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Abstract

The paradigm of network function virtualization (NFV) with the support of software-
defined networking has emerged as a prominent approach to foster innovation in the net-
working field and reduce the complexity involved in managing modern-day conventional
networks. Before NFV | functions, which can manipulate the packet header and context of
traffic flow, used to be implemented at fixed locations in the network substrate inside pro-
prietary physical devices (called middlewares). With NFV, such functions are softwarized
and virtualized. As such, they can be deployed in commodity servers as demanded. Hence,
the provisioning of a network service becomes more agile and abstract, thereby giving rise
to the next-generation service-customized networks which have the potential to meet new
demands and use cases.

In this thesis, we focus on three complementary research problems essential to the or-
chestration and provisioning of NFV-enabled multicast network services. An NFV-enabled
multicast service connects a source with a set of destinations. It specifies a set of NFs that
should be executed at the chosen routes from the source to the destinations, with some
resources and ordering relationships that should be satisfied in wired core networks.

In Problem I, we investigate a static joint traffic routing and virtual NF placement
framework for accommodating multicast services over the network substrate. We develop
optimal formulations and efficient heuristic algorithms that jointly handle the static em-
bedding of one or multiple service requests over the network substrate with single-path and
multipath routing. In Problem II, we study the online orchestration of NF'V-enabled net-
work services. We consider both unicast and multicast NFV-enabled services with manda-
tory and best-effort NF types. Mandatory NFs are strictly necessary for the correctness of
a network service, whereas best-effort NFs are preferable yet not necessary. Correspond-
ingly, we propose a primal-dual based online approximation algorithm that allocates both
processing and transmission resources to maximize a profit function that is proportional
to the throughput. The online algorithm resembles a joint admission mechanism and an
online composition, routing, and NF placement framework. In the core network, traffic
patterns exhibit time-varying characteristics that can be cumbersome to model. There-
fore, in Problem III, we develop a dynamic provisioning approach to allocate processing
and transmission resources based on the traffic pattern of the embedded network service
using deep reinforcement learning (RL). Notably, we devise a model-assisted exploration
procedure to improve the efficiency and consistency of the deep RL algorithm.
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Chapter 1

Introduction

1.1 Next-generation Networks

Data communication networks have endured a long-lasting legacy. Nonetheless, managing
today’s communication networks has become very tedious and complex. In addition, the
demand for mobile and cellular communications is expected to grow at an unimaginable
rate due to the increasing utilization of mobile broadband services, the emergence of ubig-
uitous Internet of Things devices, new bandwidth-hungry applications such as virtual and
augmented reality, and vehicular communication technology. Consequently, the 5th Gen-
eration (5G) era is to contain new use cases (some of which are extreme), business models,
and value creation, which is set to transform the status-quo socio-economic reality.

In recent years, communication networks have been experiencing a radical and funda-
mental change in the way they are designed and managed. This shift is mainly due to
two paradigms, namely Software-defined Networking (SDN) and Network Function Vir-
tualization (NFV). SDN and NFV are considered to be crucial technical approaches for
next-generation networks, representing two driving innovation platforms in the upcoming
5G era and beyond.

In SDN, the control plane is decoupled from the data plane. The underlying data plane
elements perform tasks according to the instructions given by the control plane, which
provides the control plane with a network-wide view and total control of the network
substrate. On the other hand, NFV refers to the decoupling of functions from proprietary
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Figure 1.1: Service-oriented virtual networks [1].

physical devices to instantiate them as software-based virtual Network Functions (NFs)
on off-the-shelf commodity servers using common virtualization infrastructures. Together,
SDN and NFV provide a global view of the network substrate and a new degree of freedom
to deploy virtual NFs instances in the data plane on demand, respectively.

Via NFV and SDN, an approach for establishing service-customized networks has a
potential to greatly resolve the complexity in conventional networks and to meet new
demands and use cases [1,3-7]. A service-customized network provides traditional con-
nectivity between a set of terminals, and allows for the deployment of abstract network
applications in the data plane. An NFV-enabled network service can be represented by
a logical topology, called NF chain, which specifies a set of virtual NFs that are orches-
trated and deployed along the chosen routes from the source(s) to the destination(s), with
some properties and dependencies satisfied. That is, a network service can manipulate the
packet header and context of traffic flows, in addition to providing traditional connectivity
to a class of end users. Some examples of virtual NFs include cache, transcoder, firewall,
5G evolved packet core, wireless access network optimizer and network address translator,
which can be hosted and dynamically employed at NFV nodes. As shown in Fig. 1.1,
several virtual networks are virtually overlayed onto the physical network substrate. Here,
the NF'V orchestrator is responsible for determining the routing policy for each network
service, and the placement and instantiation of the NFs on the NFV nodes. In contrast,



the SDN controller realizes the vision of the NFV orchestrator by populating the routing
tables on the forwarding elements of the network substrate.

In this approach, the service provider requests a network service to satisfy certain
expected demands and requirements as per the service level agreement. In turn, the re-
sponsibility of the service orchestrator or the network operator is to efficiently design such
a virtual network, and place it on the physical network substrate. The network operator
aims at reducing the provisioning cost, and maximizing the utilization of its network, while
simultaneously meeting the binding service level agreement.

To further improve resource utilization, service providers are increasingly demanding
service requests with multicast traffic to provide efficiency through the use of packet repli-
cation at network edges [8]. For the case that multiple destination nodes in the core
network require the same information content, the source node transmits each packet only
one time, and then packet replication occurs at edges close to the destinations. It has been
shown that the multicast mode of communication can reduce the bandwidth consumption
in the backbone network by over 50% in contrast to unicast mode [9].

The primary motivation of this thesis is to devise an orchestration and provisioning
framework with three complementary components pertaining to the orchestration, the
admission mechanism, and the dynamic provisioning of NFV-enabled multicast services.

1.2 Research Objectives

Fig. 1.2 illustrates an example of a multicast NF chain for a typical video streaming
service that distributes content to several destinations. Note that a multicast replication
point occurs before the Cache instances. Semantically, multicast replication points are not
restricted and can occur anywhere in the NF chain. Therefore, a network service can have
multiple NF chain topologies that are semantically equivalent. Thus, the orchestrator can
deploy multiple NF instances in the data plane, whereas a routing policy forwards the
traffic from the source to each destination while traversing the NF instances as per the
network service. Here, an NF chain has both transmission and processing resources that
need to be considered. Therefore, one research problem is to investigate the joint routing
and NF placement of flexible multicast service. That is, we investigate how many NF
instances should be placed, where to place the NF instances, and how to route the traffic



Cache |—>| NAT |—> Destination

Video source —>| Transcoder |—)| WAN optimizer

Cache |—>| NAT |—> Destination

Figure 1.2: Ilustraion of a multicast NF chain for a basic video streaming service.

from the source to destinations while traversing the NF instances. Considering the NF
placement process along with traffic routing entails a new fundamental challenge, whereby
a non-trivial tradeoff between the processing and transmission resources interplay. Such a
tradeoff becomes more conspicuous when considering a flexible multicast service in which
traffic is routed to more than one destination while not restricting the location of the
multicast replication points.

Multiple network services can cohabit the network substrate which has limited pro-
cessing and transmission resources. Therefore, the embedding of multiple service requests
needs to be jointly considered. The order and method by which one service request is
embedded onto the network substrate can affect the overall utilization of the network sub-
strate and the efficiency of embedding future service requests. Therefore, a second research
problem is how to treat multiple service requests both in batches and (more importantly)
in an online setup.

The scale of demands in core networks is large relative to the routing granularity.
Moreover, NFV-enabled services can exhibit time-varying traffic demand which need not
be periodic nor tractable. Therefore, the third research problem is on the provisioning of
a network service while considering the dynamics of the network service.

Next-generation networks are endowed with enhanced capabilities, thanks to SDN and
NFV, albeit with new challenges. In this thesis, a general theme is to strive for flexible,
versatile, and modular orchestration and provisioning methods to cater to the new era of
next-generation networks. In the following, we identify three research questions related to
aspects of the orchestration, admission, and dynamic provisioning of NFV-enabled services
to present the respective research objectives.



1.2.1 Joint Routing and NF Placement for Multicast Services

If a multicast service requires connecting some terminal nodes without intermediate NFs,
the optimal routing that reduces the link provisioning cost can be found by constructing
a Steiner tree or one of its variants. A Steiner tree is a generalization of the Minimum
Spanning Tree (MST) which finds the subset of weighted edges (and nodes) that connect
all vertices in a graph with the minimum possible link provisioning cost. Constructing
a Steiner tree is an NP-hard problem [10,11]. However, polynomial time approximation
algorithms exist to build a Steiner tree. With the emergence of SDN providing a global
view of the physical network topology and network states, Steiner tree-based routing ap-
proaches become feasible [12-14]. However, such methods do not incorporate NFs in their
formulation, and cannot be extended directly to the joint multicast routing and NF place-
ment problem. Practically, there exist a massive number of NF placement configurations,
each of which requires a multicast routing topology construction (e.g., one instance of such
configurations is shown in Fig. 1.2).

The NF placement and multicast routing are correlated, which leads to technical chal-
lenges for orchestrating a single NFV-enabled multicast service. Selecting just enough
NFV nodes for NF placement inevitably increases the link provisioning cost for building
an appropriate multicast routing topology; Conversely, instantiating NF instances on more
NFV nodes may yield a decreased link provisioning cost with traffic load balancing at the
expense of an increased function provisioning cost. Therefore, how to balance the tradeoff
between link and function provisioning costs is a challenging issue.

Another major challenge stems from the fact that multiple network services share the
network substrate. As the network substrate has limited transmission and processing re-
sources, the efficiencies of embedding multiple service requests interplay. Prioritizing a
low-rate network service for embedding can fragment the network resources, thereby hin-
dering other high-rate network services from being successfully (or efficiently) embedded.

Some recent studies address the orchestration of NFV-enabled multicast service to
minimize the function and link provisioning costs [2,15-19]. However, most existing works
assume a design scenario where all NFs are hosted in one NFV node for each network
service and multicast replication points can occur only after the deployment of NFs. More
realistic and flexible design (e.g., one NFV node is only capable of hosting specific types
of NFs, multipath routing is enabled between NFs) can make the existing solutions not



feasible or not optimized. More details of relevant literature are discussed in Subsection
2.3.1.

In Problem I, the objective is to develop an optimization framework for the orchestration
of multiple multicast service requests over the network substrate. We consider flexible
multicast service requests, whereby multicast replication points need not be restricted in
the NF chain. First, we study a joint multicast traffic routing and NF placement problem
for a single service request to minimize the function and link provisioning costs, under the
physical network resource constraints, flow conservation constraints, and NF placement
rules. Second, we investigate the static embedding of multiple service requests over the
physical network substrate, i.e., how to determine the optimal combination of multiple
services for embedding and their joint routing and placement configurations, such that the
aggregate throughput of the network substrate is maximized and the function and link
provisioning costs are minimized.

1.2.2 Online Joint Routing and NF Placement for Unicast and
Multicast Services

In the literature, including the research outcomes from Problem I, a considerable number of
works are carried out for the static orchestration of NFV-enabled service requests [20-29].
Earlier research considers the orchestration of a single service request, where the focus
is on minimizing the provisioning cost of a single service without taking other services
into consideration [19,26,30,31]. However, as mentioned in Section 1.2.1, the admission
and embedding of one service request affects the service provisioning of other requests.
In Problem I, we consider a static scenario where all service requests are known a priori,
i.e., all service requests are assumed to arrive in one batch. In practice however, network
services arrive in an online manner without knowledge of future requests [32,33].

Due to the increased flexibility and agility brought-forth by NFV, future (over-the-top)
service requests are envisaged to be hardly predictable [34]. Future service quality and
data traffic patterns for new use cases are arguably not well understood, and advanced
knowledge of future patterns can be difficult to obtain or predict. Moreover, such traffic
patterns can vary dramatically over short periods due to the inherent agility of NF'V-based
networks.



Some relevant studies deal with the online handling of service requests without statisti-
cal assumptions [17,32,33,35-37]. The NFV-enabled frameworks are based on the seminal
work by Awerbuch et al. [38], where some new aspects are due to the inclusion of NF
instances and the need for an admission mechanism for service requests with multiple re-
source types. To our knowledge, in the existing NFV-enabled works, service requests have
either one resource type or one NF instance. Also, online (routing and NF placement) al-
gorithms can be classified as either all-or-nothing or all-or-something. In the all-or-nothing
scenario, service requests need to be fully served in the network substrate. In the all-or-
something scenario, services can be partially (fractionally) served, e.g., admitting a service
request while reducing the required data rate [34,39]. Current works in the relevant NFV
literature can be considered as all-or-nothing schemes. More details of relevant literature
are discussed in Subsections 2.3.2 and 2.3.3.

Problem II deals with two resource types simultaneously, namely the processing and
transmission resources. The two resource types are often conflicting in their utilization.
Therefore, there is a need to design a generalized admission mechanism and an online
joint composition, routing, and NF placement algorithm that takes the multiple resource
types into account. We consider unicast and multicast service requests that can have
multiple NF instances. Furthermore, we consider two NF types, namely best-effort and
mandatory. Successful placement of a network service is contingent only on successfully
placing the set of mandatory NFs. The functionality of a best-effort NF' is not necessary
for the correctness of a network service [40]. Therefore, the set of best-effort NFs can be
removed from a service request when it is deemed “too prohibitive”. In practice, best-effort
NFs can improve either the performance, the quality of service, or the security of a network
service, such as in the case of compression and intrusion detection. Consider for instance
a video/image compression NF type for a voice over IP network service. Such an NF type
enhances the quality of service by compressing the incoming data flow. However, when
the available processing resources (or the available subscription) for the NF type in the
network substrate are scarce, a network service can take a rather unnecessarily long (i.e.,
expensive) route, which would be too costly and can conversely degrade the overall quality
of service. Therefore, such NF type can be declared as best-effort, whereby including it
should be contingent on whether a certain profit is achieved.

In Problem II, the objective is to develop a robust admission mechanism and an on-
line joint composition, routing, and NF placement framework (online algorithm, in short)
that aims to maximize a profit function, which is proportional to the so-called amortized
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throughput, while considering unicast and multicast NF'V-enabled services with best-effort
and mandatory NF instances, subject to resource constraints on physical links and NFV
nodes. The amortized throughput is defined as the weighted total transmission and pro-
cessing resources reserved for all the accepted service requests.

1.2.3 Model-free Dynamic Provisioning of NFV-enabled Services

In both Problems I and II, we consider service requests with a fixed data rate requirement.
However, in the core network, traffic patterns can exhibit time-varying patterns. Inspired
by the service composition (or topology design) literature [30,41,42], first we recognize that
in many network scenarios, semantically several NF instances can be deployed in parallel
or a sequential manner. Considerl, for instance, a firewall-protected Cache dissemination
service, where a source sends a signal to instruct the cache to disseminate some information
to a destination (as shown in Fig. 1.3-(a)). The illustrated network service is comprised of
a Firewall and a Cache. Here, Fig. 1.3-(b) is another valid NF chain topology in which the
firewall is implemented in a distributive manner and the cache is parallelized. Deploying
the firewall in a distributed manner can be needed when the resources for such an NF
type are low on each NFV node. Moreover, splitting the cache can be more processing-
efficient when the traffic demand increases or when the processing resources are particularly
scarce close to destination 1. Therefore, in a time-varying environment, the topology of
the network service can alter between different topologies depending on the dynamics of
the traffic demand and the network substrate. For instance, the topology of the network
service in Fig. 1.3 can alternate between Fig. 1.3-(a), Fig. 1.3-(b).

Here the problem can be regarded as a dynamic joint composition, routing, and NF
placement with time-varying traffic demand. Deciding a logical NF chain can be inef-
fective if not considered jointly with the traffic routing and NF placement. The three
aforementioned problems, namely the service composition, traffic routing, and NF place-
ment, are joint problems with correlated and conflicting effects. Communication networks
are becoming increasingly time-varying, dynamic, and more challenging to model. In prac-
tice, optimization-based methods produce rigid solutions with arguably small degrees of
freedom. And, a deviation from an assumed model can lead to a significant degradation
in the performance of the underlying solution (such as in the probabilistic routing liter-
ature [43]). To this end, the research community is collectively in the nascent stage of
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Figure 1.3: Two NF chain topologies that realize the same network service request. The
network service is firewall-protected and disseminates traffic to several destinations from a
web-based cache which can be replicated.

exploring model-free data-driven provisioning methods that are powered by contemporary
machine learning [44-46].

From a design perspective, the majority of the works focus on NF (and link) migration
to deal with the time-varying traffic patterns and to alleviate network bottlenecks. Instead
of considering complete NF instance and link migrations, we aim to enforce the dynamic
scaling of the network service by initializing (and tearing down) new NF instances along
with already placed NF instances, which is desired for time-varying traffic characteristics.
For instance, the topology of network service in Fig. 1.3 can alternate between Fig. 1.3-(a),
Fig. 1.3-(b) and other topologies based on the characteristics of the network substrate and
the time-varying traffic demand.

While some network service topologies can ameliorate the efficiency for some types
of resources (e.g., function and link provisioning costs), it can exacerbate other types of
resources (e.g., the routing and signaling overhead). Therefore, in addition to the trans-
mission and processing resources, the routing overhead should be taken into consideration.
Moreover, it is crucial to consider the NF setup which incurs a one-time cost. Due to
the routing overhead and the cost of setting up a new NF instance, a myopic alteration
of the routing and NF placement topology should be discouraged. Therefore, there is a



need to learn from the traffic pattern of the service request to minimize the NF setup cost
in the long run. The traffic pattern of a network service change in real-time; therefore,
we assume a proactive framework that adjusts the topology and embedding solution by
relying on the upcoming data rate, which can be predicted to a great accuracy by some
recent works [47,48], thanks to the recent advents in deep learning and deep Reinforcement
Learning (RL). Here, without focusing on traffic prediction, we assume that the upcoming
data rate is given.

In Problem III, the objective is to develop an efficient RL-based dynamic provisioning
approach to allocate processing and transmission resources based on the traffic dynamics
of the network service and the network substrate while taking into account the routing
overhead and the NF setup cost. The intuition is to design a dynamic provisioning solution
that can change based on experiences learned from the traffic patterns. We consider that
multipath splitting and NF splitting can be invoked due to the variations in the traffic
pattern in the network service; this is in contrast to invoking NF and link migrations
which can be ineffective in a large-scale time-varying environment.

1.3 Research Contributions

In this section, we present the research contributions for each research problem.

