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Abstracts

In LC-MS based untargeted analysis, data is c@tkat the peak or ion level, although
the investigated biochemistry processes occureatdimpound or reaction level. To this
end, the presence of redundancy peaks such asiteat@eaks, multi-chargers, adducts,
neutral loss, isotopologues, and fragments iorenaftuddle subsequent statistical data
analysis. In order to fill this gap, between peakd compounds/reactions, independent
components must first be found at the peak letaeh evaluated at the compound or
reaction levels. Based on paired mass distance®jPtie algorithm GlobalStd, based
on retention time hierarchical cluster analysis gluthal analysis of PMDs within
clusters, is here proposed to extract independsakgpfrom raw LC-MS data. Following
its application, a structure/reaction directed gsialcan then be used to evaluate
compounds at the structure or biochemistry readéweel, based on similar PMDs among
different retention times clusters. As a proof-oficept, the developed statistical method
was applied to data obtained farvivo SPME sampling on fish. In total, 277
independent peaks were demonstrated to stand ferrahthe variances found for the
total 1459 ions detected via LC-MS. Following, bkttown homologous series or
biological reactions along with unknown bio-proessvhich may involve
oxidation/reduction reactions or homologous sexase analyzed via a
structure/reaction directed analysis. The findiofythis analysis yielded interesting
information regarding the data, for instance dewgpthe possible occurrence of a
biosynthesis process involving L-Carnitine andpitscursor 4-
Trimethylammoniobutanoic acid. Such PMD relatiopshtould also aid in the screening
of annotation results. To this end, semi-quantieaéinalysis based on structure/reaction
directed analysis is also here proposed for fuitherstigation of unknown patterns or
for removal of contaminants in metabolomics studldse developed data-driven
algorithm has been included in a PMD package wiBi interactive document, and is
freely available onlinénttps://github.com/yufree/pmd

Keywords: metabolomics; LC-MS; in vivo; SPME; algorithm
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1 Introduction

Untargeted analysis based on Liquid chromatograplags spectrometry (LC-MS)
has been applied in metabolomi&?] petroleomicg3] and environmental
analysi$4] for discoveries of unknown compounds associatél @drtain biotic

or abiotic chemical reactions. In such applicatj@mnpounds are usually first
analyzed in mass spectrometry as charged ionsg wiokt of the downstream
analyses, such as group-wise differences, pathnalyss, and annotations, are
performed at the compound level, or between comg®lsd In such cases,
charged ions’ profiles can be further converted paaks’ profiles via peak
detection, using for instance feature detectiooratlygmns such as centWaji@.
However, peaks found from untargeted LC-MS analgss given retention time
are always comprised of a mixture of known and wmkmco-eluted peaks, doubly
charged ions, adducts, neutral loss, isotopolodtegnents, or molecular iofg.

The resulting ambiguity between the found peaksthanl corresponding
compounds would thus affect any subsequent statistnalysis, as peak
intensities from any given compound would be ingombion to each other and
show a strong linear relatig,9] For example, in an analysis that yields 1000
peaks with statistical significant differences,lspeaks may only correspond to
200 compounds. In such a case, then only twentepénf the found peaks,
containing all pertinent information regarding tmpounds of interest, would be
necessary for subsequent analysis. Also, peaksstegrirom the same compound
would yield different sensitivities on LC-MS dueddferent intensities and signal-
to-noise ratios and introduce more uncertaintiesh$eaks would also necessitate
validation with respect to potential false positarenotations of adducts or
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fragmental ion$9] Besides, owing to different ionization processetheir
elemental composition, some compounds might ordidyone peak, while others
may present multiple peaks with different kindsadflucts or isotopologues. This
redundancy in peaks would result in statisticas lmace analysis such as multiple
comparisond.0] with false discovery rate (FDR) control are catroait. Similar
issues have been discussed with respect to genoesiearch regarding genes with

dependence, as such occurrences have been showreiase the variance of FDR

estimatorg11-13]

