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Abstract

Simulations of explosions and granular impacts are challenging tasks to tackle using
conventional mesh-based methods. In this thesis, a mesh-free technique called smoothed
particle hydrodynamics (SPH) in conjunction with the Open-MP and CUDA parallel pro-
gramming interfaces is introduced to tackle three-dimensional (3D) problems with large
deformations.

Chapter 1 gives an introduction of the SPH method and a literature review of the the-
oretical improvement of SPH, landmine detonations, underwater explosions, and granular
impacts. A research outline of the thesis is also presented at the end of this chapter. The
basic ideas of the SPH method and some techniques which are relevant to improve the
accuracy and stability of SPH, including the artificial viscosity, artificial stress, boundary
implementation, neighboring particles search, and kernel gradient correction, are described
in Chapter 2. In order to solve the governing equations, an elaboration of the constitutive
models to update the stress tensor of soil and solid and the equation of states (EOSs) is
given in Chapter 3.

The simulations of the detonation and granular impact problems using the SPH method
are thoroughly presented in chapters 4-7. In Chapter 4, in order to tackle 3D problems
with large number of particles, the in-house SPH code is parallelized by the Open-MP
programming interface. The parallel efficiency is tested by the 3D shaped charge detonation.
The simulations of the 2D soil explosion and its effects on structures are investigated in
Chapter 5. Based on the parallelization of the SPH code and the simulation of 2D soil
explosion, the physical process of the 3D landmine detonation is studied further. The
simulations of the 3D underwater explosion within cylindrical rigid and aluminium (Al)
tubes including cavitation phenomenon are presented in Chapter 6. The simulations of the
3D granular impacts using GPU acceleration are presented in Chapter 7. The numerical
results of SPHare compared against the experimental and other available numerical data, and
it is shown that the SPH method is capable of predicting landmine detonations, underwater
explosions, and granular impacts.

The conclusions, novelties, and future plan of SPH research are summarized in Chapter
8.
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Chapter 1

Research Background

1.1 Introduction

Landmine detonations and underwater explosions are common threats in conflict areas all
over the world. For example, the blast loading and soil throw of the landmine detonations
can cause significant damage on human body such as spinal cord compression and brain
damage. In order to understand these physical processes of explosive detonations, numer-
ous experiments related to the landmine detonations and underwater explosions have been
conducted by the previous researchers. Bergeron et al. conducted the detonation of 100-g
charge of C4 explosive to study the basic explosion physics of shallow-buried charges and
to generate a high-quality data set for the validation of computer codes [10]. Rigby et al.
developed soil explosion apparatus and utilised Hopkinson pressure bars (HPBs) to mea-
sure the spatial pressure distribution from explosives buried in dry sand [1, 11]. Brett et al.
measured the pressure distribution and employed high-speed video to record the dynamics
of bubble formation and collapse in the interaction of an underwater explosion with a nearby
steel cylinder [12]. However, in comparison with conducting experiments, computational
simulation has increasingly become a very important approach for predicting the physical
processes of soil and underwater explosions. As we know, experimental approaches have
limited applications in complex problems due to its measurement difficulties, scaling diffi-
culties, and configurations costs. Theoretical approaches are limited to simplified problems
and provide ideal exact solutions as a reference. Compared to these two methods, numeri-
cal modeling has become a common practice for complicated industrial problems with the
advent of computational hardware.

Grid-based methods, such as the finite difference method (FDM), finite volume method
(FVM), and the finite element method (FEM), have been widely applied to various problems
of computational fluid dynamics (CFD) and computational solid mechanics (CSM). Based
on properly pre-defined mesh, the partial differential equations can be transformed to a set

1
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of algebraic equations. Despite their broad applications, conventional methods suffer from
some challenges and difficulties in some aspects. First of all, the distortion of mesh can
generate computational crash especially in free surface, moving interface and extremely
large deformation. Furthermore, the mesh generation can be time-consuming and difficult
for problems with complicated geometries. The difficulties become more evident when
simulating explosions and HVIs issues, as the feature such as large deformations existing in
these phenomena is difficult for traditional methods to cope with. Therefore, a new genera-
tion of computational method - the meshfree method-has attracted significant attention over
the past three decades. Numerous meshfree particle methods and their modified versions,
such as the smoothed particle hydrodynamics (SPH) method, the peridynamics method, and
the discrete element method (DEM), have been proposed to deal with the problems with
large deformation. The grids are completely abandoned and replaced by particles which
carry physical properties such as position, velocity, mass, energy, and stress. Consequently,
the evolution of the fluid system can be governed by the interactions between particles,
and the interface between different species can be easily tracked. In comparison with the
conventional methods, these meshfree methods require no mesh in computation, and thus
they can tackle large deformation problems like HVIs and crack propagation. For example,
Rabczuk et al. proposed a simplified cracking meshfree particle method (CPM) for arbi-
trary evolving cracks, and the numerical results show that the CPM method can replicate
crack paths and handle crack branching and fragmentation [13–17]. This thesis focuses
on the simulations of the three-dimensional (3D) soil, underwater explosions, and granular
impacts using the SPH method. The reasons are listed in the following: 1) The applications
of the SPH method are wide, and it can tackle problems with extremely large deformation,
free surface flow as well as moving interface. 2) The SPHmethod is quickly approaching its
mature stage over the past three decades. The stability, accuracy and adaptivity of the SPH
method have reached an acceptable level for practical use. 3) The particle methods bridge
the gap between the continuum and fragmentation in a natural way. As a consequence,
SPH is a suitable approach for the study of brittle fracture and subsequent fragmentation in
damaged solids.

The SPH method is a Lagrangian method. Unlike the Eulerian method, the Lagrangian
method concentrates on moving particles instead of the fixed spatial points (See Fig. 1.1).
SPH has some special advantages in comparison with the traditional methods, which are
listed as follows, 1) The time history of the moving particles can be obtained and the free
surfaces, material interfaces can be tracked in the simulation process as SPH is a particle
method of Lagrangian nature. 2) There is no grid/mesh work in SPH, which provides
a straightforward strategy for large deformations, so these problems such as underwater
explosions, HVIs are more suitably handled by the SPH method. 3) The SPH method is
suitable to be parallelized using Open-MP or CUDA programming interface to obtain high
computing performance.
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Figure 1.1 Eulerian and Lagrangian representation of fluid flow.

1.2 Literature review

SPH is a gridless numerical method which was presented by Monaghan and Lucy in
1977 independently [18, 19]. Although this approach was originally applied to simulate
astrophysical problems, it has been used in a variety of problems and especially for multi-
phase systems since the beginning of 1990s, as the change rates of variables in governing
equations can be obtained through particle-particle interactions, which is inherently different
from grid-based methods. Many researchers have investigated the theoretical issues of the
SPH method. Swegle was the first person to study tensile instability of SPH in detail, which
is particularly important for materials with negative pressure [20]. A variety of approaches
have been proposed to tackle this problem. Morris noted that the stability property of the
SPH method can be improved when the higher order spline interpolant approximation is
used as the kernel function [21]. Monaghan gave a small repulsive term to eliminate the
tensile instability problem while retaining the desirable SPH features [22]. Adams et al.
used a variable background pressure tomodify the particle transport velocity and remove the
instability problem completely [23]. It is known that the accuracy of the conventional SPH
is closely related to the selection of kernel function, particles distribution, and smoothing
length evolution. Different approaches have been proposed to improve the accuracy of SPH.
Liu et al. proposed the reproducing kernel methods (RKPM), in which an extra term is
added to the traditional SPH interpolation kernel to exactly reproduce the constant, linear or
higher order fields [24]. Chen et al. derived a corrective smoothed particle method, which
resolved the general particle deficiency near or on the boundary and enhanced the solution
accuracy not only on the boundary but also inside the problem domain [25]. Liu and Liu
introduced the finite particle method (FPM) capable of accurately modeling higher order
derivatives [26]. Shao et al. used the kernel gradient correction (KGC) to reduce particle
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inconsistency and improved the accuracy of the SPH approximation [27]. The boundary
treatment in the SPH method is also an open question and is of particular importance
in numerical simulations. Enforcing impermeable boundary is essential in engineering
applications. Since Monaghan’s first SPH simulation for free surface flow, there have
been many approaches for treating the boundary. These proposals can be grouped nearly
into three types: 1) virtual particles; 2) repulsive particles; 3) boundary integrals [28]. For
example, Adami et al. proposed a simple and generalizedwall boundary conditionwhich can
address both stationary and moving walls of problems with complex geometries and shaped
corners [29]. This technique has been incorporated into a well-known software package
DualSPHysics. The above content is a brief description for the theoretical development of
the SPH method. Fig. 1.2 presents crucial dates and important researchers who contributed
greatly to the theoretical development and applications of the SPH method pertinent to the
research topic in the thesis. The literature review for the applications of SPHon the landmine
detonation, underwater explosion, and granular impacts is elaborated in the following.

Figure 1.2 The historical development of the SPH method.

In the modeling and simulation of HVIs and explosive detonations, Libersky conducted
the pioneering work on HVIs modelings using SPH [30, 31]. Johnson et al. also developed
the numerical algorithms and materials models, such as the constitutive models of metals
and concretes, for penetration and jet formation of the shaped charge computations [32].
Rabczuk et al. investigated the fragmentation of concrete due to explosive loading, which
suggests that the SPH method can predict the damage of the concrete slabs [33–35]. In
order to apply the SPH method to simulate landmine detonation problems, an appropriate
soil constitutive model is essential. Maeda et al. firstly employed the SPH method to
investigate the granular flow in conjunction with a non-linear elastic model [36]. Bui
and his co-workers implemented elastoplastic constitutive model to the SPH framework to
study plastic soil behavior, which can yield good results for the problems of soil failure and
landslide [37]. Chen and Qiu conducted the simulation of column collapse of cohesionless
granular with the SPH method [38]. Peng et al. employed the hypoplastic constitutive
model to simulate geomechanics problems within the framework of SPH, which shows a
good performance compared to analytical and experimental results [39, 40]. Fan and Li
combined the peridynamics and the SPH methods and implemented three types of soil
constitutive models to investigate the blast fragmentation of soil under buried explosives
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[41–45]. The research revelant to dry granular flows using SPH have also been reported
in [46, 47]. Recently, the SPH method has also been applied to simulate soil-structure
interaction and rock explosion, which gives more realistic and accurate results for the geo-
mechanical problems than the conventional method [48, 49]. Although many investigations
of soil collapse simulations have been conducted, application of the SPHmethod inmodeling
and simulation of explosion in soil is still in its infancy. Our research group first developed
an in-house SPH code to investigate 2D soil explosion and its effects on structures, and a
general agreement between our SPH predictions and the experimental data can be observed.
However, the 2D model is still of limited use for engineering applications. Thus, based on
the 2D soil explosion research, another new soil constitutive model - the hypoplastic model
which can capture some salient behaviors of soils is implemented, and the 3D soil explosion
modeling using the Open-MP programming interface is established further. In comparison
with the previous studies on soil fragmentation simulations, the modified SPH method
in conjunction with the elastoplastic and hypoplastic constitutive models are employed to
tackle the 3D landmine detonation for the first time.

In the field of underwater explosion issues, many research works in relation to the
explosion simulations have been exploited using the grid-based methods. However, these
grid-based numerical methods have a number of deficiencies in their ability to address
explosion simulations. For example, the meshing and remeshing of the solution domain
for explosion simulations are time-consuming. Moreover, extreme distortions of the mesh
that may result in this remeshing can provoke numerical instabilities that can culminate in
a program crash. In consequence, traditional numerical methods for explosion simulation
are frequently augmented with various other strategies in order to resolve various numerical
difficulties associated with the simulation. As an example of this approach [50], a boundary
element method (BEM) such as the doubly asymptotic approximation (DAA) is used to
simulate the movement of the water due to an explosion, whereas a FEM is used to model
the effects of the explosion on the structure. Other strategies involve the combination of a
Lagrangian and an Eulerian grid framework in which a Lagrangian mesh is used to track
the material interface, while an Eulerian mesh is used to model the large deformations that
characterize an underwater explosion [51, 52]. Zhang et al. [53] coupled a Runge-Kutta
discontinuous Galerkin (RKDG) method with a FEM in order to investigate the cavitation
problem induced in the near-field of an underwater explosion [53]. Recently, there has been
a growing interest in the application of particle methods for explosion simulation, owing
to the fact that these methods can track the changing material interface easily and, hence,
are more applicable to addressing detonation problems involving large deformations. In
our current research, the SPH method is used to address underwater explosion problems.
In some seminal work, Swegel [54] investigated the feasibility of using the SPH method to
simulate an underwater explosion and demonstrated that the SPH method can capture the
shock wave and treat the large deformations that characterize detonation phenomenology
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well. Liu, Liu and Lam [55] simulated air and underwater explosions using the SPHmethod.
Zhao et al. [56] simulated underwater explosions and their effects on steel and reinforced
concrete slabs using the SPH method. Zhang et al. [57] investigated bubble pulsing, jet
formation, and shockwave propagation in an underwater explosion using a combination of
the SPH method and BEM. Currently, SPH simulations of an underwater explosion are
mostly limited to two-dimensional (2D) models. Although some 3D underwater explosion
problems such as an axial symmetrical column charge detonation can be converted to
a 2D problem and simulated using an axisymmetric SPH method, it is still difficult to
address general 3D explosion problems using the SPH method, owing to the fact that these
problems are extremely compute-intensive [57]. In view of this situation, our research
group has developed a general 3D in-house SPH code [58, 59] based on a strategy described
by Liu and Liu [60]. The Open-MP programming interface has been utilized in this code
in order to reduce the computational time (viz., to improve significantly the computational
efficiency of a simulation involving a large number of particles required for 3D underwater
explosion simulations). To this purpose, we have applied this code to the simulation of an
underwater explosion within a rigid cylinder and a deformable aluminum tube, including
the phenomenon of cavitation for the first time using the SPH method. Furthermore, the
3D underwater explosion in a tube is simulated directly as a full 3D problem, rather than
reducing it to a 2D problem by using a 2D cylindrical coordinate system as has been done
in previous investigations [3, 4].

In addition to the explosion problems, the 3D granular impacts involving large defor-
mation have also been investigated in the thesis. Recently, a number of experiments and
simulations related to granular impacts have been conducted using a mesh-free methodol-
ogy. This work concerning granularmaterial impacts is of significant importance for various
industrial applications including ink-jet printing and inpinging jetmilling. Pacheco-Vázquez
and Ruiz-Suárez [61] carried out impact cratering experiments using granular projectiles
with different porosities. Ellowitz [62] investigated the phenomenon of two-dimensional
(2D) head-on collisions of dense granular jets using discrete particle simulations . Shi et
al. [7] studied the dynamic behavior of a dense granular jet impacting on a circular target
using the Discrete Element Method (DEM) . To date, most of modeling effort concerning
granular impact modeling have been conducted using the DEM method as described in
Cundall and Strack [63]. While accurate, the DEM method involves solving Newton’s
equation of motion for each grain individually. In consequence, this method is computa-
tionally prohibitive for problems involving a large physical domain [9]. Although numerous
investigations of the simulation of granular flows have been conducted, the application of
the SPH methodology to the modeling and simulation of 3D granular impact is still in its
infancy. In this thesis, the phase-change constitutive model will be incorporated into the
SPH framework and used to investigate various phenomena associated with granular flow
for the first time. This material constitutive model was recently proposed by Dunatunga and
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Kamrin [9] who used it to investigate 2D granular flow problems within the material point
method (MPM) framework. In comparison with the more commonly used rate-independent
elastoplastic and Mohr–Coulomb models, the phase-change constitutive model is more
suitable for addressing problems involving dense zones and rapid flows. Furthermore, the
effects of particle size have also been incorporated into the phase-change constitutive model
[9].

The search for the neighbors of a particle and the calculation of the rates of change of
various physical variables are extremely time-consuming operations in the SPH methodol-
ogy. As a consequence, the parallelization of the SPH methodology is necessary, especially
for simulations of 3D granular dynamic behavior that necessarily involve large numbers
of particles. The parallel efficiency of Open-MP used for the simulation of 3D explosion
problems is still limited. Therefore, it is imperative to find an alternative parallel program-
ming interface for SPH code so that the 3D large deformation problems can be simulated
with higher computational efficiency. To this purpose, it is noted that CUDA, which is a
parallel computing platform and programming interface for GPUs developed by NVIDIA,
is especially well-suited for the efficient implementation of the SPH methodology. The
implementation of the SPHmethodology on GPUs was first described by Harada et al. [64].
Subsequently, Crespo et al. [65] reported GPU-accelerated SPH simulations for the investi-
gation of complex free surface flows. These researchers showed that their SPH simulations
on a single GPU were two orders of magnitude faster than that conducted on a single-core
CPU. In this thesis, the CUDA programming interface has been used for the implementation
of a new SPH code for simulation of granular flows on a GPU. The in-house parallelized
SPH code has been implemented in C++ and designed specifically for the computationally
efficient and accurate simulation of 3D granular impact problems involving large numbers
of particles. To the best of our knowledge, this is the first time that the phase-change con-
stitutive model has been incorporated in the SPH methodology and used to investigate the
phenomenology associated with 3D granular impact problems. Furthermore, phenomena
associated with 3D head-on collisions and the impact of granular jets with a wave structure
on a granular film are modeled and simulated within the SPH framework for the first time.

In summary, the applications of the SPH method to large deformation problems have
achieved numerous accomplishments, but nevertheless there are still a variety of problems
listed below for us to tackle.
1) The granular flow problems have been well studied using SPH, but further research is
required in the area of the soil explosion and granular impacts.
2) Although the underwater explosion phenomena have been studied by many researchers,
the explosion within a water-filled cylindrical tube including cavitation and its effects on
nearby solid structures still require further investigations.
3) The simulations of problemswith complex geometries involving large number of particles
require much computational time. To increase the computational efficiency and reliability
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based on a serial code remains a challenge in the SPH method.
Therefore, to simulate the explosion and structure (soil, water and solid) interactions ef-
ficiently and effectively and clarify the mechanism in these multiphase and multiphysics
problems are the main objective of the thesis, and these large deformation problems are of
particular significance to the protection of human beings and property and development of
national defense.