1.3.1 Joint Routing and NF Placement for Multicast Services

In Chapter 3, we first develop a joint multicast traffic routing and NF placement framework
for a single service request to minimize the function and link provisioning costs, under
physical processing and transmission resource constraints, flow conservation constraints,
and NF placement rules [19]. For practical applications, our formulated problem focuses
on flexible multicast routing and NF placement, where we allow one-to-many and many-
to-one NF mappings. That is, several NF instances can be hosted at one NFV node if
permissible, and one type of NF can be replicated and deployed on different NFV nodes
as NF instances to serve different sets of destinations. In doing so, we do not impose
any constraints on the locations of the multicast replication points, i.e., the deployment
of NF instances can occur both before and after the replication points in the multicast
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topology, thereby providing considerable flexibility in the deployment of network services.
Furthermore, our formulated problem incorporates both single path and multipath traffic
routing between the embedded NF instances. Since the formulated problem is NP-hard,
we devise a low-complexity heuristic algorithm to obtain an efficient and flexible solution,
based on a key-node preferred MST approach.

Second, we consider a general scenario of placing multiple service requests over the
physical network [20]. Since multiple services compete with each other to be hosted on
a substrate network with limited resources, we accept the services which maximize the
aggregate throughput with the least provisioning cost. We formulate an Mixed Integer
Linear Program (MILP) that jointly determines multicast topologies for multiple service
requests, where we find the combination of network services that maximize the aggregate
network throughput while minimizing the overall function and link provisioning costs.
Moreover, we develop a simple heuristic algorithm that prioritizes the service requests,
aiming at maximizing the aggregate throughput with the minimum overall provisioning
cost.

1.3.2 Online Joint Routing and NF Placement for Unicast and
Multicast Services

In Chapter 3, we develop an online algorithm that consists of two main components, namely
(i) an admission mechanism that rejects or accepts a service request based on a profit func-
tion while taking best-effort NFs into consideration, and (ii) an online joint composition,
routing, and NF placement algorithm that provides unicast-enabled and multicast-enabled
routing and NF placement configurations for the admitted service requests [49]. The online
algorithm is developed through a primal-dual analysis, which provides an approximately
optimal result with provable competitive performance. A formal definition of the com-
petitive ratio (performance) is stated as follows. For a profit-maximization problem, let
Aopr (o) be the profit of the (optimal) offline solution for a sequence of requests (o). An
online algorithm is c-competitive if the produced solution is feasible and its profit is at least
Aopr(9)/c — e, where e is an additive term that is independent of the service requests [39].
The primal-dual approach exists for solving offline optimization problems. Buchbinder and
Naor extended the framework for the treatment of online algorithms [39]. Problem II offers
the following new contributions:
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o We propose a primal-dual based online algorithm to allocate both processing and
transmission resources for network services with multiple NF instances. In addition,
we consider heterogeneous NFV-enabled services with mandatory and best-effort NFs.
We provide a natural generalization to relevant works that focus on the provisioning
of services without a processing requirement or with only one NF instance. The
online algorithm can be regarded as an all-or-nothing/all-or-something algorithm in
the sense that the requested data rate and the required processing resource for each
NF instance should be fully satisfied, yet best-effort NF instances need not necessar-
ily be included in the accepted service request, thereby providing the flexibility to
recompose the logical topology of a service request before admission;

e The primal-dual analysis offers an alternative analysis and generalized treatment to
approaches adopted in recent relevant works [17,32, 33,36, 37]. For instance, the
competitive performance in the aforementioned works is shown to associate not only
with an optimal integer solution but also with an optimal fractional solution;

o We propose a “one-step” algorithm for the routing and NF placement of unicast and
multicast services for an unconstrained scenario. The algorithm relies mainly on the
construction of an auxiliary network transformation that has a one-to-one mapping
from the NF placement and routing problem to an equivalent routing problem.

1.3.3 Model-free Dynamic Provisioning of NFV-enabled Services

In Chapter 5, we develop an end-to-end deep RL-based provisioning mechanism to dynam-
ically allocate network resources based on the traffic pattern of the network service and
the network substrate. First, we propose a pre-processing method that provides several
end-to-end routing and NF placement configurations. Different combinations of such con-
figurations provide several embedded network service topologies. Second, we offer a deep
RL algorithm that mainly relies on an actor-critic architecture with a DDPG learning
algorithm. Due to considering multiple resource types with strongly adverse effects, and
since some events in the state space are sparse, the use of the vanilla DDPG algorithm is
observed to be inefficient. It does not always yield the desired behavior. Therefore, we
propose a model-assisted exploration procedure that utilizes experiences learned from a
perturbed optimal step-wise solution.
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1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents a background and
literature survey. First, in Section 2.1, we provide a brief overview on SDN, NFV and the
history that preceded it. Second, in Section 2.3, we provide an overview of related works
for the three investigated research problems. Next, Chapters 3, 4, and 5 presents Problems
I, 11, and III, respectively.

In Chapter 3, Section 3.1 presents the system model under consideration for Problem
I, which includes the representation of the network substrate, NFs, and multicast service
requests. Section 3.2 addresses the joint NF placement and routing problems for multicast
services with multipath routing for both single-service and multi-service cases. Section 3.3
presents MILP formulations for a single-service multipath scenario, and a generalized multi-
service multi-path scenario, respectively. Section 3.4 proposes simple modular heuristic
algorithms to address the complexity of the resultant MILP formulations. Simulation
results are presented in Section 3.5.
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In Chapter 4, Section 4.1 describes the system model under consideration for Problem
II. Section 4.2 presents the problem description. Section 4.3 presents the problem formu-
lation, which includes the design of a profit function, and the primal-dual based problem
formulation for the offline routing and NF placement framework. In Section 4.4, we develop
the primal-dual based admission mechanism, followed by an analysis of the competitive per-
formance of the proposed admission mechanism. Section 4.5 presents the routing and NF
placement algorithm for the proposed admission mechanism. Finally, Section 4.6 presents
some discussions on the proposed framework, followed by simulation results, to investigate
and corroborate the competitive performance of the proposed work.

In Chapter 5, Section 5.1 presents the system model under consideration for Problem
ITI. Section 5.2 presents the problem statement and formulation. Section 5.3 presents the
deep RL framework for the proposed problem, which includes the pre-processing stage and
the model-assisted deep RL algorithm. In Section 5.4, we conduct numerical performance

evaluation of the proposed deep RL scheme. Finally, concluding remarks are drawn in
Chapter 6.
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Chapter 2

Background and Literature Survey

In this chapter, we first provide a brief introduction to SDN and NFV. Then, we present
a more involved literature survey on the research works relevant to the research questions
investigated in this thesis.

2.1 Introduction to SDN and NFV

2.1.1 History Predating SDN and NFV

During the 1980s, with the rapid growth of networking, researchers stumbled upon numer-
ous challenges and problems such as the difficulty of introducing new technologies and ser-
vices, and that the separate protocol layers performed redundant operations which resulted
in inadvertently poor performance. As a result, networking researchers turned an eye into
a so-called clean-slate paradigm [50], which was catalyzed by the active networking initia-
tive from the 1990s [51]. Active networking adopted a notion of providing network services
via a programming interface. Here a programming interface would facilitate the construc-
tion of custom functionalities that is applied to a subset of packets passing through the
node [52]. Active networking adopted two programming models, namely the capsule model
and the programmable switch model. The former, which was more prevalent, envisioned
that packets would carry both information and instructions (procedures) that specifies its
handling, and the programmable switch would have to carry over the execution. The latter
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approach focused on the proposal of programmable switches. The programmable switches
would perform custom functions that depend on some packet header information. Active
networking is very similar to SDN in the sense that it is the first to propose clean-slate
programmable networking. Nonetheless, it is worth mentioning that active networking
focused on providing programmability in the data plane rather than the control plane.
Although active networking was relatively involved in the research community, yet the
implementation phase did not see the light mainly because of performance and security
concerns [53].

With the inevitable increasing complexity of the Internet in the early 2000s, researchers
and service providers started looking for more reliable traffic engineering methods that
would deliver more services with more excellent reliability and performance. In 2003-2004,
the Internet Engineering Task Force proposed the ForCES protocol [54]. The ForCES
architecture defined an interface control channel to control various forwarding elements,
such as forwarding, shaping, and classification. However, the ForCES architecture was
not widely adopted. Another common approach was the routing control protocol (RCP)
in 2005 [55]. Unlike active networking and the ForCES architecture, the RCP was easily
deployable. Yet, it was limited to some routing protocols, and its versatility concerning
the number of applications that can be supported is limited.

Since the beginning of the 2000s, researchers started advocating the notion of cen-
tralized and separate control and management plane. One of the influential works is the
clean-slate four-dimensional architecture proposed in [56]. Here the authors suggested a
refactoring of the network architecture into four planes, namely to decision, dissemina-
tion, discovery, and data. Many works and implementations followed the concepts that
were articulated by the aforementioned four-dimensional architecture, e.g., Ethane [57],
OpenFlow [58], and NOX network operating system [59].

2.1.2 Network (Function) Virtualization

Network virtualization allows diverse network topologies to cohabit on a shared physical
network substrate. In terms of sharing the network substrate, various technologies closely
relate to network virtualization, albeit with smaller capacities as compared to today’s
notion of network virtualization. Examples include virtual local area networking, virtual
private networking, overlay networks, and active networking.
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Recently NFV became one of the important key cornerstones towards the realization of
next-generation networks. In October 2012, several operators composed a white paper [60]
on the NFV initiative. The purpose of the first white paper was to introduce and promote
the concept of NFV and illustrate its benefits and challenges. As mentioned, NF'V refers
to the decoupling of NFs from the proprietary physical devices and allowing them to run
on commodity servers on-demand by exploiting existing virtualization technologies. In
NFV, proprietary NFs are decomposed into virtual NFs. Several virtual NFs comprises a
network service that can be virtually overlayed onto the physical network substrate. In the
literature, NF chains are also called ‘service chains,” and ‘NF forwarding graphs.

The NFV-enabled architecture reduces the capital and operational expenditures and
power consumption by reducing the cost of equipment and relying on NFV nodes, allowing
for a multi-version and multi-tenancy environment in which different applications and users
can share a single platform, and scaling network services as demanded. In terms of service
provisioning, NFV introduces the following new features, such as decoupling software from
hardware, flexible network deployment, and dynamic scaling through instantiable NFs.
Moreover, NFV adds new value creation and use cases by reducing the the barrier for
the introduction of network services (especially for short-lived ones) and allowing for a
continuous network adjustment and improvement.

2.2 Software Defined Networking

SDN is an architecture that decouples the control plane from the data plane. In doing so,
the intelligence and control mechanism is centralized, where the control plane would have
the upper hand on how to handle and manage traffic. The underlying data plane elements,
such as routers, forward traffic according to the decisions and methodology instructed by
the control plane. This approach allows the data plane to be abstracted for applications
and network services, whereas the control plane would become completely programmable.

SDN can enable rapid innovation. Control mechanisms can be developed and changed
without the need to change the hardware, thereby enabling separable and parallel innova-
tion on both the data and control planes. Moreover, it allows a network-wide view from
the perspective of the controller, which allows for better performance and development.
Therefore, it introduces more flexibility concerning new services and applications.
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The term SDN was first coined in 2009 by Kate Greene in [61]. He referred to this term
to describe the OpenFlow platform [58]. Briefly, the OpenFlow platform is an applica-
tion programming interface that facilitates for the control plane to exercise direct control
over the data plane elements by installing OpenFlow tables, which includes a set of fine-
grained or coarse-grained instructions. The concept of SDN has had inarguably outgrew
the OpenFlow platform since then.

2.3 Literature Survey

The era of 5G and beyond is set to target new diverse services and business models beyond
what is achievable by the current technology [62-64]. The main 5G service types are en-
hanced mobile broadband, ultra machine-type communication, and massive machine-type
communication. The first type spans several human-centric use cases, which are charac-
terized by low to high throughput requirements (e.g., virtual reality gaming) and dense
deployment in some concentrated areas. The second and third types are machine-centric,
where the former type contains use cases of stringent quality of service requirements, and
the third type is characterized by a vast number of connected devices with a rather more
relaxed End-to-End (E2E) delay requirement. Moreover, we are experiencing increasing
demands for services of multicast nature such as video streaming, multi-player augmented
reality games, and file distribution. There is a consensus that the ubiquitous service types
in 5G and beyond cannot be realized by a one-size-fits-all architecture. A pluralistic service-
customized (e.g., NFV-enabled) network architecture can be better equipped to enable the
next-generation of networks.

In what follows, we discuss some literature works pertinent to the three research prob-
lems in this thesis.

2.3.1 Routing and Placement of NFV-enabled Multicast Services

SDN provides a global network view and centralized control over the substrate network
topology with the associated network states. Some existing works focus on constructing
efficient centralized routing topologies for multicast services without NFs [12—14,65], which
mainly rely on constructing a Steiner tree (or one of its variants) to reduce the transmission
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resource consumption, network state consumption, E2E delay, or to improve the reliability.
For instance, Zhao et al. propose an SDN-based video conferencing solution by constructing
a minimum-delay Steiner tree with iterative enhancements [12]. To deal with the increased
network state consumption due to multicasting, a Steiner tree that jointly minimizes the
number of links and branch nodes (with network states) is established, assuming unicasting
across links with no branches [65]. The state-of-the-art SDN-enabled multicast routing
approaches cannot be adopted or modified directly to incorporate the NF placement.

The virtual NF placement and traffic routing problem has been extensively studied
for the unicast service case [1,26,28,31,66-70]. In its most basic form, the orchestration
of an NFV-enabled service poses two correlated and conflicting subproblems, i.e., how
to place (or select) the NF instances, and how to route the traffic to traverse the NF
instances. Placing a minimal feasible number of NF instances can lead to a large link
provisioning cost; conversely, deploying more NF instances can reduce the link provisioning
cost at the expense of an increased function provisioning cost. This tradeoff becomes more
conspicuous when considering a multicast service in which traffic is routed to more than
one destination. For the multicast service case, a simple approach is to apply the unicast-
based NF placement and routing approaches to each source-destination pair independently,
which leads to a waste of network resources with a large service provisioning cost.

There are relatively few works in the joint multicast routing and NF placement for
multicast services [2, 15-19], where one needs to jointly build a multicast topology and
place the NFs. Zhang et al. consider the joint routing and placement for NFV-enabled
multicast requests, under the assumption that all NFs should be served by only one NFV
node [15], which is extended for a multiple NFV node case under the assumption of an
uncapacitated substrate network [2]. Tt is assumed that multicast replication points occur
only after deployment of NFs in the constructed multicast topology, which reduces the
degree of flexibility of the orchestration framework. Zeng et al. jointly consider placement,
multicast routing, and spectrum assignment for a fibre optical network, where the objective
is to minimize the function, link, and frequency spectrum provisioning costs [16]. The
heuristic solution clusters each group of destinations that share one specific NF. Then, the
solution is divided into two steps to allocate the NF in an NFV node for each cluster, and
to find the MST that spans the source, the allocated NF, and the destinations. Similarly,
it is assumed that, for each multicast service, the traffic flowing to each destination is
processed by one NF.
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Xu et al. consider that multiple NF'V nodes can host all types of NFs [17]. For each
source-destination pair, the multicast stream needs to pass through only one NFV node
where all NFs are placed before arriving at each destination. Since the destinations are
distributed in a large area, the algorithm allows activating multiple NFV nodes, where each
NFV node is responsible for a subset of destinations. However, there is a possibility that
some NFV nodes can only host specific types of NFs due to hardware-based or subscription-
based restrictions [16,67]. A recent work tackles the so-called service forest problem for
the traffic routing and NF placement of multiple service requests [18]. For a generalized
scenario where each source-destination pair requires multiple service requests, the last NF
is placed on the physical substrate first, which divides the multicast topology into two
parts. The first part is from the source to the last NF, while the second part from the
last NF to all destinations. The first part is solved by the so-called k-stroll algorithm.
In the second part, a minimum Steiner tree approximation connects the last NF to all
destinations. It is assumed that multicast replication points at the topology always occur
after the last NF, and an exhaustive search finds the best place to host the last NF among
all candidate NFV nodes.

To address some research gaps, we aim at developing a flexible multicast routing and NF
placement framework for both single-service and multi-service scenarios. We consider that
multicast replication points can occur before and after the deployment of NF instances,
thereby providing flexibility for topology customization, which is particularly crucial for
geographically distributed NF chains (such as in NFV-enabled core networks). In addition,
we incorporate multipath routing between the embedded NFs to improve the utilization of
the network substrate’s resources.

2.3.2 Competitive Online Routing (Predating NFV)

Prior to enabling NFV, in traditional circuit switching, call requests (respectively, service
requests) resembled a routing request from the source to the destinations with a data
rate requirement that need to be routed in a capacitated network substrate [38]. With the
emergence of NFV. service requests subsumed call requests with the additional requirement
that virtual NFs need to be instantiated on NFV nodes along the route.

Related works can be classified according to the parameter that measures the perfor-
mance of the intended design, typically the throughput or the congestion. In throughput-
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maximization frameworks, we measure the transmission resources of all admitted service
requests. In congestion-minimization, we measure the maximum link congestion, i.e., the
maximum ratio of the allocated transmission resources on a link to its total transmission ca-
pacity. This work can be considered as a generalized case of the throughput-maximization
framework.

In 1993, Aspnes et al. developed a competitive strategy for congestion-minimization
that achieves a competitive ratio of O(logn) for service requests of infinite holding time,
where n is the total number of nodes in the substrate network [71]. Assuming service
requests have finite holding time (which is revealed only upon the arrival for each service
request), the authors extended their result to achieve an O(log nT’) competitive ratio, where
T is the maximum holding time of all service requests. For the throughput-maximization
model, Awerbuch et al. achieved a competitive ratio of O(logn) [38].

2.3.3 Competitive Online Routing and NF Placement

One main challenge in devising a competitive online routing and NF placement algorithm
is pertaining to the inclusion of processing resources along with transmission resources. To
this end, Lukovszki et al. consider that all unicast service requests contain the same set of
requested NFs and identical transmission rates, where service requests vary with regard to
the source and destination [33]. They propose an O(log K')-competitive admission mech-
anism, where K is the number of NFs of a service request. Interestingly, the competitive
ratio is logarithmic with the number of NFs, which is small in practice. In [36,72], the
authors consider both unicast and multicast requests without NFs, where routing a request
utilizes transmission resources from the physical links and routing rules from the forward-
ing table of the traversed switches. Notably, the achieved competitive ratio can be shown
to be O(max{log2L,log2E}), where L and E are the maximum number of physical links
and switches for a service request, respectively. The competitive ratio for the two resources
is balanced since L = F — 1.

Xu et al. consider a multicast request with one NF, and develop an O(log L)-competitive
algorithm [17]. Ma et al. consider the dynamic admission of delay-aware requests for ser-
vices in a distributed cloud with the objective of maximizing a designed profit function [32].
They first provide a heuristic algorithm for the delay-aware scenario, followed by an online
algorithm with an O(log L)-competitive ratio for the special case where the end-to-end
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delay is negligible.