Targeted qualitative and quantitative analysesllysuolve the use of
standard$l14] where for any given compound, qualitative and d¢jtetive ions are
selected based on its standard’s mass spectrumrarténtion time, with the
provision that selected ions for different compaaiade distinctive from each other.
Following this rationale, in untargeted analydignly a few independent peaks
were to be selected among all of the identifieckpea stand for compounds prior
to further statistical analysis, then any subsegsttistical analyses could then be
performed at the compound level, as is performadrgeted analysis, thus
significantly simplifying data analysis and redugincertainty. Aiming to find
such peaks or remove redundancy peaks, previodesthave attempted to screen
mass-to-charge ratios (m/z) with the use of pregefiadducts, neutral loss, or
chemical contaminan{8] However, unknown adducts, neutral loss, or chemica
contaminants may also play an important role inpitediles of untargeted peakd,
As the importance of such peaks cannot be reasppadicted and must be
evaluated on a case-by-case basis, predefinedbasesi methods may thus miss
peaks from unknown background ions or adducts. Beakel 5] or peak
intensitie§l6—18]have been employed to identify pseudospectradefpandent

compounds as a means to make further annotatiadsmtifications. However, if



95 the purpose of research is to elucidate overalhgés at the structural or reaction
96 level, then it can be reasonably assumed that eale fpom each independent
97 compound would provide enough information.
98
99 Supposing that an independent peak for each condpsutetected and selected,
100 compound identification would nonetheless stilluieg the execution of additional
101 steps, such as tandem mass spectrometry analydasatrase queri¢$6,18]To
102 this end, specific tools have been developed twdlbr predictions based on
103 MS/MS database data, such as the Global Naturduete Social Molecular
104 Networking (GNPJL9] and Metlin[20] Mass defect analysis, on the other hand,
105 can be employed to reveal unknown compo{ii21]and compounds with same
106  sub-structures would show similar mass defect galurepetroleomics or
107 environmental analysis, extensions of the concafgkendrick mass defect
108 analysis have been employed to find homologous$2?i] compounds with
109 different base units, such as -£€HO-, -CHO-, from high resolution mass
110 spectrometry dat21-23]Besides, mass defect values could also be udéteto
111 drug metabolites from high resolution mass speattondata, since the
112 metabolites of certain parent compounds would simass defect values within
113 50mDa of their parents compouri@4]
114
115 We could extend the concept of mass defect to gpanass distance (PMD; the
116 distance between two mass-to-charge ratios), sinemical reactions would also
117 involve unique defect values between reactantsifistance, in environmental
118 analysis, a PMD of 33.96102Da is often used toescfer halogenated
119 contaminants, as this PMD corresponds to a deckition reaction that involves
120 an exchange between a hydrogen atom and a chitone(H <-> CI)25]. Thus,

121 PMD-based identification could be used to identigytain homologous series or



122 substitution reactions in biotic or abiotic proassAs such, further qualitative or
123 quantitative analysis could forego identificatiaisll detected compounds, only
124 focusing on compounds that present the same PMBgBsUp, since such

125 compounds would have similar structures, or pgdie in the same chemical

126 reactions. Besides, it can be assumed that iftainezompound is involved in

127 multiple common PMDs, such compound would thus playmportant role in the
128 untargeted profile of the found peaks.

129

130 However, employment of either methods, namely deatification of independent
131 peaks or PMD-based structure/reaction directedyaisalwould necessitate a pre-
132 defined PMD for either adducts, neutral loss, ipotogues, or sub-structures as
133 shown in CSPP algorithid8]. To this end, if a heuristic method could be

134 employed to find unknown PMDs based on the stasibproperties of the LC-MS
135 peak profile, both known and unknown compoundsriggitg to adducts, neutral
136 loss, the same homologous series, or biochemisagtions could thus be

137 identified. Once the LC-MS data is thus ‘filterettien subsequent semi-qualitative
138 or quantitative statistical analyses could be paréa for those compounds as a
139 group, thus bypassing the need for identificatibaaxh peak found in the raw LC-
140 MS data. Further, such an approach to analysistmegleal unknown novel

141 mechanisms in untargeted studies, such as oxidataesses or substitution

142 reactions.

143

144  Selection of PMDs could include PMDs that corresptincertain structures or
145 reactions by element analysis. For instance, @asinvolving Oxygen

146  (15.994915 amu), Phosphorus (30.973763 amu) arfdr81.972072 amu)

147 would yield a PMD value corresponding to less taannteger number, such as
148 PMD 13.98 Da and 15.99 Da. On the other hand, irecthat involve Hydrogen
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(1.007825 amu) and Nitrogen (14.003074 amu) atomddwalways yield
reaction-related PMDs that are larger than an entegopr instance, for analysis of
data from samples collected from biological souré#dD-based analysis could be
employed to infer which elements are involved ia $pecific metabolic reaction
under study. Such information would help pointhet biochemical processes
associated with the studied phenomena without sa@agnag identification of each
detected feature.

