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Abstract

The need for lightweight cryptographic primitives to replace the traditional standardized

primitives such as AES, SHA-2 and SHA-3, which are unrealistic in constrained environments,

has been anticipated by the cryptographic community for over a decade and half. Such

an anticipation came to reality by the apparent proliferation of Radio Frequency Identifiers

(RFIDs), Internet of Things (IoT), smart devices and sensor networks in our daily lives. All

these devices operate in constrained environments and require reasonable efficiency with low

implementation costs and sufficient security. Accordingly, designing lightweight symmetric

key cryptographic primitives and analyzing the state-of-the-art algorithms is an active area of

research for both academia and industry, which is directly followed by the ongoing National

Institute of Standards and Technology’s lightweight cryptography (NIST LWC) standardiza-

tion project. In this thesis, we focus on the design and security analysis of such primitives.

First, we present the design of four lightweight cryptographic permutations, namely

sLiSCP, sLiSCP-light, ACE and WAGE. At a high level, these permutations adopt a Nonlinear

Feedback Shift Register (NLFSR) based design paradigm. sLiSCP, sLiSCP-light and ACE

use reduced-round Simeck block cipher, while WAGE employs Welch-Gong (WG) permutation

and two 7-bit sboxes over the finite field F27 as their underlying nonlinear components. We

discuss their design rationale and analyze the security with respect to differential and linear,

integral and symmetry based distinguishers using automated tools such as Mixed Integer

Linear Programming (MILP) and SAT/SMT solvers.

Second, we show the applications of these permutations to achieve Authenticated Encryp-

tion with Associated Data (AEAD), Message Authentication Code (MAC), Pseudorandom

Bit Generator (PRBG) and Hash functionalities. We introduce the idea of the unified round

function, which, when combined in a sponge mode can provide all the aforementioned func-

tionalities with the same circuitry. We give concrete instantiations of several AEAD and hash

schemes with varying security levels, e.g., 80, 96, 112 and 128 bits. Next, we present Spoc, a

new AEAD mode of operation which offers higher security guarantees compared to traditional

sponge-based AEAD schemes with smaller states. We instantiate Spoc with sLiSCP-light

permutation and propose another two lightweight AEAD algorithms. Notably, 4 of our pro-

posed schemes, namely ACE, Spix, Spoc and WAGE are round 2 candidates of NIST’s LWC
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project.

Finally, we present cryptanalytic results on some lightweight ciphers. We first analyze the

nonlinear initialization phase of WG-5 stream cipher using the division property based cube

attack, and give a key recovery attack on 24 (out of 64) rounds with data and time complexities

26.32 and 276.81, respectively. Next, we propose a novel property of block ciphers called

correlated sequences and show its applications to meet-in-the-middle attack. Consequently, we

give the best key recovery attacks (up to 27 out of 32 rounds in a single key setting) on Simon

and Simeck ciphers with block and key sizes 32 and 64 bits, respectively. The attack requires

3 known plaintext-ciphertext pairs and has a time complexity close to average exhaustive

search. It is worth noting that variants of WG-5 and Simeck are the core components of

aforementioned AEAD and hash schemes. Lastly, we present practical forgery attacks on

Limdolen and HERN which are round 1 candidates of NIST LWC project. We show the

existence of structural weaknesses which could be exploited to forge any message with success

probability of 1. For Limdolen, we require the output of a single encryption query while for

HERN we need at most 4 encryption queries for a valid forgery. Following our attack, both

designs are eliminated from second round.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Over the past few years, there has been an overwhelming surge in development of Internet

of Things (IoT) including Radio Frequency Identifiers (RFIDs), smart devices and sensor

networks. The IoT connects an extraordinarily wide spectrum of devices ranging from personal

computers to remote servers to smart devices (e.g., smart watches, smart speakers, home

automation) to embedded systems. The RFIDs such as Electronic Product Code (EPC) tags

[6] are typically used in identification of market products, while sensor networks monitor

the physical environment (e.g., weather forecast, industrial process on site) by connecting a

network of sensors to a central hub. It is expected that the number of such devices will be

more than 20 billion by 2020 with an approximate market value of 7.1 trillion US dollars [75].

All these devices collect and transmit a huge volume of data which may risk the privacy

of users. Therefore, attaining proper security goals is the primary requirement. In particular,

the transmitted data needs to be encrypted and/or authenticated. Additionally, such devices

operate in varying environments and thus have different resource and performance require-

ments. For example, EPC tags [6, 80] are highly constrained in terms of physical implemen-

tation area and power consumption, while vehicular embedded systems require a very low

latency and real-time response [84]. Sensor networks mostly operate on low power batteries

(e.g., solar energy). For IoTs, low latency and/or high throughput are required. Accordingly,

the three metrics, namely 1) security and functionalities: encryption, authentication or both;

2) resource constraints: area and code size (in case of software); 3) performance: latency,
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power consumption, throughput and RAM size, define lightweight crytpography which aims to

find a balance of trade-off among them. In simple words, lightweight cryptography is about

designing secure cryptographic primitives for resource constrained applications.

Designing an algorithm with optimal metrics for constrained environments is a challenging

task. The current National Institute of Standards and Technology (NIST) approved standards

such as AES [102], SHA-2 [103] and SHA-3 [104] perform well in desktop and server environ-

ments but not in resource constrained devices. For example, AES round-based hardware cost

is too high in Gate Equivalents (GE). The hash functions SHA-2 and SHA-3 with state sizes

512 and 1600 bits have large memory and area requirements. In this context, designing algo-

rithms which fit the resource constrained scenarios and can outperform the current standards

remains an active area of research. Starting from the eSTREAM project [4] to Competition

for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) [1] to the

ongoing NIST lightweight cryptography (NIST LWC) standardization project [5], numerous

lightweight symmetric key primitives such as stream ciphers, block ciphers, hash functions

and authenticated encryption with associated data (AEAD) algorithms have been proposed.

The stream ciphers expand a fixed length secret key to long keystream sequence using a

Pseudorandom Bit Generator (PRBG) based on Nonlinear Feedback Shift Register (NLFSR)

design paradigm. Examples of lightweight stream ciphers include Grain [73], Trivium [53],

Micky [20], WG [101], Plantlet [99] and Lizard [72]. Block ciphers take an n-bit plaintext and

κ-bit (κ ≥ n) secret key as input and output a random looking n-bit ciphertext after iterating

the round function multiple times. Such a round function can be designed using the two well

known constructions, namely Feistel structure and Substitution Permutation Network (SPN).

Examples of lightweight block ciphers with a Feistel round are TEA [132], Hight [74], Twine

[125], Simon and Speck [23] and Simeck [135], while LED [71], PRESENT [42], EPCBC [136],

Prince [43], Skinny [25], GIFT [21] and Craft [26] are based on an SPN round function.

A cryptographic hash function takes an arbitrary length message as an input and output a

short fixed length fingerprint of the message. Their constructions rely on stream ciphers, block

ciphers or cryptographic permutations. Examples of lightweight hash functions that utilize

cryptographic permutation encompass Keccak (smaller versions) [37], Photon [70], Quark [17],

Spongent [41] and Gimli [29]. On the other hand, an AEAD scheme provides integrity and

authenticity in addition to confidentiality. Such schemes are constructed by using stream

ciphers, block ciphers or cryptographic permutations in a mode, e.g., GCM [96], OCB [114],

OCB3 [88] and sponge [31]. A majority of the NIST LWC round 2 candidates are based on

sponge mode or its variants. A few examples are Ascon [60], ACE [7], Gimli [29], PHOTON-

Bettle [22], SPARKLE [24], SPIX [13], SpoC [12], Spook [28], Subterranean 2.0 [51], WAGE [8]

and Xoodyak [50].

Although lightweight, the aforementioned schemes vary in hardware and software perfor-

mances because of structural differences. In particular, the choice of the round function, i.e.,
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Feistel or SPN, together with the number of rounds determine the performance. A Feistel

round is cheaper in hardware than an SPN round but has slower diffusion. Low number

of rounds is good for high throughput but may not guarantee security against generic at-

tacks. Thus, there exist a multitude of options which needs to be analyzed thoroughly for a

lightweight design.

1.2 Thesis Contributions

This thesis presents research contributions in the area of lightweight cryptography including

both the design and cryptanalysis. We push the design limits to low hardware area and

power consumption with efficient software performance. Consequently, we propose the design

of four lightweight cryptographic permutations: sLiSCP, sLiSCP-light, ACE and WAGE.

Another aspect is the design of ‘one-for-all ’ unified round function in a sponge mode which

can provide multiple cryptographic functionalities with a cheap hardware overhead (extra cost

for control logic only). Our proposed AEAD and hash algorithms have better or comparable

performance relative to existing symmetric key primitives at the same security level. Notably,

four of the NIST LWC round 2 candidates, namely ACE, Spix, Spoc and WAGE are the

contribution of this thesis. From a cryptanalysis perspective, a novel contribution is the idea

of correlated sequences and their applications to meet-in-the-middle attack, which resulted

in best key recovery attacks on NSA’s cipher Simon-32/64 and its variant Simeck-32/64. In

addition, we find forgery attacks on NIST LWC round 1 candidates Limdolen and HERN. As

a result, these algorithms are removed from the second round of the competition.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 provides the preliminaries and

related work. We give the mathematical description of symmetric key primitives and generic

cryptanalysis techniques. We also discuss the metrics that define lightweight cryptography

and introduce our design principles.

The thesis is then divided into three parts: 1) Design of lightweight cryptographic permu-

tations (Chapters 3-5), 2) Mode of operations for AEAD and Hash (Chapters 6 and 7), and

3) Cryptanalysis of lightweight symmetric key primitives (Chapters 8-10).

In Chapter 3, we propose sLiSCP and sLiSCP-light family of permutations which utilize

unkeyed reduced-round Simeck block cipher as their building block. We provide an in-depth

security analysis of Simeck, and hence sLiSCP and sLiSCP-light, using automated tools.

Chapter 4 introduces ACE which is a generalized version of sLiSCP and sLiSCP-light. We

present its detailed security analysis along with the design rationale. In Chapter 5, we propose

WAGE, a lightweight permutation based on the WG family of stream ciphers. We show that
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simple tweaks can transform WAGE to the original WG cipher. We further discuss its security

analysis and justify our design choices.

Chapter 6 introduces the idea of the unified round function for a sponge mode. We show

its adaptability to multiple cryptographic functionalities with a low hardware overhead. We

give the generic descriptions of AEAD and hash algorithms, and present several instances of

these algorithms with varying security levels using sLiSCP, sLiSCP-light, ACE and WAGE

permutations. In Chapter 7, we present a new AEAD mode of operation called Spoc, and its

two instantiation using sLiSCP-light.

Chapter 8 presents a key recovery attack on the reduced-round WG-5 stream cipher using

the division property based cube attacks. In Chapter 9, we propose a novel property of block

ciphers called correlated sequences. We show their applications to meet-in-the-middle attacks,

and then provide key recovery attacks (27 out of 32 rounds) on two lightweight block ciphers

Simon-32/64 and Simeck-32/64 in a single key setting. Chapter 10 presents the practical

forgery attacks on two NIST LWC round 1 candidates Limdolen and HERN.

Finally, Chapter 11 concludes the thesis with possible future research directions.
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2.1 Notation

We denote by F2 the finite field consisting of {0, 1}. For a positive integer n, Fn2 and F2n

denote the n dimensional vector space over F2 and an extension field over F2 defined using a

irreducible polynomial over F2 of degree n, respectively. Let Cs represent the coset modulo

2n − 1, i.e., Cs = {s, 2s, . . . , 2ns−1s} where ns is the smallest number such that s ≡ 2nss mod

2n − 1, and s is the smallest number in Cs, and denoted as the coset leader.

We use {0, 1}n, {0, 1}? and ε to denote the set of all length n, variable length and empty

bitstrings, respectively. For any string X ∈ {0, 1}?, |X| denotes the length of X in bits

and by (X0, · · · , Xl−1)
n←− X we refer to the n-bit block parsing of X where |Xi|= n for

0 ≤ i ≤ l − 2 and 1 ≤ |Xl−1|≤ n. By X
$←− {0, 1}n, we mean a random n bitstring drawn

from {0, 1}n. We write X in bits as (x0, x1, · · · , x|X|−1). For strings X and Y , the operations

X�Y,X⊕Y,X|Y,X||Y and < X,Y > denote the bitwise AND, XOR, OR, concatenation and

scalar product of X and Y , respectively. Moreover, L(·) denotes the left cyclic shift operator,

i.e., for x ∈ {0, 1}n, Li(x) = (xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1).

We use Pr(X = x) to denote the probability that a random variable X equals x. By

Pr(X0 = x0, X1 = x1, . . . , Xl−1 = xl−1) we refer to the joint probability of random variables

X0, X1, . . . , Xl−1 taking values x0, x1, . . . , xl−1, respectively. Pr(A|B) denotes the conditional
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probability of A given B. Furthermore, the symbol X ∼ U({0, 1}n) denotes that X follows a

uniform distribution over {0, 1}n. Finally, the secret key space is denoted by K.

Note that we use ’+’ and ’⊕’ and ’
⊕

’ interchangeably throughout this chapter, if the

meaning is clear in context.

2.2 Modern Cryptography

Cryptography, the word derived from two Greek words kryptos meaning “hidden secret”

and graphein meaning “to write”, is the science of secret communications in the presence

of malicious adversaries. The history dates back to 2000 B.C with its initial use as secret

hieroglyphics by Egyptians [81]. Other historic examples include Caesar and Vignere ciphers,

and German Enigma used in World War II. Although the former ciphers could preserve

the secrecy, they got attacked with the advent in computing power. Cryptography has now

evolved to modern cryptography which is based on hard mathematical problems such as integer

factorization, discrete logarithm or one-way functions, i.e., recovering a secret key which lies

in an exponential search space.

In the following, we give a high level overview of the fundamental problem in modern

cryptography and its major branches.

2.2.1 The fundamental cryptographic problem and goals

Consider two parties Alice and Bob1. Let’s say Alice has a message x which she wants to send

to Bob over the insecure channel, e.g., internet. If Alice sends x as it is to Bob (Figure 2.1),

then an adversary Eve knows the message in plaintext. Eve could further change x to x′

and then send x′ to Bob. In this case, Bob is unaware of the modification and cannot

ensure whether the message is coming from Alice or Eve. Furthermore, on receiving the

exchanged message, Alice or Bob cannot deny it. Thus, the fundamental problem in modern

cryptography is to address these issues and achieve secure communication over a insecure

channel. More precisely, a secure communication requires the following four goals.

Alice insecure channel Bob

Eve

x x

x

x′

Figure 2.1: Communication over insecure channel

1In real world Alice and Bob could be laptops, smartphones, servers or IoT devices.
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1. Confidentiality. For a passive adversary, i.e., an adversary who is only listening over

the channel, it must be infeasible to learn any information about the message x. In particular,

no one except the sender (Alice) and receiver (Bob) learns x.

2. Integrity. It must be infeasible for an active adversary, i.e., an adversary who modifies

the message x to x′, to have x′ be accepted. In other words, any changes in the exchanged

messages are easily detectable by Alice or Bob.

3. Authenticity. For an active adversary, it must be infeasible to impersonate the identity

of sender or receiver by modifying the message or creating a complete new message. In

particular, Alice and Bob should be able to detect that the exchanged messages are originating

from either of them or from an adversary. Note that there is a subtle difference between

integrity and authenticity. For integrity, any changes in the message should be detectable,

while authenticity requires that message is exactly the same as it was sent.

4. Non-repudiation. For the above three properties, we have considered that Alice and

Bob are honest and Eve is the adversary. What if either of Alice or Bob acts as an adversary?

In this case, we require that a denial in the commitment of exchanged messages by either

of them is easily detectable. Note that this property can only be achieved by asymmetric

cryptography.

2.2.2 Branches of cryptography

Cryptography is mainly divided into symmetric cryptography and asymmetric cryptography

(Figure 2.2), based on which party/parties hold the secret key. A third branch often termed

as crytographic protocols use the former two cryptographic approaches as building blocks. We

now describe each of the them in detail as follows.

Cryptography

Symmetric
cryptography

Asymmetric
cryptography

Cryptographic
protocols

Figure 2.2: Branches of cryptography

2.2.2.1 Symmetric cryptography

As the name suggests, both sender and receiver hold the same secret key k. To send a

message x, Alice uses an encryption function Enc which takes x and k as input and output
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a random looking y. Alice then sends y to Bob over the insecure channel. On receiving y,

Bob computes the decryption function Dec(y, k) which returns the message x as the output.

The entire procedure is depicted in Figure 2.3. In addition to classical encryption, symmetric

key cryptography can also provide data integrity and authentication (as described later in

Section 2.3).

Alice Enc insecure channel Dec Bob

Eve

k k

x y y x

y

Figure 2.3: Symmetric key encryption and decryption

Remark 2.1. The shared secret key could be obtained via some secure channel. In real

applications, it is done through a combination of asymmetric cryptography and certificates

(e.g., Diffie Hellman key exchange protocol [56] where public keys are certified by a trusted

CA). From now onwards, when we talk about symmetric cryptography, we assume that only

Alice and Bob know the secret key independent of how they obtain it.

2.2.2.2 Asymmetric cryptography

In asymmetric or public-key cryptography, a user posses two keys, i.e., (pk, sk), namely public

key pk and private key sk. For a typical encryption such as RSA, Alice uses Bob’s public

key pkBob to encrypt a message. Bob then uses his private key skBob for decryption. This is

illustrated in Figure 2.4. In addition to classic encryption, asymmetric key cryptography can

be used for key establishment and digital signatures2.

Alice Enc insecure channel Dec Bob

Eve

pkBob skBob

x y y x

y

Figure 2.4: Asymmetric (public-key) encryption and decryption

2Non-repudiation can be achieved through digital signatures as private key is only known to the user who
signs the message.
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Remark 2.2. The hardness in asymmetric key cryptography is based on hard computational

problems such as integer factorization or discrete logarithm. For symmetric cryptography, it

is based on recovering the secret key which has an exponential search space in the length of

key.

2.2.2.3 Cryptographic protocols

Roughly speaking, a cryptographic protocol is a set of rules which uses symmetric and asym-

metric primitives as building blocks for secure communication. The Transport Layer Security

(TLS) protocol used in every modern-day web browser is such an example. It initially uses

asymmetric approach for key establishment, and then utilizes symmetric cryptography with

established keys for exchanging encrypted (and/or authenticated) messages (Chapter 8 [48]).

2.3 Symmetric Key Primitives

Symmetric key primitives are widely deployed cryptographic primitives in day-to-day life.

They have a wide range of applications, e.g., secure communications such as TLS 1.2/1.3,

IPSec and SSL, online and chip based payments, WIFI and sensor networks or RFIDs. Such

primitives typically offer three functionalities: confidentiality, data integrity and authenti-

cation. The major symmetric key primitives which offer these functionalities include stream

ciphers, block ciphers, hash functions, message authentication codes and authenticated encryp-

tion with associated data algorithms. In the following, we give a generic description of these

primitives.

2.3.1 Stream ciphers

A stream cipher encrypts/decrypts a message bit by bit (or byte by byte). The idea is to

expand a secret key with fixed length to large keystream. Mathematically, it is a function F
which takes a κ-bit secret key K and an n-bit initialization vector IV as input and output a

sequence of keystream bits z0, z1, . . . (Figure 2.5). The encryption and decryption is simply

done using bitwise XOR operation and given by

Encryption: ci = mi ⊕ zi
Decryption: mi = ci ⊕ zi

Assumption. For a fixed K, the public value IV should never be repeated otherwise the

keystream repeats and the confidentiality is completely lost.
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Alice

F

insecure channel

F

Bob

Eve

. . . ,m1,m0 . . . , c1, c0 . . . , c1, c0 . . . ,m1,m0

. . . , c1, c0

...
z1
z0

...
z1
z0

K

IV IV

K

κ κ

nn

Figure 2.5: Schematic of stream cipher encryption and decryption

Properties. The security properties of keystream highly depends on the choice of F . In

general, the following properties are needed.

1. Indistinguishability: It should be infeasible to distinguish an l-bit keystream from a

randomly drawn l-bit string from {0, 1}l.

2. Unpredictibility: Given l bits of keystream z0, . . . , zl−1, the difference between Pr(zl = 0)

and Pr(zl = 1) is negligible.

Sometimes we also require that keystream has a long period. Since it is difficult to guar-

antee a lower bound on the period (especially when F is an NLFSR [67, 68]), this property

is desirable but not easy to achieve.

Working procedure of F . F typically operates in two phases: 1) Key Initialization Phase

(KIA) and 2) Keystream Generation Phase (KSG). Both phases are explained below.

1. KIA phase: The state is first loaded with K, IV and some constants. Next, we update

the state for R rounds without producing any output.

2. KSG phase: Output the keystream bit and update the state. Repeat till the required

number of keystream bits are obtained.

Examples of F . A trivial example of F is an m-stage Linear Feedback Shift Register

(LFSR) defined using a degree m primitive poynomial over F2. It guarantees a period of

2m − 1, however such constructions are easily attacked using Berlekamp-Massey algorithm

with the knowledge of only 2m keystream bits. Other well known examples of F include

Grain [73], Trivium [53], WG [101], Acorn [133], Lizard [72] and Plantlet [99] which are based

on NLFSR or a combination of LFSR and NLFSR with a filtering function.
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2.3.2 Block ciphers

A block cipher is a deterministic algorithm which encrypts/decrypts a block of bits at a

time. In particular, it is a combination of two algorithms, an encryption algorithm E and

the decryption algorithm E−1. Let K be a κ-bit secret key, and P and C denote the n-bit

plaintext and ciphertext, respectively. Furthermore, assume κ ≥ n. A pictorial illustration of

block cipher is shown in Figure 2.6.

Alice E insecure channel E−1 Bob

Eve

K K

P C C P

C

n n nn

κ κ

Figure 2.6: Schematic of block cipher encryption and decryption

An encryption algorithm E is a function E : {0, 1}κ × {0, 1}n → {0, 1}n such that for

each K ∈ {0, 1}κ, the function EK : {0, 1}n → {0, 1}n is a permutation. The decryption

algorithm is symmetrical to the encryption algorithm. In addition, for correctness it should

satisy E−1K (EK(P )) = P for all P ∈ {0, 1}n and K ∈ {0, 1}κ.

Remark 2.3. There exists 2n! permutations which map n bits to n bits. A block cipher is

small subset of this set with 2κ permutations. In Chapters 3-5, we will look at the design of

cryptographic permutations.

In Figure 2.6, we have shown the encryption and decryption procedures for a single block.

However, in real applications, the message length is greater than n. There exist many ways

of encrypting a long message by using a block cipher in a mode.

2.3.2.1 Block cipher modes

Let K be fixed, IV be an n-bit public initialization vector, and assume that the message

length is always a multiple of block size n3. Figure 2.7 depicts the most commonly used

block cipher modes where blue and red colored boxes denote the encryption and decryption,

respectively. Note that OFB, CFB and counter modes are of stream cipher encryption using

block ciphers and may use only a portion of the output of EK depending on the length of the

last plaintext block.

3If not, we do the padding
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EK

Pi

Ci

E−1K

Ci

Pi

a) Electronic codebook mode (ECB)

EK EK

P0 P1

C0 C1

IV

E−1K E−1K

P0 P1

C0 C1

IV

b) Cipher block chaining mode (CBC)

EK

CiPi

Zi−1

EK

PiCi

Zi−1

Z0 = IV ,

Zi = EK(Zi−1), for i ≥ 1

c) Output feedback mode (OFB)

EK

CiPi

Zi−1

EK

PiCi

Zi−1

Z0 = IV ,

Zi = EK(Ci−1), for i ≥ 1

d) Cipher feedback mode (CFB)

EK

CiPi

Zi

EK

PiCi

Zi

Z0 = IV ,

Zi = Zi−1 + 1, for i ≥ 1

e) Counter mode

Figure 2.7: Block cipher modes of operation

2.3.2.2 Generic structures of block ciphers

Until now, we have seen the encryption and decryption procedures using a block cipher. We

now look into the structural details of EK and E−1K . As depicted in Figure 2.8, the encryption

(resp. decryption) algorithm is an iterative permutation where the output is obtained after

iterating the round function RF (resp. RF−1) R times. The round function takes n-bit

intermediate stage and κ′-bit round key (κ′ ≤ n) as input and produces an n-bit output.

The round keys ki are derived from the master key K using a Key Scheduling Algorithm.
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A typical design of round function is based on either Feistel or Substitution Permutation

Network (SPN) which are described below.

RF RF · · · RFP = x0 x1 x2 xR−1 xR = C

k0 k1 kR−1

Key Scheduling Algorithm

K

κ

κ′ κ′ κ′

n n

EK
ü

RF−1 RF−1 · · · RF−1C = x0 x1 x2 xR−1 xR = P

k0 k1 kR−1

Key Scheduling Algorithm

K

κ

κ′ κ′ κ′

n n

E−1K
ü

Figure 2.8: Block cipher as an iterative structure

Feistel round function. Roughly speaking, a Feistel round function process only half of

the bits in a single round. Let xi = x1i ‖x0i , x1i and x0i ∈ {0, 1}n/2, and S:{0, 1}n/2 → {0, 1}n/2
be a nonlinear function. Then, a single round of Feistel network is shown in Figure 2.9 and

computed as follows.

x1i+1 ← S(x1i )⊕ x0i ⊕ ki,
x0i+1 ← x1i .

For a Feistel round function, S does not have to be invertible. Thus, encryption and de-

cryption can be performed using the same round function by changing the order of round keys.

Notable examples of such construction are Lucifier [65], DES [121], Simon [23] and Simeck

[135]. This structure was later generalized into Type I, Type II and Type III Generalized

Feistel Structures (GFS) [140, 106]. The classic DES is an example of Type I GFS, while the

round function of Type II GFS with 4 branches is shown in Figure 2.10. Examples of GFS

13



S

x1i x0i

x1i+1 x0i+1

ki

n
2

n
2

κ′

n
2

x1i x0i

S

ki

Figure 2.9: Feistel round function (as an NLFSR on right)

based ciphers include RC6 [112], MARS [44], CAST-256 [10], HIGHT [74], TWINE [125] and

CLEFIA [119].

S

x3i x2i

x3i+1 x2i+1

S

x1i x0i

x1i+1 x0i+1

Figure 2.10: Type II GFS round function without round keys

SPN round function. Contrary to the Fesitel round, an SPN round function process all

bits in a single round. It is basically a composition of 3 layers, namely 1) AddRoundKey, 2)

Substitution layer and 3) Linear layer. The substitution layer divides the n-bit state into n
m

m-bit words and then applies the nonlinear invertible function S to each word4. The linear

layer then mixes the bits of the state in a word or bit wise fashion (Figure 2.11).

S S S S

S S S S

S S S S

S S S S

l l l l

xi

ki

Substitution
layer

Linear
layer

xi+1

Figure 2.11: SPN round function

4Here S is a m-bit to m-bit mapping
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Most notable example of an SPN round is the AES round function [52] where n = 128,

m = 8 and linear layer is the combination of ShiftRows and MixColumns operations. Other

examples with linear layer as bit permutation include lightweight block ciphers PRESENT

[42] and GIFT [21] where n = 64 and m = 4.

2.3.2.3 Tweakable block ciphers

Roughly speaking, a block cipher with a public value (referred to as tweak) as an input in

addition to plaintext and key is a tweakable block cipher (TBC) [91] (Figure 2.12). Mathe-

matically, it is a function E : {0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n such that for all key and

tweak pairs (K,TK) ∈ {0, 1}κ × {0, 1}t, E(K,TK) : {0, 1}n → {0, 1}n is a permutation. The

decryption algorithm is defined analogously.

E

P

C

K

TK
E−1

C

P

K

TK

Figure 2.12: Tweakable block cipher

The modes of operation and underlying structures of round function is similar to classic

block ciphers. The only difference is in the key scheduling algorithm which now gives tweakey

tki as the output in each round. Note that only TK value is public and not tki’s. Examples

include Skinny [25], Deoxys-BC [78] and CRAFT [26].

2.3.3 Hash functions

A cryptographic hash is an unkeyed primitive which takes an arbitrary length message as an

input and output a short fixed length fingerprint of the message. The fingerprint is often

called as a hash value or message digest.

Security properties. A hash function H : {0, 1}? → {0, 1}n should satisy the following

properties.

1. Preimage resistance: Given a message digest y ∈ {0, 1}n, it is infeasible to find x such

that H(x) = y.

2. Collision resistance: It is infeasible to find any two messages x1 6= x2 such that H(x1) =

H(x2).

3. Second preimage resistance: Given x1, and thus H(x1), it is infeasible to find any x2

such that x1 6= x2 and H(x1) = H(x2).
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2.3.3.1 Merkle-Damg̊ard construction

The Merkle-Damg̊ard construction is a well known method to construct a hash function using

a one-way compression function. Let f be a compression function and M0, · · · ,Ml−1 be l

blocks of message M obtained after padding. The hash value is computed as follows.

H−1 = constant

Hi ← f(Hi−1,Mi), for 0 ≤ i ≤ l − 1

H(M) = Hl−1

This procedure is shown in Figure 2.13. Examples of such hash functions are MD5 [111] and

SHA-1 [61].

f f f

M0 M1 Ml−1

H−1 H0 Hl−2 Hl−1

· · ·

Figure 2.13: Merkle-Damg̊ard hash construction

2.3.3.2 Hash functions from block ciphers

Block ciphers can be used in multiple ways to construct hash functions. Two such widely

known constructions are Davies-Meyer and Miyaguchi-Preneel hash modes. In Davies-Meyer

construction a message block is used as the key, while for Miyaguchi-Preneel mode the chaining

value Hi is taken as the key. For both constructions the initial chaining value H−1 is a fixed

constant and the last chaining value is taken as the message digest (Figure 2.14).

2.3.3.3 Sponge based hash

Sponge functions introduced by Bertoni et al. [31] take arbitrary length input and produce

an arbitrary length output. Their underlying primitive is a b-bit unkeyed cryptographic

permutation P where b = r + c and r denotes the rate part of state, while c is the capacity.

The message M after padding is divided into chunks of r-bit blocks which are then absorbed

into the state r bits at a time. This phase is called as absorbing phase. After all the message

blocks are processed, squeezing phase begins where r-bit digest is taken at a time until l = c
r

blocks are squeezed. Finally, the hash of message is given by H(M) = H0‖H1‖· · · ‖Hl−1. The

entire process is depicted in Figure 2.15.
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(b) Miyaguchi-Preneel

Figure 2.14: Block cipher based hash functions

0b P P P P P

M0 M1 H0 H1 Hl−1

pad(M) H(M)

· · ·

r

c

Absorbing phase Squeezing phase

Figure 2.15: Sponge based hash function

Hash functions such as SHA-3 winner Keccak [32], Photon [70], Quark [17] and Spongent

[41] are based on sponge construction with different permutations. In Chapter 6, we present

new lightweight hash functions which have better or comparable performance with all the

aforementioned hash functions at the same security level.

2.3.4 Message authentication codes

At a high level, a message authentication code (MAC) is a keyed hash function. A MAC

function MAC : {0, 1}? × {0, 1}κ → {0, 1}t takes arbitrary length message M and κ-bit secret

key as input and output a t-bit tag T which authenticates the message M . The receiver with

the knowledge of secret key and M computes the tag T ′. If T ′ equals T , then only the message

authentication is successful.

Examples of block cipher based MACs include CBC-MAC, PMAC [39] and CMAC [77],

while HMAC [27] is a hash based MAC. To use sponge based hash (Figure 2.15) as a MAC, we
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load the state with the secret key and public initialization vector and then call the permutation

P. Next, we absorb the message blocks and then extract the tag similarly to hash digest.

2.3.5 Authenticated encryption with associated data algorithms

The authenticated encryption with associated data algorithm (AEAD) provides confidential-

ity, integrity and authenticity at the same time. The AEAD algorithm AE is a combination

of two algorithms, an authenticated encryption algorithm AEenc and the verified decryption

algorithm AEdec. A high level overview of AE is illustrated in Figure 2.16 and described below.

AEenc
insecure channel
(N,AD,C, T )

AEdec

K

N

AD

M

C

T
K

N

AD

C

T

M or ⊥

Alice Eve Bob

Figure 2.16: Schematic of AEAD algorithm

An authenticated encryption algorithm AEenc takes as input a secret key K of length κ

bits, a public message number N (nonce) of size n bits, a block header AD (a.k.a, associated

data) and a message M . The output of AEenc is an authenticated ciphertext C of the same

length as M , and an authentication tag T of size t bits. Mathematically, AEenc is defined as

AEenc : {0, 1}κ × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with

AEenc(K,N,AD,M) = (C, T ).

The decryption and verification algorithm AEdec takes as input the secret key K, nonce N ,

associated data AD, ciphertext C and tag T , and outputs the plaintext M of the same length

as C only if the verification of tag is correct, and ⊥ (error symbol) if the tag verification fails.

More formally,

AEdec(K,N,AD,C, T ) ∈ {M,⊥}.

2.3.5.1 Constructions of AEAD

Figure 2.17 shows the three main approaches to construct an AEAD algorithm. They are 1)

Encrypt-then-MAC, 2) MAC-then-Encrypt and 3) Encrypt-and-MAC.
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Figure 2.17: Generic constructions of AEAD. Dotted line denotes that the input vary with
respect to specific instantiations of encryption and MAC algorithms.

Encrypt-then-MAC. The sender initially computes the ciphertext C and then uses it as

an input to MAC algorithm for the tag generation (Figure 2.17 (a)). For verification, the

receiver computes the tag first, and if it matches with the received tag, then only he decrypts

C.

MAC-then-Encrypt. In this case, tag T is computed first. Next, T and the plaintext

M are used as input to the encryption algorithm for generating C (Figure 2.17 (b)). For

verification, the receiver has to decrypt C to obtain M . The plaintext is then fed to the MAC

algorithm which outputs tag T ′. If T ′ equals T , then only verification is successful.
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Encrypt-and-MAC. In this approach, encryption and MAC computations are done in

parallel. However, similar to the MAC-then-Encrypt approach, a receiver has to perform

decryption first (Figure 2.17 (c)).

2.3.5.2 Mode of operations for AEAD

In the previous section, we have seen three different approaches of AEAD construction. How-

ever, both encryption and MAC procedures require a mode of operation to handle long mes-

sages. We now explain different AEAD modes based on block ciphers and sponge construction.

Block cipher based AEAD. Galois Counter Mode (GCM) [96], OCB [114] and OCB3

[88] are widely adopted AEAD modes of operation based on Encrypt-then-MAC paradigm.

Roughly speaking, all three modes adopt the counter mode of operation for encryption. For

OCB, the input and output of the block cipher is randomized by XORing a secret mask.

On the other hand, OCB3 uses a tweakable block cipher where the tweak value acts as a

counter. For OCB and OCB3, authentication is achieved by an additional call of primitive

after the processing of associated data and plaintext, while GCM authentication is based on

the evaluation of a polynomial function in a finite field. The exact structures of these modes

(for simplicity, only two full blocks are considered) are shown in Figures 2.18-2.20.

N

counter counter+1 counter+2

EK EK EK

M1

C1

⊗L

M2

C2

⊗L ⊗L

len(AD)‖len(C)

T

Auth

0n

EK

L

⊗L ⊗L

AD0 AD1

Auth

Figure 2.18: GCM mode where ⊗ denotes the finite field multiplication in F2n

Remark 2.4. The choice of secret masks (Figure 2.19) and tweaks (Figure 2.20) are crucial

to prevent forgery attacks and distinguishing different processing phases. In Chapter 10, we
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Figure 2.19: OCB mode where L(a,i), L(m,i) and Lt are secret masks obtained from N and K
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tk(m,1)
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E
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Auth
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Figure 2.20: OCB3 mode where tk(a,i), tk(m,i) and tkt are tweaks

present practial forgery attacks on some AEAD modes which exploit weaknesses in secret

masks.

Sponge based AEAD. A sponge based AEAD is a permutation based sequential mode of

operation. Let P be a b-bit permutation with b = r + c where r and c denote the rate and

capacity part of the state, respectively. The entire algorithm is divided into 4 phases which

are illustrated in Figure 2.21 and described below.
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Initialization Processing Associated data Encryption Tag Generation

Figure 2.21: Schematic of AEAD using sponge where da and dm are the domain separators.
For simplicity, we have considered the processing of two complete AD and M blocks that are
obtained after padding. Furthermore, tag size equals r.

1. Initialization: The state is first loaded with K and N , and then P is called once. The

goal is to have a random looking initial state after the single call of P.

2. Processing Associated data: Each r-bit AD block is XORed to the rate and then P is

applied. During the processing of last AD block, a domain separator da is XORed to

the capacity to indicate that the current block is the last block of associated data.

3. Encryption: Each r-bit M block is XORed to the rate which gives the ciphertext. Next,

the ciphertext block is fed to the state and then P is applied. While processing the

last block of M , a domain separator dm is XORed to the capacity to indicate that the

current block is the last message block.

4. Tag Generation/Finalization: The tag is extracted from the rate part of the state r-bits

at a time.

Figure 2.21 describes sponge based AEAD scheme at a very high level. There exists many

variants of the same structure with tweaks in the above mentioned 4 phases and domain

separators. A majority of NIST LWC round 2 candidates are based on the sponge construction

[5]. Chapters 6 and 7 present two such variants.

2.4 Generic Cryptanalysis Techniques

Cryptanalysis is the art of finding hidden aspects of a cryptographic primitive or a cryp-

tographic protocol that can be exploited by an attacker to learn something about the key

or the plaintext. It is a broad and never-ending field as attacks often get better with time.

Cryptanalysis is categorized into two major branches, namely mathematical cryptanalysis and
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implementation attacks. The former targets the mathematical structure while the later ex-

ploits side channel information such as power consumption or execution time to analyze a

cryptosystem. In both cases, to launch a attack, an attacker requires data, time and memory

storage which are called attack complexity metrics. The better the attack complextity metrics

the better is the attack.

In the following, we first explain different adversarial models5 and attack goals. Next, we

discuss generic attack techniques which are essential from designer’s perspective.

2.4.1 Adversarial models and goals

An adversarial model is the set of rules followed by an adversary for an attack. There are six

major adversarial models based on the type of data available to an adversary.

1. Ciphertext-only: Only ciphertexts.

2. Known-plaintext: The plaintexts and their corresponding ciphertexts.

3. Chosen-ciphertext: Adversary chooses a ciphertext C, queries it to the decryption oracle

and obtains the corresponding plaintext P .

4. Chosen-plaintext: Adversary chooses a plaintext P , queries it to the encryption oracle

and obtains the corresponding ciphertext C.

5. Adaptive-chosen-ciphertext: This is similar to chosen-ciphertext model. The only dif-

ference is that after observing N plaintext and ciphertext pairs (Mi, Ci) i = 1 to N , the

adversary adaptively chooses the next ciphertext based on the previous N pairs.

6. Adaptive-chosen-plaintext: This is a dual of adaptive-chosen-ciphertext. In this scenario,

the adversary adaptively chooses the next plaintext based on the previous N pairs.

Note that for ciphertext-only and known-plaintext models, there is no interaction with the

oracles. In addition, for each of these models it is necessary to define in which setting those

data are obtained.

• Single-key setting. Adversary obtains the data corresponding to a fixed secret key.

• Related-key setting. Adversary gets the victim or oracle to encrypt/decrypt with a

key that is related in a chosen way to the original key.

• Nonce-misuse setting. Adversary is allowed to repeat the nonce for both encryption

and decryption queries.

5Our focus here is on mathematical cryptanalysis
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• Nonce-respecting setting. Adversary is not allowed to repeat the nonce for an

encryption query. However, for a decryption query nonce can be repeated. This is

the case of forgery attacks when adversary tries to pass the verification by repeating

nonce and changing ciphertext and/or associated data.

Now, once the adversary has enough data corresponding to a particular setting and specific

model, he tries to achieve either of the following goals.

1. Distinguishing attack: In this scenario, the adversary tries to distinguish whether the

data he obtained is from the real world (i.e., the actual encryption/decryption oracle)

or the ideal world. In an ideal world, an idealized oracle outputs a fixed length string

by picking it randomly from the uniform distribution.

2. Key recovery attack or breaking the confidentiality, integrity or authenticity.

2.4.2 Differential cryptanalysis

Differential cryptanalysis is one of the most powerful cryptanalytic techniques against sym-

metric key primitives. It was proposed by Biham and Shamir [38] to cryptanalyze the block

cipher DES, and subsequently other ciphers. The attack exploits the fact that a single round

of a primitive is usually weaker than multiple rounds.

2.4.2.1 Basic idea and definitions

Let RF : {0, 1}n → {0, 1}n be an n to n bit vectorial boolean function and X ∼ U({0, 1}n).

The idea is to find a pair of input and output difference α and β ∈ {0, 1}n with α 6= 0 for

which the probability Pr(RF(X) + RF(X + α) = β) is maximum. For a random RF the

value is close to 2−n. In case RF is a cryptographic primitive, we aim to find (α, β) for which

it is greater than 2−n. The pair can then be used as a distinguisher or for key recovery attack

as described later. This value is often called differential probability and we formally define it

in Definition 2.1.

Definition 2.1 (Differential Probability (DP) [38, 107]). For a given α and β, the differential

probability is given by

Pr(RF(X) +RF(X + α) = β) =
|{x | RF(x) +RF(x+ α) = β}|

2n
.

Moreover, we call (α, β) a differential.

