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Abstract

As part of the steps taken towards improving the quality of life, many of everyday life activ-

ities as well as technological advancements are relying more and more on smart devices. In the

future, it is expected that every electric device will be a smart device that can be connected to the

internet. This gives rise to the new network paradigm known as the massive cellular IoT, where

a large number of simple battery powered heterogeneous devices are collectively working for the

betterment of humanity in all aspects. However, different from the traditional cellular based

communication networks, IoT applications produce uplink-heavy data traffic that is composed of

a large number of small data packets with different quality of service (QoS) requirements. These

unique characteristics pose as a challenge to the current cellular channel access process and,

hence, new and revolutionary access mechanisms are much needed. These access mechanisms

need to be cost-effective, enable the support of massive number of devices, scalable, practical,

and energy and radio resource efficient. Furthermore, due to the low computational capabilities

of the devices, they cannot handle heavy networking intelligence and, thus, the designed channel

access should be simple and light. Accordingly, in this research, we evaluate the suitability of the

current channel access mechanism for massive applications and propose an energy efficient and

resource preserving clustering and data aggregation solution. The proposed solution is tailored

to the needs of future IoT applications.

First, we recognize that for many anticipated cellular IoT applications, providing energy

efficient and delay-aware access is crucial. However, in cellular networks, before devices transmit

their data, they use a contention-based association protocol, known as random access channel

procedure (RACH), which introduces extensive access delays and energy wastage as the number

of contending devices increases. Modeling the performance of the RACH protocol is a challenging

task due to the complexity of uplink transmission that exhibits a wide range of interference

components; nonetheless, it is an essential process that helps determine the applicability of

cellular IoT communication paradigm and shed light on the main challenges. Consequently, we

develop a novel mathematical framework based on stochastic geometry to evaluate the RACH

protocol and identify its limitations in the context of cellular IoT applications with a massive

number of devices. To do so, we study the traditional cellular association process and establish

a mathematical model for its association success probability. The model accounts for device

density, spatial characteristics of the network, power control employed, and mutual interference

among the devices. Our analysis and results highlight the shortcomings of the RACH protocol

and give insights into the potentials brought on by employing power control techniques.

Second, based on the analysis of the RACH procedure, we determine that, as the number of
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devices increases, the contention over the limited network radio resources increases, leading to

network congestion. Accordingly, to avoid network congestion while supporting a large number

of devices, we propose to use node clustering and data aggregation. As the number of supported

devices increases and their QoS requirements become vast, optimizing node clustering and data

aggregation processes becomes critical to be able to handle the many trade-offs that arise among

different network performance metrics. Furthermore, for cost effectiveness, we propose that

the data aggregator nodes be cellular devices and thus it is desirable to keep the number of

aggregators to minimum such that we avoid congesting the RACH channel, while maximizing

the number of successfully supported devices. Consequently, to tackle these issues, we explore the

possibility of combining data aggregation and non-orthogonal multiple access (NOMA) where we

propose a novel two-hop NOMA-enabled network architecture. Concepts from queuing theory

and stochastic geometry are jointly exploited to derive mathematical expressions for different

network performance metrics such as coverage probability, two-hop access delay, and the number

of served devices per transmission frame. The established models characterize relations among

various network metrics, and hence facilitate the design of two-stage transmission architecture.

Numerical results demonstrate that the proposed solution improves the overall access delay and

energy efficiency as compared to traditional OMA-based clustered networks.

Last, we recognize that under the proposed two-hop network architecture, devices are sub-

ject to access point association decisions, i.e., to which access point a device associates plays

a major role in determining the overall network performance and the perceived service by the

devices. Accordingly, in the third part of the work, we consider the optimization of the two-hop

network from the point of view of user association such that the number of QoS satisfied de-

vices is maximized while minimizing the overall device energy consumption. We formulate the

problem as a joint access point association, resources utilization, and energy efficient commu-

nication optimization problem that takes into account various networking factors such as the

number of devices, number of data aggregators, number of available resource units, interference,

transmission power limitation of the devices, aggregator transmission performance, and channel

conditions. The objective is to show the usefulness of data aggregation and shed light on the

importance of network design when the number of devices is massive. We propose a coalition

game theory based algorithm, PAUSE, to transform the optimization problem into a simpler

form that can be successfully solved in polynomial time. Different network scenarios are sim-

ulated to showcase the effectiveness of PAUSE and to draw observations on cost effective data

aggregation enabled two-hop network design.
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Chapter 1

Introduction

1.1 Massive M2M communication

The Internet of Things (IoT) is expected to have a high impact on several aspects of everyday-

life as it will help realize many intelligent applications such as environmental monitoring, smart

cities, intelligent transportation systems, and e-health applications. Applications of IoT also

extends to improving the efficiency of industrial production, automation, and robotics. Essen-

tially, IoT is anticipated to be a major economical player that will revolutionize earth in all

aspects. It is anticipated that there will be over 64 billion connected devices by the year 2025,

many of which are simple battery operated machines [57]. This gives rise to a new low-cost

communication paradigm known as machine-to-machine (M2M) communication (or machine

type communication (MTC)) which has been regarded as a fundamental enabling technology for

many IoT applications. M2M communication is a technology whereby a number of machines

communicate autonomously and collaborate to achieve a certain objective with minimal to no

human intervention [21]. M2M devices are referred to as machine type devices or devices for

short. Massive M2M applications are of especial interest as they pose new networking challenges

to be addressed.

Massive M2M communication is characterized by a large number of devices that produce

small data packets in a periodic or event-driven manner. Many devices are battery operated low

complexity and low mobility devices that are equipped with limited radio front-ends. Being quite

different from the traditional data-hungry human based applications which virtually have access

to infinite operational power, massive M2M communication has intrigued many research and

standardization efforts in the recent years [8]. According to various standardization bodies, such

as the 3A3 generation partnership group (3GPP) [101], the Institute of Electrical and Electronics

Engineers (IEEE) and the Internet Engineering Task Force (IETF) [8], M2M communication

will become an important source of traffic in future 5G networks. Out of the various 5G enabling

technologies, densified multi-tier cellular networks are seen as the most well suited technology for
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supporting the anticipated explosion in the number of connected devices, thanks to their wide

coverage area, high device capacity, low device energy consumption and mobility support features

[21]. Nonetheless, the major obstacles crippling their immediate suitability for massive M2M

communications are the load imbalance caused by the underlying sub-optimal user association

algorithm, cost inefficiency of network deployment, and the inefficient traditional cellular random

access channel (RACH) procedure [21, 35, 70]. Therefore, new networking solutions are needed

to efficiently support the predicted massive number of heterogeneous devices on future cellular

networks without resorting to expensive infrastructure alterations [31].

1.2 Motivations and objectives

The random channel access of the traditional cellular is not suitable to handle the unique char-

acteristics of M2M applications for multiple reasons [69]. First, most M2M applications are

event-driven, leading to a huge amount of simultaneous access requests sufficient to congest

the physical random access channel (PRACH) [35]. A congested PRACH results in sensible

network access delays, and reduces network good-put. Second, for M2M applications to be

economically viable, devices are expected to stay operational for a long time with minimum

maintenance. A congested PRACH results in energy wastage as devices have to initiate the

RACH procedure multiple times before associating successfully. Yet, devices are usually placed

at inaccessible locations, making it difficult to do battery replacement or use other sophisticated

energy harvesting mechanisms; thus, other means should be exploited. Third, by coexisting with

other applications, such as human-to-human communication, M2M applications are considered

a major threat that may lead to a significant decrease in the overall network quality of service

(QoS) as the radio channel becomes congested [116,126]. Last, in addition to performing poorly

under massive access, the random access process induces excessive signaling overhead, making

them inefficient for many M2M applications which are characterized by small-sized data pack-

ets sporadically transmitted by a massive number of devices [21, 70]. Consequently, to abide

by the delay and low energy consumption requirements of massive M2M communications and

avoid degraded QoS performance, alleviating congestion at the PRACH is seen as a key enabling

solution [67,70,120].

One way of alleviating the congestion of the PRACH is by introducing data aggregation,

where some of the devices are off-loaded through powerful data aggregation nodes. However,

utilizing data aggregators (DAs) leads to a multi-tier network architecture which introduces

multiple layers of complexity, although having many benefits such as enhancing energy conser-

vation of the devices by bringing the base stations (BSs) closer to them, increasing the number
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of supportable devices by densifying the number of serving access points (APs), and improving

the overall network performance by maximizing resource utilization and relieving congestion via

data offloading mechanisms. Different from single-tier networks, in multi-tier networks, devices

are located in areas with multiple APs to choose from. How devices associate with an AP

plays an important role in determining the overall network performance [83, 110]. Therefore,

to achieve the anticipated potentials of multi-tiered networks, optimizing user association is

crucial. Yet, in the case of data aggregation infused cellular networks, the aggregation nodes

are considered to be cellular devices that share the radio resources with other devices at the

BSs. Thus, compared to traditional optimization of user association, under the considered sce-

nario, the problem suffers from extensive dependencies between possible routes available for

data transmission. Accordingly, the problem is more complex and is in fact a multi-objective

optimization problem, the objective of which is to maximize the number of supported devices

at their QoS requirements, while minimizing their transmission power and improving the overall

resource utilization, taking into account the dependency between the devices and the DAs when

sharing the resources. Thus, the applicability of the available user association mechanisms is

limited and results in a sub-optimal solution for the inherently intertwined objectives for the

purpose of M2M applications.

Motivated by the potentials of future cellular networks for supporting massive M2M commu-

nication, in this PhD research, we investigate ways to overcome the above discussed shortcomings

to enable cost-effective and efficient massive cellular M2M communication. We tackle the sub-

ject from three inter-related perspectives. First, under heavy loading conditions, we analyze the

performance of the RACH procedure used by the devices to access the PRACH to identify its

limitations, and propose possible ways to improve its performance at the minimum possible in-

frastructural alteration. Second, we study the potential advantages brought by data aggregation

for the purpose of massive cellular M2M communications as a way of enhancing the RACH per-

formance as well as increasing its efficiency. However, different from the literature, we propose

to use non-orthogonal multiple access (NOMA) at the DA as a way of enhancing radio resource

utility and increasing the number of supported devices. Last, under data aggregation infused

cellular networks, we formulate and efficiently and optimally solve a multi-objective optimiza-

tion problem to improve energy efficiency and resource utilization via proper user association

and power control, taking into account the unique characteristics of massive cellular IoT appli-

cations. A detail discussion and the respective contributions of these perspectives are given in

Sections 1.3, 1.4, and 1.5 respectively.
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1.3 Random access channel procedure

With the proliferation in IoT applications, a large network that is made up of a massive number

of heterogeneous devices spread across a large surface area will be formed. Such unconventional

network brings many new networking challenges that have attracted attentions from many re-

searchers in recent years. Understanding the performance of a system is a key to overcoming its

shortcomings. In traditional cellular communication, for a device to transmit its data, it has to

first go through an association process that is done over the PRACH. According to the 3A3 Gen-

eration Partnership Project (3GPP), the number of IoT devices in the coverage range of a typical

base station is expected to exceed thirty thousand devices. Due to the random access nature of

the association process, with a such large number of contending devices, a massive number of

simultaneous access requests will be generated, resulting in congestion of the PRACH. A con-

gested PRACH introduces sensible network access delays, increases device energy consumption,

and reduces network good-put [70]. Therefore, to provide ubiquitous energy efficient and timely

connectivity, improving network access is crucial [74]. Yet, the solution should be economically

viable and comes at minimum infrastructural alteration [70,120].

In current cellular communication systems, devices use a contention-based 4-way handshake

procedure, RACH, to associate with their desired BSs over the PRACH. Thus, to understand

how cellular networks behave under massive M2M communications, analyzing the performance

of the RACH procedure is pivotal. In the first step of the RACH protocol, an active device,

with data to transmit, randomly chooses and transmits a preamble to its desired BS. The 3GPP

defines a fixed set of orthogonal preambles which is shared by all the devices in the network.

Thus, as the number of contending devices increases, the possibility of more than one device in

a cell choosing the same preamble simultaneously increases, leading to extensive access delays

and elevated levels of energy consumption [40]. This problem is known as the PRACH overload

problem and has been well studied in the literature. In fact, many of the proposed solutions have

already been implemented in the current cellular access network for the purpose of alleviating

congestion and enhancing system throughput [70, 120]. However, these solutions are yet to be

optimized for massive access scenarios such as IoT applications.

Thus, as a step towards improving the performance of the cellular access network when

supporting large-scale IoT applications, many researchers have studied the RACH protocol and

modeled its performance under massive access setting [44, 70, 75, 99]. Most of these studies are

based on the assumption that all colliding devices will be denied access and have to reattempt

the RACH protocol in subsequent opportunities [70]. Under this assumption, the RACH has

performance equivalent to that of the slotted ALOHA protocol. While this assumption is valid,
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with the recent improvements in the computational abilities of BSs and the introduction of

various multi-user detection techniques, it becomes possible for colliding devices to successfully

associate if their preambles are received with the signal to interference plus noise ratio (SINR)

above a certain threshold [45, 106]. Hence, with proper interference mitigation mechanisms,

the RACH performance can be enhanced. Accordingly, to investigate the RACH performance

under this new scenario, novel SINR models are needed to capture the added complexity due to

multi-user detection.

A powerful tool that has been used by many to model the SINR of various complex networks is

stochastic geometry [90]. Although these works lay the grounds for developing a mathematical

model for the RACH performance, they cannot be directly applied as the RACH procedure

exhibits a wide range of interference components that are not well studied in the literature. In

this research, with the help of stochastic geometry, we analyze the performance of the RACH

procedure via modeling the in-network interference components and deriving a mathematical

model for the association success probability. We consider a large number of stationary battery

powered and identical devices attempting data transmission simultaneously. devices use power

control which enables them to compensate for the attenuation due to propagation loss. The

model considers both inter-cell and intra-cell interference components as well as the spatial

distribution of the network. In this regards, the main contributions of this part of the work in

RACH performance analysis are summarized as follows:

• We present a novel mathematical framework for modeling the performance of the RACH

protocol under large-scale IoT applications. We model the SINR of the preamble trans-

mission and derive an expression for the instantaneous association success probability;

• The developed model is comprehensive as it accounts for various network parameters

including device density, spatial spread of the network, channel characteristics, association

policy, device power control, and the number of available preambles. The model highlights

the effect of both intra-cell and inter-cell interference factors on the success probability;

• The accuracy of the analytic model is corroborated via computer simulations;

• The joint effect of fractional power control (FPC), device density, and the SINR threshold

on the success probability is studied and the main trade-offs are highlighted.

1.4 NOMA-enabled cluster-assisted network

The overload problem, where the massive simultaneous access of devices congests the PRACH,

has been studied extensively and many solutions, such as ACB [70], EAB [42], randomized back-
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off schemes [121], prioritized random access [76], and many others [67,69], have been proposed.

However, based on our analysis of the RACH procedure, we see that the most promising solution

to enable massive MTC (mMTC) and avoid overloading the access channel is to used node

clustering and data aggregation [66, 87]. With clustering and data aggregation, devices do not

contend directly on the available resources at the BS; instead, they connect to a middle layer of

DAs which relay the data on their behalf in a two-hop fashion. By doing so, the number of devices

contending for BS radio resources decreases, reducing the chances for congestion. Furthermore,

devices consume less energy as the transmission distance is significantly shortened [48, 54, 84].

Furthermore, clustering can decrease the RACH overhead ratio by aggregating small data packets

into larger ones before transmission, leading to improved resource utilization.

Data aggregation has been utilized in other networks such as WSNs [1]. In WSNs. data

aggregation is often implemented by carefully localizing powerful data aggregation nodes at

optimal locations. However, this is feasible for networks of small to medium size. In the case

of massive MTC, the number of devices is very large. Hence, for data aggregation to be cost

effective, the cost of DA deployment should be kept to minimum, which may prohibit network

wide deployment of powerful aggregation nodes. Consequently, in recent research, other means

of cost-effective data aggregations have been proposed. Some suggest electing an MTC device

to become the cluster head of each cluster, while other propose to use nearby mobile phones as

relays [2, 53, 87]. Other researchers have also looked into utilizing UAVs, such as aerial drones,

to provide dynamic and optimized data aggregation and clustering when needed [54]. How to

aggregate data has been a hot topic of research in recent years. However, how to cluster is out

of the scope of this work. The objective is to minimize the number of deployed DAs such that

the network is cost effective while maximizing the number of supported devices at the required

QoS.

Given these potentials, recently, node clustering and data aggregation have been investigated

as possible solutions for enabling energy efficient mMTC while maintaining acceptable network

performance in terms of delay and throughput [36,74]. For instance, in [66], to study the impact

of clustering on the outage probability under different channel models, the clustering problem

is formulated to answer three main questions: how many clusters to form, what should be the

transmit power of the devices, and how the clustering decision depends on the networking envi-

ronment. The authors conclude that, with the proper choice of the number of clusters to form,

optimized network design can be achieved. In [48], Guo et al. consider a two-phase transmis-

sion system where the DAs take the responsibility of not only relaying data, but also handling

resource scheduling among active devices. It is shown that by properly choosing the number of
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aggregators, the number of successfully served devices can be enhanced. In [84], the clustering

problem is formulated as an optimization problem in order to determine the number of clusters

which results in the lowest energy consumption of the devices, with a hierarchical transmission

system of two or more hops. In [54], energy efficiency of cellular networks for massive IoT ap-

plications is studied under a drone assisted scenario. In [53], different deployment strategies for

the DAs are studied in terms of their impact on energy consumption and coverage probability.

In [87], an =-CSMA medium access for in-cluster transmission is proposed, and its impact on

the performance of clustered networks is studied, including the correlation between cluster size

and overall network performance in terms of energy and throughput. In [65], a two-stage ac-

cess for cellular IoT is considered, and queuing theory is used to analyze the delay performance

as a function of the device density. All the existing works emphasize on the effectiveness of

node clustering and data aggregation for enabling mMTC, while maintaining acceptable net-

work performance. They also show that, when dealing with a massive number of devices, data

aggregation becomes challenging and optimization of different design parameters is essential.

On the other hand, NOMA has recently gained attention as a potential medium sharing

scheme to improve the spectral efficiency and to increase the number of supported devices in

future 5G networks [108]. In NOMA, thanks to multi-user detection and interference mitigation

techniques such as successive interference cancellation (SIC) [104], multiple devices are allowed

to share the same radio channel simultaneously, leading to a higher user capacity and better

performance than traditional OMA [119]. Thus, a NOMA-based data aggregation framework

presents a promising solution to enable mMTC. Nevertheless, most of the existing works on data

aggregation for mMTC communications have focused on optimizing the network performance

with OMA based channel access [48, 84], and only a few have considered NOMA [7].

While these studies demonstrate the potential of NOMA as a method for supporting massive

connectivity in future cellular networks, further research on the potentials of NOMA-enabled

clustered operation is needed. Thus, in an effort to further explore the potentials of node

clustering and data aggregation in the context of mMTC, in this part of the research, we aim at

shedding some light on the impact of clustering on different network performance metrics such

as number of supported devices, energy consumption, and delay. We propose a new two-hop

NOMA enabled clustered transmission framework to support massive cellular IoT applications.

As we are considering NOMA, all of the above network parameters depend on the the severity of

the interference, which is a function of the number of devices sharing the same resource channel

as well as the transmission power of the devices. For this part, we mainly consider delay and

energy efficiency as the QoS metrics required by the devices. Accordingly, to be able to quantify
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the network performance metrics, we characterize the in-network interference components and

define the coverage probability in the system. We then utilize techniques from both queuing

theory and stochastic geometry to achieve tractable analytical results for the end-to-end delay

and energy consumption of the devices and DAs as functions of the defined coverage probability.

Our proposed framework captures the unique characteristics of future IoT applications, including

the small sized data packets generated by the devices, massive number of devices in the network,

and limited radio resources. Thus, in this regards, the main contributions of this part of the

work are summarized as follows:

• We present a novel NOMA-enabled two-hop network model for massive cellular IoT com-

munications. We develop a general analytical framework to obtain approximating yet

accurate mathematical models for the coverage probability, average number of served de-

vices, overall average access delay, and average energy consumption of a device and a

DA;

• Compared to the literature, our derived expressions are more comprehensive and thus

can be used to study the impact of various design parameters (such as device density,

DA density, device transmission power, and available radio resources) on delay, coverage

probability, and energy efficiency performance of massive cellular IoT applications;

• The accuracy of the analytic models are corroborated via computer simulations. Compared

with traditional OMA-based clustered networks, with the proper choice of the number of

clusters, our proposed solution improves the overall network performance.

1.4.1 Load balancing with data aggregation

Under data aggregation enabled approach, the cellular network is overlaid with a layer of DAs

which function as data collection nodes and relays. In these networks, devices have the choice of

directly connecting with BSs or going through DAs to transmit their data in a two-hop fashion.

Data packets from DA associated devices are first aggregated into larger data packets and then

transmitted from the DA to the BS. Data aggregation has the advantage of providing energy

efficient communication as the DAs are often at a closer proximity to the devices than the cellular

BSs. It also improves resource utilization as the smaller data packets are aggregated into larger

ones before transmission, reducing overhead in packet headers. Moreover, this approach presents

a scalable and an inexpensive alternative to small cell heterogeneous networks (SCHNs) and is

widely accepted in the literature.

As the devices have the option of choosing between single- and two-hop transmissions, and
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each provides different network performance, deciding to which AP devices connect is of critical

importance and should be carefully designed such that resource utilization is improved while

reducing the energy consumption of the devices. This problem is known as the AP association

(APA) problem. APA is similar to the traditional radio access technology (RAT) association

problem in SCHNs, where a device has the option of connecting to a small cell, a macro cell, or a

WiFi AP [80]; a topic of much current interest in LTE and 5G [3]. However, the main difference

between APA and RAT association is the fact that, devices in RAT association always transmit

their data to the network in a single hop whereas, in APA, they have the choice of using a two-

hop option. The difference introduces dependency between different APs in terms of resource

utilization, since DAs are considered as cellular users in this case and share the cellular resources

with directly connected devices [58].

Consequently, in this part, we aim at developing a novel APA method that jointly enhances

network performance and reduces the energy consumption of the devices, while catering for the

minimum throughput requirement in the network (different from part two of the work„ we do

not consider delay as part of the QoS requirements). We use a centralized approach to formulate

the APA problem as a mixed integer non-liner programming problem and develop a game theory

based heuristic algorithm to solve it. To the best of our knowledge, besides the very recent work

by Ibrahim et al. [58], the APA problem is new and is yet to be studied in depth. The main

contributions of this part of the work are listed as follows:

• Motivated by the findings from parts one and two of this work [90,92], that data aggregation

can alleviate congestion of the RACH channel in cellular IoT applications with massive

number of devices, we propose to use data aggregation as a cost effective way to improve

resource utilization and reduce energy consumption, while catering for the different QoS

requirements. The cellular network is overlaid with DA nodes that help off-load some data

traffic from the devices, leading to less congestion at the RACH channel. With proper

user association, power control, and resource allocation, the DA infused network can be

optimized to provide energy efficient access to a massive number of IoT devices;

• We consider joint optimization of AP association, efficient resource utilization, and device

transmission power control in a DA infused cellular network. The objective is to maximize

the number of QoS satisfied devices in service, while minimizing their total transmission

power. We consider the limitations on the maximum allowable transmit power of the

devices the heterogeneity of different APs in terms of available resources. We consider

the performance dependency between the APs which is the main difference between the

traditional RAT association problem in SCHNs and the APA problem considered here;
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• The original multi-objective joint optimization problem is mixed-integer nonlinear and

non-convex in nature, requiring discrete device-AP associations as well as discrete channel

assignments, while the transmission power of the devices is continuous within a range.

We propose a novel algorithm, referred to as PAUSE (Power control, resource Allocation,

User association, QoS Satisfaction and Energy consumption optimization) algorithm, to

effectively solve the optimization problem based on coalition formation game and difference

between two concave functions programming (D.C. programming) optimization theories;

• Using the proposed algorithm, we present three different case studies that help shed light

the impact of DA density and available resources on the number of supported devices and

their energy consumption.

1.5 Thesis objectives and outline

The objective of this PhD research is to develop radio spectrum and energy efficient cellular

channel access for the future anticipated massive cellular IoT applications that consist of a

large number of battery powered devices producing small data packets with stringent quality

requirements. In order to achieve this objective, the following steps have been taken.

1. Random Access Channel Procedure: In the first step, we study the RACH procedure

of the traditional cellular network and model its performance using tools from stochastic

geometry. We use the models to test the performance of RACH under different device

densities and power control factors. Using the results of this part, we draw on some

conclusions about the limitations of the RACH procedure that give insight on possible

solutions;

2. NOMA-enabled cluster-assisted Network: Based on the first part, we notice that as

the number of devices contending for the RACH preambles increase, the overall perfor-

mance of the network decreases. Thus, one way of solving the problem is to decrease the

number of simultaneous access requests. However, as some devices have stringent delay

and throughput requirements, using time spread may not be feasible. Thus, in the second

step, we propose to use data aggregation were devices are bundled into clusters each with

a cluster head to relay the data. This approach has the advantage of decreasing the con-

tention over the RACH preambles, however, without careful design, in-cluster congestion

may arise, leading to long delays and increased energy consumption. Hence, in this part,

we borrow tools from stochastic geometry and queuing theory to model and analyze the

two-hop data aggregation enabled network where we identify the overall system delay and
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throughput performance. Using the models, we draw on some conclusion on the relation

between the number of clusters formed and the performance of the proposed two-hop net-

work. We also show the advantages brought on by data aggregation compared to direct

connection via the RACH procedure. Further, as a step towards future networks, we in-

vestigate the potentials of using NOMA for in-cluster transmission as a way of improving

resource utilization and supporting larger number of devices. We dive into the pros and

cons of NOMA-enabled clustering and draw some conclusions that give insights on the

design process of optimized two-hop data aggregation networks that are cost effective,

delay aware and energy efficient, suitable for the anticipate future massive cellular IoT

applications;

3. Load balancing with data aggregation: In this part, we examine a more realistic

two-hop network made up of a layer of macrocell BSs overlaid by DAs. Different from the

first and second parts, devices can connect directly to BSs or to DAs that relay their data

in a two-hop manner. Performance of both routes is dependent as DAs are cellular devices

that share resources at the BS. In this network, device-AP association decisions become

of critical importance as they determine the overall network performance. Accordingly,

we tackle this issue by formulating the energy and resource efficient device association

problem as an optimization problem to determine the optimal association decisions that

results in the maximization of QoS satisfied supported devices.

The rest of this thesis is organized as follows: Chapter 2 reviews related research works

and provides the necessary background. Chapters 3, 4, and 5 entail the preceding three steps

taken towards the general objective of the Ph.D research respectively [90–92]. Finally, Chapter

6 provides conclusions and future work.
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Chapter 2

Background and Related Works

In this work, we study massive cellular IoT communications in two-tier cellular network. We

focus on two main research areas: massive access and user association. In this chapter, we first

introduce the massive access problem in the cellular network and we list the available solutions.

We then narrow the literature survey into three research topics: RACH uplink performance

analysis, channel access in clustered IoT applications, and load balancing via user association.

2.1 Massive access problem in cellular networks

To gain access in cellular networks, a device uses the four step random access channel procedure

known as the RACH procedure. The four steps are: 1) A device chooses (generates) a preamble

from a fixed set of preambles and transmits it to its desired BS over the PRACH; 2) Once the BS

receives and decodes the preamble, it sends a random access response (RAR) to the transmitting

device on the physical downlink control channel (PDCCH); 3) Once the device receives its RAR,

it transmits its control messages on the allocated uplink resource blocks on the physical uplink

control channel (PUCCH); 4) The BS then sends an acknowledgement indicating successful

association. The number of available preambles is limited; thus, as the number of contending

devices grows, the probability of multiple devices choosing the same preamble increases. Many

existing works assume that colliding devices on a preamble will be denied access, making the

performance of the RACH similar to slotted ALOHA. Thus, under massive simultaneous access

requests, the RACH performance degrades immensely. This problem is referred to by many as

the RACH overload problem.

As shown in Figure 2.1, many RACH overload control methods have been proposed. They

can be categorized into four categories: class barring, resource allocation, data aggregation, and

others. First, in class barring, devices are allowed to contend over the PRACH with a probability,

d021. The choice of the contention probability can be fixed or dynamically adjusted based on a

certain metric [35,70]. Prioritized class baring can also be achieved in a similar manner via using

multiple contention probabilities for different classes based on their service requirements [76,
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118]. Second, in resource allocation, different applications with different delay requirements are

allocated different sets of orthogonal preambles to contend over. Traditionally, the resources are

split such that delay tolerant applications are allocated smaller number of preambles compared

to delay intolerant applications. The preambles can be split in a preset or a dynamic manner [73].

