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The Morse calibration is applied to a lattice model designed for efficient simula-

tions of two-component polymer melts of high molecular weight. The model allows

multiple occupancy per site, which results in high invariant polymerization indexes,

and interactions are limited to monomers within the same site, which enhances the

computational speed. The calibration maps the interaction parameter of the lattice

model, α, onto the Flory-Huggins χ parameter of the standard Gaussian-chain model

(GCM), by matching the disordered-state structure function, S(k), of symmetric di-

block copolymers to renormalized one-loop (ROL) predictions. The quantitative ac-

curacy of the calibration is tested by comparing the order-disorder transition (ODT)

of symmetric diblock copolymer melts to the universal prediction obtained from pre-

vious simulations. The model is then used to confirm the universality of fluctuation

corrections to the critical point of symmetric binary homopolymer blends.
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I. INTRODUCTION

Block copolymer phase behavior is understood to be universal in the high-molecular-

weight limit.1 This implies that all models reduce to the standard Gaussian-chain model

(GCM),2 which underpins most block copolymer calculations, including self-consistent field

theory (SCFT),3 the random-phase approximation (RPA),4 and strong-stretching theory

(SST).5 The standard GCM is a minimal model that contains only the essential features of

the system, and as such involves the least number of parameters possible. Its mean-field

behavior for monodisperse AB diblock copolymer melts is controlled by just three quantities:

the composition f , the ratio of segment lengths aA/aB, and the product χN , where N is

the total polymerization and χ is the Flory-Huggins interaction parameter.6 Fluctuation

corrections to the mean-field behavior are then controlled by one additional parameter, the

invariant polymerization index N̄ = a6ρ20N , where a = [fa2A + (1 − f)a2B]1/2 is the average

segment length and ρ0 is the segment density.7 Note that we follow the usual practice of

defining all segments to have a common volume of ρ−10 .

To exploit the universality, one needs to map the parameters of a given model onto those

of the standard GCM. The mapping of molecular compositions (e.g., f) is trivial given their

straightforward definition in terms of volume fraction. Segment lengths are also clearly

defined by the requirement that the radius of gyration of linear polymers in an athermal

melt reduces to Rg = a(N/6)1/2 in the limit of large N . The nontrivial part of the mapping

is between the χ parameter of the GCM and a corresponding parameter of the particle-based

model, α, specifying the strength of its A-B interactions in units of kBT . The relationship

needs to be determined by matching the behavior of the given model to some prediction

of the GCM. In principle, it could be any quantity for any block copolymer system, but it

is best to choose the most accurate prediction possible that permits fits to relatively large

values of α. With this in mind, Morse and coworkers8 chose the renormalized one-loop

(ROL) prediction for the disordered-state structure function, S(q), of symmetric diblock

copolymer melts (i.e., f = 0.5 and aA/aB = 1).9,10

Glaser et al.11 demonstrated the universality by comparing the order-disorder transition

(ODT) of symmetric diblock copolymer melts from five distinct models. Four were off-lattice

bead-spring models and one was a simple lattice model. When expressed in terms of the
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calibrated parameters, the ODTs from all five models collapsed onto a universal curve,

(χN)ODT = 10.495 + 41.0N̄−1/3 + 123.0N̄−0.56 . (1)

The equivalence between models has since been illustrated for a number of other quanti-

ties of symmetric diblocks,12 and for the disordered-state structure function of asymmet-

ric diblocks.13 Furthermore, universality between simulation and experiment has also been

demonstrated.14

Given that all models, both lattice and off-lattice, produce equivalent results, it makes

sense to use the most computationally efficient. In this regard, lattice models offer significant

advantages by restricting the N monomers of each polymer to the sites of an artificial lattice,

allowing simulations to cope with far larger polymerizations. However, the quantity that

really matters is the invariant polymerization index, N̄ = a6ρ20N . Hence, it is advantageous

to use models with a large density, ρ0. Typical lattice models15–19 allow only one monomer

per site leading to relatively low densities, whereas off-lattice models with soft interactions8

can result in much larger densities, ρ0. Nevertheless, lattice models can also handle large

densities provided they allow more monomers per site.20

Here, we introduce a multiple-occupancy lattice model similar to one proposed by Wang,20

which permits large monomer densities while retaining the computational efficiency of a

lattice. This facilitates simulations at invariant polymerizations, 103 <∼ N̄ <∼ 104, typical of

high-molecular-weight polymers.21 After applying the Morse calibration, the model is used

to test the universality of multi-component melts. In the first instance, we compare the