Typically, a cryptographic primitive is an iterative structure and the final output is ob-

tained after applying the round function RF multiple times (say r). Accordingly, we have a
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sequence of random variables ∆Y0,∆Y1, · · · ,∆Yr, which we call an r-round differential char-

acteristic (Figure 2.22). The differential characteristic satisfies

∆Yi = αi = xi + x′i, for 0 ≤ i ≤ r and

Pr(∆Yi = αi,∆Yi+1 = αi+1) > 0 for 0 ≤ i ≤ r − 1.

Computing the exact probability of an r-round differential characteristic is infeasible be-

cause of the exponential search space in n. A common approach is to exploit the properties

of the round function, compute the probability of a single round differential, assume the

independence of rounds, and then take the product of probabilities (Definition 2.2). By inde-

pendence of rounds, we mean that the differential probability of the output difference at the

(i+ 1)-th round depends only on the output difference at round i. Note that the assumption

of independence of rounds is not true in general (as we see later), however it provides a good

approximation in practice.

RF RF · · · RFx0 x1 x2 xr−1 xr

α0 α1 α2 αr−1 αr

RF RF · · · RFx′0 x′1 x′2 x′r−1 x′r

· · ·

Figure 2.22: r-round differential characteristic

Definition 2.2 (Differential Characteristic Probability (DCP)). Let r > 0 and ∆Y0 =

α0,∆Y1 = α1, · · · ,∆Yr = αr be an r-round differential characteristic. Assuming that all

rounds are independent, the r-round differential characteristic probability is given by

Pr(∆Y0 = α0,∆Y1 = α1, · · · ,∆Yr = αr) =
r−1∏
i=0

Pr(∆Yi = αi,∆Yi+1 = αi+1).

As an adversary, one is only interested in the differential (α0, αr) and not the intermediate

differences. This is because there might be multiple paths with the same input and output

difference. Thus, the probability of an r-round differential (α0, αr) is always at least the

probability of a single characteristic. We introduce the following definition to reflect this fact.

Definition 2.3 (r-round Differential Probability). For an r round differential (α0, αr), its

probability is given by

Pr(∆Y0 = α0,∆Yr = αr) =
∑

α1,...,αr−1

Pr(∆Y0 = α0,∆Y1 = α1, · · · ,∆Yr = αr).
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Remark 2.5. Definition 2.1 is a special case of Definition 2.3 with r = 1.

The phenomenon in Definition 2.3 is often termed differential effect. For simplicity, let

w = d−log2(DCP(·))e denote the weight of a differential characteristic. Then, an alternate

expression of an r-round differential is given by

Pr(∆Y0 = α0,∆Yr = αr) =
∑
i 6=0

si2
−i (2.1)

where si is the number of r-round differential characteristics with w = i.

2.4.2.2 Effect of round keys

RFk0 RFk1 · · · RFkr−1
x0 x1 x2 xr−1 xr

α0 α1 α2 αr−1 αr

RFk0 RFk1 · · · RFkr−1x′0 x′1 x′2 x′r−1 x′r

· · ·

Figure 2.23: r-round differential characteristic with keyed round function

In the previous definitions, we have ignored the effect of round key additions. However, the

round function RF is usually parameterized by a round key (e.g., block cipher). We denote

it by RFki where ki is the i-th round key and Ki is the random variable corresponding to ki.

Now, consider an r-round differential as shown in Figure 2.23. The main problem here is

that we need to compute the value of

Pr(∆Y0 = α0,∆Yr = αr | K0 = k0, · · · ,Kr−1 = kr−1) (2.2)

without the knowledge of secret key. Thus, in most of the cases, we are only able to compute

the value of Pr(∆Y0 = α0,∆Yr = αr) by assuming that

1. Ki ∼ U({0, 1}n) for all i.

2. For all i 6= j, Ki and Kj are independent random variables.

Remark 2.6. Both the above assumptions are not true in general as the round keys are

derived from the master key which has fixed size.

Furthermore, we have to assume that Pr(∆Y0 = α0,∆Yr = αr) is roughly same for almost all

keys. This additional condition is referred to as the hypothesis of stochastic equivalence.
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Definition 2.4 (Hypothesis of stochastic equivalence [90]). For an r-round differential (α0, αr)

Pr(∆Y0 = α0,∆Yr = αr | K0 = k0, · · · ,Kr−1 = kr−1) ≈ Pr(∆Y0 = α0,∆Yr = αr)

for almost all round keys k0, · · · , kr−1.

In practice, the above hypothesis may not hold as pointed out by Canteaut [45]. This

means a differential may have low probability on average but for some keys6 its probability

may be high.

2.4.2.3 Expected differential probabilities and Markov ciphers

Let Ek be a keyed cipher with r rounds, i.e. Ek(·) = RFkr−1 ◦ · · · ◦ RFk0(·).

Definition 2.5 (Expected Differential Probability (EDP) [90]). For an r-round differential

(α0, αr), the expected differential probability is given by

EDP(∆Y0 = α0,∆Yr = αr) =
1

|K|
∑
k∈K

Pr(Ek(X) + Ek(X + α0) = αr).

Definition 2.6 (Markov cipher (cf. Page 6 [90])). We say Ek is a Markov cipher if for all

0 ≤ i ≤ r − 1,

Pr(RFki(xi) +RFki(xi + αi) = αi+1 | Xi = xi) = Pr(RFki(xi) +RFki(xi + αi) = αi+1)

for all choices of xi and uniformly random chosen ki.

For a Markov cipher with all independent round keys, the EDP can be estimated as follows

EDP(∆Y0 = α0,∆Yr = αr) ≈ Pr(∆Y0 = α0,∆Yr = αr).

From Definition 2.5, it is clear that if one needs to compute EDP for a given (α0, αr), the

number of encryption queries is of order O(2n+|K|). By Markov assumption, this is reduced

to O(2n). The complexity is for a given (α0, αr), and is still not practical. Thus, an adversary

tries to find a differential characteristic with maximum probability rather than a differential.

The former is easier to compute, thanks to automated tools such as CryptoSMT and MILP

solvers [122, 2].

Let Vr denote the set of all r-round differential characteristics. Then, the Maximum

Expected Differential Characteristic Probability (MEDCP) is defined as follows.

6considered as weak keys
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Definition 2.7 (MEDCP [83, 58]). For a r-round Markov cipher Erk, its MEDCP is given by

MEDCP(Erk) = max
α0,···,αr∈Vr

r−1∏
i=0

Pr(∆Yi = αi,∆Yi+1 = αi+1)

We call a differential characteristic with probability equal to MEDCP(Erk) an optimal r-

round differential characteristic.

2.4.2.4 Differential distinguishers and key recovery attack

Consider a typical example of a block cipher with r rounds as shown in Figure 2.24. The

differential attack is a chosen plaintext/chosen-ciphertext attack. Thus, the adversary could

choose either of encryption or decryption oracle. We focus on the chosen-plaintext scenario

here. Let (α0, αr−1) be an (r − 1)-round differential with probability p > 2−n.

RF RF · · · RFx0 x1 x2 xr−1 xr

α0 α1 α2 αr−1 αr

k0 k1 k2 kr−1 kr

RF RF · · · RFx′0 x′1 x′2 x′r−1 x′r

· · ·

k0 k1 k2 kr−1 kr

Figure 2.24: Difference propagation for a typical block cipher

Distinguishing attack. The distinguishing attack works as follows.

Step 1 Choose a random x0. Query x0 and x′0 = x0 +α0 to the oracle, and obtain xr−1 and

x′r−1.

Step 2 Compute xr−1 + x′r−1.

Step 3 Repeat Step 1 and Step 2.

If the oracle is an encryption oracle, then after N trials, we expect that Np values in Step

2 satisfy xr−1 + x′r−1 = αr−1. For an ideal oracle, the output difference looks random. Thus,

on average N = 1
p plaintext-ciphertext pairs are needed for the distinguishing attack.

Key recovery attack. We now show how to exploit an (r − 1)-round differential distin-

guisher for an r round key recovery attack. Assume that the attacker obtains N plaintex-

t/ciphertext pairs (Pi, Ci) and (Pi + α0, C
′
i) for i = 1, . . . , N . The attack then proceeds as

follows.
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Step 1 Initialize an array of counter CNT with CNT[i] = 0 for i = 0, . . . , 2κ−1 where |kr|= κ′.

Step 2 For each of 2κ
′

guesses of kr and for each i, decrypt one round, and compute xr−1 =

RF−1(Ci + kr), x
′
r−1 = RF−1(C ′i + kr). If xr−1 + x′r−1 equals αr−1, increment the

corresponding key counter by 1.

Note that there might be false positives, i.e., wrong keys which satisfy xr−1+x′r−1 = αr−1.

Let p′ be the probability of false positives and assume that p′ � p. Since the differential

probability is p, we repeat the experiment N = c
p times for some constant c. Thus, one of the

counter values will be significantly higher (in fact, equal to c) than others. The corresponding

key is then considered as a right key candidate for kr.

Attack complexities. In Step 2, we do not guess all last round keys in an actual attack. We

exploit the properties of RF such as the sboxes which are affected by the difference (αr−1, αr).

The kr values are then guessed accordingly. Let N = c
p be the number of plaintext-ciphertext

pairs and l be the number of such keys. Then, the attack time complexity is N ×2l+1 1-round

decryptions. Note that this highly depends on RF .

2.4.3 Linear cryptanalysis

Linear cryptanalysis was introduced by Matsui and Atsuhiro [95] to cryptanalyze the FEAL

cipher. Contrary to the differential attack, it is a known-plaintext attack where an adversary

tries to approximate the output of the cipher with a linear boolean function of the input.

2.4.3.1 Basic idea and definitions

Let RF : {0, 1}n → {0, 1}n be an n to n bit vectorial boolean function and X ∼ Unif({0, 1}n).

The idea is to find a pair of input and output masks α and β ∈ {0, 1}n with α 6= 0 for which

the bias εα,β in the equation

Pr(< X,α >=< RF(X), β >) =
1

2
+ ε(α,β)

is maximum. Let R̂F(α, β) =
∑

x∈{0,1}n
(−1)<x,α>+<RF(x),β> denote the Fourier coefficient of

RF with respect to α and β. Then, an alternate form of computing bias in terms of square

correlation is defined in Definition 2.8.

Definition 2.8 (Square correlation (SC) [105]). For a given α and β, the square correlation

is given by

SC(α, β) =
(R̂F(α, β)

2n

)2
.

Moreover, we call (α, β) a linear hull.
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Analogous to an r-round differential characteristic, the linear masks form a sequence of

boolean random variables ∆Y0, . . . ,∆Yr where ∆Yi =< xi, αi > for i = 0, . . . , r. We call

it an r-round linear characteristic. Accordingly, we have the following definitions similar to

Definitions 2.2-2.7.

Definition 2.9 (Linear Characteristic Square Correlation (LCSC)). Let r > 0 and ∆Y0 =

α0,∆Y1 = α1, · · · ,∆Yr = αr be an r-round linear characteristic. Assuming that ∆Yi’s are

independent for all i, then the r-round linear characteristic square correlation is given by

SC(∆Y0 = α0,∆Y1 = α1, · · · ,∆Yr = αr) =

r−1∏
i=0

SC(∆Yi = αi,∆Yi+1 = αi+1).

Definition 2.10 (r-round Linear Hull Square Correlation (LHSC)). For an r-round linear

hull (α0, αr), its square correlation is given by

SC(∆Y0 = α0,∆Yr = αr) =
∑

α1,...,αr−1

SC(∆Y0 = α0,∆Y1 = α1, · · · ,∆Yr = αr).

The phenomenon in Definition 2.10 is often termed linear effect. For simplicity, let w =

d−log2(LCSC(·))e denote the weight of a linear characteristic. Then, an alternate expression

of an r-round linear hull is given by

SC(∆Y0 = α0,∆Yr = αr) =
∑
i 6=0

si2
−i (2.3)

where si is the number of r-round linear characteristics with w = i.

Definition 2.11 (Expected Linear Hull Square Correlation (ELHSC)). For an r-round linear

hull (α0, αr), the expected linear hull square correlation is given by

ELHSC(∆Y0 = α0,∆Yr = αr) =
1

|K|
∑
k∈K

SC(∆Y0 = α0,∆Yr = αr).

Definition 2.12 (Maximum Expected Linear Characteristic Square Correlation (MELCSC)).

Let Erk be a Markov cipher with r rounds and let Lr be the set of all r-round linear charac-

teristics. Then, MELCSC is given by

MELCSC(Erk) = max
α0,···,αr∈Lr

r−1∏
i=0

SC(∆Yi = αi,∆Yi+1 = αi+1)

We call a linear characteristic with probability equal to MELCSC(Erk) an optimal r-round

linear characteristic.
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2.4.3.2 Linear hull as a distinguisher

Let (α0, αr) be an r-round linear hull with square correlation greater than 2−n+1. The dis-

tinguishing attack work as follows.

Step 1 Initialize two counters CNT0 = 0 and CNT1 = 0.

Step 2 Query x0 and xr.

Step 3 Compute < x0, α0 > + < xr, αr >. If < x0, α0 > + < xr, αr > equals zero, increment

CNT0, else increment CNT1.

Step 4 Repeat Step 1 and Step 2.

For an ideal oracle, CNT0 and CNT1 are roughly equal to N
2 after N trials. However, CNT0

is biased in case of an encryption oracle, i.e., if the square correlation is p then CNT0 = N
2 + N√

p .

2.4.4 High order differential attacks

Recall Definition 2.1 of differential probability, i.e., Pr(RF(X) + RF(X + α) = β). Alter-

natively, it is the probability that first order derivative of RF at α equals β when X follows

a uniform distribution. The idea was generalized to higher order derivatives by Lai [89] and

later extended to integral attacks [85] and division propery based attacks [126]. The high level

idea of these attacks can be described as follows. Let f be a boolean function with algebraic

degree d, then its (d+ 1)-th order derivative is constant. In particular, evaluating f on 2d+1

points and then summing the output, the final sum is zero with probability 1.

2.4.4.1 Division property

We present a toy example (Table 2.1) before defining it formally in Definitions 2.13 and 2.14.

Let πu(x) : Fn2 × Fn2 → F2 be defined as πu(x) =
∏n−1
i=0 x

ui
i where u, x ∈ Fn2 and wu denotes

the hamming weight of vector u. For example: u = (101), then πu(x) = x12x
0
1x

1
0 = x2x0. If

x = (110) then πu(x) = 0. We observe that ∀ u satisfying

- wu < 3 =⇒
⊕
x∈F3

2

πu(x) = 0, and wu = 3 =⇒
⊕
x∈F3

2

πu(x) becomes unknown,

- wu < 2 =⇒
⊕
x∈F3

2

πu(x) = 0, and wu ≥ 2 =⇒
⊕
x∈F3

2

πu(x) becomes unknown.

Definition 2.13 (Word based division property [126]). Let X ⊆ Fn2 , 0 ≤ k ≤ n, we say that

X has the division property Dnk if⊕
x∈X

πu(x) = 0, for all u ∈ Fn2 s.t wu < k.
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Table 2.1: Toy example for the division property

u\x 000 001 010 011 100 101 110 111 ⊕
x
πu(x)

000 1 1 1 1 1 1 1 1 0

001 0 1 0 1 0 1 0 1 0

010 0 0 1 1 0 0 1 1 0

011 0 0 0 1 0 0 0 1 0

100 0 0 0 0 1 1 1 1 0

101 0 0 0 0 0 1 0 1 0

110 0 0 0 0 0 0 1 1 0

111 0 0 0 0 0 0 0 1 1

Moreover, X is called as a multiset.

Definition 2.14 (Bit based division property [128]). Let X,W ⊆ Fn2 . The multiset X has the

division property D1,n
W if it fulfills the following conditions:

⊕
x∈X

πu(x) =

unknown if there exists w ∈W s.t u � w,
0 otherwise

where u,w, x ∈ Fn2 and we denote u � w if ui ≥ wi for all i.

Table 2.2: Bit based division property propagation rules

Division property

Operation Input multiset X Output multiset Y

COPY: x→ (y0, y1)
D1,1
{(0)} D1,2

{(0,0)}
D1,1
{(1)} D1,2

{(0,1),(1,0)}

XOR: x0 ⊕ x1 → y

D1,2
{(0,0)} D1,1

{(0)}
D1,2
{(0,1)} D1,1

{(1)}
D1,2
{(1,0)} D1,1

{(1)}

AND: x0x1 → y

D1,2
{(0,0)} D1,1

{(0)}
D1,2
{(0,1)} D1,1

{(1)}
D1,2
{(1,0)} D1,1

{(1)}
D1,2
{(1,1)} D1,1

{(1)}

Definitions 2.13 and 2.14 consider the propagation rules for a single round. Thus, similarly

to an r-round differential/linear characteristic we define an r-round division trail as follows.

Definition 2.15 (r-round division trail [134]). Let {v} def= W0 → W1 → · · · → Wr be an r-

round division property propagation where Wi ⊆ Fn2 for 0 ≤ i ≤ r. We call (w0, w1, . . . , wr) ∈
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W0×W1× . . .×Wr an r-round division trail if wi−1 can propagate to wi by division property

propagation rules for all i ∈ {1, 2, . . . , r} (Table 2.2).

Example 2.1. Let f : F3
2 → F3

2 given by f(x0, x1, x2) = (x0x1 ⊕ x2, x0, x1) and W0 =

{(1, 1, 0)}, then W1 = {(1, 0, 0), (1, 0, 1), (0, 1, 1)} and W2 = {(1, 0, 0), (0, 1, 0), (1, 0, 1)}.

MILP models for division property. Finding r-round division trails was infeasible due

to large number of vectors in Wi until Xiang et al. [134] showed how to model the division

property propagation rules using MILP. As a result, they found the best known integral

disinguishers for block ciphers Simon, Simeck, Present, Rectangle and Twine. We now explain

how to model COPY, XOR and AND using MILP. We use M to denote the MILP model.

- MILP model for COPY. Let the division trail through a copy operation be denoted by

a→ (b1, b2, . . . , bm), then the following inequalities are used to model such propagation:

M.var ← a, b1, b2, . . . , bm as binary.

M.con← a = b1 + b2 + . . .+ bm.

- MILP model for XOR. Let (a1, a2, · · · , am) → b denote the division trail of XOR, then

the following inequalities are sufficient to describe the propagation of the division prop-

erty:

M.var ← a1, a2, · · · am, b as binary.

M.con← a1 + a2 + · · ·+ am = b.

- MILP model for AND. Let (a1, a2, · · · , am)→ b denote the division trail for AND, then

the following inequalities are used to describe the propagation:

M.var ← a1, a2, · · · am, b as binary.

M.con← b ≥ ai for i = 1, 2, · · · ,m.

2.4.4.2 Cube attacks

The cube attack proposed in [59, 129] is a powerful cryptanalytic technique against stream

ciphers. The idea is to analyze the Algebraic Normal Form (ANF) of summation of the first

keystream bit corresponding to a set of public input variables. For example, let f : F5
2 → F2

given by

f(k0, k1, k2, v0, v1) = v0v1k0 ⊕ v0v1k2 ⊕ v0v1 ⊕ k0k1 ⊕ v1k2 ⊕ k2 ⊕ 1

=⇒ f(k0, k1, k2, v0, v1) = v0v1(k0 ⊕ k2 ⊕ 1)⊕ k0k1 ⊕ v1k2 ⊕ k2 ⊕ 1

where k0, k1, k2 are secret variables while v0 and v1 are public variables. Summing f over

all possible choices of v0, v1 gives f(k0, k1, k2, 0, 0) ⊕ f(k0, k1, k2, 0, 1) ⊕ f(k0, k1, k2, 1, 0) ⊕
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f(k0, k1, k2, 1, 1) = k0 ⊕ k2 ⊕ 1, which is a linear relation of the two key bits k0 and k2. In

cube attacks, such relationships are exploited to recover secret bits.

Mathematical description. Let the stream cipher take an n-bit secret key k = (k0, · · · , kn−1)
and an m-bit IV = (v0, v1, · · · , vm−1), then the first keystream bit is given by the polynomial

f(k, v) which operates on n+m bits to output 1 bit and can be represented as:

f(k, v) = tI · p(k, v)⊕ q(k, v)

where I = {i1, i2, · · · , i|I|} ⊆ {0, 1, · · · ,m− 1}, tI = vi1vi2 · · · vi|I| , p(k, v) is a polynomial that

does not contain any of the variables (vi1 , vi2 , · · · , vi|I|), and q(k, v) is independent of at least

one variable from (vi1 , vi2 , · · · , vi|I|).
We denote a cube indices set by I and the corresponding cube by CI where CI is the set

of all the possible 2|I| values of (vi1 , vi2 , · · · , vi|I|). The remaining input n+m− |I| variables

to set to some constant values and the summation of f(k, v) over all values of the cube CI is

then given by

⊕
CI

f(k, v) = (
⊕
CI

tI · p(k, v))
⊕

(
⊕
CI

q(k, v)).

Since such summation reduces tI to 1 because the set CI has only one possibility where

all the |I| variables are equal to 1, and q(k, v) vanishes because it misses at least one variable

from the cube variables, then the above equation denotes the superpoly which is given by

superpoly=:
⊕
CI

f(k, v) = p(k, v).

If the ANF of the superpoly is simple enough, then an attacker can query the encryption

oracle with the chosen cube CI . Hence, the returned first keystream bits are summed to

evaluate the right-hand side of the superpoly and accordingly, secret variables can be recovered

by solving a system of equations. For more detailed examples, please see Section 3.7 in [48].

Cube attacks and division property. In [127], Todo et al. proposed a method to ap-

ply cube attacks on stream ciphers using the division property. Since the cube attack is a

higher-order differential attack and the division property is a technique to find higher-order

differential trails, the division property can then be used to analyze the ANF of the superpoly

by analyzing division trails corresponding to a given cube.
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2.4.5 Meet-in-the-middle attacks

The meet-in-the-the middle (MitM) attack is a generic Time-Memory-Data (TMD) trade-

off attack proposed by Diffie and Hellman [57]. The idea is to decompose an encryption

algorithm E as a composition of two subciphers Ef and Eb (Figure 2.25) such that C =

E(k, P ) = Eb(kb,Ef (kf , P )).

−→v←−vP C

Ef (kf , P ) E−1b (kb, C)

Figure 2.25: MitM attack

The steps of a standard MitM attack are divided into two phases.

1. MitM phase. For all possible values of kf , compute −→v = Ef (kf , P ) and store (kf ,
−→v )

in data structure DS. Compute ←−v = E−1b (kb, C) and check if ←−v ∈ DS. If so, the value

of k corresponding to the pair (kf , kb) is one of the key candidates.

2. Brute force phase. If the number of keys obtained from MitM phase is more than

one, we perform an exhaustive search on additional plaintext-ciphertext pairs to get the

correct key.

The standard MitM attack decomposes a cipher into two subciphers with two independent

keys kf and kb. The attack was generalized to multiple subciphers with more than two

matching phases by Zhu and Gong [141]. An illustration of multi-dimensional MitM with 4

subciphers is shown in Figure 2.26.

−→v1←−v1P

Ef1(kf1 , P ) E−1b1 (kb1 , ·)

−→v2 ←−v2

Ef2(kf2 , ·) E−1b2 (kb2 , C)

C
G

Figure 2.26: Multi-dimensional MitM attack with 4 subciphers and one guess value G

2.5 Lightweight Cryptography and Design Principles

Lightweight Cryptography is the study of cryptographic algorithms which are suitable for

resource constrained environments such as RFIDs, Smart cards, Internet of Things (IoT) or

sensor networks. In particular, it is more about finding a trade-off among the three metrics

security and functionalities, resources and performance (Figure 2.27). In the following, we
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first describe these metrics and then discuss the design principles that we follow for the next

part of thesis.

Security Performance

Resources

and functionalities

Figure 2.27: Lightweight cryptography metrics

2.5.1 Metrics of lightweight cryptography

Security and functionalities. For a fixed security, are we aiming for a single functionality

or multiple functionalities? It could be confidentiality, data integrity and authenticity, hash

or psuedorandom number generator.

Resources. Area which is the implementation size or physical area (in Gate Equivalents).

In case of software, it is code size which is the amount of data needed to evaluate the function

independent of input (in bytes).

Performance. The performance can be evaluated in terms of Throughput, Latency, Power

or RAM.

1. Throughput. Amount of data processed per time unit (in bits/bytes per second)

2. Latency. Time taken to obtain the output of the circuit once its input has been set (in

seconds)

3. Power. Amount of power needed to use the circuit (in Watts)

4. RAM. Amount of data written to memory during each evaluation of the function (in

bytes)

The overall goal of lightweight cryptography is to find a solution in Figure 2.27 which

can optimize a single metric or a combination of metrics. Obviously, security and resources

are directly proportional but not resources and performance. For example, AES software
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implementation has very low code size but if we want to implement it in hardware within

2000 GE, then its performance degrades. There exist many primitives (Figure 2.28) which

try to find a balance of trade-off among the above three metrics.

Symmetric key primitives

Stream ciphers Block ciphers Hash functions Authenticated Encryption

Grain
Trivium
Micky
WG
Fruit

Lizard
Plantlet

Tea
Led

Present
Simon and Speck

Simeck
Skinny
Sparx
Gift

Craft

Keccak†
Photon
Quark

Spongent
Gimli

Grain128a
Ascon
Acorn
Norx
Ketje

sLiSCP
sLiSCP-light

Bettle
Sundae

Figure 2.28: Existing lightweight symmetric key primitives. † Keccak with state size 200 bits.

2.5.2 Design principles

Our primary goal is to design secure and lightweight symmetric key primitives. The secondary

goal is to achieve multiple functionalities with a low implementation overhead. For instance,

to attain AEAD functionality and hash using a block cipher, we have to implement both

AEAD mode (GCM/OCB/OCB3 Section 2.3.5) and hash mode (Davies Meyer or Merkle

Damg̊ard Section 2.3.3). Moreover, using a block cipher as primitive implies we need registers

for both state and key scheduling. For lightweight scenario, this may require more resources.

However, sponge based modes can be easily adapted to meet these requirements and do not

require key scheduling.

Since the underlying primitive of sponges is a cryptographic permutation, we aim to design

permutations which have low hardware cost. At the same time, they are efficient in software.

Most importantly, from a security perspective the permutation should be indistinguishable

from a random permutation. In this context, we first look into round functions which have

the following properties.

• High algebraic degree

• Low differential probability and square correlation

• High diffusion rate, i.e., a state bit depends on most of the other state bits

• No rotational or symmetric properties. If there is one, we look for an efficient method

to break it.
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Security level

multiple functionalities

unified mode

permutation round function

security

Figure 2.29: Flowchart of design approach

Next, we choose the number of rounds of permutation by analyzing its differential, linear

and algebraic properties using MILP and SAT/SMT solvers. More precisely, as a designer

we ensure that there exists no distinguisher with probability better than 2−b/2 where b is the

permutation size in bits. Our entire design approach is illustrated in Figure 2.29.

In what follows, we present the specifications of lightweight ciphers whose underlying struc-

tures with varying tweaks are used in the design of permutations proposed in Chapters 3-5.

2.5.3 Simon-like block biphers

Simon-2n/mn where 2n and mn denote the blocksize and key length, respectively, is a family

of block ciphers proposed by NSA in 2013 [23]. A generic diagram of a Simon-like block cipher

is depicted in Figure 2.30. It adopts an NLFSR [67] based structure where the nonlinearity

comes from the quadratic function f(a,b,c)(x) = La(x)&Lb(x) + Lc(x). We refer to f(a,b,c) as a

Simon-like nonlinear function unless the shift parameter set (a, b, c) is explicitly mentioned.

For an r-round cipher, the (i+ 2)-th element of NLFSR sequence is given by

si+2 = f(a,b,c)(si+1) + si + ki

where ki ∈ Fn2 is the i-th round subkey7 and 0 ≤ i < r. Finally, the ciphertext is the r-th state

of NLFSR, i.e., (sr+1, sr). The shift parameters of Simon are given by (a, b, c) = (8, 1, 2).

Simeck-2n/mn was proposed in CHES 2015 by Yang et al. [135] and adopts a Simon-

7k0, k1, . . . , km−1 are first m n-bit words of key
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kr−1, · · · , k1, k0
n

Figure 2.30: Simon-like block cipher

like structure with the shift parameters given by (5, 0, 1). In a way, it has more efficient

and compact hardware implementation because of reuse of the round function in the key

scheduling algorithm.

Key scheduling algorithms. For n = 16 and m = 4, r = 32 and the subkeys are calculated

as follows.

Simon-32/64 : ki+4 = Zi + ki + ki+1 + L15(ki+1) + L13(ki+3) + L12(ki+3),

Simeck-32/64 : ki+4 = Zi + f(5,0,1)(ki+1) + ki,

where Zi denotes the i-th round constant.

2.5.4 Welch-Gong stream ciphers

The Welch-Gong (WG) stream cipher family is a hardware oriented stream cipher based on

word-oriented NLFSR over extension fields [101]. We denote an instance of WG stream cipher

by WG-m where m is the dimension of the finite field over F2, i.e., base field. Figure 2.31

shows a generic structure of WG-m and the individual components are described below.

1. Base field defining polynomial. Degree m primitive polynomial over F2.

2. Extension field defining polynomial. Degree l primitive polynomial over F2m .

3. WG permutation (WGP). Let m 6≡ 0 mod 3, 3k ≡ 1 mod m and gcd(d, 2m− 1) = 1.

Then the function WGP : F2m → F2m is given by WGP(x) = h(x + 1) + 1 where

h(x) = x+ xq1 + xq2 + xq3 + xq4 and qi’s are given by

q1 = 2k + 1

q2 = 22k + 2k + 1

q3 = 22k − 2k + 1

q4 = 22k + 2k − 1.
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Figure 2.31: Generic structure of WG stream cipher

More about the selection of optimal parameters for WGP is discussed in [94].

4. Trace function. The Trace function Tr : F2m → F2 is given by

Tr(x) = x+ x2 + · · ·+ x2
m−1

.

The cipher runs in two phases: key initialization phase and key generation phase. During

the key initialization phase, the state is first loaded with key and nonce, and then updated

for 2l clock cycles with nonlinear feedback (output of WGP(·) is feedback for updating the

state). No output is generated for first 2l clock cycles. After that, the key generation phase

starts where a single bit is taken as output and the state is updated linearly. This is repeated

until desired number of keystream bits is obtained.

Cryptographic properties of WG stream cipher. The keystream sequence of WG-m

has the following properties.

1. Period is 2ml − 1.

2. It is balanced.

3. It has an ideal 2-level autocorrelation property.

4. Any t-tuple is equally likely distributed (ideal t-tuple distribution) for 1 ≤ t ≤ l.
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5. Linear complexity of the keystream increases exponentially with m.

Family members. The first family member WG-29 [100] proceeded to Phase 2 of the eS-

TREAM competition. Later, the lightweight variants WG-5 [9], WG-7 [93] and WG-8 [63] were

proposed for constrained environments, and WG-16 [142, 64, 62] was proposed for 4G LTE.
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sLiSCP and sLiSCP-light
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Declaration of Contributions

This chapter is based on [14, 16, 15]. My main contributions are as follows.

• Equal contribution in design of both permutations.

• Analysis of the differential and linear properties of Simeck sbox using the SAT/SMT

tool [86]. MILP model for bounding the minimum number of active Simeck sboxes.

• Modeled the word-based division property of sLiSCP and the bit-based division prop-

erty of sLiSCP-light using MILP to find algebraic degree bounds, integral and zero-sum

distinguishers.

3.1 Introduction

Ever since the introduction of sponge functions in 2008 by Bertoni et al. [31], there has been

a surge in the design of sponge based cryptographic primitives. The main reason being a

cryptographic permutation utilizing sponge construction can be easily transformed to AEAD,

Hash, MAC or Pseduorandom Bit Generator (PRBG) (Sections 2.3.3-2.3.5) [36, 35, 33]. As

a result, there is a natural inclination towards designing a cryptographic permutation rather
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than designing a specific mode. Consequently, starting from the Keccak family of permutations

[37], several lightweight cryptographic permutations such as Quark [17], Photon [70], Spongent

[41], Norx [19], Ascon [60] and Gimli [29] have been proposed. Our goal here is to design

permutations that can achieve more efficient hardware and software performances than the

existing permutations at the same security level.

In this chapter, we present the design and security analysis of two lightweight crypto-

graphic permutations, namely sLiSCP and sLiSCP-light. The design of these permutations

utilizes two simple and hardware efficient components, namely 4-branch Type-II GFS (Section

2.3.2.2) and unkeyed reduced-round Simeck block cipher (Section 2.5.3). These two structures

are well studied in the literature and makes our security analysis easier. We analyze the se-

curity of sLiSCP and sLiSCP-light with respect to distinguishing attacks such as differential

and linear, and integral distinguishers.

Outline. The rest of the chapter is organized as follows. Section 3.2 provides the detailed

specifications of sLiSCP and sLiSCP-light permutations along with their underlying nonlinear

component Simeck sbox. In Section 3.3, we present the detailed security analysis of the Simeck

sbox. Finally, in Section 3.4, we extend the analysis of the Simeck sbox to provide security

bounds of sLiSCP and sLiSCP-light permutations.

3.2 Specifications of sLiSCP and sLiSCP-light

sLiSCP, Simeck-based Permutations for Lightweight Sponge Cryptographic Primitives is a

family of cryptographic permutations which have low hardware implementation cost and are

efficient in software. sLiSCP-light is a tweaked variant of sLiSCP. In this section, we present

their specifications.

3.2.1 The nonlinear function SB-[2n, u]

We use the unkeyed reduced-round Simeck block cipher with block size 2n (n ∈ {16, 24, 32})and

u rounds as the nonlinear operation of both permutations, and denote it by SB-[2n, u]. Below

we provide the details of SB-[2n, u], henceforth referred to as Simeck sbox.

Definition 3.1 (SB-[2n, u]: Simeck sbox). Let rc = (qu−1, . . . , q0) where qj ∈ {0, 1} and

0 ≤ j < u. A Simeck sbox is a permutation of a 2n-bit input, constructed by iterating the

Simeck-2n block cipher for u rounds with round constant addition γj = 1n−1||qj in place of

key addition.

An illustrated description of the Simeck sbox (as an NLFSR) is shown in Figure 3.1 and

is given by

(xu+1||xu)← SB-[2n, u](x1||x0, rc)
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x1 x0

f(5,0,1)

n
n

γu−1, · · · , γ1, γ0
n

Figure 3.1: Simeck sbox (SB-[2n, u])

where

xj ← f(5,0,1)(xj−1)⊕ xj−2 ⊕ γj−2, 2 ≤ j < u

and f(5,0,1) : {0, 1}n → {0, 1}n is defined as

f(5,0,1)(x) = (L5(x)� x)⊕ L1(x).

For the properties of general f(a,b,c)(x) = La(x)&Lb(x) + Lc(x), please see Section 9.3.

3.2.2 Description of sLiSCP

sLiSCP is an iterative permutation that takes a b-bit input and produces an output of b bits

where b = 4 × 2n and n ∈ {24, 32}. We denote by sLiSCP-b a b-bit sLiSCP permutation.

The state is divided into four 2n-bit blocks Xi
0, X

i
1, X

i
2 and Xi

3 where i denotes the state at

the beginning of the i-th step. As shown in Figure 3.2, the i-th step of sLiSCP-b is evaluated

in three sub-steps which are described below.

1. Store the original values of Xi
1 and Xi

3 in temporary registers Y i
1 and Y i

3 , and then update

Xi
1 and Xi

3 by applying SB-[2n, u] with round constants rci0 and rci1, respectively.

Y i
1 ← Xi

1

Y i
3 ← Xi

3

Xi
1 ← SB-[2n, u](Xi

1)

Xi
3 ← SB-[2n, u](Xi

3)

2. Mix the blocks and add the step constant tuple (sci0, sc
i
1), i.e.,

Xi
0 ← Xi

0 ⊕ sci0 ⊕Xi
1

Xi
2 ← Xi

2 ⊕ sci1 ⊕Xi
3
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3. Blockwise left cyclic shuffle, i.e., (0, 1, 2, 3)→ (1, 2, 3, 0). More precisely,

Xi+1
0 ← Y i

1

Xi+1
1 ← Xi

2

Xi+1
2 ← Y i

3

Xi+1
3 ← Xi

0

Xi
0 Xi

1 Xi
2 Xi

3

SB-[2n, u] SB-[2n, u]

rci0 rci1

sci0 sci1

2n 2n 2n 2n

(a) NLFSR structure

Xi
0 Xi

1 Xi
2 Xi

3

SB-[2n, u] SB-[2n, u]

rci0 rci1

sci0 sci1

Xi+1
0 Xi+1

1 Xi+1
2 Xi+1

3

2n 2n 2n 2n

(b) Type-II GFS

Figure 3.2: Step function of sLiSCP where (a) NLFSR structure and (b) Type-II GFS

3.2.3 Towards sLiSCP-light

A careful look at the design of sLiSCP’s step function reveals that two extra temporary

registers, each of size 2n bits (shown in yellow color in Figure 3.3 (a)) are needed to store the

values of odd indexed blocks at each step. This is due to Type-II GFS round function which is

invertible by design, and does not require the invertibility of the nonlinear component. In our

case, the nonlinear function SB-[2n, u] is a permutation. Thus, for lightweight applications,

this extra hardware overhead of 2× 2n bits register for temporary storage is unjustified. As

a result, we look for a solution to remove this overhead without lowering the overall security.
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We observe that a simple tweak, i.e., changing the position of Simeck sboxes (Figure 3.3

(b)) could solve the above problem. However, we are unware of any similar construction

except Skipjack Rule A [40]. Thus, a thorough security analysis of this new design is required

which we discuss in Section 3.4.

Description of sLiSCP-light. sLiSCP-light is a tweaked variant of sLiSCP. It utilizes the

same components as of sLiSCP, i.e., Simeck sboxes, round and step constants. The only

difference is in the step function (Figure 3.3 (b)) where the positions of Simeck sboxes are

changed. The step function is computed in three steps described below.

Xi
0 Xi

1 Xi
2 Xi

3

SB-[2n, u] SB-[2n, u]

rci0 rci1

sci0 sci1

Xi+1
0 Xi+1

1 Xi+1
2 Xi+1

3

2n 2n 2n 2n

Xi
0 Xi

1 Xi
2 Xi

3

SB-[2n, u] SB-[2n, u]rci0 rci1sci0 sci1

Xi+1
0 Xi+1

1 Xi+1
2 Xi+1

3

2n 2n 2n 2n

(a) sLiSCP permutation

(b) sLiSCP-light permutation

Figure 3.3: Step functions of sLiSCP and sLiSCP-light

1. Application of SB-[2n, u] to odd indexed blocks Xi
1 and Xi

3 with round constants rci0
and rci1, respectively.

Xi
1 ← SB-[2n, u](Xi

1)

Xi
3 ← SB-[2n, u](Xi

3)
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2. Mix the blocks and add the step constants (sci0, sc
i
1), i.e.,

Xi
0 ← Xi

0 ⊕ sci0 ⊕Xi
1

Xi
2 ← Xi

2 ⊕ sci1 ⊕Xi
3

3. Blockwise left cyclic shuffle, i.e., (0, 1, 2, 3)→ (1, 2, 3, 0). More precisely,

Xi+1
0 ← Xi

1

Xi+1
1 ← Xi

2

Xi+1
2 ← Xi

3

Xi+1
3 ← Xi

0

3.2.4 Permutation instances

Table 3.1 presents the recommended parameters for two lightweight instances of the sLiSCP

and sLiSCP-light permutations.

Table 3.1: Recommended parameter sets for sLiSCP and sLiSCP-light permutations

Permutation (b-bit) 2n Rounds u Steps s Total # rounds (u× s)

sLiSCP-192 48 6 18 108

sLiSCP-256 64 8 18 144

sLiSCP-light-192 48 6 12 72

sLiSCP-light-256 64 8 12 96

Remark 3.1. The number of steps for sLiSCP-light is 12 compared to 18 in sLiSCP. More-

over, we do not require additional two 2n bit registers. Thus, sLiSCP-light reduces the

hardware area of sLiSCP by 16% and at the same time improves the throughput by 30%.

3.2.5 Round and step constants

In Tables 3.2 and 3.3, we list the hex values of the constants. Each step constant is appended

with 140‖00 and 156 for b = 192 and b = 256, respectively. This procedure results in a number

of inversions, which break the propagation of the rotational property in one step.
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Table 3.2: Round and step constants when b = 192

Step i (rci0, rc
i
1) (sci0, sc

i
1)

0 - 5 (7, 27), (4, 34), (6, 2e), (25, 19), (17, 35), (1c, f) (8, 29), (c, 1d), (a, 33), (2f, 2a), (38, 1f), (24, 10)

6 - 11 (12, 8), (3b, c), (26, a), (15, 2f), (3f, 38), (20, 24) (36, 18), (d, 14), (2b, 1e), (3e, 31), (1, 9), (21, 2d)

12 - 17 (30, 36), (28, d), (3c, 2b), (22, 3e), (13, 1), (1a, 21) (11, 1b), (39, 16), (5, 3d), (27, 3), (34, 2), (2e, 23)

Table 3.3: Round and step constants when b = 256

Step i (rci0, rc
i
1) (sci0, sc

i
1)

0 - 5 (f, 47), (4, b2), (43, b5), (f1, 37), (44, 96), (73, ee) (8, 64), (86, 6b), (e2, 6f), (89, 2c), (e6, dd), (ca, 99)

6 - 11 (e5, 4c), (b, f5), (47, 7), (b2, 82), (b5, a1), (37, 78) (17, ea), (8e, 0f), (64, 04), (6b, 43), (6f, f1), (2c, 44)

12 - 17 (96, a2), (ee, b9), (4c, f2), (f5, 85), (7, 23), (82, d9) (dd, 73), (99, e5), (ea, 0b), (0f, 47), (04, b2), (43, b5)

3.3 Security Analysis of Simeck Sbox

In this section, we discuss the security of SB-[2n, u] which is the nonlinear function of sLiSCP

and sLiSCP-light permutations.

