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Abstract

The purpose of this study was to employ Artificial Neural Networks (ANNs) to develop data-driven models 

that would enable the shrinking horizon nonlinear model predictive control of a computationally intensive 

stochastic multiscale system. The system of choice was a simulation of thin film formation by chemical 

vapour deposition. Two ANNs were trained to estimate the system’s observables. The ANNs were 

subsequently employed in a shrinking horizon optimization scheme to obtain the optimal time-varying 

profiles of the manipulated variables that would meet the desired thin film properties at the end of the 

batch. The resulting profiles were validated using the stochastic multiscale system and a good agreement 

with the predictions of the ANNs was observed. Due to their observed computational efficiency, accuracy, 

and the ability to reject disturbances, the ANNs seem to be a promising approach for online optimization 

and control of computationally demanding multiscale process systems. 

Keywords: nonlinear model predictive control, shrinking horizon optimization, multiscale stochastic 

system, machine learning, artificial neural network 
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1. Introduction
Numerous industrial chemical engineering processes are comprised of coupled phenomena which span 

several temporal and spatial scales, for example: semiconductor doping, protein binding to cell 

membrane, the production of thin films by ion beam sputtering, thermal atomic layer deposition or 

chemical/physical vapour deposition for optical devices, biomedical coatings, solar cells, integrated 

circuits and micro-electro-mechanical systems (MEMS), as well as heterogeneous catalysis with 

interactions between a fluid phase and catalyst surface, and continuous and plug-flow protein 

crystallization in pharmaceutical applications (R. A. Adomaitis, 2003; Chaffart, Rasoulian, & Ricardez-

Sandoval, 2016; Cheimarios, Kokkoris, & Boudouvis, 2010; Christofides & Armaou, 2006; Christofides, 

Armaou, Lou, & Varshney, 2009; Crose, Kwon, Tran, & Christofides, 2017; Crose, Sang-Il Kwon, Nayhouse, 

Ni, & Christofides, 2015; Kwon, Nayhouse, Christofides, & Orkoulas, 2013, 2014; Kwon, Nayhouse, 

Orkoulas, & Christofides, 2014; Lee, Mohr, Kwon, & Wu, 2018; J. Li, Croiset, & Ricardez-Sandoval, 2015; 

Raimondeau & Vlachos, 2000; Salciccioli, Stamatakis, Caratzoulas, & Vlachos, 2011; Zhang, Ding, & 

Christofides, 2019). While the phenomena and structure at the microscale directly affect the final 

product’s properties and performance, in the industrial setting only the macroscale quantities (e.g. inlet 

concentration(s), inlet flow rate(s), temperature, etc.) are available for the control of multiscale processes 

by the manipulation of the macro and microscale phenomena to ensure that the product meets design 

specifications (Christofides & Armaou, 2006; Christofides et al., 2009; J. Huang, Zhang, Orkoulas, & 

Christofides, 2011). 

In order to expedite the product development cycle and lessen the cost associated with the design of 

materials, stochastic multiscale models have been developed to gain insight on the interactions between 

different spatial and temporal scales and identify the underlying mechanisms that impact process 

performance (Raymond A. Adomaitis, 2010a, 2010b; Crose, Zhang, Tran, & Christofides, 2018; Kwon, 

Nayhouse, & Christofides, 2015; Lam & Vlachos, 2001; Raimondeau & Vlachos, 2000; Salciccioli et al., 
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2011; Vlachos, 1997, 2005). Such models consist of coupled simulations of multiple temporal and spatial 

scales and provide sufficiently accurate results at a high computational cost. While the macroscopic scale 

phenomena are adequately represented by continuous deterministic equations such as Navier-Stokes 

equations of motion (Bird, Stewart, & Lightfoot, 2002), a realistic depiction of the microscale events 

requires the usage of non-closed-form expressions to properly capture the random (stochastic) behaviour 

of matter at atomistic and molecular scales (Schroeder, 2007). Popular schemes for the atomistic and 

molecular simulations include Metropolis Monte Carlo (MMC), kinetic Monte Carlo (kMC), molecular 

dynamics (MD), simulated annealing, and others (Frenkel & Smit, 2001). The coupling between scales is 

usually implemented through the boundary conditions. The non-closed-form expressions are used to 

“inform” the calculations at the continuum scale and thus increase the accuracy of the predictions. 

However, the observables produced by stochastic multiscale models can exhibit the noise that has been 

propagated from the discrete simulations. Furthermore, while the results of such models can be accurate 

and realistic, they often cannot be used for optimization and online control due to their high 

computational intensity, which can be mainly attributed to evaluating the non-closed-form expressions. 

In order to diminish the computational cost associated with the stochastic multiscale models based on 

first principles, data-driven models such as Kriging, Wiener-Hammerstein, reduced-order models, and 

others (B. Ding & Ping, 2012; Jalali, Nieuwenhuyse, & Picheny, 2017; Kleijnen, 2017; Lawrynczuk, 2016; 

Narasingam & Kwon, 2018) can be employed to find the empirical relationships (e.g. linear and nonlinear 

correlations) between the manipulated and/or process state variables and the control variables (Garg, 

Corbett, Mhaskar, Hu, & Flores-Cerrillo, 2017; Garg & Mhaskar, 2017; Hasenauer, Jagiella, Hross, & Theis, 

2015; Kimaev & Ricardez-Sandoval, 2017; Kwon, Nayhouse, Orkoulas, et al., 2014; Meidanshahi, Corbett, 

Adams II, & Mhaskar, 2017; Narasingam & Kwon, 2018; Oladyshkin & Nowak, 2012; Rasoulian & Ricardez-

Sandoval, 2014, 2015a, 2015b, 2016; Siddhamshetty, Wu, & Kwon, 2018; Solvason, 2011; Solvason, 

Chemmangattuvalappil, & Eden, 2010; Wong, Chee, Li, & Wang, 2018; Yuan, Jiao, Quddus, Kwon, & 
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Mashuga, 2019). In the data-driven system identification approach, the accuracy in the responses of 

observables to manipulated variables is preserved, while at the same time the computational cost 

associated with the stochastic multiscale models is substantially alleviated. However, finding empirical 

correlations can completely disregard the underlying fundamental relationships between the 

manipulated variables and the observed responses. Thus, a notable drawback of data-driven models can 

be their inability to predict the correct responses to perturbations that have not been used during the 

development of empirical models, especially for extrapolation, i.e. when the new inputs lie significantly 

far away from the ranges of input values used to construct the data-driven models (Svozil, Kvasnicka, & 

Pospichal, 1997). 

It has been shown that data-driven models based on machine learning techniques such as Artificial Neural 

Networks (ANNs) are capable of accurately and efficiently predicting system behaviour and responses to 

perturbations (Fausett, 1993). ANNs can establish complex relationships between multiple manipulated 

and response variables, but they require large datasets for accurate model training. When the provided 

datasets are small, ANNs are prone to overfitting, i.e. they memorize the relationships between 

datapoints, which impedes their ability to make the correct predictions when provided with inputs that 

were not used in training. However, when properly trained, a particularly appealing feature of ANNs is 

their capacity to make reasonably accurate predictions even when they are provided with data that has 

not been used during model development (Seagaran, 2007). 