ODTs of symmetric diblock copolymer melts to the universal curve in Eq. (1). Next, the

critical points of symmetric binary homopolymer blends are compared with the prediction,

(χN)c = 2 + cN̄−1/2 +O(N̄−1) , (2)

where the coefficient c is believed to be universal. It was initially estimated by ROL to be

c ≈ 3.4,23 but this prediction is inaccurate because ROL does not treat critical fluctuations

properly. A recent lattice simulation found a much smaller c ≈ 1.5,24 but the universality

of this value remains to be corroborated.
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II. MONTE CARLO SIMULATIONS

Our simulations all involve melts of n linear polymers, each consisting of N monomers

labeled sequentially by s = 1, 2, . . . , N . In the case of symmetric diblock copolymers, the

monomers at s ≤ N/2 are designated as A-type, while the remaining ones are denoted as

B-type (N is chosen to be even). For the homopolymer blends, nA of the molecules are

A-type, while the remaining nB = n− nA are B-type. The polymer chains are all placed on

a lattice of M sites, with a maximum of Z monomers per site and with bonded monomers

occupying nearest-neighbor sites. Both systems use a Hamiltonian,

H

kBT
= αnAB , (3)

that is proportional to the total number of AB contacts,

nAB =
M∑
j=1

nA,jnB,j , (4)

where nγ,j is the number of γ-type monomers at site j.

The lattice coordinates are given by rj = d(h, k, l), where h, k and l are integers ranging

from 1 to L. By only permitting even values of h + k + l, we obtain an fcc lattice with

M = L3/2 sites and a bond length of b =
√

2d. The application of periodic boundary

conditions requires L to be even. In order to allow room for the polymers to move, 20% of

the sites contain a single vacancy (i.e., an occupancy of Z − 1 monomers), which results in

an average density of

ρ0 ≡ nN/V = (Z − 0.2)
√

2/b3 , (5)

where nN = (Z − 0.2)M is the total number of monomers and V = (Ld)3 = Mb3/
√

2 is the

volume of the system.

The equilibrium behavior of this model is investigated by Metropolis Monte Carlo simu-

lations, where the Monte Carlo steps (MCS) randomly select among several different types

of trial moves. The first is a slithering snake (or reptation) move. It is performed by ran-

domly choosing one of the 2n chain ends, and one of its 12 nearest-neighbor sites to move

to. The remaining monomers of the chain are shifted one site along its contour. The move

is immediately rejected if it causes a violation in the allowed number of monomers at a site,

and otherwise its acceptance is determined by the Metropolis criterion. The second is a

crankshaft move, where one of the n(N − 2) non-end monomers is selected at random and
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moved while keeping its two bonded neighbors fixed. If the initial site already has a vacancy

or there are no potential sites with a vacancy, then the move is rejected. Otherwise, one of

the potential sites is selected at random and the Metropolis criterion is applied. The third

is a double-bridging move that swaps equal portions of chain between two polymers.22 This

move is performed by selecting a random site and looking for pairs of non-end monomers

corresponding to the same index, s. If there are none, then the move is rejected. Otherwise,

we choose a pair with s closest to the middle of the chain, and swap the bonds between the

s and s+ 1 monomers. For diblock copolymer melts, our algorithm also permits a polymer

to perform a complete chain reversal (i.e., a head-to-tail flip). For homopolymer blends, we

include a move whereby molecules can change their type from A to B or vice versa, which

results in a semi-grand canonical ensemble.24

III. MORSE CALIBRATION

We now calibrate the lattice model for Z = 5. The calibration begins with simulations of

athermal melts (i.e., α = 0) of different polymerization, N . In each case, the simulation box

is chosen sufficiently large to accommodate n ≈ 5000 molecules. In order to fill the lattice

to the desired density, the polymers are placed on the lattice in extended conformations.

Given this highly artificial state, we perform a long equilibration of 106 MCS per monomer

before collecting statistics.

