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The Morse calibration is applied to a lagtice del designed for efficient simula-
tions of two-component polymer melts oxﬂigh @lecular weight. The model allows
multiple occupancy per site, which ngsults™ ﬂTgh invariant polymerization indexes,
and interactions are limited to monmmin the same site, which enhances the
computational speed. The calibr 'o\nm'aps the interaction parameter of the lattice

model, o, onto the Flory—Hugé&K? arameter of the standard Gaussian-chain model
de

d-state structure function, S(k), of symmetric di-

(GCM), by matching the %\
block copolymers to re‘x\%ze one-loop (ROL) predictions. The quantitative ac-

curacy of the cali rgti%is tested by comparing the order-disorder transition (ODT)

of symmetric diblegk copolymer melts to the universal prediction obtained from pre-
vious simulationsf Theumodel is then used to confirm the universality of fluctuation
correctioéiwc\he itical point of symmetric binary homopolymer blends.
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Publishihg INTRODUCTION

Block copolymer phase behavior is understood to be universal in the high-molecular-
weight limit.! This implies that all models reduce to the standard Gaussian-chain model
(GCM),? which underpins most block copolymer calculations, inck/'ng self-consistent field

theory (SCFT), the random-phase approximation (RPA),* d"atron stretching theory
(SST).? The standard GCM is a minimal model that Contai%he essential features of
te

the system, and as such involves the least number of p 5!3e ossible. Its mean-field
behavior for monodisperse AB diblock copolymer meltsiis c rolled by just three quantities:
the composition f, the ratio of segment lengths a4 /az, ang the product xN, where N is

the total polymerization and y is the Flory-H g‘i‘ns interaction parameter.® Fluctuation

corrections to the mean-field behavior are then ntrqli?d by one additional parameter, the
invariant polymerization index N = aSp? ,\\b%%» = [fa4 + (1 — f)a}]"/? is the average
segment length and pg is the segment itw” Note that we follow the usual practice of

defining all segments to have a com Q&NG of pot.

N
To exploit the universality, one\needs %o map the parameters of a given model onto those

of the standard GCM. The mésﬁ\ohg\f molecular compositions (e.g., f) is trivial given their
in terms

straightforward definitio f volume fraction. Segment lengths are also clearly

t
defined by the requirem % the radius of gyration of linear polymers in an athermal
melt reduces to R, <.a(4V/6)
is between the Xé;a\rm; of the GCM and a corresponding parameter of the particle-based
t

()

in the limit of large V. The nontrivial part of the mapping

model, «a, spécifying thestrength of its A-B interactions in units of kgT'. The relationship

needs to Je detémmined by matching the behavior of the given model to some prediction
of the GCMIn plinciple, it could be any quantity for any block copolymer system, but it
is best to ch%ose the most accurate prediction possible that permits fits to relatively large

vm “ With this in mind, Morse and coworkers® chose the renormalized one-loop

ediction for the disordered-state structure function, S(g), of symmetric diblock

R
%o]ymer melts (i.e., f = 0.5 and aa/ap = 1).91°

Glaser et al.!' demonstrated the universality by comparing the order-disorder transition
(ODT) of symmetric diblock copolymer melts from five distinct models. Four were off-lattice

bead-spring models and one was a simple lattice model. When expressed in terms of the
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Publishiggdibrated parameters, the ODTs from all five models collapsed onto a universal curve,
(XN)opr = 10.495 4+ 41.0N Y3 4 123.0N 056 . (1)

The equivalence between models has since been illustrated for a;é 1ber of other quanti-
ties of symmetric diblocks,'? and for the disordered-state strdctu b;’uxsmm of asymmet-
ric diblocks.!® Furthermore, universality between simulation and eriment has also been
demonstrated.!4 ‘)

