline AMPHAROS and is
competitive against Glucose, parallel CryptoMiniSat5, Treengeling and Plingeling on
the SAT 2016 Application benchmark. Additionally, MapleAmpharos has better
solving time compared to all of the solvers on our crypto benchmark.

2. MaplePainless: A DC Solver based on ML-based Splitting Heuristics. We
present MaplePainless, a DC solver that leverages ML for splitting. Briefly, our
splitting heuristics are ML models, trained offline on both static formula/variable
features (e.g., variable occurrence in binary clauses) as well as “dynamic” features
based on aspects of the solver’s state at runtime (e.g., number of times a variable
has been assigned, activities). We propose and implement two different models,
namely, pairwise ranking and min-rank, described above. At runtime, the trained
ML-model is invoked by MaplePainless on a vector of static and dynamic variable
features at appropriate intervals, which in turn outputs a ranking of the variables
in the input formula. The splitting heuristic then chooses the top-ranked variable,
splits the formula by assigning that variable both true and false values, and gives the
resultant sub-formulas to worker solvers to solve.

3. Evaluation on Cryptographic Instances. We evaluated our splitting heuristics
on a cryptographic benchmark encoding preimage attack on a round-reduced SHA-1
function (inversion of 60 random hash targets). We used top sequential solvers in
solving cryptographic instances as backend solvers (MapleSAT and Glucose). We
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outperform the baseline solver (Painless-DC with the same backends and Flip as
splitting heuristics) in an apple-to-apple comparison, and also other top DC solver,
Treengeling.

4. Evaluation on SAT Application Instances from SAT 2018 competition and
SAT 2019 race. We evaluated our splitting heuristics on main track benchmarks of
SAT competition 2018 and SAT race 2019 against the baseline solver (Painless-DC
with Flip as splitting heuristic) in an apple-to-apple comparison, and also against
Treengeling (state-of-the-art divide-and-conquer solver from recent SAT competi-
tions). On the combined SAT 2018 and SAT race 2019 benchmark, we outperform
the baseline solver as well as Treengeling both in terms of the number of solved
instances and the PAR-2 score. Furthermore, MaplePainless solves satisfiable in-
stances much better than all other solvers (18 more than both the baseline Treengeling
solvers), when using the pairwise ranking model.

5.2 Propagation-rate

We propose a new propagation rate-based splitting heuristic to improve the performance of
divide-and-conquer parallel SAT solvers. We implemented our technique as part of the AM-
PHAROS solver [ALST16], and showed significant improvements vis-a-vis AMPHAROS
on instances from the SAT 2016 Application benchmark. Our key hypothesis was that
variables that are likely to maximize propagation are good candidates for splitting in the
context of divide-and-conquer solvers because the resultant sub-problems are often sim-
pler. An additional advantage of ranking splitting variables based on their propensity to
cause propagations is that it can be cheaply computed using conflict-driven clause-learning
(CDCL) solvers that are used as workers in most modern divide-and-conquer parallel SAT
solvers.

In this section, we describe our propagation rate based splitting heuristic, starting
with a brief description of AMPHAROS that we use as our base solver [ALST16]. We
made our improvements in three steps: 1) We used Maplesat [LGPC16a] as the worker
or backend solver. This change gave us a small improvement over the base AMPHAROS.
2) MapleAmpharos-PR: We used a propagation-rate based splitting heuristic on top of
using Maplesat as a worker solver. 3) MapleAmpharos: We applied different restart
policies at worker solvers of MapleAmpharos-PR.
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5.2.1 The AMPHAROS Solver

AMPHAROS is a divide-and-conquer solver wherein each worker is a CDCL SAT solver.
The input to each worker is the original formula together with assumptions corresponding
to the path (from the root of the splitting tree to the leaf) assigned to the worker. The
workers can switch from one leaf to another for the sake of load balancing and intensifi-
cation/diversification. Each worker searches for a solution to the input formula until it
reaches a predefined limit or upper bound on the number of conflicts. We call this the
conflict limit. Once the conflict limit is reached, the worker declares that the cube2 is
hard and reports the “best variable” for splitting the formula to the master. A variable
is deemed “best” by a worker if it has the highest VSIDS activity over all the variables
when the conflict limit is reached. The Master then uses a load balancing policy to de-
cide whether to split the problem into two by creating False and True branches over the
reported variable.

5.2.2 Propagation Rate Splitting Heuristic

As mentioned earlier, the key innovation in MapleAmpharos is a propagation rate-based
splitting heuristic. Picking variables to split on such that the resultant sub-problems are
collectively easier to solve plays a crucial role in the performance of divide-and-conquer
solvers. Picking the optimum sequence of splitting variables such that the overall running
time is minimized is in general an intractable optimization problem.

For our splitting heuristic, we use a dynamic metric inspired by the measures that
look-ahead solvers compute as part of their “look-ahead policy”. In a look-ahead solver,
candidate variables for splitting are assigned values (True and False) one at a time, and the
formula is simplified against this assigned variable. A measure proportional to the number
of simplified clauses in the resultant formula is used to rank all the candidate variables in
decreasing order, and the highest ranked variable is used as a split. However, look-ahead
heuristics are computationally expensive, especially when the number of variables is large.
Propagation rate-based splitting on the other hand is very cheap to compute.

In our solver MapleAmpharos when a worker reaches its conflict limit, it picks the
variable that has caused the highest number of propagations per decision (the propagation
rate) and reports it back to the Master node. More precisely, whenever a variable v is
branched on, we sum up the number of other variables propagated by that decision. The

2While the term cube refers to a conjunction of literals, we sometimes use this term to also refer to a
sub-problem created by simplifying a formula with a cube.
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propagation rate of a variable v is computed as the ratio of the total number of propagations
caused whenever v is chosen as a decision variable divided by the total number of times v
is branched on during the run of the solver. Variables that have never been branched on
during the search get a value of zero as their propagation rate.

