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Abstract

The goal of this research is to computationally model and simulate the collective drivers’
Level T Situation Awareness (SA)!. T developed a computational model in a cognitive ar-
chitecture that can interact with a driving simulator to infer quantitative predictions of
drivers” SA. T demonstrate theoretical application of modelling and predicting SA from
the lens of human cognition utilizing the Queueing Network-Adaptive Control of Thought-
Rational (QN-ACT-R) framework as a foundation. I integrated a dynamic visual sampling
model (SEEV) with QN-ACT-R to create QN-ACT-R-SA which simulates realistic at-
tention allocation patterns of human drivers at SA Level 1 (i.e. perception of critical
elements). QN-ACT-R-SA also incorporates a driver model that can simulate human driv-
ing behaviors by interacting with a driving simulator. Three validation studies (Study
I, IT and III) were conducted to determine whether Level 1 SA results produced with
the QN-ACT-R-SA model correspond to empirical data collected from human drivers for
the same tasks. In Study I, QN-ACT-R-SA model was validated against probe-based SA
measures and in Study II, the model was validated against a hazard perception-based SA
measure. In Study III, model’s predictive power was assessed by comparing model results
to a previously conducted empirical experiment.

In Study I, two types of probe-based SA measures were used: within-task queries
using Situation Awareness Global Assessment Technique (SAGAT), and post-experiment
questions. A comparative assessment demonstrated that QN-ACT-R-SA could reasonably
simulate drivers’ Level 1 SA for two driving conditions: easy (with few vehicles and sign-
boards) and complex (with dense traffic and signboards). QN-ACT-R-SA fit for human
SAGAT scores resulted in mean absolute percentage error (MAPE) of 5.02%, and the root
mean square error (RMSE) of 3.47. Model fit for post-experiment human SA results were
MAPE of 6.73%, and RMSE of 6.13. The RMSE of 3.47 for SAGAT responses indicate a
small error difference between the average human and modelling results since the average
SAGAT scores (measured on a scale of 0-100) for the easy and complex driving condition is
around 71.9 (SD: 21.1). Similarly, the RMSE of 6.13 for post-experiment SA questionnaire
also indicates a small error difference since the average post-experiment SA questionnaire
score (on a scale of 0-100) for the easy and complex driving condition is around 73.8 (SD:
16.2).

In Study II, Brake Perception Response Time (BPRT) was used as a hazard perception
test to further assess the model’s ability to simulate drivers’ SA at Level 1. An empirical
study was designed mainly for model validation purposes. In the trials runs, the partic-
ipants encountered two major types of hazards: on-road hazards in the forward view of
the driver and roadside hazard which originated from the driver’s periphery. The two
contrasting conditions were selected to explore the difference in driver’s BPRT. The re-
sults demonstrated that BPRT was significantly shorter for on-road hazards as compared

to roadside hazards. The overall model fitness for empirical BPRT results indicated an
MAPE of 9.4 % and the RMSE of 0.13 seconds. The RMSE value in Study II indicates a

IThe model developed in this research does not model a specific individual driver’s Level I SA, but
rather models aggregated Level I SA across drivers.
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small error difference between the average human and modelling results since the average
BPRT for the two on-road and roadside hazard conditions is around 1.49 seconds (SD:
0.54).

Study III involved extending the same modelling approach towards assessing the predic-
tive power of QN-ACT-R-SA. The empirical data was taken from a previously conducted
research study that had examined the effects of Adaptive Cruise Control (ACC) and cell-
phone use on drivers’ SA using SAGAT tests. QN-ACT-R-SA fit for predicting the effects
of ACC and cellphone use on drivers’ Level 1 SA resulted in a MAPE of 5.6%, and the
RMSE of 4.9. The RMSE of 4.9 for SAGAT responses indicates a small error difference
between the average human and modelling results since the average SAGAT scores for the
different driving conditions in Study III is around 72 (SD: 4.76).

Both absolute (MAPE) and relative (RMSE) measures of goodness-of-fit confirm models
efficacy in reasonably simulating human SA across the three studies. The MAPE value of
less than 10% across the three studies show that the model’s deviation from the empirical
results in terms of percentage error is relatively small. The graphical analysis of the average
model versus average human plots further indicate that the model was able to successfully
map the changes in SA scores across the different experimental conditions tested in the
three studies.

In summary, this research presents: 1) a model of collective drivers’ Level 1 SA that
is grounded in cognitive and perceptual mechanisms of human information processing;
2) a real-time programmable implementation of the model as a simulation software; 3)
validation of the model using empirical results drawn from established SA measures; and 4)
new ideas towards modelling Level 2/3 SA and improving the existing modelling paradigm.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [2]
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Chapter 1

Modelling Situation Awareness in
Driving

Situation Awareness (SA) theory describes how operators in complex environments acquire
and maintain awareness of ‘what is going on’ [4]. Formally, SA is described as an internally
held cognitive construct consisting of three main levels: perception (Level 1); comprehen-
sion (Level 2); and projection (Level 3) [5]'. Studying SA is important because it allows
investigators to gather diagnostic information about the nature and relative role of situ-
ational factors influencing human performance and decision-making in complex systems.
Identifying the level of SA that is compromised in a task can help with the selection of
appropriate human factor countermeasures.

SA has been investigated across multiple domains of application, including: aviation
[6], air traffic control systems [7], railway operation [8], process control [9], and healthcare
[10]. In particular, there exist a comprehensive body of empirical research that has em-
ployed SA methods to address critical research problems within driving safety research.
For instance, SA has been used to assess driver training programs [11], explore driver-
automation interaction [12], explain individual differences in driving skill [13], investigate
the effects of driver distraction [14], and improve the design of in-vehicle interfaces [15].

As typical approaches for understanding SA are experiential in nature, they tend to
lack rigorous computational representations, thereby, limiting most SA results to being
descriptive rather than predictive. In the field of human factors, other human performance
constructs such as time performance, memory recall, attention allocation, and mental
workload have been actively investigated in the wider facet of computational modelling re-
search; however, attempts to model SA using computational approaches have been limited
in comparison. This research is motivated by the lack of computational representations of
SA, particularly for the driving domain where running multiple comparative simulations
without the need to put drivers into high risk situations is preferable to participant-based
experiments. This dissertation presents the development and evaluation of a computational
human performance model that can support SA simulation and testing using driving as
the domain of demonstration.

LA theoretical review of different models of SA is presented in Section 2.1.



1.1 Human Performance Modelling

Human performance modelling is a method used by human factors researchers to infer
quantifiable predictions of human-machine interactions in early stages of the systems de-
sign process. Most human performance models are computational in nature however they
are built upon qualitative theories of human behavior and cognition. Human performance
modelling is not intended to construct ‘intelligent systems’ as that lies under the domain of
artificial intelligence (AI). There are certainly cases where Al concepts have been incorpo-
rated into human performance modelling research, yet these two disciplines are inherently
distinct [16]. Al research seeks to develop systems that produces intelligent behavior ir-
respective of the fact that behavior replicates human performance or not; whereas human
performance models are primarily developed to predict and explain human-system inter-
actions.

Human performance models could be categorized by their characteristics, such as: out-
put versus process models, top-down versus bottom-up models, and single-task versus mul-
titask models [16]. Individual models of human performance, such as models of perception,
attention, locomotion, gait analysis, to name a few, have been the focus of research for a
considerable amount of time. Some early models of human performance include: Fitts’ law
[17], Hick-Hyman law [18], stimulus-response compatibility [19] etc. Integrated models are
also becoming prevalent. There exist different types of integrated models, such as: task
network models [20, 21], cognitive architectures [22, 23, 24|, models of anthropometrics
and biomechanics [25] etc.

I propose an approach based in cognitive architecture to develop a computational model
of SA. A cognitive architecture represents multiple computational models of human cogni-
tion integrated within a unified framework. The interaction of different cognitive compo-
nents within a cognitive architecture can be represented in a computer program. Cognitive
architectures are able to directly interact with the task environment by means of simulated
visual and motor modules. The performance output from a cognitive architecture takes the
form of a time-stamped sequence of actions that replicates quantitative human performance
results [26].

1.2 Motivation

I explain below why developing a simulation and prediction model of collective drivers’
Level 1 SA in a computational cognitive architecture is a valuable contribution to human
factors research and therefore an important undertaking.

Modelling drivers’ SA in a cognitive architecture can yield consistent and precise pre-
dictions of driver behavior. This process can allow researchers to observe and test drivers’
SA in real time. Cognitive architectures are able to directly interact with the task environ-
ment by means of simulated visual and motor modules. Using cognitive architectures as
surrogate users can facilitate researchers to explore minor nuances in driver performance
that would have otherwise been difficult to capture. Model-based evaluations can provide
explanatory accounts of drivers’ SA results that are independent of modeller bias.

Using predictive modelling in lieu of empirical testing can equip researchers with pre-



dictive capacity early on in the research lifecycle. This can save system designers and
researchers significant time and money. The process can also minimize the number of end
users needed in an experiment. Predictive modelling can also account for tests that were
initially ruled out on human participants due to safety concerns. Leveraging early-stage
predictive modelling can aid human factor engineers to discern between initial prototypes
such as deciding between two categories of in-vehicle interfaces or evaluating the impact
of different roadway designs on drivers’ SA. Predictive modelling therefore empowers re-
searchers to test important hypotheses prior to formal experimentation. This not only
reduces the testing phases needed for a study but also allows researchers to conduct user
studies on issues that are pertinent and necessitate further testing.

Computational simulation models can complement commonly used methods in human
factors research such as direct empirical evaluation, experience-based heuristics, expert
guidelines etc. Therefore, there is a need to advance the quantitative foundation in human
factors engineering. In many engineering disciplines, researchers routinely create models
to analyse competing designs or assess trade-offs [27]. Investigators in these fields have
access to a range of quantitative tools that assist them in making informed decisions. The
predictive value and widespread applicability of such modelling tools are appreciated in
many disciplines and considered central to professional practice. By creating a predictive
model of drivers’ SA, T hope to further advance the same approach in human factors
research.

Synthesis of different individual models of human performance can be best expressed in
a cognitive architecture. Theoretically-grounded cognitive architectures can now be applied
to real-world tasks. Researchers can leverage these architectures to support human factors
design and evaluation. The goal of this research is to equip cognitive architectures to model
and predict drivers’ SA. The need for empirical SA testing will not disappear, but its role
will evolve. Although, more complex problems will continue to be identified through user
studies, SA modelling can compliment user testing and reduce research dependency on
empirical data.

Human factors rely on practical concepts to advance the understanding of human be-
havior in complex environments. A looked-for aspect in human factors research is that
these concepts could be quantifiable in the form of mathematical or computational mod-
els; however, attempts to model and predict SA using computational models have been
limited. Moreover, the theoretical foundations of SA have also been a focus of much debate
within human factors research. Therefore, I aim to distill the misconceptions and misrep-
resentations that are common in SA theories and provide a computational account of the
construct that can be modelled and simulated within an integrated cognitive architecture.

1.3 Research Problems

In the research literature, a few studies have developed SA models and demonstrated the
application of modelling techniques including fuzzy cognitive maps, used to predict SA
in military decision making [28]; machine learning, used in aviation games [29]; granular
computing methods, used for automated air surveillance applications [30]; and probabilistic
models of visual scanning (attention-situation awareness model), and used in aviation [31].



These techniques, however, are limited in terms of full operationalization of SA modelling.
With the exception of the attention-situation awareness model [31], most computational
models lack the explanation of SA in terms of perceptual and cognitive mechanisms that are
established in descriptive models of SA (e.g. visual attention and memory). The attention-
situation awareness model [31] does represent computational instantiation of visual atten-
tion allocation mechanisms, but it does not take into account other important cognitive
components such as memory. Moreover, the research cited have not included empirical
comparisons using common SA measures, such as Situation Awareness Global Assessment
Technique (SAGAT), thereby lacking a connection to SA measures that can be applied to
models of human operators. Furthermore, most of these models were constructed using a
priori data from expert-probes making them intrinsically domain dependent. Lastly, these
models cannot be connected directly to task environments (e.g. driving simulators) to run
real-time simulations of SA. Based on the above discussion, the following four research
problems are identified and later addressed as part of this research:

1. The first goal of this research is to develop a computational model that is grounded
in cognitive and perceptual mechanisms that explain drivers’ SA. There seems to be
an apparent gap present between the theoretical models of SA and computational
modelling work validated thus far. It’s important to develop psychologically plausible
models of SA since such models provide mechanisms for understanding how different
cognitive components individually influence SA.

2. The second goal of this research is to develop a computational model of drivers’” SA
that is capable of directly interacting with the same task environment as human
participants. Computational models lacking direct access to the task environment
do not abide by the same input/output confines and environmental constraints as
experienced by human participants and are, therefore, less likely to model actual
human performance.

3. The third goal of this research is to validate the model results against empirical
methods that capture the core characteristics of operator SA in driving. Previous
computational models of SA were not rigorously evaluated against established SA
measures such as SAGAT and hazard perception tests.

4. Our fourth goal is to show that the model fits empirical data using a cohort of
goodness-of-fit measures. A quantitative performance evaluation of model and human
results across conditions would determine the model’s robustness and widespread
applicability. A good model fit would demonstrate that the model is capable of
simulating human results across experimental conditions.

The area of modelling drivers’” SA is quite vast and it’s important to detail the extent
to which this topic will be investigated in this research. The current work is limited to
modelling, simulation and prediction of Level 1 SA (i.e. perception only). While there
are new ideas presented that offer insights into how higher levels of SA could be simulated
using the cognitive architecture approach (Chapter 6), modelling of higher levels of SA is
well beyond the scope of this work and the core focus of this project is on Level 1 SA only.



Perception is a complex construct that has been investigated across different disciplines.
For instance, human perception has been explored from the lens of sensory neuroscience
[32], evolutionary psychology [33] and philosophy [34]. In this research, I view perception
from the context of SA rather than as an independent theory carrying its own nuances
and complexities. Investigating perception from the perspective of SA can aid researchers
to formulate testable recommendations for understanding and improving human-system
performance [35]. In addition to the prescriptive attributes, the SA model is inherently a
psychological construct and facilitates investigation of perception from the lens of human
psychology [36]. Also, perception when viewed as a subcomponent of SA becomes a well
operationalized concept since different methods (subjective measures [37], physiological
measures [38] etc.) can be applied to assess the construct in a quantifiable fashion. There
exists credible and acceptable evidence indicating that SA methods can capture Level 1
SA (i.e. perception across different domains, including driving [36]). This extensive body
of work offers valuable research concepts and data that can be handy in developing and
validating the computational model of drivers’ Level 1 SA. Furthermore, research demon-
strates that perception effects other aspects of cognition in systematic ways [39]; therefore,
a computational investigation of perception from the context of SA could open doors for a
deeper analysis on higher levels of SA. By this criterion, it appears that investigating per-
ception in the context of SA would ensure tactical relevancy and effectiveness in addressing
the devised research questions.

1.4 Contributions

This research takes the initial steps towards the development of a psychologically plausible
computational model of drivers’ SA. The computational modelling method discussed in this
thesis develops an algorithmic approach to SA modelling by extending the widely accepted
qualitative description of SA presented by Endsley [5] into a computational model that
can be characterized within a cognitive architecture.

The main contribution is the development of Queueing Network-Adaptive Control of
Thought-Rational-Situation Awareness QN-ACT-R-SA (Section 3.3). QN-ACT-R-SA is
an integrated cognitive architecture capable of modelling and simulating Level 1 SA. QN-
ACT-R-SA takes into account different human abilities (such as memory storage and recall,
learning, perception, and motor action etc.) as well as constraints (such as memory decay,
visual attention allocation limitations etc.) in order to represent human behavior.

Since the domain of this research is limited to driving, a previously validated driving-
control model is implemented within QN-ACT-R-SA to simulate lateral and longitudi-
nal control maneuvers (3.3.3). The model’s control movements follow a steering control
law adopted from Salvucci and Gray [40]. QN-ACT-R-SA is also embedded with a com-
putational theory of visual attention allocation, called Salience-Effort-Expectancy-Value
(SEEV) [31] that enables it to simulate drivers’ attention allocation patterns (3.3.1).

QN-ACT-R-~SA is connected to a simulated driving environment and programmed to
directly perceive situational elements from this environment and implement corresponding
driving-control decisions. The driving environments tested in this research are developed in
OpenDS driving simulator [41]. QN-ACT-R~SA is equipped to communicate with OpenDS



by means of a User Datagram Protocol (UDP) connection (3.3.3).

A twofold approach is adopted for validating QN-ACT-R-SA in simulating drivers’ SA.
Two empirical studies (Study I and Study II) are first designed to determine whether Level
1 SA results construed from the QN-ACT-R-SA model correspond to empirical data col-
lected from human participants. The two studies assess drivers’ SA using two different SA
measures, SAGAT and post-experiment SA questionnaire, respectively. In the two stud-
ies, the same driving environment is used by both the QN-ACT-R-SA model and human
participants. To garner evidence of the model’s predictive capacity, a third research study
(Study III) examines the model’s ability to map empirical data that has been collected in a
different test setting. Study III provides confirmatory evidence to show that QN-ACT-R-
SA could be applied to generate predictions of drivers’ SA without the need for excessive
model fitting or parameter tweaking.

In Study I, QN-ACT-R-SA and human participants are probed for SA using two ap-
proaches: within-task queries using SAGAT and post-experiment questions (Chapter 3).
A comparative assessment reveals that QN-ACT-R-SA can reasonably simulate drivers’
Level 1 SA for two driving conditions: easy (with few vehicles and signboards) and complex
(with dense traffic and signboards). QN-ACT-R-SA fit for human SAGAT scores resulted
in Mean Absolute Percentage Error (MAPE) of 5.02%, and the Root Mean Square Error
(RMSE) of 3.47. The RMSE of 3.47 for SAGAT responses indicate a small error difference
between the average human and modelling results since the average SAGAT scores (mea-
sured on a scale of 0-100) for the easy and complex driving condition was around 71.9 (SD:
21.1). Model fit for post-experiment human SA results indicated a MAPE of 6.73%, and
a RMSE of 6.13. Similarly, the RMSE of 6.13 for post experiment SA questionnaire also
indicates a small error difference since the average post experiment SA questionnaire score
(on a scale of 0-100) for the easy and complex driving condition is around 73.8 (SD: 16.2).

In Study II, Brake Perception Response Time (BPRT) is used as a hazard perception
test to further assess the model’s ability to simulate drivers’ SA at Level 1 (Chapter
4). An empirical study is first designed mainly for model validation purposes. In the
trials runs, the participants encounter two major types of hazards: on-road hazards in
the forward view of the driver, and roadside hazards which originate from the driver’s
periphery. The two contrasting conditions are selected to explore the difference in drivers’
BPRT. Not surprisingly, the results reveal that BPRT is significantly shorter for on-road
hazards as compared to roadside hazards. The overall model fitness for empirical BPRT
results indicate a MAPE of 9.4 % and a RMSE of 0.13 seconds. The RMSE value in Study
IT indicates a small error difference between the average human and modelling results
since the average BPRT for the two on-road and roadside hazard conditions is around 1.49
seconds (SD: 0.54).