In order to determine the invariant polymerization index, N̄ , we need the statistical

segment length, a. This is obtained by evaluating the radius of gyration squared,

R2
g =

〈
1

N

N∑
s=1

|rs −Rcm|2
〉
, (6)

where rs is the position of the s’th monomer and

Rcm =
1

N

N∑
s=1

rs (7)

is the center of mass. The angle brackets denote an average, which is evaluated from simula-

tions of approximately 106 MCS per monomer, where all n molecules are sampled once every

103 MCS per monomer. The results are plotted in Fig. 1(a) for different polymerizations,

N , and fit to23

6R2
g

b2N
= a2

[
1− 1.42

a3ρ0N1/2
+
γ

N

]
, (8)
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FIG. 1. (a) Radius of gyration squared, R2
g, and (b) number of intermolecular contacts per

monomer, z(N), plotted in terms of polymerization, N , for Z = 5. Simulation results are de-

noted by symbols, and fits to Eqs. (8) and (10) are shown with solid curves. The statistical

uncertainties are smaller than the symbol size.

where a and γ are fitting parameters. The fit gives a segment length of a = 1.0447b, which

in turn implies

N̄ = a6ρ20N = 59.9N . (9)

In the limit of weak interactions, the Flory-Huggins χ parameter becomes linear in α.

To match the simulations to SCFT in the large-N limit, the proportionality constant has to
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FIG. 2. Structure function, S(q), for diblock copolymers of polymerization N = 30 plotted for

different interaction parameters, α. Symbols denote simulation results, and solid curves are fits

used to extract the peak height, S(q∗).

be set to z∞ = limN→∞ z(N), where z(N) is average number of intermolecular contacts per

monomer in an athermal melt of polymerization N . Therefore, while collecting statistics

for R2
g, we also count the number of intermolecular contacts per monomer. The results are

plotted in Fig. 1(b) for different polymerizations, N , and fit to25

z(N) = z∞

[
1 +

(6/π)3/2

a3ρ0N1/2
+

δ

N

]
, (10)

where z∞ and δ are fitting parameters. The fit gives z∞ = 3.346, from which we obtain the

linear approximation, χ ≈ z∞α, for weak interactions.

To determine the Flory-Huggins χ parameter for strong interactions, we evaluate the

structure function of symmetric diblock copolymer melts over a series of α values spanning

the disordered phase. The structure function is obtained from the ensemble average

S(q) =
1

4V

〈∣∣∣∣∣∣
M∑
j=1

mj exp(iq · rj)

∣∣∣∣∣∣
2〉

, (11)
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FIG. 3. Inverse peak height of the structure function, S−1(q∗), plotted in terms of the effective χ

parameter for different invariant polymerization indexes, N̄ . Symbols denote simulation results,

solid curves are ROL predictions, and the dashed line is the RPA prediction. The inset shows the

nonlinear χ = z∞α + c1α
2 + c2α

3 with a solid curve and the linear approximation χ ≈ z∞α with

a dashed line.

where mj = (nA,j − nB,j)/(Z − 0.2). Because our simulation box is finite, the wavevector

is limited to the discrete values q = 2π(h, k, l)/Ld, where h, k, and l are integers. After

each step in α, we first equilibrate the system for 105 MCS per monomer, and then collect

statistics over 106 MCS per monomer, sampling once every 103 MCS per monomer. Since the

disordered state is isotropic, we also average over wavevectors of equal magnitude, q ≡ |q|.

Figure 2 shows S(q) for diblock copolymers containing N = 30 monomers. The peaks of the

structure function, S(q∗), are obtained from fits to the RPA structure function,4 shown by

solid curves.

The S(q∗) for diblock copolymers of N = 16, 20, 30, 40, and 60 are fit to ROL theory,

assuming the nonlinear relationship

χ = z∞α + c1α
2 + c2α

3 . (12)
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The fit gives c1 = 4.16 and c2 = −8.66. Figure 3 demonstrates the quality of the fit for three

of the polymerizations; for clarity, the N = 20 and 40 results have been omitted. The inset

compares the resulting α-dependence of χ with the linear approximation χ ≈ z∞α.

IV. ODT OF DIBLOCK COPOLYMER MELTS

To confirm that our model adheres to the universality hypothesis, we compare the ODT

for symmetric diblock copolymers to Eq. (1). This is done by simulating multiple replicas of

the system at a series of α values spanning the expected ODT, all initialized with disordered

configurations. The replicas are run in parallel, each following the usual MC algorithm for

approximately 106 MCS per monomer. The ODT is identified by evaluating the average

number of AB contacts, 〈nAB〉, over the last 104 MCS per monomer. Past studies11,26 have

demonstrated that 〈nAB〉 changes abruptly at the transition.

