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Abstract 

In the past age, CO2 conversion catalysts have gained attention due to various 

environmental issues caused by CO2 emission. Catalytic reduction of CO2 using renewable 

hydrogen as reductant to produce renewable fuels is considered as a potential solution to store the 

surplus renewable energy and reduce the CO2 emission. Alumina-supported cobalt oxide and 

cobalt carbide catalysts prepared by reverse microemulsion (RME) method were investigated for 

CO2 methanation. Results showed that the prepared catalysts were nanosized particles ranged from 

5-15 nm. XRD, BET, SEM and TEM were used for catalysts characterization and TPR was 

conducted to study the reducibility.  

The catalytic performance of these catalysts was studied by CO2 methanation reaction. At 

400 °C, 3 bar, under a 60,000 mL gcat
-1 h-1 flow (H2:CO2=4:1), the selectivity to methane on 

alumina-supported cobalt carbide catalysts can reach 0.96 and the conversion of CO2 was 0.78,  

showing high catalytic activity and mild reaction condition. With increasing pressure, the 

conversion of CO2, as well as the selectivity to CH4 both increased and reached 0.91 and 0.98 

respectively at 11 bar showing excellent performance towards CO2 methanation. 

In-situ FTIR was used to study the mechanism of the reaction on alumina-supported cobalt 

catalysts. The pathway from CO2 to methane and adsorbed intermediates on catalysts were 

investigated. Intermediates and adsorbed species on the catalysts were investigated during the 

reaction. At lower temperature and lower gas concentration, CO2 was adsorbed on the surface as 

carbonates. When the reaction condition was achieved, adsorbed CO2 started to be reacted to CO 

and CH4 and intermediate species started to appear. 

Keywords: CO2 methanation, alumina supported cobalt carbide, reverse microemulsion   
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Chapter 1: Introduction 

1.1 Problem Statement 

Since the Industrial Revolution, fossil fuel has played an essential role in our daily life. The 

amount of fossil fuel use has increased rapidly. Because of this, the concentration of CO2 and other 

greenhouse gases in the atmosphere has reached a new level due to exhaust emissions generated 

by human activity. More heat radiation from the earth’s surface is absorbed by the atmosphere 

instead of radiating to space, and this phenomenon will cause global warming. To this day, we still 

cannot offer an efficient solution to the problem, but we can mitigate the greenhouse effect by 

reducing greenhouse gas emissions.  

Reducing the greenhouse gas emission is gradually becoming a necessary mission for every 

country and area. Ontario has met its target of 2014: to decrease 6% of the greenhouse emission 

compare with 1990 level[6]. This target was achieved by closing fossil fuel power plants all over 

Ontario and around 60% of the electricity in Ontario is generated by nuclear now[7]. The next goal 

for Ontario is to achieve 15% below 1990 by 2020, which is a big jump.  To close some of this 

gap, there are still a lot of works to be done. 

If we can transfer CO2 to synthetic fuels and chemicals and introduce the synthetic fuel 

into the existing energy system, the value of CO2 can be used entirely, and the emission can be 

reduced. CO2 methanation, also known as Sabatier reaction, is attracting increasing attention 

currently. Conversion of CO2 to methane not only consumes the CO2, which is otherwise emitted 

(or stored) but also produces valuable fuels that can be simply injected to the current energy grid. 

The energy of renewable electricity can be stored in the form of chemical energy inside the 
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chemical bonds. CO2 utilization via power to gas can be a solution for the increasingly serious 

situation of global warming caused by greenhouse gases emission. 

The hydrogen required in CO2 methanation can be generated from the electrolysis of water. 

One key point of the CO2 conversion is that, the energy, or the hydrogen required in the reaction 

should not be generated from a high carbon footprint process. If the electricity for water 

electrolysis is from a fossil fuel based power plant, the carbon footprint of the methanation will be 

positive and it is meaningless to convert the CO2. 

1.2 Project objective 

In this project, the objective is to investigate several cobalt-based catalysts for CO2 

methanation. Aim catalysts need to be suitable for industrial production, while having high activity 

and high selectivity towards CH4. To achieve these requirements, aim catalysts should have porous 

morphology and high surface area to give enough active site for the reaction. To understand the 

pathway of the methanation process, the mechanism also needs to be determined.  

Catalysts were prepared by reverse micro-emulsion (RME) method first and then 

characterized by several characterization technologies to understand the structure and morphology. 

The CO2 conversion and selectivity to CH4 were tested on the catalysts in a range of different 

temperature and pressure to search for the optimum reaction condition. Mechanism of the reaction 

in molecular level was investigated by in-situ FTIR study. 

1.3 Thesis outline 

Chapter 2 includes a general review of the CO2 emission issue in Ontario as well as 

worldwide. The idea of power to gas (PtG) is introduced. Different catalysts introduction for CO2 
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methanation and reverse water gas shift are also summarized in Chapter 2 in terms of groups of 

elements. 

Chapter 3 and Chapter 4 gives the methodology of the experiments including catalysts 

preparation by RME method and wet impregnation method for reference catalysts, characterization 

method including X-ray powder diffraction (XRD), temperature-programmed reduction (TPR), 

surface area analysis (SAA), Scanning electron microscope (SEM) and transmission electron 

microscopy (TEM), flow system setup for catalytic performance test and in-situ FTIR setup for 

mechanism study.  

Results and discussion are carried out in Chapter 5, which is divided into three separate 

part: characterization, performance and in-situ FTIR study. Catalysts structure, morphology, and 

reducibility are obtained from characterization studies. Conversion of CO2 and selectivity to CH4 

are tested through catalytic performance test in a range of temperature and pressure. In-situ FTIR 

study towards CO2 methanation is also included in Chapter 5. 

According to the results showed in Chapter 5, conclusion and future work are presented in 

Chapter 6. During the project processing, potential improvement of the catalysts on preparation 

method and catalyst components were raised, providing possible research directions. 
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Chapter 2: Background 

2.1 Global warming and CO2 emission 

The atmosphere is like the glass over a greenhouse to keep inside warm so that the 

temperature will not drop dramatically in the night. Solar radiation is mainly short-wave radiation, 

while the radiation back from the earth surface to the atmosphere is long-wave radiation. The cause 

of global warming is complicated. However, it can be divided into two aspects, the natural climate 

fluctuation and human activities. The former includes the change of solar radiation, change of earth 

orbit and self-monitoring of the global climate system. The latter includes the overuse of fossil 

fuel, deforestation, emission cause from industrial and agricultural, forests and land use change, 

etc. 

However, there is an increasing number of evidences showing that the main reason of 

global warming is the rising concentration of greenhouse gas in the atmosphere, which is caused 

by human activity, primarily industrial and agriculture. Therefore, the accentuation of the 

greenhouse effect is the most possible cause of global warming. The consequences of global 

warming and climate change can be disastrous. According to the World Meteorological 

Organization [8], the average temperature of global surface continues to rise since recoded from 

1861. During the 21st century, the temperature is likely to rise by 0.3 to 1.7 °C.  The prediction 

made by the Intergovernmental Panel on Climate Change in 1995 said that if emissions of 

greenhouse gases were not reduced in the next decades, the global average temperature would 

increase 0.2 °C per decade. The tiny number changing seems like it will not cause a severe 

consequence to our life, but if the temperature continues to increase, the rise of sea level due to 

melting glaciers will cause 1400 cities in the US submerged underwater in 2100.  
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As of May 2013, CO2 concentrations in the Earth's atmosphere were once more than 400 

ppm (400 ppm or 0.04%) [9]. Though the increase of carbon dioxide is beneficial to the generation 

of photosynthetic products of green plants, it also causes the change of degree and precipitation by 

influencing the energy balance of the earth, which will have a negative effect on climate productive 

potentialities. Carbon dioxide plays a significant role in global warming, because of this, the 

countermeasure to mitigate global warming is mainly focus on reducing the emission of carbon 

dioxide. 