For short-lived compounds, identification of reans or dynamic changes
occurring among such compounds’ structures wouwldaleimportant information
regarding their biological or environmental profi®hile in vivo untargeted
studies can aid in the identification of previoustyeported compounds,[26,27]
gualitative analysis of such “unknown” compoundpgtaeed by new analytical
methods remains a challenge. To this end, solideh@croextraction (SPME) has
been successfully applied towards analysisefvo biological processes to reveal
the presence of previously unreported short-livedgounds, which may have
gone undetected in analysis employing traditioaat@ing methods[26,28]. Thus,
invivo SPME is presented as a suitable analytical plattorset up and validate a
statistical method for identification of unknownngpounds.

In the current study, an algorithm, namely Glob&|$t proposed to remove
redundancy peaks in LC-MS based non-targeted asahased on peaks' exact
mass and retention times. Following applicatiothefalgorithm, the resulting
independent peaks can then be submitted to astedeaction directed analysis at
the compound or reaction level. Such a methodsgyded to detect both known
and unknown compounds, as well as reaction relstiipramong compounds. As a
proof-of-concept, the developed method was empléogedrds untargeted

analysis of fish tissue via vivo SPME.
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2 Materials and methods

2.1 Chemicals

LC-MS grade acetonitrile, methanol, and water wprechased from Fisher
Scientific (Ottawa, ON, Canada). Hexane and acetares purchased from
Sigma-Aldrich (Oakville, ON, Canada). Biocompatil®ME mixed mode probes
(45 pm thickness, 15mm length of coating) were pley by Supelco (Bellefonte,
PA, USA). Standards, including diazepam, nordiagepaazepam, flunitrazepam,
lorazepam, testosterone, and progesterone wereassedtrumental QC samples,
and purchased from Sigma-Aldrich (Oakville, ON, &da).

2.21nvivo SPME sampling

All experimental protocols were approved by andiedrout in accordance with
guidelines established by the University of Waterlanimal Care Committee
(AUPP #10-17). Rainbow troutO(corhynchus mykiss) (n=3) were purchased
from Silver Creek Aquaculture (Erin, ON Canada)shFwere acclimatized to
laboratory conditions for two weeks in non-chlotedhwater. All fibers used im

vivo sampling were preconditioned in methanol/water/§60v/v) prior to use.

Three fibers were used to sample each fish, anthhdf three fish were sampled.

In vivo sampling of fish muscle tissue was carried outin®gerting mixed mode
SPME fibers into the dorsal-epaxial muscle (neardbrsal fin) of fish after they
were anaesthetized with Tricaine mesylate and edfixo a foam bed. After
insertion of fibers, fish were allowed to recoverai bucket for a 20 minute period
while in vivo extractions were carried out. Once the extractpmmod was
concluded, fibers were pulled out, wiped with Kimpes, and vortexed at 1500

rom for 5s with ultrapure water to remove any mxatomponents on the fiber.
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Desorption of fibers was performed with 300 pL oét@nitrile/water (80/20, v/v)
as solvent for 90 min at 1,000 rpm vortex agitatiixtract solutions were

collected for instrumental analysis.

2.3 Instrumental analysis

An ACQUITY ultra performance liquid chromatograpfiyPLC) M-Class (UPLC)
instrument coupled with a mass spectrometer (Xevd-SGQT of mass
spectrometer equipped with ZSpray TM ESI source$ wsed for instrumental
analysis of samples. Chromatography columns (Kinétégim PFP, 100A, 100 x
2.1 mm) were eluted with mobile phase A (water with% Formic acid) and
mobile phase B (Acetonitrile with 0.1% Formic acat)80uL/min. The column

temperature was set at 30°C, and the samples vepedt 5°C. The injection
volume was 10L. Gradient elution was as follows: 90% A was ram 1 min,

reduced to 10% in the following 7 min, then kept fomin. Following, mobile
phase A was increased back to 90% within 2 mim thaintained for 4 min until

the next injection.