1.3 SPH Applications

The early applications of the SPHmethod were mainly focused on astrophysical phenomena
and later extended to fluid dynamics problems. Historically, marine and costal engineering
presents the primary utilizations of the SPHmethod because of the free surface of water and
possible interaction with the costal structure [66, 67]. In aerospace engineering, ditching or
water landing is one of the primary field which can be solved by the SPH method, as very
large flow and structural deformations exist in these fluid-structural interactions. Car and
tire industries are other important sectors where the SPH method is extensively employed
due to the violent flow and the complex shape of free surface [68]. In industrial processing
such as material forming, the SPH method provides capabilities to track the plastic strain,
material fracture and composition due to its Lagrangian attribute [69]. Many environmental
and geophysical problems include broad ranges of land motions, thus the SPH method is
employed to simulate soil failure, debris flows, rockfalls, tsunami, earthquake, etc [70].
Furthermore, the SPH method has also been used in the simulation of motion of blood
through vessels of the human circulation [71].

1.4 Challenges of the SPH method

Four grand challenges still exist in the SPH method: convergence, numerical stability,
boundary conditions and adaptivity [72].
1) Convergence: convergence means that the numerical solution tends to theoretical solu-
tion when refining the discretization. Obtaining second-order convergence is one of the key
challenges for the SPH method to be used in industrial applications.
2) Numerical stability: numerical instability is caused by undesirable properties of numeri-
cal algorithm. The main instabilities occurring in the SPH method are zero-energy modes,
particle clumping and tensile instability.
3) Boundary conditions: initial and boundary conditions are important issues for solving
a set of partial differential equations. How to initialize particles and assign accurately
their properties, such as velocity and pressure, are the two main topics in initializing flow
simulation. Free-slip, non-slip, periodic boundaries are boundary conditions with special
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importance. Good development has been made over the last decades. Therefore, boundary
conditions for the SPH method may not be considered as a difficult problem to date.
4) Adaptivity: The adaptive multi-resolution mesh refinement can be used effectively in
grid-based methods, while such a well-established method is not available within the SPH
method. Spatial resolution refinement in terms of effectiveness, efficiency and consistency
is still a bottleneck that needs to be addressed properly before the method can be industrially
established.

1.5 Research Outline

The research outline is clearly presented in Fig. 1.3, and the aim is primarily to conduct
the simulations for the landmine detonation, the underwater explosion, and their effects
on structures with satisfactory accuracy and high efficiency. The research work can be
categorized into four parts. The first part is the validations of the explosive detonation
model, soil constitutive model, and the HVI model using some benchmark problems. In
order to tackle the 3D large deformation problems, the Open-MP parallel programming
interface will be introduced and implemented for the optimization and acceleration of SPH
simulations. Based on the validations of the models and the implementation of Open-MP,
the 2D and 3D landmine detonations and their effects on structures will be investigated. In
addition, the explosion in awater-filled tube including cavitation and its damage to structures
will be conducted by combining the detonation model with the solid impact model. Finally,
the 3D granular impacts using CUDA parallel computing platform are conducted.

The thesis is divided into seven chapters. In Chapter 1, the background of the SPH
method and literature review have been thoroughly described. In addition, the features,
development history, special advantages, applications, and challenges of the SPH method
are briefly introduced. In Chapter 2, the main idea of the SPH method is presented
and the governing Navier-Stokes equation is discretized to the summation form of the
neighboring particles. Afterwards, some numerical techniques to tackle the issues such as
tensile instability and accuracy are also given. Chapter 3 elaborates the constitutive models
and EOSs used in all the simulations in this thesis. In order to solve the 3D detonation
problems, the implementation details of the Open-MP parallel programming interface is
presented in Chapter 4. The following chapters are the primary numerical results of the
Ph.D thesis. Chapter 5 investigates the 2D soil explosion and its effects on structures and the
3D landmine detonation, respectively. In Chapter 6, the underwater explosion within rigid
and deformable cylindrical tubes including cavitation is studied. The 3D granular impacts
simulations are studied in Chapter 7. Some conclusion remarks, novelties, and future plan
are given in Chapter 8.
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Figure 1.3 The outline of the SPH research.
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Chapter 2

The basics of the SPH method

The conventional SPH method is a Lagrangian, meshfree solver developed for hydrody-
namics problems in which the governing equations consist of partial differential equations
(PDE). The principal feature of the SPH method is the use of statistical techniques with the
objective of replacing the analytical formulations (PDEs) by a distribution of fluid elements
for the physical properties. The derivation of the discretized PDE using SPH and some
techniques to improve the stability and accuracy of SPH will be elaborated in the following.

2.1 Function approximation in SPH

The derivation of the SPH formulation can be basically divided into two parts. The first
step is the kernel approximation, which transfers the functions to integral forms [60], and
the function f (x) and the function derivative ∇ f (x) are approximated by

〈 f (x)〉 =
∫
Ω

f (x′)W(x − x′, h)dx′ , (2.1)

〈∇ f (x)〉 = −
∫
Ω

f (x′)∇W(x − x′, h)dx′ , (2.2)

where f is a function of vector x, W is the kernel function, and h is the smoothing length.
Ω is the integration domain. It can be found that the interpolant reproduces f (x) exactly
if the kernel is a delta function δ(x). In practice, the kernel function should statisfy three
conditions. Firstly, the kernels are fucntions which tend to delta function as the smoothing
lenth h tends to 0.

lim
h→0

W(x − x′, h) = δ(x − x′) . (2.3)

Secondly, they are normalized to 1 so that the constants are interpolated exactly.∫
Ω

W(x − x′, h)dx′ = 1 . (2.4)

11



Simulations for the explosion and granular impact problems using the SPH method

Thirdly, the kernels are effective only in the support domain of point x.

W(x − x′, h) = 0, |x − x′| > kh , (2.5)

where k is a constant of the smoothing function, and kh is the radius of the support domain of
point x. The second step of the SPH derivation is the particle approximation. The physical
values of particle i can be approximated by the summation of particles in the support domain
of particle i bestowed with volume, mass, density, and other hydrodynamics properties (see
Fig. 2.1).

〈 f (xi)〉 =

N∑
j=1

f (x j)Wi jVj =

N∑
j=1

f (x j)Wi j
m j

ρ j
. (2.6)

The particles approximation of function derivative ∇ f (x) can be obtained in the same
manner,

〈∇ f (xi)〉 = −

N∑
j=1

f (x j)∇Wi j
m j

ρ j
, (2.7)

in which, ρi, mi, and Vi are density, mass, and volume of particle i, respectively. For
convenience, Wi j = W(xi − xj, h).

Figure 2.1 Particles approximation of the SPH method in a 2D problem; K ∗ h is the range of the
support domain; Ri j is the distance between two particles.

2.2 Smoothing function

The choice of the interpolation kernel W(x, h) is arbitrary for SPH. Plugging the taylor
expansion of the f (x) into Eq. (2.1) yields

〈 f (x)〉 =
∫
Ω

[
f (x) + f ′(x)(x′ − x) +

1
2!

f ′′(x)(x′ − x)2 + · · ·
]

W(x − x′, h)dx′ . (2.8)

12



2. The basics of the SPH method

In order to obtain results with nth order accuracy, the following "consistency equations"
should be satisfied. ∫

Ω
W(x − x′, h)dx′ = 1 , (2.9)∫

Ω
W(x − x′, h)(x − x′)⊗mdx′ = 0,m ∈ [1, n] . (2.10)

in which, (x − x′)⊗m represents the mth product of the vector x − x′. In our current
research, the cubic spline kernel function W3 below is adopted.

W3(q, h) = αd


2
3 − q2 + 1

2 q3 0 ≤ q < 1 ;
1
6 (2 − q)3 1 ≤ q < 2 ;
0 q ≥ 2 ,

(2.11)

in which q is the normalized distance between two particles and defined as q = r/h, and
r is the Euclidean distance. αd is a normalization factor, and the value is 15/(7πh2) in
two dimensions and 3/(2πh3) in three dimensions. The cubic spline function conforms
to the following conditions required in SPH: i) As the smoothing length h → 0, W3
approaches a delta function, ii) The cubic spline function has a compact support, and iii)∫
Ω

W3(x − x
′, h)dx′ = 1 and

∫
Ω

W(x − x′, h)(x − x′)dx′ = 0. We can recognize that the
Eq. (2.9) is satisfied by the W3, but Eq. (2.10) with m > 1 is a stronger constraint that is not
satisfied by the W3. Therefore, the numerical results obtained using cubic spline function
should be second-order accurate theoretically. The smoothing length h of particle i in the
detonation problems is updated using the following equation,

dhi

dt
= −

1
d

hi

ρi

dρi

dt
, (2.12)

in which d is the dimension of a given problem and ρi is the density of particle i.

2.3 Discretized equations forNavier-Stokes (N-S) equation

Navier-Stokes equation contains continuity equation, momentum equation, and energy
equation. For general fluid dynamics problems, the N-S equation is,

dρ
dt = −ρ

∂vβ

∂xβ ,
dvα
dt =

1
ρ
∂σαβ

∂xβ ,
de
dt =

σαβ

ρ
∂vα

∂xβ .

(2.13)
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As we know, a second-order stress tensor consists of a spherical part and a deviatoric
part:

σαβ = −pδαβ + Sαβ , (2.14)

in which −pδαβ is the hydrostatic stress and Sαβ is the deviatoric stress. With the basics
of the SPH method mentioned above, the governing equations can be discretized in the
following [60]. 

dρi
dt =

N∑
j=1

m jv
α
i j ·

∂Wi j

∂xαi
, (a)

dvαi
dt =

N∑
j=1

m j

σ
αβ
i + σ

αβ
j

ρiρ j

∂Wi j

∂xβi
, (b)

dei
dt =

1
2

N∑
j=1

m j
pi + p j

ρiρ j
v
β
i j ·

∂Wi j

∂xβi
+

1
2ρi

Sαβi ε
αβ
i , (c)

pi = p(ρi, ei) , (d)

(2.15)

where ρi, vi, ei, pi, mi are density, velocity, internal energy, pressure, and mass of particle
i; d()

dt is the time derivative of physical quantities; vαi j = vαi − v
α
j . Equation (2.15 (d)) will be

elaborated further in the next chapter. The derivation details of the discretized governing
equations are given in appendix A [60].

2.4 Neighboring particle search

The computational efficiency of SPH depends directly on how to identify the neighboring
particles. Three approaches including all pair search, linked list search, and tree search
algorithms are popular for searching the nearest particles of a given particle (see Fig. 2.2).
The all pair search approach calculates the distance from a given particle i to each particle
j in a problem domain. If the distance is smaller than the dimension of the support domain
of particle i, then the particle j is recorded as the nearest particle. In the implementation of
the linked list algorithm, a temporary mesh is overlaid in the problem domain for a certain
particle. Then the neighboring particles can only be found in the same grid cells or the
immediate neighboring cells. The tree search algorithm is a very robust and efficient method
for simulations of problems with large deformation. Therefore, the tree search algorithm is
currently employed in our research to find the neighboring particles.
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Figure 2.2 Nearest neighboring particle search approaches.

2.5 Artificial viscosity

The Monaghan type artificial viscosity [73] is incorporated into SPH in order to smooth
potential unphysical oscillations, to prevent unphysical particle-particle penetration, and to
stabilize the numerical solutions. This artificial viscosity assumes the following form:

Πi j =


−αci jφi j+βφ2

i j

ρi j
, vij · xij < 0 ;

0 , vij · xij ≥ 0 .
(2.16)

Here, φi j =
hi jvij ·xij

|xij |
2+(ϕ)2

, ci j =
1
2 (ci + c j), ρi j =

1
2 (ρi + ρ j), hi j =

1
2 (hi + h j), vij = vi − vj ,

and xij = xi − xj , where ci is the speed of sound associated with particle i; α and β

are constant coefficients that are set to have values of 1.0 and 10.0, respectively; and,
ϕ = 0.1hi j is applied in order to prevent the unphysical overlapping of two particles. Thus
the momentum equation should be modified as,

dvαi
dt
=

N∑
j=1

m j(
σ
αβ
i + σ

αβ
j

ρiρ j
+ Πi jδ

αβ)
∂Wi j

∂xβi
. (2.17)

This formulation of viscosity is capable of capturing 1-D shock phenomena. The success
of the Monaghan artificial viscosity can be attributed to the pari-wise formulation [74].
However, the viscosity will be triggered and add dissipation as long as vij · xij < 0,
and there will be times when vij · xij < 0, the viscosity will be activated even though no
compression occurs. Therefore, the artificial viscosity limiter has been developed recently in
[74] to limit the SPH artificial viscosity. They accomplish this by replacing the velocity jump
vij with a linearly extrapolated velocity jump. In our current research, only the Monaghan
type artificial viscosity is employed, and the viscosity limiter will be implemented and
compared with the Monaghan type artificial viscosity in the near future.
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2.6 Boundary conditions

The imposition of boundary conditions is a challenge in the SPH method. Various method-
ologies have been proposed for the imposition of boundary conditions in SPH simulations
[29, 30, 66]. Generally, there are two basic concepts of the wall models for SPH simulations.
In one concept, the repulsion forces are introduced to prevent particles crossing the interface
or the boundary. For example, Monaghan used a set of virtual particles on the boundary
to produce a repulsive force to the real particles and prevent real particles from penetrating
through the boundary. The force per unit mass pi j has a Lennard-Jones form, but equals to
zero if ri j > r0 so that the force is purely repulsive [66].

pi j =


D

[(
r0
ri j

)n1
−

(
r0
ri j

)n2 ] xi j
r2
i j

,
(

r0
ri j

)
> 1 ;

0 ,
(

r0
ri j

)
≤ 1 .

(2.18)

where n1 and n2 are set to be 12 and 4, respectively.
Another concept is to fill the boundary walls with virtual particles to ensure that the

support domain of a given particle near the boundary is completely covered with particles.
Libersky first introduced virtual particles to reflect a symmetrical boundary condition.
For the free slip boundary condition, the physical variables of the virtual particles are set
according to the following relations [30].

xv = 2xw − xr, yv = 2yw − yr ;
vv,t = vr,t, vv,n = −vr,n ;
pv = pr, ρv = ρr .

(2.19)

For the non-slip boundary condition, both the tangential and normal velocities of the virtual
particles are reversed. 

xv = 2xw − xr, yv = 2yw − yr ;
vv,t = −vr,t, vv,n = −vr,n ;
pv = pr, ρv = ρr .

(2.20)

Figure 2.3 Monaghan (left side) and Libersky (right side) types of virtual particles distribution.
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In this thesis, dummy particles are employed to impose the no-slip solid boundary
condition at the walls of the rigid cylinder within which the explosion occurs (see Fig. 2.4).
The velocity of the solid wall boundary vw is assigned to the velocity of the dummy
particles vd (viz., vd = vw). For the calculation of the rate of change of a physical quantity
associated with a real particle κ, the components of the stress tensor of the dummy particles
are extrapolated using the values of the neighboring granular particles, so

σ
i j
d =

N∑
κ=1

σ
i j
κ W(rdκ) − (g

i − ai
d)

N∑
κ=1

ρκr i
dκW(rdκ)δ

i j

N∑
κ=1

W(rdκ)

, (2.21)

where subscripts d and κ are used to denote the dummy and granular particles, respectively.
Moreover, ad is the prescribed acceleration of the dummy particles; g is the gravitational
acceleration; rdκ is the displacement vector from the granular particle κ to the dummy
particle d; rdκ is the Euclidean distance between the granular particle κ and the dummy
particle d, so rdκ = | |rdκ | |; δi j is the Kronecker delta function (equivalent to the identity
matrix in three dimensions); and, N denotes the number of granular particles within the
support domain (taken to be a spherical region with a radius that is some multiple k of the
kernel smoothing length h) of the dummy particle d.

Figure 2.4 Depiction of the imposition of the no-slip boundary condition along a solid surface in
SPH using dummy particles.

2.7 Impact force calculation

When calculating the impact force of a granular material on the boundary, we first use the
extrapolated stresses of the dummy particles given above to determine the interaction force
on each dummy particle through application of the momentum equation as follows [75]:

Fα
d = md

∑
i

mi

(
σ
αβ
i + σ

αβ
d

ρdρi
+ Πdiδ

αβ

)
∂Wdi

∂xβd
. (2.22)
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Following this calculation, the impact force FW exerted on the solid wall boundary can be
calculated as the summation of the forces Fd on the dummy particles, so

FW =
∑

d

∑
i

mdminα
(
σ
αβ
i + σ

αβ
d

ρdρi
+ Πdiδ

αβ

)
∂Wdi

∂xβd
, (2.23)

where the subscripts i and d denote the granular and dummy particles, respectively; and, n
is the normal vector to the solid wall boundary.

2.8 Interface treatment

When using the SPH method to simulate the entire process of landmine detonation and
its effects on structures, the major challenge is the treatment for the interfaces of multi-
materials (see Fig. 2.5). The summation allows contributions from particles of different
materials for a given particle near the interface. Two types of equations can be used for the
density change rate calculation in soil explosion. One is

Figure 2.5 Soil and explosive particles near the interface.

dρi

dt
=

N∑
j=1

m j(v
α
i − v

α
j )
∂Wi j

∂xαi
, (2.24)

another one is
dρi

dt
= ρi

N∑
j=1

m j

ρ j
(vαi − v

α
j )
∂Wi j

∂xαi
. (2.25)

The Eq. (2.24) is more stable and accurate than Eq. (2.25) when tackling problems with
density ratio less than 2. However, some unphysical values will occur during the compu-
tation with the Eq. (2.24) in landmine detonation, as the density ratio near the interface
among the explosion gas, soil and structures is extremely large, and the expression (2.25)
is more accurate than Eq. (2.24) for the systems involving two or more fluids with large
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density ratios in contact. This is because near the interface, the summation form of ∇ · v for
one type of SPH fluid particle involves contributions from the other fluid. If we imagine
the one fluid field with exactly the same velocity, particle positions as the other fluid, but
different density, we still want to obtain the same estimation of ∇ · v for these two fluids.
However, the estimate will be different when using Eq. (2.24) as the mass elements are
different. But the estimate of ∇ · v will be the same when using Eq. (2.25) because the
ratio of mass to density is used [76]. Monaghan found that both of these two equations are
suitable for the fluids with density ratio less than 2, whereas it is better to use Eq. (2.25)
when the density ratio across the interface is larger than 2 [76]. In order to tackle the
multiphase problems with high density ratio, the Eq. (2.25) can be used to calculate the
density change rate near the multiphase interface, while the Eq. (2.24) can be applied for
the particles in the single phase. Thus the continuity equation is required to be modified by
combining these two equations (2.24) and (2.25) near the interface [77]:

dρi

dt
=

N∑
j=1

ρi + ψiρ j

(1 + ψi)ρ j
m j(v

α
i − v

α
j )
∂Wi j

∂xαi
, (2.26)

where ψi =
1

lnki
. ki =

ρi,max
ρi,min

, in which ρi,max and ρi,min are the particles with maximum and
minimum densities in the support domain of particle i, respectively.