-~

Given that all models, both lattice and off-latticd, produce,equivalent results, it makes
sense to use the most computationally efficient. In.this ar(b, lattice models offer significant
advantages by restricting the N monomers of e CKley‘mfr to the sites of an artificial lattice,
allowing simulations to cope with far largaq;(eﬁzations. However, the quantity that

really matters is the invariant polymerizaﬁ'@Ki x{ N = a5p2N. Hence, it is advantageous
to use models with a large density, po.t&@ttice models’® ' allow only one monomer

per site leading to relatively low den t\1e§ whereas off-lattice models with soft interactions®

N
*\% evertheless, lattice models can also handle large
on

mers per site.2’

Here, we introduce a iple-occtipancy lattice model similar to one proposed by Wang,?°
which permits large gqq ensities while retaining the computational efficiency of a
lattice. This facilitdtes dimu

high-molecular- e@% mers.2! After applying the Morse calibration, the model is used
lity

to test the i@

ODTs of @ ic diblock copolymer melts to the universal curve in Eq. (1). Next, the
in

can result in much larger densiti

densities provided they allow

ions at invariant polymerizations, 10> S N < 10%, typical of
f multi-component melts. In the first instance, we compare the

critical'po of,s(ymmetric binary homopolymer blends are compared with the prediction,

)

3 (XN)e =24 c¢N"Y2 4+ O(N7Y) | (2)

\

xre the coefficient ¢ is believed to be universal. It was initially estimated by ROL to be
¢ ~ 3.4,%3 but this prediction is inaccurate because ROL does not treat critical fluctuations
properly. A recent lattice simulation found a much smaller ¢ ~ 1.5,2* but the universality

of this value remains to be corroborated.
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Publishiflg MONTE CARLO SIMULATIONS

Our simulations all involve melts of n linear polymers, each consisting of N monomers
labeled sequentially by s = 1,2,..., N. In the case of symmetric diblock copolymers, the
monomers at s < N/2 are designated as A-type, while the remai?jﬁg ones are denoted as
B-type (N is chosen to be even). For the homopolymer blends, n %f the molecules are
A-type, while the remaining ng = n — n4 are B-type. The poljaner/chains are all placed on
a lattice of M sites, with a maximum of Z monomers per site*and with bonded monomers

(3)

occupying nearest-neighbor sites. Both systems use a Hawil u@l,

—

H o

kgT — 22
cgn.tacfs)

that is proportional to the total number of A

nNAB

where n., ; is the number of y-type
The lattice coordinates are given b}id h,k,l), where h, k and [ are integers ranging

from 1 to L. By only permittingN
M = L3/2 sites and a bond \f‘thf b = v/2d. The application of periodic boundary

lues of h + k + [, we obtain an fcc lattice with

conditions requires L to e-m%l. In order to allow room for the polymers to move, 20% of
can

the sites contain a single v (i.e., an occupancy of Z — 1 monomers), which results in

an average densi?y / 4
\ po =nN/V = (Z —02)V2/b* (5)

)O.Q)M is the total number of monomers and V = (Ld)* = Mb3//2 is the

O

where nN

volume dfithefsyst
Thie equilibriim behavior of this model is investigated by Metropolis Monte Carlo simu-
ions, wheré the Monte Carlo steps (MCS) randomly select among several different types

rial ﬁ)oves. The first is a slithering snake (or reptation) move. It is performed by ran-

ﬁ'o?ﬂ{(: oosing one of the 2n chain ends, and one of its 12 nearest-neighbor sites to move
toy, The remaining monomers of the chain are shifted one site along its contour. The move
is immediately rejected if it causes a violation in the allowed number of monomers at a site,
and otherwise its acceptance is determined by the Metropolis criterion. The second is a

crankshaft move, where one of the n(N — 2) non-end monomers is selected at random and
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Publishimgved while keeping its two bonded neighbors fixed. If the initial site already has a vacancy
or there are no potential sites with a vacancy, then the move is rejected. Otherwise, one of
the potential sites is selected at random and the Metropolis criterion is applied. The third
is a double-bridging move that swaps equal portions of chain between two polymers.?? This
move is performed by selecting a random site and looking for pa?é of non-end monomers
corresponding to the same index, s. If there are none, then the e is rejected. Otherwise,

we choose a pair with s closest to the middle of the chain, aqd\s;\ the bonds between the
r

s and s + 1 monomers. For diblock copolymer melts, our ithan also permits a polymer
to perform a complete chain reversal (i.e., a head-to-tail . Forshomopolymer blends, we
-

include a move whereby molecules can change their fype frcsm A to B or vice versa, which