In Chapter 4, we propose a primal-dual based online algorithm that accommodates both
unicast and multicast service requests with multiple NF instances that can be deployed at
different NFV nodes. We consider heterogeneous services with best-effort and mandatory
NFs. In doing so, we propose an all-or-nothing/all-or-something admission mechanism that
re-composes the logical topology of the service request before admitting it (depending on
whether or not best-effort NF instances can be included). Moreover, based on a primal-
dual framework, we offer a new alternative, generalized description, and analysis to the
aforementioned NFV-enabled literature.

2.3.4 Routing and NF Placement with Service Composition

Although several NF chain topologies express the same network policy semantically, the
embedding process for each logical topology can yield different provisioning costs and
long-run characteristics in a non-trivial manner. In Problem III, we aim to leverage ser-
vice composition (with the routing and NF placement) to alter the NF chain topology
per the time-varying traffic demands. Generally, there are two approaches for the joint
composition, NF placement, and traffic routing. The first approach is to decouple the ser-
vice composition (or topology design) from the NF placement and routing process [41,66].
However, such an approach can be far from the globally optimal solution.

Mehraghdam et al. propose a language model that formalizes an NFV-enabled mul-
ticast service [66]. Such a language model is general as it allows for service composition.
However, the addressed topological design aspect reduces to re-ordering the NFs from low-
est to highest traffic inflation factors to minimize the required data rate of the NF' chain.
Mehraghdam et al. extend their work to account for the service composition, where a
heuristic approach yields an extensive Pareto set of the possible combinations of different
services for different optimization objectives [41].

Another approach is to design a heuristic algorithm such as a breadth-first search,
where some composition operator is included to minimize the function and link provision-
ing costs [30,42]. More specifically, Ye et al. jointly consider the topology design and
embedding, where they formulate an integer linear program and develop a heuristic al-
gorithm under the assumption that NFs in a service chain can be combined [30]. The
heuristic algorithm resembles an iterative two-step search, which iteratively combines two
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NFs, and then performs embedding onto the physical substrate. The algorithm eventually
selects an NF' chain topology that minimizes the placement and routing cost. Beck and
Botero present a coordinated breadth-first algorithm that minimizes the function and link
provisioning costs, where the algorithm attempts to find a path from the source to the
destination while being able to replicate NFs if needed [42]. Li et al. develop a two-stage
heuristic for the composition and embedding, where the location and functionality of the
substrate nodes are taken into consideration [73].

More recently, Coa et al. consider a genetic framework that designs an overall NF
forwarding graph for multiple traffic flows to minimize the function and link provisioning
costs and improve the acceptance ratio of services [74]. Jalalitabar et al. design a heuris-
tic algorithm for the NF placement and routing that takes the dependence relationship
between the NFs into account [75]. The works above present model- and optimization-
based frameworks in which long-run provisioning costs can be challenging to incorporate.
Moreover, they consider a fixed data rate for a service request.

2.3.5 Deep Reinforcement Learning based Dynamic Provisioning

Due to the recent advances in deep learning and deep RL, the literature is enjoying a
renewed interest in the application of (deep) RL on networking problems. More specifically,
very recent works have been proposed for various traffic engineering problems that span
routing, load balancing, NF placement/migration, NF scheduling, and Caching [76-81].

One of the early works aims to maximize a network utility for a general communication
network with K end-to-end communication sessions [76], in which a traffic engineering-
aware exploration while utilizing the DDPG algorithm with a prioritized experience replay
technique is proposed. Pei et al. study the NF placement (or NF migration) problem
in an NFV-enabled network under a time-varying traffic pattern [82]. Due to the large
solution space, the authors divide the network substrate into smaller regions and use a
double deep Q-network algorithm to select a small number of potential NF'V nodes. Troia
et al. consider an NFV-enabled metro-core optical network represented as a multi-layer
network to maximize the number of successfully routed NF chains, while minimizing the
reconfiguration penalty, blocking probability and power consumption. Gu et al. consider
the VNF orchestration and flow scheduling for NFV-enabled network services [77], whereby
a model-assisted DDPG is used to aid in the convergence speed.

23



In Chapter 5, we consider the joint dynamic composition, traffic routing, and NF
placement for unicast network services under time-varying traffic patterns. To do so, we
incorporate multipath splitting and consider that NFs can be embedded sequentially and
in parallel to provide a malleable network service topology.
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Chapter 3

Joint Routing and NF Placement for
Multicast Services

3.1 System Model

3.1.1 Network Functions and Multicast NF Chains

With NFV, traditional applications and functionalities (which used to be implemented in
the control plane or at the end-users) are now deployable in the data plane in NFV nodes.

Let the set of all multicast service requests be denoted by R. A multicast service,

S" € R, is described by a multicast NF chain, represented by a weighted acyclic directed
graph,

ST=(s", D", V",d"), STeER (3.1)

where s” and D" represent the source node and the set of destinations, V" = {f{, fa, ... fﬁ,l}
represents the set of functions that have to be traversed in an ascending order for every
source-destination pair, and d" is the data rate requirement in packet/s. Each NF fI
requires a processing rate C'(f), i € {1,...,|V"|}, in packet/s. An NF instance belongs to
one service request, and it cannot be shared among multiple NF chains [2, 15,18, 66].
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3.1.2 Network Substrate

Consider a network substrate, G = (N, £), where A/ and L are the set of nodes and links,
respectively. The nodes can be either switches or NFV nodes (represented by set M).
Switches are capable of forwarding and replicating traffic, and NFV nodes are capable of
hosting and operating NFs. We assume that each NFV node has a forwarding capability,
and has available processing rate C'(n), n € M, in packet per second (packet/s) [83-85].
Moreover, an NFV node is capable of provisioning a number of NFs simultaneously as long
as the available processing rate satisfies the NF processing requirements. Each physical
link has limited transmission rate B(l), [ € L, in packet/s. Denote the set of NFV nodes
that can host an NF f; by F;, where F; C N.

3.2 Problem Definition

In this chapter, we investigate the orchestration of multiple multicast services over the
network substrate in two sequential problems. In the first problem, joint multipath-enabled
multicast routing and NF placement is studied for a single service. Given the network
substrate and the service description of a multicast NF chain, we intend to design an
embedded multicast topology for the NF chain. For each source-destination pair in the
embedded topology, all NF types should be traversed in a specified order.

Therefore, the first problem consists of two joint subproblems: (i) NF placement on
the network substrate, and (ii) multicast traffic routing design from the source to the
destinations, passing through a sequence of the required NFs. Note that multipath rout-
ing is enabled for the paths between embedded NFs to increase the flexibility of topology
customization and improve the physical resource utilization especially for geographically-
dispersed large-scale core networks. Our objective is to minimize the function and link
provisioning costs in determining an optimal embedded multicast topology. However, the
minimization of both costs are conflicting. Instantiating a large number of NF instances
at more network locations achieves a balanced traffic load at the expense of an increased
function provisioning cost, whereas fewer NF instantiations reduce the function provision-
ing cost at the expense of less load balancing and inefficient network resource exploitation.
Therefore, it is required to balance the tradeoff to minimize the overall provisioning cost
for the NF chain embedding. The first problem is defined as follows:
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Figure 3.1: Comparison of flexible and non-flexible embedding for a multicast request. (a)
Topology of NF chain request; (b) Embedding result of NF chain on network substrate
with 11 links due to the non-flexible scheme; (¢) Modified topology of NF chain request due
to the flexible scheme; (d) Embedding result of modified NF chain on network substrate
with 10 links due to the flexible scheme.
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Problem 1. To determine an optimal multipath-enabled multicast topology for an NF chain
to minimize the function and link provisioning costs, with all the required NFs traversed in
order and with the required processing and transmission resource constraints satisfied.

In the second problem, we study a joint multicast routing and NF placement problem
for a multi-service scenario. NFV allows multiple NF chains to run over a common network
substrate. However, as the network resources are limited, multiple NF chains may not be
accepted on the network substrate simultaneously. We need to decide which service requests
should be embedded such that the aggregate throughput is maximized, while the function
and link provisioning costs are minimized. We consider the static NF chain embedding for
the multi-service scenario, where all service requests are available a priori'.

Problem 2. To find an optimal combination of multicast NF chains that mazimizes the
aggregate throughput of the network substrate, while minimizing the respective function and
link provisioning costs.

We consider that NFs and virtual links have one-to-many and many-to-one mapping
with physical NFV nodes and links, respectively, whereby each NF instance can serve a
subset of destinations, and the deployment of NF instances can occur after packet replica-
tion in the multicast topology. Such practical consideration achieves higher flexibility and
efficiency in the routing and placement processes for largely distributed networks, since
destinations may be geographically far away. Restricting all destinations to share the same
set of NF' instances can be inefficient for transmission resource limited scenarios. When the
destinations are geographically dispersed, an efficient solution is to duplicate and deploy
the function instances close to each of the destinations for a reduced link provisioning cost
due to flexible routing. We give an illustration in Fig. 3.1, where the logical topology of
an NF chain request with two NFs and two destinations (i.e., t;,ty € D) are embedded
onto the network substrate. Assume that each physical link can be used only once. With
a non-flexible scheme, NFs cannot be replicated and multicast replication points can ex-
clusively occur after the deployment of the last NF. Hence, the embedding result of the
multicast request (Fig. 3.1-(a)) on the physical substrate requires 11 links as shown in
Fig. 3.1-(b). With a flexible scheme, the NF chain topology is modified, as shown in Fig.
3.1-(c), where the respective embedding result on the physical substrate requires 10 links
as shown in Fig. 3.1-(d).

In this chapter, we consider that all service requests are available a priori. An online treatment of the
service requests is addressed in Chapter 4.
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3.3 Problem Formulation

We first present the problem formulation for a single-service multipath scenario, followed
by a generalized multi-service multipath scenario.

3.3.1 Single-service Multipath Scenario

‘ fi - enabled NFV nodes O f» - enabled NFV nodes O f3 - enabled NFV nodes

Path of the first tree Path of the second tree

Figure 3.2: Two Steiner trees that share the same source, traversed functions, and desti-
nations.

To establish a joint multipath-enabled multicast routing and NF placement framework
for a single-service, let J" denote the maximum number of multicast trees to deliver mul-
ticast service S” (€ R) from the source to the destinations?. Each tree emanates from
the source and passes by the same set of traversed NFV nodes and destinations. Fig. 3.2
illustrates one multicast request with three destinations and three functions. We use two

ZNote that the superscript r which is used in the single-service formulation (subsection 3.3.1) can be
dropped since |[R| = 1. However, it is necessary as we develop the MILP formulation for the multi-service
scenario in subsection 3.3.2.
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trees (i.e., J” = 2) to support up to two multipath routing paths. If f; is embedded on
node 2 for both trees, we have multipath routes from source node s to node 2, and the two
trees converge afterwards. When J" = 1, the problem reduces to the single-path routing
case. The maximum number of multicast trees (resembling the maximum possible number
of multipath routes) J” is an input to the problem formulation. The formulation allows
the multicast trees to overlap with each other, and can be deactivated if needed. In what
follows, we describe the details of the MILP formulation for the single-service scenario.

Let Q7 denote the set of integers from m to n (> m), ie, Q% £ {m,m+1,...,n}
with m,n € Z,. Define binary variable z]; € {0,1}, where z] = 1 indicates that link
I (€ £) is used for forwarding traffic for service S™ in multicast tree j from f to f/.,
where i € Q|1w\71
to f1, and x{ﬁ,‘ = 1 indicates that link [ carries traffic from f/}, to any destination node
t(€ D); Define yji; € {0,1}, where yJ;;, = 1 indicates that link [ is used to direct traffic

for service S in multicast tree j from f; to f/,, for destination ¢ (€ D"); Binary variable

. Binary variable zj; = 1 indicates that link [ carries traffic from s"

it = 1 indicates that link [ is used to direct traffic for service S” in tree j from s” to fI
for destination ¢, and ylj‘rw = 1 indicates that link [ directs traffic for service S” in tree j
from f}, to destination ¢.

With the definitions of & = {27/} and y = {y/};}, we have

yir <@t lelie) jeql teD, 5T eR. (3.2)
Furthermore, define binary variables 2, € {0, 1}, where 27, = 1 indicates that an instance
of fI' is deployed on NFV node n for service S" where i € Qllv‘, and u),, € {0,1}, where
uy, = 1 indicates that an instance of f] is deployed on n for service S” for destination ¢.
Similarly, we have a relationship constraint between z = {z];} and u = {u],;,} as

Uy <z meNi€Q) teD, STER. (3.3)

For each service S™ (€ R), we build J" multicast trees to exploit the multipath prop-
erty, where each tree can provide a fractional transmission rate d’" of the overall required
transmission rate d”. Therefore, to meet the total required transmission rate d”, we impose

the constraint o

& >d, ST eR. (3.4)

J=1
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Next, we incorporate the routing and placement constraint in (3.5) to ensure that traffic
flows pass from the source to multiple destinations through the NF chain. Let fj and
f41 denote dummy functions (without processing requirements) that are placed on the
source node s” and each destination node t (€ D), respectively. In our model, some of the
multicast trees can be deactivated if needed. Consequently, we have

’ r - .
Uit — Up(ip1ye, tT€€ J 18 activated

(3.5)

0, otherwise

Jr Jr —
Z(n,m)eﬁ y(n,m)it - Z(m,n)eﬁ y(mm,)it - {

fornE./\/,z'GQBVT‘,tGD’“,STER, where
uhy, =1, upg, =0,V € D", ne N\{s"}

U(yr)+1)¢ = 1, Un(yri41ye = 0, ¥t € D", n € N\D"

ul, =0,ul, =0,Vie W teD

Define binary variable /" € {0,1}, where 77" = 1 indicates that tree j of service S" is
activated. Consequently, all variables related to deactivated trees (i.e., x7; , yi;;, and d’'")
should be forced to zero. Therefore, we impose the constraint

wlf <l oy <@ it < dr, lelie Q) jeql teD, S eR. (3.6)

To guarantee that the routing and placement constraint is considered only when tree j of
service S” (€ R) is activated, we modify (3.5) to

Z y(nm )it Z y(mn )it _ﬂ-JT ( :z(i—i—l)t - u:m) )

(n,m)eL (m,n)el

neN,ie' teD 5 eR. (3.7)

Since we have 3, < 277 in (3.2), the constraint 37, < 77" in (3.6) can be removed. Thus,
we re-write (3.6) as

off < AT <7tdh e Lyie oYl e Q. (3.8)

Constraint (3.8) means that we consider :U{Zr and d’" when tree j is activated; otherwise, we
simply set these variables to zero. Define indicator function k,; € {0, 1}, such that k,; = 1
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if NFV node n can admit function f;, i.e., n € F;. We require that exactly one instance of
function f] is traversed for every source-destination pair, which can be expressed as

S o tha=1ic0)teD S eR. (3.9)

Moreover, function f] is hosted at node n only when admittable and when the resources
at node n are sufficient. We have

V7|
YD 4 C(f)<Cn), neM, ic Q‘1V | (3.10a)
STER i=1

k=1 neMicV s er (3.10b)

where k,; = 1 indicates that node n can admit function f;; otherwise, k,; = 0.

Objectives — Following the relevant research on NFV-enabled service provisioning
[16-18,66-68], we aim to minimize the function (processing) and link (transmission) provi-
sioning costs over all J" multicast trees for service S”, in addition to balancing the substrate
network resources in the long run as

Jr v i [V T
mlnazzz< )xh—l—ﬁzz (3.11)

lel j=11i=0 i=1 neM

In (3.11), we minimize the weighted sum of the cost of forwarding the traffic over the
utilized physical links of the substrate network for all activated trees, and the cost of
provisioning the NF instances in the NF'V nodes. Parameters o and 3 are the weighting
coefficients to reflect the importance level of minimizing the cost of traffic forwarding and
minimizing the cost of NF provisioning respectively, where* o + 3 = 1 and a, 3 > 0.
The terms d/" 2/ /B(1) and C(f7)z",/C(n) ensure load balancing over the physical links
and NFV nodes [88]. Moreover, the term ‘+1’ in (3.11) minimizes the number of links in
building the multicast topology. Denote the product term dj%{[ in the objective function
(3.11) by v/ as

Y =alld", 1€ L, ZEQ'V | cQ,S"cR. (3.12)

3Beyond trial and error, how to exactly set the weights (o and ) is an involved question that is
subject to many factors, such as the available network resources and future service requirements. For
interested readers, the literature on the linear scalarization of multi-objective optimization problems can
help, cf. [86,87].
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The term, ”yfz, can be interpreted as the transmission rate over link [ to deliver traffic from
fi to fi in tree j. The aggregate rate from all services over link [ is upper bounded by
the available link transmission rate B(l), i.e.,

Jr VT

S S <BO), Le L. (3.13)

STER j=11i=0

In summary, the optimization problem for the single service scenario is formulated as

Jr v V" T
(P1) : mmozZZZ(wz + x; )—i—ﬁzz f) (3.14a)

leL j=11i=0 % 1n€/\/l
subject to  (3.2) — (3.4), (3.7) — (3.10), (3.12), (3.13) (3.14b)
z,y,z,u,wec{0,1}, d =0, v = 0. (3.14c¢)

where X = {z,y,z,u, 7, d,~v}. In (3.14), the objective function and all constraints are
linear except constraints (3.7), (3.12), (3.10b). In the next step, we transform these non-
linear constraints to equivalent linear constraints such that a standard MILP solver can
handle them. To do so, for nonlinear constraint (3.7), the bilinear term 7/"u’, can be

handled by introducing a new variable w’, = 7/"u’ . Constraint (3.7) is changed to
Z y(m n)it Z y (n,m)it — B wil?i+1)t’
(m,n)eL (n,m)eL
neN,ieW ' teD jeql 5" eR. (3.15)

The corresponding relations among wmt, 7" and u’,, are given by

] Jr
< ™ mt S umt? nzt >m + U 1

neN,iceQl'ltep . jeq s er. (3.16)

nzt nit ’

For nonlinear constraint (3.10b), denote the product term z].k,; by g,. Consequently,
(3.10b) can be expressed by

gr<Z neM, ieq) (3.17a)
g <kn, neM,ic Q‘lwl (3.17b)
i > 2hi+ ki — 1, neM, i€ (3.17¢)
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For nonlinear constraint (3.12), we utilize the big-M method, and express it equivalently
as

- MA—) <~y <d el ieQ)! jeql, sTeR (3.18a)
0< A <Mzl lelic' jeql’ s"er (3.18b)

where M is a large positive number. Since d’” is upper bounded by d", 'yljf given by (3.12)
is bounded above by d". Thus, it suffices to set M = d".