Study III investigates the predictive power of QN-ACT-R-SA in simulating Level 1 SA
results (Chapter 5). The empirical data is taken from a previously conducted research
study that examined the effects of Adaptive Cruise Control (ACC) and cellphone use on
drivers’ SA using SAGAT tests [42]. QN-ACT-R-SA fit for predicting the effects of ACC
and cellphone use on drivers’ Level 1 SA resulted in a MAPE of 5.6%, and a RMSE of
4.9. The RMSE of 4.9 for SAGAT responses indicates a small error difference between
the average human and modelling results since the average SAGAT scores for the different
driving conditions in Study III is around 72 (SD: 4.76).
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The MAPE score of less than 10% further signify that the relative error between the
average human and model results is very small for the three studies [43, 3]. Furthermore
the visual analysis of the model versus human graphs confirm the model’s efficacy in
successfully matching human results across experimental conditions tested in the three
studies.

In summary, the main contributions of this research involves developing a computational
cognitive model of drivers’ SA in a cognitive architecture; implementing the model as a
runnable software program; and validating the results produced by the model in relation to
empirical findings across different experimental conditions. The limitations of QN-ACT-R-
SA model, as well as areas of future research are also discussed in detail in this dissertation
(Chapter 6).

1.5 Dissertation Outline

Chapter 3 details the development of QN-ACT-R-SA; and, explains the algorithmic ap-
proach towards modelling and simulating Level 1 SA using QN-ACT-R-SA. The chapter
also reports an empirical study (Study I) designed for model validation purposes that
measures participants’ SA using probe-based techniques in easy and complex driving con-
ditions.

Chapter 4 reports on a driving experiment (Study IT) and a corresponding model simulation
conducted to assess QN-ACT-R-SA’s ability to simulate participants’ BPRT for on-road
and roadside hazards. The model and empirical data is compared using goodness-of-fit
approaches to evaluate the efficacy of QN-ACT-R-SA in simulating Level 1 SA.

Chapter 5 reports a model simulation study (Study III) that examines the predictive ability
of QN-ACT-R~SA in modelling the ACC and cellphone use on drivers’ SA using SAGAT
tests. The empirical data is taken from a study conducted by Ma and Kaber [42].

Chapter 6 discusses the limitations of QN-ACT-R-SA, and highlights the strengths of the
model to date. The chapter also details areas of future work, specifically with respect to
modelling higher levels of SA.



Chapter 2

Theoretical Foundations of Situation
Awareness in Driving

2.1 General Models of Situation Awareness

2.1.1 Endsley (1995)

Endsley [5] describes SA as an internally held cognitive phenomena comprised of three main
levels that include perception (Level 1), comprehension (Level 2) and projection (Level
3). Level 1 SA represents the perception of different elements in the task environment.
The model credits a range of factors that can influence which elements get perceived.
Major factors that influence perception of critical elements include the nature of the task
being performed; individual’s goals and expectations; and system considerations, such as
interface design, level of complexity and automation. Level 2 SA depends on how an
individual comprehends the present situation with regards to the relevant tasks and goals.
It primarily involves making sense of different elements in the task environment and forming
a coherent understanding of the current situation. Level 3 SA involves forecasting future
events. Individuals combine Level 1 and Level 2 SA knowledge as well as prior information
from mental models, in order to develop Level 3 SA. According to Endsley [5], SA is a
cognitive product and exists in an operator’s memory. The process used to achieve SA is
categorized as situation assessment.

Mental models play a key role in the development and acquisition of SA as environmen-
tal artifacts are characterized within the mental models. Mental models assist individuals
in disseminating attentional resources to the critical elements within the task environ-
ment (Level 1). Mental models also support individuals with comprehending the present
situation (Level 2) as well as forecasting likely future events (Level 3).

Attention span and working memory capacity are two limitations in the development
and maintenance of SA. Well-developed long term memory stores that exist in the forms
of schemata are able to overcome some of these constraints even when critical information
is lacking or obscure. Pattern matching is another key constituent of Endsley’s model.
Pattern matching between critical elements in the environment and components in the
mental model follows a recurrent cycle. Individual goals and expectations also impact
SA as these constructs explain how attention is dispersed and environmental elements are



identified and understood.

Endsley [5] also explains how automaticity assists in minimizing attention constraints
but can also cause unintended loss of SA. As actions becomes routine and habitual, indi-
viduals tend to overlook unique elements in the environment thereby compromising SA.

2.1.2 Bedny and Meister (1999)

Bedny and Meister [44] explain the concept of SA using the theory of activity approach.
This theory asserts that individuals contain goals that can allow them to achieve a partic-
ular desired state by carrying out series of activities. The difference between the current
condition and the desired state prompts an individual to take actions that can assist them
in achieving the desired state. Activity consists of three stages: the orientation stage, the
executive stage, and the evaluative stage. The first step involves the development of an
internal characterization of the current environment. The understanding of information
coming from the environment is affected by goals and the individual’s mental representa-
tion (conceptual model) of the present environment. Key elements of the surroundings are
subsequently recognized depending on their relative importance in achieving the desired
state. The second stage requires the individual to undertake necessary decisions and per-
form actions that are focused towards achieving the desired state. The final stage involves
evaluating the situation through information feedback, as well as updating the executive
and orientation stage constituents of the model accordingly. This model is different from
approaches deeply rooted in cognitive psychology as the model does not classify the differ-
ent cognitive processes (perception, working memory, pattern matching etc.) required in
acquisition of SA. The model is primarily grounded on the theory that describes how SA
is contingent on the nature of the task and pre-ordained goals of the individual.

2.1.3 Smith and Hancock’s (1995)

Smith and Hancock’s [45] ecological approach defines SA as a “generative process of knowl-
edge creation and informed action taking”. Their description draws on Neisser’s [46] per-
ceptual cycle model that illustrates how human thought is coupled closely with experiences
and interaction with the environment. Existing knowledge of how the critical elements in
an environment function develops an individual’s expectations that lead to informed ac-
tions. One’s interaction with the environment is, therefore, influenced by internally held
schemata. The knowledge from prior experiences changes the original schemata and this
process repeats itself infinitely. Thus, SA can only be found in an individual’s back and
forth interaction with the environment rather than residing in either of the two perma-
nently. Therefore Smith and Hancock’s [45] model describes SA as: “externally, directed
consciousness” that is an “invariant component in an adaptive cycle of knowledge, action
and information”. The acquisition of SA is due to internal mental models that carry all the
necessary information. These models prepare an individual for situational stimuli, influenc-
ing where the individual directs their attention. Unlike the three stage model introduced
by Endsley [5], SA here is viewed as both, a process and a product.



2.1.4 Sarter and Woods (1991)

Research by Sarter and Woods [47] research is focused towards the different cognitive
processes necessary in the development of SA. They explain that terms like situation as-
sessment and mental models are related to SA but inherently different. Mental models
comprise of a structured set of knowledge that develops to become the foundation for SA.
Situation assessment is described as a process of perception and pattern matching that aids
in development of SA. Sarter and Woods [47], therefore define SA as “the accessibility of a
comprehensive and coherent situation representation which is continuously being updated
in accordance with the results of situation assessments”. Sarter and Woods [47] also ac-
centuate the importance of temporal aspects of SA. They emphasise that attentiveness to
system changes is necessary to maintain SA as delicate variations can subsequently become
major events over time.

2.1.5 Taylor (1990)

Taylor [48] conducted interviews with pilots in order to discover the different aspects nec-
essary in the development of SA. Taylor [48] proposed that the construct of SA could be di-
vided into three major levels. The first level deals with the amount of attentional resources
needed in a specific scenario. The second level expands on the allocation of attentional
resources in response to the situational circumstances and the last level deals with the un-
derstanding of the current situation. Taylor also shortlists ten major theoretical constructs
that explain the concept of SA. These include: familiarity, focusing, information quantity,
instability, concentration, complexity, variability, arousal, information quality and spare
capacity. Taylor [48] therefore defines SA as “the knowledge, cognition and anticipation
of events, factors and variables affecting the safe, expedient and effective conduct of a
mission”.

2.1.6 Adams et al. (1995)

Adams et al. [49] expand the perceptual cycle model by mapping the relevant cognitive
constructs on it; mainly working memory (explicit and implicit memory) and long term
memory (episodic and semantic memory), in order to explain the mechanism of SA. Adams
et al. [49] explains how SA can exist as a product and a process simultaneously at any given
instance. The state of active schema would explain how SA exists as a product and the
periodic nature of the perceptual cycle would describe how SA exists as a process. Adams
et al. [49] also clarify how on a perceptual cycle diagram, components of working memory
could be characterized in place of the “schema of present environment” and components of
long term memory can be represented as “cognitive map of the world and its possibilities”.

2.1.7 Summary of General Models of Situation Awareness

All the models have important details that improve our understanding of SA. Smith and
Hancock [45] use the perceptual cycle model to demonstrate the dynamic nature of SA
explaining in detail how SA exists as a process that entails continuous sampling of the
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environment and how SA can also be characterized as a product, represented by the con-
tinually activated schema. Similarly, Adams et al. [49] further expanded this concept and
mapped the relevant components of working memory and long term memory into the per-
ceptual cycle model in order to explain the inner workings of SA. Bedny and Meister [44]
employ concepts from the activity theory to specify the underlying functional blocks neces-
sary in the development of SA. Sarter and Woods’s [47] contribution provides insights into
the temporal dimensions of SA. They also offer details that help us distinguish between
SA and other related constructs such as mental models and situation assessment. The
most popular model of SA has been the three-level model of SA introduced by Endsley [5].
The model takes into account the different cognitive constructs that are necessary in the
development of SA. The model also caters to different individual, task and system related
factors that can influence SA. The simple three level characterization offers researchers ad-
ditional granularity during SA measurement and allows practitioners to design simplified
training techniques and design guidelines.

2.2 Driving Specific Models of Situation Awareness

Driving is a complicated activity that requires the distribution of attention across various
Areas-of-Interests (AOIs). Drivers need to maintain a high degree of SA across a range
of processes since driving requires perception, identification, and interpretation of road
elements such as traffic vehicles, road signs, pedestrians etc. There are three simultaneous
tasks involved in driving: vehicle control, hazard monitoring and mitigation and route
navigation [50]. All three tasks require drivers to maintain SA for safe driving operations.
The driver may also indulge in additional tasks, legal or illegal, such as operating centre
console, texting etc. Given the combination of tasks, driving is considered as a multi-task
activity. As with any multi-task activity, certain tasks will take precedence over others;
and these task prioritizations vary over time.

This research primarily focuses on developing a predictive model of driver behavior that
can allow researchers to analyse how external factors, such as roadway hazards and traffic
complexity influence drivers SA. These objectives have not been previously addressed in the
literature; however, researchers have utilized existing theoretical models of SA to further
explain the concept of SA in driving.

For instance, Matthews et al. [51] developed an information processing model that
linked Michon’s [52] description of driver behaviour (strategic, tactical, and operational)
to Endsley [5] three level model. Matthews et al. [51] proposed that an operational driver
functions at SA Level 1, a tactical driver functions at SA Level 2, and a strategic driver
functions at all three SA levels, with a significant contribution of SA Level 3 that could
assist the driver in projecting future system states. Ward [53] however rebutted explaining
that all three levels of SA could be required at the strategic, tactical and operational level,
respectively. Ma and Kaber [54] proposed a related concept that incorporated Endsley [5]
three level model to explain driver SA. They suggested that at any given time, drivers’
SA comprises of navigational, environmental, spatial and vehicle knowledge. Applying a
similar framework, Gugerty and others [55] defined driver SA as “the updated, meaningful
knowledge of an unpredictably-changing, multifaceted situation that operators use to guide
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choice and action when engaged in real-time multitasking”. Stanton et al. [56] took a
systems approach rather than a cognitive stance to explain driver SA. They characterized
SA as the ability of the driver to understand the relation between driving goals, the car’s
current state, the environmental conditions, the surrounding infrastructure and the actions
of other road users.

2.3 Situation Awareness and Cognitive Processing

There are three stages of cognitive processing [55]: a) the unconscious level of processing
that renders minimal demand on mental resources; this is involuntary, pre-attentive cog-
nition; b) the limited-conscious level that occurs for transitory periods and places slightly
more demand on mental resources; this is categorized as recognition-primed cognition; c)
and the full-conscious level that places the most stress on mental resources; this is catego-
rized as controlled cognition.

Regarding visual perception, the involuntary cognition is mostly using ambient vision;
whereas the recognition-primed cognition and controlled cognition are using focal vision
[57]. Two methods of vision have been outlined by Schneider [58]and others: focal vision,
which controls object identification and conscious awareness by means of foveal input and
sequential processing; and ambient vision, which directs unconscious involuntary movement
by means of foveal retinal input and parallel processing.

It was proposed by Leibowitz and Owens [57] that vehicle control, the primary sub-
task of vehicle operation, demands ambient vision; whereas subtasks such as recognizing
potential hazards requires focal vision. In the light of Endsley [5] three-stage model, SA is
mostly maintained through focal vision and caters to recognition-primed, and controlled
stages of cognition and excludes involuntary or sub-perceptual processes.

2.3.1 Situation Awareness and Memory

While different cognitive constructs affect SA, we primarily discuss the role of memory
and attention in shaping driver SA. Endsley [5] three-stage classification proves to be a
valuable scaffold for explaining the connection between working memory and SA. Level
1 SA often requires selective attention towards certain environmental stimulus, and it is
presumed that working memory, and more specifically the central executive, is involved in
activating selective attention [59].

Eye movement studies indicate that traffic input collected from drivers front-facing
view is frequently updated in the visuospatial sketchpad, a component of working memory
responsible for visual and spatial information [60]. It can therefore be assumed that the
visuospatial sketchpad plays an integral role in supporting drivers’ SA of spatial orientation
tasks such as identifying location of proximal vehicles. Gugerty et al. [61] discovered that
drivers’ performance on recall of nearby traffic vehicles decreased when they were instructed
to complete a concurrent verbal task; indicating a decline in SA due to an increase in
working memory load.
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2.3.2 Situation Awareness and Visual Attention Allocation

Drivers allocate visual attention to elements in the environment in order to maintain SA of
both regular and potentially dangerous events. Allocating visual attention across multiple
AOIs while driving represents a critical constituent of driver behaviour. Focal vision is a
requirement of two of the three primary subtasks that are involved in driving: detection
and mitigation of risk, and route awareness. Drivers’ ability to monitor the environment
and remain cognizant of the surrounding traffic enables them to avoid hazards. Many
studies in naturalistic and experimental scenarios reveal the significance of visual attention
on driving safety. Dingus et al. [62] discovered that drivers’ inability to attend visual
events in front of the vehicle contributed to 78% of all traffic incidents and 93% of all
rear-end collisions. A German car accident study [63] revealed that most accidents occur
because roughly 65% of drivers identify critical information too late or fail to recognize
it altogether. Visual scanning models [64] can predict drivers’ dwell time percentages
and gaze behaviour in different driving scenarios. These predictive models can, therefore,
determine how vulnerable drivers are when they fail to attend safety critical information
in the environment.
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Chapter 3

QN-ACT-R-SA Model Development
and Initial Validation

3.1 Introduction to Study I

In empirical studies, a driver’s SA is usually assessed by probing the driver’s recall of situa-
tional elements that are critical in accomplishing the main driving tasks (e.g., pedestrians,
traffic vehicles, and traffic signboards). A driver’s knowledge of these elements is typically
captured by means of probe-based SA measures. Probe-based SA measures include Sit-
uation Awareness Global Assessment Technique (SAGAT) [65] and post-experiment SA
questionnaires [54]. SAGAT requires participants to respond to SA queries during simu-
lation freezes. Incorrect SAGAT responses reflect limitations in the awareness of relevant
information in the task environment. Since queries are probed immediately after each
freeze, and usually only one query is used in each freeze, the effect of memory decay is
minimal. On the other hand, a post-experiment SA questionnaire requires participants
to respond to scenario-based SA queries at task completion. In comparison to SAGAT,
post-experiment SA avoids interrupting the flow of the main task by not using simulation
freezes, but it introduces a time delay between a situation and its query question. As a
result, post-experiment SA measures are affected by memory decay and interfering events
that occur during the task [66]. Probe-based SA measures are evidence-based description
techniques requiring real-time experiential data. The fundamental limitation of such mea-
sures is the inability to predict SA in a new situation. In contrast, computational models
aim at capturing the quantitative relationship between SA and the factors affecting it; and,
therefore can be used as predictive tools.

I propose an approach based in cognitive architecture to develop a computational model
of SA. This new model can simulate human responses to established SA measures such as
SAGAT; and, is based on the perceptual and cognitive mechanisms that formulate the
SA construct. The main contribution is the development of QN-ACT-R-SA: an integrated
cognitive architecture capable of modelling and simulating SA. This architecture is an
extension and improvement to the Queueing Network and Adaptive Control of Thought-
Rational (QN-ACT-R) framework [3]. As the first stage in the SA model development
process, the current study focuses on the modelling and simulation of Level 1 SA (i.e.
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perception). Driving is selected as the domain of focus because previous models within the
cognitive architecture have simulated drivers’ steering control, multitasking, and hazard
response behaviors [67, 68, 69], thereby providing foundation for this work.

QN-ACT-R integrates two previously isolated but complementary cognitive architec-
tures — Queueing Network (QN) [70] and Adaptive Control of Thought-Rational (ACT-R)
[71]. QN-ACT-R is essentially a production rule system with queues for scheduling multi-
ple resource demands. Production rules represent procedural knowledge or skills, whereas
chunks represent declarative knowledge. QN-ACT-R can represent human behavior by
interacting with simulated task environments (e.g., driving simulator) using its perceptual
and motor modules. Details regarding QN-ACT-R are described further in Section 3.2

To facilitate the simulation of Level 1 SA (i.e. perception), I propose using the concept
of critical elements. Critical elements are situational elements that are ‘critical’ for the
operator to accomplish the primary task. Drivers must visually attend different critical
elements (e.g., pedestrians, traffic signs, and speedometer) in the environment to dynami-
cally maintain SA. Optimal SA at Level 1 depends on the perception of critical elements
in the task environment. The mental representations of these elements can be stored as
declarative chunks [71]. During SA probes, response outcomes depend on memory retrieval
of the chunks, which is affected by factors such as whether a critical element was perceived,
how many times it was observed, and the delay between perception and query.

To capture Level 1 SA in our model, I integrate Saliency-Effort-Expectancy-Value
(SEEV) attention model into QN-ACT-R [31]. The current visual attention mechanisms
in ACT-R as well as QN-ACT-R are relatively simple (i.e. focus on top-down mechanisms
directing attention) and cannot account for priority and distribution of attention among
multiple visual targets. Factors such as expectancy and value of situational elements in
different Areas-of-Interests (AOIs) are not represented in QN-ACT-R’s attention allocation
processes. The default visual attention mechanisms in QN-ACT-R and ACT-R rely on the
procedural module to carry out the central executive role of directing visual attention in a
top-down manner. It lacks a probabilistic model of visual attention allocation that could
explain driver scanning patterns for different stimuli in the driving environment. Attention
allocation plays a crucial role in characterizing drivers’ SA. Researchers have discussed the
benefits of integrating visual attention allocation models with ACT-R [72, 73]. Therefore,
I have integrated the QN-ACT-R driving model with SEEV to create QN-ACT-R-SA.
SEEV is a well-tested and widely used model of attention allocation [31]. SEEV classi-
fies four major factors that influence attention allocation: saliency, effort, expectancy and
value. Within QN-ACT-R-SA, the SEEV model explains the attention allocation process
in scanning different AOIs present in the driving environment, whereas QN-ACT-R ex-
plains the internal cognitive processes necessary for the acquisition and maintenance of
SA (e.g. multitasking, declarative memory, and production rules). Combined QN-ACT-R
and SEEV provide complementary capabilities for SA modelling. Further details related
to QN-ACT-R-SA integration are described in Section 3.3.