)

-

results in a semi-grand canonical ensemble.?* ( -

IIT. MORSE CALIBRATION \‘\\

We now calibrate the lattice model for\ihThe calibration begins with simulations of
athermal melts (i.e., « = 0) of differex?ily@ rization, V. In each case, the simulation box
)

is chosen sufficiently large to acc e n ~ 5000 molecules. In order to fill the lattice

to the desired density, the po are placed on the lattice in extended conformations.

Given this highly artificialistate, we'perform a long equilibration of 10¢ MCS per monomer
before collecting statigti

In order to de iné the“invariant polymerization index, N, we need the statistical

% obtained by evaluating the radius of gyration squared,

5 2 1 al 2
Rg:<N;|rs_Rcm|>7 (6)

where g is the pdsition of the s’th monomer and
) Ro= 13" 7)
cm — a7 r
- N s=1

.i%th ter of mass. The angle brackets denote an average, which is evaluated from simula-
idhs of approximately 105 MCS per monomer, where all n molecules are sampled once every
10°"MCS per monomer. The results are plotted in Fig. 1(a) for different polymerizations,

N, and fit to*?
6R2 142 o

6Ry _ pfy_ 142 1 8
PN Y T BN TN ®)
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/ Nl /2
FIG. 1. (a) aﬁﬂyseration squared, Rg, and (b) number of intermolecular contacts per

monomer, £(N),"plotted in terms of polymerization, N, for Z = 5. Simulation results are de-
noted N bolsfand fits to Eqs. (8) and (10) are shown with solid curves. The statistical

uncertainties ‘jre smaller than the symbol size.
,ﬁ

where a)nd ~ are fitting parameters. The fit gives a segment length of a = 1.0447b, which
hum implies

N =a°pi N = 59.9N . (9)

In the limit of weak interactions, the Flory-Huggins x parameter becomes linear in a.

To match the simulations to SCF'T in the large-N limit, the proportionality constant has to

6


http://dx.doi.org/10.1063/1.5094144

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishing .
l
. _
2 .
<
P
-y
— 0.1 |
R
0.01 :
1

\ 7S

FIG. 2. Structure function, S(q), diblock copolymers of polymerization N = 30 plotted for

different interaction parameter @\ ls denote simulation results, and solid curves are fits
(q

used to extract the peak height, S

)ﬁxere z(N) is average number of intermolecular contacts per
monomer in an ?he 5,,1 rgzlt of polymerization N. Therefore, while collecting statistics

Nthi: umber of intermolecular contacts per monomer. The results are
plotted in FEi h) for different polymerizations, N, and fit to®®

T)3/2
y. ZN) = Zo0 [1+C§S[{0]3ﬂ/2+§[ , (10)

be set to 2o = limy 4o 2

for R2, we also.Co

/

ﬂ
where anb 0 are fitting parameters. The fit gives z,, = 3.346, from which we obtain the
ﬁ
linear aps)roximation, X R Zsor, for weak interactions.
S o“determine the Flory-Huggins y parameter for strong interactions, we evaluate the
ucture function of symmetric diblock copolymer melts over a series of o values spanning
the disordered phase. The structure function is obtained from the ensemble average

sta) = {

2

). (1)

M
Z m;jexp(iq - ;)
j=1
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poN/S(q")

iﬁeN
FIG. 3. Inverse peak height of the t%m\nction, S~1(q*), plotted in terms of the effective y

parameter for different invaria olyme ion indexes, N. Symbols denote simulation results,
ane, t

solid curves are ROL predictions, he dashed line is the RPA prediction. The inset shows the
nonlinear y = zoox + €1 +‘®$With a solid curve and the linear approximation y ~ z,.«a with

a dashed line.

