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Abstract 

This t hesis reports on new high-level low-power design techniques for digit al signal 

processing for wireless port able sys tems. Through proper choice and op timization 

of an algont hm or an architecture, significant power dissipation saving is achieved. 

Up to an order of magnitude, with Iittle or no degradation in speed or SNR perfor- 

mance, is achieved. 

At the heart of these techniques is the minimization of the computational com- 

plexity. by the elimination of redundant and irrelevant computations. Redundant 

computations are extra computations that can be eliminated by applying appro- 

priate transformations to an architecture or an algorithm without changing its 

functionality. Irrelevant computations are unnecessary computations that can be 

eliminated by optimizing the datapath width. 

The elimination of redundant computations has been applied to the design of a 

division algorit hm. The division algorit hm generates the quotient in the minimum 

signed-digit representation. Hence, the number of addition/subtraction operations 

is rninimized. 

A subband coding image compression algorithm with a simplified filtering struc- 

ture that requires only addition and subtraction operations has been developed. 

This sirnplified filtering structure reduces the power dissipation by 23 times. A 

new vector quantization a lgor i th ,  having a simplified decoding structure, has also 

been developed for this subband coding algorithm. 



The increased flexibility and functionality of signal processing in the digital 

domain is pushing digital signal processing more and more into the arena of high- 

speed analog signals. To be able to do this high-speed high-resolution analog-to- 

digital converters are required. Sigma-Delta A/D converters have been known for 

t heir high-resolution capabilities using low-precision component S. 

Parallelism by 4x of analog signal processors is applied to the design of a band- 

pass Sigma-Delta modulator. The speed of the modulator is increased without 

increasing the speed requirement of the individual building blocks. 

The elhination of redundant and irrelevant computations has been employed 

in the design of the decimation filter. The decimation filter consists of two parts, 

the Sinc decimator and a lowpass decimation filter. In the Sinc decimator, the 

computational redundancy is minimized. The datapath width of the Sinc decimator 

is optimized to elirninate irrelevant computations. 

The lowpass decimat ion fdter employs multiplication minirnization, and opera- 

tion interleaving to reduce the power dissipation. Furthermore, the lowpass deci- 

mation filter is designed to be resolution-programmable, dowing the deactivation 

of the blocks correspondhg to the least significant bits when a lower resolution is 

sufficient. The decimation filter has been designed in a 0.5pm, 3.3 Volt CMOS 

t echnology. 

Eliminating the pre-filter multiplier substantidy reduces the power dissipation 

of a digital channel selection algorithm. The pre-filter multiplier has been substi- 

tuted by less cornputationdy complex operators, such as multiplexers and XOR 

gates. The frequency spectrurn is divided into four overlapping frequency bands. 

This reduces the filter sharpness requirements, and hence contributes to the power 



saving. This algorithm achieves up to an order of magnitude saving in power dis- 

sipation. 
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Chapter 1 

Introduction 

The s tate-of-t he-art in modern telecommunications is mos t fascinating and intrigu- 

ing. Technicd specialists are competing to digest modern techniques in order to 

be capable of providing due service to the inspired and ambitious users, to whom 

technology offers new areas and fields yet to be ventured for the service of mankind. 

The last few years witnessed the widespread of portable equipment from cellular 

phones to multimedia portable terminals. However, these mobile equipments are 

constrained in computational capability due to battery limitations and size limita- 

tions [l] . Over the las t 30 years bat tery capacity has increased by a factor of 2 to 4, 

while the computational power of digital IC's increased more than 4 orders of mag- 

nitude [2]. The energy density of the Ni Cd batteries used in portable terminals is 

20 Wat t-Hour/Pound [3]. Bat tery capacity isn't expected to increase dramatically 

over the next few years. New battery technology such as Nickel-Metal-Hydrite is 

expected to have a capacity of no more than 30-35 Watt-Hour/Pound. 

With the increase in market demand for new capabilities and functionality in 

mobile equipments, new approaches are required to reduce the power dissipation 
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and hence prevent the battery size from growing in tandem with computational 

complexi ty. 

Until recently power consumption was not a high prionty issue in the design 

of VLSI systems. Performance (speed) and cost (area) were the two metrics that 

governed the design of VLSI systems (41. However, the need for longer battery life 

in future portable terminais has added power dissipation to the metrics that should 

be considered when designing a VLSI system. 

Mobile applications are not the only factor driving the need for lower power 

dissipation. Power dissipation in cut ting-edge immobile equipment has reached a 

limit where any further increase in power dissipation will lead to significant increase 

in the cost of packaging and the cooling system. The addition of a heat sink codd 

increase the component cost by $5-910 [ 5 ] .  In addition, large power dissipation 

leads to lower component reliability. Every 10°C increase in temperature doubles 

the component failwe rate [2]. 

Findy,  there are the econornical and environmental advantages of reducing 

the power dissipation. A study in 1993, [6] showed that the 60 million personal 

computers in the USA dissipated $2 Billion of electricity per year, and that they 

indirectly produced as much CO2 as 5 million cars. In 1993 personal computers 

accounted for 5% of the commercial electricity demand, this is expected to increase 

to 10% by the year 2000. 

Low-power design is finding its way into numerous applications. From portable 

communication products such as cellular phones, cordess phones and pagers, to 

portable consumer products such as camcoders and portable CDS, to laptop and 

notebook computers, to sub-GHz processors for high performance works t ations. 

Design for low power is essential in all these applications. 
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Reducing the power dissipation can be done at the various levels of the design 

process, starting at the algorithmic and architectural levels and going down to the 

circuit and device levels [5] .  The power minimization problem at each one of these 

levels has dEerent characteristics and meets dinerent challenges. At the higher 

design levels, the designer faces alternative choices with little information about 

the design parameters of the lower layers. At the lower design levels, the number 

of parameters is limited making the low-power design problem easier. 

However, implernentation of the low-level low-power design techniques requires 

greater investment and longer time to implement than the high-level low-power 

design techniques. Consider, for example, process scaling as a technique to reduce 

power dissipation. This requires a greater investment and a longer time to imple- 

ment than changing the algorithm as a means of reducing the power dissipation. 

Despite their great potential for reducing the power dissipation, high-level tech- 

niques are the leas t inves tigated techniques. Selecting the suitable algorit hm and 

rnapping it to the appropriate architecture can have a great influence on the mini- 

mization of power dissipation [7] [8]. Eliminating redundant and irrelevant compu- 

tations has a substantial effect on the reduction of the power dissipation. 

Future portable terrninals are required to handle multimedia information - 

speech, video and data [8]. Because of the limited bandwidth allocated to mobile 

sys t ems , compression/decompression of information is required in mobile t erminals. 

Compression algori t hms and in particular video compression algori t hms demand 

large computation capability [9] which in turn leads to high power dissipation. 

The desire to have multimedia portable equipment has motivated work towards 

low-power implementations of video compression algori thms. 

Increased public demand for higher performance, better quality of service, and 
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system interoperability, has motivated the idea of software radio [IO]. In software 

radio, the digitization of the received/transmitted radio signal is performed as elec- 

trically close to the antenna as possible. The signal processing is done digitally 

after that, using a general purpose programmable hardware. 

Software radios requke wideband (high-speed) high-resolution analog-tdigital 

converters [Il]. They also require high DSP horse-power (up to 10 GFLOPS/s) (121. 

The desire to have a portable software radio has motivated work towards lowering 

the power of wideband high-resolution A/D converters. It has also motivated work 

towards the clevelopment of DSP algorithrns with lower computational complexity 

to be used in the software radio. 

The objective of tlus thesis is to investigate, develop, design and irnplement 

low-power techniques for portable wireless terminals at the architectural and the 

algori t hmic levels. The low-power techniques are applied t O video compression 

algorithrns used in multimedia portable terminals. Low-power algorit hms are also 

developed to lower the power dissipation in software radios. 

1.1 Thesis Contributions 

1. Analysis of high-level low-power design tradeoffs. Three examples of such 

analysis are given in sections 3.6.2, 3.8 and 3.9.1 of chapter 3. These are; 

the use of carry Save adders in FIR filters, the use of the Gray code number 

system, and the use of higher-order radix in the division algorithm. 

2. A new division algorithm that minimizes the number of addition/subtraction 

operations required to generate the quotient. This algorithm is presented in 

section 3.9.2 of chapter 3. 
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3. A new low-power subband coding image compression algorithm developed in 

chapter 4. The filtering structure for the proposed subband coding algorithm, 

requises only addition/subtraction operations, this significantly reduces the 

power dissipation. A novel vector quantization coding aigorithm having a 

simplified decoding architecture has been developed in chapter 4. 

4. A novel bandpass Sigma-Delta modulator, dong with its switched-capacitor 

implernentation, presented in chapter 5. Pardelism by 4x of analog signal 

processors is applied to the design of the bandpass Sigma-Delta rnodulator. 

This increases the speed of the modulator without increasing the speed re- 

quirement of the individual building blocks . A swit ched-capaci t or circuit wi t h 

a minimum number of operational amplifiers is also given for the proposed 

modulator architecture. 

5. The design of a decimation fdter incorporating several low-power design tech- 

niques such as; operation minimization, multiplier elimination, and block 

deactivation. The decimation filter is resolution-programmable, allowing the 

deactivation of the blocks corresponding to the least significant bits, when a 

lower resolution is sufficient. The design of the decimation filter is given in 

chapter 5. 

6. The design of a resolution-programmable multiplier-accumulator (MAC) ar- 

ray. The interleaving of the adder in the multiplier array reduces the power 

dissipation. The resolution of the MAC array is programmable dowing the 

deactivation of the blocks corresponding to the least significant bits when 

a lower resolution is sufficient. The design of the MAC array is given in 

chap ter 6. 

7. A novel digital channel selection algorithm with no pre-filter multiplier. The 
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channel selection algorithm uses lowpass, highpass and bandpass flters. The 

basic filter is the lowpass filter. Other filters are implemented using the 

lowpass filter and simple logic gates such as multiplexers and XOR gates. 

The channel selection is done in stages. The elimination of the pre-flter 

multiplier reduces the power dissipation. The design of the digital channel 

selection algorithm is given in chapter 7. 

1.2 Thesis Outline 

The thesis consists of eight chapters and two appendices. Chapters 2 and 3 are a 

survey of wireless architectures and standards, and low-power design techniques. 

Chapters 4 - 7 present the main contributions of this thesis for the high-level 

low-power design of multimedia wireless terminals. A person interested in power- 

efficient design of multimedia terminals can proceed directly to chapter 4. 

After the introduction, which provides for the motivation and a brief description 

of the thesis, chapter 2 deals with wkeless communication systems. It talks about 

the different standards for voice and data wireless communications. The transceiver 

architecture is reviewed in this chapter. The emerging software radio architecture 

is also presented in this chapter. 

In chapter 3, low-power design techniques are explored. In this chapter, the 

sources of power dissipation are investigated, and power estimation methods are 

considered. Low-power design has recently captured the attention of many re- 

searches. A survey of low-power techniques employed in the design of portable 

equipment is presented in this chapter. Also in this chapter, the application of 

low-power techniques t O the design of certain algori thms and architectures is inves- 

tigated. 
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In chapter 4, a new low-power subband coding image compression algorithm is 

presented. Subband coding is a technique in which the video signal is divided into 

subbands and each subband is docated a number of bits according to the informa- 

tion it carries and its spectral importance. Tradeoffs between the computational 

complexity (power dissipation) and the signal-to-noise ratio (SNR) performance 

of the subband coding algonthm are considered, and an algonthm with low corn- 

putationd complexity is presented. Findy, the performance of this algorit hm is 

evaluated. 

In chapter 5, a high-speed high-resolution A/D converter is presented. In the 

first part of this chapter, a novel bandpass Sigma-Delta modulator architecture 

is developed. ki this architecture parallelism by 4x of analog signal processors 

is applied to the design of the bandpass Sigma-Delta modulator. The switched- 

capacitor implementation of the proposed architecture is also presented in this 

chapter. In the second part of the chapter, severallow-power design techniques are 

applied to the design of the decimation filter. These techniques include, operation 

minimization, multiplier elirnination and block deactivation. The design of the 

decimation filter in a 0.5pm, 3.3 Volt CMOS technology is dso presented in this 

chap ter. 

In chap ter 6, the design of a new resolution-programmable multiplier-accumulat or 

(MAC) array is presented. The multiplier of the MAC array is based on the mod- 

ified Booth algorithm. The accumulator's input and output are in the sum-carry 

representation. The effect of interleaving the adder in the multiplier array on re- 

ducing the power dissipation is discussed in this chapter. To further reduce the 

power dissipation a block deactivation architecture is developed, where the cells 

corresponding to the leas t significant bits are deactivat ed when a s m d e r  resolution 

is sufficient. The design of the MAC array in a 0.5pm, 3.3 Volt CMOS technology 
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is also presented in this chapter. 

In chapter 7, the design of a novel power-efficient digital channel selection algo- 

rithm is presented. In software radio, a block of channels is digitized, the channel 

selection is performed in the digital domain. Conventionally, channel selection is 

done by a multiplier followed by a lowpass füter. The multiplier operates at a high 

sarnpling rate and hence, it dissipates a large amount of power. A novel digital 

charnel selection algorithm is developed that eliminates the pre-filter multiplier, 

this can reduce power dissipation by up to an order of magnitude. 

Chapter 8 contains the summary of the research, dong with the major con- 

tributions of this dissertation. Also contained in this chapter are the conclusions 

reached after conducting t his research. Findy? future directions in research for 

power minimization at the algorithmic and architectural levels for future portable 

wireless terminais are discussed. 

Appendix A presents the SPW TM 

Delta moddator. Appendix B presents 

simulation mode1 of the bandpass Sigma- 

an analysis for the Sinc decimator. 
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Wireless Comrnunicat ion Systems 

The las t decade witnessed an explosion in the development and the commercializa- 

tion of wireless communication products, such as cellular phones: cordless phones, 

pagers, wireless LAN and WAN terminais, etc. This development was fueled by the 

accep t ance of the wireless communication standards, the advancement in wireless 

circuit design techniques and high-sp eed monoli t hic IC t echnology, as well as the 

development of new wireless system architectures. 

New services and features are now being envisioned for future mobile commu- 

nication systems. These systems will allow users to have access to information 

databases and to communicate in any form of media - voice, video, images or 

data - at any time and in any place [l] [13]. Increased public demand for better 

performance, higher quality of service and lower costs has led to the development of 

new wireless communication techniques and new wireless transceiver architectures. 

In the last few years, there has been a shift fiom analog to digital communication 

techniques. This shift led to enhanced performance and lower cost. Table 2.1 

compares the analog communication techniques to the digital ones. In the future, 
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Table 2.1: Cornparison of analog and digit al communication techniques. 

Cri t erion 

Technology 

Modulation 

Access 

Noise resilience 

Capacity 

(Spectral efficiency ) 

Techniques 1 Techniques 

Analog Communication 

Discretef Hybrid 1 Monolithic 

Digital Communication 

FM 1 QPSK, GMSK ... 

FDMA 

Low 

1 TDMA, CDMA 

High 

Low l Bgh  

this digitization trend is expected to continue moving into the fiont-end of the 

transceiver, and eventudy leading to a tme software radio. 

There exists numerous standards for wireless communication systems through- 

out the world. These standards regulate the spectrum usage and define the key 

parameters of the different wireless systems, such as the cellular, cordless and wire- 

less data systems. In section 2.1, we review the standards used in analog and digit al 

cellular systems, as well as wireless data systems. 

Traditionally, the superheterodyne principle has been used in the design of wire- 

less receivers since its discovery by Armstrong in the 20's [14] [15] [16]. With 

consumers demanding more functionality and enhanced performance and with the 

advancernent of the IC technology, interest bas been growing in direct conversion 

receivers 1171, as well as software radios [IO] 1181. These architectures are examined 

in sections 2.2 and 2.3. 
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Table 2.2: Major analog cellular standards. 

Standard Down Link Channel 

(MHz) spacing (KHz) 

Number of 

channels 

AMPS Americas 

Australia 

Far East 

Europe 

Afiica 

TACS 

Far East 

NMT 900 Europe 

Africa 

Asia 

NTT Japan 

2.1 Land Mobile Wireless Systems Standards 

Cellular system design was pioneered by Bell Laboratories in the 70's [19]. The 

f i s t  generation of cellular systems used analog frequency modulation. Frequency 

Division Multiple Access was used to divide the spectnun between the different 

users. Table 2.2 gives the salient features of the major analog cellular standards 

1191. 

The desire for larger system capacity and bet ter performance, coupled with the 
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Cri t erion 

Up link 

Down link 

Channel spacing 

Number of channels 

Multiple access 

Modulation 

Channel bit rate 

* More spectrum is 

Table 2.3: Digital cellular standards. 

GSM IS-136 (DAMPS) 

824 - 849 

869 - 894 

30 KHz 

832 

TDMA 

a14 DQPSK 

48.6 Kb/s 

890 - 915 

935 - 960 

200 KHz 

124 

TDMA 

GMSK 

270.833 Kb/s 

IS-95 

824 - 849 

869 - 894 

1.25 MHz 

20 

CDMA 

QPSK 

1.2288 Mb/s 

docated around 1.5 GHz. 

- 

PDC 

940 - 956' 

810 - 826' 

25 KHz 

1600 

TDMA 

a /4  DQPSK 

42 Kb/s 

advancement of digital integrated circuit design and low bit rate speech coding 

algorithms led to the emergence of the second generation cellular systems which 

use digit al modulation techniques [20]. Digital cellular systems are more efficient 

in their spectral usage than analog cellular systems. There exists different digital 

cellular standards, Table 2.3 gives the salient features of these standards [21]. 

Each standard defines the control signals, and the minimum performance re- 

quirements for the mobile terminal and the base station. For the DAMPS standard, 

the mobile terminal is required to satis6 the foIlowing minimum requirements (22): 

Adjacent channel selectivity : 

Assigned channel = -107 dBm 

Adjacent channel = -94 dBm 

Error rate = 3% 
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Alternate channel selectivity : 

Assigned channel = -107 dBm 

Second adjacent channel = -65 dBm 

Error rate = 3% 

Intermodulation Spurious Response At t enuat ion : 

Assigned channel = -107 dBm 

Unmodulated RF @ f 120 KHz = -45 a m ,  OR 

Modulated RF @ k 240 KHz = -45 dBm 

Error rate = 3% 

Spurious Response Interference : 

Assigned Channel = -107 dBm 

Undesired RF = -52 dBm 

Undesired RF modulated in cellular band, unmodulated elsewhere. 

Error rate = 3% 

Except within 90 KHz of the assigned channel. 

In addition to the cellular standards for wireless voice networks, there exists 

standards for wireless data networks [19] [23]. Wireless data networks are classified 

into: wide-area mobile data networks, and wireless local area networks (WLAN) . 

Wide area mobile data networks are low-speed networks. Several standards exist 

for wide area mobile data networks, such as; Advanced Radio Data Information 

Service (ARDIS), Mobitex, and Cellular Digital Packet Data (CDPD). The salient 

features of these standards are given in Table 2.4. 

WLANs are lugh-speed networks but they have a limited coverage area. WLAN 

use spread spectrurn in the unlicensed ISM bands [24]. WLAN standards include 

IEEE 802.11 in North America and MPERLAN in Europe. 
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Table 2.4: Wireless data network standards. 

- - 

Criterion 

Up link 

Down link 

Channel spacing 

Number of chaanels 

Modulation 

Channel bit rate 

806 - 824 

851 - 869 

25 KHz 

720 

FSK 

19.2 Kb/s 

896 - 901 

935 - 940 

12.5 KHz 

480 

0.3-GMSK 

8.0 Kb/s 

Mobitex 

' 824 - 849 

869 - 894 

30 KHz 

832 

0.5-GMSK 

19.2 Kb/s 

CDPD 

2.2 Wireless Transceiver Architectures 

A wireless transceiver consists of a transmitter and a receiver. The duplexer is used 

for directing each of the transmit/receive signals to its intended path. The incoming 

RF signal from the antenna is directed to the receiver, while the transmitted signal 

is directed 60m the transmitter to the antenna with no coupling to the receiver. 

The transmitter converts the baseband signal to the RF carrier fiequency. It can 

do so using a single-stage quadrature modulator (251. This is shown in Figure 2.1. 

A filter is needed after the power amplifier. This fdter removes any out of band 

frequency components due to the nonlinearity of the power amplifier or spurious 

fiequencies from the oscillator. A transmitter can also have multi-stage mixing. 

Figure 2.2 shows the block diagram of the conventional wireless receiver. This 

receiver is a two-stage superheterodyne receiver [26] [27]. Typicdy the f i s t  IF 

stage down converts the fkequency by an order of magnitude. The first IF' stage 

is used for image rejection. The second IF stage is used for channel selectivity. 

The e s t  IF stage frequency is about 90 MHz. The second IF stage fiequency is 
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Figure 2.1: A single-s t age up conversion transmit ter. 
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Figure 2.2: A Two-stage superheterodyne receiver. 
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455 KHz [17]. 

In the superheterodyne receiver, the IF frequency is fured. The design of the 

channel selection filter is easier in the IF band than in the RF band [17], because 

the center fiequency of the IF filter is fixed and the relative filter bandwidth with 

respect to the center frequency is larger in the IF band than in the RF band. 

The complexity of having a tw-stage IF superheterodyne receiver can be elirn- 

inated by using the direct conversion receiver [28] - [34]. The direct conversion 

receiver is also referred to as the homodyne receiver when the local oscillator is syn- 

chronized in phase with the incoming RF signal carrier [17]. The homodyne receiver 

converts the RF signal to baseband directly, eliminating the need for intermediate 

IF stages. Figure 2.3 shows the block diagram of the direct conversion (homodyne) 

receiver. Direct conversion receivers enable the highest level of intergration and 

require the least amount of tuning [XI. 
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DSP 

Figure 2.3: Direct conversion (homod yne) receiver. 

An alternative direct conversion receiver architecture 1361 uses an external band- 

pass filter with a 90" phase splitter. The same VCO signal is fed to both mixers in 

this case. 

Despit e i t s simplicity, direct conversion receivers have sever al draw backs [17] 

[34] compared to the superheterodyne receiver. These indude? the possibility of 

mismatch between the 1 and Q paths, carrier leakage and DC feed-through, sen- 

sitivity to the l / f  noise, limited dynamic range, and findy, back radiation of the 

receiver's local o s c ~ a t o r  signal. 

Having Merent  standards creates a need for a multistandard transceiver ar- 

chitecture. In 1371, the authors consider using a zero-IF receiver and an image 

rejection receiver to achieve multistandard operation for DECT, GSM/DCS1800 

and INMARSAT M. Another way to achieve a multistandard receiver is to use 

software radio. Software radio is introduccd in the next section. 

2.3 Software Radio 

In software radio [IO] (181, the receivedltransmitted radio signal is digitized as 

electrically close to the antenna as possible. The signal processing is done digitally 

after that, using general purpose programmable hardware. Performing the radio, IF 

and baseband functions in programmable digit al hardware increases the flexibility 
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of the transceiver. Although software radios use digital techniques, digital radios 

are generally not software radios. The key difference is the total programmability 

of software radios, including programmable RF bands, multiple access modes, and 

modulation schemes. 

Software radio was conceived in the 70's. However, technology limitations pre- 

vented it fkom being implemented. The f t s t  operational digital high fiequency 

communications system was built in 1980 [38]. It was used by the military. That 

system occupied many racks, it dissipated a large amount of power, and it only 

Iiad a bandwidth, for simultaneous coverage, of 750 KHz, with a dynamic range of 

60 dB- 

Today the US military is in phase II of developing its software radio - Speakeasy 

[ 181 [39]. S peakeas y is a programmable multi-band multi-mode radio (MBMMR) 

that operates in the HF to the UHF bands, fkom 2 MHz to 2 GHz. Speakeasy em- 

dates 15 existing military radios. It supports 9 modulation schemes, and 4 digital 

audio coding algorithrns. It also supports multiple internetworking protocols, mul- 

tiple interfaces, multiple forward error correction codes and multiple information 

security ( I W O  SEC) algori t hms. 

For civil applications, software radio is used in cut ting-edge base stations. 

The design of portable terminais is a compromise between low-power and high- 

performance, this involves a tradeoff between analog ICS, low-power ASICs, DSP 

cores and embedded microprocessors [IO]. However, as low-power techniques and 

design methodologies emerge, digital signal processing wiIl gradually replace analog 

signal processing in the wireless port able terminal. 

There are numerous advantages to increasing the portion of the radio that is 

implement ed digit &y. These include relaxing the analog component s requirement S. 
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Digital implementations tend to be compact and inexpensive for large volume pro- 

duction. One of the most important advantages is the ability to program digital 

structures to meet the communication needs of different networks using a single 

hardware platform. 

The access, modulation and coding schemes used in a software radio are pro- 

grammable, making it possible to reprogram the transceiver if any of these schemes 

change. Channel selec tion, propagation channel characterization, antenna s teer- 

ing and power level adjustment are all done under software control [IO]. In the 

transmit mode, the software radio characterizes the a d a b l e  channels, s t eers the 

transmit beam in the right direction, selects the appropriate power level and than 

transmits the signal. In the receive mode, the software radio analyzes the received 

spectrum, in frequency, time and space. It identifies the interferers and nulls them. 

It estimates the multi-path propagation channel mode1 and adaptively equalizes 

the received signal. The signal is then demodulated and decoded. 

Software radio is characterized by its modula, open architecture dowing con- 

stant upgrades as the technology advances. The software radio architecture, as 

shown in Figure 2.4, consists of three subsystems. The real-time channel process- 

ing subsystem is where d the radio funceions are performed. This subsystem 

must have isochronous performance, which means that the input samples must 

be processed during a limited time duration. The environment management sub- 

system constantly characterizes the radio environment. This information is used 

by the channel processing subsystem for better transmission and reception. The 

environment management subsystem has near real-time operation. The software 

tools subsystem provides incremental service enhancements. This subsystem d o w s ,  

defining, prototyping, testing and delivering these service enhancements. 

To implernent software radio the entire spectrum of a particular standard should 
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Figure 2.4: The software radio architecture. 

be digitized. This is 25 MHz for GSM, IS-136 and 1s-95, as given in Table 2.3. To 

digitize a 25 MHz bandpass signal, bandpass sampling is used [Il]. To satisfy 

the Nyquist sampling criteria, the sampling frequency should be at least twice the 

bandwidth. Assurning the sampling fiequency is 2.5 times the bandwidth, then a 

sampling fiequency of 62.5 MSa/s is required. To meet the requirements of the 

different wireless standards the A/D converter is required to have over 20 bits 

resolution (this will be shown later in Chapter 5). This is the e s t  bottleneck 

facing software radio, i.e. high-speed high-resolution analog-to-digi t al conversion. 

In chapter 5, the design of an A/D converter that has a sampling frequency of 1.25 

MHz and a programmable resolution up to 20 bits is examined. 

In addition to the high-speed, high-resolution A/D converter, software radio 

also requires high DSP horsepower. Typically Software Radio requires up to 10 

GFLOPS/s [12]. Such high processing power is beyond the capabilities of todays 

DSPs. This is the second bottleneck facing software radio. In chapter 7, a digital 



CHAPTER 2. WIRELESS COMMUNICATION SYSTEMS 

channel selection algorithm, that can be employed in software radios to reduce the 

computational complexity required for digital channel selection, is presented. 

2.4 Chapter Summary 

In this chapter, the salient features of analog and digital cellular standards, as 

weU as the wireless data standards wese presented. The superheterodyne principle 

has been cornmonly used in conventional transceivers. The advancement of the IC 

technology, and the demand for enhanced performance has Led to the emergence of 

new architectures, such as the homodyne architecture and the software radio. 

Software radio, which dows  more functionality and programmability, is cur- 

rently being used for military applications and in cutting-edge base stations. For 

the mobile terminds, new low-power techniques need to be developed to make soft- 

ware radio a power-efficient architecture that can compete with the superheterodyne 

and homodyne radio architectures. 



Chapter 3 

Low-Power Design Techniques 

3.1 Introduction 

In this chapter, the techniques used to lower the power dissipation at the architec- 

tural and algorithmic design levels are investigated. These are the higher design 

levels, as opposed to the device and circuit levels, the lower design levels. 

The organization of this chapter is as follows, section 3.2 talks about the sources 

of power dissipation in CMOS circuits and the parameters they depend on. In 

section 3.3, the mode1 used in the estimation of the power dissipation is presented. 

In section 3.4, low-power examples for: wireless port able syst ems, digit al signal 

processors, video compression algorithms and microprocessors are presented. Low- 

power techniques, used at the device and circuit levels, are presented in section 3.5. 

The quadratic dependency of the power dissipation on the voltage makes voltage 

reduction an effective way to reduce the power dissipation. This is examined in 

section 3.6. However, reducing the voltage leads to longer delays. Techniques 

used to maintain a constant throughput with voltage scaling are also considered 
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in section 3.6. Section 3.7 demonstrates the effect of pipelining and parallelism, 

by applying t hese techniques to t hree dXerent architectures of the discrete cosine 

t r ans for m. 

Reduchg the switching activity is another degree of &dom in reducing the 

power dissipation. In section 3.8, the &ect of the Gray code number system on 

reducing the switching activity is considered. In section 3.9, the effect of reducing 

the number of block iterations on the power dissipation of the division algorithm 

is considered. Two examples demonstrate this. First, a higher order radix is used. 

Second, a division algorithm is developed, requiring a minimum number of add/sub 

operations. In section 3.10, reducing the computational complexity of the vector 

quantization algorithm is considered. 

3.2 Sources of Power Dissipation 

The power dissipated in an electronic system depends on the implementation tech- 

nology and the circuit style used. Current mode BJT and NMOS have DC (static) 

power dissipation, while CMOS aLnost has no DC power dissipation, making its 

power dissipation lower than the two former technologies. The CMOS style is the 

mos t commonly used style for the implernentation of VLSI systems. 

In CMOS circuits, there are three sources of power dissipation [40]: 

1. Switching power dissipation. 

2. Short-circuit-current power dissipation. 

3. Leakage-curent power dissipation. 
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The most dorninate of these is the switching power dissipation which is given 

The switching power dissipation, as seen from the previous equation, de- 

pends on four parameters. The switching activity factor ao+~, the load capac- 

itance CL, the supply voltage VDD and the dock frequency fclk. Of these, the 

supply voltage has the greatest effect on the switching power dissipation because of 

the quadratic dependence. In a well designed CMOS circuit, the switching power 

dissipation accounts for 90% of the power dissipation. 