To evaluate and validate the model, I compare SA results generated by the model
against empirical data from human participants. To collect human data, I conducted an
experiment in a driving simulator, whereby participants drove on a highway with different
road-environment complexity in terms of traffic volume and the number of road signs.
Driving environment complexity is known to influence a driver’s ability to perceive elements
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in the environment, such as identifying road signs, detecting changes in nearby traffic,
observing the current speed, and sensing hazards [62]. Excessive information present in a
complex driving environment may exceed a driver’s attention capacity threshold and as a
result degrade the driver’s SA scores on SAGAT probes [74, 62]. In the current experiment,
SA was measured using both SAGAT and post-experiment SA questionnaires. The QN-
ACT-R-SA model was connected to the same driving simulator in which human results
were collected. The model and human participants were, therefore, exposed to the same
experimental conditions; and the model was probed with SA queries in a manner similar
to human participants. Details of the comparative assessment is presented in Section 3.5.

In the described study, I expect drivers’ SA to be lower in complex driving (increased
traffic and signs) conditions due to over-occupation of attentional resources resulting in
poorer response rates to probe questions concerning situational elements. Furthermore, I
expect SA of critical elements in the central forward view (e.g., cars ahead) to be better
than SA of critical elements in the driver’s periphery (e.g., roadside vehicles, in-vehicle
devices, and objects in mirrors), since objects in the central forward view are considered
more central to driving control and safety [75]. A simulator-based experiment was designed
to validate the efficacy of the computational model of SA.

3.2 Background of Cognitive Architecture

In order to understand the process of modelling SA using QN-ACT-R-SA, I provide an
overview of how the cognitive processes within QN-ACT-R function (Figure 3.1). Within
the QN-ACT-R cognitive architecture, the queuing networks (i.e., QN) components carry
the capacity for multi-task performance modelling [76], and ACT-R components maintain
the ability to simulate cognitive processes [71]. Integrating both architectures provides the
capability to model complex cognitive and multi-task scenarios. QN-ACT-R has previously
been employed in different domains including driving [77] and multitasking [78]. Although
queuing networks and queuing theory [79] have been extensively applied in complex en-
gineering systems (e.g., communications networks and manufacturing), the adoption for
modelling human performance has been fairly recent [76]. The mathematical formulations
of QN and queuing theory provide useful tools for modelling reaction time and multitask-
ing performance [76]. For instance, models have been created to simulate the psychological
refractory period that occurs when performing two simultaneous tasks [80] and for concur-
rent driving tasks [81]. Neurological evidence at both the neuron and cortex levels reveal
that queues likely exist within the perceptual system. It’s been discovered that movement
of the synaptic vesicles happens in a sequential order [82], with certain vesicles receiving
higher priority over others [82]. Motor commands from the cerebral cortex are also thought
to form queues for coordination of sensory data prior to execution of motor responses.
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Figure 3.1: QN-ACT-R cognitive structure as the combination of QN and ACT-R frameworks.
QN-ACT-R’s servers represent ACT-R’s modules and buffers. Information that travels between

these servers represents ACT-R’s buffer demands, chunks and production rules. Source: repro-
duced by UR (author) from Cao [83].

In contrast, ACT-R is a production rule system with symbolic representations of both
declarative memory and procedural memory [71]. The declarative memory is represented
by chunks, while the recall rate and retrieval time of chunks are processed based on chunk
activation values. The procedural memory is represented by production rules, and the se-
lection and acquisition of production rules is based on rule utility values. In each processing
cycle, ACT-R determines which production rule to execute based on information from the
declarative knowledge base and inputs from the external environment (e.g., visual and au-
ral). Execution of production rules either triggers the model to perform a specific action
or results in modification of the internal state of the model (e.g. forming new knowledge
or goals). ACT-R’s architecture contains modules that perform different functions such as
memory retrieval, perception, and motor processes. The mechanism of these modules is
grounded in established mathematical formulations which have been empirically validated
for different contexts [84, 85]. The core of these modules is the procedural module that
handles the cognitive processing of production rules. All other modules in ACT-R carry an
associated buffer system that allows production rules to communicate, back and forth, with
the declarative memory as well as with the external environment via perceptual and motor
modules. Neurological evidence indicates that the modules of ACT-R can be anatomically
mapped to corresponding brain regions [86, 87, 88].

A major benefit of an integrated QN-ACT-R architecture is its capacity to simulate
multitasking. The ACT-R architecture has certain limitations in dual-task scenarios since
each buffer is only capable of holding a single chunk at a time, and the procedural mod-
ule can only process one production rule at a time. While these assumptions are used to
represent human cognitive limitations, it is not clear how multiple task demands should
be scheduled. In contrast, the QN architecture allows the goal buffer to hold several goals
at a time thereby allowing multi-task performance. Multiple information streams can flow
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though the network and follow queueing mechanisms when facing cognitive bottlenecks.
With a queueing structure in place, requests that arrive at busy modules can wait in se-
quence until the module is available, thereby resolving issues of module jamming. Previous
studies have demonstrated the benefit of this approach in predicting drivers’ direction sign
reading reaction time [89] and take-over reaction time [77].

QN-ACT-R, like ACT-R, has two types of knowledge representation: procedural knowl-
edge processed in the procedural module and declarative knoweldge processed in the declar-
ative module. Procedural knowledge can be characterized as implicit knowledge, applied
directly to a task for problem solving purposes. Procedural knowledge is programmed
as production rules, which are condition-action statements (i.e., if-then rules) that yield
precise actions if certain conditions are met. The procedural module serves as a central
executive to send requests to and synthesize information from other modules. It observes
the processes in different buffers and searches for patterns that may match a condition
specified in a production rule. If conditions are met, then a rule is selected and fired,
generating a specific action, such as a motor response.

Production rules have a sub symbolic parameter associated with it called the expected
utility value. Expected utilities can be learned with time and are underpinned by a re-
inforcement learning model. Expected utility helps the model to control rule matching,
selection and execution. Since multiple production rules can compete with each other, a
utility value indicates the relative probability for a specific rule to be implemented.

With every production rule, ACT-R has two main parameters. The estimated cost of
the rule and estimated probability of success. The utility equation is represented below
(Equation 3.1), cited from Anderson et al. [90]:

P; is an approximation of the probability that a specific production i would be chosen
in order to accomplish a goal G with an estimate cost of C;. The probability of selecting
a production rule (Production choice equation P; ) is calculated using the formula below
(Equation 3.2), cited from Anderson et al. [90]:

eUilt
Probability = — (3.2)
3 elift
J

Equation 3.2 states that n productions that match and the probability of selecting the
1th production is related to utilities U; of the n production rules.

Declarative knowledge in ACT-R represents explicit information that is stored as chunks
in the declarative memory. Chunks are small logical units comprised of static knowledge
such as simple facts, current goals, and perceptual information [90]. Each chunk has a pa-
rameter called chunk activation, reflecting the memory strength of the chunk. The change
of chunk activation imitates the human learning process that decays with the passage of
time, and yet can strengthen with rehearsal and retrieval. The declarative module caters
to memory retrieval requests by finding the chunk that matches the properties set in the
request. The retrieval time for a specific chunk from the declarative memory directly
corresponds to its activation value [91].
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Chunk activation is mainly determined by base-level activation, which reflects both
learning and forgetting. Base-level activation is calculated following the formula below
(Equation 3.3), cited from Anderson et al. [90]:

Bi(t) = In (Z (t@d) (3.3)

k=1
In Equation 3.3, n represents the number of times chunk 7 has been used, t;, is the time
passed since the kth use of the chunk, and d is the decay factor. Equation 3.3 implies that
base-level activation B; increases with the recency and frequency of use of chunk .
The probability of successfully recalling a chunk, Pr(recall), can be calculated using
the following formula (Equation 3.4), cited from Anderson et al. [90]:

Pr(recall) = (3.4)

1
1+ ef(Ais_ T)

In Equation 3.4, 7 is the retrieval threshold, and s is a noise parameter.

The visual module allows the model to perceive elements in the environment, and it
contains both ‘where’ and ‘what” mechanisms for identifying visual location of objects and
encoding the relevant visual content. The model first identifies the location of a visual
element in the environment and then focuses visual attention on that specific location.
Usually, a production rule would request the location of the visual element with a second
production rule matching the location in the visual location buffer to activate the encod-
ing process. A third production rule harvests the encoded content for further cognitive
processing. The shift of attention due to a sequence of visual encoding results in a series
of eye movements [92].

3.3 Development of QN-ACT-R-SA

In this section, I provide an introduction to QN-ACT-R-SA (Figure 3.2), which is an ex-
tension of QN-ACT-R with additional methods for the simulation and prediction of SA. As
mentioned in the introduction section, QN-ACT-R-SA models the cognitive processes re-
quired in acquisition and maintenance of SA using two independent computational theories
of human attention allocation and cognition, called SEEV and QN-ACT-R respectively.
QN-ACT-R-~SA perceives critical elements in the visual environment and stores the under-
lying information related to these elements in its declarative memory. Critical elements are
essentially situational components important for drivers to successfully accomplish driving
tasks. In the case of driving, examples of critical elements include pedestrians, traffic signs,
and traffic vehicles. Drivers need to be cognizant of critical elements in order to make ap-
propriate decisions for tasks such as lane keeping, speed control, and hazard avoidance. A
drivers SA is measured as the percentage of correct responses to probes concerning critical
elements within the driving environment.
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Figure 3.2: The QN-ACT-R-SA framework. Stages 1-3 (marked on the lines in the figure and
explained in the main text) signify the different cognitive processes necessary in the acquisition
and maintenance of Level 1 SA. Source: original, UR (author).

Probe-based SA techniques, such as SAGAT and post-experiment SA questionnaires,
are set up as queries to capture the outcome of attention distribution among multiple
critical elements. A similar query-based approach can be used with the QN-ACT-R-SA
model. QN-ACT-R-SA’s visual and memory modules play important roles in acquiring
and maintaining Level 1 SA during driving. QN-ACT-R-SA simulates visual attention
distribution with the aid of SEEV theory. SEEV mechanics embedded within QN-ACT-R-
SA manages the visual attention allocation processes required in scanning different AOIs.
The model’s declarative memory mechanisms are used to imitate typical human memory
decay processes on queries concerning critical elements that may have been forgotten due
to time delay.

3.3.1 Modelling Visual Attention Allocation

The QN-ACT-R-SA model has three stages of processing (Figure 3.2). For the purposes
of explanation, the QN-ACT-R-SA model is described as it has been generally applied in
our empirical study. In Stage 1, the visual module attends to a critical element located in
one of the AOIs. AOIs defined in this study include on-road frontal view, mirrors (centre,
left and right mirror), and the vehicle speedometer. The selection of an AOI is based
on the probability of scanning different AOIs as computed by the SEEV model [93]. A
simplified SEEV method to calculate the probability of attending an AOI is described by
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Gore et al. [94], wherein the probability to select an AOI is associated with the weighted
average of the AOI’s property values including Salience, Effort, Expectancy, and Value. I
deduced the weights for SEEV coefficients a priori by means of the lowest ordinal heuristic
approach [95]. Different task conditions and AOIs were ranked along the model parameters
as described by Gore et al. [94]. This score was then weighted against the sum of all tasks
and conditions and used as a percentage of the total dwell time. Two major AOIs were
shortlisted for this experiment that include the driver’s peripheral environment (left mirror,
right mirror, and centre mirror, speedometer, roadside view) and the driver’s front view of
the road. The tasks carried out by the QN-ACT-R-SA model include: (1) lateral control
(maintain vehicle in centre lane), (2) longitudinal control (maintaining speed limit and
safe distance from vehicle in the front or rear) and (3) situational monitoring (hazard
monitoring and ensuring destination lane is clear before lane changes). The probability
of attention allocation towards a certain AOI is calculated using the following formula
(Equation 3.5), cited from Wickens et al. [93]:

n

VAsor = Z (El"t) (Rt) (Pt> (3-5)
t=Tasks

where V A,o; is the raw visual attention score of an AOI, t is a number of tasks, n in
this study equals to three, Fx; is the Expectancy of an AOI for a given task, R; is the
relevance for a given task, and F; is the priority of a specific task. R; and P, together
represent Value [93]. The probability of scanning an AOI, P(AOI), can be calculated by
normalizing all values so that the P(AOI) values for different AOIs add up to 100%.

The salience and effort factors have been rounded off to zero to account for a simpler
model. Effort parameter was nullified because its effect on driver’s attention allocation
has been found to be negligible in simulator studies [64]. Effort factor is influenced by the
size of visual angle between two distinct visual targets and in simulator settings this size is
minimal therefore the factor is often discounted [64]. In the current experimental setup, all
visual targets were within the LCD display and the visual angle between them was small
therefore following existing research protocol, a decision was made to nullify the effort
parameter in the SEEV modelling paradigm [64]. The model was further simplified to
not account for salience parameter because the model focuses on simulating driver’s visual
attention allocation across different AOIs rather than across individual critical elements.
In the SEEV model, salience is a property of an AOI (information channel) rather than
a property of individual elements in the driving environment [31]. Had the model been
programmed to simulate attention across different critical elements, the modeller would
be expected to assign salience parameter weights to each critical element in the driving
environment, making modelling attention allocation extremely complex and impractical. A
strong model fit without salience and effort parameters has been found in previous studies
[31, 96] and model results have been robust when validated against eye tracking data [64].

Within the SEEV model, Expectancy refers to the information frequency in a specific
AOIL Expectancy has also been called bandwidth [93]. If an AOI has a high bandwidth,
then it would be sampled more frequently and assigned a higher expectancy weight. For
instance, drivers can expect more activity in the forward view as compared to other AOIs,
thus on-road areas are assigned the highest expectancy weight. The expectancy coefficient
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should be different for complex and easy driving conditions because a driver’s expectancy
changes as visual clutter increases in the driving environment [94]. Following the lowest
ordinal heuristic approach [95], Expectancy for each information channel was set as one
of four values, those being none (0), low (0.333), moderate (0.666), and high (1.0) [94], as
shown in Table 3.1.

Value, within SEEV, is a measure of the objective usefulness of information contained in
a specific AOI. Value considers the cost of failing to process important information within
a given channel. It is computationally expressed as the product of relevance and priority.
Relevance for each task in each driving condition was also set following the lowest ordinal
heuristic approach, as shown in Table 3.1. Regarding priority of the three task components
of driving (i.e., lateral control, longitudinal control, and situational monitoring), lateral
control is the most important task component and therefore assigned the highest priority
value, following Horrey et al. [64] and Wortelen and Ludtke [73]. Situational monitoring
should have the lowest priority in comparison to lateral control and longitudinal control
[73]. The priority values determined for each task component are shown in Table 3.1. To
ease weighted score calculations, the priority values were normalized so that all priority
values for the same AOT add up to one [94]. Table 3.1 presents the values used in calculating
the probability of scanning each AOI in the driving task used in our empirical study. Based
on the probability distribution, Monte-Carlo simulations [97] were performed to determine
which AOI would receive visual attention at a given period of time.
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Table 3.1: SEEV parameters for easy and complex driving conditions.

Easy Condition

T12 T2b T3¢
AOIY EX,' R} PX EX, Ry, P EXs Ry P35 VAuo! P@AoH%"
FV (RS)® 0.333 0.666 0.6 0.333 0.333 0.3 0.333 0.333 0.1 0.144 19.6
FV (OR)! 0.666 1 0.6 0666 0.333 0.3 0666 1 0.1 0474 64.5
Mirror®  0.333 0.333 0.6 0.333 0.333 0.3 0.333 0.333 0.1  0.09 12.2
Dash® 0333 0 06 0.333 0333 03 0333 0 0.1 0.027 3.67
Complex Condition
T1 T2 T3
AOI EX, R P EXy Ry, P, EXs Rs3s Py VAjsr P(AOD%
FV (RS) 0.333 0.666 0.6 0.333 0.333 0.3 0.333 0.333 0.1 0.144 13.7
FV (OR) 1 1 06 1 033 03 1 1 01 079 75.2
Mirror ~ 0.333 0.333 0.6 0.333 0.333 0.3 0.333 0.333 0.1  0.09 8.6
Dash 0333 0 06 0333 0333 03 0333 0 01 0.027 2.6

aT1: Task 1 (Lateral Control); PT2: Task 2 (Longitudinal Control); ©T3: Task 3 (Situational Monitoring);
dAOI: Areas-of-Interests; °FV (RS): Forward View Roadside; {FV (OR): Forward View On Road; Mirrors:
Mirrors (Left, Right, Center); "Dash: Dashboard (Speedometer); ' EX;: Expectancy; I R; : Relevance; X P;:
Priority; 'V A4or: Raw Visual Attention score; ™P(AOI)%: Percentage Normalized Score for each AOI
representing probability of scanning an AOL

Using the expected limitations in driver attention allocation patterns, QN-ACT-R-SA
provides a sound approach for modelling and simulating SA. A distinguishing factor is
that decisions on whether to store critical elements in the declarative memory are based
on attention allocation to identified AOIs. The less visual attention put on an AOI, the
greater the probability that the critical element will not be stored, and the more likely that
answers to SA query will be incorrect.

3.3.2 Modelling Information Retrieval for Answering SA Probes

While SEEV accounts for SA based on whether a critical element was seen (i.e. visual
attention allocation), the declarative memory in ACT-R contributes to SA based on mem-
ory. Even if a critical element was seen, the answer to the SA probe may be incorrect due
to memory decay. According to ACT-R, the retrieval success depends on both how many
times the same critical element is attended and how long the delay is between perception
of critical elements and the SA probe. In Stage 2 of the QN-ACT-R-SA model, the visual
buffer acquires the visual content of the critical element in the environment from the visual
module (see Figure 3.2). In Stage 3 of the QN-ACT-R-SA model, the visual buffers extract
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the corresponding information from the declarative memory resulting in cognitive activa-
tion of the critical element using Equation 3.4. As such, Level 1 SA only comes into effect
when the activation value of a chunk representing the critical element in the environment
is over a certain threshold. Thus, QN-ACT-R-SA covers both the attention and memory
mechanisms for Level 1 SA.

3.3.3 Information Processing within QN-ACT-R-SA

In this section, I explain how the different components of the model function in an inte-
grated manner. QN-ACT-R-SA is a discrete event simulation model and its input includes
production rules, declarative chunks and model parameters'. These components explain
how human cognition processes information. This cognitive model is capable of interact-
ing with a task model (driving simulator) to produce simulated behavior as model output
(e.g., steering control, brake reaction time, SA query results etc.). Production rules, as
previously defined, represent psychologically plausible input-procedures (discreet sequential
steps) that divide overall tasks into smaller operational goals. Production rules explain
task details and task-specific information. Processing a production rule results in QN-
ACT-R-SA to output actions that simulate human performance and therefore represent a
realistic portrayal of human cognitive capabilities and limitations.

The QN-ACT-R-SA cognitive architecture already encompasses a standard cognitive
framework that details non-task-specific information processing abilities. As mentioned
previously, QN-ACT-R-SA comprises several independent modules that cater to different
cognitive functionalities such as memory processes, perception, and motor actions. These
modules are responsible for performing a wide variety of general-purpose cognitive tasks.
The modeler provides the task specific knowledge based on the theoretical understanding
of the task under analysis (e.g. how lane changing is typically performed by a driver).
Within QN-ACT-R-SA architecture, this knowledge is computationally programmed and
encoded in terms of production rules.