During the simulations, highly metastable defects often nucleate impeding the formation

of a well-ordered morphology, particularly when α is large. To help remedy this problem,

we implement parallel tempering,28,29 whereby a swap between a random pair of replicas at

neighboring α values is attempted every 103 MCS per monomer (see Ref. 26 for more details).

In this way, defect structures are shifted to lower segregation, which allows them to anneal

out more easily. By the end of our simulations, all the ordered replicas exhibited defect-

free lamellae. Even with parallel tempering, the metastability of the disordered phase may

cause an overestimation of (αN)ODT. Therefore, we run a second set of parallel-tempering

simulations, starting from ordered lamellar configurations obtained from the first runs. The

second runs will tend to underestimate (αN)ODT, thus allowing us to bracket the true

equilibrium ODT.

Figure 4 plots 〈nAB〉 from the parallel-tempering runs for a series of polymerizations.

For each N , the runs from order and disorder produce very similar curves, indicating that

non-equilibrium effects are relatively minor. The narrow metastability intervals pin down

the ODTs to a relative accuracy of about 1%. The ODTs are listed in Table I, along with

the size of the simulation box L, the orientation of the lamellar phase (hkl), and the lamellar

period D = Ld/
√
h2 + k2 + l2.

Figure 5 plots the ODTs from Table I in terms of χN and N̄ = 59.9N , to allow com-

parison with the universal curve, Eq. (1). The agreement illustrates that the calibration
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FIG. 4. Average number of AB contacts, 〈nAB〉, from parallel-tempering simulations of diblock

copolymers with polymerizations of (a) N = 16, (b) N = 20, (c) N = 30, (d) N = 40, (e)

N = 60 and (f) N = 100. Solid and open symbols denote simulations initialized with ordered and

disordered configurations, respectively.

is successful for experimentally relevant molecular weights. The inset compares the period,

D, of the lamellar phase at (χN)ODT with the SCFT prediction for the same value of χN .6

The reasonable agreement is consistent with a previous conclusion that SCFT provides an

accurate treatment of ordered phases.12
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TABLE I. Order-disorder transition, (αN)ODT, for diblock copolymer melts of different polymer-

ization, N , obtained from Fig. 4. Our uncertainty in the (αN)ODT estimates is about 1%. Also

listed are the system sizes, L, the lamellar orientations, (hkl), and the lamellar periods, D.

N (αN)ODT L (hkl) D/aN1/2

16 4.70 30 (311) 1.53

20 4.56 30 (300) 1.51

30 4.34 40 (311) 1.49

40 4.20 50 (320) 1.48

60 4.08 60 (320) 1.45

100 3.93 80 (321) 1.45

FIG. 5. ODTs from Table I plotted in terms of the nonlinear χ = z∞α+ c1α
2 + c2α

3 (solid circles)

and the linear approximation χ ≈ z∞α (open circles); the symbol size corresponds to our 1%

uncertainty. The solid curve denotes the universal prediction in Eq. (1),11 while the dashed curve

shows the Fredrickson-Helfand prediction.7 The inset compares the lamellar periods, D, listed in

Table I (crosses) with the SCFT prediction (solid curve).6

V. CRITICAL POINT OF POLYMER BLENDS

Our next application of the model examines the critical points, αc, of symmetric ho-

mopolymer blends. Because the correlation length diverges as α → αc, the finite size of
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FIG. 6. Binder cumulants, UL, for a series of system sizes, L, calculated for homopolymer blends

with polymerizations of (a) N = 20, (b) N = 30, (c) N = 40, (d) N = 60, (e) N = 100 and (f)

N = 200. The crossing points provide accurate estimates of the critical transition, αc.

the simulation box will affect results no matter how large L is. Therefore, we apply the

finite-scaling approach of Binder,27 which involves calculating the cumulant

UL = 1− 〈m̄4〉
3〈m̄2〉2

, (13)

for a series of system sizes, L, where m̄ = (nA − nB)/n. The critical point corresponds to

the value of α for which UL is independent of L.