3.3.1 Differential and linear properties

Our goal is to find a u-round differential (α1‖α0, αu+1‖αu) (αi ∈ Fn2 ) with maximum prob-

ability. Since the block size is 2n, an exhaustive search requires 26n u-round evaluations

of SB-[2n, u]. For example, the case of n = 24 and u = 6 implies 2144 6-round evaluations

of SB-[48, 6], which is infeasible. We present two different approaches to estimate an up-

per bound of u-round differential probability (Definition 2.3). We denote it by Maximum

Estimated Differential Probability (MEDP).

3.3.1.1 Approach 1

We assume that SB-[2n, u] is a Markov cipher (Definition 2.6). The procedure to compute

MEDP is given in Algorithm 3.1.

Algorithm 3.1 Approach 1 to compute MEDP

1: Extract all u-round optimal differential characteristics (Definition 2.7) using SAT/SMT
tool [86]. Denote this set by ∆u.

2: Take an empty list List. For each (α0, α1, . . . , αu+1) ∈ ∆u, take the differential pair
(α1‖α0, αu+1‖αu), compute the r-round differential probability and append it to the List.

3: Assign MEDP(SB-[2n, u]) as the maximum value of List.

The obtained results using Algorithm 3.1 are given in Tables 3.4 and 3.5.
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Table 3.4: Optimal differential characteristic probability and linear characteristic square cor-
relation for SB-[2n, u] where 2n = 32, 48 and 64. The values are given in the log2(·) scale.

Rounds (u) 1 2 3 4 5 6 7 8 9 10 11 12 13

SB-[2n, u] 0 -2 -4 -6 -8 -12 -14 -18 -20 -24 -26 -30 -32

Table 3.5: MEDP for SB-[2n, u] for 2n = 32, 48 and 64

Rounds (u) 1 2 3 4 5 6 7 8 9

MEDP 0 -2 -4 -6 -8 -11.3 -13.3 -16.6 -18.6

3.3.1.2 Approach 2

In the previous approach, we have adopted the conventional Markov assumption. However,

this is not true as Simeck sboxes are parameterized by a set of fixed round constants. Thus, we

use an alternative approach to derive tight upper bounds on the MEDP of the constant-based

Simeck sboxes. Our approach is based on the following two important observations on the

differential properties of different block sizes of Simeck round function.

1. The probabilities of optimal differential characteristics are exactly equal for reduced-

round Simeck with block sizes 32, 48, and 64 bits (Table 3.4).

2. There exist optimal differential characteristics in Simeck-32 which are related to optimal

differential characteristics in Simeck-48 and Simeck-64. One such example is given in

Table 3.6 where we only add zeros at specific positions to match the block size.

We first compute the MEDP of SB-[32, 6] and SB-[32, 8] following Algorithm 3.2, and then

use these results to compute the MEDP of SB-[48, 6]. For SB-[64, 8], we conjecture its MEDP

value.

We find that ∆6 = 3072 and ∆8 = 2560. Tables 3.7 and 3.8 depict the sets of maximum

probability differentials parametrized by the round constants (given in hex) for SB-[32, 6] and

SB-[32, 8], respectively. Thus, we set MEDP(SB-[32, 6]) = 2−10.35 and MEDP(SB-[32, 8]) =

2−15.4.

MEDP of SB-[48, 6] and SB-[48, 8]. In Tables 3.7 and 3.8, we observe that there are six

(resp. eleven) sets for which each set has the same differential probability. Given that the

optimal differential characteristic probabilities of u-round Simeck sbox are equal (Table 3.4)

when the block sizes are 32, 48, and 64 bits, we pick one differential candidate, i.e., differentials
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Table 3.6: Related optimal differential characteristics of Simeck with block sizes 32, 48 and
64

Simeck-32 Simeck-48 Simeck-64

Round (u) αu+1 αu αu+1 αu αu+1 αu log2(p)

0 0x0001 0x0002 0x000001 0x000002 0x00000001 0x00000002 -2

1 0x0000 0x0001 0x000000 0x000001 0x00000000 0x00000001 -0

2 0x0001 0x0000 0x000001 0x000000 0x00000001 0x00000000 -2

3 0x0002 0x0001 0x000002 0x000001 0x00000002 0x00000001 -2

4 0x0005 0x0002 0x000005 0x000002 0x00000005 0x00000002 -4

5 0x0008 0x0005 0x000008 0x000005 0x00000008 0x00000005 -2

6 0x0015 0x0008 0x000015 0x000008 0x00000015 0x00000008 -

Algorithm 3.2 Approach 2 to compute MEDP

1: For SB-[32, 6], extract all 6 rounds optimal differential characteristics. Denote this set by
∆6.

2: For each round constant and for each (α0, α1, . . . , α7) ∈ ∆6, we calculate the exact differ-
ential probability of 6-round differential (α1‖α0, α7‖α6) by running a parallel exhaustive
search for determining the number of solutions (out of the 232 possible inputs). We then
set the MEDP for each Simeck sbox to the maximum probability among all the tested
differentials.

3: Repeat the same procedure for SB-[32, 8].

marked with blue color in Tables 3.7 and 3.8. Next, we check if it is one of the differentials

associated to the extracted optimal characteristic. Then, for these selected differentials, we

run a parallel exhaustive search to get their exact differential probability. Table 3.9 shows the

probabilities of selected differentials.

MEDP of SB-[64, 8]. We note that the differential probabilities of Simeck sboxes with 48-bit

block size are slightly lower than that of 32-bit block size. Since it is computationally infeasible

for us to run an exhaustive search on 64-bit blocks, we conjecture that the MEDP of SB-[64, 8]

sbox is also slightly lower than that of SB-[48, 8]. Accordingly, we set MEDP(SB-[64, 8]) to be

equal to the one we extracted for SB-[48, 8] which is equal to 2−15.86.

Details of the experimental setup. All the experiments are conducted on a server with

the following specifications: 8 cores per node, 16 GB RAM per node, Intel Xeon E5540 @2.53

GHz, 64 bit Linux Centos 6.4 OS.

53



Table 3.7: Differentials with maximum probability for SB-[32, 6] sboxes. Here time denotes
the average time to find all solutions of one differential.

Round constants (α1‖α0, α7‖α6) # solutions DP (log2(.)) Time(s)

7, 27, 4, 6, 25, 26, 24 (04000a00, 1a000a00), (04000a00, 5a000a00),
(04000a00, 52000a00), (04000a00, 12000a00)

3293184 -10.348948 324.75

34, 17, 35, 15 (04000a00, 1a010a00), (04000a00, 5a010a00),
(04000a00, 52010a00), (04000a00, 12010a00)

3293184 -10.348948 323.62

19, 8, 38 (0a001a00, 0a000400), (0a005a00, 0a000400),
(0a005200, 0a000400), (0a001200, 0a000400)

3293184 -10.348948 324.26

3b, a (0a001a01, 0a000400), (0a005a01, 0a000400),
(0a005201, 0a000400), (0a001201, 0a000400)

3293184 -10.348948 323.92

12, 20 (40014023, 40018000), (4001402b, 40018000),
(80004001, 402b4001), (80004001, 40234001)

3280896 -10.354342 324.03

2e, 1c, 1f, c, 2f, 3f (00020005, 00890005), (00018002, 80548002),
(80004001, 402a4001), (20005000, 900a5000),
(00018002, 80448002), (00020005, 00a90005),
(0004000a, 0152000a), (4000a000, 2011a000),
(80004001, 40224001), (0004000a, 0112000a),
(20005000, 90085000), (00800140, 22400140),
(10002800, 48052800), (10002800, 48042800),
(05008900, 05000200), (000500a9, 00050002),
(00200050, 08900050), (4001402a, 40018000),
(4000a000, 2015a000), (0a001201, 0a000400),
(00800140, 2a400140), (00080014, 02a40014),
(00080014, 02240014), (5000900a, 50002000),
(08001400, 24021400), (08001400, a4021400),
(28004805, 28001000), (80028054, 80020001),
(0500a900, 05000200), (00280548, 00280010),
(80028044, 80020001), (50009008, 50002000),
(28004804, 28001000), (40014022, 40018000),
(a0002011, a0004000), (00050089, 00050002),
(02804480, 02800100), (004000a0, 150000a0),
(a0002015, a0004000), (000a0112, 000a0004),
(004000a0, 110000a0), (00100028, 04680028),
(04000a00, 12000a00), (02805480, 02800100),
(000a0152, 000a0004), (00100028, 05680028),
(1400a402, 14010800), (00200050, 0a900050),
(14002402, 14010800), (0a005201, 0a000400),
(04000a00, 52000a00), (01402240, 01400080),
(001402a4, 00140008), (00140224, 00140008),
(01000280, 54800280), (01000280, 44800280),
(00a01520, 00a00040), (01402a40, 01400080),
(00a01120, 00a00040), (00500890, 00700020),
(00280448, 00280010), (02000500, a9000500),
(00500a90, 00700020), (02000500, 89000500)

3231744 -10.376119 281.97
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Table 3.8: Differentials with maximum probability for SB-[32, 8] sboxes

Round constants (α1‖α0, α9‖α8) # solutions DP (log2(.)) Time(s)

b (0a001201, 3a001000) 99232 -15.401482 405.02

f, 47, 4, 96, 7 (00a011a0, 02a00100) 90418 -15.535678 404.84

b2, a1 (010002a0, 118000a0) 90418 -15.535678 404.88

f1, 73 (010002a0, 11a000a0) 90418 -15.535678 404.86

78 (10002a00, 5a010a00) 89842 -15.544898 406.29

44, 4c (00a01180, 02a00100) 87974 -15.575210 396.84

43 (00a011a0, 02a00100), (010002a0, 11a000a0) 87264 -15.586901 405.95

82 (00a011a0, 02a00100), (010002a0, 118000a0) 87264 -15.586901 398.71

e5 (80005001, d0085000), (5000d008, 50018000) 81282 -15.689352 405.10

b5, 37, f5, (80005001, d0085000) 79488 -15.721551 405.02

ee (5000d008, 50018000) 79488 -15.721551 404.39

Table 3.9: Differential probabilities of selected differentials for SB-[48, u]

Rounds (u) Round constants Selected differential DP (log2(.))

6

27 (0400000a0000, 1a00000a0000) -10.66
15 (000400000a00, 011a00000a00) -10.66
8 (0a00001a0000, 0a0000040000) -10.66

3b (0a00001a0001, 0a0000040000) -10.66
12 (400001400023, 400001800000) -10.66
2e (000200000500, 008900000500) -10.66

8

b (0a0000120001, 3a0000100000) -15.86
f (00a00011a000, 02a000010000) -15.93

b2 (01000002a000, 01800000a000) -15.95
f1 (01000002a000, 11a00000a000) -15.93
78 (1000002a0000, 5a00010a0000) -15.95
4c (00a000118000, 02a000010000) -15.93
43 (00a00011a000, 02a000010000) -15.93
82 (00a00011a000, 02a000010000) -15.93
e5 (800000500001, d00008500000) -15.93
b5 (800000500001, d00008500000) -15.91
ee (500000d00008, 500001800000 -15.91

3.3.1.3 Notes on linear properties

The analysis of linear properties is exactly same as the differential analysis. The goal here is

to find a u-round linear hull (α1‖α0, αu+1‖αu) (αi ∈ Fn2 ) with maximum square correlation

(Definition 2.8). We first find the optimal linear characteristics square correlation values

(Table 3.4). Next, we estimate an upper bound of u-round linear hull square correlation, and

denote it by Maximum Estimated Linear Hull Square Correlation (MELHSC). We followed

similar approaches (Sections 3.3.1.1 and 3.3.1.2) to compute MELHSC values which are given
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by

MELHSC(SB-[48, 6]) = 2−10.83

MELHSC(SB-[64, 8]) = 2−15.64.

3.3.2 Algebraic properties

The round function of Simeck sbox is quadratic (Section 3.2.1) which implies that the algebraic

degree of Simeck sbox is at most 2, 4, 8 and 16 after 1, 2, 3 and 4 rounds, respectively. We

have computed the algebraic degree using symbolic computation and find that the degrees

are in fact 2, 3, 5 and 8. For u ≥ 5, we are unable to perform symbolic computations because

of high density of monomials. Thus, we use a tweaked variant of bit-based division property

(Section 2.4.4.1 in Chapter 2) to provide bounds on the algebraic degree when u ≥ 5. The

corresponding MILP model and results are described below.

3.3.2.1 MILP model for bounding algebraic degree

Since the round function consists of only bitwise ANDs and XORs, the linear inequalities

can be modeled similarly to the ones mentioned in Section 2.4.4.1. The variables for the i-th

round are shown in Figure 3.4 while the entire model for u rounds with tweaks (shown in red

color) is explained below.

xi0, . . . , x
i
n−1

ui0, . . . , u
i
n−1

vi0, . . . , v
i
n−1

wi0, . . . , w
i
n−1
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i
n−1

yi0, . . . , y
i
n−1

xi+1
0 , . . . , xi+1

n−1 yi+1
0 , . . . , yi+1

n−1

+

+

L5

L1

�

Figure 3.4: i-th round MILP variables for Simeck sbox

MILP model.

1. Binary variables. xij , y
i
j , u

i
j , v

i
j , w

i
j , t

i
j , 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ u− 1
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2. Constraints. For 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ u− 1,

xij = uij + vij + wij + yi+1
j

tij ≥ uij
tij ≥ vij+5 mod n

xi+1
j = yij + tij + wij+1 mod n

xuk = 1

xuj = 0 for j ∈ {0, . . . , n− 1} \ {k}
yuj = 0

3. Objective function. Maximize

n−1∑
j=0

x0j + y0j

In the above model, the first constraint is for the division property of COPY, second

and third are for the division property of AND, and fourth is for the division property of

XOR. Since we compute the algebraic degree of xuk for some k, it is constrained to 1 and the

remaining u-th round variables are set to 0. We pass this optimization model to Gurobi solver

[2] which returns the maximum value (say d). The solution implies that there exists a degree

d monomial term in the ANF representation of xuk . Hence, the algebraic degree of xuk is d. To

compute the algebraic degree of yuk , we simply modify the last three constraints (in red color).

3.3.2.2 Results for algebraic degree

The bounds on algebraic degree of Simeck sboxes are given in Table 3.10.

Table 3.10: Algebraic degree bounds of Simeck sboxes

Rounds (u) 1 2 3 4 5 6 7 8

SB-[48, u] 2 3 5 8 13 19 27 36

SB-[64, u] 2 3 5 8 13 19 27 36

3.3.2.3 MILP model for integral distinguishers

In Table 3.10, if we consider the degree of SB-[48, 5], then it equals 13. This implies a 14-th

order derivative of SB-[48, 5] is constant. This means for a X ⊂ F48
2 with |X|= 214, we have⊕

x∈X
(SB-[48, 5](x))j = 0
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with probability 1 for all j such that 0 ≤ j ≤ 47. Here, SB-[48, 5]j denotes the ANF of j-th

component function of SB-[48, 5] after 5 rounds.

In order to find an integral distinguisher using the previous MILP model, we modify it

slightly as follows. We consider the simplest example where the 0-th bit of the input state is

set as constant (C) and rest as active (A). In particular, we add these additional constraints

to the model.
x00 = 0

x0j = 1 for 1 ≤ j ≤ n− 1

y0j = 1 for 0 ≤ j ≤ n− 1

We then evaluate the algebraic degree at the u-th round of j-th component function in terms

of the involved active bits. If the algebraic degree equals the number of active bits then the

j-th bit is unknown (U), i.e., the value of⊕
x∈X

(SB-[48, u](x))j

is unpredictable. Otherwise, it is balanced (B) in which case⊕
x∈X

(SB-[48, u](x))j = 0 (3.1)

with probability 1. Here X = {0, ?, ?, · · · , ?} where ? takes values 0 and 1. Accordingly,

|X|= 247.

Remark 3.2. In general, we can choose multiple bits to be constant and modify the model

accordingly.

3.3.3 Symmetric properties

The Simeck round function given by f(5,0,1)(x) = (L5(x)� x)⊕ L1(x) is rotationally invariant.

More precisely, we have f(5,0,1)(Li(x)) = Li(f(5,0,1)(x)), ∀ x ∈ Fn2 . To break this propagation

of rotational property, we add round constants rci0 and rci1 within the Simeck sboxes.

3.4 Security Analysis of sLiSCP and sLiSCP-light

In this section, we analyze the security of the sLiSCP and sLiSCP-light permutations by

considering the differential and linear, and algebraic properties.

58



3.4.1 Differential and linear cryptanalysis

To evaluate upper bounds on differential and linear characteristics of sLiSCP and sLiSCP-

light, we follow the Wide Trail Strategy [52] (used by AES designers and subsequently applied

to most of the designs). To the best of our knowledge, this is the best bound we can achieve.

We first compute the minimum number of differentially and linearly active Simeck sboxes

using the MILP model. Next, we use the MEDP and MELHSC bounds of Simeck sboxes

(Section 3.3.1) to provide bounds for sLiSCP and sLiSCP-light.

3.4.1.1 MILP model for bounding minimum number of active sboxes

Assumptions. We say a Simeck sbox SB-[2n, u] is active if the input difference to it is non-

zero. A non-zero input difference goes to a non-zero output difference with probability 1 as the

Simeck sbox is a permutation. For a non-invertible sbox, this holds with some probability but

not 1. The XOR operation cancels the difference with probability 2−2n, i.e., for α, β ∈ F2n
2 ,

α ⊕ β = 0 ⇐⇒ α = β. Moreover, a zero difference goes to zero output difference. So, the

input difference at the beginning has to be non-zero. The non-zero and zero differences are

denoted by integer 1 and 0, respectively.

Since there are 4 blocks in sLiSCP and sLiSCP-light permutations, we have 24−1 possible

input differences (except the (0, 0, 0, 0) case)). For s steps, there are 22s× 15 paths. The goal

is to find a path which has the minimum number of active Simeck sboxes. We model this

problem as an optimization problem. Below, we give the exact model for sLiSCP as an

example.

MILP model for sLiSCP.

1. Binary variables. x0, x1, x2, x3, t
i
0, t

i
1 for 0 ≤ i ≤ s− 1, and x4, · · · , x4+2(s−1), x3+2s

2. Constraints.

Non-zero input difference: x0 + x1 + x2 + x3 ≥ 1

Step 0:
x0 + x1 + x4 − 2t00 ≥ 0, t00 ≥ x0, t00 ≥ x1, t00 ≥ x4
x2 + x3 + x5 − 2t01 ≥ 0, t01 ≥ x2, t01 ≥ x3, t01 ≥ x5

Step 1:
x1 + x5 + x6 − 2t10 ≥ 0, t10 ≥ x1, t01 ≥ x5, t10 ≥ x6
x3 + x4 + x7 − 2t11 ≥ 0, t11 ≥ x3, t11 ≥ x4, t11 ≥ x7

Step i = 2 to s− 1:
x2i + x2i+2 + x2i+5 − 2ti0 ≥ 0, ti0 ≥ x2i, ti1 ≥ x2i+2, t

i
0 ≥ x2i+5

x2i+1 + x2i+3 + x2i+4 − 2ti1 ≥ 0, ti1 ≥ x2i+1, t
i
1 ≥ x2i+3, t

i
1 ≥ x2i+4

3. Objective function. Minimize: x1 + x3 + · · ·+ x2s + x2s+1

In the above model, the conditions of the form a+ b+ c− 2t ≥ 0, t ≥ a, t ≥ b, t ≥ c model

the difference propagation via XOR operation, i.e., a⊕ b = c. The variables in the objective

function are inputs to the Simeck sboxes. The model for sLiSCP-light and computing linearly
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active sboxes is exactly identical1. Table 3.11 presents a lower bound on the minimum number

of active sboxes for up to 18 steps which we obtained by solving the above model.

Table 3.11: Lower bounds on the number of active Simeck sboxes for sLiSCP and sLiSCP-
light

Step (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

min. # of active
Simeck sboxes

0 1 2 3 4 6 6 7 8 9 10 12 12 13 14 15 16 18

3.4.1.2 Estimated bounds of differential and linear characteristics

From Table 3.11, we note that the minimum number of differential/linear active sboxes are 18

and 12 for s = 18 and s = 12, respectively. Thus, the estimated upper bounds for differential

and linear characteristics for sLiSCP and sLiSCP-light permutation are given as follows.

sLiSCP-192: (MEDP(SB-[48, 6]))18 = (2−10.66)18 = 2−191.88

sLiSCP-256: (MEDP(SB-[64, 8]))18 = (2−15.86)18 = 2−285.48

sLiSCP-light-192: (MEDP(SB-[48, 6]))12 = (2−10.66)12 = 2−127.92

sLiSCP-light-256: (MEDP(SB-[64, 8]))12 = (2−15.86)18 = 2−190.32

sLiSCP-192: (MELHSC(SB-[48, 6]))18 = (2−10.83)12 = 2−194.94

sLiSCP-256: (MELHSC(SB-[64, 8]))18 = (2−15.64)12 = 2−281.52

sLiSCP-light-192: (MELHSC(SB-[48, 6]))12 = (2−10.83)12 = 2−129.96

sLiSCP-light-256: (MELHSC(SB-[64, 8]))12 = (2−15.64)12 = 2−187.68

3.4.1.3 Notes on differential property of sLiSCP and sLiSCP-light

We consider the propagation of a six step differential characteristic to analyze which permuta-

tion offers better resistance against differential cryptanalysis. Let the input difference α 6= 0

to SB-[2n, u] go to output difference β with probability p1 and β goes to α with probability p2.

As shown in Figure 3.5, the input and output differences to both permutations are (0, 0, 0, α)

after 6-steps. In fact, it is a 6-step cycle. Also, note that the number of active sboxes is

6 (active sboxes shown in blue color). However, the differential characteristics probabilites

differ which are given as follows.

sLiSCP: (Pr(α, β))4 × (Pr(β, α))2 = p41p
2
2

sLiSCP-light: (Pr(α, β))2 × (Pr(β, α))4 = p21p
4
2

1For example, if XOR is replaced by AES MixColumns, then one has to be careful.
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Figure 3.5: 6-step differential characteristic for (a) sLiSCP and (b) sLiSCP-light where S is
SB-[2n, u]

As a concrete example for SB-[48, 6], we find α = 0x010000000000 and β = 0x1D0000060000

with p1 = 2−17.8 and p2 = 2−16.3. Thus, p41p
2
2 = 24×−17.8+2×16.3 ≈ 2−103.8 and p21p

4
2 =

22×−17.8+4×16.3 ≈ 2−100.8. Since for sLiSCP-light-192 we found a differential characteristic

whose probability is greater than sLiSCP-192, we argue that sLiSCP-light is slightly weaker

than sLiSCP in terms of differential properties. Furthermore, the same observation applies

to linear characteristics.

3.4.2 Algebraic properties

To find bounds on the algebraic degree of sLiSCP-light, we extend the MILP model of the

Simeck sbox (Section 3.3.2.1) to s steps of the permutation. Table 3.12 provides an upper

bound on the algebraic degree of each component function of sLiSCP-light instances.
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Table 3.12: Upper bounds on the algebraic degree of sLiSCP-light

Component function

steps (s) 0-23 24-47 48-71 72-95 96-119 120-143 144-167 168-191

sLiSCP-light-192

1 19 13 19 13 19 13 19 13
2 57 51 57 51 57 51 57 51
3 129 125 129 125 129 125 129 125
4 178 177 178 177 178 177 178 177
5 189 189 189 189 189 189 189 189

steps (s) 0-31 32-63 64-95 96-127 128-159 160-191 192-223 224-255

sLiSCP-light-256

1 36 27 36 27 36 27 36 27
2 92 83 92 83 92 83 92 83
3 183 182 183 182 183 182 183 182
4 247 247 247 247 247 247 247 247

Integral distinguishers. We model a MILP model similar to Section 3.3.2.3 to search for

the integral distinguishers. We set the 0-th bit of the input state as constant (C) and rest as

active (A). We then evaluate the algebraic degree at the s-th step of each component function

in terms of the involved active bits. We find that for sLiSCP-light-192, after the 8-th step,

the component functions 0-59, 70-107, 118-191 have degree less than 191, and hence bits 0-59,

70-107, 118-191 are balanced. As for sLiSCP-light-256, bits 0-63, 192-255 are balanced. Thus,

8-step integral distinguishers exist for both sLiSCP-light-192 and sLiSCP-light-256.

Zero-sum distinguishers. This is a variant of integral distinguisher where all the bits of

the state are balanced. We note that the maximum number of steps covered by zero-sum

distinguishers in one direction is at most 7. This is because integral distinguisher can cover

up to 8 steps. For example CA191 7 steps−−−−→ B192, CA255 7 steps−−−−→ B256. Hence, 7 + 7 steps

zero-sum distinguisher exists for sLiSCP-light-192 (resp. sLiSCP-light-256).

Note that the number of steps in sLiSCP-light is 12, but we have found 14-step zero sum

distinguishers. To exploit such distinguishers, one has to start from an intermediate state

(s = 7) of the permutation. Since the intermediate state is never available to the adversary,

we emphasize that such distinguishers are not directly exploitable, and hence do not affect

the security.

Remarks on integral distinguisher of sLiSCP. The above analysis can be easily applied

to sLiSCP. However, we have only modeled the word-based division property of sLiSCP

permutation. The 9-step integral distinguisher for sLiSCP-192 is given in Table 3.13.

This suggests that sLiSCP-light has better algebraic properties than sLiSCP. This is also

evident from the fact that sLiSCP-light step function mixes the entire state nonlinearly. In

case of sLiSCP, the odd index blocks are updated to next step without any mixing.

62



Table 3.13: 9-step integral distinguisher for sLiSCP-192

Step (s) Division property

0 {(48, 46, 48, 48)}
1 {(46, 48, 48, 48)}
2 {(10, 48, 48, 48), (29, 48, 48, 47), (48, 48, 48, 46)}
3 {(1, 48, 48, 13), (10, 48, 48, 12), (29, 48, 48, 11), (48, 48, 48, 10), (1, 48, 47, 32), (10, 48, 47, 31), (29,

48, 47, 30), (48, 48, 47, 29), (48, 48, 46, 48)}
4 {(1, 48, 13, 4), (10, 48, 13, 3), (29, 48, 13, 2), (48, 48, 13, 1), (1, 48, 12, 13), (10, 48, 12, 12), (29, 48,

12, 11), (48, 48, 12, 10), (1, 48, 11, 32), (10, 48, 11, 31), (29, 48, 11, 30), (48, 48, 11, 29), (48, 48, 10,
48), (1, 47, 32, 4), (10, 47, 32, 3), (29, 47, 32, 2), (48, 47, 32, 1), (1, 47, 31, 13), (10, 47, 31, 12), (29,
47, 31, 11), (48, 47, 31, 10), (1, 47, 30, 32), (10, 47, 30, 31), (29, 47, 30, 30), (48, 47, 30, 29), (48, 47,
29, 48), (48, 46, 48, 48)}

5 {(1, 13, 0, 4), (1, 12, 13, 4), (10, 13, 0, 3), (10, 12, 13, 3), (29, 13, 0, 2), (29, 12, 13, 2), (48, 13, 0, 1),
(48, 12, 13, 1), (1, 12, 12, 13), (10, 12, 12, 12), (29, 12, 12, 11), (48, 12, 12, 10), (1, 12, 11, 32), (10,
12, 11, 31), (29, 12, 11, 30), (48, 12, 11, 29), (48, 12, 10, 48), (1, 11, 32, 4), (10, 11, 32, 3), (29, 11, 32,
2), (48, 11, 32, 1), (1, 11, 31, 13), (10, 11, 31, 12), (29, 11, 31, 11), (48, 11, 31, 10), (1, 11, 30, 32),
(10, 11, 30, 31), (29, 11, 30, 30), (48, 11, 30, 29), (48, 11, 29, 48), (48, 10, 48, 48), (0, 32, 0, 4), (0, 31,
13, 4), (9, 32, 0, 3), (9, 31, 13, 3), (28, 32, 0, 2), (28, 31, 13, 2), (47, 32, 0, 1), (47, 31, 13, 1), (0, 31,
12, 13), (0, 31, 11, 32), (0, 30, 32, 4), (9, 30, 32, 3), (28, 30, 32, 2), (47, 30, 32, 1), (0, 30, 31, 13), (0,
30, 30, 32)}

6 {(0, 1, 0, 2), (0, 0, 4, 2), (13, 1, 0, 1), (13, 0, 4, 1), (0, 0, 3, 11), (13, 0, 3, 10), (0, 0, 2, 30), (13, 0, 2,
29), (13, 0, 1, 48), (12, 13, 0, 1), (12, 12, 13, 1), (12, 11, 32, 1), (11, 32, 0, 1), (11, 31, 13, 1), (11, 30,
32, 1), (32, 1, 0, 0), (32, 0, 4, 0), (32, 0, 3, 9), (32, 0, 2, 28), (32, 0, 1, 47), (31, 13, 0, 0), (31, 12, 13,
0), (31, 11, 32, 0), (30, 32, 0, 0), (30, 31, 13, 0), (30, 30, 32, 0)}

7 {(0, 1, 0, 1), (0, 0, 2, 1), (1, 1, 0, 0), (1, 0, 2, 0), (0, 4, 0, 0), (0, 3, 11, 0), (0, 2, 30, 0), (0, 0, 1, 13),
(13, 0, 1, 12), (32, 0, 1, 11), (0, 0, 0, 32), (13, 0, 0, 31), (32, 0, 0, 30)}

8 {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1), (4, 0, 0, 0), (0, 2, 0, 0), (0, 1, 13, 0), (0, 0, 32, 0)}
9 {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (2, 0, 0, 0)}
10 {(0,0,0,1), (1,0,0,0), (0,1,0,0), (0,0,1,0)}

3.5 Summary

In this chapter, we have presented the design of two lightweight cryptographic permutations

sLiSCP and sLiSCP-light. We have provided an in-depth analysis of security properties of

Simeck sbox using SAT/SMT and MILP. Finally, we discussed the security of both permuta-

tions with respect to differential and linear, and algebraic distinguishers. We have shown that

sLiSCP-light is better in algebraic properties, but weaker in differential and linear properties

than sLiSCP.
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Declaration of Contributions

This chapter is based on [7]. My main contributions are as follows.

• Overall design and parameters selection with rationale.

• Modeled the following properties.

– MILP model to compute the minimum number of active Simeck sboxes. The

security bounds against differential and linear distinguishers.

– Bit-based division property MILP model to find algebraic degree bounds, integral

and zero-sum distinguishers.

– Diffusion behavior.

4.1 Motivation

A sponge-based hash function utilizing a b-bit permutation with b = r + c, r-bit rate and

c-bit capacity can only provide collision security up to c
2 bits (by birthday bound) (Section

2.3.3.2). Thus, to achieve 128-bit collision security with 256-bit message digest, c should be

256. To meet this security level, we require a permutation where b ≥ 257. In this context,
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we explore the design structures of sLiSCP and sLiSCP-light permutations with large state

sizes, and aim to design a permutation that can achieve a balance between hardware cost and

software efficiency for both hashing and AEAD functionalities. Furthermore, it should have

a simple analysis and sufficient security margins against distinguishing attacks.

This leads to the ACE which is often considered as one of the strongest cards in a deck

of cards. In our case, ACE is a 320-bit permutation and a generalization of sLiSCP and

sLiSCP-light permutations with five 64-bit blocks. In this chapter, we present its design and

security analysis.

Outline. The rest of the chapter is organized as follows. In Section 4.2, we present the

complete specification of the ACE permutation. Sections 4.3 and 4.4 provide the detailed

security analyis and the rationale of our design choices.

4.2 The ACE Permutation

ACE is an iterative permutation that takes a 320-bit state as an input and outputs a 320-bit

state after iterating the step function ACE-step for s = 16 times (Figure 4.1). The nonlinear

operation SB-64 is applied on even indexed words, i.e., A, C and E, and hence the permutation

name. We present the algorithmic description of ACE in Algorithm 4.1 and describe the

individual components as follows.

Ai Bi Ci Di Ei

64 64 64 64 64

SB-64 SB-64 SB-64rci0 rci1 rci2

156‖sci0 156‖sci1 156‖sci2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Figure 4.1: ACE-step

4.2.1 The nonlinear function SB-64

We use Simeck block cipher with block size 64 and u = 8 as the nonlinear operation. In

particular, ACE utilizes SB-[64, 8] (Section 3.2.1). In the following, we denote SB-[64, 8] by
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Algorithm 4.1 ACE permutation

1: Input: S0 = A0||B0||C0||D0||E0

2: Output: S16 = A16||B16||C16||D16||E16

3: for i = 0 to 15 do:
4: Si+1 ← ACE-step(Si)
5: return S16

6: Function ACE-step(Si):
7: Ai ← SB-64(Ai1||Ai0, rci0) . Ai1, A

i
0 are left and right halves of Ai

8: Ci ← SB-64(Ci1||Ci0, rci1)
9: Ei ← SB-64(Ei1||Ei0, rci2)

10: Bi ← Bi ⊕ Ci ⊕ (156||sci0)
11: Di ← Di ⊕ Ei ⊕ (156||sci1)
12: Ei ← Ei ⊕Ai ⊕ (156||sci2)
13: Ai+1 ← Di

14: Bi+1 ← Ci

15: Ci+1 ← Ai

16: Di+1 ← Ei

17: Ei+1 ← Bi

18: return (Ai+1||Bi+1||Ci+1||Di+1||Ei+1)

19: Function SB-64(x1||x0, rc):
20: (q7, q6, . . . , q0)← rc
21: for j = 2 to 9 do
22: xj ← (L5(xj−1)� xj−1)⊕ L1(xj−1)⊕ xj−2 ⊕ (131||qj−2)
23: return (x9||x8)

SB-64 if u = 8 is fixed.

4.2.2 Round and step constants

The step function of ACE is parameterized by two sets of triplets (rci0, rc
i
1, rc

i
2) and (sci0, sc

i
1, sc

i
2)

where each rcij and scij is of length 8 bits and j = 0, 1, 2. We call them round constants and

step constants, respectively. As shown in Figure 4.1, the round constant triplet (rci0, rc
i
1, rc

i
2)

is used within the Simeck sboxes while the step constant (sci0, sc
i
1, sc

i
2) is XORed to the words

B, D and E. In Table 4.1 we list the hexadecimal values of the constants.

Table 4.1: Round and step constants of ACE

Step i Round constant (rci0, rc
i
1, rc

i
2) Step constant (sci0, sc

i
1, sc

i
2)

0 - 3 (07, 53, 43), (0a, 5d, e4), (9b, 49, 5e), (e0, 7f, cc) (50, 28, 14), (5c, ae, 57), (91, 48, 24), (8d, c6, 63)
4 - 7 (d1, be, 32), (1a, 1d, 4e), (22, 28, 75), (f7, 6c, 25) (53, a9, 54), (60, 30, 18), (68, 34, 9a), (e1, 70, 38)
8 - 11 (62, 82, fd), (96, 47, f9), (71, 6b, 76), (aa, 88, a0) (f6, 7b, bd), (9d, ce, 67), (40, 20, 10), (4f, 27, 13)
12 - 15 (2b, dc, b0), (e9, 8b, 09), (cf, 59, 1e), (b7, c6, ad) (be, 5f, 2f), (5b, ad, d6), (e9, 74, ba), (7f, 3f, 1f)
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4.2.3 The linear layer

After XORing the blocks and step constants, five words are shuffled in a (3, 2, 0, 4, 1) order

(Lines 13-17 of Algorithm 4.1). This order of shuffling is different than the left cyclic shuffle

of sLiSCP and sLiSCP-light (Figure 3.3).

4.3 Security Analysis

In this section, we analyze the security of ACE permutation by assessing its indistinguishability

properties against various distinguishing attacks. We also compare the linear layer of ACE

with other linear layers. In our analysis, we denote the linear layer by π, i.e., π permutates

the blocks of state. For example, if π(0, 1, 2, 3, 4) = (3, 2, 0, 4, 1), then after applying π, the

state A||B||C||D||E is transformed to D||C||A||E||B. Also, recall that u and s refer to the

number of rounds inside the Simeck sbox and the number of steps, respectively. Moreover,

by the component function fsj we refer to the ANF of the j-th bit of ACE after s steps.

4.3.1 Diffusion

Full bit diffusion. We say ACE achieves full bit diffusion after s steps if fsj is a function of

all the input state bits for each j ∈ {0, · · · , 319}. Thus, we need to find a minimum value of s

which satisfies this criterion. The value depends on the diffusion property of the Simeck sbox

as well. We find that u = 11 gives full bit diffusion within the Simeck sbox. Since ACE has

five words that are updated in each step, we note that s has to be at least 5. Accordingly, we

search for (u, s) ∈ {(i, 5)|1 ≤ i ≤ 11}. In Table 4.2, we list all the linear layers which achieve

full bit diffusion in (u, s) = (4, 5).

Table 4.2: Linear layers which achieve full bit diffusion in (u, s) = (4, 5)

No. Linear layer π

1 (1, 2, 4, 0, 3)

2 (2, 0, 3, 4, 1)

3 (2, 0, 4, 1, 3)

4 (2, 4, 1, 0, 3)

5 (3, 2, 0, 4, 1)

6 (3, 2, 4, 0, 1)

7 (4, 0, 1, 2, 3)

8 (4, 2, 0, 1, 3)

9 (4, 2, 3, 0, 1)

10 (4, 3, 1, 0, 2)
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Although (u, s) = (4, 5) is the minimal choice set, we cannot choose it as we also need

to ensure good resistance against differential and linear, and algebraic properties. For u = 8

and s = 5, the number of linear layers satisfying the full bit diffusion property are 13, and

π = (3, 2, 0, 4, 1) is one among them. We justify these choices later in Section 4.4.6.

Meet-in-the-middle distinguishers. Given that (u, s) = (8, 16) and π = (3, 2, 0, 4, 1) for

ACE, we claim that such a distinguisher cannot cover more than ten steps, because ten steps

guarantees full bit diffusion in both forward and backward directions.

4.3.2 Differential and linear cryptanalysis

MILP model for bounding minimum number of active sboxes. We model the dif-

ference propagation of ACE using MILP which is similar to the MILP model for sLiSCP

(Section 3.4.1.1) with minor changes. The changes are listed below.

1. Model the difference propagation for 3 XORs.

2. Change π = (1, 2, 3, 0) to π = (3, 2, 0, 4, 1) for 5 blocks.

3. Change the objective function to incorporate the effect of 3 sboxes in one step.

Table 4.3 depicts the minimum number of active Simeck sboxes for ACE.

Table 4.3: Minimum number of active Simeck sboxes for s-step ACE

step (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# active sboxes 0 1 2 3 4 6 7 8 10 11 13 14 15 16 18 19

Estimated bounds of differential and linear characteristics. Let p denote the MEDP

of u-round Simeck sbox in log2(·) scale. An in-depth analysis of values of p has been provided in

Section 3.3.1. For (u, s) = (8, 16), we have p = −15.8 and the maximum estimated differential

characteristic probability is given by 219×−15.8 ≈ 2−300.2. The maximum estimated linear

square correlation of a linear characteristic is computed analogously using γ = −15.6 and

equals 2−296.4 where γ = MELHSC(SB-64) (Section 3.3.1.3).

4.3.3 Algebraic properties

We use the bit based division property model as described in Section 3.3.2.1 to analyze the

algebraic properties of ACE. To find the algebraic degree bounds, it is enough to find upper

bounds on the algebraic degrees of component functions fs0 , f
s
32, f64s , f

s
96, f

s
128, f

s
160, f

s
192, f

s
224,

fs256 and f s288. This is because for SB-64, the algebraic degree is 36 for the first 32 component
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Table 4.4: Bounds on the algebraic degree of ACE. We give the lower and upper bounds when
the MILP model does not converge.

Component function

steps (s) fs0 fs32 fs64 fs96 fs128 fs160 fs192 fs224 fs256 fs288
1 36 27 36 27 36 27 36 27 36 27
2 92 83 63 62 92 83 92 83 63 62
3 126 125 119 117-120 239-247 235-245 236-249 233-248 119 118-120
4 240-247 238-246 241-248 242-247 306-312 303-311 304-313 304-311 241-248 241-247

functions while it is 27 for the remaining ones. Table 4.4 provides the bounds on the algebraic

degree for these component functions.

Note that since the number of words in ACE is odd, due to slow diffusion the algebraic

degrees are 63 and 62 for the component functions f264 and f296, respectively. A similar trend

can be seen for the component functions f2256 and f2288. This non-uniformity in degree continues

till step five, after which the degree is stabilized to 304-313 due to full bit diffusion. We expect

that the degree reaches 319 in six steps. In Table 4.5, we list the integral distinguishers of

ACE. Note that the positions of constant bits are chosen based on the degree of Simeck sbox.

Table 4.5: Integral distinguishers of ACE

Steps s Input division property Balanced component functions

8

A32||C||A287 f864 − f8127, f8256 − f8319
A96||C||A223 None

A160||C||A159 None

A224||C||A95 f864 − f8127, f8256 − f8319
A288||C||A31 None

4.3.4 Symmetric distinguishers

In Section 3.3.3, we have seen that Simeck sbox has the rotational invariant property. This

property could propagate to multiple steps if constants are not added at each round and step.