When a worker solver stops working on a sub-problem due to it reaching the conflict
limit, or proving the cube to be UNSAT, it could move to work on a completely different
sub-problem which has a different set of assumptions. Through this node switching, we do
not reset the propagation rate counters.

The computational overhead of our propagation rate heuristic is minimal, since all
the worker solvers do is maintain counters for the number of propagations caused by each
decision variable during their runs. An important feature of our heuristic is that the number
of propagation per decision variable is deeply influenced by the branching heuristic used
by the worker solver. Also, the search path taken by the worker solver determines the
number of propagations per variable. For example, a variable v when set to the value
True might cause lots of propagation, and when set to the value False may cause none at
all. Despite these peculiarities, our results show that the picking splitting variables based
on the propagation rate-based heuristic is competitive for Application and cryptographic
instances.

5.2.3 Worker Diversification

Inspired by the idea of using different heuristics in a competitive solver setting [HJS08],
we experimented with the idea of using different restart policies in worker CDCL solvers.
We configured one third of the workers to use Luby restarts [LSZ93], another third to
use geometric restarts, and the last third to use MABR restarts. MABR is a Multi-
Armed Bandit Restart policy [NLG+17], which adaptively switches between 4 different
restart policies of linear, uniform, geometric and Luby. We note that while we get some
benefit from worker diversification, the bulk of the improvement in the performance of
MapleAmpharos over AMPHAROS and other solvers is due to the propagation rate
splitting heuristic.

5.2.4 Experimental Results

In our experiments, we compared MapleAmpharos against 5 other top-performing par-
allel SAT solvers over the SAT 2016 Application benchmark and a set of cryptographic
instances obtained from encoding of SHA-1 preimage attacks as Boolean formulas.
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Figure 5.1: Performance of MapleAmpharos vs. competing parallel solvers over the
SAT 2016 Application benchmark

Experimental Setup

We used the Application benchmark of the SAT competition 2016 which has 300 indus-
trial instances obtained from a diverse set of applications. Timeout for each instance was
set at 2 hours wall clock time. All jobs were run on 8 core Intel Xeon CPUs with 2.53
GHz and 8GB RAM. We compared our solver MapleAmpharos against the top par-
allel solvers from the SAT 2016 competition, namely, Treengeling and Plingeling [Bie16],
CryptoMiniSat5 [Soo16], Glucose-Syrup [AS16] and also baseline version of AMPHAROS
solver [ALST16]. Our parallel solver MapleAmpharos uses Maplesat [LGPC16a] as its
worker CDCL solver.
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Table 5.1: Solving time details of MapleAmpharos and competing parallel solvers on
SAT 2016 Application benchmark

Solver # of solved SAT UNSAT Average Time (s)
MapleAmpharos 182 77 105 979.396

AMPHAROS 104 42 62 392.933
Ampharos-Maplesat 107 44 63 310.94

MapleAmpharos-PR 171 72 99 1035.73
CryptoMiniSat 180 72 108 942.894
Glucose-Syrup 180 74 106 898.767

Plingeling 192 76 116 965.167
Treengeling 184 77 107 969.467

Case Study 1: SAT 2016 Application Benchmark

Figure 5.1, shows the cactus plot comparing the performance of MapleAmpharos against
the other top parallel SAT solvers we considered in our experiments. In this version of the
MapleAmpharos solver we used the best version of worker diversification (which is a
combination of Luby, Geometric and MAB-restart referred to section 5.2.3). As can be seen
from the cactus plot in Figure 5.1 and the Table 5.1, MapleAmpharos outperforms the
baseline AMPHAROS, and is competitive vis-a-vis Parallel CryptoMiniSat, Glucose-Syrup,
Plingeling and Treengeling. However, MapleAmpharos performs the best compared to
the other solvers when it comes to solving cryptographic instances.

Case Study 2: Cryptographic Hash Instances

We also evaluated the performance of our solver against these parallel SAT solvers on
instances that encode preimage attacks on the SHA-1 cryptographic hash function. These
instances are known to be hard for CDCL solvers. The best solvers to-date can only invert
at most 23 rounds automatically (out of a maximum of 80 rounds in SHA-1) [NLG+17,
Nos12]. Our benchmark consists of instances corresponding to a SHA-1 function reduced
to 21, 22 and 23 rounds, and for each number of rounds, we generate 20 different random
hash targets. The solution to these instances are preimages that when hashed using SHA-
1, generate the same hash targets. The instances were generated using the tool used for
generating these type of instances in SAT competition [Nos13]. The timeout for each
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Figure 5.2: Performance of MapleAmpharos vs. competing parallel solvers on SHA-1
instances

instance was set to 8 hours. Figure 5.2 shows the performance comparison and Table 5.2
shows details of the average solving times on this benchmark. We compute the average for
each solver only over the instances for which the resp. solvers finish. As can be seen from
these results, MapleAmpharos performs the best compared to all of the other solvers. In
particular, for the hardest instances in this benchmark (encoding of preimage attacks on 23
rounds of SHA-1), only Glucose-Syrup, AMPHAROS, and MapleAmpharos can invert
some of the targets. Further, MapleAmpharos generally solves these SHA-1 instances
much faster.