The Eq. (2.26) can be reduced to Eq. (2.24) when ki → 1 or ψi → ∞. Otherwise,
the Eq. (2.26) will be simplified to Eq. (2.25) when ki → ∞ or ψi → 0. In this way, the
density change rate in different phases can be calculated adaptively.

2.9 Artificial stress

Despite the growing popularity of the SPH method, it suffers from the tensile instability.
When the solid is stretched, the SPH particles attract each other. However, unlike the
behavior of atoms in solid, the attraction force can culminate in an instability which shows
up as praticles forming small clumps. This instability was first investigated by Swegle et al.,
who related it to the negative pressure and the second derivative of the kernel function in the
SPHmethod [20]. There have been a number of approaches to remove the tensile instability
[23, 78, 79]. In the thesis, the Monaghan-type artificial stress is applied to the current
research. The components of artificial stress of particle i for two-dimensional problems are

Rxx
i = cos2 θi R

xx
i + sin2 θi R

yy

i ,

Ryy
i = sin2 θi R

xx
i + cos2 θi R

yy

i ,

Rxy
i = sin θi cos θi(R

xx
i − R

yy

i ) .

(2.27)
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The principal component R
xx
i is calculated by the following equation, which also applies

for R
yy

i . {
R

xx
i = −ε

σxx
i

ρ2 (σxx
i > 0) ;

0 (otherwise) ,
(2.28)

ε is a constant parameter ranging from 0 to 1. The new components of stress tensor in
rotated frame are determined by:{

σxx
i = cos2 θiσ

xx
i + 2 sin θi cos θiσ

xy
i + sin2 θiσ

yy
i ;

σ
yy
i = sin2 θiσ

xx
i + 2 sin θi cos θiσ

xy
i + cos2 θiσ

yy
i .

(2.29)

The rotation angle θi is defined by:

tan 2θi =
2σxy

i

σxx
i − σ

yy
i

. (2.30)

Thus the artificial stress can be added to particle approximation of the momentum equation:

dvαi
dt
=

N∑
j=1

m j(
σ
αβ
i + σ

αβ
j

ρiρ j
+ Πi jδ

αβ + f n
i j (R

αβ
i + Rαβj ))

∂Wi j

∂xβi
, (2.31)

where the exponent n > 0, fi j is the repulsive term in terms of the kernel:

fi j =
Wi j

W(∆d)
, (2.32)

where ∆d denotes the initial particle spacing.

2.10 The correction of kernel gradient

The second-order accuracy of the interior region is ensured by the continuous kernel
interpolation of Eq. (2.1), which means the constant and linear functions can be reproduced
exactly. However, thisC1 consistency is not always satisfied due to the irrigular distributions
of particles and the deficiency near the boundary, which may lead to relatively low accuracy
of the conventional SPH method. A variety of corrective procedures have been proposed
to improve the particle inconsistency and accuracy of the kernel-based approximations
[24, 27, 40]. In the thesis, the kernel gradient correction [80] is applied to enforce C1

consistency, and is given as follows,

∇C
i Wi j = L(ri)∇iWi j , (2.33)
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in which, ∇C
i Wi j is the corrected kernel gradient; L(ri) is the renormalization matrix. For

the 3D problem simulations,

L(ri) =

©­­­­­­­­­­­«

N∑
j=1

x ji
∂Wi j

∂xi

m j

ρ j

N∑
j=1

x ji
∂Wi j

∂yi

m j

ρ j

N∑
j=1

x ji
∂Wi j

∂zi

m j

ρ j

N∑
j=1

y ji
∂Wi j

∂xi

m j

ρ j

N∑
j=1

y ji
∂Wi j

∂yi

m j

ρ j

N∑
j=1

y ji
∂Wi j

∂zi

m j

ρ j

N∑
j=1

z ji
∂Wi j

∂xi

m j

ρ j

N∑
j=1

z ji
∂Wi j

∂yi

m j

ρ j

N∑
j=1

z ji
∂Wi j

∂zi

m j

ρ j

ª®®®®®®®®®®®¬

−1

, (2.34)

in which, x ji = x j − xi, y ji = y j − yi, and z ji = z j − zi. The derivation detail of the correction
of kernel gradient is given in Appendix B.

2.11 Explicit time integration

Equations (2.15 (a)), (2.15 (b)), and (2.15 (c)) are integrated using the standard Leapfrog
method to update the density ρ, velocity v, and energy e:

ρn+1/2 = ρn−1/2 + ∆t
(

dρ
dt

)
n
, (2.35)

vαn+1/2 = vαn−1/2 + ∆t
(

dvα

dt

)
n
, (2.36)

en+1/2 = en−1/2 + ∆t
(

de
dt

)
n
, (2.37)

xαn+1 = xαn + ∆tvαn+1/2 , (2.38)

where x is the coordinate of particles; ∆t is the time step; n denotes the current calculation
step.
In addition, the CFL (Courant-Friedichs-Levy) condition, governing the stability of the
Leapfrog method, should be satisfied by the following time step:

∆t ≤ 0.2(h/c) , (2.39)

in which c is the sound speed. In this thesis, the sound speed of the soil and solid is
calculated by c =

√
E/ρ, where E is the Young’s modulus and ρ is the density, respectively.

The sound speed of the compressible fluids is calculated by c =
√

∂p
∂ρ , where p is the

pressure.
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2.12 The solution procedure of SPH

The solution procedure of the SPH method can be split into three main steps. The first step
is the generation of boundary particles and neighboring particles search for each particle
in the problem domain. The second step is to solve the change rates of physical properties
in the continuity, momentum, and energy equations. The calculations of deviatoric stress
tensor S and the hydrostatic pressure p in the governing equations are given in the next
chapter in detail. The third step is updating the physical quantities at the given time step and
marching these steps in an iterative manner before reaching the maximum time steps. The
main solution procedure for the SPH method is shown in Fig. 2.6. The present in-house
code is based on the sample code provided by Liu and Liu [60].

Figure 2.6 The SPH algorithm of the detonation problems.
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2.13 Summary

In this chapter, the main feature and basic concepts for the SPHmethod have been presented.
Then the Navier-Stokes equation is discretized to the summation form of neighboring
particles. In addition, the artificial viscosity, boundary condition treatment, time integration
method, artificial stress, correction of kernel gradient, neighboring particles search, and
interface treatment for multi-materials have been introduced to improve the accuracy and
stability of SPH. At the end, the solution procedure of the in-house SPH code is shown by
a flow chart.
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Chapter 3

The constitutive models and EOSs

The basic ideas of the SPH method have been presented in Chapter 2. In order to solve the
governing equations, the consitutive models including the elastoplastic, hypoplastic, and
phase-change models to describe the dynamic behaviors of the soil, the elastic perfectly
plastic constitutive model to update the stress tensor in HVIs, and the equation of states
(EOSs) of the explosive detonation, compressible water, and solid impact are elaborated in
this chapter.

3.1 Soil constitutive models

A constitutive equation is required in order to calculate the stress tensor σ and to close the
governing equations. Towards this objective, the stress tensor is decomposed into two parts
as follows:

σαβ = −pδαβ + Sαβ , (3.1)

where −p andS are the pressure and the deviatoric stress tensor, respectively. Normally, the
pressure −p is calculated using an EOS, while the deviatoric stress S is obtained through
a constitutive equation. However, in the simulations of the dynamical behavior of soil
conducted herein, the stress tensor σ is calculated directly using a constitutive equation
and, subsequently, the pressure is obtained from the mean stress without having to use an
EOS. More specifically,

p = −
σαα

3
= −

1
3
(
σ11 + σ22 + σ33) , (3.2)

where σ11, σ22, and σ33 are the components of the normal stress tensor in x, y and z
directions, respectively.
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3.1.1 Elastoplastic constitutive model

There are several soil constitutive models, such as the Mohr-Coulomb, Drucker-Prager and
Cam-Claymodels to predict the dynamic behaviors of the soil. The elastoplastic constitutive
model in conjunction with the Drucker-Prager yield criterion is employed here to simulate
2D and 3D landmine detonations [37]. The plastic deformation occurs only if the following
criterion is satisfied,

f (I1, J2) =
√

J2 + ϕφI1 − kc ≥ 0 , (3.3)

where I1 = σ
αα, J2 =

1
2 SαβSαβ are the first and the second invariants of the stress tensor,

respectively. ϕφ and kc are Drucker-Prager model constants which are calculated from c
(cohesion) and φ (internal friction).

ϕφ =
tan φ√

9 + 12 tan2 φ
, (3.4)

kc =
3c√

9 + 12 tan2 φ
. (3.5)

When solving a large deformation problem, a stress rate that is invariant with respect to
rigid-body rotation should be considered and incorporated into the constitutive equation.
In our current research, the Jaumann stress rate σ̊ used for the objectivity is employed as
follows.

σ̊ = Ûσ + σ Ûω − Ûωσ , (3.6)

in which Ûσ is the stress rate tensor. Ûω is the spin tensor defined as Ûω = 1
2
[
(∇v) − (∇v)T

]
.

The final stress-strain relationship of the soil model including plastic deformation can be
derived as,

dσαβ
i

dt
= σ

αγ
i Ûw

βγ
i +σ

γβ
i Ûw

αγ
i +2G( Ûεαβi −

1
3
δ
αβ
i Ûε

γγ
i )+K Ûεγγi δ

αβ
i −

Ûλi[9K sinψδαβ +
G
√

J2
Sαβi ] ,

(3.7)
in which, Ûεαβi is the strain rate tensor; K is the elastic bulk modulus and G is the shear
modulus,

K =
E

3(1 − 2ν)
, (3.8)

G =
E

2(1 + ν)
, (3.9)

in which E is the Young’s modulus and ν is the Poisson’s ratio. Ûλi is the rate form of plastic
multiplier, which is given in the following:
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Ûλi =
3ϕφK Ûεγγi + (G/

√
J2)S

αβ
i Ûε

αβ
i

27ϕφK sinψ + G
. (3.10)

The derivation details of the Ûλi is given in Appendix D. The strain rate and rotation rate
tensors are defined as

Ûεαβ =
1
2

(
∂vα

∂xβ
+
∂vβ

∂xα

)
, (3.11)

and
Ûwαβ =

1
2

(
∂vα

∂xβ
−
∂vβ

∂xα

)
. (3.12)

The particles approximations for the strain rate tensor and the spin tensor are presented as
follows:

Ûε
αβ
i =

1
2

N∑
j=1

m j

ρ j
(vαji

∂Wi j

∂xβi
+ v

β
ji

∂Wi j

∂xαi
) , (3.13)

Ûw
αβ
i =

1
2

N∑
j=1

m j

ρ j
(vαji

∂Wi j

∂xβi
− v

β
ji

∂Wi j

∂xαi
) . (3.14)

As the elastoplastic constitutive model is implemented in this study, the soil mechanical
behavior must be consistent with this model, i.e., the stress state should not be out of the
yield surface when the plastic deformation occurs. However, the stress state of the soil may
leave the elastic domain due to the numerical errors in computational plasticity. Therefore,
the returnmapping algorithm is used to return the stress state to the yield surface. According
to Chen andMizuno [81], if the stress state exceeds the apex of the yielding surface (Fig. 3.1
(a)), the hydrostatic stress components should be modified based on the following equation:

σαβ =

{
σαβ − 1

3 (I1 −
kc
ϕφ
)δαβ if − ϕφI1 + kc < 0 ;

σαβ if − ϕφI1 + kc ≥ 0 .
(3.15)

When the stress state of the soil exceeds the yielding surface (Drucker-Prager criterion)
(see Fig. 3.1 (b)), the deviatoric shear stress components are reduced proportionally by the
scaling factor R , whereas the hydrostatic component I1 remains unchanged, according to
following equations:

σ
αβ
=

{
Rσαβ + 1

3 I1δ
αβ if − ϕφI1 + kc <

√
J2 ;

σαβ if − ϕφI1 + kc ≥
√

J2 .
(3.16)

in which R = −ϕφ I1+kc
√

J2
is a scaling factor. For more information about the derivation of the

soil elastoplastic model, please refer to Bui et al. [37].
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Figure 3.1 Return mapping algorithms: (a) Tension cracking treatment; (b) Stress scaling back
procedure.

3.1.2 Hypoplastic constitutive model

In addition to the elastoplastic constitutive model, the hypoplastic model is presented
as an alternative method to describe the dynamics behavior of soil. Different from the
elastoplastic constitutive model, the hypoplastic model is established without the concepts
of yield surface and flow rule. A general hypoplastic constitutive model was proposed by
Wu and Kolymbas [82], which can be decomposed into two parts representing reversible
and irreversible behaviors of soil, respectively. A rate independent hypoplastic constitutive
model is considered here [82].

σ̊ =H(σ, Ûε) = L(σ) : Ûε −N (σ)‖ Ûε‖ , (3.17)

in which, L(σ) is assumed to be linear in Ûε and N (σ) is nonlinear in Ûε. ‖ Ûε‖ =
√

trε2

is an Euclidean norm. The terms L(σ) and N (σ) are usually constructed by using the
representation theorem for isotropical tensorial functions.

The following specific hypoplastic constitutive model [83] is incorporated into the SPH
code, which is based on a simple hypoplastic constitutive model presented byWu and Bauer
[84].

σ̊ = c1(trσ)ε + c2(trε)σ + c3
tr(σε)

trσ
σ + c4(σ + σ

∗)‖ε‖ , (3.18)

where c1, c2, c3, and c4 are dimensionless parameters; tr() stands for the trace of a tensor;
σ∗ represents the deviatoric stress tensor and is defined as,

σ∗ = σ −
1
3

tr(σ)I , (3.19)

where I is the identity tensor.
Thus, for a given particle i, the final stress-strain relationship of the hypoplastic model

can be modified as,

dσi

dt
= Ûωiσi − σi Ûωi + c1(trσi)εi + c2(trεi)σi + c3

tr(σiεi)

trσi
σi + c4(σi + σ

∗
i )‖ε‖ . (3.20)
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It can be observed that the stress rate tensor in Eq. (3.20) can be calculated directly from
the stress tensor and strain rate tensor. The return mapping algorithm considered in the
elastoplastic constitutive equation is not required in the hypoplastic model, which greatly
simplifies the numerical implementation in SPH.

3.1.3 Phase-change constitutive model

The phase-change constitutive model proposed by Dunatunga and Kamrin [9] is imple-
mented within the SPH framework for the first time. This constitutive model allows the
granular media to change through several common phases (viz., the grains can behave like
a solid, liquid or gas). The granular matter is considered to be elasto-viscoplastic when the
media is sufficiently dense and is treated as a disconnected material when the density of the
material is smaller than a critical value. In order to calculate an objective rate of change for
the stress tensor σ̊, the Jaumann frame of reference (Eq. (3.6)) is used. The components of
the trial stress tensor σαβ

tr can be calculated as

σ
αβ
tr = ∆t

(
σαγ Ûωβγ + σγβ Ûωαγ + 2G

(
Ûεαβ −

1
3
δαβ Ûεγγ

)
+ K Ûεγγδαβ

)
+ σαβ , (3.21)

where Ûε is the strain rate tensor.
Using the trial stress tensor determined above, the procedure for updating the stress

consists of the following steps.
1. If the particle density ρn+1 is less than the critical value ρc, then set the stress tensor

of the particle to σn+1 = 0 for the next time step.
2. For all other cases, if the trial pressure ptr is negative, then σn+1 = 0 and ptr =

−1
3 tr

(
σtr

)
.