During the recent decades, there has been a resurgence of research interest in ANNs (and other machine 

learning techniques), with numerous applications in nonlinear signal processing, modelling time series 

data, medical diagnosis, electrical load forecasting, and hydrologic models, in addition to many other 

fields (Akkisetty, Lee, Reklaitis, & Venkatasubramanian, 2010; Antanasijevic, Pocajt, Peric-Grujic, & Ristic, 

2014; Bashir & El-Hawary, 2009; Chitsazan, Nadiri, & Tsai, 2015; Chow & Leung, 1996; Dayhoff & DeLeo, 

2001; Du Tao, Wang Xiuli, & Wang Xifan, n.d.; Fausett, 1993; C.-M. Huang & Yang, 2001; Khanmohammadi, 
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Tutun, & Kucuk, 2016; Lang, Waibel, & Hinton, 1990; Lapedes & Farber, 1987; Lian, Zeng, Yao, Tang, & 

Chen, 2016; Oliveira, 2004; Seagaran, 2007; Sutskever & Hinton, 2010; Tiwari & Chatterjee, 2010; Zhao-

Yang Dong, Bai-Ling Zhang, & Qian Huang, 2001). A recent overview of machine learning applications in 

chemical engineering can be found in (Venkat Venkatasubramanian, 2019). The existing applications of 

ANNs that are highly relevant to the field of chemical engineering include process fault diagnosis, process 

modelling and control, the design of fuel additives and catalysts, predicting two-phase flow patterns, 

optimization of thermal atomic layer deposition, as well as other important problems in computational 

fluid dynamics, food chemistry, renewable energy, bioresources, etc. (Alexandridis & Sarimveis, 2005; 

Bach-Andersen, Rømer-Odgaard, & Winther, 2018; Chaffart & Ricardez-Sandoval, 2018; Y. Ding et al., 

2019; K. Huang, Zhan, Chen, & Lü, 2003; Krishnapura & Jutan, 2000; Kumar & Venkateswarlu, 2012; G. Li 

et al., 2018; Nandi, Ghosh, Tambe, & Kulkarni, 2001; Ozkaya, Demir, & Bilgili, 2007; Sarkar & Modak, 2003; 

Shaikh & Al-Dahhan, 2003; Sharma, Das, & Samanta, 2006; Sundaram, Ghosh, Caruthers, & 

Venkatasubramanian, 2001; V. Venkatasubramanian & Vaidyanathan, 1992; Venkat 

Venkatasubramanian, 2009, 2019; Venkat Venkatasubramanian & Chan, 1989; Watanabe, Matsuura, Abe, 

Kubota, & Himmelblau, 1989; Wu et al., 2019; Yıldız, Uzun, Ceylan, & Topcu, 2016). 

Recently, ANNs have been applied to a stochastic multiscale model that simulated thin film deposition 

(Chaffart & Ricardez-Sandoval, 2018). In that study, a stochastic partial differential equation (SPDE) 

simulated thin film surface evolution and was coupled to partial differential equations (PDEs) that 

modelled the continuum scale phenomena. The ANNs were used to efficiently predict the coefficients of 

the SPDE based on the time-dependent manipulated variables. The application of ANNs to the model 

enabled online optimization and control of the thin film deposition process. To the best of our knowledge, 

that work was the first application of ANNs for multiscale stochastic systems. However, as far as we are 

aware, there are no applications where ANNs are used to completely replace stochastic multiscale models 

and, thanks to their computational efficiency, enable online optimization and control of these systems.
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Motivated by this gap in knowledge, we trained ANNs to capture the behaviour of a stochastic multiscale 

model that coupled kinetic Monte Carlo (kMC) with PDEs to simulate thin film formation by chemical 

vapour deposition. To assess the performance of ANNs for closed-loop control of batch multiscale process 

systems (such as thin film production), we applied the ANNs in a nonlinear model predictive control 

(NMPC) framework that used shrinking horizon optimization (Joseph & Hanratty, 1993; Rasoulian & 

Ricardez-Sandoval, 2015a, 2016; Soni & Parker, 2004; Thomas, Kardos, & Joseph, 1994) to identify the 

optimal profiles of the manipulated variables that would allow the final thin film to meet the specified 

product requirements. We subsequently validated the optimal solutions using the full stochastic 

multiscale system and tested the robustness of ANN models to disturbances that were not used in model 

development. 

The remainder of this paper is organized as follows. The next section contains an overview of the 

multiscale system that was used in the present analysis to generate the data for training and validating 

the Artificial Neural Networks (ANNs). The shrinking horizon optimization problem is posed after the 

multiscale model overview. After that, an overview of the ANNs is presented, followed by a description of 

the structures of the networks used to capture the responses of the multiscale model’s observables to 

manipulated variables. Next, in the results section, we solve the shrinking horizon optimization problem 

using ANNs under various conditions and analyze the performance of the ANNs, including their ability to 

reject disturbances. We conclude with a discussion of the advantages and potential drawbacks of applying 

ANNs to capture the behaviour of multiscale stochastic systems. 

2. The multiscale model and its optimization
In this section, we present a brief overview of the stochastic multiscale model employed in this study. For 

a detailed description of the calculations, parameters and their values, we refer the reader to our previous 

publications (Kimaev & Ricardez-Sandoval, 2017, 2018). Further in this section, we present the shrinking 

horizon optimization problem formulation. 
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2.1 A brief overview of the stochastic multiscale model

The stochastic multiscale model of thin film formation by chemical vapour deposition used for the 

purposes of this study consists of two scales coupled through a boundary condition. The macroscale 

simulation is comprised of momentum, energy and mass transport equations, all simplified to one spatial 

dimension by taking advantage of radial symmetry (Christofides et al., 2009; Lam & Vlachos, 2001): 

∂
∂𝜏(∂𝑓

∂𝜂) =
∂3𝑓
∂𝜂3 + 𝑓

∂2𝑓
∂𝜂2 +

1
2[𝜌𝑏

𝜌 ‒ (∂𝑓
∂𝜂)2] (1)

∂𝑇
∂𝜏 =

1
𝑃𝑟

∂2𝑇
∂𝜂2 + 𝑓

∂𝑇
∂𝜂

(2)

∂𝑥
∂𝜏 =

1
𝑆𝑐

∂2𝑥
∂𝜂2 + 𝑓

∂𝑥
∂𝜂

(3)

Equations (1)-(3) model the transport of gas particles within the layer of chemical vapour immediately 

above the thin film, i.e. the gas layer between the bulk chemical vapour (where the dimensionless 

distance, , is considered to approach infinity) and the substrate ( ). Equations (1)-(3) are subject to 𝜂 𝜂→0

the following boundary conditions in the bulk ( ): 𝜂→∞

𝑇 = 𝑇𝑏𝑢𝑙𝑘 (4)

∂𝑓
∂𝜂 = 1 (5)

𝑥 = 𝕏 (6)

and at the thin film surface ( ):𝜂→0

𝑇 = 𝕋 (7)

𝑓 = 0 (8)

∂𝑓
∂𝜂 = 0 (9)

∂𝑥
∂𝜂 =

𝑆𝑐(𝑅𝑎 ‒ 𝑅𝑑)
2𝑎𝜇𝑏𝜌𝑏

(10)



  

8

The microscale of thin film formation is simulated by the kinetic Monte Carlo (kMC) model that considers 

adsorption, desorption, and migration events. The rates of these events are calculated by equations (11), 

(12) and (13), respectively (Christofides et al., 2009; Lam & Vlachos, 2001): 

𝑊𝑎 =
𝑆0𝑃𝑥|𝜂→0

2𝜋𝑚𝑅𝑔𝕋𝐶𝑡𝑜𝑡
𝑁2 (11)

𝑊𝑑 =
5

∑
𝑖 = 1

𝑀𝑖𝑘𝑑0𝑒
‒

𝑖𝐸 + 𝐸𝑑

𝑅𝕋 (12)

𝑊𝑚 =
5

∑
𝑖 = 1

𝑀𝑖𝑘𝑑0𝑒
‒

𝑖𝐸 + 𝐸𝑚

𝑅𝕋 (13)

The decision as to which of the three possible surface events will be performed is determined by the 

relative magnitudes of the rates ,  and  and a uniform random number from the interval (0,1), 𝑊𝑎 𝑊𝑑 𝑊𝑚

as described in (Vlachos, 1997). 