5.3 Machine Learning based Splitting Heuristics

In this work, we propose an ML-based method that takes as input features of a pair of
variables of an input formula and statistics over solver state, and outputs ranking over
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Table 5.2: Average solving time comparison on SHA-1 benchmark

Solver # of solved Average Time (s)
MapleAmpharos 43 1048.53

AMPHAROS 42 1619.1
Ampharos-Maplesat 42 1518.76

MapleAmpharos-PR 43 1457.14
CryptoMiniSat 35 3056.31
Glucose-Syrup 43 2912.84

Plingeling 31 2668.48
Treengeling 23 4783.35

this pair of variables. This ML-based “comparator” is in turn used by our DC solver
to rank variables for splitting at regular intervals during its run. We implemented our
heuristics in the Painless parallel solver framework [LFBSK17] (we refer to our solver as
MaplePainless), and compared it with top parallel SAT solvers from the recent SAT
competitions. We find that our ML-based method out-performs the best DC solvers on
both SAT 2018/2019 competition as well as cryptographic instances. We only compare
our MaplePainless solver against the state-of-the-art DC solvers, because DC solvers
are known to perform poorly relative to portfolio solvers over application instances.

In this section we discuss a formulation of the splitting problem, define a quality measure
for splitting, and study how we can train ML models that approximate the best splitting
variable.

5.3.1 The Splitting Problem

Given a Boolean formula φ, a sequential solver S, and performance metric pm, the splitting
problem is to determine a variable v in φ such that the time required to solve each of
φ[v = T ] and φ[v = F ] by S is minimal over all variables in φ with respect to the given
performance metric pm, i.e. to find argminv∈vars(φ){pm(φ, v)}.

Modeling the exact behavior of a DC solver as it solves the sub-formulas in parallel and
splits them on demand, is a challenging task. Below we define a metric that we believe
is a more accurate measure of the optimal choice of a splitting variable, compared to the
heuristic metrics mentioned in Section 2.4.
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Let φ1 = φ[v = F ] and φ2 = φ[v = T ] be sub-formulas of splitting φ over v, and let
t1 = tS(φ1) and t2 = tS(φ2) be runtimes of solving them by sequential solver S. The total
time taken to solve the formula φ in this setting depends on the status and runtimes of the
sub-formulas. If φ is UNSAT, the solver needs to prove both of the sub-formulas UNSAT.
Hence the total time to solve such an instance is the maximum of the solver runtimes
over the two sub-formulas. If on the other hand the formula φ is SAT, at least one of the
sub-formulas must be SAT. If both sub-formulas are SAT, the total time is the minimum
of the two, otherwise, only the SAT sub-formula matters. The total time of solving φ after
splitting over variable v can be represented as follows:

Ttotal(φ, v) =


max(t1, t2), φ1 : UNSAT, φ2 : UNSAT

t2, φ1 : UNSAT, φ2 : SAT

t1, φ1 : SAT, φ2 : UNSAT

min(t1, t2), φ1 : SAT, φ2 : SAT

We use this total runtime as our performance metric: pm(φ, v) = Ttotal(φ, v). In
other words the target of our splitting heuristic is: given formula φ, find a variable
v = argminv∈vars(φ){Ttotal(φ, v)}.

5.3.2 Handling Timeouts

In practice, sub-formulas obtained after splitting on a variable can be hard for SAT solvers
and thus they may timeout for those cases. Let the status of a timed out (sub-)formula
be labeled as “UNKNOWN”. For a pair of variables u and v in formula φ, we collect the
runtime and status of solving sub-formulas u1 = φ[u = F ], u2 = φ[u = T ], v1 = φ[v = F ]
and v2 = φ[v = T ]. If the status of all four of these sub-formulas are UNKNOWN, we
cannot derive the truth label (we do not know which of these two variables is better for
splitting). In all other cases (mix of having SAT/UNSAT and UNKNOWN), we have
enough information to be able to compare u and v.

5.3.3 Learning to Rank

Generally, performance metrics can be used to generate a total order over the splitting
variables (the higher ranked variables have a higher performance metric). Thus we can
see the splitting problem as picking the minimum element from a ranked list. A common
way in implementing splitting heuristics is to rank the variables by directly deriving the
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performance metric of each variable and selecting the minimum element. However, this is
not the only way one can rank the elements. There are three main approaches in the ML
literature for learning a model to rank a list of elements [L+09]:

• Pointwise: Learning a numerical or ordinal score for each data point, which are in
turn sorted according to their ordinal score. The problem here translates to training
a regression model.

• Pairwise: In this approach, ranking is done via learning a model that acts as a
comparator, which takes as input two data points and output a total order over
them.

• Listwise: These algorithms try to directly minimize a ranking evaluation metric
(e.g. τ -score or Mean Average-Precision) that compares a predicted ranking against
a true ranking.

Almost all previous branching and splitting heuristics use pointwise ranking. For ex-
ample, VSIDS branching heuristics [MMZ+01] maintains a score for each variable, which
represents how much that variable participated in clause learning recently. Then the vari-
able with the highest activity is picked. Ultimately, the goal is to minimize the runtime
and one might learn a function that directly approximates the desired runtime based rank-
ing. However, approximating the runtime distribution of the CDCL SAT solver is very
hard in general, as the interplay of the many heuristics in CDCL solvers makes it hard to
predict how the search progresses. The hope of heuristic designers is that their variable
ranking strongly correlates with a ranking where high ranking variables generate easier
sub-formulas. In other words, their variable ranking using the proxy metric strongly cor-
relates with runtime-based ranking. In the case of splitting or branching heuristics, we do
not care about the actual runtime of sub-formulas and only want to know which variable
corresponds to the lowest runtime. In other words, we want a way of comparing runtimes
and not exactly deriving the runtime values. As mentioned above, we are looking for a
minimum element in an array, sorted based on a metric. We approach this task of find-
ing the minimum using two different methods. First, we build a pairwise ranking model
that learns to compare two elements (two variables in our case), and second, we use a
modified version of ordinal ranking, that we call min-rank, where we build a classifier that
determines whether a given variable sits at the rank 1. We use+d binary classification for
building both of these models. In the pairwise ranking, we use the model as a less-than
operator and find the minimum in a linear scan. In min-rank, we check all of the variables
against the model and pick the variable that the model declares as the minimum.
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The first model is represented by a binary classifier PW (PairWise) that takes as input
features of a formula φ and features of two variables vi and vj within φ, and answers the
question of “is vi better than vj for splitting φ?” (according to our splitting performance
metric described in Section 5.3.1).