Thus, a proper choice of round constants is required. Below we list properties of the constants

which ensure that each step function of ACE is distinct.

• For 0 ≤ i ≤ 15, sci0 6= sci1 6= sci2

• For 0 ≤ i ≤ 15, (rci0, rc
i
1, rc

i
2) 6= (sci0, sc

i
1, sc

i
2)

• For 0 ≤ i, j ≤ 15 and i 6= j, (rci0, rc
i
1, rc

i
2) 6= (rcj0, rc

j
1, rc

j
2)

• For 0 ≤ i, j ≤ 15 and i 6= j, (sci0, sc
i
1, sc

i
2) 6= (scj0, sc

j
1, sc

j
2).
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4.4 Design Rationale

In this section, we discuss the design choices of ACE.

4.4.1 State size

Our main objective as mentioned in Section 4.1 is to choose b that provides 128-bit security

for both hash and AEAD. The immediate choices are b = 288, 320 and 384. In ACE, we

choose b = 320 as it provides a good trade-off among hardware and software requirements,

security and efficiency. With this choice of b, ACE can have implementations in a wide range

of platforms. We discard the other state sizes for the following reasons.

- Considering the lightweight applications, 384-bit state is too heavy in hardware.

- 288 is not a multiple of 64, hence, we cannot efficiently use inbuilt 64-bit CPU instruc-

tions for software implementation.

4.4.2 Step function

We aim to build a 320-bit permutation, hence we could have used a 4-block sLiSCP-light

with 80-bit Simeck sboxes. We discarded this choice for the following reasons.

- For n > 32 and the shift parameter set (a, b, c) with a 6= b 6= c, a > b and gcd(a−b, n) =

1, it is not practical to evaluate most of the cryptographic properties.

- A Simeck sbox with parameters (a, b, c) = (5, 0, 1) and 2n = 80 has weak differential

and linear properties as gcd(5, 40) 6= 1.

- A 80-bit based software implementation is not efficient.

Consequently, we decided to use a 5-block state with three Simeck sboxes and wrap around

the linear mixing between words A and E. We also decided to XOR SB-64(A) with SB-64(E),

instead of E to avoid the need for an extra temporary 64-bit register to store the initial value

of E.

4.4.3 Nonlinear layer: Simeck sbox (SB-64)

- Simeck has a hardware friendly round function that consists of simple bitwise XOR,

AND and cyclic shift operations.

- It is practical to evaluate the MEDP and MELHSC values of SB-64 which are 2−15.8

and 2−15.6, respectively (Section 3.3.1).

- SB-64 has an algebraic degree of 36 which enables us to provide guarantees against

algebraic attacks.
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4.4.4 Linear layer: π = (3, 2, 0, 4, 1)

The choice of a linear layer is crucial for proper mixing among the blocks, which in turn affects

the differential and algebraic properties. Out of 5! possible permutations of blocks, 44 do not

exhibit fixed points. Moreover, we found that iterating such permutations for multiple rounds

achieves different differential and algebraic bounds. Accordingly, we searched their space to

find the ones that offer the best diffusion and result in the minimum number of active Simeck

sboxes in the smallest number of steps. Accordingly, we picked π = (3, 2, 0, 4, 1) as our linear

layer.

4.4.5 Round and step constants

- Three 8-bit unique step constants (sci0, sc
i
1, sc

i
2). The 3-tuple constant value is

unique across all steps, hence it destroys any symmetry between the steps of the per-

mutation.

- Three 8-bit unique round constants (rci0, rc
i
1, rc

i
2). One bit of each round constant

is XORed with the state of the Simeck sbox in each round to destroy the preservation of

rotational properties. Moreover, we append 31 ‘1’ bits to each one bit constant, which

results in many inversions, and breaks the propagation of the rotational property in one

step.

4.4.6 Number of rounds and steps

Our rationale for choosing the number of rounds u and number of steps s of ACE is based

on achieving the best trade-off between security and efficiency. By security and efficiency, we

mean the value of (u, s) for which ACE is indistiguishable from a random permutation and

u× s is minimum. We now justify the choice of (u, s) = (8, 16) for ACE.

1. Our first criterion is that s should be at least 3×m where m is the number of #steps

needed to achieve full bit diffusion in the state. This choice is inspired from [69] and

directly adds a 33% security margin against meet-in-the-middle distinguishers, as in

2m steps full bit diffusion is achieved in both forward and backward directions. Hence,

m = 5 =⇒ u ≥ 4 and s ≥ 15 (Section 4.3.1). However, we found that we cannot

choose u = 4, . . . , 7, because we also aim to achieve good resistance against differential

and linear cryptanalysis. Note that having a smaller number of rounds results in a

weaker Simeck sbox.

2. The second criterion is to push the upper bound of the differential characteristic proba-

bility of ACE to below 2−320. This value depends on the MEDP of u-round Simeck sbox
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and the number of such active sboxes in s steps (denote by ns). We have n15 = 18 and

n16 = 19 (Table 4.3).

Table 4.6: Optimal differential characteristic probability p of u-round Simeck sbox and the
corresponding differential characteristics bounds of ACE for s = 15, 16.

u 4 5 6 7 8 9

log2(p) -6 -8 -12 -14 -18 -20

n15 × log2(p) -108 -144 -216 -252 -324 -360

n16 × log2(p) -114 -152 -228 -266 -342 -380

Table 4.6 depicts that (u, s) ∈ {(8, 15), (8, 16), (9, 15), (9, 16)}. However, if we consider

the differential effect (Definition 2.3), then the differential probability is 2−15.8 when u = 8.

Accordingly, we have

n15 ×−15.8 = 18×−15.8 = −284.4

n16 ×−15.8 = 19×−15.8 = −300.2

Thus, we ignore (u, s) = (8, 15) and choose (u, s) = (8, 16). The other two choices are

discarded from the efficiency perspective as u × s = 135 (resp. 144) when (u, s) = (9, 15)

(resp. (9,16)) compared to 128 iterations when (u, s) = (8, 16).

4.5 Summary

In this chapter, we have presented the design of ACE which is a 320-bit permutation. It is a

variant of generalized feistel structure with five branches, and uses eight round Simeck block

cipher and π = (3, 2, 0, 4, 1) as the nonlinear and linear layer, respectively. We analyzed its

security by considering its indistinguishable behavior against diffusion, differential/linear, al-

gebraic and symmetry based distinguishers. Finally, we justified the choice of each component

along with its parameter set.
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Declaration of Contributions

This chapter is based on [8]. My main contributions are as follows.

• Overall design and parameters selection with rationale (except the two 7-bit sboxes and

selection of the underlying finite field F27 polynomial).

• MILP model to compute the minimum number of active sboxes and the security bounds

against differential distinguishers.

• Analysis of diffusion behavior and algebraic degree.

5.1 Motivation

Designing a secure cryptographic primitive which can guarantee theoretical randomness prop-

erties is a challenging task. For instance, the eSTREAM finalist Grain [73] uses a combination

of NLFSR and LFSR to obtain a lower bound on the period of the keystream sequence. In

particular, it is proved that the period of Grain output sequence is a multiple of the period

of LFSR [76]. On the other hand, another eSTREAM profile II submission WG [101] cipher
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adopts a single NLFSR for its key initialization phase which is switched to linear filter gener-

ator during the keystream generation phase (Section 2.5.4). Consequently, it provides proven

randomness properties such as long period, balance, large and exact linear complexity, and

ideal 2-level autocorrelation.

In the previous chapters, we have introduced sLiSCP, sLiSCP-light and ACE permuta-

tions, which according to our security analysis are indistinguishable from a random permuta-

tion. However, we cannot guarantee any randomness property similar to the WG. Thus, we

aim to design a permutation which could offer theoretical randomness properties in addition

to the classic AEAD and hash functionalities with a cheap hardware overhead. This chapter

introduces WAGE, a 259-bit permutation based on the design of WG stream cipher which can

be used as an original WG cipher by nullifying few operations in the control circuit.

Outline. The rest of the chapter is organized as follows. In Section 5.2, we present the

specification of the WAGE permutation. Sections 5.3 and 5.4 provides the detailed security

analyis and the rationale of our design choices.

5.2 Specification of WAGE

WAGE is a 259-bit permutation defined over an extension field of F27 . The primitive polyno-

mial is of degree 37 over F27 and given by

`(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω

where ω is a root of the defining primitive polynomial in F27 given by

f(x) = x7 + x3 + x2 + x+ 1.

The state is divided into 37 7-bit words and denoted by Si = (Si36, · · · , Si0) at the beginning

of the i-th round. The core components of the permutation include two WGP and four SB

sboxes defined over F27 , and 7-bit round constant (rci0, rc
i
1) tuple.

5.2.1 State update function of WAGE

The state update function of WAGE denoted by WAGE-StateUpdate(·) (Figure 5.1) takes as

input the current state Si and round constant tuple (rci0, rc
i
1), and updates the state in 3

steps as follows.

1. Compute the linear feedback fb.

fb = Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si0)
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2. Apply WGP and SB sboxes, and add round constants.

Si5 ← Si5 ⊕ SB(Si8)

Si11 ← Si11 ⊕ SB(Si15)

Si19 ← Si19 ⊕WGP(Si18)⊕ rci0
Si24 ← Si24 ⊕ SB(Si27)

Si30 ← Si30 ⊕ SB(Si34)

fb← fb ⊕WGP(Si36)⊕ rci1

3. Shift the register and update the last word with the feedback value.

Si+1
j ← Sij+1, 0 ≤ j ≤ 35

Si+1
36 ← fb

Si36 Si35 Si34 Si33 Si32 Si31 Si30 Si29 Si28 Si27 Si26 Si25 Si24 Si23 Si22 Si21 Si20 Si19

WGP SB SB

Si17Si18 Si16 Si15 Si14 Si13 Si12 Si11 Si10 Si9 Si8 Si7 Si6 Si5 Si4 Si3 Si2 Si1 Si0

WGP SB SB

⊕
ω

rci1

rci0

Figure 5.1: WAGE-StateUpdate function

5.2.2 Number of rounds and round constants

We update the state for 111 rounds with the WAGE-StateUpdate function. This value is chosen

based on our security analysis (Section 5.3). The hex values of 111 round constant pairs are

given in Appendix A.1.

5.2.3 WAGE to WG stream cipher

The WAGE permutation can be transformed to the WG stream cipher over F27 as follows.

1. Disconnect the second WGP module at position 18.

2. Disconnect all 4 SB modules at positions 8, 15, 27 and 34, and their corresponding

XORs at positions 5, 11, 24, 30, respectively.
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3. Force rci0 = 0 and rci1 = 0 for all i.

4. Add the Trace function module after the output of WGP at position 36.

For the applications where both AEAD and PRBG functionalities are required, we expect

that the hardware overhead of going from WAGE to WG is much lower than two separate

implementions.

Remark 5.1. We omit the mathematical details of the sboxes (treat them as a black box)

as this is not a contribution of the thesis (see [8] for the exact details). However, we use

their cryptographic properties (obtained from other designers1 of [8]) to analyze the security

of WAGE.

5.3 Security Analysis

In this section, we analyze the security of WAGE with respect to distinguishing attacks. We

primarily focus on differential properties, diffusion behavior and algebraic properties.

5.3.1 Differential properties

Maximum differential probabilities of sboxes. In WAGE, we use two distinct 7-bit

sboxes, namely WGP and SB as the nonlinear components. Since the word size is only 7 bits,

we experimentally computed the maximun differential probabilities (MDP) of sboxes. The

MDP values are given by

MDP(WGP) = 2−4.4

MDP(SB) = 2−4

Algorithmic description of MILP model. In Appendix A.2, we provide the exact

Python code for constructing the optimization model. The model is generic for WAGE-like

structures and takes as input ~c (the feedback tap positions), the position of sboxes and the

number of rounds r. The output is nr(~c) which is the minimum number of active sboxes. In

Table 5.1, we list the values of nr(~c) for varying ~c and r ∈ {37, 44, 51, 58, 74}.

Estimated bounds of differential characteristics. The maximum estimated differential

characteristic probability (say p) of WAGE is given by

p = max(2−4.42, 2−4)nr(~c) = 2−4×nr(~c)

For r = 74 and ~c = (31, 30, 26, 24, 19, 13, 12, 8, 6), we have p = 2−4×59 = 2−236 > 2−259.

Since Gurobi [2] is unable to finish for r > 74, we expect that for our choice of ~c, n111(~c) ≥ 65.

1Kalikinkar Mandal
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Table 5.1: Minimum number of active sboxes nr(~c) for different primitive polynomials. Here
‘−’ denotes that MILP optimization was too long and cannot be finished.

Primitive poly. coefficients Rounds r

~c 37 44 51 58 74

24, 23, 22, 21, 19, 6, 5, 4, 3 18 26 30 35 51
29, 27, 24, 23, 19, 11, 9, 6, 5 23 31 36 41 54
29, 28, 23, 22, 19, 11, 10, 5, 4 21 28 34 40 54
29, 28, 24, 20, 19, 11, 10, 6, 2 21 27 34 40 54
30, 28, 27, 21, 19, 12, 10, 9, 3 22 30 34 39 54
30, 29, 28, 26, 19, 12, 11, 10, 8 20 30 37 44 57
31, 25, 23, 21, 19, 13, 7, 5, 3 20 29 33 38 54
31, 26, 23, 20, 19, 13, 8, 5, 2 20 26 34 39 54
31, 28, 23, 21, 19, 13, 10, 5, 3 19 27 33 39 53
31, 30, 26, 24, 19, 13, 12, 8, 6 24 30 38 44 59
32, 25, 24, 21, 19, 14, 7, 6, 3 19 28 34 39 54
32, 29, 25, 22, 19, 14, 11, 7, 4 19 28 36 41 57
32, 29, 27, 22, 19, 14, 11, 9, 4 23 31 37 41 57
32, 29, 27, 24, 19, 14, 11, 9, 6 23 31 37 39 55
32, 30, 28, 24, 19, 14, 12, 10, 6 23 29 38 44 58
32, 31, 21, 20, 19, 14, 13, 3, 2 21 26 30 36 47
33, 27, 26, 20, 19, 15, 9, 8, 2 21 30 35 39 55
33, 29, 28, 21, 19, 15, 11, 10, 3 22 27 35 39 53
33, 30, 29, 26, 19, 15, 12, 11, 8 21 31 38 44 57
33, 31, 23, 22, 19, 15, 13, 5, 4 23 31 36 41 55
33, 31, 28, 23, 19, 15, 13, 10, 5 23 30 36 41 -
33, 31, 29, 22, 19, 15, 13, 11, 4 22 32 37 44 -
33, 31, 30, 25, 19, 15, 13, 12, 7 23 34 39 44 -

This is because for each additional 7 rounds, the number of active sboxes increases by at least

6 (row 10 in Table 5.1) which implies p ≤ 2−260 < 2−259.

5.3.2 Diffusion behavior

To achieve full bit diffusion, WAGE requires at least 21 rounds. This is because the 7 bits of

S36 are shifted to S0 in 21 clock cycles. Since the feedback function consists of 10 taps and all

six sboxes (2 WGP and 4 SB) individually have the full bit diffusion property, WAGE achieves

the full bit diffusion in at most 37 rounds. Accordingly, we claim that meet-in-the middle

distinguishers may not cover more than 74 rounds as 74 rounds guarantee full bit diffusion in

both the forward and backward directions.

5.3.3 Algebraic degree

The WGP and SB sboxes have an algebraic degree of 6. Note that if we only have WGP sbox at

position S36 along with the feedback polynomial and exclude all other sboxes and intermediate

XORs, then we get the original WG stream cipher. Such a stream cipher is resistant to attacks
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exploiting the algebraic degree if the nonlinear feedback used in the initialization phase is also

used in the key generation phase (Chapter 8). Given that WAGE has 6 sboxes and we use

nonlinear feedback for all of them, we expect that 111-round WAGE has high algebraic degree

and is secure against integral and cube attacks.

5.4 Design Rationale

In this section, we justify our design choices that lead to WAGE. Our rationale is mainly based

on security properties and hardware cost.

5.4.1 Finite field and state size

A trivial choice of finite field is F2t where t ∈ {5, 6, 7, 8}. We choose F27 and discard other

choices based on the following.

- For F25 and F26 , the state has many 5-bit and 6-bit words, respectively. Thus, it is not

feasible to provide bounds for the differential distinguishers as the MILP model does

not converge.

- The hardware cost2 of WGP module over F28 is at least twice the cost of WGP module

over F27 .

Once the field size is set, we choose the state size to be a multiple of 7 and is at least 256

bits. Thus, we choose it as 37× 7 = 259 bits.

5.4.2 Choice of sboxes

To preserve the structure of WG we require a WGP sbox at index 36. A single sbox results

in a slower confusion and diffusion, and is not good from design perspective. Alternatively,

we search for a 7-bit lightweight sbox whose differential and algebraic properties are similar

to WGP. In order to keep the structure symmetric, we opt for even number of WGP and SB

sboxes.

5.4.3 Positions and number of sboxes

The linear layer of WAGE is composed of 1) L1 : a primitive polynomial of degree 37, which is

primitive over F27 and 2) L2 : input and output tap positions of WGP and SB sboxes. There

exist many choices for L1 and L2, which results in a tradeoff between (especially) security and

implementations. Note that we cannot have only L1 or only L2 as the linear layer, because

- only L1 results in a slower diffusion

2Obtained from the hardware group of [8]
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- only L2 =⇒ there are many words which are not mixed among themselves. Thus, the

entire state can be divided into multiple independent sub-states. For example, the case

when key bits are not mixed.

The required criteria for L1 and L2 are listed as follows.

1. To have a lightweight L1 we look for a primitive polynomial of the form

`(y) = y37 +

36∑
j=1

cjy
j + ω, cj ∈ F2

where ω is the root of the chosen field polynomial f(x), which is also a primitive element

of F27 . Including ω, we choose feedback polynomials with few non-zero tap positions

(cj = 1) which are symmetric.

2. A combination of L1 and L2 for which computing the minimum number of active sboxes

is feasible and enable us to provide bounds for differential distinguishers.

Remark 5.2. Our MILP model does not converge when the number of sboxes is at least 8,

and thus we cannot provide bounds for differential distinguishers for 8 or more sboxes. So we

chose only six sboxes for WAGE, i.e., 2 WGP and 4 SB.

We analyze the 23 symmetric polynomials3 (10 non-zero taps, Table 5.1) with respect to

minimum number of active sboxes. We chose the one that provides the maximum resistance

against differential attack. More precisely, we have

L1 : y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω,

L2 : {(36, 36), (34, 30), (27, 24), (18, 19), (15, 11), (8, 5)}

where (a, b) ∈ L2 denotes the (input, output) position of an sbox (Figure 5.1).

5.4.4 Round constants

The structure of WAGE without round constants is symmetric and hence vulnerable to slide

attacks. Thus, we XOR two 7-bit round constants rci1 and rci0 to words Si36 and Si18, respec-

tively. The round constant tuple is distinct for each round, i.e., (rci0, rc
i
1) 6= (rcj0, rc

j
1) for

0 ≤ i, j ≤ 110 and i 6= j ensuring that all the rounds of WAGE are distinct.

5.4.5 Number of rounds

Our rationale for selecting the number of rounds (say nr) is to choose a value such that the

WAGE permutation is indistinguishable from a random permutation. We justify our choice of

3Obtained from the hardware group of [8]
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nr = 111 as follows.

1. WAGE adopts an LFSR structure with 37 7-bit words, and hence nr ≥ 37, otherwise the

words will not be mixed among themselves properly, which leads to meet-in-the-middle

attacks.

2. For nr = 74, the maximum estimated differential characteristic probability of WAGE

equals 2−4×59 = 2−236 > 2−259. To push this value to less than 2−259, nr ≥ 74. However,

it is infeasible to compute the value for nr ≥ 74. Thus, we expect that for nr = 111,

the maximum estimated differential characteristic probability� 2−259 (Section 5.3.1).

5.5 Summary

In this chapter, we have introduced WAGE which is a 259-bit permutation based on the

WG stream cipher. To keep the overall design lightweight, we opt for a symmetric feedback

polynomial with 10 non-zero taps and six 7-bit (2 WGP + 4 SB) sboxes. We analyzed the

security of WAGE with respect to differential and algebraic distinguishers. Finally, we justified

the choice of each component with their respective parameters.
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Part II

Mode of Operations for AEAD and Hash
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Declaration of Contributions

This chapter is based on [14, 16, 15, 7, 13, 8]. My main contributions are as follows.

• Equal contribution in design of the mode and parameters selection of AEAD and hash

algorithms.

• Choice of domain separators, rate and capacity part of the state.

• Choice of positions of state for loading key and nonce bytes, and extracting tag bytes

(except WAGE AEAD).

6.1 Motivation

The sponge framework is very diversified in terms of the offered functionalities such as AEAD,

hash, MAC and PRBG (Section 2.3). Each functionality could be attained using the same
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cryptographic permutation P. The only differences arise from the implementation cost and

security level we target. For instance, a hash digest of 256 bits restricts the size of permutation

P to a minimum of 320 bits for a rate of 64 bits. The same permutation can also provide up to

128 bits authenticated encryption security with 192-bit rate. Although, the same permutation

is used for both hash and AEAD, their hardware costs vary because of different rate values

(64 XORs and 192 XORs). Thus, it is reasonable to have a circuitry which can provide

multiple cryptographic functions with cheap overhead, which might be a determining factor

for its realistic adoption in constrained devices. In this chapter, we introduce the design of

the unified round function in a sponge framework which addresses the above problem.

Outline. The rest of the chapter is organized as follows. Section 6.2 presents the rationale

and description of the unified round function. Sections 6.3 and 6.4 give a generic description

of AEAD algorithm and their instances, respectively. We also discuss the choice and rationale

of rate positions, domain separators, loading key and nonce procedures, and tag extraction

procedures. In Section 6.5, we show how to handle short messages. Finally, we present hash

algorithms in Section 6.6 and conclude in Section 6.7.

6.2 The Unified Round Function

In this section, we first discuss the need for a unified round function in a sponge framework

and then give its explicit description.

6.2.1 Why a unified function?

We consider different scenarios which motivate us towards the design of a unified round

function.

Security and hardware cost. In sponge-based keyed modes (Section 2.3.5.2), r-bit rate

is known while c bits of capacity are unknown. An adversary with the knowledge of c bits

can invert the permutation and hence recover the entire secret key. Thus, to prevent key

recovery and forgery attacks from the knowledge of state, designs such as Ascon [60] mask the

capacity with a key during the initialization and finalization phases (Figure 6.1). However,

this masking requires an additional |K| bits XORs and multiplexers. Additionally, these

XORs and multiplexers are idle during associated data processing and encryption phases.

Furthermore, to distinguish between different phases a single bit domain separator is only

XORed to capacity after the last block of associated data is processed. This brings us to

uniformity which is lacking here.

86



IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb

c

As
r

pb

c

Associated Data

0∗‖1

P1C1
r

c
pb

Pt−1 Ct−1

r

c
pb

Plaintext

Pt Ct
r

c

K‖0∗

pa

Finalization

K

T

128

Figure 6.1: Duplex sponge mode for Ascon where pa and pb denote Ascon permutation with
a and b rounds, respectively. Figure is taken from [60].

Uniformity. A simple way to have uniformity is to mask capacity with key and domain

separators at each step. The former is not a good option from an efficiency perspective. Thus,

we could use domain separators after each call of P (a technique similar to the one used in

NORX [18]).

Our approach. We modify the keyed initialization and keyed finalization phases of the

Ascon, and domain separation mechanism of NORX. In particular, instead of XORing key to

capacity, we again absorb it in the state using the rate part for both phases. Moreover, we add

a single bit domain separator after each call of the permutation. This approach makes key

recovery hard even if the internal state is recovered and also brings uniformity across different

phases. Additionally, the modification makes the initialization and finalization stages more

hardware efficient and adaptable to different primitives. To this end, we only have one round

function as described next.

6.2.2 Description of the unified round function

In Figure 6.2, we depict the unified round function which can be easily adaptable to different

primitives. It incorporates absorption (X), squeezing (Y ), domain separation, and according

to the fed inputs, we decide which stage and functionality to implement (Table 6.1).

Some remarks.

- For decryption procedure, C is the input to the permutation.

- MAC is AEAD without encryption/decryption. PRBG is AEAD without associated

data processing and encryption/decryption. So, both functionalities can be obtained

from AEAD scheme only.

In the following, we describe AEAD and hash algorithms in detail.
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Figure 6.2: Schematic of the unified round function

Table 6.1: Different functionalities using the unified round function. Symbol ’-’ denotes no
output.

Functionality Phase X Y Domain separator

AEAD

Initialization K - 0x00

Associated data processing AD - 0x01

Encryption/Decryption M/C C/M 0x02

Finalization K - 0x00

Hash
Absorption M - 0x00

Squeezing - r-bit digest 0x00

MAC

Initialization K - 0x00

Message processing M - 0x01

Finalization K - 0x00

PRBG
Initialization K - 0x00

Output - r-bit random number 0x00

6.3 Generic AEAD Algorithm

In Algorithm 6.1, we present a high-level overview of an AEAD algorithm using the unified

round function. We denote it by AE-[P] where P is the underlying permutation. Also, the

b-bit (b = r + c) state of P is given by S = (Sr, Sc) where Sr and Sc denote the rate and

capacity part of the state, respectively. The encryption AEenc-[P] and decryption AEdec-[P]

procedures of AE-[P] are shown in Figure 6.3. In the following, we first illustrate the padding

rule and then describe each phase of AE-[P] in detail.
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Algorithm 6.1 AEAD algorithm AE-[P]
1: Authenticated encryption AEenc-[P](K,N,AD,M):

2: S ← Initialization(N,K)

3: if |AD|6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,C)← Encyption(S,M)

6: T ← Finalization(S,K)

7: return (C, T )

8: Initialization(N,K):

9: S ← load-AE(N,K)

10: S ← P(S)

11: (K0||· · · ||K`K−1)
r←− padr(K)

12: for i = 0 to `K − 1 do:

13: S ← (Sr ⊕Ki, Sc)

14: S ← P(S)

15: return S

16: Processing-Associated-Data(S,AD):

17: (AD0||· · · ||AD`AD−1)
r←− padr(AD)

18: for i = 0 to `AD − 1 do:

19: S ← (Sr ⊕ADi, Sc ⊕ 0c−2||01)
20: S ← P(S)

21: return S

22: Encryption(S,M):

23: (M0||· · · ||M`M−1)
r←− padr(M)

24: for i = 0 to `M − 1 do:

25: Ci ←Mi ⊕ Sr

26: S ← (Ci, Sc ⊕ 0c−2||10)
27: S ← P(S)

28: C`M−1 ← trunc-msb(C`M−1, |M |modr)

29: C ← (C0, C1, . . . , C`M−1)

30: return (S,C)

31: trunc-lsb(X,n):

32: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption AEdec-[P](K,N,AD,C, T ):

2: S ← Initialization(N,K)

3: if |AD|6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,M)← Decyption(S,C)

6: T ′ ← Finalization(S,K)

7: if T ′ 6= T then:

8: return ⊥
9: else:

10: return M

11: Decryption(S,C):

12: for i = 0 to `C − 2 do:

13: Mi ← Ci ⊕ Sr

14: S ← (Ci, Sc ⊕ 0c−2||10)
15: S ← P(S)

16: if |C|modr = 0 then:

17: M`C−1 ← C`C−1 ⊕ Sr

18: S ← P(C`C−1, Sc ⊕ 0c−2||10)
19: S ← P(Sr ⊕ 10r−1, Sc ⊕ 0c−2||10)
20: else:

21: M`C−1 ← C`C−1 ⊕ trunc-msb(Sr, |C|modr)

22: C`C−1 ← C`C−1||(trunc-lsb(Sr, r − |C|modr)⊕ 10r−|C| mod r)

23: S ← P(C`C−1, Sc ⊕ 0c−2||10)
24: M ← (M0,M1, . . . ,M`C−1)

25: return (S,M)

26: Finalization(S,K):

27: (K0||· · · ||K`K−1)
r←− padr(K)

28: for i = 0 to `K − 1 do:

29: S ← P(Sr ⊕Ki, Sc)

30: T ← tagextract(S)

31: return T

32: trunc-msb(X,n):

33: if n = 0 then:

34: return φ

35: else:

36: return (x0, x1, . . . , xn−1)

6.3.1 Padding

Padding is required when the length of the processed data is not a multiple of the rate r value.

The padding rule (10∗), denoting a single 1 followed by the required number of 0’s, is applied

to the message M , so that its length after padding is a multiple of r. The resulting padded

message is then divided into `M r-bit blocks M0‖· · · ‖M`M−1. A similar procedure is carried

out on the associated data AD which results in `AD r-bit blocks AD0‖· · · ‖AD`AD−1. In the

case where no associated data is present, no processing is necessary. For the secret key K, we

simply append minimum number of 0’s so that its length is a multiple of r. We summarize
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Figure 6.3: AEAD algorithm AE-[P] in an unfied sponge mode for 2r-bit key

the padding rules below.

padr(K) = K‖0r−(|K| mod r), if |K| mod r 6= 0

padr(M) = M‖1‖0r−1−(|M | mod r)

padr(AD) =

φ if |AD| = 0

AD‖1‖0r−1−(|AD| mod r) o.w.

6.3.2 Domain separators

We use a lightweight domain separation mechanism where a different 2-bit constant (Table

6.2) is XORed to the capacity when a new phase starts. The domain separator could be

XORed to any position in the capacity. We XOR it to the last 2 bits of the capacity for the

sake of description1. In Table 6.3, we show that this domain separation mechanism along

with the padding rule can distinguish all different types of processed data.

Table 6.2: Domain separation constants (in hex)

Initialization Procesing AD Encryption & Decryption Finalization

0x00 0x01 0x02 0x00

1However, exact position depends on the choice of P.
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Table 6.3: Domain separators sequence for different processed blocks

AD M Domain separators sequence Processed blocks

Empty

Empty 0x02 10r−1

Partial 0x02 Partial M with padding

Complete 0x02, 0x02 complete M block and 10r−1

Partial

Empty 0x01, 0x02 Partial AD block with padding and
10r−1

Partial 0x01, 0x02 Partial AD and M blocks with padding

Complete 0x01, 0x02, 0x02 Partial AD block with padding, com-
plete M block and 10r−1

Complete

Empty 0x01, 0x01, 0x02 complete AD block, 10r−1 and 10r−1

Partial 0x01, 0x01, 0x02 complete AD block, 10r−1 and partial
M block with padding

Complete 0x01, 0x01, 0x02, 0x02 completeAD block, 10r−1, completeM
block and 10r−1

6.3.3 Initialization

The goal of this phase is to initialize the state S with an n-bit public nonce N and κ-bit secret

key K. The state is first loaded using load-AE(N,K) (this function depends on the choice

of P and is explicitly defined in Section 6.4.2). Afterwards, the permutation P is applied

to the state, and the key blocks are absorbed into the state with P applied each time. The

initialization steps are described below.

S ← P(load-AE(N,K))

S ← P(Sr ⊕Ki, Sc), for i = 0 to `K − 1

6.3.4 Processing associated data

If there is associated data, each ADi block, i = 0, . . . , `AD − 1 is XORed with the rate part

of the state S, and the domain separator is XORed to capacity. Then, the permutation P is

applied to the whole state.

S ← P(Sr ⊕ADi, Sc ⊕ (0c−2‖01)), i = 0, . . . , `AD − 1

This phase is defined in Algorithm 6.1.

91



6.3.5 Encryption

Similar to the processing of associated data, however, with a different domain separator, each

message block Mi, i = 0, . . . , `M − 1 is XORed to the Sr part of the state resulting in the

corresponding ciphertext Ci. After the computation of Ci, the permutation P is applied to

the state, i.e.,

Ci ← Sr ⊕Mi,

S ← P(Ci, Sc ⊕ (0c−2‖10)), i = 0, · · · , `M − 1

The last ciphertext block C`M−1 is truncated so that its length is equal to that of the last

unpadded message block. The details of encryption procedure are given in Algorithm 6.1.

The decryption procedure is symmetrical to the encryption procedure and is illustrated in

Algorithm 6.1.

6.3.6 Finalization

After the extraction of the last ciphertext block, the domain separator is reset to 0x00 indi-

cating the start of the finalization phase. Afterwards, the key blocks are absorbed into the

state. Finally, the t-bit tag is extracted using the function tagextract(·). The finalization steps

are mentioned below and illustrated in Algorithm 6.1.

S ← P(Sr ⊕Ki, Sc), for i = 0 to `K − 1

T ← tagextract(S).

Note that the tagextract(·) depends on the choice of P and is described later in Section

6.4.2.

6.3.7 On the security and data limit

The security proofs of sponge modes rely on the indistinguishability of the underlying per-

mutation from a random one [31, 35, 34, 79]. In sponge based keyed modes, nonce reuse

enables the encryption of two different messages with the same keystream, which undermines

the privacy of the primitive. Moreover, the attacker can acquire multiple combinations of

input and output differences which leak information about the capacity bits, and may lead

to the construction of full state [35, 30]. On the other hand, a nonce reuse differential attack

may be exploited if the attacker is able to inject a difference in the plaintext and cancel it

out by another difference after the permutation call. However, such an attack depends on the

probability of the best differential characteristic and the number of rounds of the underlying
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permutation. In summary, the sponge based AEAD schemes require a fresh nonce for each

encryption.

We assume a nonce-respecting adversary, i.e., for a fixed K, the nonce N is never re-

peated for an encryption query. However, it could be repeated while querying the decryption

oracle. Then to achieve κ-bit security with allowed data of 2d bits, capacity should satisfy

c ≥ κ+ d+ 1 and d � c/2 [34]. Note that the actual effective capacity is c− 2 as 2 bits are

used for domain separation. For instance, the parameters c = 256, r = 64, κ = 128 means

there does not exist a better attack (to the best of our knowledge) than exhaustive search if

d ≤ 125. Recently, Jovanovic et al. [79] have shown that sponge based AEAD achieves higher

security bound, i.e., min{2b/2, 2c, 2k}, compared to [34]. More precisely, following Jovanovic’s

bound, we could decrease the capacity to 128 and increase the rate by 3X (r = 192), and

still achieve 128-bit security for d ≤ 64. However, this requires an additional 128 XORs and

cannot meet our objective to achieve both AEAD and hash functionalities (having the same

security levels) using the unified round function. Nevertheless, this is another option with

high throughput.

Remark 6.1. The nonce size n satisfies n ≤ κ. The exact lengths for different instances are

given in Table 6.4.

6.4 AEAD Instances

In this section, we present the concrete instantiations of AE-[P] using sLiSCP, sLiSCP-light,

ACE and WAGE permutations. For a κ-bit key, the AEAD instance is denoted by AE-[P][κ].

We also give an explicit description of the load-AE(·) and tagextract(·) procedures along with

the rate (Sr) and capacity (Sc) part of the state.

6.4.1 AEAD schemes and recommended parameters

Table 6.4 presents the AEAD instances along with their parameters and claimed security

levels.

Some remarks.

- The integrity security includes the integrity of nonce, associated data and message.

- The original schemes (first 6 rows in Table 6.4) as described in [14, 15] use a 3-bit

domain separation. This is not required as shown in Section 6.3.2.

- Spix [13] utilizes sLiSCP-light-256 in a monkey duplex mode [36]. More precisely, it

uses sLiSCP-light-256 with 18 steps for intialization and finalization phases, and 9-step

sLiSCP-light-256 for associated data processing and encryption phases.
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Table 6.4: Recommended AEAD schemes

Algorithm Parameters (in bits) Security (in bits)

r c κ n t log2(d) Confidentiality Integrity Authenticity

AE-[sLiSCP-192][80] 32 160 80 80 80 72 80 80 80

AE-[sLiSCP-192][112] 32 160 112 80 112 40 112 112 112

AE-[sLiSCP-256][128] 64 192 128 128 128 56 128 128 128

AE-[sLiSCP-light-192][80] 32 160 80 80 80 72 80 80 80

AE-[sLiSCP-light-192][112] 32 160 112 80 112 40 112 112 112

AE-[sLiSCP-light-256][128] 64 192 128 128 128 56 128 128 128

AE-[ACE][128] 64 256 128 128 128 124 128 128 128

AE-[WAGE][128] 64 195 128 128 128 64 128 128 128

Spix 64 192 128 128 128 60 128 128 128

- All our proposed schemes have better or comparable performance relative to the state-

of-the-art algorithms. The reader is referred to [14, 16, 15, 7, 13, 8] for details on

hardware and software results.

6.4.2 The load-AE and tagextract procedures and rate positions

Load-AE procedure (load-AE(N,K)). Figures 6.4-6.6 show the exact positions in the

state for loading the key and nonce bytes where K[i] and N [i] denote the i-th byte of key

and nonce starting from the left, respectively. In case of AE-[WAGE]-[128], we represent the

loading procedure using bit notation.

Tagextract procedure (tagextract(·)). For AE-[WAGE]-[128], the tag bits are extracted

from the state bits where nonce is initialized (Figure 6.6). For all other AEAD instances, we

extract tag bytes from the positions where the key bytes are loaded (Figures 6.4 and 6.5).

Rate and capacity. In Figures 6.4-6.6, the gray colored bytes/bits constitute the Sr part of

state and are used for both absorbing the data (K,AD and M) and squeezing the ciphertext.

The remaining green colored bytes/bits form the Sc part of state.

Rationale of rate positions. Our permutations follow a NLFSR based design paradigm.

For the rate part, we want the input bits to be mixed properly as soon as possible so we

achieve better confusion and diffusion. Accordingly, choosing the right place for absorbing

the data determines how fast it is processed by the round function, which is important since

not all the blocks in NLFSR-based constructions receive the same amount of processing. We

also want to ensure that any injected difference in the rate part should activate as many
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N [0] N [1] N [2] N [3] N [4] 0x00

K[0] K[1] K[2] K[3] K[4] 0x00

N [5] N [6] N [7] N [8] N [9] 0x00

K[5] K[6] K[7] K[8] K[9] 0x00

X0

X1

X2

X3

AE-[sLiSCP-192][80]

AE-[sLiSCP-light-192][80]

N [0] N [1] N [2] N [3] N [4] K[6]

K[0] K[1] K[2] K[3] K[4] K[5]

N [5] N [6] N [7] N [8] N [9] K[13]

K[7] K[8] K[9] K[10] K[11] K[12]

AE-[sLiSCP-192][112]

AE-[sLiSCP-light-192][112]

N [0] N [1] N [2] N [3] N [4] N [5] N [6] N [7]

K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]

N [8] N [9] N [10] N [11] N [12] K[13] K[14] K[15]

K[8] K[9] K[10] K[11] K[12] K[13] K[14] K[15]

X0

X1

X2

X3

AE-[sLiSCP-192][128], AE-[sLiSCP-light-192][128]

Spix

rate byte

capacity byte

Figure 6.4: Visualization of load-AE(·) procedure of different AEAD instances

as sboxes as possible in the first few rounds to enhance resistance against differential and

linear cryptanalysis. Furthermore, to decrease the probability of differential characteristics

we choose the rate bytes/bits in a non-consecutive fashion.

A third party cryptanalysis [92] of AE-[sLiSCP-192] and AE-[sLiSCP-256] instances sup-

ports our rationale. Note that the authors in [92] could only attack 6/18 steps of these

algorithms. Thus, we expect that the number of steps chosen for sLiSCP (18), sLiSCP-light

(12) and ACE (16) provide a huge security margin against the best known attacks.
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D

E

AE-[ACE][128]

Figure 6.5: Visualization of load-AE(·) procedure of ACE
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Figure 6.6: Visualization of load-AE(·) procedure of WAGE

6.5 Handling Short Messages

The proposed AEAD mode in Section 6.3 requires 1 + `AD + `M + 2 ×
⌈ |K|
r

⌉
calls of P to

generate the tag. For |K|= 128, r = 64 and short messages, say `AD = 1 and `M = 1, the

number of calls of P is 7. We now describe two ways for handling short messages.
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6.5.1 Remove key absorption layers

A naive way is to remove the key absorption layers from the initialization and finalization

phases (Figure 6.3). This reduces the number of calls of P to 1 + `AD + `M . However, this

approach affects the security (depending on the tag size) and proper care has to be taken while

claiming security. We illustrate this fact with an example. Consider the AEAD instance

AE-[sLiSCP-192][112] (row 2 in Table 6.4). Our initial claim is 112-bit security. On removing

the key absorption layers, the security drops to 80 bits. This is because after knowing the

112-bit tag the attacker guesses the remaining 80 state bits and then inverts the permutation

to recover the master key.

6.5.2 Reduce number of rounds of P

While designing P and choosing its number of rounds, our approach was to ensure that P

is indistinguishable from a random permutation. But when P is used in the unified sponge

mode, an adversary can only control the r-bit rate part of the state. Thus, we could use

reduced-round P for all phases instead of removing the key absorption layers. Note that this

approach require proper security analysis.

Remark 6.2. We emphasize that there could be other ways of handling short messages as

well. Here, we have presented the trivial ones only.

6.6 Generic Hash Algorithm and Instances

In Algorithm 6.2, we present a high-level overview of a hash algorithm using the unified round

function. We denote it by Hash-[P] where P is the underlying permutation. Figure 6.3 shows

an example of hash algorithm with message digest size h = 4r. We now describe each phase

of Hash-[P] in detail.