The coupling of the discrete and continuum scales is implemented through the boundary condition (10) 

of the mass transfer equation (3). Figure 1 depicts the coupling process. The net number of atoms 

adsorbed on the thin film, , is tracked by the kMC code and is subsequently used to update the 𝑁𝑎 ‒ 𝑁𝑑

net rate of adsorption, , which in turn is used to calculate the rate of change of the gas precursor 𝑅𝑎 ‒ 𝑅𝑑

mole fraction  with respect to the dimensionless distance away from the substrate , i.e.  of 𝑥 𝜂 ∂𝑥
∂𝜂|

𝜂→0 

equation (10). Once this update is complete, the rate of change of the gas precursor mole fraction with 

respect to the dimensionless time , i.e.  of equation (3), can also be updated, and the value of the 𝜏 ∂𝑥
∂𝜏

gas precursor mole fraction at the thin film surface, , can be obtained from equation (3). This value 𝑥|𝜂→0

is subsequently used to update the rate of adsorption, , which is used by the kMC simulation to adjust 𝑊𝑎

the probabilities of adsorption, desorption and migration events on the thin film surface. Once the kMC 

code has run for a pre-specified coupling time interval, , the update (described above) is carried out ∆𝒯
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again. This feedback loop between the two scales (see Figure 1) is repeated until the final simulation batch 

time is reached. 

Figure 1: The simulation framework for the stochastic multiscale model of thin film formation by chemical vapour deposition

In this stochastic multiscale model, the variables that can be manipulated are the inlet precursor mole 

fraction  of boundary condition (6) and the substrate temperature  of boundary condition (7). The 𝕏 𝕋

observables of this multiscale model are roughness, , growth rate, , and thickness, . These 𝑅 𝐺𝑟 𝑇ℎ

properties can be calculated from the following equations (Christofides et al., 2009; Raimondeau & 

Vlachos, 2000):

𝑅 = 1 +  

𝑁

∑
𝑖 = 1

𝑁

∑
𝑗 = 1

(|ℎ𝑖 + 1,𝑗 ‒ ℎ𝑖,𝑗| + |ℎ𝑖 ‒ 1,𝑗 ‒ ℎ𝑖,𝑗| + |ℎ𝑖,𝑗 + 1 ‒ ℎ𝑖,𝑗| + |ℎ𝑖,𝑗 ‒ 1 ‒ ℎ𝑖,𝑗|)

2𝑁2

(14)

𝐺𝑟 =
𝑁𝑎 ‒ 𝑁𝑑

𝑁2∆𝒯
(15)

𝑇ℎ =
1

𝑁2

𝑁

∑
𝑖 = 1

𝑁

∑
𝑗 = 1

ℎ𝑖,𝑗 (16)
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where  is the number of chemical vapour particles adsorbed at a lattice site  and  is the size of ℎ𝑖,𝑗 (𝑖,𝑗) 𝑁

the square lattice (hence,  is the total number of sites on the lattice). Roughness is considered as the 𝑁2

average number of broken bonds on the surface of the thin film (Christofides et al., 2009; Raimondeau & 

Vlachos, 2000). The units of  and  are monolayers (ML), while the units of  are ML/s (Luo, Heun, 𝑅 𝑇ℎ 𝐺𝑟

Kennedy, Wollschläger, & Henzler, 1994). Note that a perfectly smooth film would have  = 1.0 ML. Also 𝑅

note that  and  are related, where the former is the time derivative of the latter, since the term 𝐺𝑟 𝑇ℎ (𝑁𝑎 ‒

 represents the change in  over a coupling time interval during which the kMC model has been 𝑁𝑑)/𝑁2 𝑇ℎ

simulating adsorption, desorption and migration events, and  is the duration of the coupling interval ∆𝒯

(measured in seconds). 

2.2 Nonlinear model predictive control (NMPC) framework

For the semiconductor industry, it is important to produce films that are smooth and sufficiently thick, 

since both properties contribute to electrical conductivity. For the purposes of optical and biomedical 

coatings, low roughness and sufficient thickness are likewise significant: smooth films would minimize 

light scattering or prevent bacteria from adhering to the surface, while sufficient thickness would control 

the transmission of light through the optical device or ensure a sufficient lifetime for the biomedical device 

before the film wears off. Furthermore, high  would contribute to the profitability of the manufacturer 𝐺𝑟

by satisfying customer demand in a timely manner. However, achieving low  values and high  and  𝑅 𝐺𝑟 𝑇ℎ

values requires optimal control actions in the manipulated variables (the inlet precursor mole fraction   𝕏

and the substrate temperature ). 𝕋

Since the production of thin films is a batch process with nonlinear relationships between the variables, it 

is amenable to nonlinear model predictive control (NMPC). In a closed-loop control framework the 

measurements would become available as the time until the end of the batch continues to diminish. 

Hence, the shrinking horizon optimization scheme (Joseph & Hanratty, 1993) is best suited for finding the 



  

11

optimal profiles in  and  that would satisfy the final product requirements. In the shrinking horizon 𝕋 𝕏

optimization approach, the goal is to drive the plant to some desired target while using the measurements 

from the plant to monitor the performance and adjust the optimal control actions as necessary. The 

optimization is iterative and requires a model to predict the plant’s responses. In each iteration, only the 

first control action from the optimal profile is implemented on the actual plant. When a measurement 

from the plant becomes available, it is used as the initial condition for the next iteration of shrinking 

horizon optimization, where a new set of optimal control actions will be found. The optimization scheme 

proceeds until the end of the production batch is reached. 

Equation (17) describes the formulation of the shrinking horizon optimization problem that would employ 

the coupled stochastic multiscale kMC-PDE model to find the optimal time-dependent  and  profiles 𝕋 𝕏

that would maximize the average  during the production batch (and, consequently, the total ) while 𝐺𝑟 𝑇ℎ

satisfying the maximum allowed roughness at the end of the batch: 

max
𝕋(𝑡𝑖),𝕏(𝑡𝑖)   

1
𝑛

𝑛

∑
𝑖 = 1

𝐺𝑟(𝕋(𝑡𝑖),𝕏(𝑡𝑖))

 Subject to:

Coupled kMC-PDE model, equations (1)-(16)

𝑡𝑖 = 𝑖∆𝑡;   ∀𝑖 = 0,1,2,…𝑛

𝑅(𝕋(𝑡𝑛),𝕏(𝑡𝑛)) ≤ 𝑅 ∗

 𝕋𝑚𝑖𝑛 ≤ 𝕋(𝑡𝑖) ≤ 𝕋𝑚𝑎𝑥

 𝕏𝑚𝑖𝑛 ≤ 𝕏(𝑡𝑖) ≤ 𝕏𝑚𝑎𝑥 

𝕋(0) = 𝕋0

𝕏(0) = 𝕏0

‒ ∆𝕋 ≤ 𝕋(𝑡𝑖 + 1) ‒ 𝕋(𝑡𝑖) ≤ ∆𝕋

(17)
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‒ ∆𝕏 ≤ 𝕏(𝑡𝑖 + 1) ‒ 𝕏(𝑡𝑖) ≤ ∆𝕏

where  represents the timepoints at which the observables are measured (i.e. at the end of every 𝑡𝑖

sampling interval),  is the total number of sampling intervals,  is the length of the sampling intervals, 𝑛 ∆𝑡

and  is the maximum allowed roughness constraint at the end of the batch.  and  are the 𝑅 ∗ 𝕋𝑚𝑖𝑛 𝕋𝑚𝑎𝑥

minimum and maximum allowed temperature values, respectively, and  and  are the minimum 𝕏𝑚𝑖𝑛 𝕏𝑚𝑎𝑥

and maximum allowed precursor mole fraction values, respectively. The settings  and  are the initial 𝕋0 𝕏0

conditions for the manipulated temperature and precursor mole fraction, respectively, while  and  ∆𝕋 ∆𝕏

are the maximum allowed changes in the respective manipulated variables between adjacent sampling 

intervals. 

Note that the shrinking horizon NMPC framework has to find the optimal control actions during the 

operation of the plant (i.e. online). Hence, having a computationally efficient method of identifying the 

optimal control action profiles is essential. However, due to the presence of non-closed-form calculations 

at the discrete scale, the full kMC-PDE model comprised of equations (1)-(16) is computationally intensive, 

and its application in equation (17) is computationally taxing. Thus, to make the problem of equation (17) 

computationally feasible, we trained the ANN models to predict the response variables  𝑅(𝕋(𝑡𝑖),𝕏(𝑡𝑖))

and  and replaced the full kMC-PDE model with the ANNs. The training procedure and the 𝐺𝑟(𝕋(𝑡𝑖),𝕏(𝑡𝑖))

structure of the ANNs are discussed in section 3. 