The mass spectrometer was run in positive mode spthy voltage 3000V, cone
voltage 40V, and source offset 80V. The source &atpre was 120°C and the
desolvation temperature was 350°C, with desolvatgas flow at 800L/h.
Acquisition mode was set as full scan mode, withass range of m/z 100-1000.
LockMass acquisition was employed to calibrate fess spectrum, with a scan
time of 0.1s, an interval of 120s, and with Leucerkephalin used as reference
material. Pool QC sample, and instrument QC sampkye injected before and
after nine samples, blank solvent and blank fibesdsess the stability of the mass
spectrum throughout analysis. Such quality corglmwed a stable performance

during the analysis.
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234 2.4 Data processing

235

236 Following instrumental analysis, raw data was etqabfrom the instrument and

237 converted into mzxml format for further data anay®nce optimized parameters
238 were attained via employment of the IPO packagep2dpool QC samples,

239 XCMSJ[30] was used to extract peaks. The Globa#Bidrithm was then

240 employed in a structure/reaction directed analysesvaluate the obtained profiles
241 from fishin vivo sampling. Metlin was used to tentatively annotagepeaks and
242 obtain chemical names via comparisons of chemarahdlas, with an accuracy of
243 less than 5 ppm. Annotation was employed to vaitla¢ results of the

244  structure/reaction directed analysis.

245

246 2.5 GlobalStd algorithm
247
248 STEP 1: Retention time cluster analysis

249 The algorithm GlobalStd was developed to find iretefent peaks from peak
250 retention time and mass-to-charge ratio profiles.sAhown in scheme 1, the first
251 step of GlobalStd encompasses the aggregatiorasfgreups based on a retention
252 time hierarchical cluster analysis.[31] Such groupdude components separated
253 by chromatography that are relatively independenteach other. Once this
254 analysis is concluded, then PMD analysis can bed use screen potential
255 redundancy peaks.

256

257 STEP 2: Paired mass distance (PMD) analysis

258 Redundancy peaks from same compounds should berdest for further
259 structure/reaction directed analysis. As shownankwy Mahieu et al.,7 unknown
260 adducts or background ions could be revealed byuémet intrinsic relationship

261 analysis. However, the presence of co-eluted comg®ucan make such

10
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frequency-based methods exclude unknown redundaeeks from unrelated
compounds. On the other hand, as doubly chargedwonld show a PMD around
0.5, PMD analysis can enable the exclusion of thesss pairs from further
discussion. To avoid the inclusion of common isotogues, e.g., peaks with 12C
and 13C, mass distance pairs around 1 and 2 wauldebted as isotopologues
groups,[23] and any additional PMD analysis woutdyanclude isotopologues
with lower mass-to-charge ratios. As such, ionsiified via PMD analysis will
not have isotopologues or doubly charged ions antioaglata carried forward for

further analysis.

Following the above discussed steps, further PMBlyais can then performed
based on the ‘global’ properties of the PMDs foumdach retention time group. If
a specific PMD were to appear multiple times irfattént retention time groups,
then such PMD would be assumed to reflect univgramed relationships, such as
adducts or neutral loss. At the same time, mosheffragmented ions, co-eluted
compounds, or contaminated ions would be removedufther analysis, as their
PMDs are unlikely to appear in multiple retentiamd groups as compared with
adducts or neutral loss. Since only PMDs withinghme retention time group are
addressed in this step, PMDs between independempaands would thus not be

captured.

STEP 3: Selection of independent peaks

The workflow of Step 3 is illustrated in the rigbart of Scheme 1. Here, within
each retention time group, the remaining peaksgaoeiped into one of two

groupings: one that contains singles peak in ttenten time group, and another
to encompass multiple peaks in the retention timoaig Here, single peaks are

kept as independent components. The grouping withipte peaks, on the other

11
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hand, is further grouped into another two categoi@ne category is comprised of
peaks with isotopologue peaks, while the otheommrised of peaks with ‘global’
PMDs. For retention time groups that contain midtigroups, only the largest
mass-to-charge ratios are selected as potentigawialr ions or base peaks.