PW (φ, vi, vj) =

{
1, pm(φ, vi) < pm(φ, vj)

0, otherwise
(5.1)

This type of predicate learning was also used in one of the SATZilla versions [XHHLB12]
(known as pairwise voting), to rank a list of algorithms on a given instance.

For the second model, we used the idea of reduction by Lin et al. [LL12] for implement-
ing ordinal ranking using binary classification. In their work, the role of a binary classifier
given an element and an integer rank k is to determine whether the element is within the
top k elements or not. Splitting heuristics look for the top variable in a ranked list, thus we
are only interested in the k = 1 case. We define a binary classifier MR (Min-Rank) that
takes as input a variable v, and answers the question “is v the best variable for splitting
φ?”.

MR(φ, vi) =

{
1, ∀j 6= i : pm(φ, vi) < pm(φ, vj)

0, otherwise
(5.2)

5.3.4 Features for Training the Models

The data points that we used to train the model have the following format:

PW : (〈formulafeatures(φ), varfeatures(vi), varfeatures(vj)〉, {0, 1})
MR : (〈formulafeatures(φ), varfeatures(v)〉, {0, 1}) (5.3)

where the last element corresponds to the appropriate classifier (PW (φ, vi, vj) orMR(φ, v)).
For the formula features, we started from the features proposed by SATZilla in SAT com-
petition 2012 [XHHLB12]. Compared to the model that has been used in SATZilla, we will
query our model at each splitting point. The feature computation time can quickly become
a big part of the total runtime, and dominate the gain from picking a better splitting vari-
able. On the other hand, each of the features could have an important role in making the
model representative of the target distribution. To address this problem we performed a
feature selection on our initial set of features (both formula and variable features). We first
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Table 5.3: Variable (var features(v)) and Formula features (formula features(φ)).

Feature name Description

activity VSIDS activity [MMZ+01]
LRBProduct product of LRB [LGPC16a] activities of v and ¬v literals
numFlip #times the implied value of v is different than its cached value [AHJP14]
propRate average #propagation over #decision [NNS+17]
numDecided #times v has been picked in branching
numAssigned #times v got a value through branching/propagation
numLearnt #times v appeared in a conflict clause
decisionLevel average of decision levels of v at the end of the limited search
numInBinary #times v appears in a clause of size 2
numInTernary #times v appears in a clause of size 3

numDecisions number of decisions made in the limited search
numPropagations number of unit propagations in the limited search
conflictRate ratio of #conflict clauses over #decisions
totalReward sum of LRB reward of all of the variables
numBinary number of clauses of size 2 in φ
numTernary number of clauses of size 3 in φ
avgVarDegree average variable node degree in the Variable-Clause graph
avgClauseDegree average clause node degree in the Variable-Clause graph

removed the very heavy features like LP-based (linear programming) features. We used
random forest for training our models. We then extracted the relative importance of each
feature after training, which corresponds to the frequency of appearance of those features
in the ensemble of decision trees. We created a sorted list of features based on their rela-
tive importance (f), and performed a forward feature selection [GE03]. More specifically,
starting with an empty list F , we passed through f and added the features to F , if they
reduced the cross-validation error when training on F . We then performed a pass on F ,
to remove heavy-to-compute features that do not contribute much to the accuracy of the
model. We also took into account the product features (features from the multiplication of
pairs of other features) to add non-linearity to the model. The final variable and formula
features are listed in Table 5.3, consisting of structural metrics and metrics from a limited
search.
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5.3.5 Training Data

We used the MapleCOMSPS solver [LOG+17] for solver runtime and formula/variable fea-
ture collection. For generating our training data set, we picked 210 instances from the
collection of application/crafted benchmarks of SAT competition 2016 and 2017 [HJT16,
HJT17]. To be more precise, 87 instances from the application benchmark of 2016, 21
instances from the crafted benchmark of 2016, and 102 instances from the main bench-
mark of 2017. The selection criteria were based on having instances from different types
of problems (not problems of the same kind with different sizes) and having a wide range
of hardness to make a representative training set. We did not use any instance that was
deemed too hard (timed out) or too easy (was solved under 5 seconds) by our sequential
solver. To match the test environment, we first ran the pre-processing stage of MapleCOM-
SPS and simplified the formulas. Then we computed all of the structural formula features
offline and for the search probing features we ran MapleCOMSPS up to 10,000 conflicts
and collected the necessary statistics from the solver. For computing the true labels, we
randomly selected 50 variables in each instance and split the formula on each of them and
solved the sub-formulas with MapleCOMSPS up to a 5000 seconds timeout, recording the
runtime and status (SAT, UNSAT, UNKNOWN).