3. Artificial neural networks (ANNs)
3.1 Overview of ANNs

As briefly mentioned in the introduction, artificial neural networks (ANNs) are information processing 

systems that are data-driven and can identify complex relationships between the controlled and the 

response variables (Fausett, 1993; Hornik, 1991; McCulloch & Pitts, 1943; V. Venkatasubramanian & 

Vaidyanathan, 1992; Venkat Venkatasubramanian & Chan, 1989). ANNs consist of an input layer, one or 



  

13

several hidden layers, and an output layer. In each ANN layer, there are one or multiple processing units 

called “neurons”. The input layer serves to perceive the incoming variable data (e.g. control actions of a 

process) and pass it to the other layers in the network. In the hidden layer(s), the information is processed, 

and the output layer eventually produces a prediction of the response variable(s). The processing of 

information by the hidden and output layers is done as follows: each neuron accepts and combines the 

outputs from all the neurons in the preceding layer, where the combination is a weighted sum of each 

neuron’s output scaled by the corresponding strength of the connection (referred to as weight) between 

the neuron that is accepting the information and each neuron in the preceding layer. The output of a 

neuron in a hidden layer or in the output layer of an ANN may be represented as follows: 

𝜒𝓁 = 𝜑(Σ𝓅(𝜔𝓁,𝓅𝜒𝓅) + 𝛽𝓁) (18)

where  is the output of neuron  in the layer of interest,  is the transfer function associated with the 𝜒𝓁 𝓁 𝜑

neuron  (this function can also be called the activation or output function and it acts on 𝓁 (Σ𝓅(𝜔𝓁,𝓅𝜒𝓅) +

, i.e. the net input to the neuron ),  is the weight associated with the connection between the 𝛽𝓁) 𝓁 𝜔𝓁,𝓅

neuron  and some neuron  in the previous layer (i.e. the input layer or a hidden layer),  is the output 𝓁 𝓅 𝜒𝓅

of the neuron ,  signifies the weighted sum of the outputs of all neurons  in the previous layer, and 𝓅 Σ𝓅 𝓅

 denotes the bias that is independent from the previous layer’s output but nevertheless contributes to 𝛽𝓁

the activation of the neuron  in addition to the weighted sum . Common choices for the 𝓁 Σ𝓅(𝜔𝓁,𝓅𝜒𝓅)

neuron activation functions include the simple linear function, also called the identity function, the binary 

step function (i.e. the Heaviside function), and the sigmoid functions, such as the hyperbolic tangent 

function (Fausett, 1993; McCulloch & Pitts, 1943). 

The values of the weights  and the biases  of an ANN are identified and refined during the iterative 𝜔𝓁,𝓅 𝛽𝓁

training on the input and output datasets. The training method of choice for ANNs with at least one hidden 

layer is called backpropagation. It is a gradient-based technique that aims to find  and  that would 𝜔𝓁,𝓅 𝛽𝓁
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minimize the objective function, which is usually defined as the sum of squared errors of the network’s 

predictions against the actual magnitudes of the response variables. The iterative training continues until 

the values converge to a local optimum (Svozil et al., 1997). It has been shown that the Levenberg-

Marquardt algorithm, a second-order optimization method, can arrive at one of the lowest errors 

between the actual and predicted responses (Hagan & Menhaj, 1994; Levenberg, 1944; Marquardt, 1963; 

Svozil et al., 1997). Hence, this algorithm is frequently chosen for ANN training. 

It is necessary to find the weights and biases that would allow the ANN to generalise, i.e. make reasonably 

accurate predictions about the input data that was not seen during training but is similar to what was 

used for ANN development. In order to achieve good generalisation capabilities instead of finding  𝜔𝓁,𝓅

and  that work well only for the seen-before data, a technique called early stopping is used for ANN 𝛽𝓁

training (Borggaard & Thodberg, 1992; Svozil et al., 1997). In this approach, a test dataset that is never 

used for training/adjusting the weights and biases is employed to calculate the generalisation error, i.e. 

the error between the ANN predictions of responses to the inputs never used during training and the 

actual responses to these inputs. As the iterative training proceeds, the generalisation error on the test 

dataset is monitored and when it starts to increase, the training is terminated because the growth of this 

error indicates the commencement of the memorization of the training dataset. 

Just as a biological neural network (e.g. the brain) needs exposure to large amounts of information to 

learn to identify patterns accurately (e.g. in some cases, the expertise has to be acquired over a lifetime 

of human experience), ANNs also require large datasets for accurate weight and bias training. The need 

for the large datasets constitutes a disadvantage of the ANN-based approach to system identification, 

since such datasets may not be readily available for chemical engineering systems (Venkat 

Venkatasubramanian, 2019). This challenge can be circumvented when a mathematical model of the 

process is available, which is the case in the present work. Another possible disadvantage of using ANNs 
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is the potential need for multiple training attempts, since the randomly chosen initial guesses for the 

weights and biases can have a strong impact on the trained network’s prediction accuracy. In some cases, 

poor initial guesses may prevent the convergence in weights and biases altogether. In addition, the 

existence of multiple local optima in the non-convex objective function (Gandhi, Joshi, Jayaraman, & 

Kulkarni, 2007; Svozil et al., 1997) may complicate the decision-making process as to which of the possible 

acceptable ANNs should actually be used to model the system’s behaviour. Furthermore, using large 

datasets for training, using complicated network structures with many neurons and hidden layers, and 

potentially repeating the training attempts all contribute to lengthy training times and increase the 

computational cost of ANN identification. 

However, the compelling advantages of the ANN-based approach to system identification and modelling 

that compensate for the possible drawbacks are the computational efficiency of ANNs, as well as their 

ability to describe nonlinear relationships between inputs/parameters and responses, their potential to 

generalise and predict responses to never-before-seen input data, and their robustness towards noisy 

inputs (Svozil et al., 1997). 

3.2 Training of ANNs for stochastic multiscale systems

In order to train the ANNs, we used the full multiscale model (with the lattice size  = 50) to generate a 𝑁

dataset of 400,000 points (one point per second), where each point consisted of the manipulated variables 

(the substrate temperature  and the inlet precursor mole fraction ), and the corresponding outputs 𝕋 𝕏

that are needed to evaluate the objective function and constraints considered in the shrinking horizon 

optimization formulation (17), i.e. roughness  and growth rate . Note that other thin film 𝑅 𝐺𝑟

characteristics, such as porosity or radial distribution function, could also be used to train ANNs via a 

methodology similar to the one presented here, but those metrics were beyond the scope of this work 

and thus were not calculated by the multiscale model. 
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The temperature was constrained to the range between 800 K and 1200 K since it was representative of 

the industrial thin film production, whereas the maximum allowed step in  was 50 K (to avoid 𝕋

unrealistically high temperature transitions/thermal shock). For similar reasons, the precursor mole 

fraction was constrained to the range between 1×10-6 and 4×10-6 with the maximum allowed change in  𝕏

being 5×10-7. The values of  and  were held constant for at least 25 seconds. The minimum time interval 𝕋 𝕏

was chosen as 25 seconds to enable the multiscale model to reach steady state in the observables  and 𝑅

 before the next change in the manipulated variables would occur. The purpose of generating such a 𝐺𝑟

large dataset was to ensure that the ANNs would have enough information to obtain weights and biases 

that would make generalized predictions (i.e. interpolate accurately on the respective ranges of the 

manipulated variables rather than memorize the responses to the training data). Furthermore, the large 

dataset was intended to enable the ANN training algorithm to average out the effects of stochastic noise 

in the observables. The CPU time required to simulate the full multiscale model with the lattice size  = 𝑁

50 for 400,000 seconds was approximately 72 hours. Note that all calculations in this work were 

performed on a computer with 16 GB of RAM and an Intel® Xeon® E5-2620 v4 processor running at 2.10 

GHz. 