Third, in data aggregation, devices are grouped into clusters with powerful nodes assigned as

cluster heads. A cluster head acts as a data aggregator and a relay that transmits the data

on behalf of its cluster members. Data aggregation has the advantage of lowering the number

of devices contending over the PRACH, at the cost of multi-hop communication [48]. Data

aggregation is not new as it has been the main enabling technology for WSN (see [1] and

the references within). Nonetheless, IoT applications present new challenges due to the massive

number of devices involved. Yet, existing works adapts many of the proposed solutions for WSNs,

but with a focus on aspects such as scalable channel access and energy efficiency [87]. Last, other

RACH overload control mechanisms introduced hybrid solutions that combine techniques from

the other three categories [67,120], whereas, others tackled the problem from different prospective

such as user association [52].

Figure 2.1: Survey of RACH overload control mechanisms

Most RACH overload control mechanisms have focused on maximizing the instantaneous

RACH success probability through temporal spreading of the access requests [52]. While the

results of those studies are promising, they do not tackle the core of the problem and they

lead to extensive delays [70]. On the other hand, data aggregation recognizes the inherent

inefficiency of the RACH procedure when supporting IoT applications. IoT devices generate
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short data packets that may be smaller than the overhead introduced by the RACH procedure.

Consequently, by combining individual data packets into larger ones, data aggregation not only

maximizes the instantaneous RACH success probability, but also enhances the overall resource

utilization [48, 87]. Thus, data aggregation is seen as a promising solution to the overload

problem, but at the cost of complex multi-hop communication [84,88,89].

2.2 Uplink performance analysis in cellular networks

To understand the limitations of the RACH procedure, deriving its success probability is crucial.

With the improvements in computational abilities of the cellular BSs and the introduction

of various multi-user detection techniques, interfering devices can still complete the RACH

procedure successfully if their transmitted preambles are received with SINR above a certain

threshold [45, 106]. Thereupon, to study the success probability of the RACH procedure, the

SINR should be modeled. Since RACH is a type of uplink transmission, in this section, we

review the available studies conducted on modeling the SINR in uplink cellular networks.

In the uplink of cellular communication, devices usually transmit in an uncoordinated man-

ner; hence, both inter-cell interference and intra-cell interference should be considered [37, 85],

especially in the RACH procedure [46]. Interference is a function of propagation distance and

channel conditions. The location of devices, being randomly deployed, complicates the SINR as

the relative locations of interfering devices should be taken into account. Thanks to its ability to

incorporate the spatial characteristics of networks, stochastic geometry has been used to model

the statistical conditions of many complex wireless networks [51]. Many researchers have used it

to analyze the coverage/outage probabilities through characterizing the SINR [9,31,37,38,113].

The accuracy of the produced models depends on two main aspects: spatial abstraction of the

network topology (i.e. locations of BSs and devices) and SINR characterization [10, 11]. How-

ever, each of these aspects is network dependent and should be properly adjusted to the network

under consideration for accurate results.

Most existing works focus on modeling the downlink performance due to its simplicity, where

the network topology can be accurately abstracted using a simple Poisson point process (PPP)

[17]. Closed form expressions for the coverage probability and rate have been derived [9,30,38,62].

However, analysis of the uplink transmission is more complex due to the uplink power control,

spatial correlation of interfering devices, device hardware limitations, and heterogeneity of the

devices [37, 85, 111]. Although modeling the locations of the devices in uplink transmission

using the simple PPP traces unrealistic scenarios that ignores the association policy employed,

many have used it to simplify the analysis [77,112]. The use of PPP is justified in the case when
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devices employ power control such that they form a Voronoi tessellation with a single BS located

in the Voronoi cell of each device [95]. To produce more accurate results, other uplink network

topology abstractions have been used. For instance, in [15, 111], the locations of the devices

are modeled as a form of Voronoi perturbed lattice process which retains some of the inherent

location dependencies among interfering devices, yet produces intractable mathematical results.

Although no closed form expressions are found, the results give insights on the complexity of

the uplink analysis with power control. There exists more accurate topological abstraction

to model the positions of interfering devices [32, 37]. These models account for the spatial

correlation between interfering devices and the serving BSs, at the cost of model complexity and

intractability [18].

In most existing studies on uplink modeling in single-tier cellular networks, it is assumed

that transmissions to the same BS is across a set of orthogonal channels such that no intra-

cell interference is present. Consequently, the SINR, used to conduct the performance analysis,

considers only inter-cell interference which greatly simplifies the derivations [37, 111]. However,

when studying the performance of the RACH procedure, this assumption is not valid as mul-

tiple devices can choose the same preamble and transmit at the same time anywhere in the

network, leading to both intra- and inter-cell interference which need to be incorporated when

characterizing the SINR. Accordingly, since intra-cell interfering devices tend to be closer to

each other than inter-cell interfering devices, they appear more clustered than dispersed. Thus,

more general point processes have been used to capture this cluster-spread structure such as

point cluster processes (PCP) [113]. Only a few papers have considered the impact of RACH

procedure on the uplink performance of single-tier cellular networks [45,46].

Additionally, there are limited studies on the uplink transmissions in multi-tier networks

[37, 111]. Different from single-tier networks, in multi-tier networks, devices are usually located

in an area with multiple BSs to associate with. This adds another dimension of randomness

that should be accounted for when modeling uplink transmissions [38]. For example, in [37],

devices are assumed to associate to the BSs according to their average link quality; in [111], the

association police is based on maximum downlink biased power. The association policy affects

the interference geometry by changing the minimum separation distance between a device and

its interferes; therefore, the spatial distribution of the BSs cannot be easily abstracted [38,39,51].

Many simplifications and assumptions have to be made before choosing an appropriate point

process for topological abstraction [38]. To the best of our knowledge, the RACH performance

is yet to be studied in multi-tier networks under a massive access.
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2.3 Channel access in clustered IoT communications

Data aggregation has gained interest as a possible way of supporting massive IoT applications

where devices are grouped into clusters and the cluster heads relay the aggregated data on their

behalf [48,84]. This is done in a multi-hop fashion where the devices form links to their serving

cluster head which then connects to the BS via the RACH procedure. Data aggregation has the

advantage of reducing congestion at the BS access channel as less number of devices will contend

over the PRACH. Devices can access their cluster heads in two ways: OMA and NOMA [109,119].

Table 2.1 lists the main advantages and disadvantages of OMA and NOMA. Most of the existing

works on data aggregation in massive IoT communications have focused on optimizing the delay

and energy efficiency of OMA based channel access solutions [48,64,84,105], and only a few have

considered NOMA [7]. These studies prove the potential of NOMA as a method for supporting

massive connectivity in future cellular networks in both uplink and downlink directions [108].

Table 2.1: Comparison between OMA and NOMA
Advantages [109,119] Disadvantages [109,119]

OMA
Low complexity receiver
Simple MAC design

Low spectral efficiency
Limited number of supportable devices
Extensive access delays under high loads

NOMA

High spectral efficiency
High number of supportable devices
Enhance user fairness
Low latency
Possible differentiated service

High receiver complexity
Increased network interference
High sensitivity to channel uncertainties

OMA based medium access control (MAC) protocols have been well studied and implemented

in many applications. Essentially, OMA based MAC protocols can be classified into three

categories: contention based, contention free, and hybrid protocols [27]. Contention based

protocols, such as ALOHA, perform poorly under heavy loading conditions, making them less

favored when supporting a massive number of devices. On the other hand, contention free

protocols, such as time division multiple access (TDMA) and frequency division multiple access

(FDMA), provide efficient spectrum utilization under heavy loads, but are inefficient under light

loads. Furthermore, for the large dynamic IoT networks, a huge amount of signaling would be

required to perform contention free based channel access. As for hybrid MAC protocols, they

combine features from both contention based and contention free protocols. The performance of

hybrid protocols highly depends on the transmission frame design [93]. As OMA allows devices

to share the resources orthogonally, it likely will lead to a bottleneck when supporting massive

number of devices.

On the other hand, NOMA has recently gained attention as a potential medium sharing

16



scheme to improve the spectral efficiency and increase the number of supported devices in the

future 5G networks [108]. In general, NOMA is capable of achieving higher user capacity and

providing better performance in both uplink and downlink transmission than traditional OMA

[14, 71]. The key idea of NOMA is to exploit other domains, such as code or power domains,

to allow multiple access, such that multiple users can share the same time/frequency/code

orthogonal resources [27]. Successive interference cancellation (SIC) is used at the receiver to

decode the superimposed message and separate signals from different users [104]. There are

two crucial aspects required for a successful NOMA: effective interference management and low

receiver complexity.

Several NOMA strategies, such as power domain NOMA and code domain NOMA are studied

and their potentials and challenges in both uplink and downlink cellular networks are identified

[27]. Devices, multiplexed on the same orthogonal resource block, generate an aggregate message

which is decoded by the receiver in a sequential manner starting with the signal of highest power

while dealing with the rest as noise [104]. The complexity of the receiver is directly proportional

to the number of devices transmitting on the same resource block. The optimal performance

gains of NOMA, in terms of throughput, energy efficiency and receiver complexity, are achieved

when multiplexing only signals from two devices per resource block. Signals from more than

two devices can be multiplexed with each other to increase device capacity, but at the cost of

degraded network performance and increased receiver complexity [5, 7, 123].

To multiplex more users while not compromising performance, user pairing strategies can

be used. User pairing is a way by which devices are grouped together according to specific

characteristics, such as transmission power, location, and throughput requirements, such that

the co-channel interference is managed and the aggregated message is correctly decoded with a

high probability. Pairing near users with far ones helps improve the decoding success rate and

thus achieves better rate performance and increases the number of supportable devices [4, 14].

If devices employ power control, random user pairing can be coupled with power allocation to

introduce controlled interference [33]. With proper power allocation among paired users, NOMA

improves the overall network performance in terms of user fairness and throughput [34,114,123].

User pairing and power control in the downlink is easier than in the uplink as, in the downlink,

the BS can act as a centralized entity overseeing the pairing/allocation process to achieve certain

network performance maximization. Although the BS can still control user pairing in the uplink,

it would require extensive amount of signaling to know the locations and the channel conditions

of the devices, which may limit its gains. Furthermore, devices engaging in IoT communication

are massive in number and may not be able to efficiently collaborate with each other to maximize
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transmission performance in a distributed manner [122]. Yet, NOMA can be paired with OMA-

based access schemes and still achieve performance gains if properly designed distributed power

control schemes are used [7, 24,124].

2.4 User association in multi-tier cellular networks

Conventional device association rules are based on maximum received signal strength (max-RSS)

or maximum signal to interference ratio (max-SIR) which are no longer the optimal association

for the multi-tier architecture of future 5G multi-tier networks. Due to the disparity in the

transmit power of the different tiers, using the max-RSS rule leads to a huge amount of devices

associating with the macro BS as it is transmitting at the highest power, leaving smaller cells,

such as pico- and femto-cells, with low or no load. This creates undesirable load imbalance in

the cellular network [12,26].

In release 10 by the 3GPP group, a device association scheme that is based on cell range

expansion (CRE) through biasing is proposed [62]. In CRE, the received power at the devices

from the small cell BSs are artificially altered by multiplying them with a tier specific biasing

factor that shall motivate more devices to associate with them. The effectiveness of this method

has been proven in recent publications [49, 82]. However, devices, forced to associate with the

small biased cells, experience a strong interference in both the uplink and downlink directions

[61]. Therefore, load balancing through biased device association has to be carefully designed

as to optimally trade-off load balancing and network throughput by carefully selecting the bias

values [23,56].

To choose the proper biasing factors for optimal device association, most existing works rely

on modeling utility based on a certain network performance, and optimizing it to achieve a

certain objective. To optimize user association, game theory, combinatorial optimization and

stochastic geometry are the most widely adopted tools for this purpose. Game theory is a

mathematical modeling tool used to analyze the interaction of multiple players and help assign

strategy such that an equilibrium (referred to as nash equilibrium) is reached. At equilibrium, a

player that changes its strategy will degrade the utility of others. In the user association realm,

players can be the BS [78, 79] or the users [50] or both [102] and the objective is to find the

best user association strategies to optimize network performance subject to the chosen metric.

Game theory is suitable for designing distributed algorithms which suits the user association

problem with mobility or randomness in traffic. It also has the advantage of not introducing

high overhead [117]. However, in multi-tier networks supporting massive IoT applications, game

theoretic approaches may be computationally expensive and time consuming. Furthermore, the
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players may not have the same objective, leading to irrationality among them [68].

Utility maximization using combinatorial optimization relies on defining an indication matrix

the elements of which refer to the device-BS association. The resultant problem is NP-hard in

general which may prove to be computationally prohibitive even for medium size networks. It can

be made into a convex problem by using relaxation methods and then invoking techniques such

as Lagrangian dual analysis [16]. However, due to the discrete nature of primal combinatorial

optimization, relaxation may lead to a duality gap between the primal and dual problems [81,

107]. Furthermore, the resulting solutions usually assume centralized architecture which is not

scalable and not necessarily present in IoT applications [47].

In stochastic geometry based analysis, the network is assumed to obey a certain point pro-

cess, which captures the network properties [11, 38]. Based on the specific properties of the

selected point process, analytic expressions can be derived for the interference, coverage proba-

bility, outage probability, and other network parameters [30,32]. Stochastic geometry can yield

tractable models irrespective of the size of the network being analyzed, making them suitable

for modeling massive IoT communications [51]. Stochastic geometry is mainly used for mod-

eling but not to find the biasing values; only a few have used it to solve the user association

optimization problem [77]. This is because a closed form expression of the performance metric

is not guaranteed especially in complex multi-tier networks, leading to possibly an NP-hard

user association optimization problem. Out of the three methodologies, stochastic geometry

emerges as a powerful tool suitable for analyzing massive IoT communications. However, it

has to be combined with distributed decision algorithms to produce effective user association

algorithms [107].

Table 2.2 summarizes most of the work done in the UA area based on the key performance

metrics (PM) used. As shown, most of the published work have focused on downlink analysis

as it was assumed that uplink and downlink are coupled; hence, optimizing the performance in

one direction would optimize the performance in the other. Nevertheless, according to recent

literature, decoupling uplink and downlink UA leads to large potential gains in network perfor-

mance [105]; hence, techniques used to optimize downlink UA may not be optimal for uplink

UA. Yet, uplink analysis are more complex due to the large number of devices and the lack of

coordination.

2.5 Summary

In this chapter, we discuss existing studies on uplink performance analysis in cellular networks,

channel access in clustered IoT communications, and load balancing through user association.
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Table 2.2: User association in HetNets
Ref. Tool UA mechanism Main PM Secondary PM Direction # of Tiers
[32]

Stochastic geometry
( modeling)

Max RSS

Coverage
probability

Spectrum efficiency
and slight improvement
in QoS. No fairness is
considered except in 115
where optimization
is done to the
logarithmic utility to
observe fairness.

DL

K-tier

[22] Max-RSS + spectrum
partitioning 2-Tier

[62] Biasing K-Tier
[110] K-tiers
[13] Biasing + spectrum

partitioning

K-tier
[103] K-tier
[77] K-tier

[37] Truncated channel
inversion PC

Outage
probability Spectral efficiency UL 1- & K-tier

[102]
Game Theory
(Distributed)

User association Spectrum
Efficiency

Fairness and some
form of QoS
provisioning

DL 2-tier
[79] UL 2-tier
[50] User association UL K-tier
[55] 1-tier

[47]
Combinatorial
Optimization

Orthogonal resource
allocation
(Centralized)

Spectrum
Efficiency Fairness DL 2-tier

[107]
pricing-based biased
user association
(Distributed)

Energy
Efficiency

QoS provisioning
+fairness DL K-tier

[76]
Biased small cells
+spectrum partitioning
(Centralized)

Spectrum
Efficiency
+Energy
Efficiency

QoS Provisioning DL K-tier

[97]
max-RSS + minimum
required transmission power
(Centralized)

Energy
Efficiency

QoS provisioning
+ some fairness UL 2-tier

The focus of this PhD research is to develop a general framework that enables IoT communication

on the future multi-tier cellular networks. The current cellular network is deemed inefficient

for IoT communications due to massive access problem, arising due to the RACH procedure.

However, this claim is not well supported with appropriate analytic models. Thus, proper

mathematical frameworks are needed to analyze the RACH performance of the cellular network

under heavy loading conditions. Stochastic geometry is seen as a powerful modeling tool that

have been extensively used for uplink modeling in large scale networks. However, most of

the existing models have considered inter-cell interference only. Due to the nature of the RACH

procedure, both inter- and intra-cell interference are present. Therefore, new analytic frameworks

are needed as the applicability of the current models may be limited.

Data aggregation is seen as a potential solution for alleviating RACH congestion but at

the cost of introducing multi-hop communications. Existing solutions have focused on mini-

mizing energy consumption by increasing the number of the clusters or by ignoring the delay

constraints of the IoT applications. Since data aggregation uses two-hop communication (i.e.

device→DA→BS), optimizing both transmission phases is crucial for the overall network per-

formance. To maximize the performance of the second phase, the number of DAs should be

minimized as not to congest the PRACH. However, decreasing the number of DAs may lead to

undesirable in-cluster congestion as the number of devices per cluster will increase. Given the

limited uplink resources available at the DAs, to support larger number of devices while keeping
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the number of clusters to minimum, new scalable channel access mechanisms are needed such

that the two-hop communication performance is not compromised.

Finally, in multi-tier networks, load balancing is necessary for optimal resource utilization.

However, existing load balancing mechanisms focus on data hungry applications and do not

take into consideration the unique characteristics of IoT communications. Furthermore, most of

the solutions have focused on downlink transmission to optimize network performance. On the

other hand, IoT applications produce mostly uplink data; thus, new specifically designed load

balancing schemes, suitable for the unique features of IoT applications, are urgently needed.
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Chapter 3

RACH Performance Analysis for Cellu-

lar IoT Applications

In traditional cellular networks, devices use the RACH protocol to first associate with their

desired BS before they are allowed to transmit their data in single hop fashion. The RACH

protocol is a contention based channel access mechanism where devices compete over a limited

number of preambles. Devices randomly choose and transmit their preambles to their desired

BSs. For a preamble to be successfully received and its owner be granted access, it should be

received with SINR above a certain threshold. Devices simultaneously transmitting the same

preamble interfere with each other, leading to possible in-accurate decoding at the BS and

resulting in denial of service. Devices that are denied service have to retry associating in next

random access opportunity (RAO) which leads to an increase in the delay incurred as well as

increases energy consumption. Quantifying and modeling the interference of the RACH protocol

is of critical importance especially that it is expected to remain the default association mechanism

in future cellular network. By providing accurate models, performance analysis can be conducted

and useful conclusions can be made to guide the design of future MTC technology. Accordingly,

the objective of this part of the work is to model the performance of the RACH procedure under

massive number of devices. We start by identifying and modeling the in-network interference.

It should be noted that we assume that the network is isolated, i.e., external interference from

other communication platforms is assumed to be zero.

3.1 Problem description

Interference is a function of the power of the transmitted preambles by all interfering devices. As

the transmitted preambles experiences path-loss attenuation and channel gain, the propagation

distance of a transmitted preamble exhibits a random component. Further, since preambles

are chosen randomly, this creates a random set of interfering devices on a preamble with ran-

dom propagation distances among them. This adds a complexity component when modeling
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the in-network interference. Capturing the randomness in the propagation distances and the

transmission power among interfering devices on a preamble is crucial for accurate modeling of

the SINR and for proper analysis of the performance the RACH protocol. Therefore, the spatial

characteristics of the network plays an important role in determining the SINR of any received

preamble in the network and shall be taken into consideration when evaluating performance of

the RACH protocol. In an attempt for developing a comprehensive RACH performance model

that takes into account various system variables, in this Chapter, we use stochastic geometry

to analyze the association success probability of the RACH protocol in a large-scale single-tier

cellular network that supports a large number of homogeneous IoT devices. Inspired by the

methodology in [111], we consider FPC and biased device association.

The rest of this Chapter is structured as follows. In Section 3.2, we describe the system

model under consideration. In Section 3.3, the spatial characteristics of the network are used

to characterize the interference components in the network. Section 3.4 presents a step-by-step

derivation of the association success probability for the RACH protocol. Section 3.5 discusses

the numerical and simulation results and summarizes the main findings. This study is then

concluded in Section 3.6.

3.2 System model

In this section, we first describe the spatial characteristics of the network under consideration,

and briefly summarize the RACH association process and the collision process among contending

devices. The physical channel model is then introduced with details on the power control

mechanism employed by the devices in the network.

3.2.1 Spatial description

As shown in Figure 3.1, consider a large-scale single-tier cellular network with identical BSs

that are spatially distributed in R2 according to a PPP Φ1 = {10, 11, 12, ...} with component

density _1 where 1 9 denotes the location of the 9 Cℎ BS. The network supports a massive number

(D) of stationary identical devices that are uniformly distributed across the plane. Devices

can be in one of two states: active or inactive. An inactive device has no data to transmit,

and stays in the sleep mode in which it switches off its communication module to save energy.

Inactive devices are not associated with any BS. Once a device has data to transmit, its state

changes from inactive to active. It then attempts to associate with its desired BS according to

the maximum received signal strength (max-RSS) association rule. A device receives orthogonal

preamble messages from multiple BSs. It decodes the preambles, determines the ID of each BS,
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and measures the downlink received power from each. It then starts the association process with

the BS from which it received the highest downlink power [59]. Devices are allowed to associate

with only one BS at a time. Once a device completes its data transmission, it switches off its

communication module and terminates the BS association; thus, new association is needed every

time that a device has data to transmit.

Figure 3.1: General system model for IoT communication. The dotes ”.” refer to the devices,
the triangles ”4” refer to the BSs.

Time is divided into equal transmission frames, referred to as A>D=3B, each of length ) , as

shown in Figure 3.2. Each A>D=3 is divided into 5 sub-frames, and each sub-frame has two slots:

RAO and a transmission period. A batch of devices becomes active at the beginning of each

A>D=3. Active devices are spatially distributed according to a PPP Φ3 = {31, 32, ...} with device

density _3 (>> _1) where 38 denotes the location of the 8Cℎ active device. A A>D=3 is sufficiently

long such that there will be no backlogged data at the devices from previous A>D=3B.

A device goes through two stages before it successfully completes its data transmission

[28,70]. The first stage is the association stage where the RACH protocol is invoked and it takes

place during the RAO slot of a sub-frame. The second stage is the transmission stage which

takes place during the transmission slot of a sub-frame. In the transmission stage, successfully

associated devices are allocated orthogonal resources over which they transmit their data [28].

Here we give a brief description of the first stage.

Every time a device becomes active, it uses the RACH protocol to associate with a BS

[28, 70, 89]. As shown in Figure 3.3, in the first step of the RACH, a device randomly chooses

(generates) a preamble and transmits it to its desired BS on the shared PRACH. In response,
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Figure 3.2: Channel access time frame structure

in the second step of the RACH protocol, the BS broadcasts a RAR message that consists of

the detected preamble index corresponding to the sequence sent by the device, along with other

control information. In the third step, the device uses the control information in the received

RAR to synchronize with the BS and awaits its dedicated uplink resource blocks (RBs) on

the physical uplink control channel. In the dedicated RBs, the device transmits a connection

request using a radio resource control message which contains identity information as well as

the amount of uplink resources required for it to transmit its payload. If the control message is

successfully received by the BS, an acknowledgment is sent to the transmitting device indicating

the assigned uplink orthogonal resources. Correct reception of the acknowledgement by the

device successfully completes its association [28,89].

All devices share a fixed number of preambles, # (<< D). All the preambles are equiprobable

to be selected, each with probability V = 1/#. Preambles are transmitted in broadcast manner

and thus are heard by all nearby BSs in the network. Therefore, all devices choosing the same

preamble and transmitting at the same time will interfere with each other at their respective

desired BSs. A device can successfully associate with its desired BS, if its preamble is received

with SINR above a threshold g1 at the BS. In Section 3.3, we characterize the SINR in the

network in details. For ease of notation, in the rest of this chapter, we use g instead of g1 to

indicate the SINR threshold for successful reception of a signal at the BS. It should be noted

that the following analysis is applicable under the assumption of homogeneous devices that have

the same QoS requirements and same hardware. In the case of heterogeneous devices, more

component of the RACH procedure should be taken into account; however, this is out of the

scope of this research.
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Figure 3.3: Two stage transmission process

3.2.2 Transmission model

Transmitted signals in both uplink and downlink experience propagation attenuation according

to a general power-law path-loss model. The signal power decays at rate �−U, where � is the

propagation distance and U is the path-loss exponent. Consider a Rayleigh fading channel that

introduces a random instantaneous power gain, 6, which follows an exponential distribution with

unity mean (i.e. 6 ∼ exp{1}). Channel gains are assumed to be distance independent as well

as independent of each other and identically distributed (i.i.d.). The channel also introduces

additive white Gaussian noise (AWGN) with received noise power, f2.

Devices employ FPC mechanism by which they adjust their transmission power to compen-

sate partially or fully for the propagation attenuation. Accordingly, denote the device trans-

mission power before performing FPC by the nominal power, @3, which is the same for all

devices [37]. For a device located at 3 and transmitting its preamble to a BS located at 1, the

received power at the BS is &A
3
= @3 | |3 − 1 | |−U6 in the absence of noise, where | |3 − 1 | | denotes

the Euclidean distance between the device and the BS. Now, using FPC, the device adjusts its

transmission power such that it can compensate for the attenuation due to propagation loss.

Therefore, the transmission power of the device after FPC is &C
3
= @3 | |3− 1 | | n U, where n ∈ [0, 1]

is the power control factor and is a design parameter that is fixed for all devices in the network.

If n = 1, the device achieves full power control; if n = 0, the device does no power control. Hence,

the power received at the BS is &�%�
3

= @3 | |3 − 1 | | (n−1)U6. In order for a device to transmit

its signal, its maximum allowable transmission power should be high enough for the fractional

26



path-loss compensation to be achievable. For the purpose of this Chapter and to be able to

develop a model and test the limits of the network under consideration, we do not consider the

maximum transmission power limitation of the devices; and assumption that has been made

by many in the literature for the sake of simplicity [37, 111]. However, the uplink transmission

limitation is considered in Chapter 5.

3.3 SINR characterization

Since the set of preambles is shared by all the BSs in the network, as shown in Figure 3.4, there

are two types of interference in the network: intra-cell interference (�8=) and inter-cell interference

(�>DC). Note that hexagonal cells are used in the figure for illustration purposes only. Due to

the randomness in the channel, channel fading and path-loss attenuation, each cell will have

a random coverage area that follows Voronoi cell tessellation. Intra-cell interference is due to

transmissions from devices choosing the same preamble while associated with the same BS,

whereas inter-cell interference is due to transmissions from devices choosing the same preamble

and associated with different BSs.

Figure 3.4: Types of interference in a single tier network

Since devices choose their preambles randomly and independently, interfering devices on the

=Cℎ preamble can be spatially modeled by a thinned PPP Ψ= = {3=1 , 3=2 , ...} with device density
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_= = V_3, where 3=8 denotes the location of the 8Cℎ device interfering on the =Cℎ preamble for

= = 1, 2, ..., #. Note that all active devices have to choose a preamble to transmit; therefore,

Φ3 = ∪#==1Ψ=. Also, let Ψ= 9 = {3=91, 3=92, ....} denote the location set of intra-cell interfering devices

on the =Cℎ preamble and are associated with the 9 Cℎ BS for 9 = 0, 1, 2, ... and = = 1, 2, ..., #.

The combination of those sets constitutes the total location set of all devices choosing the =Cℎ

preamble across the network (i.e. ∪ 9Ψ= 9 = Ψ=)).

3.3.1 SINR mathematical representation

Without loss of generality, we focus on a typical BS and its associated typical device. The

coordinates are shifted such that the BS is located at the origin (i.e., 1 = (0, 0)). According

to Slivnyak’s theorem [51], the presented analysis can be generalized for any generic device-BS

pair located anywhere in the network. Both the typical BS and the typical device are indexed

by zero (i.e., 9 = 0 and 8 = 0). That is, the typical device associating with the typical BS via

transmitting the =Cℎ preamble is located at 3=
98
= 3=00. For ease of notation, let BS0 denote the

typical BS and device0 denote the typical device.