For retention time groups with isotopologues ool@l’ PMDs, we could further
divide their peaks into three parts: one with ipotogues peaks and no ‘global’
paired masses, one with ‘global’ paired massesnanidotopologues, and one last
group, containing both isotopologues and ‘globairgd masses. For the first
group, since 12C containing isotopologues oftenwshmgher intensities than
isotopologues with 13C, smaller ions are then kepindependent ions. For the
second group, all ions with smaller mass-to-chaaj®ms in the ‘global’ paired
masses are treated as independent peaks. Forittiegthup, all isotopologues
with lower mass-to-charge ratios are first extrdct€hen, aiming to remove all
iIsotopologues adducts, the mass distances amongrianing isotopologues are
calculated, and only the lower mass isotopologires appear in the ‘global
PMDs are kept. Other isotopologue ions can alskelp¢ as potential independent
peaks, even if they are not in the ‘Global’ PMDs.

Once all these steps are concluded, and most if allotrepeated peaks,
iIsotopologues, and adduct-related peaks are remdkedpeaks from all of the
above groups can be combined together as indepepeéaks, and carried forward
for further analytical analysis. While this stepaisned at removing isotopologues
and adduct related peaks, the remaining peaks stilildontain some adducts ions

if these compounds are only shown as adduct ions.

12
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In summary, the goal of the GloabalStd algorithrntoisise a minimum amount of
peaks to stand for the significant amount of pegdserally found in untargeted
analyses by removing redundancy peaks from the sam@ounds prior to further
analytical analysis. To this end, the presentedrdlgn requires at least two
parameters: the cutoff of the retention time highaal cluster analysis, and the
bottom threshold number of retention time groupsdiobal PMD searches. For
example, a threshold of 10 would mean that thecedePMD should appear in at
least 10 different retention time groups. Sinceemgployed cluster analysis, the
resolution of the chromatography separation coelcdntrolled by the cutoffs of
distances between retention time groups. Such affcghould reflect the
separation capacity of the employed chromatograghlymns. Selection of an
appropriate bottom threshold number for PMD seacbe the other hand, would
ensure that retention time groups for PMD analgais be determined by explorer
analysis of the PMDs profiles so as to includevdit with known PMDs.

2.6 Structure/reaction directed analysis

PMDs can also be used to group compounds in steiotaction directed analyses.
Here PMDs for peaks in different retention timeugse are used instead of PMDs
of the same retention time groups, as is the casdhkt GlobalStd algorithm

application. To this end, such PMDs would not iaticadducts or background
lons, since those peaks are supposedly coming different compounds. These
PMDs may nonetheless be related to certain homakgeries or chemistry

reactions. To this end, a frequency cutoff couldskeé to investigate universal
homologous series or chemistry reaction related pounds. The presence of
iIsomers would increase the frequencies of certa@ssato-charge ratios, thus
ensuring that only one of each isomer remains e dhta carried forward for

frequency analysis. Such structure/reaction dickatealysis could be performed at

13
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the peak level without employing the GlobalStd alfpon. However, peaks
stemming from the same compounds would be cumbgrediditional noise in the

frequency, as shown in the following section.

To make it clear, GlobalStd algorithm is differdmdm published methods like
DeltaMS[32] or MSClust[33]. For DeltaMS, mass dmstas are used to find
isotopologues relationship[32]. However, our methatko used such relationship
to find adducts, neutral losses, homologous sedeschemistry reactions.
MSClust[33] use intensity-based cluster analysis réoluce the peaks into
compounds while PMD method only use pared masardist. As we will show in
the demonstrated data, our method could show dasimesult compared with
intensity-based methods. However, since intensitgs wnot used to find
independent peaks, our method is robust for theenmioty in intensity
measurement. Another important difference is that method doesn’t use pre-
defined neutral losses, adducts lists, homologetiesor reaction. All the findings
are based on relationship frequency in the dataoahdthe high frequency paired
mass distance relationships are kept for furthezstigation. Current methods such
as mass defect, or could not find unknown reactaradducts while our methods
could reveal them if they show a highly frequennythe peaks profile. As for
structure/reaction directed analysis, similar lowdlty different way has been used
to find metabolites for known compounds[34]. Howewair method directly uses
the frequency of paired mass relationships to sces&l reveal both known and

unknown structures or reactions.