 

Fig.  1 Canada's 2015 natural gas usage percentage by sector [10]. 

2.2 Power to gas (PtG) 

In Ontario, 80% of our energy source is still from fossil fuel and methane is widely used 

in residential heating and other purposes. In 2015, the total usage of methane in Canada was 2,754 

petajoules (PJ). There are still many industries need methane as raw material or energy source. 
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More than half of the methane utilized in Canada was for industrial production, as described in 

Fig. 1. [10]  

 

 

With the increasing number of renewable energies developed all around the world, the 

utility of surplus electricity is significant, since most of the renewable energy sources, such as 

wind and hydro, are fluctuating and intermittent. Power to gas (PtG) is a promising way to store 

the electricity in the form of chemical energy inside chemical bond and methane is the most 

favoured product since the consumption of methane is massive in many industries currently and 

the existing methane grid allows the convenience of utilization. The idea is to reduce CO or CO2 

to methane and inject the generated methane to the present methane grid. In Germany, Audi has 

the biggest power to gas plant operated from 2013, Audi e-gas plant, where the CO2 is from a 

biogas plant, hydrogen required is from three alkaline electrolysers. [11] 

A disadvantage that needs to be eliminated in the PtG chain is the efficiency of water 

electrolysis and the efficiency of methanation as demonstrated in Fig.  2. [5] The total energy will 

lose 30% from renewable electricity to compressed hydrogen delivered from the electrolysis. 

Currently, there are three promising electrolysis methods, which are alkaline electrolysis, PEM 

Fig.  2 Sankey diagram of the PtG Process efficiency [5]. 
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electrolysis, and solid oxide electrolysis. Comparing the economic numbers, alkaline electrolysis 

is the most favoured one for now, but if the cost of PEM electrolysis can be reduced in the future, 

it will be the most suitable one for flexible industrial production. In Fig. 2, the efficiency is 

considered for current available electrolysis technologies (AEL and PEM). Another link in the 

process that requires potential development is methanation process. The efficiency is limited by 

the equilibrium of the reaction but the energy that is released in the form of heat can be utilized as 

a heat source for other processes [5].  

2.3 Thermo-catalytic conversion of CO2 

 

Usually, there are three pathways of CO2 reduction: thermal-catalytic reduction, 

photochemical reduction and electrochemical reduction. Photochemical reduction and 

electrochemical reduction have their own limitation of efficiency and capacity. However, thermo-

catalytic conversion of CO2 is favoured by its high temperature reaction condition that provides 

Fig.  3 Reaction pathways of producing synthetic fuels and chemicals via thermo-catalytic 

CO2 conversion [3]. 
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high reaction rate and allows large volume production. There is a sketch of variety thermo-catalytic 

CO2 conversion pathways (Fig.  3). Using CO2 and H2 as reactants, syngas can be generated via 

methane dry reforming reaction (MDR) and reverse water gas shift reaction (RWGS) and can be 

further transformed to other valuable chemicals. Another product that can be produced by CO2 is 

methane. Via CO2 methanation, also known as Sabatier reaction, CO2 can be converted to methane 

and methane is a good energy source for lots of industries and also a suitable fuel for home heating. 

2.3.1 CO2 methanation 

CO2 methanation, also called Sabatier reaction is an extremely exothermic reaction. The 

conversion to CH4 is favoured at relatively low temperature and high pressure. The best 

performance of the catalysts is often obtained at 350 °C. The reaction is usually carried out through 

a fixed bed reactor on metal-based catalysts. Since the methanation reaction, eq. (1) [12], is highly 

exothermic, removing heat from the system to maintain the optimal reaction temperature is one 

big challenge of the reaction design. Currently, two pathways of the reaction are believed mostly, 

one is the CO2 molecules are adsorbed on the catalyst surface and dissociated to CO followed by 

reaction with H2 while the other mechanism does not involve CO and the adsorbed CO2 is directly 

transferred to CH4. 

𝐶𝑂2 + 4 𝐻2 ⇌  𝐶𝐻4 + 2 𝐻2𝑂 Δ𝐻298
° = −164.9 𝑘𝐽/𝑚𝑜𝑙 (1) 

𝐶𝑂 + 3 𝐻2 ⇌  𝐶𝐻4 + 𝐻2𝑂 Δ𝐻298
° = −206.1 𝑘𝐽/𝑚𝑜𝑙 (2) 

𝐶𝑂2 + 𝐻2 ⇌  𝐶𝑂 + 𝐻2𝑂 Δ𝐻298
° = +41 𝑘𝐽/𝑚𝑜𝑙 (3) 

2 𝐶𝑂 + 2 𝐻2 ⇌  𝐶𝑂2 + 𝐶𝐻4 Δ𝐻298
° = −247𝑘𝐽/𝑚𝑜𝑙 (4) 

2 𝐶𝑂 ⇌  𝐶 + 𝐶𝑂2 Δ𝐻298
° = −172 𝑘𝐽/𝑚𝑜𝑙 (5) 

𝐶𝑂 + 𝐻2 ⇌  𝐶 + 𝐻2𝑂 Δ𝐻298
° = −131 𝑘𝐽/𝑚𝑜𝑙 (6) 
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𝐶𝑂2 + 2 𝐻2 ⇌  𝐶 + 2 𝐻2𝑂 Δ𝐻298
° = −90 𝑘𝐽/𝑚𝑜𝑙 (7) 

2.3.2 Reverse water gas shift and other side reactions 

The CO2 methanation is always accompanied by the reverse water gas shift eq. (2), the 

methanation of CO eq. (3) and reverse dry reforming eq. (4). The selectivity of each reaction is 

highly depended on the catalysts’ category and the support materials. CO2 will be adsorbed on the 

catalysts surface differently which will lead to varies of intermediates and reaction pathways. eq. 

(5) to eq. (7) is the main reason for the deposition carbon formation during catalysts degradation 

that will block the pores on the surface and decrease the surface area which is related to the activity 

of the catalysts. However, the fouling catalysts caused by carbon can be regenerated by combustion 

and oxidation at a suitable condition. 

2.4 CO2 methanation catalysts 

 

Fig.  4 Common trends of the conversion and selectivity as a function of temperature and 

pressure [13]. 