The switching activity factor ao-1, the probability of a zero-one transition. 

depends on: 

1. Logic funceion. For example, a NAND gate with equi-probable and indepen- 

dent inputs has 

while an XOR gate, with equi-probable and independent inputs has 

2. Logic style. Dynamic logic has higher switching activity than static logic, 

because the output is precharged at  the end of each cycle. However, dynamic 

logic is glitch fiee. The logic style also influences the capacitances. 

3. Signal s tatis tics. The higher the correIation between the successive samples 

the lower the switching activity. 

4. Circuit topology. e.g. chah structure versus tree structure. A Chain strgcture 

has lower switching activity, but higher glitching power. 
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The short-circuit-current power dissipation, unlike the switching power 

dissipation, depends on the rise and fall times of the input signal. To minimize the 

eEect of the short-circuit power dissipation it is desirable to have equal input and 

output edge times [42]. In this case, the power dissipation is less than 10% of the 

total dynamic power dissipation. 

The lealcage-current power dissipation is due to: 

1. Reverse-bias diode leakage current. This is in the order of 25 p A  for a 1 million 

transistor chip. Hence, it represents a negligible component of the power 

dissipation (411. 

2. Subthreshold current. Associated with this is the subthreshold slope Sth, 

which is the voltage required to reduce the subthreshold current by an order 

of magnitude [43]. The absolute minimum of Sth is about 60 mv/(decade cur- 

rent) at room temperature. This can be achieved using Silicon-On-Insulator 

(SOI) technology [44]. Lowering the sub threshold voltage increases this com- 

ponent. 

Of these three power dissipation components, the switching power dissipation 

component is the most dominant [41]. Hence, this is the component we usually 

seek to minirnize, especidy at the architectural and algorithmic levels. 

3.3 Estimating the Power Dissipation 

Power estimation can be a complex task. Not only does it require knowledge about 

the technological parameters of the system under consideration such as the oper- 

ating voltage, the physical capacitance, the circuit style, etc., but it also requires 
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Figure 3.1: A simplified system consisting of two building blocks and the intercon- 

nection busses. 

detailed knowledge of the signal statistics such as the data activity and the signal 

correlations. 

The aim of power estimation is to h d  the average power dissipated in a system 

based on a certain model. Power estimation becomes more inaccurate as the degree 

of model abstraction increases. Hence, the most accurate power estimators are the 

circuit simulators [45]. However, circuit simulators are slow and require complete 

and specific information about the inputs [46]. 

Gate-level probabilistic techniques have been proposed, ranging from simple 

techniques [47] which assume a zero-delay gate model and thus don't calculate the 

glitching power which can be as high as 70% [48], to more elaborate techniques [49] 

[50] that not only consider the effect of glitching, but they also take into account 

the effect of temporal and spatial correlations [46]. 

The research done on power estimation at the higher abstraction levels is still 

limited [51] [52]. At the architecture level, the system is described in terms of 

interconnected operators (adders, multipliers, etc.) and memory blocks (registers, 

ROMs, etc.). These building blocks, as they will be c d e d  from now on, are inter- 

connec ted by busses. Figure 3.1, shows a simplified architecture consis ting of: two 

building blocks, one interconnecting bus (bus b), one input bus (bus a), and one 

output bus (bus c). 

The total power dissipated in such an architecture is the sum of the power 
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dissipated in the building blocks and the power dissipated in the busses. The 

power dissipated by a building block depends on: 

Block activity factor (P )  (number of executions per second). 

Output signal activity factor (a). 

Normalized block energy En. The normalized energy is the energy dissipated 

by the building block per execution when the signal switching activity factor 

is one. 

The total power dissipated by the building blocks is given by: 

Where R is the set of all building blocks. The power dissipated by a bus depends 

on: 

1. Signal activity factor (a). 

2. Length of bus (0. 

3. Capacitance per unit length (C). 

The total power dissipated by the busses is given by: 

Where N is the set of all busses. K is some constant that depends on the 

operating voltage. When determining ln the dimensions of the building blocks 

should be taken into consideration. 
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3.4 Low-Power Examples of Portable Systems 

There are numerous low-power techniques used by researchers and designers to 

lower the power dissipation of portable systems. Some of these techniques, used for 

the design of wirdess port able sys tems, digit al signal processors, video compression 

algorithms and microprocessors are presented in this section. 

The first low voltage, very low current integrated circuits were developed about 

25 years ago for the watch [53]. However, for other electronic systems power 

dissipation was only an afterthought. During the 1 s t  decade, this has began to 

change. There has been great interest in the implementation of low-power, s m d  

size portable communicators for voice, video, images and data information as weU 

as low-power note-book and lap-top computers [8] [54] [55] [56]. 

In cellular systems, a considerable fraction of bat tery energy is used for trans- 

mission. Reducing the cell size not only increases the spectnun efficiency through 

frequency reuse but it also dows operation at lower transmission power levels. This 

in turn leads to longer battery Me. Currently mobile phones operate in a cell of 

several hundred meters radius, and transmit power in the order of 0.1-1 Watt [57]. 

The Viterbi decoder, used in CDMA cellular applications, presented in [58], 

employs Mnous Iow-power techniques. The squared Euclidean rneasure has been 

substituted by a non-squared Euclidean rneasure. This reduces the complexity of 

the branch metric unit and the word-length of the path metnc unit. The Viterbi 

decoder presented uses minimum sized processing units. To meet the throughput 

requirement, parallelism and pipelining are employed. To reduce spurious transi- 

tions on high-capacitance busses, gated control signals are used for controlling the 

multiplexers connected to these busses. 

Surviving-path memory management (591 is one of the operations required in the 
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Viterbi decoder. There are two techniques for surviving-pat h memory management: 

exchange register and trace back. In (601, the effect of hybrid techniques on reducing 

the power dissipation is considered. 

In a receiver, the matched filter is positioned between the RF section and the 

baseband section. Hence, it can be implernented in digit al or in analog technology. 

The effect of each implementation on the power dissipation is considered in [61]. 

In turns out that for slow matched filters, with a l ~ g e  number of taps and high 

precision, the digital implementation is more power efficient t han the analog one. 

By lowering the supply voltage fsom 5 volts to 1.5 volts, the power dissipation of 

different digital filters has been lowered by 8-11 times [62]. Architectural transfor- 

mations such as pardelism, associativity, distributivity, commutativity, operation 

substitution and bit width optimization were used to maintain a constant tlirough- 

put, lower the glitching activity, and reduce the interconnect capacitance. 

In (631, a low-voltage low-power DSP is designed. The operating speed of the 

DSP is 63 MHz at 1 Volt. The power dissipation at this voltage and speed is 

17.0 mW. During active operation of the DSP, power saving is realized by the use 

of locdy gated docks. Global gating is also a d a b l e  and it is controlled by three 

power-down instructions. The memory is divided into 8 arrays, only one array is 

activated during each memory access. A multi-level threshold voltage, VT, is used. 

High VT is used in the 6 transistors of the memory ceUs to lower the standby current. 

Low VT is used in the peripheral circuitry to allow high-speed operation at 1 Volt. 

To lower the power dissipation in the lowpass interpolation and decimation fil- 

ters, the filter order is adapted according to the input and output signal character- 

istics [64]. This avoids the use of higher order flters when a lower order is sufficient. 

Powering-down control is used in the ALU when a lower order is sufficient. The 
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saving in power dissipation achieved for the decimation and interpolation filters is 

42% and 21% respectively. 

A variable threshold voltage scheme is used in [65], to lower the st andby power 

dissipation in a low VT CMOS technology. I t  also mitigates the eEect of fluctuations 

in VT on the system delay. The threshold voltage is controlled by changing the 

substrate voltage IrB8 For the NMOS, in the active mode Iles = -0.5 Volt, and 

VT = 0.1 Volt. In the standby mode, VBB = -3.3 Volt and VT = 0.5 Volt. 

A low-power subband video compression algorithm decoder is presented in [66]. 

Parallelisrn of the subband algorithm has been exploited to achieve an excess 

throughput that can be traded for lower power by reducing the supply voltage. 

Off chip memory is avoided to eliminate the high power consurnption of external 

memory access. An asymmetric wavelet filter is used in the lowpass and highpass 

füters, the filter uses 3-2 adders in its implementation. For the high-frequency 

bands, the data is zero run-length encoded to reduce the number of external in- 

puts by almost a factor of 4. At 1.0 Volt, the decoder is capable of operating at a 

3.2 MHz real time video rate, and dissipates 1.2 mW. 

Unlike standard Vector Quantization (VQ) decoders which require codebook 

storage, the Pyramid Vector Quantization (PVQ) decoder relies on intensive arith- 

metic computations [67]. Several bw-power techniques have been used in the imple- 

mentation of that PVQ decoder. The architecture is divided into four independent 

processing blocks, each block is separated by a FIFO. Each processing block oper- 

ates as long as it has data to process and its output FIFO is not f d ,  otherwise, it 

enters into the standby mode by gating its clock. The critical path of the vector de- 

coder is optimized to improve throughput and hence allow lower voltage operation. 

The FIFO uses a pointer based scheme for better energy-efficiency. 
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With microprocessors' speed approaching 300 MHz, for the DEC Alpha 21164, 

the power dissipation can reach 50 Watts [3] [68]. Various low-power techniques 

have been employed to lower the power dissipation in microprocessors. In [69], 

a low-power RISC processor that dissipates less than 2 Watts is presented. The 

processor uses a 6Pbit common bus for floating point as weU as integer instruction 

execution, this reduces the number of functional elements. The number of instruc- 

tion cache access is reduced by half. The number of I /O transactions is rninimized. 

Data and instruction caches are partitioned into four banks with only one bank 

active at a time. The dynamic nodes are charged to VDD - VT, rather than to 

VDo. Through software programming, the system clock can be reduced to 25% of 

its value. 

In 1701, low-power techniques were applied to the Alpha 21064 microprocessor 

[71]. These techniques were able to reduce the power dissipation by over 50 times. 

Such low-power techniques include; the lowering of the internal power supply to 1.5 

Volts. Reduced functionality, the floating point unit and the branch history table 

were eliminated. Process scaling from 0.75pm to 0.35prn, this reduced the total 

switched capacitance. The microprocessor dissipates 450 mW. It has two power 

down modes. During the i d e  mode the internal clock is stopped, power dissipation 

drops to 20 mW. During the sleep mode the internal power supply is switched off, 

the current drops to 50pA. 

In [72], another low-power microprocessor is presented that dissipates less than 

h o  watts. This processor features several low-power modes. In the "haltn mode, 

the processor stops its internal clock. The system can also change the input fie- 

quency. During the shutdown state, the system disconnects the processor from 

the VDD7 the register contents are saved in the memory. At power up, the system 

ret u n s  the regis ters to their previous st at e. 



CHAPTER 3. LO W-PO WER DESIGN TECHNIQUES 31 

In [73], another low-power microprocessor is presented that dissipates 3 Watts. 

The processor has dynamic as well as static power management modes. The dy- 

namic power management disables blocks that are not required to operate during 

a cycle. Dynamic power management can give up to 30% power saving. There are 

three static power management modes; Doze, Nap and Sleep. This processor uses 

an H-Tree clock distribution network over a set of distributed buffers to minimize 

active power. 

3.5 Reducing the Power Dissipation at the De- 

vice and Circuit Levels 

There are several techniques, during each level of the design process, to reduce the 

power dissipation. At the device level, the following techniques lead to lower power 

dissipation: 

Silicon-On-Insulator (SOI) technology, this leads to lower Ieakage cur- 

rents and lower parasitic capacitances [74] [75]. 

Place and route optimization. Assign signals with high switching activ- 

ities to short wires. Also, assign global signals, such as the clock, to layers 

with low capacitance per unit length. 

a Transistor sizing. Increasing (W/L) decreases the transistor delay which 

d o w s  a decrease in voltage to maintain a constant throughput. However, 

increasing the transistor size increases the capacitance and hence the power 

dissipation. Hence, an optimum transistor size for minimum power dissipa- 

tion exists. If the interconnect capacitance is C,, and the transistor input 
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capacitance is Ci. It is found that, for s m d  Cp/Ci, the optimum transis- 

tor size is the minimum size, othemise there is an optimum size that gives 

minimum power dissipation [4l]. 

Using su bmicron devices. This reduces the parasitic capacit ances and 

allows the use of lower supply voltage, with minimum eEect on the delay, for 

a velocity-saturated device [76]. 

0 Reducing the subthreshold voltage. This allows a reduction in the op- 

erating voltage, with minimum effect on the delay. But this leads to larger 

subthreshold currents. Hence, a compromise is required. Some designs use a 

multi- t hreshold voltage technology [77]. WhiIe others use a variable threshold 

voltage (651. 

At the circuit and logic Ievels, the following techniques can be used to reduce 

the power dissipation: 

a Reduce gat e capacitance, for example cornplementary pass- transistor logic 

has a lower input capacitance than conventional CMOS logic [78]. 

a Reduced logic swing [41] by making VH = VDD - VT. However, this has 

two disadvant ages: 

1. Low noise-margin-hi& (NT&). 

2. Following gate can dissipate static power. 

0 Low-power support circuitry 

- Level converting circuit [41]. 

- High efficiency low-voltage DC/DC converter [79]. 
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0 Logic level power-down. Modifying the circuits to d o w  power-down of 

unused logic blocks. This adds some overhead but can be beneficid if there 

are certain blocks that are not used for a large portion of the tirne [41] [80]. 

0 Multi-threshold circuit technology. This allows the optimization of low- 

voltage circuits for high-speed and low-power [63] [81]. 

Scded multi-buffer stages. This compromises speed and power for gates 

driving large capacitive loads [3] 1821. 

3.6 Low-Voltage Low-Power Operation 

The switching power is proportional to the square of the voltage, thus a quadratic 

reduction in power dissipation is achieved by lowering the supply voltage. However, 

the delay increases with the reduction of the supply voltage [l]. There are certain 

techniques used to keep the throughput constant despite the longer delay of the 

various building blocks. In this section, some of these techniques are investigated. 

Figure 3.2.a shows the relative increase in delay as the supply voltage is scaled 

down. Figure 3.2.b shows the relative decrease in power dissipation as the voltage 

is scaled down. Both figures were obtained for a CMOS inverter gate loaded by a 

1 pF load and using 0.8prn BiCMOS technology. 

From Figure 3.2, it can be notice that at low-voltage the rate of increase of the 

delay exceeds the rate of decrease of the power dissipation. This usudy  places a 

limit on the extent of using voltage scaling techniques. 

In this section, two methods which d o w  the use of lower supply voltage without 

reducing the throughput are presented. These are: 
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Figure 3.2: The effect of reducing the supply voltage in CMOS circuits, for a 0.8pm 

BiCMOS technology: 

(a) Relative delay versus supply voltage. 
(b)  Relative power dissipation versus supply voltage. 

1. Pipelining and pardelism. 

2. Using c a r y  Save adders. 

3.6.1 Pipelining and Pardelism at the Architecture Level 

The architecture level, is the level in which operators (functional units) act on 

sets of logic values grouped into words. The manner in which these operators are 

intercomected or sequenced in t h e  can have an influence on the performance of 

the architecture in terms of throughput, power dissipation and/or area, without 

afTecting the actual functionality of the architecture. 

For example, consider an architecture consisting of two cascaded operators as 

shown in Figure 3.3.a. Pipelining [83] this architecture, as shown in Figure 3.3.b. 

gives an alternative architecture with the same functionality as the original ar- 

chitecture, but with different performance. It is possible to operate the pipelined 
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Figure 3.3: Two cascaded operators: 

(a) Nonpipelined architecture. 
(b ) Two-s t age pipelined architecture. 

architecture at a lower supply voltage and at the same throughput as the original 

architecture. Thus through pipelining, it is possible to preserve the functionahty 

and the throughput of the system but lower its power dissipation [l], at  the cost of 

latency and extra overhead. 

It is also possible, through parallelism, to decrease the power dissipation of the 

system [l]. In pardelism, the datapath is repeated N times, where N is the degree 

of pardelism. Like pipelining, the reduction of power dissipation in parallelism is 

due to the reduction in voltage, while the throughput is kept constant. Figure 3.4 

illustrates pardelism. 

The merits of pipelining over parallelism are: 

2. Reduced logic depth. Rence, less power due to glitches. 

On the other hand, the disadvantage of pipelining over parallelism is the unbal- 
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Figure 3.4: A twedatapath parde1 system. 

Datapath 1 

anced pipe-stage delay problem [83]. To overcome this, we can combine parallelism 

and pipelining together as ilIustrated in the following example. 

DeMUX 

Example: Combining Pipelining and Parallelism 

MUX 

Consider two cascaded operators A and B as shown in Figure 3.3.a. Assume that: 

Datapath 2 

D(A)  = 1 unit 

D(B) = 2 units 

D(AB)  = 3 units 

Where D(X) means the delay of operator X. 

Pipeline this architecture as shown in Figure 3.3.b. Neglect the register delay 

with respect to that of the operator. The effective delay of the pipelined system 

is determined by the delay of the slowest stage which is 2 units in this case. It is 

possible now to reduce the voltage of the pipelined system to make the through- 

put of that system equal to the throughput of the non-pipelined one. The power 

dissipation, from Figure 3.2, is reduced by about 56%. 
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n 

Figure 3 -5: Combining parallelisrn with pipelining to balance pipest age delays. 

While the power was reduced by more than half of its value, yet we didn't make 

f d  use of pipelining due to the unbalanced pipestage delays. It is possible, by 

combining parallelism with pipelining, to balance the pipestage delays and hence 

achieve a Iarger reduction in power dissipation. Figure 3.5. shows a system that 

combines pardelism with pipelining. In this case, the effective system delay is 1 

unit. dowing an 89% reduction in power dissipation, while maintaining the same 

throughput as the non-pipeiined system. 

There is a limit to pipelining and parallelism beyond whch no improvement in 

power dissipation is possible, this is determined by: 

1. The extra overhead required for pipelining and parallelism. This is repre- 

sented by the pipeline registers for pipelining, and by the multiplexers, de- 

multiplexers and the extra wiring capacitance for pardelism. 

2. At low-voltage, the rate of increase of delay exceeds the rate of decrease of 

power dissipation. 

The concept of parallelism can also be applied to memory accesses, where several 

bytes are accessed in parde l  instead of accessing them sequentidy. Paralleiism 

in rnemory access is possible only if the data access pattern is sequential in nature 

1411- 
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3.6.2 Carry Save Adder 

Addition is the most fiequent operation performed by a digital signal processor, 

whether explicitly or within other operations such as multiplication. Hence, if we 

are able to use faster adders, the delay of the critical path c m  be reduced which 

allows the use of lower supply voltage. 

The delay of the adder is mainly due to the propagation of the carry from 

the least significant bit position to the most sipificant bit position. Consider an 

N - bit adder, the delay of the ripple-carry adder 1841, which is the most power- 

efficient adder [85] compared to other adders at the same voltage, is proportional to 

N. Adders, such as the cmy-lookahead adder and conditional sum adder, have a 

delay proportional to log(N) [84], hence it is possible to lower the supply voltage of 

tkese adders and get a delay equal to that of the ripple-cmy adder. The lowering 

of the supply voltage in these adders leads to a lower power dissipation than that 

of the ripple-cary adder [86]. 

However, it will be much better if the c a r y  propagation can be eliminated all 

together. This will be specially usefd when we have a cascade of adders, which is 

u s u d y  the case in a finite impulse response (FIR) filter. In this case, by using a 

carry Save adder [84] for all adders and using a ripple-cary adder (or any other fast 

adder) for adding the sum and carry words of the last carry Save adder, the delay 

can be significantly reduced, hence a lower supply voltage can be used and lower 

power dissipation is achieved. 

The choice of the adder depends on the following parameters; 

1. The number of adders in the adder chah M. 

2. The number of bits per word N. 
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3. The ratio between the sum delay Ta and the carry delay Tc. 

4. The ratio between the adder power PA and the load power PL. 

5. The relation between delay and power versus voltage (Figure 3.2). 

The power-optimum adder is not necessary the fastest adder. In some cases 

[8ï], the carry Save adder architecture is faster than the ripple c m y  adder architec- 

ture, but the latter is more power efficient even after voltage scaling to maintain a 

constant throughput. This is due to the extra hardware required for the carry Save 

adder architecture [87]. In general, optimization for high throughput is different 

from optimization for low-power [51]. 

3.7 Pipelining and Parallelism of the Discrete 

Cosine Transform 

Discrete cosine transform (DCT) is kequently used in video compression [9] [88]. 

In this section, three different architectures for DCT are considered. the effect of 

pipelining and parallelism on reducing the power dissipation of each architecture is 

also considered. 

The mathematical formula for the one dimensional DCT (ID-DCT) is given by: 

for k = 0 , 1 ,  ..., N - 1  
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Figure 3.6: Multiplier architecture for an %point ID-DCT. 

where, 

( 1 otherwise 

Direct implementation of this algorithm requires N2 multiplications and N(N - 

1) additions, this not ody increases the power dissipation, but the area and/or delay 

as well. 

3.7.1 Three Alternative Architectures 

The Multiplier Architecture 

While the direct implementation of an bpoint ID-DCT requires 64 multiplications 

and 56 additions, various algorithms have been proposed that require a fewer num- 

ber of additions and multiplications. As an example, the algorithm given in [89] 

and shown in Figure 3.6, requires only 29 add/sub blocks and 13 multipliers. 
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Figure 3.7: Pure ROM architecture for an 8-point ID-DCT. 

The Pure ROM Architecture 

The idea of this implementation is to replace the multiplication operation with ad- 

dition and a look-up ROM table. This process is known as distributed arithmetic [9] 

Pol 
We can use distnbuted arithmetic to implement the 8-point ID-DCT. The block 

diagram for this architecture is shown in Figure 3.7. Eight 256-word ROMs are 

required for this architecture. 

The Mixed ROM Architecture 

The &point ID-DCT can be expressed as the product of an 8 x 8 matrix by an 

eight element column vector. However, through dgebraic manipulation (91 (891, 

this rnatrix can be broken down into two 4 x 4 matrices, as given by the foIlowing 

equat ions: 
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where, 

In this case, the number of words per ROM is only 16 words (16 times less than 

the pure ROM architecture), but some overhead has been incurred in the adders 

required to calculate the address of the ROMs. Figure 3.8 shows a block diagram 

for this architecture. 

3.7.2 Reducing Power Through Pipelining and Parallelism 

Pipelining 

As the voltage decreases, to decrease the power dissipation, the overd delay of 

the datapath increases (an undesirable side effect). To counteract this increase in 

delay, we can use pipelining (11. The rational of using pipelining here is that the 

increase in delay accompanying the decrease in voltage is balanced by dividing the 

dat apat h into smaller pipes tages and keeping the maximum delay of any pipestage, 
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Figure 3.8: Mixed ROM architecture for an &point ID-DCT. 

at the lower voltage, equal to the ove rd  delay of the datapath without pipelining, 

at the higher voltage. 

As a f i s t  order approximation, make the following assumptions: 

O Neglect the effect of overhead caused by the pipeline registers, whether in 

t erms of increased capaci tance or increased delay. 

O Assume that the pipeline can be perfectly balanced. All pipestages have the 

same delay. 

0 The delay of any stage is inversely proportional to the applied voltage. 

To maintain the same maximum throughput when dividing the datapath into 

N pipestages, each pipestage operates at a voltage VIN. The power dissipation in 

this case is approximately given by: 
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Where, P. is the power dissipation before pipelining, and Ppl is the power dis- 

sipation after pipelining and reducing the voltage. 

Parallelism can also be used to keep the throughput of the system constant as the 

voltage deneases (11. To compensate the increase in datapath delay as the voltage 

decreases, we replicate the datapath N times. The input samples are split among 

the N datapaths. The outputs of the N datapaths are then multiplexed onto a 

single output stream. This allows the system to maintain its throughput, while 

each datapath is operating at a lower rate and a lower voltage. 

Unlike pipelining, parallelism greatly increases the area. Making approximations 

similar to those made in the analysis of pipelining, we can show that the power 

dissipation of a system consisting of N parde l  datapaths and having the sarne 

throughput rate is approximately given by: 

Where, P. is the power dissipation for a single datapath system, and P, is the 

power dissipation for a system consisting of N pardel datapaths and having the 

same maximum throughput as the single datapath system. 

3.7.3 Performance Evaluation 

The Multiplier Architecture 

Table 3.1 gives the Spice simulation results of the overd  delay and power dissipation 

of the multiplies architecture of Figure 3.6 in a 0.8pm BiCMOS technology, the 
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Table 3.1: Delay and power dissipation at 5 MHz for the multiplier implementation 

with no pipelining. 

power dissipation is evaluated at a frequency of 5 MHz. Notice that the power 

dissipation is reduced as the voltage decreases, but this is at the expense of the 

increased delay (decreased throughput). To maintain the same throughput rate at 

the lower voltage we use pipelining or parallelism. 

Voltage 

5 

4 

3.3 

Figure 3.9 shows the approximate relation between the power dissipation and 

the number of pipestages, given by Equation 3.7. Also shown are the simulation 

results obtained from pipelining the multiplier architecture. Everything has been 

normalized to the case of a single stage system operating at the same throughput. 

It is also possible to maintain the same throughput while reducing the voltage 

by applying parallelism. Figure 3.10 shows the approximate relation between the 

power dissipation and the number of datapaths, given by Equation 3.8. Also shown 

are the simulation results obtained from increasing the degree of pardelism of the 

multiplier architecture. Everything has been normalized to the case of a single 

datapath system operating at the same throughput. 

Delay 

101.56 nS 

132.27 nS 

162.53 nS 

Power 

13.49mW 

7.64mW 

4.99mW 
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Figure 3.9: The effect of pipelining on reducing the power dissipation, white main- 
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Figure 3.10: The effect of pardelism on reducing the power dissipation, whJe 

maintaining a constant throughput . 
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Table 3.2: Total delay and power dissipation at  5 MHz for the pure ROM architec- 

t ure. 

The ROM Architectures 

Two different types of ROM architectures were considered. First, the pure ROM 

architecture, which requires eight 256-word ROMs is considered. The Spice sim- 

r 

Voltage 

5 

4 

3.3 

ulation results of the overd delay and power dissipation for this architecture are 

given in Table 3.2. All eight ROMs have the same address, hence a single ROM 

address decoder was used. 

Delay 

86.5 ns 

111.4 ns 

137.1 ns 

Power 

30.4 mW 

18.3 mW 

10.5 mW 

The second type of ROM architecture considered is the mixed ROM architec- 

ture. This architecture requires eight lbword ROMs. But it requires eight extra 

adderlsubtractor units. The simulation results of the overall delay and power dissi- 

pation for this architecture are given in Table 3.3. The eight ROMs can be divided 

into two groups, the ROMs of each group have the same address. Hence, two ROM 

address decoders were used. 

t 

Three architectural alternatives, in addition to the single stage alternative, were 

considered for each of the pure and mixed ROM implementations: 

O Two stage pipeline. 

0 Two stage pipeline with two pardel adders per path, Figure 3.11. 
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Table 3.3: Total delay and power dissipation at 5 MHz for the mixed ROM archi- 

tecture. 

Figure 3.11: Using two pardel adders in the second pipestage. 

Voltage 

5 

4 

3.3 

Two stage pipeline with three pardel adders per path, Figure 3.12. 

Tables 3.4 and 3.5 show the effect of pipelining and parallelism on reducing 

the power dissipation in the pure ROM and mixed ROM implementations. The 

advantage of using parallelism with pipelining is to balance the pipestage delays. 

Delay 

79.5ns 

103.7 ns 

129.1 ns 

In terms of power dissipation, the multiplier architecture has the lowest power 

dissipation, while the pure ROM and the mixed  ROM architectures have higher 

power dissipations. In t ems  of speed, the multiplier architecture is the slowest and 

the mixed ROM architecture is the fastest. 

Power 

30.1mW 

18.1 mW 

11.0 mW 

Pipelining the ROM architectures provides only a modest reduction in power 

dissipation, or a modest increase in throughput if the voltage is kept constant. This 

is because of the unbalanced pipestage delays. The delay of the second pipestage is 

2-2.5 times the delay of fLst pipestage. Pardelism in the second pipestage is used 
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Figure 3.12: Using t k e e  parde l  adders in the second pipestage. 

Table 3.4: Reducing the power dissipation by pipelining and parallelism in the pure 

ROM implementation. 

Delay(ns) 

85 - 90 

65 - 70 

52 - 57 

42 - 46 

Architecture 

Single stage 

2 stage 1 addlpath 

2 stage 1 add/path 

2 stage 2 add/path 

2 stage 2 addlpath 

2 stage 3 addlpath 

2 stage 2 addlpath 

2 stage 3 addlpath 

Power (mW) 

30.4 (@ 5V) 

21.9 (@ 4V) 

36.1 (O 5V) 

14.5 (Q 3.3V) 

24.6 (Q 4V) 

14.5 (Q 3.3V) 

40.6 (Q 5V) 

24.9 (@ 4V) 
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Table 3.5: Reducing the power dissipation by pipelining and parallelism in the 

mked ROM implement ation. 

Delay(ns) 1 

to devia te  this problem as shown in Figure 3.11 and Figure 3.12. 

Architecture 1 ~ o w e r  ( m ~ )  1 
7 - 

6 5 - 7 0  

50 - 55 

41 - 43 

Using a two stage pipeline, and three times pardelism in the second stage of 

the pure ROM architecture, reduces the power dissipation by 52% and increases 

the throughput by 38%, when lowering the voltage from 5 Volts to 3.3 Volts. For 

the mixed ROM architecture, a two stage pipeline, with three times pardelism in 

the second stage, achieves a 47% saving in the power dissipation, and increases the 

throughput by 36%. 

3.8 Effect of the Number System on the Switch- 

ZstageIadd/path 

2 stage 2 addlpath 

2 stage 2 add/path 

2 stage 3 addlpath 

2 stage 2 addlpath 

2 stage 3 add/path 

ing Activity 

35.7(@5V) 

15.0 (@ 3.3V) 

24.4 (B 4V) 

16.0 (O 3 . W )  

40.2 (O 5V) 

25.8 (B 4V) 

In this section, I demonstrate how the choice of the number system can reduce 

the swit ching activity. Two number systems are considered, the two's complement 

number system and the Gray code number system. The Gray code number system 
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has the advantage that any two adjacent numbers dXer in one bit only. So that, 

by coding correlated sampies in Gray code we can effectively reduce the switching 

activity (911. 