P P P P P P Pload-H(IV )

c

r

M0 M1 MlM−1 0 0 0 0H0 H1 H2 H3

Initialization Absorbing Squeezing

Figure 6.7: Hash algorithm Hash-[P] with r = r′ and h = 4r
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Remark 6.3. Domain separation is not required for hash (equivalent to XORing 0x00 to

capacity) as only one type of data is processed. The case of partial/complete message block

can be distinguished by the padding rule described below.

6.6.1 Message padding

The padding rule (10∗) similar to AE-[P] is applied to the input message M where a single

1 followed by 0’s is appended to it such that its length after padding is a multiple of r. We

denote the padding rule by

padr(M) = M‖10r−1−(|M | mod r)

The resulting padded message is then divided into `M r-bit blocks M0‖· · · ‖M`M−1.

6.6.2 Initialization

The state is first initialized with IV = h/2‖r‖r′, where r/r′ denotes the number of bits

absorbed/squeezed per permutation call. Eight bits are used to encode each of the used h/2,

r and r′ sizes and loaded in the state2 [70]. The remaining bytes are set to 0x00. We denote

this process by load-H.

Remark 6.4. IV = h/2‖r‖r′ is only used to distinguish different instances of hash using the

same P. We could also start with all zero state for different P’s.

After loading the state with the IV we call P once which completes the initialization

phase.

S ← P(load-H(IV))

6.6.3 Absorbing and squeezing

Each message block is absorbed by XORing it to the Sr part of the state, then P is applied.

After absorbing all the message blocks, the h-bit output is extracted from the Sr part of the

state r′ bits (if r′ < r then we take the r′ most significant bits of Sr) at a time followed by

the application of P until a total of h/r′ extractions are completed.

6.6.4 Security

For a sponge based hash with b = r + c and h-bit message digest squeezed r′ bits at a time,

the generic security bounds [32, 70] are given by

2Exact positions are not required as IV is a constant value
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Algorithm 6.2 Hash algorithm Hash-[P]
1: Hash-[P](M, IV ):

2: S ← Initialization(IV )

3: S ← Absorbing(S,M)

4: H ← Squeezing(S)

5: return H

6: Initialization(IV):

7: S ← load-H(IV )

8: S ← P(S)

9: return S

10: padr(M) :

11: M ←M ||10r−1−(|M| mod r)

12: return M

1: Absorbing(S,M):

2: (M0||· · · ||M`M−1)← padr(M)

3: for i = 0 to `M − 1 do:

4: S ← P(Sr ⊕Mi, Sc)

5: return S

6: Squeezing(S):

7: for i = 0 to h/r′ − 1 do:

8: if r = r′ then:

9: Hi ← Sr

10: else:

11: Hi ← trunc-msb(Sr, r′)

12: S ← P(S)

13: Hh/r′−1 ← S′r
14: return H0||H1||· · · ||Hh/r′−1

• Collision: min(2h/2, 2c/2)

• Preimage: min(2min(h,b),max(2min(h,b)−r′ , 2c/2))

• Second-preimage: min(2h, 2c/2)

6.6.5 Hash instances

Table 6.5 presents the hash instances along with their parameters and security levels. The

rate part of the state is same as described in Figures 6.4 and 6.5.

Remark 6.5. The NIST LWC’s requirement for the primary member of hash functions is

at least 112-bit overall security with message digest size of 256 bits. This requirement can

be met by using sLiSCP-256, sLiSCP-light-256 and WAGE permutations in hash mode with

rate value 32 bits (last 3 rows of Table 6.5).

6.7 Summary

In this chapter, we have shown the construction of the unified round function in a sponge

framework which is easily adaptable to multiple cryptographic primitives. As an applica-

tion of it, we have presented generic AEAD and hash algorithms along with their concrete

instantiations using sLiSCP, sLiSCP-light, ACE and WAGE permutations.
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Table 6.5: Recommended hash instances

Algorithm IV h r r′ c Preimage Sec. Preimage Collision

Hash-[sLiSCP-192] 0x502020 160 32 32 160 128 80 80

Hash-[sLiSCP-256] 0x604040 192 64 64 192 128 96 96

Hash-[sLiSCP-256] 0x604020 192 64 32 192 160 96 96

Hash-[sLiSCP-256] 0x604020 192 64 32 192 160 96 96

Hash-[sLiSCP-light-192] 0x502020 160 32 32 160 128 80 80

Hash-[sLiSCP-light-256] 0x604040 192 64 64 192 128 96 96

Hash-[sLiSCP-light-256] 0x604020 192 64 32 192 160 96 96

Hash-[ACE] 0x804040 256 64 64 256 192 128 128

Hash-[sLiSCP-256] 0x802020 256 32 32 224 224 112 112

Hash-[sLiSCP-light-256] 0x802020 256 32 32 224 224 112 112

Hash-[WAGE] 0x802020 256 32 32 227 227 112 113

100



Chapter 7

Spoc: Sponge with Masked

Capacity

Contents

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Specification of Spoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Security of Spoc Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Declaration of Contributions

This chapter is based on [12]. The design of Spoc mode comes from Ashwin Jha and Mridul

Nandi of our team, while the design of Spoc’s underlying permutation sLiSCP-light is from

this thesis. Accordingly, my main contributions are as follows.

• Design and analysis of sLiSCP-light permutation as mentioned in Chapter 3.

• Choice of positions of state for rate, loading key and nonce bytes, and extracting tag

bytes for Spoc.

7.1 Motivation

The best known bound for the sponge based AEAD in a single key setting is O(D
2+DT
2c )

(Jovanic et al. [79]). Here D is the data complexity (the total amount of data which is au-

thenticated and encrypted using distinct nonces) in bits, while T denotes the time complexity

which includes the number of offline evaluations of the underlying permutation P. Note that
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the advantage term addresses the collisions probabilities, distinguishing advantage, verifica-

tion query or the secret key recovery. While we have used the Bertoni et al. [34] bound in the

previous chapter to ensure the same circuitry, all our proposed AEAD instances (Table 6.4)

also satisfy the former bound. Now, for a 128-bit key, the NIST Lightweight Cryptography

Project [97] has set the minimum values of D and T to be at least 250 − 1 bytes (253 bits)

and 2112, respectively. For instance, consider sLiSCP-light-192 with c = 160 and r = 32.

This does not meet NIST’s requirement as 253+112 > 2160. So, we could either increase the

c value and decrease r, or increase the state size. Alternatively, is it possible to meet those

requirements with state sizes less than 192? In this chapter, we present the design of Spoc

which addresses the above problem. Spoc or Sponge with masked Capacity (pronounced as

Spock) is a new AEAD mode of operation which offers higher security guarantee with smaller

states. The underlying permutation of Spoc is sLiSCP-light permutation.

Outline. The rest of the chapter is organized as follows. Section 7.2 details the specification

of Spoc and its recommended instances. We summarize the security claims of Spoc in Section

7.3 and then conclude in Section 7.4.

7.2 Specification of Spoc

In this section, we give a high level description of Spoc and then list its recommended in-

stances. We also discuss the choice and rationale of rate positions, loading key and nonce

procedures, and tag extraction procedures.

7.2.1 Spoc parameters

Spoc is primarily parameterized by rate r of the underlying permutation P where r ∈ {64, 128}.
We write Spoc[r] to denote Spoc with the particular choice of rate value r. The secondary

parameters are set as follows.

• Spoc[64]: In this version, r = 64, c = 128, κ = 128, n = 128 and t = 64.

• Spoc[128]: In this version, r = 128, c = 128, κ = 128, n = 128 and t = 128.

7.2.2 Description of Spoc

We denote the state of Spoc by Y ‖Z string where Y consists of c-bit capacity part of state

while Z is made of r bits of rate. Figure 7.1 shows the outer level structure of Spoc. It takes

as input X and XOR it to Y part of the state. If X is a plaintext/ciphertext block then only

Z part of state is used as the keystream. It then XORs Z with a 4-bit domain separator dX .

An illustration of Spoc AEAD algorithm is shown in Figure 7.2 and the individual phases

are explained below.
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Figure 7.1: Schematic of Spoc outer layer
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Figure 7.2: Schematic diagram of Spoc AEAD with 3 blocks of AD and M

7.2.2.1 Padding

The padding rule (10∗), denoting a single 1 followed by the required number of 0’s, is applied

to data X ∈ {AD,M}, so that its length after padding is a multiple of r. The resulting padded

data is then divided into `X r-bit blocks X0‖· · · ‖X`X−1. In case of empty or complete blocks,

no padding is required. Note that for Spoc-64, since c = 128 and |Xi|= 64, to match the

capacity size we append 64 zeros to each Xi, i.e., Xi ← Xi‖064.
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7.2.2.2 Domain separators

Here we explain the 4-bit dX that we use to separate the processing of various critical blocks.

It is defined as dX := ctrltag ctrlpt ctrlad ctrlpar. Initially, all the bits are set to 0. The bits are

set to 1 in the following manner:

1. ctrlad: The bit sets to 1 during the processing of associated data blocks. For empty AD

it remains set to 0.

2. ctrlpt: The bit sets to 1 during the processing of plaintext blocks. For empty messages

it remains set to 0.

3. ctrlpar: The bit sets to 1 at the last AD (M) block processing call if the last block is

partial. For full last block it remains set to 0.

4. ctrltag: The bit sets to 1 at tag generation call.

We XOR dX to the four most significant bits of Z. In case of encryption or decryption,

this is done after the extraction of keystream bits. Table 7.1 enumerates all possible values

for the domain separators along with their meanings.

Table 7.1: Possible values of dX

dX Meaning

0000 Implicitly used in nonce processing

0010 Full AD block processing

0011 Partial AD block processing

0100 Full M/C block processing

0101 Partial M/C block processing

1000 Tag generation in empty AD and M/C case

1010 Tag generation in non-empty AD with full last block and empty M/C

1011 Tag generation in non-empty AD with partial last block and empty M/C

1100 Tag generation in (non-)empty AD and non-empty M/C with full last block

1101 Tag generation in (non-)empty AD and non-empty M/C with partial last block
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7.2.2.3 Initialization

In this phase, we create the initial state using the nonce N = N0||N1 and the secret key

K = K0||K1. We denote it by init(N,K) and is given by

init(N,K) := Y ||Z ←

P(load-Spoc[64](N0,K))⊕ (N1||0128) for Spoc[64],

load-Spoc[128](N,K) for Spoc[128]

The function load-Spoc[r](·) depends on the choice of P and assigns the nonce and key

bytes to the particular byte positions of the state. We explicitly define this function in Section

7.2.5.

7.2.2.4 Processing associated data

If there is associated data, each ADi block, i = 0, . . . , `AD − 1 is XORed to the capacity part

of the state, and the domain separator is XORed to the rate. Then, the permutation P is

applied to the whole state.

Y ‖Z ← P((Y ⊕ADi)‖(Z ⊕ (0r−4‖0010))), i = 0, . . . , `AD − 2

Y ‖Z ←

P((Y ⊕AD`AD−1)‖(Z ⊕ (0r−4‖0010))) for complete block

P((Y ⊕AD`AD−1)‖(Z ⊕ (0r−4‖0011))) for partial block

7.2.2.5 Encryption and decryption

During this phase, the message block is XORed to the Y part of state while keystream bits

are taken from the Z part. The encryption procedure is given by

Ci = Mi ⊕ Z, and

Y ‖Z ← P((Y ⊕Mi)‖(Z ⊕ (0r−4‖0100))), i = 0, . . . , `M − 2

C`M−2 = M`M−1 ⊕ Z

Y ‖Z ←

(Y ⊕M`M−1)‖(Z ⊕ (0r−4‖0100)) for complete block

(Y ⊕M`M−1)‖(Z ⊕ (0r−4‖0101)) for partial block

The last ciphertext block C`M−1 is truncated so that its length is equal to that of the last

unpadded message block. For the decryption, we first compute Mi = Z ⊕ Ci and then XOR

Mi to the capacity part of the state.
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7.2.2.6 Finalization

This phase is responsible for tag generation. At the tag generation call, the control signal is

of the form 1xyz where the 3 least significant bits xyz depend on the previous processed data

blocks. We denote the process of extracting tag from state by tagextract-Spoc[r] and is given

by

tagextract-Spoc[r]← P(Y ‖(Z ⊕ (0r−4‖1000))).

The exact description of tagextract-Spoc[r] function is provided in Section 7.2.6.

7.2.3 Recommended instantiations

We instantiate Spoc with sLiSCP-light permutation (Chapter 3) to provide two lightweight

AEAD instances which offer 112-bit security. The sLiSCP-light permutation is chosen for

its well-analyzed structure and low hardware implementation cost. Table 7.2 presents the

recommended parameter sets for two lightweight instances of Spoc.

Table 7.2: Recommended parameter sets of Spoc

Instance b r κ n t Data (in bytes)

Spoc[64] sLiSCP-light[192] 192 64 128 128 64 250

Spoc[128] sLiSCP-light[256] 256 128 128 128 128 250

Remark 7.1. The two Spoc algorithms are secure while the prescribed data (250 bytes) and

time limit of 2112 are respected.

7.2.4 Positions of rate and capacity

Figure 7.3 depicts the exact positions of the state which are used for r-bit keystream and

for masking r-bits of capacity. It also shows the 1-1 correspondence between the state rep-

resentation Y ‖Z of Spoc and X0‖X1‖X2‖X3 of sLiSCP-light. Each block is given in bytes

notation, e.g., X0 = X0[0]‖X0[1]‖· · · ‖X0[5] for sLiSCP-light-192.

Rationale. The choice of rate and capacity positions for Spoc depends on the underlying

permutation. Since we instantiate Spoc with sLiSCP-light permutation, we have followed a

similar strategy in choosing the rate and capacity positions as the one that has been used in

sLiSCP and sLiSCP-light (Section 6.4.2).
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Z[0] Z[1] Z[2] Z[3] Y [12] Y [13]
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Y [0] Y [1] Y [2] Y [3] Y [4] Y [5] Y [6] Y [7]

Z[8] Z[9] Z[10] Z[11] Z[12] Z[13] Z[14] Z[15]

Y [8] Y [9] Y [10] Y [11] Y [12] Y [13] Y [14] Y [15]

rate byte masked capacity byte

Spoc-64 sLiSCP-light[192] Spoc-128 sLiSCP-light[256]

Figure 7.3: Rate and capacity part of Spoc

7.2.5 Loading key and nonce

Here we describe the postions where the 128-bit key K = K0||K1 and 128-bit nonce N =

N0||N1 is loaded in the state. In particular, we define the functions load-Spoc[128](N,K) and

load-Spoc[64](N0,K) of the init(N,K) procedure (Section 7.2.2.3).

load-SPOC[128](N,K). For 0 ≤ j ≤ 7, the state is loaded as follows.

X1[j]← K0[j]

X3[j]← K1[j]

X0[j]← N0[j]

X2[j]← N1[j]

load-SPOC[64](N0,K). The load-Spoc[64](N0,K) function is given by

X1[0], · · · , X1[5]← K0[0], · · · ,K0[5]

X3[0], · · · , X3[5]← K1[0] · · · ,K1[5]

X0[0] · · · , X0[3]← N0[0], · · · , N0[3]

X2[0], · · · , X2[3]← N0[4], · · · , N0[7]

X0[4], X0[5]← K0[6],K0[7]

X2[4], X2[5]← K1[6],K1[7]
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7.2.6 Tag extraction

For Spoc[128] sLiSCP-light[256], the tagextract-Spoc[128] function computes the 128-bit tag

T = T0||T1 which is given by T0 ← X1 and T1 ← X3. Similarly, tagextract-Spoc[64] computes

the 64-bit tag T of Spoc[64] sLiSCP-light[192] as follows.

T [0], · · · , T [3]← S1[0], · · · , S1[3]

T [4], · · · , T [7]← S3[0], · · · , S3[3]

7.3 Security of Spoc Instances

In Table 7.3, we list the security levels of two instances of Spoc in a nonce-respecting setting.

The numbers are based on our security analysis of sLiSCP-light permutation (Section 3.4)

which is modeled as a random permutation for 18 steps. Accordingly, we do not claim security

for Spoc with reduced-round sLiSCP-light permutation.

Table 7.3: Security levels of AEAD algorithms based on Spoc

AEAD algorithm Confidentiality Integrity

Time Data (in bytes) Time Data (in bytes)

Spoc[64] sLiSCP-light[192] 2112 250 2112 250

Spoc[128] sLiSCP-light[256] 2112 250 2112 250

Remark 7.2. For a security proof of Spoc1, the reader is referred to our NIST LWC round

2 candidate [12].

7.4 Summary

In this chapter, we have presented the design of Spoc, a new permutation based mode of

operation for AEAD functionality. It satisfies NIST LWC AEAD requirements with 192-bit

state when instantiated with sLiSCP-light-192.

1Not a contribution of this thesis
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Declaration of Contributions

This chapter is based on [115]. My main contributions are as follows.

• Modeled the division property based MILP models and key recovery attack on WG-5.

• Analysed and compared the design choices of WG-5 with Grain-128a and Trivium with

respect to cube attacks.

8.1 Introduction

The cube attack is a powerful cryptanalytic technique for the analysis of stream ciphers

(Section 2.4.4.2). Given the complicated algebraic normal form of keystream bits, conventional

cube attacks always regard them as blackbox functions, and the attack is only feasible for
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smaller dimensional cubes. In Crypto 2017, Todo et al. [127] proposed cube attacks in a non-

blackbox polynomial setting employing the division property [126]. Their technique takes

the polynomial structure of the stream cipher into consideration by tracing the propagation

of the division property through the initialization rounds. Accordingly, a theoretical proven

upper bound on the number of secret key bits involved in the superpoly (Example in Section

2.4.4.2)and the complexity of its recovery is obtained. Consequently, they gave the best known

key recovery attacks on reduced-round variants of Grain [11], Trivium [53] and Acorn [133].

In this chapter, we investigate the security of the key initialization phase of WG-5 [9] with

respect to cube attacks in a non-blackbox polynomial setting using the division property.

WG-5 is a lightweight version of the WG family of stream ciphers. The best cryptanalytic

result on WG-5 is a univariate algebraic attack over F25 that recovers the 80-bit secret key

using 215 keystream bits in 233 time [118]. Such an attack is applicable only when WG-5 runs

a linear feedback keystream generation phase. Thus, analyzing the nonlinear feedback based

initialization phase of WG-5 can provide better understanding of its security compared with

Grain and Trivium.

Outline. The rest of the chapter is organized as follows. Sections 8.2 and 8.3 detail the

specification of WG-5 and the attack details along with an algorithmic descriptions of all

MILP models, respectively. In Section 8.4, we analyze the design parameters of WG-5, Grain-

128a and Trivium with respect to cube attacks.

8.2 Specification of WG-5 Stream Cipher

WG-5 is a 160-bit stream cipher defined over an extension field of F25 (Figure 8.1). The 32

stage LFSR is defined using the primitive polynomial x32+x7+x6+x4+x3+x2+γ where γ =

α4+α3+α2+α+1, and α is a root of field (F25) defining polynomial x5+x4+x2+x+1. We de-

note the state of WG-5 at the beginning of the i-th round by Si = Si[0]||Si[1]||. . . ||Si[31] where

Si[j] = (si5j , s
i
5j+1, s

i
5j+2, s

i
5j+3, s

i
5j+4). The 80-bit secret key k0, k1, . . . , k79 and 80-bit initial-

ization vector v0, v1, . . . , v79 are denoted byK[0]||K[1]||. . . ||K[15] and IV [0]||IV [1]||. . . ||IV [15],

respectively. The cipher runs in two phases: key initialization phase and keystream generation

(KSG) phase, which are explained below.

8.2.1 Key initialization phase

Initially, the state is loaded with K and IV as follows.

S0[j] =

K[j mod 2], if j ≡ 0 mod 2

IV [j mod 2], o.w.
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Tr(.)
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5

1

Initialization
phase

Figure 8.1: WG-5 stream cipher

The state is then updated for 64 rounds with the output of WGP-5 permutation feedback into

the state, i.e., for 0 ≤ i ≤ 63

fb← γ ⊗ Si[0]⊕ Si[2]⊕ Si[3]⊕ Si[4]⊕ Si[6]⊕ Si[7]⊕WGP-5((Si[31])3)

Si+1[j]← Si[j + 1], 0 ≤ j ≤ 30

Si+1[31]← fb

8.2.2 Key generation phase

During the keystream generation phase, the keystream bit is computed by applying the Trace

function Tr(·) function (Section 2.5.4) on the output of WGP-5 permutation. The state is

then updated linearly without the feedback of WGP-5. More precisely, for i ≥ 64

zi−64 ← Tr(WGP-5(Si[31]))

fb← γ ⊗ Si[0]⊕ Si[2]⊕ Si[3]⊕ Si[4]⊕ Si[6]⊕ Si[7]

Si+1[j]← Si[j + 1], 0 ≤ j ≤ 30

Si+1[31]← fb

The boolean representation of keystream bit (obtained after applying Trace function on

WGP-5) is given by zi−64 = si155 + si156 + si157 + si158 + si159 + si155s
i
156 + si155s

i
157 + si155s

i
159 +

si156s
i
158 + si156s

i
159 + si155s

i
156s

i
157 + si155s

i
157s

i
158 + si155s

i
157s

i
159 + si155s

i
158s

i
159 + si156s

i
157s

i
158 +

si156s
i
158s

i
159. In what follows, we present the cube attack details on WG-5. The mathematical

description and notations related to the cube attack are described in Section 2.4.4.2.
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8.3 Cube Attack on WG-5

We adopt the techniques presented in [127] to analyze WG-5 with respect to cube attacks.

The attack procedure is similar to [127] and consists of two phases: offline phase and online

phase.

1. Offline phase. The goal of this phase is to recover a superpoly that is balanced for a

given cube CI . It consists of three steps:

Step 1.1: Create a MILP model M for WG-5 whose initialization is reduced to R rounds.

The model encodes the division property propagation for R rounds to check

the feasibility of all R-round division trails.

Step 1.2: Choose a cube CI by flipping bits in I = {i1, i2, . . . , i|I|} and then evaluate the

secret variables involved in the superpoly. Let J = {kj1 , kj2 , . . . , kj|J|} denotes

the set of involved secret variables1.

Step 1.3: Choose a value in the constant part of IV and compute
⊕

CI
f(k, v) = p(k̄, v̄),

where k̄ = {kj1 , kj2 , . . . , kj|J|}, v̄ = {v0, v1, . . . , v79} \ {vi1 , vi2 , . . . , vi|I|} and all

the possible combinations of kj1 , kj2 , . . . , kj|J| are tried out, then p(k̄, v̄) is

recovered and stored in a list for all values of k̄. Assuming the best case (that

we can recover the balanced superpoly in a single trial) the time complexity

of this phase is bounded by 2|I|+|J |. However, if N cubes are used, the time

complexity is given by N2|I|+|J |.

2. Online phase. The goal of this phase is to recover the secret key. This phase is further

divided into two steps.

Step 2.1: Use the balanced superpoly recovered in the offline phase and query the cube

CI to the encryption oracle to obtain the value of p(k̄, v̄) which is then com-

pared to the previously stored values. Then one bit is recovered from J (for

example, if p(k̄, v̄) = k0+k1+1 = 0, then (k0, k1) = (1, 0) and (k0, k1) = (0, 1)

are the 2 possible key candidates out of 4 keys) as p = 0 for 2|J |−1 values and

p = 1 for the remaining half values. To recover more than 1 bit we use multiple

cubes.

Step 2.2: Guess the remaining secret key bits.

8.3.1 Automating the cube attack on WG-5 using MILP

MILP model for the WGP-5 permutation. To model the WGP-5 permutation, we

could use its boolean representation (Section 8.4). However, this approach results in large

1Step 1.2 is computationally feasible because of MILP
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number of MILP variables and constraints due to its high nonlinearity and involvement of

terms of up to degree 4 in each of the component functions. Hence, we use an alternative

approach, we treat WGP-5 as a 5-bit Sbox. Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) be the

input and output of the WGP-5 sbox, respectively. We use the inequality generator() function

in Sage [3] and Algorithms 1 and 2 in [134], and consequently find that only 12 inequalities

are sufficient to model the division property propagation of WG-5. The inequalities are given

by 

2x0 + 2x1 + 2x2 + 2x3 + 6x4 − 3y0 − 3y1 − 3y2 − 3y3 − 3y4 ≥ −1

4x3 − y0 − y1 − y2 − y3 − y4 ≥ −1

4x0 − y0 − y1 − y2 − y3 − y4 ≥ −1

−x0 − x2 − x3 − y0 + 4y1 − y2 − y3 − 2y4 ≥ −4

−6x0 − 3x1 − 6x3 − 6x4 + 2y0 − 4y1 + 3y2 − y3 + 2y4 ≥ −19

−3x0 − x1 − x2 − 3x3 − 2x4 + 9y0 + 7y1 + 8y2 + 9y3 + 9y4 ≥ 0

x0 + x1 + x2 + x3 + x4 − 3y0 − 3y1 − 3y2 − 3y3 + 5y4 ≥ −2

−x0 − 3x2 − 3x3 − 2x4 + y0 + y2 + y3 − 2y4 ≥ −8

−x0 − x1 + 2x2 − x3 − x4 − y0 − 2y1 − 2y2 + 3y3 − y4 ≥ −5

−x0 − 2x1 − 2x2 − 2x3 − x4 − 2y0 − y1 − y2 − y3 + 5y4 ≥ −8

−2x0 − x1 − 2x2 − 2x4 + y0 + y1 − y2 + y4 ≥ −6

−x0 − x2 − x3 + y0 − y4 ≥ −3.

Algorithm 8.1 describes the MILP model for the WGP-5.

Algorithm 8.1 MILP model for WGP-5

1: function WGP-5(S) . S = (s0, s1, . . . , s159)

2: M.var ← s′155+i, xi, yi as binary for 0 ≤ i ≤ 4

3: M.con← s155+i = s′155+i + xi for 0 ≤ i ≤ 4

4: Add constraints to M according to the WGP-5 inequalities

5: for j = 0 to 30 do

6: S′[j] = S[j]

7: end for

8: return (M,S′, [y0, y1, y2, y3, y4])

9: end function

MILP model for the feedback function (FBK). The function FBK in Algorithm 8.2

generates the MILP variables and constraints for the feedback value γ⊗Si[0]⊕Si[2]⊕Si[3]⊕
Si[4]⊕ Si[6]⊕ Si[7]. Since γ is constant, we model γSi[0] as Si[0] for the sake of simplicity.
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Algorithm 8.2 MILP model for the FBK function

1: function FBK(S, I)

2: for i ∈ I do

3: M.var ← s′5i+j , x5i+j as binary for 0 ≤ j ≤ 4

4: end for

5: M.var ← yi as binary for 0 ≤ i ≤ 4

6: for i ∈ I do

7: M.con← s5i+j = s′5i+j + x5i+j for 0 ≤ j ≤ 4

8: end for

9: for j = 0 to 4 do

10: temp = 0

11: for i ∈ I do

12: temp = temp+ x5i+j

13: end for

14: M.con← yj = temp

15: end for

16: for j ∈ {(0, 1, . . . , 31)− I} do

17: S′[j] = S[j]

18: end for

19: return (M,S′, [y0, y1, y2, y3, y4])

20: end function

MILP model for KSG. The function KSG in Algorithm 8.3 creates the MILP variables

and constraints for the keystream bit z = sR155 + sR156 + sR157 + sR158 + sR159 + sR155s
R
156 +

sR155s
R
157+sR155s

R
159+sR156s

R
158+sR156s

R
159+sR155s

R
156s

R
157+sR155s

R
157s

R
158+sR155s

R
157s

R
159+sR155s

R
158s

R
159+

sR156s
R
157s

R
158 + sR156s

R
158s

R
159. Furthermore, the bitwise AND and XOR operations are modeled

using Algorithm 8.4.
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Algorithm 8.3 MILP model for the KSG

1: function KSG(S)

2: (M,S1, a1) = AND(S, [155, 156])

3: (M,S2, a2) = AND(S1, [155, 157])

4: (M,S3, a3) = AND(S2, [155, 159])

5: (M,S4, a4) = AND(S3, [156, 158])

6: (M,S5, a5) = AND(S4, [156, 159])

7: (M,S6, a6) = AND(S5, [155, 156, 157])

8: (M,S7, a7) = AND(S6, [155, 157, 158])

9: (M,S8, a8) = AND(S7, [155, 157, 159])

10: (M,S9, a9) = AND(S8, [155, 158, 159])

11: (M,S10, a10) = AND(S9, [156, 157, 158])

12: (M,S11, a11) = AND(S10, [156, 158, 159])

13: (M,S12, a12) = XOR(S11, [155, 156, 157, 158, 159])

14: M.var ← z as binary

15: M.con← z =
∑12

i=1 ai

16: return (M,S12, z)

17: end function

MILP model for WG-5. The MILP model for WG-5 is given in Algorithm 8.5. It incorpo-

rates the previous models for WGP-5, FBK and KSG. The function WG5eval in Algorithm 8.5

evaluates all division trails for WG-5 whose initialization round is reduced to R. The number

of MILP variables and constraints required for each function are given in Table 8.1.

Table 8.1: MILP variables and constraints

Function # of variables # of constraints

WGP-5 15 17
FBK 65 35
KSG 79 63

R round of WG-5 160 + 159R+ 5R 161 + 115R+ 10R

8.3.2 Evaluating involved secret variables and superpoly recovery

We prepare a cube CI by flipping bits in I = {i1, i2, . . . , i|I|}, and then evaluate the involved

secret variables in superpoly using the generic algorithm proposed in [127]. We have given

the description of the utilized algorithm (Algorithm 8.6) for the sake of completeness. The

inputs to Algorithm 8.6 are the cube indices set I and the MILP model M for WG-5. The
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Algorithm 8.4 MILP model for AND and XOR operations

1: function AND(S, I)
2: M.var ← s′i, xi as binary for i in I
3: M.var ← y as binary
4: M.con← si = s′i + xi for i in I
5: M.con← y ≥ xi for i in I
6: for i ∈ {(0, 1, . . . , 159)− I} do
7: s′i = si
8: end for
9: return (M,S′, y)

10: end function
11: function XOR(S, I)
12: M.var ← s′i, xi as binary for i in I
13: M.var ← y as binary
14: M.con← si = s′i + xi for i in I
15: temp = 0
16: for i ∈ I do
17: temp = temp+ xi
18: end for
19: M.con← y = temp
20: for i in {(0, 1, . . . , 159)− I} do
21: s′i = si
22: end for
23: return (M,S′, y)
24: end function

model M evaluates all the division trails for R rounds with input division property given by

vi = 1 for i ∈ I and vi = 0 for i ∈ {{0, 1, . . . , 79} \ I}.
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Algorithm 8.5 MILP model for the initialization phase of WG-5

1: function WG5eval(R)
2: Prepare empty MILP Model M
3: M.var ← S0[j] for 0 ≤ j ≤ 31
4: for i = 1 to R do
5: (M,S′, a) = WGP-5(Si−1)
6: (M,S′′, b) = FBK(S′, [0, 2, 3, 4, 6, 7])
7: for j = 0 to 30 do
8: Si[j] = S′′[j + 1]
9: end for

10: M.con← S′′[0] = 0
11: M.var ← Si[31] as binary
12: M.con← Si[31] = a+ b
13: end for
14: (M,S′′′, z) = KSG(SR)
15: for j = 0 to 31 do
16: S′′′[j] = 0
17: end for
18: M.con← z = 1
19: end function

Algorithm 8.6 MILP model to find involved secret variables in superpoly [127]

1: function extractSecretVariables(MILP model M,Cube Indices I)

2: M.var ← ki as binary for 0 ≤ i ≤ n− 1, . k0, k1, . . . , kn−1 are secret variables

3: M.var ← vi as binary for 0 ≤ i ≤ m− 1, . v0, v1, . . . , vm−1 are public variables

4: M.con← vi = 1 for i ∈ I
5: M.con← vi = 0 for i ∈ {(0, 1, . . . ,m− 1)− I}
6: M.con←∑n−1

i=0 ki = 1

7: do

8: solve MILP model M

9: if M is feasible then

10: pick j ∈ {0, 1, . . . , n− 1} s.t kj = 1

11: J = J ∪ {j}
12: M.con← kj = 0

13: end if

14: while M is feasible

15: return J

16: end function
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Table 8.2: Involved secret variables in superpoly for cube indices I ∈ {I1, I2, I3, I4, I5}

Rounds Involved secret variables J Time complexity log2(·)
15 {k5, k6, . . . , k54} 54
16 {k5, k6, . . . , k54} 54
17 {k5, k6, . . . , k59} 59
18 {k5, k6, . . . , k59} 59
19 {k5, k6, . . . , k64} 64
20 {k5, k6, . . . , k64} 64
21 {k5, k6, . . . , k69} 69
22 {k5, k6, . . . , k69} 69
23 {k5, k6, . . . , k74} 74
24 {k5, k6, . . . , k74} 74

I1 = {0, 1, 2, 3}, I2 = {0, 1, 2, 4}, I3 = {0, 1, 3, 4}, I4 = {0, 2, 3, 4}, I5 = {1, 2, 3, 4}
Here, time complexity means the complexity to recover the superpoly.

Searching cubes. We limit our search of the cubes to indices I such that 2|I|+|J | < 280.

Table 8.2 lists the cubes we found that satisfy this condition. Note that searching all
(
80
|I|
)

cubes is infeasible and the cubes in Table 8.2 are the best so far for WG-5 according to our

experimental results.

Recovering a balanced superpoly. We choose a value in the constant part of the IV and

vary all 24× 270 values to recover p(k5, k6, . . . , k74, v̄) where v̄ = {v0, v1, . . . , v79} \ {vj | j ∈ Ii}
for 1 ≤ i ≤ 5 and R = 24. We also store 270 values of p(k5, k6, . . . , k74, v̄) as they will be used

again in the online phase. We assume that we can recover a balanced superpoly in 1 trial for

each of the cubes in Table 8.2. If not, we repeat the experiment.

8.3.3 Theoretical key recovery attack on 24 rounds

We use the balanced superpolys recovered in the offline phase for cubes I1, I2, I3, I4 and I5

(Table 8.2) in the online phase. We query the cube CIi to the encryption oracle and compute

the sum
⊕

CIi
f(k, v). We then compare this sum with

⊕
CIi

f(k, v) = p(k5, k6, . . . , k74, v̄)

stored in the offline phase for all possible combinations of {k5, k6, . . . , k74}. We discard the

values of {k5, k6, . . . , k74} for which the sum is different. Since we are using a balanced

superpoly, p(k5, k6, . . . , k74, v̄) = 0 for 269 values and equals 1 for the remaining 269 values.

Thus, one bit of secret information can always be recovered. We use cubes I1, I2, I3, I4 and

I5 in our attack and hence can recover 5 secret variables. We then guess the remaining

75 bits to recover the entire secret key. The attack time complexity for 24 rounds equals

5× 274 + 275 ≈ 276.81.
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8.3.4 Attack comparison with algebraic attacks

The univariate algebraic attacks [118] exploit the fact that WG-5 is updated linearly during

the keystream generation phase (Section 8.2.2). Hence, using the trace representation of zt,

it is possible to find a low degree multiple g (also known as annihilator) of filtering function

f , i.e., fg = 0 which lowers the data and time complexity of the algebraic attack to 215 and

233, respectively. Such attacks do not hold if the nonlinear WGP-5 is fed back into the state

during KSG phase because the idea of annihilators no longer exists. On the other hand, our

attack is not affected by this fact and it only requires significantly low data complexity.

8.4 Comparison of the Initialization Phases

In this section, we present an argument to show how the initialization phase of WG-5 is more

resistant to cube attacks than those of Grain-128a [11] and Trivium[53].

8.4.1 Brief description of Grain128 and Trivium

Grain-128a is an NLFSR based stream cipher of Grain family with two 128-bit states repre-

sented by (b0, b1, . . . , b127) and (s0, s1, . . . , s127). The state is loaded with a 128-bit key and a

96-bit IV as follows.

(b0, b1, . . . , b127)← (k0, k1, . . . , k127),

(s0, s1, . . . , s127)← (iv0, iv1, . . . , iv95, 1, . . . , 1, 0).

The initialization phase runs for 256 rounds with the state update function given by

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13

+ b17b18 + b27b59 + b40b48 + b61b65 + b68b84

+ b88b92b93b95 + b22b24b25 + b70b78b82

f ← s0 + s7 + s38 + s70 + s81 + s96

h← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

z ← h+ s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89

(b0, b1, . . . , b127)← (b1, b2, . . . , b127, g + s0 + z)

(s0, s1, . . . , s127)← (s1, s2, . . . , s127, f + z).

During the KSG phase, z is not fed back to the state and is directly used as the keystream

bit.

Trivium is another NLFSR based stream cipher with state size 288. The 80-bit key and

80-bit IV are loaded into the state as follows: (s0, s1, . . . , s92) ← (k0, k1, . . . , k79, 0, . . . , 0),
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(s93, s94, . . . , s176)← (iv0, iv1, . . . , iv79, 0, . . . , 0) and (s177, s178, . . . , s287)← (0, 0, . . . , 0, 1, 1, 1).

The state update function of Trivium is given by

t1 ← s65 + s92

t2 ← s161 + s176

t3 ← s242 + s287

z ← t1 + t2 + t3

t1 ← t1 + s90s91 + s170

t2 ← t2 + s174s175 + s263

t3 ← t3 + s285s286 + s68

(s0, s1, . . . , s92)← (t3, s0, . . . , s91)

(s93, s1, . . . , s176)← (t1, s93, . . . , s175)

(s177, s1, . . . , s287)← (t2, s177, . . . , s286).

The initialization phase runs for 1152 rounds without producing an output while z is used as

the keystream bit during KSG phase.

8.4.2 Observations on degree evaluation

Trivium. The degree of z is 3 after 81 rounds. The algebraic degree of z can only be

increased by AND terms s90s91, s174s175 and s285s286. Thus, the round at which the degree

of z equals 3 is min(90, 174− 93, 285− 177) = 81.

Grain128a. The degree of z is 6 after 32 rounds. The maximum index in h function is 95

(for b95 term). At round 32 (127-95) only the degree of b95 is 4 and the remaining terms are

of degree 1. Hence, the degree of z is 6 because of the b12b95s94 term.

WG-5. The degree of z is 6 in 1 round. Note that the degree of each component of S1[31]

equals 4. This can be deduced from the boolean representation of the component functions

of the WGP-5 which is given below.

y0 = x0x1x3x4 + x0x1x4 + x0x2x3x4 + x0x2x3 + x0x2x4

+ x0x4 + x0 + x1x2x3 + x1x2 + x1x3 + x3x4

y1 = x0x1x2x3 + x0x1x2x4 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1 + x0x2x4

+ x0x2 + x0x3x4 + x0x4 + x1x2x3x4 + x1x4 + x1 + x2x4 + x2 + x3x4
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y2 = x0x1x2x3 + x0x1x4 + x0x1 + x0x2 + x0x3x4 + x1x2x3x4 + x1x2 + x1x4

+ x2x3x4 + x2x3 + x2x4 + x2 + x3x4 + x3 + x4

y3 = x0x1x2x3 + x0x1x3 + x0x1 + x0x2x3x4 + x0x2x3 + x0x2x4

+ x0x3x4 + x0x4 + x1x2x4 + x1x3x4 + x1x3 + x1

y4 = x0x1x2x4 + x0x1x2 + x0x1x3x4 + x0x1 + x0x2x3x4 + x0x2 + x0x3x4

+ x0x3 + x0x4 + x1x2x3 + x1x2x4 + x1x2 + x1x3 + x1x4

+ x1 + x2x3x4 + x2x3 + x2x4 + x4

Since z at round 1 is given by s1155+s1156+s1157+s1158+s1159+s1155s
1
156+si155s

1
157+s1155s

1
159+

s1156s
i
158 + si156s

i
159 + s1155s

1
156s

1
157 + s1155s

1
157s

1
158 + s1155s

1
157s

1
159 + s1155s

1
158s

1
159 + s1156s

1
157s

1
158 +

s1156s
1
158s

1
159, then the degree of z is 4 + 2 = 6.

Based on the degree comparison of 32 rounds of Grain-128a and 81 rounds of Trivium

with 1 round of WG-5, the degree in WG-5 grows faster because of the state update by the

nonlinearly generated bits at each clock cycle, which is not the case with Grain-128a and

Trivium. We also observe that all the 5 bits processed by WGP-5 at the i-th round are used to

generate the keystream bit at round (i+ 1) along with 5× 6 = 30 new bits from the feedback

function. This is not the same case with Grain-128 because the updated bits b127 and s127 in

i-th round are used in keystream bit at i+ 32 and i+ 33, respectively. Similarly, for Trivium

the values of t1, t2 and t3 at i-th round are used in keystream bit at i+ 90, i+ 81 and i+ 108

rounds, respectively. Thus, we expect that initialization phase of WG-5 is stronger than those

of Grain-128a and Trivium with respect to cube attacks.