We trained multiple-input single-output nonlinear autoregressive ANNs that accepted external input and, 

upon training completion, were able to forecast the response variables based on the current inputs (i.e. 

the current values of  and ) and their own past predictions (i.e. the past predictions of  and  were 𝕋 𝕏 𝑅 𝐺𝑟

supplied to the respective ANN via closed-loop feedback). The dataset of 400,000 points was randomly 

subdivided into training, validation and test subsets: 70%, 15% and 15% of the 400,000 points were 

assigned to each respective subset. The training subset was used for fitting the weights and biases of the 

ANNs (via the Levenberg-Marquardt backpropagation with a mean square error objective function), the 

validation subset was used to evaluate the ANN models’ quality of fit and adjust the weights and biases, 

and the test subset was used only to decide when to stop training to prevent the memorization of data. 
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As per common practice, the hyperbolic tangent sigmoid transfer function was used for the neurons in 

the hidden layer(s) of the ANNs, and a linear transfer function was utilized for the neurons in the output 

layer of the ANNs. The above procedure was implemented using the Neural Net Time Series toolbox in 

MATLAB.

To accelerate the completion of ANN training and to mitigate the potentially detrimental effect of poor 

initial guesses for weights and biases on convergence to reasonably accurate ANNs, the training was 

carried out in the open loop mode; the feedback loop in each ANN was closed only after the training was 

completed. In other words, during training, the ANNs did not rely on their own past predictions of the 

observables to make the new predictions – instead, the known observable values at the previous timestep 

were used for the ANNs to make predictions for the current timestep. After the training was completed, 

the feedback loop within the ANNs was closed so that the only external inputs required by the ANNs were 

the manipulated variables  and , whereas the networks’ prior predictions of the observables were used 𝕋 𝕏

for the future predictions. 

To identify the networks that can potentially generate acceptable predictions, 9 ANNs for each of the two 

observables were trained, with network architectures that had one to three hidden layers, and two, five 

and ten neurons per hidden layer. Each network was trained on the same dataset with 400,000 points 

(described above). Next, the performance of the networks was assessed on a new dataset with 1,600,000 

points that was never before seen by the networks. This dataset was obtained after approximately 260 

hours of simulating the full multiscale model, and it was generated using the same restrictions on  and 𝕋

 as for the 400,000-point dataset. The new dataset was larger than the training dataset to confirm that 𝕏

the trained ANNs could predict the responses to previously unseen inputs accurately. Each of the 9 

proposed networks for each of the two observables calculated the responses to the 1,600,000 

manipulated variable values in 55 ± 0.5 seconds, regardless of the network’s structure. The statistics of 

the percent relative errors between the predicted responses of  and  and the 1,600,000 measured 𝑅 𝐺𝑟
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values have been summarized in Tables 1 and 2, respectively. Similarly, the probability distributions of the 

errors have been plotted in Figures 2 and 3, respectively. Note that in these Tables and Figures, different 

network structures have been specified using the number of hidden layers and the number of neurons in 

each layer; for example, the ANN with 1 hidden layer and 2 neurons in the layer was referred to as 1 layer, 

2 neurons while the ANN with 3 hidden layers and 10 neurons per layer was called 3 layers, 10 neurons.

Table 1: Statistics on the percent relative errors between 1,600,000 predicted and actual roughness ( ) values𝑅

Statistics on the percent relative errors
ANN structure min max median mean std. dev. variance skewness

1 layer, 2 neurons -53.73 45.56 0.57 0.42 7.67 58.78 -0.41

2 layers, 2 neurons -54.91 49.61 0.45 0.51 7.02 49.25 -0.52

3 layers, 2 neurons -49.75 45.29 0.91 0.95 7.59 57.59 -0.44

1 layer, 5 neurons -55.47 45.57 0.25 0.06 6.55 42.86 -0.77

2 layers, 5 neurons -55.21 97.17 0.20 0.06 6.46 41.72 -0.33

3 layers, 5 neurons -54.94 210.72 0.21 0.05 6.53 42.63 0.89

1 layer, 10 neurons -54.99 144.64 0.21 0.04 6.51 42.38 -0.14

2 layers, 10 neurons -53.80 86.83 0.32 0.19 6.38 40.76 -0.38
3 layers, 10 neurons -53.50 1097.68 0.22 2.09 40.08 1606.59 19.20

Table 2: Statistics on the percent relative errors between 1,600,000 predicted and actual growth rate ( ) values𝐺𝑟

Statistics on the percent relative errors
ANN structure min max median mean std. dev. variance skewness

1 layer, 2 neurons -23.25 44.62 0.02 0.09 2.46 6.07 1.26

2 layers, 2 neurons -23.15 44.43 0.01 0.07 2.44 5.95 1.23

3 layers, 2 neurons -23.06 44.49 0.02 0.08 2.44 5.95 1.23

1 layer, 5 neurons -21.63 41.32 0.01 0.07 2.42 5.88 1.17

2 layers, 5 neurons -19.53 39.50 0.01 0.06 2.31 5.34 0.90

3 layers, 5 neurons -20.92 41.25 0.01 0.07 2.42 5.85 1.08

1 layer, 10 neurons -22.10 43.36 0.00 0.06 2.43 5.91 1.22

2 layers, 10 neurons -20.69 41.88 -0.02 0.03 2.33 5.43 1.12
3 layers, 10 neurons -20.49 39.62 0.02 0.07 2.33 5.44 1.03
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Figure 2: Probability distributions of the percent relative errors between 1,600,000 predicted and actual roughness ( ) responses𝑅

Figure 3: Probability distributions of the percent relative errors between 1,600,000 predicted and actual growth rate ( ) 𝐺𝑟
responses
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Based on the data presented in Table 1 and Figure 2, the ANN with 1 hidden layer and 5 neurons was 

chosen to predict roughness ( ). It can be seen in Table 1 that the lowest mean and standard deviation of 𝑅

relative percent errors were demonstrated by all networks with 5 neurons per hidden layer and the 

network with 1 hidden layer and 10 neurons (e.g. the mean errors were between 0.04% and 0.06% for 

these ANNs). However, among these four networks, all the ANNs larger than the network with 1 hidden 

layer and 5 neurons demonstrated relatively high maximum possible percent errors (from 86.83% for the 

network with 2 layers and 10 neurons per layer up to 1,097.68% for the network with 3 layers and 10 

neurons per layer). The presence of such high possible maximum errors was also the reason why the 

corresponding probability distributions in Figure 2 appeared narrow and sharp. 

While no significant differences could be observed from Figure 3 among the error distributions from the 

ANNs that predicted the growth rate ( ) responses, Table 2 showed that the network with 2 hidden 𝐺𝑟

layers and 5 neurons in each layer demonstrated superior generalization abilities with the lowest possible 

minimum (-19.53%) and maximum (39.50%) relative percent errors, the second-lowest median (0.01%) 

and mean (0.06%) errors, and the lowest standard deviation (2.31%), variance (5.34) and skewness (0.90) 

of all the proposed ANN architectures. The corresponding architectures of the ANNs chosen to predict 

roughness and growth rate for the present multiscale model have been depicted in Figures 4 and 5, 

respectively. 

Figure 4: A schematic of the chosen “1 layer, 5 neurons” ANN structure for predicting roughness ( ). Note that the output of the 𝑅
ANN is used for autoregression via the closed-loop feedback.
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Figure 5: A schematic of the chosen “2 layers, 5 neurons” ANN structure for predicting growth rate ( ). Note that the output of 𝐺𝑟
the ANN is used for autoregression via the closed-loop feedback. 