Assume positive samples, hence instead of considering two's complement repre- 

sentation, unsigned binary representation is considered. Each sarnple is represented 

by an N bit binary word, each binary word is assigned an integer n. The range of 

n is: 

n = O...zN - 1 

The binary word is the unsigned binary representation of n, or the Gray code 

of n depending on which representation is used. Let i be the integer representing 

the curent sample and j be the integer representing the previous sample. Assume 

that the conditional probability distribution is given by: 

M + l - ! i - j [  li - jl 5 M (M+1)2  

O ot herwise 

M is a factor which describes the correlation between the successive samples. 

The larger the value of M, the less correlated the samples are. Figure 3.13 shows 

the conditional probability distribution of x, given x,-1, for different values of M. 

Using the probability distribution given in Equation 3.9, we can derive the 

switching activity for different values of M. This is given in Table 3.6. a, is the 

switching activity for the Gray code representation, while a, is the switching ac- 

tivity for the unsigned binary representation. 

Notice that as the correlation between the successive samples is reduced, the 

effectiveness of the Gray code in reducing the switching activity becomes less. An- 

ot her factor in determining the power-op timum number system is the complexity 
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Pro b 

0.25 1 

Prob 

0.5 

0.25 

Figure 3.13: Conditional probabili ty dis tribution between successive samples for 

Werent  values of M. x,-1 is the value of the previous sample. The x-axis represents 

the value of the current sample. 

A 

, 

, 



CHAPTER 3. LOW-POWER DESIGN TECHNIQUES 53 

Table 3.6: Switching activity of the Gray code and the unsigned binary represen- 

tations for correlated samples. 

of the operator and hence the energy dissipated per single execution of the opera- 

tor. It is quite ~ossible that the choice of a number system to lower the switching 

activity will lead to higher operator energy. Hence, a compromise is required in 

choosing the power-optimum number system. 

As an example, consider the addition operat or. The adder operates repeatedly 

on correlated successive samples. Two number systems are considered: 

1. The unsigned binary number system. 

2. The Gray code nurnber system. 

Four factors are considered in detennining the optimum number system: 

1. The correlation factor p. 

2. The number of bits per word N. 

3. The operator energy ratio. 
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4. The relative load capacitance. 

The effect of the correlation factor and the number of bits per word on the 

switching activity is given by Table 3.6 and shown i . ~  Figure 3.14. The operator 

energy ratio depends on the details of the circuits and the implementing technology 

for each number system adder. Hence, this ratio can vary fkom one implementa- 

tion to the other. Yet, a f i s t  order estimation is required. This was done by 

writing a VHDL description for each adder, and then synthesizing this design and 

estimating its power dissipation using the COMPASS tools. For a single operator 

execution. the energy dissipated in an unloaded Gray code adder is about double 

that dissipated in an unsigned binary representation adder. 

Let a, be the switching activity of the unsigned binary number representation. 

Let ag be the switching activity of the Gray code number representation. Let Pu 

be the normalized power dissipated by the unsigned binary adder. Let Pg be the 

normalized power dissipated by the Gray code adder, and let f i  be the normalized 

power dissipated by the adder load. The total power dissipated by each adder and 

its load is given by: 

pu = %(pu + PI) (3.10) 

PG = a g ( P g  + 8) (3.11) 

for the unsigned binary adder and the Gray code adder respectively. 

The objective is to find the boundary at which the two adders dissipate the same 

amount of power. On one side of this boundary, the unsigned binary representation 

has lower power dissipation. While on the other side, the Gray code representation 

has lower energy dissipation. The Equation of this boundary is given by: 
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Relative Switching 
Activity 

Figure 3.14: The ratio between the switching activity of the unsigned binary rep- 

resentation and the Gray code representation versus the correlation factor M, for 

different word length N. 
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w here, 

S.= z. 
Figure 3.15 shows the relation between RG and RL for different values of N 

and M. N is the number of bits per word, while M is a factor related to the 

correlation between the successive samples. For a certain RL, a value of Rc higher 

than that given by the cuves means that the unsigned binary representation is 

more power-efficient than the Gray code representation and vice versa. 

3.9 Reducing the Number of Iterations 

In this section, the effect of reducing the number of block iterations per output on 

the power dissipation is examined. Two examples are given. In the first example, 

the number of block iterations per output for a division algorithm is reduced. This 

is done by using higher-order radix. The effect of this on power dissipation is 

illus trated. 

In the second example, a division algorithm is developed which reduces the 

number of add/sub operations required per output [92]. The effect of this on 

reducing the power dissipation is illustrated. 

3.9.1 Higher Radix Division Algorit hms 

In the division process 1931 the dividend X is divided by the divisor D to generate 

the quotient Q. The division operation is expressed as: 
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Figure 3.15: The relation between the relative Gray code adder power and the 

relative Ioad power, for equal power dissipation in the Gray code and unsigned 

binary adders. N is the number of bits per word. M is a factor related to the 

cordation between successive sampIes. The larger the value of M, the less the 

correlation between successive samples. 
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In Equation 3.13, T is the radix order. For the purpose of this discussion, r is 

a power of 2, r = 2m, where m is a positive integer. q O 1,. . . , T - 1 .  The 

purpose of the division algorithm is to find the quotient digits ql,  q z ,  . . . q,. In the 

digit-recurrence division a lgor i th ,  the quotient digits ql , q 2 ,  . . . , qn are ob tained 

sequentidy starting with ql. 

In the process of obtaining the quotient in the two's complement representation, 

an intermediate quotient in a redundant signed-digit representation is first obtained. 

For the intermediate quotient, q; E {-a,. . . , - l , O ,  1,. . . !a). Where, a < r. a is an 

integer. 

During iteration j + 1, the quotient digit qj+l is generated by the Quotient Digit 

Selection (QDS) unit: 

qj+l = QWPW, (3 .14)  

A new partial remainder is generated according to the following equation, 

P ( j  -t 1) = r P ( j )  - Dqj+i, (3.15) 

with 

Where 

P ( j )  is the partial remainder after j iterations. 

j =  O...(n-1). 
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r is the radix of the number system. 

D is the divisor. 

Figure 3.16 shows the block diagram of the digit-recurrence division algorithm. 

Several points need to be clarifed about this block diagram. The adder used is 

a carry Save adder which generates two outputs the sum and the carry of the 

partial remainder. The QD S requires the partial remainder in two's complement 

format. However, when using a redundant quotient-digit set the accuracy of the 

partial remainder required by the QDS is limited. Hence, the carry propagate adder 

(CPA) is of limited accuracy, adding only a few of the most significant bits of the 

sum and carry of the partial remainder. The quotient is generated in signed-digit 

format [94] (a redundant quotient-digit set), hence a module is required to convert 

it to the two's complement format. This is done by On-The-F?y (OTF) module 

[95l 

For the same accuracy, the number of iterations n depends on the radix used. 

Assume that n is 12 for a radix 2 algorithm, then n is 6 for a radix 4 algorithm, 4 

for a radix 8 algorithm, 3 for a radix 16 algorithm and so on. However, reducing 

the block activity factor, i.e. the number of iterations per second, doesn't necessary 

lead to lower power dissipation. Higher radix blocks are more complex and hence, 

dissipate more power. 

For low-power design, the objective is to minimize the power dissipation after 

meeting the throughput requirement. There are two conflicting factors that need 

to be taken into consideration: 

0 The block activity factor. This decreases as the radix order increases. 

The normalized energy per block. This increases as the radix order increases. 
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OTF I =- 
Q 

Figure 3.16: Block diagram of a digit-recurrence division algorithm. 

In addition, the effect of voltage scaling, if permissible by the technology, has 

to be taken into account. 

Table 3.7 shows the parameters of each radix-dependent block. For the QDS, 

the numbers shown determine the number of integer bits and the required fractional 

accuracy for the shifted partial rernainder TP and the divisor D. The actual number 

of bits the QDS requires fiom D is one less than the accuracy of D, because D is 

always in the range [0.5,1). The range of the signed-digit quotient digits is [a, -a]. 

a is chosen to minimize the cornpukation done in the Divisor Multiples module. 

Using the data of Table 3.7, the relative speed and relative power dissipation 

of each block in Figure 3.16 can be estimated. The word relative means relative to 

radix 2. Tables 3.8 and 3.9 show this data. For the CPA, the power dissipation 

is proportional to the number of bits added. The delay is also proportional to 
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Table 3.7: Parameters of the radix-dependent blocks of Figure 3.16. 

the number of added bits. The QDS is a combinational logic book, the power 

dissipation is estimated according to [96]: 

where, 

n and m are the number of inputs and outputs respectively. 

Hi and Ho are the entropies of the input and output respectively. 

Assuming that ail inputs and outputs are equally probable 

2nfL 
Poc m(n + 2m) 

37472 + m) 

The delay of the QDS is proportional to the radix. For the Divisor Multiples 

(DM), this module generates one or two outputs (in case of radix 8 and 16) from 

the divisor D through shifting. In the case of radix 8 and 16, these two outputs 

should be added, hence a two-level CSA is required. 

The OTF consists of two parts. Two registers N bits each, and a combinational 

logic block. The relative power dissipation between these two blocks has to be 
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Table 3.8: Relative power dissipation for the different blocks of Figure 3.16. 

Table 3.9: Relative delay for the different blocks of Figure 3.16. 

determined, so when comparing the relative power dissipation and delay for the 

different radices the two blocks are compared independently. 

Radix 

2 

4 

8 

16 
I 

To evaluate the performance of each radix implement ation, the relative power 

dissipation and the relative delay of each building block for the Radix 2 division 

algorithm has to be known. This was done through cornputer simulation. The 

results obtained are shown in Table 3.10. 

Using the data given in Tables 3.8, 3.9 and 3.10, the power dissipation and the 

t hroughput of any radix division algorithm relative to the ra& 2 division algorithm 

can be calculated. If it is also possible to scale the voltage to get equal throughput, 

the power dissipation of any radix division algorithm relative to the radix 2 division 

SCR 

1 

1 

1 

1 

CPA 

1 

1.75 

2 

2.75 

QDS 
1 

2 

3 

4 

CSA 

1 

1 

2 

2 

DM 

1 

1 

1 

1 

OTF 

1 + 1  

1 + 2  

1 + 3  

1 + 4  
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Table 3.10: Relative power dissipation and delay for the different blocks of Fig- 

ure 3.16 for a radix 2 division algorithm. 

ower 7.2 1 0.17 4.9 1 ie lay / 1.7 / 1 1 1.2 / 0.85 

SCR 

algorithm can be calculated with help of Figure 3.2. Figure 3.17 shows the relative 

throughput and power dissipation with and without voltage scaling. 

Notice from Figure 3.17.a that as the ra& order increases the power initially 

decreases. This is because the reduction in the block activity is greater than the 

increase in the normalized block power. As the radix order increases more, the 

increase in the normalized block power exceeds the decrease in the block activity 

factor. Hence, the over all power dissipation increases. 

CPA 

Another factor, that can be taken into consideration, is the increase in through- 

put as the radix order increases. This dows a reduction in voltage to equalize 

the throughputs, reducing the power dissipation of the higher radix systems. Even 

after taking into account the effect of voltage scaling, rad& 16 has higher power 

dissipation than radix 2. However, with voltage scaling the minimum-power radix 

has shifted fiom 4 to 8. 

The reason for the high power dissipation of radk 16 is the complexity of the 

QDS module. This is because a is limited to 10, so as to limit the number of output 

words from the Divisor Multiples unit to 2, which only requkes one extra CSA level. 

Allowing a to go up to 14 greatly reduces the complexity and power dissipation of 

the QDS, but increases the power dissipation in the Divisors Multiples unit and 

in the CS A. The choice of one alternative over the other depends on the relative 

QDS CSA 
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Relative 

Throughput "5 2 

10 

Relative 

Power 

Radix 

( I I 1 

: withour with volngc voltage sding d i n g  - : 
. 

Figure 3.17: The  eEect of the radix on the power dissipation and throughput of the 

division algorit hm. 

(a) Relative power dissipation with and without voltage scaling. 

(b) Relative throughput . 

0.1 - 1 I 

2 4 8 16 

Radix 
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power dissipation between the various modules. 

3.9.2 Minimizing Add/Sub Operat ions in Division 

In the multiplication process, the minimum number of add/sub operations occurs 

when the multiplier is in the minimal signed-digit ( SD ) representation (having the 

minimum number of non-zero digits). One can thus expect the minimum number 

of add/sub operations required in the division operation to occur when the resul- 

tant quotient has the minimal SD representation. In the following discussion, we 

concentrate on how to generate this minimal SD quotient. 

Consider the division operation: 

where X < D. Based on the values of X, we can proceed to calculate the partial 

rernainder as follows [97] [98]: 

where, O 5 y < !. 
To get the shifted partial remainder, we only have to multiply X by 2. 

where, O 5 y < i. 
112 requires only one digit for its representation. To get the shifted partial 

remainder, we subtract 0 1 2  from X and multiply the remainder by four. 
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3. If $LI 5 X < D, then 

where, O 5 y < a. Alternatively, 

where, O 5 r < !. 

The second representation is preferied over the first one, because 1 can be 

represented by one digit, while 4 needs two digits (i.e. 0.7510 = 0.112). In this 

case, to get the shifted partial remainder, we subtract D fiom X and multiply 

the remainder by four. 

It is clear from the above discussion that X is e s t  compared with aD and $D. 

Depending on this cornparison result one of the following two actions is taken: 

Either a subtraction operation is performed and the resulting remainder is 

multiplied by 4 (shift to the left by 2) to get the new partial remainder. 

0 Or no subtraction is required and the partial remainder is multiplied by 2 

(shift to the left by 1) to get the new partial remainder. 

Now a division algorithm can be formdated as follows: 

If < 0 1 2  



CHAPTER 3. LOW-POWER DESIGN TECHNlQUES 

As it can be seen in the above algorith,  each iteration is divided into two steps, 

each of which can be performed in a clock cycle, when implemented in VLSI. In the 

first step, the cornparison is performed. The addition (subtraction), if required, is 

performed in the second step. As a result, a one step iteration produces one quotient 

digit, while a two step iteration produces two quotient digits. This technique has 

two advantages. First, it allows the use of a shorter clock cycle. Second, the division 

period is independent of the number of non-zero quotient digits. Figure 3.18 shows 

a block diagram of the proposed division algorithm. 

Now we want to show that the obtained SD quotient contains the minimum 

number of nonzero digits. For a minimal SD quotient in the canonical form, any 

two adjacent digits should contain at least one zero digit (841. However, for the 

quotient representation obtained by the algoritkm presented here, it is possible 

to get two adjacent 1's or two adjacent 1's. Consider the case of two adjacent 

1's. This is obtained when we have a partial remainder with a value in the range 

[$D, $D), and the following partial remainder is in the range [:D, D). In this case, 

the resultant sequence of digits is 0 1 1 0. Changing this to canonical form, it 

becomes 10I0, which also contains two nonzero bits. Thus, the SD representation 

obtained for the quotient is a minimal SD representation. The average number of 

zeros, in the quotient, is 66.7%. 

B y  exploiting the redundancy of the signed-digit representation it is possible to 
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üivisor Multiples '1 
Figure 3.18: Minimum Add/Sub Division Algori t hm. 
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Figure 3.19: Minimum addlsub division algorithm using a limited precision QDS 

and a CSA. 

use a limited precision QDS which has a lower complexity, and to use a CSA adder. 

This leads to lower power dissipation and to faster operation [92]. Figure 3.19 shows 

the block diagram of the modified algorithm. 

The updating of the d and p+ registers proceeds as foUows: 

1. If' an addition operation occurred in the last cycle, the and $+ registers 

are loaded with the values produced by the CPA. 

2. If no addition operation occmed in the last cycle, P and p+ are updated as 
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where, 

S and C are the sum and carry registers respectively. 

Subscripts n and o denote the new value and the old value of the registers 

respectively. 

The superscript is the bit position with respect to the partial remainder. 
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In order to find the average number of zeros in the quotient, due to the diaculty 

in solving this problem andytically or even numerically, we had to restore to simu- 

lations. The simulation has been perfonned on half-a-million r andomly generated 

numbers. The average percentage of zeros in the quotient has been found to be in 

the order of 65%, which is quite dose to the previous percentage of 66.7%. 

The power dissipation of the proposed division algorithm is compared to that of 

Radix 2 and Radix 4 division algorithms [93]. Figure 3.16 shows the block diagram 

of the Radix 2 and Ra& 4 division algonthms [93], used in the comparisons. The 

Radix 2 division algorithm generates one bit per iteration. The number of iterations 

is equal to the number of digits in the quotient. Each iteration requires one addition 

and one QDS operation. 

The Radix 4 division algorithm generates two digits per iteration. The number 

of iterations is thus haIf the number of iterations required for the Radix 2 division 

a lgor i th ,  reducing the number of additions and QDS operations by 50%. However, 

the reduction in power dissipation is less than 50%, because of the increase in 

complexity as explained previously. 

The proposed division algorithm reduces the number of addition/subtraction 

operations to 33% of the number required by the Radix 2 division algorithm. Corn- 

pared to the Radix 4 division algori t hm it is reduced by 33%. However, t here is an 

increase in the number of QDS operations for the proposed algonthm over that of 

the Radix 4 algorithm. 

The power, speed and area performance of the diBerent division algorithms have 

been compared using computer simulation. A VHDL description has been written 

for each module of these algorithms. The VHDL files have then been synthesized 

in a 0.8pm 5 Volt Standard Cell CMOS technology. Through simulation, the per- 
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Table 3.11: Performance cornparisons of the different division algorit hms. The 

power is measured at a speed of 15 M division operation per second. 

/ Features 11 Radix 2 / Radix 4 1 Proposed / 

( Power (mW) 11 13.2 1 8.5 1 7.2 / 
Area ( p m )  

1 Speed (M wordsfs) 11 1.10 1 1.45 1 1.40 1 

formance of the synthesized algorithms has been measured. Table 3.11 gives the 

simulation result s for the division algorit hms considered. 

Algori thm 

1600 

The power saving in the proposed division algorithm over that of the Radix 4 

division algorithm is less than 33%, this is because some units, which operate 

during the first clock cycle, operate for 67% of the tirne. It has been found through 

computer simulation that the power saving for the proposed algorithm over the 

Radix 4 algorithm is 15%. 

When the power dissipation of the proposed division algorithm is compared to 

that of the Radix 2 division algorithm, the power saving is found to be 45%. 

Algorit hm 

1900 

3.10 Reducing the Computational Complexity: 

Algorit hm 

2000 

Vector Quant izat ion Example 

Vector quantization [88] is a compression technique. It exploits the correlation 

that exists between successive samples by quantizing a group of successive samples 

together. The encoder of a vector quantizer finds the representation vector closest 
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to the quantized vector. The index of this vector is transmitted to the decoder. 

The decoder uses a look-up table or through computations finds the value of the 

representation vector. 

The search process performed by the encoder, requires large computational ca- 

pabili t ies to be performed exact ly. Rowever , approxima t e search algori t hms exis t , 

which greatly reduce the computational complexity with a much less degradation 

in performance. In this section, Full-Search Vector Quantization (FSVQ) and Tree- 

S tructured Vector Quantization (TSVQ) [88] are considered. 

Consider a vector X consisting of 8 samples. Each sample consists of 6 bits. 

This vector is to be approximated to the dosest representation vector in set {Ci)  

of 64 representation vectors. That is, the compression ratio is 8:l. The closest 

representation vector to vector X is the one having the minimum square error 

Full-Search Vector Quantizat ion, requires the calculation of the square error for 

every representation vector, then comparing the square errors to find the index of 

the representation vector with minimum square error. This always finds the nearest 

neighbour, however, it requires great computational capability as can be seen from 

Table 3.12. 

In Tree-Structured Vector Quantization , the search is performed in stages [88]. 

During each stage, a subset of the representation vectors is eliminated from con- 

sideration by a relatively small number of operations. In general, consider a tree 

n stages deep and having a branching factor m (the number of branches leaving a 

node) as shown in Figure 3.20. Each node in the tree has m vectors corresponding 

to each one of its m branches, the branch whose vector gives the minimum square 
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Figure 3.20: Tree-Structured Vector Quantization. 

error, is chosen. The representation vectors corresponding to ail the other branches 

are eliminated. 

The total number of representation vectors is given by 

The computational complexity of this algorithm is proportional to rn log,(N) [88]. 

Minimum computational complexity is achieved at rn = e.  But m has to be an 

integer and preferably a power of two. Hence, m = 2 or 4 is an  optimum choice 

for minimum computational complexity. However, higher values of m give better 

performance but a t  the expense of greater computational complexity [88] [99]. Ta- 
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Table 3.12: Cornputational complexity and memory requirement of VQ encoding 

algorithms. The VQ algorithm encodes a 6Clevel eight-sample vector into one of 

64 representation vectors. 

ble 3.12 compares the computational requirernents for various TSVQ algorit hms 

and that of the FSVQ algorithm. 

Algori t hm 

FSVQ 

TSVQ m = 2 

TSVQ nz = 4 

TSVQ rn = 8 

Notice fkom Table 3.12, that while the computational complexity decreases the 

ROM size increases which can Iead to an increase in the power dissipation. An- 

ot her factor in choosing the vector quantization a lgof i th  is the performance of 

the algorithm, generally the lower the computational complexity, the lower the per- 

formance. However, for TSVQ the degradation in performance can be quite s m d  

[a81 

3.11 Chapter Summary 

# of ADD/SUB 

960 

180 

180 

240 

Reducing the power dissipation of CMOS circuits is a necessity for the design 

of portable systems. In this chapter, the sources of power dissipation in CMOS 

circuits, the methods of estimating the power dissipation, and examphs of low- 

power electronic systems were considered. 

# of Mult. 

512 

96 

96 

128 

# of Mem. access 

512 

96 

96 

128 

ROM size 

512 Byte 

1008 Byte 

672 Byte 

576 Byte 
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Reduction of the power dissipation can be achieved at the various design levels. 

Some of the techniques used to lower the power dissipation at the device and circuit 

levels were presented in this chapter. At the architectural and algorithmic levels, 

there is great opportunity to further lower the power dissipation. 

For example, through architectural changes such as pipelinhg and parallelism 

or the use of fast adders, it is possible to increase the speed of the architecture and 

hence reduce the voltage to maintain the same throughput and lower the power 

dissipation. The effect of pipelining, parallelisrn, and a combination of both were 

considered for three different architectures of the discrete cosine transform (DCT). 

One of these architectures uses a fast DCT algorithm (891. The other two depend 

on the use of distributed arithmetic [SOI. 

The choice of the number system can influence the power dissipation. The 

Gray code representation and its power dissipation relative to the unsigned binary 

representation was considered. Reducing the block activity factor is anot her way to 

reduce the power dissipation. This can be done by the choice of a higher radix, or 

by the choice of a number representation that minimizes the number of operations 

required per output. Findy,  the effect of using approximate search algorithms, for 

vector quantization, such as the tree search vector quantization algorithm [88] was 

considered. 



Chapter 4 

Subband Coding: A Low-Power 

Design 

4.1 Introduction 

The increase in demand for mobile telecommunication systems and the limited 

bandwidth allocated to these systems has forced research for innovative techniques 

to increase the spectral efficiency of mobile systems. Some of these techniques are 

related to the architecture of the mobile network [IO01 [101]. While others are based 

on the compression of the user information transmitted across the mobile network. 

Power efficiency is of ut mos t importance when designing compression algori t hms 

for mobile terminah. Compression algorithms and in particular video compres- 

sion algorithrns demand great cornputational capability [9], which in turn leads 

to greater power dissipation. The desire to have multimedia portable equipment 

has motivated work towards low-power implementations of video compression al- 

gonthms [102]. 
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In this chapter, the design of a low-power subband coding image compression 

algorithm is investigated. Section 4.2 is a brief overview of videolimage compression 

dgorithms. In section 4.3, the basics of the subband image compression algorithm 

are reviewed. 

In section 4.4, the effect of performance-power tradeoff for subband coding is 

considered. The structure of the analysis/synthesis filter system used in the low- 

power subband coding image compression algorithm is developed. A filtering struc- 

ture with a small number of taps is used. The statisticd properties of each subband 

signal is obtained. This is required to calculate the number of bits allocated to each 

subband. A power-efficient vector quantization dgorithm, dong with the architec- 

ture used to implement it are also developed in this section. 

Findy, in section 4.5, the performance of the new subband coding algorithm 

and its power dissipation are evaluated and compared to those of conventional 

subband coding image compression algorithms. 

4.2 Video Compression Algorithms 

The information transmitted over the mobile network can be divided into three 

categories, data, audio and video (and image). Each type of information has its 

own characteristics and the corresponding compression algorithm should satisfy 

certain requkements. For data, it is important that the compression algorithm 

introduces no errors, a lossless compression algorithm must be used in this case. 

For audio and video, some noise is tolerable. The amount and spectral content of 

this noise depends on the characteristics of the human auditory and visual systems. 

The compression algorithm needs to take into account the type of correlation 



CHAPSER 4. SUBBAND CODING: A LOW-POWER DESIGN 79 

(redundancy) in the signal to be compressed signal. Audio signals have one dimen- 

sional correlation (temporal redundancy ) . Images have two dimensional correla- 

tions (spatial redundancy). While video signals have both spatial redundancy as 

well as temporal redundancy. 

The target of image/video compression is to reduce the bit-rate required to 

transmit the signal, while maintaining its quality. A digital picture at TV resolution 

requires about one million bytes without compression. Hence direct use of digital 

transmission or storage will not be efficient. Current imagelvideo compression 

standards offer from 1/10 to 1/50 compression ratios without affecting the image 

quality. 

The following values, give the relation between the amount of compression and 

the quality of the video signal (1031: 

0.25-0.5 bpp (bit per pixel) moderate to  good quality. Adequate for some 

applications. 

0.5-0.75 bpp good to very good quality. Adequate for many applications. 

0.75-1.5 bpp excellent quality. Adequate for most applications. 

1.5-2.0 bpp usually indistinguishable fkom original. Adequate for most de- 

manding applications. 

Any video compression algorithm can be divided into three parts [104], as shown 

in Figure 4.1: 

1. Signal processing. This is required to prepare the signal for quantization so 

that it can give better performance. For example: 
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Figure 4.1: General block diagram of a image/video compression algorit hm. 

Video 
Signal 

DCT for JPEG [103] 

O Motion Compensated DCT (MC-DCT) for H.261, MPEG-1 and MPEG- 

2 [IO51 [106]. 

t 

Signai 
Processing 

0 Subband filtering for subband coding of images [107]. 

2. Qumtization. This is where ail the lossy compression occurs. The quantiza- 

tion can be: 

0 Scaler quantization. 

Compressed 
Bit Stream Quantization 

Vector quantization [88]. The complexity of the vector quantization al- 

gorithm used is a function of the required SNR, the required compression 

ratio and the allowed system complexity which is determined by factors 

such as cost and power dissipation. 

Lossless 
Coding 

3. Lossless coding. This is where lossless compression occurs. Examples of this 

type of coding include, zero-runlength coding and Huffman coding. 

In the signal processing part, we convert two correlated random variables into 

two new random variables with lit tle or no correlation between them. This can be 

done by: 

1. Linear prediction [$SI. 

2. Orthogonal transformation. e.g. DCT [103]. 
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3. Subband filtering and wavelet transform [108] [log]. 

Discrete cosine transform (DCT) based compression algorithms such as JPEG 

and MPEG are computationally intensive. A two-dimensional DCT algorithm re- 

quires in the order of N2 log, N multiplications [9] [110]. Distributed arithmetic [go] 

can also be used in the implementation of the DCT [Ill] [112]. Distributed arith- 

metic architectures dissipate more power but have a higher throughput [113]. 

Subband coding has the potential of having a low computational complexity 

and hence low computational power dissipation. This is at the expense of some 

degradation in the performance of the algorithm. In this chapter, subband coding 

image compression algorithms are investigated. An implementation wit h lower 

complexity and hence lower power dissipation is presented. 

4.3 Subband Coding for Image Compression 

Subband coding was originally introduced for digital speech coding in [1l4]. One of 

the operations required to transmit speech digitally is quantization. Direct quanti- 

zation introduces noise which is spread equally over most of the speech spectrum. 

However, the quantization noise is not equally detectable at all frequencies. Di- 

viding the signal into subbands and quantizing each one of these subbands inde- 

pendently offers greater control over the spectrum of the quantization noise. Fre- 

quency bands with higher subjective importance are coded with higher resolution 

than other bands. Subband coding was considered for video and image applications 

in [log] [107] [115]. 

The basic idea of subband coding is to decompose the image into several sub- 

bands using a filter bank and to quantize and code the subbands instead of the 
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original image. The quantization characteristics of the Mlious bands can be made 

to match the psycho-visual characteristics of the human visual system. Such that 

the higher spatial fiequency components are quantized with a larger quantization 

step size than the lower ones. 

Subband coding, unlike DCT-based coding techniques, doesn't introduce block- 

ing artifacts. This is because DCT-based systems process separately adjacent 

blocks, while subband systems process overlapping blocks of the signal. Subband 

coding dows bit docation according to the spectral importance of each band. 

Subband coding systems consist of two parts: 

1. The analysis/synthesis filter banks. 

2. The coding system which determines how the subbands are quantized and 

coded. Examples of coding systems include: 

Predictive coding (DPCM) (1071. 

O VQ within subbands. 

VQ across subbands. 

a Predictive VQ. 

Analysis/synthesis filter banks (1151 - [120] &ide the signal into subbands 

and then reconstruct the signal fiom its subband components. To be useful for 

image applications the filters have to be two dimensional. A Cband 2D-filter bank 

is shown in Figure 4.2. The output of each bank corresponds to a certain part of 

the 2D spectrum as shown in Figure 4.3. After filtering, decimation by a factor of 

two in each dimension is required, this makes each subband signal a fullband one 

at the lower sample rate. 
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Vertical 
Frequenc y 

Figure 4.2: A 2D, Cbmd, 1-level analysis/synthesis system. 

Horizontal 
Frequenc y 

b 

Figure 4.3: Frequency partitioning among the difFerent bands. 
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Horizontal Vertical 

Figure 4.4: Biock diagram of a one-level 2D subband analysis filter bank. 

LPF 

2D filter banks can be implemented using separable filters [Il51 which have the 

advantage of computation simplicity, while they lack the directiod capability of 

nonseparable 2D filter banks. Separable 2D filter banks are implemented using a 

two-level 1D flter bank as shown in Figure 4.4 (1091. 

- 

It is possible to cascade the filter banks and continue the frequency band division 

process to any desired degree. It is common to do the fiequency band division to 

the low frequency band and leave the high fiequency bands undivided [log], because 

the low frequency subband is correlated and contains most of the energy. 