8.5 Summary

In this chapter, we have investigated the security of initialization phase of WG-5 with respect

to cube attacks. We have modeled the division trails of reduced-round WG-5 using MILP and

have shown a key recovery attack on 24 rounds with data and time complexity of 26.32 and

276.81, respectively. Finally, we have provided an argument to show that the WG-5 design

parameters in terms of feedback and tap positions are more resistant to cube attacks in

contrast to Grain-128a and Trivium.
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Chapter 9

Meet-in-the-Middle Attack using

Correlated Sequences and its

Applications to Simon-like Ciphers
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9.1 Motivation

The meet-in-the-middle (MitM) attack is a well-known generic cryptanalytic technique against

cryptographic primitives. It has broadly two types: the standard Diffie-Hellman MitM attack

[57] and the multi-dimensional MitM attack proposed by Zhu and Gong [141]. Both variants

are highly dependent on the matching phase. More precisely, for a matching phase, the key

space has to be partitioned into l independent sets if the cipher is decomposed as a composition

of l subciphers (Section 2.4.5, Figure 2.26 with l = 4). This clearly has a limitation as the

matching variable/variables can only be found for a small number of rounds, unless the key

scheduling algorithm is weak. However, most of the key scheduling algorithms are designed in

a way so that key bits are mixed properly in few rounds. Accordingly, the number of rounds

covered by MitM attacks is usually lower than that of differential and linear, and algebraic

attacks.
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In this chapter, we introduce a novel characteristic of block ciphers called correlated se-

quences. We apply the method of correlated sequences to propose a generic MitM attack on

Feistel and SPN ciphers which could cover more rounds than the traditional MitM, differential

and linear, and algebraic attacks. As an application of our attack, we break up to 85% (27/32)

of the rounds of two lightweight block ciphers Simon-32/64 and Simeck-32/64 (Section 2.5.3)

while the previous attacks can reach only 23 rounds (Table 9.1). Although, our attack on

these ciphers has time complexity close to that of integral attacks which is 263 encryptions, it

has a very low data complexity and success probability 1. In addition, it depicts weaknesses

which were not investigated before.

Table 9.1: State-of-the-art attacks on Simon-32/64 and Simeck-32/64

Attack Cipher # attacked rounds Data Memory Time Success rate

out of 32 (bytes)

Differential

Simon-32/64 [130] 21 231 - 255.25 0.51

Simon-32/64 [109] 22 232 - 258.76 0.315

Simeck-32/64 [87] 19 231 233 240 -

Simeck-32/64 [109] 22 232 - 257.9 0.417

Linear
Simon-32/64 [47] 23 231.19 - 261.84 0.277

Simeck-32/64 [110] 23 231.91 - 261.78 0.456

Integral

Simon-32/64 [131] 21 231 254 263 1

Simon-32/64 [66] 22 231 255.8 263 1

Simon-32/64 [49] 24 232 233.64 263 1

Simeck-32/64 [138] 21 231 246.22 263 1

Impossible Differential
Simon-32/64 [54] 20 232 245.5 262.8 -

Simeck-32/64 [135] 20 232 258 262.5 -

Zero correlation
Simon-32/64 [123] 21 232 231 259.4 -

Simeck-32/64 [139] 21 232 247.67 258.78 -

Meet-in-the-middle Simon-32/64 [120] 18 8 252 262.57 1

Correlated sequences Simon-32/64

24 3 249 262.87 1

25 3 249 262.94 1

Sections 9.4 and 9.5 26 3 249 262.88 1

27 3 249 262.94 1

Simeck-32/64

24 3 249 262.87 1

25 3 249 262.94 1

26 3 249 262.88 1

27 3 249 262.94 1
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Outline. The rest of the chapter is organized as follows. Section 9.2 details the definitions

and basic properties of the correlated sequences, and applications of these sequences to MitM

attacks on Feistel and SPN ciphers. In Section 9.3, we provide the theoretical construction of

correlated sequences for Simon-like ciphers. Section 9.4 presents the application of correlated

sequences to a 25-round key recovery attack on Simon-32/64 and Simeck-32/64. In Section

9.5, we extend the 25-round attack to 27 rounds using the key scheduling algorithm properties.

9.2 Correlated Sequences of Block Ciphers

In this section, we formally introduce the correlated sequences and then show how to use

them in the meet-in-the-middle attack (Section 2.4.5). Consider an n-bit block cipher with

r rounds and an mn-bit master key k = (k0, k1, . . . , km−1) as depicted in Figure 9.1. Let si

denote the state at the i-th round. Then for 0 ≤ i < r, si+1 = RF(si, ki) where RF denotes

the round function (Section 2.3.2.2) and it is generally a composition of two functions, namely

1) a linear function L and 2) a nonlinear function N. Note that the order of composition, i.e.,

L ◦N or N ◦ L is cipher dependent and we omit it for the general description.

RF RF RF RFs0 s1 s2 s3 sr−1 sr

k0 k1 k2 kr−1
n n n n

n

Figure 9.1: A generic diagram of a block cipher

9.2.1 General idea

Definition 9.1 (Keyed sequence). Given k ∈ K and 1 ≤ t < r, we say that S(k,t) =

(s0, s1, . . . , st−1) is a keyed sequence of length t if si+1 = RF(si, ki) for 0 ≤ i < t− 1.

From Definition 9.1, it is clear that we need to compute RF t times to obtain S(k,t).

This implies that N is computed t times in total. Thus, to obtain another sequence S(k′,t)

of the same length t, the worst case is to compute N exactly t times. The idea of correlated

sequences is “Given S(k,t) and k′ 6= k, obtain the sequence S(k′,t) by computing the

nonlinear function N less than t times.” We present a toy example to illustrate this

notion before providing the formal definition. In the following, we use “+” to denote bitwise

XOR and integer addition if the meaning is clear in the context.

Example 9.1. Consider a 4-bit toy Simon-like block cipher with 8-bit blocksize and 16-bit key

as shown in Figure 9.2. Let the nonlinear function be given by N(x) = x�L(x)+ L2(x) where

x ∈ F4
2 and Li(·) denotes the left cyclic shift by i bits. The length seven keyed sequences when
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k0 = 0 and k1 = 0 are given in Table 9.2 (values given in integers). We note the following

observations from Table 9.2.

1. For all k = (k0, k1, k2, k3), s4 = k2, s5 = 0 and s6 = k2 + k4.

2. For all k′ = (k′0, k
′
1, k
′
2.k
′
3), s

′
4 = k′2, s

′
5 = 1 and s′6 = k′2 + k′4 + N(1).

3. For each row, k′3 = k3 + 1 and s′6 = s6 + k4 + k′4 + N(1).

s1 s0

N

N(x) = x� L(x) + L2(x)

ki ki+1 ki+2 ki+3

ki+1 + L3(ki+1) ki+3 + L(ki+3)
(1, 1, 0, zi)

z = (1, 1, 1, 1, 1)

Figure 9.2: 4-bit toy Simon-like cipher

We now define the correlated sequences in Definition 9.2.

Definition 9.2 ((σ, t)-correlated sequences). Given S(k,t) and 0 ≤ σ < t, we say S(k,t) and

S(k′,t) are (σ, t)-correlated sequences if S(k′,t) can be obtained from S(k,t) by computing the

nonlinear function N exactly σ times.

Remark 9.1. σ = 0 =⇒ S(k,t) and S(k′,t) are linearly related.

Definition 9.3 (Linear correlated keys). Given S(k,t), we define linear correlated keys as the

set

CK(k) = {k′ | S(k,t) and S(k′,t) are (0, t)-correlated sequences}.

For example, in Table 9.2, for each row S(k,t) and S(k′,t) are (1,7) correlated sequences.

Further |CK((0,0,0,0))| = 15 and |CK((0,0,0,1))| = 15, i.e., the last 15 sequences can be

computed linearly from the sequence corresponding to the keys (0, 0, 0, 0) and (0, 0, 0, 1),

respectively. More precisely, to obtain all 32 sequences, we only need to compute N exactly

once.
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Table 9.2: Keyed sequences (values given in integers)

k0 k1 k2 k3 k4 s0 s1 s2 s3 s4 s5 s6 k′0 k′1 k′2 k′3 k′4 s′0 s′1 s′2 s′3 s′4 s′5 s′6

0 0 0 0 13 0 0 0 0 0 0 13 0 0 0 1 14 0 0 0 0 0 1 10

0 0 1 4 1 0 0 0 0 1 0 0 0 0 1 5 2 0 0 0 0 1 1 7

0 0 2 8 4 0 0 0 0 2 0 6 0 0 2 9 7 0 0 0 0 2 1 1

0 0 3 14 14 0 0 0 0 3 0 13 0 0 3 15 13 0 0 0 0 3 1 10

0 0 4 1 14 0 0 0 0 4 0 10 0 0 4 0 13 0 0 0 0 4 1 13

0 0 5 5 2 0 0 0 0 5 0 7 0 0 5 4 1 0 0 0 0 5 1 0

0 0 6 13 11 0 0 0 0 6 0 13 0 0 6 12 8 0 0 0 0 6 1 10

0 0 7 11 1 0 0 0 0 7 0 6 0 0 7 10 2 0 0 0 0 7 1 1

0 0 8 2 11 0 0 0 0 8 0 3 0 0 8 3 8 0 0 0 0 8 1 4

0 0 9 7 4 0 0 0 0 9 0 13 0 0 9 6 7 0 0 0 0 9 1 10

0 0 10 10 2 0 0 0 0 10 0 8 0 0 10 11 1 0 0 0 0 10 1 15

0 0 11 13 11 0 0 0 0 11 0 0 0 0 11 12 8 0 0 0 0 11 1 7

0 0 12 11 1 0 0 0 0 12 0 13 0 0 12 10 2 0 0 0 0 12 1 10

0 0 13 14 14 0 0 0 0 13 0 3 0 0 13 15 13 0 0 0 0 13 1 4

0 0 14 7 4 0 0 0 0 14 0 10 0 0 14 6 7 0 0 0 0 14 1 13

0 0 15 0 13 0 0 0 0 15 0 2 0 0 15 1 14 0 0 0 0 15 1 5

9.2.2 Applications to MitM attack

Let (s0, sr) denote the plaintext and ciphertext pair encrypted with the mn-bit master key.

As depicted in Figure 9.3, we first use s0 to construct (σ, t)-correlated sequences and their

corresponding CK(·) for t rounds. Next, starting with sr, we follow the same approach. We

then do partial encryption for l rounds starting from t-th round and match the state values

at (t+ l)-th round. Thus, when RF is an SPN round, the number of attacked rounds is 2t+ l.

For a Feistel RF the number of attacked rounds is 2t− 4 + l (length t sequence corresponds

to the output of (t− 2)-th round), and equals 2t− 3 + l if matching is done on half state.

s0 sr

t rounds t rounds
r2 rounds

partial
encryption

(σ, t)-correlated
sequences

CK(·)

(σ, t)-correlated
sequences

CK(·)

Figure 9.3: MitM attack using correlated sequences

We summarize the above discussion in the following proposition.
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Proposition 9.1. If there are (σ, t)-correlated sequences, then there exists an MitM attack

for 2t − 3 + l (resp. 2t + l) rounds for Feistel (resp. SPN) ciphers, where l is the number of

rounds of partial encryption.

Time complexity. Let T e (resp. T d) denote the number of computations of N to construct

(σ, t)-correlated sequences and their corresponding CK(·) in encryption (resp. decryption)

direction. Then, the time complexity in terms of the number of computations of N is given by

T = T e + T d + |K|× l
r where K denotes the space of keys. Clearly, T < |K| if T e + T d � |K|.

Data complexity. The above attack filters 2n(m−1) keys that map s0 to sr. The correct

key can then be found out by performing an exhaustive search on the remaining known m−1

plaintext-ciphertext pairs. Note that for a Feistel cipher, an additional plaintext-ciphertext

pair is needed if matching is done on half state.

9.3 Correlated Sequences of Simon-like Ciphers

In this section, we show the construction of correlated sequences of Simon-like ciphers (Section

2.5.3) where the key length is twice the block size. We first look at the theoretical properties

of nonlinear function f(a,b,c). Next, we use these properties to construct (1, 8)-correlated

sequences. We assume that a 6= b 6= c.

9.3.1 Properties of simon-like nonlinear function

Property 9.1. Let s be the coset leader corresponding to the coset Cs. Then for 0 ≤ i < |Cs|,
the following assertions hold.

1. f(a,b,c)(Li(s)) = Li(f(a,b,c)(s))

2. f(a,b,c)(s) = La−1(s) + Lb−1(s) + Lc−1(s) if s = 011 . . . 1︸ ︷︷ ︸
n

.

Property 9.2. Let s = 0101 . . . 01︸ ︷︷ ︸
n

and a, b are not both simultaneously even or odd. Then

f(a,b,c)(s) =

{
s if c ≡ 0 mod 2

L(s) otherwise.

Properties 9.1 and 9.2 imply that it is enough to compute the values of f(a,b,c) for coset

leaders1 only. As f(a,b,c) is quadratic and the only linear term involved in it is Lc(.), we have

f(a,b,c)(x) = Lc(x) + z for all x ∈ Fn2 and some constant z ∈ Fn2 . As a result, we partition the

coset leaders based on the values of z. Since f(a,b,c) is linear on each partition, we call such a

partition a z-linear segment set and formally define it in Definition 9.4 as follows.

1Number of coset leaders ≈ 2n−1
n
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Definition 9.4 (z-linear segment set). A z-linear segment set of f(a,b,c) is the set of coset

leaders CLz given by

CLz = {s | f(a,b,c)(s) + Lc(s) = z}.

Table 9.3 lists the z-linear segment sets for n = 8 and (a, b, c) = (8, 1, 2) while the number of

z-linear segments (denoted by Nz) for varying n are presented in Table 9.4. (Note that since

n = 8, the shifts (8, 1, 2) is equivalent to (0, 1, 2).)

Table 9.3: z-linear segment sets for n = 8 and (a, b, c) = (8, 1, 2)

z CLz z CLz

0 {0, 1, 5, 9, 17, 21, 37, 85} 2 {3, 11, 19, 43}
6 {7, 23, 39, 87 } 8 {13, 45}
14 {15, 47} 16 {25}
18 {27, 91 } 24 {29}
30 {31, 95} 32 {53}
34 {51} 38 {55}
50 {59} 56 {61}
62 {63} 78 {111}
102 {119} 126 {127}
255 {255} - -

Table 9.4: Number of z-linear segment sets for varying n

n # coset leaders Nz

(a, b, c)

(8, 1, 2) (5, 0, 1)

8 36 20 17

10 108 42 14

12 352 119 119

14 1182 50 287

16 4116 909 798

Example 9.2. In Table 9.3, consider z = 2 and 3 ∈ CL2. Then for all the elements of coset

with coset leader 3, i.e.,

x ∈ C3 = {3, 6, 12, 24, 48, 96, 192, 129},

the computation of f(8,1,2)(·) is listed in Table 9.5.
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Table 9.5: Computation of f(8,1,2)(x) for x ∈ C3

x f(8,1,2)(x)

3 L2(3) + 2 = 14

6 L2(6) + L(2) = 28

12 L2(12) + L2(2) = 56

24 L2(24) + L3(2) = 112

48 L2(28) + L4(2) = 224

96 L2(96) + L5(2) = 193

192 L2(192) + L6(2) = 131

129 L2(129) + L7(2) = 7

9.3.2 Construction of (1, 8)-correlated sequences

Let (s0, s1) be any random 2n-bit value and K(k0,k1) = {(k0, k1, k2, k3) | (k2, k3) ∈ Fn2 × Fn2}
be the set of 22n keys with k0 and k1 fixed to some constant value. For t ≥ 6 and 0 ≤ i < 2n,

define

P(i, t,K(k0,k1)) = {(k, S(k,t)) | k ∈ K(k0,k1) and s5 = i}

as the set of keys and their corresponding sequences that map s5 to i.

We start with the simpler case, i.e., s5 = 0. First, we construct P(0, 8,K(k0,k1)) and then

show how to construct P(i, 8,K(k0,k1)) from the knowledge of P(0, 8,K(k0,k1)).

9.3.2.1 Construction of P(0, 8,K(k0,k1))

We divide the construction of P(0, 8,K(k0,k1)) into 3 steps, namely 1) Finding P(0, 6,K(k0,k1)),

2) Obtaining P(0, 7,K(k0,k1)) from P(0, 6,K(k0,k1)), and 3) Obtaining P(0, 8,K(k0,k1)) from

P(0, 7,K(k0,k1)). For each step, we denote the number of computations of f(a,b,c) by Tstep.

Step 1: Finding P(0, 6,K(k0,k1)). We note that ∀k ∈ K(k0,k1), S(k,4) is a constant sequence

and requires only 2 computations of f(a,b,c). Hence, finding the keys for which s5 = 0 is

equivalent to solving the equation

f(a,b,c)(X + k2) = k3 + s3

where X = f(a,b,c)(s3) + s2. We use z-linear segments (Definition 9.4) to solve this equation.

As a result, Tstep1 = 3 + Nz. Note that |P(0, 6,K(k0,k1))|= 2n, as s4 = X + k2 can take

all 2n distinct values. Thus for all (k, S(k,6)) ∈ P(0, 6,K(k0,k1)) the pair (k2, k3) is unique.

Accordingly, let I(k0,k1) = {k3 | (k, S(k,6)) ∈ P(0, 6,K(k0,k1))}, then |I(k0,k1)|= 2n.
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Step 2: Obtaining P(0, 7,K(k0,k1)) from P(0, 6,K(k0,k1)). Let (k, S(k,6)) ∈ P(0, 6,K(k0,k1))

and consider the following relation s4 + s6. We have

s4 + s6 = s4 + f(a,b,c)(s5) + k4

= s4 + 0 + s4 + k4

=⇒ s6 = s4 + k4.

Thus Tstep2 = 0.

Step 3: Obtaining P(0, 8,K(k0,k1)) from P(0, 7,K(k0,k1)). For a given (k, S(k,7)) in

P(0, 7,K(k0,k1)) we compute s7 as follows.

s7 = f(a,b,c)(s6) + s5 + k5 = f(a,b,c)(s6) + k5

= f(a,b,c)(s
′
4) + k5 (By step 1)

= f(a,b,c)(X + k′2) + k5 = s′3 + k′3 + k5

= s3 + I(k0,k1)[k
′
2] + k5 (as s′3 = s3)

= s3 + I(k0,k1)[k2 + k4] + k5

Note that since s6 = X + k′2 =⇒ k′2 = s6 + X = s4 + k4 + X = k2 + k4 (s4 + X = k2

follows from Step 1). Furthermore Tstep3 = 0.

Corollary 9.1. Given P(0, 8,K(k0,k1)), I(k0,k1) and k = (k0, k1, 0, I(k0,k1)[0]). Then

|CK(k)| = 2n − 1

We could use a similar construction shown to the one above to get P(i, 8,K(k0,k1)) for

1 ≤ i < 2n. However, this would require 2n(3 + Nz) computations of f(a,b,c) in total. Next,

we show how to reduce this number to (3 + 2Nz).

9.3.2.2 Computing P(i, 8,K(k0,k1)) from P(0, 8,K(k0,k1))

Theorem 9.1. Given I(k0,k1), k = (k0, k1, 0, I(k0,k1)[0]), (k, S(k,8)) ∈ P(0, 8,K(k0,k1)) and X =

f(a,b,c)(s3)+s2. Let 1 ≤ i < 2n and k̃ = (k0, k1, 0, I(k0,k1)[0] + i). Then the following assertions

hold.

1. S(k,5) = S(k̃,5)

2. (k̃, S(k̃,6)) ∈ P(i, 6,K(k0,k1))

3. s̃6 = s3 + I(k0,k1)[X + i] +X + k̃2 + k̃4
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4. s̃7 = s3 + i+ k̃5 + I(k0,k1)[s̃6 +X]

5. |CK(k̄)|= 2n − 1

Proof. 1. Since k2 = k̃2 = 0 =⇒ s4 = s̃4 = X =⇒ S(k,5) = S(k̃,5).

2. It is enough to show that s̃5 = i. We have

s̃5 = f(a,b,c)(s̃4) + s̃3 + k̃3 = f(a,b,c)(s4) + s3 + k̃3

= I(k0,k1)[0] + s3 + s3 + I(k0,k1)[0] + i = i.

3. We compute s̃6 as follows.

s̃6 = f(a,b,c)(s̃5) + s̃4 + k̃4 = f(a,b,c)(i) + s̃4 + k̃4

= s3 + I(k0,k1)[X + i] +X + k̃2 + k̃4.

4. The proof is similar to the assertion 3.

5. Note that for 1 ≤ j < 2n, (k0, k1, j, I(k0,k1)[j]) ∈ CK(k) ⇐⇒ (k0, k1, j, I(k0,k1)[j] + i) ∈
CK(k̄). This follows because s5 + s̄5 = k3 + k̄3 =⇒ k3 + k̄3 = i. Thus, |CK(k̄)|= 2n−1.

We use Theorem 9.1 together with z-linear segment sets to compute all partitions. A

brief comparison of different approaches with the number of computations of f(a,b,c) to obtain

P(i, 8,K(k0,k1)) is provided in Table 9.6.

Table 9.6: Comparison of different approaches with the number of computations of f(a,b,c) for
6 out of r rounds

Approach # computations of f(a,b,c)

(a, b, c)

(8, 1, 2) (5, 0, 1)

Naive 264 × 6
r 264 × 6

r

Theorem 9.1 and z-linear segment sets 232 × (3+1818)
r 232 × (3+1596)

r

9.4 Key Recovery Attack on 25-round Simon and Simeck

In this section, we show the key recovery attack procedure on 25-round Simon-32/64 and

Simeck-32/64. We note that construction of (1, 8)-correlated sequences as shown in Section

9.3 is independent of the key scheduling algorithms. Thus, we simply utilize these sequences
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for 6 encryption and 6 decryption rounds in an MitM attack (Figure 9.4). As a result, we do

partial encryption for 12 rounds, starting from round 6 and match the left half of state, i.e.,

s19 at 19-th round.

(s1, s0) (s26, s25)(s7, s6) (s19, s18) (s20, s19)(1, 8)-correlated
sequences

(1, 8)-correlated
sequences

Data
structure

6-round 12-round partial encryption Match 6-round

Figure 9.4: 25-round key recovery procedure

From now, we denote sei/s
d
i , k

e
i /k

d
i , Xe/Xd, I(ke0,ke1)/I(kd0 ,kd1)

and DSe/DSd as the i-th element

of the keyed sequence, i-th subkey, the value of f(a,b,c)(s
e
3) + se2 / f(a,b,c)(s

d
3) + sd2 , indexing

set and stored data structure from encryption/decryption side, respectively. For example,

se0 = s0, s
e
1 = s1, s

d
0 = s26, s

d
1 = s25, k

e
24 = kd0 and so on.

In Algorithm 9.1, we present a generic procedure for recovering the secret key. It takes the

input as 3 known plaintext-ciphertext pairs encrypted either by Simon-32/64 or Simeck-32/64

and returns the secret key. The attack is divided into two phases, namely 1) Offline phase

and 2) Online phase. The time complexities of both phases are given by T offline and T online

where a subscript (e.g., T onlinei ) denotes the time complexity of i-th step of the corresponding

phase. In what follows, we present the details of both phases.

9.4.1 Offline phase

In this phase, we first compute z-linear segment sets using Defintion 9.4. Next, we construct a

data structure DSd that is used in the online phase to compute the value of sd7 without doing

any nonlinear operation. Note that in order to compute sd7 for any key k = (kd0 , k
d
1 , k

d
2 , k

d
3), we

only need the values of sd3, X
d and I(kd0 ,kd1)

(Theorem 9.1). Hence, we store the array [sd3, X
d,

I(kd0 ,kd1)
] as the (L16(kd0)||kd1)-th row of DSd for a fixed (kd0 , k

d
1) pair.

The procedures compute zs and construct ds in Algorithm 9.1 constitute the offline phase.

In Appendix B.1, we provide an example of DSd for a toy Simon cipher.

Memory complexity. The memory required to store z-linear segment sets in bits is (Nz +

# coset leaders)× 16. Furthermore, to store a single row of DSd, (1 + 1 + 216)× 16 bit space

is needed. Thus the total memory (Mem) is given by

MemSimon-32/64 = (Nz + # coset leaders)× 16 + 232 × (1 + 1 + 216)× 16

= (909 + 4116)× 16 + 232 × (2 + 216)× 16 ≈ 252 bits = 249 bytes.
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Algorithm 9.1 Key recovery algorithm

1: Input : {(se,00 , se,01 ), (sd,00 , sd,01 )}, {(se,10 , se,11 ), (sd,10 , sd,11 )}, {(se,20 , se,21 ), (sd,20 , sd,21 )}
2: Output : secret key k
3: Procedure main :
4: // Offline phase . T offline

5: call procedure compute zs
6: call procedure construct ds
7: // Online phase . T online

8: call procedure recover sk
9:

10: Procedure compute zs : . T offline0

11: // Compute z-linear segment sets using Definition 9.4
12: n = 16, (a, b, c) = (8, 1, 2) / (5, 0, 1)
13: return(Z, CLz)
14:

15: Procedure construct ds : . T offline1

16: // Construct data structure for 6 decryption rounds
17: DSd = [ [ ] ]

18: sd0 = sd,00 , sd1 = sd,01

19: for kd0 = 0 to 216 − 1 do
20: for kd1 = 0 to 216 − 1 do
21: Compute sd3, X

d, I(kd0 ,kd1)
22: DS.append([ sd3, X

d, I(kd0 ,kd1)
])

23: end for
24: end for
25: return(DSd)
26:

27: Procedure recover sk :
28: // Filtering keys with Algorithm 9.2
29: K = filter keys . T online0

30: // Exhaustive search on K using second plaintext-ciphertext pair
31: for γ ∈ K do . T online1

32: if encryption of (se,10 , se,11 ) with γ equals (sd,10 , sd,11 ) do
33: K1.append(γ)
34: end if
35: end for
36: // Exhaustive search on K1 using third plaintext-ciphertext pair
37: for γ ∈ K1 do . T online2

38: if encryption of (se,20 , se,21 ) with γ equals (sd,20 , sd,21 ) do
39: K2.append(γ)
40: end if
41: end for
42: return(K2) . K2 = {k}
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Similarly, MemSimeck-32/64 ≈ 249 bytes as Nz = 798 (Table 9.4).

Time complexity. The time complexity in terms of the number of computations of f(a,b,c)

is given by

T offline = T offline0 + T offline1

= # coset leaders + 232 ×
(3 +Nz

25

)
︸ ︷︷ ︸

# computations of f(a,b,c) to get I(kd
0 ,k

d
1 )

Thus, T offline ≈ 237.18 and 237 for Simon-32/64 and Simeck-32/64, respectively.

9.4.2 Online phase

In this phase, we recover the secret key that maps the plaintext (se,i0 , s
e,i
1 ) to ciphertext

(sd,i0 , sd,i1 ) for i = 0, 1, 2. We first find the key set K that maps (se,00 , se,01 ) to (sd,00 , sd,01 ) using

filter keys procedure in Algorithm 9.2. Note that |K|= 248 as partial matching is done at

the 19-th round (step 16 of Algorithm 9.2). Next, we perform an exhaustive search on the

remaining 2 plaintext-ciphertext pairs to get the correct key (steps 31-41 of Algorithm 9.1).

We now present the details of filter keys procedure.

Procedure filter keys. For a fixed (ke0, k
e
1) pair, we first compute se3, X

e = f(a,b,c)(s
e
3) + se2

and the indexing set I(ke0,ke1). Then we use Theorem 9.1 and z-linear segment sets to compute

partitions P(i, 8,K(ke0,k
e
1)

) (steps 7-14 of Algorithm 9.2). Next, we do encryption for 12 rounds

and check whether se19 matches with sd7 or not. If so, the corresponding key is a possible key

candidate. The number of computations of f(a,b,c) is then calculated as follows:

3 +Nz

25︸ ︷︷ ︸
# computations of f(a,b,c) to get I(ke

0,k
e
1)

+
Nz

25︸︷︷︸
# computations of f(a,b,c) to get P(i, 8,K(ke

0,k
e
1)
)

+ 232 × 12

25︸︷︷︸
12-round encryption

=
3 + 2Nz

25
+ 232 × 12

25

The time complexity (T online0 ) of filter keys then equals 232 × (3+2Nz
25 + 232 × 12

25) ≈ 264 × 12
25 .

In Appendix B.2, we provide an example of computation of sd7 from DSd.
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Algorithm 9.2 Extracting keys that maps (se0, s
e
1) to (sd0, s

d
1)

1: se0 = se,00 , se1 = se,01

2: K = []
3: Procedure filter keys :
4: for ke0 = 0 to 216 − 1 do
5: for ke1 = 0 to 216 − 1 do
6: Compute se3, X

e = f(a,b,c)(s
e
3) + se2 and I(ke0,ke1)

7: for z in z-linear segment sets do
8: for x ∈ CLz do
9: for i = 0 to |Cx|−1

10: f = Lc(Cx[i]) + Li(z)
11: for j = 0 to 216 − 1 do
12: k = (ke0, k

e
1, j, I(ke0,ke1)[j] + Cx[i])

13: se6 = f +Xe + ke2 + ke4
14: se7 = se3 + ke5 + Cx[i] + I(ke0,ke1)[s

e
6 +Xe]

15: Encrypt (se7, s
e
6) for 12 rounds and get se19

16: if se19==compute sd7(k, DSd) do
17: K.append(k)
18: end if
19: end for
20: end for
21: end for
22: end for
23: end for
24: end for
25: return(K)
26:

27: Procedure compute sd7(k, DSd) :
28: // Compute 8-th element of sequence from decryption side (Theorem 9.1)
29: sd3 = DSd[L16(kd0) + kd1 ][0]
30: Xd = DSd[L16(kd0) + kd1 ][1]
31: I(kd0 ,kd1)

= DSd[L16(kd0) + kd1 ][2]

32: p = I(kd0 ,kd1)
[kd2 + kd3 ]

33: sd6 = I(kd0 ,kd1)
[p+Xd] + sd3 +Xd + kd2 + kd4

34: sd7 = sd3 + kd5 + p+ I(kd0 ,kd1)
[sd6 +Xd]

35: return(sd7)

Time complexity. The time complexity of the complete attack is dominated by T online

which is given by:

T online = T online0 + T online1 + T online2

= 264 × 12

25
+ 248 + 216 ≈ 262.94
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Remark 9.2. For the 24-round attack, the data and memory complexities are the same.

However, the time complexity is 264 × 11
24 ≈ 262.87.

9.4.3 Experimental verification

We have implemented the complete attack in Python. We ran experiments for toy versions of

both ciphers, i.e., with blocksize/keysize, 8/16 and 16/32-bit. We have found that the attack

works for all keys, and for any 3 distinct random plaintext encrypted either by Simon-8/16

(Simon-16/32) or Simeck-8/16 (Simeck-16/32). Hence, a success probability of 1 implies that

the similar results hold for Simon-32/64 and Simeck-32/64.

9.5 Improved Key Recovery Attacks

In this section, we show how to improve the key recovery attack presented in the previous

section by 2 rounds with the same complexities as the 25-round attack. For a fixed partition

P(i, 8,K(ke0,k
e
1)

), we incorporate the properties of key scheduling algorithms (Section 2.5.3) and

one round differentials and show that P(i, 9,K(ke0,k
e
1)

) can be computed from P(i, 8,K(ke0,k
e
1)

)

by computing f(a,b,c) at most 215 times. As a result, both forward and middle rounds can

be extended by one round each, i.e., partial encryption starts from round 7 and matching is

done at the 20-th round. The results of the following two properties can be obtained directly

by the definition of P(i, 8,K(ke0,k
e
1)

) and the key scheduling algorithm. We present the main

result of this section in Lemma 9.1.

Property 9.3 (Simon KSA and P(i, 8,K(ke0,k
e
1)

)). Let F : F16
2 → F16

2 be such that F (x) =

f(8,1,2)(x+ ∆y) +x+L15(x) +L10(y) +L8(y), where y = I(ke0,ke1)[x] and ∆y = L13(y) +L12(y).

Then |Img(F )|≤ 215 where Img(F ) is the image set of F .

Property 9.4 (Simeck KSA). Let n ≥ 4, kei+4 = f(5,0,1)(k
e
i+1) + kei and i ≥ 0. Then for a

fixed (ke0, k
e
1) pair, ke4 is constant for all 2n × 2n values of ke2 and ke3.

Property 9.5 (Differential property [86]). Let n ≥ 4, ∆ ∈ Fn2 be fixed. Then

|Img(f(a,b,c)(x) + f(a,b,c)(x+ ∆))|≤ 2n−1.

Lemma 9.1. Given n = 16 and (a, b, c) = (8, 1, 2)/(5, 0, 1). Then for all (k, S(k,8)) ∈
P(i, 8,K(ke0,k

e
1)

), se7 can take at most 215 values.

Proof. Consider the value of se7 in the following cases:
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• Case 1 : (a, b, c) = (8, 1, 2)

se7 = f(8,1,2)(s
e
6) + se5 + ke5 = f(8,1,2)(s

e
4 + ke4 + f(8,1,2)(i)) + i+ ke5

= f(8,1,2)(X
e + ke2 + ke4 + f(8,1,2)(i)) + i+ ke5, X

e = f(8,1,2)(s
e
3) + se2

= f(8,1,2)(C0 + ke2 + (L13(ke3) + L12(ke3)) +

C1 + ke2 + L15(ke2) + L10(ke3) + L8(ke3) (Simon KSA)

Here C0 and C1 are constants and given by

C0 = Xe + f(8,1,2)(i) + ke0 + ke1 + L15(ke1) + Z0

C1 = i+ Z1 + L13(Z0) + L12(Z0) + L13(ke0) + L12(ke0) +

ke1 + L13(ke1) + L11(ke1)

By Property 9.3, se7 can take at most 215 values.

• Case 2 : (a, b, c) = (5, 0, 1)

se7 = f(5,0,1)(s
e
6) + se5 + ke5 = f(5,0,1)(s

e
4 + ke4 + f(5,0,1)(i)) + i+ ke5

= f(5,0,1)(X
e + ke2 + ke4 + f(5,0,1)(i)) + i+ ke5, X

e = f(5,0,1)(s
e
3) + se2

= f(5,0,1)(∆ + ke2) + C1 + f(5,0,1)(k
e
2) (Property 9.4)

Similar to previous case, ∆ and C1 are constants and given by:

∆ = Xe + f(5,0,1)(i) + ke0 + f(5,0,1)(k
e
1) + Z0

C1 = i+ Z1 + ke1

The proof then follows from Property 9.5.

From Lemma 9.1, we note that for each partition P(i, 8,K(ke0,k
e
1)

), se7 can take at most 215

values. Accordingly, we only modify steps 11-18 of Algorithm 9.2. The partial encryption

starts from (se8, s
e
7) and se21 is then used for the matching. The modification is presented in

Algorithm 9.3.
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Algorithm 9.3 Modified algorithm for 27-round key recovery attack

1: TEMP S6 = [ ]
2: TEMP S7= [ ]
3: TEMP Uniq S7 = [ ]
4: for j = 0 to 216 − 1 do
5: k = (ke0, k

e
1, j, I(ke0,ke1)[j] + Cx[i])

6: se6 = f +Xe + ke2 + ke4
7: se7 = se3 + ke5 + Cx[i] + I(ke0,ke1)[s

e
6 +Xe]

8: TEMP S6.append(se6)
9: TEMP S7.append(se7)

10: end for
11:

12: // Unique value of TEMP S7
13: TEMP Uniq S7 = unique(TEMP S7)
14:

15: for u in TEMP Uniq S7 do
16: te = f(a,b,c)(u)
17: // get index finds indexes l such that TEMP S7[l] = u
18: Indices = get index(TEMP S7)
19: for ind in Indices do
20: k = (ke0, k

e
1, ind, I(ke0,ke1)[ind] + Cx[i])

21: se8 = te + ke6+TEMP S6[ind]
22: Encrypt (se8, u) for 13 rounds and get se21
23: if se21==compute sd7(k, DSd) do
24: K.append(k)
25: end if
26: end for
27: end for

Attack complexities. The data and memory complexities are the same as the 25-round

attack. The time complexity is given by:

T online = 232 × T online0 + T online1 + T online2

≈ 232(
3 + 2Nz

27
+ 231 × 1

27
+ 232 × 13

27
) + 248 + 216

≈ 264 × 13

27
≈ 262.94

Remark 9.3. The complexities of 26-round attack are calculated accordingly.
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9.6 Summary

In this chapter, we have introduced a new characteristic of block ciphers called correlated

sequences and demonstrated its application in a meet-in-the-middle attack. As a result, we

presented a 2t− 3 + l (resp. 2t+ l)-round attack for Feistel, i.e., NLFSR (resp. SPN) ciphers

with t length correlated sequences and l rounds of partial encryption. We have applied our

technique on two lightweight block ciphers Simon-32/64 and Simeck-32/64 and presented the

first 24, 25, 26, 27-round attacks on these ciphers with data and memory complexities of 3

and 249 bytes, respectively. The time complexities are 262.87(resp. 262.94) for 24, 26 (resp. 25,

27)-round attacks.
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Chapter 10

Practical Forgery Attacks on

Limdolen and HERN

Contents
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10.1 Introduction

Limdolen and HERN are round 1 candidates of the NIST Lightweight Cryptography Standard-

ization Project [5]. Limdolen is a family of lightweight AEAD algorithms with key sizes 128

and 256 bits. It adopts a Parallelizable Message Authentication Code (PMAC) [39] mode to

compute a tag and then uses counter mode of encryption to generate the ciphertext. However,

compared to PMAC where random and indistinguishable secret masks1 are used, Limdolen-

128/(256) utilizes two distinct 128(256)-bit secret masks only. The designers state that “Due

to Limdolen’s target of constrained environments, rather than a series of calculations, we will

alternate between i = 0 and i = 1, the two most common values of i in γiL.” Moreover,

during the tag computation phase, the associated data and message are first combined to-

gether to form a single input and then the padding procedure ie executed. Based on the design

choices and security proofs of PMAC and counter mode of encryption, the designers claim

128(256)-bit integrity security for Limdolen-128(256).

1masks derived from PMAC key where PMAC key equals EncK(0n)
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On the other hand, HERN is a 128-bit authenticated encryption scheme and adopts a

stream cipher style construction similar to the CAESAR finalist Acorn [1, 133]. The state size

is 256 bits and at each clock cycle, 4 nonlinear bits are fed back to the state (except during

ciphertext and tag generation phase). After processing the associated data, the state is updated

512 times by adding ‘0’ bit stream to the feedback bits. A similar procedure is applied after

plaintext processing. Accordingly, they claim that HERN achieves 128-bit integrity security.

In this chapter, we show that some non-conservative design choices (highlighted in italics

above) made by the designers solely to achieve a lightweight design lead to practical forgery

attacks. In particular, we show the construction of associated data-only, ciphertext-only and

associated data and ciphertext forgeries which require a feasible number of forging attempts.

Outline. The rest of the chapter is organized as follows. A brief description of Limdolen

is provided in Section 10.2. In Section 10.3, we present the details of forgery attacks on

Limdolen along with the experimental results. Sections 10.4 and 10.5 present the specification

and forgery attacks on HERN, respectively. Finally, we conclude in Section 10.6.

10.2 Specification of Limdolen

Limdolen [98] is a family of lightweight AEAD algorithms with key sizes 128 and 256 bits. We

denote an instance of Limdolen by Limdolen-n and its corresponding underlying block cipher2

by Limdolen-BC-n where n ∈ {128, 256}. In this section, we first give a brief overview of

Limdolen-n and then list the security goals claimed by the designers.

10.2.1 Description of Limdolen AEAD

Limdolen adopts a tweaked PMAC based construction to provide AEAD functionality. It has

two variants Limdolen-n, n ∈ {128, 256}. For both the variants, the size of key, nonce and

tag are equal to n bits. A high level overview of individual phases of Limdolen-n is described

below.

Padding. The associated data AD and the message M are first concatenated together to

form a single input message. It is then divided into chunks of n-bit blocks, i.e., (X0, · · · , Xl−1)
n←−

AD||M . If |Xl−1|= n, then a single byte is XORed to the last byte of Xl−1. This pad byte

equals 0xC0 (0x80) depending on whether the length of associated data is zero (non-zero).

In case the number of bytes of Xl−1 is less than n/8, first a pad byte is appended to Xl−1,

followed by adding zero bytes until the block length becomes n. This procedure is denoted

by addPaddingMarker(·).
2Our attack is independent of the block cipher specification and hence the reader is referred to [98] for more

details.
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Remark 10.1. The padding rule described above follows the Limdolen’s specification docu-

ment. However, in the reference implementation the pad byte is always XORed to the last

byte of Xl−1. We emphasize that our attacks are independent of location of this byte.

Tag generation. The tag computation of Limdolen-n is similar to PMAC and is shown in

Figure 10.1. First the PMAC key is derived by encrypting nonce N with the master key K.

We denote it by aK where aK = Limdolen-BC-n(K,N). Next, three n-bit masks given by

α = Limdolen-BC-n(aK, 0n)

alpha x = LB(α)

alpha inv x = RB(α)

are computed where the function LB(α) (resp. RB(α)) rotates each byte of α left (resp. right)

by 1. Each n-bit block Xi (except the last block) is XORed alternately with α or alpha x which

is then encrypted with Limdolen-BC-n using aK as the key. At each iteration, the output is

XORed to δc which acts as a checksum. The tag is then given by

T = Limdolen-BC-n(aK, δc ⊕ alpha inv˙x ⊕ addPaddingMarker(Xl−1)).

Limdolen-BC-n

X0

aK Limdolen-BC-n

X1

aK Limdolen-BC-n

X2

aK Limdolen-BC-n

X3

aK · · ·

Xl−1

addPadddingMarker

α αalpha x alpha x

alpha inv x

Limdolen-BC-naK

(X0, · · · , Xl−1)
n←− AD‖M

Limdolen-BC-nK

N

aK

Limdolen-BC-naK

0n

α

δc

T

Figure 10.1: Tag generation phase of Limdolen-n

Encryption. The encryption is similar to the counter-mode of operation. The XOR value

of nonce and tag is used as the intial counter. This phase is shown in Figure 10.2. The

decryption is similar to encryption and hence the details are omitted.
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Limdolen-BC-n

C0

K

M0

Limdolen-BC-n

C1

K

M1

· · ·

· · ·

· · ·

· · ·

Limdolen-BC-n

Cl−1

K

Ml−1

(M0, · · · ,Ml−1)
n←−M

T ⊕N +1 +1

Figure 10.2: Encryption phase of Limdolen-n

10.2.2 Security claims

The security claims of Limdolen in the nonce-respecting setting are summarized in Table 10.1.