4. Results and discussion
In this section, we present the results of applying the ANNs chosen in section 3.2 for the shrinking horizon 

optimization problem of equation (17) in section 2.2. The shrinking horizon optimization problem was 

solved using the second order gradient-based interior-point constrained optimization algorithm 

implemented in the fmincon function in MATLAB. For the interior point algorithm in fmincon, the 

constraint and optimality tolerances were 10-6 and the step tolerance was 10-10 (i.e. the default MATLAB 

values). Furthermore, to speed-up the calculations, fmincon was set to compute the gradients in parallel 

in all scenarios presented below. In equation (17), the objective function had no additional weights, and 

the batch time was set to range from 0 s to 450 s in order to allow the NMPC algorithm to sample an 

adequate number of decision variables while considering the possibility of having external and/or internal 

events that may impact the operation.  Identical to the training dataset characteristics described in section 

3.2, the temperature parameters were set as follows:  = 800 K,  = 1,200 K and  = 50 K. The 𝕋𝑚𝑖𝑛 𝕋𝑚𝑎𝑥 ∆𝕋

precursor mole fraction parameters were also identical to the characteristics of the training dataset:  𝕏𝑚𝑖𝑛

= 1×10-6,  = 4×10-6 and  = 5×10-7. Note that the initial conditions for the temperature and precursor 𝕏𝑚𝑎𝑥 ∆𝕏

mole fraction were set to  and , respectively; this was done to maximize the value of 𝕋0 = 𝕋𝑚𝑖𝑛 𝕏0 = 𝕏𝑚𝑎𝑥

 in equation (11), i.e. the rate of adsorption of chemical vapour particles onto the substrate/thin film 𝑊𝑎

surface, thereby promoting thin film growth. Hence, these are reasonable settings for the start of the 
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production batch that would aim to manufacture the thin films in a timely fashion. In the scenarios 

presented below, up to three final roughness targets ( ) were considered: 1.8 ML, 3.0 ML and 5.0 ML. 𝑅 ∗

The first two targets were used as industrially relevant criteria for smooth high-performance thin films 

since an ideal film would have  = 1.0 ML, whereas the third value was proposed to test the performance 𝑅

of the ANN models for higher roughness targets subject to large stochastic noise. Note that in all scenarios, 

the manipulated variables were held piecewise constant for the duration of the corresponding sampling 

intervals  (25 s in Scenarios A-C and 10 s in Scenario D, see below). ∆𝑡

4.1 Scenario A: No online measurements

In the first scenario, there was no feedback from the full multiscale model (i.e. the plant model) provided 

to the ANNs. Instead, the ANNs were used within the gradient-based constrained optimization algorithm 

(mentioned previously) with the same constraints as in equation (17) to find the optimal time-dependent 

control action profiles that would, according to the ANN predictions, satisfy the final roughness targets 

 of 1.8 ML, 3.0 ML and 5.0 ML. Once found, the profiles were used to run the plant model in the open 𝑅 ∗

loop batch mode to validate the solutions. This control scheme has been presented in Figure 6a, where 

 and  denote the values of the observables produced by the plant model, while 𝑅𝑘𝑀𝐶(𝑡𝑖) 𝐺𝑟𝑘𝑀𝐶(𝑡𝑖) 𝑅𝐴𝑁𝑁

 and  represent the predictions of the ANN models. Note that the sampling interval  was (𝑡𝑖) 𝐺𝑟𝐴𝑁𝑁(𝑡𝑖) ∆𝑡

set to 25 s, i.e. the manipulated variables  and  were allowed to be changed no sooner than every 25 𝕋 𝕏

s. Consequently, for the horizon of 450 s the total number of the sampling intervals, , was 18. The results 𝑛

are presented in Table 3 and in Figures 7-9. Note that in Table 3, as well as in Tables 4-6 in sections 4.2-

4.4,  refers to the roughness prediction by the ANN model at time  (i.e. the end of the 𝑅𝐴𝑁𝑁(𝑡𝑛) 𝑡𝑛

optimization horizon),  refers to the final roughness measurement from the plant,  refers 𝑅𝑘𝑀𝐶(𝑡𝑛) 𝐺𝑟𝐴𝑁𝑁

to the average of the growth rate values predicted by the corresponding ANN over the entire optimization 
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horizon, and  refers to the average of the growth rate values collected from the plant model over 𝐺𝑟𝑘𝑀𝐶

the entire horizon. 

Figure 6: The open-loop (a) and closed-loop (b) shrinking horizon NMPC schemes employed in Scenarios A-D. Scenario A used the 
open-loop scheme (a), while Scenarios B-D used the closed-loop scheme (b). 

Table 3: The performance of ANN models for the case of no online measurements and the sampling interval  = 25 s. ∆𝑡

 𝕋(𝑡𝑛)
(K)

𝕏(𝑡𝑛)  𝐺𝑟𝐴𝑁𝑁
(ML/s)

 𝐺𝑟𝑘𝑀𝐶
(ML/s)

 𝑅𝐴𝑁𝑁(𝑡𝑛)
(ML)

 𝑅𝑘𝑀𝐶(𝑡𝑛)
(ML)

 = 1.8 ML𝑅 ∗ 1200 1.22×10-6 31.66 31.59 1.80 1.83
 = 3.0 ML𝑅 ∗ 1106 4.00×10-6 36.37 36.24 3.00 3.00
 = 5.0 ML𝑅 ∗ 1006 4.00×10-6 36.76 36.65 5.00 7.60

Figure 7: Optimal profiles of  and  and the responses in  and , no online measurements,  = 25 s,  = 1.8 ML𝕋 𝕏 𝑅 𝐺𝑟 ∆𝑡 𝑅 ∗
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Figure 8: Optimal profiles of  and  and the responses in  and , no online measurements,  = 25 s,  = 3.0 ML𝕋 𝕏 𝑅 𝐺𝑟 ∆𝑡 𝑅 ∗

Figure 9: Optimal profiles of  and  and the responses in  and , no online measurements,  = 25 s,  = 5.0 ML 𝕋 𝕏 𝑅 𝐺𝑟 ∆𝑡 𝑅 ∗

Figures 7-9 show that different profiles of the manipulated variables have been obtained depending on 

the three target roughness values  (1.8 ML, 3.0 ML and 5.0 ML). A close overlap of the final roughness 𝑅 ∗

trajectories (approximately the last 50 seconds of the batch) can be observed in Figures 7 (  = 1.8 ML) 𝑅 ∗

and 8 (  = 3.0 ML). Note that for  = 1.8 ML, the final roughness value from the multiscale model was 𝑅 ∗ 𝑅 ∗

1.83 ML, slightly higher than the  target (see Table 3). This can be explained by the presence of 𝑅 ∗

stochastic noise in the full multiscale model – the noise is present even at 1,200 K. The most detrimental 

effect of the noise, as well as potentially model-plant mismatch, was observed for high roughness target 

values, i.e.  = 5.0 ML, where the ANN for the roughness significantly underestimated  at 1,006 𝑅 ∗ 𝑅𝑘𝑀𝐶(𝑡𝑛)

K: the  value was 52% greater than , i.e. 7.60 ML versus 5.00 ML, respectively. Note 𝑅𝑘𝑀𝐶(𝑡𝑛) 𝑅𝐴𝑁𝑁(𝑡𝑛)

that for all  targets, the roughness ANN overestimated the rate of dynamic response of the system to 𝑅 ∗

the changes in the temperature. This is most apparent in Figure 9, where the ANN predictions of 
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roughness reached steady state at 800 K before the multiscale model did (a similar effect is observed in 

Figures 7 and 8), and when the temperature started to increase at the sampling intervals  14 (  326 𝑖 ≥ 𝑡 ≥

s), the response of  was much faster than of . For the case of = 5.0 ML, the poor accuracy of 𝑅𝐴𝑁𝑁 𝑅𝑘𝑀𝐶 𝑅 ∗

ANN predictions of roughness at the end of the batch could be attributed to the noisy training data (Svozil 

et al., 1997) at relatively low temperatures (under 1,050 K). During training, the weights and biases of the 

ANN for roughness likely converged to the values that captured the average responses of noisy low-

temperature (e.g. under 1,050 K) roughness, resulting in model-plant mismatch and suboptimal ANN 

performance. 

Moreover, the ANN for the growth rate predicted the responses accurately and, in all the scenarios in this 

work, it did not overestimate  by more than 0.4 % (this error occurred for  = 3.0 ML in Table 3, 𝐺𝑟𝑘𝑀𝐶 𝑅 ∗

compare 36.37 ML/s from the ANN to 36.24 ML/s from the multiscale model). Note that in Table 3, all 

results for  slightly overestimated the corresponding  values, consistent with the fact that the 𝐺𝑟𝐴𝑁𝑁 𝐺𝑟𝑘𝑀𝐶

ANN for growth rate with 2 hidden layers and 5 neurons per layer exhibited positive mean and median 

relative percent errors, as well as positive skewness of the errors (see the 2 layers, 5 neurons results in 

Table 2). 