3. Otherwise, the stress tensor is computed as follows. If τtr ≤ S0 where τtr =(
1
2 (Str : Str)

)1/2
and S0 = µsptr , the granular material is in the elastic regime, so set

σn+1 = σtr. If τtr > S0, the granular material is in the plastic flow regime, and τn+1 is
determined from (

τn+1
)2
− Bτn+1 + H = 0 . (3.22)

This quadratic equation for τn+1 can be solved explicitly to give

τn+1 =
2H

B +
(
B2 − 4H

)1/2 , (3.23)

where B and H are obtained from B = S2 + τtr + α and H = S2τtr + S0α. Furthermore,
S2 and α are determined from S2 = µ2ptr and α = ξG∆tptr, where ξ is a parameter of the
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granular media, µs is the friction coefficient at zero shear rate, and µ2 is the maximum value
of the friction coefficient. The stress tensor at the next time step is given by

σn+1 =
τn+1

τtr
Str − ptrI . (3.24)

3.2 Elastic perfectly plastic constitutive model for solids

The elastic perfectly plastic constitutive relation is used for the solid impact between two
particles and is formulated as follows. The Jaumann rate of stress ÛSαβJ is widely used for
this purpose [31] and is related to the stress tensor as follows:

ÛSαβ = ÛSαβJ + Sαγ Ûwβγ + Sγβ Ûwαγ . (3.25)

For a material in the elastic range,

ÛSαβJ = 2G
(
Ûεαβ −

1
3
δαβ Ûεγγ

)
, (3.26)

where G is the shear modulus. With the Jaumann rate of stress, the evolution of the trial
elastic stress can be obtained from equations (3.25) and (3.26) as

Sαβe = ∆t
(
2G

(
Ûεαβ −

1
3
δαβ Ûεγγ

)
+ Sαγ Ûwβγ + Sγβ Ûwαγ

)
+ Sαβ
(n) , (3.27)

where Sαβ
(n) is the deviatoric stress component at the n-th time step. The second invariant J2

of the deviatoric part of the elastic trial stress Sαβe is

J2 =
1
2

Sαβe Sαβe . (3.28)

The plastic regime is determined by Von-Mises criterion when the second invariant J2 is
greater than one-third of the square of the yield stress σY . In this case, the components of
the deviatoric stress tensor are brought back to the yield surface in accordance to

Sαβ =


Sαβe , if J2 ≤ σ

2
Y/3 ;√

σ2
Y

3J2
Sαβe , if J2 > σ2

Y/3 .
(3.29)

The Johnson-Cook model that accounts for thermal softening, high strain rates, and
strain hardening is used to calculate the plastic yield stress σY [85]:

σY =
[
A + B(εp)

n] [
1 + C ln

(
Ûεp

Ûε0

)] [
1 − (T∗)k

]
, (3.30)
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where εp is the equivalent plastic strain, Ûεp is the equivalent plastic strain rate, and Ûε0 = 1
s−1. Furthermore, T∗ is the dimensionless temperature which is defined as

T∗ =
T − Troom

Tmelt − Troom
, (3.31)

where Troom is the room temperature, Tmelt is the melting temperature, T is the temperature,
and A, B, C, k and n are coefficients that define the the material properties.

The incremental plastic work is determined from

∆W (n)p =
1
2
(
σ
(n+1)
p + σ

(n)
p

)
∆ε
(n)
p

(
m

ρ(n+1/2)

)
, (3.32)

where σp at the (n + 1)-th time step is calculated from the deviatoric stress tensor S(n+1)
e as

follows:

σ
(n+1)
p =

(
3
2

S(n+1)
e : S(n+1)

e

)1/2
. (3.33)

Finally, the incremental equivalent plastic strain is determined from

∆ε
(n)
p =

σ
(n)
p − σY

3G
. (3.34)

The derivation details of the incremental equivalent plastic strain is in Appendix C.

3.3 The EOSs of solid and compressible flow

3.3.1 Mie-Grüneisen model

We use theMie-Grüneisen equation [30] for the EOS of the solids used in the simulations of
landmine detonation and underwater explosion conducted in the thesis. This EOS assumes
the following form:

p =
(
1 −

1
2
Γη

)
PH(ρ) + ΓρE , (3.35)

where

PH(ρ) =

{
a0η + b0η

2 + c0η
3 , η > 0 ;

a0η , η ≤ 0 .
(3.36)

Here, η = ρ
/
ρ0 − 1 is used to represent the compression; Γ is the Grüneisen parameter; E

is the specific internal energy; and, the constants a0, b0, and c0 are obtained from
a0 = ρ0C2 ,

b0 = a0 [1 + 2 (S − 1)] ,
c0 = a0

[
2 (S − 1) + 3 (S − 1)2

]
,

(3.37)

where C and S are constant parameters.
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3.3.2 Tillotson model

The Tillotson model is introudced to describe the hypervelocity impact behavior of metal
[86] in the simulation of the jet formation of 3D shaped charge. The Tillotson EOS is
divided into four regions according to the compression µ = η − 1 and the specific energy
E , where η = ρ

ρ0
.

1) If µ ≥ 0, the pressure is calculated by

p1 = (a +
b
w0
)ηρ0E + Aµ + Bµ2 , (3.38)

2) If µ < 0, E ≤ Es, the pressure is calculated by substituting B = 0 to Eq. (3.38).

p2 = (a +
b
w0
)ηρ0E + Aµ , (3.39)

3) If µ < 0, Es < E ≤ E′s, the pressure is calculated by the following equation.

p3 = p2 + (p4 − p2)
E − Es

E′s − Es
, (3.40)

4) If E > E′s, the pressure is calculated by

p4 = aηρ0E + (
bηρ0E
w0

+ Aµeβx)e−αx . (3.41)

where w0 = 1 + E
E0η2 , Es, E′s, E0, A, B, a, b, α, β are the property cofficients of materials.

The pressure is assumed to be 0 Pa when then material is in the tensile state.

3.3.3 JWL model

The Jones-Wilkins-Lee (JWL) equation is used here to calculate the pressure resulting from
an ideal explosive detonation [87]. The JWL equation is given by

p = A
(
1 −

wη1
R1

)
e−

R1
η1 + B

(
1 −

wη1
R2

)
e−

R2
η1 + wη1ρ0E , (3.42)

where A, B, R1, R2, w are constant parameters; η1 is the ratio of the detonation products
density to the initial density of the explosive; ρ0 is the initial density; and, E is the specific
internal energy.

3.3.4 The model for the gas bubble

A gas bubble in an underwater explosion is assumed to be homogeneous, isentropic and
compressible, and the EOS for a gas bubble [4] is determined from

pg = p0

(
ρg

ρg0

)γ
, (3.43)
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where p0 is the initial pressure for the bubble gas; ρg0 and ρg are the initial density and
the density of the gas, respectively; and, the constant γ is taken to have a value of 2 for
our underwater explosion simulations. The speed of sound in the gas bubble is determined
from

ag =
(

dp
dρ

) 1
2

=

(
p0γ

ρg0

(
ρg

ρg0

)γ−1
) 1

2

. (3.44)

3.3.5 The models for the compressible water

Water is modelled as a compressible fluid and is represented using two different EOSs. One
of these EOSs is an alternative form of the Mie-Grüneisen equation [88] given by

p =


ρ0C2

0 µ[1+(1−
γ
2 )µ−

αµ2
2 ]

[1−(S1−1)µ− S2µ2
µ+1 −

S3µ3

(µ+1)2
]2
+ (γ + αµ)E , µ > 0 ;

ρ0C2
0 µ + (γ + αµ)E , µ ≤ 0 ,

(3.45)

where µ = ρ
/
ρ0 − 1, ρ0 is the initial density, E is the specific internal energy, and S1, S2,

S3, γ, α and C0 are the coefficients of the material. Another EOS for water is Tait’s equation
where the relation between the density and the pressure is expressed as

pw = B
(
ρw
ρw0

)N

− B + A , (3.46)

where B and A are constants with values of 3.31 × 108 and 1.0 × 105 Pa, respectively; ρw0
and ρw are the initial density and the density of water, respectively; and, N is a constant
with a value of 7.15. The parameter A is set equal to the initial water pressure. The speed
of sound in water is given by

aw =
(

dp
dρ

) 1
2

=

(
BN
ρw0

(
ρw
ρw0

)N−1
) 1

2

. (3.47)

Both the Mie-Grüneisen EOS and Tait’s equation can be used in the simulation of a
compressible flow. Tait’s equation is the simplest form of EOS for a compressible water
flow, and it works well when the pressure is below 20,000 atm [4]. The Mie–Grüneisen
equation of state is suitable for a completely compressible flow, and the variation in the
internal energy is properly accounted for in this equation [89].

3.3.6 The modified Schmidt cavitation model

In the case of an underwater explosion near a structure and a free surface, the cavitation is
created just below the free surface or in the vicinity of the structure. The primary difficulties
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in the simulation of a cavitating flow are in creation and collapse of the cavity. To date,
various one-fluid methods have been developed for cavitation simulation in a compressible
flow [3, 4]. The modified Schmidt cavitation model is one of the most important models
in this category and has been used exclusively in underwater explosion simulations [90].
Moreover, this cavitation model is physically stable. As the cavitation flow is assumed to
be homogeneous, the density and the pressure of the mixture is governed by the following
relationship:

dp
dρ
= a2

m . (3.48)

The speed of sound am in the mixture, consisting of vapour and liquid components, is
determined from

am =

{
[ρl + α · (ρv − ρl)] ·

[
α

ρv · a2
v

+
(1 − α)
ρl · a2

l

]}− 1
2

. (3.49)

The pressure of the mixture can be obtained by integrating Eq. (3.48) after the substitution
of am from Eq. (3.49). Alternatively, if Tait’s EOS is used for pure water, the modified
Schmidt cavitation model reduces to the following form:

pw =


B

(
ρ
ρ0

)N
− B + A , p ≥ psat ;

psat + pgl · ln
[

ρv ·a2
v ·(ρl+α·(ρv−ρl))

ρl ·(ρv ·a2
v−α·(ρv ·a2

v−ρl ·a2
l ))

]
, pε < p < psat ;

pε , p ≤ pε ,

(3.50)

where

pgl =
ρv · a2

v · ρl · a2
l · (ρv − ρl)

ρ2
v · a2

v − ρ
2
l · a

2
l

; (3.51)

av and al are the constant speed of sound in the vapour and liquid components (equal to
208 m s−1 and 1538 m s−1), respectively; and, ρv and ρl are constant densities of the vapour
and liquid components, respectively. The liquid density is assumed to have a value of
ρl = 103 kg m−3 and the ratio of vapour to the liquid density is assumed to have a value of
ρv/ρl = 10−5. Finally, in Eq. (3.50), pε is a small positive value (about 10−5) and α is the
void fraction, which is defined as α ≡ (ρ − ρl)

/
(ρv − ρl).

3.4 Summary

In this chapter, the elastoplastic, hypoplastic, and phase-change constitutive models for the
investigation of the dynamic behaviors of the soil, the elastic perfectly plastic constitutive
model for the solid impact, and the EOSs of explosives detonations, solids, and compressible
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flow are presented, respectively. The soil constitutive models and the JWL EOS are
implemented in the in-house SPH code to simulate the 2D and 3D landmine detonations.
The solid constitutive model, the compressible flow EOS, and the cavitation model are
applied for the modeling and simulation of the 3D underwater explosion in cylindrical rigid
and Al tubes. Furthermore, the elastoplastic and phase-change constitutive models are
employed to study the 3D granular impacts. The constitutive models and EOSs used in the
following test cases are summarized in Table 3.1 and Table 3.2.

Table 3.1 The list of the constitutive models and the corresponding subsections.

Constitutive model Elastoplastic Hypoplastic Phase-change
Elastic perfectly

plastic

Subsection
5.1.2, 5.2, 5.3, 7.2.1,

7.10, 7.2.3, 7.2.4
5.1.2, 5.3

7.2.1, 7.10,

7.2.3, 7.2.4
4.2.1, 5.2, 6.3

Table 3.2 The list of the EOSs and the corresponding subsections.

EOS
M-G

(solid)
Tillotson JWL Gas bubble

M-G

(water)
Tait Schmidt

Subsection 6.1.4, 6.3, 5.2 4.2.1
5.1.1, 5.3, 5.2,

6.1.3, 6.3
6.2 6.3 6.2, 6.3 6.1.2, 6.2
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Chapter 4

Open-MP parallel computing

As the change rates of physical variables in the SPH method are obtained through the
summation of the nearest particles, searching for the neighboring particles for each given
particle is essential, and the SPH method is always time-consuming when solving problems
with large number of particles, especially 3D problems. In order to simulate the physical
processes of the 3D soil explosion and underwater explosion problems, the Open-MP
parallel programming interface is introduced, and the implementation details of Open-MP
in the in-house SPH code is described in this chapter. In addition, the parallel efficiency of
Open-MP is tested by the 3D shaped charge detonation.

4.1 Open-MPparallel programming interface for in-house
SPH code

4.1.1 An introduction to Open-MP

Open-MP is an application programming interface (API) to express shared memory paral-
lelism. It provides compact, yet flexible shared memory programming model for C, C++,
and Fortran. The notation/directives in Open-MP can be added to a sequential program to
describe how the work is to be shared among the threads, and the derectives can be catego-
rized into three aspects: parallel control structures, communication and data environment,
and synchronization [91]. The control structures provide a directive to create multiple
threads that execute concurrently. The basic execution model is also called fork/join model
(see Fig. 4.1), which means that the execution branches off in parallel at designated points to
set up parallel program and merge at subsequent point to resume sequential program. Com-
munication between multiple threads is governed by the attributes of individual variables.
For example, the private for a variable means the memory location is inaccessible to other
threads; the reduction declares that a binary operator is applied to a variable repeatedly and

37



Simulations for the explosion and granular impact problems using the SPH method

the result is stored back in the variable. The synchronization means the parallel program
can coordinate the execution of multiple threads.

Figure 4.1 Fork/join model of Open-MP parallelism ((a) sequential program;(b) parallel program).

For the creation of Open-MP program, firstly, we require to identify the portion of
sequential code that can be executed concurrently by different processors [92]. The second
step for creating Open-MP program is to add appropriate directives to express parallelism
that has been identified. The huge benfit of Open-MP is that the directive can be inserted
into regions of program incrementally, which means that once the resulting program has
been compiled and tested, another portion of code can be parallelized. It is essential that
the resulting parallelized code should be correct. At the end, we can find some techniques
to improve the performance of a parallel program.

4.1.2 Implementation of the Open-MP programming interface

Starting theOpen-MP implementation is relatively easier than other parallelizationmethods.
For the simple loops, the directives can be added directly. For the parallelization of more
complicated loops, the attributes of the variables should be defined carefully. For example,
the calculation of the velocity change rate in the artificial viscosity subroutine consists in a
loop running on all of the pairwise interaction particles. In order to avoid the race condition
on access to the array dvxdt(dim,maxn), another new temporary array should be constructed
as dvxdt1(dim,maxn,th), in which the variable th is used to determine the thread number
executing the current iteration. In addition, the initialization of these arrays is important
since it ensures that the in-house SPH code runs correctly in a serial or a parallel mode.

!$OMP parallel num_threads(numofthreads)

!$OMP do
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do i=1,ntotal

do d=1,dim

dvxdt(d,i) = 0.e0

do k=1,numofthreads

dvxdt1(d,i,k)=0.e0

dedt1(i,k)=0.e0

enddo

enddo

dedt(i) = 0.e0

enddo

!$OMP END do

!$OMP end parallel

After the initialization of these arrays, this complex loop can be parallelized. The
directives for the parallel compilation are indicated as follows. It can be found that the
temporary array can be calculated concurrently with no access to other arrays.

!$OMP parallel private(i,j,mhsml,dx,vr,rr,dvx,muv,mc,mrho,piv,h)

!$OMP+private(ithr)

!$OMP+num_threads(numofthreads)

!$OMP do

do k=1,niac

!$ ithr=omp_get_thread_num()+1

i = pair_i(k)

j = pair_j(k)

mhsml= (hsml(i)+hsml(j))/2.

vr = 0.e0

rr = 0.e0

do d=1,dim

dvx(d) = vx(d,i) - vx(d,j)

dx = x(d,i) - x(d,j)

vr = vr + dvx(d)*dx

rr = rr + dx*dx

enddo

if (vr.lt.0.e0) then

muv = mhsml*vr/(rr + mhsml*mhsml*etq*etq)

mc = 0.5e0*(c(i) + c(j))

mrho = 0.5e0*(rho(i) + rho(j))

piv = (beta*muv - alpha*mc)*muv/mrho

do d=1,dim
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h = -piv*dwdx(d,k)

dvxdt1(d,i,ithr) = dvxdt1(d,i,ithr) + mass(j)*h

dvxdt1(d,j,ithr) = dvxdt1(d,j,ithr) - mass(i)*h

dedt1(i,ithr) = dedt1(i,ithr) - mass(j)*dvx(d)*h

dedt1(j,ithr) = dedt1(j,ithr) - mass(i)*dvx(d)*h

enddo

endif

enddo

!$OMP END do

!$OMP end parallel

After finishing the calculation of dvxdt1(dim,maxn,th), the summation of these tempo-
rary arrays is required for the calculation of dvxdt(d,i). In the end, we can obtain a correct
numerical result for dvxdt(d,i).

!$OMP parallel num_threads(numofthreads)

!$OMP do

do i=1,ntotal

do k=1,numofthreads

do d=1,dim

dvxdt(d,i)=dvxdt(d,i)+dvxdt1(d,i,k)

enddo

dedt(i)=dedt(i)+dedt1(i,k)

enddo

dedt(i) = 0.5e0*dedt(i)

enddo

!$OMP END do

!$OMP end parallel

4.2 Numerical examples

The 3D shaped charge detonation involving large number of particles are tested here to
validate the efficiency and stability of the Open-MP programming interface. Given that the
main goal of this chapter is to present the details of the implementation of Open-MP and
validate the performance of Open-MP, the explosion, Tillotson, and elastoplastic models
are not verified here. The validation cases for each component of SPH code are given in the
following chapters, and you can also refer to [58] for the validation cases.
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4.2.1 3D shaped charge detonation

The general configuration of the shaped charge is shown in Fig. 4.2. In this example, the
thick of the case is 5 mm, the thick of the aluminum liner is 3 mm, and the cone angle is
60◦. Both of the total length and diameter of the shaped charge are 60 mm. The initial
geometry of the simulation is very close to the initial experimental configuration from [93].
The JWL, Johnson-Cook, and Tillotson EOSs are employed for the simulation of the shaped
charge detonation, and the parameters for these three models are listed in Table 4.1, 4.2,
and 4.3, respectively. The CPU Intel E5-2683 is employed in this computation.

Figure 4.2 General configuration of the shaped charge.

Firstly, it is required to identify the most time-comsuming part in the sequential SPH
code. The computational efforts of the different parts of the SPH program are analysed
first and shown in Table 4.4 . We can find that the most time-consuming parts are the
nearest particles searching and the calculation of the variables change rates. Therfore, these
two parts are the most essential parts to parallelize. The rest part of the sequential SPH
code, especially the do loops can be parallelized incrementally. In order to obtain a good
performance of the parallelization, it is essential to parallelize a sufficiently large portion
of the SPH code. This idea is expressed by the Amdahl’s law, in which the overall speed is
determined by

S =
1

(1 − F) + F
Sp

, (4.1)

in which, F is the parallelized fraction and the Sp is the speedup of the parallelized sections.
From this equation, we can find that the performance of the parallelization will be limited
by F. For example, if F is equal to 70%, the speedup S will be restricted by 3.33 (let Sp go
to infinity).
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Table 4.1 Coefficients of the JWL model for explosives.