Now, let Ξ=
98
denote the SINR level of the =Cℎ preamble transmitted by the 8Cℎ device that is

associated with the 9 Cℎ BS. Hence, for device0 associating with BS0, the SINR of the received

preamble is given by

Ξ=00 =
@3 | |3=00 | | (n−1)U60

�8= + �>DC + f2
. (3.1)

In (3.1), �8= and �>DC are given by

�8= =
∑

3=08 ∈Ψ=0/{3=00 }
@3 | |3=08 | | (n−1)U68 (3.2a)

�>DC =
∑
9≠0

∑
3=
98
∈Ψ= 9

@3 | |3=98 − 1 9 | | n U | |3=98 | |−U68 (3.2b)

where 68 is the exponential channel gain with unity mean experienced by the 8Cℎ device, Ψ=0/{3=00}

is the set of locations of intra-cell interfering devices associated with BS0 excluding the location

of device0, | |3=98 | | denotes the Euclidean distance between the 8Cℎ inter-cell interfering device and

the origin, and | |3=
98
− 1 9 | | is the Euclidean distance between the 8Cℎ inter-cell interfering device

and its serving BS (the 9 Cℎ BS). Note that | |3=00 | |, | |3=08 | |, | |3=98 | |, and | |3=98 − 1 9 | | are all random

distances as they depend on the locations of the device and the BS. In the rest of this chapter,

these random distances are referred to as link lengths as defined below.
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3.3.2 Link length characterization

A link length refers to the Euclidean distance between a device and a BS. Since devices transmit

in the uplink direction in a broadcast manner, the signal from each device is received by all BSs.

Therefore, there is a link length between each device and each BS in the network. These link

lengths can be classified into 4 types. As shown in Figure 3.5, the 4 types of link lengths are: 1)

between device0 and BS0 ('=00 = | |3=00 | |), 2) between the 8Cℎ intra-cell interfering device and BS0

('=08 = | |3=08 | |), 3) between the 8Cℎ inter-cell interfering device and the 9 Cℎ BS (i.e. its serving BS)

(.=
98
= | |3=

98
− 1 9 | |), and 4) between the 8Cℎ inter-cell interfering device and BS0 (-=

98
= | |3=

98
| |).

Figure 3.5: Link length of inter-cell and intra-cell interfering devices

Let / denote the distance between any device and its serving BS. Since BSs are distributed

according to a PPP with density _1 and devices are allowed to associate with only one BS at a

time, / has cumulative density function (CDF) given by the void probability of the PPP defined

as [51]

�/ (I) = exp
(
−c_1I2

)
. (3.3)

Accordingly, from (3.3), the probability density functions (PDF)s of '=00, '
=
08 and .

=
98
can be

shown to follow a Rayleigh distribution defined as [51,111]

5/ (I) = 2c_1I exp
{
(−c_1I2)

}
. (3.4)

As for -=
98
, it is possible that an inter-cell interfering device is located closer to BS0 than
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some of the devices located inside the Voronoi cell of BS0. This phenomena is due to the Voronoi

tessellation formed by the the spatial abstraction of the BS locations using PPP (see Figure 3.5).

Thus, there is no exact way of differentiating between inter- and intra-cell interfering devices.

One way of establishing the segregation is by assuming that a device is inter-cell interfering if

at least one BS, other than BS0, is located within a ball of radius ℎ centered at the device.

The probability of this event is the complement of the void probability of the PPP, given by

1 − exp
(
−c_1ℎ2

)
. Accordingly, the set of inter-cell interfering devices can be spatially modeled

using non-homogeneous PPP with density _=� = _= (1−exp
(
−c_1ℎ2

)
) with respect to the typical

BS. Under this assumption, there is no exact distribution for -=
98
[51].

3.4 RACH performance analysis

For a device to successfully associate with its desired BS, its transmitted preamble should be

received with an SINR above threshold, g. Let Θ(Ξ=
98
) denote the association success probability

of the 8Cℎ device with the 9 Cℎ BS via transmitting the =Cℎ preamble. Since preambles are orthog-

onal, the following analysis is valid for any preamble. Without loss of generality, we focus our

analysis on device0 associating with BS0 located at the origin via transmitting the =Cℎ preamble.

The association success probability of this typical device is defined as

Θ(Ξ=00) = %(Ξ=00 > g) = %
(
@3 | |3=00 | | (n−1)U60

�8= + �>DC + f2
> g

)
(3.5)

As 60 is exponentially distributed with unity mean, (3.5) can be written as (see Appendix

A.1)

Θ(Ξ=00) = � | |3=00 | |

[
exp{− g

@3
| |3=00 | | (1−n )Uf2}L�8={

g

@3
| |3=00 | | (1−n )U}L�>DC {

g

@3
| |3=00 | | (1−n )U}

]
(3.6)

where L�8={.} and L�>DC {.} denote the Laplace transforms of intra-cell and inter-cell interference

components respectively.

For notational simplicity, let B = g
@3
| |3=00 | | (1−n )U such that, given | |3=00 | |, (3.6) can be rewritten

as the conditional success probability given by

Θ(Ξ=00 |3=00) = exp{−Bf2}L�8={B}L�>DC {B}. (3.7)

To calculate the Laplace transforms in (3.7) and find the association success probability,

the number of devices in one Voronoi cell needs to be calculated first. Since the number and

locations of active devices at the beginning of each transmission A>D=3 are random, the number

of devices in each cell is also random. In the following, we derive an approximation for the
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average number of devices within each Voronoi cell using device density and area of the coverage

cell.

3.4.1 Average number of devices in a cell

Let "0 denote the total number of active devices located in the Voronoi cell of BS0. Denote

%("0 = <) as the probability mass function (PMF) of "0. Since the locations of active devices

follow a PPP with density _3 and the BSs form a Voronoi tessellation, the number of active

devices inside the coverage area of any BS follows a conditional Poisson distribution given by

[51,125]

%("0 = < |+) =
(_3+)<4−_3+

<!
(3.8)

where + is the area of the Voronoi cell of the BS which is random in nature. The exact dis-

tribution of + is not known [51]; however, it can be approximated by a generalized Gamma

distribution given by [41]

5+ (E;_1, 2) =
_2
1
E2−14−_1E

Γ(2) (3.9)

where 2 = 3.575 is a constant defined for the Voronoi tessellation in R2 [96] and Γ(2) =∫ ∞
0
C2−14−C dC. Therefore, the unconditional PMF of "0 is approximately given by

%("0 = <) =
∫ ∞

0

(_3E)<4−_3E
<!

5+ (E;_1, 2) dE

≈
_2
1
_<
3
Γ(< + 2)

Γ(2) (_1 + _3)<+2<!
. (3.10)

Accordingly, the average number of active devices in a Voronoi cell in this network is given

by (see Appendix A.2)

"̄0 =
WZΓ(2 + 1)
(1 − Z) (2+1) (3.11)

where W = _2
1

Γ (2) (_1+_3)2 and Z = _3
_1+_3 .

Due to the uniformity of the device distribution, the average number of active devices in the

Voronoi cell of any BS is the same, i.e., "̄ 9 = "̄0 for 9 = 1, 2, .... For simplicity, we assume that

the number of devices in each cell is high enough such that there is at least one device on each

preamble. As devices randomly choose the preambles and each preamble is equiprobable to be

chosen, we assume that active devices will be divided equally across the # available preambles.

To insure that the number of active devices is integer, define "̄∗
9
as the rounded-up average

number of active devices in a cell to the nearest multiple of # (i.e., "̄∗
9
= d "̄0

#
e for 9 = 0, 1, 2, ...).

Accordingly, let "̄=
9
denote the average number of devices interfering on the =Cℎ preamble and
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associated with the 9 Cℎ BS for 9 = 0, 1, 2, ... and = = 1, 2, ..., # . Then, "̄=
9
is given by

"̄=
9 =

"̄∗
9

#
∀= 0=3 ∀ 9 . (3.12)

Since the average number of devices in each cell is the same and the preambles are equiprob-

able to be chosen, for simplicity of notation, the superscript and subscript are omitted and thus

for the rest of the analysis, we have "̄ = "̄=
9
to denote the average number of intra-cell interfer-

ing devices on any preamble and associated with any BS. Using the above results, expressions

for the Laplace transforms of the interference components in (3.7) are derived next.

3.4.2 Interference Laplace transforms

As a further simplification, we assume that each BS will have exactly "̄∗ = # · "̄ active devices

located within its Voronoi cell at the beginning of each A>D=3. Although this assumption is

dubious, it will help reduce the complexity of the Laplace transforms. The accuracy of this

assumption is validated by means of simulations as will be shown in the results section.

Intra-cell interference is due to devices transmitting the same preamble while attempting to

associate with the same BS. For device0 associated with BS0, intra-cell interference is a function

of the distance from devices located in the Voronoi cell of BS0 to the origin. The Laplace

transform of �8= is approximately given by (See Appendix A.3)

L�8={B} = ��8= [exp{−B�8=}]

= �68 ,B, | |3=08 | |

exp{−B@3
∑

3=08 ∈Ψ=0/{3=00 }
| |3=08 | | (n−1)U68}


≈

(∫ ∞

0

5'= (A)
1 + B@3A (n−1)UdA

) "̄
(3.13)

where 5'= (A) is the i.i.d. PDF of '=08 (for different 8 values) given by (3.4).

Inter-cell interference is due to devices located outside the Voronoi cell of BS0. Inter-cell

interfering devices adjust their power to compensate for the path-loss attenuation based on the

distances to their serving BSs. For simplicity, assume that the locations of inter-cell interfering

devices are modeled by a homogeneous PPP of density _= [51]. This assumption is valid when the

density of the BSs is high enough, such that the area of the Voronoi cells of each BS becomes

very small. With omni-directional antennas, transmissions from inter-cell interfering devices

generate interference at BS0. The Laplace transform of the aggregate inter-cell interference is

approximately given by (see Appendix A.4)

L�>DC {B} = ��>DC [exp{−B�>DC }]
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= �68 ,B, | |3=98−1 9 | |, | |3
=
98
| |

exp{−B@3
∑
9≠0

∑
3=
98
∈Ψ= 9
| |3=98 | |−U | |3=98 − 1 9 | | n U68}


= �68 ,B,. =98 ,-

=
98

exp{−B@3
∑
9≠0

∑
3=
98
∈Ψ= 9

(.=98) n U (-=98)−U68}


≈ exp

(
−2c_=

∫ ∞

H

[
1 −

(∫ ∞

0

5. = (H)
1 + B@3H n UG−U

dH

) "̄ ]
G dG

)
(3.14)

where 5. = (H) is the i.i.d. PDF of .=
98
(for different 8 and 9 values) given by (3.4).

Substituting (3.13) and (3.14) into (3.7), the final form of the general conditional success

probability, as a function of f, g, _=, U and n , conditioned on B, is given by

Θ(Ξ=00) (f,g,_= ,U,n |B) = exp{−Bf2}L�8={B}L�>DC {B}

≈
[
4
−
(
Bf2+2c_=

∫ ∞
H

[
1−

(∫ ∞
0

5.= (H)
1+B@3Hn UG−U

3H

) "̄ ]
G3G

) (∫ ∞

0

5'= (A)
1 + B@3A (n−1)UdA

) "̄ ]
. (3.15)

Since the preceding analysis is applicable to any device-BS pair, let the general association

success probability for any device-BS pair be denoted by Θ0B. In (3.15), B = g
@3
| |3=00 | | (1−n )U is a

function of the random distance | |3=00 | | between the BS0 and device0. For notational simplicity,

let , be the random distance between device0 and BS0 such that , has a PDF �, (F) given

by (3.4) (i.e. , = '=00). Assuming an interference limited network (i.e. f = 0), which is a

valid assumption when the number of contending devices is large, the unconditional association

success probability as a function of f, g, _=, U and n is given by

Θ0B = �, [Θ(Ξ=00)(f,g,_= ,U,n |F) ]

=

∫ ∞

0
Θ(Ξ=00) (f, g, _=, U, n, F) 5, (F) dF

=

∫ ∞

0
Θ(Ξ=00) (f, g, _=, U, n, F)2c_1F4−c_1F

2
dF

≈ 2c_1

∫ ∞

0
F

(∫ ∞

0

5'= (A)
1 + gF (1−n )UA (n−1)UdA

) "̄
4
−
(
c_1F

2+2c_=
∫ ∞
H

[
1−

(∫ ∞
0

5.= (H)
1+gF (1−n )UHn UG−U

3H

) "̄ ]
GdG

)
dF.

(3.16)

3.5 Numerical results and discussion

In this section, we present numerical results for the association success probability based on (3.16)

and simulations. The association success probability is evaluated versus three major system

parameters: density of interfering devices on the =Cℎ preamble (_=), the power compensation
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level (n), and the SINR threshold (g). With the Rayleigh distribution in (3.4) for . and ',

there is no closed form expression for (3.16); thus, we resort to numerical calculations that are

validated via independent system level simulations. Table 3.1 lists the parameters used to obtain

the results.

Table 3.1: System parameters used to obtain the numerical and simulation results
Parameter Value Description

# 64 Number of orthogonal preambles shared by
all BSs

&C
1

43 3� Downlink transmission power of any BS

@3 1 3�
Nominal uplink transmission power of any
device

U 4 Path-loss attenuation factor
_1 1 BS/:<2 Density of BSs
d −65 3� Receiver sensitivity of any device
f 0 Noise variance

Simulations are performed based on the system model in Section 3.2 using MATLAB for a

200 :< x 200 :< 2D plane. Each result is an average of 1000 Monte Carlo simulation runs. In

the network, locations of BSs and devices are randomly generated based on their deployment

densities. We use 3GPP path-loss model [25] with Rayleigh fading of unit mean. Maximum

received signal strength association rule is employed such that a device is associated with the

BS from which it receives the highest downlink power. Device’s receiver sensitivity is set to

d = −65 3� such that downlink preamble messages received with power less than d will not be

detected. Devices associated with each BS are then randomly divided into # groups to simulate

random preamble generation. Noise variance, f, is set to zero to enforce network isolation

and mimic the interference limited behaviour when dealing with massive number of interfering

devices.

Figure 3.6 shows the impact of FPC parameter n on the success association probability of the

RACH protocol. The results are plotted against SINR threshold g. The FPC parameter is varied

between 0 and 0.8 in steps of 0.4. Device density _3 (= _= ·#) is set to be 2560 devices/:<2. As

shown in the figure, for all values of n , as threshold g increases, the success association probability

decreases. This behaviour is expected, as fewer devices will be able to achieve high SINR levels

due to the extensive interference caused by the high contention. Furthermore, for a low value

of g (< −14 3�), increasing n always results in a higher success association probability. For a

larger g value, the association success probability is almost identical irrespective of n ; in fact, a

higher n value results in degradation of the success association probability. Note that, the shown

results in Figure 3.6 were obtained at a device density that is respectively high. Accordingly,
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Figure 3.6: Uplink association success probability of a typical device transmitting the =Cℎ pream-
ble to its serving typical BS

the results suggest that at high device densities, FPC is beneficial as long as the SINR threshold

is low.

Figure 3.7 shows the relationship between increasing device density and the FPC parameter.

The results are obtained by setting g = −5 3�, and varying device density _= between 6 and 24

device/preamble/:<2 in steps of 2. Three n values are studied: 0, 0.2, and 0.4. As shown, for

the _= values, increasing n results in a higher success probability. However, as _= increases, the

improvement in success probability associated with FPC decreases as evidenced by the shrinking

gap between the curves. Consequently, there is a trade-off between the density of the devices

and the gain achieved by employing FPC.

In Figures 3.6 and 3.7, to be consistent with the literature, the threshold, g, varies between

−20 3� and 5 3� [45]. While these SINR threshold values may seem somewhat low, we are inter-

ested in the trend rather than the actual values. In this work, we study the RACH performance

under extreme loading conditions. In fact, _= is set to a minimum of 6 indicating that there is

at least 6 devices per BS transmitting the =Cℎ preamble at the same time. Under such loading

conditions, the association success probability at a high SINR value will be extremely low such

that the trend will not be visible. In Figure 3.8, the loading conditions are relaxed by setting _=

to 2 devices/preamble/:<2. The threshold, g, varies between −20 3� and 5 3�. As expected,

as the device density decreases, the success association probability increases, yet the trend with
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Figure 3.7: Effect of increasing device density

respect to g stays the same. Also, the improvement due to FPC is observed.

Figure 3.8: Association success probability when _= = 2

It is important to note that the number of competing devices changes with time within each

A>D=3. Only a portion of the active devices will be able to successfully associate in each sub-

frame, while the rest will move on to compete in the next sub-frames. This behaviour can be

36



characterized using the association success probability. Let Θ 5
0B denote the instantaneous (e.g.,

in the 5 Cℎ sub-frame) association success probability, and _ 5
3
denote the progressive density of

active devices in the 5 Cℎ sub-frame, which follows the relation

_
5 +1
3

= (1 − Θ 5
0B)_ 53 . (3.17)

Figure 3.9 shows the association success probability as time progresses (depicted by the

number of RAO slots spanned within each A>D=3). The initial device density per preamble (i.e.,

_=) is set to 30 device/preamble/:<2 (i.e., _3 = 1920 active device/:<2). The SINR threshold

is set at g = −10 3� and no power control is used (i.e., n = 0). For this parameter setting,

devices require 30 RAOs for all of them to successfully associate. This translates into 30 LTE

sub-frames, each of length 20ms. This is under the assumptions that devices do not share the

LTE-defined 64 preambles with any other applications and that the reception SINR threshold

g is somewhat unrealistically low [40]. In reality however, besides having to target higher and

more realistic SINR thresholds, IoT applications will share the available preambles with other

more domination human-to-human applications [28]. In fact, many studies advocate dedicating

only a small portion of the preambles to IoT applications as a way of avoiding performance

degradation of other applications. Having access to a smaller number of preambles leads to even

a lower association success probability which translates to a higher access delay. Thus, we can

conclude that the RACH protocol is indeed a bottle neck when it comes to supporting a massive

number of devices requesting simultaneous access and can potentially hinder the applicability

of cellular IoT communication paradigm.

Figure 3.10 shows the impact of FPC on access delay, i.e., the association success probability

as time progresses. The device density is set at _= = 30 device/preamble/:<2. Two values of

the threshold g are studied: −15 3� and −5 3�. The FPC parameter n is varied between 0

and 0.8 in steps of 0.4. As observed, at a low SINR threshold value, FPC can reduce cellular

access delay; while at a high threshold value, besides increasing the energy consumption of

the devices, it increases access delay. Consequently, FPC may not be an adequate solution for

improving cellular access for the anticipated cellular IoT applications with a massive number of

devices, as it results in higher energy wastage, increases access delay and requires operating at

an unrealistically low SINR threshold value.

In this section, we study the association behavior in cellular networks under a massive number

of devices. The derived model for the association success probability of the RACH protocol is

analyzed and its accuracy is corroborated via system level simulations. Through extensive

simulations, the derived model is shown to be accurate as evident by the close match between
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Figure 3.9: Association success probability as a function of RAO slot number (n = 0, g = −10,
_= = 30)

Figure 3.10: Association success probability as a function of RAO slot number, n and g (_= = 30)

the analysis and simulation results. Compared to the models presented in [45, 59], the derived

model is more comprehensive and provides the flexibility of analyzing the RACH performance

under various situations. For instance, our model can be used to analyze the performance under
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different path-loss attenuation compensation levels by varying FPC parameter n . Furthermore,

other parameters such as device density, number of available preambles, BS density and SINR

threshold can be varied to study different network scenarios. Nonetheless, inspired by the work

presented in [46, 59], our model can be further generalized into a spatio-temporal model by

considering data arrival dynamics at the devices, which is left as a part of our future work.

3.6 Summary

In this chapter, we use stochastic geometry to model the RACH instantaneous association suc-

cess probability in a single-tier cellular network by modeling the SINR. The objective is to study

the access performance of the traditional cellular network when supporting applications with a

massive number of devices such as the anticipated massive cellular IoT communications. For

a device to successfully associate with its desired BS, its RACH association preamble should

be received with SINR above a certain threshold. To find the association success probability,

we first abstract the network topology by spatially modeling the locations of the BSs and the

active devices using two independent homogeneous PPPs, and then characterize intra-cell in-

terference and inter-cell interference components of the preamble’s SINR in the network via

deriving expressions for their Laplace transforms. The final model of the SINR is used to find

the expression for the association success probability. The model for the association success

probability is a function of device density, number of available RACH preambles, BS density,

and the FPC parameter. The analytic model is corroborated via Monte Carlo simulations con-

ducted using MATLAB. Various network scenarios are tested by using different combinations of

the variables in the model. Numerical results demonstrate that there is an advantage of using a

power control mechanism as a means for enhancing RACH association probability, particularly

when operating at a low SINR threshold value; however, the performance gain decreases as the

threshold increases. It is also noticed that, as the number of contending devices decreases, the

performance gain due to the employed power control mechanism increases. Considering these

observations, we conclude that the limited number of preambles in LTE degrades the access

performance as the number of contending devices increases, leading to extensive access delays

that may be unacceptable for delay-intolerant IoT applications. Based on the results presented

in this study, it is suggested that the current association mechanism of the cellular network may

not be adequate for supporting large-scale IoT applications with a massive number of devices,

which require ubiquitous energy efficient and delay aware connectivity. Thus, innovative random

access should be developed accordingly to efficiently support future IoT applications.

39



Chapter 4

Two-hop NOMA-Enabled Massive Cel-

lular IoT Communications

As identified in Chapter 3, the bottle neck when it comes to supporting a large number of devices

using the traditional cellular network is the contention based channel access mechanism known

as RACH Procedure. One way of reducing contention is to reduce the number of contending

devices which can be done using time spread (i.e., limiting the number of devices attempting

association at each RAO). While this approach is plausible, it introduces sensible delays that

might revoke the delay and energy efficiency requirements of many future massive cellular IoT

applications. Another way that has recently gained interest is based on data aggregation, where

devices are clustered and a cluster head is used to relay the data of its cluster members in a

two-hop fashion. This helps reduce the number of contending devices on the available RACH

preambles. At the same time, data aggregation helps reduce energy consumption as devices

transmit towards DAs that are at a relatively closer proximity to them in comparison to BSs.

While data aggregation seems to be a plausible solution for efficiently supporting future mas-

sive cellular IoT applications, it introduces another dimension of complexity by transforming the

single-hop network to two-hop network. Hence, although with data aggregation, contention on

the PRACH declines, the network needs to be properly designed such that the two-hop archi-

tecture is optimized to meet the delay and energy efficiency requirements of future cellular IoT

applications. Besides optimal two-hop network design, efficient resource utilization mechanism

that can help increase the number of supported devices over the same amount of resource shall

be explored. Accordingly, in this Chapter, we attempt to examine the advantages of employ-

ing NOMA-enabled data aggregation as a potential solution for providing efficient access for a

massive number of energy constrained and delay sensitive cellular massive IoT applications.
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4.1 System model

4.1.1 Spatial system model

Consider a layer of cellular BSs, whose locations can be modelled by a homogeneous Poisson

point process (HPPP) Φ1 = 10, 11, ... with density _1, where 18 denotes the location of the 8Cℎ

BS in the network. The cellular network has a massive number of identical and battery powered

IoT devices, whose locations can be modelled by an independent HPPP Φ3 = 30, 31, ... with

density _3, where 38 denotes the location of the 8Cℎ IoT device in the network. Data packet

generation at each IoT device follows a Poisson process with parameter W and each generated

data packet is of sizeW bits.

Figure 4.1: An illustration of BS, DA, and IoT device locations as well as the Voronoi tessellation
formed by the coverage of the BSs (solid lines) and that formed by the coverage of the DAs
(dashed lines).

The cellular network is overlaid with a layer of stationary DAs that aggregate and relay data

from IoT devices to BSs. The DAs are randomly scattered across the network coverage area

such that their locations can be modelled as an independent HPPP Φ0 = 00, 01, ... with density

_0, where _1 < _0 << _3 and 08 denotes the location of the 8Cℎ DA in the network. Active IoT

devices transmit their data packets simultaneously towards the core network only via two-hop

communication, i.e., IoT devices connect to DAs, and DAs relay aggregated data packets to BSs.

Maximum received signal strength association policy is used by the devices and DAs to connect
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to their preferred access point. Figure 4.1 shows an example of node locations and coverage

areas.

4.1.2 Transmission frame structure and transmission process

Time is partitioned into transmission frames of equal length ) 5 . Each transmission frame is

further divided into two phases: an aggregation phase of length )0 and a relay phase of length

)A (= ) 5 − )0). FDMA is used to split the channel between the devices and DAs into N sub-

channels of equal bandwidth l=. These sub-channels are used by all the DAs in the network.

During the aggregation phase, devices transmit data to their serving DAs via power domain

NOMA (PD-NOMA), where at most two devices from the same cluster are allowed to non-

orthogonally share the same in-cluster sub-channel. The maximum number of devices that a

DA can support in a single transmission frame is "<0G = 2N . Full channel state information

(CSI) is assumed at the DAs, such that appropriate device pairing on the sub-channels is achieved

in order to obtain benchmark results [7]. At the end of the aggregation phase, scheduled devices

return to the pool of active devices awaiting service in the new transmission frame.

DAs employ SIC to decode the superimposed messages and cancel their mutual interference

in a sequential manner. Multiplexed transmissions from devices on a sub-channel are ranked

in a descending order based on their received signal strength at the DA. The DA decodes the

signal from the higher ranked (stronger signal) device first, hereafter indexed by 9 = ℎ. For the

message from the higher ranked device to be successfully decoded, it should be received with an

SIR above threshold g0ℎ. For the transmission from the lower ranked device, hereafter indexed

by 9 = ;, to be successfully decoded, two conditions should be met: i) the message from the

higher ranked multiplexed device was successfully decoded, and ii) the message from the lower

ranked device is received with an SIR above threshold g0;.

By the end of the data aggregation phase, all IoT devices switch off their communication

modules and go to sleep to reduce energy consumption. The relay phase then begins where

DAs transmit the aggregated data to the BS in a single hop fashion. We make a simplifying

assumption that the number of DAs in any cell is equal to K, which is the average number

of DAs per cell given certain DA and BS node densities. A shared uplink channel (SUCH) of

bandwidth Ω1 is dedicated for uplink transmissions from the DAs, which is divided in frequency

into K orthogonal sub-channels of equal bandwidth. The K uplink sub-channels are shared by

all BSs in the network. Only a single DA from the same Voronoi cell is allowed to occupy a

sub-channel and thus DAs only experience inter-cell interference. A DA is considered connected

to its serving BS if its transmitted data packets are received with SIR above threshold g1.
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4.1.3 Wireless transmission model

Transmitted signals in both phases experience propagation attenuation according to a general

power-law path-loss model. The signal power decays at rate �−U, where � is the propagation

distance and U is the path-loss exponent. Consider a Rayleigh fading channel that introduces

a random instantaneous power gain, 6, which follows an exponential distribution with unity

mean (i.e. 6 ∼ exp{1}). Channel gains are distance independent, independent of each other and

identically distributed (i.e., i.i.d.). The network is interference limited due to the massive number

of devices. As in our previous work [90], consider that DAs employ fractional power control

(FPC) when transmitting their payload over their scheduled uplink sub-channel. Accordingly,

the power received at the BS located at the origin from an associated DA located at 0 after FPC

is &A0 = @0 | |0 | | (n−1)U6, where @0 is the nominal transmission power of any DA in the network,

| |0 | | is the Euclidean distance between the DA and the BS, and n ∈ {0, 1} is the power control

factor. On the other hand, IoT devices employ full power inversion such that the received power

at a DA located at the origin from an associated device located at 3 is &A
3
= @36, where @3 is

the nominal transmission power of any IoT device in the network. As in previous studies, we do

not consider the maximum transmission power limitation for both DAs and devices [90].

In the following few sections of this chapter, we attempt to derive mathematical models

for coverage probability, end-to-end delay, and energy consumption for the preceding described

system model. First, in Section-4.2, by borrowing tools from stochastic geometry and using the

spatially modeling of the locations of the BSs, DAs and active devices as three independent

homogeneous PPPs, we characterize interference components experienced by both the devices

and the DAs. The Laplace transforms for the interference components are then derived and used

to find expressions for the average device-DA and DA-BS transmission success probabilities.