£
where m; = (n @; (Z — 0.2). Because our simulation box is finite, the wavevector
is limited to%\iscre values q = 2m(h, k,l)/Ld, where h, k, and [ are integers. After

each stepfin 6}7 first equilibrate the system for 10> MCS per monomer, and then collect

ICS.OV! 10AICS per monomer, sampling once every 10> MCS per monomer. Since the

function, S(g*), are obtained from fits to the RPA structure function,* shown by

& )
id curves.

he S(g*) for diblock copolymers of N = 16, 20, 30, 40, and 60 are fit to ROL theory,

assuming the nonlinear relationship

= 2o + 102 + 0 . 12
X


http://dx.doi.org/10.1063/1.5094144

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishiﬁg( fit gives ¢; = 4.16 and ¢, = —8.66. Figure 3 demonstrates the quality of the fit for three
of the polymerizations; for clarity, the N = 20 and 40 results have been omitted. The inset

compares the resulting a-dependence of y with the linear approximation y &~ z .

IV. ODT OF DIBLOCK COPOLYMER MELTS /\

To confirm that our model adheres to the universality hyp&:, we compare the ODT

for symmetric diblock copolymers to Eq. (1). This is don simulating multiple replicas of

. allmitialized with disordered

the system at a series of a values spanning the expected _Q
configurations. The replicas are run in parallel, each ollowi31g he usual MC algorithm for

approximately 106 MCS per monomer. The Ogcis i

number of AB contacts, (nag), over the last 1@4\?@1" monomer. Past studies'"?¢ have

ified by evaluating the average

demonstrated that (nag) changes abruptly atthe transition.

During the simulations, highly metam\%{efec s often nucleate impeding the formation

of a well-ordered morphology, parti¢ularly when « is large. To help remedy this problem,
we implement parallel temperin 8’%&3}7 a swap between a random pair of replicas at
neighboring a values is attem e&r MCS per monomer (see Ref. 26 for more details).
In this way, defect structuresg@ted to lower segregation, which allows them to anneal
out more easily. By the endwof our simulations, all the ordered replicas exhibited defect-
free lamellae. Even with pm;ﬁl tempering, the metastability of the disordered phase may

£
cause an overes’?ﬂatl of ,(;OzN Jopr. Therefore, we run a second set of parallel-tempering

simulations, startingtom ordered lamellar configurations obtained from the first runs. The

second ru ill ftend to underestimate (aN)opr, thus allowing us to bracket the true

equilibridmn QDT.
Fiﬁi‘é‘\él; 's/<nAB> from the parallel-tempering runs for a series of polymerizations.
ach /V,

he runs from order and disorder produce very similar curves, indicating that

Forue:

n —equ@ibrium effects are relatively minor. The narrow metastability intervals pin down
T'hs O\ s to a relative accuracy of about 1%. The ODTs are listed in Table I, along with
the size of the simulation box L, the orientation of the lamellar phase (hkl), and the lamellar
period D = Ld/v/h? + k? + 2.

Figure 5 plots the ODTs from Table I in terms of y/N and N = 59.9N, to allow com-

parison with the universal curve, Eq. (1). The agreement illustrates that the calibration

9
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FIG. 4. Aver @of AB contacts, (nap), from parallel-tempering simulations of diblock

copolymersf with“polymerizations of (a) N = 16, (b) N = 20, (c) N = 30, (d) N = 40, (e)

N = 60_an N /& 100. Solid and open symbols denote simulations initialized with ordered and
ﬁ

disordered cosﬁgurations, respectively.