Materials ρ0 (kg/m3) A (Pa) B (Pa) R1 R2 w E0 (J/kg) v (m/s)

Composition B 1600 5.242 × 1011 7.68 × 109 4.2 1.1 0.34 5.31 × 106 7980

Table 4.2 Johnson-Cook parameters for Al.

A (MPa) B (MPa) C n k Troom (K) Tmelt (K)

175 380 0.0015 0.34 1.0 273 775

Table 4.3 Coefficients of the Tillotson model for Al.

A (GPa) B (GPa) a b α β e0(k J · g−1) es(k J · g−1) e′(k J · g−1)

75.20 65.00 0.50 1.63 5.00 5.00 5.00 3.00 15.00

Table 4.4 The computational time (seconds) cost for each part of the sequential SPH code.

Particles number Initialize Particle search Change rates Others Total

7859 0.3623 79.9060 138.8682 37.3681 256.1423

17112 0.2821 180.7744 337.3471 88.7661 606.8876

30698 0.5069 373.9897 681.3730 178.0906 1233.4533

The influence of different threads on the computational time, the speedup versus different
threads, and the parallel efficiency versus different threads are tested here to evaluate the
performance of the parallel SPH code. These results are presented in Fig. 4.3, Fig. 7.7, and
Fig. 4.5 respectively, in which the parallel efficiency is obtained by dividing the speedup by
the total number of threads. It can be found that the calculation time decreases dramatically
for the number of threads from 2 to 15, and slow down before reaching a calculation plateau.
Similarly, the speedup ratio increases rapidly to around 10 times until almost reaching a
steady state. The parallel efficiency of the case with larger number of particles is higher than
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the efficiency of case with smaller number of particles. The phenomenon can be explained
by several reasons. Firstly, according to the Amdahl’s law, the speedup is limited by the
percentage of the program that is parallel. Secondly, the parallel loop will not finish until
all the threads complete their iterations. The parallel performance will suffer if some of
the processors execute more work than other processors. Thirdly, the memory band width
is shared by N processors, and these threads will compete for the use of memory band
width, which will lead to the performance degradation. There are several approaches to
improve the performance of our current parallel SPH code. For example, we can use a
better computer to run the parallel SPH code so that the multiple threads can use shared
memory with less competition. We can improve the load balancing so that each thread
spends an equal amount of time in parallel loop. Moreover, we can employ larger number
of particles for the detonation problems to increase the parallel efficiency of the program.
For the completion of the investigation of this problem, the detonation process is also given
below (see Fig. 4.6). There are 240,000 particles involved in this simulation. Firstly, the
detonation wave reaches the apex of the cone cavity (see Fig. 4.6 a). Then the detonation
wave moves perpendicular to the cone cavity. The metal is compressed by the high pressure
generated by explosive products and converges to the centerline (see Fig. 4.6 c). In the end,
a metal jet of high energy and velocity is formed. The numerical jet velocity using the SPH
method is around 7,000 m/s, which is very close to the experimental data [93].

Figure 4.3 Simulation time versus the number of threads involved.
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Figure 4.4 The speedup ratio of the parallel in-house SPH code using Open-MP.

Figure 4.5 The parallel efficiency of the in-house SPH code using Open-MP.

Figure 4.6 The detonation process of the shaped charge.
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4.3 Summary

The Open-MP programming interface has been implemented in the in-house SPH code,
and the speedup ratio and the parallel efficiency of the code have been analysed using
the simulation of the 3D shaped charge detonation in this chapter. The simulation results
show that the computational time decreases rapidly to with the increase of threads, and the
speedup ratio tends to 10 when using 24 threads. Therefore, the Open-MP can be employed
to parallelize the most time-consuming part in SPH so that the calculation efficiency can
be enhanced sigficantly. Based on the parallelization of the in-house SPH code, the 3D
landmine detonation and underwater explosion can be investigated in the following chapters.
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Chapter 5

2D and 3D Landmine detonations

In this chapter, the 1D TNT slab detonation and 2D sand collapse have been tested to
verify the JWL and soil constitutive models first. Based on the validation of these models,
the 2D landmine detonation and its effect on structures are investigated. Afterwards,
the 3D landmine detonation is studied with the implementation of the Open-MP parallel
programming interface.

5.1 Numerical validations

5.1.1 TNT explosion

To show the accuracy and effectiveness of the SPH method for detonation problems, the
benchmark problem of 1D TNT explosion is provided here. The total TNT slab is 0.1 m
and is ignited at one end. The symmetrical slab is used in the present study so that the
solid wall boundary can be represented by the symmetrical boundary (see Fig. 5.1). As the
detonation velocity of the TNT explosive charge is 6930 m/s, it takes about 14 µs to finish
the detonation process along the TNT slab. The values of the JWL model coefficients for
TNT are listed in Table 5.1. E0 is the initial specific internal energy. 2000 particles are used
in this simulation. The initial particle space ∆x is 0.01 cm and the time step ∆t is 1.0×10−9

s. The initial pressures and velocities of all the particles are assumed to be 0 Pa and 0 m/s,
respectively.

Figure 5.1 Numerical model of one-dimensional TNT slab detonation.
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Table 5.1 Coefficients of the JWL model for TNT.

ρ0 (kg/m3) A (Pa) B (Pa) R1 R2 w E0 (J/kg)

1630 317.2e9 3.21e9 4.15 0.95 0.30 4.29e6

Figure 5.2 Pressure distribution along the one-dimensional TNT slab during the detonation process.

It can be seen from the Fig. 5.2 that with the detonation process in the TNT slab, the
numerical results of C-J pressure converge to 21 Gpa, which is in good agreement with the
experimental data. In addition, the influence of different number of particles on simulation
results is studied (see Fig. 5.3). It can be found that the peak pressure increases slightly
with an increase in the number of particles and converges to 21 GPa eventually.

Figure 5.3 Pressure distribution along the one-dimensional TNT slab with different particles.
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5.1.2 Sand collapse

The numerical implementations of the elastoplastic and hypoplastic models are validated by
the sand collapse problem, respectively. A rectangle of sand confined between two vertical
parallel plates remains static. Then the gates are opened (i.e. the plates are lifted up) and
the sand is released. Thus the 3D problem can be simplified to a 2D plane strain problem
solved by this 3D SPH code. The length d of this rectangle sand is 0.4 m, the height h
of it is 0.1 m, and the ratio a = h/d determines the collapse mode. The coefficients of
elastoplastic and hypoplastic models are listed in Table 5.2. There are five input parameters
in the constitutive models, an uncertainty analysis to quantify the influence of all uncertain
input parameters on the simulation results can be conducted in the same way in research
[94–96]. In this thesis, the material parameters correspond to the sand in the experiments
conducted by Lube et al. [97], and are employed directly. The particle spacing is ∆d = 2
mm, and 10,000 particles are involved in this simulation. In addition, the non-slip boundary
condition is implemented in this simulation by using three layers of dummy particles.

Table 5.2 The elastoplastic and hypoplastic constitutive models coefficients for the sand collapse
problem [8].

Elastoplastic constants Hypoplastic parameters

ρ0(kg/m3) E (MPa) φ (o) ψ (o) c (kPa) ν c1 c2 c3 c4

2100 20.0 30.0 1.0 0.0 0.25 -55.6 -171.2 -540.9 -170.9

Figure 5.4 Collapse process of sand with the elastoplastic (a1-d1) and the hypoplastic (a2-d2)
constitutive models.
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The sand collapse processes using the elastoplastic and hypoplastic models are well
described in Fig. 5.4 in terms of distribution of particles. At first, a discontinuity can be
initially observed as a straight line on the upper surface of the sand column. After a while,
a curve plane occurs between the static and moving particles. Finally, a parabolic-like
surface profile is formed, which agrees well with the collapse process in the experiment and
simulation from [8, 97].

The stresses distributions of these two models are presented in Fig. 5.5. It can be found
that the horizontal and vertical stresses increase linearly with the depth, which is consistent
with the stresses distributions of the sand confined in two parallel plates and subjected to
gravity. The shear stress develops in two areas close to the wall. The reason is the sand
at the bottom tend to move sideward but are restricted by the non-slip boundary condition.
Therefore, these two constitutive models have been verified by the sand collapse problem.

Figure 5.5 Stresses distributions of sand collpase problem at steady state with the elastoplastic
constitutive model ((a1) horizontal stress σxx; (b1) vertical stress σyy; (c1) shear stress σxy) and the
hypoplastic constitutive model ((a2) horizontal stress σxx; (b2) vertical stress σyy; (c2) shear stress
σxy).

5.2 2D soil explosion and its effects on structures

The initial geometry for the soil explosion test case and its effects on structures are shown
in Fig. 5.6, which is similar to the experimental configuration in [1]. The TNT explosive is
buried to the depth of 28 mm in dry soil and the steel plate standing at 140 mm above the soil
surface is 100 mm thick, 1000 mm long. The JWL, Drucker-Prager, Johnson-Cook, Mie-
Grüneisen models are incorporated into this simulation and the parameters of these models
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are listed in Table 5.1, Table 5.2, Table 5.3 and Table 5.4. Three layers of dummy particles
are used for the solid boundary to prevent the soil particles from penetrating througn the
boundary. The gravitational force is considered in this simulation and the sound speed (c =
600 m/s) in soil is applied in the computation.

5.2.1 Soil explosion simulation

Firstly, the TNT landmine detonation is investigated in this section. 9215 particles are used
is this numerical model. The initial particle spacing ∆x is 0.5 cm, ∆y is 0.5 cm, and the time
step ∆t is 1 × 10−7 s. The pressure distribution of landmine detonation process is shown in
Fig. 5.7. After the buried TNT charge is ignited, the extremely high pressure detonation
wave propagates in the explosive and the explosive converts rapidly into dense gas (Fig. 5.7
(a)). Once the detonation wave reaches the edge of TNT, the detonation energy is mostly
transmitted to the soil adjacent to the explosive, which generates the elastic and plastic
deformation of surrounding soil. Thus the soil cap is ejected from the soil surface and, as
a result, the soil bubble which confines the expanded gas is generated due to the expansion
of explosive products (Fig. 5.7 (b), (c), (d)). The shockwave generated by TNT detonation
propagates in the soil (Fig. 5.7 (b), (c), (d)). We can find from Fig. 5.8 (a) that the velocity
of the particle on top of the dome is the largest as the soil at this location gains most of the
momentum from the buried explosive. This is the reason why the dome becomes larger and
larger. The soil bubble will expand, thin and rupture at certin point as shown in Fig. 5.7
(e), (f). The outline of soil ejecta depicted in Fig. 5.7 (f) is like the shape of a bulb as more
resistance force in the soil is imposed on the expanded products than that in the air. The
stresses distributions in xx, yy and xy directions at 0.16 ms are presented in Fig. 5.8 (b),
(c) and (d). It can be observed that the horizontal and vertical stresses reach their maximum
magnitudes at the interface between soil and explosive products. The shear stresses at this
interface are antisymmetrical with respect to the vertical direction. In addition, the heights
of the soil ejecta predicted by the simulation at 0.10 ms and 0.14 ms are compared with the
experimental results from [1] (see Fig. 5.9) and a general agreement is observed, which is
encouraging. The fitting curve of the pressure and the detonation time at point A (0 mm,
140 mm) is shown in Fig. 5.10. It can be found that the magnitude of the pressure at
the point A increases significantly to 110 MPa at around 0.16 ms and then decays rapidly
over a short period of time. The computational data appears reasonable and acceptable,
and is similar to the published experimental results for axisymmetric case in [1], although
the two dimensional plane-strain case is simulated here. The soil explosion simulation in
three-dimensional space, which requires a large number of particles, will give more accurate
results. We will extend the current 2D problem to 3D in the following section.
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Figure 5.6 Configuration of landmine detonation and its effects on structures (unit: mm).

Table 5.3 Johnson-Cook model parameters of steel.

A (MPa) B (MPa) C n k Troom (K) Tmelt (K) Cv (J/kg K)

350 275 0.022 0.36 1.00 273 1810 452

Table 5.4 Mie-Grüneisen EOS model parameters of steel.

ρ0 (kg/m3) C0 (km/s) S1 S2 S3 γ α E0 (J)

7830 3.63 4.569 1.49 0.0 0.0 2.17 0
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Figure 5.7 Pressure distributions of soil explosion at (a) 0.01 ms; (b) 0.05 ms; (c) 0.1 ms; (d) 0.35
ms; (e) 0.6 ms; (f) 0.85 ms.
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Figure 5.8 Distributions of (a) velocity and stresses in (b) xx, (c) yy, (d) xy directions at 0.16 ms.

Figure 5.9 Comparisons of the height between the experiment [1] (a1, a2) and the simulation (b1,
b2) at 0.1 ms and 0.14 ms.

Figure 5.10 Pressure-time history at 140 mm above the sand surface.

54



5. 2D and 3D Landmine detonations

5.2.2 Simulation of structural response to blast loading of buried ex-
plosive

Full investigation of the soil explosion structures interactions provides a robust approach
to assess and safely design platforms and vehicles which maybe subjected to Improvised
Explosive Devices (IDEs) attacks. Following the results of explosion in soil presented
in subsection 5.2.1, the structural response to soil explosion can now be studied. 13,436
particles are used is this numerical model. The initial particle spacing and the time step are
the same as in the soil explosion modeling.

The explosive-soil and soil-steel plate interactions are clearly distinguishable in Fig.
5.11. In the first stage, the apex of the soil ejecta arrives at the bottom of the steel at 1.5
ms, which is close to the arrival time of pressure wave reported in [1]. Afterwards, the soil
ejecta momentum is partially transmitted to the steel, and the stress wave propagation in the
steel plate is shown in Fig 5.11 (a), (b), (c). The soil-plate interaction area becomes larger
and larger and the steel also crushes with recoverable elastic deformation and permanent
plastic deformation during this process (Fig 5.11 (d), (e), (f)) as the detonation products
continue to expand and impact the plate. The outline of the soil as a result of explosive
products and structure interactions presented in this paper is similar to the simulation result
using the ALE method [98]. The damage size of the structure depends on properties of
the soil and structure, the available energy imparted to the target, and the geometry of the
soil explosion. In addition, the time history of energy has been checked, and Fig. 5.12
shows that the global energy remains almost constant. After the TNT explosion, internal
energy reduces while kinetic energy grows correspondingly over a short period of time.
This is because the internal energy of explosive is partially transmitted to the kinetic energy
of explosive gas and soil. When the soil ejecta impacts the steel plate at around 0.17 ms,
the loss of kinetic energy of soil ejecta is then transferred to the internal energy of the
steel. Thus the internal energy increases while the kinetic energy drops gradually. The soil
explosion/structure interaction model can also be applied to predict the damage mode of the
steel plate with different thickness and angles in three dimensions, which will be conducted
in the future research.
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Figure 5.11 Pressure distributions of structural response to explosion in soil at (a) 0.16 ms; (b) 0.17
ms; (c) 0.19 ms; (d) 0.25 ms; (e) 0.35 ms; (f) 0.5 ms.

Figure 5.12 Energy-time history of soil explosion and its interaction with structure.
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5.3 3D landmine detonation

In this section, the elastoplastic and hypoplastic constitutive models are combined with the
explosion model to simulate the 3D landmine detonation. The motivation of this simulation
is to predict the soil ejecta generated from buried C4 explosive. The initial configuration
of soil explosion simulation is shown in Fig. 5.13, which is exactly the same as the
experimental geometry from [1]. A cylindrical container, with 375 mm height and 500 mm
internal diameter, is filled with dry sand. A cylindrical C4 explosive charge is buried to the
sand with a depth of 28 mm, and its surface is parallel to the sand surface. The coefficients
of the elastoplastic and hypoplastic models used in this simulation are the same as in the
sand collapse problem (see Table 5.2). Three layers of dummy particles are introduced
to represent fixed solid boundary condition. The particle spacing is ∆d = 4.17 mm, and
1,150,000 particles are involved in this simulation. The simulation time step is chosen to
be ∆t = 1.0 × 10−7 s. Furthermore, the Open-MP programming interface is incorporated
to the in-house SPH code for the parallelization and acceleration of the computation. The
CPU used here is Intel E5-2683. The total computational time for the landmine detonation
is 72 CPU hours.

Figure 5.13 Initial geometry of the landmine detonation (mm).

Firstly, the elastoplastic model is used and its velocity distributions of the soil fragmen-
tation process are shown in Fig. 5.14. After the ignition of the C4 explosive, a detonation
wave travels outward from the detonation point. Once the shockwave reaches the edge of
the explosive, most of the energy is transmitted to the surrounding soil. (see Fig. 5.14 (a),
(b)). The particles at the top of the soil are pushed up by the detonation and gains the most
momentum from the buried explosive, and a spherical dome is formed. It can be observed
that the velocities of the particles at the top of the dome are always larger than the rest
particles of the soil ejecta. The top soil moves much faster and this spherical dome becomes
larger and larger. The profile of the soil fragmentation is like a bubble shown in Fig. 5.14
(d), which is close to the experimental data [1]. As the explosion gas continue to expand,
the soil bubble will become thinner and rupture at some point.
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Figure 5.14 Velocity distributions of landmine detonation at (a) 0.01 ms; (b) 0.05 ms; (c) 0.10 ms;
(d) 0.35 ms; (e) 0.60 ms; (f) 0.84 ms.

The particles density distributions are presented in Fig. 5.15. It shows that the densities
of the soil particles below the explosive are the largest, as more resistance and compression
are encountered by these particles compared to the rest of the particles surrounding the
explosive charge. The detonation shock wave propagates through the interaction zone and
expands the soil particles to every direction. Furthermore, the heights of load-deflection
curves (see Fig. 5.14 (f)) for different discretizations (particle spacing of 3∆x , 2∆x, 1.5∆x,
and ∆x = 4.17 mm) are investigated and shown in Fig. 5.16. It can be found that the heights
grow with an increase in the number of particles, which converges to the values along the
red line. This shows the reliablity and stability of the numerical results. Therefore, the
main process of the soil fragmentation using the elastoplastic model has been captured and
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well described by the SPH method.