Furthermore, the strength of the dependence of the observables on the manipulated variables can be 

qualitatively observed by comparing the optimized control inputs in Figures 7-9 to the corresponding 

time-dependent profiles of the observables. In Figures 8 and 9, only the substrate temperature  was 𝕋

manipulated in the attempt to achieve  = 3.0 ML and  = 5.0 ML, respectively. In both cases, 𝑅 ∗ 𝑅 ∗

roughness started to decrease as soon as the temperature began to increase, but the growth rate 

decreased only at the temperatures greater than or equal to 850 K, and it did so at a much lower rate than 

the roughness trajectory. Hence, in this multiscale system, temperature has a greater impact on 

roughness than growth rate, but it is related to both observables nonetheless. An opposite qualitative 
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relationship appears to exist between the precursor mole fraction ( ) and the observables: comparing 𝕏

Figures 7 and 8, it can be observed that the major difference is the manipulation of  in Figure 7 (  = 𝕏 𝑅 ∗

1.8 ML). In the scenario of Figure 7, both  and  were manipulated, but the precursor mole fraction 𝕏 𝕋

caused the majority of the change in the growth rate trajectory (the growth rate at the end of the batch 

was 9 ML/s in Figure 7, which was 3.7 times lower than 33 ML/s in Figure 8). Comparing Figure 8 to Figure 

7, the final temperature was increased by less than 100 K, so the majority of the effect on the growth rate 

can be attributed to the precursor mole fraction manipulations. Therefore, both the roughness and the 

growth rate ANNs were able to capture the different strengths of connections between each manipulated 

variable and the corresponding observables, and the ANNs could adjust the manipulated variables 

depending on the final roughness constraint. Furthermore, the ANN models demonstrated superior 

computational efficiency. On average, the optimization was completed in 75 seconds after approximately 

2,300 evaluations of the ANN models. However, the average computational time to evaluate the full kMC-

PDE model using the optimal profiles of the manipulated variables was 580 seconds. In other words, if the 

full kMC-PDE model were to be used in the optimization scheme and evaluated 2,300 times, the total 

computational time would be almost 18,000 times longer than with the ANN models. Thus, the ANN 

models efficiently provided reasonable estimates and, as a result, were used for further studies. 

4.2 Scenario B: Online measurements

The second scenario was the full shrinking horizon NMPC technique, where  and  measurements from 𝑅 𝐺𝑟

the plant model (referred to as online measurements in Figures 6b and 10-12, as well as in Table 4) were 

collected in real time once at the end of every sampling interval (  = 25 s) and then used as the initial ∆𝑡

conditions for the respective ANNs in the next iteration of the shrinking horizon optimization. This is 

summarized in Figure 6b, where the feedback between the plant model and the shrinking horizon 

optimization is represented by the dotted line and the feedback between the plant and the ANN models 

is represented by the dashed line. Figures 10-12 and Table 4 summarize the results of the study. 
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Table 4: The performance of ANN models for the case with online measurements and  = 25 s.∆𝑡

 𝕋(𝑡𝑛)
(K)

𝕏(𝑡𝑛)  𝐺𝑟𝐴𝑁𝑁
(ML/s)

 𝐺𝑟𝑘𝑀𝐶
(ML/s)

 𝑅𝐴𝑁𝑁(𝑡𝑛)
(ML)

 𝑅𝑘𝑀𝐶(𝑡𝑛)
(ML)

 = 1.8 ML𝑅 ∗ 1200 1.22×10-6 31.66 31.57 1.80 1.79
 = 3.0 ML𝑅 ∗ 1106 4.00×10-6 36.38 36.24 3.00 2.97
 = 5.0 ML𝑅 ∗ 1006 4.00×10-6 36.66 36.53 5.33 5.96

Figure 10: Optimal profiles of  and  and the responses in  and , with online measurements,  = 25 s,  = 1.8 ML 𝕋 𝕏 𝑅 𝐺𝑟 ∆𝑡 𝑅 ∗

Figure 11: Optimal profiles of  and  and the responses in  and , with online measurements,  = 25 s,  = 3.0 ML 𝕋 𝕏 𝑅 𝐺𝑟 ∆𝑡 𝑅 ∗

Figure 12: Optimal profiles of  and  and the responses in  and , with online measurements,  = 25 s,  = 5.0 ML 𝕋 𝕏 𝑅 𝐺𝑟 ∆𝑡 𝑅 ∗
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Unlike in Figures 7-9, the time-varying profiles of  appear discontinuous because every 25 seconds 𝑅𝐴𝑁𝑁

the measurement from the multiscale model was provided as the initial condition for the neural network 

predictions. We observed close agreement between  and  values for  = 1.8 ML (1.80 𝑅𝐴𝑁𝑁(𝑡𝑛) 𝑅𝑘𝑀𝐶(𝑡𝑛) 𝑅 ∗

ML vs 1.79 ML, respectively, see Table 4 and Figure 10) and  = 3.0 ML (3.00 ML vs 2.97 ML, respectively, 𝑅 ∗

see Table 4 and Figure 11). The growth rate predictions obtained using ANN and the stochastic multiscale 

model also exhibited good agreement. Furthermore, the final temperatures  obtained for the case 𝕋(𝑡𝑛)

with online measurements were identical (rounded to nearest integer) to the case without the online 

measurement for each roughness target . Since the targets  = 1.8 ML and  = 3.0 ML were satisfied 𝑅 ∗ 𝑅 ∗ 𝑅 ∗

by the plant, the ANNs were shown to provide highly accurate predictions for the low-noise regime of the 

multiscale model. 

However, the target  = 5.0 ML (see Figure 12) was not satisfied, neither by the ANN model nor by the 𝑅 ∗

plant. The mismatch between ANN roughness predictions and the data from the plant was significant: 

 was 5.33 ML and  was 5.96 ML, as per Table 4. Unlike in the previous scenario, here 𝑅𝐴𝑁𝑁(𝑡𝑛) 𝑅𝑘𝑀𝐶(𝑡𝑛)

the online measurements were supplied as the initial conditions for the ANN. While the temperature was 

set to 800 K (until 325 seconds of batch time,  13), the ANN predictions were not able to detect an 𝑖 ≤

issue, expecting to meet the roughness constraint of 5.0 ML because the ANN overpredicted the rate of 

dynamic response of the model in the noisy regime. As depicted in Figure 12, as the temperature started 

to be increased (at 326 seconds of batch time,  14), the initial conditions for the shrinking horizons 𝑖 ≥

started to be higher than previously anticipated by the ANN for roughness. Consequently, not only did the 

plant exceed the roughness constraint of 5.0 ML, but so did the ANN model, because the mismatch 

between the plant measurements and the ANN was too great for the ANN to overcome and reach the 

roughness target of 5.0 ML while abiding by the constraint on the maximum temperature increase 

between two successive sampling intervals (i.e.  = 50 K). Since the temperature ramp began late in the ∆𝕋
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time horizon, there were not enough decisions left to continue to increase the temperature to meet the 

 = 5.0 ML requirement. 𝑅 ∗

Note that for online optimization with embedded ANNs it may be necessary to use more efficient 

nonlinear programming and dynamic optimization software (e.g. DONLP2, IPOPT, etc.) instead of 

MATLAB’s fmincon function, particularly if the computational resources are limited. It was observed that 

the shrinking horizon optimization problem’s CPU time and the solution accuracy were sensitive to the 

solver type and the specified tolerances, as well as the accuracy of the initial guess. For example, with the 

tolerance of 10-6 (i.e. the default fmincon value), 75 seconds of CPU time were required initially and the 

CPU time for optimization decreased to less than 25 seconds only when there remained 7 (or less) 

decisions to be made on the shrinking horizon. However, with the first order optimality tolerance set to 

10-1, the optimization required approximately 15 seconds of CPU time to make the initial prediction of 

optimal control actions, but the average growth rate decreased by approximately 15% compared to the 

presented solutions. Furthermore, when the active set algorithm was used instead of interior point and 

the initial guess was close to the optimal solution, the CPU time at the start of optimization was less than 

3 seconds and the manipulated variables’ profiles were optimal. Therefore, the optimization tuning 

parameters will need to be adjusted based on the problem under consideration and the goals to be 

achieved by NMPC.