As a result, the non-linear optimization problem for a single-service in (3.14) can be
re-written in an MILP form as

Jr VT Ll fr)
(P1') : mmz > a ( i + fic{f) +8> Z (3.19a)

lel j=11=0 = 1ne./\/(

subject to (3.2) — (3.4), (3.8) — (3.10a), (3.13), (3.140) — (3.18) (3.19b)

3.3.2 Multi-service Multipath Scenario

In this subsection, we consider the scenario of jointly handling multiple multicast service
requests. We formulate an MILP that jointly constructs the multicast topology for multiple
service requests, where the goal is to find the combination of service requests such that
the aggregate throughput is maximized while the overall function and link provisioning
costs are minimized. First, we need to maximize the achieved aggregate throughput (R)
obtained by hosting network services on the substrate network. The achieved aggregate
throughput is given by

R= > R, (3.20)

STER

where (" € {0,1} is a binary decision variable with (" = 1 when service S” is accepted,
and R" is the corresponding throughput, defined as

V|

R =a Y C(f7) + a2<ym 4 \Dry)dr, ST R (3.21)
=1
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where the first and second terms denote the required amount of processing and transmission
rates, respectively, in packet/s [83-85]. The two parameters, a; and as, are used to tune the
priority of processing and transmission rates respectively, where a; +as = 1 and aq, as > 0.

Second, in addition to maximizing the achieved aggregate throughput, an efficient con-
figuration to utilize the resources efficiently is needed. Specifically, there can be multiple
solutions to maximize the aggregate throughput defined above. Among such solutions, we
find the configuration with the least function and link provisioning cost to save resources for
future services. The multi-service scenario is cast as a two-step MILP, the first step aims
to find the maximum achievable aggregate throughput, followed by a formulation which
finds the routing and NF placement for each admitted NF chain subject to the maximum
achievable aggregate throughput.

In the multi-service scenario, some of the service requests can be rejected due to lim-
ited resources. Therefore, we first generalize some of the previous constraints as follows.
Constraint (3.4) is generalized to

J

dm>(d, S"TeR (3.22)

j=1
where the summation of the fractional transmission rate from all trees for service S™ (€ R)
is forced to zero when the service is rejected (i.e. when (" = 0). Moreover, an instance of
fT is deployed at only one NFV node if service S is accepted, i.e., (3.9) becomes

Sup=¢, i) teD, STeR. (3.23)
nem
Similarly, when service S” is rejected, all variables related to the service should be zero,

i.e.,

mr < A< neN,ieQ jeql” sTeR. (3.24)

Objectives — The objective of the first step is to find the maximum aggregate through-
put R*. Then, we aim to minimize the function and link provisioning costs for all admitted
services, subject to the maximum achievable aggregate throughput R*, in the second step.

Now we present the first step of maximizing the aggregate throughput as

(P2) : max > R'(" (3.25a)
=
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subject to  (3.2),(3.3),(3.8),(3.10a), (3.17) (3.25b)
(3.13), (3.15), (3.16), (3.18), (3.22), (3.23), (3.24) (3.25¢)
z,y,z,u,{,mwe {0,1}, d,v > 0. (3.25d)

After solving (3.25), we obtain a configuration that provide a maximal aggregate through-
put, R*, for the given |R| services and substrate network. However, such configuration can
be one among many that can yield R*. Among all possible configurations, we choose one
such that the function and link provisioning costs are minimized.

Therefore, in the second step, we find the combination of admitted services and their
multicast topologies such that the function and link provisioning costs are minimized,
subject to the maximum achievable aggregate throughput R*, i.e.,

@) iy X5 Y (i) Xy (3260

Y srerleL jeQd” i=0 STeR i=1 neN

subject to  (3.2),(3.3),(3.8), (3.10a), (3.17) (3.26Db)
(3.13), (3.15), (3.16), (3.18), (3.22), (3.23), (3.24) (3.26¢)
x,y,z,u,(,mwe{0,1}, d,v>0 (3.26d)
> R'(" >R (3.26¢)
STER

The problem in (3.26) is an MILP, and can be solved optimally by a standard MILP
solver. After solving (3.26), we obtain optimal solutions such that the maximal aggregate
throughput R* is achieved with minimal function and link provisioning costs.

Remark. The joint multicast routing and NF placement problems for both single-service
and multi-service cases are NP-hard.

Proof. We first show that our single-service problem (P1) can be reduced from the Steiner
tree problem in polynomial time. Assume a service request with only one function (f) and
multiple destinations (D). We have a physical substrate (G) such that the source (s) is a
leaf vertex (in G) connected to the only feasible NFV node for f. The optimal solution
can be obtained in two steps. First, we build a Steiner tree from the NFV node to the
destinations. Second, we place f on the NFV node, and connect the NFV node to the
source (as this is the only feasible option). The first step is NP-hard, while the second
step is performed in polynomial time. Thus, (P1) is NP-hard. It is then proved that the
multi-service problem (P3) is NP-hard as it includes (P1) as a special case [89,90]. O
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3.4 Heuristic Algorithms

Even though (P1’), (P2), and (P3) in Section 3.3 can be solved optimally by an MILP
solver, the computational time is high. A low-complexity heuristic algorithm is needed
to efficiently find a solution. The proposed framework is modular in its design, and can
be divided into two main steps. First, a mechanism is employed to prioritize service
requests based on some heuristics that aim to maximize the aggregate throughput. Second,
the prioritized service requests are embedded sequentially using the joint routing and NF
placement algorithm for a single-service.

3.4.1 Joint Routing and NF Placement for Single-service Sce-

nario

We design a single-service heuristic algorithm based on the following considerations: (i)
Different types of NFs can run simultaneously on an NFV node; (ii) The traversed NF
types and their order should be considered for each source-destination (S-D) pair; (iii) The
objective is to minimize the provisioning cost of the multicast topology based on (3.11).
According to the aforementioned principles, a two-step heuristic algorithm is devised as
follows: We first minimize the link provisioning cost by constructing a key-node preferred
MST-based multicast topology that connects the source with the destinations; Then, we
greedily perform NF placement such that the number of NF instances is minimized. The
pseudo-code of the joint routing and NF placement heuristic is shown in Algorithm 1,
which is explained in more detail as follows.

First, we copy the substrate network G into G’. Second, to prioritize the NFV node
selection in building the key-node preferred MST, we calculate new link weights for G as

Wy =« (Ba(ll,) + 1) —I—ﬁozim), I'=(Mnm)el L CG, STeR (3.27)
where C'(m) is set to a small value when m is a switch; otherwise, it represents the process-
ing resource of NFV node m. Then, a key-NFV node is selected iteratively. We construct
the metric closure of G’ as G”, where the metric closure is a complete weighted graph with
the same node set N and with the new link weight over any pair of nodes given by the re-
spective shortest path distance. From the metric closure, we find the MST which connects
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the source node, destination nodes, and the key-NFV node. An initial multicast routing
topology (G,) can be constructed by replacing the edges in the MST with correspond-
ing paths in G’ wherever needed. We then greedily place the NFs from the source of the
multicast topology to its destinations with the objective of minimizing the number of NF in-
stances. The cost C(G,) of the new multicast topology (as in (3.11)) and the number A(G,)
of successfully embedded NF instances are computed. The objective is to jointly maximize
the number of successfully placed NFs and minimize the provisioning cost by iterating over
all candidate key-NFV nodes. In every iteration, a new key-NFV node is selected. If A(G,)
is increased, we update the selected multicast topology with the new key-NF'V node; If
A(G,) is unchanged and C(G,) is reduced, we also update the selected multicast topology.
If a path cannot accommodate all required NFs (i.e., fi, fo,..., fiy|) after selecting a key-
NFV node, we devise a corrective subroutine that places the missing NF instances on the
closest NFV node from the multicast topology, and the corresponding physical links are
rerouted as follows. Let P, be the path from s to ¢ in G,, F; s be the union of the paths
such that a missing function (f) is not hosted (i.e.,{Ptyf = UepPy| fisnot hosted}), and
P.; ¢ be longest common path before first branch in P. Correspondingly, for each missing
NF, we link the nearest applicable NF'V node to F.; ¢, place the missing NI instance, and
remove all unnecessary edges.

So far, a flexible multicast topology that connects the source with the destinations,
with all NF instances traversed in order, is constructed. We first resume from the single-
path scenario (J = 1) to check whether each path in G, satisfies the link transmission rate
requirement as per (3.13), and find an alternative path for each infeasible path. If a single-
path solution is infeasible due to (3.13), the heuristic algorithm for the single-path case is
extended to the multipath-enabled NF chain embedding problem (with J > 1). Enabling
multipath routing provides several advantages. It is activated when the transmission rate
requirement between two consecutively embedded NF instances cannot be satisfied (i.e.,
when B(l) < d", | € L£); and multipath routing is to reduce the overall link provisioning cost
compared with the single-path case. For each path between two embedded NF instances
that does not satisfy the transmission rate requirement d”, we increment the number of
multipath routes gradually, and look for a feasible solution up to the predefined .J. The
algorithm declares that the problem instance is infeasible when the number of multipath
routes exceeds J. For J > 1, we trigger a path splitting mechanism for each path between
two embedded NF instances for each S-D pair as follows.

Let W/if’iﬁl be the kth path between two embedded NFs (f;,f;11) along the network
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substrate for destination t (€ D), where the cardinality of all such possible paths is Kfl 41
We first rank all candidate paths in a descending order based on the amount of residual
transmission resource. Then, we sequentially choose the paths from the candidate paths,
such that the summation of all chosen paths’ residual transmission rate meets the required
transmission rate d”. Assuming the current number of trees is j, the transmission rates
allocated on the kth path (VVthH) is then calculated as

Bk- dT min{j,K? .
R(W/,) = —uin  teD,ic W keq) E K““}, S"TeR (3.28)
) me{],Ki‘iJrl} Bk
k=1 min

where BF, is the amount of minimum residual transmission resources for path W;7 4,

min

ie., BE, = min, ewrh B(l). Here, the multipath extension method essentially computes

a link-disjoint multipath configuration from a single-path route. Therefore, the proposed
multipath extension is necessarily prone to the so-called path diminuition problem, in
which not all end-to-end multipath-enabled configurations can be devised from a single-
path discovery [91,92].

3.4.2 Multi-service Scenario

To achieve high throughput and to efficiently utilize the network resources, our key strategy
is to selectively prioritize the network services contributing significantly to the aggregate
throughput with least provisioning cost. Here, we consider a static algorithm, i.e., service
requests are available a priori. Three principles serving as criteria to prioritize each service
for embedding are identified. The first principle is to rank the given network services
based on the aggregate throughput, which is defined in (3.21). A network service with
higher achieved throughput has higher priority to be embedded in the substrate network,
since such service contributes more to the achieved aggregate throughput than a lower
ranked service. However, ranking a service based on the throughput alone does not take
into account the impact of the provisioning cost. It is impossible to obtain the exact
provisioning cost of embedding a service request prior to the routing and placement process,
as the problem itself is NP-hard. However, the relative positions of source and destinations
can provide hints on the cost necessitated to host such service. Given a network service
with the destinations far from each other (i.e., highly distributive), the provisioning cost
is large since more physical links and multicast replication points are expected to connect
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Algorithm 1: Heuristic algorithm for the joint routing and NF placement

1

R wN

10
11
12
13
14

15
16
17
18

19

Procedure constrainedJRP (G, S”);
Input : G'(N', L"), S" = (s", D", f{, 5, ., fly, d")
Output: G,
C, + o0; A, «+ 0
for n € M do
G" + MetricClosure(G’, {n, s, D}); G (N, L,) + KruskalMST(G");
for path from s to eacht € D do place NFs from V on available NFV nodes
sequentially subject to (3.10);
if A(G!) =A,&C(G!) <C, then G, + G!; C, + C(G");
else if A(G!) > A,y then G, < Gl; A,y < A(G)); C,cp < C(G));
end
for each missing NF (f) from G, do link nearest NFV node that can host f to
P.: ¢, and remove unnecessary edges;

for path from f; to f;11 for each t in G, do
success < false;
for j=1:Jdo

Find temp = min{K},,,,j} paths from G;

if Y minleWi’iﬁl

kth path (I/szlil) using (3.28); success < true; break;

end

B(l) > d” then allocate transmission resource for each

if success = false then break;
end

if success = false then G, < none;
else return G,;
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the destinations. Moreover, the distance from the source to destinations is proportional to
network service’s provisioning cost as a long routing path with a relatively large number
of NF instances is needed to establish the multicast topology.

Combining both effects of the distances between destinations and the distance from
source to destinations, we define a distribution level, denoted by ¢”, as the product of two
components. The first component is Y /Y, where Y is the area of the smallest convex
polygon that spans all nodes in the network, and Y" is the area of the smallest convex
polygon that spans all destinations of service S”. The ratio Y /Y provides an estimate of
how dense a set of destinations of one service is in a given area of the network. Note that
existing algorithms to determine the convex hull of a set of points and to calculate the area
of an arbitrary shape are available [93]. The second component is ¢"/q, where ¢" is the
distance from source to the center point of the set of destinations in service S, and ¢ is the
largest distance between two arbitrary nodes in the substrate network. The center point
of the set of destinations in one service plays a role as a representer for all destinations in
that service. The ratio ¢"/q can measure how far is the source from the destinations. The
distribution level metric ¢" is thus expressed as

T

Y’I" qT'
g —=

TeR. 2
vy STER (3.29)

A larger value of ¢" implies a higher distribution level, where the source is positioned farther
away from its destinations and the destinations are more distribution in the whole network
coverage area. A largely distributive network service consumes more network resources,
resulting in a high provisioning cost. Therefore, a service with a lower value of ¢" has
a higher priority to be embedded in order to preserve the substrate network resources.
Although the parameters in (3.29) can be calculated with regard to the hop-count (e.g.,
via computing the shortest path) which is a more representative metric than the Euclidean
distance, it is exhaustive to do so.

Next, we introduce a third metric named size (U") to incorporate both (3.21) and (3.29)
as follows,
U'=R(1-g¢"), STeR (3.30)

where the goal is to prioritize a service with higher throughput subject to a correction
factor of 1 — ¢" for how distributive (costly) it is.

To summarize, we calculate the throughput, the distribution level, and the size for each
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service request using (3.21), (3.29), and (3.30). Then, service requests are sorted according
to their sizes in a descending order, and embedded using Algorithm 1.

3.4.3 Complexity Analysis

First, the heuristic algorithm for the single-service scenario (Algorithm 1) iterates over
|M| NFV nodes to find a key-NFV node. For each potential key-NFV node, a multicast
topology is constructed and compared with the previous iteration (in Lines 3-8). Denote
the set of destinations, source node, and the key NFV node by T (i.e., T = {n, s, D}). For
each potential key-NFV node, we construct the metric closure on 7, which is computed
by considering the all-pairs shortest-path algorithm on 7. Thus, the worst-case running
time is O(JNV]|T|?). Then, we find an MST on the constructed metric closure. The MST
is transformed to the Steiner tree by replacing each edge with the shortest path, and
removing unnecessary edges (Line 4). The worst-case time complexity of the MST-based
Steiner tree is dominated by the metric closure. The construction of the Steiner tree is
followed by an NF placement process that requires O{|D|| M|} time in the worst-case since
a path from the source to each destination passes by at most |[M| NFV nodes (Line 5). To
extend to the multipath scenario, in Lines 10-17, for each path between two embedded NF
instances, we find up to J paths and split the traffic according to (3.28), which requires
O(J|D||V]|N|log |N]) time in the worst-case. For the multi-service scenario, we measure
the size of each request, followed by a sorting algorithm based on the size in (3.30), which
requires O(|R]log |R|) time. Consequently, each service request is embedded sequentially.
Hence, the overall worst-case time complexity of the multi-service multi-path scenario is
O(|R|log |R| + [N[D|(|D] + T |V] log |N])).

3.5 Simulation Results

In this section, simulation results are presented to evaluate the optimal and heuristic
solutions to the joint multicast routing and NF placement problems for the single- and
multi-service scenarios, considering both single-path and multipath routing cases. The
simulated substrate network is a mesh-topology based network [94], with |N| = 100 and
|L£| = 684, as shown in Fig. 3.3. We randomly choose 25 vertices as NF'V nodes in the
mesh network, and the transmission rate of physical link [ and the processing rate of NF'V
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Figure 3.3: Mesh topology with |[A| =100 and |£| = 684.

node n are uniformly distributed between 0.5 and 2 Million packet/s (Mpacket/s), i.e.,
B(l),C(n) ~ U(0.5,2) Mpacket/s. To solve the formulated MILP problems, we use the
Gurobi solver with the branch and bound mechanism, where the weighting coefficients are
set as @ = 0.6, § = 0.4. The processing rate requirement of the NFs are set to be linearly
proportional to the incoming data rate, i.e., C(f") = d" [95].

First, we conduct a comparison between the optimal solution of the single-service single-
path MILP formulation and the solution of the heuristic. We generate random service
requests where the numbers of NFs and destinations are varied from 3 to 14 and 2 to 11,
respectively. The data rate of the generated service requests are set to d” = 0.2 Mpacket /s.
The total provisioning cost obtained from both optimal and heuristic solutions are shown
in Fig. 3.4, as the number of destinations |D| or NFs |V| increases. It can be seen that
the total provisioning cost increases with |D| or |V|. As |D| increases, the costs obtained
from both optimal and heuristic solutions grows with nearly a constant gap. Adding
destinations incurs a higher cost than adding NF' instances, since additional physical links
and NF instances are required for each destination.

Next, we compare the proposed heuristic algorithm with the heuristic algorithm named
HA-TAA" in [2]. For a fair comparison, we consider only the single-path scenario. To add

“The heuristic algorithm (HA-TAA) in [2] assumes uncapacitated network substrate. We modify the
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heterogeneity to NFV nodes, among the 25 NFV nodes and up to 6 types of NFs, each NF
type can be hosted in an NFV node with the chance of 80%. We randomly generate 10
multicast requests that have equal number of NFs and destinations (i.e., |V| = |DJ), and
each multicast request is embedded on 30 network substrate instances to reduce the effect
of randomness. As shown in Fig. 3.5, the proposed algorithm consistently outperforms
HA-TAA when |V| = |D| > 2. However, the average running time for the modified HA-
TAA algorithm was around 0.115 seconds, whereas our proposed heuristic algorithm took
about 2.110 seconds due to the higher time complexity of the involved algorithm. In [2], the
HA-TAA algorithm first finds the shortest path from the source to the NFV nodes that can
host the required NFs sequentially, and the shortest path from the last NF'V node to the
respective closest destination. Second, it connects the destinations through an MST. Since
the placement of each NF' is only dependent on the previous NF, the HA-TAA algorithm
may take a long path to place NFs before connecting the last NFV node to the closest
destination. In our algorithm, we first focus on finding a Steiner tree from the source to
the destinations through a key-NF'V node, thereby optimizing the link provisioning cost.
Then, we modify some of the links to host all required NF instances (if needed). Here, NFs
can be duplicated to serve different sets of destinations, thereby providing more flexibility
and reduced overall provisioning cost. When |V| < 2, the HA-TAA is specifically more
efficient as the NF placement is related to the locations of both the source and the closest
destination.