5.3.6 Analysis of the Learned Models

For training the model, we used random forest classifier. We can achieve an average
precision of 83% and an average recall of 83%, and accuracy of 80.7%. The candidate
variable list can be ordered using the learned predicate. For finding the best variable, we
only need to find the “min” of the list, which can be done in linear time. Although, when
using a noisy comparator, the error caused by the inaccurate comparison, might accumulate
over multiple comparisons. There are more robust sorting algorithms in the presence of
noisy comparators (e.g. counting method [SW17]), but the running time complexity is
quadratic in the number of elements, which is not feasible for large formulas. To check
how well our predicate is performing, we ranked the variables in the instances in our
training set, where we have the true labels.

When sorting the variables using the pairwise ranking, out of 210 instances, in 120
instances the best variable in the predicted ranking matched the actual best variable (57.1%
of the time). In 18 cases the best actual variable was the second best predicted variable.
The worst prediction happened in an instance with 2200 variables, where the best actual
variable appeared in 30th position in the predicted list. The total error (e.g. τ score) of
comparing the predicted ranking and the best actual ranking could be poor, however, we
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Figure 5.3: Percentage of instances where the predicted best variable is within the actual
top-k variables for k between 1 and 10.

can see some general ordering over the variables (variables that are much better choices
appear closer to the front of the list). Figure 5.3 shows the percentage of instances (out of
210), where the predicted best variable (the output of the model for splitting), is within the
actual top-k variables. We observed that the best predicted variable is one of the actual
top 10 variables in 197 out of 210 instances (93.8%). This shows that top variables in our
predicted ranking have a considerable overlap with the top variables in the actual ranking,
although not appearing in the same exact order.

Both of the pairwise and min-rank models do a linear scan of the variables to find the
best splitting variable. The worst case time complexity of them is O(TC · n), where n is
the number of variables and TC is the time complexity of querying each of the classifiers.
The best case time complexity of pairwise ranking is Ω(TC · n) as well, because the best
variable candidate must be compared with all others, however, the best case for min-rank
is to hit the best variable in the first step, which gives Ω(TC) complexity.
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5.4 Implementation

Our implementation of MaplePainless is built using the Painless solver framework [LFBSK17].
Painless is a state-of-the-art framework that allows developers to implement many dif-
ferent kinds of parallel SAT solvers for many-core environments. The main configurable
components of Painless are: parallel strategies such as DC or portfolio, clause shar-
ing and management policies, and diverse sequential engines. The implementation of our
machine learning based splitting heuristic relies on the use of the DC strategy in Pain-
less [LFBSK19]. We use an instrumented version of the MapleCOMSPS [LOG+17] solver
as workers in MaplePainless. The instrumentation collects formula/variable statistics
and chooses splitting variables.

5.4.1 Implementation of Splitting in Painless-DC

As discussed earlier, Painless-DC splits a formula at regular intervals throughout its run.
At a high-level, the master node maintains a queue of idle cores to assign jobs to. Initially,
the master node chooses a variable to split and assigns the resultant sub-formulas to two
cores. If the queue of idle cores is non-empty, the master node chooses a sub-formula from
one of the busy cores and splits it into two sub-formulas, one of which is assigned to the
busy core and the other to one of the idle ones. This process is repeated until the queue of
idle cores is empty. If during the solver’s run a core becomes idle and is added to the idle
queue (e.g., if it has established UNSAT for its input sub-formula), the above-mentioned
process is invoked until the idle queue becomes empty again. This form of load-balancing
ensures that worker nodes are not allowed to idle for too long.

5.4.2 Feature Computation in MapleCOMSPS for Machine Learn-
ing

When it is time to split a formula, Painless’ master node asks the sequential worker
solver whose sub-formula is being split for variables to split on. The worker solver computes
formula and variable features (e.g. number of times a variable is assigned, either decided or
propagated) on the sub-formula to be split. Majority of the variable features are dynamic
and their counters are updated whenever there is a related action performed during the
search, thus their complexity is amortized over the run of the solver. The description of
the variable features is listed in Table 5.3.
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For the machine learning models PW and MR, we use the random forest classifier,
because it gave us better accuracy in the training phase. We used scikit-learn python
package [PVG+11] for training the model and used scikit-learn-porter [Mor] to generate a
C code out of the trained model. The trained weights are embedded in the exported C
code. We later call this code from MapleCOMSPS for performing predictions. Both the
pairwise classifier PW and the min-rank classifier MR are iteratively called to identify
minimum ranked variable over all the variables of the input formula. Note that the ML
models are noisy, i.e., their ranking is not likely to correspond exactly to the true ranking
according to our performance metric. However, the accuracy of the ML models is high
enough to be acceptable in our setting.

5.5 Experimental Results

Here we present experimental results comparing our ML-based heuristics in MaplePain-
less (described in Section 5.3) against the baseline Painless and state-of-the-art Treengeling
solvers.

5.5.1 Evaluation over SAT 2018 and 2019 Competition Instances

Experimental Setup.

For evaluation, we used the main track benchmark of the SAT competition 2018 [HJS18a]
and SAT race 2019 [HJS16], which in total have 800 instances, consisting of industrial
instances coming from a diverse set of applications and crafted instances encoding combi-
natorial problems. Timeout for each instance was set at 5000 seconds wallclock time (the
same as in SAT competitions). All jobs were run on Intel Xeon CPUs at 3GHz and 64GB
of RAM.

Solvers Description.

We compared our solver against the top divide-and-conquer parallel solvers, Treengeling
[Bie17] version bcj and Painless-DC [LFBSK19] with its best performing setting (node
switch strategy: clone, clause sharing: all-to-all, and splitting heuristic: flip), which we will
refer to as Treengeling and Painless-Flip, respectively. We refer to our implementations
using the PW classifier for pairwise ranking as MaplePainless-Pairwise and the one
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Table 5.4: Performance comparison of our solvers vs state-of-the-art divide-and-conquer
parallel SAT solvers. Number of solved instances in each benchmark is out of 400, and for
Total row, it is out of 800. SAT column shows the number of satisfiable instances solved
(resp. UNSAT). The bold entries, show the best result on benchmark in each column.