Metal catalysts mainly from VIII – XI group of the periodic table have been confirmed on 

CO2 methanation. Catalytic activity and CH4 selectivity are two important factors to evaluate the 
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performance. During decades of investigation, the activity of the metals that can be employed in 

methanation can be ranked as: Ru > Rh > Ni > Fe > Co > Os > Pt > Ir > Mo > Pd > Ag > Au, while 

the selectivity to CH4 can be ranked as follow: Pd > Pt > Ir > Ni > Rh > Co > Fe > Ru > Mo > Ag > 

Au. [13]  

There is a common trend that with the increasing of the temperature, the total conversion 

of CO2 will increase, while the selectivity to methane will decline, as shown in Fig.  4. The actual 

number of conversion and selectivity may vary for different catalysts (solid line and dash line), 

but the variation trend is the same. This is reasonable since the methanation reaction is exothermic 

and the reverse water gas shift is endothermic. With the increasing pressure, the CO2 conversion 

and CH4 selectivity will both increase because the total gas phase molecules will decrease during 

the reaction. 

2.4.1 Noble metal catalysts  

 Rhodium is the most developed noble material for CO2 methanation. With the promotion 

of alumina support, CO2 molecules can be adsorbed on the Rhodium catalysts surface and 

dissociated to CO and O. If the support can be switched to TiO2, the most active catalyst among 

Rhodium catalysts will be obtained which may due to the interaction between the metal and the 

support [14] [15].  However, the cost of the TiO2 support is much higher than the alumina support.  

Ruthenium was reported to be the most active material [16], but the performance is 

sensitive to the dispersion and the particle size determined by the preparation method. Wet 

impregnation method is not suitable for controlling the resulting catalysts, therefore, a dry 

synthesis procedure called polyhedral barrel sputtering was offered in order to control the particle 

size and the dispersibility [17]. The support of the Ru catalysts will also affect the activity. A series 
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of support materials have been studied and TiO2 support still showed superior advantages same as 

on Rhodium.  

 Palladium was also investigated as a methanation catalyst and the combination with Mg 

will improve the selectivity towards CH4 and allow hydrogen to dissociate on the surface. Park et 

al., prepared size controlled Pd-Mg/SiO2 catalysts via reverse microemulsion and the obtained 95% 

selectivity to methane with 59% CO2 conversion. Compare to the Pd-Mg/SiO2 catalysts prepared 

by conventional wet impregnation, the conversion of CO2 and selectivity to CH4 are both increased 

substantially as showed in  Table 1 [18]. However, the utilization of most noble metal catalysts are 

limited by the high price. [19] 

 Table 1 Comparison of Pd-Mg/SiO2 catalysts prepared by different methods [18]. 

 

2.4.2 Transition metal catalysts 

Nickel is the most investigated elements in the past decades. Studies have been carried out 

for different support and doping elements. Because of the low price and abundance, nickel is 

widely employed in industrial production but the sintering effect during reaction restricted the 

utilization [19] [20]. The performance of the nickel catalysts is highly depended on the support 

materials and the promoters. The influences of nickel loading on Al2O3 supported catalysts was 

studied by Rahmani et, al [21]. Increasing the loading of nickel will give more active component 

but the surface area that can provide active sites will decrease as shown in Fig.  5. The best 

  
CO2 conversion 

(%) 

H2 conversion 

(%) 

CH4 Selectivity 

(%) 

CH4 Yield 

(%) 

Pd(RME)/SiO2 40.8 11.4 10.4 4.3 

Pd(Imp)/SiO2 40.6 9.6 6.5 2.6 

Mg(RME)/SiO2 0.8 6.7 10.3 0.1 

Pd-Mg(RME)/SiO2 59.2 26.9 95.3 56.4 

Mg(Imp)/Pd/SiO2 40 15.3 76.2 30.4 
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performance is reached when the loading is 20 wt%.  Liu [22], reported the addition of ceria will 

enhance the stability of the catalyst and also the CO2 conversion. After 120 hours, the conversion 

of CO2 decreased slightly from 78.5% to 74.3% at 350 °C. Adding another metal as doping metal 

will affect the interaction behavior between the metal and the support. Adding W to the Ni-Mg 

catalysts can change the surface structure and the active sites, which is strongly associated to the 

catalytic performance, furthermore enhance the stability and reactivity of the nickel catalysts [23]. 

Nickel catalysts supported on silica is also studied. Nickel supported on MCM-41 catalysts was 

reported to have a high selectivity to CH4. A selectivity of 96.1% to methane was achieved on 3% 

nickel supported on MCM-41 with a 16.8% CO2 conversion [24]. However, during the reaction, 

nickel carbonyl, which is a toxic compound that can harm the human organism, can be generated, 

which should also be considered.  

 

Iron is reported to have similar activity as nickel but the selectivity to CO2 methanation is 

lower, so Fe is mostly used in Fischer-Tropsch reaction. Cobalt has not attracted much attention 

in CO2 methanation because the price is higher than nickel and the performance reported did not 

Fig.  5 CO2 conversion and selectivity to CH4 with different Ni loadings.  

Reaction conditions: GHSV =9000 mL gcat
-1 h-1, H2/CO2 molar ratio= 3.5. 
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show advantages. However, cobalt can be used as a promoter and doped on nickel [25]. In Fig.  6, 

the addition of cobalt on NiO/Al2O3 catalyst improved the catalytic performance and the 

conversion is higher than NiO/Al2O3 and Co3O4/Al2O3. Ni, Fe and Co are all easy to be oxidized 

in the atmosphere other than the noble metals. [13] [26]  

 

Fig.  6 Catalytic performance of Co doped NiO/Al2O3 catalyst (10N3COMA), NiO/Al2O3 

catalysts (10NOMA) and Co3O4/Al2O3 catalysts (3COMA). 
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2.5 Reverse micro-emulsion (RME) method for catalysts preparation. 

 

In order to obtain a suitable catalyst for methanation, the required catalyst needs to have a 

series of advantages. The catalysts should be active, stable and have good selectivity towards CO2 

methanation. The activity of the thermo-catalysts is highly related to the particle size, dispersibility 

and the surface area. High surface area will provide a large number of active sites and results in 

high reaction rate. Since the surface area per weight unit is usually increased with smaller particle 

size, reducing the particle size is one of the significant objectives in catalysts development. There 

were plenty of studies aimed at innovative synthesis procedures of the catalysts that can control 

the particle size in the desired range. 

Fig.  7 RME nano-droplets and reaction sketch [4]. 
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Reverse microemulsion was first proposed by Schulman, 1959. A typical water in oil 

reverse microemulsion system is shown in Fig.  7 [4]. Aqueous phase was surrounded by surfactant 

molecules and oil is the continuous phase. The polar head groups of the surfactant molecules are 

attracted by the aqueous phase and the hydrocarbon tail are attracted by the oil phase. Co-surfactant 

is also used to stabilize the system. The nano-droplets can be used as micro-reactors carrying out 

chemical reactions. When the micelles contact with each other, the content inside the micelles will 

be mixed and the reaction can begin. In order to limit the reaction happens inside the nano-reactors, 

separate reverse emulsion should be prepared and then mixed. 

In the past decades, RME method has been applied to many areas in order to synthesis 

shape and size controlled nanoparticles. Yang et al., [27] proposed core-shell structure silica coated 

aqueous quantum dots synthesized by reverse microemulsion method and the particle sizes can be 

controlled in a range of 45-109 nm. Vancher et al., [28] reported that the Prussian Blue 

Fig.  8  Conversion of methane in combustion process on catalysts prepared via 

different methods. a, sol-gel-derived conventional BHA; b, reverse-microemulsion-

derived BHA nanoparticles; c, reverse-microemulsion-derived CeO2-BHA 

nanocomposite. GHSV=60,000 h-1, 1% methane in air. 
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nanoparticles that prepared via RME method have uniform particle size and shape. The reaction 

inside the nano-droplet can limit the amount of reactant and leads to adjustable products.  