Both the GlobalStd algorithm and the structuretieadirected analysis workflow
have been included in the PMD package, which i®lyreavailable online

(https://github.com/yufree/pmd). All the documerits this package could be

14



369 found online (https://yufree.github.io/pmd/). A ghacal user interface (GUI) to
370 perform the presented PMD-based methods was atdoded in this software
371 package as interactive documents. Experimentalfdatain vivo SPME sampling

372 are also attached in this package for reproducddearch purposes.
373
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3 Results and Discussion
3.1 Retention time groups

A total of 1459 peaks were extracted framvivo SPME samples across 9 samples.
As shown in Figure S1, 75 retention time groupsemeund inin vivo SPME
datasets. Under the employed chromatography condijthydrophilic compounds
eluted first, followed by lipophilic compounds. ked, some hydrophilic
compounds were observed to not retain on the eragloglumn, and to co-elute at
the very beginning (see retention time group 6)m&opatterns, such as
homologous series, could also be observed in thedata as such compounds
eluted sequentially, with an increasing mass-tagdaatio (m/z). However, the
majority of peaks formed what appeared to be aagangattern on the retention
time-m/z profile. Peaks within certain retentiomé groups could be either co-
eluted compounds or peaks from same compoundsardiecal cluster analysis
separates those peaks with a cutoff of 10, whiclammethe complete linkage

distances between each retention time group istdhgn 10s.

In summary, retention time hierarchical clusterlgsia could aid in the search for
relatively independent fractions. Following, PMDskd filtering could be applied
within each retention time group to further redpeaks into potential independent

peaks.

3.2 PMD analysis

A PMD analysis with cutoff of 10 for the frequenafyPMDs between RT cluster
for independent peaks of thevivo data indicated 8 retention groups with single

peaks. Additionally, 631 isotopologue-related paineass and 685 multi-charger

16
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related paired mass peaks were found. As showgunef 1, among the PMDs to
appear in more than 10 retention time groups, 1QuenPMDs (which retain 2
digits after the decimal point), involving 431 psalvere kept out of 443 paired
mass peaks. Some PMDs were treated as adductsas2dh98Da for adducts
between Hand N3, and 17.03Da for adducts betweehaad NH,")[35] while
some were treated as neutral loss (such as 1810t [BRO).[36] Some polymer-
related PMDs, such as PMD 28.03Da,H¢) and 44.03Da (-&,0-) were also
found. Unknown adducts/neutral loss such as PMD6&3a (-GH,N-) and
66.01Da (-GH,O-or -GNs-) were also identified in the presently discussata.
Conversely, PMD 23.0760Da, shown in Mahieu et.absk,[7] was not found in
this dataset, which means such a PMD may be refatealse-by-case unknown
background ions. It should be also noted that Mabkteal 's analysis directly use
global paired mass distances for all mass pairgewhr algorithm only employs
the mass distances within each retention time grBapides, the median Pearson
correlation coefficients of the PMD’s intensityds$88, which implies these paired
peaks stem from the same compounds. In summary, &\lysis within retention
time groups could show both known and unknown atddoicbackground ions

from the m/z - retention time profile.

3.3 Independent peaks selection

Application of the GlobalStd algorithm on the dgtelded 277 independent ions.
As shown in figure S2, ions found by GlobalStd cofil into different scenarios,
including groups with lots of co-eluted peaks. 8itlce developed algorithm only
uses m/z and retention times, intensities can bleusirther applied to validate the
selections. Likewise, Principal component analy$t€A)[37] can be used to
assess changes between score plots of the rawadatizining all peaks) versus

that of the selected peaks. As shown in figure @A Rimilarities would indicate
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that the selected peaks, representing around 2Gbe obriginal peaks, sufficiently
capture variances from all peaks. Considering ttinatanalysis only employs peak
mass and retention times, a correlation analyssdan peak intensities could be

used as an independent test to further screen peaks

Further validation can be carried out based onatisstal analysis of peak
intensities. As three fish were sampled with tH8&ME fibers each, no statistical
differences should be found among biological reyés. From the raw peaks, 86
peaks out of 1459 peaks showed statistical diffe¥eramong three fish (F test, p-
value cutoff 0.05). With a p-value cutoff of 0.06r fmultiple comparisons, 73
(1459*0.05) peaks with significant statistical difénces were identified as false
positives. From the independent peaks, 17 peakefoRT7 peaks were found to
yield statistical differences (F test, p-value ¢uth05). Of these, 14 (277*0.05)
peaks should be identified as false positives, withalue cutoff 0.05 for multiple
comparisons in independent peaks. After applyifese discovery rate control (g-
value cutoff 0.05), no peaks could be identifiedtrag discoveries, in either the
raw or selected data. Thus, the statistical amalygould indicate that the
algorithm-selected peaks retain information simitar that in the raw data.
However, the validation of those peaks are redueedot by focused on

independent peaks.