Production rules are processed when the knowledge chunks from the declarative mem-
ory match a pre-condition set by the modeller. For instance, a potential production rule
could direct the model to output a braking action in response to a series of preconditions
such as vehicle intrusions, stop signs etc. The stop signs or the intruding vehicle here would
represent the chunk in the architecture’s declarative memory. At times multiple produc-
tion rules are matched; however, the production rule with the highest utility value is fired.
Utility values, as previously described, are underpinned by a computational model that
simulates how humans administer cost and reward processes for different decision paths.
In this research, we propose three sets of production rules that function in an integrated
fashion with the overall goal to simulate human driving and SA. Each set of production
rules represents a specific cognitive model. The model simulates the following set of pro-
duction rules by means of its production system: (1) maintaining lateral and longitudinal
control, (2) monitoring the environment, and (3) undertaking high-level decisions. Figure
3.3 represents the information processing within QN-ACT-R-SA. The model communicates
with a driving simulator (OpenDS) by means of a User Datagram Protocol (UDP) connec-

!Table 3.2 details the parameters used in the current study.
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tion. The performance of the entire loop occurs within a timeframe of 150 milliseconds,
which represents the firing of the three relevant production rules [69].

To maintain lateral control, a steering control law is implemented based on the work
of Salvucci and Gray [98]. A similar control law is also implemented to maintain a stable
speed or car-following distance following the work of Salvucci [99]. For monitoring the
environment, the model scans different AOIs to perceive and store information, including
the road heading direction, front car leading distance, traffic signs, traffic vehicles, and
other road users. The model scans different AOIs based on the SEEV parameters as
described in earlier 3.3.1. The model then uses this information to determine steering and
pedal commands that are eventually sent to the driving simulator to control the simulated
car. This aspect of the model is geared to simulate QN-ACT-R-SA’s decision making
capacity. The model can also be probed to recall critical elements that it has stored in
its declarative memory while monitoring the environment. Further details on the model’s
production system are discussed in the following subsections.

Control

- Perceving Near Point Angle, Far
Point Angle, Far Point Distance
Time Headway

- Updating Brake, Steering and
Acceleration

Monitoring Critical Elements

- Decide AOI (Mirrrors, Front
View, Speedometer) Based on
SEEV Probability

— - - Render Attention Towards
Monitoring and Storing Computed AOI

Integrated Driver Model

- Control »| - Monitoring Critical Elements

) Mon_itgring an_d Storing - Storing Critical Elements Storing Critical Elements
- Decision Making

- Encoding Critical Element
(Vehicle or Sign) to Models
Declarative Memory

- Failure to Encode Critical
Element

Recalling Critical Elements

- Recalling Successful (Sign or
Vehicle)
- Recalling Failure

Decision Making

L

- Driving Decision

. = Driving Decision
- Recalling Critical Elements

- Driving Decision: Lane
Change, Brake or Normal Driving
- Update Driving Controls Based
on Decision

Figure 3.3: A schematic display of information processing within QN-ACT-R-SA. Source: origi-
nal, UR (author).
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Driving Control

A basic control paradigm is applied in the model that enables the driver’s vehicle to centre
on two perceptually distinct targets at different distances: a near point and a far point.
The model is adopted from the work conducted by Salvucci and Gray [40]. First, the near
point represents how close the vehicle is to the centre of the road, thus representing the
vehicle’s current lane position. As per Salvucci and Gray [40], the near point is set at 10
meters ahead of the vehicle’s centre and is positioned at the mid-point of the lane viewable
from the front of the vehicle. The far point represents how a driver should anticipate a
bend or a curvature on the road. There exists three types of far point targets: (1) the
vanishing point that represents an imaginary point characterising a time headway of 2
seconds on a straight road; (2) the tangent point that is at the vertex of an approaching
curve [100]; and (3) the lead vehicle point that represents the vehicle directly in front of
the driver’s view. When the near and far points are used in tandem, they allow minor
driving adjustment to be made that simulates human driving behavior. For instance, the
near point allows for present lane-centre modifications, while the far point determines how
the model adapts for future positioning.

A steering control law is applied based on the near and the far points. The control
law for steering angle @, as adopted from Salvucci and Gray [40], can be represented as
following (Equation 3.6):

AQ) - kfarAefar + knem’Agnear + kl (enearenma:v)At (36)

A is the change of steering angle. The control law places three constraints: a stable far
point (Afs,- = 0), a stable near point (A6, = 0) and a near point in the middle of the
lane (6peqr = 0). Three constants (Kpear, kfar, k1) control the weights of the components in
the equation. In Equation 3.6, 0,4 (set to 0.07) controls the maximum of 6,,.,, whereas
the duration of a control cycle is represented by At.

Essentially, the procedural system employs one rule to identify the near point, one to
identify the far point, and one to issue the motor commands. Within the architecture,
perception occurs through shifts of visual attention via ACT-R’s visual module [101]. The
model utilizes the steering control equation (Equation 3.6), for lane changing. To perform
a lane change, the model uses the near and far points of the target lane.

Monitoring and Storing

The model monitors critical elements in the external environment. Lane keeping and
hazard avoidance is an aspect of this situational monitoring, where drivers periodically
assess the environment and become aware of the other vehicles around them. The SEEV
framework is applied in this model as a means of distributing attention to the key AOIs
such as the speedometer, the rear-view and side mirrors, and objects in the front view. In
essence, the model looks at an AOI and encodes critical elements presented within that
AOI, storing both the location and other pertinent information in the declarative memory
(e.g., for vehicle, its color, lane, direction, and distance; for signs, its type; for pedestrian,
its location, and for billboard, the type of billboard).
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Decision Making

The model undertakes lane changing when necessary. The model is given a goal to reach
the destination as fast as possible while maintaining the speed limit. This lane changing
ability has been validated against empirical data in previous studies [102]. Each time the
model glances at the previously viewed critical element, the activation value increases,
its representation is strengthened in the memory, and the likelihood of efficient recall is
increased. Activation value, however, decreases with time and causes these memories to
fade as time passes. To extract SA probes, the QN-ACT-R-SA model is programmed
to recall critical elements at designated simulation clock times corresponding with query
timing used with human participants.

3.4 QN-ACT-R-SA Parameters

As mentioned previously, QN-ACT-R-SA has certain parameters that can be pre-set by the
modeller. These parameters are employed to adapt the behavior of the model and control
specific aspects of the model’s functionality. All parameters employed in the current study
either used values from previous studies or were set at their default values. Table 3.2
presents further details on the parameters used in this research. The parameters employed
in the SEEV model of visual attention allocation are explained in 3.3.1.
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Table 3.2: The table shows the description, values and sources of parameters used in this research.

Parameter

Description

Value

Source

:dat

:imaginal-delay

:visual-attention-latency

kfar

knear

k1

:dat is defined as the production rule
default action time. The parameter
signifies the default time required to

execute a production.

The parameter signifies the time (in
seconds) needed by the imaginal
module to form a chunk of imaginal

representation.

The parameter specifies the time (in
seconds) needed for a shift in visual

attention.

d represents the time based decay

parameter (Equation 3.3 ).

T represents retrieval threshold and
signifies the minimum activation level
required for chunk retrieval (Equation
3.4).

s represents the instantaneous noise
that is added to the activation value of
a chunk (Equation 3.4).

Parameter used in steering control
model (Equation 3.6).
Parameter used in the steering control

model (Equation 3.6).

Parameter used in the steering control
model (Equation 3.6).

0.05

0.2s

0.085s

0.5

-1.5

0.4

20

Anderson et al. (1997) [103]

Anderson et al. (1997) [103]

Anderson et al. (1997) [103]

Anderson et al. (1997) [103]

Anderson et al. (2001) [103]

Anderson et al (1997) [103]

Salvucci & Gray (2004) [40]

Salvucci & Gray (2004) [40]

Cao (2013) [40]

3.5 Methodology Study 1

To evaluate the QN-ACT-R-SA model, an empirical study was designed to test whether
the model’s simulation of SA reasonably corresponds to human empirical data. This study
received ethics approval from Office of Research, University of Waterloo.

3.5.1 Participants

For sample size estimation, a preliminary study was conducted and a power analysis was
performed using G*power 3 software [104]. The effect sizes were determined from the mean
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values construed from the preliminary study. The effect sizes indicated a large effect based
on partial eta squared [105] and cohen’s d [106] criteria®. The power analysis indicated a
sample size of N=>5 for an alpha = .05 and power = 0.8. Thus, our proposed sample size of
N=14 is adequate to achieve the main objective of the study. A total of 14 participants (9
males and 2 females) ages 22 to 26 years were recruited for this study. The lack of gender
balance is a limitation of the current experiment design, however, previous studies show an
insignificant effect of gender on SA scores [107, 108, 109]. The mean age of participants was
22.2 (SD: 1.1) years, with mean driving experience of 3.4 (SD: 1.1) years. All participants
reported normal or corrected-to-normal visual and auditory acuities.

3.5.2 Driving Simulator

The participants had control of the steering wheel, brake pedals, and accelerator pedal
as main driving controls. The simulator used for this experiment was a customized fixed-
base driving simulator with a 2004 Toyota Corolla seat mounted on a wooden platform.
Driver controls included a Logitech Driving Force GT steering wheel and pedals. Driving
simulator software called OpenDS was used in this study [41]. The simulated driving task
was displayed on a Samsung (55 inch) LCD television, with a resolution of 1080 by 1920
degrees and a refresh rate of 60 Hz. The visual angle of the viewable driving scene is
approximately 15.3 by 10.2 degrees.

3.5.3 Scenario

Participants drove on a simulated highway situated in a lowland rural landscape. The
highway is one straight path of 3300 m with no curve and consists of four lanes, two in each
direction (Figure 3.4). The visual elements in the head-on-display include speedometer, side
view mirrors, and rear centre mirror. In this experiment, the participant’s car is initially
located at the centre of the right lane. There are two conditions in the experiment: an
easy driving condition (low traffic density and less visual clutter) and a complex driving
condition (high traffic density and more visual clutter). Low traffic density represents two
vehicles in a car following distance of 600m and 1000m respectively. High traffic density
represents five vehicles with a car following distance of 300m, 600m, 900m, 1200m and
1400m respectively. To allow for reasonable driving control in the simulator, the traffic
vehicles are artificially programmed to maintain the speed of 50 km/h, which is lower
than the speed limit on the roadway (70 km/h). The traffic also follows a pattern that
allows participants to easily overtake vehicles and perform lane changes where appropriate;
however, lane changing is more difficult when the traffic density is higher. Critical elements
present on the highway include traffic signs, billboards with distinct messages, potential
roadside hazards such as pedestrians, and nearby traffic vehicles. I envisage the simplified
driving environment to naturally increase SA due to lowered cognitive load and less visual
clutter. Easy driving condition is, therefore, intentionally set up to see if the model could
also map the trend in SA scores across the easy versus complex driving conditions.

2Repeated measures ANOVA and paired samples t-test were used as statistical tests in Study L.
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Figure 3.4: Screenshot of the driving simulation showing the driver’s view. The driver’s view of
2-lanes going in the same direction (i.e. no on-coming traffic). Source: original, UR (author).

3.5.4 Experiment Design and Measures

A 2x2 within-subject design was applied for this experiment. The first independent variable
was the driving condition with two levels: easy driving condition and complex driving
condition. The second independent variable was the visual AOI with two levels: the front
view (on-road) and the peripheral view (combining roadside, mirror, and speedometer).
Simple counterbalancing of conditions was used since there were only two conditions (easy
and complex). The dependent variables were SAGAT and post-experiment SA question
scores.

SAGAT was administered by querying the participants at pre-determined time intervals
while they were undertaking the driving task. The driving simulation was frozen, and
the driving scene was blanked during the probe question. The simulation was promptly
resumed once the participant’s response was recorded. The participants were probed on
road signs, latent hazards, pedestrians, and presence of nearby traffic. The responses to SA
probes could only be provided in a "yes" or "no" binary format. For example, “did you just
see a speed limit sign of 70 km/h?” would generate a yes/no answer. A SAGAT score was
calculated as the percent of correct answers to all probe questions for the same condition.
The score represented the driver’s Level 1 SA (i.e., perception of critical elements). There
was a total of six probes for each condition. The SAGAT score essentially represented the
correct response rate converted to a scale ranging from 0 to 100.

A post-experiment SA questionnaire was also employed at task completion. The par-
ticipants were probed on their ability to accurately identify billboards that were present
during the driving scene in a multiple question quiz with a true/false format. A total of 12
distinct billboards were present during the driving scene with 6 in the complex condition
and 6 in the easy condition; the questionnaire, however, also had 6 distractors that were
not part of the experiment. The post-experiment SA score reflected the correct response
rate converted to a scale from 0 to 100.
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3.5.5 Procedure

The research study was explained to the participants upon arrival in the experiment room.
Participants completed the consent form and background questionnaire. All participants
had a 10-minute practice session with the driving simulator before the start of the formal
experiment. Participants were tasked to reach the end of the track as quickly as possible
while following the speed limit of 70 km/h. They were permitted to alter their speed,
change lanes, and take over other cars when necessary, provided safe driving behavior was
always exhibited. The two experimental trials lasted 30 minutes and the entire experiment
lasted an hour including the practice session and time spent towards filling out information
consent for and background questionnaire.

3.5.6 Results
SAGAT Results

Repeated measures ANOVA was performed using SPSS on the empirical data to determine
the effect of driving environment and visual area on drivers’ SA. Mean SA in the easy
driving condition for on-road objects was 95.24% (with 95% confidence interval of 88.25
to 100 max); whereas SA for peripheral objects was 70.00% (with 95% confidence interval,
61.23 to 78.77). In the more complex driving condition, mean SA for on-road objects
remained high at 90.48% (with 95% confidence interval, 81.45 to 99.49); however, SA for
peripheral objects was noticeably lower at 48.57% (95 % confidence interval, 35.99 to 61.15).
No statistically significant two-way interaction was found between driving environment
and visual area for drivers’ SA, F(1,13) = 2.67, p = 0.13, n?> = 0.032. The main effect
of driving environment on drivers’ SA was statistically significant, F'(1,13) = 11.86, p =
0.001, n* = 0.079. The main effect of visual area on drivers’ SA was also statistically
significant, F/(1,13) = 52.31, p < 0.001, n* = 0.518.

In efforts to determine model fitness, root mean squared error (RMSE) and mean
absolute percentage error (MAPE) were calculated for model and human results. RMSE
(Equation 3.7) represents the differences between values predicted by QN-ACT-R-SA and
the values observed in empirical study. MAPE (Equation 3.8) is a time series estimate of the
mean of the absolute percentage errors present within model and human data. Coefficient
of determination (r-squared) was also measured in order to evaluate the model’s ability to
predict the changes present in human data for different experimental conditions.

T'L— Xumani_Xmoe % ?
RMSE:\/ZZ_I( h n dl,) (3.7)
100 n Xhumani - Xmodel )
MAPE = — : : :
n Zi:l Xhumzm,i (3 8>

Where X},maen represents data from human, X, represents data from model, ¢ rep-
resents the condition and n represents the sample size.

QN-ACT-R-SA model simulation runs, using a priori weights in a stochastic system,
were carried out 14 times in order to evaluate the model’s ability to simulate drivers’
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SAGAT response accuracy for the two driving environments (easy, complex), and the two
visual conditions (on road, peripheral). The fourteen simulation runs reached the criterion
that the widths of 95% confidence interval of model SA scores in the four test conditions
were all within 15, which is less than the average of the four human participant conditions.
The overall model fitness for SA results is illustrated in Figure 3.5°. The MAPE was
5.02%, the RMSE was 3.47, and the coefficient of determination (r-squared) was 0.98. A
further analysis revealed that all the errors in the model’s SAGAT responses were due to
limitations in visual attention allocation.

Both absolute (MAPE) and relative (RMSE) goodness-of-fit measures confirm (QN-
ACT-R-~SA’s efficacy in mapping empirical SAGAT results. The RMSE of 3.47 for SAGAT
responses indicates a small error difference between the average human and modelling
results given the average SAGAT scores (measured on a scale of 0-100) for the easy and
complex driving condition was around 71.9 (SD: 21.1). The MAPE value of less than
10% also demonstrates that the model’s deviation from the empirical results in terms of
percentage error was relatively small [43, 3]. The graphical analysis of the average model
versus average human plots further indicate that the model was able to successfully map
the changes in SAGAT scores across the different experimental conditions in the study.

Human

‘}_ +_ Model
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Figure 3.5: SAGAT scores of model and human. Error bars represent 95% confidence intervals.
The model focuses on simulating average results rather than variance, so the model’s variance is
not shown. Source: original, UR (author).

3Human and Model data is presented in Section A.1 and Section A.2 respectively.
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Post Experiment SA Questionnaire Results

A paired-samples t-test was performed using SPSS on the empirical data to determine
whether there was a statistically significant mean difference between the post-experiment
SA results in the easy condition compared to post-experiment SA results in the complex
condition. Descriptive statistics are mean + standard deviation, unless otherwise stated.
There were no outliers in the data, as assessed by inspection of a boxplot for values greater
than 1.5 box-lengths from the edge of the box. The assumption of normality was not
violated, as assessed by Shapiro-Wilk’s test (p = .339). Participants’ SA was higher in
the easy driving condition (88.10 + 16.57) as opposed to the complex driving condition
(59.52 + 19.30), a statistically significant increase of 28.57 (with 95% confidence interval,
12.81 to 44.33), t(13) = 3.917, p = .002, d = 1.05. QN-ACT-R-SA model simulation runs
were carried out 14 times in order to evaluate the model’s ability to simulate drivers’ post-
experiment SA for the two driving environments (easy, complex). The fourteen simulation
runs reached the criterion that the widths of 95% confidence interval of model SA scores
in the four test conditions were all within 15. The overall model fitness for SA results is
illustrated in Figure 3.5.6*. MAPE was 6.73%, and RMSE was 6.13. A further analysis
revealed that only 4.16 % of the model’s probe errors to post-experiment SA questions
were due to limitations in visual attention allocation whereas 94.86 % of the errors were
due to memory retrieval failures.

Both absolute (MAPE) and relative (RMSE) goodness-of-fit measures confirm QN-
ACT-R-SA’s efficacy in mapping post-experiment SA results. The RMSE of 6.13 for post-
experiment SA questionnaire indicates a small error difference between the average human
and modelling results given the average post-experiment SA questionnaire scores (on a
scale of 0-100) for the easy and complex driving condition was around 73.8 (SD: 16.2). The
MAPE value of less 10% also demonstrates that the model deviation from the empirical
results in terms of percentage error was relatively small [43, 3]. The graphical analysis
of the average model versus average human plots further indicate that the model was
able to successfully map the changes in post-experiment SA scores across the different
experimental conditions in the study.

4Human and Model data is presented in Section A.3 and Section A.4 respectively.
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Figure 3.6: Post Experiment SA scores of model and human. Error bars represent 95% confidence
intervals. The model focuses on simulating average results rather than variance, so the model’s
variance is not shown. Source: original, UR (author).

3.6 Discussion Study I

Computational modelling is an important instrument for addressing the need for automat-
ing human factors evaluation. More specifically, cognitive architectures are being increas-
ingly used by researchers to infer quantitative predictions of human factors measures such
as SA. The current study contributes to this field of research by developing and examining
a simulation model for Level 1 SA based on an integrated cognitive architecture approach.