LPF 

The filter banks used in subband image coding have to satisfy the following 

- HPF - 

crit eria: 

1. Alias-free operation. This is not guaranteed due to the impossibility of irn- 

plementing ideal lowpass or highpass filters. 

2. Perfect reconstruction, this involves: 

O Avoiding amplitude distortion. 

Avoiding phase distortion. 
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It has been shown [116] [121] that the following equations are necessary and 

sÿfficient conditions to satisfy the above criteria: 

1. To remove alias distortion: 

HO(C?~) = lTr(-GW) 

t herefore, 

and 

t herefore 

go(4 = -(-qn9i(n) 

2. To remove amplitude and phase distortions: 

~ ~ ( e ~ " ) G ~ ( e j " )  - ~ ~ ( - e j ~ ) ~ ~ ( - e " )  = e-jw6 

If we take, 
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Where, &(ejW) and Hl(ejw) are the fiequency response of the lowpass and 

highpass filters on the analysis side respectively. While, Go(ejw)  and Gi(eh) are 

the fiequency response of the lowpass and highpass filters on the synthesis side 

respectively. 

Consider now the case of a symmetric FIR filter with N taps, 

N must be even, and the distortion free condition becomes, 

An analysis/synthesis filter bank satisfying Equations 4.1, 4.3, 4.6 and 4.9 pro- 

duces an output which is an exact replica of the input except for a delay. 

The other part of the subband image coding system is the quantization part 

[IO71 [log] [122]. To quantize the subbands efficiently, the statistical characteris- 

tics of the subband signals have to be investigated. The image signal exhibits a 

great deal of correlation in both the vertical and horizontal directions. In fact, the 

autocorrelation function (acf) [123] can be approximated by a separable negative 

exponential function [log] 

The low frequency subband acf can be fitted to this negative exponential distri- 

bution, while the degree of correlation in the higher frequency subbands becomes 

weaker [IO91 [122]. Hence, it h a  been suggested [122] [124] to use DPCM for the 

lower frequency subband and to use PCM for the other subbands. 
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The probability distribution function of the prediction error for the lower fie- 

quency subband and of the actual samples for the other subbands was found to 

follow the Generalized Gaussian pdf [lOS]. This pdf is given by 

Where, 

î(.) is the Gamma function. The value of 7 depends on the subband. For the 

prediction error of the low frequency subband, 7 = 0.75. For the other subbands, 

7 = 0.5. Knowing the variance and probability distribution of each subband we can 

allocate bits to the subbands (1251 in accordance and determine the quantization 

intervals using Max-Lloyd algonthm [88] [126]. 

Knowing the behaviour of the signal statis t i c d y  dows  the investigation of 

tradeoffs in computational complexity for the sake of lower power dissipation with 

minimum effect on performance. Furthemore, knowing the s t  atis tics of the signal 

dows  an estimation of the switching activity and hence an estimation of the power 

dissipation. 

4.4 Performance-Power Tradeoff for Subband 

Coding 

Any subband image compression algorithm consists of two subsystems. The and- 

ysis/synthesis subsystem and the coding subsystem. The complexity of the anal- 
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I I I  

Figure 4.5: A 16-subband 2-level analysis/synt hesis sys tem. 

Figure 4.6: A 7-subband 2-level analysis/synt hesis sys tem. 

ysis/synthesis subsystem depends on the number of filter bank levels and on the 

length (number of taps) of the flters used. 

To lower the complexity and hence the power dissipation, it is desirable to 

decrease the number of filter bank levels used. In [126], the optimum S N R  was 

found to be for a two-level system consisting of 16 subbands, shown in Figure 4.5. 

A two-level system consisting of only 7 subbands, with the lower fiequency subband 

of the f t s t  level being the only level divided into smaller subbands, as shown in 

Figure 4.6, has a 1 dB degradation oves the 16 subband system [126]. 

The hardware complexity of the analysis/synthesis system shown in Figure 4.6 
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is 60% lower than that of Figure 4.5. To compare the computational compiexity, 

we have to consider the rate at which each filter bank operates at. The filter banks 

in the second level operate at quarter the speed of the filter banks in the first 

level due to decimation. Hence, the reduction in computational complexity for the 

7-subband system over that of the lû-subband system is 37.5%. 

The length of the filters also determines the complexity of the analysis/synthesis 

subsystem. In [126], it was found that the improvement in the SNR for FIR. filters 

with more than 8 taps doesn't exceed 1 dB, and the irnprovement in SNR for filters 

with more than 12 taps doesn't exceed 0.2 dB. This indicates that it is possible to 

achieve good SNR performance with reasonable length tilters. 

There are several ways to do coding in the subband image compression system. 

Using scaler quantization [107] [122] is the least complex scheme and hence it is 

expected to have the least power dissipation. Vector quantization coding (71 (1271 

[128] [129] has greater compiexity but with superior performance. 

4.4.1 The Analysis/Synt hesis Filter 

For video applications, the analysis/synthesis filter banks have to be two dimen- 

sional. A two dimensional filter bank can be decomposed into two levels of one 

dimension filter banks as shown in Figure 4.4. For perfect reconstruction, Equa- 

tions 4.1, 4.3, 4.6, and 4.9 have to be satisfied. To reduce the design complexity 

and hence the computational power dissipation, the filters should have the smdest  

number of taps. Take M, the number of taps, to be two. The set of filters satisfying 

the prefect reconstruction conditions [Il61 (1 171 are given by: 
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These filters simply find the sum and difference between two successive sam- 

ples. Using the average and half the ciifference at the receiver side it is possible to 

recons truct the original signal perfectly in the absence of quantization error. What 

makes this flter intuitively pleasing is that video signals are highly correlated and 

hence most of the energy is compact into the average component making that of 

half the difference component quite small. 

Another advantage of these filters, fiom the power dissipation point of view, is 

that it needs no multipliers. Multiplication by half is just a shift right operation 

which can be accomplished by the reodering of the datapath. 

Figure 4.7 shows the fiequency spectrum of both the lowpass and the highpass 

fîlters. Notice that, the over simplified structure has Iead to a poor fiequency 

response. However, it remains to be seen if through the use of efficient coding 

we can compensate the poor frequency response. Remember that the filter banks 

in themselves introduce no distortion. The distortion is actually produced during 

quantization. 

Figure 4.8 shows the simplified subband coding algorithm. Initially, the image 

is divided up into partitions each containing 4 samples So . . . S3. These samples are 
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Figure 4.7: Frequency spectrum of the simplified filters. 

transformed into the variables A, Bi, B2 and B3 according to the folIowing set of 

equations: 

The samples corresponding to the variable A are partitioned into groups of 4. 

These samples are than transformed into the variables C, Dl, LIz and D3 according 

to the following set of equations: 
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4.4.2 Statistical Properties of the Subband Coded Signal 

The image signal is a highly correlated signal. Hence, it is expected that the energy 

content in the low frequency part of the spectnim to be much higher than that in the 

high frequency part. Figure 4.10 shows the statistical distribution of the &st level 

subband signals of the aeroplane, shown in Figure 4.9. The low fiequency subband 

(LL1) is further decomposed into four subband signals the statistical distribution 

of which are shown in Figure 4.11. 

Table 4.1 gives the variance for each subband of the two-level decomposed image. 

For LL2, the variance of the successive sample ciifference is given. For that subband, 

the adjacent samples are still correlated hence DPCM is used to encode it [122]. For 

the other subbands, PCM or vector quantization is used depending on the number 

of bits allocated to that subband. The vector quantization algorithm is explained 

in the next section. 



a.. a .  a .  a 

Figure 4.8: Simplified sub band coding algorit hm. 
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Figure 4.9: Aeroplane: The image used in subband coding. 

Table 4.1: Variance for the two-evel subband image compression system. 
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Figure 4.10: Statisticd distribution of level one suband signals. 

(a) LLI. 
(c) LHI. 

(b) HU. 
(d) ml. 
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Figure 4.11: S tatistical distribution of level two subband signals. 

(a) LL2. 
( c )  LH2. 

(b) HL2. 
(d) HH2. 
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4.4.3 The Vector Quant kat ion Algorit hm 

Vector quantization groups samples together, codes are assigned to the most Iikely 

patterns in the sequence of samples in such a way that the mean square error (MSE) 

is minimized. The vector quantization algorithm needs to be designed to minimize 

the power dissipation during decoding. The decoding of most VQ algonthms re- 

quires a memory lookup table [88]. However, memory access has large power dissi- 

pation (71. Hence, to be power-efficient, the decoding of the VQ algorithm should 

be done in a computational way. with the least amount of computations. 

The algorithm considered here is a simplified modification of the pyramid vector 

quantization algorithm (PVQ) [7]. In the case of subband coding, the samples of 

the upper frequency subbands are usually around the zero except near the edges. 

For a vector of length N, assume that at most two samples are nonzero. Each 

nonzero sample is encoded using two bits. The total number of possible ways in 

which two and only two samples out of N can be nonzero is given by: 

In addition, there are N + 1 alternatives in which only one sample or no samples 

are nonzero. Assuming that N = 2", it can be shown that the total number of bits 

required to encode one vector is 2n + 3. Hence, the number of bits per sample is 

given by: 

Clearly, increasing n leads to higher compression. IR the following, it will be 

explained how the information of one vector is encoded into the 2n + 3 bits, in such 
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a way that its decoding requires minimum computation. 

Assume that two samples are nonzero, let i be the most significant of these 

samples and let j be the least significant. Most significant and least significant 

refers to the position of the sample in the vector. Divide the 28  + 3 bits required 

for each vector into three parts, the first part is n - 1 bits long, assume these to be 

the most s igdcant  bits, and denote them by LI. The second part is n bits long, 

and is denoted by L2. The third and final part is 4 bits long and is denoted by Lj. 

If 

i = k  

then j can range from O to k - 1, that is j can assume any one of k d u e s .  If. 

then j can range from O to 2" - k - 1, that is j can assume any one of 2n - k values. 

It is thus evident that the two previous values of i are complementary in the sense 

that the total values j can take in both cases is 2". Hence, it is reasonable to group 

these two values together. The value of i is determined by Li. In this case: 

Where OC is the one's complement operation assuming n bits. To determine 

which value of i to choose, we have to look at L2. If, 
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then, 

and 

and 

The field L3 determines the values of the two nonzero samples, two bits per 

sample. 

The above equations are valid for Ll = 0,1,. . . , (2"-' - 2). However, if LI = 

2"-' - 1 the following set of equations are used ins tead: 

1. If the mos t significant bit of La is zero. 

and 
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2. If the most significant bit of L2 is one. In other words, the most significant 

n bits of the decoded word are one. Then there is only one or no non-zero 

s amples. 

If the second most significant bit of LI is one. All the N samples are 

zeros. 

0 If the second most significant bit of L2 is zero. One and only one sample 

of the vector is nonzero. The address of this sample is determined by 

the n - 2 least significant bits of L2, and the two most significant bits of 

L3. In this case, the two least significant bits of L3 determine the value 

of the nonzero sample. 

Now that the algorithm has been described, it has to be seen how it can be 

mapped into a power-efficient architecture. Assume that the word to be decoded 

of length 2n + 3 bits is stored in register R which has three fields Ri, R2 and R3, 

corresponding to L I ,  L2 and L3 respectively. Let RN be the vector corresponding 

to the N samples. Initially, the samples of this vector are set to zero. 

Let A. be the ANDing of the n + 2 most significant bits of R, and let Ai be 

the ANDing of the n + 1 most significant bits of R. If A. is high, the N samples of 

the vector are all zeros, which is the value aLeady contained in RN. AU the other 

functional units are deactivated in this case. 

If Al is high, while A. is low, then one and only one sample is nonzero. The 

address of this sample is determined by the n - 2 least significant bits of R2 and the 

two most significant bits of R3. While the value of the nonzero sample is determined 

by the two least significant bits of R3. In addition to the AND operation, one 

ROM access is required to determine the value of the nonzero sample. One mwr 
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operation is required to determine the address of the nonzero sample. FinaIly, one 

write operation into a bank of N registers is required. 

Findy, if At and & are both zeros, there will be two nonzero samples and 

their addresses have to be calculated. This process requires, two ROM accesses, 

two ADD operations, one INV operation, three MUX operations, and two write 

operations into a bank of N registers. The architecture required to implement the 

proposed vector quantization decoding dgorithm is shown in Figure 4.12 

4.5 Performance of the Subband Coding Algo- 

rit hm 

Two cases of the subband algorithm are considered. The first is the one-level 

subband algorithm. The second is the two-level subband algorithm, the second 

level is the decomposition of the low-fiequency subband of the first level. 

Table 4.2 gives the variance of each subband, the theoretical number of bits that 

should be docated to each subband [88], and the actual number of bits docated 

to each subband for a one-level subband system. For the low fiequency subband, 

the variance shown is that of the differential signal. The bit rate is 1.025 bits/pixel. 

The overd peak signal-to-noise ratio using the aeroplane was found to be 24 dB. 

This is about 8 - 9 dB lower than subband coding systems using a FIR filter having 

more than 8 taps [126]. 

For the one-level subband coding image compression dgorithm, DPCM is used 

to encode the signal of subband LL1. The proposed VQ algorithm with n = 4 is 

used to encode subband HL1. The proposed VQ algorithm with n = 5 is used to 

encode subband LH1. 
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ADD 

IR1 

Figure 4.12: The architecture of the proposed VQ decoding algorithm. 
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Table 4.2: Variance and bit allocation for a one-level subband system. 

Table 4.3 gives the variance of each subbaud, the theoretical number of bits that 

should be allocated to each subband [88], and the actual number of bits allocated 

to each subband for a two-level subband system. For the low-fiequency subband. 

the variance shown is that of the differential signal. The bit rate is 1 .O16 bitsfpixel. 

The overall peak signal-tenoise ratio using the aeroplane was found to be 28 dB. 

Note that, the use of a two-level subband gave a 4 dB improvement in the SNR over 

the one-level subband. However? this is still 4 - 5 dB lower than subband coding 

systems using a FIR filter having more than 8 taps. 

Subband 

LL1 

For the two-level subband coding image compression algorithm, DPCM is used 

to encode the signal of subband LL2. PCM is used to encode the signals of subbands 

HL2 and LH2. The proposed VQ algorithm with n = 3 is used to encode the signal 

of subband HL1. The proposed VQ algorithm with n = 4 is used to encode the 

signal of subband LH1. 

Figure 4.13 shows the aeroplane after passing through a two-Ievel subband corn- 

pression/decompression system. The quality of the signal is lower than that of other 

subband image compression algorithms. But a large reduction has been achieved in 

the power dissipation. The proposed system requires only one addition/subtraction 

Variance 

0.00764 

Bits Required 

3.896 

Bits Used 

3 
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Figure 4.13: Aeroplane: The effect of the proposed two-level subband coding image 

compression algorithm. 
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Table 4.3: Variance and bit allocation for a two-level subband system. 

operation for each ID filter, while a subband system using 8 tap FIR filters usually 

requires 7 addition/subtraction operations and 4 multiplication operations (assum- 

ing a symmetrk filter) for each 1D füter. Assuming that the 2D füter is separable, 

then each 2D filter consists of six 1D filters, as shown in Figure 4.4. 

Subband 

For the one-level subband coding system, the proposed filtering structure re- 

quires 2 ADD/SUB operations per sample. While a filtering structure based on an 

8 tap FIR filter requires 14 ADDISUE3 and 8 MULT operations per sample. For 

a two-level subband coding system, the proposed filtering structure requires 2.5 

ADD/SUB operations per sample. While a filtering structure based on an 8 tap 

FIR filter requires 17.5 ADD/SUB and 10 MULT operations per sample. Assum- 

ing that the multiplier dissipates 4 times the adder power. The proposed filtering 

structure dissipates 23 times less power than a filtering structure using an 8 tap 

FIR filter [126]. 

The simulation results of the vector quantization algorithm, for the two-level 

Variance Bits Required Bits Used 
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Table 4.4: The power dissipation of the proposed VQ decoding algorithm and that 

of a mernory-based VQ algorithm. Both have the same compression factor and are 

designed in a 0.5pm, 3.3 Volt CMOS technology. Each sample is 4 bits. The power 

dissipation is calculated at a speed of 1 Vector per p. 

1 Samples per 1 Compression 1 Memory based 1 Proposed algorithm 1 Power 1 
vect or factor Power 1 reduction 

8 

16 

subband coding image compression algorithm, show that, 40% - 50% of the vectors 

were zero, 15% - 25% had only one nonzero sample and 30% - 40% had two 

nonzero samples. The decoding algorithm thus requires 2 A M )  operations, 0.7 

ADD operation, 0.35 INV operation, 1.25 MUX operation, 0.9 ROM access and 0.9 

register write operations per vector. It should be noted that number of operations 

per vector is independent of the vector dimension. In PVQ the number of operations 

per vector is proportional with the vector dimension and it turns out to be much 

larger than that of the new algorithm. 

Table 4.4 compares the power dissipation of the proposed VQ decoding alge 

&hm, to that of a rnemory-based VQ decoding algorithm. The power dissipation 

of the proposed algorithm varies slightly as the vector size grows larger. This is 

because the number of operations required is independent of the vector size, but the 

datapath width of the operators increases logarithmically with the vector size. On 

the other hand, the size of the memory in a memory-based VQ decoding algorithm 

increases approximately with the cube of the vector size. 

3219 

64/11 

17.6mWI 112 pW 1 156 times 32 128113 1 8 K x 1 2 8  

0.5 K x 32 

2 K x 64 

0.65 mW 

2.82 mW 

89 pW 

99 pW 

7.3 t' mes  

23 times 
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4.6 Chapter Summary 

A subband coding image compression algorithm with low computational complexity 

has been deveioped in this chapter. The chapter starts with an overview of image 

compression algorithms and in particular subband coding image compression. 

The use of a simpMed filtering structure is one of the distinct features of the 

new subband coding algorithm. The analysis/synthesis filter system is a two-level 

system, with the lower frequency subband of the first level being the only one 

divided into smder  subbands. Addition and subtraction are the only operations 

used in the filter, no multiplication is required. 

The statistical properties of each subband are evaluated to determine the num- 

ber of bits allocated to each subband. A vector quantization algorithm which 

avoids the need of large look-up tables for subband decoding was developed. The 

filtering structure used reduces the computational power dissipation by 23 times. 

The reduction in computational complexity is achieved at the expense of a 4-5 dB 

degradation in the S N R  performance, for a subband image compression algorithm 

employing a two-level analysis/synt hesis sys tem. 



Chapter 5 

A/D Converter for Software 

Radio 

5.1 Introduction 

Intricate signal processing of real world analog signals often requires signal conver- 

sion into the digital domain. Conversion makes feasible the use of either conven- 

tional digital cornputers or special purpose digital signal processors. This increases 

the sys tems flexibility and programmability. 

Software radios require high-speed high-resolution A/D converters. To achieve 

a resolution of up to 20 bits a Sigma-Delta A/D converter (1301 [131] [132] is used. 

The Sigma-Delta A/D converter is composed of a Sigma-Delta modulator, followed 

by a decimation fdter [133] [134] [135], which digitally transforms a low-resolution 

oversampled signal into a high-resolution Nyquist-rate sampled signal. Figure 5.1 

shows the block diagram of a bandpass Sigma-Delta A/D converter. 

Figure 5.2 shows a typical receiver where the digitization is done after the f i s t  
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Figure 5.1: Bandpass Sigma-Delta A/D converter. 

Figure 5.2: Digital IF receiver architecture. 

IF (Intermediate Frequency) stage [136]. The bottle neck of this architecture is the 

A/D (analog-to-digital) converter. Not oniy does this A/D operate at a high speed 

(in the MHz), but it requires high resolution as well (12 - 20 bits). 

Pardelism by 4x of analog signal processors is applied to the design of a band- 

pass Sigma-Delta modulator. The speed of the modulator is increased without 

increasing the speed reqnirement of the individual building blocks. Several archi- 

tectures are considered in terms of their resilence to implementation details such 

as mismatch and gain errors. A switched-capacitor circuit is also given for the 

proposed modulator. 

Several high-level low-power design techniques have been incorporated in the 

design of the decimation filter. These include; operation minimisation, multiplier 

elirnination, operation interleaving and block deactivation. Analysis and simulation 

results indicate t hat t hese techniques can achieve a 4 times reduction in power dis- 

sipation. A novel memory access algorithm is employed in the design of the lowpass 

filter. An interleaved multiplier-accumulator array is used in the lowpass filter. In 

this chapter, the effect of optimizing the datapath width of the Sinc decimator on 
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its numerical accuracy is dso considered. The decimation filter designed has a pro- 

grammable resolution, that varies from 12 to 20 bits. The entire decimation fdter 

has been designed in a 0.5prn, 3.3 Volt CMOS technology. 

The organization of this chapter is as follows. In the next section, the resolution 
C 

requirement of the A/D converter is determined. In section 5.3, a novel architecture 

that applies pardelism by 4x of analog signal processors to the design of a bandpass 

Sigma-Delta modulator is presented. In section 5.4, the performance of the pro- 

posed Sigma-Delta architecture is evaluated for different configurations, in terms 

of their resilcnce to implernentation details such as mismatch and gain errors. In 

section 5.5, a switched-capacitor implementation of the proposed architecture with 

minimum number of operational amplifiers is presented. In section 5.6, the decima- 

tion Nter architecture is presented. The decimation filter designed is composed of 

a Sinc decimator and a lowpass decimation Nter (LPDF). In section 5.7, the design 

of the Sinc decimator is investigated, and operation minimization is applied to min- 

imize the power dissipation by eliminating redundant computations. In section 5.8, 

the effect of optimizing the datapath width on the numencal accuracy and power 

dissipation of the Sinc decimator is considered, this eliminates irrelevant computa- 

tions. In section 5.9, the low-power design of the LPDF fùter is investigated. The 

VLSI design of the decimation filter in a 0.5pn, 3.3 Volt CMOS technology is given 

in section 5.10. 

5.2 The Resolution Requirement 

The resolution requirement of the A/D converter and hence the resolution require- 

ment of the decimation filter varies according to the strength of the received signal 

as well as the background noise and interference. Simulation results for a system 
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based on the DAMPS standard [22], indicate that for a digital receiver digitizing 

an IF signal of bandwidth 0.96 MHz (32 TDMA channels), the maximum required 

dynamic range for the A/D converter is 20 bits. Simulation results also indicate 

that when the input signal is strong enough a dynamic range of 10 bits is sufficient. 

The total dynamic range required can be expressed as: 

D RaGc is the required dynamic range due to the variation in the strength of the 

received input signal. The strength of the input signal can vary by up to 120 dB. 

This necessitates the use of automatic gain control (AGC) in the conventional 

receiver. D a n t ,  is the dynamic range required so that the digital stages following 

the A/D converter can distinguish the desired channel from any interference. The 

digitized signal includes more than one channel, the desired channel is then selected 

digitally, the dynamic range of the A/D converter should be enough to be able to 

perforrn this channel selection in the following digital stages. The D AMP S standard 

[22] specifies that the receiver should operate properly when an interference 55 dB 

greater than the desired signal exists 90 KHz or more from the desired signal. 

Assume that the receiver consists of an AGC amplifier followed by the A/D 

converter as shown in Figure 5.3.a. The dynamic range of the A/D converter in 

this case is 55 dB (zz 10 bits). The AGC amplifier is required to have a gain 

variation of 120 - 55 = 65 dB. 

Without the AGC amplifier, Figure 5.3.b, the required dynamic range of the 

A/D converter is 120 dB (- 20 bits). However, the high resdution is not required 

in all cases. h fact, if the input signal is large enough, which corresponds to the 

AGC amplifier of Figure 5.3.a having a gain Gmin7 a 12 bit A/D converter is a l l  
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Figure 5.3: A/D resolution requirement: (a) With AGC amplifier. (b) Without 

AGC amplifier. 

A/D 12 bits 

that is required. If the input signal is weak, the AGC amplifier of Figure 5.3.a will 

have a gain G,,, (= Gmin + 65 dB), which corresponds to a 20 bit A/D converter 

in Figure 5.3.b. 

AID 20 bits 

The reason for having an A/D converter with variable resolution is to Save power 

when the lower resolution is sufficient. This leads to the concept of Automatic 

Resolution Control (ARC) where the resolution of the A/D converter is varied as 

opposed to AGC where the gain of the amplifier is controlled by the level of the 

input signal. The required resolution is determined by the digital stages following 

the A/D converter. In section 5.6 of this chapter, the design of a decimation filter, 

to be used with the Sigma-Delta modulator with resolution varying between 12 to 

20 bits, is examined. 

5.3 A Parallel Bandpass Sigma-Delta Modulator 

Sigma-Delta modulation has been commonly used in high resolution analog-to- 

digital converters because of the ability to shape noise away from the desired band. 

Moreover, Sigma-Delta modulators require a two-level quantizer to achieve a high- 

resolution Nyquist-rate sampled-stream. 

Sigma-Delta modulation has commody been used for lowpass signals 11321 [137]. 

However, the signal digitized at the IF stage is a bandpass signal. The signal can 
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Table 5.1: Dynamic range versus OSR for a second and a third order LPSD. 

1 64 / 77 dB (12 bits) 1 105 dB (17 bits) 1 

OSR 

32 

be subsampled with no loss of information due to aliasing. In this case, a bandpass 

Sigma-Delta modulator (BPSD) [138] - [142] is used instead of a lowpass Sigma- 

Delta modulator (LPSD). 

2nd Order LPSD 

62 dB (10 bits) 

128 

The bandpass Sigma-Delta A/D modulators presented in the literature so far 

have been one channel A/D modulators, with bandwidth 30 kHz (for DAMI'S 

s~s tems)  [141], or bandwidth 200 kHz (for GSM systems) [142]. As the digitized 

3rd Order LPSD 

84 dB (14 bits) 

signal bandwidth increases, more than one channel is digitized and then the desired 

92 dB (15 bits) 

channel is filtered out digitally. This increases the sufficient dynamic range required 

126 dB (21 bits) 

to meet the standard's interference rejection criteria. To operate a t  a high sampling 

rate, parallelism by 4x of analog signal processors is applied to the design of the 

bandpass Sigma-Delta modulator. This increases the overd speed of the modulator 

wit hout increasing the sp eed requirement of the individual building blocks. 

The dynamic range of the Sigma-Delta A/D converter depends on the order of 

the Sigma-Delta modulator, as well as the oversample ratio (OSR). Table 5.1 gives 

the output dynamic range of the Sigma-Delta modulator for different oversampling 

ratios, for second-order and third-order lowpass Sigma-Delta modulators. A fourth- 

order BPSD is equivalent, in its dynamic range performance, to a second-order 

LPSD. A sixth-order BPSD is equivalent to a third-order LPSD. 

To subsample a bandpass signal and ensure that spectrum overlap doesn't occur, 
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the sampling fkequency has to satisfy the following inequality [Il]: 

w here, 

fa is the sampling frequency. 

fh is the highest frequency in the bandpass signal. 

fi is the lowest frequency in the bandpass signal. 

k is an integer satisfying the following inequality: 

f, is the band center frequency, 

BW is the bandwidth, 

%w=fh-fi 

According to Inequality 5.2, the sampling frequency depends on both, the band- 

width and the band position of the bandpass signal. Figure 5.4 [143], shows the 

valid sampling fkequency as a function of the bandwidth BW and the center fre- 

quency f, of the bandpass signal. Generally, the sampling frequency is given by 

[l36] : 
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Sampling 

Sampling 

not allowed 

alfowed 

Figure 5.4: Valid bandpass sampling rate regions. 

It is clear that the samples can be divided into four groups: GO, G1, G2 and 

G3, e q u d y  spaced in time. Croups GO and G2 sample the in-phase channel, 

while groups G1 and G3 sample the quadrature-phase channel. The division of the 

samples into four groups suggests, that we can replace the bandpass Sigma-Delta 

modulator with four lowpass Sigma-Delta modulators as shown in Figure 5.5.b. 

Each one of these lowpass modulators would operate a t  quater  the speed of the 

bandpass modulator relaxing the circuits speed requirements. It would, however , 

suffer the impact of component mismatch and a loss in the dynamic range. This 

loss in dynarnic range is 12 dB for a fourth-order bandpass Sigma-Delta modulator, 

and codd be avoided using a cross-coupled architecture. 

The conventional second-or der bandpass Sigma-Delt a modulator, shown in Fig- 

ure 5.6.a, can be split into two branches, one for the in-phase channel and the other 

for the quadrature-phase channel. This is shown in Figure 5.6.b. Consider one of 

the branches of Figure 5.6.b. It is desirable to split that branch into two branches, 
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Figure 5.5: Using four lowpass Sigma-Delta modulators to implement a bandpass 

Sigma-Delta modulator. 

each operating at half rate, while maintainhg the overall transfer function and 

hence the signal-to-noise ratio is maint ained. 

H ( z )  can be expressed as a surn of an even function and an odd one: 

Notice that, H&) (the even function) and H&) (the odd one) are s d a r  

with the exception of a delay. This means that the common filtering can be done 

before the split or after the subtraction. The two possible solutions are shown 

in Figure 5.7 [Ml [Ml. Note that, both figures show a single channel (1 or Q) 

bandpass Sigma-Delta modulator. 

The same concept can be extended to higher order bandpass Sigma-Delta modu- 

lators. Figure 5.8 shows the extension of this analog parallelism to a single channel 

fourth-order bandpass Sigma-Delta modulator [145]. Without the cross-coupling 
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Fibgx.re 5.6: Second-order bandpass Sigma-Delta modulator (a) conventional (b) 

with separate IQ branches 

Figure 5.7: A single-channel second-order bandpass Sigma-Delta modulator wit h 

two cross-coupled branches and common fdtering done: (a) before splitting (b) 

sub traction. 
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I 

Figure 5.8: A single-channel fourth-order bandpass Sigma-Delta modulator with 

two cross-coupled branches. 

shown in Figure 5.7 and Figure 5.8, the SNR of the Sigma-Delta modulator is de- 

graded by 6N dB, where, N is the order of the equivaIent lowpass Sigma-Delta 

modulator. 

5.4 The Performance of the Parallel Sigma-Delta 

Modulat or 

The two split-branch architectures for the single-channel second-order bandpass 

Sigma-Delta modulator, shown in Figure 5.7, have the same hearized transfer func- 

tion as the conventional single-channel second-order bandpass Sigma-Delta mod- 

ulator. However, in the presence of mismatch, the response of each modulator 

becomes different . 

The errors considered are assumed to occur in the even/odd-sample integrator 

block, which idedy  should have a transfer function: 



CHAPTER 5. A/D CONVERTER FOR SOFTWARE RADIO 

Figure 5.9: (a) An ideal integrator (b) Integrator with mismatch. 