Catalysts that prepared by RME method also showed superior performance and advantages 

compared with conventional methods. Kishida et al., [29] proposed that the Rh, Pd and Pt catalysts 

synthesized by RME methods showed much better performance for CO2 hydrogenation than 

conventional wet impregnation method in terms of activity and selectivity towards methane. The 

improvement was considered to be the results of the decrease of the particle size. Zarur and Ying 

[30] deposit 25 wt% ceria onto BHA nanoparticles via RME method and the resulting catalysts 

have superior catalytic performance than BHA nanoparticles (Fig.  8). Furthermore, the ceria was 

able to remain the nano-crystalline morphology at 1300 C while the bulk ceria would sinter and 

grow to more 100 nm at 700 C.   
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Chapter 3 Methodology 

3.1 X-ray powder diffraction 

X-ray powder diffraction is a powerful method to identify the component and the crystal 

structure of the existing phase. Considering the wavelength of X-ray is close to the distance 

between atoms in the crystal (10-8 cm), German physicist M. von Laue proposed an important 

theory in 1912 that crystal can be seen as diffraction gratings for X-rays [31]. Diffraction occurs 

when a beam of X-rays passes through the crystal phases. Because of the superposition of the 

diffracted signal, the intensity of the signal is strengthened in some directions and weakened in 

others. 

 

In 1913, the British physicist Dr. Bragg [32] proposed an equation based on Laue's 

discovery, Brag's law: 2d sinθ=nλ. Where λ is the wavelength of the X-ray, n is any positive integer, 

d is plane spacing and θ is the grazing angle. The crystal structure can be determined by analyzing 

the diffraction pattern obtained on the photographic film. Each crystal will have its own peak 

Fig.  9 Bragg’s law schematic. 
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positions and intensities. Comparing with the standard JCPDS card, the crystal can be identified 

[33]. 

3.2 ICP-EOS 

An atom or ion can be in a discontinuous state of energy. When an atom or ion in the 

ground state absorbs a certain amount of external energy, its extranuclear electrons transition from 

an energy state to a higher energy level. However, the atoms or ions in the excited state are very 

unstable and will transit to the ground state and radiate the absorbed energy with a certain 

electromagnetic wave. The wavelength of the electromagnetic waves generated from excited 

atoms is different. Since atoms or ions have many energy levels, particular atoms or ions can 

produce a series of characteristic spectra of different wavelengths, which will give the element 

information. The intensity of the wave at different wavelengths can be used to quantitatively 

analyze the content or concentration of an element in the sample after comparison with the standard 

curve. 

 

                                      Fig.  10 ICP-OES schematic diagram. 
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3.3 Temperature-programmed reduction (TPR) 

Temperature programmed reduction (TPR) method is one of the temperature-programmed 

analysis methods. In TPR experiment, a certain amount of metal catalyst is placed in a fixed bed 

reactor, and a reducing gas stream (usually a low concentration hydrogen) is passed through the 

catalyst at a specific flow rate while heating the reactor with a particular ramping rate. When the 

temperature inside the reactor reaches a specific value, the oxide on the catalysts begins to be 

reduced. Because the flow rate of the reducing gas is constant, the change in H2 concentration after 

passing through the catalyst bed is proportional to the reduction amount of the catalyst.  

The change of H2 concentration is continuously detected by a gas thermal conductivity 

detector (TCD detector), and the curve was recorded to obtain a TPR curve of the catalyst. Each 

peak in the curve generally represents a reducible species or state in the catalyst, and the area 

integrated is proportional to the amount of consumed hydrogen. Information on the change of 

metal oxidation states, the interaction between two metals and the interaction between metal oxide 

and support can be deduced by TPR results.  

 

                                          Fig.  11 TPR schematic diagram. 
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3.4 Surface area analysis (SAA) 

Surface area analysis is based on the BET (Brunauer–Emmett–Teller) theory [34] which 

describe the adsorption of gas molecules on the solid surface. The specific surface area and pore 

distribution of the powder sample are usually evaluated according to the amount of adsorbed gas 

usually by a TCD detector. At a constant temperature, equilibrium state, a certain gas pressure 

corresponds to a certain amount of gas adsorbed on the solid surface and changing the pressure 

will affect the adsorption amount. When the sample is immersed in liquid nitrogen, gas nitrogen 

molecules that are passing through the sample will be physically adsorbed on the catalysts surface 

(chemical adsorption is avoided at low temperature). When the liquid nitrogen is removed, 

temperature raise up and nitrogen will desorb, and a negative peak will occur. The amount of 

adsorbed and desorbed molecules can be calculated by the area of the peaks.  

BET model can be described by eq. (8), where p is the pressure at equilibrium, p0 is the 

saturated vapor pressure of the adsorbed gas at this temperature, Vm is the volume of gas required 

to form a monolayer on the surface,  V is the amount of adsorption when the pressure is p, C is a 

constant.  

After a series of p and V is obtained, p/V(p0-p) is plotted against p /p0 plot, a straight line 

can be obtained. The slope of the line is (C-1) / CVm and the intercept is 1 / CVm so that Vm and 

constant C can be deduced. Using the surface area equation, eq. (9), the specific surface area can 

be obtained. Where NA is the Avogadro constant, s is the adsorption cross-sectional area of the 

adsorbed species, V is the molar volume of the adsorbed species and a is the quality of the 

adsorbent material. 

𝑃

𝑉(𝑝0−𝑝)
=

1

𝑉𝑚𝐶
+

𝐶−1

𝑉𝑚𝐶
×

𝑝

𝑝0
                                                                                                  (8) 
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S𝐵𝐸𝑇 =
(𝑉𝑚𝑁𝐴𝑠)

𝑉
                                                                                                                  (9) 

3.5 Scanning Electron Microscope (SEM) and Scanning Electron Microscope – Energy 

dispersive X-ray spectroscope (SEM-EDS) 

Scanning Electron Microscope (SEM) is an electron microscope developed after 

transmission electron microscopy. A focused electron beam is generated from the source and this 

beam scans the surface of the sample point-by-point. After interacting with the sample, various 

physical signals are produced, amplified and converted into modulated signals by the detector, and 

finally displayed on the screen to present various features of the sample. SEM is strong in 

generating stereoscopic images, has large magnification range, allow continuous adjustment, has 

high resolution and is simple to prepare the sample. 

The combination of SEM and energy-dispersive X-ray spectroscopy (EDS) is often used 

to analyze the dispersion of the elements on the sample surface and EDS will provide the element 

Fig.  13 SEM Schematic  [1]. Fig.  13 TEM Schematic [2]. 
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distribution and create a mapping for each element. This combination allows the researchers to 

connect the SEM spectrum and the dispersion of the elements.  