3.6.1 Empirical Study

An empirical study was conducted to collect human data for model validation. I selected
the driving tasks with two levels of environmental complexity to contrast drivers’ SA in the
two conditions. SA measures included both SAGAT and post-experiment SA questions.
Not surprisingly, the results showed that SA was reduced in the complex condition with
more visual critical elements. In addition, SA of critical elements in the peripheral AOI
(i.e. secondary AOI) was worse than SA of critical elements in the front view on-road area
(i.e. primary AOI). The reduced SA in the complex condition may be due to structural
interference or capacity interference. Structural interference refers to visual obstruction
that blocks the detection of other elements [110]. This is unlikely to be the case in the
current study because the number of visual objects used was not large enough to cause
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significant obstruction. On the other hand, capacity interference [111] refers to the limita-
tions of human visual attention. Complex driving conditions require additional attention
resources to manage increased information processing. Facing limited attention resources,
drivers tend to focus on the front view area and sacrifice the peripheral area. Therefore,
the probability of missing a visual object, especially one in the peripheral area, becomes
greater in the complex driving condition. While visual allocation of limited attention re-
sources may explain the SAGAT results, it is insufficient to explain the post-experiment
SA results which seemed more prone to memory decay. Due to the delay between the
perception of a critical element and its post-experiment SA probe, the participant could
have perceived the critical element but had forgotten the information by the time of query.

Both the visual attention mechanism and the memory decay mechanism were built into
the QN-ACT-R-~-SA model.

3.6.2 QN-ACT-R-SA Model

As a framework, QN-ACT-R-~SA considers both attention and memory limitations in mod-
elling drivers” SA. The overall model is grounded in established cognitive mechanisms,
production rules, and default parameters within the cognitive architecture. The modelling
results validated QN-ACT-R-SA’s capability to reasonably simulate human-like Level 1 SA
(i.e. perception of critical elements). Similar to assumptions around human information
processing, the model’s attention allocation mechanism only stores a critical element as a
chunk in the declarative memory of the model if attention had been directed towards that
element (i.e. if attention was not allocated by the model to the element, then the element
was considered as not perceived). The likelihood of ignoring a specific element increases
for those elements located in an AOI that is insufficiently scanned by the model. It was
expected that retrieval failures during SA probe questions would be more common dur-
ing complex driving conditions. Errors due to visual attention allocation limitations were
found during both post-experiment SA questions and SAGAT; however, visual attention-
based errors were more common for SAGAT responses. The SAGAT queries focused on
immediate driving elements (e.g. traffic sign, vehicle on side of road). SA post-questions
focused on billboard signs that were conspicuously designed to capture full attention of
participants since they were visible from far away and were comparatively larger than the
traffic signs and on road vehicles. Even with higher conspicuity of the billboard signs,
SA errors due to limitations in attention allocation were observed in post experiment SA
questionnaire results.

The memory related SA mechanism relies on activation level for retention of critical
elements. Memory related explanations for retrieval errors can be attributed to the model’s
declarative threshold value and activation level of chunks representing critical elements.
Activation level increased based on the number of times a critical element was viewed by
the model’s perceptual module. Due to the higher density of visual clutter present in
the complex driving condition, the temporal timeline in which a critical element could be
perceived by the model in the complex condition was limited. The probability of chunk
retrieval from the model’s declarative memory was dependent on the activation value of a
chunk. Low activation values of critical elements in complex conditions lead to retrieval
failures and subsequent poorer SA scores. Memory-based SA errors occurred only during
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the post-experiment SA questionnaire since those responses reflected the effects of memory
decay.
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Chapter 4

Modelling Brake-Perception
Response Time

4.1 Introduction to Study II

Driver error due to poor Situation Awareness (SA) is one the leading reasons for motor-
vehicle collisions [112, 113, 114]. Lack of SA resulting from delayed or missed hazard
perception can lead to decision errors increasing the risk of traffic collisions [112, 115, 116].
According to a recent 100-car naturalistic driving study [62], a major contributing factor of
traffic accidents is inattention due to improper perception of roadway risks. Therefore, the
driver’s ability to perceive possible hazards and respond appropriately to critical events is
vital for traffic safety.

Hazard perception is officially defined as the driver’s ability to identify and respond to
roadway hazards [117]. Hazard perception is often used to indicate the different perceptual
processes necessary for hazard avoidance [117, 118]. Previous research has demonstrated
that the concept of hazard perception captures the essence of the three stage model of
SA [115, 119]. The three stage model indicates that the perception of potential hazards
precedes comprehension of possible response selection maneuvers and projection of future
state of the environment [120].

Hazard perception tests have been used in the last five decades to investigate human
factors within driving safety research!. The driver’s reaction time to critical events is used
as a measure to assess the driver’s hazard perception ability since it influences the success-
rate of evading emergency scenarios [121]. In formal terms, the time bracket for a driver to
perceive and respond to a hazard is alluded to as hazard-perception response time (HPRT)
[122, 123]. HPRT could further be broken into brake-perception response time (BPRT)
or steering-perception response time (SPRT) when capturing individual brake or steering
response latencies. Most studies have focused on evaluating BPRT [124], whereas a few
studies have also reported SPRT [125, 126, 127]

There has been extensive research that has investigated the effect of different factors
that influence drivers HPRT [124, 128, 129]. Factors commonly investigated include: age
and experience of drivers [122, 130], peculiarity of hazards [131, 132], effects of distraction

IRefer to Moran et al. [116] for review.
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[133, 134, 135], and scenarios involving transfer of control from automated driving [136].
HPRT has been used to assess road design safety [137] and also utilized as evidence in court
hearings linked to motor vehicle accidents [121]. HPRT related to different types of road-
way hazards has been investigated, including: static objects on the road [137]; signalized
intersections [138], lead vehicle braking scenarios [139], auditory stimuli [140], pedestrian
incursions [141, 142], and intruding vehicles at intersections and merges etc.[143, 144].
Most of these studies have been conducted in simulated settings using driving simulators,
while other studies were conducted on actual roadways and test tracks. A few studies have
reported measuring hazard perception skill based on reactions to video clips that require
participants to push a button in response to hazardous events on visual displays [145].

Despite the rigorous work in the domain, most hazard perception theories are con-
ceptual in nature and lack rigorous mathematical formulations or computational imple-
mentations. Hazard perception results have mostly been construed from participant-based
controlled experiments. There is a paucity of research that attempts to model and simulate
drivers’ hazard perception skills since standard methods for assessing hazard perception
are either experimental or through the analysis of driver data from naturalistic settings.

Computational modelling can facilitate simulation of HPRT and can allow researchers
to forecast HPRT for different driving conditions. Such modelling endeavors can reduce
dependency on empirical experimentation and decrease the overall research expenditure
[146]. Model-based simulation of HPRT can also offer cost-benefit evaluations of various
extreme case traffic scenarios that are impractical to enact in simulated settings or ob-
serve through real-world driving data. This research is therefore motivated by the lack of
computational models that can be employed for simulation and prediction of HPRT.

In the research literature, a limited number of studies have introduced computational
models that have been successful in capturing HPRT in different conditions. These include
microsimulation models that follow a stimulus-response paradigm and are built using a
standard two-stage process. First, a causal relationship between perception-response times
and some other variable is established (e.g. deceleration rate, time headway etc.). The
second stage involves developing a predictive model using a statistical technique to match
human driving data. Usually techniques such as log-normal modelling [147, 148, 149] or
regression [150, 151, 152] are employed. While this work is effective at addressing traffic-
level phenomena, it fails to account for the underlying cognitive mechanisms that explain
drivers’ hazard perception skills. These models are lacking human information processing
mechanisms and cannot offer detailed insights into human-machine interaction from the
lens of human cognitive abilities and limitations. Consequentially, the potential of these
models to prescribe human factor countermeasures is severely constrained.

In contrast to most microsimulation models that lack psychological underpinnings, cog-
nitive architectures based simulation research takes into account human cognitive processes
by unifying psychologically plausible models of human perception and attentional mecha-
nisms, memory resources and motor functionality [26]. A cognitive architecture represents
a cohort computational cognitive model integrated within a unified framework. Cognitive
architectures can be represented in a computer simulation program that is capable of di-
rectly interacting with the task environment using synthetic visual and motor subsystems
[153]. Cognitive architecture-based models are inherently stochastic in nature and flex-
ible enough to cater to different test cases and driving scenarios. I propose a cognitive

38



architecture-based approach to address the need for modelling HPRT to visual roadway
hazards that require emergency avoidance response. In this section, I demonstrate the use
of QN-ACT-R-SA (Queuing Network — Adaptive Control of Thought-Rational — Situation
Awareness) to model and simulate HPRT.

4.2 Methodology Study II

The focus of the current study is to investigate QN-ACT-R-SA’s ability to simulate HPRT.
For validation, I compare HPRT results generated by QN-ACT-R-SA against empirical
data from human participants. To collect empirical data, I conduct an experiment in a
driving simulator where participants encounter different types of hazards. The QN-ACT-R-
SA model is connected to the same driving simulator and exposed to the same experimental
conditions as human participants. In this experiment, only simple reaction time for brake
responses was taken into account; therefore, I measured BPRT only. The empirical study
was purposely designed to reflect this restraint and it was ensured that drivers’ reactions
were limited to brake-responses only.

The simple reaction time is when a participant can exercise only one possible response
action [154]. The information processing for such tasks directly shifts from perception
to response action without deciphering the nature of the hazard or the type of response.
Choice reaction time accounts for the time needed to identify the type of hazard and
response needed in a given situation. Choice reaction time delves into higher levels of SA
that include comprehension and projection. As the current cognitive architecture is limited
to Level 1 SA, and the mechanisms are not advanced enough to simulate human decision
choices, this study is limited to simple reaction time for brake responses.

Drivers” BPRT to four surprise road-way hazards was measured in this research: two
on-road conditions and two roadside conditions. The hazards were designed such that they
required emergency avoidance maneuvers. The two on-road conditions include lead vehicle
braking scenarios on either side of the dual carriageway. The two roadside condition include
unexpected intrusion from an intersection and a car suddenly coming in front of the driver’s
vehicle from the merge lane. I hypothesize that drivers” BPRT to on-road hazards would
be faster since drivers dedicate the majority of their visual attention in front of the road
rather than the periphery. An experiment was designed on the above stated hypothesis.

4.2.1 Participants

For sample size estimation, a preliminary study was conducted and a power analysis was
performed using G*power 3 software [104]. The effect sizes were determined from the mean
values construed from the preliminary study. The effect sizes indicated a large effect based
on partial eta squared values [105]. The power analysis indicated a sample size of N=4 for
an alpha = .05 and power = 0.8. Thus, our proposed sample size of N=11 is adequate to
achieve the main objective of the study. A total of 11 participants (7 males and 4 females)
aged 21 to 26 years (M = 24, SD = 1.1) took part in this research study. The lack of
gender balance is a limitation of the current experiment design, however, previous studies
show an insignificant effect of gender on SA results [107, 108, 109]. All participants had
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valid driver’s license and had a driving experience of at least one year. All participants
had normal or corrected-to-normal visual and auditory acuities.

4.2.2 Scenario

The experiment was conducted on a simulated dual carriage way, located in a lowland
rural landscape, with two lanes in each direction. The maximum speed of the track was 70
km/hrs. A total of eight straight tracks with no curves were designed for this study, and all
tracks were roughly 5000m in length. Four tracks presented participants with unexpected
hazards that required a hazard evading manoeuvre and the remaining four tracks did not
present any hazard. The order of experiencing the hazardous tracks was randomized across
subjects using a latin square design.

To limit the driver’s response actions to brake-response only, a few experimental controls
were adopted. The segment where the hazardous event materialises was designed to be
a single lane event only. This was done to ensure that participants did not consider
steering as an evasive response manoeuvre. The tangential lane was purposely closed
with a construction sign to indicate that it is an active work zone. Also, the drivers
were instructed to engage cruise control after reaching the maximum speed limit of the
roadway. This ensured that the first brake-response received was an evasive maneuver
when the drivers were actually attempting to disengage the cruise control to avoid the
collision. This also made certain that brake responses generally expected while driving
were not interfering with the BPRT measurement process since the driver’s vehicle was on
cruise control.

Apart from the presence of hazards, the driving environment was adopted from one of
the conditions (easy condition) investigated in Section 3.5. Other elements present in this
driving environment included traffic signs, and surrounding traffic. The surrounding traffic
was programmed to maintain a slower speed of 50 km /h in order to facilitate participants to
perform lane changing and overtaking during the trials. The lane changing was designed in
such a way that it did not require active brake responses since traffic vehicles were far apart.
Furthermore, the participants were also specifically instructed to disengage cruise control
only when encountering an imminent hazard. The speed limit sign in the construction zone
also represented the maximum speed of the roadway (70 km /hr) therefore the participants
did not carry an inclination to disengage the cruise control in the segment of the track that
represented the construction zone. These measures ensured that participants maintained
cruise control while driving and disengaged only when encountering a hazardous situation.
Time-to-Collision (TTC) is set at 3.6 seconds for both on-road and roadside scenarios;
TTC was computed based on the time it would take the front of the participant’s vehicle
to reach the anticipated collision point had it continued at a constant speed.

On-road Scenarios

Two lead vehicle braking events were designed as on-road scenarios, categorised as On-
road condition-scenario 1 (Figure 4.1a) and On-road condition-scenario 2 (Figure 4.1b). In
scenario 1, the lead vehicle braking event occurs on the right side lane with the left side
representing a construction zone; and in scenario 2, the lead vehicle braking event occurs
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on the left side lane with the right side representing a construction zone. In scenario 1,
the lead vehicle drove with a Time Headway (THW) of 1.54 seconds at a constant speed
of 50 km/h. The lead vehicle then suddenly applies brakes at a predefined location with
a deceleration of -1.54 m/s? and continues to brake until it comes to a complete halt. In
scenario 2, the lead vehicle drives at a THW of 2.315 seconds at a constant speed of 50
km/h. The lead vehicle then suddenly applies sharp brakes at a predefined location with
a deceleration of -3.86 m/s? and continues to brake until it comes to a complete halt.

Roadside Scenarios

I also designed two roadside scenarios, categorised as Roadside condition-scenario 3 (Figure
4.1c) and Roadside condition-scenario 4 (Figure 4.1d). Scenario 3 depicts an incursion by
a right turning vehicle at an intersection; and in scenario 4 a car suddenly comes in front
of the driver’s vehicle from the merge lane. The roadside scenarios are also unexpected in
nature as the incursive vehicles are programmed to violate traffic laws. In scenario 3 the
hazardous vehicle disregards a stop sign and in scenario 4 the hazardous vehicle disregards
a yield sign. In scenario 3 and 4, the programmed traffic vehicle accelerates from rest at
1.54 m/s>.

4.2.3 Experimental Design and Measures

A within-subject design was employed in this experiment. Independent variable in this
experiment was hazard location with two levels: roadside hazards and on-road hazards.
Dependent variable in this experiment was BPRT, individually measured for each model
and human run. BPRT was defined as the time frame between the onset of the hazard
until the first brake response was received at the simulator.

4.2.4 Procedure

Upon arrival of the participants, the research study was explained by the experimenter in
the experiment room. Participants were then required to fill the consent form and back-
ground questionnaire. An overview of the experiment and driving simulator was provided
prior to the formal experiment. Participants were also acquainted with the driving simula-
tor in an 8-minute practice drive. For the formal experiment, participants were instructed
to reach the maximum speed of the roadway (70 km/hr) and then engage the cruise control.
Participants were allowed to disengage the cruise control wherever necessary by pressing
the brake pedal. Participants were still required to manage vehicle lateral control via
steering inputs. Participants were instructed to finish the track as early as possible by
changing lanes whenever necessary but were told to maintain safe driving behavior at all
times. The participants were also informed prior to the formal experimentation that they
were allowed to maintain the speed limit of 70 km /h in construction zones and they should
consider disengaging cruise control only in hazardous scenarios.
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Participants Vehicle Traffic Vehicle

Initial Velocity= 70 km/h, 19.44 m/s Initial Velocity= 50 km/h, 13.89 m/s
Time to Collision= 3.6 s Time to Collision= 3.6 s

Distance to Collision Point= 70m Distance to Collision Point= 40m
Time Headway Before Lead Vehicle Deceleration= -1.54 m/s"\2

Braking=1.54 s

(a) This figure represents On-road condition-scenario 1.
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Distance to Collision Point= 70m Distance to Collision Point= 25m
Time Headway Before Lead Vehicle Deceleration= -3.858 m/s/2

Braking=2.315s
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(c¢) This figure represents Roadside condition-scenario 3.
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(d) This figure represents Roadside condition-scenario 4.

Figure 4.1: The figure represents scenario 1-4, respectively. Each scenario has a diagrammatic
view that illustrates the properties (speed, THW, TTC etc.) of the different vehicles in the
scenario. Next, to the diagrammatic view is the panoramic illustration of the scenario. The red
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car represents the participant’s vehicle. Three markers (a-c) are also added in the diagram-
matic view to illustrate the TTC calculation process. Markers a and b reflect the relative
position of the participants vehicle and programmed traffic vehicle respectively and Marker
¢ in the figure denotes the collision point. Source: original, UR (author).

4.2.5 Modelling and Simulation

I am interested in testing how QN-ACT-R-SA model will respond to dynamic critical
elements that eventually develop into materialized hazards. I ran a comparative study
investigating hazards originating in the front of the driver, called on-road hazards versus
hazards originating from the peripheral environment, called roadside hazards.

The model is programmed to execute a braking action in response to materialized haz-
ards. This is similar to how hazard perception tests are conducted on human participants.
The primary dependent variable I am interested in comparing between model and human
data is the BPRT.

The visual module of QN-ACT-R-SA attends a critical element in one of the AOIs. AOIs
defined in this study include on-road frontal view, mirrors (centre, left and right mirror),
and speedometer. The visual module decides to render attention towards a specific AOI
based on its attention allocation probability which is determined by the dynamic SEEV
model. Since the driving scenario is adopted from Section 3.5, therefore the same SEEV
parameters (3.3.1) are adopted.

The driving model monitors critical elements in the external environment. Lane keeping
and hazard avoidance is an aspect of this situational monitoring, where the model periodi-
cally assesses the environment and becomes aware of the surrounding vehicles. The SEEV
framework is applied in this model as a means of distributing attention to different AOIs
such as the speedometer, the rear-view and side mirrors, and events happening directly in
front of the windshield.

The model undertakes driving control decisions in two circumstances: a situation that
necessitates a hazard mitigation response from the model as a reaction to a perceived
hazard; or in lane changing situations as the model attempts to reach the destination as
fast as possible while maintaining speed limit. The model is given a goal to reach the
destination as fast as possible while maintaining the speed limit. The lane changing ability
of the model has been validated against empirical data in previous studies [155].

4.2.6 Results Study 11

A one-way repeated measures ANOVA was performed using SPSS on the empirical data
to determine the effect of hazard location on drivers’ BPRT. There were no outliers and
the data was normally distributed, as assessed by boxplot and Shapiro-Wilk test (p > .05),
respectively. Mauchly’s test of sphericity indicated that the assumption of sphericity had
not been violated, y2(2) = 4.49, p = .48. The main effect of hazard location on drivers’
BPRT was statistically significant, F'(3,30) = 261.02, p < 0.005, n? = 0.96.
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Pairwise comparisons were conducted (with Bonferroni correction) for further analysis.
The results revealed that BPRTs for the on-road condition-scenario 1 (M = .84, SD = .13
seconds) and on-road condition-scenario 2 (M = 1.13, SD = .071 seconds) was statistically
significant (M=.284 (with 95% confidence interval, .126 to .441) seconds, p = .001).