)
I

is\guccessful for experimentally relevant molecular weights. The inset compares the period,

-

D, of the lamellar phase at (xN)opr with the SCFT prediction for the same value of yN.5
The reasonable agreement is consistent with a previous conclusion that SCFT provides an

accurate treatment of ordered phases.!?

10


http://dx.doi.org/10.1063/1.5094144

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

PUbIIShI'I;lg' 3LE I. Order-disorder transition, (aN)opr, for diblock copolymer melts of different polymer-
ization, N, obtained from Fig. 4. Our uncertainty in the (aN)opr estimates is about 1%. Also

listed are the system sizes, L, the lamellar orientations, (hkl), and the lamellar periods, D.

D/aN'/? /

N (aN)opr L  (hki

16 4.70 30
20 4.56 30

40 4.20 50

)
(311)
(300)

30 434 40 (311)

(320)

60 4.08 60 (320)
(

100  3.93 80

(xN)opr

s from Table I plotted in terms of the nonlinear x = zsoa + c1a? + caa? (solid circles)
£

and th _lin apyfoximation X & 2z« (open circles); the symbol size corresponds to our 1%
uncer%r"?he solid curve denotes the universal prediction in Eq. (1),'! while the dashed curve

-

FIG. 5. O

drickson-Helfand prediction.” The inset compares the lamellar periods, D, listed in

shows thS
%ﬂ) rosses) with the SCFT prediction (solid curve).5
S

& CRITICAL POINT OF POLYMER BLENDS

Our next application of the model examines the critical points, a., of symmetric ho-

mopolymer blends. Because the correlation length diverges as o — ., the finite size of

11
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FIG. 6. Binde C&jxula Uy, for a series of system sizes, L, calculated for homopolymer blends

with polymérizatigns of (a) N = 20, (b) N = 30, (¢) N =40, (d) N =60, (¢) N = 100 and (f)

N = 200. cro?ing points provide accurate estimates of the critical transition, c..
ﬁ

LS ati&w box will affect results no matter how large L is. Therefore, we apply the

5 ~ U, =1-— ) (13)

for a series of system sizes, L, where m = (n4 — npg)/n. The critical point corresponds to
the value of « for which Up, is independent of L.

In order to reduce the computational effort, we employ Monte Carlo reweighting®2° to

12
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Publish ”;lg 3LE II. Critical points, (N )., for homopolymer blends of different polymerization, IV, obtained

from Fig. 6. Our uncertainty in the (aN). estimates is about 0.1%.

N (aN)c

20 0.6129

30 0.6103 / \
40 0.6088 3

60  0.6070 \

100 0.6051 ‘)

200 0.6034 ( .

= \U

calculate the a-dependence of the moments, <m’“ This4dnvolves running one long simulation

of around 10® MCS per monomer at an «q closetg thefransition, and storing the values of
m and the number of AB contacts, nap, e@ S per monomer. The ensemble average

of m* at « is then given by \\h\
Y W (napi(co — a))
> )
XXNW/AB,Z'(QO —a))
cothe

< =
Naturally, the reweighing Wilg;)%\@ccumte if a differs too much from «ay. Fortunately,
n

(14)

reweighting works particularly r a critical point, due to the broad distribution of

configurations resultin ro‘n}je critical fluctuations. To be absolutely safe, we repeat the
simulation if our ini a& f ap differs from a, by more than 0.5%.

Figure 6 plots#he ’;nu}énts for different polymerizations, demonstrating the expected
behavior wher, Ns cross at a fixed point. This identifies the critical points, a., listed
in Table II stimated uncertainty in these values is 0.1%, based on the spread among
the cros points“for different pairs of system sizes, L. Figure 7 replots the cumulants
with fhe tempegature axis scaled by LY, where v = 0.62997 is the critical exponent of the
¢ ation leigth for the 3D-Ising universality class. The near perfect collapse of the curves

¢ ﬁrmsyhat the finite-size scaling is working properly.