These probabilities are then used to derive both the device-DA coverage probability and the

total coverage probability in this two-hop network. In this work, coverage probability is defined

as the probability that a device is able to successfully transmit its packet to the core network via

a two-hop network architecture. A device that is able to transmit its data packets successfully

is referred to as a covered device. Second, using these coverage probabilities and by modeling

this two-hop network as a two-stage tandem queue, in Section-4.3, we derive the arrival and

departure processes from which the end-to-end average packet delay can be derived. Last, in

Section-4.4, the coverage probabilities and the end-to-end delay results for the two-stage tandem

queue are used to derive expressions for the average energy consumption of a typical device and

a typical delay to transmit a single data packet.
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4.2 Coverage probability

Coverage probability refers to the probability that a generated data packet from an arbitrary IoT

device is successfully received by its serving BS [48]. Different from existing studies [7], the main

challenge in our work is the PPP locations of IoT devices and DAs. The coverage probability

consists of three parts: i) NOMA sub-channel scheduling probability - the probability of an

arbitrary active device being scheduled in the current transmission frame, such that the device

is able to transmit its data packet to the serving DA; ii) Device-DA coverage probability - the

probability that a transmitted packet from a scheduled device is received at its serving DA with

SIR above threshold g0 ∈ {g0ℎ, g0;}, depending on the ranking of the device; and iii) DA-BS

coverage probability - the probability that a transmitted aggregated data packet from a DA is

received at its serving BS with SIR above threshold g1. The aggregation and relaying phases

are correlated as the data transmitted by a DA depends on the number of scheduled devices and

their SIR performance. Nonetheless, for the sake of tractability, we assume that the two phases

are independent [48]. In what follows, we focus on a cluster that has its DA located at the origin

(with index 8 = 0); however, the analysis is applicable to any cluster in the network. We consider

the case when the network is full, i.e., at the beginning of the considered transmission frame,

all devices in the network have at least one data packet to transmit. Note that, the coverage

probability resembles the association success probability from Chapter 3 and hence can be used

to compare single and two-hop network performance.

4.2.1 NOMA sub-channel scheduling probability

As mentioned in the system model, the number of devices in a cluster is random and dependent

on both the density of devices and DAs. On the other hand, the number of available NOMA

sub-channels is fixed and so is the maximum number of devices, "<0G, that can be supported by

a DA per transmission frame. Consequently, in the case that the number of devices in a cluster

is greater than "<0G, some devices may not be scheduled for transmission in the current frame

due to insufficient resources. Thus, we define NOMA sub-channel scheduling probability as the

probability that a device with data to transmit is scheduled for transmission on a sub-channel in

the current frame. To determine this scheduling probability, we first characterize the distribution

of the device number in a cluster. Let random variable (RV) M0 denote the number of devices

associated with the DA over area V0 of the Voronoi cell. As detailed in Chapter 3 [90], by

approximating the PDF of V0 by a generalized Gamma distribution, we obtain the probability

mass function (PMF) of M0, given by
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%(M0 = <) =
∫ ∞

0

(_3E)<4−_3E
<!

5Va (E, _0, 2) dE

≈ (_0)
2 (_3)<Γ(< + 2)

Γ(2) (_0 + _3)<+2<!
(4.1)

where 5Va (E, _0, 2) =
(_20E2−14−_0E )

Γ (2) , 2 = 3.575 is a constant defined for the Voronoi tessellation in

R2 [96] and Γ(2) =
∫ ∞
0
C2−14−C dC.

Let ΛB = "<0G
max{M0 ,"<0G }

��
M0=<

be the conditional scheduling probability given the number of

active devices in the current transmission frame, M0 = <. Averaging over the PDF given in

(4.1), the NOMA sub-channel scheduling probability is given by

Λ̄B =

"<0G∑
0

(_0)2 (_3)<Γ(< + 2)
Γ(2) (_0 + _3)<+2<!

+
∞∑

"<0G+1

"<0G

<

(_0)2 (_3)<Γ(< + 2)
Γ(2) (_0 + _3)<+2<!

. (4.2)

4.2.2 Device-DA coverage probability

To determine device-DA coverage probability, the SIR should be carefully characterized. We

focus on a device from a cluster centered at the origin. As per the system model, each DA

schedules its associated devices across the sub-channels in a sequential manner until a maximum

of two devices are scheduled per sub-channel. The number of devices in the cluster is random,

leading to randomness in the number of scheduled devices on a sub-channel. Let RV (= denote

the number of devices scheduled on the =Cℎ sub-channel, for = = 1, 2, ...,N . The PMF of (=,

%((= = B), is given by (see appendix B.1)

%((= = B) =



N−1∑
<=0
(1 − <

N )%(M0 = <), B = 0

"<0G−1∑
<=N

(2 − <
N )%(M0 = <) +

N−1∑
<=0
( <N )%(M0 = <), B = 1

∞∑
<="<0G

%(M0 = <) +
"<0G−1∑
<=N

( <N − 1)%(M0 = <), B = 2

0, B > 2.

(4.3)

A device can experience two types of interference components: intra-cluster interference (�1),

and inter-cluster interference (�2). �1 can only be experience by a higher ranked device when

sharing a sub-channel with a lower ranked device. On the other hand, �2 can be experienced by

any device regardless of its ranking. �2 is composed of primary component (�2ℎ) due to higher

ranked devices from adjacent clusters, and secondary component (�2;) due to lower ranked devices

from adjacent clusters. Locations of all higher and lower ranked inter-cluster interfering devices

can be modeled by two independent and thinned PPPs Ψℎ= = 3=0ℎ, 3
=
1ℎ, ... and Ψ

;
= = 3

=
0;, 3

=
1;, ...,

with device densities _ℎ
3
= (%((= = 1) + %((= = 2))_0 and _;

3
= %((= = 2)_0 respectively, where
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3=
8 9

denotes the location of the 9 ranked interfering device from the 8Cℎ cluster on the =Cℎ sub-

channel, for 9 ∈ {ℎ, ;}, 8 = 1, 2, ... and = = 1, 2, ...,N . Note that, _ℎ
3
follows from the fact that a

device is classified as higher ranked if it is scheduled alone on a sub-channel or co-occupies the

sub-channel with a lower ranked device, whereas _;
3
happens only when a sub-channel has more

than one scheduled device. Thus, for an arbitrary device scheduled on the =Cℎ sub-channel and

associated with the DA located at the origin, �2ℎ and �2; are given by

�2ℎ =
∑

3=
8ℎ
∈Ψℎ=

1( | |3=8ℎ − 0: | | < | |3
=
8ℎ | |) | |3

=
8ℎ − 0: | |

U | |3=8ℎ | |
−U6=0

8ℎ (4.4)

�2; =
∑
3=
8;
∈Ψ;=

1( | |3=8; − 0: | | < | |3
=
8; | |) | |3

=
8; − 0: | |

U | |3=8; | |
−U6=0

8; (4.5)

where 1(·) is the indicator function, the condition | |3=
8 9
− 0: | | < | |3=8 9 | | is to ensure that an

interfering device located at 3=
8 9

is closer to its serving DA located at 0: than to the origin, and

6=0
8 9

denotes the i.i.d. exponentially distributed channel gain for the link between the 9 ranked

interfering device on the =Cℎ sub-channel from the 8Cℎ cluster and the origin.

For the following, we focus on a device associated with the DA located at the origin (DA

at the origin is indexed by 8 = 0); however, the analysis can be generalized to any device-DA

pair. Let Ξ=B0 9 denote the received SIR at the origin from a 9 ranked device located at G=0 9 and

scheduled on the =Cℎ sub-channel that has B multiplexed devices, given by

Ξ=B0 9 =



6=0
0ℎ

�2
, B = 1 & 9 = ℎ

6=0
0ℎ

�1+�2 , B = 2 & 9 = ℎ

6=0
0;

�2
, B = 2 & 9 = ;

(4.6)

where �1 = 6=0
0; and �2 = �2ℎ + �2;, and 6=0

0 9 denotes the i.i.d exponentially distributed channel gain

for the link between the 9 ranked device from the cluster indexed 8 = 0 and the origin. As we

are considering full power inversion, the received power from the device of interest is 6=0
0 9 as we

assume the nominal transmission power of all the devices is set to 1 (i.e., @3 = 1).

As discussed, for a device to successfully transmit to the serving DA, the received signal

should have SIR above g0 ∈ {g0ℎ, g0;}, depending on the device’s rank. Accordingly, the condi-

tional transmission success probability of a device associated with the DA located at the origin,

Θ(Ξ=B0 9 ), given the NOMA ranking 9 of the device and the number of scheduled devices B on the

=Cℎ sub-channel, is given by

46



Θ(Ξ=B0 9 ) =


%

(
Ξ=1

0ℎ > g0ℎ
)
, B = 1 & 9 = ℎ

%
(
Ξ=2

0ℎ > g0ℎ
)
, B = 2 & 9 = ℎ

%

(
Ξ=2

0; > g0; ∩ Ξ
=2
0ℎ > g0ℎ

)
, B = 2 & 9 = ;.

(4.7)

Due to complexity of the interference components, there is no closed form expression of

Θ(Ξ=B0 9 ). The probability terms in (4.7) contain the Laplace transforms for the interference

components experienced by the devices; for U ≠ 4, the integrals within these Laplace transforms

cannot be solved and hence a closed form expression is unattainable. On the other hand, in the

case of U = 4, a closed form expression for the conditional transmission success probability of a

device can be found, given by (see Appendix B.2)

Θ(Ξ=1
0ℎ) =

∏
9∈{ℎ,; }

exp

{
−
√
g0ℎ_

9

3

_3

(c
2
− arctan

(
(√g0ℎ)

) )}
(4.8)

Θ(Ξ=2
0ℎ) = J

©­«
∏
9∈{ℎ,; }

exp

{
−
√
g0ℎ_

9

3

_3

(c
2
− arctan

(
(√g0ℎ

) )}ª®¬ (4.9)

Θ(Ξ=2
0; ) = J

©­«
∏
9∈{ℎ,; }

exp

{
−
√
�_

9

3

_3

(c
2
− arctan

(
(
√
�

))}ª®¬ (4.10)

where � = g0ℎ+g0; (1+g0ℎ), and J = 1
1+g0ℎ is a result of the fact that in the case when two devices

co-occupy a channel, they experience both intra- and inter-cluster interference components. It

should be noted that for other U values, numerical evaluations can be used to compute the

probabilities.

To find the device-DA transmission success probability, we need to average Θ(Ξ=B0 9 ) with

respect to the number of scheduled devices on a sub-channel. That is, the long term device-DA

transmission success probability, Θ̄, is given by

Θ̄ = %((= = 1)Θ(Ξ=1
0ℎ) +

%((= = 2)
2

(Θ(Ξ=2
0ℎ) + Θ(Ξ

=2
0; )). (4.11)

Accordingly, the device-DA coverage probability, C3, defined as the probability that an active

device is able to successfully transmit its data to the serving DA in the current transmission

frame, is given by

C3 = Λ̄B · Θ̄. (4.12)

47



4.2.3 DA-BS coverage probability

A dedicated uplink channel, SUCH, is utilized for DA-BS transmissions, consisting of K sub-

channels of equal bandwidth. Let RV  denote the number of DAs in the coverage area V1 of

a BS, which has the PMF given by [90]

%( = :) ≈ (_1)
2 (_0)<Γ(< + 2)

Γ(2) (_1 + _0)<+2<!
. (4.13)

Thus, we have

K = �: [ ] ≈
⌈
^ZΓ(2 + 1)
(1 − Z)2+1

⌉
(4.14)

where ^ = [(_1)2/(Γ(2) (_1 + _0)2)] and Z = [_0/(_1 + _0)].

DAs experience only inter-cell interference. Accordingly, locations of interfering DAs on the

: Cℎ sub-channel can be modelled by an independent PPP Ψ:0 = 0
:
1 , 0

:
2 , ... with density _:0 = _1.

Similar to device-DA transmission success probability, for a DA to have successful transmission,

the received signal at its serving BS should have SIR above g1. Let Ξ:0 denote the received SIR

at the BS located at the origin from its associated aggregator located at 0:0 and transmitting on

the : Cℎ sub-channel, given by

Ξ:0 =
| |0:0 | | (n−1)U6000

�0
(4.15)

where �0 =
∑
0:
8
∈Ψ:0 | |0

:
8
− 18 | | n U | |0:8 | |−U6080 is the inter-cell interference experienced by the DA of

interest, and 60
80 is the channel gain for the link between the DA associated with the 8Cℎ BS and

the origin, for 8 = 0, 1, 2, ... where 8 = 0 refers to the BS at the origin.

Let Θ(Ξ:0) denote the DA-BS coverage probability for the DA located at 0:0 and associated

with the BS located at the origin and transmitting on the : Cℎ sub-channel, which is given by

(for details, see Appendix D in [90])

Θ(Ξ:0) = %
{
Ξ:0 > g1

}
= 2c_1

∫ ∞

0
A4−(c_1A

2)L�0

{
g1A

U(1−n )
}
3A (4.16)

where L�0 {G} is the Laplace transform of G with respect to �0, given by

L�0

{
g1A

U(1−n )
}
= ��0

[
4g1A

U(1−n ) �0
]

= exp

{
−2c_:0

∫ ∞

H

(
1 −

∫ ∞

0

(
2c_0H4

−c_0H2

1 + g1AU(1−n ) HUn G−U

)
3H

)
G 3G

}
(4.17)

where A = | |0:0 | | is used to denote the distance between the DA of interest and the origin,

H = | |0:
8
− 18 | | is used to denote the distance between an arbitrary DA located at 0:

8
and its

serving BS located at 18, and G = | |0:8 | | is used to denote the distance between an arbitrary DA
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located at 0:
8
and the origin. Note that, A, H and G are RVs following Rayleigh distributions

(given in (3.4)) with parameters _1, _0 and _:0 respectively [90,95].

As a result, the long term device-BS total coverage probability for a device in a NOMA-

enabled two-hop network with maximum of two paired devices on a sub-channel is given by

CC>C = C3 · Θ(Ξ:0). (4.18)

4.3 Delay performance

Average transmission delay is the expected time duration from the instant that a packet is

generated at an IoT device to the instant that it is successfully received at the serving BS. In

our system, the end-to-end delay is composed of two parts: the first hop delay which is the

expected time that a packet spends in the queue of an IoT device until it is successfully received

at the serving DA, and the second hop delay which is the expected time that the packet spends

in the queue of a DA until it is successfully transmitted towards the serving BS. We model the

two-hop transmission paradigm as a Tandem queue, as shown in Figure 4.2 where W is the packet

arrival rate at a device, W0 is the packet arrival rate at a DA, and `0 is the departure rate from

a DA.

Packets are independently generated at each IoT device according to a Poisson process with

parameter W. Assuming infinite queue space, the arrival and departure processes at an IoT device

can be modelled as M/G/1 queue, where service rate is dependent on the device’s ranking on

the sub-channel as well as the SIR value. On the other hand, for a DA, the packet arrival

flow consists of the aggregation of all the service processes from its scheduled devices in the

current transmission frame, while its service rate depends on the SIR value of its transmissions

at the serving BS. Consequently, the arrival and departure processes at a DA can be modeled

as G/G/1 queue under infinite queue space. In this section, we establish mathematical models

for the arrival and departure processes at the devices and DAs based on queuing theory and

stochastic geometry. The models are then used to find the overall average transmission delay

based on the two-hop tandem queuing model.

4.3.1 Device-DA queue analysis

For a packet to be transmitted from a device to the DA, the device first needs to access the

DA. Accessing the DA in a transmission frame means that the device is scheduled on a NOMA

sub-channel and is in the DA coverage. Let Γ3 denote the number of transmission frames

needed for a device to successfully access the serving DA and transmit its data, which follows a

49



Figure 4.2: Tandem queue model of the proposed two-hop NOMA-enabled transmission network

geometric distribution with the probability of success given by device-DA coverage probability

in (4.12). Thus, the average number of transmission frames needed is given by Γ̄3 = 1
C3 . As

an approximation, we consider the rounded up representation of Γ̄3 and thus, packet generation

and transmission at a device, over the period of Γ∗
3
= ) 5 · dΓ̄3e, can be modeled as an M/G/1

queue with packet arrival rate W. As for the departure rate, a device, scheduled on a NOMA

sub-channel, transmits its data during the aggregation period of the transmission frame during

which it accessed its DA. Let `B 9=
3

denote the packet service rate of the 9 ranked device scheduled

on the =Cℎ sub-channel that has B multiplexed devices during the period of Γ∗
3
, given by

`
B 9=

3
=

⌊
)0RB 9=3
D

⌋
, B ∈ {1, 2}, 9 ∈ {ℎ, ;}, = = 1, 2, ...,N (4.19)

where we use the flooring function to avoid fractions and to emphasize that a device transmits

a packet if and only if the whole packet can be received by the serving DA in the current

transmission frame. RB 9=
3

denotes the average achievable bit rate by a 9 ranked device located

at 3 and scheduled on the =Cℎ sub-channel with B scheduled devices. Using Shannon’s channel

capacity formula, coverage probabilities given in (4.7), and SIRs given in (4.6), RB 9=
3

, conditioned

on the device is in coverage (i.e., Ξ=B0 9 > g ∈ {g0ℎ, g0;}), can be derived as

R1ℎ=
3 = �

[
l= log2

(
1 + Ξ=1

0ℎ

)��� Ξ=1
0ℎ > g0ℎ

]
. (4.20)

R2ℎ=
3 = �

[
l= log2

(
1 + Ξ=2

0ℎ

)��� Ξ=2
0ℎ > g0ℎ

]
. (4.21)

R2;=
3 = �

[
l= log2

(
1 + Ξ=2

0;

)��� Ξ=2
0; > g0; ∩ Ξ

=2
0ℎ > g0ℎ

]
. (4.22)

50



Notice that, as the closed form expression for the PDF of the SIR is not available, the

expectation terms in of the data rate cannot be solved. However, what the expectation signifies

is the fact that, when a device is in the coverage of its serving DA, it achieves a certain average

bit rate. This average bit rate is lower bounded by a fixed bit rate allocation given by

LB 9=
3

=


l= log2 (1 + g0ℎ) , B = 1 & 9 = ℎ

l= log2 (1 + g0ℎ) , B = 2 & 9 = ℎ

l= log2 (1 + g0;) , B = 2 & 9 = ;.

(4.23)

Another possible approximation of RB 9=
3

is the unconditional average achievable bit rate

which can be derived by removing the condition from the expectation terms, and making use of

the definition � [-] =
∫
C>0

%(- > C) 3C, as the logarithm function is non-negative. Accordingly,

the unconditional achievable bit rate, F B 9=
3

, is given by (see appendix B.3)

F 1ℎ=
3 =

∫
C>0

L�2ℎ {B}L�2; {B} 3C (4.24)

F 2ℎ=
3 =

∫
C>0

�
[
exp{−B6=0

0; }
]
L�2ℎ {B}L�2; {B} 3C (4.25)

F 2;=
3 =

∫
C>0

L�2ℎ {B}L�2; {B} 3C (4.26)

where B = 2
C
l= − 1.

Therefore, for the purpose of this analysis, we assume that the average achievable bit rate

by a device is given by

RB 9=
3

= max{LB 9=
3
, F B 9=
3
}, for B ∈ {1, 2} & 9 ∈ {ℎ, ;}. (4.27)

4.3.2 DA-BS queue analysis

Similar to the case of a device, for a DA to be able to transmit data to the serving BS, it first needs

to access the BS. Let Γ0 denote the number of transmission frames needed for a DA to be able

to transmit its data successfully to the serving BS, which is modelled as a geometric distribution

with success probability Θ(Ξ:0) given by (4.16). Accordingly, the average number of transmission

frames needed for a DA to successfully access its serving BS is given by Γ̄0 = 1/Θ(Ξ:0). To be

able to model the behaviour of packet arrivals and departures at a DA, we focus on the period

Γ∗0 = ) 5 · dΓ̄0e, which is an approximation for the average access delay in terms of an integer

number of transmission frames.

Once a DA accesses the BS, it transmits its data during the relay phase of the current

transmission frame. Therefore, during the period of Γ∗0, a DA can transmit only for a period of
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)A < Γ
∗
0. Since the transmission rate of a DA depends on the amount of allocated resources and

its SIR value at the serving BS, using Shannon’s channel capacity formula, SIR given in (4.15),

and interference model described in Section-4.2, the average achievable bit rate, R:0, conditioned

on the DA being covered by the serving BS, by a DA located at 0 and transmitting its data on

the : Cℎ sub-channel to the BS located at the origin is given by

R:0 = �
[
Ω1

K log2(1 + Ξ:0)
���� Ξ:0 > g1] . (4.28)

Similar to the case of a device, the conditional expectation given in (4.28) cannot be solved

as the PDF of Ξ:0 is not available. Thus, the average achievable bit rate by a DA in coverage is

approximated by its lower bound, L:0 =
Ω1
K log2(1 + g1), or the unconditional average achievable

bit rate, given by

F :0 = �
[
Ω1

K log2(1 + Ξ:0)
]

0
=

∞∫
0

©­«2c_0

∞∫
0

H4−(c_0H
2)L�0

{
B0HU(1−n )

}
3H

ª®¬ 3C (4.29)

where we use the definition � [-] =
∫
C>0

%(- > C) 3C to compute the expectation of the loga-

rithmic term with respect to Ξ:0, and the Laplace term in (a) follows from the DA-BS coverage

probability given in (4.16) with B0 = 2
CK
Ω1 − 1 substituted for g1. Accordingly, the average

achievable bit rate by a covered DA is given by

R:0 = max{L:0 , F :0 }. (4.30)

The average number of packets that a DA can transmit during the period Γ∗0 is given by

`0 =

⌊
)AR:0
D

⌋
(4.31)

where, just like in (8), the floor function b·c is to ensure that a packet is transmitted from a DA

if and only if it can be fully received at the BS during the current transmission frame.

Packets arrive at a DA from its scheduled devices in each transmission frame. The average

number of packets arriving at a DA depends on the number of associated devices, the probability

of successful scheduling on a NOMA sub-channel, and the SIR values of the received signals,

and the length of the aggregation phase of each transmission frame. Accordingly, let W80 denote

the packet arrival rate at a DA during the 8Cℎ transmission frame, given by

W80 = N ·
(
%((= = 1)`1ℎ=

3 + %((= = 2) (`2ℎ=
3 + `2;=

3 )
)
. (4.32)
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Following from the preceding analysis, for the period of Γ∗0, packet arrivals and transmissions

at a DA can be modelled as a G/G/1 queue with packet departure rate given in (4.31), and

packet arrival rate given by

W0 ≈ W80 ∗ dΓ̄0e . (4.33)

In summary, the proposed NOMA-enabled two-hop architecture can be modelled as a tandem

queue with packet arrival rate, W, at the first queue (i.e., at a device), arrival process at the second

queue (i.e., at a DA) having W0 packet arrival rate, and departure process from the second queue

with departure rate of `0. Based on the performance measures of the two-stage tandem queues,

the expected end-to-end system delay experienced by a packet transmitted by a device located

at 3 to a BS at the origin, going through a DA located at 0, under the first in first out service

rule, is given by [20]

ΔC424 =
W0 + `0 − 2W3

W0`0 − (W0 + `0)W3 + (W3)2
. (4.34)

4.4 Energy consumption

We define energy consumption of a network component as the energy consumed by a device or

a DA in the process of successfully transmitting/relaying a single data packet of sizeW bits to-

wards the serving BS. We model the devices and DAs as wireless transceivers [84]. A transceiver

consists of four major energy consuming blocks: transmission block (TX), receiver block (RX),

local oscillator block (LO), and power amplification (PA) block. The power consumption of a

transceiver when acting as a transmitter, Q) , and as a receiver, Q', are given respectively by

Q) = &%� +&8!$ +&) - , (4.35)

Q' =M0&
8
!$ +&'- + 1((= = 2)&(�� (4.36)

where 1(·) is the indicator function to check if a sub-channel has at least two devices scheduled

and hence the need for SIC, the rate of power consumption of the RX and TX blocks are

denoted by &'- and &) - respectively; &8
!$
∈ {&3

!$
, &0

!$
} where &3

!$
and &0

!$
are non-

negative constant power consumption rate of the LOs of a device and a DA respectively; PA

power consumption rate is denoted by &%� ∈ {&C3 , &
C
0} for a device and a DA respectively, where

&C
3
= @3 | |3 − 0 | |U and &C0 = @0 | |0 − 1 | | n U; &(�� is the fixed power consumption rate by a DA

when performing SIC on a sub-channel with more than one scheduled device.
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4.4.1 Energy consumption of a device

Energy consumption of a device to transmit a data packet is divided into two parts: energy

consumed to successfully access the serving DA, and energy consumed to successfully transmit

the data packet. We focus on a device with a single data packet in its queue.

Every time the device is scheduled on a NOMA sub-channel, it attempts to access its serving

DA. If the device fails to access, it gives up its scheduled sub-channel and waits until the next

time it is scheduled. The device attempts access dΓ̄3e times until it gains access. Out of those

attempts, the device is scheduled , times, which is a binomial random variable with parameters

dΓ̄3e and Λ̄B. Considering that every time a scheduled device attempts to transmit its data packet

and fails, it consumes a fixed amount of energy denoted by E 5
3
, the access energy consumption

of a device is E3,1 = dΓ̄3e · Λ̄B · E 53 .

Once the device accesses the DA, it successfully transmits its data packet over the allocated

sub-channel. Let ΔCG denote the average time a device takes to transmit a single data packet of

sizeW to its serving DA, given by

ΔCG =
D

%((= = 1)R1ℎ=
3
+ %((= = 2) (R2ℎ=

3
+ R2;=

3
)
. (4.37)

The associated average transmission energy consumption is

E3,2 = ΔCG
(
� [&C3] +&

3
!$ +&) -

)
(4.38)

where � [&C
3
] =

∫ ∞
0

2@3c_0A
(U+1)4−c_0A

2
3A, as &C

3
is a function of the distance between the

device and the DA having a Rayleigh distribution with parameter _3.

Thus, the total average energy consumption of a device to transmit a single data packet of

sizeW bits in the proposed NOMA-enabled two hop network is E3 = E3,1 + E3,2.

4.4.2 Energy consumption of a DA

Different from an IoT device, a DA consumes energy in two forms: as a receiver while receiving

data from its cluster members, and as a transmitter while relaying the aggregate data packets

to the BS. We focus on a DA located at 0 and associated with the BS at the origin.

The total time for a device to transmit a single data packet of sizeW bits to the DA is ΔCG.

The DA needs to stay awake for this time period to successfully receive the data packet. Thus,

let E0,1 denote the amount of energy that the DA consumes to receive a single data packet,

given by

E0,1 = ΔCG
(
&0!$ +&'- + %((

= = 2)&(��
)
. (4.39)
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The DA then attempts to relay the data packet and in the process consumes energy in two

forms: energy consumed to successfully access the BS, and energy consumed to successfully

transmit the packet. The average number of transmission frames needed for the DA to success-

fully access the BS is dΓ̄0e. Consider that a DA consumes a fixed amount of power, E 50 , in every

access attempt. Then, the average access energy consumption is E0,2 = E 50 dΓ̄0e.

Once the DA successfully accesses the BS, it transmits the data packet. The transmission

energy consumption for the data packet is given by

E0,3 = ΔC0
(
�. [&C0] +&0!$ +&) -

)
(4.40)

where �. [&C0] =
∫ ∞
0

2@0c_1H
(n U+1)4−c_1H

2
3H, where we used H to denote the random transmis-

sion distance between the DA and the BS which follows a Rayleigh distribution (given in (3.4))

with parameter _1, and ΔC0 = D/R0: .

Therefore, the total energy consumption of a DA to relay a single data packet of sizeW bits

in the proposed NOMA-enabled two hop network is E0 = E0,1 + E0,2 + E0,3.

4.5 Numerical results and discussion

We evaluate the developed models via computer simulations for the scheduling probability,

device-DA coverage probability, total coverage probability, system delay, device energy con-

sumption, and DA energy consumption, as functions of DA density _0 and thresholds g0ℎ, g0;

and g1. The numerical results are validated by means of independent system level simulations.

Table 4.1 lists parameter values used.

Table 4.1: Simulation parameter values
Parameter Value Parameter Value
W 10 bits/packet E 5

3
0.05 mJ

E 50 0.05 mJ N 10
&(�� 0.1 mW &3

!$
(&0

!$
) 0.1 mW

&'- (&) - ) 0.1 mW @3 (@0) 1
) 5 ,()0,)A ) 10 ms (5 ms, 5 ms) U 4
W 10 packets/s n 0.8
_3 1k dev/km2 _1 2 BS/km2

l1 50 kHz l= 5 kHz

Simulations are performed based on the system model in Section 3.2 using MATLAB for a

200 :< x 200 :< 2D plane. Each result is an average of 1000 independent Monte Carlo simulation

runs. Locations of BSs, DAs, and devices are randomly generated based on their deployment

densities. The wireless channel is simulated with the 3GPP non-line-of-sight (NLOS) path loss

model given in [25]. To simulate Rayleigh fading, random channel gains are generated according

55



to an exponential distribution with unity mean and incorporated into the received signal power

of all transmissions. Maximum received signal strength association rule is employed. Through

extensive simulations, the derived models are shown to be functional and accurate as evident by

the close match between the numerical and simulation results.