4.3 Scenario C: Disturbance rejection

Furthermore, we present a variation of the scenario B (section 4.2), where we studied the effect of a large 

disturbance in both manipulated variables. Using the same optimization procedure as in section 4.2, we 

added a disturbance not seen during ANN training. For the sampling interval  = 4, i.e. the interval that 𝑖

started at 76 s, disturbances to both the temperature and the precursor mole fraction were introduced 

and held constant for the entire interval; the disturbances were 3 times greater than the maximum 
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allowed amount during data generation and training, i.e. the change in  was 150 K and the change in  𝕋 𝕏

was -1.5×10-6. Note that online measurements from the plant continued to be collected and provided to 

the ANN models with the sampling interval of  = 25 s. Also, the manipulated variables were again held ∆𝑡

constant for the duration of each sampling interval. Since the online measurements of the observables  𝑅

and  were used by the shrinking horizon optimization as initial conditions on every iteration, any 𝐺𝑟

disturbances to the observables were captured by the NMPC framework. After obtaining the 

measurements, the framework chose the control actions that best satisfied the objective function and the 

constraints of equation (17) while accounting for the measured  and  through the initial conditions. 𝑅 𝐺𝑟

The results have been summarized in Table 5 and Figures 13-15. 

Table 5: The performance of ANN models for the case with online measurements, disturbance at 76 s and  = 25 s.∆𝑡

 𝕋(𝑡𝑛)
(K)

𝕏(𝑡𝑛)  𝐺𝑟𝐴𝑁𝑁
(ML/s)

 𝐺𝑟𝑘𝑀𝐶
(ML/s)

 𝑅𝐴𝑁𝑁(𝑡𝑛)
(ML)

 𝑅𝑘𝑀𝐶(𝑡𝑛)
(ML)

 = 1.8 ML𝑅 ∗ 1200 1.22×10-6 29.94 29.90 1.80 1.77
 = 3.0 ML𝑅 ∗ 1106 4.00×10-6 34.65 34.55 3.00 2.86
 = 5.0 ML𝑅 ∗ 1006 4.00×10-6 34.96 34.88 5.06 6.58

Figure 13: Optimal profiles and the responses, with online measurements and a disturbance,  = 25 s,  = 1.8 ML∆𝑡 𝑅 ∗
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Figure 14: Optimal profiles and the responses, with online measurements and a disturbance,  = 25 s,  = 3.0 ML ∆𝑡 𝑅 ∗

Figure 15: Optimal profiles and the responses, with online measurements and a disturbance,  = 25 s,  = 5.0 ML∆𝑡 𝑅 ∗

It can be seen from the optimal profiles in Figures 13-15 that ANNs reacted to disturbances efficiently by 

decreasing the temperature and increasing the precursor mole fraction during the time from 101 seconds 

to 150 seconds (i.e. intervals  = 5 and 6) back to the original settings before manipulating the control 𝑖

inputs again later in order to meet the roughness target. This robustness to disturbances which were not 

seen during ANN models’ development is a beneficial feature for online process control, where 

unexpected disturbances may significantly affect plant operations. However, due to poor performance in 

the noisy regime, the  = 5.0 ML target (see Figure 15) was not met neither by the ANN model for 𝑅 ∗

roughness (5.06 ML was the value of , as per Table 5), nor by the plant (6.58 ML was the 𝑅𝐴𝑁𝑁(𝑡𝑛)

measured , per Table 5).𝑅𝑘𝑀𝐶(𝑡𝑛)

4.4 Scenario D: Decreasing the sampling interval 

To further investigate the ANN’s behaviour at high roughness values, we attempted to mitigate the issue 

of ANN underprediction of the final measured roughness for the target  = 5 ML by decreasing the 𝑅 ∗
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sampling interval  to 10 seconds instead of 25 seconds, making  = 45 for the total batch time of 450 s. ∆𝑡 𝑛

Measurements from the plant were collected and provided to the ANN models every 10 seconds. The 

results have been provided in Table 6 and Figure 16. 

Table 6: The performance of ANN models for the case with online measurements and  = 10 s. For brevity, only the results for ∆𝑡
 = 5.0 ML are reported. 𝑅 ∗

 𝕋(𝑡𝑛)
(K)

𝕏(𝑡𝑛)  𝐺𝑟𝐴𝑁𝑁
(ML/s)

 𝐺𝑟𝑘𝑀𝐶
(ML/s)

 𝑅𝐴𝑁𝑁(𝑡𝑛)
(ML)

 𝑅𝑘𝑀𝐶(𝑡𝑛)
(ML)

 = 5.0 ML𝑅 ∗ 1054 4.00×10-6 36.77 36.62 4.53 5.00

Figure 16: Optimal profiles and the responses, with online measurements,  = 10 s,  = 5.0 ML ∆𝑡 𝑅 ∗

Note that the training data was based only on  = 25 s. However, the ANNs are recursive: the future ∆𝑡

predictions depend only on the past predictions and the current manipulated variables, whereas the batch 

time is not an input to the ANNs. Hence, it is possible to use the ANN models for more frequent sampling. 

After decreasing the sampling interval, the ANN models tended to predict a faster response to 

temperature changes than what was actually observed from the full multiscale model. For this case,  𝑇(𝑡𝑛)

was 1,054 K (as per Table 6), higher than 1,006 K obtained previously for the scenarios A-C with  = 5.0 𝑅 ∗

ML. The obtained  was 5.00 ML (see Table 6 and Figure 16), and  was even lower (4.53 𝑅𝑘𝑀𝐶(𝑡𝑛) 𝑅𝐴𝑁𝑁(𝑡𝑛)

ML, see Table 6). Therefore, decreasing the sampling interval duration to  = 10 s was conducive to ∆𝑡

meeting the  = 5.0 ML constraint. While in this case the target roughness specification was met by the 𝑅 ∗

plant, it should be noted that the stochastic noise present at the temperatures of approximately 1,050 K 
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(and below) may also produce roughness values greater than 5.0 ML. Also, it should be emphasized that 

 = 5.0 ML is a relatively high roughness value and that industrial applications require smoother films, 𝑅 ∗

for which situations the ANN models have demonstrated accurate predictions and reliable performance 

(see the results in sections 4.1-4.3). Note that lower roughness targets (1.8 ML and 3 ML) were tested for 

this case and satisfactory performance was observed, but the results are not shown here for brevity. 

5. Conclusions
In this study, multiple-input single-output nonlinear autoregressive artificial neural networks (ANNs) with 

external input were developed to predict the responses of a stochastic multiscale chemical engineering 

system and subsequently conduct online shrinking horizon nonlinear model predictive control (NMPC). A 

model of thin film formation by chemical vapour deposition was used as the case study. The manipulated 

variables were the substrate temperature and the inlet precursor mole fraction, whereas the response 

variables of interest were the thin film roughness and growth rate. The ANN models captured system 

behaviour very accurately in the low-noise (i.e. high temperature) regimes and provided orders-of-

magnitude computational savings over the full multiscale model. Furthermore, the ANN models provided 

good closed-loop performance since they were able to reject and compensate for the disturbances to the 

manipulated variables that were three times greater than what was seen in the ANN training data. The 

recommendations for future work include training the ANNs under parametric uncertainty and 

conducting moving horizon estimation as well as parameter and state estimation using the ANN models. 
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Highlights 

 Artificial Neural Networks (ANNs) were trained on stochastic multiscale model data 
 ANNs were used in online nonlinear model predictive control scheme
 ANNs provided accurate predictions for industrially relevant observable values 
 ANN computational costs were orders of magnitude lower than the original model
 The accuracy of ANNs deteriorated for observable values subject to stochastic noise
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