Figure 5.15 Density distributions of the landmine detonation at (a) 0.01 ms; (b) 0.05 ms; (c) 0.10
ms; (d) 0.35 ms; (e) 0.60 ms; (f) 0.84 ms.

Figure 5.16 Height-time history of 3D landmine detonation using different discretizations.
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In addition to the elastoplastic constitutive model, the hypoplastic model has also been
implemented to study the detonation process. The total number of particles involved in this
simulation is the same as the previous one. The velocities distributions of the landmine
detonation using the hypoplastic model are presented in Fig. 5.17. It can be found that the
soil fragmentation using this model is very similar to the soil ejecta using the elastoplastic
model, and this mutual authentication strengthens the credibility of these simulation results.
However, the widths obtained from the elastoplastic model are larger than those obtained
from the hypoplastic model (see Fig. 5.18 (b4)). In order to check the validity of the 3D soil
explosion model, the outline of the soil fragmentation obtained from these two constitutive
models are compared with the experimental data at respective times t = 0.03 ms, 0.10 ms,
0.14 ms, and 0.18 ms (see Fig. 5.18). We can find that the profiles of soil ejecta at different
times are very close to the experimental data. Even the extremely small soil deformation at
0.03 ms can still be captured by the SPH method (see Fig. 5.18 (a1, b1, c1)). Moreover,
the heights and widths of the soil fragmentation are mearsured to verify the 3D landmine
detonation modeling further (see Fig. 5.18 (b4)). Table 5.5 presents the heights and widths
calculated from these two constitutive models, and these physical variables are very similar
to the experimental measurements. The relative errors are calculated by relative error =
|sim−exp|/exp, in which sim represents simulation results and exp denotes the experimental
results. The relative error1 and error2 are calculated from the elastoplastic and hypoplastic
models, respectively. It can be observed that most of the relative errors are less than 12 %,
which shows that the SPH method method in conjunction with these two soil constitutive
models can tackle landmine detonation problems successfully. In addition, the time history
of energy balance of 3D landmine detonation using the hypoplastic constitutive model is
shown in Fig. 5.19. It can be observed that the total energy of the landmine detonation
is conserved. After the detonation of C4 explosive, the internal energy of the explosive is
transferred to the kinetic energy of the sand. Thus the internal energy decreases while the
kinetic energy increases rapidly. Then the sand near the expanded explosive gas interacts
with the sand further, and some of the kinetic energy of the sand is converted into the internal
energy of the surrounding sand. At the end, the kinetic and internal energies reach a steady
state. In comparison with the results obtained from the 2D soil explosion simulations [58],
the 3D soil explosion modeling yields more accurate widths and heights of the soil ejecta.
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Figure 5.17 Velocity distributions using the hypoplastic model at (a) 0.01 ms; (b) 0.05 ms; (c) 0.10
ms; (d) 0.35 ms; (e) 0.60 ms; (f) 0.84 ms.

61



Simulations for the explosion and granular impact problems using the SPH method

Figure 5.18 Comparison of the soil ejecta between the experimental [1] and simulation results, in
which (a1-a4), (b1-b4) and (c1-c4) are results of the experiment, elastoplastic model, and hypoplastic
model, respectively.

Table 5.5 Comparison of the heights and widths obtained from the experiments and simulations
(mm).

t = 0.03 ms t = 0.10 ms t = 0.14 ms t = 0.18 ms

Height Width Height Width Height Width Height Width

Experiment 5.0 33.3 55.0 120.0 82.0 136.5 115.0 180.0

Elastoplastic 5.2 37.5 52.8 130.0 76.0 160.2 98.0 200.0

Hypoplastic 5.1 37.0 52.3 109.4 75.4 132.0 97.2 160.7

Relative error1 (%) 4.0 12.6 4.0 8.3 7.3 17.2 14.7 11.1

Relative error2 (%) 2.0 11.1 4.9 8.8 8.0 3.3 15.4 11.8

Figure 5.19 Time history of energy balance of 3D landmine detonation using the hypoplastic
constitutive model.
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5.4 Summary

In this chapter, the JWL detonation model and soil constitutive models are validated first.
After the validation of these models, the 2D soil explosion and its effects on structures has
been investigated. The modified continuity equation described in Chapter 2 is employed
to tackle the multiphase interface with large density ratio. Based on the study of 2D soil
exploison, the 3D landmine detonation with the elastoplastic and hypoplastic constitutive
models has been conducted further. The widths and heights of the soil fragmentation are in
general agreement with the experimental data, which shows that the SPH method is capable
of tackling the landmine detonation problems well.
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Chapter 6

Underwater explosion within a tube
including cavitation

The underwater explosion within a tube including cavitation is investigated in this chapter.
In order to verify the physical models used in underwater explosion, the Sjögreen problem,
1D cavitating flow in an open tube, 1D PETN detonation, and the 3D impact of Al ball on
the Al plate are tested using the in-house 3D SPH code first. Then the explosions in a water
filled cylindrical rigid and Al tubes are investigated, respectively, and the simulation results
are compared against the published analytical results and the experimental data.

6.1 Numerical validations

6.1.1 Sjögreen test

The gas-gas shock tube problem is tested here to show that the shock wave simulation can
be well predicted by the 3D SPH code. The Eq. (3.43) is used as EOS here. The left and
right initial conditions are listed in the following,(

ρ(kg/m3), v(m/s), p(Pa)
)
=

{
(1.0,−2.0, 0.4) 0.0 < x < 0.5
(1.0, 2.0, 0.4) 0.5 < x < 1.0

(6.1)

The pressure and velocity distributions along the tube at 0.150 s are shown in Fig. 6.1 and
Fig. 6.2, respectively. We can find that the simulation results using the SPH method are in
good agreement with the analytical results [99].
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Figure 6.1 The pressure distribution along shock tube at 0.15 s.

Figure 6.2 The velocity distribution along shock tube at 0.15 s.

6.1.2 1D cavitating flow in an open tube

The second case proposed by Liu et al. [4] is tested in the 3D SPH code to verify the
cavitation model. The Eq. (3.46) is employed as EOS in this case. The initial condition of
this water-water Riemann problem is presented as follows,(

ρ(kg/m3), v(m/s), p(Pa)
)
=

{
(1000,−100, 100, 000) 0.0 < x < 0.5
(1000, 100, 100, 000) 0.5 < x < 1.0

(6.2)

The numerical results of the pressure and velocity along two water streams with different
particle resolutions (∆x = 0.5, 4/3∆x, 2∆x mm) at 0.2 ms are depicted in Fig. 6.3 and
Fig. 6.4, respectively, and it can be observed that the pressure and velocity distributions
using the SPH method are in general agreement with numerical results using conventional
mesh-based method with the one fluid cavitation model [4].
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Figure 6.3 The pressure distribution along two water streams at 0.2 ms with different particle
resolutions.

Figure 6.4 The velocity distribution along two water streams at 0.2 ms with different particle
resolutions.

6.1.3 1D PETN detonation

The simulation of the 1D PETN explosive detonation is conducted here to verify the JWL
model. The EOS employed here is Eq. (3.42). The detonation process is the same as the
TNT detonation described in Subsection 5.1.1. As the detonation velocity of the PETN
explosive charge is 8350 m/s, it takes about 11 µs to finish the detonation process along the
PETN slab. The JWL parameters for 1D PETN detonation are shown in Table 6.1 [100].
The total length of the PETN slab is 0.1 m. The initial particle spacing is 0.0002 m, and
the time step is 1.0 × 10−9 s. The pressure distributions along the PETN slab with different
number of particles (250, 500, 1000, 2000) at respective times is shown in Fig. 6.5. It can
be observed that the numerical peak pressure converges to the experimental peak pressure
33.5 GPa.
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Table 6.1 Coefficients of the JWL model for PETN.

ρ0 (kg/m3) A (Pa) B (Pa) R1 R2 w E0 (J/kg)

1765 6.17×1011 1.6926×1010 4.4 1.2 0.25 5.722×106

Figure 6.5 Pressure distribution along the 1D PETN slab during the detonation process.

6.1.4 3D high velocity impact

The impact of 3D aluminum (Al) sphere on a thin Al plate is simulated here to verify
the elastic-perfectly plastic constitutive model. The Mie-Grüneisen equation and Johnson-
Cook parameters for Al-Al impact are shown in Table 6.2 and Table 6.3 [30], respectively.
The radius of the Al sphere is 0.01 m, and the velocity of the sphere is 6180 m/s. The
length, width, and height of the Al plate are 0.1 m, 0.004 m, 0.1 m, respectively. 690,243
particles are involved in this simulation. The numerical result of the high velocity impact
at 16 µs is shown in Fig. 6.7. From a qualitative point of view, it can be found that the
whole shape of debris cloud of the simulation is similar to the experimental data (Fig. 6.6)
[2]. In addition, the impact model has also been validated quantitatively by the Armco iron
cylinder impact in our previous research paper [59].

Table 6.2 Coefficients of the Mie-Grüneisen model for Al-Al high velocity impact.

ρ0 (kg/m3) C (m/s) S G (MPa) Y0 (MPa) Γ

2710 5300 1.5 2.76 ×104 550 1.70
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Table 6.3 Johnson-Cook parameters for Al-Al high velocity impact.

A (MPa) B (MPa) C n k Troom (K) Tmelt (K) Cv (J/kg K)

175 380 0.0015 0.34 1.0 273 775 875

Figure 6.6 Experimental debris cloud produced by the impact of Al sphere on a thin Al plate [2].

Figure 6.7 Numerical debris cloud produced by the impact of Al sphere on a thin Al plate.
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6.2 Underwater explosion within a rigid cylindrical struc-
ture

Now the 3D underwater explosion in a rigid cylinder can be investigated based on these
verified models above. The initial geometry of this problem is shown in Fig. 6.8, which is
the same as the initial configuration in [3]. The diameter and the height of the cylinder are
0.0889 m and 0.2886 m, respectively. In order to compare with the simulation results from
[3] directly, the explosion model is simplified to a high pressure gas bubble. The spherical
explosive gas is located in the center of the cylinder, and its diameter is 0.03 m. The Eq.
(3.43) is used as EOS for explosive gas, and the initial pressure and density of the explosive
gas sphere are set equal to pg = 2 × 109 Pa and ρg = 1770 kg/m3, respectively. The
parameter γ in Eq. (3.43) is set to be 2.0 in this problem. The Tait’s equation (Eq. (3.46))
is employed in this simulation, and the initial pressure and density of the surrounding water
are assumed to be pw = 1 × 105 Pa and ρw = 1000 kg/m3, respectively. The modified
Schmidt cavitation model is employed for the pressure lower than the saturated vapour
pressure which is equal to 3165 Pa here. The initial particle spacing is ∆x = 0.001 m,
1,800,000 particles are involved in this simulation, and three layers of dummy particles
are implemented for the solid boundary treatment. The time step for this simulation is
∆t = 1.0 × 10−8 s. The CPU used here is Intel E5-2683, and the total computational time
is 120 CPU hours for the calculation of 12,000 time steps.

Figure 6.8 Initial geometry of underwater explosion within a rigid cylinder (mm).

Fig. 6.9 a1-a8 shows the pressure distributions at respective times of 15 µs, 30 µs, 45
µs, 60 µs, 75 µs, 90 µs, 105 µs, and 120 µs. Once the explosion is initiated, a compressive
shock wave is created and propagates symmetrically to the solid boundary (Fig. 6.9 a1).
Then the reflected shock wave from the solid wall interacts with the expanded high pressure
gas, and a rarefaction wave is generated (Fig. 6.9 a2). A cavitation area (white area) maybe
formed near the bubble surface as the rarefaction wave can be so strong. The rarefaction
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wave hits the cylinder wall and is reflected from the boundary, and a cavitation is generated
near the solid boundary (Fig. 6.9 a3-a5). At the end, the cavitation area collapses due
to the compression of the compressive shock wave (Fig. 6.9 a6-a8). In addition, the
pressure contour using the SPH method are compared against the simulation results using
the Arbitrary Lagrangian-Eulerian (ALE) method [3] (see Fig. 6.9 b1-b8). It can be
found that the shock wave propagation and the location of the cavitation predicted by the
SPH method are fairly close to those obtained with the ALE method. Fig. 6.10 shows
the pressure history, with initial particle spacing ∆x = 0.001 m and 1.5 ∆x, at the centre
location of the side wall using the SPH method compared against the numerical results
using the conventional mesh-based method from Liu [4]. For the initial particle spacing
∆x, it can be observed that the pressure of the SPH method at the mid-line wall increases
rapidly to 0.660 GPa at 19 µs. Then the pressure reduces near the wall and the cavitation
is created at 42 µs. This cavitation region finally collapses completely within 98 µs. It
can be found that the first increase and decrease of the pressure and the cavitation creation
are close to the Liu’s results. The second pressure raise and second cavitation occur at 102
µs and 117 µs, respectively, which are a little earlier than the Liu’s results, and the second
peak pressure 0.35 GPa is less than the peak pressure of the Liu’s simulation 0.43 GPa.
The difference between the simulation results of SPH and ALE is reasonable, firstly, the 3D
underwater explosion within a rigid cylinder has been conducted directly, which is different
from the 2D cylindrical coordinate system used in [3, 4]. Secondly, it can be observed that
a better numerical pressure distribution (Fig. 6.10) can be obtained with larger number of
particles. However, involving more particles in the simulation is beyond the capability of
the current available computational resources. Thirdly, the artificial viscosity is adopted in
SPH to supress the shock wave oscillation, while in Liu’s paper [4], they used the integral-
differential form to treat the relationship across the cavitation boundary. Furthermore, the
SPH is a Lagrangian particle method, the calculation of the physical variables is based on
the summation of the nearest particle in a support domain, which is totally different from
the mesh-based numerical method. Lastly, the boundary implementation method (dummy
particles) in SPH is totally different from the boundary treatment in the conventional mesh-
bashed methods. In general, the comparison of numerical results between the SPH method
and the ALE method shows that the shock wave propagation and cavitation occurring in
the underwater explosion can be captured by SPH, and thus the SPH method can solve the
underwater explosion within a rigid cylinder very well.
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Figure 6.9 The pressure distribution of the underwater explosion within a rigid cylinder from 15-120
µs using the SPH (a1-a8) and the ALE method (b1-b8) [3].

72



6. Underwater explosion within a tube including cavitation

Figure 6.10 The pressure histories at mid-line wall of rigid cylinder from Liu’s simulation [4] and
the present SPH solution.

6.3 3D underwater explosion within an aluminum tube

Furthermore, the simulation of the 3D underwater explosion within an aluminum tube is
developed. The initial configuration of the simulation is exactly the same as the initial
experimental geometry from [100] (see Fig. 6.11).

Figure 6.11 Initial geometry of underwater explosion within an aluminum tube (mm).

The deformable structure is 19.2 cm long and 10.2 cm outer diameter Al tube with
0.7 cm wall thickness. The small explosive charge of 3.0 g PETN is suspended inside the
Al tube filled with distilled water. The JWL parameters for PETN detonation is listed in
Table 6.1, and the Mie-Grüneisen and Johnson-Cook model parameters for Al is presented
in Table 6.2 and Table 6.3, respectively. Both the Mie-Grüneisen and Tait’s equation are
employed for the compressible fluid simulation. The Mie-Grüneisen parameters for water
is shown in Table 6.4 [60]. The initial particle spacing is set to be 0.001 m, the time
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step is 1 × 10−8 s, and 870,000 particles are involved in this simulation. The Open-MP
programming interface is implemented for the acceleration of the calculation procedure.
The CPU applied here is Intel E5-2683, and the total computational time is 78 CPU hours
for the calculation of 12,000 time steps.

The pressure and the velocity distributions of this underwater explosion using Tait’s
equation at respective times of 15 µs, 30 µs, 45 µs, 60 µs, 75 µs, 90 µs, 105 µs, and
120 µs are shown in Fig. 6.12 and Fig. 6.13, respectively. According to our numerical
tests, a more clear pressure contour from 75 µs to 120 µs can be obtained by the Tait’s
equation compared to the Mie-Grüneisen EOS. Firstly, the initiated shock wave propagates
symmetrically within the surrounding water and hits the Al tube at 18 µs. The pressure
at the mid-line wall increases rapidly and the deformation of Al is generated as the Al
tube is compressed by the shock wave (see Fig. 6.12 (d-f)). It can be observed that the
deformation of the mid-line wall is larger than other part of the tube because the velocity
of the mid-line wall is the largest (see Fig. 6.13). With the propagation of the shock wave,
the cavitation area occurs at 30 µs near the centerline wall as the rarefaction wave hits
the Al tube. Then the cavitation area collapses at 48 µs and the pressure of the cavitation
area increases due to the compressive shock wave (see Fig. 6.14), which shows that the
occurrence and collapse of cavitation can be predicted in the SPH simulation. In addition,
the numerical pressure at mid-line wall are compared against the experimental data [5]
(see Fig. 6.14 ). It can be found that the numerical peak pressures using Mie-Grüneisen
and Tait equations are 0.585 GPa and 0.560 GPa, respectively, which are close to the
experimental peak pressure 0.620 GPa. A better prediction of the peak pressure can be
generated by the Mie-Grüneisen EOS. The creation and collapse of cavitation area is also
similar to the experimental phenomenon. The numerical displacements at mid-line wall
are also compared with the experimental results, and it can be found that all the relative
errors are less than 20% (see Table 6.5 ). The discrepancy between the numerical pressure
and displacements and the experimental results can be attributed to the following reasons,
firstly, only the Tait’s and Mie-Grüneisen’s equations are employed to simulate the liquid
compression. The other compressible fluid models will be implemented and compared
with the Tait’s equation in the near future to obtain simulation results with more accuracy.
Secondly, as the calculation of the physical quantities in SPH is based on the selection
of kernel function, which is different from the conventional based method, more kernel
functions will be tested to investigate its effect on the numerical results. Thirdly, since only
the Mie-Grüneisen model is applied for the aluminum impact, more solid impact models,
such as the Cowper-Symonds model [101], will be incorporated and tested to simulate the
the deformation of structures in an underwater explosion. In summary, the comparison of
the SPH method and the experimental data shows that the SPH is applicable for predicting
the deformation of underwater explosion to structures.
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Table 6.4 Coefficients of Mie-Grüneisen model for water.