3.6 Transmission electron microscopy (TEM)  

Transmission electron microscopy is a high-resolution electro-optical instrument that the 

transmitted focused electrons transmit the sample to generate an image using an extremely short 

wavelength electron beam as the source. The most advanced TEM has a resolution of 1 nm and 

can directly observe atomic images. Since the spectrum is generated by transmission, the thickness 

of the sample should be ultrathin that the signal can go through and there should be only one layer 

of the sample. The TEM consists of an electro-optical system, a power supply and control system, 

and a vacuum system. When the electron beam passes through the sample, the transmitted 

electrons have different appearance information, showing different strengths. After the signal is 

processed and magnified, it is focused on a photographic screen that will provide the information 

of the sample. 

3.7 Thermogravimetric Analysis (TGA) 

Thermogravimetric Analysis (TG or TGA) is a thermal analysis technique that measures 

the relationship between mass and temperature of the sample that is heated at a certain ramping 

rate, to study the thermal stability and composition of the material. By analyzing the 

thermogravimetric curve, the temperature composition of the weight change and its intermediates, 

thermal stability, thermal decomposition, and product formation can be deduced. The 

thermogravimetric method is favoured by its high quantitative ability to measure the mass change 

and rate of change of a substance accurately [35]. Processes that all have mass change can be 

recorded and analyzed by TGA, such as sublimation, vaporization, adsorption, desorption, but 
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thermal behaviors such as melting and crystallization, do not involve mass change of the sample, 

which can not be analyzed by TGA method. 

In this study, the reaction gas used in TGA is air and the experiments are temperature-

programmed oxidation. The system was heated up slowly, and the weight change along with the 

temperature is recorded. The weight decrease in this study mainly represents desorption of the 

water or CO2 on the surface and the oxidation of the deposition carbon during the reaction. The 

coking degree of our catalysts after reaction can be analyzed. 

3.8 FTIR 

3.8.1 In-situ FTIR 

 

Fig.  14 in-situ FTIR schematic diagram. 

Infrared spectroscopy belongs to the absorption spectrum and is based on the theory that 

the absorption of specific wavelengths of infrared is due to the compound molecules vibrate. [36] 

The wavelength of the infrared light absorbed depends on the chemical bond and the atomic weight 

of the atoms connected at both ends. This is the theoretical basis for the determination of the 

structure of compounds by infrared spectroscopy. Infrared spectroscopy is widely used as a 

"molecular fingerprint" for the study of molecular structure and chemical composition.  
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According to the relationship between the position, intensity, shape and absorption band of 

the peaks obtained by the absorption of infrared, it can be inferred that there is a certain group or 

bond in the molecule. In this study, the FTIR instrument used is a transition type. Inferred signal 

generated from the source goes through the sample pellet and the KBr windows at both sides of 

the pellet and arrives the detector (Fig.  14). Spectra are obtained at different temperature and at 

different reaction times to study the adsorbed species during the reaction.  

3.8.2 IR detector for catalytic performance evaluation 

The outlet stream of the reactor is measured continuously by an IR analyzer (IR-208 

Infrared Industries). Target gases were analysed using a multiple channel infrared detector array. 

A single beam infrared goes through specially designed narrow band-pass optical filters and the 

energy of the inferred is limited to obtain the specified signal. The adsorption was compared with 

a specialized optical filter comparator and the concentrations can be accessed. The adsorption of 

CO2, CH4 and CO in the stream were measured at the same time and processed to digital signal for 

display. 
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Chapter 4 Experiment Setup 

4.1 Catalysts synthesis 

4.1.1 CoOx/Al2O3 and CoCx/Al2O3 by reverse microemulsion method

 

First, three blank RME’s were prepared while mixing surfactant (Triton X-100, Acros 

Organics), Co-surfactant (propanol-2, Sigma-Aldrich) and oil phase in a ratio of 2:8:7 respectively 

under vigorous stirring. After, these blank RME’s were used to prepare three individual RME’s 

containing salt (Aqueous phase), i.e. cobalt nitrate hexahydrate, aluminium nitrate nonahydrate 

and ammonia and named as RME # 1, RME #2, and RME # 3 respectively. RMEs were prepared 

while adding aqueous phase to blank RME solution in the ratio of 3:2:8:7 (aqueous : surfactant : 

Fig.  15 Cobalt catalysts preparation procedure by RME method. 
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co-surfactant : oil). Aqueous phases were prepared by dissolving cobalt nitrate hexahydrate 

(RME#1) and aluminium nitrate nonahydrate (Acros Organics) (RME #2) in deionized water to 

obtain 1 mol/L solution. 1 mol/L ammonia (LabChemq Inc.) was used directly for RME #3. After 

15 min of stirring, aqueous phases were introduced to the blank RME’s dropwise. After the 

addition of aqueous phases, a small amount of co-surfactant was added into the RME till the RME 

turned to transparent again. 

 

Separately prepared cobalt nitrate, aluminum nitrate and ammonia RME’s were mixed in 

different orders as described in Fig.  15 and the changes of color and transparency are summarized 

in Fig.  16. Catalysts denoted as Co. A (CoOx-A and CoCx-A) were prepared by mixing RME #1 

and RME #2 first under vigorous stirring of 1 hour and then RME #3 was introduced. The mixture 

of RME #1 and RME #2 was pink and transparent. When the mixture was added to RME #3, the 

RME system start to turn translucent because of the formation of alumina, β-Co(OH)2 [37] [38]and 

also Co-Al double hydroxide [39]. The pink color of the RME is mainly due to the cobalt hydroxide 

Fig.  16 RME preparation procedure. 
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and the double hydroxide. After 8 hours under vigorous stirring, the mixture was stood overnight 

for stratification.  

Catalysts denoted as Co. B (CoOx-B and CoCx-B) were prepared by mixing RME #2 and 

#3 for 8 hours first under vigorous stirring and then RME #1 was introduced. The mixture of RME 

#2 and RME #3 after 8 hours was translucent with a white undertone which due to the formation 

of alumina. After the addition of RME #1, the emulsion turned beige. The possible reason for the 

differences in the color between Co.A and Co.B is the pH in system B decreased after 8h of 

reaction and the form of cobalt hydroxide is mainly α-Co(OH)2 since the required pH of α-

Co(OH)2 is lower than β-Co(OH)2 [40]. Another possible reason is that the coordination compound 

[Co(NH3)6]
2+ (yellow) was formed and further oxidized to [Co(NH3)6]

3+ (brown) in the air. 

 

 

The precipitates were washed 3 times by ethanol and deionized water (3:1) followed by 

centrifugation. The resulted precipitates were dried at 100 °C, crushed to fine powder and 

Fig.  17 CoOx and CoCx preparation procedure. 
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calcinated at 550 °C for 4 hours. This gives us cobalt oxides. CoOx-A was navy as shown in Fig.  

17, which indicated the existence of cobalt blue (CoAl2O4), a blue pigment[39], and the CoOx-B 

is a dark green powder which was a mixture of CoO and Co3O4 according to the XRD pattern 

(described in Chapter 5). To synthesis cobalt carbide, the oxides were carburized in the mixture of 

CH4 (100 mL/min) and H2 (400 mL/min) in a quartz tube from 250 °C to 800 °C with a ramping 

rate of 2 °C/min. The outlet stream from the carburization process was analyzed by an in-line FTIR 

analyzer (MultiGasTM 2030, MKS Instruments). After carburization, both oxides turned into black 

powder. 

4.1.2 Reference catalysts 

12 wt% Co loading reference catalysts were prepared by wet impregnation method. 