In summary, the GlobalStd algorithm can be usedetiuce peak numbers with
minimal loss of information. As a next step, theke selected by the algorithm
can then be submitted to structure/reaction dickatealysis.

3.4 Structure/reaction directed analysis
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277 selected independent peaks were importedrigectste directed analysis. Here,
only PMDs among different retention time groupseveonsidered for the selected
peaks. This setting forced the structure/reactioacted analysis to use peaks
which could be separated by chromatography. Inl,ta& PMD groups with a
frequency larger than 10, as shown in figure 3,ewleund. All 277 peaks were
submitted to Metlin for their chemical formula, tviaccuracy setting of less than 5
ppm. The settings [M+H] [M+Na]", [M+NH,]" and [M-HO+H]" were selected
for the database search, according to the PMD sisalgbove. Potential
structure/reactions were then directly investigat@ comparisons of chemical
formula. As shown in table S1, 119 peaks were vedlin those 19 PMD groups.
This would indicate tentative identification of anety of compounds involved in
networks of multiple chemical reactions in certhintic or abiotic systems. For
example, GH4NO, (m/z 352.3214), which appeared in 7 different PiHDups,
was tentatively identified as anandamide, a repgo#etive compound in living
systems.[38]

Some of the identified PMD groups highlighted irstanalysis have been already
associated with known structures or certain biazzesses. For instance, a PMD of
0 indicates isomers, while a PMD of 13.98Da couldicate the exchange of an
oxygen atom for two hydrogen atoms, which is asgedito an oxidation process
followed by HO elimination.[35,39] For example,,i3:05(m/z 405.2616) and
C,4H3504(m/z 391.2835)’s ions were tentatively identifiedhwaccuracy less than
5 ppm, and a statistically significant intensityrretation (pearson correlation
coefficient, 0.8427). Such a relationship mightaterthe presence of an oxidation
process of B-Hydroxy-6-oxo-m-cholan-24-oic acid, according to tentative
annotation from Metlin.[20] Likewise, a PMD of 189DBa might indicate the

addition or removal of oxygen atoms, or an oxidatocess* For example,
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C;H1sNO, (m/z 162.1128) and £;5sNOs; (m/z 146.1183) could be L-Carnitine and
its precursor 4-Trimethylammoniobutanoic acid, app®rted by their intensity
correlation (pearson correlation coefficient, 0.961This biosynthesis process has
been reported to occur in humans,[40] and may slsdarly occur in fish, since
L-Carnitine is also found in fish.[41]

Some of the acquired PMD values could be relatdabtnologous series such as
PMD 14.02Da, 28.03Da, and 58.04Da. These in turoldcdoe related to
substructures of -CH , -GH, and -GHgO-, respectively. Such substructures
could be found in fatty acids® or surfactant[21]. As shown in figure 4, a seoés
seven compounds, from m/z 425.3120 to m/z 773.5668, with a PMD of
58.04Da, were identified in the data. The chromatply also showed a linear
elution process, with regular increasing distand¢éswever, a Metlin[20]seach
failed to yield corresponding compounds. Previousks>® have treated PMD
58.04Da as acetone condensation, although suchoeeg® might not occur
between compounds. The identified PMD might alsoddated to polymers such
as Polypropylene Glycol, since their mass specawers the peaks found in our
research.[42] While these peaks were not foundher fcontrol, they may very

well be contaminants or unknown compounds.