The mismatch is modeled by the elements Gi,, and G,t as shown in Fig- 

ure 5.9.b. Idedy, both elements should be 1. However, practically Gl,, can be 

slightly less than 1, while Get can be slightly greater than or less than one. Gi, 

is the leakage of the integrator, caused by the finite gain, A, of the operational 

amplifier in the in tegra t or [130] : 

The Gi,GeZt product is the gain of the integrator. 

The simulation of the proposed Sigma-Delta modulator in different configu- 

rations, dong with the simulation of the conventional Sigma-Delta modulator was 

performed using SP wTM. Details of the simulation mode1 are given in appendix A. 

In this section, the obtained results are presented. 

Notice that, GeZt has no effect on the performance of the Sigma-Delta modulator 

of Figure 5.7.b, because the gain doesn't effect the signal's polarity and hence the 

operation of the comparator. However, this is only true in Figure 5.7.a if Gezt of 

the even and odd branches are equal. But if there is a discrepancy between them, 

it would degrade the performance. Figure 5.10 shows the degradation in SNR due 

to discrepancy in the value of Gat between the even and the odd branches of the 

Sigma-Delta modulator given in Figure 5.7.a. A 2% clifference in GeZt would lead 



Figure 5.10: Degradation in SNR due to mismatch in the value of GeZt between the 

even and the odd branches of the Sigma-Delta modulator shown in Figure 5.7.a 

to a 1.5 dB degradation in S N R .  

Figure 5.11 shows the effect of non-unity in Gl,, on the conventional Sigma- 

Delta modulator of Figure 5.6. 

Figure 5.12 shows the effect of mismatch and non-unity in Gi,, on the SNR per- 

formance of the bandpass Sigma-Delta modulator of Figure 5.7.b. Notice that, the 

S N R  performance is very close to that of the conventional Sigma-Delta modulator 

given in Figure 5.11. 

Figure 5.13 shows the effect of mismatch and non-unity in Gl,, on the SNR 

performance of the bandpass Sigma-Delta modulator of Figure 5.7.a. Notice the 

substantial degradation in performance with mismatch. 



CHAPTER 5. A/D CONVERTER FOR SOFTWARE RADIO 

SNR 
40-- 

3 0 - -  

2W- 

Input Signal in dB 

Figure 5.11: The effect of non-unity in Gi,, on the SNR of the conventional Sigma- 

Delta modulator. 
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SNR 
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Figure 5.12: The effect of mismatch and non-unity in Gi,, on the SNR performance 

of the bandpass Sigma-Delta modulator of Figure 5.7.b. 
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I 

SNR 

Figure 5.13: The effect of mismatch and non-unity in Glw on the S N R  performance 

of the bandpass Sigma-Delta modulator of Figure 5.7.a. 



CHA 

Figure 5.14: Change in S N R  due to mismatch in the value of Gl, for the conven- 

tional single-channel second-order bandpass Sigma-Delta modulator, and for the 

bandpass Sigma-Delta modulator of Figure 5.7.b. 

Figure 5.14 shows the effect of mismatch and non-unity in Gi,, on the conven- 

tional bandpass Sigma-Delta modulator (Figure 5.6) and the bandpass Sigma-Delta 

modulator of Figure 5.7.b. A 10% degradation in Gf,, could lead up to 4.5 dB 

degradation in SNR. 

Discrepancy in the value of Gl,, between the even and the odd branches of the 

bandpass Sigma-Delta modulator given in Figure 5.7.a can cause severe dis t ortion 

to the signal as shown in Figures 5.15 and 5.16. 

The resdts presented so far dernonstrate that the Sigma-Delta modulators of 

Figures 5.7.a and 5.7. b, even though they have identical behaviour under ided 

conditions, yet t heir performance is differently affected by parameter mismatch. 
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Figure 5.15: Distortion in the output signal of the bandpass Sigma-Delta modulator 

shown in Figure 5.7.a due to Gi,, = 0.99 and Gi- = 0.95. 

Figure 5.16: Distortion in the output signal of the bandpass Sigma-Delta modulator 

shown in Figure 5.7.a due to Gi,, = 1.0 and Gi,, = 0.95. 
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Figure 5.17: Frequency spectrum of the Sigma-Delta modulators of Figure 5.7 

having Gr-/Gl,, = 1.0/1.0. 

Mismatch can cause the architecture of Figure 5.7.a to become unstable and it 

causes unacceptable signal distortion. On the other hand, the effect of mismatch 

on the architecture given in Figure 5.7.b is quite s m d ,  and its SNR performance is 

comparable to that of the conventional second-order bandpass Sigma-Delta modu- 

lator. 

The frequency spectnim at the output of the proposed Sigma-Delta rnodula- 

tors of Figure 5.7, for different values of Gi,/Gl-, is shown in Figures 5.17 - 

5.21. The injected sinusoidal signal has an amplitude of 0.5, and a frequency of 

0.0031. The sampling frequency is 1.0. Notice that the mismatch increases the low- 

fkequency quantization noise subs tantially for the modulator of Figure 5.7.a. Whie 

it has a negligible effect on the low-frequency quantization noise of the modulator 

of Figure 5.7.b. 

Similar analysis for the fourth-order bandpass Sigma-Delta modulator show that 

placing the integrator after the subtractor (as shown in Figure 5.8) significantly 

reduces the degradation in SNR due to mismatch. 

Figure 5.22 shows the effect of mismatch and non-unity in Gi, of the fkst 

stage on the SNR performance of a fourth-order bandpass Sigma-Delta modulator, 
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Figure 5.18: Frequency spectnun of the Sigma-Delta modulators of Figure 5.7 

having Gi-/Gi, = 0.99/0.99. 
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Figure 5.19: Frequency spectrum of the Sigma-Delta modulators of Figure 5.7 

having Gr-/Gl- = 0.98/0.98. 
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Figure 5.20: Frequency spectnun of the Sigma-Delta modulator of Figure 5.7.b 

having Gl-/Gi,, = 0.99/0.98. 
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Figure 5.21: Frequency spectnun of the Sigma-Delta modulator of Figure 5.7.a 

having Gl,/Gl,, = 0.99/0.98. 

having the integrator after the subtractor in the first stage. Notice the negligible 

degradation in SNR performance due to mismatch. 

Figure 5.23 shows the effect of mismatch and non-unity in Gl,  of the second 

stage on the SNR performance of a fourth-order bandpass Sigma-Delta modulator, 

having the integrator after the subtractor in the second stage. Notice the negligible 

degradation in SNR performance due to mismatch. 

Figure 5.24 shows the effect of mismatch and non-unity in Gl,, of the first stage 

on the SNR performance of a fourth-order bandpass Sigma-Delta modulator, having - 

the integrator before the branch splitting in the first stage. Notice the substantial 

degradation in SNR performance due to mismatch. 

Figure 5.25 shows the effect of mismatch and non-unity in Gi,, of the second 

stage on the SNR performance of a fourth-order bandpass Sigma-Delta modulator, 

having the integrator before the branch splitting in the second stage. Notice the 

slight degradation in SNR performance due to mismatch. 

Figures 5.22 - 5.25 indicate that, if the gain of the operational amplifier of the 

integrator is 37 dB with a f 3 dB mismatch, the degradation in the SNR with the 

integrator after the subtractor (Figure 5.8) is about 1 dB, while the degradation in 



CHAPTER 5. A/D CONVERTER FOR SOFTWARE RADIO 

SNR 
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Figure 5.22: The eiTect of mismatch and non-unity in Gi,, of the ftst  stage on the 

S N R  performance of a single-channel fourth-order bandpass Sigma-Delta modula- 

tor, having the integrator &ter the subtractor in the first stage. 
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Figure 5.23: The effect of mismatch and non-unity in Gi, of the second stage 

on the SNR performance of a single-channel fourth-order bandpass Sigma-Delta 

modulator, having the integrator after the sub tractor in the second stage. 
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SNR 

I Input Signal in dB 

Figure 5.24: The effect of mismatch and non-unity in Gi, of the firs t stage on the 

S N R  performance of a single-channel fourth-order bandpass Sigma-Delta modula- 

tor, having the integrator before the branch splitting in the first stage. 
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SNR 

Figure 5.25: The effect of mismatch and non-unity in Gi,, of the second stage 

on the S N R  performance of a single-channel fourt h-or der bandpass Sigma-Delt a 

modulator, having the integrator before the branch splitting in the second stage. 
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Figure 5.26: Frequency spectrum of a single-charnel fourth-order bandpass Sigma- 

Delta modulator, having Gl-/Gi- = 1.0/1.0 for the first and second stages. 

the SNR with the integrator before the branch splitting is about 25 dB. 

The frequency spectrum at the output of the proposed Sigma-Delta modula- 

tor of Figure 5.8 and its variants for different values of Gi-/Gloopo, is shown in 

Figures 5.26 - 5.30. The injected sinusoidal signal has an amplitude of 0.5, and 

a frequency of 0.0031. The sampling frequency is 1.0. Notice that the mismatch 

increases the low frequency quantization noise substantidy for the architectures 

having the integrator placed before the branch splitting. Notice also that the mis- 

match in Gi,, of the &st stage causes a greater increase in the noise than the 

mismatch in Gr,, of the second stage. Mismatch h a  a negligible effect on the 

low-frequency quantization noise of the architectures having the intergrator placed 

after the subtractor. 

Another advantage of placing the integrator after the subtractor is that it is pos- 

sible, in a switched-capacitor implementation, to use the same operational amplifier 

for integration and addition (subtraction), thus reducing the number of operational 

amplifiers required to implement the modulators. The switched capacitor imple- 

mentation is explained in the next section. 
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Figure 5.27: Frequency spectrum of a single-charnel fourth-order bandpass Sigma- 

Delta modulator, having the integrated placed after the subtractor in the first stage. 

and having Gi-/Gi- = 0.99/0.98 for the first stage, and Gi-/Gr,, = 1.0/1.0 

for the second stage. 

Phase 
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F requency Response - 
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Figure 5.28: Frequency spectrum of a single-channel fourth-order bandpass Sigma- 

Delta modulator, having the integrated placed before the branch splitting in the first 

stage, and having Gi-/Gi,, = 0.99/0.98 for the first stage, and Gi-/GI- = 

1.0J1.0 for the second stage. 



CHAPTER 5. A/D CONVERTER FOR SOFTWARE RADIO 

Phase 
Cradiair) 

Figure 5.29: Frequency spectnun of a single-channel fourth-order bandpass Sigma- 

Delta modulator, having the integrated placed after the subtractor in the second 

stage, and having GL-/Gi- = 1.0/1.0 for the second stage, and Gi-/Gl- = 

0.99f0.98 for the second stage. 
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Figure 5.30: Frequency spectnun of a single-channel fourth-order bandpass Sigma- 

Delta modulator, having the integrated placed before the bianch splitting in 

the second stage, and having Gl,/Gr,, = 1.0/1.0 for the first stage, and 

GL-/G~,, = 0.99/0.98 for the second stage. 
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Figure 5.31: Switched-Capacitor Integrator. 

5.5 Switched-Capacitor Architecture 

The switched-capacitor implementation for the Sigma-Delta modulat ors of Fig- 

ures 5.7.b and 5.8 is developed in this section [145]. The switched-capacitor inte- 

grator used in these implementations is given in Figure 5.31 [142]. Notice that this 

architecture introduces a lialf cycle delay between the input and the output. 

In this section the word cycle refers to the duration between two consecutive 

even samples (or odd samples). In this case, a delay of one cycle is z-2 in the z- 

domain, and a delay of half a cycle is z-'. The even and odd samples at the input 

as well as those at the output of the comparator are held for an entire cycle. The 

even and odd samples are staggered by half a dock cycle. In the switched capacitor 

implementations given in this section the delays are implemented by proper timing 

of the switches. 

Fkst, consider the implementation of the single-channel second-order bandpass 

Sigma-Delt a modulat or given in Figure 5.7. b. Since the integrator introduces a 

delay of half a cycle (2-'), this delay should be included with each integrator. 

Also, the four adders are combined into two adders. Figure 5.32 shows the modified 

modulator. 

The modified architecture of Figure 5.32 requires only two operational ampli- 

fiers for its implementation. The delays are implemented by proper timing of the 
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Figure 5.32: A modified single-channel second-order bandpass Sigma-Delta modu- 

lator wit h two cross-coupled branches. 

swit ches. Figure 5.33 shows the switched-capacitor implementation for the single- 

channel second-order bandpass Sigma-Delta modulator. 

For the single-channel fourth-order bandpass Sigma-Delta the modulator of Fig- 

ure 5.8 is modified to include a delay (r-') with each integrator. However, the 

modified architecture contains non-causal blocks as shown in Figure 5.34. 

It is possible to manipulate the blocks around to retain the causality of each 

block. The new modified architecture is shown in Figure 5.35. This modified 

architecture requires four operational amplifiers for its implementation. The delays 

are obtained by proper timing of the switches. Figure 5.36 shows the switched- 

capacitor implementation for the single-charnel fourth-order bandpass Sigma-Delt a 

modulator. 
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Figure 5.33: The swit ched capacitor implementation of the single-channel second- 

order bandpass Sigma-Delta modulator with two cross-coupled branches. 

Figure 5.34: A modified single-channel fourth-order bandpass Sigma-Delta modu- 

lator with two cross-coupled branches, having non-causal blocks. 
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Figure 5.35: A modifled single-channe1 fourth-order bandpass Sigma-Delt a modu- 

lator with two cross-coupled branches, having no non-causal blocks. 

5.6 The Decimation Filter Architecture 

The decimation füter (Figure 5.37) consists of two parts; the Sinc decimator and 

the lowpass decimation Hter (LPDF). The Sinc decimator is characterized by its 

simple structure, requinng only addition operations which rnakes it a power-efficient 

structure. The order of the Sinc decimator used depends on the order of the Sigma- 

Delta modulator, and is given by [135]: 

Order of Sinc = Order of LPSD + 1 

For a Sinc decimator with order N and a decimation factor of M, the transfer 

function (before down-sampling is given by ) : 
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Figure 5.36: The switched capacitor implementation of the single-channel fourth- 

order bandpass Sigma-Delta modulator with two cross-coupled branches. 

Figure 5.37: The decimation filter. 
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Figure 5.38: The transfer function of a Sinc decimator having, M = 8, and N = 3. 

Figure 5.38 shows the transfer function for a Sinc decimator having M = 8, 

and N = 3. Notice the zeros of the Sinc decimator a t  fkequencies: &fa/& f f8/4, 

f 3f.18, and f f8/2. When the frequency spectrum is folded three times, around 

f.14, fJ8, and f&6, the zeros of the folded spectrum f d  on the spectrum at 

f. = O. This minimizes the out-of-band noise added to the low frequency spectrum 

due to folding. 

Due to the variable-resolution requirement of the A/D converter, the order of 

the Sinc, N, and the decimation factor, M, can vary. N can be 3 or 4 for a 

fourth-order or a sixth-order BPSD respectively. M can be 8, 16 or 32. 

Due to its gradual transition from the passband to the stopband, the Sinc deci- 

mator can't be used in the entire decimation process. The last stage of decimation 

is done using an LPDF, which does decimation by a factor of four (1331. The LPDF 

is built as a two stage LPDF each doing decimation by a factor of two. Due to 
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the variable-resolution requirement of the A/D converter, this filter is designed to 

operate with variable resolution, and hence reduce power dissipation when operat- 

ing at  the lower resolution [146] (1471, by eliminating irrelevant computations. A 

novel memory access algorithm is employed in the LPDF. An interleaved multiplier- 

accumulator array is also used in the LPDF [Ml. 

5.7 Power Efficient Sinc Decimator Architecture 

Several architectures were considered for the implementation of the Sinc decimator 

[Mg]. In this section, the power dissipation of four architectures that implement an 

n th order Sinc decimator that does decimation by a factor of 2" are compared. The 

metric for the power dissipation cornparison is the number of operations required 

to generate a single output. The most power-efficient Sinc decimator is the one 

that requires the least number of computations to generate a single output, and 

thus eliminates redundant computations. 

5.7.1 First Architecture 

In the fkst implementation, the Sinc decimator is divided into rn stages. Each stage 

is an n th order Sinc decimator that does decimation by a factor of 2. Figure 5.39 

shows the implementation of such a decimator. Assuming that h is the resolution of 

the input to the Sinc decimator, the resolution at the output of the Sinc decimator is 

k + m n  bits. Notice that in this case, the resolution after each Sinc stage increases 

by n bits. Also notice that each Sinc stage operates at  double the speed of the 

following Sinc stage because of down-sampling by 2. 

Assuming that n = 3. Each Sinc stage in Figure 5.39, having i bits at its input, 
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4 rn stages C 

Total Decimation: 2m 

Figure 5.39: First architecture of a Sinc decimator. 

requires a total of 4i + 2 additions to generate a single output. Hence, the total 

number of one-bit additions per output for a third order Sinc is: 

One-bit additions per output = (4b + 14)(2" - 1) - 12m (5.12) 

Assuming that n = 4. Each Sinc stage in Figure 5.39, having i bits at its input, 

requises a total of 5i + 4 additions to generate a single output. Hence, the total 

number of one-bit additions per output for a fourth order Sinc is: 

One-bit additions per output = (5k + 24)(2m - 1) - 20m (5.13) 

5.7.2 Second Architecture 

In this implementation, the Sinc decimator is divided into n stages. Each stage 

is a Sinc decimator of the f i s t  order and having 2m taps. The decimation by a 

factor 2" is done after the last stage. Figure 5.40.a shows a block diagram of this 

implemen t ation. 

A Sinc decimator of the fist  order and having 2" taps is simply the moving 

sum (or average) of the last 2m samples. The new output can be obtained from the 

previous output by adding sample x ( k )  and subtracting sample x ( E  - 2m). This is 
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- n stages - 
Tom1 Decimation: 2m 

P 
i 

k bits 

Figure 5.40: Second architecture of a Sinc decimator. (a) Block diagram. (b) First 

n - 1 Sinc stages. ( c )  Last Sinc stage. 

Sinc ( p )  

shown in Figure 5.40.b. Since the last Sinc stage is followed by a down-sampler, the 

last stage is simply an accumulate and dump. It accumulates 2" samples than the 

= 

output is cleared and the accumulation starts again. This is shown in Figure 5.40.c. 

The resolution at the input is k bits, the resolution after each stage increases by 

Sinc(r") 

rn bits. Hence, the resolution at the output is Iz + rnn bits. The number of one-bit 

- - - - - -  -1 sine (Y 127- 
k+mn biis 

additions per output for this architecture is given by: 

One-bit additions per output = [(* - l ) k  + m((n - 1)* + n)]2" 

5.7.3 Third Architecture 

The transfer function of the Sinc decimator [Sincn(2")] c m  be expressed as: 
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k bits k+nm bits 
k+n(m- 1 ) bits , 

I Total de~irnation:2~ 

Figure 5.41: Third architecture of a Sinc decimator. 

Where, M = 2". The even and old samples are split into two branches. Each 

branch is fltered using a sincn(2"-') filter, the Utered signals are then merged and 

filtered using a sincn(2) filter. The block diagram of this implementation is shown 

in Figure 5.41. 

The decimation is distributed throughout the blocks of Figure 5.41. To show 

how this can be achieved, considered the implementation of the Sinc decimator 

[sinc3(16)]. The implementation of this filter is shown in Fi,we 5.42.a. The output 

rate is 1/16 the input rate. The filter Sinc3(2) is a four tap filter. It requires four 

inputs (two from the even branch and two from the odd branch) to generate a single 

output. To avoid unnecessary computations, the füters Sinc3(8) of the even and 

odd branches should generate two outputs for every 16 inputs. This is why there 

are two outputs for each filter. 

Figure 5.42.b shows a computationdy efficient method to generate the two 

outputs of Sinc3(8) filter. Each output is at 118 the input rate. The number of 
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Figure 5.42: (a) Block diagram of Sinc3(16) Hter. (b) Block diagram of sinc3(8) 

filter generating two outputs every 8 inputs. 

one-bit additions required per output, for a third-order Sinc decimator, is given by: 

One-bit additions per output = (5k + 7(rn - 1))2" + 7H + 21m - 14 (5.16) 

For a fourth-order Sinc decimator, the number of one-bit additions required per 

output is given by: 

5.7.4 Fourth Architecture 

The transfer function for the Sinc decimator [ S i n ~ " ( 2 ~ ) ]  is given by: 
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Figure 5.43: Fourth architecture of a 
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Integrator stage. (c) DSerentiator stage. 

LU. 

Sinc decimator. (a) Block diagram. (b) 

Where, M = 2m. According to Equation 5.18, the Sinc decimator can be 

implemented as a cascade of n integrators followed by a 2m down-sampler and then 

followed by n differentiators [133]. The block diagram of such an architecture is 

given in Figure 5.43.a. Figure 5.43.b gives the implementation of the integrator 

stage. While Figure 5.43.c gives the implementation of the differentiator stage. To 

prevent overfiow, the datapath width of the integrators and the dxerentiators has 

to be: 

k + mn bits (5.19) 

The number of one-bit addition operations required per output is given by: 

One-bit additions per output = ( 2 m  + l)(k + nm)n (5.20) 
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Table 5.2: Number of additions per output for the Sinc decimators of Figures 5.39 

- 5.43 

SincFilter 

Figure 5.39 

1 Figure 5.40 1 n II [(2n - l)k + m((n - 1)* + 7412" ( 

Order 

Figure 5.39 

Number of additions per output 

3 

1 Figure 5.43 ( n II (2" + l ) ( k  + nm)n l 

(4k + 14)(2m - 1) - 12m 

4 

Figure 5.41 

Figure 5.41 

This architecture has the advantage that the down-sampling need not be a power 

of two, it can be any integer. In Figure 5.43, the down-sampling was chosen a power 

of two for the sake of cornparison with the other Sinc architectures. 

(5k + 24)(2m - 1) - 20rn 

5.7.5 Cornparison of the Sinc Decimat or Architectures 

3 

4 

Table 5.2 gives the number of one-bit additions required to generate a single out- 

put for each Sinc architecture. Figures 5.44 and 5.45 show the number of one-bit 

addition operations per Sinc output, for each of the four Sinc architectures, for a 

third-order and a fourth-order Sinc respectively, with h = 1. 

(5k + 7(m - 1))2" + 7k + 21m - 14 
(7k + 13(m - l ) )Zm + 9k + 36m - 32 

Fiom Figure 5.44 and 5.45, it can be seen that the first architecture requires 

3 to 5 times less one-bit addition operations than the other three architectures. 

Architecture 3, in which the even and odd samples are filtered separately and then 

merged together and filtered again, is more computationally efficient, especially for 

higher decimation factors, than a decimator which filters aIl the samples together 
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Figure 5.44: The number of one-bit addition operations required to generate a 

single output for the different implementations of a third-order Sinc decimator. 2m 

is the decimation factor of the Sinc decimator. 
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Figure 5.45: The number of one-bit addition operations required to generate a 

single output for the different implementations of a fourth-order Sinc decimator. 

2m is the decimation factor of the Sinc decimator. 
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(architecture 2), this is becaiise it removes some of the redundant computations. 

In terms of the decimation factor programmability, the fourth architecture is the 

most easily programmable. However, this architecture is the leas t computationdy 

efficient. Notice that, the integrators of this architecture operate at a high-rate and 

at a high-resolution. For architecture 1, the decimation factor must be a power of 

2, however, this architecture is the most computationally efficient, hence it was the 

implementation used in realizing the Sinc decimator. 

5.8 Sinc Decimator Numerical Accuracy 

Op timizing the datapath width without degrading the output numericd accuracy 

plays a central role in achieving a power-efficient architecture. In the previous 

section, four possible architectures for a Sinc decimator [Sincn(2")] were considered. 

In this section, the effect of reducing the datapath width of the internd operators, 

and the corresponding reduction in compu t ational complexit y, on the numerical 

accuracy (signal-to-noise ratio) at the output of the Sinc decimator is considered 

(1491. 

The architectures considered in this analysis are the Ç s t  and the fourth Sinc 

architectures given in the previous section. The k s t  architecture was found to be 

the most computation efficient architecture, while the fourth architecture is the 

most flexible in terms of programmability. The Sinc decimator considered in this 

andysis has the following parameters: 
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The resolution at the output should be 10 bits. However, this resolution is 

more than what is sufficient. A third-order Sinc decimator is used to decimate the 

oversampled output of a second-order (lowpass equivalent ) Sigma-Delt a mo dulat or. 

Decimating the oversampled signal by a factor of 8 (m = 3) achieves an SNR of 

32 dB. This is equivalent to 5-6 bits resolution. The output resolution can be 

lowered koom 10 bits with little impact on the output numerical accuracy. Thus 

eliminating any irrelevant comput ations. 

Figure 5.46 shows the spectnun at the output of a third-order Sinc decimator 

based on the first architecture given in Figure 5.39. The Sinc decimator is connected 

to the output of a second-order lowpass Sigma-Delta modulator. The injected sine 

wave into the Sigma-Delta modulator has an amplitude of 0.5 and a frequency of 

0.0031 relative to the sampling frequency at input of Sigma-Delta modulator. The 

output sampling frequency of the Sinc decimator Fi = 8. The S N R  at the output 

f' f'] of the Sinc decimator, where is the noise is limited to the frequency band [- y ,  2 
is given by 40.2 dB. Theoretically, this SNR should have been 41 dB. 

The output of the Sinc decimator can have any value between -1.000000002 to 

1.000000002. This requires 1 integer bit, 1 sign bit and 8 fraction bits. The integer 

bit is required only to represent 1.000000002. If we can eliminate this value by 

approximating it to 0.111111112, we will require only 9 bits, 1 sign and 8 fraction 

bits. 

The question now is where do we do this approximation? We can do it after 

the first stage by approximating 1.002 to 0.112. In this case, the maximum output 

of the Sine decimator is 0.110000002. Or we can do it after the second stage by 

approximating 1.000002 to 0.111112. In this case, the maximum output of the Sinc 
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Figure 5.46: The output frequency spectrum of the Sinc 

ure 5.39, having k = 1, m = 3, and n = 3, operating at 

decimator given in Fig- 

full resolution as shown 

in Figure 5.39. The input is the output of a second-order lowpass Sigma-Delta 

modulator, having an input sine wave of amplitude 0.5 and a frequency 0.0031 the 

s ampling frequenc~. 

decimator is 0.11111000~. F i n d y ,  we can do the approximation at the output of 

third and final stage. 

The advant age of doing this approximation in an earlier stage is to reduce the 

datapath width in the following stages. The disadvantage being lower S N R  at the 

Sinc output. Figure 5.47 shows the fkequency spectrum at the output of the Sinc 

decimator, under the same conditions that have been previously explained, and 

with the approximation done after the first stage. Figure 5.48 shows the same 

frequency spectrum but with the approximation done after the second stage. 

The reduction in computational complexity resulting from approximating the 

sampled signal after the second stage, by the elimination of the integer bit, is 4.5%. 

The degradation in the SNR a t  the output of the Sinc decimator, evident from 

comparing Figure 5.48 to Figure 5.46, is negligible. While the reduction in the 

computational cornplexity resulting fkom approximating the sampled signal after 
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mitput of Sinc filter uith ht. approx. a t  1st stage 

Mag -75 
Frequency Respol 

(dB) -90 
I 
Point#  = 6144 
B i n #  = 2048 

-105 # P t s  = 8293 
-120 Freo = 0.0312! 

Figure 5.47: The output frequency spectrum of the Sinc decimator given in Fig- 

ure 5.39, having k = 1, m = 3, and n = 3, the sampled signal is approximated after 

the first stage by eliminating the integer bit. The input is the output of a second- 

order lowpass Sigma-Delta rnodulator, having an input sine wave of amplitude 0.5 

and a frequency 0.0031 the sampling fiequency. 
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ilutput of Sinc filter uïth ùit. approx. at  !hl stage 

Frequency R e s p o ~  

(dB) 
I 
P o i n t *  = 6144 

II' # P t s  = 8193 

1 1 I Freq = 0.0312! 
O 

1 

0.015 O .  03 0.045 ' mg. = -100.6. 0.06~hase = 1.3?6! 

Figure 5.48: The output frequency spectrum of the Sinc decimator given in Fig- 

ure 5.39, having k = 1, m = 3, and n = 3, the sampled signal is approximated after 

the second stage by eliminating the integer bit. The input is the output of a second- 

order lowpass Sigma-Delta modulator, having an input sine wave of amplitude 0.5 

and a frequency 0.0031 the sampling fkequency. 
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the first stage, by the elimination of the integer bit, is 13.5%. However, in this 

case, the degradation in the SNR at the output of the Sinc decimator, evident fiom 

comparing Figure 5.47 to Figure 5.46, is snbstantial. 

To further reduce the datapath width at the output of the Sinc decimator, it 

is possible to eliminate the le& significant fraction bits. This elimination can be 

done after any Sinc stage. The earlier it is preformed, the more the reduction in the 

computational complexity and the lower the S N R  performance at  the output of the 

Sinc decimator. Notice that, when the least significant bit is eliminated after the 

las t stage, t here is no saving in the computational complexity of the Sinc decimator. 

However, the computational complexity of the following stage, which is the LPDF, 

is reduced due to the lower datapath width. 

Two methods for fraction bit elimination were considered. The first is trunca- 

tion. The second is alternate up/down rounding, were the sample is rounded up 

for one sample and rounded down for the next. Table 5.3 gives the SNR perfor- 

mance at the output of Sinc decimator for the two bit-elimination methods and 

with rounding performed after the first, second and third Sinc stages. The noise 

calculated at the output of the Sinc decimator is limited to the frequency band 

Notice, that when performing fiaction bit elimination after the first or second 

stages, alternate up/down rounding has substantially better performance than trun- 

cation. Notice also, that fkaction bit elimination after the fkst stage leads up to 

7 dB degradation in the SNR, when alternate up/down rounding is used. While 

bit elimination after the second stage leads only to a 3 dB degradation in the SNR, 

which is equivalent to half a bit. Hence, it is more appropriate to use. If we per- 

form, fraction bit elimination after the second and the third stages, and integer bit 

elimination after the second stage, the SNR at the output of the Sinc decimator is 
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Table 5.3: The effect of fraction bit elimination on the S N R  at the output of a 

Sinc decimator based on the fmt  architecture. The input signal is the output of 

a second-order Sigma-Delta modulator having an input sine wave of an amplitude 

0.5 and a fkequency 0.0031 the sampling fkequency. 