In order to reduce the computational effort, we employ Monte Carlo reweighting28,29 to
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TABLE II. Critical points, (αN)c, for homopolymer blends of different polymerization, N , obtained

from Fig. 6. Our uncertainty in the (αN)c estimates is about 0.1%.

N (αN)c

20 0.6129

30 0.6103

40 0.6088

60 0.6070

100 0.6051

200 0.6034

calculate the α-dependence of the moments,
〈
m̄k
〉
. This involves running one long simulation

of around 106 MCS per monomer at an α0 close to the transition, and storing the values of

m̄ and the number of AB contacts, nAB, every 40 MCS per monomer. The ensemble average

of m̄k at α is then given by

〈m̄k〉 =

∑
i m̄

k
i exp (nAB,i(α0 − α))∑

i exp (nAB,i(α0 − α))
. (14)

Naturally, the reweighing will become inaccurate if α differs too much from α0. Fortunately,

reweighting works particularly well near a critical point, due to the broad distribution of

configurations resulting from the critical fluctuations. To be absolutely safe, we repeat the

simulation if our initial choice of α0 differs from αc by more than 0.5%.

Figure 6 plots the cumulants for different polymerizations, demonstrating the expected

behavior where the curves cross at a fixed point. This identifies the critical points, αc, listed

in Table II. The estimated uncertainty in these values is 0.1%, based on the spread among

the crossing points for different pairs of system sizes, L. Figure 7 replots the cumulants

with the temperature axis scaled by L1/ν , where ν = 0.62997 is the critical exponent of the

correlation length for the 3D-Ising universality class. The near perfect collapse of the curves

confirms that the finite-size scaling is working properly.

Figure 8 plots the critical points from Table II in terms of the nonlinear χ from Eq.

(12) and the linear approximation χ ≈ z∞α. The size of the symbols corresponds to our

estimated inaccuracy in αc. To within this level of uncertainty, the critical points can be fit

to the dashed line,

z∞αcN = 2.004 + 1.62N̄−1/2 , (15)
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FIG. 7. Binder cumulants from Fig. 6 for homopolymer blends with polymerizations of (a) N = 20,

(b) N = 30, (c) N = 40, (d) N = 60, (e) N = 100 and (f) N = 200 replotted with the horizontal

axis scaled by L1/ν , where ν = 0.62997.

plotted in Fig. 8. Combining Eqs. (9), (12), and (15) provides an equivalent fit for the

nonlinear χ, which is plotted in Fig. 8 with a solid curve. As evident from from the plots,

the nonlinear terms in χ = z∞α + c1α
2 + c2α

3 do not affect the leading-order terms in Eq.

(2). Thus, the first fitting parameter in Eq. (15) implies (χN)c ≈ 2.004 for infinitely long

polymers, which agrees well with the mean-field prediction of 2. The second fitting parameter

gives c ≈ 1.62 for the universal coefficient in Eq. (2), which is reasonably consistent with
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FIG. 8. Critical transitions from Table II plotted in terms of the nonlinear χ = z∞α+ c1α
2 + c2α

3

(solid symbols) and the linear approximation χ ≈ z∞α (open symbols); the symbol size corresponds

to our 0.1% uncertainty. Both curves correspond to the fit in Eq. (15).

the previous estimate of c ≈ 1.5.24

VI. DISCUSSION

Our new lattice model has proven to be remarkably efficient. Metastability effects were

very small, even at the first-order ODT of the diblock copolymer melts, as evident by the

near equivalence of the parallel-tempering runs from completely different states (see Fig. 4).

Furthermore, the cumulants from the homopolymer blends exhibited precise fixed points

(see Fig. 6) and accurate scaling (see Fig. 7), even for long polymers and large simulation

boxes. The efficiency can be attributed to the low computational cost of performing the

Monte Carlo steps (MCS), in part due to the zero-range interactions. The simplicity and

high acceptance rate of the double-bridging move is another important contributing factor

to the fast MC dynamics. Thanks to universality, the unphysical nature of the lattice is

inconsequential.