Some unknown PMDs might need further validationysis. For example, a PMD
16.03 could be related to a mass difference ofaamkeon atom and four hydrogen
atoms. On the other hand, this PMD may corresporaddombination of removing
the substructure -CHand a dehydrogenation reactionirnrnvivo SPME sampling,
such a PMD was found between ds;NO;P (m/z 496.3410) and ,¢H4sNO,P
(m/z 480.3100) (pearson intensity correlation goefht of 0.9456), which might
indicate a conversion between two kinds of phosghiatoline(PC) (GsHsoNO;P
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<-> CyH4NO;P). Another possibility however, is that both ofesk two
compounds stem from the same parent compounds qumkparent compounds ->
CoHsoNOP + G3HuNO;P). Both types of reactions would show a high
correlation coefficient between the two compouréishis PMD were to appear
with high frequency for certain metabolites acrtss independent peaks, then it
could be reasonably concluded that such reactiomsat the result of a random
combination of two compounds. While all the annote made in this work need
further validation, such as MS/MS analysis or dzdaed predictions, some
preliminary conclusions can be nonetheless drawtheaichemical formula level

for the unknown parts of this non-targeted analysis

Compounds from homologous series or similar biodkynreactions, such as
lipids, might show response factors with regulartiym mass spectrometry
analysis.[43] The average responses from certasgs mafect groups could be used
for a semi-quantitative evaluation of those unkndvamologous or reactions in
samples. Figure S3 shows the relative standardatiens (RSD%) of compounds
in each group among the three fish. The peaks eafurtther filtered for certain
homologous series or similar biochemistry reactiopassigning a threshold based
on the attained RSD%. If a given PMD group showsificant average intensity
changes among the two conditions, then this charage be directly used to
guantitate certain homologous series or biocheynisictions, which would allow
for a circumvention of the use of standards todz# these compounds. Further,
an established linear relationship between pairaslses could be also used to filter

reasonable peaks for subsequent semi-quantitativetsre or reaction analysis.

To this end, such an analysis was also performedhwrnpeak data, without prior

application of the GlobalStd algorithm. As shown Rigure S4, PMD values
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yielded a chaotic distribution, with peaks from sacompounds, and much noise
in the frequency. While known adducts could be usefilter data in each PMD

group, unknown adduct ions, such as PMD 66.01, avstill be present in the data.
Thus, application of the GlobalStd algorithm woblel necessary to remove both

known and unknown peaks from the same compounds.

4 Conclusions

The current work proposes a data-driven method/atuate untargeted data at the
compound, homologous series, or biochemistry readavels without the use of
standards or intensity data. The presented metcodkl be used to remove
redundancy peaks from data profile and to seled¢pendent peaks for further
structure/reaction directed analysis. As this pseces software automated and
based on a heuristic search, it enables the ungeiif both known and unknown
relationships between the peaks. PMD values carudssl to elucidate bio-
processes at the reaction level, as well as tenamlore accurate peak annotations
based on their oxidation-reduction properties. Ais £nd, the establishment of a
database of PMDs and their corresponding homologadsreactions might aid in

much easier exploration of “unknown unknown” compas!
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Scheme 1Demonstration of GlobalStd algorithm. Different@a stand for peaks from
different retention time groups. Blue stands fosmpairs with high frequency paired
mass distances (PMD). Step 1 indicates the retetitiee cluster analysis to find
Pseudospectra for potential compounds. Step 2ateidhe PMD-based global search.
Step 3 indicates selection of independent peakslatailed process is shown on the right
flowchart.
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Figure 1. Paired mass distance (PMD) analysisnfeivo SPME sampling data. The plot
on the top of the figure(A) illustrates the PMDat@bnship across retention time — m/z
profile, while the bottom plot(B) shows the corresding PMD frequency. The paired
relationships are reflected by the lines betweeakpeThe colors of the segments in the
top plot correspond to the colors in the bar pkdbty, indicating the PMD groups.
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Figure 4. m/z - retention time peak profiles obtgdiivia GlobalStd algorithm analysis for
PMD 0Da (A, isomers), PMD 13.98Da (B, replacemehtomygen atom and two
hydrogen atoms), PMD 15.99Da (C,oxidation), PMDO2&a (D, homologous series
with -CH,-), PMD 28.03Da (E, homologous series withHg), and PMD 58.04Da (F,
homologous series with s8¢0-). The paired relationships are reflected by lihes

between peaks.
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Highlights

- Algorithms were developed to reduce redundant peaks in metabolomics data profile

- 20% of the original peaks could stand for the major variances for data

- Quantitative analysis could be performed at structure/reaction level

- Unknown structure/reaction relationships could be revealed by in vivo SPME sampling