Fig. 3.6 shows the advantage of multipath routing over single-path routing using the
proposed optimal formulation. We depict the maximum supported data rate d”, with which
the NF embedding is feasible. Compared to the single-path routing case, multipath routing
(J = 2) always supports higher or equal data rates. With an increase of the number of
required NFs, the maximum supported data rate decreases, and converges to the single-
path scenario; the processing cost becomes more significant and the number of candidate
NFYV nodes and paths decrease.

Next, we demonstrate the effectiveness of the proposed heuristic admission mechanism
for the multi-service scenario discussed in Subsection 3.4.2. First, we divide the mesh
topology into four access network regions and one core network region as indicated in
Fig. (3.7). Three scenarios with different available processing and transmission rates on

algorithm to the capacitated scenario, change the weights to match our objective function, and assume
that an NFV node can host multiple NF instances subject to processing resources. The objective function
excludes the minimization of number of hops for fairness.
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Figure 3.6: Maximum supported data rate (d") for both single-path and multipath routing
scenarios using the proposed optimal formulation.

55

| | Core Network [ [

45
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Table 3.1: Processing and transmission rates

Scenarios ‘ Processing rate Link transmission =~ NFV nodes
Scenario 1 | U(3,8) Mpacket/s  U(3,8) Mpacket/s A7
Scenario 2 | U(4,9) Mpacket/s  U(4,9) Mpacket/s 50
Scenario 3 | U(5,10) Mpacket/s U(5,10) Mpacket/s 53

the NFV nodes and physical links are considered in the scale of Mpacket/s, as listed in
Table 3.1. Each service randomly originates from one access network region, traverses the
core network region, and terminates in one of the other three access network regions. For
each network scenario, to simulate network congestion, 35 multicast service requests are
randomly generated and submitted for embedding, where the data rate d" of service S is
randomly distributed between [1.5, 3.5] Mpacket /s, and the number of NFs and destinations
are randomly generated as [V"| = {3,4} and |D"| = {3,4,5}. For each scenario, the service
generation and embedding are repeated 5 times to reduce the effect of randomness. As
a benchmark, we use a second strategy that randomly selects the service requests for
embedding.

T
I Random Admission
I Heuristic Admission

Aggregate throughput (Mpacket/s)

Scenario 1 Scenario 2 Scenario 3

Figure 3.8: Aggregate throughput comparison of the random admission and the proposed
heuristic admission.
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Figure 3.10: Resource utilization ratio comparison of the random admission and the pro-
posed heuristic admission.
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Fig. 3.8 shows the aggregate throughput R as in (3.20) achieved by the random and
heuristic admission solutions under three scenarios specified in Table 3.1, which increases as
the available processing and transmission rates increase. As shown, the aggregate through-
put of the proposed heuristic solution exceeds the aggregate throughput of the random
admission by 15.63% on average over all the scenarios. This is because the size metric used
in the heuristic solution ensures that the services with a larger throughput are embedded
with a higher priority. Fig. 3.9 shows the acceptance ratio of the total 35 service requests
under different average data rates. The acceptance ratio of the heuristic solution exceeds
the random solution over all source data rate levels by 4% on average.

Fig. 3.10 compares the normalized resource utilization between the random and heuris-
tic admission solutions. The utilization ratio is calculated as the amount of resources
consumed by all embedded services over the total available resources of the substrate net-
work. We normalize the measured utilization ratio by the utilization ratio of the proposed
heuristic admission to highlight the enhancement brought by the heuristic solution. In
scenarios 1 and 2, the heuristic solution increases the utilization ratio by approximately
12.62% and 7.97% over that of the random admission solution, respectively. In scenario
3, the difference in the utilization ratio between the two solutions decreases, especially the
link transmission usage. Recall that the heuristic scheme aims to maximize the aggregate
throughput as defined in (3.20). Therefore, although in scenario 3 the utilization ratio
achieved by the heuristic scheme is close to that of the random scheme, the aggregate
throughput achieved by the former is larger as shown in Fig. 3.8.
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Chapter 4

Online Joint Routing and NF
Placement for Unicast and Multicast
Services

4.1 System Model

In this section, we present the system model under consideration for Problem II, which is
similar to that in Chapter 4, albeit with some minor differences concerning the NFs and
the handling of service requests.

4.1.1 Network Functions and Online Service Requests

From the perspective of quality of service, we consider two types of NFs, namely mandatory
and best-effort. As discussed in Subsection 1.2.2; a successful placement of a network
service is contingent on successfully placing only the set of mandatory NFs, whereas best-
effort NFs are not necessary for the correctness of a network service.

We consider an ongoing input sequence of unicast and multicast service requests o
= (S1,582,...) that arrive in an online fashion. The rth service request is expressed as

ST =(s", D"V, d"), S'eo (4.1)
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where the source and destination nodes are s” and D", respectively; parameter d” denotes
the required transmission rate in packet per second (packet/s); V" = {ff, f5,..., f"w}
represents the set of NFs that need to be traversed in an ascending order for the source-
destination pair. For simplicity, for each service request, each NF requires an equal amount
of processing resources of C'(f") in packet/s. The online algorithm to be developed there-
after can be generalized for NFs with arbitrary processing requirements. The sets of manda-
tory and best-effort NFs are denoted by V) and Vy, respectively.

4.1.2 Network Substrate

We are given a capacitated network substrate G = (N, L), where NV and L are the sets
of nodes and links, respectively. Each physical link [ (€ £) has a residual transmission
resource, B(l), in packet/s. Each node n (€ N) has a residual processing resource, C(n), in
packet/s. Nodes can be either (i) switches that are capable of forwarding traffic only (with
C(n) = 0), or NFV nodes (e.g., commodity servers) that are capable of both forwarding
traffic and operating a set of NF instances. An NFV node is capable of provisioning
a number of NF instances simultaneously as long as the available processing resources
satisfy the deployed NF processing requirements.

4.2 Problem Description

We are given a sequence of service requests o that is revealed over time, i.e., the service
requests arrive one by one without knowledge of future arrivals. We need to define a
profit function, whose main goal is to maximize the amortized processing and transmission
throughput. Recall the amortized throughput is the weighted total transmission and pro-
cessing resources reserved for all the accepted service requests. However, the profit function
(and the online algorithm) should capture both the mode of communication (i.e., unicast
and multicast) and the heterogeneity of the NF types (i.e., best-effort and mandatory).
That is, maximizing the amortized throughput alone would unfairly favor unicast to multi-
cast services due to the larger number of destinations in the latter. Yet, the multicast mode
of communication is more efficient as it is shown to reduce the bandwidth consumption in
backbone networks by over 50% in contrast to the unicast mode [9]. Moreover, although
best-effort NFs are optional, their use should be incentivized.
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In the following, we first define a profit function that accurately captures the system
model and operational design requirements. Then, we develop a path-based formulation
for an offline profit-maximization problem. The offline formulation is omniscient, where
it has complete a priori knowledge of the entire sequence of service requests. Moreover,
it yields the optimal combination of service requests and their routing and NF placement
configurations, such that the profit function is maximized. Given the offline formulation,
through a primal-dual analysis, we develop an all-or-nothing/all-or-something online algo-
rithm to deal with each service request in a dynamic manner, while providing competitive
guarantees against the optimal offline adversary.

4.3 Problem Formulation

4.3.1 The Objective (Profit) Function

We consider two profit functions, o" and p", that correspond to the transmission and
processing resource types, respectively. We know that the number of physical links required
for a service in multicast mode is always less than or equal to the overall number of links
needed for the equivalent services in unicast mode. Therefore, for the rth service, an upper
bound on the ratio of the number of links in a multicast topology to the number of links in
an equivalent unicast service is given by |D"|. Notably, it has been experimentally shown
that the respective ratio is |D"|*, where k = 0.8 for many real and generated network
topologies [96]. Therefore, for the transmission resources, to provide a non-discriminatory
treatment between multicast and unicast services, we define ¢” to be proportional to both
(i) the required data rate of the service request and (ii) the kth power of the number of

included destinations,
o =d'|D'|F, ST €o (4.2)
where k£ = 0.8.
For the processing resources, let the amount of the incentive (and disincentive) for
including (and excluding) the set of best-effort NFs for the rth service request be given
by n; (and n],), respectively, where n; > n. > 1. We let p" be proportional to (i) the

processing throughput accrued from placing the NFs, and (ii) the incentive from including
(or excluding) the set of best-effort NFs,
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pr=nC(f), Seo (4.3)

where " € {n" ,n;} is a decision variable, with " = 7] indicating that the set of best-effort
NFs from the rth service is included, and " = 7, indicating otherwise. One method is to
set " to the number of included NFs in the rth service (e.g., n; = |V"| when all best-effort
NFs are accepted, and 7], = |V}, | otherwise). In contrast to existing relevant literature, p"
varies with the logical topology of the composed service request. Solutions that exclude
the set of best-effort NFs can have lower provisioning costs since they require less number
of NF instances, and therefore can be accepted if otherwise not feasible by the admission
mechanism. Since we have two resource types, the overall profit from accepting the rth
service request is given by ap” + Bp", where o and ( are two coefficients to indicate the
relative importance (or scalarization) of each profit function, with «, 8 > 1.

4.3.2 Primal-Dual Schema

First, we develop a path-based formulation for the offline multi-resource profit-maximization
problem. There are two possible routing and NF placement models for the offline formu-
lation, namely unsplittable (or fixed) and splittable. In the unsplittable model, a service
request is restricted to an integral solution, where only one path is used for a unicast service
(or only one tree is used for a multicast service).

Formally, let all the possible paths/trees for unicast/multicast service request S™ be
given by set P(r). Let P (€ P(r)) be a path/tree on the network substrate that is
selected to host service request S". Here, P comprises the physical links and NFV nodes
that host the virtual edges and NF instances, respectively. Hereafter, the term “path” is
used liberally; throughout this chapter, P can be regarded as a tree when provisioning a
multicast service. Define y}, as the fraction of flow allocated for service S™ along path P
(€ P(r)). In the unsplittable model, y; € {0,1} and Y cp(yy, = 1. In the splittable
model, a service can be routed on several paths, where multipath routing is enabled and
NF instances can be split, i.e., y) € [0,1] and > ,cp(yy, = 1. The optimal splittable
model provides a larger profit compared to the unsplittable variant. This is because the
linear relaxation provides an upper bound to the unsplittable (combinatorial) problem.
Even stronger performance (in terms of maximizing the profit) can be achieved when the
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splittable model is relaxed to allow for the sum of fractional allocations to be at most 1,
i.e., Epep(r) y; S 1.

In data networks (such as in fifth-generation networks and the Internet), the scale
of demands is large relative to the granularity at which it can be managed/routed [97],
especially in software-defined networks. Therefore, it is desired to design and measure the
(competitive) performance of a designed apparatus against a splittable offline model (i.e.,
with multipath routing and NF splitting) [98]. Therefore, although the online algorithm
provides an unsplittable solution, its performance will be measured against the splittable
offline model.

The path-based offline profit-maximization formulation for the fractional splittable
model is expressed in (4.4).

Dual — profit-maximization problem
maxa » Y. dyp+B8Y. > Py (4.4a)
STeo PeP(r) STeo PEP(r)

subject to :

VS"eo: Y yp<l (4.4b)
PeP(r)

VielL:> Y dyp<B() (4.4¢)

STeo PeP(r)|leP

YneN: Y Y C(fMyp < Cn) (4.4d)
ST€o PeP(r)lneP

VST e o, PeP(r): yp > 0. (4.4e)

If all service requests in o are known a priori, solving the formulation in (4.4) yields
the optimal splittable all-or-something/all-or-something packing configuration for all the
accepted services from o. In (4.4a), we maximize the overall profit function accrued by the
accepted service requests.

The first set of constraints in (4.4b) requires that the sum of the fractional allocations
for each service request along all possible paths is bounded above by unity. Constraints
(4.4¢) and (4.4d) represent the transmission and processing resource constraints on the
physical links and the NFV nodes, respectively.
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In the context of the online version of the problem, service requests in o are revealed over
time (in discrete steps). The idea is to develop an online solution that maintains a feasible
set whenever a new service request arrives in a controlled manner to guarantee certain
competitive performance. This is achieved by first deriving the primal of (4.4). Second,
we need to ensure that the online algorithm produces solutions such that the objective
function of the primal and dual are bounded, which will be explained in Subsection 4.4.1.

Next, we present the corresponding primal formulation in (4.5). Given (4.4b), we
assign variable z" for each request S”, where z" € [0,max{¢",p"}]. Given (4.4c) and
(4.4d), we assign variables Z(l) and Z(n) for each physical link [ (€ £) and NFV node
n (€ N), respectively, where z(l) € [0,|D|*..], T(n) € [0, Z;::], Nmax = MaXgres 7',

Nmin = Mingre, ", and |D|pax = maxgre, |D7|. Through the tableau method, the primal

formulation is expressed in (4.5).

Primal

min » B z(l)+ Y C(n)@(n)+ > 2 (4.5a)

leL neN Sreo
subject to :
VS €, PeP(r): > dz(l)+2">ag (4.5b)
lePnL
VS e€o, PeP(r): > &(n)+z2" > 8y (4.5¢)
nePNN
VS eo,le Line Nz x(l),z(n) > 0. (4.5d)

In what follows, we develop an admission mechanism that is based on the primal-dual
formulation in (4.4) and (4.5).

4.4 Primal-Dual based Admission Mechanism

4.4.1 The Approach

In this subsection, we provide a systematic approach to deriving the operational cost model
of the physical links and NFV nodes as well as the admission mechanism. Let A and D
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be the value of the objective function of the primal and the dual solutions as a result of
the online algorithm, respectively. Using the weak duality concept, for the aforementioned
primal-dual formulation, we know that D < A. Therefore, in order to have a provable
competitive ratio, we need to bound the objective functions of the primal and dual such
that

A< 2D, (4.6)

while maintaining the constraints of the primal and dual formulations satisfied, where
2¢ will be the competitive ratio. However, service requests arrive in an online fashion.
Therefore, instead, it is sufficient for the online algorithm to bound the change between
the primal and dual objectives whenever a new service request arrives such that [39]

0A oD

<28—, S €eo. 4.7
oyp fay}é (47)

Due to the multi-resource form of the objective functions in (4.4a) and (4.5a), we can
re-express inequality (4.7) as

(n) 02"
B(l — < 2pa0" +2¢8p", S" €0 (4.8)
g a?JP n%:\/ ayp dyp

where £ = max{p, ¢}, and ¢ and ¢ are some other constants. The right-hand side of
inequality (4.8) has two profit functions, each of which corresponds to a resource type.
Therefore, to satisfy inequality (4.8), it is sufficient to find some functions, z((), Z(n) and
z", such that

> B(l) 5yp) <2pap", S"€o (4.9a)
lel
> C(n agjp) <208p", S €0 (4.9b)
neN
g; <0, S €o (4.9¢)
P

while maintaining the constraints of the primal and dual formulations satisfied.

Starting with the transmission resource type, we need to satisfy (4.9a) while maintaining
feasibility in constraints (4.4c) and (4.5b). To do so, let the solution of the first partial
derivative in (4.9a) follow the following form,
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0z (1) _ ao”
B(l = d'z(l) + — S"e€o 4.10
> B0)G,. =X (i) + L), 5 (4.10)
where L is the maximum number of hops in a path for a unicast service (or maximum num-
ber of physical links in a tree for a multicast service), i.e., >, 1 < L. After substituting
(4.10) in (4.9a), we impose a requirement that >, d"Z(l) < a” for (4.9a) to hold. Having
satisfied (4.9a), we need to derive cost function z(l) by solving the differential equation in
(4.10). Rearranging the terms in (4.10), we have a differential equation of the following

form,
dz(l) —pd" _ pag

+ z(l) = : 4.11
g: Yy g: B(l) 0 EB(Z)L (4.11)

Define the integrating factor

I=exp( > )/ E’Egﬂ@yﬁ)

Sreo|le PeP(r

=Cep(z= X dyp) (4.12)
( ) Sreo|le PEP(r)

where C'is an arbitrary constant, and multiply both sides of (4.11) by I, we get

oz(l)  —pd _ pag”
I 1)) = I. 4.13
( o B0 ) BO)L (4.13)
Through the following identity by the product rule,
0 oxr  —ed"
Iz) =1 + Iz, 4.14
ar "= oy T B0 e

we can express Z(l) as

z()=1"

ed" .
B()L /myp’

- 2<—065€” Lsreonererm PP 1) | L.

Initially, before the arrival of any service request, we require that z(l) = 0, which occurs
when %ZSTeallepefp(r) d"y = 0. Thus, we set C = —1. We also require that z(l) >
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a|D"|* when physical link | (€ L) is saturated, i.e. when %Zsredlepepm dyp = 1.
Hence, we need ¢ > In(aL|D|%,. + 1). Therefore, Z(l) can be expressed as
1 ZSTGJ\ZGPEP(T) d"yp

#(l) = £ (e* B0 ~1), lecL. (4.15)

Note that constraint (4.4c) is maintained feasible over the whole range of z(l). In the
admission mechanism, we need to ensure that there is a sufficient protection to the resources
before accepting a service to avoid the scenario of accidentally violating the resources
(which occurs when Z(1) > «|D"|*). It turns out that, due to Lemma 1 (to be derived later),
if the required data rate is bounded above by d" < M , we need ¢ > In(2aL|D|*,  +
2). Note that the edge costs include variables from future requests (i.e., yp, VS" € o).
However, since this is an online algorithm, future variables can be initialized to zero until
the respective service requests are parsed through the admission mechanism. We can
express the edge costs in a multiplicative recursive manner as

(1) =3 (1)ePBO + — (B0 — 1), €L, S €0 (4.16)

where 77(-) is the edge cost after embedding the rth service request, and z°(-) is set to
zero. Now, we need to ensure that constraint (4.5b) is maintained feasible. Since we set
Sier d'z(l) < ag”, we require that z" > ap” — Y., d"Z(l) for (4.5b) to be maintained
feasible, and for (4.9¢) to hold.