Benchmark Solver #Solved SAT UNSAT Avg. Runtime PAR-2

SAT 2018

Treengeling 245 143 102 827.097 486.844
Painless-Flip 244 144 100 384.888 459.42
MaplePainless-MinRank 255 150 105 507.399 438.719
MaplePainless-Pairwise 251 149 102 392.878 441.281

SAT 2019

Treengeling 259 150 109 617.665 436.104
Painless-Flip 234 149 85 500.185 493.623
MaplePainless-MinRank 246 151 95 466.044 459.624
MaplePainless-Pairwise 254 162 92 485.218 439.790

Total

Treengeling 504 293 211 719.472 922.948
Painless-Flip 478 293 185 441.330 953.043
MaplePainless-MinRank 501 301 200 487.092 898.343
MaplePainless-Pairwise 505 311 194 439.322 881.071

with MR classifier for binary classification of minimum rank as MaplePainless-MinRank.
Our parallel solver uses MapleCOMSPS [LOG+17] as the backend sequential solver. We
changed MapleCOMSPS to always use LRB as branching heuristics. Each solver was
assigned 8 cores.

Results

To perform an apple-to-apple comparison and measure the effectiveness of our splitting
heuristics, we reused all of the configurations and components of Painless-Flip and only
replaced the splitting heuristics, which was straightforward, thanks to the modular design
of Painless. Table 5.4 lists the number of solved instances, average runtime among solved
instances and the PAR-2 metric. In the SAT competition, PAR-2 is measured in seconds,
but for better readability, we report it in hours. As the table shows, both machine learning
based heuristics, MaplePainless-Pairwise and MaplePainless-MinRank, improve sig-
nificantly upon the baseline in both SAT 2018 and SAT 2019 benchmarks. They also solve
more instances than Treengeling in SAT 2018 benchmark. Although solving fewer in-
stances in SAT 2019. Additionally, MaplePainless-Pairwise solves more instances than
Treengeling and has the lowest PAR-2 score among all in the combined benchmarks of
2018 and 2019. Figures 5.4 and 5.5 show the cactus plots of the proposed, baseline and
state-of-the-art solvers over the SAT 2018 and SAT 2019 benchmarks. Treengeling per-
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Figure 5.4: Cactus plot for performance comparison of parallel SAT solvers on filtered
main track benchmark of SAT 2018.

forms a variety of (in-)processing before the search and after each splitting, which is a
powerful component of this solver. To evaluate the contribution of search space splitting
to the number of solved instances, we ran Treengeling and MaplePainless-Pairwise

with the simplification routines turned off. Treengeling solves 493 instances (out of 800)
and MaplePainless-Pairwise solves 495 instances on the same benchmark.

SAT vs. UNSAT

From Table 5.4 we can observe that both of the ML-based solvers are better at solving satis-
fiable instances rather than unsatisfiable instances. For example, MaplePainless-Pairwise
solves 18 more satisfiable instances compared to Treengeling, while Treengeling solves
17 more unsatisfiable instances, although with higher average runtime and PAR-2.
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Figure 5.5: Cactus plot for performance comparison of parallel SAT solvers on filtered
benchmark of SAT race 2019.

5.5.2 Evaluation over Cryptographic Instances

Experimental Setup

We used a set of hard cryptographic instances encoding preimage attack on round-reduced
SHA-1 hash function. More precisely, the instances encode inversion of 21, 22 and 23
rounds SHA-1, with 20 random targets for each rounds version [NHG+17]. All jobs were
run on Intel Xeon CPUs at 3GHz and 64GB of RAM with 12 hours wallclock timeout.

Solvers Description

We compared our MaplePainless-Pairwise solver against the baseline (Painless-Flip)
and Treengeling. All solvers were run with 8 cores. For the backend solvers in this
experiment, we used Glucose [AS18] and MapleSAT [LGPC16a] (4 of each). Glucose
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Figure 5.6: Performance of MaplePainless-Pairwise against baseline Painless and
Treengeling on cryptographic instances.

solvers used the Glucose’s default restart policy. MapleSAT solvers were set to use the
MABR restart policy [NLG+17]. To have an apple-to-apple comparison with baseline, we
used the same backend solver configuration for baseline and our solvers.

Results

Figure 5.6 shows the performance of the considered DC solvers on our hard cryptographic
benchmark. Instances with 21 rounds are easy for all solvers. 22 rounds instances are
much harder than 21 rounds instances and as can be seen, Treengeling solves very few
of these instances. Although both MaplePainless-Pairwise and Painless-Flip solve
all of these instances. The hardness ramps up very quickly at 23 rounds instances, where
Treengeling does not solve any of the instances and Painless-Flip solves 2 of them.
MaplePainless-Pairwise solves 3 instances in this subset of instances, and with 30%
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lower runtime.

5.6 Related Work

Cube-and-conquer [HKB18] solvers (such as Treengeling [Bie17]) use a look-ahead pro-
cedure to determine the best splitting variable. Look-ahead techniques check for each
variable, what will happen if that variable is picked for splitting and measure the differ-
ence between original formula and generated sub-formulas. This measure will be used as a
score for each variable to give a ranking of the candidates. Checking all of the variables can
be very expensive in large formulas, thus the solver might choose to run this procedure only
on a subset of variables. The subset is chosen according to a pre-selection heuristics. Also
use of clever data structures like tree look-ahead can speed up the process significantly.