Figure 4.3 shows the scheduling probability of the devices for NOMA and OMA configura-

tions versus DA density _0 between 95 and 435 DAs/:<2. For both NOMA and OMA, the

scheduling probability increases as DA density increases. As expected, the scheduling probabil-

ity is higher for the NOMA as compared to OMA, thanks to its ability to allow multiplexing of

more than one device on the same sub-channel.

Figure 4.3: Scheduling probability of the devices as a function of DA density (_0)

Figure 4.4 shows device-DA coverage probability (C3) and total coverage probability (CC>C)

versus DA density _0, and network thresholds g0ℎ = g0; = g1 = g. The CC>C values are slightly

lower than those of C3, as CC>C takes into account the performance of both hops. However, it

is clear that the device-DA coverage is more dominant in our system, which is expected due to

the extensive interference among the devices and the high contention over the limited number

of in-cluster sub-channels. As both coverage probabilities follow the same trends, we focus our

analysis only on C3. For both NOMA and OMA, as _0 increases from 95 DAs/:<2 to 435

DAs/:<2, C3 increases to a maximum and then drops in a concave manner. This concave

pattern can be attributed to the fact that, as _0 increases, the number of interfering devices

on a sub-channel increases, leading to a decrease in the probability of successful transmission
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Figure 4.4: Device-DA coverage probability (top) and total coverage probability (bottom) as a
function of DA density (_0) and network thresholds (g); (a) NOMA; (b) OMA

from a device to the serving DA. For NOMA, the maximums occur at densities of 305 DA/:<2,

for g = −2 3�, and 235 DA/:<2, for g = −10 3�, whereas in the case of OMA, the maximum

for both g settings happens at 305 DA/:<2. Accordingly, we can conclude that there is a _0

that maximizes C3, given a fixed density of devices for both NOMA and OMA. Also, a lesser

number of clusters is needed in the case of NOMA to maximize performance. On the other hand,

for both configurations, the coverage probability improves as g drops, and the improvement for

NOMA is more significant.

Figure 4.5 shows the total system delay versus DA density for multiple network thresholds

for both NOMA and OMA. NOMA has a lower average system delay as compared to OMA.

The difference is further aggravated at higher DA densities. Thanks to its ability to multiplex

multiple devices on the sub-channels, NOMA not only allows scheduling a larger number of
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Figure 4.5: Total system delay as a function of DA density (_0) and network thresholds (g)

devices per transmission frame, but also provides a better coverage probability, especially for

lower network threshold settings. Accordingly, packet departure rate from a device is higher

for NOMA, leading to shorter queuing delays and overall improvement in system delay. On the

other hand, the delay increases as _0 increases as more DAs share a limited bandwidth, leading

to a lower achievable bit rate in packet departure from a DA.

Figure 4.6 shows the average energy consumption of device to transmit a packet of size

W bits to the serving DA for both NOMA and OMA configurations versus _0 and g. For

both NOMA and OMA, energy consumption increases as _0 and g values increase except for

NOMA at g = −23�. The higher the g, the higher the number of transmission frames required

before a device can access the serving DA. At higher _0 values, interference among devices on a

sub-channel increases, leading to a higher number of failed attempts and in turn higher levels of

energy wastage. For NOMA at g = −23�, the impact of g is more dominant than the effect of _0,

because devices experience higher interference than that under OMA. Thus, as g increases, the

SIR performance decreases at a faster rate for NOMA. Further, for the same g setting, devices

under NOMA configuration consume more energy to transmit a data packet compared to under

OMA for all DA densities, because the average achievable bit rate by a device is lower in the

case of NOMA due to intra-cluster interference. A lower bit rate results in a longer time that a

device takes to transmit a single data packet, leading to higher device energy consumption.

The average energy consumed by a DA to relay a data packet of size W bits, can be of
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Figure 4.6: Average device energy consumption as a function of DA density (_0) and network
thresholds (g)

Figure 4.7: Average DA energy consumption as a function of DA density (_0) and network
thresholds (g)
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a concern, especially for DAs selected from the IoT devices. As shown in Figure 4.7, for the

same g setting, DAs consume less amount of energy under NOMA. As _0 increases, DA energy

consumption either decreases (in the case of g = −2 3�), or is almost stable (in the case of

g = −10 3�). On the other hand, for OMA, as DA density increases, DA energy consumption

increases for all g. Overall, NOMA is more energy efficient for the DAs.

Based on the preceding results, for a two-hop NOMA enabled data aggregation architecture,

the following general conclusions can be made: i) NOMA for in-cluster transmissions can improve

the scheduling probability of the devices in the case of limited transmission resources; ii) NOMA

can improve the total coverage probability of the two-hop network and in turn increase the

number of supported devices per transmission frame; iii) with NOMA, end-to-end delay can

be improved with the proper choice of network parameters such as DA density and amount

of available resources; and iv) with a proper interference mitigation mechanism for the in-

cluster NOMA transmissions and the appropriate choice of the DA density, NOMA can improve

the overall energy efficiency of both DAs and devices. Based on the results presented in this

study, our proposed NOMA enabled architecture has many potentials and further investigations

are needed to investigate the energy and delay optimality design of two-hop NOMA-enabled

transmission architecture for future massive cellular IoT applications.

4.6 Summary

In this Chapter, we propose a novel two-hop NOMA enabled data aggregation architecture to

enable massive cellular IoT applications. Concepts and techniques from stochastic geometry and

queuing theory are jointly exploited to derive tractable models for various network performance

measures including scheduling probability, coverage probability, system delay, and energy con-

sumption. We abstract the network topology by spatially modeling the locations of the BSs,

DAs and active devices using three independent homogeneous PPPs, and characterize intra-

and inter-cluster interference components experienced by the devices and characterize the inter-

cellular interference experienced by the DAs. All derived models are corroborated via Monte

Carlo simulations. Numerical results demonstrate that, the DA density and network thresh-

olds highly impact network performance. In comparison with the traditional two-hop OMA

based architecture, the proposed NOMA architecture provides better scheduling and coverage

probability, supports a larger number of devices per transmission frame, has a lower average

end-to-end system delay, and improves the energy consumption of the devices and DAs.
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Chapter 5

Access Point Association in Uplink Two-

Hop cellular IoT Networks with Data

Aggregators

As was shown in Chapter 4, node clustering and data aggregation help extend the coverage of

cellular networks and increase the number of supported devices, while meeting the various ser-

vice quality requirements and reducing energy consumption, making them suitable for enabling

future massive cellular IoT applications. They also help alleviate the congestion at the PRACH

by reducing the number of devices contending over the limited number of RACH preambles.

Nonetheless, in the system model of Chapter 4, we assume that all devices transmit their data

in two-hop fashion via a middle DA node. In that scenario, the coverage areas of DAs form a

Voronoi tessellation. This assumption is plausible when the number of DAs is very large such

that they can provide full network coverage. However, in more realistic settings, as the DAs

have a limited coverage area and their coverage depends on the channel conditions and path-loss

attenuation, the continuous Voronoi tessellation can be somewhat inaccurate. This creates a

network with heterogeneous coverage areas. Some areas may be covered only by BSs, while

other might be covered by a BS and one or more DAs. In such scenario, to which AP a device

associates is critical and impacts the overall performance of the network, especially when DAs

share the same cellular resources with the devices.

In this Chapter, we consider a more realistic scenario where we overlay the cellular network

with a layer of cellular DAs, such that the network provides both single and two-hop routes.

As DAs share radio resources with single-hop devices, a dependency between the two routes

is present. We recognize that the proper design of the DA enabled network becomes critical

for cost effectiveness and efficient radio resource utilization. We tackle this problem from the

viewpoint of user association, where active devices need to decide on which AP to associate with

and use to transfer their data to the core network while satisfying their QoS requirements. To

61



that end, in this Chapter, we consider minimum required data rate as the QoS requirements.

The user association problem is formulated as a joint AP association, resources utilization, and

energy efficient communication optimization problem that takes into account various networking

factors such as the number of devices, number of DAs, number of available resource units,

interference, transmission power limitation of the devices, DA transmission performance, and

channel conditions. The objective is to show the usefulness of data aggregation and shed light

on the importance of network design when the number of devices is massive. We propose a

coalition game theory based algorithm, PAUSE, to transform the optimization problem into a

simpler form that can be successfully solved in polynomial time. Different network scenarios are

simulated to showcase the effectiveness of PAUSE and to draw observations on cost effective

network design with DAs.

The rest of this chapter is organized as follows. System model is presented in Section 5.1.

Section 5.2 details the problem formulation and presents the general multi-objective optimization

problem. In Sections 5.3 and 5.4, we describe the proposed heuristic algorithm to efficiently solve

the joint optimization problem, and discuss its convergence and complexity. In Section 5.5, we

evaluate the performance of the algorithm by means of simulations. We conclude this study in

Section 5.6.

5.1 System model

5.1.1 Physical network

Consider an uplink network made up of a single layer of BSs (Figure 5.1). BS locations form

a point Poisson process (PPP) Φ1 = 11, 12, ... with density _1, where 18 denotes the location

of the 8Cℎ BS in the network. Let B = |Φ1 | denote the cardinality of set Φ1, i.e., the number

of BSs in the network. The network is overlaid with a layer of DAs uniformly distributed over

the network coverage. DA locations form a PPP Φ0 = 01, 02, ... with density _0 > _1, where

08 denotes the location of the 8Cℎ DA. Let A = |Φ0 | denote the cardinality of set Φ0. Coverage

area of a DA is much smaller than that of a BS. We approximate the coverage area of a DA by

a disk of radius Λ0. In the following, we use AP to denote both BS and DA wherever there is

no ambiguity.

The network supports a large number, D, of low mobility and battery powered IoT devices.

Let Φ3 = {31, 32, ..., 3D} denote the location set of the devices, where 38 denotes the location

of the 8Cℎ device. A device can associate with only one AP at a time. A device may be located

in a single covered area (i.e., area covered only by a BS), or in a double covered area (i.e., area

covered by a BS and one or more DA). A device located in a double covered area has the choice
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of associating with the BS or the DA that best meets its QoS requirements and minimizes its

transmission power.

Denote the set of devices associated with BS 9 as Υ1 9 = {31
1 9
, 32
1 9
, ..., 3:

1 9
}, where 38

1 9
denotes

the location of the 8Cℎ device associated with BS 1 9 ∈ Φ1 . Similarly, let Υ0ℎ = {31
0ℎ
, 32
0ℎ
, ..., 3

6
0ℎ }

denote the location set of the devices associated with the ℎCℎ DA, where 380ℎ denote the location

of the 8Cℎ device associated with DA 0ℎ ∈ Φ0. Finally, let Υ1 = {Υ11 ,Υ12 , ...,Υ1B } and Υ0 =

{Υ01 ,Υ02 , ...,Υ0A } denote the super location sets of the assigned devices to all BSs and DAs

respectively. Notice that a device may not be associated in a transmission frame, thus |Υ1 | +

|Υ0 | ≤ D. Also, as a device is allowed to associate with only a single AP at a time, Υ: ∩Υ 9 = ∅,

for : & 9 ∈ {Φ1,Φ0}.

We use binary indication variables G38 ,1 9 and H38 ,0ℎ to indicate the association status of the

8Cℎ device with the 9 Cℎ BS and the ℎCℎ DA respectively. The variables equal 1 if the device

is associated with that particular AP, and 0 otherwise. A device cannot have both G38 ,1 9 and

H38 ,0ℎ equal to 1 as the device can only associate with one AP at a time. A device is considered

associated to an AP if and only if the AP is able to provide the necessary QoS level required by

the device.

Figure 5.1: An illustration of BS, DA, and IoT device locations as well as the Voronoi tessellation
formed by the coverage of the BSs and the circular coverage of the DAs.

63



5.1.2 Wireless transmission model

The uplink radio spectrum at the BS is divided into two orthogonal sub-bands, one dedicated

for DA transmissions, C0, and C1
3
for directly connected devices. Sub-band C0 is divided into

! = {1, 2, ...,L} orthogonal channels of equal bandwidth lD, referred to as resource units (RUs).

A DA can occupy a single RU at a time, and an RU at a BS can be allocated to one DA. DAs

from different BSs may be scheduled on the same RU and, thus, DA transmissions may suffer

from inter-cell interference. We assume a fully loaded network in which all RUs at each BS has

a DA scheduled and that DAs do not change their RU assignments.

Sub-band C1
3
is divided into,  = {1, 2, ...,K}, equal bandwidth, l1, channels referred to

as resource blocks (RBs). Depending on the QoS requirements, interference level, location, and

transmission power, a single device may be allocated one or more RBs to accommodate its needs.

Each device connected to a BS can be scheduled on one RB at a time; however, multiple devices

can be scheduled on the same RB while connecting to different BSs. Thus, directly connected

devices may experience inter-cellular interference.

Devices that transmit in two-hop fashion via DAs, share a device-DA sub-band, denoted by

C2
3
, that is orthogonal to both bands C0, and C1

3
. Sub-band C2

3
consists of # = {1, 2, ...,N}

resource channels (RCs) of equal bandwidth l2. Similar to BS-directly connected devices on

the RBs, a device connected to a DA on C2
3
may be assigned one or more RCs depending on its

QoS requirements, signal to interference ratio (SIR), and resource availability. An RC can only

be used by one device connecting to the same DA, yet devices can be assigned the same RC at

different DAs. Thus, two-hop connecting devices experience only inter-cluster interference.

Signal transmissions experience propagation attenuation according to a general power-law

path-loss model. The signal power decays at rate �−U, where � is the propagation distance

and U is the path-loss exponent. All transmissions suffer from Rayleigh fading that introduces

random instantaneous power gain, 6, following an exponential distribution with unity mean (i.e.

6 ∼ exp{1}). The channel power gains are distance independent, independent of each other and

identically distributed (i.i.d.). The network capacity is interference limited.

DAs are assumed to have access to infinite power supply and hence they employ full power

inversion to compensate for path-loss attenuation. Let @0 denote the nominal transmission

power of any DA in the network. We focus on a DA located at 08 and associated with the BS

located at 1 9 . Accordingly, the initial transmission power of the DA after full power inversion

to compensate for the path-loss attenuation is given by @08 = @0 | |08 − 1 9 | |U. Consequently,

the received power at the BS from the DA is given by @A08 = @06, which eliminates the impact

of path-loss attenuation. This assumption is made for simplicity of analysis as it reduces the
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complexity due to distance-based path-loss attenuation. In contrast, devices are assumed to be

battery powered and thus there is an upper limit on the maximum transmission power that can

be used by any device. The transmission power of each device is to be allocated based on the

optimization problem that best provides the required QoS satisfaction at the minimum energy

consumption. Accordingly, let @38 ∈ {@:38 ,1 9 , @
=
38 ,0ℎ
} denote the transmit power of the 8Cℎ device

when transmitting to AP ∈ {1 9 , 0ℎ} on the uplink scheduled resource G ∈ {:, =}, for 1 9 ∈ Φ1,

0ℎ ∈ Φ0, : ∈  and = ∈ #. Let the maximum transmit power of a device be denoted by &<0G

such that 0 ≤ @38 ≤ &<0G.

5.1.3 One-hop instantaneous device data rate

Devices of one-hop transmission share  = {1, 2, ...,K} orthogonal RBs, where : ∈  is the RB

index. Let the channel gain on the : Cℎ RB between the 8Cℎ device (associated with the 9 Cℎ BS)

and the ℎCℎ BS be denoted by 6:
38 ( 9) ,1ℎ

. Also, let @:
38 ,1 9

≥ 0 and B:
38 ,1 9

∈ {0, 1} be the transmission

power level and the binary RB assignment variables of the 8Cℎ device from the 9 Cℎ BS on the

: Cℎ RB. As a device can be assigned multiple RBs at the same time, Q38 ,1 9
= [@1

38 ,1 9
, ..., @ 

38 ,1 9
]

and (38 ,1 9 = [B138 ,1 9 , ..., B
 
38 ,1 9
] are vectors of the overall transmission power and RB assign-

ments of the 8Cℎ device from the 9 Cℎ BS on all  RBs. Accordingly, we have super sets

Q1 = [Q31,11
,Q32,11

, ...,Q3|Υ11
| ,11
, ...,Q3|Υ19 |

,1 9
] and ( = [(31,11 , (32,11 , ..., (3|Υ11

| ,11 , ..., (3|Υ19 |
,1 9 ]

as the collection of the overall transmission power and RB assignment vectors for all BS-

connected devices. The achievable data rate by the 8Cℎ device from the 9 Cℎ BS on the : Cℎ

RB, using Shannon’s channel capacity formula, is

':38 ,1 9 = l1 log2

©­­­«1 +
@:
38 ,1 9
| |38 − 1 9 | |−U6:38 ( 9) ,1 9∑

1ℎ ∈Φ1/1 9

∑
3<∈Υ1ℎ

B:
3< ,1ℎ

@:
3< ,1ℎ

| |3< − 1 9 | |−U6:3<(ℎ) ,1 9

ª®®®¬
where -/G8 means all items in set - excluding item G8.

5.1.4 Two-hop instantaneous data rate

Different from the one-hop transmission, in the two-hop route, a device first transmits data to

its serving DA which then relays the data to the serving BS. The achievable data rate using the

two-hop route is the minimum of the achievable rates of the two links. For the first link (device

to DA), the same analysis from Sub-section 5.1.3 can be applied with notational variation as

follows. As devices connected to DAs share # = {1, 2, ...,N} RCs, where = ∈ # indicates the RC

index, let the channel power gain on the =Cℎ RC from the 9 Cℎ DA between the 8Cℎ device and

the ℎCℎ DA be denoted by 6=
38 ( 9) ,0ℎ

. Also, let @=
38 ,0 9

≥ 0 and E=
38 ,0 9

∈ {0, 1} be the transmission

power level and the binary RC assignment variables of the 8Cℎ device from the 9 Cℎ DA on
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the =Cℎ RC. Further, vectors Q38 ,0 9
= [@1

38 ,0 9
, ..., @#

38 ,0 9
] and +38 ,0 9 = [E1

38 ,0 9
, ..., E#

38 ,0 9
] indicates

the overall transmission power and RC assignments of the 8Cℎ device from the 9 Cℎ DA on all

# RCs. Accordingly, we have super sets Q0 = [Q31,01
,Q32,01

, ...,Q3|Υ01 | ,01
, ...,Q3|Υ09 | ,0 9

] and

+ = [+31,01 , +32,01 , ..., +3|Υ01 | ,01 , ..., +3|Υ09 | ,0 9
] as the collection of the overall transmission power

and RC assignment vectors for all DA-connected devices in the network. The achievable data

rate by the 8Cℎ device on the =Cℎ RC from the 9 Cℎ DA, using Shannon’s channel capacity formula,

is

'=38 ,0 9 = l2 log2

©­­«1 +
@=
38 ,0 9
| |38 − 0 9 | |−U6=38 ( 9) ,0 9∑

0ℎ ∈Φ0/0 9

∑
3<∈Υ0ℎ

E=
3< ,0ℎ

@=
3< ,0ℎ

| |3< − 0 9 | |−U6=3<(ℎ) ,0 9

ª®®¬ .

As for the second link (DA to BS), DAs share ! = {1, 2, ...,L} of RUs when relaying their

aggregated data packets. As we consider a fully loaded network of DAs such that there is a

DA scheduled on every RU at every BS, let Φ;0 = {0;0, 0
;
1, 0

;
2, ..., 0

;
8
} denote the location set of

inter-cell interfering DAs on the ;Cℎ RU, where 0;
9
is the location of the DA scheduled on the ;Cℎ

RU of the 9 Cℎ BS, for 9 ∈ Φ1. Further, let 6;
0 9 ,:

denote the channel power gain on the ;Cℎ RU

from the 9 Cℎ BS between the inter-cell interfering DA and the : Cℎ BS. We focus on a typical

DA located at 0;0 and associated with the BS located at the origin. Using Shannon’s channel

capacity formula, the achievable data rate is given by

R;00
= lD log2

©­­­«1 +
@06

;
00,0∑

0;
9
∈Φ;0/0;0

@0 | |0;9 − 1 9 | |U | |0;9 − 10 | |−U6;0 9 ,0

ª®®®¬ .
As a result, the achievable data rate by the 8Cℎ device from the ℎCℎ DA via two-hop route,

going through the DA located at 0ℎ towards the serving BS, is (See Appendix C.1)

R38 ,2 = <8={R0ℎ ,
N∑
=

E=38 ,0ℎ'
=
38 ,0 9
} (5.1)

where superscript ; is omitted from R0ℎ under the assumption of static RU assignment to the

DAs.

5.2 Problem formulation

Devices have QoS requirements that they thrive to achieve. They also want to minimize their

energy consumption as they are battery powered devices. On the other hand, due to the limited

resources available at the APs, it is crucial to maximize the resource utilization in the system such

that the number of satisfied users is maximized. In what follows, we formulate this problem as an
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optimization problem to maximize the utility of the network - defined as the maximization of the

number of successfully served devices given their data rate requirements and limited resources

- while minimizing the energy consumption of the devices - defined as the minimization of the

summation the transmit power of all served devices. The outcome of the optimization problem is

a set of device-AP association matrices, a vector containing the transmission power assignments

of each served device, and a set of RB and RC assignment matrices for resource allocation. For

brevity, we write X = [G38 ,1 9 ], Y = [H38 ,0ℎ ], V = [E=
38 ,0ℎ
], S = [B:

38 ,1 9
], Q1 = [@:38 ,1 9 ], and Q0 =

[@=
38 ,0ℎ
] as BS association matrix, DA association matrix, RC assignment matrix, RB assignment

matrix, and transmit power vectors to BSs and DAs respectively. This problem is referred to as

the joint AP association, power control, and resource allocation problem, formulated as shown

in problems P1-1 and P1-2.

In P1, (�1) is to guarantee that a device is assigned service if it is able to obtain an average

date rate greater than or equal to its minimum average rate requirement R<8=. The constraint

(�2) is to ensure that a device is associate only with one AP at a time. In constraints (�3) and

(�4), 38 ∈ \I means that the statement is only valid if and only if the 8Cℎ device is in the coverage

of the I AP, for I ∈ {1 9 , 0ℎ}. Constraints (�5) and (�6) are to ensure that an RB or an RC is

occupied only by at most one device from the same AP’s set of associated device. Constraints

(�7) and (�8) draw the relationship between the resource allocation and the user association

dynamics, where a device is only allowed to assume an RB at a BS or an RC at a DA if and

only if it is associated with that particular AP. Constraint (�9) ensures that any device is not

allowed to transmit at a power level higher than &<0G. The second-stage sub-problem (�10)

means that every served device should be associated with the right AP with the minimum total

transmit power when the system utility in the first-stage sub-problem is maximized, which is

reinforced by the constraint given in (�11). Notice that, the second-stage sub-problem is also

subject to the same constraints defined in (�1) through (�9), given by constraint (�12).
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P1-1:

U∗ = max
X,Y,V,S,Q1 ,Q0

©­«
∑
1 9 ∈Φ1

∑
38 ∈Υ19

G38 ,1 9 +
∑
0ℎ ∈Φ0

∑
38 ∈Υ0ℎ

H38 ,0ℎ
ª®¬

s.t. G38 ,1 9

 ∑
:=1

B:38 ,1 9R
:
38 ,1 9
+ H38 ,0ℎR38 ,2 ≥ R<8= (�1)∑

1 9 ∈Φ1
G38 ,1 9 +

∑
0ℎ ∈Φ0

H38 ,0ℎ ≤ 1 ∀38 ∈ Φ3 (�2){
G38 ,1 9 ∈ {0, 1}, if 38 ∈ \1 9 ∀1 9 ∈ Φ1
G38 ,1 9 = 0, otherwise

(�3){
H38 ,0ℎ ∈ {0, 1}, if 38 ∈ \0ℎ ∀0ℎ ∈ Φ0
H38 ,0ℎ = 0, otherwise

(�4)∑
38 ∈Υ19

B:38 ,1 9 ≤ 1, ∀1 9 ,&: (�5)

∑
38 ∈Υ0ℎ

E=38 ,0ℎ ≤ 1, ∀0ℎ,&= (�6)

B:38 ,1 9 = [0, G38 ,1 9 ], ∀38 , 1 9 ,&: (�7)

E=38 ,0ℎ = [0, H38 ,0ℎ ], ∀38 , 0ℎ,&= (�8)

0 ≤ G38 ,1 9
 ∑
:=1

B:38 ,1 9@
:
38 ,1 9
+ H38 ,0ℎ

#∑
==1

E=38 ,0ℎ@
=
38 ,0ℎ

≤ &<0G , (�9)

P1-2:

min
X,Y,V,S,Q1 ,Q0

∑
1 9 ∈Φ1

∑
38 ∈Υ19

G38 ,1 9

 ∑
:=1

B:38 ,1 9@
:
38 ,1 9
+

∑
0ℎ ∈Φ0

∑
38 ∈Υ0ℎ

H38 ,0ℎ

#∑
==1

E=38 ,0ℎ@
=
38 ,0ℎ

(�10)

max
X,Y,V,S,Q1 ,Q0

©­«
∑
1 9 ∈Φ1

∑
38 ∈Υ19

G38 ,1 9 +
∑
0ℎ ∈Φ0

∑
38 ∈Υ0ℎ

H38 ,0ℎ
ª®¬ = U∗ (�11)

(�1) − (�9) (�12)

Notice that problem P1 is a complex multi-objective mixed integer non-convex optimization

problem as it contains discrete indicative binary variables as well as a continuous variable rep-

resenting the transmission power of the devices in the network and has a non-linear constraint

presented in the logarithmic form of the achievable data rate. Furthermore, as the optimization

objectives are part of the constraints of each other, this creates a duality that adds another

dimension of complexity to the problem, forbidding the use of simple convex optimization argu-

ments to solve P1. One way of simplifying the problem is to reformulate it as a single objective

optimization problem which can be done via the method of weighted sum [86], given as show in
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problem P2.

P2:

min
X,Y,V,S,Q1 ,Q0

n
©­«

∑
1 9 ∈Φ1

∑
38 ∈Υ19

G38 ,1 9@
1 9

38
+

∑
0ℎ ∈Φ0

∑
38 ∈Υ0ℎ

H38 ,0ℎ@
0ℎ
38

ª®¬
− (1 − n) ©­«

∑
1 9 ∈Φ1

∑
38 ∈Υ19

G38 ,1 9 +
∑
0ℎ ∈Φ0

∑
38 ∈Υ0ℎ

H38 ,0ℎ
ª®¬

s.t. G38 ,1 9

 ∑
:=1

B:38 ,1 9R
:
38 ,1 9
+ H38 ,0ℎR38 ,2 ≥ R<8= (�1)∑

1 9 ∈Φ1
G38 ,1 9 +

∑
0ℎ ∈Φ0

H38 ,0ℎ ≤ 1 (�2){
G38 ,1 9 ∈ {0, 1}, if 38 ∈ \1 9 ∀1 9 ∈ Φ1
G38 ,1 9 = 0, otherwise

(�3){
H38 ,0ℎ ∈ {0, 1}, if 38 ∈ \0ℎ ∀0ℎ ∈ Φ0
H38 ,0ℎ = 0, otherwise

(�4)∑
38 ∈Υ19

B:38 ,1 9 ≤ 1, ∀1 9 ,&: (�5)

∑
38 ∈Υ0ℎ

E=38 ,0ℎ ≤ 1, ∀0ℎ,&= (�6)

B:38 ,1 9 = [0, G38 ,1 9 ], ∀38 , 1 9 ,&: (�7)

E=38 ,0ℎ = [0, H38 ,0ℎ ], ∀38 , 0ℎ,&= (�8)

0 ≤ G38 ,1 9@
1 9

38
+ H38 ,0ℎ@

0ℎ
38
≤ &<0G , (�9)

In problem P2, @1 9
38
=

 ∑
:=1

B:
38 ,1 9

@:
38 ,1 9

is the total transmission power of the 8Cℎ device from

the 9 Cℎ BS, @0
38
=

#∑
==1

E=
38 ,0ℎ

@=
38 ,0ℎ

is the total transmission power of the 8Cℎ device from the ℎCℎ

DA, and n is a constant that satisfies the following inequality for problem P2 be equivalent to

problem P1 (proof in Appendix C.2)

0 ≤ n ≤ 1

1 + ∑
@38 ∈Φ3

&<0G
. (5.2)

Although problem P2 is a single objective optimization problem and is simpler than yet

equivalent to problem P1, it is still quite complex and combinatorial in nature due to the nested

dependency between the objectives and constraints. Furthermore, problem P2 can be classified

as mixed-integer non-convex optimization problem due to the multiplication between discrete

and continuous variables. Thus, traditional convex approaches cannot be applied to it. In what
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follows, we propose a novel approach to solve problem P2, and hence solve the problem based

on the theory of coalition formation games, where the problem is divided into multiple simpler

sub-problems that can be tackled one at a time.