Commercial alumina support was first crushed into fine powder and an appropriate amount of 

cobalt nitrate solution was added. After 2 hours of mixing, the suspension was dried at 100 °C and 

calcined at 550 °C same as the baseline samples. To obtain cobalt carbide, the results oxides was 

carburized at the same condition as RME catalysts. 

4.2 Catalysts characterization 

X-ray diffraction (XRD) patterns of the fresh and spent catalysts were obtained on a 

powder diffractometer (D8 Discover, Bruker). Temperature programmed reduction (H2-TPR) of 

fresh and spent catalysts were carried out under pure hydrogen from 100 °C to 800 °C, with a 

ramping rate of 10 °C /min with the help of a catalyst characterization instrument (AMI-300Lite). 

Surface area analysis (SAA) was performed on the same instrument with single-point BET method. 

The degree of coking of the spent catalysts was investigated by thermal gravimetric analysis (TGA) 

attached in-Line with an FTIR analyser (MultiGasTM 2030, MKS Instruments) conducted (referred 
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to In-situ TGA-FTIR). Scanning electron microscope (SEM), scanning electron microscopy 

coupled to energy dispersive spectroscopy (SEM-EDS) and Transmission electron microscopy 

(TEM) micrographs were obtained by a Zeiss microscopy to determine the shape and particle size 

distribution of as-prepared catalysts. 

4.3 Flow system setup 

 

A stainless-steel reducer (1/4" to 3/8") was used as the reactor, which was coupled between 

a 1/4" stainless steel tube at the outlet and a 3/8"tube at the inlet. 3/8" tube was used for the easy 

loading and unloading of the catalysts. Catalysts were loaded and sandwiched between quartz wool 

on both sides. After catalysts were loaded, the reactor system was placed in a programmable 

furnace (Lindberg/Blue MTM Mini-MiteTM, thermo Fisher Scientific).  A K type thermocouple 

(1/8″, Omega Engineering) was installed at the outlet of the reactor touching the quartz wool next 

to the catalyst bed and connected to the controller (UP150, Yokogawa) of the furnace 

(Lindberg/Blue MTM Mini-MiteTM, thermo Fisher Scientific) for precise temperature measurement. 

Fig.  18 Flow system setup. 
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The pressure of the system was adjusted by a back-pressure regulator (S01094789B, Swagelok) 

while moisture was removed by a mist trap (AFM40-N02-Z-A, SMC Corporation) before the 

regulator and a silica gel (Fisher Scientific) column after as shown in Fig.  18. The composition of 

the dry outlet stream was measured by an IR analyzer (IR-208, Infrared Industries) continuously 

and monitored by an analog-to-digital converter (USB 6008, National Instruments) and LabView 

(National Instruments).  

4.4 Catalytic performance evaluation 

CO2 methanation was investigated at different temperatures and pressures ranged 600-

20 °C and 3-11 bar respectively. The CO2 and H2 inlet feed were controlled by two mass flow 

controllers and maintained at   H2:CO2=4:1. Before introducing CO2, the catalysts were reduced 

under pure H2 (300 mL/min) environment at 350 °C for 2 h. For each point, the temperature or 

pressure was kept for 2h until the concentration is stable. 

Gas hourly space velocity (GHSV) was maintained at 60,000 mL gcat
-1 h-1 for all catalytic 

performance tests and was calculated using the following equation: 

f

C

Q
GHSV

W
=                                                                                                                                 (10) 

In eq. (10), 𝑄𝑓  and 𝑊𝐶  are the volumetric flow rate and the weight of the catalysts 

respectively. CO2 conversion and CH4 selectivity were determined by eq. (11) and eq. (12). 

𝑦𝐶𝑂2  , 𝑦𝐶𝐻4 
and 𝑦𝐶𝑂 represents the mole fraction of CO2, CH4, and CO respectively on dry basis.  

X is the conversion and S is the selectivity. 

𝑋𝐶𝑂2
=

𝑦𝐶𝑂+𝑦𝐶𝐻4

𝑦𝐶𝑂2+𝑦𝐶𝑂+𝑦𝐶𝐻4

                                                                                                                  (11) 
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𝑆𝐶𝐻4
=

𝑦𝐶𝐻4

𝑦𝐶𝑂+𝑦𝐶𝐻4

                                                                                                                            (12) 

Carbon balance of the system is given by eq. (13). Where, 𝛼 is the ratio of H2/CO2 in the 

feed, 𝑓1 and 𝑓2 are the conversion to CO and CH4 respectively, 𝐹𝐶,𝑜𝑢𝑡 is the outlet molar flow rate 

[41]. 
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3.5 In-situ FTIR study 

To investigate the reaction mechanism over the catalysts surface, in-situ FTIR spectra were 

obtained using an IR cell placed in an FTIR spectrometer (Thermo Scientific™ Nicolet™ iS™5) 

and attached with the catalyst characterization instrument (AMI-300Lite). Inlet and outlet flow 

were connected to the instrument and went through the cell. A bed thermocouple connected with 

a controller was employed to control the temperature. For each spectrum, each catalyst was pressed 

to a KBr pellet support and reduced in H2 (10% H2/Ar) at 350 °C for 1 hour followed by argon 

flushing before introducing reaction gases (2% CO2/8% H2/90% Ar, 30 mL/min). Background 

spectra were taken at the same temperature under argon (30 mL/min). The spectra were studied at 
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different temperature (100 °C, 200 °C, 300 °C and 400 °C) and time evolution of the spectra was 

accessed at 350 °C.  
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Chapter 5 Results and discussion 

5.1 Characterization  

Table 2: Characteristic of fresh catalysts 

 Co loading   
(wt %) 

BET surface 
area (m2/g) 

cobalt 

crystallite 

size (nm) 

RME Al2O3 0 380 - 
CoOx-A 11.0 272 8 
CoOx-B 10.4 249 4 
CoCx-A 12.8 200 4 
CoCx-B 11.3 178 6 

 

 

Fig.  19 shows the carburization process for Co. A and Co. B oxide. It can be easily seen 

that both catalysts undergo almost similar conversion process, as the peak locations were almost 

identical. The weak CO2 peak appears below 200 °C may due to the desorption of adsorbed CO2 

from the catalysts surface. The large peak of CO and the other weak peak of CO2 at 620 °C were 

Fig.  19 CO and CO2 profile during carburization process. Heating rate = 2 °C/min. 
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assigned to the reaction products from carburization. Most of the product of carburization is CO 

and the amount of CO recorded was 15 times higher than the CO2 emitted during the process. It is 

the fact that, CO is easier to generate from CH4 in kinetics when it is excess during the reaction. 

Table 2 shows the catalysts composition determined by ICP-OES, BET-SSA (Specific 

surface area analysis) and particle sizes calculated by Scherrer equation using XRD data. The 

cobalt loading of each catalyst maintained consistency while the cobalt loading of RME carbides 

were a little higher than the number of oxides, as a result of the composition transfer during the 

carburization process. Carbon replaces the oxygen and the oxidation state of the cobalt also 

changed. Comparing with the alumina support synthesized by RME method, the surface area for 

supported oxides decreased approximately 26% and the number declined again for around 20% 

after carburization. The difference of the surface area number between alumina support and 

alumina-supported cobalt oxide was because of the existence of cobalt oxide that blocked part of 

the surface. [42] During carburization, the sintering of the catalysts at high temperature will further 

decrease the surface area. 