However, the BPRTSs for roadside condition-scenario 3 (M=2.04, SD=.093 seconds)
and roadside condition-scenario 4 (M=1.96, SD=.158 seconds) did not elicit a statistically
significant difference (M=.084 (with 95% confidence interval, -.088 to .256) seconds, p =
.838).

Furthermore, a statistically significant difference existed between: the on-road condition-
scenario 1 and road side condition-scenario 3 (M= -1.20 (with 95% confidence interval,
-1.394 to -1.01) seconds, p < .0005); on-road condition-scenario 1 and road side condition-
scenario 4 (M =-1.117 (with 95% confidence interval, -1.337 to -.896) seconds, p < .0005);
on-road condition-scenario 2 and road side condition-scenario 3 (M= -.917 (with 95% con-
fidence interval, -1.037 to -.797) seconds, p < .0005); and lastly , on-road condition-scenario
2 and road side condition-scenario 4 (M = -.833 (with 95% confidence interval, -.984 to
-.682) seconds, p < .0005).

QN-ACT-R-~SA model simulation runs were carried out eleven times in order to evaluate
the model’s ability to simulate drivers’” BPRT for the two driving environments (on-road
hazards, roadside hazards). The eleven simulation runs reached the criterion that the
widths of 95% confidence interval of model BPRT in the two test conditions were all
within 100 milliseconds. The overall model fitness for SA results is illustrated in Figure
4.22. The MAPE was 9.4 % and the RMSE was 0.13 seconds.

Both absolute (MAPE) and relative (RMSE) goodness-of-fit measures confirms QN-
ACT-R-~-SA’s ability in simulating BPRT. The RMSE of 0.13 seconds indicates a small
error difference between the average human and modelling results given the average BPRT
for the two on-road and roadside hazard condition was around 1.49 seconds (SD: 0.54). The
MAPE value of less 10% also demonstrates that the model deviation from the empirical
results in terms of percentage error was relatively small [43, 3]. The graphical analysis of
the average model versus average human plots further indicate that the model was able to
successfully map the changes in BPRT across the different experimental conditions in the
study.

2The Human and Model data is reported in B.1 and B.2 respectively.
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Figure 4.2: BPRT scores of model and human. Error bars represent 95% confidence intervals.
The QN-ACT-R-SA focuses on modelling average results rather than variance, so the model’s
variance is not shown. Source: original, UR (author).

4.3 Discussion Study II

Cognitive architecture based modelling is a valuable tool for simulating driver hazard
perception skill. The present study adds a quantitative foundation to BPRT modelling by
demonstrating a real-time simulation of empirical results.

4.3.1 Empirical Study

An empirical study was designed for model validation purposes. In the trials runs, the
participants encountered two major types of hazards: on-road hazards in the forward view
of the driver and roadside hazard which originated from the drivers’ periphery. The two
contrasting conditions were mainly selected to explore the difference in drivers” BPRT.
Not surprisingly, the results demonstrated that BPRT was significantly shorter for on-
road hazards as compared to roadside hazards. The significantly faster BPRT for on-road
hazards can primarily be attributed to the following three reasons:

1. Firstly, for lead vehicle braking scenario the depth cues for safely judging the lead
vehicle as an imminent hazard are present in the front AOI. Front AOI is most
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actively scanned by the driver since it significantly effects the main driving tasks of
lateral and longitudinal control. On the other hand, roadside hazards are present
in the peripheral environment that is not actively scanned and as a result roadside
hazards are not instantly deemed as immediate threats.

2. Secondly, as the lead vehicle slows down, the drivers instantaneously observe the
brake lights in conjunction with a change in time headway and optical expansion of
the lead vehicle. These cues function as an alerting signal that a braking response
may be required and therefore the participants are better prepared for emergency
braking.

3. Thirdly, there is construction zone blocking one lane of the roadway in the scenario
designed for this experiment and as a result most drivers expect traffic in the front to
slowdown. In contrast, for roadside condition, the probability that a traffic vehicle
accelerating from drivers’ periphery would violate yield and stop signs, and intrude
in the traffic next to a construction zone is very low. Therefore, the roadside hazard
condition carries significantly lower collision probability when compared to on-road
hazard condition.

Furthermore, no significant differences existed between the two roadside hazards (merge
and intersection scenario); however, the two on-road hazards resulted in significantly differ-
ent BPRT. Merge and intersection scenarios were relatively similar since both were highly
unexpected and the acceleration of the programmed traffic vehicle was the same for both
the scenarios.

In the on-road condition, the deceleration of the lead vehicles were different for the
two scenarios. In one of the designed scenarios, the lead vehicle braked with shorter time-
headway and stronger deceleration in the right lane, whereas, in the other scenario the lead
vehicle braked with longer time-headway and comparatively lighter deceleration in the left
lane. The significant difference in BPRT for the two on-road conditions is probably due to
difference in deceleration intensities of the two on-road scenarios tested in this study since
the magnitude of the deceleration influences drivers’ perceived criticality of the situation.
The major cues that influence the criticality include the brake lights and perceived optical
expansion of the lead vehicle. The onset of the brake lights is viewed at a faster rate for
the lead vehicle that has a shorter time headway; also the perceived optical expansion is
faster for the lead vehicle that undertakes a stronger braking response and consequently
a faster deceleration. As a result, the BPRT is shorter for hazards with shorter time
headways and faster decelerations. This explains the significant difference in BPRT for
on-road conditions.

4.3.2 QN-ACT-R-SA Model

Effective visual attention allocation plays a critical role in hazard perception. To mimic
human visual scanning processes, the visual attention allocation mechanisms embedded
within QN-ACT-R-SA are dependent on the SEEV parameters. The modelling results
indicate that QN-ACT-R-SA can reasonably simulate BPRT as the results are in line
with empirical findings conducted under the same driving conditions. The model also
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demonstrates that BPRT would be shorter for on-road hazards when compared against
roadside hazards. The model undertakes brake response once it perceives a hazard in one
of the AOIs. Since the model scans for hazards in the front view more frequently than
the peripheral environment, the likelihood of identifying a potential hazard is faster for
on-road hazards than for roadside hazards. The significant difference between the two on-
road hazard conditions can be explained with the concept of comfort boundary, or safety
zone. The comfort boundary, or safety zone, is essentially the tolerance level at which a
braking lead vehicle gets categorized as an imminent hazard. The model is set up in a way
that any road user violating the safety zone would trigger an automatic brake response.
For on-road hazards, the safety boundary is violated much more quickly by the vehicle

with the shorter time headway and subsequently faster deceleration, thereby prompting a
faster BPRT.
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Chapter 5

Modelling the Effects of Automation
and Distraction

5.1 Introduction to Study III

Automation is becoming increasingly prevalent in road transportation as it carries the
promise to improve driver safety [156]. Researchers have long highlighted the human fac-
tors challenges associated with automation in road transportation [157, 158]. Although
automation is expected to improve overall driving safety, drivers are more likely to en-
gage in non-driving tasks during automated control [159]. Performing non-driving tasks
while driving requires additional cognitive resources that may result in lowered Situation
Awareness (SA) and out-of-the-loop performance decrements [42].

Lack of SA is often recognized as one of the key reasons leading to motor vehicle colli-
sions [112, 118, 115, 116]. Investigating SA is important in human-automation interaction
scenarios since it can offer researchers the facility to investigate situational determinants
that degrade human performance. Analyzing SA in different automated conditions can also
help inform researchers with relevant human factor remedies that may aid in optimizing
safety measures.

Limited research is available that has investigated the effects of automation on drivers’
SA using computational modelling methods. As a way to better understand human-
automation interaction within the context of road transportation, it is important to inves-
tigate the effects of automation on drivers’ SA using computational and simulation models.
It’s equally valuable to investigate how drivers’ SA changes in the presence of cognitive
distractors when drivers engage in non-driving tasks. Automation in driving exists on
a spectrum and ranges from fully-manual to fully-automated driving with intermediate
levels that can be classified into assisted, semi-automated and highly automated driving.
The role and the responsibility of the driver varies with respect to the different levels of
automation since each level imposes different demands on drivers’ SA [160].

In the previous sections, we employed QN-ACT-R-SA to simulate the effects of drivers’
SA in easy and complex driving conditions (Chapter 3) and used QN-ACT-R-SA to model
drivers’ hazard perception skill to on-road versus roadside hazards (Chapter 4).

The focus of this research is specifically geared towards extending the same modelling
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approach towards predicting the effects of Adaptive Cruise Control (ACC) and secondary
tasks on drivers’ SA using QN-ACT-R-SA. ACC falls under the category of assisted au-
tomation and is classified as Level 1 automation according to the SAE taxonomy [160]. To
validate the modelling work, we compared the model’s SA scores against empirical data.
The empirical data was taken from a research study that had examined the effects of ACC
and cellphone use on drivers’ SA using SAGAT tests [42].

QN-ACT-R-SA can potentially be a useful tool to predict SA since it has a rich history of
multiple model integrations that have been validated against empirical data. For instance,
QN-ACT-R-~SA has a validated model that can simulate human driving behavior such as
lane keeping [78] and lateral control performance [161]. Furthermore, QN-ACT-R-SA has
a tested visual attention allocation mechanism embedded within its architecture (3.3.1).
Lastly, QN-ACT-R-~SA can be directly connected to a driving simulator and be probed with
SA queries similar to how SA probe tests are conducted on human participants (Chapter
3).

5.2 Methodology Study III

This section details the empirical experiment, modelling work and the comparison of QN-
ACT-R-SA and empirical results.

5.2.1 Empirical Experiment

The empirical study was conducted by Ma and Kaber [42] and reported in the International
Journal of Industrial Ergonomics. In their study, participants drove a simulated car on a
four lane highway in a driving simulator. The participants were instructed to pay attention
to different types of driving signs and nearby traffic. Each trial took approximately 25
minutes and the average speed was 60 mph. Participants did a total of 100 minutes of
driving on the simulator.

There were two Independent Variables (IV) tested by Ma and Kaber [42]: control mode
and distraction. The control mode had two conditions: ACC and No-ACC (manual driv-
ing). The ACC maintained a lead-vehicle following distance of 2.4 seconds when activated.
The other IV was the distraction task with two levels: Cellphone use and No-cellphone
use. The control mode variable was manipulated within subjects whereas the distraction
variable was manipulated between subjects.

The dependent variable was the SAGAT scores measured using simulation freezes at
pre-determined times. The SAGAT probes covered all three SA levels and were linked to
the driving environment. Drivers were asked to identify road signs, comprehend behavior
of nearby traffic vehicles etc. The correct response percentage made up the final SAGAT
scores for the individual trials.

The results revealed that both IVs, control mode and distraction, rendered a significant
effect on drivers’ SA, however, there was no interaction effect found in the study. The per-
centage of correct responses to SAGAT probes decreased in No-ACC condition (manual
driving), and also when drivers were tasked to use the Cellphone during trials. Analyzing
overall SA showed that for No-ACC condition, the response percentage was 68% as com-
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pared to 83% for ACC condition, and for No-cellphone condition the response percentage
was 81 % as compared to 71% for Cellphone use.

Our primary goal in Study III was to simulate and model the above explained em-
pirical results. In doing so, we validate the architecture’s predictive ability and further
demonstrate how SA results from QN-ACT-R-SA are comparable against empirical data
acquired from different test settings. A major limitation in the QN-ACT-R-SA model is
that currently it is equipped to simulate only Level 1 SA scores. This is due to the fact that
the current modelling paradigms within the architecture are not nuanced enough to cater
to higher levels of SA that involve comprehension of situational elements and projection
of their future states. As a result, the first stage of the model validation is limited to
prediction of Level 1 SA. Thus, the comparison of the results from the model and human
SA scores are for Level 1 SA only. Level 1 SA results for the experiment reveal that for
No-ACC condition, the response percentage was 67%; in comparison to 77% for ACC con-
dition; and for No-cellphone condition the response percentage was 75%; in comparison to
69% for Cellphone use.

5.2.2 Modelling and Simulation

QN-ACT-R-SA perceives critical elements (pedestrians, traffic vehicles) in the driving envi-
ronment and stores the information relevant to these elements as chunks in the declarative
memory. These critical elements could be present in different AOIs such as on-road frontal
view, mirrors, speedometer etc. A driver’s SAGAT score is essentially a measure of the
correct responses to probes related to these critical elements. The likelihood of attending to
a particular critical element in a specific AOI depends on the driver’s attention allocation
patterns. The less visual attention towards a certain AOI, the higher will be the chances
that the critical element within that AOI will not be perceived by the model.

Modelling Visual Attention Allocation Using SEEV Theory

The visual module of QN-ACT-R-SA allocates attention towards different AOIs based on
the attention allocation probability computed by the SEEV model. The weight for the
SEEV parameter is deduced a priori using a lowest ordinal heuristic approach. As pre-
viously described, the modeller rates all important task conditions and AOIs following a
specific metric (3.3.1). This metric is driven by the modeller’s a priori deductive reasoning.
This score is then weighted for all tasks and employed as a percentage for the total dwell
time. Based on the total dwell time percentages for different AOIs, Monte-Carlo simu-
lations are performed to simulate how AOIs receive visual attention in real time during
simulation.

The important AOIs used in this experiment include driver’s peripheral environment
and front view. The peripheral environment could further be divided into mirrors (left
mirror, right mirror, and centre mirror), speedometer and roadside view. A new AOI for
this experiment called cellphone screen is added to represent the driver’s attention patterns
towards the secondary tasks of texting or dialing a phone number.

QN-ACT-R-SA is equipped to distribute attention amongst the following tasks: (1)
lateral control (maintaining vehicle in centre lane), (2) longitudinal control (maintaining
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speed limit and safe distance from a vehicle in the front or rear), (3) situational moni-
toring (hazard monitoring and ensuring destination lane is clear before lane changes) and
(4) cellphone screen representing secondary task engagement. The attention allocation
probability for a specific AOI is computed based on Equation 3.5.

The sampling frequency of an AOI depends on its bandwidth or expectancy. FEx-
pectancy values vary based on the experimental condition (No-ACC, ACC, Cellphone,
No-cellphone) since different conditions require different attentional demands [94]. For
instance, in No-ACC condition drivers are manually operating both the lateral and lon-
gitudinal control of the vehicle. For both the lateral and longitudinal control, the most
important AOI is the forward view since drivers expect most activity relevant to the driv-
ing control tasks to occur in this AOI. Therefore on-road AOI is consigned a higher weight
value as compared to peripheral AOIs. Whereas in ACC condition, the longitudinal control
is managed via automation leaving drivers relatively more time to pay attention to nearby
critical elements. As a result, the Expectancy values are adjusted accordingly for the ACC
condition. During Cellphone condition, however, a certain degree of attention has to be
dedicated towards the cellphone screen AOI; and, as a result the Expectancy values are
again tuned to account for this change. Applying the lowest ordinal heuristic approach
[95], the weights for Expectancy coefficient are assigned a priori based on the following
values: none (0), low (0.333), moderate (0.666), and high (1.0) [94], as shown in Table 5.1
and Table 5.2.

The value is represented as the product of two sub factors: Relevance and Priority
(Equation 3.5). Relevance represents how appropriate a particular AOI is for a given task.
For instance, the most relevant AOI for the longitudinal control task would be the forward
view; whereas, the most important AOI for the secondary task would be the cellphone
screen AOI. The lowest ordinal heuristic approach was adopted for Relevance factor as well,
and the AOIs were assigned one of the following values: none (0), low (0.333), moderate
(0.666), and high (1.0), as shown in Table 5.1 and Table 5.2.

Priority represents the overall priority sequence for different tasks. Priority values
also change based on the experimental conditions. For instance in No-ACC condition
(manual driving), the lateral control is the most important task followed by longitudinal
control and situational monitoring. The Priority values reflect this ordering for No-ACC
condition. In ACC condition, however, the driver is not responsible for longitudinal control
and therefore the priority sequence changes since situational monitoring is the second most
important task for this condition. Unlike Expectancy and Relevancy factors, the Priority
value is computed such that all Priority scores add up to one [94]. This is done to simplify
weighted score calculations. All SEEV parameters are adjusted accordingly, when the
Cellphone condition is applied in the experiment, thereby ensuring that the effects of
secondary tasks on drivers’ SA scores are modelled precisely. The Priority values for all
tasks and conditions are represented in Table 5.1 and Table 5.2.
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Table 5.1: The table represents SEEV parameters for conditions without cellphone task.

No-ACC Condition

T1* T2P T3¢
AOQI4 EX,! RJ P%X EX, R, P, EXs Rs P VAs, FPAOD%"
FV (RS)® 0.333 0.666 0.6 0.333 0.333 0.3 0.333 0.333 0.1 0.144 19.6
FV (OR)f 0.666 1 0.6 0.666 0.333 0.3 0.666 1 0.1 0.474 64.5
Mirror® 0.333 0.333 0.6 0.333 0.333 0.3 0.333 0.333 0.1 0.09 12.2
Dash" 0.333 0 0.6 0.333 0.333 0.3 0.333 0 0.1 0.027 3.67

ACC Condition

T1 T2 T3
AOI EX, Ry P EX, Ry P, EX3 Rs P; VAjsor PAOD%
FV (RS) 0.333 0.666 0.6 0.333 0.333 0.3 0.333 0.333 0.1 0.144 13.7
FV (OR) 1 1 0.6 1 0.333 0.3 1 1 0.1 0.79 75.2
Mirror 0.333 0333 06 0333 0333 03 0333 0333 0.1 0.09 8.6
Dash 0.333 0 0.6 0333 0333 03 0.333 0 0.1 0.027 2.6

aT1: Task 1 (Lateral Control); PT2: Task 2 (Longitudinal Control); ©T3: Task 3 (Situational Monitoring);
dAOI: Areas-of-Interests; °FV (RS): Forward View Roadside; {FV (OR): Forward View On Road; Mirrors:
Mirrors (Left, Right, Center); "Dash: Dashboard (Speedometer); ' EX;: Expectancy; I R; : Relevance; X P;:
Priority; 'V A4or: Raw Visual Attention score; ™P(AOI)%: Percentage Normalized Score for each AOI
representing probability of scanning an AOL
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Table 5.2: The table represents SEEV parameters for conditions with cellphone task.

ACC/Cellphone Condition

T1 T2 T3 T4
AOI EX, Ri P EXy Ry P EX3 Ry P;3; EXy, Ry P, VAior PAOD)%
FV(RS) 03 06 08 03 03 0 03 03 0.1 0 0 0 0.153 17.5057
FV (OR) 0.6 1 08 06 03 0 0.6 1 01 0 0 0 0.54 61.7849
Mirror 03 03 08 03 03 0 03 03 01 0 0 0 0.081 9.26773
Dash 0.3 0 08 03 03 0 03 0 01 0 0 0 0 0
Cellphone 0 0 0 0 0 0 0 0 0 1 1 01 0.1 11.4416
No-ACC/Cellphone Condition
T1 T2 T3 T4
AOI EXy Rh P EXy Ry, P EX3 Ry P3 EX4 Ry Py VAasor P(AOD)%
FV (RS) 03 06 06 03 03 03 03 03 0.1 0 0 0 0.144 17.2455
FV (OR) 0.6 1 06 06 03 03 06 1 01 0 0 0 0.474 56.7665
Mirror 03 03 06 03 03 03 03 03 01 0 0 0 0.09 10.7784
Dash 0.3 0O 06 03 03 03 03 0 0.1 0 0 0 0.027 3.23353
Cellphone 0 0 0 0 0 0 0 0 0 1 1 01 0.1 11.976

Driving Environment and QN-ACT-R-SA Driving Model

The next stage of this research is to setup a similar driving environment as described in
Ma and Kaber [42]. The driving environment we implemented in terms of different road
signs and traffic vehicles was the same as one of the conditions (easy condition with few
vehicles and signboards) in Section 3.5. The original Ma and Kaber [42] article gives
a general description of their driving environment used, but does not include details for
exact placement of visual objects within their driving environment (e.g. exact placement of
traffic signs is not provided). For Study III, the decision was made to use the same driving
environment as that used for the "easy" driving condition in Study I. The benefit of using the
same scenario from Section 3.5 was that the SEEV parameters for that condition had been
validated by means of an empirical comparative analysis of QN-ACT-R-SA and human
SAGAT scores. Therefore in Table 5.1, No ACC and No-cellphone conditions used the
same SEEV parameters employed in 3.5; however the parameters for other IV conditions
were marginally tailored to account for the intended differences in attention allocation
patterns. Tailoring here implies that the SEEV parameters were adjusted to account for
cellphone and automation conditions®.