By following a similar procedure, for the processing resource type, we need to satisfy
(4.9b) while maintaining feasibility in constraints (4.4d) and (4.5¢). To do so, let the
solution of the partial derivative in (4.9b) follow the following form,

S C(n) o —¢Z( Bl’é), S eo (4.17)

neN ?JP nenN

where K is the maximum number of NF instances in a service request (including both best-
effort and mandatory NF instances), i.e., > ,ear 1 < K. Similarly, we can satisfy (4.9b)
by imposing a condition that >,,c C(f")Z(n) < Bp". Now, we need to solve differential
equation (4.17). A similar procedure yields a cost function that is expressed as

ZSTEUMEPEP(T) CUMvp

i(n) = —(—Ce? o) ~1), neN.
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Initially, before the arrival of any service request, we require that Z(n) = 0, which occurs
when ﬁ Ysree C(f7)yp = 0. Therefore, we have C' = —1. We also require that z(n) >
fn"” when NFV node n (€ N) is saturated, i.e. when % Ysreo C(f7)yp = 1. Therefore,
we need ¢ > ln(ﬂKzr‘zﬁ + 1). Hence, Z(n) can be expressed as

. UMy

F(n) = [1((6¢25 SEEETT Z 1), neN. (4.18)
Note that constraint (4.4d) is maintained feasible over the whole range of Z(n). Simi-
lar to the transmission resource, due to Lemma 2 (to be given in Subsection 4.4.3), if
the required processing rate is bounded above by C(f") < mm%’vc("), we need ¢ >
In(26K 77772‘1‘]—‘"‘: +2) to ensure a sufficient protection against violating the processing resources.
Since we set >_,,cn C(f")Z(n) < Bp", we require that 2" > max{ag" — Y e, d"z(l), Bp" —
>nen C(f7)Z(n)} for (4.5b) and (4.5¢) to be maintained feasible, and for (4.9¢) to hold.
The cost function can be updated multiplicatively each time after embedding a service
request as follows,

c(yn) 1 c(Un)
i'(n) = & H(n)e” cn + E(ed) cm —1), neN,S €o

where z"(n) is the cost of the NFV node n (€ N) after embedding the rth service request,
and 7°(n) is set to zero. Now, we are ready to state the all-or-nothing/all-or-something
admission mechanism.

4.4.2 Admission Mechanism

The procedure commences with the arrival of an rth service request, which resembles an
augmentation of a new decision variable (y}) to the dual formulation. Correspondingly, in
the primal formulation, the arrival is equivalent to the augmentation of two new constraints,
namely (4.5b) and (4.5¢). The rth service request is accepted if there exists a path, P,
such that the following two conditions hold:

Sood'F N l) <o (4.19)

lePNL

'How to find path P for the routing and NF placement problem is addressed in Subsection 4.5.

60



and

S O()E ) < By (4.20)

nePNN

If the two conditions are satisfied, accept the request and route it on P, and set yp = 1.
To maintain feasibility in (4.5b) and (4.5¢), set

2" = max (ozgr — > d'z(), 8 — > C’(fﬂ:%(n)) (4.21)

lePnL lePNN

Finally, update the costs of the edge variables Z(/) and NFV nodes Z(n) in a multiplicative
manner as follows,

1
(1) = 271 (1)ef PO + Z(é"Bm —1), lePNnL (4.22)
cyn) 1 cyn)
i'(n) = & H(n)e’ e + ?(eqﬁ cm —1), ne PNN (4.23)

where © = In(2aL|D|* . +2) and ¢ = 1“25}(% +2).

max

Treatment of best-effort NFs — We first find a routing and NF placement configura-
tion that includes the set of best-effort NFs since it provides a larger (incentivized) profit
with p" = C(f")n;. If such configuration is rejected by the admission mechanism, we find
another configuration that excludes the set of best-effort NFs, and check against the ad-
mission mechanism with the nominal profit function p" = C(f")n" . If both configurations
(with and without the set of best-effort NFs) do not satisfy (4.19) and (4.20), the service re-
quest is rejected. Fig. 4.1 provides a representation of the all-or-nothing/all-or-something
admission mechanism. Algorithm 2 summarizes the online admission framework. In the
algorithm’s pseudocode, an assignment is denoted by “<".

4.4.3 Performance Analysis

In what follows, we analyze the performance of the admission mechanism. We show that the
proposed mechanism does not violate the transmission and processing resources of physical
links and NFV nodes. Then, we prove the competitive ratio for the all-or-nothing/all-or-
something admission mechanism.
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Figure 4.1: The joint all-or-nothing/all-or-something admission mechanism and online joint
composition, routing, and NF placement framework.
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Algorithm 2: Admission control and online joint composition, routing, and NF

placement framework

1

N O ook N

10

11

12

13
14

Procedure OnlineJRP(G, S");

Input : G(N, L), S
Output: Embed or reject S”

z(l) <= 0 (only once); (n) < 0 (only once);
services < (S", S" = V);
fori=1:2do
P <+ unconstrainedJRP(G, services[i]); > JRP is in Algorithm 3 in Section 4.5.
if Yiepne d'2(l) < a0 and ¥, epry C(f7)Z(n) < Bp" then
Accept request (yp < 1);
2" < max ( Zlerﬁd (1), Bp" = Xneprn C'(fr)zi‘(n)),
(1) < F(1)eFT 4+ L(PFm — 1), Wl PNL;
#(n) — #(n)e? < + %(d’ W 1), Vne PAN:
return;
end
end

return (Reject request);
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Lemma 1. The transmission resource constraint on the physical links cannot be violated,
ie., Ysreapererm @ < B(), 1 € L, if ¢ > m2aLDfk,, +2) and & < muecfl
VST eo.

Proof. Assume that the transmission resources on physical link [ (€ £) become exceeded
when the rth service request arrives. Then, we have B(l) — E;;% d? < d". Therefore, after
admitting the (r — 1)th service, the value of 77*(I) can be expressed as

r—1 i
1 Z,: dJ
T = (TR -
B)-Y " dl
— l(@@(l_iB(lg L ) _ 1)

> — (U7 Ew) — 1), (4.24)

Assuming that the required data rate of a service request is “small enough”, i.e. d" <
minez BO 767 ¢ 5. Then, inequality (4.24) becomes

©
() > l(e@(l_%) —1)
)
1 e?
= (= —1). 4.25
AP (4.25)

Therefore, for the rth service request to be rejected, we need d"z"~1(l) > «ag", VS" € o,
which translates to z7 (1) > a|D|k,,. Therefore, we need 1(< — 1) > «|D|%, ., which
entails that ¢ > In(2aL|D|* . +2). That is, ¢ is set such that the admission mechanism
rejects any service request that would violate the transmission resources of a physical

link. O

Lemma 2. The processing resource constraint on the NF'V nodes cannot be violated, i.e.
Ssreomerer) C7) < Cn), n € N, if ¢ > In(2BK 222 4 2) and C(f7) < MiesClt),
VST eo.

Proof. Assuming that the processing resources on the NFV node n (€ N') become exceeded
when request S” is accepted, we have C(n) — X021 ¥ reys C(f7) < C(n). Therefore, the
value of #"~!(n) can be expressed as

r—1 :
1 Z =1 Zf vi €07
fi’r_l(’n,) fd —K €¢ . C("E) — 1)

64



r—1 -7
1 ¢(1_c(n)_2j:1 Efew’ C(fj))

— 5 o - 1)
1 ey CUN
> (e w21, (4.26)

Under the assumption that the processing requirements of a service request is “small
enough”, i.e., C(f") < mm%,w(n)’ S” € o, inequality (4.26) becomes

i) > i(e‘b(l*%) —1)

1 e?
= ?(z—l). (4.27)

Therefore, for the rth service to be rejected, we need > ,cnr C(f")x(n) > Bp", VS" € o,
which translates to +(¢"/e — 1) > ple e, ¢ = ln(QﬁKZ:ﬁ + 2). That is, ¢ is set
such that the admission mechanism rejects any request that would violate the processing
resources of an NFV node. O

Theorem 1. The competitive ratio of the admission mechanism is O(max(gp, gzﬁ)), where
dr < mmee By < mimen 60 o = In(2aL|D|,, +2), and ¢ = In(2BK = 4 2),

Proof. Let AA and AD be the change in the primal and dual cost in each iteration,
respectively. Starting with A = D = 0, when the rth service request is accepted, the
objective function of the dual formulation is increased by AD = ap” + 5p". The objective
function of the primal is increased by

AA=YBIO)(T (1) -7 (D) + Y. Cn)(&(n) — "' (n)) + 2" (4.28)

lel neN

Substituting (4.22) and (4.23) in (4.28), we obtain

Ad= Y (FFT — 1)(@ (1) + /) B()

lel
+ Y (S - 1)@ () + YR)C () + 2 (4.29)
neN

Using inequality e* — 1 < z for 0 <z < 1, we get

AA< ng’“(i"’”_l(l) +Yr)+ ¢ %C(fr)(fr_l(n) +1/K) + 2" (4.30)
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From the admission mechanism, substituting 2" from (4.21) in (4.30), we obtain

AA=p Y (@ (1) + Y1) +6 Y C()E ™ (n) + V)

lel neN

+max (ag" — Y d'z(l),8p"— Y C(f)E(n)) (4.31)

lePNL n€PNN
pp"

<o d @)+ L) o Y CE )+ )

lel neN

tag B~ Y AED) - Y C()in) (4:32)

lePNL nePNN

== dT ')+ oo +Pp + (9 —1)
lel

XZCWW”W+def+wﬁ;ZCW) (4.33)

neN lel neN

<ag +fp" 4+ (o — 1) Y_d'z" ()
leL

+(p—1) Z%/C(fr)i"”‘l(n) + oo’ + B’ 9. (4.34)

Since the rth service request is accepted, i.e., e, d"Z771(1) < ap” and 3, C(f7)7" 1 (n) <
Bp", inequality (4.34) becomes

AA <2a0"p+2Bp" ¢ (4.35)
<2(a¢" + Bp") max{p, ¢}. (4.36)

It is shown in Lemmata 1 and 2 that the online algorithm ensures that the transmission
and processing resource constraints are always satisfied, where variables z(l), Z(n), and
2" are designed such that a feasible primal solution is maintained. Therefore, using weak
duality (i.e., AD < AA) and from (4.36), a competitive performance of O(max{go, gb}) is
concluded.

[]

Now, we discuss the method to find path P for a service request. Recall the admission
conditions in (4.19) and (4.20). For each service request, the admission mechanism requires
checking all possible paths for the performance guarantees to hold. If any of such paths
satisfies the admission mechanism, the service request should be accepted. Notably, in
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general, it is not necessary to route the service on the minimum-cost path, but rather a
secondary routing objective can be invoked. However, there exists an exponential number
of possible paths for a service request. It is more convenient (and sufficient) to check against
the minimum-cost path only. If it was rejected, all other paths would be rejected. Next,
we propose an algorithm to find the minimum-cost routing and NF placement solution for
a unicast and multicast service request.

4.5 Routing and NF Placement Approximation Algo-

rithm

Due to Lemmata 1 and 2, the proposed admission mechanism guarantees that a violation
in the processing and transmission resources is always avoided if the exponential cost
functions are used for the physical links and NFV nodes with ¢ > In(2aL|D|* . + 2) and
¢ > In(2K :7]%): + 2). Therefore, it is sufficient to design a routing and NF placement
algorithm for the unconstrained (or uncapacitated) scenario. Here, we propose a one-
step algorithm for the routing and NF placement of unicast and multicast services for the
unconstrained scenario. The algorithm relies mainly on the construction of an auxiliary
multilayer network transformation that has a one-to-one mapping from the NF placement
and routing problem to an equivalent routing problem. This facilitates the use of existing
(approximation) algorithms, such as the Dijkstra shortest path for the unicast scenario
and MST-based Steiner tree for the multicast scenario.

4.5.1 Auxiliary Network Transformation and Routing and NF
Placement Algorithm

To jointly consider the provisioning costs of both NF (processing) and virtual links (trans-
mission), for each service request, we construct an auxiliary multilayer graph from the
network substrate, in which the constructed edges represent either (i) the hosting of a
virtual link or (ii) the processing of some NF type. For the sake of exposition, since the
joint routing and NF placement algorithm treats each service request separately, we drop
superscript 7 (which alludes to the rth service request) in this subsection.
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Algorithm 3: Joint routing and NF placement algorithm for a single service request
for the unconstrained scenario
1 Procedure unconstrainedJRP(G, S");
Input : Gy, S"=S5=(s,D, f1, fa,..., fiy,d)
Output: P
{GH(N®, IS < G(N, L)
s% < s (source node at layer 0 as source s);
DVl — D;
Lr—{}
for k=0:(]V|—-1) do
if n* € F, then
Add [ + (n*,n*1) to Lr;
Ci(r) = C(n®);

10 end

© 0 N o oA wWwN

11 end

12 For multicast services, find an MST-based Steiner tree from s° to D!, while
utilizing the cost functions in (4.22) and (4.23), and save on P;

13 For unicast services, find a Dijkstra shortest path from s to ¢!, while utilizing the
cost functions in (4.22) and (4.23), and save on P;

14 return P;

The auxiliary multilayer graph is modeled as a directed graph Gy; = (N, Lar), where
Ny € N'x X is the set that contains all nodes, in which node n (€ N) is present in a
corresponding layer a (€ X'); denote such a node by n®. Correspondingly, £y C Ny X Ny
is the set of all inter- and intra-layer edges. Intra-layer edges, £4 = {(u®, v%) € Lyla =b €
X'}, represent the routing connections between the network elements (nodes) in each layer.
Inter-layer edges, £; = {(u®,u®) € Lyla # b € X}, are used to encode the placement
decisions in which a traversal of an edge from one layer a (€ X’) to another layer b (€ &)
maps to the processing of the ath NF instance in a service request. Hence, for service
request S, the number of layers is equivalent to the number of NFs plus one (i.e., |X| =
V| +1).

Upon the arrival of the rth service request, we construct a multilayer graph G, as
follows:
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1. Create |X| (= [V|+1) copies of the network substrate G. Each copy (G'(N?, L)) rep-
resents one layer, where i = {0,...,|V|}. The transmission and processing resources
for each NFV node (n € ) and physical link (I € £) are equal in each copy;

2. Assign the source node to its corresponding node at layer 0 (= 5%, s € A);

3. Assign the destination nodes to their corresponding nodes at the last layer (= ¢,

iV e AV,

4. For the first |V| layers, construct inter-layer edges from layer i to layer i + 1 (I «
(n,n'*t1)) for each NFV node that can host f; (i.e., if n* € F;). The processing
resources of each inter-layer edge, [ < (n’,n'™!), is that of the corresponding NFV
node n’.

We provide an illustrative example of the construction of the auxiliary graph transformation
in Figs. 4.2 and 4.3. Fig. 4.2 illustrates a unicast service request of two NFs (f; and f5),
where the source is n; and the destination is ny. We also have a network substrate of 4
NFV nodes that can host either NF type or both. Fig. 4.3 illustrates the construction of
the auxiliary graph transformation. Since we have two NFs, the transformation has three
layers. NFV nodes n; and n3 can host f;. Therefore, we construct the inter-layer edges,
ni — n? and n} — n3. Similarly, n; and ny can host fy. Therefore, we construct the
inter-layer edges, n? — n3 and n2 — n3.

With the new auxiliary graph transformation, a path traversal (while considering only
the edge costs) from node s° to node ¢! represents a routing and NF placement solution in
the original network substrate graph. Algorithm 3 summarizes the online joint routing and
NF placement framework, which comprises the construction of the auxiliary graph trans-
formation with the minimum-cost routing algorithm for a unicast or multicast service. For
multicast services, the MST-based Steiner tree algorithm is a 2-approximation algorithm.
Therefore, the competitive-ratio of the admission mechanism for the multicast services is

O(2max{p, ¢}) = O(max{yp, ¢}).

Theorem 2. For unicast services, the overall time complexity of the online routing and
NF placement framework is O(hlogh), where h = |N'|(K + 1). For multicast services, the
overall time complexity is O(|D|2h>.

Proof. For an efficient runtime, the full construction of the auxiliary network transforma-
tion can be performed once in the beginning. With the arrival of a new service request,
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Figure 4.2: A problem input: (a) A network substrate along with the permissible NFs on
each network element, and (b) the logical topology of a service request.

Intra-layer edge

w3 nter-layer edge

Node ain layer b

Figure 4.3: The auxiliary network transformation for the problem input in Fig. 4.2.
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depending on the requested NFs, the relevant layers can be connected, while temporarily
deactivating irrelevant layers (by disconnecting them). The auxiliary network transforma-
tion is constructed by creating K +1 copies of the original network substrate and connecting
them. Therefore, the auxiliary transformation has h = |N|(K + 1) nodes. The major com-
ponent of the runtime is due to running the Dijkstra shortest path for unicast services and
the MST-based Steiner tree for multicast services over the auxiliary transformation, which
correspond to O(hlogh) and (’)(|D[2h), respectively. O

4.6 Discussions and Simulation Results

4.6.1 Discussions

On the obtained competitive ratio — As seen from the derivations in Subsection 4.4.1, to
bound the performance of the primal and the dual, exponential cost functions are used
for the physical links and NFV nodes. In doing so, if we can guarantee that the residual
resources for the physical links and NFV nodes are not violated, the admission mecha-
nism yields a competitive ratio of O(max{go,d)}) = O(max{ln aL|DIk.  In 6[(%})
However, the routing and NF placement problem for the constrained scenario is NP-
hard. Therefore, to protect against a possible violation in the resources without relying
on a constrained routing and NF placement algorithm, Lemmata 1 and 2 require that
¢ = In(2aL|D|F,. +2) and ¢ = In(26 K722 + 2) at least, for which the competitive ratio

is increased to (’)( max{ln 2« L|D* In28K %}) A consequential drawback is that the

max’
1

utilization of physical links and NFV nodes will not exceed 1 — i and 1 — 5 respectively.
Therefore, when ¢ or ¢ are relatively small, a considerable amount of processing and trans-
mission resources will be wasted. Hence, the online algorithm is expected to not perform

well for networks of a small size relative to the intended competitive performance.

On the design of profit function — The proposed framework applies for both unicast
and multicast services. Moreover, it includes both best-effort and mandatory NF types.
The profit functions allows a variation that depends on the maximum number of included
destinations and the maximum incentive for including the set of best-effort NFs. To this
effect, we can observe that the optimality is penalized due to the large variation of the
profit functions, where maximizing the amortized throughput only (i.e., with ¢" = d" and
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p" = C(f7)) improves the competitive ratio by a logarithmic factor in |D|* _ and Zmex

max min

respectively.

Recall that the derived competitive ratio is O(max{ln 2aL|D|% ., In 28K M}) In

max) min
k

T ax is larger than the maximum number of NFs (K). Therefore, the use

practice, L|D|
of an incentive for including the best-effort NFs can help to scale up the second term
without necessarily degrading the competitive performance, which offers an appropriate

generalization.