The most significant property of the new model is its inherently large invariant polymer-

ization index, N̄ . For our current choice of Z = 5, N̄ = 59.9N , whereas for the Z = 1

version of the model, it is only N̄ = 4.51N .11 Hence, for a given N̄ , the single occupancy
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model requires the chains to be 59.9/4.51 ≈ 13 times longer. Given that block exchange is

the only way long chains can cross in the Z = 1 model, this could easily increase the com-

putational cost by 2 or 3 orders of magnitude. Furthermore, the simulation box needs to

contain
√

59.9/4.51 ≈ 3.6 times more monomers in order to simulate an equivalent volume

of melt in terms of Rg, and the use of nearest-neighbor interactions will add another factor

of about 2 to the cost. Thus, the multiple occupancy provides a tremendous computational

advantage.

It is well understood that ordered block copolymer melts experience complicated finite-

size effects due to incommensurability between their preferred dimensions and the size of

the simulation box.30 Naturally, this will reduce the stability of ordered phases, pushing the

ODT to higher segregation. In the case of the lamellar phase, however, the morphology has

considerable freedom to adjust its period by selecting different orientations.26,31 For the boxes

used in our simulations, the relative spacing between allowed periods is about 4%, which

is fine enough to obtain a reasonably accurate free energy given its (D −Deq)
2 dependence

near the equilibrium period, Deq. Therefore, we believe that the slight differences in Fig.

5 between (χN)ODT and Eq. (1) and similarly between D and the SCFT prediction both

represent real effects.

These differences in Fig. 5 increase smoothly as N decreases, and therefore we attribute

them to the gradual breakdown of universality, which cannot continue indefinitely. In fact,

the polymeric behavior will be lost altogether once the polymerization becomes ridiculously

small. The minimum N necessary for universality will depend on the particular model or

experimental system being considered. In the case of the current model, it appears that

N >∼ 30 is required. This is somewhat more than the requirement for off-lattice models,11–13

but that is a small price to pay for the increased efficiency of using a lattice.

If the universality does indeed require N >∼ 30, this would limit the simulations to N̄ >∼
2000. Nevertheless, one could simply recalibrate the model with fewer monomers per site

in order to handle smaller N̄ . Given that N̄ is proportional to ρ20, reducing the maximum

occupancy from Z = 5 to Z = 4 should allow for N̄ ≈ 1000 and Z = 3 could facilitate

N̄ ≈ 600. However, with a maximum of three monomers per site, the absence or presence

of a vacancy may have an unduly large effect on the interaction energy. Even though it

would reduce the efficiency of the simulation, it might be best to include nearest-neighbor

interactions for Z ≤ 3.
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The fit in Eq. (15) was obtained by linear regression, which predicts 90% confidence

intervals of 2.0040±0.0004 and 1.62±0.02 for the two fitting parameters. However, one needs

to be cautious in accepting these estimated uncertainties, given the stringent assumptions

behind linear regression. Firstly, it assumes that the underlying relationship between αc and

N̄−1/2 is linear, which of course is only approximately true. Secondly, it assumes that the

deviations from the linear relationship are caused by normally-distributed random errors

with a variance that is independent of N̄ , which is certainly not true. The situation for

nonlinear fits (e.g., Fig. 1) is even more precarious, and so we do not attempt to estimate

their uncertainties.

In the previous study by Ref. 24, the extrapolation of (χN)c to infinite N was remarkably

consistent with the mean-field prediction of 2. Evidence that the χ derived from diblock

copolymer melts also works for homopolymer blends supports the belief that χ is independent

of molecular architecture. Although our extrapolation of 2.004 in Fig. 8 only differs from

the mean-field prediction by 0.2%, the deviation is nevertheless 10 times the uncertainty

estimated by linear regression. This, however, can readily be attributed to the inaccuracy

in z∞, which violates the assumption of random errors. The inaccuracy in z∞ originates

from the two fits in Fig. 1, which are based on truncated Taylor series expansions, Eqs. (8)

and (10). Although the statistical segment length, a, estimated from the first fit appears

accurate, its value enters as a−3 in the second fit reducing the accuracy of z∞. If we put our

faith in the linear fit of Eq. (15), and instead determine z∞ by requiring the extrapolation

of (χN)c to match the mean-field value of 2, we obtain z∞ = 3.340. Repeating the fit of

S(q∗) to ROL with this value gives c1 = 4.25 and c2 = −8.94. The resulting change in χ,

however, is so small that it has no visible effect on the diblock copolymer ODTs in Fig. 5.