Bit elimination method 

Truncation 

Bit elhination stage SNR Saving in CC' 

* CC = computational complexity 
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-13 5 * Pts = 8193 
-150 Freq = 0.03125 

I I 

O 0.015 o .  03 ' mg. = -91.94 
O-06phase = 1.98108 

Figure 5.49: The output fiequency spectnim of the Sinc decimator given in Fig- 

ure 5.39, having k = 1, n = 3, and n = 3, and having a resolution 4 bits after 

the first stage, 5 bits after the second stage and 7 bits at the output of the Sinc 

decimator. The input to the Sinc decimator is the output of a second-order low- 

pass Sigma-Delta modulator, having an input sine wave of amplitude 0.5 and a 

frequency 0.0031 the sampling frequency. 

36.4 dB. This is equivalent to a 3.8 dB (just over half a bit) reduction fiom the SNR 

of the full resolution case, while the resolution at the output has dropped by 3 bits 

from 10 to 7 bits. The computational complexity of the Sinc decimator is reduced 

by 9% in this case. The frequency spectnun at the output of the Sinc decimator 

when the output resolution is 7 bits is shown in Figure 5.49. 

Now consider the effect of reducing the numerical accuracy on the output of a 

Sinc decimator based on the fourth architecture shown in Figure 5.43. When the 

output is at fd resolution and each intergrator and differentiator is operating at 

the f d  resolution (10 bits), the output spectnim is identical to that of the first 

architecture shown in Figure 5.46. The output sample word has 1 integer bit, 1 sign 
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Output of Sinc 4 w i t h  8 b i t  resolution - 
fypt = Doable 
sasp. Freq. = 1 

4 s Pts = raooo 
PoiDtS = 5968 
Tire = 5968 sec 
Valat = -96 

Figure 5.50: The output of a Sinc decimator based on the fourth architecture, 

having k = 1, m = 3, and n = 3, and having integrators and ditferentiators with a 

datapath width of 8 bits. The input to the Sinc decimator is the output of a second- 

order lowpass Sigma-Delta modulator, having an input sine wave of amplitude 0.5 

and a frequency 0.0031 the sampling frequency. 

bit and 8 fraction bits. If we eliminate the integer bit, by using 9 bit intergrators 

and differentiators. The output of the Sinc decimator is not Sected, except if 

the output should have been +1.000000002, which is interpreted as -1.000000002 

(a full scale error). For this output to occur, an input pattern consisting of 22 

consecutive ones is required (see appendix B). This input pattern rarely occurs? 

and if we slightly limit the amplitude of the input signal it will never occur. 

If we try to further reduce the datapath width of the integrators and differ- 

entiators to 8 bits, by rernoving a most significant bit. The output signal will be 

distorted as shown in Figure 5.50. 

If the resolution of the first integrator is 8 bits, and the remainder of the dat- 

apath is 9 bits. The output signal WU be substantidy distorted. This is evident 

from the fkequency spectrurn shown in Figure 5.51. 

The resolution of any stage of a Sinc decimator based on the fourth architecture 

cannot fd l  below 9 bits (by removing most significant bits) without substantidy 

degrading the output performance. So far we tried to reduce the resolution by 

the elimination of the most significant bits. However, if we try to reduce the 
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Figure 5.51: The output frequency spectrum of a Sinc decimator based on the fourth 

architecture, having k = 1, m = 3, and n = 3, and having the first integrator of 

resolution 8 bits, and the remainder of the datapath with resolution 9 bits. The 

input of the Sinc Decimator is the output of a second-order lowpass Sigma-Delta 

modulator, having an input sine wave of amplitude 0.5 and a frequency 0.0031 the 

sampling frequency. 
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Table 5.4: The effect of fraction bit elimination on the SNR at the output of a Sinc 

decimator based on the fourth architecture. The input signal to the Sinc d e b a t o r  

is the output of a second-order lowpass Sigma-Delta modulator having an input 

sine wave of an amplitude 0.5 and a frequency 0.0031 the sarnpling kequency. The 

differentiators have same resolution as t hat of the las t integrator stage. 

Bits per integrator stage 1 

* CC = computational complexity. This is relative to the fd resolution case were 

each integrator has 10 bits. 

resolution by the elimination of the least significant bits. The degradation in the 

output performance is more gracefd. The results of these simulations are shown in 

Table 5.4. 

The simulation results that have been presented for a Sinc decimator based on 

the fowth architecture indicate that , reducing the computational complexity by 

the elimination of the most significant bit results in a reduction in the computa- 

tional cornplevity by IO%, with a negligible degradation in the S N R  performance at 

the output of the Sinc decimator. The reduction of the computational complexity, 

in this architecture, is greater than the corresponding reduction in computational 
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cornplexity of a Sinc decimator based on the first architecture when the most sig- 

nificant bit is eliminated after the second Sinc stage. 

When the output has 8 bits resolution (eliminating the least significant bit in 

addition to the most significant bit), and with the f i s t  and second integrators 

having a 9 bit resolution, the output SNR is 37.1 dB. The reduction in the compu- 

tational complexity, due to the elimination of the least significant bit only, is 4%. 

Note that, this case is comparable to that of a Sinc decimator based on the fist 

architecture were the approximation is performed after the second stage. In that 

case, the output SNR is 37.3 dB, and the reduction in computational complexity 

is 4.5%. 

If we further reduce the numerical accuracy of the third integrator stage to 7 

bits, the output S N R  is reduced by 5 dB (almost 1 bit) to 32.1 dB. In this case, the 

degradation in performance is too large to make it a practical solution. However, 

if we choose the resolution of the third integrator stage to be 8 bits, and perform 

the approximation from 8 bits to 7 bits at the output of the Sinc decimator, by 

dropping the least significant bit. In this case, the SNR at the output of the Sinc 

decimator is 35.8 dB. The overd  reduction in computational complexity is 14%. 

The reduction in the numerical accuracy fbom the fidl resolution case is 4.5 dB 

(0.75 bits). While the datapath width of the output of Sinc decimator has been 

reduced fkom 10 bits to 7 bits. 

Even though the reduction in the computational complexity achieved in a Sinc 

decimator based on the fourth architecture (14%) is greater than that achieved 

in a Sinc decimator based on the first architecture (9%). Yet, the computational 

cornplexity (number of one-bit addition operations required per output) of the f i s  t 

architecture is still 2.8 times lower than that of the fourth architecture operating 

at the lower numerical accuracy. 
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5.9 Power Efficient Lowpass Filter Design 

The lowpass decimation filter (LPDF) is based on the multiply-accumulate archi- 

tecture. This architecture is shown in Figure 5.52. The filter designed is a linear 

phase FIR filter, it has symmetric coefficients. The filter architecture has been 

modified [147] to take into account the symmetry of the LPDF coefficients, by 

reading two values from the memory adding them together, and then mdtiplying 

them by the desired coefficient. This reduces the number of multiplications by 

50%. However, the number of RAM reads remains unchanged. By simulation of 

the different blocks it was found that, the RAM dissipates 35% of the total LPF 

power dissipation. Hence, the power saving achieved by eliminating multiplications 

due to filter symmetry is 33%. 

The number of multiplications is further reduced by using a halfband filter [120]. 

Halfband füters have half of their coefficients zero. However, this does not reduce 

the number of multiplications by 50% because halfband filters are usually longer 

(have more delay units and hence more taps) than non-halfband filters that provide 

the same out-of-band attenuation. 

To give the same stop band attenuation, halfband filters are designed 25%- 

30% longer than their corresponding non-halfband flters. Hence, the designed 

h a a n d  filters require 30%-35% less multiplications (and RAM reads) than the 

non-halfband filters. Hence, the power saving achieved by halfband frlters is 30%- 

35%. 

Figure 5.53 is the timing diagram for the LPDF. Every two consecutive RAM 

reads (one fiom the A stream and the other fkom the B stream) are added and 

multiplied by a single ROM coefficient. During the RAM's read state, the output 

of the LPDF is being accumdated. At the end of the read state, the LPDF output 
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Figure 5.52: Conventional multiply-accumulate flter architecture. 
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is generated, the RAM changes to the write state, and two samples are written into 

the RAM. The RAM than changes back to the read state. Every read cycle, the 

samples read are advanced two memory locations. The fact that two samples are 

written into the RAM every time a single sample is generated at the output means 

that the LPDF does down-sampling by a factor of two. 

The samples are written into the RAM at non-uniform periods (two samples 

are writ ten every read/write cycle). W e ,  the input samples to the LPDF are at 

uniform periods. To achieve synchronization, the synchronization block shown in 

Figure 5.54 is used (1471. This synchronization block allows the rnemory to operate 

between two quasi-synchronous blocks. It eliminates the need for an interrup t every 

time an input sample is available. This simplifies the design of the control unit of 

the LPDF. 

Figure 5.55 and Figure 5.56 show the timing diagrams for the synchronization 

block for two cases. In the first case, Figure 5.55, CM doesn7t change state during 

the RAM write state (when R/W = O). Notice that when w = 1, the output to the 

RAM is always the earliest sample found in the two registers R1 and R2. When 

w = 0, the output to the RAM is the latest sample found in the two registers RI  

and R2. 

In the second case, Figure 5.56, CM changes state during the RAM write state. 

In this case, the value of CM, during the moment R/W changes from 1 to O (read 

to write state), is stored in CM'. This is necessary to avoid the neglection of the 

samples stored in R2, for the case CM changes f b o m  O to 1 when R/W = O, this is 

the case shown in Figure 5.56. Or the neglection of the samples stored in RI, for 

the case clkI changes from 1 to O when R/W = 0. 

The multiplier-accumulator (MAC) used in the LPDF, has been designed such 
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Figure 5.53: Lowpass filter timing diagram. 
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Figure 5.54: S ynchronization Block. 

Figure 5.55: Synchronization block timing diagram. 
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Figure 5.56: Synchronization block timing diagam. 

that the adder is interleaved in the multiplier array. Figures 6.7 and 6.8 shows 

the architecture used to implement the MAC (1481. For a 20 x 20 multiplier- 

accumulator , t his structure achieves a 17% reduction in power dissipation. 

5.9.1 Variable Resolution Lowpass Architecture 

To reduce the power dissipation when a lower resolution is sufficient, the datap- 

ath is divided into pardel units as shown in Figure 5.57 [146] [147]. The blocks 

corresponding to the least significant bits are deactivated when a lower resolution 

is sufficient. In Figure 5.57, the datapath is shown consisting of 3 parallel units, 

making its resolution one of three values: 12, 16 or 20 bits. 

The division of the datapath into pardel units increases the overhead in terms 
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Figure 5.57: The modified filter architecture. 
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of power dissipation (as well as area). It is the purpose of this section to analyze 

this block deactivation technique, to determine the amount of power saving that 

can be achieved using it, and to determine the optimum number of parallel units 

the datapath is divided into for a certain application and technology. 

The datapath of the LPF consists of functional blocks as shown in Figure 5.57. 

The power dissipation of each functional block F can be divided into two compo- 

nents, the first component is a constant independent of the datapath width. while 

the second component is proportional to the datapath width: 

Equation 5.21 is d d  for a multiplier unit only if the width of the rnultiplicand 

is variable? while the width of the multiplier is fixed. 

Table 5.5 gives the power components for each functional block in the datapath, 

in addition to the power components of the entire datapath. These numbers are for 

a 0.5pm, 3.3 Volt CMOS technology [150]. For the multiplier unit, it is assumed 

that the multiplier has a fked width of 20 bits. The total power dissipation is for 

the architecture given in Figure 5.52, which has; 1 RAM, 1 multiplier, 2 adders and 

3 registers. Assume that the total power components are POT and Pl= for the fked 

and width-dependent power components respectively. Thus, if the datapath is not 

divided into parallel units the total power dissipation is given by: 

If the datapath is divided into M parallel units. The power dissipation when 

the fd accuracy of the datapath is required is: 
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Table 5.5: Power components for the individual functional blocks and the entire 

datapath of the architecture shown in Figure 5.52. 

Adder 

Regis t er 

Func t iond Unit 

RAM 

Notice that, the power dissipation in this case has increased by ( M  - 1) POT. ki 

the low resolution case, the power dissipation is given by: 

PT = POT + PITNL 

In this case, the power dissipation has decreased 

POF 

250p WIMHz 

(5.24) 

by (N - NL)PiT. NL is the 

PIF 

55pW,/=z 

datapath width in the low resolution case. The amount of power saving is dependent 

on the percentage of time the datapath is required to operate at each resolution, 

as well as the ratio between the two power components. 

Suppose that the datapath can take one of M resolution. The lowest resolution, 

NL bits, has a probability a. The remaining resolutions: 
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are equi-probable and have a probability: 

Using this probability distribution it is possible to h d  the average power dissi- 

pation: 

M 
pav, =  POT[^ + 2-(1 - a)] + PITINL + 

M 
2(M - 1 )  ( N  - NL)(~ - a)] (5.27) 

Define Pr, the relative power, to be the ratio between the power dissipation of 

the system with pardel  datapath units, to that dissipated in a single datapath 

system. p is defined as: 

T herefore, 

P Pr = - M  1  M 
, + N D +  ~ ( 1 - 4 1  + =[NL+ 2(M - 1)  ( N  - N L ) ( ~  - a)] (5.29) 

To minimize Pr, the optimum number of units, the datapath should be divided 

into, is given by: 

For the design parameters of the lowpass decimation filter being designed, M,t 

is 3. Figures 5.58 and 5.59 show the relationship between the relative power dissi- 

pation and M, the number of pardel units the datapath is divided into for different 
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Figure 5.58: Relative power dissipation, Pr, of a lowpass filter using block deacti- 

vation versus M,  for a = 0.4, N = 20 and NL = 12. M is the number of pardel 

datapath units. 

values of a and p. N was taken to be 20 and NL to be 12. Figure 5.60 shows the 

relative power dissipation, for a 3 pardel-unit datapath, versus 7 and 6. 7 is the 

probability that a 12 bit resolution is sufncient. d is the probability that a 16 bit 

resolution is suficient . 

From the results shown in Figures 5.58 - 5.60, we can make the foIlowing 

conclusions: 

a The optimum value of M (which makes Pr minimum) depends on p. As p 

decreases, Mqt increases . 

0 For the total power components, POT , PlTi given in Table 5.5, p = 2.29, we 

find that MWt is 3, which is the value used in the design of the LPF decimation 
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Figure 5.59: Relative power dissipation, Pr, of a lowpass filter using block deacti- 

vation versus M, for a = 0.6, N = 20 and NL = 12. M is the number of parde l  

datapath units. 
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Figure 5.60: Relative power dissipation, Pr, of a Iowpass decimation filter consisting 

of a three-unit pa rde l  datapath versus 7 and 6, for M = 3 and p = 2.29. The 

datapath resolution can be: 12, 16, or 20 bits. 7 is the probability that a 12 bit 

resolution is sufficient. 6 is the probability that a 16 bit resolution is sufficient. 
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The maximum reduction in power dissipation that can be achieved using this 

algorithn is 35%. This is achieved when a 12 bit resolution is sufficient for 

most of the tirne. 

The analysis of the block deactivation technique presented so far assumes that 

the multiplier unit has a fked multiplier width of 20 bits. E the width of the 

multiplier as well as the width of the multiplicand are allowed to vary, which is the 

case in the multiplier-accumulator array design in chapter 6 ,  the power saving that 

can be achieved with the block deactivation technique, presented in this section, is 

even grea t er. 

Figure 5.61 shows the relative power dissipation, for a three-unit pardel dat- 

apath, versus 7 and 6. 7 is the probability that a 12 bit resolution is suffcient. 

6 is the probability that a 16 bit resolution is sufficient. The maximum reduction 

in power dissipation that can be achieved is 40%. This is achieved when a 12 bit 

resolution is sufficient for most of the t h e .  

In this section, several low-power techniques have been employed in the design 

of the lowpass decimation filter. The power saving each technique can achieve is 

shown in Table 5.6. The total reduction in power dissipation is about 4 times. 

S. 10 VLSI Implementation of the Decimat ion 

Filt er 

The decimation filter is designed to generate a 12 - 20 bits resolution sampled 

signal fiom a 1 - 2 bits resolution oversampled signal. The first stage of the deci- 
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Figure 5.61: Relative power dissipation, Pr, of a lowpass decimation filter consist- 

ing of a three-unit pardel datapath, versus 7 and 6, for M = 3. The lowpass 

decimation filter uses the programmable multiplier-accumulator array designed in 

chapter 6. The power dissipation of the other components are as given in Table 5.5. 

The datapath resolution can be: 12, 16, or 20 bits. 7 is the probability that a 12 

bit resolution is sufficient. 6 is the probability that a 16 bit resolution is sufficient. 
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Table 5.6: Power savings for high-level low-power techniques used in the design of 

the lowpass decimation filter. 

Low power technique 

Symmetric filter coefficients 

Halfband fdter 

mation filter is the Sinc decimator. The order of the Sinc decimator, as well as its 

decimation factor, can be programmed. 

Power saving 

33% 

30 - 35% 

Interleaved MAC array 

D at apat h division 

TOTAL 

The Sinc decimator can be a third-order Sinc decimator. This accepts a one 

bit sampled signal fiom a fourth-or der bandpass Sigma-Delt a modulat or. The Sinc 

decimator can also be a fourth-order Sinc decimator. This accepts a two-bit sampled 

signal from a sixth-order bandpass Sigma-Delta modulator. The decimation factor 

of the Sinc decimator can be 8, 16 or 32. 

- - 

17% 

10 - 40% 

65 - 78% 

The second stage of the decimation filter is the lowpass decimation filter. The 

lowpass decimation filter consists of two stages in cascade, each stage does decima- 

tion by a factor of two. Each lowpass stage is a linear phase stage. Each lowpass 

decimation filter can be programmed to be halfband filter or a non-halfband filter. 

The output resolution of each lowpass stage can be programmed to be 12, 16 or 

20 bits. The number of taps required in the first LPF stage is 15 taps, while the 

number of taps requked in the second LPF stage is 47 taps. 

Figure 5.62 shows a block diagram of the decimation filter. The decimation 



CHAPTER 5. A/D CONVERTER FOR SOFTWARE RADIO 

Figure 5.62: Block diagram of the designed decimation filter. 

Table 5.7: The number of transistors required for each stage of the lowpass deci- 

filter was designed in a 0.5pm, 3.3 Volt CMOS technology. The total number of 

transistors required for the decimation filter is 187 K. Table 5.7 shows the number 

of transistors required for each stage of the decimation filter. The total area of the 

decimation filter is 7.4mm x 6.4mm. The VLSI layout of the decimation filter is 

shown in Figure 5.63. 

5.11 Chapter Summary 

Parallelism by 4x of analog signal processors is applied to the design of a bandpass 

Sigma-Delta modulator. The speed of the modulator is increased without increas- 
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Figure 5.63: VLSI layout of the decimation filter. 
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ing the speed requirement of the individual building blocks. Several architectures 

were considered in terms of their resilence to implementation details such as mis- 

match and gain errors. A switched-capacitor circuit has also been designed for the 

proposed modulator. 

Several high-level low-power design techniques have been incorporated into the 

design of the decimation filter. These include; operation minimization, multiplier 

elimination and block deactivation. These techniques lower the computational corn- 

plexity by eliminating redundant and i r r e l e ~ n t  computations. In the case of the 

Sinc decimator, eliminating redundant computations involves using architectures 

that avoid unnecessary computations due to decimation. Reducing the datapath 

width of the Sinc decimator, eliminates irrelevant computations. These are the 

computations that have little effect on the output numerical accuracy, because the 

numerical accuracy is lirnited by some other block in the system. In this case, the 

other block is the Sigma-Delta modulator. 

The lowpass decimation füter also eliminates kelevant computations, by us- 

ing a block deactivation technique that avoids unnecessary computations when a 

lower resolution is sufficient. The other low-power techniques used in the lowpass 

decimation filter include operation interleaving and multiplier elimination. The 

decimation filter, with a programmable resolution that varies from 12 to 20 bits, 

has been designed in a 0.5pm, 3.3 Volt CMOS technology. 



Chapter 6 

Low-Power 

Multiplier- Accumulat or Array 

Several low-power design techniques have been applied to the design of a power- 

efficient multiplier-accumulator (MAC) array. The addition operation has been 

interleaved into the multiplier array. This can achieve up to 27% saving in power 

dissipation. The MAC array is designed to have a programmable resolution so that 

the blocks corresponding to the least significant bits can be deactivated when a lower 

resolution is sufficient, this achieves up to 50% saving in power dissipation. The 

multiplier-accumulator has been designed in a 0 .5pn ,  3.3 Volt CMOS technology. 

6.1 Introduction 

The rapid development in integrated circuit technology has led to the emergence of 

powerfd, faster and smaller digital signal processors. Many of the functions that 

were performed in the analog domain are now being performed digitdy. Digital 
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processing not only improves quality, but it enhances the performance as weU by 

dowing more programmability. 

There is a trend to continue with the digital processing to higher speed analog 

signals. To be able to do this power-efficient DSP architectures are required. At 

the heart of a digital signal processor is the multiply-accumulate operation. 

In this chapter, the design of a power-efficient multiplier accumulator (MAC) is 

investigated. Several low-power techniques have been uicorporated into the design 

of this MAC. The addition operation has been interleaved into the multiplier array, 

this achieves a power saving of up to 27% for a 10 x 10 array. The MAC is de- 

signed to have a programmable resolution so that the blocks conesponding to the 

least significant bits can be deactivated when a lower resolution is sufficient. This 

achieves a power saving of up to 50%. 

The multiplier of the MAC array is based on the modified Booth algorithm. 

The accumulator's input and output are in the sum-carry representation. 

In section 6.2, the rnodified Booth algorithm multiplier is presented. The sign 

extension algorit hm and the multiplier array architecture are developed in t hat 

section as well. In section 6.3, the multiplier-accumdator array is developed. The 

resolution-programmable MAC array is developed in section 6.4. The MAC array 

has been designed in a 0.5pm, 3.3 Volt CMOS technology, this is discussed in 

section 6.5. 

6.2 The Modified Booth Algorithm Multiplier 

There are t hree types of multipliers [84]. Pardel multipliers [151] generate the par- 

tial products concurrently and sum them using a multi-operand adder. Sequential 
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multipliers generate the partial products sequentially and accumulate them to the 

previously summed partial products. Array multipliers [152] - [155] are made up 

of an array of identical c d s  that generate the partial product and do the summa- 

tion. Array multipliers have a regdar structure making them suitable for VLSI 

implement ation. 

The modified Booth algorithm multiplier [156] [157] is used for multiplying 

two's complement operands. The number of partial products generated is half 

the number of multiplier bits. The multiplier is divided into overlapping three- 

bit groups. Each three-bit group generates a single partial product, this is done 

according to Table 6.1 (31. The partial product can be -2, -1, 0, 1, 2 times the 

multiplicand. The multiplication factor is determined by calculating [84] : 

Each partial product is shifted two bits fiom the previous partial product. This 

shifting process requires sign extension [3]. In the following we examine one way in 

which sign extension is done. Let the first partial product be 

Where, A, is the sign bit. Therefore, the value of A is given by: 
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Table 6.1: Partial product generation. PP is the partial product, MD is the multi- 

plicand, and M& is the i th bit of the multiplier. 

Let the second partial product be 

In this case, Bn+z is the sign bit. Therefore, the value of B is given by: 

To add these two numbers taking into account the sign of each, the following 

modifications are done to A and B. For A, complement the sign bit (A, = 1 -An), 

add 2". The number obtained NA, which is in unsigned binary representation, is 

related to A by: 
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Note that, this number haç the same value as A to a resohtion of n + 1 bits. 

For B, complement the bits Bn+2 and B,+t, add 2"+' The nurnber ob- 

tained BN, which is in unsigned binary representation, is related to B by: 

Adding NA and NB as unsigned binary numbers, we get: 

Which equals A + B to a resolution of n + 3 bits. This sign extension process 

is shown in Figure 6.1. The sign extension for the remaining partial products is 

identical to that of B. The s m  of the partial products using this sign-extension is 

given by: 

Where, rn is the number of multiplier bits, n is the number of rnultiplicand bits. 

Thus, the product obtained is accurate to n + n - 1 bits. To make the product 

accurate to m + n bits, the (rn + n)th bit is complemented. This is equivalent to 

subtracting 2"+"+'. 

6.2.2 Partial Product Generation 

The multiplier is divided into overlapping three-bit aoups. Each group is encoded 

into three bits ~ 2 ,  x l ,  and s, as given in Table 6.1. Figure 6.2 shows the logic 

circuit of the row-decoder used for encoding each three-bit group. If x 2  = 1, the 
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Figure 6.1: Sign extension. (a) Signed-digit representation. (b  ) Equivalent unsigned 

binary representation. 

Figure 6.2: The row-decoder. 

magnitude of the partial product is twice the magnitude of the rnultiplicand. If 

x 1 = 1, the magnitude of the partial ~roduct  equals that of the multi~licand. If 

s = 1, the partial product and the multiplicand have different signs. In terms of 

x2, x 1 and s, the partial product is expressed as: 

PP = (-1.3 + l .~)(2 .x2 + 1.xl)MD (6-8) 

The i th bit of the partial product, PPi, is generated according to the following 
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equation: 

For i = O . . . n. Where, MD; is the i th bit of the multiplicand, MD-' = O and 

MD, = MDne1. n is the number of multiplicand bits. To correctly generate the 

two's cornpiement of the multiplicand when s = 1, s should be added to the least 

significant bit of the partial product . Figure 6.3 shows the Booth multiplier array 

based on Equation 6.9 and the sign extension algorithm given in Figure 6.1 [158]. 

The array cells of Figure 6.3 are given in Figure 6.4. The logic circuit diagram of 

the row-decoder (RD) of Figure 6.3 is given in Figure 6.2. The logic circuit diagram 

of the partial product generator (PPGen) of Figure 6.4, described by Equation 6.9. 

is given in Figure 6.5. 

The array multiplier of Figure 6.3 generates the product in the sum-carry rep- 

resentation. To get the two's complement product, the sum product word (PS) and 

the carry product word (PC) need to be added. 

The resolution of the product is the sum of the resolution of the multiplier rn 

and the multiplicand n. Assume that both the multiplier and the multiplicand are 

integers, t hen the value of the multiplier f d s  in the range [-2"-' , 2m-L - 1). While 

the value of the multiplicand falls in the range [-2"-l, 2"-' - 11. Thus the product 

f d s  in the range: 

With the exception of 2m+n-2, the other values can be represented using m+n- 1 

bits. The product, 2m"+2 , is obtained when MR = -2"-' and MD = -2"-'. If 
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Figure 6.3: The Modified Booth Algorithm Array Multiplier. 

this case is avoided, then m + n - 1 bits will be sufficient to represent the product. 

Thus, the c m y  fkom the left most ceU in the tast row of Figure 6.3 can be neglected. 

The array multiplier of Figure 6.3 is the basis of the multiplier accumulator 

array (MAC array) and the programmable MAC array developed in the following 

sections. 

6.3 The Multiplier- Accumulator Array 

The multiplier-accumulator (MAC) accepts three operands, two operands are mul- 

tiplied and accumulated (added) to the third operand. Figure 6.6 shows a block 

diagram for the MAC. In the MAC array [159] [160], the adder is interleaved into 

the array multiplier. The MAC array presented here is unique to other implemen- 

tations in that [158]: 

1. The accumulator input and output are in the sum-carry representation. 
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MDi- 1 

xl 

Cell B 

MDi ) 1 MDi-1 

Full Adder 

Ce11 E 

MDi- 1 

Half Adda 

Cell C 

Figure 6.4: The array celk of the az-ray multiplier given in Figure 6.3. 

MDi-1 
S 

x 2 , -  

Out 

Figure 6.5: Partial product bit generat or. 



Figure 6.6: Block diagram of a multiplier-accumulat or (MAC). 

Figure 6.7: The Multiplier- Accumulat or Array. 

2. The array multiplier used is based on the modified Booth algorithm, and it 

uses the sign extension algorithm developed in section 6.2.1. 

Figure 6.7, a modification of Figure 6.3, is the multiplier accumulator array. 

The multiplier and the multiplicand are in the two's complement represent ation, 

the accumulator input (AI) and output (AO) are in sum-carry representation. The 

array ceus of Figure 6.7 are given in Figure 6.8. 
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MDi- 1 

In2 
In 1 

Full Addcr 

Full Adder 4 4  
Full Addcr I r l 1  

Figure 6.8: The array cells of the MAC array given in Figure 6.7. 

The area, speed and power dissipation of the MAC array, given in Figure 6.7, are 

compared to that of a MAC with a separate multiplier/adder as shown in Figure 6.6. 

The basic components of each architecture are. the row-decoder (RD), the partial 

~roduct  generator (PPGen), the full adder (FA) and the half adder (HA). The 

multiplier has m bits, the multiplicand has n bits and the accumulator input and 

output have rn + n - 1 bits. Table 6.2, gives the number of basic components 

required by the MAC array and the separate multiplier/adder MAC. 

Notice that the MAC array has no haIf adders. However, one of the f d  adders 

could have been a half adder, but it was chosen to be a f d  zdder to make the array 

reguiar . 

For the separate multiplier/adder MAC, the adder has to add four operands, 

the sum and carry of the accumulator input and the sum and carry generated by 

the multiplier. A two level carry Save adder is used to do this. One of the f d  
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Table 6.2: Number of basic components for the MAC array and the separate mul- 

tiplierfadder MAC. 

adders of the separate multiplier/adder MAC could have been a haIf' adder, but it 

was chosen to be a f d  adder for regularity. 

Basic Component 

RD 

PPGens 

FA 

HA 

Cornparhg the number of components used in the MAC array versus that used 

in the separate multiplier/adder MAC, it turns out that the latter uses m + n - 2 

extra half adders. 

The critical path delay of the MAC array in t ems  of the basic components is 

given by: 

MAC Array 

E 
2 

m(n+l) 
2 

m(n+l) +(m-1 )  

O 

D(X) is the delay of the basic component X. X can be RD, PPGen, FA or 

HA. For the separate multipIier/adder MAC, the array multiplier of Figure 6.3 has 

a critical path delay of: 

Separate Multiplier/Adder MAC 

m 
2 

m(n+l) 
2 

( n - l ) ( y - 2 )  +2(m+n-1)-1 

m + n - 2  

The CSA has a delay of 2D(FA). Hence, the entire critical path delay of the 

separate multiplier/adder MAC is: 
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which is greater than the delay of the MAC array by 2D(HA). 