\Fi&ure 8 plots the critical points from Table I in terms of the nonlinear y from Eq.
(12) and the linear approximation x & z..c. The size of the symbols corresponds to our
estimated inaccuracy in a.. To within this level of uncertainty, the critical points can be fit
to the dashed line,

Zoo0te N = 2.004 4+ 1.62N /2 | (15)

13
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-16 }0 8‘16 .-20‘-10‘0‘10‘20
/ (;e—ozc)NLl/” (v — ae)NLY"Y

FIG. 7. Bind@rom Fig. 6 for homopolymer blends with polymerizations of (a) N = 20,
c

(b) N = 30, () = 40, (d) N =60, (e) N =100 and (f) N = 200 replotted with the horizontal
axis scaled b 1//, where v = 0.62997.

-

pletted 1)1 Fig. 8. Combining Egs. (9), (12), and (15) provides an equivalent fit for the

W?Q}Iiaear X, which is plotted in Fig. 8 with a solid curve. As evident from from the plots,
the nonlinear terms in Y = 2o + 10 + 20 do not affect the leading-order terms in Eq.
(2). Thus, the first fitting parameter in Eq. (15) implies (xN). ~ 2.004 for infinitely long
polymers, which agrees well with the mean-field prediction of 2. The second fitting parameter

gives ¢ &~ 1.62 for the universal coefficient in Eq. (2), which is reasonably consistent with

14
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2.10

2.05

FIG. 8. Critical transitions from Table II plotted i erms_(_)? the nonlinear x = zooax + 102 + coa3

(solid symbols) and the linear approximation « (gpen symbols); the symbol size corresponds

to our 0.1% uncertainty. Both curves cor o the fit in Eq. (15).

the previous estimate of ¢ ~ 1.5.&\\ .
VI. DISCUSSION \

Our new lattice od,c;l ‘)oven to be remarkably efficient. Metastability effects were
very small, even t ﬁrs;/order ODT of the diblock copolymer melts, as evident by the
near equivale \Qarallel tempering runs from completely different states (see Fig. 4).

(see Fig. afid aceurate scaling (see Fig. 7), even for long polymers and large simulation

boxe lency can be attributed to the low computational cost of performing the

Furthermote, cumulants from the homopolymer blends exhibited precise fixed points
Y

ute Carlossteps (MCS), in part due to the zero-range interactions. The simplicity and

high accybtance rate of the double-bridging move is another important contributing factor

wlﬁ ast MC dynamics. Thanks to universality, the unphysical nature of the lattice is
ingonsequential.

The most significant property of the new model is its inherently large invariant polymer-

ization index, N. For our current choice of Z = 5, N = 59.9N, whereas for the Z = 1

version of the model, it is only N = 4.51N."! Hence, for a given N, the single occupancy

15
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Publishi:mgr lel requires the chains to be 59.9/4.51 ~ 13 times longer. Given that block exchange is
the only way long chains can cross in the Z = 1 model, this could easily increase the com-
putational cost by 2 or 3 orders of magnitude. Furthermore, the simulation box needs to
contain \/m ~ 3.6 times more monomers in order to simulate an equivalent volume
of melt in terms of R,, and the use of nearest-neighbor interactioq{ will add another factor

of about 2 to the cost. Thus, the multiple occupancy provides t-rejnen H11s computational

advantage
It is well understood that ordered block copolymer m t’)oxlx\ience complicated finite-

size effects due to incommensurability between their pre

ed “dimensions and the size of

the simulation box.3® Naturally, this will reduce the stability§of ordered phases, pushing the

ODT to higher segregation. In the case of the la éﬂar p , however, the morphology has
considerable freedom to adjust its period by seléeting )rent orientations.?63! For the boxes
used in our simulations, the relative spacin %n allowed periods is about 4%, which
is fine enough to obtain a reasonably ree energy given its (D — Deq)? dependence
near the equilibrium period, Deq. herefo we believe that the slight differences in Fig.
5 between (xN)opr and Eq. Q ﬂ'aﬂy between D and the SCFT prediction both

represent real effects.