5.3 User association, resource allocation, and power control al-

gorithm

In this section, we present a novel Power control, resource Allocation, User association, QoS

Satisfaction and Energy consumption optimization algorithm, refereed to as PAUSE, to solve

problem P2. The key idea in PAUSE is to divide problem P2 into multiple simpler sub-problems

by means of Coalition formation game theory and then devise the appropriate optimization

techniques to solve the resultant sub-problems. We start with some preliminaries on coalition

formation games to highlight their suitability in the context of this work. We then present the

PAUSE algorithm in a systematic manner.

5.3.1 Preliminaries on Coalition formation games

In coalition formation games, players attempt to cluster such that the benefit each player gains

from the cooperative clustering decisions is maximized, compared to the gains when they self-

ishly maximize their individual utilities. A coalition formation game is defined by means of three

attributes, namely: i) the set of all players (i.e., the set of devices, D, in the network) partici-

pating in the game to form cooperative clusters; ii) the partition of these players into clusters,

denoted by P = {�1, ..., �) }, which is a collection of ) coalitions; and iii) the coalition value,

V(� 9 ,P), which quantifies the gain of the 9 Cℎ coalition, � 9 , given the partition P. Notice that,

a coalition formation game may allow coalitions to overlap, allowing players to be part of one

or more coalitions at the same time. However, in this work, we only consider non-overlapping

games such that �8 ∩ � 9 = ∅ for all 8 ≠ 9 , and ∪)
8=1�8 = D.

The objective of a coalition formation game is to find a partition that maximizes the gain

value of all of its coalitions. In other words, let P1 and P2 be two possible partitions of the

devices in our considered DA infused network. In this context, a partition is essentially equivalent

to determining which devices associate with which AP. Accordingly, to determine if the set of

device associations corresponding to partition P1 is better than the set of device associations

corresponding to partition P2, the following condition must be met:

∑
9∈{Φ1 ,Φ0 }

V(� 9 ,P1) <
∑

9∈{Φ1 ,Φ0 }
V(� 9 ,P2) (5.3)
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where the “less than” inequality is because, in the context of problem P2, the objective is to

find the partition that minimizes the objective function.

5.3.2 Coalition formation game for problem P2

As per the definition of coalition formation games, we can see that it can be applied in the

context of problem P2, which is essentially a clustering (coalition formation) problem, the

objective of which is to find the best user association decisions such that a user is associated

with the AP which satisfies its data rate requirement while minimizing its energy consumption.

As we have two tiers of APs, namely BSs and DAs, we create a super set of access points

C = {21, 22, ..., 2B , 2B+1, ..., 2B+A}, such that 2 9 denotes the 9 Cℎ BS in the network, for 0 < 9 ≤ B,

and the 9 Cℎ DA in the network, for B < 9 ≤ B + A. For ease of notation, let J = B + A.

Accordingly, let P8 = {�1,8 , �2,8 , ..., �J,8 , �J+1,8} denote the 8Cℎ possible partition of the set of

devices, D, in the network, where � 9 ,8 denotes the set of devices associated with the 9 Cℎ AP, and

�J+1,8 is an extra coalition in which devices that are not yet associated with any AP are placed.

Since, in problem P2, constraint (C2) enforces that a devices is associated with only one AP at

a time, we have a non-overlapping coalition formation game where � 9 ,8 ∩� 9′,8 = ∅ for all 9 ≠ 9 ′,

and
∑J+1
9=1 � 9 ,8 = D. It should be noted that the coalition �J+1 can also be thought of as the set

of devices that cannot be served at the required data rate requirement given the limitation on

the maximum transmission power of the devices as well as the limited resources at the APs.

As per the preceding model, we can now define the gain value function for problem P2,

V(� 9 ,8 ,P8), for the 9 Cℎ coalition � 9 ,8 given the 8Cℎ partition P8, to be given as

V(� 9 ,8 ,P8) =


n

∑
38
:, 9
∈� 9,8

@̃38
:, 9
− (1 − n) |� 9 ,8 |, if 0 < 9 ≤ J

0, if 9 = J + 1

(5.4)

where @̃38
:, 9

denotes the optimal transmission power of the : Cℎ device from the 9 Cℎ AP given

the 8Cℎ partition, and |� 9 ,8 | is the cardinality of the 9 Cℎ coalition from the 8Cℎ partition (i.e., the

number of satisfied devices associated with the 9 Cℎ AP given the partition P8).

5.3.3 Resource allocation and transmission power

We can deduce that the outcome of the coalition formation game is a set of coalitions, {�1, ..., �J+1},

which determines the association decisions of the devices in the network. Accordingly, given

partition P = {�1, �2, ..., �J+1}, we can say that G38 ,1 9 = 1 if 38 ∈ � 9 and zero otherwise, for

0 < 9 ≤ B, and H38 ,0ℎ = 1 if 38 ∈ � 9 and zero otherwise, for B < 9 ≤ J . Also, both G38 ,1 9

and H38 ,0ℎ equal to zero if 38 ∈ �J+1. In other words, the coalition formation game produces
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user association matrices - and . for different possible partitions. Once we have the association

matrices corresponding to a particular partition, their optimality shall be tested against the

objective function of problem P2. To do so, we need to prove that the partition, resulting in

those matrices, minimizes the value gain function defined in (5.4), for all of its coalitions. As

the first part of the value function is the summation of the transmission power of all devices in a

coalition, for the given partition, we need to find the corresponding optimal resource allocations

and minimum power assignment decisions that satisfy the data rate requirements of the devices.

Mathematically, given the partition Pℎ, the optimal transmission power of the devices and RBs

and RCs assignments can be written as an minimization problem, given by

P3:

min
V,S,Q1 ,Q0

�B,ℎ∑
38 ∈�1,ℎ

 ∑
:=1

B:38 ,� 9,ℎ@
:
38 ,� 9,ℎ

+
�J∑

38 ∈�B+1

#∑
==1

E=38 ,� 9@
=
38 ,� 9,ℎ

s.t.



 ∑
:=1

B:
38 ,� 9,ℎ

R:
38 ,� 9,ℎ

≥ R<8=, if 9 ≤ B

min

(
R0 9 ,

N∑
==1

E=
38 ,� 9,ℎ

R=
38 ,� 9,ℎ

)
≥ R<8=, if B < 9 ≤ J

0, if 9 = J + 1

(�1)

∑
38 ∈� 9,ℎ

B:38 ,� 9,ℎ ≤ 1, for 9 ≠ J + 1 (�2)∑
38 ∈� 9,ℎ

E=38 ,� 9,ℎ ≤ 1, for 9 ≠ J + 1 (�3)

B:38 ,� 9,ℎ =

{
[0, 1], for 9 ≤ B
0, otherwise

(�4)

E=38 ,� 9,ℎ =

{
[0, 1], for B < 9 ≤ J
0, otherwise

(�5)

0 ≤
 ∑
:=1

B:38 ,� 9,ℎ@
:
38 ,� 9,ℎ

≤ &<0G , ∀38 ∈ Φ3 for 9 < B (�6)

0 ≤
#∑
==1

E=38 ,� 9,ℎ@
=
38 ,� 9,ℎ

≤ &<0G , ∀38 ∈ Φ3 for B < 9 ≤ J (�7)

where

':38 ,� 9,ℎ = l1 log2

©­­«1 +
@:
38 ,� 9,ℎ

| |38 − 2 9 | |−U6:38 ( 9) ,� 9,ℎ∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3=∈�<,ℎ

B:
3= ,�<,ℎ

@:
3= ,�<,ℎ

| |3= − 2< | |−U6:3=(<) ,1 9

ª®®¬ ,
for 0 < 9 & < ≤ B. (5.5)
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'=38 ,� 9,ℎ = l2 log2

©­­«1 +
@=
38 ,� 9,ℎ

| |38 − 2 9 | |−U6=38 ( 9) ,� 9,ℎ∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3; ∈�<,ℎ

E=
3; ,�<,ℎ

@=
3; ,�<,ℎ

| |3; − 2< | |−U6=3; (<) ,0 9

ª®®¬ ,
for B < 9 & < ≤ J . (5.6)

As we consider that channels C1
3
and C2

3
are orthogonal, transmissions from devices to the

DAs and those directly to the BSs do not interfere. Accordingly, there is no dependency between

the RB and RC assignment or the uplink transmission power of directly connected devices and

those transmitting towards DAs. This independence permits the division of problem P3 into

two independent yet similar optimization problems, one for BS-directly connected devices and

the other for devices connected to DAs. Those optimization problems can be written as (given

the partition Pℎ)

P4-1: min
S,Q1

�B,ℎ∑
38 ∈�1,ℎ

 ∑
:=1

B:38 ,� 9,ℎ@
:
38 ,� 9,ℎ

s.t.
 ∑
:=1

B:38 ,� 9,ℎR
:
38 ,� 9,ℎ

≥ R<8=, for 9 ≤ B (�4 − 1.1)∑
38 ∈� 9,ℎ

B:38 ,� 9,ℎ ≤ 1, for 9 ≠ J + 1 (�4 − 1.2)

B:38 ,� 9,ℎ = [0, 1], for 9 ≤ B (�4 − 1.3)

0 ≤
 ∑
:=1

B:38 ,� 9,ℎ@
:
38 ,� 9,ℎ

≤ &<0G , for 9 < B (�4 − 1.4)

P4-2: min
V,Q0

�J∑
38 ∈�B+1

#∑
==1

E=38 ,� 9@
=
38 ,� 9,ℎ

s.t.
N∑
==1

E=38 ,� 9,ℎR
=
38 ,� 9,ℎ

≥ R<8=, if R0 9 > R<8=, for B < 9 ≤ J (�4 − 2.1)∑
38 ∈� 9,ℎ

E=38 ,� 9,ℎ ≤ 1, for 9 ≠ J + 1 (�4 − 2.2)

E=38 ,� 9,ℎ = [0, 1], for B < 9 ≤ J (�4 − 2.3)

0 ≤
#∑
==1

E=38 ,� 9,ℎ@
=
38 ,� 9,ℎ

≤ &<0G , for B < 9 ≤ J (�4 − 2.4)

It should be noted that different from problem P4-1, problem P4-2 is only valid if and only

if a device is associated with a DA that achieves a data rate of at least R<8= as indicated by

constraint (�4 − 2.1).

To be able to solve problem P3, the partition Pℎ = {�1,ℎ, �2,ℎ, ..., �J,ℎ, �J+1,ℎ} should be

feasible. In other words, given the association matrices X and Y corresponding to partition Pℎ,
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both problems P4-1 and P4-2 should have a possible solution. That is, given X, there is a

set of possible RB assignments, S, and transmission power control levels, Q1, that satisfies the

data rate requirements of each device in every coalition in partition Pℎ for 0 < 9 ≤ B. Similarly,

given Y, there is a set of possible RC assignments, V, and transmission power control levels,

Q0, that satisfies the data rate requirements of each device in every coalition in partition Pℎ
for B < 9 ≤ J . Otherwise, partition Pℎ is not feasible and other feasible partitions should be

found.

Notice that both problems P4-1 and P4-2 are typical joint power minimization and re-

source allocation problems that have been tackled in the literature quite often. As the literature

suggests, these two problems can be solved optimally using Branch and Bound, and outer Ap-

proximation methods [72]. In fact, one popular way of solving this problem is using generalized

Bender’s decomposition (GBD) [94]. However, due to the non-convex nature of the problem and

the fact that it is an MINLP, solving this problem optimally might not be feasible in polynomial

time. Thus, in what follows, we propose a sub-optimal resource allocation and power minimiza-

tion algorithm to solve problems P4-1 and P4-2. We start by reformulating the problem as

a difference of two concave functions programming (D.C. programming). Although there is no

analytic evidence to justify this, many results from the literature show that with the proper

choice of the starting point, D.C. programming algorithms can find a local optimal point that

often yields the global optimum. A number of regularization and starting-point choosing meth-

ods have been proposed and can be used in this work to ensure finding the global optimum.

Yet, our initial objective from solving problems P4-1 and P4-2 is to prove the feasibility of

the given partitions from problem P3. The second step is to find the corresponding optimal

power assignment and resource allocations once the PAUSE algorithm converges to a feasible

partition.

5.3.4 Sub-optimal reformulation as D.C. programming

Both problems P4-1 and P4-2 are highly non-convex due to constraints (�4−1.1) and (�4−2.1).

They are also classified as mixed integer non-linear programming problems due to the presence

of both continuous and discrete variables. As both B:
38 ,� 9,ℎ

and E=
38 ,� 9,ℎ

are binary variables, its

worth pointing out the following equalities

B:38 ,� 9,ℎ'
:
38 ,� 9,ℎ

= l1 log2

©­­«1 +
B:
38 ,� 9,ℎ

@:
38 ,� 9,ℎ

| |38 − 2 9 | |−U6:38 ( 9) ,2 9∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3=∈�<,ℎ

B:
3= ,�<,ℎ

@:
3= ,�<,ℎ

| |3= − 2< | |−U6:3=(<) ,2 9

ª®®¬ ,
for 0 < 9 & < ≤ B. (5.7)
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E=38 ,� 9,ℎ'
=
38 ,� 9,ℎ

= l2 log2

©­­«1 +
E=
38 ,� 9,ℎ

@=
38 ,� 9,ℎ

| |38 − 2 9 | |−U6=38 ( 9) ,2 9∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3; ∈�<,ℎ

E=
3; ,�<,ℎ

@=
3; ,�<,ℎ

| |3; − 2< | |−U6=3; (<) ,2 9

ª®®¬ ,
for B < 9 & < ≤ J . (5.8)

One way of simplifying problems P4-1 and P4-2 is to redefine constraints (�4 − 1.3) and

(�4 − 2.3) with an equivalent continuous representation while enforcing that variables B:
38 ,� 9,ℎ

and E=
38 ,� 9,ℎ

assume binary values. To do so, first, recognize that constraints (�4 − 1.3) and

(�4 − 2.3) can be expressed as the intersection of the following regions:

(�4 − 1.3) ⇒


'1

4−1 : 0 ≤ B:
38 ,� 9,ℎ

≤ 1, ∀8, 9 , :, (�4 − 1.3.1)

'2
4−1 :

∑
9

∑
8

∑
:

(
B:
38 ,� 9,ℎ

− (B:
38 ,� 9,ℎ

)2
)
≤ 0, (�4 − 1.3.2)

(5.9)

(�4 − 2.3) ⇒


'1

4−2 : 0 ≤ E=
38 ,� 9,ℎ

≤ 1, ∀8, 9 , =, (�4 − 2.3.1)

'2
4−2 :

∑
9

∑
8

∑
=

(
E=
38 ,� 9,ℎ

− (E=
38 ,� 9,ℎ

)2
)
≤ 0. (�4 − 2.3.2)

(5.10)

Second, as constraints (�4−1.1) and (�4−2.1) are mixed integers in nature, by reformulating

constraints (�4−1.4) and (�4−1.4) such that their mixed integer nature is replaced by continuous

constraints, and utilizing the redefinition of constraints (�4 − 1.3) and (�4 − 2.3) given in (5.9)

and (5.10) respectively, and with the help of Lagrangian methodology [19, 63], problems P4-1

and P4-2 can be rewritten as problems P5-1 and P5-2 shown below.

P5-1:

min
S,Q1

�B,ℎ∑
38 ∈�1,ℎ

 ∑
:=1

@:38 ,� 9,ℎ + `1

∑
9

∑
8

∑
:

(
B:38 ,� 9,ℎ − (B

:
38 ,� 9,ℎ

)2
)

s.t.
 ∑
:=1

R̃:38 ,� 9,ℎ ≥ R<8=, for 9 ≤ B (�5 − 1.1)∑
38 ∈� 9,ℎ

B:38 ,� 9,ℎ ≤ 1, for 9 ≠ J + 1 (�5 − 1.2)

0 ≤ B:38 ,� 9,ℎ ≤ 1, for 9 ≤ B (�5 − 1.3)

0 ≤
 ∑
:=1

@:38 ,� 9,ℎ ≤ &<0G , for 9 < B (�5 − 1.4)

0 ≤ @:38 ,� 9,ℎ ≤ B
:
38 ,� 9,ℎ

&<0G , for 9 ≤ B (�5 − 1.5)
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P5-2:

min
V,Pℎ ,Q0

�J∑
38 ∈�B+1

#∑
==1

@=38 ,� 9,ℎ + `2

∑
9

∑
8

∑
=

(
E=38 ,� 9,ℎ − (E

=
38 ,� 9,ℎ

)2
)

s.t.
N∑
==1

R̃=38 ,� 9,ℎ ≥ R<8=, if R0 9 > R<8=, for B < 9 ≤ J (�5 − 2.1)∑
38 ∈� 9,ℎ

E=38 ,� 9,ℎ ≤ 1, for 9 ≠ J + 1 (�5 − 2.2)

0 ≤ E=38 ,� 9,ℎ ≤ 1, for B < 9 ≤ J (�5 − 2.3)

0 ≤
#∑
==1

@=38 ,� 9,ℎ ≤ &<0G , for B < 9 ≤ J (�5 − 2.4)

0 ≤ @=38 ,� 9,ℎ ≤ E
=
38 ,� 9,ℎ

&<0G , for B < 9 ≤ J (�5 − 1.5)

In problems P5-1 and P5-2, `1 >> 1 and `2 >> 1 are Lagrangian multipliers which define

the penalties when variables B:
38 ,� 9,ℎ

and E=
38 ,� 9,ℎ

are set to values other than 0 or 1, ensuring

that problems P5-1 and P5-2 are equivalent to problems P4-1 and P4-2 respectively.

For compactness, in what follows, we use W1 and W2 to denote the set of constraints

�5 − 1.2 - �5 − 1.5 and �5 − 2.2 - �5 − 2.5 respectively. Further, for simplicity of notation, let

Ω1(Q1) =
∑�B,ℎ
38 ∈�1,ℎ

∑ 
:=1 @

:
38 ,� 9,ℎ

and Ω2(Q0) =
∑�J,ℎ
38 ∈�B+1,ℎ

∑#
==1 @

#
38 ,� 9,ℎ

. Moreover, R̃:
38 ,� 9,ℎ

and

R̃=
38 ,� 9,ℎ

are given as

R̃:38 ,� 9,ℎ = l1 log2

©­­«1 +
@:
38 ,� 9,ℎ

| |38 − 2 9 | |−U6:38 ( 9) ,2 9∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3=∈�<,ℎ

@:
3= ,�<,ℎ

| |3= − 2< | |−U6:3=(<) ,2 9

ª®®¬ , for 0 < 9 & < ≤ B.

R̃=38 ,� 9,ℎ = l2 log2

©­­«1 +
@=
38 ,� 9,ℎ

| |38 − 2 9 | |−U6=38 ( 9) ,2 9∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3; ∈�<,ℎ

@=
3; ,�<,ℎ

| |3; − 2< | |−U6=3; (<) ,2 9

ª®®¬ , for B < 9 & < ≤ J .

Proposition 1: For sufficiently constant positive large values of `1 and `2, problems P4-1

and P4-2 are respectively equivalent to problems P5-1 and P5-2.

Proof. Please refer to Appendix C.3 for detailed proof of Proposition 1.

Last, notice that, both problems P5-1 and P5-2 are now functions of only continuous

variables, yet constraints (�4 − 1.1) and (�4 − 2.1) are highly non-convex. These non-convex

constraints can be reformulated into a difference between two concave functions [63, 98], given

as
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 ∑
:=1

R̃:38 ,� 9,ℎ =

l1

 ∑
:=1

log2
©­«@:38 ,� 9,ℎ | |38 − 2 9 | |−U6:38 ( 9) ,2 9 +

∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3=∈�<,ℎ

@:3= ,�<,ℎ | |3= − 2< | |
−U6:3=(<) ,2 9

ª®¬︸                                                                                                                        ︷︷                                                                                                                        ︸
[1 (Q1)

−l1
 ∑
:=1

log2
©­«

∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3=∈�<,ℎ

@:3= ,�<,ℎ | |3= − 2< | |
−U6:3=(<) ,2 9

ª®¬︸                                                                              ︷︷                                                                              ︸
Z1 (Q1)

. (5.11)

#∑
==1

R̃=38 ,� 9,ℎ =

l2

#∑
==1

log2
©­«@=38 ,� 9,ℎ | |38 − 2 9 | |−U6=38 ( 9) ,2 9 +

∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3; ∈�<,ℎ

@=3; ,�<,ℎ | |3; − 2< | |
−U6=3; (<) ,2 9

ª®¬︸                                                                                                                      ︷︷                                                                                                                      ︸
[0 (Q0)

−l1 log2
©­«

∑
�<,ℎ ∈Pℎ/� 9,ℎ

∑
3; ∈�<,ℎ

@=3; ,�<,ℎ | |3; − 2< | |
−U6=3; (<) ,2 9

ª®¬︸                                                                       ︷︷                                                                       ︸
Z0 (Q0)

. (5.12)

Thus, problems P5-1 and P5-2 can be written as

P6-1:

min
S,Pℎ ,Q1

Ω1(Q1) + `1

∑
9

∑
8

∑
:

(
B:38 ,� 9,ℎ − (B

:
38 ,� 9,ℎ

)2
)

s.t. W1, l1 ([1 (Q1) − Z1 (Q1)) ≥ R<8=, for 9 ≤ B (�6 − 1.1)

P6-2:

min
V,Pℎ ,Q0

Ω2(Q0) + `2

∑
9

∑
8

∑
=

(
E=38 ,� 9,ℎ − (E

=
38 ,� 9,ℎ

)2
)

s.t. W2, l2 ([0 (Q0) − Z0 (Q0)) ≥ R<8=, if R0 9 > R<8=, for B < 9 ≤ J (�6 − 2.1)

Problems P6-1 and P6-2 are in the form of the difference of two concave (D.C) functions.

They can be solved using iterative approaches, starting from an initial point and employing

the first order Taylor approximation to change the concave problems to convex ones. Note

that, as problems P6-1 and P6-2 are in their canonical form of D.C. programming [19], in

particular, terms D(S) = ∑
9

∑
8

∑
: (B:38 ,� 9,ℎ )

2, D(V) = ∑
9

∑
8

∑
= (E=38 ,� 9,ℎ )

2, Z1 (Q1) and Z0 (Q0)

are all concave functions and the rest of the constraints are convex, techniques such as successive
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convex approximation can be used to arrive at stationary points for their solutions [16].

5.3.5 Iterative algorithm for the sub-optimal formulation

The following analysis is applicable for both problems P6-1 and P6-2. However, for brevity,

we focus only on P6-1.

To be able to solve problem P6-1, the concavity introduced by the Logarithm and square

functions can be transformed into a equivalent convex form by recognizing that both the terms

D(S) and Z1 (Q1) are differentiable. Thus, using their first order Taylor expansion, the following

global underestimators, shown by the inequalities, hold for any feasible solution point (QC
1
,SC ).

D(S) ≥ D(SC ) + ∇SD(SC ) (S − SC ) (5.13)

Z1 (Q1) ≥ Z1 (QC
1) + ∇Q1

Z1 (QC
1) (Q1 −QC

1) (5.14)

where ∇- denotes the partial derivatives of the function with respect to the vector -, and QC
1

and SC are the feasible solutions of problem P7-1 at the CCℎ iteration of the iterative algorithm.

By taking the differentials of the Logarithmic constraints and the squared portion of the

objective functions of problems P7-1 and P7-2, we can redefine them in a convex manner,

given as

P7-1:

min
S,Pℎ ,Q1

Ω1(Q1) + `1

∑
9

∑
8

∑
:

(
B:38 ,� 9,ℎ − ((B

:
38 ,� 9,ℎ

)C )2 − 2(B:38 ,� 9,ℎ )
C ((B:38 ,� 9,ℎ ) − (B

:
38 ,� 9,ℎ

)C )
)

s.t. W1, l1 ([1 (Q1) − (Z1 (QC
1) + ∇Q1

Z1 (QC
1) (Q1 −QC

1))) ≥ R<8=, for 9 ≤ B

P7-2:

min
V,Pℎ ,Q0

Ω2(Q0) + `2

∑
9

∑
8

∑
=

(
E=38 ,� 9,ℎ − ((E

=
38 ,� 9,ℎ

)C )2 − 2(E=38 ,� 9,ℎ )
C ((E=38 ,� 9,ℎ ) − (E

=
38 ,� 9,ℎ

)C )
)

s.t. W2, l2 ([0 (Q0) − (Z0 (QC
0) + ∇Q0

Z0 (QC
0) (Q0 −QC

0))) ≥ R<8=, if R0 9 > R<8=, for B < 9 ≤ J

Our method to solve the redefined convex optimization problems P7-1 and P7-2 is shown in

Algorithm 1. As both problems are the same, for brevity, Algorithm 1 is given in the notations

of problem P7-1.

where | | · | |1 is the 1-norm of the argument which is the sum of the absolute values of the

columns of the argument matrix (Manhattan norm).

As per the inequalities given in (5.13) and (5.14), problems P7-1 and P7-2 represent an

upper bound to problems P6-1 and P6-2 respectively. The iterative method presented in Al-

gorithm 1 tightens the upper bound depending on the stopping condition. In Algorithm 1, we
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Algorithm 1 Iterative D.C. programming algorithm for problems P7-1 and P7-2
1: Initialize the stopping criteria tolerance 4 > 0, the maximum number of iterations )<0G,
C = 0, the penalty factor `1 >> 0, and feasible matrices Q0

1 and S0

2: Iteration C: For a given point ΓC = (QC
1
,SC ), execute the following

3: Step 1: Compute ∇Q1
Z1 (QC

1
) and ∇SD(SC )

4: Step 2: Solve the convex problem P7-1 to find the temporal solution Γ̃ = (Q̃1, S̃)
5: Step 3: if | |Q̃1 | |1 − ||QC

1
| |1 ≤ 4, then stop solving problem P7-1. Set Q = Q̃1 and

S = S̃.
Otherwise, ΓC+1 = Γ̃ and go back to step 1

start with an initial point Γ0 which is used to solve the convex problems P7-1 and P7-2 for an

updated temporal solution Γ̃. The updated temporal solution is then recursively used to find

another temporal solution. The update process continues until the algorithm converges. Algo-

rithm 1 results in a series of solutions to problems P7-1 and P7-2 by solving their equivalent

convex counterparts. The work presented in [100] can be used to show that Algorithm 1 con-

verges locally to a stationary point with polynomial time computational complexity; however,

for completeness, the proof of convergence is given in Appendix C.4.

5.4 The PAUSE algorithm

In what follows, we describe the working process of the proposed algorithm PAUSE to solve

problem P2 which consists of two main stages: the initial partition creation stage and the

partition update stage. Below we give a detailed description of each stage as well as present the

corresponding pseudo-codes making up the full PAUSE algorithm.

5.4.1 Algorithm description

5.4.1.1 Initialization

The key objective of the PAUSE algorithm is to find an optimal partition of the devices that re-

sults in the maximization of the number of supported and QoS satisfied devices while optimizing

resource utilization and minimizing the total transmission power of the devices. Consequently,

in the first step of PAUSE, devices in the network are divided into coalitions each associated

with an AP in the network. Thus, we first need to choose an initial feasible partition. Let the

initial partition, at ℎ = 0, be donated by P0 = {�1,0, ..., �J+1,0} where � 9 ,0 denotes the coalition

associated with the 9 Cℎ BS, for 0 < 9 ≤ B, and the 9 Cℎ DA, for B < 9 ≤ J , and an extra

coalition that belongs to no AP, index by 9 = J + 1. Initially, all devices are assumed to be in

the coalition �J+1,0; i.e., � 9 ,0 = ∅ for 0 < 9 ≤ J and �J+1,0 = D. Sequentially, we take every

device from �J+1,0 and randomly place it into one of the other J coalitions. For a device to be
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placed in a coalition, it has to be in the coverage of the AP point belonging to that coalition

(i.e., 38 ∈ \ 9 for 9 ∈ {Φ1,Φ0}). Once a device is moved from �J+1,0, we update the partition P0

and perform a partition feasibility check as explained next.