ρ0(kg/m3) C0 (km/s) S1 S2 S3 γ α E0 (J)

1000 1480 2.56 1.986 1.2286 0.5 0 0

Figure 6.12 The pressure distributions of the underwater explosion within an Al tube at (a) 15 µs;
(b) 30 µs; (c) 45 µs; (d) 60 µs; (e) 75 µs; (f) 90 µs; (g) 105 µs; (h) 120 µs.

Figure 6.13 The velocity distributions of the underwater explosion within an Al tube (a) 15 µs; (b)
30 µs; (c) 45 µs; (d) 60 µs; (e) 75 µs; (f) 90 µs; (g) 105 µs; (h) 120 µs.
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Figure 6.14 The pressure histories at mid-line wall of deformable cylinder using the experimental
data [5] and the SPH method.

Table 6.5 Comparison of the simulation and experimental displacement at mid-line wall (mm), in
which Error = |Si−Ex |

Ex .

Time (msec) 0.01 0.02 0.03 0.04 0.06 0.08 0.1 0.15

Ex (Experiment) 0.0 0.50 1.20 2.00 3.33 4.17 4.65 5.50

Si (Tait) 0.0 0.41 1.00 1.61 2.93 3.85 4.10 5.10

Si (Mie-Grüneisen) 0.0 0.42 1.00 1.70 2.94 3.86 4.12 5.20

Error (Tait) (%) 0.0 18.0 16.6 19.5 12.0 7.67 11.8 7.27

Error (Mie-Grüneisen) (%) 0.0 16.0 16.6 15.0 11.7 7.43 11.3 5.40

6.4 Summary

In this chapter, the SPH method in conjunction with a modified Schmidt model has been
used to simulate a fully 3D underwater explosion in a both rigid and deformable (Al)
tube. The proposed methodology has been implemented as part of a general 3D in-house
SPH code that incorporates the Open-MP parallel programming interface to provide the
computational efficiency required to conduct simulations with large numbers of particles.
Various components of SPH code have been validated using a number of test cases, namely
the Sjögreen test case, a 1D cavitating flow in an open tube test case, a 1D PETN detonation
test case and a 3D high-velocity impact test case. After this comprehensive validation,
the SPH code has been applied to the simulation of a fully 3D underwater explosion in
a rigid cylinder and in a deformable Al tube. The numerical results show that these 3D
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SPH predictions of an underwater explosion are in general agreement with other numerical
simulations of the problem using alternative approaches, as well as with some available
experimental data.
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Chapter 7

3D granular impacts using CUDA
parallel computing platform

In addition to the investigations of the landmine detonation and underwater explosion,
the 3D granular impacts have also been conducted in this thesis. Rather than using the
Open-MP programming interface, the CUDA parallel computing platform is used to study
the 3D granular impact. The elastoplastic and phase-change models are validated using
four test cases in this chapter: namely, the collapse of an axisymmetric sand, the impact
force of sand on a rigid wall, head-on collisions of dense granular jets, and the impact of a
granular jet with a wave structure on a granular film. The results of SPH simulations with
the elastoplastic and phase-change constitutive material models for the four test cases are
compared to available experimental data and to numerical data obtained using alternative
simulation methodologies (e.g., discrete element method, material point method).

7.1 GPU implementation

7.1.1 GPU solution procedure

The application of SPH for the simulation of granular flow in three dimensions is computa-
tionally intensive owing to the large number of particles required for such simulations. From
Chapter 4, we can find that the parallelized SPH code using Open-MP can only be 10 times
more efficient than run on a CPU. As a consequence, to enable these types of simulations
to complete in a reasonable execution time, it is imperative to accelerate the computational
workload by parallelization of the SPH simulations on a graphics processing unit (GPU).
The parallelization of the SPH methodology on a GPU is depicted in Fig. 7.1. There are a
number of steps involved in the implementation of the SPH methodology on a GPU. Firstly,
the data describing the initial configuration of the granular impact is loaded into the central
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processing unit (CPU). Next, this information is transferred from the CPU to the GPU.
The GPU is used to facilitate the following operations: building the neighborhood lists and
searching these neighborhood sets (which necessarily involve dynamically changing lists of
neighboring particles), determination of the particle interactions (i.e., the calculation of the
rates of change of physical quantities), and update of the physical variables which involve
the computation of sums over the dynamically evolving neighborhood sets. At the end of
this computational process, the information computed by the GPU is transferred from the
GPU to the CPU and the relevant numerical data is saved. All the SPH simulations of
granular flow reported herein were conducted on a PC with a single NVIDIA Quadro K620
graphics processor. The performance of the in-house SPH code used for our simulations,
such as the accuracy and computational efficiency, is described in detail in [75].

Figure 7.1 Flow diagram depicting the implementation of a 3D SPH methodology on a GPU.

7.1.2 Pseudocode for determination of particle interactions on GPU

The computation of the time development of the physical variables is a compute-intensive
process that must be parallelized in order to obtain a good computational performance for
a SPH simulation. In consequence, the use of the CUDA programming interface in our in-
house SPH code is a key aspect in the acceleration of the computational workload on a GPU.
A pseudocode for the algorithm used for the computation of the particle interactions on a
GPU is summarized in Algorithm 1 below. The implementation utilizes the CUDA platform
(viz., the parallel computing platform and application programming interface developed by
NVIDIA for their GPUs).

Algorithm 1 Computation of all particle interactions for particle i

Output: Update the physical variables for particle i

1: _ global _ void ParticleInteraction_cuk(. . . );
2: index = blockIdx.x ∗ blockDim.x + threadIdx.x;
3: if (index < particle number) then
4: Find the neighbour particles;
5: Calculate the rate of change of the physical quantities;
6: end if
7: Update the physical variables;
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7.2 Numerical cases

7.2.1 Axisymmetric collapse of dry sand

We first test the phase-change and elastoplastic constitutive models for SPH simulations
of the 3D axisymmetric collapse of dry sand. Lube et al. [6] conducted experiments of
the axisymmetric collapse of columns of dry sand that was initially contained within a
cylindrical column resting on a flat surface (see Fig. 7.2). The nature and mode of collapse
of these granular columns is determined by the initial column height-to-halfwidth ratio
a = h0/d0.

Figure 7.2 Initial setup of the experiment and simulation for the 3D axisymmetric collapse of dry
sand, in which the subscript i denotes the initial state or the steady state.

Four different cases involving different ratios of a were simulated using our SPH code
and the results of these simulations were compared to the experimental results in order to
validate the two constitutive models. Table 7.1 summarizes the basic information for each
simulation. The parameters for the elastoplastic and phase-change constitutive models are
listed in Table 7.2. These parameters were used for all subsequent SPH simulations reported
herein, unless noted otherwise.

The magnitude of the velocity of the granular collapse at two different ratios a = 0.5
and 4.0, obtained using the phase-change constitutive model, is shown in Fig. 7.3. It can be
seen that in the final phase of the granular collapse, the top surface of the shorter and stouter
sand column is flatter than that of the taller and more slender sand column. Qualitatively,
it is noted that the overall general shape of the sand pile in the final phase (steady state)
of collapse predicted by the simulation is similar to that obtained from the experimental
measurements conducted by Lube et al. [6].

The stresses distributions of the sand collapse using the elastoplastic constitutive model
are exhibited in Fig. 7.4. The stress in vertical direction yy is proportional to the depth
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of the sand. This is consistent with the vertical stress distribution of the sand confined in
a cylindrical column and subjected to a gravitational force. Furthermore, the numerical
results for the runout distance d∞ and the final height h∞ obtained using the phase-change
and elastoplastic constitutive models are summarized in Figs 7.5 and 7.6, respectively.
Superimposed on these two figures are some experimental measurements of d∞ and h∞
obtained byLube et al. [6]. A perusal of Figs 7.5 and 7.6 shows that the numerical predictions
for d∞ and h∞ are generally in good conformance with the experimental results. Finally, it is
noted that the quality of the current numerical simulations of 3D granular collapse obtained
using the SPH framework with both the phase-change and elastoplastic constitutive models
are comparable to the 2D sand collapse simulations obtained by Dunatunga and Kamrin [9]
using the MPM framework with the phase-change constitutive model.

Table 7.1 Summary of the initial configuration used for four different simulations of the 3D axisym-
metric collapse of dry sand.

Case h0 (mm) d0 (mm) a = h0/d0 Initial particle space (mm) Particles number

1 0.10 0.20 0.5 4.00 482,430

2 0.20 0.20 1.0 5.00 451,969

3 0.40 0.20 2.0 6.25 530,109

4 0.80 0.20 4.0 8.00 475,329

Table 7.2 The parameters of the elastoplastic and phase-change constitutive models for the sand
collapse problem [9].

Elastoplastic constants Phase-change parameters

ρ0 (kg m−3) E (MPa) ν φ (◦) ψ (◦) c (kPa) ρc (kg m−3) ξ (m1/2 kg−1/2) µs µ2

2450 20.0 0.30 37.0 0.0 0.0 1500 1.1233 0.64 0.84
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Figure 7.3 Predictions of time development of 3D sand collapse obtained using the phase-change
model for a = 0.5 (a1–a4) and 4.0 (b1–b4).

Figure 7.4 The predicted stresses distributions obtained in the SPH framework using the elastoplastic
constitutive model for a = 0.5.
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Figure 7.5 Predicted and experimental non-dimensionalized runout distance d∞ versus initial aspect
ratio a Experimental results are taken from Lube et al. [6].
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Figure 7.6 Predicted and experimental non-dimensionalized final height h∞ versus initial aspect ratio
a. Experimental results are taken from Lube et al. [6].

We close this subsection with an evaluation of the computational efficiency of our GPU-
accelerated SPH code. To this purpose, we will measure the compututational efficiency of
the implementation of our GPU-accelerated SPH code in terms of frames per second (FPS),
which is the number of computational time steps executed in one second of wall-clock time
(see Table 7.3 which summarizes the FPS and total wall-clock execution time T for four
test cases involving the simulation of the collapse of a sand pile with an initial aspect ratio
of a = 0.5). The total physical time of the simulation for all the test cases summarized in
Table 7.3 is fixed at a value 0.1 s. A careful examination of this table shows that the FPS
decreases as the number of particles used in the simulation increases. More specifically,
it is seen that for the case that uses nearly 500,000 particles in the simulation, the FPS
achieved (≈ 6.8 time steps per second) is still very good. As mentioned previously, the
simulations reported here were conducted on a PC with a single NVIDIA Quadro K620
graphics processor. It is expected that the computational performance reported here will
be significantly improved on a more powerful NVIDIA graphics processor, such as the
NVIDIA GeForce RTX 2080 Ti.

In order to characterize the acceleration in computational performance provided by the
use of a GPU, the SPH simulations summarized in Table 7.3 were also conducted on a
PC with a single CPU (AMD Opteron Processor 6320). The speed-up in computational
performance between the GPU and CPU is defined as

Sp =
FPS on a single GPU
FPS on a single CPU

. (7.1)

Note that the time required for the input of the data files and the output of the simulation
results is excluded from the execution time. The speed-up in the computational performance
of the SPH code executed on a singleGPUversus that on a single CPU is displayed in Fig. 7.7
for five test cases (four of which have been summarized in Table 7.3). It is seen that a speed-
up of up to about a factor of 160 is achieved as the number of particles N used in the
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Table 7.3 Computational efficiency of the GPU-accelerated SPH code for simulation of sand collapse
with an aspect ratio of a = 0.5.

Case Initial particle spacing (mm) Number of particles FPS (s−1) T (s)

1 6.25 170,221 22.32 127

2 5.00 286,333 12.19 288

3 4.00 482,430 6.78 653

4 3.00 752,187 3.96 1324

simulation increases to about 750,000. The speedup suggests our GPU-accelerated SPH
implementation has achieved a high parallel computational efficiency.
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Figure 7.7 The speed-up on a single GPU compared to that on a single CPU of SPH simulations as
a function of the number of particles N used in the simulation.

7.2.2 Impact force of sand on a rigid wall

Having completed the validation of the phase-change and elastoplastic constitutive models
in the SPH framework using a case study involving the axisymmetric collapse of dry sand,
this numerical framework will now be applied to investigate the phenomenon of granular
impacts. Moriguchi et al. [102] conducted experimental measurements of the impact force
exerted on a rigid wall resulting from the impingement of dry Toyoura fine sand released
from an inclined flume. The sand was initially confined inside a box at the top of the flume.
This material was released through a side door, and the sand impacted a rigid wall at the
bottom of the flume. The impact force exerted by the sand on the rigid wall was measured
as a function of time using a sensor attached to the wall barrier.
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In this subsection, we will conduct a 3D numerical simulation of this experiment using
SPH with the phase-change constitutive model. The initial configuration for the simulation
is shown in Fig. 7.8. The length and height of the sand box are 50 cm and 30 cm,
respectively. The total mass of the sand contained initially in the box is 50 kg. The density
of the granular material (sand) is ρ0 = 1340 kg m−3 and the critical density is ρc = 500
kg m−3. The initial particle spacing used in the simulation is 10 mm. A total of 123,012
particles were used in the SPH simulation. Three layers of dummy particles are used to
impose the no-slip boundary condition along the solid wall of the incline. The total physical
time simulated using the SPH methdology was 3 s. The computational (wall-clock) time
required to complete this simulation was 72 minutes.

The results for the simulation of granular impact down a 45◦ inclined flume obtained
using SPHwith the phase-change constitutivemodel is presented in Fig. 7.9. The sandmoves
downward gradually owing to the gravitational force. The magnitude of the velocity (speed)
of the sand increases from zero to almost 4.5 m s−1 during this movement. After about
0.70 s after the initial release, the sand impacts the rigid wall and stops almost immediately
after the impact. In consequence, the sand at the bottom of the flume accumulates at the
rigid wall and this pile of sand grows in size with increasing time. At the end of the
process, the pile of sand reaches the top of the wall barrier and flows out of the flume.
This dynamic behavior of the sand obtained from the numerical simulations is in general
agreement with both the experimental measurements reported by Moriguchi et al. [102]
and the simulations conducted by Neto and Borja [47]. The dynamic behavior of the sand
obtained in the SPH framework using the elastoplastic constitutive model is similar to that
obtained using the phase-change constitutive model. However, it is noted that using the
elastoplastic constitutive model, the sand is predicted to impact the rigid wall at 0.65 s after
the initial release, which occurs earlier than the prediction provided by the phase-change
constitutive model.

The impact force exerted by the sand on the rigid wall is calculated using equation (2.23).
This equation required the specification of the normal vector n = (nα). For the current
case, the vector normal to the rigid wall at the bottom of the flume for an inclination angle
of 45◦ is n =

(√2
2 , 0,

√
2

2
)
. The relative error between the numerical prediction Fw and the

experimental value FE of the impact force is determined using

Rerr =
|FW − FE |

FW
. (7.2)

Figure 7.10 exhibits the predicted time variation of the impact force obtained from our
SPH simulations using both the phase-change and elastoplastic constitutive models. The
predicted peak impact force obtained using the phase-change constitutive model is 192 N.
This predicted value for the peak impact force is larger than the measured value of the
peak impact force obtained by Moriguchi et al. [102]. More specifically, the overprediction
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of the peak impact force is about 3.2% (viz., the relative error is 0.032). It is noted
that the prediction of the peak impact force obtained from our SPH simulations with the
phase-change constitutive model is significantly better than that obtained from either our
SPH simulations with the elastoplastic constitutive model or the numerical simulations
conducted by Neto and Borja [47]. In the latter two cases, the predicted peak value of the
impact force was about 212 N which significantly overpredicts the measured value of the
peak impact force.

After the rapid initial increase to its peak value, the impact force decreases gradually
to value of about 160 N. This decrease occurs because some of the sand flows out of the
bottom boundary and the velocity of the sand is reduced after its initial impact with the rigid
wall. In general, it is noted that SPH simulations with the phase-change constitutive model
is capable of capturing the dynamical behavior of the impact of the sand against the rigid
wall. Furthermore, these simulations give generally good predictions for the time variation
of the impact force. The slight overestimation of peak impact force is probably due to force
contribution from the soil viscosity and the boundary implementation used here. The effects
of the soil viscosity, which has the tendency to slow down the granular flow and reduce
the impact force, has not been incorporated in our numerical simulations. In addition, it
is expected once a more appropriate model for the calculation of the stress tensor of the
boundary particles has been developed, its inclusion in our numerical simulation will lead
probably to more accurate predictions of the impact force.

Figure 7.8 The initial configuration of sand on an inclined flume. All the dimensions shown here
are in cm.
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Figure 7.9 The magnitude of the velocity of granular impact on 45◦ inclined flume obtained using
SPH with the phase-change constitutive model at six different times: namely, at 0.2 s (a1), at 0.6 s
(a2), at 1.0 s (a3), at 1.4 s (a4), at 1.8 s (a5), and at 2.2 s (a6).
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Figure 7.10 Time variation of the impact force for a flume inclination of 45◦.

7.2.3 Head-on collisions of dense granular jets

In this subsection, we investigate the 3D head-on collisions of dense granular jets. A study
of the physical mechanisms involved in the collisions of granular jets will enhance our
understanding of the loads applied to structures by the impact of granular matter on them
at high velocity. Ellowitz [62] conducted 2D simulations of head-on collisions of dense
granular jets having equal speeds using DEM. Here, we extend this effort to consider fully
3D simulations of dense granular jet collisions using the SPH framework. To this purpose,
two granular jets having different sizes will be considered in our simulations: namely, the
diameter of the first jet is taken to be 2R and that of the second jet is taken to be 2kR, where
0 ≤ k ≤ 1. The centers of these two jets are assumed to be aligned, and their initial velocities
are both v0 in magnitude. These two jet velocities are in opposite directions, so that the
two jets undergo a head-on collision. The ejecta angle ψ0, which is the maximum angle
between the tangent line of the surface of the jet to the horizontal direction, and the velocity
u0 of the impact center point at the interface of the two jets are used to characterize the
impact process (see Fig. 7.11). The initial configurations used for three different simulation
scenarios for head-on collisions of the granular jets are summarized in Table 7.4.