Fig.  20 represents the XRD patterns for the fresh and spent catalysts (after temperature 

test). The possible reason for the board peaks is the size of the particle prepared from RME method 

was quite small as shown in Table 1 and all particles were well dispersed on the support [42]. Also, 

the loading of cobalt in all samples are relatively low, and the XRD patterns are dominated by the 

alumina. The nanosized particles usually lead to lower crystallinity and will widen the XRD peaks. 

Pure alumina support synthesized by RME method was also tested for comparison. The two peaks 

appeared at 2θ=45° and 2θ=66° were assigned to γ-Al2O3. With the joining of cobalt, additional 

peaks can be observed in CoOx samples. These peaks were assigned to cobalt oxide species. [43] 
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After carburization process, the cobalt oxide peaks disappeared as expected and peaks for Co2C 

(42.7° JCPDS card no. 050704), Co3C (JCPDS card no. 260450) appeared.  

 

Interestingly, CoAl2O4 was also detected and was more evident in the samples that 

Al(NO3)3 RME and Co(NO3)2 RME were mixed first (Co.A). Studies reported that CoAl2O4 could 

be synthesized by cobalt and aluminum nitrate solution followed by calcination [39, 44].  However, 

even cobalt nitrate and aluminum nitrate were mixed first, the entering of ammonia will still react 

with most of the aluminum nitrate due to different reaction selectivity and preference. In Fig.  20, 

peaks for CoAl2O4 became evident after the reaction and the cobalt carbide peaks has been 

weakened. CoAl2O4 was more likely to form at higher temperature, so the reaction at 600 °C can 

be seen as another calcination. While Co2C and Co3C are easier to be reduced to cobalt metal phase 

Fig. 18  XRD patterns of CoOx and CoCx. ♦: Al2O3; ●: CoO; ■: Co3C;      :Co2C;             

▼: CoAl2O4;  ♥: Co3O4;      :carbon. 

 

Fig.  20  XRD patterns of CoOx and CoCx. ♦: Al2O3; ●: CoO; ■: Co3C; ▼: CoAl2O4;                             

♥: Co3O4;        :Co2.85O4;      :carbon 

a.  RME Al2O3   b. Fresh CoOx-A c.  Fresh 

CoCx-A d.  Spent CoOx-A e. Spent CoCx-A 

a.   RME Al2O3    b. Fresh CoOx-B    c. Fresh 

CoCx-B d.  Spent CoOx-B   e. Spent CoCx-B 
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with a temperature under 400 °C and cobalt oxide will need higher temperature [45].  This 

viewpoint was also demonstrated in the TPR files (Fig.  21). The TCD signal of oxide samples 

continued going up to 800 °C and showed the incomplete reduction even at this high temperature.  

 

H2-TPR was also performed to investigate the reducibility of the catalysts. The weak peak 

observed under 500 °C in CoOx-A and CoOx-B can be assigned to Co3O4 reduced to CoO [46] and 

the peaks start from 500 °C belongs to CoO further reduction to cobalt metal [47] [48]. The 

sustained growth of TCD signal until 800 °C indicated the relative composition of Co3O4 and CoO. 

After holding at 800 °C for 1 hour, the TCD signal went back to baseline showing the completion 

Fig.  21 TPR patterns of fresh CoOx and CoCx. Catalysts were pre-treated in argon at 150 °C 

for 30 min. Heating rate = 10 °C /min. 
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of the reduction process. The consumption of H2 can be calculated according to the peak area of 

the TCD signal and provide an approximate ratio of Co3O4 and CoO. It can be suggested that CoO 

content in the cobalt oxide phase was much higher than Co3O4. There are two major picks appeared 

in cobalt carbide catalysts that one is around 200 °C and the other is around 350°C. The peak 

positions in TPR pattern will give a potential optimal reaction temperature in methanation. 

Interestingly, during the catalytic performance evaluation, the temperature that gives the best 

activity is around 400 °C.  

Fig.  22 shows the Scanning electron microscope graphs for all fresh catalysts and appeared 

having the same morphology. The particles have a porous surface, providing a high surface area 

in agreement with the BET results. SEM-EDS elemental mapping was also conducted to 

investigate the dispersion of the catalysts. As showed in Fig.  23, it is clear to see cobalt was well 

dispersed on the alumina support.  
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Fig.  22 SEM micrographs of fresh CoOx and CoCx. (a) CoOx-A; (b) CoOx-B; (c) CoCx-A; (d) CoCx-B. 
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TEM micrographs were obtained to further study the dispersion and existing form of particles. 

In Fig.  24, the alumina support can be seen clearly as nanorods crossing with each other with a 5 

nm diameter, 20-40 nm length. Cobalt oxide and cobalt carbide particles exist in the form of 

rounded shape nanoparticles and all attached evenly to the nanorods [49].  

TEM micrographs of the catalysts spent from temperature test were also obtained to investigate 

the morphology changes before and after the reaction. The lattice structure was even clearer after 

12 hours reaction, which may be due to the calcination effect during the reaction.  

 Fig.  23 SEM-EDS mapping of CoCx-A. 
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Fig.  24 TEM micrographs of supported catalysts: (a) fresh CoCx-A; (b) fresh CoCx-B; (c) spent 

CoCx-A; (e) spent CoCx-B. 

 

5.2 Catalytic performance evaluation 

The catalytic performance of the catalysts was investigated on CO2 methanation in terms of 

varying temperature and pressure (absolute pressure) with GHSV=60,000 mL gcat
-1 h-1. Fig.  25 

indicated the activity and selectivity of all the as-prepared catalysts and reference catalysts at 

different temperature. For both samples prepared by RME method and reference samples, cobalt 

carbides showed superior performance than cobalt oxides, especially at lower temperature. The 

activity of oxides all decreased rapidly from 500-300 °C and conversion of CO2 were all below 

20% at 300 °C. The rising tendency of the CO2 conversion on two RME carbides continued as the 
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temperature went down to 400 °C and reached 0.78 and 0.77 respectively, and then a small decline 

appeared at 300 °C (0.74 and 0.71).  

 

 

Fig.  25 Catalytic performance of CoOx and CoCx prepared by RME method at 

different temperature. All the catalysts were reduced in hydrogen at 350 °C for 2h 

before reaction. Reaction condition: CO2:H2 = 1:4, GHSV = 60,000 mL gcat
-1 h-1. 
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Fig.  26 Comparisons of catalysts prepared by RME and wet impregnation. All the 

catalysts were reduced in hydrogen at 350 °C for 2h before reaction. Reaction condition: 

CO2:H2 = 1:4, GHSV = 60,000 mL gcat
-1 h-1. 

Comparing with the reference cobalt carbide catalyst that was prepared from conventional 

wet impregnation method, CoCx-A and CoCx-B showed higher conversion of CO2 and selectivity 

to CH4. In Fig.  26 the superiority was more significant in the reaction temperature region of 300-

400 °C. As for selectivity, there was a general trend that the selectivity declined with the rising 

temperature, and the peak always showed at the temperature where the reaction started to occur. 