5.4.1.2 Feasibility check

In the initialization stage, it takes at least D movements to parse through all the devices in

the network and place them into a feasible partition. For the 8Cℎ device moved out of �J+1,0

and placed into a feasible coalition, � 9 ,0, an intermediate partition is formed. Let P80 denote

the intermediate partition after the placement of the 8Cℎ device into a feasible coalition. We

derive the association matrices X80 and Y80 corresponding to P80 and pass them to Algorithm

1. If a solution is attainable, i.e., given X80 and Y80 problems P7-1 and P7-2 have solutions,

then the corresponding placement of the 8Cℎ device into the 9 Cℎ coalition is approved, for 9 ≤ J .

If Algorithm 1 does not converge, the device movement from �J+1,0 into � 9 ,0 is not approved

and the device stays in �J+1,0. The same process is repeated sequentially for all the devices in

�J+1,0. After D steps, if �J+1,0 = ∅, the feasibility check stage is terminated; otherwise, the

placement procedure is re-execute for the devices that were returned to �J+1,0. Let o be the

number of times the re-execution of the feasibility check stage after the DCℎ time. To guarantee

the termination of the feasibility check stage, we consider that the re-execution is done with

probability d = 1 − exp{−^o}, where 0 < ^ < 1 is a control parameter for the decay speed of

d. The process keeps iterating until the condition d < r is met, where 0 ≤ r ≤ 1 is a design

threshold parameter for terminating the feasibility check stage. As the objective is to maximize

the number of supported devices, we seek that the initial partition has as many devices as

possible distributed across the APs. To do so, the threshold r can aggressively be set to a

small value to ensure as many re-executions as possible, however, this comes at the expense of

increased algorithm convergence time. The procedure of creating the initial feasible partition is

summarized in Algorithm 2.

5.4.1.3 Partition update

Once the feasibility check stage is terminated, the final initial feasible partition is generated,

donated by P0, and the partition update stage commences. The update stage can be generalized

as follows. At the ℎCℎ iteration of the partition update, a mutation of the Pℎ−1 partition, denoted

by P̃ℎ−1, is created by randomly choosing a device from two different coalitions � 9 ,0 and � 9′,0,

for 9 ≠ 9 ′ and 0 < 9 & 9 ′ ≤ J +1, and swapping the devices together. One of the three following

scenarios occurs: i) the chosen device from � 9 ,0 is not in the coverage of � 9′,0 and that from

80



� 9′,0 is not in the coverage of � 9 ,0, ii) one of the chosen devices can be swapped while the other

cannot due to coverage constraints, or iii) both devices can be swapped as they are in coverage.

For scenario one, the swap is rejected and the mutation is not approved; thus, Pℎ = Pℎ−1. For

scenario two, the device with the feasible swap is moved to the new coalition, while the other

stays in its current coalition and the new mutation is approved. Similarly, for scenario three, the

swap of both devices is made and the new mutation is approved. For scenarios two and three,

P̃ℎ−1 is generated and the corresponding association metrics are passed to Algorithm 1 to check

for feasibility. If not feasible, then the mutation is rejected and Pℎ = Pℎ−1. If the partition,

P̃ℎ−1, is feasible (i.e., problems P7-1 and P7-2 have solutions), the value functions of P̃ℎ−1 and

of Pℎ−1 are computed based on the definition in (5.4) and compared. If V(P̃ℎ−1) < V(Pℎ−1),

then Pℎ = P̃ℎ−1 with probability 1. If V(Pℎ−1) < V(P̃ℎ−1), then Pℎ = Pℎ−1 with probability

fℎ = exp{X/�}, and Pℎ = P̃ℎ−1 with probability 1 − fℎ, where X = |V(Pℎ−1) − V(P̃ℎ−1) | and

� = �0

log(ℎ) is a decaying design parameter corresponding to the number of times the partition

update stage has been executed, where �0 is the rate of decay. Further, let [0 be the tolerance

such that the PAUSE algorithm terminates if � < [0. Note that, as we assume that PAUSE

is ran by a centralized controller, we assume that the controller saves the latest partition and

the corresponding optimal power and resource allocation matrices. Having introduced the basic

operations of PAUSE, we can now formally present the algorithm as Algorithm 3.

5.4.2 Convergence and complexity analysis

As was shown, the PAUSE algorithm consists of two main stages: the initialization stage and

the partition update stage. In the initialization stage, devices are sequentially moved from

the extra coalition �J+1 to one of their feasible APs. The association matrices corresponding

to each device move are generated and passed to Algorithm 1 to check feasibility. Thus, the

initialization stage is composed of a series of Algorithm 1. To be able to analyze the complexity of

the PAUSE algorithm, we need to analyze the complexity of Algorithm 1. In the feasibility check

procedure, Algorithm 1 is used to solve the optimization problems P7-1 and P7-2 based on

D.C. programming, hence, the complexity of Algorithm 1 can be evaluated using methods such

as those presented in [43,94]. It should be noted that the complexity of Algorithm 1 depends on

the underlying utilized optimization algorithm; thus, one algorithm can perform better than the

other in terms of optimality and complexity [100,115]. For the following complexity analysis, we

use the interior point method to solve the optimization problems. Other optimization methods

can be used and the performances can be compared, however, this comparison is out of the scope

of this work.
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Algorithm 2 Create the initial feasible partition P0

1: Initialize r, o = 1, the partition P0 = {�1,0, ..., �J+1,0} such that � 9 ,0 = ∅, for 9 ≤ J , and
�J+1,0 = D. Initialize the association matrices X0 = [0], Y0 = [0], S0 = [0], V0 = [0],
Q1,0 = [0], Q0,0 = [0]

2: Repeat
3: Let 8 = 1
4: Temp = | |�J+1,0 | |
5: While 8 ≤ Temp:
6: Move the 8Cℎ device from �J+1,0 to a randomly chosen coalition, � 9 ,0, in which the device

has coverage, for 9 ≠ J + 1.
7: Generate a corresponding temporary partition P80,o and the corresponding association ma-

trices X80,o and Y80,o
8: Pass the temporary association matrices X80,o and Y80,o to Algorithm 1 to check for feasibility

by finding solution points for problems P7-1 and P7-2
If P80,o = feasible

Move device 8 from �J+1,0 to the coalition � 9 ,0
P0 = P80,o, X0 = X8

0,o, Y0 = Y8
0,o

8 = 8 + 1
Else

Device 8 stay in �J+1,0
P80,o = P0

8 = 8 + 1
End
EndWhile

9: o = o + 1
10: Compute: d = 1 − exp{−^o}

If �J+1,0 = ∅ or d < r

Exit
Else

Temp = 2 and 8 = 1
Go to Step 5

End
11: return P0, X0, and Y0
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Algorithm 3 The PAUSE algorithm for solving problem P2
1: Initialization: Create the initial feasible partition P0 = {�1,0, ..., �J+1,0} using Algorithm

2. Initialize the matrices Xℎ = [0], Yℎ = [0], Sℎ = [0], Vℎ = [0], Q1,ℎ = [0], Q0,ℎ = [0].
Initialize �0 and ℎ = 1

2: Repeat
3: Randomly choose two coalitions from partition Pℎ−1, say � 9 ,ℎ−1 and � 9′,ℎ−1, for 9 ≠ 9 ′ and

0 < 9 & 9 ′ ≤ J + 1
4: Randomly choose a device from each of the chosen coalitions in Step 3, say 38 from � 9 ,ℎ−1

and 38′ from � 9′,ℎ−1

5: Swap the chosen devices and obtain a temporary partition P̃ℎ−1. Swap is done if and only
if it is feasible (i.e., the device is moved to a coalition where it has coverage)

6: Compute the AP association matrices X̃ℎ−1 and Ỹℎ−1 as well as Xℎ−1 and Yℎ−1 corresponding
to partition Pℎ−1

7: Pass the matrices X̃ℎ−1, Ỹℎ−1, Xℎ−1 and Yℎ−1 to Algorithm 1 to find the corresponding
optimal resource and power allocation matrices
If P̃ℎ−1 is feasible

Compute corresponding value function for both P̃ℎ−1 and Pℎ−1 denoted by V(P̃ℎ−1) and
V(Pℎ−1) respectively

If |V(P̃ℎ−1) − V(Pℎ−1)) | > 0
Compare V(P̃ℎ−1) and V(Pℎ−1) If V(P̃ℎ−1) < V(Pℎ−1)
Pℎ = P̃ℎ−1 with probability 1

Else
Pℎ = Pℎ−1 with probability fℎ = exp{X/�}, and Pℎ = P̃ℎ−1 with probability 1−fℎ

End
Else

Pℎ = P̃ℎ−1 with probability 0.5, and Pℎ = Pℎ−1 with probability 0.5
Exit

Else
Pℎ = Pℎ−1 with probability 1

End
8: Save the value function, user association, resource allocation, and power assignment matrices

of the updated partition
If � < [0

Exit
End

9: ℎ = ℎ + 1
10: The optimal solution to problem P2 and hence problem P1 is equal to Xℎ−1, Yℎ−1, Sℎ−1,

Vℎ−1, Q1,ℎ−1, Q0,ℎ−1
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Let D1 and D0 denote the maximum number of devices associated with a BS and a DA

respectively, i.e., D1
Δ
= <0G
9∈Φ1
|� 9 | and D0

Δ
= <0G
ℎ∈Φ0
|�ℎ |. Thus, for problems P7-1 and P7-2, we have

a total of 2D1 B + D1 and 2D0#A + D0 decision variables respectively, where D1 + D0 ≤ D.

Furthermore, there are G1 =  B + 2D1 B + 2D1B and G0 = #A + 2D0#A + 2DA convex

and linear constraints for problems P7-1 and P7-2 respectively. Accordingly, every iteration of

Algorithm 1 to check the feasibility of a pair of generated assignment matrices - and . has a

computational complexity of the order $ ((2D1 B + 2D0#A +D0 +D1) (G1 + G0)), where $ (·)

is the big-O notation.

Note that Algorithm 1 is used in both the initialization stage and in the partition update

stage. In the initialization stage, Algorithm 1 is called at least D times. Algorithm 1 may be

called more times in the the initialization stage depending on the control parameters ^ and r. As

discussed in the feasibility check stage of the PAUSE algorithm, the number of times Algorithm 1

is called decreases as a function of the number of re-executions o, at the rate exp{−^o}. Further,

the initialization stage converges when 1 − exp{−^o} < r. Therefore, the number of times the

feasibility check is re-executed after the DCℎ time is given as o =
log

(
1

1−r

)
^

. Accordingly, the

computational complexity of the initialization stage is of (o + D)($ ((2D1 B + 2D0#A +D0 +

D1) (G1 + G0))) iterations.

After the initialization stage is completed, the partition update stage commences. In the

partition update stage, mutations of the initial partition are generated sequentially and passed

to Algorithm 1 to check their feasibility. The number of times Algorithm 1 is called in the

partition update stage is a function of the decay parameter � = �0

log(ℎ) . Thus, as the partition

update stage converges as � approaches zero (i.e., � < [0), the computational complexity of the

partition update stage is of (exp{�0

[0
})($ ((2D1 B + 2D0#A +D0 + D1) (G1 + G0))) iterations.

By multiplying out the arguments within the parenthesis, we can see that the dominant terms

are 4(D1 B)2 + 4(D0#A)2. Consequently, the total computational complexity of the PAUSE

algorithm in number of iterations is approximately given as

O ≈ (o + D + exp{�
0

[0
})($ (4(D1 B)2 + 4(D0#A)2)). (5.15)

5.5 Simulation results and discussions

5.5.1 Algorithm performance examination

We evaluate the effectiveness of PAUSE via computer simulations with parameters listed in

Table 5.1. Three different study cases are used to examine the impact of n , DA density _0, and

the number of RCs # on the performance of PAUSE. Studies are conducted on a square area
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of 800 < G 800 <. It should be noted that, different from the simulations done in the results

sub-sections of Chapters 3 and 4, in this part it is not possible to simulate a 200 :< G 200 :<

area due to hardware limitations. Due to the large number of variables that we solve for, the

local PC used to run the algorithm takes a long time to compile, thus, in this section we provide

a representative scaled down results for the purpose of proof of concept. Two BSs, each of

circular coverage area with radius Λ1 = 200<, are located at (200<, 200<) and (600<, 600<)

from the origin. For the initialization phase of the PAUSE algorithm, the devices are associated

based on proximity and coverage. That is, a device can be associated with an AP if both of

the following conditions are met: i) the physical distance between the device and the AP is less

than the radius of coverage of that AP, and 2) the maximum transmission range of the device

on any of the RBs/sub-channels of that AP is greater than or equal to the AP’s coverage radius.

As we consider a Rayleigh fading channel and path-loss propagation attenuation, the maximum

transmission ranges of the 8Cℎ device located at 38 towards the 9 Cℎ BS, located at 1 9 , or towards

the ℎCℎ DA, located at 0ℎ, are respectively given by

�8, 9 = &<0G | |38 − 1 9 | |−U68, 9

�8,ℎ = &<0G | |38 − 0ℎ | |−U68,ℎ

where 68, 9 and 68,ℎ are the channel gain between the device and the AP.

It should be noted that, the objective from using this method of association in the initial-

ization stage is to mimic the traditional max-RSS association mechanism. However, since in

the initialization stage we use Algorithm 1 to optimize power consumption as well as resource

utilization, the outcome of the initialization phase can be thought of as an optimized version of

the max-RSS based user association. This serves as a baseline to compare the performance of

the proposed PAUSE algorithm to as will be shown.

Table 5.1: Simulation parameters
Name Value | Name Value
F1 50 kHz | `1 = `2 5000
F2 100 kHz | R<8= 1 kbps
FD 150 kHz | 4 1e-3
U 4 | �0 2
Λ0 40 m | [0 0.5
Λ1 200 m | ^ 1
&<0G 500 mW | r 0.5
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5.5.1.1 Cast Study I

The main objective is to study the impact of n on the behavior the proposed PAUSE algorithm

when solving problem P2. Recall that, as n decreases, more weight emphasis is placed on

maximizing the number of supported devices, while the minimization of the transmission power

becomes of less importance. To study the impact of n on the behavior of PAUSE when solving

P2, n ∈ {0.0008, 0.001, 0.0014, 0.002, 0.0041}, are chosen such that the condition set in (5.2) is

met. The network is made up of ten DAs, each of radius Λ0 = 40 <, randomly deployed across the

2D plane within the simulate square area. Each DA has # = 10 RCs with l2 = 100 :�I. There

are D = 240 devices randomly distributed over the region. The initial partition successfully

serves 84 devices with an average per device transmission power of 94.7626 <, for all n values.

Starting from this point, the partition update stage of the PAUSE algorithm is used to optimize

the performance for different n values.

The results after convergence for different n values are given in Table 5.2. It is observed that

increasing n prioritizes reducing power consumption over increasing the number of supported

devices. For instance, at n = 0.0008, the algorithm successfully serves 9 more devices compared

to the initial point, while the per device average transmission power increases from 94.7626 <,

to 113.9413 <, . On the other hand, at n = 0.0041, only 2 more devices are served compared to

the initial point, however, the transmission power decreases to 77.9303 <, . From problem P2,

it can be seen that, as n approaches zero, the problem simplifies to a maximization problem of

the number of supported devices and ignores the minimization of transmission power. This is

supported by the results presented in Figure 5.2, where we set n = 0 and the algorithm converges

to the absolute maximum possible number of 95 devices. For the results shown in Figure 5.2,

we harden the stopping criteria as the objective is to push the algorithm to the limit and see

the long term behaviour. From the shown results, we can conclude that there is a maximum

number of devices that can be successfully supported. The results suggest that, for all n values,

not all the devices can be accommodated due to the interference which limits the possibility of

supporting more devices at the required minimum data rate.

Table 5.2: Impact of n on the behaviour of the PAUSE algorithm

Epsilon (n)
Value of
partition

No. of assoc.
devices

Avg. trans.
power (mW)

Value of opt.
partition Value diff.

0.0041 44.8029 86 77.9303 58.1692 13.3663
0.0020 64.8795 88 93.7671 71.3210 6.4415
0.0014 70.6156 89 108.1003 74.9077 4.2921
0.0010 74.4397 90 112.1331 79.8180 5.3783
0.0008 76.3518 93 113.9413 84.4484 8.0966
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Figure 5.2: The maximum possible number of devices that can be supported at n = 0.

5.5.1.2 Case study II

To study the impact of DA density as a design parameter, we test the network when it has 4,

8, 16, and 32 DAs that are randomly deployed each with coverage area of radius Λ0 = 40 <.

Each DA has 10 RCs each of BW 100 :�I. A total of 280 devices are randomly deployed.

For all DA densities, n = 0.0014. Table 5.3 shows the total number of supported devices and

their distribution between BSs and DAs (the 3A3 column), the average transmission power per

device (the 4Cℎ column) after the initialization phase, and the resultant values (in the 5Cℎ and

6Cℎ columns) after the PAUSE algorithm converges. The following observations can be made:

Table 5.3: Impact of DA density

DAs
used

Available
RB + RC

Supported
(BS, DA, total)

Ave. trans.
power (mW)

Opt. No. of
(BS, DA, total)

Opt. Device
ave. trans.
power (mW)

4 40+40 (31 , 35, 66) 113.5642 (30, 36, 66) 113.2334
8 40+80 (28, 55, 83) 109.3373 (29, 64, 93) 131.7634
16 40+160 (25, 98, 123) 87.1789 (25, 105, 130) 97.9106
32 40+320 (15, 160, 175) 70.1782 (16, 174, 190) 67.2939

i) Increasing the number of DAs increases the amount of available resources and hence

the network can support more devices, however, the increase is non-linear due to increased

interference; ii) as the DA number increases, more devices are associated with them, which

reduces the load on the BSs; iii) there is an optimal number of DAs that results in the best
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overall network coverage. This is evident when the number of DAs increases from 4 to 8 to

16 which results in an increase in the per device average transmission power compared to the

initial values. This is because PAUSE is associating devices that may be far away leading to an

increase in the average transmission power. However, when 32 DAs are used, network coverage

is maximized and PAUSE now optimizes power by including the devices that best maximize the

number of satisfied users at the minimum transmission power possible; and iv) more DAs leads

to an increase in the number of supported devices, yet the network is unable to support all the

280 devices. As the number of DAs increases, the amount of resources allocated for every DA

decreases, leading to a lower average achievable data rate per DA. As the QoS requirements of

the devices using two-hop routes depends on the link rates of the two-hop path, lower DA uplink

data rate limits the number of devices a DA can support. This result highlights the dependency

between the two-hop route and the available resources; there is an optimal number of DAs for

maximal cost effectiveness.

5.5.1.3 Case study III

The network has 20 randomly deployed DAs. To study the impact of varying the number of

available RCs at each DA, we set the number of RCs, #, to 10, 15, 20, and 30 each of BW

100 :�I. Accordingly, the total number of available uplink resources (RBs+RCs) is in 240,

340, 440, and 640 respectively. A total of 350 devices are randomly deployed. Results of this

case study are shown in Table 5.4, with n = 0.0014. Based on the results in Table 5.4, few

observations can be made: i) As # increases, the number of devices that can be successfully

supported increases, and the average per device transmission power decreases. It is expected, as

more RUs are available for the devices and the devices are more dispersed across the available

RUs, leading to a decrease in interference and in the transmission power needed to achieve the

required QoS; ii) a DA can only serve the devices located within its vicinity; hence, increasing

the number of RCs does not always lead to an increase in the number of supported devices.

For example, increasing the RCs from 20 to 30 does not lead to an increase in the maximum

number of supported devices after convergence; iii) increasing the number of RCs might lead to

an improvement in the average transmission power of the devices. This is because increasing

the number of RCs provides more options for the disperse of the devices across the RCs. Using

PAUSE algorithm, devices are assigned the RCs that best improve their transmission power;

iv) the increase of the number of supported devices is non-linear with respect to the increase in

the number of RCs due to interference and competition; and v) increasing the number of RCs

may lead to a slight increase in the per average transmission power of the devices which can be
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avoided by choosing different n values to put emphasis on the desired objective. In conclusion,

the number of DAs and the number of RCs are important network design factors that should

be jointly optimized to support the largest number of devices at the lowest transmission power.

Table 5.4: Impact of varying # on the behaviour of the PAUSE algorithm

No. of
RCs

No. of Served
Devices

Per device
ave. trans.
power (mW)

Opt. No. of Served
Devices

Per device
ave. trans.
power (mW)

10 96 134.4565 106 136.1226
15 142 105.7782 164 122.7326
20 255 92.498 308 82.2356
30 275 76.9939 308 72.449

5.5.2 Performance comparison

For performance comparison, we consider three main baseline schemes, namely: random AP as-

sociation scheme, max-RSS AP association scheme [29], and optimized max-RSS AP association

scheme. In the random AP association scheme, each device is first randomly associated with

one of its reachable APs. Algorithm 1 is then used to find the optimal resource assignments

and power allocations for the current associations. In the max-RSS scheme, each device is as-

sociated with the AP to which it has the best channel conditions, however, resource assignment

and power allocation are done randomly. On the other hand, the optimized max-RSS based

scheme works in a way similar to the max-RSS scheme, except once the devices are associated,

Algorithm 1 is then used to find the optimal resource assignments and power allocations for the

current partition.

5.5.2.1 Performance comparison at different DA densities

For the same 800 < G 800 < square area, we simulate a network that contains the two BSs, each

with  = 20 RBs, and a total of 280 devices to be served. We vary the number of DAs in the

network from 4 to 32 DAs that are randomly deployed. Each DA has 15 sub-channels and a

coverage area of Λ0 = 40<. In Figure 5.3, we show the impact of varying the DA density on

the average transmission power per device as well as the number of successfully served devices.

Each result is an average of 100 Monte Carlo runs.

As can be seen from Figure 5.3, compared to all the baseline algorithms, the proposed algo-

rithm significantly improves both the number of successfully served devices and the transmission

energy per device. For instance, at 32 deployed DAs, the proposed algorithm serves 108 more

devices than the random approach, and 53 more compared to optimized max-RSS. At the same

time, it achieves 40% reduction in energy consumption compared to the random approach and
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performs similarly to optimized max-RSS. These results demonstrate that the proposed algo-

rithm achieves the maximum number of successfully served devices at the minimum energy

consumption.

Figure 5.3: Impact of changing DA density on the average energy consumption per device (left)
and on the number of satisfied served-devices (right)

5.5.2.2 Performance comparison at different numbers of sub-channels per DA

We simulate the same network with 280 devices, the two BSs, and 30 randomly deployed DAs.

The number of sub-channels per DA is varied from 10 to 25 in a step size of 5. Figure 5.4 shows

the impact of varying the number of sub-channels per DA on the average transmission power

per device as well as the number of successfully served devices. Each result is an average of 100

Monte Carlo runs. We choose to use 30 DAs for this study as to eliminate the impact of DA

random positioning by forcing the system into the plateau region indicated in the results shown

in Figure 5.3. From Figure 5.4, increasing the number of sub-channels, increases the number of

supported devices. However, as we are operating in the plateau region, due to the high number

of DAs deployed, the increase in the number of supported devices is not as significant as shown

in Figure 5.3. On the other hand, increasing the number of sub-channels significantly improves

the energy consumption per device. This is expected, as devices have more sub-channels to

choose from, resulting in a lower number of interfering devices per sub-channel. Figure 5.4 also

shows that the proposed algorithm outperforms all other examined baseline schemes in both

power consumption and number of successfully served devices. At 30 DAs and 25 sub-channel

per DA, the proposed algorithm can successfully serve all the 280 devices in the network.
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Figure 5.4: Impact of changing the number of sub-channels per DA on the average energy
consumption per device (left) and on the number of satisfied served-devices (right)

5.6 Summary

In this Chapter, we study a two-hop DA infused cellular network to support a large number

of battery power IoT devices. The objective is to maximize the number of satisfied devices

while minimizing their energy consumption and achieving their desired minimum data rate.

Complementing the cellular network with a layer of low-cost yet powerful aggregator nodes

to relay data from the devices in a two-hop manner is an effective approach. However, the

aggregator nodes are cellular devices themselves and thus use radio resources at the BSs, leading

to a dependency that requires the optimization of the number of aggregators to be deployed

given the available resources and the number of devices to be supported. We formulate the joint

user association, power consumption minimization, and resource utility maximization problem

as a MINLP multi-objective optimization problem from the view point of both devices and

the network. We propose a novel algorithm, PAUSE, based on coalition formation games and

D.C programming to simplify the problem into continuous convex non-linear sub-problems that

can be solved using traditional optimization methods in polynomial time. Numerical results are

presented to study the impact of summation weighted factor n , DA density _0, and the number of

DA sub-channels # on the algorithm performance and demonstrate the benefits of the proposed

two-hop DA infused cellular network in supporting future massive cellular IoT applications. The

performance of the proposed algorithm is compared to three baseline AP association schemes

and is shown to outperform all of them in terms of the number of successfully served devices

and energy consumption.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objective of this research is to develop a channel access mechanism to enable future antic-

ipated massive cellular IoT applications that will have stringent QoS requirements. To achieve

the objective, we divide the work into the stages described below:

• Analyze the performance of the current channel access mechanism and identify its limita-

tions;

• Based on the identified limitations, develop a cost-effective, QoS aware, energy and radio

resource efficient approach to improve the performance of the cellular network to support

massive number of IoT devices;

• Analyze the performance of the proposed solution and identify its advantages and disad-

vantages;

• Consider a realistic network scenario and study the applicability of the proposed solution.

At the first stage, we study the RACH procedure, the channel access mechanism used in

traditional cellular networks, and model its performance. In RACH, a device randomly chooses

a preamble from a fixed set of preambles and transmits it to its desired BS. As the set of

preambles are shared by all the devices in the network, the same preamble can be chosen by

more than one device and transmitted at the same time, leading to interference and possible

denial of access. As the preambles are used by all BSs, interference consists of two components:

intra-cell interference and inter-cell interference. Characterizing and modeling the interference

components is crucial to analyzing the performance of the RACH procedure. Yet, due to the

complexity added by the random distances and locations of interfering devices on a preamble,

traditional modeling techniques are limited. Accordingly, in our work, we proposed to use

stochastic geometry to derive statistical models for the association success probability, taking
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into account the spatial characteristics of the interfering devices. The derived models are shown

to be accurate by means of computer simulations and numerical results. The models are used to

study the impact of different variables such as the density of the devices, density of BSs, number

of preambles, and FPC factor, on the association success probability. We draw the following

conclusions:

• The RACH procedure acts as a bottleneck when the number of contending devices in-

creases;

• As the number of devices increases, the access delay increases and can reach an unaccept-

able level for some IoT applications that are delay intolerant;

• Power control is a plausible way of improving the performance of the RACH procedure

under massive number of device; however, the improvement comes at the cost of elevated

levels of transmission power and energy consumption;

• Our work results in novel mathematical approaches to model complex uplink transmission

paradigms that are anticipated to constitute a major portion of future wireless communi-

cation traffic.

These observations suggest the inadequacy of the current association mechanism of the cellu-

lar network when supporting large-scale IoT applications and necessitates finding novel channel

access mechanisms to be part of future 5G cellular networks. The main limitations are due to

the high contention at the RACH stage that leads to excessive delays, and the long transmis-

sion distances between devices and BSs that result in high energy consumption. Hence, in the

second stage of the work, we propose to use data aggregation as a means to enable massive

access on cellular networks. Data aggregation has the advantage of providing energy efficient

communication as the DAs are often at a closer proximity to the devices than the cellular BSs.

It also improves resource utilization with increased payload in each larger packet. Furthermore,

by grouping devices into clusters and allowing cluster heads to be the only devices contending

over the RACH preambles, access delay is greatly reduced.

Given these advantages, in the second part of the Ph.D research, we propose a two-hop

network architecture that consists of a layer of cellular BSs overlaid with a layer of DAs. Devices

transmit their data by first associating with their closest DA which then relays the data to

the closest BS. To test the performance of the proposed architecture, we borrow tools from

stochastic geometry and queuing theory, where we derive accurate models for the achievable data

rate, association success probability, and end-to-end system delay. We also explore methods by

which the two-hop architecture can be optimized to improve the overall network performance.
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Besides exploring the advantages of clustering and data aggregation, our approach is unique

as it considers NOMA for in-cluster transmissions to improve resource utilization and increase

the number of supportable devices per-cluster. The objective is to use the minimum number

of DAs that provide sufficient coverage for the devices, while limiting the contention over the

RACH preambles among the DAs. NOMA allows multiple devices to be multiplexed on the

same channel at the cost of controlled interference and slight increase in transmission power.