Our new estimate of c = 1.62± 0.02 for the universal coefficient in Eq. (2) may seem to

disagree with the previous estimate of c ≈ 1.5, but this is likely due to a large inaccuracy

in the latter value, which was obtained from a nonlinear fit. Extrapolation is notoriously

unreliable, particularly when the data is nonlinear. This is why we chose to fit the open

symbols rather than the solid symbols in Fig. 8. When we perform a 4-parameter polynomial

fit to the solid symbols, we obtain (χN)c = 2.005+1.102N̄−1/2 +129N̄−1−822N̄−3/2, which

closely matches the solid curve in Fig. 8. Despite the close match, the solid curve gives

c = 1.62 whereas the 4-parameter fit gives c = 1.10. Extrapolation of the open symbols is

far less ambiguous, and thus much more trustworthy. The critical point data in Ref. 24 also
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exhibited a significant degree of curvature, and so the resulting prediction of c ≈ 1.5 is prone

to inaccuracy. In reality, the linearity of our results in Fig. 8 was remarkably fortuitous,

which implies that it will be difficult to improve upon our estimate of c using alternative

models.

VII. SUMMARY

Following the strategy of Wang,20 we introduced a new model designed for efficient sim-

ulations of high-molecular-weight block copolymer melts, where monomers are restricted to

the sites of an fcc lattice. Our current implementation is for Z = 5, where 80% of the sites

contain 5 monomers and the remaining sites have 4 monomers. The multiple occupancy

results in a high monomer density of ρ0 = 6.778/b3, which in turn leads to large invariant

polymerization indexes, N̄ . In addition to the usual advantages of a lattice model, the

efficiency is further enhanced by limiting interactions to monomers within the same site.

Despite the unphysical nature of the lattice, quantitative predictions are nevertheless pos-

sible on account of the universality of block copolymer phase behavior. This is achieved

by mapping the parameters of the lattice model onto those of the standard Gaussian-chain

model (GCM), using the Morse calibration.8,11 The resulting relationship between the sta-

tistical segment length and the bond length of the lattice model is given by a = 1.0447b.

The mapping between the Flory-Huggins χ parameter and the interaction parameter, α, of

the lattice model is well approximated by χ ≈ 3.346α + 4.16α2 − 8.66α3.

Our first application of the model examined the order-disorder transitions, (χN)ODT, of

symmetric AB diblock copolymer melts. This was done by performing pairs of parallel-

tempering simulations from ordered and disordered configurations. The simulations equili-

brate relatively quickly, testifying to the efficiency of the Monte Carlo moves and providing

consistent predictions for the ODTs. The resulting ODTs agreed well with the universal

curve obtained from previous simulations, Eq. (1). There was, however, some deviation at

small N , indicating that the model requires N >∼ 30 in ordered to exhibit universal behav-

ior. Although this limits the simulations to N̄ >∼ 2000, lower values could be handled by

recalibrating the model with fewer monomers per site.

Our second application examined the critical points, (χN)c, of symmetric AB binary

homopolymer blends. Accurate estimates of the transition were obtained using finite-size
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scaling. The resulting critical points, αc, happened to follow a remarkably linear dependence

on N−1/2 over a wide range of polymerizations, 20 ≤ N ≤ 200, allowing for a reliable extrap-

olation to infinite N . The limit was consistent with the mean-field prediction, (χN)c = 2, to

within 0.2%, supporting the notion that mean-field theory becomes exact in this limit and

that the χ derived from AB diblock copolymers applies to all AB-type melts. Furthermore,

the extrapolation predicted c ≈ 1.6 for the universal coefficient in Eq. (2), which is reason-

ably consistent with the previous simulations in Ref. 24. We expect our new estimation to

be the more accurate, given that it is based on a linear extrapolation between αc and N−1/2,

Eq. (15).

Naturally, there are numerous other AB-type melts that this lattice model could be

applied to. We are currently examining polydisperse diblock copolymer melts in order

to determine the polydispersity corrections to Eq. (1). Given that monodisperse melts

are experimentally impossible, it is essential to know these corrections in order to make

quantitative predictions. Previous simulations for N̄ ≈ 200 have already shown that even

slight degrees of polydispersity can have a sizeable effect on the ODT.14 The present model

will allow us to extend that study to the entire range of experimentally relevant N̄ .
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