These differences in Fig. 5 increas Smoothly as N decreases, and therefore we attribute
kﬂmiof universality, which cannot continue indefinitely. In fact,

the polymeric behavior wi

V.

small. The minigfim™ negbssary for universality will depend on the particular model or

them to the gradual br

st altogether once the polymerization becomes ridiculously

experimental ysthg considered. In the case of the current model, it appears that

N 2 30 is ired. This is somewhat more than the requirement for off-lattice models,'* 13

but that

rice to pay for the increased efficiency of using a lattice.

If fhe univergality does indeed require N 2 30, this would limit the simulations to N 2
2000, velrhieless7 one could simply recalibrate the model with fewer monomers per site
in rder‘jo handle smaller N. Given that N is proportional to p2, reducing the maximum
}bﬁu@n(}y from Z = 5 to Z = 4 should allow for N ~ 1000 and Z = 3 could facilitate

~ 600. However, with a maximum of three monomers per site, the absence or presence
of a vacancy may have an unduly large effect on the interaction energy. Even though it
would reduce the efficiency of the simulation, it might be best to include nearest-neighbor

interactions for Z < 3.
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Publishing' “he fit in Eq. (15) was obtained by linear regression, which predicts 90% confidence
intervals of 2.004040.0004 and 1.624-0.02 for the two fitting parameters. However, one needs
to be cautious in accepting these estimated uncertainties, given the stringent assumptions
behind linear regression. Firstly, it assumes that the underlying relationship between a, and
N~1/2 ig linear, which of course is only approximately true. Secounflly, it assumes that the

deviations from the linear relationship are caused by normallyfdigtribuged random errors

with a variance that is independent of N, which is certai true. The situation for
nonlinear fits (e.g., Fig. 1) is even more precarious, and c»)s'e not attempt to estimate
—

their uncertainties.
-

In the previous study by Ref. 24, the extrapolationtof (Xl\yC to infinite N was remarkably
consistent with the mean-field prediction of 2. Evidence*that the y derived from diblock

copolymer melts also works for homopolymer bhitmports the belief that x is independent
of molecular architecture. Although our XW n of 2.004 in Fig. 8 only differs from
the mean-field prediction by 0.2%, th d&l 1s nevertheless 10 times the uncertainty
estimated by linear regression. Thi k\r, can readily be attributed to the inaccuracy
in 2., which violates the assumption“ef raitdom errors. The inaccuracy in z., originates
from the two fits in Fig. 1, w i;& ased on truncated Taylor series expansions, Eqs. (8)
and (10). Although the statistlmgment length, a, estimated from the first fit appears
as @< in the second fit reducing the accuracy of z... If we put our
"

faith in the linear fit/of Eqs

accurate, its value ente

, and instead determine z,, by requiring the extrapolation

£
of (xIV) to matchi theimeant-field value of 2, we obtain z., = 3.340. Repeating the fit of
S(q*) to ROL w1thbi<va ue gives ¢; = 4.25 and ¢y = —8.94. The resulting change in Yy,

however, is,s0wmall that it has no visible effect on the diblock copolymer ODTs in Fig. 5.

Our néy estimate of ¢ = 1.62 £ 0.02 for the universal coefficient in Eq. (2) may seem to

disagifee with thé previous estimate of ¢ ~ 1.5, but this is likely due to a large inaccuracy
i tb@&@x/alue, which was obtained from a nonlinear fit. Extrapolation is notoriously
u‘K@i& particularly when the data is nonlinear. This is why we chose to fit the open
?3311& s rather than the solid symbols in Fig. 8. When we perform a 4-parameter polynomial
fitito the solid symbols, we obtain (YN). = 2.005+1.102N /24 129N~ —822N~3/2 which
closely matches the solid curve in Fig. 8. Despite the close match, the solid curve gives

¢ = 1.62 whereas the 4-parameter fit gives ¢ = 1.10. Extrapolation of the open symbols is

far less ambiguous, and thus much more trustworthy. The critical point data in Ref. 24 also
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Publishiq;pg] bited a significant degree of curvature, and so the resulting prediction of ¢ & 1.5 is prone
to inaccuracy. In reality, the linearity of our results in Fig. 8 was remarkably fortuitous,
which implies that it will be difficult to improve upon our estimate of ¢ using alternative

models.