The driving environment was created in OpenDS driving simulator [41]. We created four
tracks that catered to the different independent variables tested in Ma and Kaber [42]. The

IRefer to 5.2.2 for understanding the detailed changes.
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four tracks included: track with ACC, without ACC (categorised as No-ACC condition),
with ACC and Cellphone condition, and No-ACC but with Cellphone condition. All four
tracks had similar number and types of critical elements. QN-ACT-R-SA was connected
to the driving environment using User Datagram Protocol (UDP) connection. Production
rules are executed within QN-ACT-R-SA in a timeframe of 150 miliseconds to simulate
driving control, situational monitoring and decision making.

A previously validated driving-control model is implemented within this study to sim-
ulate lateral and longitudinal control. The vehicle’s control movements follow a steering
control law adopted from Salvucci and Gray [40]. The model tries to maintain lateral
control by centring on two perceptually different targets: a near point and a far point.
Additionally, the driving model maintains awareness of nearby critical elements by peri-
odically scanning the different AOIs in the task environment. This monitoring mechanism
is based on the SEEV-framework of visual attention allocation as explained earlier. More-
over, the model is equipped with basic decision-making capability such as lane changing
or undertaking remedial actions in response to hazards. The model is also equipped to
respond to SAGAT queries that are administered at specific times during the experiment.

During ACC condition, the model’s lateral control processes are relieved and the test
vehicle’s internal ACC is switched on. Since the driving model is embedded within the
cognitive architecture, it imitates human limitations on attention allocation, cognitive
processing speed, and memory. As a result, reasonably realistic portrayals of Level 1
SA for the different driving conditions can be gained through SAGAT probes.

5.2.3 Results Study III

QN-ACT-R-SA model simulation runs were carried out 11 times, for each of the four tracks,
in order to evaluate the model’s ability to simulate drivers’ responses to SAGAT probes.
The average scores are illustrated in Figure 5.1%. The ACC condition resulted in the highest
SA score with an average of 84.42%. This was followed by No-ACC condition (manual
driving) with an average of 76.62%. The cellphone conditions resulted in comparatively
lesser SA scores; ACC condition with Cellphone task resulted in an average of 67.53%,
which was better than the lowest SA performance, No-ACC with Cellphone, that results
in an average score of 54.55%.

2Model data is reported in C.1.
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Figure 5.1: This figure represents the QN-ACT-R-SA model’s results for the four experimental
tracks tested in this study. Source: original, UR (author).

Similar to Ma and Kaber [42] study, no significant interaction effects were found so
each condition is reported separately. The QN-ACT-R-~SA scores and empirical results re-
ported by Ma and Kaber [42] are illustrated in Figure 5.2. The mean absolute percentage
error (MAPE) was 5.6 % and the root mean square error (RMSE) was 4.9. Both absolute
(MAPE) and relative (RMSE) goodness-of-fit measures show a good model fit for study
ITI. SAGAT responses for both human and model results were converted on a scale of
0-100. The RMSE of 4.9 for SAGAT responses indicates a small error difference between
the average human and modelling results since the average SAGAT scores for the different
driving conditions was around 72 (4.76). The MAPE value of less 10% also demonstrates
that the model deviation from the empirical results in terms of percentage error was rel-
atively small [43, 3]. The graphical analysis of the average model versus average human
plots further indicate that the model was able to successfully map the changes in SA scores
across the different experimental conditions in the study.
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Figure 5.2: SAGAT scores for both human and model trials for different conditions tested in the
experiment. As reported by Ma and Kaber [42], the graph was made from data sets that were
combined to form aggregated results for each of the independent variables, reported separately.
Here No-ACC and ACC labels each includes the combined results from with and without cellphone
trials. Similarly, No-cellphone and cellphone labels each include the combined results from with
and with cellphone trials. Source: original, UR (author).

5.3 Discussion Study III

Methods to measure SA are mostly empirical in nature and so, there has been a need
to develop simulation tools that can equip researchers to predict SA. Capitalizing on the
same QN-ACT-R-SA model and driving environments used in Study I, predictions through
simulations were made for the effect of driving automation and driver distraction on Level
1 SA. Specifically, QN-ACT-R-SA was used to model the effects of ACC and cellphone
use on drivers’ SA. Results indicate that QN-ACT-R-SA is able to reasonably simulate
the percentage of correct responses to SAGAT probes for distraction and control model
conditions by Ma and Kaber [42]. These results reinforce the applied utility of cognitive
architectures for predicting human performance variables such as SA.

The empirical results in particular reveal that drivers SA improves during ACC con-
dition. During ACC condition, drivers’ are not actively engaged in longitudinal control
of the vehicle and as a result can dispense extra visual resources towards monitoring the
environment. When ACC is switched off, the driver’s cognitive load increases due to signif-
icantly higher vehicle control demands. The increased workload during No-ACC condition
leads to SA decrements since visual attention needed to monitor the driving environment
is compromised. While the benefits of ACC in terms of improved SA are obvious, it is

56



important to highlight that study III only provides results for Level 1 SA and for drivers
who knew that they were being tested in a simulator study. Study III does not address
human-factors issues associated with automated driving such as out-of-the loop scenar-
ios, loss of vigilance, boredom etc. Therefore, the benefits of ACC condition must not be
generalized to naturalistic settings with actual human drivers.

QN-ACT-R-SA is able to simulate these results with the aid of the SEEV theory. When
ACC is activated, the model discounts attentional demands of longitudinal control. As a
result, the percentage dwell times computed for the forward view increases, and the model
is able to scan the forward view of the driving environment more frequently. SAGAT probes
are mostly related to identifying critical elements present in the forward view, therefore,
the percentage of correct responses to SAGAT probes improves during ACC condition.

The empirical study also uncovers the deleterious effects of cell phone use on drivers’
SA. Performing secondary tasks while driving affects the primary task performance since
cognitive load increases due to divided attention scenarios and as a result SA deteriorates.
This is primarily due to the fact that a driver’s mental resources are limited and atten-
tion allocated towards secondary tasks compromises the attention needed to successfully
perform primary tasks, such as maintaining vehicle control or monitoring the environment.

To simulate the effects of cellphone use on drivers’ SA, an additional AOI categorised
as cellphone screen is added to the SEEV modelling paradigm. For conditions involving
cellphone task, dwell time percentages are computed for the AOI representing the cellphone
screen. Distribution of visual resources towards cellphone screen results in reduced scanning
of the forward view; and, therefore, using a cellphone while driving compromises model’s
ability to correctly respond to SAGAT probes.

No interaction effects between the IVs were found in the empirical study. According
to Ma and Kaber [42] this could primarily be due to the shorter experiment time and
simplicity of the experimental scenarios. The simulation results, however, indicate that
using a cellphone can substantially impair drivers’ SA even when ACC is activated since
the benefits of ACC in terms of reduced workload are counterbalanced by the use of
cellphone.
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Chapter 6

Conclusion

I started this research with the goal to eventually develop a computational model that
could simulate drivers’ SA. Realising that SA is a cognitive construct, I explored how SA
could be modelled by means of computational cognitive theories. I proposed an approach
based in a cognitive architecture to develop a simulation model of SA. Cognitive archi-
tectures represent a framework for modeling human cognitive functionality by integrating
multiple computational theories of human cognition in a unified manner. From a theoreti-
cal standpoint, I demonstrate the theory of modelling and predicting SA through the lens
of human cognition utilizing the QN-ACTR cognitive architecture as a foundation. I inte-
grate a dynamic visual sampling model (SEEV) to create QN-ACT-R-SA in order to allow
the model to simulate realistic attention allocation patterns of human drivers at Level 1 SA
(i.e perception of critical elements). A driver model is also incorporated within QN-ACT-
R-SA architecture that can simulate human driving behavior by interacting with a driving
simulator with the help of virtual modalities such as motor, visual and memory functions.
From a practical standpoint, I evaluate the efficacy of QN-ACT-R-SA in three validation
studies (Study I, IT and III). These studies were conducted to determine whether Level 1
SA results produced with the QN-ACT-R-SA model correspond to empirical data collected
from human drivers for the same tasks. This chapter further discusses the limitations of
QN-ACT-R-SA, expands on future work and applications, and eventually concludes by
offering summary of results.

6.1 Limitations of QN-ACT-R-SA

One of the major limitations of the current version of QN-ACT-R-SA is that the SA model
implemented within the cognitive architecture is a simplified version of a very multi-level
and well-debated theoretical concept. By its very nature, a model is a limited represen-
tation of some aspect of reality, or in the case of QN-ACT-R-SA a limited representation
of how SA is accounted for in human information processing. Researchers are cautioned
that model-based simulations must not be used as a substitute for participant-based SA
experiments. In its current instantiation, QN-ACT-R-~-SA can be used to supplement early
stage empirical testing. For instance, QN-ACT-R-SA can be employed to simulate SA
results of multiple driving scenarios and these modelling results could later be confirmed
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by means of empirical testing.

Another limitation of QN-ACT-R SA is that only Level 1 SA is taken into account
whereas higher levels of SA are discounted due to limitations in understanding how to
mathematically model advanced decision-making associated with SA. Higher levels of SA
(i.e. Level 2 comprehension, and Level 3 projection) will require different mechanisms
such as common-sense reasoning and heuristic-based decision-making. Preliminary ideas
for adapting QN-ACT-R-~SA are presented in Section 6.2.

Our current model does not yet differentiate drivers’” SA that may be influenced by
factors such as age (young vs. elderly), driving experience (novice vs. professional), or
driving strategy (reactive vs. defensive). This drawback significantly limits QN-ACT-R-
SA’s applicability in a number of domains. It’s therefore critical that researchers develop
and embed human performance models within QN-ACT-R-SA that can account for ad-
ditional factors that are currently not incorporated within the model. These factors will
increase the operational use of QN-ACT-R-~-SA for modelling and simulation purposes.

In Chapter 4, QN-ACT-R-~-SA’s modelling was restricted to simple reaction time and I
did not attempt to model choice-based reaction times. This was done because QN-ACT-R-
SA does not currently account for dynamic factors representing differential choices (steering
and brake) in an expected utility fashion. As a result, QN-ACT-R-SA at present cannot
simulate BPRT and SRPT concurrently. Future studies are needed to expand the current
modelling paradigm such that it can take into account choice reaction times.

Researchers who are interested in using QN-ACT-R-SA to inform systems design have
to deal with a series of programming challenges before successfully using QN-ACT-R-SA
for modelling and simulation purposes. QN-ACT-R-SA is a complex program and requires
a significant learning curve. Therefore, further work is needed to develop the current
modelling approach into a usable tool that can be employed by practitioners and system
designers so that they can benefit despite carrying limited technical expertise in the domain.
One approach is to develop customized plugins that can support automated scenario setup
and simulation.

6.2 Future Work

6.2.1 Expanding Current Empirical Research Using QN-ACT-
R-SA

The eventual goal of this research is to allow transportation researchers to simulate SA
experiments in laboratory settings using QN-ACT-R-SA. From the empirical experiments,
many different avenues could further be explored using QN-ACT-R-SA’s modelling and
simulation capabilities. The approach can further support research towards understand-
ing minor nuances in different driving conditions. For instance, from Study II (Chapter
4) analysing how different variables such as Time-to-Collision (TTC) influence driver’s
hazard perception skills. Similarly from Study I (Chapter 3) quantitatively extrapolating
error percentages in post-experiment SA due to visual attention limitations and memory
limitations, and due to unexpected events during the driving task.

Such modelling tools can play a crucial role in improving driving safety research since
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modelling using cognitive architectures is a cheaper and time effective option that can
complement early stage hypothesis testing with quantitative results and real-time simula-
tions. While more complex problems would continue to be identified through user studies,
QN-ACT-R-~SA modelling can complement user testing and reduce research dependency on
empirical data. For example, the results from the Study I (3.5.6) suggest driving complex-
ity has a larger impact on SA for peripheral elements than for on-road elements sparking
further scenario testing. Since predictive modelling of SA can simulate driving scenarios
ruled out due to safety concerns, QN-ACT-R-SA allows for quick iterations of scenario
simulations to identify the placement of objects and event-timing, as well as investigate
the impact on driver awareness prior to critical safety events (e.g. collision).

Advancements in the QN-ACT-R-SA model should should promote better understand-
ing of complex traffic conditions under which drivers are most likely to be unaware of
elements (i.e. Level 1 SA approaches). Such findings could be of great benefit to au-
tomotive designers designing next-generation vehicles. Leveraging early-stage predictive
modelling can aid human factor engineers to discern between initial prototypes, such as
deciding between two categories of in-vehicle interfaces or evaluating the impact of different
roadway designs on driver SA. Predictive SA modelling with QN-ACT-R-SA can empower
researchers to simulate and test important hypotheses prior to formal experimentation.

Expanding on outcomes from Chapter 4, QN-ACT-R-SA could be used to investigate
the effects of different types of distractions on drivers’ hazard perception ability. While
driving, multiple sources of information compete for drivers’ attention. With limited cogni-
tive resources, if the driver’s task demands exceed a certain threshold at any given time, it
can lead to lack of SA, poor hazard perception and possible motor-vehicle collisions. QN-
ACT-R-SA based modelling can mimic how different types of distractors influence drivers’
SA and other performance variables.

6.2.2 Modelling Level 2 and Level 3 Situation Awareness

After modelling Level 1 SA, the next logical step would be to come up with approaches
towards modelling higher levels of SA. Level 2 and 3 SA are usually formed in a linear
fashion after Level 1 SA is achieved. Once a critical element is perceived, the operator
tends to make sense of the present situation by analyzing the significance of that critical
element with respect to the events taking place in the environment. This process is also
categorized as Sensemaking [162].

To represent it computationally in QN-ACT-R-SA, consider the Sensemaking process
as forming a “belief” based on perception of a critical element. The process of forming a
belief can be represented by implementation of production rules. A production rule is im-
plemented only when the set of conditions match and corresponding rules fire triggering the
model to produce a certain action. Once declarative knowledge is effectively retrieved from
the buffer, the buffer passes the value of critical element to the procedural memory module
so that it could implement the corresponding rules (Figure 3.2). Multiple production rules
can potentially be implemented at a given time, but only the rule with the greatest utility
U; is selected (Equation 3.1). Once the “if” part of the procedural memory, which contains
production (if-then) rules, matches the content of the buffer, the pattern matching process
selects the corresponding rule to be implemented. If the optimal production rule with the
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highest utility U; is chosen, the critical element would be categorized as fully understood
either in the form of its present meaning (Level 2) or a projected one (Level 3). This could
result in the model undertaking some sort of action. In most circumstances, Level 1 SA is
necessary for Level 2 and 3 SA to come into effect.

To give a very simple example, a driver perceives an oncoming car. The oncoming
car is a critical element and represented as a chunk in QN-ACT-R-SA. During perception,
multiple production rules can be fired such as: “If a critical element (oncoming vehicle)
is perceived, then determine its criticality based on time to collision (or safety distance
from drive vehicle, heading etc.). If time to collision is less than or equal to 3 seconds,
then critical element is unsafe (Level 2 SA - comprehension process achieved). If critical
element is unsafe then undertake hazard mitigation response (Level 3 SA — Projection)”.

Also QN-ACT-R-SA integrates ACT-R’s process of spreading chunk activation to sim-
ilar chunks. This facilitates the comprehension and projection process as procedural rules
can also be implemented on chunks that have received activation due to source spreading.
For example, the model perceives a pedestrian and as a result another chunk representing a
street sign of a pedestrian crossing receives activation due to source spreading. On increase
in activation level, the QN-ACT-R-SA model can now implement a relevant production
rule that may cause the model to undertake actions such as reducing the vehicle’s speed.

Evaluating Level 2 and 3 SA using a SA probe technique is problematic because probe
techniques cannot truly capture the process of comprehension and projection since the
probe itself would give clues to the human participants which would influence SA results.
Moreover, querying the model on optimal procedural rules would be tricky since all possible
rules would have to be delineated which would complicate the modelling process. It is
recommended that Level 2 and 3 SA be assessed using empirical driver performance data
which can be compared to model outcomes.

While QN-ACT-R~SA in its current form may be able to model Level 2 and 3 SA, it is
important to understand that the modelling mechanisms are not ideal for modelling higher
levels of SA. Within the QN-ACT-R-~-SA framework, chunks are the only component that
represents factual information rather than declarative knowledge (i.e. rules and procedures
necessary for sensemaking). There is a need to introduce another cognitive construct in
the QN-ACT-R-SA framework that could represent a collection of chunks. This would
allow the model to develop a macrocognitive perspective of the present situation. These
combination of chunks could be categorized as frames (mental models or schema). Frames
in QN-ACT-R-SA could also have a sub-symbolic parameter which could be represented
by the combined activation levels of chunks present in the frame. Based on the strength
of this sub-symbolic parameter, frames could be retrieved from the declarative memory
when required. Frames would essentially serve as explanatory structures that would assist
the model in making sense of on-going events. The model would have the option to alter,
adapt or compare frames by adding, removing or matching chunks present in the frames
through commands given by procedural memory. This is just a theoretical recommendation
to improve the functionality of QN-ACT-R-SA architecture to better facilitate modelling
of higher levels of SA.
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6.2.3 Application of Model in Other Areas

The current modelling research could be extended to address challenges in several other
research areas, as discussed below.

The utility of computational models in predicting human performance in real life sit-
uations is considerable; and, models like QN-ACT-R-SA could be further developed to
address such needs [146]. For instance, it would be of value to the driving research com-
munity if QN-ACT-R-SA can predict driver SA in real life scenarios especially in instances
when SA diminishes beyond reasonable safety levels. Such predictions can be used to en-
hance human performance by reducing human error of drivers under real life conditions.
Data driven models alone are not enough to achieve the next-moment prediction challenge
since they lack top-down theoretical reasoning thereby resulting in situations that often
lead to “missing the forest” issues [146]. This challenge of predicting “what would hap-
pen next” can be achieved if cognitive architecture-based human performance models are
integrated with bottom-up data driven techniques. Data driven models rely on quality
and quantity of data to generate meaningful insights, whereas, theory driven models such
as QN-ACT-R-SA depend on well formulated procedural rules. QN-ACT-R-SA can be
extremely useful and complimentary to data-driven models that are relying on scarce data
sets. For instance, QN-ACT-R-SA could be integrated with driving assistance programs
to generate alerts when drivers’ SA deteriorates beyond a reasonable level. Data-driven
models can function to acquire and optimize vehicle sensor data, whereas, QN-ACT-R-SA
could use this information to understand human drivers’ SA fluctuations. This compli-
mentary workflow could allow us to track human behavior in naturalistic conditions and
generate real-time alerts with the goal to optimize human safety and experience.