In contrast to look-ahead techniques, some solvers look back at previous search and
formula statistics to identify the best candidate at the current splitting point. Am-
pharos [ALST16] picks the variable with the highest VSIDS activity and MapleAmpharos
[NNS+17] uses propagation-rate (average propagation over decision). In [AHJP14], the
number of times a variable’s saved phase is flipped through propagation is used as a mea-
sure of predicting how much that variable could affect other variables when set in both
splitting branches. This has been shown to be effective in divide-and-conquer settings
[LFBSK19]. We can categorize our work as a look-back heuristic as all of the features are
extracted from the previous limited runs.

Machine learning has been used to rank and pick the best variable in sequential SAT
solvers. Liang et al. use a reinforcement learning formulation to find the most rewarding
variable according to the learning-rate metric [LGPC16a]. In another work, they train a
logistic regression model that ranks variables based on the probability of causing a conflict
in the next step [LVP+17]. These models similar to the majority of variable order heuristics
follow a pointwise ranking method (i.e., learning a score for each variable and picking the
variable with highest score). However, we are employing a pairwise ranking method.

The pairwise ranking has been used in other constraint programming contexts as well.
Xu et al. used pairwise voting in the context of algorithm selection, to rank SAT solvers
based on their performance on a single formula [XHHLB12]. Khalil et al. formulated
branching in Mixed Integer Programming and used SVM rank to optimize for number of
ranking inversions [KLBS+16].
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5.7 Chapter Summary

We presented a propagation rate-based and a machine learning based splitting heuristic
for divide-and-conquer solvers. Our propagation-rate heuristic, implemented on top of
AMPHAROS, outperform all other considered divide-and-conquer and portfolio solvers
on cryptographic instances, and is competitive with top solvers on application instances.
Most of the branching/splitting heuristics in sequential and parallel SAT solvers rank the
variables based on assigning scores to each variable (pointwise ranking). We took a step
back and looked at different approaches to the ranking problem itself and studied pair-
wise ranking and ordinal ranking. In both cases, we trained binary classifiers that act as
predicates. In the pairwise ranking, the predicate is a less-than operator that can sort
the variable list according to their quality, and in the ordinal ranking, the predicate can
mark variables that their rank is higher than a threshold, and thus be used to find top k
variables. Our approximated ranking either with pairwise or ordinal ranking can identify
the actual top 10 variables (according to our model) with a high probability, although not
in the same exact order. One of the challenges in this work was the computation of features
extracted from the formula and variables. We performed a feature selection process in a
way that reduces the feature computation time without sacrificing the model’s precision.
We evaluated our implementation in Painless framework against top divide-and-conquer
parallel SAT solvers. We performed an apple-to-apple comparison with Painless-Flip,
by only replacing the splitting heuristic and keeping the rest of the modules and config-
urations the same. We were able to improve upon Painless-Flip by solving more than
10 additional instances in each of the main track benchmarks of SAT competition 2018
and SAT race 2019. The MaplePainless-Pairwise solver can solve 6 more instances
compared to Treengeling on SAT 2018 benchmark, however, Treengeling solves 5 more
instances than MaplePainless-Pairwise on SAT 2019 benchmark. Furthermore, we are
solving significantly more instances than Treengeling on cryptographic benchmark and
faster than the baseline.
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Chapter 6

Conclusion

In this thesis, we have studied SAT-based cryptanalysis of standard cryptographic hash
functions in SHA-1 and SHA-2 family. Our contributions were in lines of extend-
ing/enhancing reasoning components, search heuristics, and pre-processing, in the context
of a divide-and-conquer parallel SAT solvers with CDCL backend solvers. In this chapter,
we highlight our main results and the impact of each contribution and point out possible
future directions for this work.

6.1 Overview of Results

Briefly, the overview of our results in this dissertation are:

• Chapter 3: We developed a SAT+Crypto system which we called CDCL(Crypto),
that extends the propagation (implication) and conflict analysis (learning) compo-
nents of a CDCL SAT solver using a programmatic SAT architecture. These pro-
grammatic extensions can implement any cryptanalytic or problem constraints that
are too heavy to be encoded into CNF and are better to be queried lazily. We imple-
mented a programmatic version of MapleSAT and used it to improve algebraic fault
attacks on hardware implementations of SHA-1 and SHA-256, recovering the secret
message bits with fewer required faults compared to the state-of-the-art algebraic
and differential fault attacks on these functions. Furthermore, we used this system
to improve the state-of-the-art SAT-based collision finding of SHA-256, by one round.
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• Chapter 4: We used Bayesian moment matching formulation of the Boolean SAT
problem and turned it into a pre-processing technique with local updates to arrive at a
promising starting point for polarity and activity initial values. We also incorporated
a corrective feedback loop to update the initial point using the clause learning routine
of a CDCL SAT solver. We improved runtime of SHA-1 preimage attack instances
by 4x on average, and further demonstrated the effectiveness of this method on
application instances compared to other initialization methods in a set of leading
CDCL solvers in their respective benchmarks.

• Chapter 5: We formulated splitting heuristic of divide-and-conquer solvers as a rank-
ing problem. We presented an ad-hoc metric (propagation-rate) for pointwise rank-
ing. We then proposed a runtime-based metric for the quality of splitting variables
and presented two machine learning models for pairwise and ordinal ranking that
maps static and search features of a formula and variable within that formula to
a ranking of those variables. These models were trained offline with the target of
giving the variables with the higher splitting quality a higher rank. We improved the
baseline parallel solvers (AMPHAROS and Painless) in terms of runtime on cryp-
tographic instances and solved instances over application instances. Also beating the
state-of-the-art divide-and-conquer solver from the recent SAT competitions.