Table 6.3 gives the area, delay and power dissipation/MHz of the basic compo- 

nents used in building the MAC. These values are based on CMOS standard cell 

Iibraries [150] [161] - [164]. The delay and power dissipation of the basic com- 

ponents designed in a 0.5pm, 3.3 Volt CMOS technology were obtained through 

simulations. For the other CMOS technologies, the delay and power dissipation 

obtained in Table 6.3 are based on the data sheet parameters of each technology. 

Table 6.4 gives the W/ L for the N-transistor and P-transistor of each CMOS tech- 

nology. 

The delay-power of the MAC array and the separate multipIier/adder MAC 

using different CMOS technologies is shown in Figure 6.9 and Figure 6.10 for a 

10 x 10 bit and 20 x 20 bit multiplier respectively. The following observations can 

be made: 

The MAC array has a lower power-delay product than the separate multi- 

~lier/adder MAC of the same technology. 

The lower the resolution of the MAC, the greater the reduction of the delay- 

power product of the MAC array over the separate multiplier/adder MAC. 

The MAC array reduces the power dissipation, delay and area relative to the 

separate multiplier/adder MAC. The relative reduction of the power dissipation, 

delay and area for a 0.5pm, 3.3 Volt CMOS technology is shown in Figures 6.11, 

6.12 and 6.13 respectively. 
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Table 6.3: Axea in p z 2 ,  delay in n s  and power in pW/MHz for the basic components 

of the MAC architecture in dinerent CMOS standard ceU technologies. 

Library Component Area Delay 

pm2 ns 

RD 3873 1.41 

O.6pm PPGen 4401 2.48 

5 Volt FA 3345 1.99 

HA 1936 0.80 

FtD 3873 2.11 

0.6pm PPGen 4401 3.53 

5.3 Volt FA 3345 2.84 

HA 1936 1.19 

RD 1728 1.13 

0.5pm PPGen 1964 1.69 

5 Volt FA 1414 1.58 

HA 864 0.68 

RD 1728 1.14 

0.5pm PPGen 1964 1.68 

1.3 Volt FA 1414 1.57 

HA 864 0.72 

RD 1093 0.77 

1.35pm PPGen 1243 1.07 

5 Volt FA 1044 1.08 

HA 497 0.49 

RD 1088 0.74 
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Table 6.4: W/ L for the Werent  CMOS technologies. 

1 CMOS 

Technology 
- -  

0.6pm 5 Volt 

0.6pm 3.3 Volt 

0.5pm 5 Volt 

0.5pm 3.3 Volt 

0.35prn 5 Volt 

0.35pm 3.3 Volt 

N-Transis tor 

W I L  

1 I I I 1 I 

4 8 12 16 20 D 
C 

n sec 

Figure 6.9: The delay-power relationship of the MAC array and the separate mul- 

tiplierladder MAC having a 10 x 10 bit multiplier implemented in different CMOS 

technologies . 



1 1 1 1 1 I 

8 
- 

16 24 32 40 D 
n sec 

Figure 6.10: The delay-power relationship of the MAC array and the separate 

multiplierladder MAC having a 20 x 20 bit multiplier irnplemented in different 

CM0 S technologies. 
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For a 0.5pm, 3.3 Volt CMOS, at a resolution of 20 bits, the saving in power 

dissipation when using the MAC array is about 3.6%. The saving in area is about 

4.5%. While the increase in speed is about 7.7%. The increase in speed can lead to 

further reduction in the power dissipation [1] by reducing the voltage to maintain 

the same throughput. To maintain the same throughput the voltage is reduced by 

7.2% [150]. This corresponds to a fiuther 13.9% reduction in power dissipation. 

Hence, at a 20 bit resolution, the total reduction in power dissipation, achieved 

using the MAC array, is 17%. 

At a resolution of 10 bits, the saving in power dissipation when using the MAC 

array is about 6.5%. The saving in area is about 8.2%. While the increase in 

speed is about 13.5%. The increase in speed can lead to further reduction in the 

power dissipation (11 by reducing the voltage to maintain the same throughput. 

To maintain the same throughput the voltage is reduced by 11.9% [150]. This 

corresponds to a further 22.4% reduction in power dissipation. Hence, at a 10 bit 

resolution, the total reduction in power dissipation, achieved by using the MAC 

array, is 27.4%. 

6.3.1 Andysis ofthe ComputationalEfficiency oftheMAC 

Array 

The difference between the MAC array and the separate multiplier/adder MAC, 

is that the addition operation has been interleaved into the multiplier array of 

the former. This provides an opportunity to merge some blocks together. The 

multiplier array, Figures 6.3 and 6.4, use half adders in some of its ceus. Whereas, 

the MAC array, Figures 6.7 and 6.8, uses only f d  adders. This is where the 

elimination of redundant computations occur. 
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MAC Array Power Improvement 
L = 0.5 pn v = 3.3 volts 

Figure 6.11: The relative decrease in the power dissipation of the MAC array cf 

Figure 6.7 over that of the separate multiplier/adder MAC. Both designed in a 

0.5pm, 3.3 Volt CMOS technology. 
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\ MAC Array Speed Improvernent 
L = 0.5 J.lm V = 3.3 volts 

Figure 6.12: The relative decrease in the delay of the MAC array of Figure 6.7 over 

that of the separate multiplier/adder MAC. Both designed in a 0.5/rm, 3.3 Volt 

CMOS technology. 
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MAC Array Area Improvement 
L = 0.5 pm V = 3.3 vorts 

Figure 6.13: The relative decrease in the area of the MAC array of Figure 6.7 over 

that of the separate multiplier/adder MAC. Both designed in a 0.5pm, 3.3 Volt 

CMOS technology. 
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Figure 6.14: Adding 5 bits using half adders only. This requires 6 half adders. 

IIalf adders have two inputs and two outputs. Hence the number of bits that 

remain to be added after the half adder remains the same. Consider the scenario 

shown in Figure 6.14, where 5 bits need to be added. After the application of the 

fîrst HA, the number of bits that remain to be added is still5 bits. Rowever, there is 

redundancy in this case (Figure 6.14.b), because a and b cannot be 1 sirnultaneously. 

After the second HA, there is stiu 5 bits to be added. Again, there is redundancy 

in that c and d cannot be 1 simultaneously. After the third HA, there is ody 4 bits. 

The carry out, f ,  of this HA is always zero. 

To reduce the number of bits fÎom 5 bits to 4 bits it took three half adders. This 

could have been accomplished using one full adder as shown in Figure 6.15. Simi- 

lady, to go from 4 bits, as shown in Figure6.14.d, to 3 bits as shown in Figure 6.14.g, 

three half adders are required. 

It takes three half adders to add three bits together, an operation that can be 

done using one full adder. Figure 6.16 shows the implementation of the f d  adder 
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Figure 6.15: Adding 5 bits using f d  adders. This requires 2 full adders. 

using three half adders. 

Consider now the scenario shown in Figure 6.17, where the bits x and r are 

to be added together. Two scenarios are considered. In the first, the bits x are 

added using a half adders. The resulting bits y are then added to bits z using 

full adders and half adders. The output is in the sum carry representation. This 

implementation requires a total of 9 f d  adders and 6 half adders. 

In the second implementation, the x bits and the z bits are added directly 

using full adders and half adders to give the same sum carry representation as that 

generated by the first implementation. This implementation requires only 9 f d  

adders and 2 half adders. Thus, achieving a saving of 4 half adders. 

When the adder is interleaved into the multiplier array, the half adders are 

merged into the full adders required for the addition process. Hence, eliminating 

redundant computations and achieving a saving in the power dissipation. 
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C B A  

Figure 6.16: Merging three half adders into a single fd adder. 

X X X X X  
5 HA 

X X X X X  

z z z z z  LV 
Z Z Z Z Z  

Y Y Y Y Y  

Y Y Y Y Y  
Z Z Z Z Z  

z z z z z  

Figure 6.17: Binary number addition using half adders and fidl adders. 
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6.4 Programmable MAC Array 

To reduce the power dissipation of the MAC when a lower resolution is sufficient the 

unused ceus of the MAC anay - those corresponding to the Ieast significant bits - 

are deactivated, making the resolution of the MAC array programmable (1581. This 

eliminates irrelevant comput ations. lirelevant comput ations are t hose t hat affect 

the output of the unit under consideration, the MAC array in this case, but whose 

elimination doesn't affect the over all SNR performance of the system because the 

SNR is limited by some other system considerations, or by another unit in the 

sys tem. 

For the MAC array of Figure 6.7, the multiplicand comes from the bottom. and 

the multiplier cornes fiom the left side. When the resolution of the multiplicand 

is reduced, the cells of the right-hand-side columns are deactivated. When the 

resolution of the multiplier is reduced, the ce& of the top rows are deactivated. 

When a certain cell is deactivated, the inputs are bypassed to the output. This is 

done through the use of the bypass logic. The bypass logic is an overhead in the 

programmable MAC array. 

The c w y  output of each cell shifts one column only, while the sum output shifts 

two columns. This fact is taken into account when designing the bypass logic. The 

dotted line in Figure 6.18 represents the bypass path for a deactivated cell. 

Extra logic is required for the bypass. This extra logic leads to larger area. It 

also increases the power dissipation when the f d  resolution of the MAC is used. At 

the lower resolution the power dissipation decreases. The amount of power saving 

depends on the percentage of time the MAC spends at  each resolution. 

In addition to the bypass logic, extra logic is also required to prevent any signal 

changes on the input lines from reaching the deactivated cells. The blocking logic 
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Figure 6.18: The bypass path for a deactivated cell. 

Figure 6.19: The blocking modules for the recoded multiplier signals. 

for the recoded multiplier signals is shown in Figure 6.19. The resolution of the 

multiplicand determines the value of the control signals Cl, C2 ... CL. When the 

multiplicand has minimum resolution, n,,, the recoded multiplier bits are blocked 

at the left most blocking module. When the multiplicand has maximum resolution, 

n~ 7 the recoded multiplier bits pass through all the blocking modules. Similar 

blocking logic is required for the multiplicand. 

Assume the number of multiplicand bits is given by: 



CHAPTER 6. LO W-POWER MULTIPLIER-ACCUMULATOR ARRAY 207 

1 
n = nn + -(n, -nn) 

L 

where, 

L + 1 is the number of resolutions the multiplicand can take. 

n, is the maximum resolution of the multiplicand. 

n, is the minimum resolution of the multiplicand. 

Z=O,l,  ..., L. 

Similady, the number of multiplier bits is given by: 

where, 

K + 1 is the number of resolutions the multiplier can take. 

m, is the maximum resolution of the multiplier. 

m, is the minimum resolution of the multiplier. 

k = O , l  ,..., K. 

In generd, the power dissipation of the programmable MAC array was found 

to be given by: 

Power = P2nm-k P1m-k Po f P3 [m1(3 + n,) - n,(3 + nn)] + P4nk + P5mZ (6.12) 

where, 
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Table 6.5: Power coefficients, in pW/MHz, of the programmable MAC used in 

Equation 6.12, for a 0.5pm, 3.3 Volt CMOS technology. 

Po - P5 are technology dependent coefficients. 

The first three terms of Equation 6.12 are the power dissipation terms of a 

regular MAC array. The fourth term is due to the bypass logic. The last two ' 

terms are due to the input blocking logic. The values of Po - P5 for a 0.5 pm,  3.3 

Volt CMOS technology are given in Table 6.5. Equation 6.12 dong wit h the power 

coefficients of Table 6.5 were initially derived analytically. Later they were verified 

t hrough simulations. 

The amount of power saving is dependent on the percentage of time the multi- 

plicand and the multiplier are required to operate at each resolution. The multiplier 

can take one of K+1 resolutions. Assume the lowest resolution m, has a probability 

a. The remaining resolutions: 

are equi-probable and have a probability of: 

Similady, the multiplicand can t ake one of L + 1 resolutions. Assume the lowes t 

resolution n, has a probability B. The remaining resolutions: 
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are equi-probable and have a probability of: 

The MAC array designed is required to have a maximum resolution of 21 bits 

for the multiplicand and 20 bits for the multiplier. The power dissipation of the 

nonprogrammable MAC array, implemented in a 0.5pm, 3.3 Volt CMOS technol- 

ogy, is 1320pWIMHz. To reduce the power dissipation when a lower resolution is 

sufficient, the MAC array is designed to have a programmable resolution for both 

the multiplicand and the multiplier. The resolution of the multiplicand c m  be; 21, 

17, or 13 bits. The resolution of the multiplier can be; 20, 16, or 12 bits. 

The power dissipation ratio between that of the programmable MAC array and 

that of the non-programmable MAC array depends on the probability distribution 

parameters a and 0. This power dissipation ratio is shown in Figure 6.20. A power 

saving of up to 50% c m  be achieved. 

To further investigate the effect of the probability distribution on the power sav- 

ing that can be achieved using the programmable MAC array, assume the following 

probability distributions: 

Prob(Multip1icand is 13 bits) = Prob(Multip1ier is 12 bits) = 7 (6.17) 

Prob(Multip1icand is 17 bits) = Prob(Multip1ier is 16 bits) = 8 (6.18) 
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Figure 6.20: The power dissipation ratio between the programmable MAC array 

having K = 2, L = 2 and the non-programmable MAC array. a and ,û are the 

resolution probability distribution parameters, from Equations 6.13, 6.14, 6.15 and 

6.16. 
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Figure 6.21: The power dissipation ratio between the programmable MAC array 

having K = 2, L = 2 and the non-programmable MAC array. 7 and 6 are the 

resolution probability distribution parameters, from Equations 6.17, 6.18 and 6.19. 

Prob(Multip1icand is 21 bits) = Prob(Mu1tiplier is 20 bits) = 1 - 7 - d (6.19) 

The relatived power dissipation for different values of 7 and 6, as defined by 

Equations 6.17 and 6.18, is given in Figure 6.21. This power dissipation ratio 

varies between 0.5 (when 7. = 1 and 6 = O), to 1.1 (when 7 = b = 0). 
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6.5 VLSI Implementation of the Programmable 

MAC Array 

The programmable MAC array has been designed with L = 2 and K = 2. The al- 

lowed resolutions for the multiplier are; 20, 16, and 12 bits. The dowed resolutions 

for the multiplicand are; 21, 17 and 13 bits. 

The programmable MAC array has been designed in a 0.5pm,  3.3 Volt CMOS 

technology. It has over 17000 transistors. It occupies an area 1815pm x 1542pm. 

Simulation results show that the programmable MAC array can r u  at  a speed 

up to 42 MHz. Simulation results also show that the average power dissipation of 

the programmable MAC array, assuming that aIl resolutions are equi-probable is 

1.0 mW/MHz. This is 24% lower than the power dissipation of the corresponding 

non-programmable MAC array. Figure 6.22 shows the VLSI layout of the pro- 

grammable MAC array. 

6.6 Chapter Summary 

A multiplier-accumulator array has been designed in a 0.5 p z ,  3.3 Volt CMOS 

technology. The multiplier of the MAC array is based on the modified Booth 

algorithm. The accurnulator's input and output are in the sum-carry represent ation. 

To reduce the power dissipation, the adder was interleaved in the multiplier 

array. This eliminates redundant computations. The MAC array achieved up to 

17% saving in power dissipation for a 20 x 20 array, and up to 27.4% saving in 

power dissipation for a 10 x 10 array. 

To further reduce the power dissipation a block deactivation architecture was 
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Figure 6.22: The VLSI layout of a programmable MAC array designed in a 0.5pm,  

3.3 Volt CMOS technology. The total area of the MAC m a y  is 1815pm x 1542pm. 
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developed, where the cells corresponding to the least significant bits are deactivated 

when a smaller resolution is s&uent . This eliminates redundant computations. 

The power dissipation saving achieved using this architecture can be up to 50%. 

However, a more conservative estimate, when all the resolutions are equi-probable, 

puts the power dissipation saving at 24%. 



Chapter 7 

Digital Channel Selection 

7.1 Introduction 

In software radio, the IF as well as the baseband functions are done digitdy. These 

functions require high DSP horsepower, which can be as high as 10 GFLOPS/s [12]. 

This in turn leads to high power dissipation. 

In software radio, the digitized signal represents a block of channels. The chan- 

ne1 to be selected is then filtered digitdy. In this chapter, 1 examine ways to 

reduce the computational complexity and hence the power dissipation of the digital 

channel selection algorithm. The salient low-power features of this digital chamel 

selec tion algorit hm are [l65] : 

1. The pre-flter multiplier has been eliminated. 

2. The channel selection filtering is performed in stages. During each stage the 

sampled signal is decirnated by a factor of 2. 

3. The multipliers in the filters have been replaced by adders. 
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In this chapter, the effect each of these has on the power dissipation of the 

digit al channel selection algorithm is demons trated. 

In section 7.2, the conventional channel selection algorithm is considered, and 

its comput ational power dissipation is compu ted. The effect of performing channel 

selection in stages on the computational power dissipation is also considered in this 

section. 

In section 7.3, an algorithm for eliminating the pre-fdter multiplier is consid- 

ered. However, this algorithm requires sharp filtering stages. In section 7.4. the 

algorithm of section 7.3 is further developed to relax the filter sharpness require- 

ment. The irnplementation of this algonthm is considered, and its computational 

power dissipation is computed. 

Finally, in section 7.5, the cornputational power dissipation of the novel digital 

channel selection algorit hm is compared to that of other digital channel selection 

algori t hms . 

7.2 The Conventional Channel Selection Algo- 

In software radio, the digitized signal represents a block of adjacent channels, having 

a spectrum as shown in Figure 7.1. This signal is c d e d  the composite digital signal, 

it is denoted by C. C is a complex discrete-time baseband signal, given by; 

C(nT.) = QnTJ + jQ (G) (7.1) 

Ta is the sampling frequency. C is composed of M = 2m fkequency division mul- 
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P l  

Figure 7.1: The fkequency spectrum of a baseband signal consisting of eight chan- 

nels. 

LPDF 1- S: 

Figure 7.2: The conventional channel selection algorithm. 

tiplexed channels, each denoted by Sn. Each of these channels occupies a frequency 

band df. The center frequency of channel Sn is given by: 

M Where, n = -- y . . . , ) - 1. n can be represented in a two's complement binary 

format. Figure 7.1 shows the binary channel-numbering for the case M = 8. 

To select channel Sn, the composite signal is multiplied by a sinusoidal signal 

of frequency - f,. This shifts channel Sn to be centered around the zero frequency. 

A lowpass decimation filter (LPDF) selects channel Sn and rejects the remaining 

channels. This channel selection process is shown in Figure 7.2. 

The algorithm of Figure 7.2 requires: 
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IO 1s 2a 2 5 30 
1 
3s 

Adjacent Channel Rejection 

Figure 7.3: Number of filter taps vs. adjacent channel rejection, for the digital 

selection of 1 out of 32 charnels. 

1. A fiequency synthesizer, to generate the selected channel fiequency. 

2. A pre-füter multiplier. This multiplier operates at the high sampling rate, 

and its operands have high resolution. 

3. A sharp LPDF which has a large number of taps to provide sufficient adjacent 

channel rejection. The number of taps required to achieve a certain channel 

rejection ratio is shown in Figure 7.3. However, using a polyphase filter 

structure [120], the LPDF operates at the lower output rate. 

In the DAMPS standard, the adjacent channel selectivity is 13 dB [22]. DQPSK 

is the modulation scheme used in IS-136, to achieve a bit error rate of IO-', 2 
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Table 7.1: Computational power dissipation for the conventional digital channel 

selection algorithm shown in Figure 7.2, and designed in a 0.5prn, 3.3 Volt CMOS 

t echnology. 

Criteria 1 Pre-Filter Multiplier 1 LP Decimation Filter 1 Tot al 

should be 6 dB (1661, assuming that 50% of the noise is due to adjacent channel 

interference than the filter is required to achieve a 22 dB adjacent channel rejection. 

From Figure 7.3, this requires a 215 tap filter to digitally select one out of 32 

channels. Through simulation, it was found that the füter coefficients should have 

a resolution of 16 bits to achieve the sufficient channel rejection required for non- 

adjacent channels [22]. 

Speed 

Operations 

The computational power dissipation for a conventional digital channel selection 

algorithm used in the selection of one out of 32 30 KHz channels, as specified by 

the DAMPS standard [22], is given in Table 7.1. The sample rate of the composite 

digital signal is 960 KHz (complex sample rate). The sample rate at the output 

of the LPDF of Figure 7.2 is 30 KHz (complex sample rate). The values given in 

Table 7.1 are for a 0.5pm, 3.3 Volt CMOS technology [150]. The lowpass decimation 

filter is a linear phase filter, this reduces the number of multiplications by half. 

To reduce the lowpass filter sharpness and hence reduce the number of taps and 

lower the filter computational power dissipation, the lowpass decimation füter is 

960 KHz 

4 MULT(20 x 20) 

30 KHz 

216MULT(20 x 16) 

30 KHz 

128 MULT(2O x 20) 

216MULT(20 x 16) 
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implemented as a cascade of lowpass decimation filters. Each filter decimates the 

sampled signal by a factor of 2. The number of filtering stages required is log, M, 

for a filter selecting one out of M charnels. 

Assuming M = 32, 5 cascaded fütering stages are required. The first three 

stages dont  require sharp filters, hence a Sinc decimator is used. For the last 

two stages, a LPF is used. Table 7.2 gives the sdc ien t  image channel rejection 

each filtering stage is required to achieve in crder to obtain a BER of for 

the DAMPS standard. Also given in Table 7.2 is the order of the Sinc decimator 

and the number of the LPF taps necessary to achieve the required image channel 

rejection. 

The number of operations required per stage per output, power dissipation per 

stage and the total computational power dissipation including that of the pre-filter 

multiplier are also given in Table 7.2. The values given in this table are for a 0.5pm, 

3 -3 Volt CMOS technology. 

The total computational power dissipation given in Table 7.2 is that of the 

filter and the pre-filter multiplier. The power saving achieved is 45%, over the 

conventional channel selection algorithm of Table 7.1. However , now the dominate 

source of computational power dissipation is that of the pre-filter multiplier which 

is 5.09 mW. This represents 75% of the total computational power dissipation. In 

the next section, a digital channel selection algorit hm that eliminates the pre-filter 

multiplier is examined. 
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Table 7.2: Computational power dissipation for a lowpass decimation filter imple- 

mented as cascaded stages in a 0.5pm, 3.3 Volt CMOS technology. 

( Order/# of tapes / 3 

Cri teria 

Image rejection 

1 Speed 1 480 KHz ( 240 KHz 

1 Power dissipation 1 0.192 mW 1 0.120 m W  

Iststage 

64 dB 

1 Total power dissipation 

2ndstage 

64 dB 

3rd stage 

Pre-Filt er Multiplier Eliminat ion 

According to Table 7.2, the dimination of the pre-filter multiplier achieves 75% sav- 

ing in the computational power dissipation. To achieve this, filtering is performed 

in stages. During each filtenng stage half of the channels are eliminated. Thus, the 

number of filtering stages is log, M. 

4th stage 

22 dB 

32 

30 KHz 

64 dB 

5 

120 KHz 

The channel selection in this algorithm [165] depends on the use of highpass 

or lowpass filters to select the desired channel. Selecting one channel out of 2" 

channels requires m filtering stages. The first m - 1 stages are cornposed of a 

highpass/lowpass filter and a factor two down-sampler. In the last stage we do 

fiequency shifting followed by lowpass filtering. 

5th stage 

14MULT(20 x 12) 

5 1  dB 

13 

60 KHz 

The selection of a highpass filter or a lowpass filter depends on the location of 

the channel to be selected. If that channel falls in one of the bands [-et -41 or 



CHAPTER 7. DIGITAL CHANNEL SELECTION 222 

[a 61 a highpass filter is used to select the desired channel. If the channel to be 
4 '  2 

selected falls in the band [-4, $1 a lowpass filter is used. 

Channel Selection Example 

Figure 7.4 is an example showing the selection of one channel out of 16 channels. 

The channel to be selected is charnel 6 (0110). Since the number of channels 

is halfed after each filtering stage, the number of bits required in numbering the 

channels is reduced by one bit after each stage. 

The selection process is performed as follows. Channel 6 (the desired channel) 

falls in the highpass region. A highpass filter is used, the highpass filter selects 

channels -8, -7, -6, -5, 4, 5, 6, and 7. The highpass filter is foIlowed by a factor 2 

down-sampler, leading to the second fkequency spectrum in Figure 7.4. Notice that, 

only three bits are required to number the remaining channels shown in the second 

fiequency spectrum of Figure 7.4. The most significant bit has been removed. 

Furthemore, notice that because of the highpass filtering channel 6 has moved 

from the positive hequency region to the negative one. 

Channel 6 now lies in the lowpass region [-$41. A lowpass flter is used 

for selecting channels -8, -7, 6 and 7. The lowpass filter is followed by a factor 2 

down-sampler. Again the most significant bit is removed leaving ody  two bits. A 

highpass füter followed by a factor 2 down-sampler is used to select channels -7 and 

6. 

Channel -7 is the image of channel 6. The final selection process involves a fie- 

quency shift and lowpass filtering. The fiequency shift is performed by multiplying 

the received signal by e-ifn, n is the discrete time. 
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Figure 7.4: Channel selection example using lowpass and highpass filters ody. 
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7.3.1 The Channel Selection Algorit hm 

The number of stages required to select one channel out of 2" channels is rn stages. 

During the f i s t  m- 1 stages a lowpass filter or a highpass filter is used followed by a 

factor 2 down-sampler. The last stage is a Gequency shifi by 4 or -4,  followed by 

a lowpass filter and a factor 2 down-sampler. The required operation is determined 

from the binary representation of the desired channel. Assume the desired channel 

has the binary representation: 

Define xi to be: 

If xi = 1 use a highpass filter during stage i. Otherwise, use a lowpass filter. 

In stage m, the sign of the frequency shift is determined by the least significant 

bit bo. If bo = 1, the frequency shifi is 4. Otherwise, it is -$. 

The frequency spectmm is divided into two non-overlapping bands; the lowpass 

band and the highpass band. The fact that two bands are non-overlapping neces- 

sitates the use of sharp lowpass or highpass filters. This in turn leads to flters 

having a large number of taps, and hence an adverse effect of the computational 

power dissipation. In the next section, an algorithm that has overlapping selection 

bands is presented. This relaxes the sharpness requirement of the Hters, which in 

turn leads to filters with a fewer number taps and hence lower power dissipation. 
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7.4 Filter S harpness Relaxation 

The algonthm of the previous section is modified such that, the frequenc~ spectrum, 

which extends fkom - f to 5, is divided into four overlapping frequency bands [165]. 

Each frequency band has a bandwidth of f .  Any chamel lies in two fkequency 

bands. In one band it wdI be closer to its center, in the other band it WU be closer 

to its edge. The channel is selected by the band in which it is doser to its center, 

see Figure 7.5. The advantage of doing this is to relax the sharpness requirement 

of the used Nters, and hence lower the computational power dissipation. 

The channel selection algorithm requires the use of lowpass and bandpass füters. 

A highpass füter is only required during the first channel selection stage. The 

bandpass filter is centered around or -4 and it has a bandwidth of $. The 

bandpass filter is implemented as a frequency shift of -+ or fi' followed by a lowpass 

filter. The highpass filter is implemented as a fiequency shift of f followed by a 

lowpass filter. 

The type of filter used is determined by the fkequency band in which the signal 

lies. This is shown in Figure 7.5. BPN is the negative kequency bandpass filter 

centered around -4.  While, BPP is the positive fiequency bandpass filter centered 

around 4. 

Channel Selection Example 

Figure 7.6 is an example showing the selection of one channel out of 16 channels. 

The channel to be selected is channel 6 (0110). The channel selection process 

proceeds as follows; channe16 lies near the center of the highpass band. A highpass 

filter is used, the highpass Nter selects channels -8, -7, -6, -5, 4, 5, 6, and 7. The 

highpass füter is followed by a factor two down-sampler, leading to the second 
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Figure 7.5: Filter used in each frequency band. 

1 

frequency spectrum in Figure 7.6. Notice that, only three bits are required to 

number the remaining channels. The most significant bit is removed. 

HP BPN 

Channel 6 now lies near the center of the negative fiequency bandpass band. A 

negative hequency bandpass filter is used selecting charnels; 4, 5, 6, and 7. The 

negative frequency bandpass filter is followed by a factor 2 down-sampler. The 

most significant bit is removed and the second most significant bit is inverted in 

this case. 

Channel 6 now lies in the lowpass band. If we were to select channel 6 with 

channe15 using a lowpass flter, then this lowpass filter WU be sharp and it will re- 

quire many taps. Instead, the spectrum is shifted by - $, a lowpass filter is used for 

selecting charnel6 in two stages. An implementation with reduced computational 

complexity, for this shif'ting process, is presented in section 7.4.2. 

-L - f, - f, O 3 f f 
8 2 4 8 8 2 

BPN 

7.4.1 The Channel Select ion Algorit hm 

The channel selection process, previously described for the selection of channel 6, 

is formulated in the following algorithm for the selection of any channel [165]: 

LP ; LP B 
1 

BPP j HP 
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Figure 7.6: Channel selection example using lowpass, highpass and bandpass füters. 
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For the e s t  stage 

Use a highpass filter. 

Use a lowpass filter. 

Use a negative frequency bandpass filter. 

Use a positive frequency bandpass filter. 
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Use a negative fiequency bandpass filter. 

\ r 

Use a positive frequency bandpass filter. 

Where, i = 2 . .  . m - 2 

For stage rn - 1 

Shift the spectrum by a. 
Use a lowpass filter. 

else if al bo = 1 

Shift the spectrum by B. 

Use a lowpass füter. 
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else if ül go = 1 

Shift the spectrum by -f$ 

Use a lowpass filter. 

else if bo = 1 

Shift the spectrum by -8. 

Use a lowpass filter. 

For stage m 

Always use a lowpass filter. 

7.4.2 Algorit hm Implementat ion 

The algorithm just described requires four types of filters, a lowpass filter, a high- 

pass filter, a negative frequency bandpass filter, and a positive frequency bandpass 

filter. Each one of these filters has a bandwidth of 2. The four filters can be im- 

plemented using a lowpass fdter preceded by a multiplier that does the appropriate 

frequency s hift ing . 

For the highpass filter, the frequency shift is 2. This is performed by multi- 

plying the incorning samples by a sequence of 1, -1,1, - 1,l. . . . This is shown in 

Figure 7.7.a. 

For the negative frequency bandpass filter, the frequency shift is 4- This is 

performed by multiplying the incoming samples by a sequence of 1, j ,  - 1, - j, 1, j . . .. 
This is shown in Figure 7.7.b. 
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Figure 7.7: Implementation of: (a) HP filter (b) BPN filter (c) BPP filter using a 

multiplier and a LP filter. 