In particular, the selectivity of CoOx-A and CoOx-B sample can achieve over 0.96 with a 

conversion over 0.71 at 300 °C which is promising as a catalyst for CO2 methanation. 
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Conversion of CO2 and selectivity towards CH4 as a function of pressure on two RME 

carbides were shown in Fig.  27. According to Le Chatelier’s principle, [50] the conversion of CO2 

increases with the pressure and the methanation reaction is also favored under higher pressure 

comparing with reverse water gas shift reaction.  Though for CoCx-B, activity decreased as the 

pressure went up from 9 bar to 11 bar, which may due to the degradation of the catalyst and requires 

further investigation, the overall performance was proportional to the total pressure. The 

conversion over CoCx-A continued rising after a slight decrease at 5 bar and finally achieved 0.9 

at 11 bar which provided a promising condition for industrializing production. 

Fig.  27 Catalyst performance of CoCx-B at different pressure. Catalysts was reduced in hydrogen at 

350 °C for 2h before reaction. Reaction condition: Temperature = 350 °C, CO2:H2 = 1:4, GHSV = 

60,000 mL gcat
-1 h-1. 
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It can be concluded that CoCx-A has the most superior performance among all the baseline 

and reference samples. CoCx-B also showed identical activity over testing temperature range but 

lower selectivity at high temperature above 400 °C. 

 

 

Fig.  28 TGA-FTIR analysis for spent catalysts. 

TGA-FTIR study was conducted to understand the carbon deposition degree after 

temperature test as shown in Fig.  28. All RME samples lost around 4% of their total weight from 

250 °C to 800 °C. The CoCx-A and CoCx-B sample gained approximately 1% weight from 200 °C 

to 300 °C which may demonstrate the oxidation of carbide species in the cobalt carbide phase, and 
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then a 4% weight loss occur which was the oxidation of the deposition carbon on the catalysts 

surface. 

5.3 In-situ FTIR study 

In-situ FTIR studies were conducted to investigate the adsorbed species on the cobalt oxide 

catalysts during CO2 methanation. Fig.  29 shows the spectra of cobalt oxide at different 

temperatures under the reaction gas. The adsorbed species on CoOx-A and CoOx-B showed 

identical positions. At 100 °C, adsorbed CO2 species were observed. As the temperature went up 

to 400 °C, the peaks of adsorbed CO2 decreased gradually, and the formate species occur along 

with the appearance of gas phase CO peak. 

 

 

 

Fig.  29 In-situ FTIR spectra as a function of temperature of CoOx samples, after 

15min reaction under 2% CO2 /8%H2/Ar. 
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It can be deducted that CO is part of the methanation process. In Fig.  29, peaks at 1602 

cm-1, 1332 cm-1, 1096 cm-1 were assigned to adsorbed CO2 which consistently appeared at every 

temperature [51]. When the temperature went up to 300 °C, the peak of gas CO (2150 cm-1) started 

to show up indicating the occurrence of the reaction [52]. Meanwhile, peaks of formate species 

were detected. The peaks at 1539 cm-1, 1510 cm-1 represent the formate species adsorbed on the 

surface which suggested a pathway through formate of the reaction [53]. 

  

The spectrum evolution with time was also investigated. Fig.  30 illustrated the 

transformation of the spectrum after CO2 and H2 were introduced to the system. At the point only 

a little amount of CO2 contacted the catalysts, the concentration of the reactant gas was not enough 

to activate the reaction and can only be adsorbed on the surface as physical adsorption. When more 

Fig.  30 In-situ FTIR spectra as a function of time of CoOx samples, at 350 °C under 2% CO2 

/8%H2/Ar. 
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CO2 and H2 entered the cell, a reaction concentration was reached, and the adsorbed species were 

reacted turning to intermediate species appeared on the surface.  

In-situ FTIR is also addressed on the cobalt carbide catalysts. Due to the poor transmittance 

of the carbide samples, the ratio of signal to noise is lower than the oxide. Adsorbed CO2 species 

in different forms dominate all the spectra. The peaks of adsorbed species were unable to identify 

for CoCx-B at 300 C. Same as oxides samples, phase CO is observed from 200 C and peaks for 

formate species appeared. In Fig.  31, the peaks appeared at 1586 cm-1 was assigned to carboxylate 

and the peaks at 1406 cm-1, 1337 cm-1 and 1070 cm-1 represent adsorbed carbonate species. The 

weak peak appears at 1391 cm-1 may due to formate. [54]  

 

Fig.  31 In-situ FTIR spectra as a function of temperature of CoCx samples, after 15min reaction 

under 2% CO2 /8%H2/Ar. 
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Chapter 6 Conclusion and future work 

6.1 Conclusion 

To obtain an active and economically viable thermo-catalyst for CO2 methanation, highly 

active and selective alumina-supported cobalt carbide catalysts were successfully synthesized by 

the reverse microemulsion method. Investigations of the composition, crystalline phases and 

morphology of the catalysts were carried out by XRD, TPR, SEM and TEM. XRD study proved 

the existence of the cobalt carbide phase in the catalysts and SEM-EDS indicated excellent 

dispersibility. TEM showed the cobalt oxides and carbides are nano-sized particles from 5-15 nm 

attached on the alumina nanorods. TPR curves indicated the reducibility of the catalysts. The area 

of the peaks suggested that CoO is dominated in the cobalt oxides. Co3O4 was reduced to CoO 

before 500 °C and CoO was further reduced to metal cobalt after 500 °C. Two reduction peaks 

appeared in cobalt carbide catalysts which guided to two possible optimal methanation temperature 

(200 °C and 350 °C).  

The catalytic performance was tested on CO2 methanation and cobalt carbide catalysts 

showed superior advantages. At 400 °C, 3 bar pressure, the conversion of CO2 on carbide catalysts 

were over 78% and the selectivity towards CH4 were over 96%. When the pressure was increased, 

the conversion, as well as the selectivity, was further improved. The best performance was 

achieved on CoCx-A, at 350 °C and 11 bar pressure, with a 91% conversion and 98% selectivity. 

This temperature is agreed to the TPR results that the highest conversion temperature appeared 

around the second peak. 

In-situ FTIR study was conducted to investigate the mechanism of the methanation reaction 

on the supported cobalt oxide and cobalt carbide catalysts prepared by the reverse microemulsion 
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method. A pathway through formate of CO2 hydrogenation via CO was suggested by the FTIR 

study. At lower temperatures and lower gas concentrations, CO2 was physically adsorbed on the 

surface. When the reaction conditions were achieved, formate species, which are the intermediates 

adsorbed on the catalysts surface started to appear. 

6.2 Future work 

The loading of our catalysts is relativity low for the current preparation procedure and the 

performance of the cobalt carbide catalysts were already quite impressive. To further improve the 

catalyst performance, cobalt loading and preparation conditions would be optimized. First, cobalt 

loading could be increased to 20% and the catalytic performance evaluation could be conducted 

to study the influence of the active component loading. The reaction rate is expected to rise with 

the increasing cobalt loading, but metal is more likely to aggregate and undergoing severer 

sintering at high temperature.  

The performance of the catalysts is strongly depended on the calcination temperature as 

well as the preparation procedure. Catalysts calcined at different temperature may leads to various 

oxides. The result carbide carburized from the oxides would also be different which would 

influence the conversion of CO2 and selectivity to CH4. The combination of an optimal calcination 

temperature with an ideal cobalt loading is expected to further improve the catalytic performance. 
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