Table 10.1: Security claims of Limdolen in bits [98]

Goal Limdolen-128 Limdolen-256

Confidentiality of plaintext 128 256

Integrity of plaintext 128 256

Integrity of associated data 128 256

Data limit (in blocks) 264 2128

10.3 Forgery Attacks on Limdolen

In this section, we present the details of forgery attacks on both variants of Limdolen. First,

we give a brief overview of the adversarial model and the main idea of our attack. Next, we

show the construction of associated data-only, ciphertext-only and associated data and cipher-

text forgeries that require a single encryption query and one forging attempt for successful

verification. Finally, we provide the experimental results.

10.3.1 Adversarial model

We assume that the adversary A is nonce-respecting, which means it never makes two queries

to the encryption oracle with the same nonce. Nevertheless, A is allowed to repeat nonces in

decryption queries. We say that “A forges” if the decryption oracle ever returns a plaintext

other than error symbol ⊥ on input of (N,AD,C, T ) where (C, T ) has never been output by

encryption oracle on input of a query (N,AD,M) for some AD and M [113].

In the sequel, we classify three types of forgeries based on the input modification.
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• associated data-only: “A forges” by changing AD and/or T

• ciphertext-only: “A forges” by changing C and/or T

• associated data and ciphertext: “A forges” by changing both AD and C, and/or T .

10.3.2 Core idea of forgery

For simplicity, we explain the idea for a single complete block of associated data which is

given in Lemma 10.1.

Lemma 10.1. Let K
$←− {0, 1}n be fixed. Let N

$←− {0, 1}n, AD0
$←− {0, 1}n, M = ε and

(ε, T ) be the corresponding ciphertext and tag pair. Then for a positive integer i ≥ 1 and

AD′0
$←− {0, 1}n, AD′1

$←− {0, 1}n and AD′ = (AD′0‖AD′1‖AD′0‖AD′1)i‖AD0, we have C ′ = ε

and T ′ = T .

Proof. Since M ′ = M = ε =⇒ C ′ = C = ε. We now look at the tag generation of AD and

AD′. The respective tags are given by

T = Limdolen-BC-n(aK, alpha inv˙x ⊕ addPaddingMarker(AD0))

T ′ = Limdolen-BC-n(aK, δ′c ⊕ alpha inv x ⊕ addPaddingMarker(AD0)),

where δ′c = 0n (i = 1 case is shown in Figure 10.3 for ). Thus T ′ = T .

Limdolen-BC-naK Limdolen-BC-naK Limdolen-BC-naK Limdolen-BC-naK

AD′0 AD′1 AD′0 AD′1 AD0

addPadddingMarker
α αalpha x alpha x

alpha inv x

Limdolen-BC-naK

T ′

Limdolen-BC-nK

N

aK

Limdolen-BC-naK

0n

α

AD0

addPadddingMarker

Limdolen-BC-naK

alpha inv x

T

δ′c = 0n

Figure 10.3: Limdolen forgery for a single AD block
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Corollary 10.1. To construct forgery for arbitrary number of blocks, we only need to ensure

that the XOR sum δ′c (Figure 10.3) before the last call of block cipher is a constant.

Remark 10.2. Lemma 10.1 trivially holds for partial last block.

In what follows, we describe the basic minimal example of the forgery attack against

Limdolen-n. We assume that blocks are complete and the number of blocks is at least 1. From

now onwards, we refer Limdolen-BC-n with key K by EnK(·).

10.3.3 Associated data-only forgery

Let u ≥ 1 and i ≥ 1 be two positive integers. Fix K
$←− {0, 1}n. We construct forgery as

follows.

Step 1 Let N
$←− {0, 1}n, AD ← {0, 1}u×n, (AD0, · · · , ADu−1)

n←− AD and M = ε. Encrypt

(N,AD,M) and observe (C, T ).

Step 2 Let X,Y
$←− {0, 1}n and W = X‖Y ‖X‖Y .

Step 3 Forge with (N,AD′, C, T ) where

AD′ = AD0‖· · · ‖ADu−2‖W i‖ADu−1.

Note that AD′ 6= AD =⇒ the decryption query is valid. This will pass the verification

with probability 1 and returns empty plaintext as the output.

Correctness. To see why this forgery works, consider the values of δc and δ′c, which are

given by

δc =
i<u−1⊕

i mod 2=0

EnaK(ADi ⊕ α)
i<u−1⊕

i mod 2=1

EnaK(ADi ⊕ alpha x)

If u− 1 is even then

δ′c =
i<u−1⊕

i mod 2=0

EnaK(ADi ⊕ α)
i<u−1⊕

i mod 2=1

EnaK(ADi ⊕ alpha x)

2i
⊕

(EnaK(X ⊕ α)⊕ EnaK(Y ⊕ alpha x))

= δc ⊕ 0n =⇒ T ′ = T.

Similarly, if u is odd then δ′c = δc ⊕ 0n and T ′ = T . The only difference is that masks α and

alpha x are interchanged.
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Some observations on associated data-only forgery.

1. The converse also holds true, i.e., given AD = AD0‖· · · ‖ADu−2‖W i‖ADu−1, the modi-

fied associated data of the form AD0‖· · · ‖ADu−2‖W l‖ADu−1 will give the same tag for

all l satisfying 1 ≤ l < i.

2. The forgery is independent of whether the last block is a partial AD/M block or consists

of both AD and M bytes.

3. We can modify AD in a number of ways. For instance, the following modification also

results in a successful forgery.

AD′ =

X‖Y ‖AD0‖· · · ‖ADu−2‖X‖Y ‖ADu−1 if u is odd,

Y ‖X‖AD0‖· · · ‖ADu−2‖X‖Y ‖ADu−1 o.w.

10.3.4 Ciphertext-only forgery

Fix an integer u ≥ 4 and K
$←− {0, 1}n. Let Se = {0, 2, · · · , } and So = {1, 3, · · · , } be the

set of even and odd integers less than u − 1. Consider two permutations π and ψ which

permute the sets Se and So, respectively. Assume that π and ψ are not identity permutations

simultaneously. We now construct a forgery as follows.

Step 1 Let N
$←− {0, 1}n, AD = ε, M

n←− {0, 1}u×n and (M0, · · · ,Mu−1)
n←− M . Encrypt

(N,AD,M) and observe (C, T ).

Step 2 Let (C0, · · · , Cu−2, Cu−1) n←− C and compute Zi = Mi ⊕ Ci for i = 0, · · · , u− 2.

Step 3 Forge with (N,AD,C ′, T ) where

C ′ = Z0 ⊕Mπ(0)‖Z1 ⊕Mψ(0)‖Z2 ⊕Mπ(1)‖Z3 ⊕Mψ(1)‖· · · ‖Cl−1.

We have C ′ 6= C =⇒ the decryption query is valid. This will always pass the verification

and returns

Mπ(0)‖Mψ(0)‖Mπ(1)‖Mψ(1)‖· · · ‖Ml−1

as the output.

Correctness. To see the correctness of this forgery, consider the decryption of (N,AD,C ′, T ).

First note that the ciphertext computation is done via counter mode of operation (Figure

10.2). Since the counter T ⊕N is same for both encryption and decryption queries, then

M ′ = Mπ(0)‖Mψ(0)‖Mπ(1)‖Mψ(1)‖· · · ‖Ml−1 is obtained (not released yet). Next, to see if the

tags of M ′ and M are same it is enough to show that δ′c = δc. This follows trivially as the
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masking value is α and alpha x for each element in Se and So, respectively. So, permutating

these sets individually will not change the XOR sum value. Formally, we have

δ′c =
⊕

π(i),i∈Se

EnaK(Mπ(i) ⊕ α)
⊕

ψ(i),i∈So

EnaK(Mψ(i) ⊕ alpha x)

=
⊕
i∈Se

EnaK(Mi ⊕ α)
⊕
i∈So

EnaK(Mi ⊕ alpha x)

= δc =⇒ T ′ = T.

Remark 10.3. If π and ψ both are identity permutations then C ′ = C =⇒ the decryption

query is not valid. The number of valid forgeries then equals du2 edu−12 e − 1. Furthermore,

these are independent of the length of the last message block.

Remark 10.4. Associated data and ciphertext forgery is a direct application of associated

data-only and ciphertext-only forgeries.

10.3.5 Forgeries sssociated with last block

Until now, we have considered the cases where the last block is not modified. To forge the

last block, all the previous blocks before it must contain AD bytes. Assume there is only 1

block and it consists of u bytes of AD and v bytes of M such that u+ v ≤ n/8. The forgery

then proceeds as follows.

Step 1 Let N
$←− {0, 1}n. Encrypt (N,AD,M) and observe (C, T ).

Step 2 Compute the keystream bytes Z[i] = M [i]⊕ C[i] for i = 0, · · · , v − 1

Step 3 For 1 ≤ l ≤ v, forge with (N,AD′, C ′, T ) where AD′ = AD‖M [0]‖M [l − 1] and

C ′ =

ε if l = v,

Z[0]⊕M [l]‖· · · ‖Z[v − l − 1]⊕M [v − 1] o.w.

We have AD′ 6= AD and C ′ 6= C. Thus, the decryption query is valid and will pass the

verification with probability 1 as AD′‖M ′ = AD‖M . The output is M ′ = M [l]‖· · · ‖M [v−1].

Further note that this is a special case of associated data and ciphertext forgery.

Remark 10.5. The above forgery incorporates both cases of Remark 10.1 whether pad byte is

XORed to the last byte of block or it is appended after AD and M bytes in case of u+v < n/8.

10.3.6 Experimental verification

We have verified the attacks using the reference implementation of Limdolen. In Tables 10.2

and 10.3, we list the examples of forgeries for Limdolen-128 and Limdolen-256, respectively.
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Table 10.2: Examples of forgeries for Limdolen-128

Input data associated data-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 6B22729F7CEA8F9E1EDFB968365BF23B 6B22729F7CEA8F9E1EDFB968365BF23B

BE0A1CDB4142106B5F2BB5BC8911E75E A5687AF34938ED433536D8AB281FED78

AD 5D1808F6DDD8D60B23EE9E0E061A5B93

A5687AF34938ED433536D8AB281FED78

5D1808F6DDD8D60B23EE9E0E061A5B93

BE0A1CDB4142106B5F2BB5BC8911E75E

M Empty string Empty string

C Empty string Empty string

T EF4F60E08694CABB285D3841C433645D EF4F60E08694CABB285D3841C433645D

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 92C2A61831DCDE2EF3DB6060DF03DD0A 92C2A61831DCDE2EF3DB6060DF03DD0A

AD Empty string Empty string

ACCC9952DBB1CC0C8FA8106D463F483A 19B86CF46A3800F9E01066264FAF600E

M BF23441F82A4BC61D2BF42AF6E4C1F1A BF23441F82A4BC61D2BF42AF6E4C1F1A

19B86CF46A3800F9E01066264FAF600E ACCC9952DBB1CC0C8FA8106D463F483A

D2A42D5449E9B51BA9F8CB1744EA315D D2A42D5449E9B51BA9F8CB1744EA315D

07AC6C25FAF2BA41F3B808502BA15F66 B2D899834B7B76B49C007E1B22317752

C 13237F247E2777389835C8C5B88BC655 13237F247E2777389835C8C5B88BC655

E5EB9286DF5EE3FB8140B3588BC18C11 509F67206ED72F0EEEF8C5138251A425

FBF38906197E5B6E069E50E4D8FABF45 FBF38906197E5B6E069E50E4D8FABF45

T EDFDDE9B652A0FB16A7BFF22FD3B44D8 EDFDDE9B652A0FB16A7BFF22FD3B44D8

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 2B2CC56156A6ACF4D3B1CCE369F4C934 2B2CC56156A6ACF4D3B1CCE369F4C934

AD 0C558F14C1E88FED 0C558F14C1E88FED60D1B7E5BA6EDC

M 60D1B7E5BA6EDC62 62

CT 93C6C56CBBF3B39D 91

T C248D7D75062DE6163AFC13CADEBC55B C248D7D75062DE6163AFC13CADEBC55B

10.4 Specification of HERN

HERN adopts a stream cipher based construction similar to the CAESAR finalist Acorn [133].

The state consists of four 64-bit registers which are updated in an LFSR based style by feeding
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Table 10.3: Examples of forgeries for Limdolen-256

Input data associated data-only

K 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

N F1C79DD92DA67B984480270726EAB7568B4F1AA10C3BB0B525549E4239265B99 F1C79DD92DA67B984480270726EAB7568B4F1AA10C3BB0B525549E4239265B99

5DA7FC78E3F3692D526069F6DD622EA81E2929484787D3F4354C5CC42DF07CE6 9A0F11FDF7A50B9B8F7C4CF1EB76932DF7E3ED26188C255317E18DE9E9BF6EAB

E8B5B01D38A75A30F02DBE8517460F2E3C09E0E4CB2327B4CF63D2795F7DEC65

AD 9A0F11FDF7A50B9B8F7C4CF1EB76932DF7E3ED26188C255317E18DE9E9BF6EAB

E8B5B01D38A75A30F02DBE8517460F2E3C09E0E4CB2327B4CF63D2795F7DEC65

5DA7FC78E3F3692D526069F6DD622EA81E2929484787D3F4354C5CC42DF07CE6

M Empty string Empty string

C Empty string Empty string

T 301A471671BDF1CFAE68714DE61562000F8012DA449F8562E58B7635DC819CAC 301A471671BDF1CFAE68714DE61562000F8012DA449F8562E58B7635DC819CAC

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

N 8196CF5D26A4D3728EC8D8B2CA5CA01EF7394366A2A98A09EA6CE9FBF3CCAAB5 8196CF5D26A4D3728EC8D8B2CA5CA01EF7394366A2A98A09EA6CE9FBF3CCAAB5

AD Empty string Empty string

9EEE67E185CE4A27D8F49C630FA67BF978E7BB6106B714F90FE08CB9CA425A68 E769E176FDBEDE8537A91D56F0AEED1EFAE552FEF17F10DE38DC963401B660E8

M 30C149B58F94DC688879CB971F4691972E4CF834030C2D12EDB9CBB7FB25202C 30C149B58F94DC688879CB971F4691972E4CF834030C2D12EDB9CBB7FB25202C

E769E176FDBEDE8537A91D56F0AEED1EFAE552FEF17F10DE38DC963401B660E8 9EEE67E185CE4A27D8F49C630FA67BF978E7BB6106B714F90FE08CB9CA425A68

1F415F1DFF3DA236E7BF8CD76D79F5685E476650C6762EFE52C432547A923C9A 1F415F1DFF3DA236E7BF8CD76D79F5685E476650C6762EFE52C432547A923C9A

DF35A5881ADE06A920E381ADC2DE31A12E33E72C969EE55F35BF7DE2955FE1A1 A6B2231F62AE920BCFBE00983DD6A746AC310EB36156E1780283676F5EABDB21

C 4462C84E15647050EFDFC01B37FEBC0A0AC1EE3E02BED877CC233A9C2FE38900 4462C84E15647050EFDFC01B37FEBC0A0AC1EE3E02BED877CC233A9C2FE38900

2086D28CD3FF11D08F27CFE769BE4C914806A3DAE1676EFC7CC3135A508CA7E3 5901541BAB8F8572607A4ED296B6DA76CA044A4516AF6ADB4BFF09D79B789D63

9CEE6811416763C0AA2A012395D883F5C2C9FC12EDDBCB509381739F0A9738EA 9CEE6811416763C0AA2A012395D883F5C2C9FC12EDDBCB509381739F0A9738EA

T 3B4230CF23BB7D7E413E13451E8B899856A45A9C7ECB77FF32F257C7BD8780DA 3B4230CF23BB7D7E413E13451E8B899856A45A9C7ECB77FF32F257C7BD8780DA

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

N 7C5734DCCA90853A2959276055D75ABDD4A0AD9BA48B4A845BD99D935FFDA78F 7C5734DCCA90853A2959276055D75ABDD4A0AD9BA48B4A845BD99D935FFDA78F

AD CF84ACF34B794508DA221B691F332141 CF84ACF34B794508DA221B691F3321412F7C1F507F95FDA0E177B57A66C6C2

M 2F7C1F507F95FDA0E177B57A66C6C2F0 F0

C 8341876562C3BF87B49A155858082690 5C

T 5D8D4291C38C8FC922D7B697E873860593FD26971E590710D30A1F348A41E665 5D8D4291C38C8FC922D7B697E873860593FD26971E590710D30A1F348A41E665

the two nonlinearly generated bits a and b to the registers. A pictorial representation of the

HERN state update function is shown in Figure 10.4 and the individual core components are

illustrated in Algorithm 10.1.

s00s
0
1 · · · s063 s10s

1
1 · · · s163 s20s

2
1 · · · s263 s30s

3
1 · · · s363

31 13 1 26

0, 31, 32
︸ ︷︷ ︸

0, 28, 30
︸ ︷︷ ︸

0, 22, 27
︸ ︷︷ ︸

0, 8, 19
︸ ︷︷ ︸

a b a b

Figure 10.4: Schematic of HERN state update function
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Algorithm 10.1 Core components of HERN
1: function H core step:

2: a← SB(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)

3: b← SB’(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)⊕ s032

4: f0 ← s00 ⊕ s031 ⊕ s032 ⊕ s113
5: f1 ← s10 ⊕ s128 ⊕ s130 ⊕ s21
6: f2 ← s20 ⊕ s222 ⊕ s227 ⊕ s326
7: f3 ← s30 ⊕ s38 ⊕ s319 ⊕ s031
8: sij ← sij+1, for i = 0, 1, 2, 3 and j = 0, · · · , 62

9: si63 ← f i, for i = 0, 1, 2, 3

10: function SB(x0, y0, x1, y1, x2, y2, x3, y3):

11: return 1⊕ x0y0 ⊕ x1y1 ⊕ x2y2 ⊕ x3y3

12: function SB’(x0, y0, x1, y1, x2, y2, x3, y3):

13: return x0y2 ⊕ y0y3 ⊕ x1x3 ⊕ y1x2

1: function Adda:

2: s063 ← s063 ⊕ a
3: s263 ← s263 ⊕ a

4: function Addb:

5: s163 ← s163 ⊕ b
6: s363 ← s363 ⊕ b

7: function H if step(x):

8: H core step

9: a← a⊕ x
10: Adda

11: Addb

12: function H enc step(m):

13: H core step

14: a← a⊕m
15: Adda

16: c← b⊕m
17: return c

10.4.1 Description of HERN AEAD

The HERN AEAD algorithm takes as input a 128-bit key K, 128-bit nonce N , adlen bits

associated data AD, mlen bits plaintext M and outputs a mlen bits ciphertext C and 128-

bit authentication tag T . The encryption consists of 3 phases, namely 1) Initialization, 2)

Processing plaintext and 3) Finalization, which are described as follows.

Initialization. The initialization consists of loading the key K and constants into the state

and processing the nonce N , associated data AD and running H if step (Algorithm 10.1) for

512 steps with zero input.

• Load the state with K and constants. We refer the reader to [137] for more details as

this part is irrelevant for our attack.

• Process N = n0, n1, . . . , n127. At each step, one bit of N is used to update the state,

i.e., H if step(ni), for i = 0, · · · , 127.

• Process AD = ad0, ad1, . . . , adadlen−1. At each step, one bit of AD is used to update

the state, i.e., H if step(adi), for i = 0, · · · , adlen− 1.

• Run the H if step for 512 steps with zero-stream, i.e., H if step(0), for i = 0, · · · , 511.
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Processing plaintext. The plaintext M = m0,m1, · · · ,mmlen−1 is used to update the state

bit-by-bit and the corresponding ciphertext bit is generated using the function H enc step(·)
(Algorithm 10.1).

• C ← ε

• ci ← H enc step(mi), C ← C‖ci, for i = 0, · · · ,mlen− 1

Finalization. After processing all the plaintext bits, the H if step runs for 512 times with

zero input, and then the tag is generated.

• H if step(0), for i = 0, · · · , 511.

• T ← ε

• ti ← H enc step(0), T ← T‖ti, for i = 0, · · · ,mlen− 1

• return (C, T )

The decryption procedure is identical to encryption.

10.4.2 Security claims

The designers state that “HERN is designed to have confidentiality of the plaintexts under

adaptive chosen-plaintext attacks and the integrity of the ciphertexts under adaptive forgery

attacks.” Considering the nonce-respecting setting and a data limit of 264 bits (i.e., adlen+

mlen ≤ 264), they claim 128-bit security for confidentiality and integrity.

10.5 Forgery Attacks on HERN

In this section, we provide the details of forgery attacks on HERN. In particular, we show that

a message can be modified by appending or removing a sequence of consecutive ‘0’ bits of

length n. Moreover, we show that the best success rate of forgery is achieved for n = 1 case.

The adversarial model is similar to Section 10.3.1. In the following, we explain the minimal

example of our forgery attack against HERN. For the description of forgeries, we let Si, ai, bi

denote the state of HERN and two nonlinearly generated bits a and b at the beginning of the

i-th round.

10.5.1 Associated data-only forgery

Let 1 ≤ n ≤ 63 and K
$←− {0, 1}128 be fixed. To construct the forgery we proceed as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}? and M = ε. Encrypt (N,AD,M) and observe

(C, T ).
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Step 2 Repeat Step 1 until we obtain a tag whose first n bits are all zero. Define this query

as Q :
def
= (N,AD,M,C, T ).

Step 3 For each i = 0 to 2n − 1, decrypt (N ′, AD′, C ′, T ′) where

N ′ = N, AD′ = AD‖0n, C ′ = ε

T ′ = T � n | (i0‖· · · ‖in−1), and (i0, · · · , in−1) 1←− i.

If the verification succeeds with output as an empty plaintext, we stop.

S0

S128

S128+u

S640+u

S1152+u

S1152+u+n

a) Encryption for Q

Process N

Process AD

H if step(0) 512 times

H if step(0) 512 times

H if step(0) n times

(first n bits of T are zero)

S′0

S′128

S′128+u

S′128+u+n

S′640+u

S′640+u+n

S′1152+u

S′1152+u+n

a) Encryption for Q′

Process N

Process AD

H if step(0) n times
(last n bits of AD are zero)

H if step(0) 512 times

H if step(0) 512 times

Figure 10.5: Associated data-only forgery of HERN

The decryption queries are valid as AD′ 6= AD and T ′ 6= T . To see why such a query

work, consider the encryption of Q and Q′ def= (N,AD′, ε). This is illustrated in Lemma 10.2

(also shown in Figure 10.5).

Lemma 10.2. Let Q and Q′ be defined as above and |AD| = u. Then T ′ = T � n | ∆ where

∆ is an n-bit string.

Proof. After processing 128 bits of nonce and the first u bits of AD, the states are same, i.e.,

S128+u = S′128+u. For query Q, as M is empty, H if step(·) runs for 1024 times with zero input.

For Q′, since AD′ = AD‖0n and M ′ = ε, H if step(·) is iterated for n+ 1024 times with zero

bit. The tag generation phase for Q and Q′ starts from S1152+u and S′1152+u+n, respectively.

Note that the first n bits of T are zero and they are not added to the state. This is

equivalent to the fact that H if step(0) runs for another n times starting from round 1152 +u.
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Hence, S1152+u+n = S′1152+u+n =⇒ the last 128 − n bits of T are the same as the first

128−n bits of T ′. Since the states are unknown, the last n bits of T ′ has to be guessed. Thus,

T ′ = T � n | ∆.

Attack complexities. On average Step 2 requires 2n encryption queries while Step 3 needs

2n decryption queries. Thus, for 1 ≤ n ≤ 63, the success rate of forgery is 2−n. For n = 1

the success rate is 2−1 after querying the encryption oracle 2 times. This clearly violates the

designers claim that success rate of forgery is 2−127 after two encryption queries.

Some observations on associated data-only forgery.

1. The designers imposed a data limit of 264 bits before a re-keying is done. In order to

satisfy this constraint, we restrict the values of n in the range 1, · · · , 63. However, this

is just a theoretical reasoning and we do not need so many queries especially when we

can construct forgery for the n = 1 case.

2. The forgery still works if we change 512 to some other number. Hence, it is independent

of the number of rounds.

10.5.2 Ciphertext-only forgery

Let 1 ≤ n ≤ 31 and K
$←− {0, 1}128 be fixed. We construct forgery a as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}?, M ← {0, 1}≥1. Encrypt (N,AD,M‖0n) and

observe (C, T ).

Step 2 Repeat Step 1 until a ciphertext whose last n bits are zero is obtained. Denote this

query by (N,AD,M,C, T ).

Step 3 Decrypt (N ′, AD′, C ′, T ′) where

N ′ = N, AD′ = AD

C ′ = c0‖· · · ‖c|M |−n−1
T ′ = 0n|T � n.

Step 4 If verification fails, repeat Step 2 and Step 3.

We have C ′ 6= C as the lengths are different and T ′ 6= T . Thus, each query in step 3 is

a valid decryption query. Upon successful verification, only the first |M |−n bits of M are

returned. A formal proof of correctness of the decryption query is given in Lemma 10.3.

Lemma 10.3. Let Q :
def
= (N,AD,M) satisy Step 2 with output as (C, T ). Let AD′ =

AD, M ′ = m0‖· · · ‖m|M |−n−1 and Q′ :
def
= (N,AD′,M ′). Then T ′ = 0n | T � n iff the bits

b1152+|AD|+|M |−n, · · · , b1152+|AD|+|M |−1 are all zero.
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Proof. We have AD′ = AD and m′i = mi =⇒ c′i = ci, for 0 ≤ i ≤ |M |−n − 1. There-

fore, S1152+u+|M |−n = S′1152+u+|M |−n. However, the tag generation phase for Q starts from

S640+u+|M |, and for Q′ it starts from S′640+u+|M |−n. The corresponding tag bits are given by:

ti = b1152+|AD|+|M |+i

t′i = b′1152+|AD|+|M |−n+i.

Now, the last n bits of bothM and C being zero =⇒ S1152+|AD|+|M |−n = S′1152+|AD|+|M |−n.

So, given b1152+|AD|+|M |−n, · · · , b1152+|AD|+|M |−1 are all zero, then T ′ = 0n | T � n.

Attack complexities. Step 2 requires 2n encryption queries (on average), while to satisy

both Step 2 and Step 3 simultaneously, 22n encryption queries (on average) are needed. Thus,

for 1 ≤ n ≤ 31, the success rate of forgery is 2−n after observing the output of 22n encryption

queries. The value of n is chosen to satisfy the data limit restriction of 264 bits.

Remark 10.6. Similar to the associated data-only forgery, the best success rate is achieved

for the n = 1 case which is 2−1 after 4 encryption queries.

10.5.3 Associated data and ciphertext forgery

Let 1 ≤ n ≤ 63 and K
$←− {0, 1}128 be fixed. The forgery then proceeds as follows.

Step 1 Let N
$←− {0, 1}128, AD $←− {0, 1}?, M = 0n. Encrypt (N,AD,M) and observe (C, T ).

Step 2 Repeat step 1 until we obtain C = 0n. Denote this query by (N,AD,M,C, T ).

Step 3 Forge with (N ′, AD′, C ′, T ′) where

N ′ = N, AD′ = AD‖0n, C ′ = ε, and T ′ = T,

which will always be successful (with empty message as an output) as the states after 640 +

|AD|+n rounds are the same. The proof is similar to Lemma 10.2.

Attack complexities. Step 2 requires 2n encryption queries on average, while Step 3 requires

only a single decryption query. Thus, for 1 ≤ n ≤ 63, the success rate of forgery is 1.

10.5.4 Experimental verification

We have verified the attacks using the reference implementation of HERN [137]. In Table

10.4, we list the examples for n = 8.
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Table 10.4: Examples of forgeries for HERN

Input data associated data-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N D8A4ADC965EECE56330E5CC01A53C928 D8A4ADC965EECE56330E5CC01A53C928

AD CA5F CA5F00

M Empty string Empty string

CT Empty string Empty string

T 00FC40BF26954B37993E9C56C6C49ACA FC40BF26954B37993E9C56C6C49ACAB6

Input data ciphertext-only

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 3E1327BCC61246AC87901E0922C1A354 3E1327BCC61246AC87901E0922C1A354

AD 9524 9524

M 8500 85

CT 0D00 0D

T 8472B9D92F6AAC22CE3F188CC13D711C 008472B9D92F6AAC22CE3F188CC13D71

Input data associated data and ciphertext

K 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

N 7B8A185D3B33E4F906E02F291BEF6C06 7B8A185D3B33E4F906E02F291BEF6C06

AD 4328 432800

M 00 Empty string

CT 00 Empty string

T A72C78D89FAD7A7D785EF13AB2EC085B A72C78D89FAD7A7D785EF13AB2EC085B

10.6 Summary

In this chapter, we have demonstrated a series of practical forgery attacks on Limdolen and

HERN which defeat the designers’ claim of 128(256) and 128-bit integrity security of Lim-

dolen-128(256) and HERN, respectively. For both variants of Limdolen, we have shown the

constructions of forgeries which require a single encryption and a single decryption query, and

have a success probability of 1. For HERN we have presented round independent associated

data-only, ciphertext-only and associated data and ciphertext forgeries which have the success

rate of 1 after 2(2), 4(2) and 2(1) encryption(decryption) queries, respectively. Following our

attack, both submissions were eliminated from round 2 of the NIST LWC project.

Possible fixes. To resist our attacks on Limdolen, the period 2 masking sequence has to

be replaced by a sequence with unpredictable properties. A simple fix for HERN seems to

be to complement a state bit (except the last bit of each register) after 640 + |AD| and

640 + |AD|+|M | clock cycles. However, the security needs to be studied thoroughly.
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Chapter 11

Conclusions and Future Work

In this thesis, we have presented novel research contributions in the area of lightweight cryp-

tography, including both the design and cryptanalysis. We have proposed lightweight per-

mutations, and instantiated them in two different modes to provide several AEAD and hash

algorithms with varying security levels. We have also analyzed existing lightweight ciphers

with respect to cube attacks, correlated sequences and forgery attacks. In the following, we

give the concluding remarks and then discuss the potential future research directions.

11.1 Concluding Remarks

The contributions of the thesis consists of three parts. Part I is composed of Chapters 3-

5, which present new lightweight cryptographic permutations. Part II contains Chapters 6

and 7, which discuss how to design modes in the sponge framework and their instantiations

using these lightweight cryptographic permutations, and Part III includes Chapter 8-10, which

provide cryptanalysis results for lightweight ciphers.

In Chapter 3, we have first introduced the design of sLiSCP permutation, a lightweight

permutation which consists of hardware friendly bitwise XOR and AND operations. We

adopted a combination of large Simeck sboxes (with sizes 48 and 64 bits) and type-II gen-

eralized Feistel round (with 4 branches) to design its step function. We then analyzed the

cryptographic properties such as differential, linear and algebraic degree of Simeck sboxes,

and thus sLiSCP using SAT/SMT and MILP tools. Later we noticed that the 2 Simeck

sboxes which are placed in between the odd and even branches can in fact be positioned at

odd branches only. This saved the cost of two extra 48(64)-bit registers and lead to the design

of sLiSCP-light, which has lower area and higher throughput than sLiSCP. Our security

analysis later revealed that sLiSCP-light has better algebraic properties than sLiSCP, but it

is weaker in differential and linear properties, a trade-off one would expect while optimizing

design parameters.

159



The former two permutations cannot be used to achieve hash functionality with a 256-bit

message digest and 128-bit collision security. Motivated by this requirement, in Chapter 4,

we generalized the structures of sLiSCP and sLiSCP-light to five branches, and proposed

a 320-bit permutation ACE. Although ACE utilizes 3 Simeck sboxes each of size 64 bits,

we found that there exist linear layers which can offer better security properties than the

traditional left blockwise shuffle. Accordingly, we chose (3, 2, 0, 4, 1) as the linear layer of ACE

and then analyzed the security of the permutation with respect to distinguishing attacks.

In Chapter 5, we extended our design approach to cryptographic permutations which are

indistinguishable from random permutations, and at the same time can guarantee certain

theoretical randomness properties. As a result, we proposed WAGE, a permutation defined

over the extension field F27 , which can be transformed to the original WG stream cipher with

simple tweaks.

In Chapter 6, we discussed the need for uniform circuitry for achieving multiple crypto-

graphic functionalities using a cryptographic permutation in a sponge mode, and consequently,

introduced the idea of the unified round function. In terms of uniformity and the number

of domain separator bits (2 in our case), this is the minimum one can achieve. We have

presented AEAD and hash schemes with varying data limits and security levels. One of our

interesting proposal is Hash-[ACE] and AE-[ACE] for which key size = nonce size = tag size

= number of rounds = security level = 128, and rate = 64. Other AEAD instances with a

64-bit rate provide 128-bit security, but in hash mode the collision security is limited to 96

bits with the same rate. In Chapter 7, we presented Spoc which offers 112-bit security (data

limit 250 bytes) when instantiated with sLiSCP-light-192 and 64-bit rate. The same security

could not be achieved with the traditional sponge AEAD mode. However, the trade-off is that

one now needs an additional 64-bit XOR, 64-bit multiplexers and 4 domain separator bits. In

a nutshell, our proposed schemes in addition to the 4 NIST LWC round 2 candidates, namely

ACE, Spix, Spoc and WAGE have different performance and hence target a wide range of

applications.

In Chapter 8, we have used the division property based cube attacks to analyze the

nonlinear initialization phase of the lightweight stream cipher WG-5. In our analyis, we

modeled the divison property of each component of the cipher as a set of linear inequalites.

The reduced-round WG-5 is then translated to an optimization model whose solutions are the

secret key bits involved in the superpoly for a given cube. We used multiple cubes and then

presented a key recovery attack on 24 (out of 64) rounds with data and time complexity of

26.32 and 276.81, respectively. We further provided an argument to show that the WG-5 design

parameters in terms of feedback and tap positions are more resistant to cube attacks than

Grain-128a and Trivium. We expect that the analysis on WG-5 can provide more confidence

in the design (especially number of rounds) of WAGE.

In Chapter 9, we have proposed a novel property of block ciphers called correlated se-
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quences which could extend the number of rounds of classic meet-in-the-middle attacks. As

an application, we have shown the construction of length 8 correlated sequences of Simon-

32/64 and Simeck-32/64, and utilized them for MitM attacks on both ciphers which covered

27 (out of 32) rounds. The attack requires 3 known plaintext-ciphertext pairs and has a time

complexity close to that of 263 27-round encryptions. The successful probability of our attack

is 1. It is worth noting that the sLiSCP, sLiSCP-light and ACE permutations are based on

reduced-round Simeck. Here we emphasize that correlated sequences are not applicable to

them as the permutations are public.

Finally, in Chapter 10, we have presented simple, yet practical and devastating, forgeries

on two NIST LWC round 1 candidates Limdolen and HERN. For Limdolen, we observed that

its masking values have a period of 2. We exploited this observation and constructed forgeries

by adding, removing or permutating an arbitrary number of blocks. For HERN, we have found

that associated data and message processing phases are not distinguishable. Consequently,

we have shown the construction of forgeries by appending or removing a sequence of zero bits

in associated data or message. We further discussed that fixes are simple but require design

changes (especially for Limdolen).

11.2 Future Research Problems

Lightweight alternatives of Simeck sboxes. An sbox with a smaller area and similar

cryptographic properties as of the Simeck sbox can reduce the area of sLiSCP, sLiSCP-light

and ACE permutations. Thus, it is worth exploring different design options at the sbox level.

For instance,

- Use multiple 4-bit sboxes and combine them with a cheap linear layer, e.g., lightweight

MDS matrix or a variant of reduced-round PRESENT [42] or GIFT [21].

- Simeck-like round function with equal number of ANDs and XORs (as AND is cheaper

in hardware than XOR).

Optimal linear layers for GFS type-II structures. While designing ACE we found

that there exist linear layers which can offer better differential and linear properties than left

blockwise shuffle. A few interesting problems for designers in this direction are as follows.

1. Let n 6≡ 0 mod 2 and n ≥ 6 be the number of branches of GFS type-II structure and

r denote the number of rounds. Find a permutation π of (0, 1, . . . , n − 1) or a class

of permutations which gives the maximum of minimum number of active sboxes for

r = 2n, 3n and 4n.
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2. If there exists a class of permutations in (1), then how are the permutations in this class

related ? Is it possible to generalize this class for any n?

Note that there exist results in the literature which targeted optimal linear layers based on

diffusion [55, 46, 124]. However, the differential property is much stronger than diffusion and

we are not aware of any such results.

Further analysis of WAGE. The WAGE permutation requires further security analysis as

this is a completely new design. We could provide tighter bounds for the maximum differential

characteristic probability by finding the minimum number of active sboxes for at least 75

rounds.

Applications of correlated sequences. The current attacks on Simon-32/64 and Simeck-

32/64 cover 27 rounds by utilizing length 8 correlated sequences. Thus, it is natural to ask

how to improve it further. We believe that improvement in number of rounds and time

complexity can be achieved by finding correlated sequences of length at least 9. Furthermore,

such sequences may have similar applications to other variants of Simon and Simeck. In

addition, investigating the underlying ciphers’ structure to construct correlated sequences is

another interesting problem.