VII. SUMMARY 3\

Following the strategy of Wang,?° we introduced a ne Nsigned for efficient sim-
ulations of high-molecular-weight block copolymer m s, cre monomers are restricted to
is foSZ = 5, where 80% of the sites
contain 5 monomers and the remaining sites hﬁél mo
results in a high monomer density of py = 6.% Ev_ach in turn leads to large invariant

the sites of an fcc lattice. Our current implementati

ers. The multiple occupancy

polymerization indexes, N. In addition o the usual advantages of a lattice model, the

efficiency is further enhanced by limi% ions to monomers within the same site.
ttic

Despite the unphysical nature of t quantitative predictions are nevertheless pos-

a
sible on account of the universxoﬁo?:k copolymer phase behavior. This is achieved
he&tw‘

by mapping the parameters of t ice ‘model onto those of the standard Gaussian-chain

model (GCM), using the Morse ‘ealibration.®!! The resulting relationship between the sta-
tistical segment length nﬂ“ﬂSbond length of the lattice model is given by a = 1.04470.

The mapping betweefi the ®lory-Huggins y parameter and the interaction parameter, «, of

the lattice model jf appfoximated by x ~ 3.346c + 4.16a” — 8.66a°.
Our first app icahkof the model examined the order-disorder transitions, (xN)opr, of

symmetric diblock copolymer melts. This was done by performing pairs of parallel-

tempering sinfulations from ordered and disordered configurations. The simulations equili-

brate frelativelynquickly, testifying to the efficiency of the Monte Carlo moves and providing
consistént prédictions for the ODTs. The resulting ODTs agreed well with the universal
cugve ob‘5ained from previous simulations, Eq. (1). There was, however, some deviation at
?ﬁ?ﬂ\ , indicating that the model requires N 2, 30 in ordered to exhibit universal behav-

. Although this limits the simulations to N 2 2000, lower values could be handled by

recalibrating the model with fewer monomers per site.
Our second application examined the critical points, (yNV)., of symmetric AB binary

homopolymer blends. Accurate estimates of the transition were obtained using finite-size
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Publishisrgling. The resulting critical points, a., happened to follow a remarkably linear dependence
on N~1/2 over a wide range of polymerizations, 20 < N < 200, allowing for a reliable extrap-
olation to infinite N. The limit was consistent with the mean-field prediction, (yN). = 2, to

within 0.2%, supporting the notion that mean-field theory becomes exact in this limit and

which is reason-

that the x derived from AB diblock copolymers applies to all AB- ‘gr;lilts. Furthermore,
q )

the extrapolation predicted ¢ =~ 1.6 for the universal coefficient 4

ably consistent with the previous simulations in Ref. 24. Wg expedt our new estimation to
be the more accurate, given that it is based on a linear ex N etween o, and N~1/2,
Eq. (15). T

—

Naturally, there are numerous other AB-type melts that this lattice model could be
applied to. We are currently examining polydisperse diblock copolymer melts in order
to determine the polydispersity corrections tﬁ@ Given that monodisperse melts
are experimentally impossible, it is esse ti‘ﬁw w these corrections in order to make
quantitative predictions. Previous simulations for N ~ 200 have already shown that even
slight degrees of polydispersity can have a Sizeable effect on the ODT.'* The present model

will allow us to extend that study to

xt entire range of experimentally relevant N.
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