QN-ACT-R-SA can be further developed to incorporate mechanistic and computa-
tional models from social science and social psychology [163]. For instance, driver on-road
behaviours can be affected by physical condition (e.g. tired), psychological state (e.g. anx-
ious), and motivation (e.g. driving to an important meeting)[164], especially in complex
and uncertain conditions. Embedding computational theories that explain such constructs
within QN-ACT-R-SA would be a great stride towards improving the current human per-
formance modelling paradigms.

Validating human performance models has always been a cause of concern for re-
searchers. In the current era, data from physiological devices (e.g. eye tracking, skin
conductance, heart rate etc.) is being routinely used for human factors analysis [165].
Likewise, the application of physiological data for validating human performance models
cannot be overlooked. Future studies may focus on comparing physiological correlates
of human performance against predictions from QN-ACT-R-SA for a more extensive and
robust validation of the model and simulations.

QN-ACT-R-~SA could be integrated with additional modeling capabilities that could
include modeling haptic perception, cross-modal links, attention fatigue, and skill acqui-
sition. Together, these models can be used to analyse cognitive bottlenecks and human
performance issues in a comprehensive fashion.

Future versions of QN-ACT-R-SA could also be employed for exploring a potential
connection that bridges the macro-level simulation research of social-technological systems,
and the micro-level modeling of brain cell functions. For example, QN-ACT-R-SA could be
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embedded in control systems of high reliability organizations such as nuclear power plants
for tracking operator SA and launching alerts when SA decreases to risky levels. Such
an application of QN-ACT-R-SA could potentially improve overall human performance
and have an impact on the social-technological structure of the organization. However,
the procedural rules within QN-ACT-R-SA would be applied at the brain cell level to
improve attention allocation, memory retrieval etc. Investigating this potential connection
between macro-level simulation research of social technological systems, and the micro-level
modeling of brain cell functions would be a practical and valuable application of cognitive
architectures.

QN-ACT-R~SA could also be developed to represent mechanisms present in multi-agent
systems for the purposes of simulating collaborative behaviors. For instance, currently QN-
ACT-R-SA is implemented as a single agent model designed to simulate actions of a single
human driver. It would be noteworthy to explore a multi-agent system implementation
of QN-ACT-R-~SA. For example, a cohort of vehicles in a driving scenario could theoret-
ically be operated by multiple versions of QN-ACT-R-SA that are running concurrently.
This would be a unique area to explore since most agent-based models lack cognitive and
perceptual underpinnings.

Another planned direction is to explore the role of cognitive architectures for automating
testing of digital interfaces. Cognitive-architecture-based engineering tools can be used
by designers and engineers for interface design and evaluation, bridging the gap between
theoretical modeling research and industrial applications. For instance, QN-ACT-R-SA
could be used as a surrogate user to undergo usability tests on mobile interfaces. Rather
than eye tracking studies on actual participants, the visual attention allocation processes
of QN-ACT-R-SA can be simulated to generate heat maps and human saccade patterns.
Such tools can significantly improve the quality of design and reduce the cost of human
tests by facilitating rapid analysis of interfaces using computerized simulations.

Lastly, QN-ACT-R-SA can be used for the creation of synthetic data for training ma-
chine learning algorithms. Insufficient training data is a perennial problem plaguing the
use of machine learning in different application areas [166]. For example, driving compa-
nies are extensively looking to gather human driving data to improve the accuracy of their
respective machine learning algorithms. Driving data is a rare commodity and might not
be available for all edge cases and different atypical driving environments. Cognitive archi-
tectures such as QN-ACT-R-SA could be used to generate vehicle lateral and longitudinal
control data by recreating edge cases and atypical driving environments in simulated set-
tings such as driving simulators. This data could potentially be employed to train machine
learning algorithms. Furthermore, synthetic training data generated by cognitive architec-
tures can also improve machine learning algorithms by pre-training neural networks prior
to training with real world data. Cognitive architectures therefore offer a cost effective
and time efficient alternative to traditional human data collection processes. Furthermore,
such datasets are free from privacy concerns. Therefore, this approach has the potential
to be an invaluable part of the modern data scientist’s toolkit.
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6.3 Thesis Contribution Highlights

I have presented and evaluated QN-ACT-R-SA as a computational model capable of simu-
lating drivers’ SA. Modelling the limitations of both visual attention allocation and memory
decay, the QN-ACT-R-SA model demonstrates the benefits of an integrated modelling ap-
proach. QN-ACT-R-SA can be used by researchers to study the implications of SA in a
variety of real-world and simulator-based scenarios. Three research studies were conducted
to validate the model by comparing empirical results with QN-ACT-R-SA simulation re-
sults for the same tasks. Goodness-of-fit measures that include RMSE and MAPE were
employed for model validation. Based on an exhaustive literature review, I was unable
to find studies that demonstrate development and validation of a computational model
capable of simulating drivers’ SA in different driving contexts. As a result, I was unable to
benchmark the goodness-of-fit scores against existing modelling work. Nevertheless, other
researchers working towards developing computational models of SA can use the current
results to evaluate efficacy of their respective models.

While there is no absolute criterion for a value of RMSE or MAPE that may be consid-
ered acceptable for model results, the goodness-of-fit measures indicated that the relative
error between the average human and model results was minimal. The MAPE values of
less than 10% were obtained from the modelling results, across the three studies, indicat-
ing that the empirical results were comparable to the model’s simulated values, thereby;,
resulting in a good model fit [43, 3]. The RMSE value further showed that the standard
deviation of the residuals (simulation errors) from the average modelling results was not
far away from the regression line data points of average empirical results. This proved that
the spread of the residuals was concentrated around the line of best fit and the error dif-
ference between average empirical results and modelling results was small. The graphical
analysis of the model versus human plots further showed that the model was able to map
the changes in SA scores across different experimental conditions in the three studies.

In Section 3.5, QN-ACT-R-SA and human participants are probed for SA using SAGAT
and post-experiment questions. The modelling outcomes are similar to the human Level
1 SA results collected under the same driving conditions. A quantitative comparative
assessment demonstrates that QN-ACTR-SA can reasonably simulate aggregate drivers’
responses to Level 1 SA probes for easy and complex driving conditions. The RMSE of
3.47 for SAGAT responses indicates a small error difference between the average human
and modelling results given the average SAGAT scores (measured on a scale of 0-100) for
the easy and complex driving condition was around 71.9 (SD: 21.1). The RMSE of 6.13
for post-experiment SA questionnaire also indicates a small error difference between the
average human and modelling results given the average post-experiment SA questionnaire
scores (on a scale of 0-100) for the two driving condition was around 73.8 (SD: 16.2). The
modelling results and empirical findings are also in line with this research [167, 168, 169].

In Chapter 4, BPRT was used as a hazard perception measure to further evaluate
model’s ability to simulate drivers” SA. The model and human participants encounter
two major types of hazards: on-road hazards in the forward view of the drivers; and,
roadside hazard which originate from the drivers’ periphery. Both model and human
results demonstrate that BPRT is shorter for on-road hazards as compared to roadside
hazards. The RMSE of 0.13 seconds indicates a small error difference between the average
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human and modelling results given the average BPRT for the two on-road and roadside
hazard condition in was around 1.49 seconds (SD: 0.54).

Although it seems intuitive that drivers may take a shorter BPRT for on-road hazards
than for road-side hazards, I am not aware of any study that provided an empirical ac-
count of this premise. Most research either examined the factors that influence BPRT or
investigated BPRT to different types of hazards. Moreover, the modelling and simulation
work in this area was limited and came with its own set of confines. For instance, SEEV
attention model lacks memory related functionalities [31]. Therefore, Study II (Chapter 4)
carries applied value for practitioners exploring tools that can simulate BPRT, and theoret-
ical value for researchers investigating how drivers’ perception changes when encountering
different types of roadway hazards.

In Chapter 5, I investigated the ability of QN-ACT-R-SA to predict the effects of au-
tomation and cellphone use on Level 1 SA. QN-ACT-R-SA was successful in quantitatively
mapping the finding of an empirical experiment that was conducted in a different test set-
ting. The RMSE of 4.9 for SAGAT responses indicates a small error difference between
the average human and modelling results since the average SAGAT scores for the differ-
ent driving conditions was around 72 (4.76). The modelling approach detailed in Chapter
5 offers researchers a unique perspective towards predicting SA results across a range of
conditions and exploring the underlying cognitive mechanisms using computational and
simulation tools.

In Section 6.1, I discuss the limitations of the model, specifically focussing on the
model’s inability to simulate higher levels of SA; the model’s inability to account for factors
such as age, driving experience, or driving strategy; the model’s incapacity to simulate
choice-based reaction times; and lastly discussing the programming challenges associated
with the setting up scenarios in the model. In Section 6.2, I discuss the future applications
of the model. Section 6.2 is divided into different subsections where I explore how the
current empirical work could be expanded using QN-ACT-R-SA; how the model could be
improved to simulate Level 2 and Level 3 SA; and finally exploring the application of the
model in areas other than driving.

In conclusion, this research explores the design and evaluation of a computational
cognitive architecture capable of simulating drivers’ Level 1 SA. The results from the
cognitive architecture were validated against empirical results construed from established
SA measures. The dissertation, and the body of research that it represents confirms the
fundamental premise that QN-ACT-R-SA can reasonably simulate human drivers’ Level
1 SA scores across different experimental conditions and scenarios. Additional efforts are
required before computational models can simulate different levels of SA and a range of
other human factors constructs. I hope that other researchers can use QN-ACT-R-SA as
impetus and inspiration for more comprehensive computational modelling of human SA in
a variety of domains.
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Appendix A

Data from Study I

A.1 Empirical Results SAGAT

Table A.1: Study I raw data and averages for complex condition representing participants re-
sponses to SAGAT probes.

Participants Empirical Results in Complex Condition

Peripheral AOI On Road AOI
1 1 1 0 1 1 1 1 1
2 0 0 0 0 1 1 1 1
3 1 1 0 0 0 1 1 1
4 0 0 0 1 1 1 1 1
5 1 1 1 0 1 1 1 0
6 1 0 0 1 0 1 1 1
7 0 0 1 0 0 1 1 1
8 1 1 0 0 1 1 0 1
9 0 1 1 0 0 1 1 1
10 1 1 0 1 1 1 1 1
11 1 0 0 0 0 1 0 1
12 0 1 1 0 1 1 1 1
13 1 0 0 1 0 1 1 1
14 1 0 0 1 1 1 1 0

Total 64.3 50 286 429 571 100 857 85.7

Average 48.6 90.5
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Table A.2: Study I raw data and averages for easy condition representing participants responses
to SAGAT probes.

Participants Empirical Results in Easy Condition

Peripheral AOI On Road AOI

1 1 1 1 0 1 1 1 1

2 1 1 1 0 1 1 1 1

3 1 1 1 1 1 1 1 0

4 1 0 0 1 1 1 1 1

) 1 1 1 0 0 1 1 1

6 1 0 0 1 1 1 1 1

7 0 0 1 0 1 1 1 1

8 1 1 0 1 1 1 1 1

9 0 1 0 1 1 1 0 1

10 0 1 1 1 1 1 1 1

11 1 1 1 1 0 1 1 1

12 1 1 0 0 1 1 1 1

13 1 0 1 1 1 1 1 1

14 1 1 1 0 0 1 1 1

Total 786 714 643 571 786 100 929 929

Average 70.0 95.3
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A.2 QN-ACT-R-SA Simulation Results SAGAT

Table A.3: Study I raw data and averages for complex condition representing QN-ACT-R-SA
responses to SAGAT probes.

Simulation Runs Model Results in Complex Condition

Peripheral AOI On-Road AOI
1 1 1 0 1 1 1 1 1
2 0 0 0 0 1 1 1 1
3 1 1 0 1 0 1 1 1
4 1 0 0 0 1 1 1 1
5 0 1 1 0 0 1 1 1
6 1 0 0 1 1 1 1 0
7 0 1 1 0 0 1 0 1
8 1 0 0 0 0 1 1 1
9 0 1 0 0 1 1 1 1
10 0 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
12 1 0 0 0 1 1 1 0
13 1 0 0 1 0 1 1 1
14 1 1 1 1 0 1 1 1

Total 64.3 57.1 35.7 50 57.1 100 929 85.7

Average 52.9 92.9
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Table A.4: Study I raw data and averages for easy condition representing QN-ACT-R-SA re-
sponses to SAGAT probes.

Simulation Runs Model Results in Easy Condition

Peripheral AOI On-Road AOI
1 1 1 1 0 1 1 1 1
2 1 0 1 1 1 1 1 1
3 1 1 0 1 1 1 1 1
4 1 0 1 1 1 1 1 1
5 1 1 0 0 0 1 1 1
6 0 0 0 1 1 1 1 1
7 1 1 0 0 1 1 1 1
8 0 1 1 0 1 1 1 1
9 0 1 1 0 1 1 1 0
10 1 1 0 1 1 1 0 1
11 0 1 1 1 1 1 1 1
12 0 1 1 0 1 1 1 1
13 1 0 1 0 0 1 1 0
14 1 1 0 1 1 1 1 1

Total 64.3 714 57.1 50 85.7 100 929 85.7

Average 65.7 92.9
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A.3 Empirical Result Post Experiment SA Question-
naire

Table A.5: Study I raw data and averages by condition representing participants responses to
Post Experiment SA Questionnaire.

Participants  Critical Elements in Easy Condition  Critical Elements in Complex Condition

1 1 1 1 1 1 1 1 1 1 1 0 1
2 1 1 1 1 1 1 1 1 0 1 1 1
3 1 1 1 0 1 1 0 0 0 1 0 1
4 1 1 1 0 1 0 1 1 1 0 1 1
5 1 1 1 1 1 1 0 0 0 1 1 0
6 1 1 1 1 1 1 0 1 0 0 1 1
7 0 1 0 1 1 0 0 0 1 1 0 1
8 1 1 1 1 1 1 1 0 1 1 1 0
9 1 0 1 1 1 1 1 0 1 1 0 0
10 1 1 1 1 1 1 1 1 1 0 1 0
11 1 1 1 1 1 1 1 0 0 0 1 1
12 0 1 1 1 1 1 1 1 0 0 1 1
13 1 1 1 1 1 1 1 0 0 1 0 0
14 1 1 0 1 0 1 1 1 1 1 1 0
Total 85.7 929 85.7 857 929 857 714 50 50 64.3 64.3 57.1
Average 88.1 59.5
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A.4 Model Result Post Experiment SA Questionnaire

Table A.6: Study I raw data and averages by condition representing QN-ACT-R-SA responses to
Post Experiment SA Questionnaire.

Simulation Runs Critical Elements in Easy Condition Critical Elements in Complex Condition

1 1 1 1 1 1 1 0 0 0 1 1 1
2 1 1 1 1 1 1 0 1 1 0 1 1
3 1 1 1 1 1 1 0 1 1 1 1 1
4 1 1 1 1 1 1 0 1 0 1 1 1
5 1 1 1 1 1 1 0 0 0 1 1 1
6 1 1 1 1 1 1 0 0 0 1 1 1
7 1 1 1 1 1 1 0 1 1 1 1 1
8 0 1 1 1 1 1 0 1 1 0 0 1
9 0 1 1 1 1 1 1 1 0 1 1 1
10 1 1 1 1 1 1 0 0 0 0 1 1
11 1 1 1 1 1 1 0 0 0 0 1 0
12 0 1 1 1 1 1 0 0 1 1 1 1
13 1 1 1 1 1 1 0 1 0 0 1 1
14 1 1 1 1 1 1 0 1 1 0 0 1
Total 78.6 100 100 100 100 100 7.14 57.1 429 571 857 929
Average 96.4 57.1
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Appendix B

Data from Study II

B.1 Empirical Results Brake Perception Response Time

Table B.1: Study II raw data and averages by condition (S1-S4) representing BPRT of eleven
participants.

Participants S1 S2 S3 S4
1 0.8 1.113  2.182 1.999
2 0.7 1.103 1.966 1.809
3 0.915 1.25 1.946 2.184
4 0.848 1.012 2.058 1.891
5 0.775 1.138 2.022 1.718
6
7
8
9

0.777 1.199 2.12 1.897

1.061 1.057 1.938 1.958

0.671 1.203 2.095 2.175

1.098 1.156 1.971 1.783

10 0.804 1.083 1.983 2.124

11 0.818 1.075 2.196 2.014
Average 0.84 1.13 2.04 2.00
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B.2 QN-ACT-R-SA Results Brake Perception Response
Time

Table B.2: Study II raw data and averages by condition (S1-S4) representing BPRT of eleven
model simulation runs.

Simulation Runs S1 S2 S3 S4
0.704 0.754 2.074 2.172

—_

2 0.692 0.938 1.977 1.792
3 0.695 0.947 2.125 2.06
4 0.718 0.959 1.976 1.709
) 0.734 0.845 1.831 2.105
6 0.78 0.906 2.137 1.791
7 0.695 0.703 2.16 1.956
8 0.707 1.13 1983 1.934
9 0.691 0.844 2.194 2.193
10 0.692 0.854 1.95 2.058
11 0.701 1.12 1.918 2.195
Average 0.71 091 203 2.00
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Appendix C

Data from Study III

C.1 QN-ACT-R-SA Responses to SAGAT Probes

Table C.1 on page 91 characterises QN-ACT-R-SA responses to SAGAT probes from Study
ITI. The four tracks include the following four conditions: No-ACC and No Cellphone,
ACC and Cellphone, No Cellphone and ACC, No-ACC and Cellphone. The probes were
concerning seven critical elements that mostly represented nearby traffic vehicles and road
signs. The results in table are a percentage score of one simulation run for seven critical
elements. Each subcondition (e.g ACC) was tested twice and therefore we report twenty-
two responses for eleven simulation runs that were carried out for the four main conditions.
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Table C.1: Study III raw data by condition representing QN-ACT-R-SA responses to SAGAT

probes.

Cellphone

No Cellphone

ACC

No-ACC

42.85714286
57.14285714
71.42857143
42.85714286
57.14285714
57.14285714
57.14285714
57.14285714
07.14285714
57.14285714
42.85714286
71.42857143
71.42857143
71.42857143
57.14285714
71.42857143
71.42857143
85.71428571
71.42857143
57.14285714
57.14285714
57.14285714
61.0

57.14285714
85.71428571
71.42857143
71.42857143
85.71428571
71.42857143
71.42857143
85.71428571
71.42857143
85.71428571
85.71428571
71.42857143
85.71428571
85.71428571
100
71.42857143
100
85.71428571
100
71.42857143
85.71428571
71.42857143
80.5

71.42857143
71.42857143
71.42857143
57.14285714
71.42857143
71.42857143
85.71428571
71.42857143
57.14285714
57.14285714
57.14285714
71.42857143
85.71428571
85.71428571
100
71.42857143
100
85.71428571
100
71.42857143
85.71428571
71.42857143
76.0

42.85714286
57.14285714
71.42857143
42.85714286
57.14285714
57.14285714
57.14285714
57.14285714
57.14285714
57.14285714
42.85714286
57.14285714
85.71428571
71.42857143
71.42857143
85.71428571
71.42857143
71.42857143
85.71428571
71.42857143
85.71428571
85.71428571
65.6
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