4.6.2 Numerical Analysis

In this subsection, we analyze three online algorithms. The first algorithm is the proposed
approximation algorithm with ¢ = In(2aL|D|*,. +2) and ¢ = In(28K°2 + 2) (as in
Algorithm 1). As shown, a resource violation is always avoided, and the competitive
performance is guaranteed. The second online algorithm is similar to the first one but with
¢ = In(aL|D|F,..+1) and ¢ = In(BK imax41). Here, resources are not necessarily protected
from future violations. As a heuristic algorithm, if the routing and NF placement solution
violates any processing or transmission constraint, it is removed. The third online algorithm
is a greedy algorithm that attempts to accept all services as long as there are sufficient
resources. The greedy algorithm resembles the heuristic algorithm but without invoking
the admission conditions in (4.19) and (4.20). That is, it is the output of Algorithm 2
(without Algorithm 1), and with an extra step of checking if the service request violates

any processing or transmission constraint.

In the experiments, we analyze the performance of the three algorithms on linear,
random, and real network substrate topologies. Throughout the experiments, we set the
scalarization coefficients (o, 3) to unity (since the processing and transmission resources are
appropriately scaled). Each NFV node can host 2/3 of the possible NFs in random. The
transmission and processing resources are randomly distributed between 1000 and 5000
packet/s. The required data rate for service requests is uniformly distributed between 1
and 20 packet/s. The processing rate requirement of NF instances are linearly proportional
to the incoming data rate C'(f") = d" [30]. In all trials, we terminate an algorithm when
it no longer can accept any request, i.e., when the network substrate instance reaches the
maximum possible utilization.

In the first experiment, we generate a directed network substrate with a linear topology
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Figure 4.4: Normalized aggregate throughput (9" + p") for the three algorithms for a linear
topology, with L = K = 4.

2.4
B Heuristic (¢ =In(L +1), ¢ = In(KI== + 1))

Nmin

227 mmE Approximation (@ = In(2L + 2), ¢ = In(2KI= + 2))

Amin

Greedy (¢ =In(L +1), ¢ = In(kK7= + 1))

2.0 A

Normalized aggregate profit

with incentive (n"= |V}| + |V],]) without incentive (n"=1)
Profit function

Figure 4.5: Normalized aggregate profit (¢" + p") for three algorithms for a linear topology
with and without incentivizing the use of best-effort NFs, with L =4 and K = 3.
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Figure 4.6: Normalized aggregate profit (¢" + p") for the three algorithms for two real
topologies, namely Bell Canada and CESNET REN, with K = 5 and L = 13 and 6,
respectively.

for unicast service requests. Each request has a random pair of source and destination
nodes, and an overall number of required NFs (|V"]) of 3, with the number of best-effort
NFs (|V}|) uniformly distributed between 0 and 3. The incentive for including the best-
effort NFs (n") is set to unity. Fig. 4.4 shows the normalized aggregate profit for the three
algorithms as the size of the linear network substrate (|[N]) grows, with L = K = 4. The
aggregate profit increases almost linearly for all the algorithms. The heuristic algorithm
(with ¢ = In(L + 1) and ¢ = In(K + 1)) outperforms the approximation algorithm (with
¢ =In(2L+2) and ¢ = In(2K +2)) by a constant gap of approximately 30%. Interestingly,
this is equal to the wasted utilization by the latter algorithm, which is given by 1 — i and
1— é for the transmission and processing resources, respectively. The heuristic algorithm
outperforms the greedy algorithm by almost 40%. When the network size is small, with
IN| = 8, the performance of the approximation and greedy algorithms is very close. This
is expected since ¢ and ¢ are not small compared to the size of the network. Moreover,
the approximation algorithm wastes a potential utilization of 30%.

In the second experiment, we aim to observe the effect of the incentive for including the
set of best-effort NFs (n") on the competitive performance. The experiment is performed
over a linear topology with 20 nodes. We generate unicast service requests, each with an
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Figure 4.7: Normalized aggregate profit (¢" + p”) for the heuristic and greedy algorithms
over random topology with |AV| =25, K =4, n" = 1, and L is set to the maximum hop
distance between any pair of nodes.

overall number of required NFs (|V"]) of 2, where either one or none of the NFs is set as
best-effort in random. Here, we set " to the number of included NFs; i.e., 7, = 2 and
nm = 1. Fig. 4.5 shows the normalized aggregate profit for the three algorithms. As
expected, when an incentive is used for including the best-effort NFs, the aggregate profit
is scaled up for all the algorithms, which implies service requests with best-effort NFs are
encouraged to maximize the aggregate profit. However, this comes at the expense of an
increased competitive ratio compared to the greedy algorithm. With an incentivized profit
function, the percent increase of the approximation algorithm to the greedy algorithm is
11%, whereas the percent increase without using an incentive is 39%.

Next, we evaluate the three algorithms on two real topologies from the Topology Zoo
dataset [99]. The first topology, namely Bell Canada, is a commercial topology with 48
nodes and 64 links. The second topology, namely CESNET, is a research and education
network (REN) with 52 nodes and 63 links. We generate unicast service requests with
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5 required NFs (|V"|). For each service request, the number of best-effort NFs (|V,]) is
uniformly distributed between 1 and |V"|. In this experiment, the design goal is to penalize
requests which would take unnecessarily long routes due to deploying NF instances that
are far-away from the shortest path between the source and destination. Therefore, for the
two topologies, we set L to the maximum shortest path between any pair of nodes, which
corresponds to 13 and 6, respectively for each topology. Moreover, we set K = 5 and n" = 1.
Fig. 4.6 shows the normalized aggregate profit for the two topologies. The approximation
and greedy algorithms have close performance, whereas the heuristic algorithm yields a
25% and 23% improvement for the two topologies.

The next experiment is to test the performance of the online algorithms on both mul-
ticast and unicast service requests over a random topology with 25 nodes (JNV| = 25). The
random topology is generated using the Barabasi—-Albert preferential attachment model,
which provides scale-free network topologies [100]. For each service request, the number
of destinations varies randomly between 1 and 4, and the number of required NFs in each
service request is uniformly random between 1 and 3. Recall that, to provide a non-
discriminatory treatment between unicast and multicast service requests, " o« |D|*, where
k is recommended to be 0.8. Fig. 4.7 shows the normalized aggregate profit for the online

heuristic and greedy algorithms as |D|yax grows for different values of k. The performance

k

max increases. However, the heuris-

of the greedy algorithm remains almost constant as |D|
k . increases, especially for large k (e.g, k = 0.8).
The experiment demonstrates that the competitive ratio of the online heuristic algorithm

is increased due to the allowed variation in the profit function (as |D|* . increases).

tic algorithm shows a downtrend as |D|
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Chapter 5

Model-free Dynamic Provisioning of
NFV-enabled Services

5.1 System Model

In this section, we present the system model for Problem III. Mainly, we generalize the
previous system models to consider the time-varying traffic pattern of the service request
and network substrate.

5.1.1 Network Functions and the Network Service

Depending on the operation semantics (which can be specified a priori), here we consider
that some NF types can be deployed in a parallel or sequential manner in geo-distributed
NFV nodes. We consider a unicast service with time-varying traffic demand, expressed as

S=(s,t,V,d(r)), 71€/(0,T] (5.1)

where the source and destination nodes are s and ¢, respectively; V = {fi, fa,..., fiy}
represents the set of NFs that need to be traversed in an ascending order for the source-
destination pair; parameter d(7), 7 € (0, T], denotes the required transmission rate at time
7 in packet/s. Each NF requires an amount of processing resources of C'(f(7)), 7 € (0,77,
in packet/s.
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5.1.2 Network Substrate

We are given a capacitated network substrate, G = (N, L), where N/ and L are the sets
of nodes and links, respectively. Each physical link [ (€ £) has a residual transmission
resource at time 7, By(r), 7 € (0,T], in packet/s. Each node n (€ N') has a residual
processing resource, Cy,(7), 7 € (0,7], in packet/s. Here, B;)(7) and C,(7) represent the
residual resources while taking into account the background traffic and the embedded
NF chain at time 7. Nodes can be either (i) switches that are capable of forwarding
traffic only (with C,(7) = 0), or NFV nodes (e.g., commodity servers) that are capable of
both forwarding traffic and operating a set of NF instances. An NFV node is capable of
provisioning a number of NF instances simultaneously as long as the available processing
resources satisfy the deployed NF processing requirements.

5.2 Problem Statement and Formulation

5.2.1 Problem Statement

Given network substrate G and network service S with time-varying data rate requirement,
we need to develop a dynamic joint composition, routing and NF placement framework
to minimize the function, link, and routing provisioning costs. We consider a system that
operates in a time-slotted fashion over a potentially large time span, where certain dynamic
decisions are taken at each timestep. Due to the bursty and time-varying nature of the
data rate, altering the routing and NF placement configuration at each timestep should be
discouraged due to the cost of setting up new NF instances.

5.2.2 Problem Formulation

An embedded NFV-enabled network service can be modeled as a composition of several
paths. Each path emanates from the source to the destination, and it traverses all the
required NF instances. Let all the possible paths for a single unicast service S be given by
P. Let P (€ P) be a path on the network substrate that is activated to (partially) host
the service request.
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Let zF (1) € {0,1} be a decision variable at timestep of constant duration 7, where
xl (1) = 1 indicates that link [ is used to direct traffic from s to the P-th instance of the
first NF (f] ) for path P (€ P), and z};(7) = 1 indicates that link [ is used to direct traffic
from f7 to fI ;. Correspondingly, define x/;(7) € [0,1] as a continuous ﬂow variable that
represents the fraction of flow used in link [ to direct traffic from f to f{; such that

iy () =d" (1) (7),
€ (0,T), PeP,leL, ic) (5.2)

where d”(7) € [0,1] is a continuous decision variable that represents the fraction of flow
assigned for path P, and Q7 denotes the set of integers from m to n (> m), i.e., QF =

{m,m+1,...,n}. To meet the total required transmission rate, we impose constraint
Y dP(r)=1, 7€(0,T). (5.3)
PeP

Define binary decision variable 2z (7) € {0, 1}, where z7(7) = 1 indicates that node n hosts
fF with an assigned fractional resources of C(ff (7)) € [0,1]. For each NF, to conserve
the distributive processing resource, we impose

> C(P@) =Cf), e (0,1),ie (5.4)

pPepP

The overall data rate from all activated paths should not exceed the link transmission rate,

Bi(1), i.e
V|

YN k(1) < Bi(r), leL, e (0,T) (5.5)

PeP =0
Moreover, the overall rate of the NF instances that are placed on an NFV node should not
exceed the node processing rate C,(7), i.e.,

VI

> X OUF @) < Culr), meN, T e (0.T]. (5.6)

i=1 PeP

Objective function: Different logical service topologies and embedding configurations
can incur different routing and NF setup costs. To route traffic that belongs to a service
request, a switch needs to add one routing entry in the forwarding table that specifies
the header and the next port (or physical link). Therefore, for the routing overhead, we
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consider that each physical link hosting the service request incurs an additional cost of
m [101]. Therefore, the routing cost is expressed as

VI

=>"> mayu(r), 7 € (0,T] (5.7)

=0 leL
where x;;(7) € {0,1} is a decision variable at time 7, where z;;(7) = 1 indicates that
25(7)" = 1 for some path P (€ P), and

af (1) < au(r), 7€ (0,T), PeP. (5.8)

The link and function provisioning costs can be expressed as

VI

=SS Y dr ““((:)), 7€ (0,7] (5.9)

1=01leL PeP

and
- 1)
=22 > =5 5 (), e (0T] (5.10)
i=1 neN PeP n(T)
respectively. We also consider the NF' instance setup cost, which is incurred only when
an NF instance is initialized at an NFV node. Let z,(7) € {0,1} be a decision variable,
where z,;(7) = 1 indicates that function f; is initialized on node n. Then, the NF setup
cost can be expressed as

VI

= > D mzl7), 7 € (0,7 (5.11)

neN i=1

where 7y is the NF setup cost which can include the installation cost and the respective
signalling overhead from the controller to the node, and

Z 2P (1) — Z 2P —1) < 24(7), T €[0,T). (5.12)

pPeP peP

In summary, the optimization problem for the dynamic joint composition, routing and NF
placement problem with time-varying data rate can be expressed as

T o4
minimize > wiek(T) (5.13a)

7=0 k=1
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subject to:

VI

vre (0,T),l€L :ZV: > k(1) < Bi(7T) (5.13b)
i=0 PeP
4

Vr € (0,T],neN D > C(ff () < Culr) (5.13c¢)
i=1 PeP
(5.2),(5.3),(5.4), (5.8), (5.12) (5.13d)

The problem in (5.13) is an online constrained problem since the data rate, d(7), is
revealed in an online manner, where the objective is to minimize the long-run provisioning
cost of the time-varying service request. Knowledge of the traffic pattern of the service
request and the background traffic is particularly crucial for the NF setup cost (c4(7)).

5.3 Deep Reinforcement Learning Framework

5.3.1 Reinforcement Learning Background

We consider a standard RL setting consisting of an agent interacting with an environment in
discrete timesteps, referred to as learning steps. A fully-observable environment is assumed.
At each learning step 7, the agent observes a set of states, produces a set of actions to affect
the states, and consequently receives a reward. Different from other learning paradigms
(e.g., supervised learning), RL addresses a sequential decision making problem in a holistic
manner, whereby an agent needs to find a desired behaviour (or policy) that maps the set
of states to actions to maximize both immediate and future rewards. The environment can
be stochastic. Formally, it is modeled as a Markov decision process with state space S,
action space A4, initial state distribution P(s;), transition probabilities P(s,11|s-,a,), and
reward function 7, (: § x A — R). Let the (discounted) accumulation of future rewards

be the return (R,), defined as
R, =39 (5.14)

where 9 € (0,1] is a discount factor that represents the present value of future rewards.
The larger ¢, the more farsighted the agent is, i.e., the more valued future rewards are.
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The agent aims to find a policy mapping that maximizes E;_[R.|s;], where E[-] is the
mathematical expectation. At learning step 7, the so-called action-value function (or @-
function) resembles the expected return after taking action a, while following policy A,
defined as Q*(s;,a,) = E[R,|s,,a,]. If policy \ is deterministic (i.e., A : S — A), the
recursive Bellman equation can be used to learn the action-value function as follows,

Q*(sr, ar) = Elr; + 9Q" (8741, m(5741))]- (5.15)

5.3.2 Pre-processing Stage

The described problem requires an end-to-end solution, whereby the design of service
topology, placement of NFs, and routing configuration on the network substrate should be
considered. Therefore, if approached naively, this problem can lead to an explosion in the
number of states (and actions) for network substrates of a moderate size. A large number
of empirical studies on the properties of real network substrates reveal that the average
path length for a source-destination pair is very small. This is due to the observation that
real networks tend to have a degree distribution with a power-law tail, which is known
as the small-world phenomena [102,103]. In such scale-free networks, the average path
length is asymptotically logarithmic in the number of nodes of the network substrate (i.e.,
= O(log |N])). Therefore, in practice, the average number of edge-disjointed paths is small.
Based on the aforementioned observations and to have a compact learning representation,
we model an embedded service topology as a composition of several NF placement and
routing configurations from the source to the destination. To generate the routing and NF
placement configurations, we utilize the multilayer network substrate transformation from
Subsection 4.5.1. Algorithm 4 summarizes the construction of the auxiliary transformation
and the generation of routing and NF placement configurations.

We provide an illustrative example of constructing the auxiliary graph transformation
and how service composition is incorporated in Figs. 5.1 and 5.2. Fig. 5.1 illustrates a
service request of two NFs (f; and f;), where the source is n; and the destination node
is ny. We also have a network substrate of 4 NF'V nodes that can host either NF type or
both. Fig. 5.2 illustrates the construction of the auxiliary graph transformation. Since we
have two NFs, the auxiliary transformation has three layers. NFV nodes ny, and n3 can
host fi. Therefore, We construct the inter-layer edges, nj — n3 and n} — n3. Similarly,
ny and ny can host f. Thus, we construct the inter-layer edges, n? — n? and n2 — nj.
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Algorithm 4: Construction of multilayer network transformation and generation of
several NF placement and routing configurations.

1

© 0w N o oA~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Procedure multipleJRP(G, S);

Input :G,S=(sD,fi,fo..., [y, d)

Output: P

> Construction of multilayer transformation G,

{GH(N*, LIS« G(N, L),

s% < s (source node at layer 0 as source s);

DVl D;

Ly« {}

for k=0:(]V|—-1) do
for n* € F, do

Add [ < (n*¥,n**1) to Ly;

C(l) = C(n*);
end
end

P {}
fori:=1:V do

t
]\?p — Gum;

end

end

Remove replicated path (or tree) configurations;

return P;

> Populating P with virtual segment-disjoint configurations

while 3 ShortestPath(Gyr®; s°, tV+1) do
P < ShortestPath(GirP; s°, tV+1);
Remove path for virtual segment f,—f; 11 from G

tmp,
M >
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Figure 5.1: A problem input: (a) A network substrate along with the permissible NFs on
each network element, and (b) the logical topology of a multicast service request.

With the auxiliary graph transformation, a path traversal (while considering only the
edge costs) from the source to the destination represents a routing and NF placement solu-
tion for the service in the original network substrate graph. Here, we have an illustration
of two different path traversals in Figs. 5.2-(a) and 5.2-(b). Let a path in the network
substrate from f; to f;11 be called a virtual segment. Using the multilayer transforma-
tion, we find all the virtual segment-disjoint paths as shown in lines 13-22 in Algorithm 4.
The intuition is that combining several paths yields a variety of service topologies and
embedding configurations. The desired behavior is to have a dynamic service topology
that changes depending on the traffic pattern of the service request in accordance with the
objective function in (5.13a). That is, the service topology should grow in size and shrink
(i.e., activate and tear down temporary NF instances) depending on the requested data
rate and the background traffic in the network substrate while taking the model-free traffic
patterns into account. For example, activating both paths in Figs. 5.2-(a), 5.2-(b) results
in the service topology in Fig. 5.2-(c).
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Figure 5.2: The auxiliary network transformation for the problem input in Fig. 5.1 with a
different path traversals from source to destinations in (a) and (b). Activating both trees
results in the logical topology shown in (c).

85



5.3.3 States, Actions, and Reward Function

Critical to the success of any RL framework is the design of an accurate yet compact state
space and action space that capture the relevant features in the environment and accurate
reward structure of the problem. In what follows, we describe the state space (S), action
space (\A), and the reward function.

Action space: Given the output of Algorithm 4, the action space is to choose which
paths to activate and what the assigned proportion for each activated path from P, i.e.,
a, = {d”(7)} pep, where S pepdf (1) =1 and a, € A.