Figure 7.8: The proposed digital channel selection algorithm for the selection of 

one out of 32 channels. Stage A is a {O, f l , 2 ) 4  fiequency shifter followed by a 

lowpass filter. Stage B is a zt(1,3)8 fiequency shifter fouowed by a lowpass filter. 

b4b3b2 bl b0 is the binary representation of the selected channel number. 

For the positive fiequency bandpass filter, the fkequency shift is - 4 .  This is per- 

formed by multiplying the incoming samples by a sequence of 1, - j, - 1, j ,  1, - j . . . . 

This is shown in Figure 7.7.c. 

The multiplier coefficients in these implementations are: 1, - 1, j, and - j. This 
doesn't require the use of a f d  multiplier, aIl that is required is multiplexers and 

simple logic gates. This achieves a dramatic saving in the power dissipation. 

The implementation of the digital channel selection algorithm for the selection 

of one channel out of 32 channels is shown in Figure 7.8 [165]. This algorithm has 

five stages. The first three stages have a block diagram as shown in Figure 7.9. 

The fourth stage has a block diagram as shown in Figure 7.10. The fifth stage is a 

lowpass decimation filter. 

In stage m - 1 a fiequency shift of *{Il 31% is repired. To eliminate the use 



CHAPTER 

Ii - 

7. DIGITAL CHANNEL SELECTION 

Cl C2 
O O LP 
0 1 H P  
1 O BPN 
1 1 BPP 

Cl = e l  @ eO 
C2=e2 @ (el +eO) 

Figure 7.9: knplementation of a {O, f l , 2 )  $ fiequency shifter followed by a lowpass 

filter. 

of a multiplier for this frequency shift operation, we exploit the fact that the filter 

following the frequency shifter is a decimation filter, that decimates the signal by 

a factor of 2. This filter is implemented as a ~ o l y ~ h a s e  filter [120] that separates 

the input sample stream into even and odd sample streams. The even samples are 

always multiplied by k l ,  or f j. m e  the odd samples are multiplied by $[f 1 I 

j]. The multiplier is replaced by adders, multiplexers and other logic gates. The 

multiplier coefficient (&) is hidden in the filter coefficients. The implementation 

of the fkequency shifter followed by the filter is shown in Figure 7.10. Details of 

t his implement ation are explained below. 

Assume a multiplier is used to provide the desired fiequency shift , the multiplier 

coefficients are: 

e f j(1.3)Gn 
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Table 7.3: Frequency-shift-multiplier output . 

Where, n is the discrete time. These coefficients are periodic with a period N = 8. 

Table 7.3, gives eight consecutive samples of the multiplier output for the four 

different frequency shifts. The input sample is 1; + jQi.  

Notice fkom Table 7.3, that the even samples require only multiplication by f 1, 

in addition to Ii/Qi interchange, which is equivalent to multiplying by f j. The 

odd samples always require multiplication by 1/& in addition to subtraction or 

addition operations. The multiplication operation is hidden in the coefficients of 

the odd sample branch of the polyphase filter [120]. Hence, no extra multiplications 

are required to implement the fkequency shift . 

Now that the sharpness of the filters is not critical, in the initial filtering stages 

Sinc decimators are used eliminating the need for multipliers. However, in the last 

two stages a sharper lowpass filter is used. Table 7.4 gives the suEcient image 

channel rejection required to achieve a BER of IO-* for a DAMPS system. Also 

given in this table is the Sinc decimator order and the number of LPF taps required 
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Figure 7.10: Implementation 

filter. 

of a f (1,318 frequency shifter followed by a lowpass 

to satisfy this requirement. 

The number of operations required per stage per output, the power dissipation 

per stage, and the total power dissipation are also shown in Table 7.4'. The values 

given in this table are for a 0.5pm,  3.3 Volt CMOS technology. 

For a digital channel selection algorithm that selects one out of 32 channels, 

eliminating the pre-filter multiplier achieves an 81% saving in power dissipation 

'An eighth order Sinc filter with a decimation factor of two has the transfer function: 

Direct implementation of Equation 7.5 requires 18 addition operations. Using the properties of 

arithmetic operaton, such as commutativity, sssociativity and common factoring, Equation 7.5 

can be reformated as: 

Now the Sinc filter, according to Equation 7.6, requires only 10 addition/subtraction operat ions. 
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Table 7.4: Computational power dissipation for the novel digital channel selection 

algorithm shown in Figure 7.8, and designed in a 0.5pm. 3.3 Volt CMOS technology. 

Cri teria 1st stage 2nd stage 3rd stage 4th stage 5th stage 
- -  - 

Image rejection 

Order/# of tapes 

Speed 480 KHz 240 KHz 120 KHz 60 KHz 30 KHz 

Operations 

1 Power dissipation 

1 Total power dissipation 
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when compared to the conventional channel selection algonthm of Table 7.1' and 

65% saving in power dissipation when compared to the channel selection algorithm 

of Table 7.2. 

7.5 Digital Channel Select ion Algorit hms: Corn- 

parison 

In this section, the power dissipation of three channel selection algorithms are 

compared. 

Architecture A. This is the architecture given in Figure 7.2. In this architec- 

ture a pre-filter multiplier is used to shift the channel to be selected to be centered 

around the zero frequency. A single stage polyphase füter is then used to select the 

desired channel. 

Architecture B. This architecture is also given in Figure 7.2. In this architec- 

ture a ~re-filter multiplier is used to shift the channel to be selected to be centered 

around the zero fkequency. A multi-stage filter is then used to select the desired 

channel. Each stage does decimation by a factor 2. 

Architecture C. This architecture is described in section 7.4. This architec- 

ture elkninates the pre-filter multiplier. Channel selection is achieved t hrough an 

algorithm that determines the type of filter (LP, HP, BPN, or BPP) based on the 

channel to be selected, see section 7.4.1. 

Figure 7.11 gives the comput ational power dissipation versus the number of 

channels, for the three different architectures of the digital channel selection algo- 

rithm. Notice that, the increase in computational power dissipation of architecture 

A as the number of channels from which one channel is selected increases, exceeds 
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Figure 7.11: Computational power dissipation for digital channel selection dg* 

rithms. 

the rate of computational power dissipation increase of architecture B which in turn 

exceeds the rate of increase of computational power dissipation of architecture C. 

Figure 7.12 gives the relative computational power dissipation of architecture A 

and architecture B relative to that of architecture C. Again as the number of chan- 

nels form which one channel is selected increases, the efficiency of architecture C in 

saving power over architectures A and B becomeç more apparent. When selecting 

one out of 256 charnels, architecture C can achieve an order of magnitude saving 

in computational power dissipation over that of architecture A. Architecture C also 

lowers the computational power dissipation by 4.5 times over that of architecture B. 
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Relative power dissipation 

1 Architecture A / 

t / Architecture B 

Figure 7.12: Relative computational power dissipation between conventional digital 

channel selection algorithms and proposed algorithm. 



CHAPTER 7. DIGITAL CHANNEL SELECTION 

7.6 Chapter Summary 

A novel digital channel selection algorithm with no pre-filter multiplier has been 

developed in this chapter. The algorithm performs channel selection in stages. 

During each stage, half the channels are rejected, and the other half is selected. 

The algorithm employs a basic lowpass filter, which can also perform bandpass and 

highpass filtering functions by using simple logic gates. 

The use of overlapping frequency bands to perform the channel selection? relaxes 

the filter sharpness requirement. Thus permit ting the use of Sinc filters in the initial 

stages. Sinc decimators require only addition operation. This greatly reduces the 

computationd power dissipation. 

The computational power dissipation of the novel digital channel selection al- 

gorithm is compared to that of other channel selection dgorithms. The reduction 

in computational power dissipation can be up to an order of magnitude. 



Chapter 8 

Summary, Conclusions and Future 

Uirections 

8.1 Summary 

The research reported in this dissertation is a study of high-level (algorithmic and 

architectural) techniques to lower the power dissipation in portable wireless termi- 

nais. 

The firat part of this dissertation is a survey of the wireless communication 

systems; architectures and standards, this is presented in chapter 2, and of low- 

power techniques, this is presented in the fist  half of chapter 3. 

In the second part of this dissertation, low-power techniques for portable wire- 

less terminals at the architectural and the dgorithmic levels were inves tigated, 

developed, designed and evaluated. The low-power techniques are applied to video 

compression algorithms used in multimedia port able terminals. Low-power a lge  

nthms are also developed to lower the power dissipation in software radios. 
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The first contribution of this dissertation is the analysis of high-level low-power 

design techniques, to show the limit to which some of these design techniques can 

be applied effectively, to reduce the power dissipation. Three examples of such 

analysis are given in chapter 3. These are; the use of ca ry  Save adders in FIR 

filters, the use of the Gray code number system, and the use of higher-order radix 

for the division operation. 

The second contribution of this dissertation is a new division algorithm that 

minimizes the number of addition/subtraction operations required to generate the 

quotient. This algorithm is presented in chapter 3. 

The third contribution of this dissertation is a new low-power subband coding 

image compression algorithm developed in chapter 4. Subband coding is a technique 

in which the video signal is divided into subbands and each subband is allocated 

a number of bits according to the information it carries and its spectral impor- 

tance. The filtering structure for the proposed subband coding image compression 

dgoritkm, requires only addition/subtraction operations, this greatly reduces the 

power dissipation. A novel vector quantization coding algori t hm having a simplified 

decoding architecture has been developed in chapter 4. 

The fourth contribution of this dissertation is a novel bandpass Sigma-Delta 

modulator, dong with its switched capacitor architecture, presented in chapter 5. 

Pardelisrn by 4x of analog signal processors is applied to the design of the band- 

pass Sigma-Delta modulator. This increases the speed of the modulator without 

increasing the speed requirement of the individual building blocks. A switched- 

capacitor circuit with a minimum number of operational amplifiers is also given for 

the proposed modulator architecture. 

The fifth contribution of this dissertation is the design of a decimation filter 
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incorporating several low-power design techniques such as; operation minimization, 

multiplier elimination and block deactivation. The decimation filter is resolution- 

programmable, allowing the deactivation of the blocks corresponding to the least 

significant bits, when a lower resolution is sufficient. The design of the decimation 

filter is given in chapter 5. 

The sixth contribution of this dissertation is the design of a resolution pro- 

grammable multiplier-accumdator (MAC) array. The interleaving of the adder in 

the multiplier array reduces the power dissipation. The resolution of the MAC 

array is programmable allowing the deactivation of the blocks corresponding to the 

least significant bits wben a lower resolution is sufficient. The design of the MAC 

array is given in chapter 6. 

The seventh contribution of this dissertation is a novel digital channel selection 

algorithm with no pre-filter multiplier. The channel selection algonthm uses low- 

pass, highpass and bandpass filters. The basic filter is the lowpass filter. Other 

filters are implemented using the lowpass filter and simple logic gates such as mul- 

tiplexers and XOR gates. The channel selection is done in stages. The elimination 

of the pre-füter multiplier reduces the power dissipation by up to an order of mag- 

nitude. The design of the digital channel selection algorithm is given in chapter 7. 

8.2 Conclusions 

The widespread use of portable wireless terminais, and the increase in consumer 

demand for more capabilities and fuctionality, coupled wit h the limit ed energy 

supply of batteries is driving research into the low-power design arena. 

The promising results obtained from this dissertation indicate that the proper 
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choice of an algorithm or architecture can achieve up to an order of magnitude, 

or even more in some cases, of savings in the power dissipation. High-level low- 

power design techniques are easier and fas ter to implement t han low-level low-power 

design techniques. 

The high-level techniques presented in this dissertation to reduce the power 

dissipation include; multiplier elimination, operation minimization, operation in- 

t erleaving and blo ck deac t ivat ion. 

At the heart of these techniques is the minimization of the computational com- 

plexity by trie elimination of redundant and irrelevant computations. Redundant 

computations are those whose elimination has no effect on the operation of the ar- 

chitecture. This is generdy achieved by proper encoding of the input and output 

data, or by mod*ing the architecture. For example, multiplication by 7 requires 

two addition operations: 

However, encoding 7 in sign-digit representation 7 = 100ï, eliminates one addi- 

tion operation and substitutes the other one by subtraction: 

This is an example of redundant computations elimination. Redundant com- 

putations also occur in decimation flters, where there is redundancy in the inter- 

mediate stages, due to the decimation at  the output of the filter. Through proper 

choice of an architecture, the redundancy in the intermediate stages is minimized. 

Irrelevmt computations are those whose elimination generdy affects the oper- 

ation of the architecture. But under certain circums t ances, t his effect is irrelevant . 
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For example, reducing the datapath width of an operator when the SNR is lim- 

ited by some other system considerations, or by another unit in the system, is an 

example of irrelevant comput ations elimination. 

In chapter 7, a novel digital channel selection algorithm was presented that elim- 

inat es the pre-filter multiplier. The multiplier was replaced by less comput ationally 

complex operators, such as adders, multiplexers and XOR gates. This algorithm 

flters the desired channel in stages. During each stage, the signal is decimated by 

a factor of 2. To further reduce the computational complexity, multiplication is 

substituted by addition in the f i s t  filtering stages. This reduces the computational 

power dissipation by up to an order of magnitude. This is an example of redundant 

comput ations elimination. 

The lowpass decimation filter presented in chapter 5, was a halfband filter with 

symmetric coefficients. This reduced the number of multiplications required per 

output sample, which in turn led to a power saving of over 50%. 

The efFect of operation minimization on reducing the power dissipation was 

demonstrated in section 3.9.2 of chapter 3. A novel division algonthm was presented 

in that section that produces the quotient in a minimal sign-digit representation. 

Simulation results indicate that the new algorithm achieves a 15% saving in power 

dissipation when compared to a radix 4 division algorithm. This is an example of 

redundant computations elimination. 

Operation minimization was also considered in chapter 5, for the design of the 

Sinc decimator. The fact that the output of the Sinc filter is decimated, offers 

opportunity to minimize the number of one-bit addition operations required per 

Sinc decimator output. Of the different Sinc dechator architectures considered 

in chap ter 5, the mos t computationally efficient implement ation reduces the num- 



CHAPTER 8. SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS 245 

ber of one-bit addition operations by up to five times when compared to other 

Sinc decimator architectures. This is also an example of redundant computations 

elimination. 

Besides multiplier elimination and operat ion rninimizat ion, operation interleav- 

ing is another technique to lower the power dissipation. Operation interleaving al- 

lows two (or more) operators to be interleaved into a single operator. In chapter 6, 

the effect of interleaving an adder and a multiplier in a single array was presented. 

For a 10 x 10 multiplier-accumulator array, operation interleaving achieves a 27.4% 

saving in power dissipation. 

Wireless portable terminais are required to have very high sensitivity and se- 

lectivity, in order to operate in severe radio environments. In software radio, this 

leads to high resolution A/D converters and high resolution digital signal proces- 

sors in the digital IF portion of the receiver. However, in many cases the level of 

received signal is strong enough to obviate the need for such high resolution. In 

this case, block deactivation is used to deactivate the blocks corresponding to the 

least significant bits. 

Block deactivation was applied to the design of the lowpass decimation filter 

of chapter 5, and also to the design of the multiplier-accumulator (MAC) array of 

chapter 6. The block deactivation technique presented can achieve a power saving 

of up to 50% for the MAC array and up to 40% for the Iowpass decimation filter. 

This is an example of irrelevant comput ations elimination. 

Reducing the datapath width wit hout degrading the output numerical accuracy 

plays a central role in achieving a power-efficient architecture. A Sinc decimator of 

order N + 1 is used to decimate the output signal of the Sigma-Delta modulator 

of order N. Each octave of oversampling in the Sigma-Delta modulator increases 
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the resolution by N + 0.5 bits. However, each octave of decimation by the Sinc 

decimator increases the datapath width by N + 1 bits. Half a bit more than what 

is required. 

For a third-order Sinc decimator having a decimation factor of 8, it is possible 

to reduce the output datapath width from 10 bits to 7 bits, at  the expense of a 3 

- 4 dB degradation in the SNR (which is equivalent to just over half a bit). The 

saving in computational complexity is 9-14%. This is an example of irrelevant 

comput ations elimination. 

The choice of an algorithm can have the greatest impact on the power dissipa- 

tion and the system performance. In many cases, it is possible to trade a slight 

degradation in algorithm performance, for a larger reduction in power dissipation. 

The subband image compression algorithm presented in chapter 4 has low compu- 

t ational complexity. The filtering structure reduces the comput ational complexity 

23 times. The vector quantization algorithm used in the decoding of the high fke- 

quency subbands achieves a large reduction in computational complexity over the 

other vector quantization algorithms such as table-lookup vector quantization de- 

coding algorit hms. This reduction in computational complexity is achieved at the 

expense of a 4 - 5 dB reduction in the SNR. 

The choice of a particular low-power technique depends on the design parame- 

ters of the system being design. Using an algorithm or an architecture to reduce one 

component of the power dissipation may lead to an increase in another component 

of the power dissipation. In chapter 3, several such examples where considered, one 

of which was the Gray code number system. The Gray code number system reduces 

the switching activity for successively correlated samples, when compared to the 

two's complement number system. However, the energy per operation is higher 

for the Gray code number system. The effect of the Gray code number system on 
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reducing the power dissipation depends on several factors such as, the correlation 

coefficient, the load capacitance, and the energy per operation. In chapter 3, the 

limits of applying the Gray code to reduce the power dissipation were presented. 

In chapter 5, a pardel bandpass Sigma-Delta modulator is proposed. The basic 

advantage of the proposed architecture is that each block operates at a lower speed 

(because of the parallelism) than that of the conventional bandpass Sigma-Delta 

modulator for the same oversampling ratio. This makes it suitable for high-speed 

Sigma-Delta modulators, such as those used in RF applications, for high-speed 

analog-to-digit al conversion. 

Another advantage of the switched capacitor architecture, given in chapter 5, is 

in the reduced number of operational amplifiers required. A fourth-order bandpass 

Sigma-Delta modulator typicdy requires four operational amplifiers [140] [l41]. 

The bandpass Sigma-Delta modulator presented in chapter 5 uses a factor of four 

parallelism (for both I and Q channels), while the number of operational amplifiers 

required is eight, only increased by a factor of two. 

8.3 Future Directions 

8.3.1 Low-Power Digit al Radio 

Future mobile wireless terminais WU be able to perform, in the digital domain, 

many of the functions that are currently being done in the analog domain. An 

example of this is digital channel selection which was considered in chapter 7. New 

power-efficient algorithms for these operations, suit able for digital implementations, 

need to be developed. 
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Furthemore, software radios d o w  new features which are not available in cur- 

rent transceivers, such as the ability to change coding scheme, modulation scheme, 

and even multi-access scheme, based on the radio channel environment. This topic 

needs further investigation. New algorithms need to be developed to determine 

which coding/modulation/muIti-access schemes can lead to optimum system per- 

formance for a certain radio channel environment. 

We have presented an A/D converter architecture with a sampling rate of 

1.25 MS/s. This captures only part of the 25 MHz cellular band. To capture 

the entire cellular band an A/D converter with a sampling rate of 62.5 MS/s (1.25 

times the Nyquist-rate) is required, and with a 20+ bits resolution. More research 

is required in t his area to achieve p ower-efficient high-resolution A/D conver t ers 

operating at such a rate. 

8.3.2 Low-Power Multimedia 

New applications are likely to emerge as wireless multimedia terminals becorne 

popular. New power-efficient algorithms and architectures need to be developed for 

these applications. For example, to enable video conferencing, a duplex video link 

needs to be established. The vector quantization algorithm presented in chapter 4, 

is power-efficient for video decompression. For video compression a power-efficient 

search algorithm is required. Thus, a multimedia terminal has to be able to perform 

video compression as weIl as video decompression in a power-efficient manner. 

There are enormous opportunities for future research to reduce the power dissi- 

pation in wireless multimedia terminals at the system level. Future wireless termi- 

nais are required to handle different types of information such as speech, video and 

data. Each type of information has its own requirements in terms of the acceptable 
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delay and the probability of error. For example, voice packets must have a low 

delay, while delay is not critical for data packets. On the other hand, voice packets 

can tolerate a small amount of transmission errors, while data packets can not tol- 

erate such enors. Based on this, a strategy for the power-efficient transmission of 

packets needs to be established. In an unfavourable radio environment, transmit- 

ted packets are likely to suffer transmission errors, which leads to retransmission 

requests for data packets leading to a high loss of valuable power. To minimize data 

packet retransmission, data packets can be transmitted with a higher power level 

or use a more elaborate error correction code, both these lead to higher power dis- 

sipation, but can lead to a power efficient solution in the sense that they avoid data 

retransmissions. The optimum error coding algorithm, and the optimum power 

transmission level for the most power-efficient transinission strategy of information 

packets need to be determined for different radio channel environments. 

8.3.3 Low-Power CAD 

Traditiondy, hi&-level synthesis systems have been associated with the optimiza- 

tion of area and speed [167] [168]. Recently, high-level synthesis systems have 

started to address the optimization of power dissipation as well [51] 11691 [170]. 

However, automated tools for synthesizing power optimum algorithms are stiU not 

available. Further research needs to be carried out in this area. 

An integral part of a high-level low-power synthesis systems is fast but accu- 

rate high-level power estimation. The majority of the literature deds with power 

estimation at the transistor, switch or gate levels [45] [47] [49]. Power estimation 

at the register transfer level (RTL) and the architectural level is starting to cap- 

ture the attention of researchers [52] [96] [171] [172]. However, further research is 
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still reqnired for power estimation at the architectural level. Power estimation at 

the algonthmic level is the least researched segment of the power estimation pro- 

cess. This area has the greatest research potential because of the dramatic impact 

algorithm selection has on the minimization of the power dissipation. 

There is a need for a low-power CAD system, that explores the algorithmic 

design space to determine the most power-efficient algorithm, for a certain imple- 

mentation techology, and under specific constraints. It is envisioned that such a 

CAD system will consist of three parts, the input part, the processing part and the 

output part. The input part consists of all the information that needs to be known 

before processing can start. This information consists of: 

0 Basic building block parameters. This is a library that contains information 

such as delay, power dissipation and area about the basic building blocks. 

The basic building blocks include adders, multipliers, multiplexers, memory 

elements, etc. 

0 Design constraints. The design constraints include throughput, SNR, com- 

pression ratio and total area. 

0 Low-power techniques knowledge-based system. This is a database of the 

low-power techniques and transformations, and the extent by which they can 

reduce the power dissipation. 

0 Algorithm knowledge-based system. For example in a software radio GAD 

system, this is a database of the software radio algorithms and the tradeoffs 

that c m  reduce the computational complexity and the effect of that on the 

performance of the algorithm. 
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The processing part, which is the set of design d e s ,  makes use of all of this 

input information and the builtin knowledge-based systems and it determines the 

algorithm and its correspondlig architecture that minimize the power dissipation. 

Finally, the output part is the power optimum design. 

Most of the low-power techniques presented in this dissertation rely on the min- 

imization of the computational complexity by eliminating the redundant computa- 

tions. But what is the minimum computation required for a certain architecture? 

And how can we reach this limit? These questions can be answered for each ar- 

chi t ec t u e  individually. However , t here is no au tomated design met hodology t hat 

can transform any general architecture into an architecture with minimum compu- 

t ations. This topic needs further research. 

8.3.4 New Low-Power Techniques 

The break up of power dissipation in digital ICs used in portable terminals is given 

by the pie-chart of Figure 8.1'. It is interesting to note that the power dissipated 

by the dock and its associated circuits is about 50% of the total power dissipation. 

Asynchronous circuits dont require a dock and thus have a potential of achieving 

a saving in power dissipation of up to 50%. 

Whereas synchronous circuits have been around for many years and are f d y  

understood, the application of asynchronous circuits in low-power has jus t s t arted 

recently [173] (1741. Further research is needed in this area. It is envisioned that 

future systems might be some type of hybrid system using both asynchronous and 

s ynchronous circuit S. 

'F'rom the presentation of Dr. Deo S. Singhat at the University of Waterloo, on Tuesday the 

1st of April 1997 
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Clock 

Figure 8.1: Pie-chart of the distribution of the power dissipation in portable termi- 

nais. 

Low-power design is vital for the survival of the telecommunication and com- 

puter industries. As the functionality of portable terminals increases and as tradi- 

tional low-power techniques exhaust, new low-power techniques must be developed 

and integrated into future portable terminals. 



Appendix A 

The Simulation of the 

Sigma-Delta Modulator 

The simulation of the Sigma-Delta modulator was performed using spwTM (Signal 

Processing WorkSystem @ ). The Signal Processing WorkSystem is an integrated 

fiamework for developing discrete-time signal processing systems and communica- 

tion protocols [175]. SPW was used to mode1 and simulate different Sigma-Delta 

modulator architectures wit h the purpose of verifying the functionality and deter- 

mining the effect of implementation details such as mismatch and gain errors on 

the different architectures. 

SPW consists of several modules. The main modules used for modeling and 

simulating the Sigma-Delta modulator are [175]: 

1. The Block Diagram Editor also called Designer BDE. This is where the 

discrete-time signal processing system is created, edited and wired together. 

2. The Signal Flow Simulator. This is the tool that simulates the operation of 
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Figure A. 1: A second-order bandpass Sigma-Delta modulator modeled in SP W. 

the discrete-time signal processing system designed using SPW block diagram 

editor . 

3. The Signal calculatorTM. This is used for creating input signals and ana- 

lyzing output signds. 

Figure A.1 shows the block diagram of a single channel(1 or Q) bandpass Sigma- 

Delta modulator. The input signal generated by SIGNAL GEN is a sinusoidal wave 

wit h a low frequency. Since the bandpass sampler samples the bandpass signal at 

double the carrier frequency for the 1 or Q channels. Therefore, to get a sampled 

stream identical to that at the output of the bandpass sampler, the low fiequency 

sinusoidal wave is multiplied by a 1, -1, 1, -1, .... stream. 

Figures A.2-A.? show the SPW mode1 of the novel parallel bandpass Sigma- 

Delta modulator in different configurations. The block diagrams of the block nintl 

of Figure A. 1, and of the block int2 of Figures A.2 - A. 7, are shown in Figures A.8 

and A.9 respectively. 
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Figure A. 2: SP W mode1 of a single-channel second-order bandpass Sigma-Delt a 

modulator, wit h two cross-coupled branches, and cornmon filtering done after sub- 

traction. 

Figure A. 3: SP W mode1 of a single-channel second-order bandpass Sigma-Delt a 

modulator, with two cross-coupled branches, and common filtering done before 

branch split ting. 
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Figure A .4: SP W model of a single-channel four t h-or der bandpass Sigma-Delt a 

modulator, with two cross-coupled branches, and common filtering done after sub- 

traction in the first and second stages. 

Figure A -5: SP W model of a single-channel fourt h-order bandpass Sigma-Delt a 

modulator, with two cross-coupled branches, and common filtering done after sub- 

traction in the h s t  stage and before branch splitting in the second stage. 
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Figure A.6: SPW model of a single-channel fourth-order bandpass Sigma-Delta 

modulat or, wi th two cross-coupled branches, and common filtering done before 

branch splitting in the first stage and after subtraction in the second stage. 

Figure A. 7: SP W model of a single-chamel four t h-order bandpass Sigma-Delt a 

modulator, with two cross-coupled branches, and common filtering done before 

branch splitting in the fkst and second stages. 
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G Loap 1.0 

G E x t  1.0 

Figure A.8: SPW model of the block nzntl of Figure A S .  

G Loop 1 .0  

G E x t  1.0 

Figure A.9: SPW model of the block int2 of Figures A.2 - A.7. 



Appendix B 

Sinc Decimat or Analysis 

The transfer function for the Sinc decimator [Sincn(2")j is given by: 

Where, M = 2m. According to Equation B.1, the Sinc decimator can be im- 

plemented as a cascade of n integrators followed by a 2" down sampler and then 

followed by n Werentiators [176]. This architecture has been previously explained 

in section 5.7.4, and is shown in Figure 5.43. 

The purpose of the following analysis is to find the effect of each input sample ib7 

on an output sample OB. This analysis shows that even though the Sinc decimator 

consists of integrators which are infinite impulse response blocks, yet the response of 

the entire decimator of Figure 5.43.a has fmite impulse response. Furthermore, we 

determine the maximum Sinc decimator output and the input sequence necessary 

to give this maximum output. 

Before proceeding with the analysis, the format of the input and output samples 
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need to be defined. The input samples, which can be represented by k bits, are 

bipolar samples having values: 

i.: 2 k - 1 ,  2'-3, ...... - ( 2 * - 3 ) ,  - ( zk -1 )  

These samples are reinterpreted as unsigned binary values, through the following 

mapping: 

The output samples, Os of the Sinc decimator are unsigned binary integers with 

resolution k + rnn bits. When we divide this by 2mn, as required in Equation B.l, 

the output samples, Ob, become unsigned binary numbers with k integer bits and 

mn fraction bits. To obtain the actud output samples Os fiom Ob. The following 

mapping is used: 

Os is a signed binary number with one sign bit, h integer bits and rnn - 1 
fiaction bits. 

The objective of this analysis is to find the relation between ib and Os, for a 

Sinc decimator having k = 1, rn = 3, and n = 3. Figure B.1 shows the progression 

of an input sample at discrete time T = 1 through the Sinc decimator, to its output. 

Each integrator has a delay of one unit. The down-sampler decimates the signal at 

discrete time d, d + 8, d + 16, ... etc. Where 4 < d 5 11. 

For an output sample at discrete time T. The latest input sample that can 

contribute to this output sample is at discrete time T - 3. The earliest input 
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Figure B.l: The progression of an input sample through a Sinc decimator liaving 

k = l , m = 3 a n d n = 3 .  

sample that can contribute to this output sample is at discrete time T - 24. Notice 

the finite impulse response of the Sinc decimator, despite the use of infinite impulse 

response integrators. Furthemore, the contribution of each input sample to the 

output sample is given in Table B.1. If we add all these contributions together, 

which means we have 22 successive ones at the input, the output will be 512. This 

is the maximum output. 

Because any decimation filter is generdy, a linear time-variant system, having 

22 successive ones at the input of the Sinc decimator is not a sufficient condition to 

obtain an output of 512. The Iatest of these 22 successive ones must be 3 discrete 

time units earlier than the sampling time of the down-sampler. 
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Table B.1: The effect of an input sample to the Sinc decimator at discrete time 

T - n on the output of the Sinc decimator at discrete t h e  T. The Sinc decimator 

is sinc3(8). 

1 Discrete t h e  
I 

Contribution to output at T Discrete t h e  Contribution to output at T 

O T-13 48 
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