6.2 Impact and Takeaways

The main takeaway of our CDCL(Crypto) work is that the black-box use of SAT solvers
in cryptanalysis (only focusing on better CNF encodings), has an implicit cap on the
benefits that we could harness from the search capabilities of SAT solvers. The two main
lines of specializing a solver to a class of problems are tailoring heuristics and extending
reasoning components. While both are crucial in getting speedups in orders of magnitude,
we believe that the fundamental capabilities of extended reasoning are far more important.
Furthermore, the CDCL(Crypto) framework allows for implementing any cryptanalysis
technique (e.g. differential or linear cryptanalysis). Therefore we position our work as the
potential next step toward better cryptanalysis tools that are flexible and at the same time
harness the search power of SAT solvers.

The second takeaway of our work is within our parallel SAT solver, where unlike usual
heuristic designs that try to approximate the value of a variable individually, we stepped
back and looked at the ranking problem itself. This allowed us to approach the problem
differently and seek other ways of tackling the problem, which led us to employ existing
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ideas in the literature for ranking a list of candidates. Our approach tries to capture a
wide variety of applications and is not limited to cryptographic instances.

Regarding the Bayesian moment matching based heuristics, we took a fresh look at the
initialization problem in the SAT solvers that have been less explored compared to the
other components of the CDCL SAT solvers. We showed that for satisfiable instances this
initialization method can give a very promising starting point.

6.3 Limitations

In this section, we discuss some of the known limitations of our work.

6.3.1 Programmatic Extension of Reasoning Components

The programmatic callback mechanism can be seen as an abstraction-refinement process,
where the parts of input problem that are costly to encode in CNF (e.g. encoding of the
higher level logic properties), are abstracted from the CNF formula and are added back
in forms of programmatic reason clauses and programmatic conflict clauses. For the types
of problems that the solver needs to refine back most of the abstracted away formula, the
programmatic approach might not outperform encoding all of the implications in CNF
from the start (e.g. parity function).

6.3.2 Machine Learning based Splitting Heuristic

The main limitation of this work is on modeling the divide-and-conquer splitting tree. In-
deed, capturing the exact behavior of a divide-and-conquer solver, building and navigating
a splitting tree, is a very challenging task. Therefore we modeled a very simplified version
of these solvers, where the formula is split once and the two sub-formulas are solved in
parallel independently of each other. There are two challenges with this model. The first
challenge is that in practice all of the worker solvers share information with each other,
and the shared information (learned conflict clauses) affects workers’ runtime. The second
challenge is that in practice the splitting process will be performed several times and that
is how the splitting tree is created. However, to address the second challenge, we can see
the process as split once and solve the two sub-formulas using two parallel solvers instead
of sequential solvers. With the assumption that those parallel SAT solvers are at least
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as good as the sequential ones, we can see that the second challenge imposes an inherent
bound on getting to the optimal splitting (i.e. it will not necessarily find the optimal
variable).

We performed supervised learning, and the learning process was done offline on a col-
lection of existing instances. Although the accuracy of our models in our limited setting
is relatively good, they are geared more toward solving instances of similar structure and
might not be suitable for instances from different classes. Approaches like LRB [LGPC16a]
are adaptive and move with the changing state of the solver. However, the splitting prob-
lem needs a more global view rather than focusing on local sub-spaces (as in CDCL),
therefore an adaptive approach would have limited learning abilities in this setting.

6.3.3 Heuristic Initialization using Bayesian Moment Matching

The main limitation of analyzing the input SAT formula using Bayesian moment matching
for the heuristic initialization is that the BMM model assumes that the problem is sat-
isfiable. The posterior distribution might not be very fruitful for unsatisfiable instances.
Although our main focus in this dissertation is on the class of cryptographic instances that
are all satisfiable, having an initialization that works equally well on unsatisfiable instances
would be very valuable.

Another limitation of the BMM approach is the problem of scaling to very large in-
stances. Formulas with a large number of clauses, need more epochs (number of passes over
the set of clauses) to converge to a promising starting point. However, at the same time,
each epoch takes more processing time, simply because there are more clauses to process.
In a setting with a fixed CPU time budget for pre-processing, BMM might not be able to
converge to a promising starting point for instances with tens of millions of clauses. Note
that, this was not a problem in our cryptographic instances, as they are relatively small
compared to industrial instances, and we afforded to perform in the order of 100 epochs
(compared to 10 epochs on industrial instances).

6.4 Future Work

Here, we outline the following questions for future work:

• Can we use the pairwise and ordinal ranking (min-rank) in branching heuristics for
sequential solvers as well?
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Conceptually the branching heuristics also rank the variables and pick the best vari-
able according to some metric. Therefore the pairwise or min-rank type ranking can
be adapted to branching heuristics as well. The main challenge would be the over-
head of feature computation and querying the ranking models, as branching heuristics
routines are invoked much more than splitting heuristics routines during the run of
a CDCL SAT solver.

• Can CDCL(Crypto) be applied on other cryptographic primitives?
The design of CDCL(Crypto) is fairly general and the programmatic callbacks can
be used for encoding different cryptanalytic techniques. For instance, ARX based
block ciphers can be a good target as they have similar building blocks to SHA
cryptographic hash functions.

• What are other potential use cases of BMM?
Because BMM is essentially trying to maximize the number of satisfied clauses, it
can be used in MAX-SAT settings as well, and maybe in conjunction with a CDCL
solver for Partial-MAX-SAT formulas.
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