We explore the potentials brought by combining NOMA and data aggregation for the purpose

of supporting massive cellular IoT applications. Based on our models and numerical results, the

following conclusions are made:

• We showcase the advantages of two-hop NOMA-enabled network architecture as compared

to single-hop networks;

• We develop novel mathematical models using stochastic geometry and queuing theory that

can be used to analyze the uplink performance of two-hop networks with NOMA-enabled

links;

• Based on the proposed two-hop network architecture, we conclude that DA density as

well as network SINR thresholds are two critical parameters that highly impact network

performance and thus should be carefully designed;

• Compared to a traditional two-hop OMA based architecture, the proposed NOMA archi-

tecture provides better scheduling and coverage probability and supports a larger number

of devices per transmission frame;

• NOMA results in a lower average end-to-end system delay compared to OMA;

• the advantages of NOMA come at the cost of increased energy consumption on the device’s

side.

After studying and showing the advantages of two-hop network architecture in efficiently

supporting a massive number of devices, in the third part of the research, we consider more

realistic network scenario where devices have the choice between directly connecting to BSs

or transmitting their data in a two-hop fashion via DAs. In this scenario, to which AP a

device connects is crucial and impacts the overall performance of the network. Thus, in this

part, we consider optimized user association and resource allocation to enable energy efficient

communication while catering for strict QoS requirements. The objective is to support the

largest number of devices at their required data rate, while efficiently utilizing network radio
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resources and minimizing energy consumption. The formulated problem is non-linear mixed

integer problem that cannot be solved using convex approaches. Consequently, we propose the

PAUSE algorithm to accurately solve the problem in polynomial time. In PAUSE, with the

help of coalition game theory and stochastic geometry, the problem is divided into simpler sub-

problems that are then transformed into a difference between two concave functions programming

that can be solved by means of iterative approaches. The efficiency of the proposed algorithm

is presented.

6.2 Future research direction

In this research, we present rigorous analysis of the anticipated massive access problem on future

cellular networks due to future massive cellular IoT applications. The results from the above

mentioned three stages pave the way for further investigations in the field of data aggregation

and clustering as means for enabling massive channel access on future cellular networks. We also

present some novel modeling approaches that consider various networking factors making them

more comprehensive and accurate. The models can be used to study other parameters and draw

more conclusions on future network designs. We also explore the potentials of NOMA as a way

of increasing the number of supported devices while being resource efficient. We finally touch on

the user association problem and present a new approach to solve the joint optimization problem

of user association and radio resource utilization while taking into account the QoS requirement

of the devices.

The detailed results show the potentials of data aggregation and further investigation is

needed under more general scenarios. For example, in this work, we only consider single and

two-hop transmission; however, multi-hop transmission might be a better approach for some

applications especially those involving nodes placed at inaccessible locations such as under wa-

ter. Considering multi-hop scenarios might be challenging when modeling the performance, yet

stochastic geometry can be used to develop accurate statistical models.

Furthermore, in solving the user association problem, we do not consider NOMA due to its

complexity. Nonetheless, as the second stage of the work has shown the advantages brought on

by NOMA, it might be of great interest to study the user association problem in NOMA-enabled

scenarios.

Last, in both parts two and three of this work, we did not consider the impact of RACH on

the overall performance. As RACH is expected to be the main channel access mechanism for

future cellular networks, considering its impact when analyzing multi-hop network architecture

is crucial and is yet to be studied.
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Appendix A

RACH performance Analysis

A.1 Association success probability

Device0 located at 3=00 successfully associates with the BS0 located at the origin if its transmitted

preamble is received with SINR above threshold g. The probability of successful association is

given by
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where � [.] denotes the expectation operator, (a) follows from the fact that the channel gain 6

is exponentially distributed with unity mean, (b) is the expectation with respect to | |3=00 | |, �8=
and �>DC which are random due to the randomness in the link lengths between devices and their

serving BSs, while the L�8={.} and L�>DC {.} terms in (c) denote the Laplace transforms of the

intra-cell and inter-cell interference respectively.

A.2 Average number of active devices per Voronoi cell
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where (a) follows from the definition of Gamma function (Γ(0 + 2) =
∫ ∞
0
C0+2−14−C) which is true

for 0 < 1, and (b) follows from the summation relation (
∑∞
0=0 Z

0/0! = 40).

A.3 Laplace transform of intra-cell interference

Derivations of the intra-cell interference on the =Cℎ preamble are as follows:
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where (a) follows from the independence of 68 (for different values of 8), (b) follows from 68 being

exponentially distributed with unity mean and its independence of the propagation distance,

and (c) follows from the i.i.d nature of the distances from the devices to BS0. Since '=08 are

i.i.d for different values of 8 and are independent of the BS location, in (d), the subscript {08} is

omitted such that the PDF is denoted by 5'= (A) given by (3.4).

A.4 Laplace transform of inter-cell interference

Derivations of the inter-cell interference on the =Cℎ preamble are as follows:
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where (a) follows from the i.i.d. exponentially distributed channel gain 68 with unity mean (for

different 8 values) and its independence from the propagation distance, .=
98
, and the fact that

.=
98
is i.i.d for different values of 8: (b) follows from -=

98
being i.i.d for different values of 9 and

from the definition of the probability generating functionl (PGFL) of the PPP [51]. In (c), the

subscripts are omitted in 5. = (H) which is the i.i.d PDF of .=
98
(for different values of 8 and 9)

given by (A.5) shown below. In (d), we assume that the locations of inter-cell interfering devices

follow a homogeneous PPP for simplicity.

5. =
98
(H) = 2c_1H exp

{
(−c_1H2)

}
. (A.5)
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Appendix B

NOMA-Enabled Two-hop Cellular Net-

work

B.1 NOMA sub-channels scheduling probability

We define scheduling probability as the probability of having ; scheduled devices on the =Cℎ

NOMA sub-channel. This probability depends on the number of active devices in a cluster and

the number of available resources. Accordingly, the conditional PMF of (= given M0 = < is

%((= = B |M0 = <) =



1 − <
N , B = 0, < < N

<
N , B = 1, < < N

2 − <
N , B = 1, N ≤ < < "<0G

<
N − 1, B = 2, N ≤ < < "<0G

1, B = 2, < ≥ "<0G

0, otherwise.

To find the unconditional PMF, %((= = B) = %((= = B |M0 = <)%(M0 = <), we use the PDF

of M0 given in (1) to yield the following

%((= = B) =



N−1∑
<=0
(1 − <

N )%(M0 = <), B = 0, < < N
N−1∑
<=0
( <N )%(M0 = <), B = 1, < < N

"<0G−1∑
<=N

(2 − <
N )%(M0 = <), B = 1, N ≤ < < "<0G

"<0G−1∑
<=N

( <N − 1)%(M0 = <), B = 2, N ≤ < < "<0G

∞∑
<="<0G

%(M0 = <), B = 2, < ≥ "<0G

0, otherwise
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=



N−1∑
<=0
(1 − <

N )%(M0 = <), B = 0

"<0G−1∑
<=N

(2 − <
N )%(M0 = <) +

N−1∑
<=0
( <N )%(M0 = <), B = 1

∞∑
<="<0G

%(M0 = <) +
"<0G−1∑
<=N

( <N − 1)%(M0 = <), B = 2

0, B > 2.

B.2 Device-DA probability of successful transmission

By definition, the device-DA transmission success probability, Θ(Ξ=B0 9 ), for different scenarios is

given by

Θ(Ξ=1
0ℎ) = %

{
Ξ=1

0ℎ > g0ℎ
}
= %

{
6=0

0ℎ

�2ℎ + �2;
> g0ℎ

}
= ��2ℎ ,�2; [exp {−g0ℎ (�2ℎ + �2;)}]

= L�2ℎ {g0ℎ}L�2; {g0ℎ}

Θ(Ξ=2
0ℎ) = %

{
6=0

0ℎ

6=0
0; + �2ℎ + �2;

> g0ℎ

}
= �6=0

0;

[
exp{−g0ℎ6=0

0; }
]
L�2ℎ {g0ℎ}L�2; {g0ℎ}

Θ(Ξ=2
0; ) = %

{
6=0

0;

�2ℎ + �2;
> g0; ∩

6=0
0ℎ

6=0
0; + �2ℎ + �2;

> g0ℎ

}
0
=

∫ ∞

g0; (�2ℎ+�2;)
4−6

=0
02

∫ ∞

g0ℎ (6=0
0;
+�2ℎ+�2;)

4−6
=0
0ℎ 36=0

0ℎ 36
=0
0;

=
1

1 + g0ℎ
��2ℎ ,�2; [exp {−(g0ℎ + g0; (1 + g0ℎ)) (�2ℎ + �2;)}]

1
=

1

1 + g0ℎ
L�2ℎ {�}L�2; {�}

where (a) follows from 6=0
0ℎ and 6=0

0; being i.i.d exponentially distributed RVs with unity mean,

and in (b) � = g0ℎ + g0; (1 + g0ℎ).

For simplicity of notation, let .=
8 9
= | |G=

8 9
− 0: | | and '=

80 = | |G=8 9 | | denote the distances from

the 9 ranked 8Cℎ interfering device on the =Cℎ sub-channel, located at G=
8 9
, to its serving DA

and to the origin respectively. Since device locations follow a PPP with node density _3 and

devices are randomly chosen and scheduled on the available sub-channels, .=
8 9

is an i.i.d RV for

different values of 8 and 9 , and follows a Rayleigh distribution with parameter _3 [51]. Similarly,

'=
80 follows a Rayleigh distribution with parameter _ 9

3
, for 9 ∈ {ℎ, ;}. Accordingly, the Laplace
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transforms, L�2 9 {^}, for ^ ∈ {g0ℎ, �} and 9 ∈ {ℎ, ;}, are given by

L�2 9 {^} = ��2 9

4
{
−^ ∑

G=
8 9
∈Ψ 9=

1(. =
8 9
<'=

8 9
) (. =

8 9
)U ('=

8 9
)−U6=0

8 9

}
0
= �

Ψ
9
=


∏
G=
8 9
∈Ψ 9=

�. =
8 9
,6=0
8 9

[
4

{
−^1

(
. =
8 9
<'=

8 9

)
(. =
8 9
)U ('=

8 9
)−U6=0

8 9

}]
1
= exp

{
−2c_

9

3
�. =

8 9
,6=0
8 9

[∫ ∞

H

(1 − 4−^ (.
=
8 9
)UA−U6=0

8 9 )A 3A
]}

2
= exp

{
−2c_

9

3
�. =

8 9

[∫ ∞

H

(
1

(^(.=
8 9
)U)−1AU + 1

)
A 3A

]}
3
= exp

{
−c_ 9

3
^

2
U �. =

8 9
[((.=8 9)U)

2
U ]

∫ ∞

(^) −2U

1

I
U
2 + 1

3I

}
where �- [·] is the expectation with respect to the variable X, (a) follows from the independence

between Ψ
9
= and 6=0

8 9
, (b) follows from the probability generation functional (PGFL) of the

PPP [51], (c) follows from the Laplace transform of 6=0
8 9

and the fact that 6=0
8 9

are i.i.d exponential

random variables with unity mean for different values of 8 and 9 . As for (d), it is obtained with

introducing variables I8 9 = A2/(^(.=
8 9
)U)2/U. Using the PDF of the distance between an arbitrary

device and its serving DA, the term �. =
8 9
[((.=

8 9
)U) 2

U ] is given by

�. =
8 9
[((.=8 9)U)

2
U ] =

∫ ∞

0
(HU) 2

U 5. (H) 3A

=

∫ ∞

0
H22c_3H4

−c_3H2
3H

=
1

c_3
.

Accordingly, at U = 4, the Laplace transforms, L�2 9 {^}, for ^ ∈ {g0ℎ, �} and 9 ∈ {ℎ, ;}

simplify to

L�2 9 {^} = exp

{
−
√
^_

9

3

_3

(c
2
− arctan

(
(^)−1/2

))}
.

B.3 Average achievable bit rate by a device in coverage

A device can transmit to its serving DA if and only if it is in coverage. Accordingly, the achievable

bit rate is conditional on being in coverage. The average achievable bit rate by a device, when

in coverage, can be derived using the Shannon’s channel capacity formula, given by
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F B 9=
3

=


�

[
l= log2

(
1 + Ξ=1

0ℎ

) ]
, B = 1 & 9 = ℎ

�
[
l= log2

(
1 + Ξ=2

0ℎ

) ]
, B = 2 & 9 = ℎ

�

[
l= log2

(
1 + Ξ=2

0;

)]
, B = 2 & 9 = ;

where

F 1ℎ
3 =

∫
C>0

%

(
l= log2

(
1 + Ξ=1

0ℎ

)
> C

)
3C

=

∫
C>0

%

(
Ξ=1

0ℎ > 2
C
l= − 1

)
3C

0
=

∫
C>0

L�2ℎ {B}L�2; {B} 3C

F 2ℎ
3 =

∫
C>0

%

(
l= log2

(
1 + Ξ=2

0ℎ

)
> C

)
3C

=

∫
C>0

%

(
Ξ=2

0ℎ > 2
C
l= − 1

)
3C

1
=

∫
C>0

�6=0
0;

[
exp{−B6=0

0; }
]
L�2ℎ {B}L�2; {B} 3C

F 1ℎ
3 =

∫
C>0

%

(
l= log2

(
1 + Ξ=2

0;

)
> C

)
3C

=

∫
C>0

%

(
Ξ=2

0; > 2
C
l= − 1

)
3C

2
=

∫
C>0

L�2ℎ {B}L�2; {B} 3C

where B = 2
C
l= − 1, and (a), (b), and (c) follow from that the probability terms resemble those

of the coverage probabilities given in (40). We use the expectation with respect to interference

terms to reach the Laplace transform terms.
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Appendix C

Optimized Data Aggregation

C.1 Average achievable data rate of a DA

Using Shannon’s channel capacity formula, the achievable data rate by a DA is given as

'̄0 = �- 9 ,.9 ,6;0 9 ,0,6
;
00 ,0

lD log2

©­­­«1 +
@>6

;
00,0∑

0;
9
∈Φ;0/0;0

@>.
U
9
-−U
9
6;
0 9 ,0

ª®®®¬


0
=

∫
C>0

%

©­­­«lD log2

©­­­«1 +
@>6

;
00,0∑

0;
9
∈Φ;0/0;0

@>.
U
9
-−U
9
6;
0 9 ,0

ª®®®¬ > C
ª®®®¬ dC

=

∫
C>0

%
©­­«6;00,0

>

(
2

C
lD − 1

) ∑
0;
9
∈Φ;0/0;0

. U9 -
−U
9 6;0 9 ,0

ª®®¬ dC

1
=

∫
C>0

�- 9 ,.9 ,6;0 9 ,0

exp

−g
∑

0;
9
∈Φ;0/0;0

. U9 -
−U
9 6;0 9 ,0


 dC

=

∫
C>0

L- 9 ,.9 ,6
;
0 9 ,0
{g}dC

where �- [·] is the expectation with respect to -, and in (a), we use the definition � [-] =∫
C>0

%(- > C) 3C to compute the expectation of the logarithmic term; in (b), g = 2
C
lD −1, and the

exponential function follows from the exponentially distributed channel power gain 6;
00,0

with

unity mean. Further, L- {·} denotes Laplace transform with respect to -, given by

L- 9 ,.9 ,6
;
0 9 ,0
{g} = �- 9 ,.9 ,6;0 9 ,0

exp

−g
∑

0;
9
∈Φ;0/0;0

. U9 -
−U
9 6;0 9 ,0




0
= �- 9


∏

0;
9
∈Φ;0/0;0

�.9 ,6;0 9 ,0

[
4

{
−g. U

9
-−U
9
6;
0 9 ,0

}]
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1
= exp

{
−2c_1�.9 ,6;0 9 ,0

[∫ ∞

H

(1 − 4−g.
U
9
G−U6;

0 9 ,0)G dG

]}
2
= exp

{
−2c_1�.9

[∫ ∞

H

(
1

g. U
9
G−U6;

0 9 ,0
+ 1

)
G dG

]}
3
= exp

{
−c_1g

2
U �.9 [((. 9)U)

2
U ]

∫ ∞

(g) −2U

1

I
U
2 + 1

dI

}
where (a) follows from the independence between Φ;0 and 6;

0 9 ,0
, (b) follows from the probability

generation functional of the PPP [51], (c) follows from the exponentially distributed random

variable 6;
0 9 ,0

with unity mean and the i.i.d 6=0
8 9

for different values of 9 . As for (d), it is

obtained with introducing variable I 9 = A2/(g(. 9)U)2/U. Using the PDF of the distance between

an arbitrary device and its serving DA, the term �.9 [((. 9)U)
2
U ] is given by

�.9 [((. 9)U)
2
U ] =

∫ ∞

0
(HU) 2

U 5. (H) dA

=

∫ ∞

0
H22c_0H4

−c_0H2
3H =

1

c_0
.

Accordingly, at U = 4, the Laplace transforms, L- 9 ,.9 ,6
;
0 9 ,0
{g}, simplifies to

L- 9 ,.9 ,6
;
0 9 ,0
{g} = exp

{
−
√
g_1

_0

(c
2
− arctan

(
(g)−1/2

))}
.

C.2 Proof of equivalency of problem P1 and problem P2

Let ('∗, (∗, -∗, . ∗, %∗) be the optimal solution to problem P1. Further, let ('̃, (̃, -̃, .̃ , %̃) be an

optimal solution to problem P2. Since the set of constraints of problem P1 and problem P2 are

the same, it follows that ('∗, (∗, -∗, . ∗, %∗) is also a feasible solution of problem P2. In what

follows, we prove that ('∗, (∗, -∗, . ∗, %∗) is not only another feasible solution of problem P2 but

in fact the optimal solution of it. First, for simplicity of notations, define the following

0∗ =
©­«

∑
1 9 ∈Ψ1

∑
38 ∈Ψ3

G∗8 9 +
∑
0ℎ ∈Ψ0

∑
38 ∈Ψ3

H∗8ℎ
ª®¬ (C.1)

1∗ =
∑
38 ∈Ψ3

(G∗8 9 + H∗8ℎ)@38 (C.2)

0̃ =
©­«

∑
1 9 ∈Ψ1

∑
38 ∈Ψ3

G̃8 9 +
∑
0ℎ ∈Ψ0

∑
38 ∈Ψ3

H̃8ℎ
ª®¬ (C.3)

1̃ =
∑
38 ∈Ψ3

(G̃8 9 + H̃8ℎ)@38 (C.4)

Since G∗
8 9
, H∗

8ℎ
, G̃8 9 and H̃8ℎ are all positive integers that assumes a maximum value of 1, define

Δ� as
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(0∗ − 0̃) = Δ� ≥ 1 (C.5)

Accordingly, using the preceding definitions and the formulation of problem P1 and problem

P2, we have the following

nΔ� − (1 − n)Δ� ≤ Δ�

1 + ∑
@38 ∈Ψ3

&38 ,<0G
−
Δ�

∑
@38 ∈Ψ3 &38 ,<0G

1 + ∑
@38 ∈Ψ3

&38 ,<0G
(C.6)

≤ Δ�

1 + ∑
@38 ∈Ψ3

&38 ,<0G
−

∑
@38 ∈Ψ3 &38 ,<0G

1 + ∑
@38 ∈Ψ3

&38 ,<0G
= f (C.7)

where Δ� = 1∗ − 1̃, (C.6) follows from the definition 0 ≤ n ≤ 1
1+ ∑
@38
∈Ψ3

&38 ,<0G
, and (C.7) follows

from the fact that the minimum value Δ� can assume, based on (C.5), is 1. Furthermore, notice

that, since − ∑
@38 ∈Ψ3

&38 ,<0G ≤ Δ� ≤
∑

@38 ∈Ψ3
&38 ,<0G, then

−2
∑
@38 ∈Ψ3 &38 ,<0G

1 + ∑
@38 ∈Ψ3

&38 ,<0G
≤ f ≤ 0 (C.8)

As we assume that ('∗, (∗, -∗, . ∗, %∗) and ('̃, (̃, -̃, .̃ , %̃) are both feasible solutions for prob-

lem P2, than they should result in the optimal objective function. Thus, we can conclude

that

nΔ� − (1 − n)Δ� ≤ 0 (C.9)

n (1∗ − 1̃) − (1 − n) (0∗ − 0̃) ≤ 0 (C.10)

n1∗ − (1 − n)0∗ ≤ n 1̃ − (1 − n)0̃ (C.11)

Accordingly, as ('∗, (∗, -∗, . ∗, %∗) results in a smaller objective function in problem P2

compared to ('̃, (̃, -̃, .̃ , %̃) do, hence, we can conclude that ('∗, (∗, -∗, . ∗, %∗) is in fact the

optimal solution of both problem P1 as well as problem P2. �

C.3 Proof of Proposition 1

Notice that, the following proof is applicable to both problem P4-1 and problem P4-2. However,

we do the proof only for problem P4-1.

Similar to [94], we start the proof by using the abstract Lagrangian duality. First, for ease of

notation, let Π((,Q1) =
�B,ℎ∑
38 ∈�1,ℎ

 ∑
:=1

B:
38 ,� 9,ℎ

@:
38 ,� 9,ℎ

. Accordingly, by applying the Lagrangian to

combine constraint (�4 − 1.3.2) into the objective function of problem P4-1, the optimization

problem in (5.7) can be written as
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minimize
S, Q1

maximize
`1≥0

Π((,Q1, `1) (C.12)

where

Π((,Q1, `1) =
�B,ℎ∑
38 ∈�1,ℎ

 ∑
:=1

@:38 ,� 9,ℎ + `1

∑
9

∑
8

∑
:

(
B:38 ,� 9,ℎ − (B

:
38 ,� 9,ℎ

)2
)

(C.13)

and the dual problem in (5.7) is given by

maximize
`1≥0

minimize
S, Q1

Π((,Q1, `1) (C.14)

The weak duality states that [16]

maximize
`1≥0

minimize
S, Q1

Π((,Q1, `1) ≤ minimize
S, Q1

maximize
`1≥0

Π((,Q1, `1) (C.15)

For notational simplicity, let Ω(`1) = minimize
S, Q1

Π((,Q1, `1). Before going further with the

proof, few things to note: i) ∀S,Q1 ∈ W, �4−1.3.1, we have
∑
9

∑
8

∑
:

(
B:
38 ,� 9,ℎ

− (B:
38 ,� 9,ℎ

)2
)
≥ 0,

whereW is the set of constraints �4− 1.1-�4− 1.4 and �4− 1.3.1 ; ii) Ω(`1) is a monotonically

increasing function with respect to `1; and iii) Ω(`1) is bounded from above by the optimal

value of primal given in (C.12). Assume that the dual problem given in (C.14) has the optimal

solutions denoted by `∗1 and V∗ = {S̃, Q̃1}, where 0 ≤ `∗1 ≤ ∞. We now study the primal and

dual problem for two cases. Assume that problem P4-1 given in (5.7) has the optimal value

give as W∗, and accordingly W∗ is also the optimal value of the primal problem given in (C.12).

Therefore,

Case I:
∑
9

∑
8

∑
:

(
B:
38 ,� 9,ℎ

− (B:
38 ,� 9,ℎ

)2
)
= 0

Under this case, the optimal solution V∗ is in fact a feasible solution for problem P4-1 given

in (5.7). Substituting V∗ into problem P4-1 in (5.7) yields

Ω(`1∗) = minimize
S, Q1

Π((,Q1, `
∗
1) = Π(S̃, Q̃1) ≥ W∗ (C.16)

Since Ω(`1∗) = maximize
`1≥0

Ω(`1); thus, using (C.14) and (C.16), we can conclude that both

the primal problem in (C.12) and the dual problem in (C.14) are in fact equal when∑
9

∑
8

∑
:

(
B:
38 ,� 9,ℎ

− (B:
38 ,� 9,ℎ

)2
)
= 0. That is,

minimize
S, Q1

maximize
`1≥0

Π((,Q1, `1) = maximize
`1≥0

minimize
S, Q1

Π((,Q1, `1) (C.17)

Another conclusion that can be drawn from the monotonously of Ω(`1) with respect to `1,

we have

Ω(`1) = W∗, ∀`1 ≥ `∗1, (C.18)
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and accordingly, the results of Proposition 1 follows.

Case II:
∑
9

∑
8

∑
:

(
B:
38 ,� 9,ℎ

− (B:
38 ,� 9,ℎ

)2
)
> 0

Notice that, under this scenario, the dual optimization problem in (C.14) becomes unbounded

from above as the solution of the maximization part with respect to `1 is∞ due to the monotonic-

ity of Ω(`1). However, this contradicts inequality of the duality defined in (C.15). Accordingly,

Case II is not feasible. Therefore, for the optimal solution of problem P4-1 given (5.7), Case

I holds and the results of Proposition 1 follows immediately. �

C.4 Proof of convergence of Algorithm 1

We show that Algorithm 1 can be used to solve problems P7-1 and P7-2 and that the algorithm

converges to a KKT stationary solution. By proving that Algorithm 1 converges, it can be in

turn inferred that the PAUSE algorithm also converges.

Proof: The proof of convergence of Algorithm 1 has two aspects: the convergence of the

algorithm to a solution and the nature of the solution.

Convergence:

Due to the linear nature of terms 51 (Q1,S) and 50 (Q0,V), their minimization results in an

iteratively monotonically decreasing sequence. That is, at the CCℎ iteration, we have

51 (QC+1
1 ,SC+1) ≤ 51 (QC

1,S
C ) (C.19)

50 (QC+1
0 ,VC+1) ≤ 50 (QC

0,V
C ) (C.20)

which follows from the fact that we use gradient descent to find the next solution point that

results in the minimization of the objective function. Furthermore, as the constraints are refor-

mulated to make the problem convex, finding a solution that results in the minimization of the

objective function is attainable using typical convex optimization methods [16]. Consequently,

we can conclude that there exists a cluster point of sequences 51 (QC
1
,SC )∞

C=0 and 50 (QC
0,V

C )∞C=0

that result in the convergence of Algorithm 1 for a sufficiently small n , where n is the stopping

criteria defined as | |Q̃1 | |1 − ||QC
1
| |1 ≤ 4 and | |Q̃0 | |1 − ||QC

0 | |1 ≤ 4 respectively, with 51 and 50

denoting the objective functions of problems P7-1 and P7-2 respectively.

KKT solutions:

Considering the above discussion on convergence, let (Q̄1, S̄)
Δ
= limC→∞(QC

1
,SC ) and (Q̄0, V̄)

Δ
=

limC→∞(QC
0,V

C ) denote the optimal cluster point solutions of problems P7-1 and P7-2 respec-

tively, returned by Algorithm 1 with a sufficiently small n . Then, we can show that both (Q̄1, S̄)
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and (Q̄0, V̄) are KKT stationary points of the original problems P4-1 and P4-2 respectively.

Considering the properties implied by the cluster point nature of the solutions found using Algo-

rithm 1, we have (QC
1
,SC ) = (QC+1

1
,SC+1) = (Q̄1, S̄) and (QC

0,V
C ) = (QC+1

0 ,VC+1) = (Q̄0, V̄) with

C → ∞ when optimizing problems P7-1 and P7-2 respectively. Accordingly, given (QC
1
,SC ) =

(Q̄1, S̄) and (QC
0,V

C ) = (Q̄0, V̄) , for (QC
1
,SC ) and (QC

0,V
C ) to be KKT stationary solutions,

(QC+1
1
,SC+1) = (Q̄1, S̄) and = (QC+1

0 ,VC+1) = (Q̄0, V̄) should satisfy the following KKT stationary

conditions

∇ 51 (Q̄1, S̄) + _1 (l1 ([1 (Q̄1) − Z1 (Q̄1)) = 0 (C.21)

∇ 50 (Q̄0, V̄) + _0 (l0 ([0 (Q̄0) − Z0 (Q̄0)) = 0 (C.22)

where _1 and _0 are the Lagrangian multipliers for conditions �7−1.1 and �7−2.1 respectively.

Notice that, all other inequality constraints of both problems are constant terms and hence

their derivatives are zeros and thus they are not part of the KKT conditions. Also, as the

Lagrangian terms of the objective functions of problems P7-1 and P7-2 yield constant values,

their derivatives of are zero. Accordingly, a quick comparison between the KKT conditions of

problems P7-1 and P7-2 and problems P4-1 and P4-2 leads to that they are the same at

the cluster point solutions. Consequently, (Q̄1, S̄) and (Q̄0, V̄) with the associated Lagrangian

multipliers, _1 and _0 are KKT stationary solutions to the original problems P4-1 and P4-2.
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