State Space: At the beginning of timestep 7, the agent should proactively adjust the
service topology and the embedding solution of the service by relying on the available
states. Therefore, the state space is comprised of:

1. the data rate of the previous timestep (d(7 — 1));
2. the predicted data rate for the current timestep (d(7));

3. the utilization ratio of the network elements of all concerned paths in the previous
timestep, i.e.,

dPVEP (7 1)
—— Vlec L 5.16
b BG-1 7 C 10
and y Phnep
Clfi™ (r=1))
,Vn e N; 5.17
];3; Cn(r—1) " (5.17)

4. the path allocation of the previous timestep (a,_1).

Reward Function: The reward is to first maximize the additive inverse of the cost
function in (5.13a). Second, to incorporate the constraints in (5.13b) and (5.13c), we
penalize the reward function when a resource violation occurs in the physical links or NF'V
nodes. That is,

4
re == wker(T) + Y U+ > W), Tel0,T] (5.18)
k=1

lel neN

where ¢ € {0,¢;} and ¢!, € {0,1,} are penalty factors, such that ¢] = ¢, and ], = ¥,
are associated with violating constraints (5.13b) and (5.13c), respectively.
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The reward structure exhibits strongly conflicting objectives, which can hinder an ef-
ficient exploration in the learning algorithm. Moreover, the rewards have varying degrees
of sparsity. For example, the reward due to the routing cost (5.7) is only observed when
a path activates/deactivates, which occur when d”(7) € {0,1}, P € P. A more sparse
event is when a new NF instance is initialized at an NFV node. Therefore, we have a
reward structure that is sparse and more sensitive to certain changes in the action space.
One potential approach to tackle the challenges is to perform reward engineering, i.e., to
smooth and shape the reward function. In our case, shaping the reward can further hin-
der the exploration. Moreover, a shaped reward does not accurately reflect the intended
behavior, e.g., a smooth penalty for the resource violation can push the utilization ratio
of the physical links and NFV nodes to certain inadvertent levels. Therefore, to tackle the
aformentioned challenges, we propose a model-assisted deep RL algorithm as discussed in
the following.

5.3.4 Deep RL Algorithm

For RL problems with a large state space, the use of non-linear function approximators
is needed. Prior to the work of Mnih et al. [104], the use of deep neural networks (or
generally non-linear functions) as parameterized function approximators for learning the
action-value function was avoided due to the instability in the learning process. Mnih et al.
proposed the Deep Q-network (DQN), which can learn the action-value function with large
state space and small discrete action space. This success was achieved with two techniques,
namely through (i) the use of an off-policy replay buffer to break the correlations between
the sequential samples in the learning process, and (ii) the use of an earlier delayed replica
of the primary Q-network (called the target network) to stabilize the learning process [104].

Here, our proposed problem is online control with a continuous action space. In con-
tinuous action spaces, we need to find a policy that optimizes the action space at every
timestep through an iterative optimization process. Discrete learning algorithms, such
as Q-learning and DQN, cannot be applied directly. The DQN is suitable for problems
with a high-dimensional state space, yet it can only handle a discrete and low-dimensional
action space. In our context, a discretization of the action space is not practical as the
action space can grow exponentially for problems of moderate size due to the sensitivity
of the reward structure. Recently, Lillicrap et al. adapt the DQN to the continuous action
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domain through the use of an off-policy actor-critic architecture with a DDPG learning
algorithm [105].

Consider an approximate action-value function parameterized by 8% (Q(s,,a.|09)).
Such function can be optimized by minimizing the loss function,

L(69) = E[(Q(s-, a|6?) — y,)?], (5.19)

where Yr =77 + 79@(37+1a aTJrl‘eQ)'

The DDPG algorithm maintains a parameterized actor policy (u(s|60")) and a param-
eterized critic (Q(s;, a,|0%)) in a primary network. The actor policy maps the states to
a continuous action space. The parameterized critic function is learned using the Bellman
equation as in (5.19). The actor policy is updated by optimizing the expected return from
the start through the chain rule [105],

VguH =~ E[V@MQ(S, a)|9Q)|S:8T7a:u(ST|9u)}
= E|VaQ(5,@)|0%)) oo, azp(or) Vor11(s]0") o=, | (5.20)

For stability, the DDPG algorithm maintains a target network which is a replica of
the primary network with actor policy p/ (s|0“l) and critic @’ (sT,a,T|0Q/). The weights
of the target network are set to slowly track the primary network’s weights such that
09 = 009+ (1 —v)0?, and O* = vO* + (1 —v)0*, where v < 1. Parameter v represents a
tradeoff between the stability and the rate of the learning process. A very small v greatly
stabilizes the learning process at the expense of slowing the learning process.

Model-assisted exploration — The exploration procedure can be treated independently
from the learning algorithm because the DDPG is an off-policy algorithm. In the vanilla
DDPG algorithm [105], a perturbed exploration policy, fi(s,), is constructed by adding a
temporally correlated noise process directly to the action space, i.e., ji(s,) = u(s,) + n,
where n ~ OU(0, 0?) is the Ornstein-Uhlenbeck process. In each episode, the exploration
process will produce a different action for the same state since the (correlated) noise is
independent of the current state, s;. Such behavior is detrimental to our problem as
some events are very sensitive to the changes in the action space such as in (5.7) and
(5.11). A properly structured, state-dependent exploration methodology is to inject some
noise directly to the parameters of the actor’s deep neural network at the beginning of an
episode, such that #”% = 0" + n, where n ~ N(0,02) and 67 is the perturbed actor policy
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Algorithm 5: Model-assisted DDPG-based learning algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

25

Generate set of routing and NF placement configurations for S”;

Randomly initialize critic network Q(s,alf?) and actor network 1 (s|0");
Initialize target network @’ and ' with weights 09 < 69, 0 « o
Initialize replay buffer R;
fore=1: M do
Receive initial observation states si;
Create a perturbed actor network such that 6% = 6* + N(0, 02);
fort=1:7Tdo
if U(0,1) < e then
Select actions a; by solving (5.13);
Add noise to action (a; = a; + N(0,0°));
end
else
‘ Select actions a; from perturbed actor network fi;
end
Execute actions a;, and observe reward r; and new states s;;
Store transitions (S, as, ¢, S¢41) in R;
Sample a random mini-batch of N transitions (s;, a;,r;, S;+1) from R;
Set yi = 15 + Q' (Si41, 1 (8i41|0")[09);
Update critic by minimizing loss function using (5.19);
Update the actor policy using the sampled policy gradient using (5.20);
Update the target networks:
09 709 + (1 — 7)0¢
O TO" 4 (1 — 7))
end
Decrease e if bigger than zero (e + € if € > 0);
end
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[106]. Parameter o,, can be controlled by measuring its induced variance on the action
space [106]. Moreover, to aid the exploration process, we guide the learning algorithm
with some domain-knowledge as follows. With a small decaying probability (¢), choose a
perturbed action by invoking a step-wise version of the defined optimization problem in
(5.13), which can be solved by Gurobi solver.

Algorithm 5 summarizes the model-assisted DDPG-based learning algorithm. First,
using the proposed pre-processing stage, we generate a set of routing and NF placement
configurations for the service request (in line 1). Then, we randomly initialize the primary
and secondary actor and critic deep neural networks, and we initialized the replay buffer
(lines 2-4). At the beginning of each episode, we create a perturbed actor network by
injecting Gaussian noise to the parameters of the respective deep neural network (in line 7).
Then, for each timestep, we select an action vector from either the perturbed actor policy
or the perturbed step-wise solution with probability 1 — € and €, respectively (in lines 9-
15). The selected action vector is executed in the network substrate, for which a reward is
observed, and new states are produced (in line 16). Then, we store the previous transition
tuple (or experience), namely (s, @, 7, S¢41), in the replay buffer (in line 18). Here, then
we sample several transitions at random from the replay buffer to break the correlations
caused by sequential experiences. Then, we update the critic network by computing the
loss function using 5.19 (in line 20). Then, we update the actor network using 5.20 (in
line 21). Finally, we slowly update the target network parameters to track the primary
network (in line 22). After the end of each episode, we decrease step-wise exploration
factor € (in line 24).

Fig. 5.3 provides a pictorial representation of the main components in the model-assisted
DDPG framework. Here, we have two deep neural networks that correspond to the actor
and critic, respectively. The actor network takes the states as input and produces an action
vector. For the actor network, we apply a Softmax layer at the output layer to produce
an action vector that sums up to unity. The critic network takes the states and actions as
input and produces one output that corresponds to the action-value function (Q(s,,a,)).
We also have a temporary actor that produces the step-wise solution and is selected to act
with small decaying probability e.
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Figure 5.4: (a) A random topology with 30 nodes that is generated using the Bar-
basi—Albert preferential attachment model; (b) HTTP-type traffic trace.

5.4 Performance Evaluation

In this section, we numerically evaluate and analyze the performance of the proposed
model-assisted deep RL algorithm. To evaluate the efficiency of the proposed approach,
we use two benchmarks, namely step-wise optimization and vanilla DDPG algorithm. In
the step-wise optimization, we run an instantaneous version of (5.13) at each decision epoch
to maximize the instantaneous reward. The vanilla DDPG algorithm does not utilize the
domain-based exploration method that is described in Subsection 5.3.4. That is, for the
vanilla DDPG algorithm, we omit lines 9-12 from Algorithm 5.

Both learning algorithms employ 2 hidden feed-forward neural network layers with 32
nodes for both the actor and the critic. Also, we use a leaky rectifier (ReLU) as activation
functions in the hidden layers. The learning rates of the actor and critic are 10™% and
1073, respectively. The discount factor (¢) and the learning rate (v) are set to 0.99 and
0.001, respectively. The memory and batch sizes are set to 10° and 64, respectively, and
the variance of the action noise (02) is set to 0.1. For the model-assisted DDPG algorithm,
we set the probability of invoking the model-based solution to e = 0.08 with a decaying
factor of A = 1.001.
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Figure 5.5: Average reward per episode of the proposed model-assisted DDPG algorithm
compared to the step-wise optimization and the vanilla DDPG algorithm while varying the
randomization seeds in (a) and (b) over a random topology with 30 nodes.

For the traffic pattern of the network services, we utilize an open-source traffic trace that
is collected and maintained by the Widely Integrated Distributed Environment research
group [107]. The traffic trace is collected from a 96-hour traffic on four consecutive days in
2019. We extract the HTTP traffic (port 443) from the raw data packet trace. Based on
the timestamp of each packet arrival, we sample the number of packets every 10 minutes
as shown in Fig. 5.4-(b). Here, the traffic varies from 5 to 65 Giga packet/s.

For the network substrate, we use the Barbasi-Albert preferential attachment model
to generate scale-free random networks [103] (see Fig. 5.4-(a)). The transmission and
processing resources are randomly distributed between 25 and 55 Giga packet/s. We
consider that all nodes can be NFV nodes, where each NFV node can host 2/3 of the
possible NF types at random. The transmission and processing resources are randomly
distributed between 25 and 55 Giga packet/s.

First, we conduct a case study on the performance of the proposed algorithm and the
two benchmarks over a random network substrate with 30 nodes (|| = 30). We generate
a service request with one NF from node 23 to node 15. Fig. 5.5 shows the average reward
per episode for the considered problem setup with two different randomization seeds in
Figs. 5.5-(a) and 5.5-(a), respectively. As shown, the proposed model-assisted DDPG
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Figure 5.6: Performance of the proposed algorithm and the stepwise optimization over a
random network substrate as the network size and the number of NFs vary in (a) and (b),
respectively.

algorithm converges to a solution that outperforms the step-wise optimization, implying
that the temporal traffic patterns are learned and harnessed to minimize the NF setup cost
as the traffic varies. More specifically, it is observed that the proposed algorithm learns to
activate a new path (or install a new NF instance) only due to the long-run time-varying
characteristics rather than any short-term increase in the traffic demand.

Comparing the learning algorithms, we observe that the model-assisted algorithm is
more robust and is faster to converge and stabilize. In Fig. 5.5-(a), the model-assisted
algorithm stabilized after episode 400, whereas the vanilla algorithm stabilized after episode
750. In Fig. 5.5-(b), where only the randomization seed is changed, the performance of the
vanilla DDPG kept fluctuating and did not converge until episode 4000. This experiment
demonstrates how brittle is the Vanilla DDPG algorithm, as it has been observed to be
very sensitive to hyperparameters. The brittleness and hyper-sensitivity of the Vanilla
DDPG algorithm have been reported in other studies [108,109].

Next, we analyze the performance of the trained agent, i.e., the proposed model-assisted
algorithm after convergence. Similarly, we use the Barbasi—Albert method to generate
random network substrates. We repeat the experiment over different instantiations of the
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network substrate to measure the average performance. We generate a service request from
node 23 to node 15 with varying number of NFs. Due to the extreme brittleness of the
Vanilla DDPG algorithm, hereafter we only compare the trained model-assisted agent with
the step-wise optimization.

Fig. 5.6-(a) shows the average provisioning cost of the trained agent and the step-wise
optimization as the network size varies while the number of NFs is set to 1. We can observe
an increasing trend in the provisioning cost for both algorithms due to the increase in the
number of path lengths for the service request. We also observe an approximately constant
performance gap between the model-assisted algorithm and the step-wise benchmark since
the number of NFs does not vary for the same service request.

Fig. 5.6-(b) shows the average provisioning cost of the trained agent and the step-
wise optimization as the number of NFs varies. Here, the gap between the model-assisted
algorithm and the step-wise optimization widens as the number of NFs increases. This is
because the event of setting up and tearing down NF instances becomes more frequent for
the step-wise optimization as the number of NFs increases, thereby the inefficiency of the
step-wise benchmark becomes more pronounced.
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Chapter 6

Conclusions and Future Works

In this thesis, we investigate an orchestration and provisioning for NF'V-enabled network
services. Throughout the thesis, we emphasize on practical and flexible design consid-
erations to harness the capabilities of NFV and SDN and cater towards pervasive next-
generation networks. For example, we consider that multicast packet replication can occur
before the last NF in a service to cater towards geo-distributed services (in Problem I),
and that NFs can be mandatory and best-effort for increased flexibility in the admission
mechanism (in Problem II), and that NFs can be split in a sequential or parallel manner
to adapt to the time-varying traffic demand (in Problem III).

In more detail, in Chapter 3, we study a joint traffic routing and NF placement frame-
work for multicast services over a substrate network under an SDN-enabled NFV archi-
tecture. Within the framework, we first investigate a joint multipath-enabled multicast
routing and NF placement for a single-service scenario. Then, we extend the investigation
for a multi-service scenario. For the single-service scenario, we formulate an optimiza-
tion problem to minimize function and link provisioning cost, under the physical resource
constraints and flow conservation constraints. Our problem formulation is flexible as it
allows one-to-many and many-to-one NF mapping, and incorporates multipath routing by
constructing multiple trees to deliver the multicast service. The formulated problem is
an MILP, and thus can be solved to obtain optimal solutions as a benchmark. For the
multi-service case, we present an optimization framework that jointly deals with multiple
service requests. We aim to find an optimal combination of service requests and their joint
routing and NF placement configurations, such that the aggregate throughput of the core
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network is maximized, while the function and link provisioning costs are minimized. To
reduce the computational complexity in solving the problems in both scenarios, heuristic
approaches are proposed to find accurate solutions close to that of the optimal solutions.

In Chapter 4, we propose a joint admission mechanism and an online composition,
routing, and NF placement algorithm for unicast and multicast NFV-enabled services. We
consider services with multiple mandatory and best-effort NF instances, which is shown
to offer a natural generalization to previous works. Through a primal-dual based analysis,
it is shown that a provable competitive performance can be achieved, which can be tuned
depending on the allowed variability of the profit function and the desired optimality. The
online framework herein does not assume any statistical models on the arrival pattern of the
service requests, nor does it have any probabilistic assumptions on the sources, destinations,
and NFs. Therefore, the provided analysis provides a fundamental understanding of the
nature of the profit-maximization problem for NF'V-enabled services with multiple resource

types.

In Chapter 5, we develop a deep RL based dynamic provisioning mechanism for NFV-
enabled services. In Problem III, we take into consideration the transmission and processing
resources, the NF setup cost, and the routing overhead. The deep RL algorithm relies
on an actor-critic architecture with the DDPG algorithm. However, incorporating such
considerations renders the Vanilla DDPG algorithm incapable of consistently achieving
the desired behavior due to its notorious sensitivity to hyperparameters. Therefore, to aid
with the exploration process (which is a significant issue in RL problems) and to speed
up the convergence of the learning, we propose to leverage and integrate domain-based
knowledge obtained from a step-wise formulation with the deep RL algorithm.

Next, we highlight some avenues for future research. With regard to the routing and NF
placement problem, future research is needed to incorporate the E2E delay requirement to
achieve quality of service satisfaction. This is a challenging issue since directly expressing
the E2E delay as a function of the decision variables of an optimization problem in a
closed-form is cumbersome. However, given an embedded NF chain, one can model (or
measure) the E2E delay, upon which an (iterative) algorithm can be developed to re-adjust
the embedding solution of violated NF chains. For instance, Ye et al. propose an analytical
E2E packet delay modeling framework, based on queueing network modeling, for multiple
embedded NF chains while taking into account the computing and transmission resource
sharing [110]. By incorporating the aforementioned E2E delay model, a delay-aware NF
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chain embedding algorithm can be developed, which is left as open research.

For the online routing and NF placement problem, we presented a primal-dual frame-
work that incorporates the processing and transmission resource types with multiple manda-
tory and best-effort NFs. The analyzed worst-case competitive performance therein can be
improved by including more contextual assumptions (e.g., adding probabilistic/stochastic
assumptions). In doing so, the performance of the online algorithm is expected to be
improved, while retaining the robustness of the competitive analysis (at least in a prob-
abilistic/stochastic sense). Moreover, the problem of online multicast services, for which
destinations arrive in an online manner, is worth investigating.

As previously mentioned, the research community is in the early stages of incorporating
contemporary machine learning to networking and traffic engineering problems. Applying
ready off-the-shelf deep learning and deep RL algorithms do not apply directly in many
scenarios, thereby the need to adapt and modify RL algorithms to new domains. Traffic
engineering solutions need to be robust and consistent. Therefore, the integration of robust
and consistent conventional algorithms with RL can be useful. Moreover, in many network-
ing problems, one is faced with highly conflicting objectives, rare events, and a multitude
of constraints, for which carefully designed learning algorithms are needed. Scalability also
is a notable challenge in current deep learning algorithms, for which (partially) distributed
and multi-agent learning approaches can help.

Finally, we observe that efforts of the industry and the academia are shifting towards
developing the next generation of wireless (access) networks. To that end, the research
herein and the above ideas should be re-investigated for wireless access networks. For
instance, one can investigate the orchestration and provisioning of (multicast) NFV-enabled
services in wireless access networks, for which various new fundamental challenges arise
due to, for instance, the inherent broadcast nature of the wireless medium, the ubiquity
and heterogeneity of devices, and dynamicity of NFV nodes and users.
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