Masking schemes of NIST LWC round 2 candidates. Most of the NIST LWC round

2 candidates (especially the ones based on block ciphers) use varying masking schemes to

randomize the input of primitives. Thus, it would be interesting to look at their indistin-

guishable properties or period of secret masks, and whether forgery attacks are possible in

those schemes.
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Appendix A

Appendices: WAGE

A.1 Round Constants of WAGE

Round i Round constant (rci1, rc
i
0)

0 - 9 (3f, 7f) (0f, 1f) (03, 07) (40, 01) (10, 20) (04, 08) (41, 02) (30, 60) (0c, 18) (43, 06)
10 - 19 (50, 21) (14, 28) (45, 0a) (71, 62) (3c, 78) (4f, 1e) (13, 27) (44, 09) (51, 22) (34, 68)
20 - 29 (4d, 1a) (66, 73) (5c, 39) (57, 2e) (15, 2b) (65, 4a) (79, 72) (3e, 7c) (2f, 5f) (0b, 17)
30 - 39 (42, 05) (70, 61) (1c, 38) (47, 0e) (11, 23) (24, 48) (49, 12) (32, 64) (6c, 59) (5b, 36)
40 - 49 (56, 2d) (35, 6b) (6d, 5a) (7b, 76) (5e, 3d) (37, 6f) (0d, 1b) (63, 46) (58, 31) (16, 2c)
50 - 59 (25, 4b) (69, 52) (74, 3a) (6e, 5d) (3b, 77) (4e, 1d) (33, 67) (4c, 19) (53, 26) (54, 29)
60 - 69 (55, 2a) (75, 6a) (7d, 7a) (7f, 7e) (1f, 3f) (07, 0f) (01, 03) (20, 40) (08, 10) (02, 04)
70 - 79 (60, 41) (18, 30) (06, 0c) (21, 43) (28, 50) (0a, 14) (62, 45) (78, 71) (1e, 3c) (27, 4f)
80 - 89 (09, 13) (22, 44) (68, 51) (1a, 34) (66, 4d) (39, 73) (2e, 5c) (2b, 57) (4a, 15) (72, 65)
90 - 99 (7c, 79) (5f, 3e) (17, 2f) (05, 0b) (61, 42) (38, 70) (0e, 1c) (23, 47) (48, 11) (12, 24)
100 - 109 (64, 49) (59, 32) (36, 6c) (2d, 5b) (6b, 56) (5a, 35) (76, 6d) (3d, 7b) (6f, 5e) (1b, 37)
110 (46, 0d)

A.2 MILP Model for Computing Minimum Number of Active

Sboxes

1 from gurobipy import *
2 import time

3

4 class wg :

5 def __init__(self, rounds, ft, sut, mid, nw):

6 self.rounds = rounds # Number of rounds

7 self.ft = ft # Feedback taps including last sbox

8 self.sut = sut # Sbox and updated taps (without last

and middle wgp sbox)

9 self.nw = nw # Number of words in LFSR

10 self.mid = mid # Tap position of middle wgp sbox

11 self.file_model = "wg_" + str(self.rounds) + ".lp"

12 self.file_binary = "wg_Binary" + str(self.rounds) +".txt"
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13 fp = open(self.file_model,"w")

14 fp.close()

15 fp = open(self.file_binary,"w")

16 fp.close()

17

18 def create_variables(self, x, r, len):

19 variable = []

20 for i in range(len):

21 variable.append(x + "_" + str(r) + "_" + str(i))

22 return variable

23

24 def create_dvariables(self, x, r): # Dummy variable for XOR

25 variable = []

26 variable.append(x + "_" + str(r))

27 return variable

28

29 def xor_two_words(self, x_in0, x_in1, x_out, r, ind): # XOR of two words

30 D = self.create_dvariables(’d’+str(ind), r)

31

32 fp = open(self.file_binary, "a")

33 fp.write(D[0] + str("\n")) ; fp.close() ;

34

35 fp = open(self.file_model, "a")

36 fp.write(x_in0 + " + " + x_in1 + " + " + x_out + " - 2 " + D[0] + " >= 0 \n")

37 fp.write(D[0] + " - " + x_in0 + " >= 0\n")

38 fp.write(D[0] + " - " + x_in1 + " >= 0\n")

39 fp.write(D[0] + " - " + x_out + " >= 0\n")

40 fp.close()

41

42 def fb_xor(self, X, Y, r): # constraints for the feedback

43 D = self.create_dvariables(’d’+str(self.nw-1), r)

44 fp = open(self.file_binary, "a")

45 fp.write(D[0] + str("\n"))

46 fp.close()

47

48 fp = open(self.file_model, "a")

49 temp = []

50

51 for t in X:

52 temp.append(t)

53

54 temp.append(Y[0])

55 temp = " + ".join(temp)

56 temp = temp + " - 2 " + D[0] + " >= 0"

57 fp.write(temp + "\n")

58
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59 for t in X:

60 fp.write(D[0] + " - " + t + " >= 0\n")

61 fp.write(D[0] + " - " + Y[0] + " >= 0\n")

62 fp.close()

63

64 def shift_state(self, X, Y):

65 for i in range(self.nw - 1):

66 X[i] = X[i+1]

67 X[self.nw-1] = Y

68 return X

69

70 def state_update(self):

71 X = self.create_variables(’x’, 0, self.nw) # Initial state variables

72

73 fp = open(self.file_binary, "a")

74 for i in range(self.nw):

75 fp.write(X[i] + "\n")

76 fp.close()

77

78 for i in range(self.rounds):

79

80 Y = self.create_variables(’x’, i+1, self.nw)

81

82 fp = open(self.file_binary,’a’)

83 fp.write(Y[-1] + "\n")

84 for t in self.sut:

85 fp.write(Y[t[1]] + "\n")

86 fp.write(Y[self.mid+1] + "\n")

87 fp.close()

88

89 self.fb_xor([X[t] for t in self.ft], [Y[-1]], i)

90

91 for t in self.sut:

92 self.xor_two_words(X[t[0]], X[t[1]], Y[t[1]], i, t[1])

93

94 self.xor_two_words(X[self.mid], X[self.mid + 1], Y[self.mid+1], i, self.mid

+1)

95

96 for t in self.sut:

97 X[t[1]] = Y[t[1]]

98 X[self.mid + 1] = Y[self.mid + 1]

99 X = self.shift_state(X, Y[-1])

100

101 def init(self):

102

103 fp = open(self.file_model, "a")
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104 fp.write("Minimize\n")

105

106 temp = []

107 X = self.create_variables(’x’, 0, self.nw)

108

109 for t in self.sut:

110 temp.append(X[t[0]])

111 temp.append(X[self.mid])

112 temp.append(X[self.nw-1])

113

114 for i in range(self.rounds-1):

115 Y = self.create_variables(’x’, i+1, self.nw)

116

117 for t in self.sut:

118 X[t[1]] = Y[t[1]]

119 X[self.mid + 1] = Y[self.mid + 1]

120 X = self.shift_state(X, Y[-1])

121 for t in self.sut:

122 temp.append(X[t[0]])

123 temp.append(X[self.mid])

124 temp.append(X[self.nw-1])

125

126 temp = " + ".join(temp)

127 fp.write(temp+ "\n")

128 fp.write("Subject To\n")

129

130 temp = []

131 for i in range(self.nw):

132 temp.append(’x_0_’+str(i))

133 temp = " + ".join(temp)

134 temp = temp + " >= 1 \n"

135 fp.write(temp)

136

137 fp.close()

138

139 def make_model(self):

140 self.init()

141 self.state_update()

142 fileobj = open(self.file_model, "a")

143 fileobj1 = open(self.file_binary, "r")

144 fileobj.write("Binary\n")

145 for line in fileobj1:

146 fileobj.write(line)

147 fileobj.write("END\n")

148 fileobj.close()

149 fileobj1.close()

181



150

151 def solve_model(self):

152 m = read(self.file_model)

153 m.optimize()

154 if(m.Status ==2):

155 obj = m.getObjective()

156 return (obj.getValue())
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Appendix B

Appendices: Correlated Sequences

B.1 Data Structure

Consider a toy Simon-8/16 cipher as given in Example 9.1. Let k = (1, 2, 3, 4) and se0 = 15,

se1 = 14, then sd0 = 5 and sd1 = 11. In Table B.1, we provide the data structure DSd that is

used for 6 decryption rounds.
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Table B.1: Data structure for toy Simon

i DSd[i]

0 [9, 15, [9, 14, 7, 2, 4, 3, 14, 11, 2, 4, 12, 8, 7, 1, 13, 9]]
1 [8, 10, [2, 5, 10, 15, 15, 8, 3, 6, 0, 6, 8, 12, 5, 3, 9, 13]]
2 [11, 5, [14, 10, 0, 6, 15, 11, 5, 3, 5, 0, 11, 12, 12, 9, 6, 1]]
3 [10, 2, [2, 4, 10, 14, 7, 1, 11, 15, 0, 7, 8, 13, 13, 10, 1, 4]]
4 [13, 6, [0, 6, 12, 8, 5, 3, 13, 9, 10, 13, 6, 3, 7, 0, 15, 10]]
5 [12, 3, [2, 4, 8, 12, 7, 1, 9, 13, 1, 6, 11, 14, 12, 11, 2, 7]]
6 [15, 8, [13, 8, 5, 2, 4, 1, 8, 15, 15, 11, 7, 1, 14, 10, 2, 4]]
7 [14, 15, [14, 9, 0, 5, 3, 4, 9, 12, 5, 3, 11, 15, 0, 6, 10, 14]]
8 [1, 12, [10, 15, 6, 1, 3, 6, 11, 12, 0, 4, 12, 10, 1, 5, 9, 15]]
9 [0, 8, [2, 7, 10, 13, 11, 14, 7, 0, 0, 4, 8, 14, 1, 5, 13, 11]]
10 [3, 6, [14, 8, 2, 6, 11, 13, 3, 7, 4, 3, 8, 13, 9, 14, 1, 4]]
11 [2, 0, [2, 6, 10, 12, 3, 7, 15, 9, 0, 5, 8, 15, 9, 12, 5, 2]]
12 [5, 13, [11, 14, 5, 2, 2, 7, 8, 15, 0, 4, 14, 8, 1, 5, 11, 13]]
13 [4, 9, [3, 6, 9, 14, 10, 15, 4, 3, 0, 4, 10, 12, 1, 5, 15, 9]]
14 [7, 3, [9, 15, 3, 7, 12, 10, 2, 6, 10, 13, 0, 5, 7, 0, 9, 12]]
15 [6, 5, [3, 7, 13, 11, 2, 6, 8, 14, 8, 13, 6, 1, 1, 4, 11, 12]]
16 [12, 2, [4, 2, 12, 8, 1, 7, 13, 9, 6, 1, 14, 11, 11, 12, 7, 2]]
17 [13, 7, [6, 0, 8, 12, 3, 5, 9, 13, 13, 10, 3, 6, 0, 7, 10, 15]]
18 [14, 14, [9, 14, 5, 0, 4, 3, 12, 9, 3, 5, 15, 11, 6, 0, 14, 10]]
19 [15, 9, [8, 13, 2, 5, 1, 4, 15, 8, 11, 15, 1, 7, 10, 14, 4, 2]]
20 [8, 11, [5, 2, 15, 10, 8, 15, 6, 3, 6, 0, 12, 8, 3, 5, 13, 9]]
21 [9, 14, [14, 9, 2, 7, 3, 4, 11, 14, 4, 2, 8, 12, 1, 7, 9, 13]]
22 [10, 3, [4, 2, 14, 10, 1, 7, 15, 11, 7, 0, 13, 8, 10, 13, 4, 1]]
23 [11, 4, [10, 14, 6, 0, 11, 15, 3, 5, 0, 5, 12, 11, 9, 12, 1, 6]]
24 [4, 8, [6, 3, 14, 9, 15, 10, 3, 4, 4, 0, 12, 10, 5, 1, 9, 15]]
25 [5, 12, [14, 11, 2, 5, 7, 2, 15, 8, 4, 0, 8, 14, 5, 1, 13, 11]]
26 [6, 4, [7, 3, 11, 13, 6, 2, 14, 8, 13, 8, 1, 6, 4, 1, 12, 11]]
27 [7, 2, [15, 9, 7, 3, 10, 12, 6, 2, 13, 10, 5, 0, 0, 7, 12, 9]]
28 [0, 9, [7, 2, 13, 10, 14, 11, 0, 7, 4, 0, 14, 8, 5, 1, 11, 13]]
29 [1, 13, [15, 10, 1, 6, 6, 3, 12, 11, 4, 0, 10, 12, 5, 1, 15, 9]]
30 [2, 1, [6, 2, 12, 10, 7, 3, 9, 15, 5, 0, 15, 8, 12, 9, 2, 5]]
31 [3, 7, [8, 14, 6, 2, 13, 11, 7, 3, 3, 4, 13, 8, 14, 9, 4, 1]]
32 [1, 14, [6, 1, 10, 15, 11, 12, 3, 6, 12, 10, 0, 4, 9, 15, 1, 5]]
33 [0, 10, [10, 13, 2, 7, 7, 0, 11, 14, 8, 14, 0, 4, 13, 11, 1, 5]]
34 [3, 4, [2, 6, 14, 8, 3, 7, 11, 13, 8, 13, 4, 3, 1, 4, 9, 14]]
35 [2, 2, [10, 12, 2, 6, 15, 9, 3, 7, 8, 15, 0, 5, 5, 2, 9, 12]]
36 [5, 15, [5, 2, 11, 14, 8, 15, 2, 7, 14, 8, 0, 4, 11, 13, 1, 5]]
37 [4, 11, [9, 14, 3, 6, 4, 3, 10, 15, 10, 12, 0, 4, 15, 9, 1, 5]]
38 [7, 1, [3, 7, 9, 15, 2, 6, 12, 10, 0, 5, 10, 13, 9, 12, 7, 0]]
39 [6, 7, [13, 11, 3, 7, 8, 14, 2, 6, 6, 1, 8, 13, 11, 12, 1, 4]]
40 [9, 13, [7, 2, 9, 14, 14, 11, 4, 3, 12, 8, 2, 4, 13, 9, 7, 1]]
41 [8, 8, [10, 15, 2, 5, 3, 6, 15, 8, 8, 12, 0, 6, 9, 13, 5, 3]]
42 [11, 7, [0, 6, 14, 10, 5, 3, 15, 11, 11, 12, 5, 0, 6, 1, 12, 9]]
43 [10, 0, [10, 14, 2, 4, 11, 15, 7, 1, 8, 13, 0, 7, 1, 4, 13, 10]]
44 [13, 4, [12, 8, 0, 6, 13, 9, 5, 3, 6, 3, 10, 13, 15, 10, 7, 0]]
45 [12, 1, [8, 12, 2, 4, 9, 13, 7, 1, 11, 14, 1, 6, 2, 7, 12, 11]]
46 [15, 10, [5, 2, 13, 8, 8, 15, 4, 1, 7, 1, 15, 11, 2, 4, 14, 10]]
47 [14, 13, [0, 5, 14, 9, 9, 12, 3, 4, 11, 15, 5, 3, 10, 14, 0, 6]]
48 [6, 6, [11, 13, 7, 3, 14, 8, 6, 2, 1, 6, 13, 8, 12, 11, 4, 1]]
49 [7, 0, [7, 3, 15, 9, 6, 2, 10, 12, 5, 0, 13, 10, 12, 9, 0, 7]]
50 [4, 10, [14, 9, 6, 3, 3, 4, 15, 10, 12, 10, 4, 0, 9, 15, 5, 1]]
51 [5, 14, [2, 5, 14, 11, 15, 8, 7, 2, 8, 14, 4, 0, 13, 11, 5, 1]]
52 [2, 3, [12, 10, 6, 2, 9, 15, 7, 3, 15, 8, 5, 0, 2, 5, 12, 9]]
53 [3, 5, [6, 2, 8, 14, 7, 3, 13, 11, 13, 8, 3, 4, 4, 1, 14, 9]]
54 [0, 11, [13, 10, 7, 2, 0, 7, 14, 11, 14, 8, 4, 0, 11, 13, 5, 1]]
55 [1, 15, [1, 6, 15, 10, 12, 11, 6, 3, 10, 12, 4, 0, 15, 9, 5, 1]]
56 [14, 12, [5, 0, 9, 14, 12, 9, 4, 3, 15, 11, 3, 5, 14, 10, 6, 0]]
57 [15, 11, [2, 5, 8, 13, 15, 8, 1, 4, 1, 7, 11, 15, 4, 2, 10, 14]]
58 [12, 0, [12, 8, 4, 2, 13, 9, 1, 7, 14, 11, 6, 1, 7, 2, 11, 12]]
59 [13, 5, [8, 12, 6, 0, 9, 13, 3, 5, 3, 6, 13, 10, 10, 15, 0, 7]]
60 [10, 1, [14, 10, 4, 2, 15, 11, 1, 7, 13, 8, 7, 0, 4, 1, 10, 13]]
61 [11, 6, [6, 0, 10, 14, 3, 5, 11, 15, 12, 11, 0, 5, 1, 6, 9, 12]]
62 [8, 9, [15, 10, 5, 2, 6, 3, 8, 15, 12, 8, 6, 0, 13, 9, 3, 5]]
63 [9, 12, [2, 7, 14, 9, 11, 14, 3, 4, 8, 12, 4, 2, 9, 13, 1, 7]]
64 [0, 12, [11, 14, 7, 0, 2, 7, 10, 13, 1, 5, 13, 11, 0, 4, 8, 14]]

i DSd[i]

65 [1, 8, [3, 6, 11, 12, 10, 15, 6, 1, 1, 5, 9, 15, 0, 4, 12, 10]]
66 [2, 4, [3, 7, 15, 9, 2, 6, 10, 12, 9, 12, 5, 2, 0, 5, 8, 15]]
67 [3, 2, [11, 13, 3, 7, 14, 8, 2, 6, 9, 14, 1, 4, 4, 3, 8, 13]]
68 [4, 13, [10, 15, 4, 3, 3, 6, 9, 14, 1, 5, 15, 9, 0, 4, 10, 12]]
69 [5, 9, [2, 7, 8, 15, 11, 14, 5, 2, 1, 5, 11, 13, 0, 4, 14, 8]]
70 [6, 1, [2, 6, 8, 14, 3, 7, 13, 11, 1, 4, 11, 12, 8, 13, 6, 1]]
71 [7, 7, [12, 10, 2, 6, 9, 15, 3, 7, 7, 0, 9, 12, 10, 13, 0, 5]]
72 [8, 14, [15, 8, 3, 6, 2, 5, 10, 15, 5, 3, 9, 13, 0, 6, 8, 12]]
73 [9, 11, [4, 3, 14, 11, 9, 14, 7, 2, 7, 1, 13, 9, 2, 4, 12, 8]]
74 [10, 6, [7, 1, 11, 15, 2, 4, 10, 14, 13, 10, 1, 4, 0, 7, 8, 13]]
75 [11, 1, [15, 11, 5, 3, 14, 10, 0, 6, 12, 9, 6, 1, 5, 0, 11, 12]]
76 [12, 7, [7, 1, 9, 13, 2, 4, 8, 12, 12, 11, 2, 7, 1, 6, 11, 14]]
77 [13, 2, [5, 3, 13, 9, 0, 6, 12, 8, 7, 0, 15, 10, 10, 13, 6, 3]]
78 [14, 11, [3, 4, 9, 12, 14, 9, 0, 5, 0, 6, 10, 14, 5, 3, 11, 15]]
79 [15, 12, [4, 1, 8, 15, 13, 8, 5, 2, 14, 10, 2, 4, 15, 11, 7, 1]]
80 [5, 8, [7, 2, 15, 8, 14, 11, 2, 5, 5, 1, 13, 11, 4, 0, 8, 14]]
81 [4, 12, [15, 10, 3, 4, 6, 3, 14, 9, 5, 1, 9, 15, 4, 0, 12, 10]]
82 [7, 6, [10, 12, 6, 2, 15, 9, 7, 3, 0, 7, 12, 9, 13, 10, 5, 0]]
83 [6, 0, [6, 2, 14, 8, 7, 3, 11, 13, 4, 1, 12, 11, 13, 8, 1, 6]]
84 [1, 9, [6, 3, 12, 11, 15, 10, 1, 6, 5, 1, 15, 9, 4, 0, 10, 12]]
85 [0, 13, [14, 11, 0, 7, 7, 2, 13, 10, 5, 1, 11, 13, 4, 0, 14, 8]]
86 [3, 3, [13, 11, 7, 3, 8, 14, 6, 2, 14, 9, 4, 1, 3, 4, 13, 8]]
87 [2, 5, [7, 3, 9, 15, 6, 2, 12, 10, 12, 9, 2, 5, 5, 0, 15, 8]]
88 [13, 3, [3, 5, 9, 13, 6, 0, 8, 12, 0, 7, 10, 15, 13, 10, 3, 6]]
89 [12, 6, [1, 7, 13, 9, 4, 2, 12, 8, 11, 12, 7, 2, 6, 1, 14, 11]]
90 [15, 13, [1, 4, 15, 8, 8, 13, 2, 5, 10, 14, 4, 2, 11, 15, 1, 7]]
91 [14, 10, [4, 3, 12, 9, 9, 14, 5, 0, 6, 0, 14, 10, 3, 5, 15, 11]]
92 [9, 10, [3, 4, 11, 14, 14, 9, 2, 7, 1, 7, 9, 13, 4, 2, 8, 12]]
93 [8, 15, [8, 15, 6, 3, 5, 2, 15, 10, 3, 5, 13, 9, 6, 0, 12, 8]]
94 [11, 0, [11, 15, 3, 5, 10, 14, 6, 0, 9, 12, 1, 6, 0, 5, 12, 11]]
95 [10, 7, [1, 7, 15, 11, 4, 2, 14, 10, 10, 13, 4, 1, 7, 0, 13, 8]]
96 [12, 5, [9, 13, 7, 1, 8, 12, 2, 4, 2, 7, 12, 11, 11, 14, 1, 6]]
97 [13, 0, [13, 9, 5, 3, 12, 8, 0, 6, 15, 10, 7, 0, 6, 3, 10, 13]]
98 [14, 9, [9, 12, 3, 4, 0, 5, 14, 9, 10, 14, 0, 6, 11, 15, 5, 3]]
99 [15, 14, [8, 15, 4, 1, 5, 2, 13, 8, 2, 4, 14, 10, 7, 1, 15, 11]]
100 [8, 12, [3, 6, 15, 8, 10, 15, 2, 5, 9, 13, 5, 3, 8, 12, 0, 6]]
101 [9, 9, [14, 11, 4, 3, 7, 2, 9, 14, 13, 9, 7, 1, 12, 8, 2, 4]]
102 [10, 4, [11, 15, 7, 1, 10, 14, 2, 4, 1, 4, 13, 10, 8, 13, 0, 7]]
103 [11, 3, [5, 3, 15, 11, 0, 6, 14, 10, 6, 1, 12, 9, 11, 12, 5, 0]]
104 [4, 15, [4, 3, 10, 15, 9, 14, 3, 6, 15, 9, 1, 5, 10, 12, 0, 4]]
105 [5, 11, [8, 15, 2, 7, 5, 2, 11, 14, 11, 13, 1, 5, 14, 8, 0, 4]]
106 [6, 3, [8, 14, 2, 6, 13, 11, 3, 7, 11, 12, 1, 4, 6, 1, 8, 13]]
107 [7, 5, [2, 6, 12, 10, 3, 7, 9, 15, 9, 12, 7, 0, 0, 5, 10, 13]]
108 [0, 14, [7, 0, 11, 14, 10, 13, 2, 7, 13, 11, 1, 5, 8, 14, 0, 4]]
109 [1, 10, [11, 12, 3, 6, 6, 1, 10, 15, 9, 15, 1, 5, 12, 10, 0, 4]]
110 [2, 6, [15, 9, 3, 7, 10, 12, 2, 6, 5, 2, 9, 12, 8, 15, 0, 5]]
111 [3, 0, [3, 7, 11, 13, 2, 6, 14, 8, 1, 4, 9, 14, 8, 13, 4, 3]]
112 [11, 2, [3, 5, 11, 15, 6, 0, 10, 14, 1, 6, 9, 12, 12, 11, 0, 5]]
113 [10, 5, [15, 11, 1, 7, 14, 10, 4, 2, 4, 1, 10, 13, 13, 8, 7, 0]]
114 [9, 8, [11, 14, 3, 4, 2, 7, 14, 9, 9, 13, 1, 7, 8, 12, 4, 2]]
115 [8, 13, [6, 3, 8, 15, 15, 10, 5, 2, 13, 9, 3, 5, 12, 8, 6, 0]]
116 [15, 15, [15, 8, 1, 4, 2, 5, 8, 13, 4, 2, 10, 14, 1, 7, 11, 15]]
117 [14, 8, [12, 9, 4, 3, 5, 0, 9, 14, 14, 10, 6, 0, 15, 11, 3, 5]]
118 [13, 1, [9, 13, 3, 5, 8, 12, 6, 0, 10, 15, 0, 7, 3, 6, 13, 10]]
119 [12, 4, [13, 9, 1, 7, 12, 8, 4, 2, 7, 2, 11, 12, 14, 11, 6, 1]]
120 [3, 1, [7, 3, 13, 11, 6, 2, 8, 14, 4, 1, 14, 9, 13, 8, 3, 4]]
121 [2, 7, [9, 15, 7, 3, 12, 10, 6, 2, 2, 5, 12, 9, 15, 8, 5, 0]]
122 [1, 11, [12, 11, 6, 3, 1, 6, 15, 10, 15, 9, 5, 1, 10, 12, 4, 0]]
123 [0, 15, [0, 7, 14, 11, 13, 10, 7, 2, 11, 13, 5, 1, 14, 8, 4, 0]]
124 [7, 4, [6, 2, 10, 12, 7, 3, 15, 9, 12, 9, 0, 7, 5, 0, 13, 10]]
125 [6, 2, [14, 8, 6, 2, 11, 13, 7, 3, 12, 11, 4, 1, 1, 6, 13, 8]]
126 [5, 10, [15, 8, 7, 2, 2, 5, 14, 11, 13, 11, 5, 1, 8, 14, 4, 0]]
127 [4, 14, [3, 4, 15, 10, 14, 9, 6, 3, 9, 15, 5, 1, 12, 10, 4, 0]]
128 [11, 13, [5, 0, 11, 12, 12, 9, 6, 1, 14, 10, 0, 6, 15, 11, 5, 3]]
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129 [10, 10, [0, 7, 8, 13, 13, 10, 1, 4, 2, 4, 10, 14, 7, 1, 11, 15]]
130 [9, 7, [2, 4, 12, 8, 7, 1, 13, 9, 9, 14, 7, 2, 4, 3, 14, 11]]
131 [8, 2, [0, 6, 8, 12, 5, 3, 9, 13, 2, 5, 10, 15, 15, 8, 3, 6]]
132 [15, 0, [15, 11, 7, 1, 14, 10, 2, 4, 13, 8, 5, 2, 4, 1, 8, 15]]
133 [14, 7, [5, 3, 11, 15, 0, 6, 10, 14, 14, 9, 0, 5, 3, 4, 9, 12]]
134 [13, 14, [10, 13, 6, 3, 7, 0, 15, 10, 0, 6, 12, 8, 5, 3, 13, 9]]
135 [12, 11, [1, 6, 11, 14, 12, 11, 2, 7, 2, 4, 8, 12, 7, 1, 9, 13]]
136 [3, 14, [4, 3, 8, 13, 9, 14, 1, 4, 14, 8, 2, 6, 11, 13, 3, 7]]
137 [2, 8, [0, 5, 8, 15, 9, 12, 5, 2, 2, 6, 10, 12, 3, 7, 15, 9]]
138 [1, 4, [0, 4, 12, 10, 1, 5, 9, 15, 10, 15, 6, 1, 3, 6, 11, 12]]
139 [0, 0, [0, 4, 8, 14, 1, 5, 13, 11, 2, 7, 10, 13, 11, 14, 7, 0]]
140 [7, 11, [10, 13, 0, 5, 7, 0, 9, 12, 9, 15, 3, 7, 12, 10, 2, 6]]
141 [6, 13, [8, 13, 6, 1, 1, 4, 11, 12, 3, 7, 13, 11, 2, 6, 8, 14]]
142 [5, 5, [0, 4, 14, 8, 1, 5, 11, 13, 11, 14, 5, 2, 2, 7, 8, 15]]
143 [4, 1, [0, 4, 10, 12, 1, 5, 15, 9, 3, 6, 9, 14, 10, 15, 4, 3]]
144 [15, 1, [11, 15, 1, 7, 10, 14, 4, 2, 8, 13, 2, 5, 1, 4, 15, 8]]
145 [14, 6, [3, 5, 15, 11, 6, 0, 14, 10, 9, 14, 5, 0, 4, 3, 12, 9]]
146 [13, 15, [13, 10, 3, 6, 0, 7, 10, 15, 6, 0, 8, 12, 3, 5, 9, 13]]
147 [12, 10, [6, 1, 14, 11, 11, 12, 7, 2, 4, 2, 12, 8, 1, 7, 13, 9]]
148 [11, 12, [0, 5, 12, 11, 9, 12, 1, 6, 10, 14, 6, 0, 11, 15, 3, 5]]
149 [10, 11, [7, 0, 13, 8, 10, 13, 4, 1, 4, 2, 14, 10, 1, 7, 15, 11]]
150 [9, 6, [4, 2, 8, 12, 1, 7, 9, 13, 14, 9, 2, 7, 3, 4, 11, 14]]
151 [8, 3, [6, 0, 12, 8, 3, 5, 13, 9, 5, 2, 15, 10, 8, 15, 6, 3]]
152 [7, 10, [13, 10, 5, 0, 0, 7, 12, 9, 15, 9, 7, 3, 10, 12, 6, 2]]
153 [6, 12, [13, 8, 1, 6, 4, 1, 12, 11, 7, 3, 11, 13, 6, 2, 14, 8]]
154 [5, 4, [4, 0, 8, 14, 5, 1, 13, 11, 14, 11, 2, 5, 7, 2, 15, 8]]
155 [4, 0, [4, 0, 12, 10, 5, 1, 9, 15, 6, 3, 14, 9, 15, 10, 3, 4]]
156 [3, 15, [3, 4, 13, 8, 14, 9, 4, 1, 8, 14, 6, 2, 13, 11, 7, 3]]
157 [2, 9, [5, 0, 15, 8, 12, 9, 2, 5, 6, 2, 12, 10, 7, 3, 9, 15]]
158 [1, 5, [4, 0, 10, 12, 5, 1, 15, 9, 15, 10, 1, 6, 6, 3, 12, 11]]
159 [0, 1, [4, 0, 14, 8, 5, 1, 11, 13, 7, 2, 13, 10, 14, 11, 0, 7]]
160 [3, 12, [8, 13, 4, 3, 1, 4, 9, 14, 2, 6, 14, 8, 3, 7, 11, 13]]
161 [2, 10, [8, 15, 0, 5, 5, 2, 9, 12, 10, 12, 2, 6, 15, 9, 3, 7]]
162 [1, 6, [12, 10, 0, 4, 9, 15, 1, 5, 6, 1, 10, 15, 11, 12, 3, 6]]
163 [0, 2, [8, 14, 0, 4, 13, 11, 1, 5, 10, 13, 2, 7, 7, 0, 11, 14]]
164 [7, 9, [0, 5, 10, 13, 9, 12, 7, 0, 3, 7, 9, 15, 2, 6, 12, 10]]
165 [6, 15, [6, 1, 8, 13, 11, 12, 1, 4, 13, 11, 3, 7, 8, 14, 2, 6]]
166 [5, 7, [14, 8, 0, 4, 11, 13, 1, 5, 5, 2, 11, 14, 8, 15, 2, 7]]
167 [4, 3, [10, 12, 0, 4, 15, 9, 1, 5, 9, 14, 3, 6, 4, 3, 10, 15]]
168 [11, 15, [11, 12, 5, 0, 6, 1, 12, 9, 0, 6, 14, 10, 5, 3, 15, 11]]
169 [10, 8, [8, 13, 0, 7, 1, 4, 13, 10, 10, 14, 2, 4, 11, 15, 7, 1]]
170 [9, 5, [12, 8, 2, 4, 13, 9, 7, 1, 7, 2, 9, 14, 14, 11, 4, 3]]
171 [8, 0, [8, 12, 0, 6, 9, 13, 5, 3, 10, 15, 2, 5, 3, 6, 15, 8]]
172 [15, 2, [7, 1, 15, 11, 2, 4, 14, 10, 5, 2, 13, 8, 8, 15, 4, 1]]
173 [14, 5, [11, 15, 5, 3, 10, 14, 0, 6, 0, 5, 14, 9, 9, 12, 3, 4]]
174 [13, 12, [6, 3, 10, 13, 15, 10, 7, 0, 12, 8, 0, 6, 13, 9, 5, 3]]
175 [12, 9, [11, 14, 1, 6, 2, 7, 12, 11, 8, 12, 2, 4, 9, 13, 7, 1]]
176 [5, 6, [8, 14, 4, 0, 13, 11, 5, 1, 2, 5, 14, 11, 15, 8, 7, 2]]
177 [4, 2, [12, 10, 4, 0, 9, 15, 5, 1, 14, 9, 6, 3, 3, 4, 15, 10]]
178 [7, 8, [5, 0, 13, 10, 12, 9, 0, 7, 7, 3, 15, 9, 6, 2, 10, 12]]
179 [6, 14, [1, 6, 13, 8, 12, 11, 4, 1, 11, 13, 7, 3, 14, 8, 6, 2]]
180 [1, 7, [10, 12, 4, 0, 15, 9, 5, 1, 1, 6, 15, 10, 12, 11, 6, 3]]
181 [0, 3, [14, 8, 4, 0, 11, 13, 5, 1, 13, 10, 7, 2, 0, 7, 14, 11]]
182 [3, 13, [13, 8, 3, 4, 4, 1, 14, 9, 6, 2, 8, 14, 7, 3, 13, 11]]
183 [2, 11, [15, 8, 5, 0, 2, 5, 12, 9, 12, 10, 6, 2, 9, 15, 7, 3]]
184 [13, 13, [3, 6, 13, 10, 10, 15, 0, 7, 8, 12, 6, 0, 9, 13, 3, 5]]
185 [12, 8, [14, 11, 6, 1, 7, 2, 11, 12, 12, 8, 4, 2, 13, 9, 1, 7]]
186 [15, 3, [1, 7, 11, 15, 4, 2, 10, 14, 2, 5, 8, 13, 15, 8, 1, 4]]
187 [14, 4, [15, 11, 3, 5, 14, 10, 6, 0, 5, 0, 9, 14, 12, 9, 4, 3]]
188 [9, 4, [8, 12, 4, 2, 9, 13, 1, 7, 2, 7, 14, 9, 11, 14, 3, 4]]
189 [8, 1, [12, 8, 6, 0, 13, 9, 3, 5, 15, 10, 5, 2, 6, 3, 8, 15]]
190 [11, 14, [12, 11, 0, 5, 1, 6, 9, 12, 6, 0, 10, 14, 3, 5, 11, 15]]
191 [10, 9, [13, 8, 7, 0, 4, 1, 10, 13, 14, 10, 4, 2, 15, 11, 1, 7]]
192 [10, 14, [13, 10, 1, 4, 0, 7, 8, 13, 7, 1, 11, 15, 2, 4, 10, 14]]
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193 [11, 9, [12, 9, 6, 1, 5, 0, 11, 12, 15, 11, 5, 3, 14, 10, 0, 6]]
194 [8, 6, [5, 3, 9, 13, 0, 6, 8, 12, 15, 8, 3, 6, 2, 5, 10, 15]]
195 [9, 3, [7, 1, 13, 9, 2, 4, 12, 8, 4, 3, 14, 11, 9, 14, 7, 2]]
196 [14, 3, [0, 6, 10, 14, 5, 3, 11, 15, 3, 4, 9, 12, 14, 9, 0, 5]]
197 [15, 4, [14, 10, 2, 4, 15, 11, 7, 1, 4, 1, 8, 15, 13, 8, 5, 2]]
198 [12, 15, [12, 11, 2, 7, 1, 6, 11, 14, 7, 1, 9, 13, 2, 4, 8, 12]]
199 [13, 10, [7, 0, 15, 10, 10, 13, 6, 3, 5, 3, 13, 9, 0, 6, 12, 8]]
200 [2, 12, [9, 12, 5, 2, 0, 5, 8, 15, 3, 7, 15, 9, 2, 6, 10, 12]]
201 [3, 10, [9, 14, 1, 4, 4, 3, 8, 13, 11, 13, 3, 7, 14, 8, 2, 6]]
202 [0, 4, [1, 5, 13, 11, 0, 4, 8, 14, 11, 14, 7, 0, 2, 7, 10, 13]]
203 [1, 0, [1, 5, 9, 15, 0, 4, 12, 10, 3, 6, 11, 12, 10, 15, 6, 1]]
204 [6, 9, [1, 4, 11, 12, 8, 13, 6, 1, 2, 6, 8, 14, 3, 7, 13, 11]]
205 [7, 15, [7, 0, 9, 12, 10, 13, 0, 5, 12, 10, 2, 6, 9, 15, 3, 7]]
206 [4, 5, [1, 5, 15, 9, 0, 4, 10, 12, 10, 15, 4, 3, 3, 6, 9, 14]]
207 [5, 1, [1, 5, 11, 13, 0, 4, 14, 8, 2, 7, 8, 15, 11, 14, 5, 2]]
208 [14, 2, [6, 0, 14, 10, 3, 5, 15, 11, 4, 3, 12, 9, 9, 14, 5, 0]]
209 [15, 5, [10, 14, 4, 2, 11, 15, 1, 7, 1, 4, 15, 8, 8, 13, 2, 5]]
210 [12, 14, [11, 12, 7, 2, 6, 1, 14, 11, 1, 7, 13, 9, 4, 2, 12, 8]]
211 [13, 11, [0, 7, 10, 15, 13, 10, 3, 6, 3, 5, 9, 13, 6, 0, 8, 12]]
212 [10, 15, [10, 13, 4, 1, 7, 0, 13, 8, 1, 7, 15, 11, 4, 2, 14, 10]]
213 [11, 8, [9, 12, 1, 6, 0, 5, 12, 11, 11, 15, 3, 5, 10, 14, 6, 0]]
214 [8, 7, [3, 5, 13, 9, 6, 0, 12, 8, 8, 15, 6, 3, 5, 2, 15, 10]]
215 [9, 2, [1, 7, 9, 13, 4, 2, 8, 12, 3, 4, 11, 14, 14, 9, 2, 7]]
216 [6, 8, [4, 1, 12, 11, 13, 8, 1, 6, 6, 2, 14, 8, 7, 3, 11, 13]]
217 [7, 14, [0, 7, 12, 9, 13, 10, 5, 0, 10, 12, 6, 2, 15, 9, 7, 3]]
218 [4, 4, [5, 1, 9, 15, 4, 0, 12, 10, 15, 10, 3, 4, 6, 3, 14, 9]]
219 [5, 0, [5, 1, 13, 11, 4, 0, 8, 14, 7, 2, 15, 8, 14, 11, 2, 5]]
220 [2, 13, [12, 9, 2, 5, 5, 0, 15, 8, 7, 3, 9, 15, 6, 2, 12, 10]]
221 [3, 11, [14, 9, 4, 1, 3, 4, 13, 8, 13, 11, 7, 3, 8, 14, 6, 2]]
222 [0, 5, [5, 1, 11, 13, 4, 0, 14, 8, 14, 11, 0, 7, 7, 2, 13, 10]]
223 [1, 1, [5, 1, 15, 9, 4, 0, 10, 12, 6, 3, 12, 11, 15, 10, 1, 6]]
224 [6, 11, [11, 12, 1, 4, 6, 1, 8, 13, 8, 14, 2, 6, 13, 11, 3, 7]]
225 [7, 13, [9, 12, 7, 0, 0, 5, 10, 13, 2, 6, 12, 10, 3, 7, 9, 15]]
226 [4, 7, [15, 9, 1, 5, 10, 12, 0, 4, 4, 3, 10, 15, 9, 14, 3, 6]]
227 [5, 3, [11, 13, 1, 5, 14, 8, 0, 4, 8, 15, 2, 7, 5, 2, 11, 14]]
228 [2, 14, [5, 2, 9, 12, 8, 15, 0, 5, 15, 9, 3, 7, 10, 12, 2, 6]]
229 [3, 8, [1, 4, 9, 14, 8, 13, 4, 3, 3, 7, 11, 13, 2, 6, 14, 8]]
230 [0, 6, [13, 11, 1, 5, 8, 14, 0, 4, 7, 0, 11, 14, 10, 13, 2, 7]]
231 [1, 2, [9, 15, 1, 5, 12, 10, 0, 4, 11, 12, 3, 6, 6, 1, 10, 15]]
232 [14, 1, [10, 14, 0, 6, 11, 15, 5, 3, 9, 12, 3, 4, 0, 5, 14, 9]]
233 [15, 6, [2, 4, 14, 10, 7, 1, 15, 11, 8, 15, 4, 1, 5, 2, 13, 8]]
234 [12, 13, [2, 7, 12, 11, 11, 14, 1, 6, 9, 13, 7, 1, 8, 12, 2, 4]]
235 [13, 8, [15, 10, 7, 0, 6, 3, 10, 13, 13, 9, 5, 3, 12, 8, 0, 6]]
236 [10, 12, [1, 4, 13, 10, 8, 13, 0, 7, 11, 15, 7, 1, 10, 14, 2, 4]]
237 [11, 11, [6, 1, 12, 9, 11, 12, 5, 0, 5, 3, 15, 11, 0, 6, 14, 10]]
238 [8, 4, [9, 13, 5, 3, 8, 12, 0, 6, 3, 6, 15, 8, 10, 15, 2, 5]]
239 [9, 1, [13, 9, 7, 1, 12, 8, 2, 4, 14, 11, 4, 3, 7, 2, 9, 14]]
240 [0, 7, [11, 13, 5, 1, 14, 8, 4, 0, 0, 7, 14, 11, 13, 10, 7, 2]]
241 [1, 3, [15, 9, 5, 1, 10, 12, 4, 0, 12, 11, 6, 3, 1, 6, 15, 10]]
242 [2, 15, [2, 5, 12, 9, 15, 8, 5, 0, 9, 15, 7, 3, 12, 10, 6, 2]]
243 [3, 9, [4, 1, 14, 9, 13, 8, 3, 4, 7, 3, 13, 11, 6, 2, 8, 14]]
244 [4, 6, [9, 15, 5, 1, 12, 10, 4, 0, 3, 4, 15, 10, 14, 9, 6, 3]]
245 [5, 2, [13, 11, 5, 1, 8, 14, 4, 0, 15, 8, 7, 2, 2, 5, 14, 11]]
246 [6, 10, [12, 11, 4, 1, 1, 6, 13, 8, 14, 8, 6, 2, 11, 13, 7, 3]]
247 [7, 12, [12, 9, 0, 7, 5, 0, 13, 10, 6, 2, 10, 12, 7, 3, 15, 9]]
248 [8, 5, [13, 9, 3, 5, 12, 8, 6, 0, 6, 3, 8, 15, 15, 10, 5, 2]]
249 [9, 0, [9, 13, 1, 7, 8, 12, 4, 2, 11, 14, 3, 4, 2, 7, 14, 9]]
250 [10, 13, [4, 1, 10, 13, 13, 8, 7, 0, 15, 11, 1, 7, 14, 10, 4, 2]]
251 [11, 10, [1, 6, 9, 12, 12, 11, 0, 5, 3, 5, 11, 15, 6, 0, 10, 14]]
252 [12, 12, [7, 2, 11, 12, 14, 11, 6, 1, 13, 9, 1, 7, 12, 8, 4, 2]]
253 [13, 9, [10, 15, 0, 7, 3, 6, 13, 10, 9, 13, 3, 5, 8, 12, 6, 0]]
254 [14, 0, [14, 10, 6, 0, 15, 11, 3, 5, 12, 9, 4, 3, 5, 0, 9, 14]]
255 [15, 7, [4, 2, 10, 14, 1, 7, 11, 15, 15, 8, 1, 4, 2, 5, 8, 13]]

185



B.2 Computing the Eighth Element of the Sequence

Consider the parameters as given in Appendix B.1. The 25-round sequence is given in

Table B.2.

Table B.2: 25-round sequence

i 0 1 2 3 4 5 6 7 8 9 10 11 12 -

kei 1 2 3 4 3 0 8 10 1 3 15 15 7 -

sei 15 14 9 11 7 4 5 1 9 12 3 1 8 -

i 13 14 15 16 17 18 19 20 21 22 23 24 25 26

kei 6 8 6 4 11 13 11 2 3 3 1 7 - -

sei 12 4 11 1 9 2 10 5 4 6 10 15 11 5

We compute sd7 using the data structure given in Table B.1 in the following 3 steps.

1. Find the row corresponding to (kd0 , k
d
1) in DSd. The value of row is given by:

row = L4(kd0)||kd1
= 7||1 = 113 (as kd0 = ke24 = 7 and kd1 = ke23 = 1)

2. Compute the partition p = DSd[113][2][kd2 ]+kd3 = DSd[113][2][3]+3 = DSd[113][2][3]+3 =

7 + 3 = 4. Note that DSd[113][0][0] = sd3 = se23 = 10 and Xd = 5.

3. Compute sd7. We have

sd7 = sd3 + kd5 + p+ DSd[113][2][sd6 +Xd]

= 10 + 11 + 4 + DSd[113][2][5 + 5]

= 5 + DSd[113][2][0] = 5 + 15 = 10 = se19.
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