Figure 7.12 shows the predicted results obtained using SPH with the phase-change
constitutivemodel for the head-on collision of two granular jets with the initial configuration
specified by scenario 1 (cf. Table 7.4). It is noted that the ejecta angle of the granular jet
with the larger diameter increases during the impact process, and its configuration after
the impact is similar to the 2D geometry described in Ellowitz [62]. The impact center
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Table 7.4 Initial configuration for three different simulations of head-on collisions of dense granular
jets.

Scenario R (mm) k (mm) v0 (m s−1) Initial particle space (mm) Particles number

1 0.10 0.50 10.0 4.00 369,000

2 0.10 1.00 10.0 4.00 592,800

3 0.10 0.25 10.0 4.00 314,400

drifts at a constant speed of about u0 = 0.14 m s−1, which is consistent with the simulations
described in [62]. Figure 7.13 exhibits the stress and strain distributions obtained using SPH
with the phase-change constitutive model at a time of 0.02 s. A persual of this figure shows
that the stress in the horizontal direction assumes the largest values within the impact area.
The shear strain and stress in the yz direction are antisymmetric with respect to horizontal
x direction.

The effect of different diameters of the two jets (as characterized by the coefficient k) on
the velocity of the impact center has also been studied. To this purpose, the initial config-
urations for the colliding granular jets are summarized in scenarios 2 and 3 (cf. Table 7.4).
The constant velocity u0 of the impact center is 0 m s−1 for scenario 2 where the radii of
the two jets were equal (viz., k = 1) and 3.96 m s−1 for scenario 3 where the radius of one
jet is 1/4 that of the other jet (viz., k = 0.25). It seen that a smaller value for k results
in a larger value for the velocity u0 of the impact center, a result that is in conformance
with the numerical simulations conducted by Ellowitz [62]. The results of our numerical
simulations have shown that the application of the SPHmethodology with the phase-change
constitutive model provides a good alternative scheme to study impact of two granular jets.

In order to demonstrate the ability of the proposed SPH methodology to capture phase

Figure 7.11 A sketch of the ejecta angle and the velocity u0 of the impact center.
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changes in the collision of two granular jets, we set the initial density of the disconnected
granular jets to have a value of ρ = 1200 kg m−3. This value for the initial jet density is
less than the critical density which has a value of ρc = 1500 kg m−3. Otherwise, initial
conditions for this case are exactly the same as those of scenario 3. The results of the
simulation of the impact of the two granular jets for this case obtained using SPH with the
phase-change constitutive model are displayed in Fig. 7.14. An examination of this figure
shows that the two disconnected jets undergoes a process of densification after they collide
with the each other. This simulation highlights the ability of the SPHmethodology to model
large inhomogeneous deformations of the granular material. These results suggest that the
effects of the granular particle size and fracture on the interaction of high-velocity granular
slugs can be investigated using the proposed SPH methodology.

Figure 7.12 The magnitude of the velocity arising from the head-on collision of two dense granular
jets predicted using SPH with the phase-change constitutive model for an initial configuration given
by scenario 1.
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Figure 7.13 The stress and strain distributions arising from head-on granular impact obtained using
SPH with the phase-change constitutive model.

Figure 7.14 Numerical simulation of the process of densification of two colliding granular jets
obtained using SPH with the phase-change constitutive model.

7.2.4 The impact of granular jet with a wave structure on a granular
film

An experimental study of the liquid-like wave structures on a granular film resulting from
a granular jet impact has been described by Shi et al.[103]. In this study, the initial
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configuration of the particles is a sinusoidal wave. In particular, the horizontal motion of
the center particles at the jet exit is characterized by

y = A0 sin (2π f0t) , (7.3)

where A0 and f0 are the amplitude and frequency of the initial granular jet, respectively,
and t is the time. In this subsection, we simulate the liquid-like wave structure on a granular
film using the SPH methodology with both the phase-change and elastoplastic constitutive
models.

To this purpose, the wave structure generated by an amplitude of A0 = 0.002 m and a
frequency of f0 = 160 Hz for the initial granular jet has been investigated using the SPH
methdology. The initial particle spacing is 0.002 m and 800,000 particles were used in
this simulation. The initial velocity of the granular jet is 4.0 m s−1. Figure 7.15 exhibits
the experimental wave structure on the granular film measured by Shi et al. [103] and
that obtained from the SPH simulations using both the elastoplastic and phase-change
constitutive models. It is noted that the wave structures obtained from the two simulations
are in very good agreement with the experimental results.

The reason for the wave structures seen in Fig. 7.16 is that the initial configuration of
the granular media is antisymmetric with respect to vertical z-direction and the periodic
oscillation of the resulting disturbance results in the generation of wave structure. Further-
more, the effects of the amplitude and the frequency of the disturbance in the granular jet
on the wave structure have also been investigated using SPH similations. The results of
these investigations are summarized in Fig. 7.16. In particular, Fig. 7.16 (a1–a4) exhibit
the wave structures for a frequency of f0 = 160 Hz for a series of increasing values of the
amplitude A0: namely, for A0 = 0.0005 m, 0.001 m, 0.002 m, and 0.003 m. Similarly,
Fig. 7.16 (b1–b4) display the wave structure for an amplitude of A0 = 0.002 m for a series of
increasing frequencies f0: namely, for f0 = 80 Hz, 120 Hz, 160 Hz, and 240 Hz. A careful
examination of these results shows that the wave structure disappears when the amplitude
of the disturbance decreases below a certain value as the disturbance then becomes too
small to generate a wave structure (cf. Fig. 7.16 (a1)). The wavelength of the wave structure
on the granular film increases with a decrease in the frequency of the disturbance as is
evident from a perusal Fig. 7.16 (b1–b4). The results reported here demonstrate that the
SPH methodology used in conjunction with the phase-change and elastoplatic constitutive
models can be used to predict the nature of the wave structures on a granular film.
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Figure 7.15 Wave structures on a granular film obtained from (a) an experimental study [7] and
from SPH simulations with (b) the phase-change and (c) the elastoplastic constitutive models. The
numerical simulations were conducted with initial amplitude of A0 = 0.002 m and a frequency of
f0 = 160 Hz.

Figure 7.16 Wave structures on a granular film obtained at an initial frequency of f0 = 160 Hz and
for amplitudes of A0 = 0.0005 m (a1), 0.001 m (a2), 0.002 m (a3), and 0.003 m (a4) and at an initial
amplitude of A0 = 0.002 m and for frequencies of f0 = 80 Hz (b1), 120 Hz (b2), 160 Hz (b3), and
240 Hz (b4).
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7.3 Summary

In this chapter, the elastoplastic and phase-change constitutive models are employed to
study the 3D granular impacts. The CUDA parallel programming interface for an NVIDIA
GPU has been used to improve the computational efficiency of the SPH computations for
granular flows. To demonstrate the feasibility of the proposed approach, SPH simulations
were conducted for four different cases involving granular flow. The results of these
simulations have been compared to available experimental data and to numerical data
obtained from alternative simulation methdologies, which shows that the SPH method can
tackle the granular impacts problems well.

95





Chapter 8

Conclusions and future plan

8.1 Conclusions and novelties

The applications of the SPH method in conjunction with the Open-MP and CUDA parallel
programming interfaces on the 3D landmine detonation, the underwater explosion, and
the granular impacts have been presented in the thesis. The conclusions and novelties are
summarized as follows:

1) Firstly, the in-house SPH code was parallelized using the Open-MP programming
interface to achieve a high computational efficiency. The 3D shaped-charge detonation has
been tested to evaluate the computational performance of the parallel in-house SPH code.
The numerical results show that the computational time reduces rapidly with the increase
of the threads, and the speedup ratio can increase to around 10 when using 24 threads.
Thus, the Open-MP programming interface can be employed to parallelize the most time-
consuming sections in the SPH code so that the calculation efficiency of the SPH program
can be enhanced significantly.

2) Secondly, the elastoplastic and the hypoplastic constitutive models were incoporated
in SPH to simulate 2D and 3D landmine detonations. These two constitutive models have
been validated by the sand collapse problem. Then the 2D and 3D landmine detonation
and their effects on structures have been studied using the SPH method in conjunction
with these two models. Both of the elastoplastic and hypoplastic constitutive models are
appropriate for the 3D landmine detonation simulation. The numerical solutions such as
the shape of soil ejecta and the heights of the soil fragmentation at representative times are
in good agreement with the experimental results, which shows that the SPH method can
deal with the extremely large deformation problems very well. To our best knowledge, this
is the first time these two constitutive models are implemented in SPH to investigate the
landmine detonation problems.

3) Afterwards, the 3D underwater explosion within a cylindrical rigid and aluminum
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tube has been investigated. The numerical results are compared against the experimental
data and other available numerical results, which shows that the SPH method is suitable for
predicting the underwater explosion and the deformation of the structures. The cavitation
phenomenon in an underwater explosion in a cylinder (rigid or deformable) is well predicted
generally using the SPH method in conjunction with the modified Schmidt cavitating
model. Predictions of the pressure distribution and the deformation of the structure obtained
from the SPH method are generally in reasonable to good conformance with experimental
measurements as well as with other numerical simulations. To the best of our knowledge,
this appears to be first time that a fully explicit 3D underwater explosion in either a rigid
or a deformable cylinder incorporating properly the cavitation phenomenology has been
successfully simulated using the SPH method.

4) Finally, fully 3D granular impact problems involving large deformations can be
addressed successfully using the SPH methodology with either the phase-change or the
elastoplastic constitutive models. To the best of our knowledge, this is the first time
that the phase-change constitutive model has been implemented within SPH framework and
successfully used for the simulation of 3Dgranular impact problems. The SPHmethodology
can be used to efficiently simulate granular impact problems with a large number of particles
on readily available commodity GPUs. The 3D impact of a granular jet with a wave structure
on the granular film and the head-on collisions of dense granular jets have been successfully
simulated using the SPH methodology for the first time.

8.2 Future plan

The future research can be conducted in the following aspects. In the aspect of applications,
1)More constitutivemodels, such as the cam-clay and themodified cam-clay constitutive

models [104], can be implemented in the in-house SPH code to investigate the dynamic
behavior of soil explosion further.

2) The solid impact Cowper-Symonds model will be implemented and incorporated into
our SPH code. The damage to various structures arising from an underwater explosion will
be conducted using these models and validated using available experimental data in order
the assess the capabiity of the modeling scheme to predict structural damage.

3) The SPH method can be coupled with the conventional FEM method to investigate
the fluid-structure interactions, in which SPH is utilized to model fluid flow, while FEM is
employed to simulate the dynamic response of thin-walled structures.

4) The CUDA parallel computing platform and programming model, which facilitates
the implementation of parallelization of the present SPH solver on GPUs, will be im-
plemented to simulate explosion in soil in three dimensions involving large number of
particles.
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In the theoretical aspect,
1) The more general technique which can tackle the interfaces in multiphase flows with

large density ratio within the SPH framework with higher accuracy and stability will be
investigated in the future.

2) The implementation of the boundary condition will be studied further to obatin the
numerical results with higher accuracy.

3) More robust approach for the evolution of the smoothing length h will be proposed
for the simulations of the problems with shock wave.
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Appendix A

The derivation details of the discretized
governing equations

A.1 Continuity equation

The continuity equation is
dρ
dt
= −ρ

∂vβ

∂xβ
. (A.1)

As
∂(ρvβ)

∂xβ
= vβ

∂ρ

∂xβ
+ ρ

∂vβ

∂xβ
, (A.2)

the term on the RHS of Eq. (A.1) can be written as

− ρ
∂vβ

∂xβ
= vβ

∂ρ

∂xβ
−
∂(ρvβ)

∂xβ
. (A.3)

Using the SPH discretization equation for the function derivative,

〈∇ f (xi)〉 = −

N∑
j=1

f (x j)∇Wi j
m j

ρ j
, (A.4)

the two terms on the RHS of the Eq. (A.3) can be discretized as

−
∂(ρiv

β
i )

∂xβi
=

N∑
j=1

ρ jv
β
j

∂Wi j

∂xβi

m j

ρ j
, (A.5)

v
β
i
∂ρi

∂xβi
= −v

β
i

N∑
j=1

ρ j
∂Wi j

∂xβi

m j

ρ j
. (A.6)

Combining Eq. (A.5) and Eq. (A.6) yields

dρi

dt
= −ρi

∂v
β
i

∂xβi
=

N∑
j=1

m jv
β
i j

∂Wi j

∂xβi
. (A.7)
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A.2 Momentum equation

The momentum equation is shown in the following,

dvα

dt
=

1
ρ

∂σαβ

∂xβ
. (A.8)

With the Eq. (A.4), the summation form of the term on the RHS of the above equation can
be obtained as

∂σ
αβ
i

∂xβi
=

N∑
j=1

m j

ρ j
σ
αβ
j

∂Wi j

∂xβi
. (A.9)

Because

∇1 =
N∑

j=1

m j

ρ j

∂Wi j

∂xβi
= 0 , (A.10)

the term on the LHS of the following equation can be written as

N∑
j=1

m j

ρ j

σ
αβ
i

ρi

∂Wi j

∂xβi
=
σ
αβ
i

ρi

N∑
j=1

m j

ρ j

∂Wi j

∂xβi
= 0 . (A.11)

The discretized momentum equation can be obtained through combining Eq. (A.9) and Eq.
(A.11)

dvαi
dt
=

N∑
j=1

m j

σ
αβ
i + σ

αβ
j

ρiρ j

∂Wi j

∂xβi
. (A.12)

A.3 Energy equation

The following equation is the energy equation,

de
dt
=
σαβ

ρ

∂vα

∂xβ
. (A.13)

Substituting the following formula to the Eq. (A.13),

σαβ = −pδαβ + Sαβ , (A.14)

the energy equation becomes

de
dt
=
−p
ρ

∂vα

∂xα
+

Sαβ

ρ

∂vα

∂xβ
. (A.15)
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Since the shear stress Sαβ = µεαβ, in which µ is the viscosity, and εαβ are the components
of the shear strain rates. Consequently, the energy equation becomes

de
dt
=
−p
ρ

∂vα

∂xα
+

µ

2ρ
εαβεαβ . (A.16)

Firstly,
−p
ρ

∂vα

∂xα
=

p
ρ2

dρ
dt

, (A.17)

Consider the function approximation of the continuity equation and Eq. (A.10) ,

dρ
dt
= −ρi

N∑
j=1

m j

ρ j
v
β
j

∂Wi j

∂xβi
, (A.18)

N∑
j=1

m j

ρ j

∂Wi j

∂xβi
= 0 = ρiv

β
i

N∑
j=1

m j

ρ j

∂Wi j

∂xβi
, (A.19)

Combining the two equations above yields

dρ
dt
= ρi

N∑
j=1

m j

ρ j
v
β
i j

∂Wi j

∂xβi
. (A.20)

Therefore, the term on the RHS of Eq. (A.17) can be rewritten as

pi

ρ2
i

dρi

dt
=

pi

ρi

N∑
j=1

m j

ρ j
v
β
i j

∂Wi j

∂xβi
, (A.21)

As
∂(pvα)
∂xα

= p
∂vα

∂xα
+ vα

∂p
∂xα

, (A.22)

− p
∂vα

∂xα
= −

∂(pvα)
∂xα

+ vα
∂p
∂xα

. (A.23)

Using the discretization of the function derivative, we can get

−
pi

ρi

∂vαi
∂xαi
= −

1
ρi

N∑
j=1

m j

ρ j
p jv

β
j

∂Wi j

∂xβi
+
v
β
i

ρi

N∑
j=1

m j

ρ j
p j
∂Wi j

∂xβi
. (A.24)

Therefore, adding Eq. (A.21) and Eq. (A.24) together yields the discretized energy equation

dei

dt
=

1
2

N∑
j=1

m j
pi + p j

ρiρ j
v
β
i j ·

∂Wi j

∂xβi
+

1
2ρi

Sαβi ε
αβ
i . (A.25)
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Appendix B

Kernel gradient correction

For the 2D problem, the gradient of a field function f (x) can be represented as [40]

∇ f (x) = ∇ f (x) − ∇1 . (B.1)

The equation above can be approximated by using the kernel function,

〈∇ f (x)〉 =
∫
Ω

f (x′)∇Wdx′ − f (x)
∫
Ω
∇Wdx′ . (B.2)

The second-order Taylor expansion of the first term on the RHS is given by∫
Ω

f (x′)∇Wdx′ = f (x)
∫
Ω
∇Wdx′ +

(∫
Ω
(x′ − x) ⊗ ∇Wdx′

)
∇ f (x) + O

(
h2

)
, (B.3)

Substituting Eq. (B.3) to Eq. (B.2) yields

〈∇ f (x)〉 =
(∫

Ω
(x′ − x) ⊗ ∇Wdx′

)
∇ f (x) + O

(
h2

)
. (B.4)

From Eq. (B.4), we can find that the kernel approximation of the gradient of f (x) is
second-order accurate if the following requirement can be satisfied.∫

Ω
(x′ − x) ⊗ ∇Wdx′ =

(
1 0
0 1

)
. (B.5)

In order to confirm the C1 consistency in SPH, the Eq. (B.5) should be satisfied in discrete
particle approximation. Therefore, the corrected kernel gradient ∇C

i Wi j is employed to
achieve the requirement above.

N∑
j=1

(
xj − xi

)
⊗ ∇C

i Wi j
m j

ρ j
=

(
1 0
0 1

)
, (B.6)
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where the ∇C
i Wi j = L(xi)∇iWi j . The renormalization matrix L(xi) is in the following

form.

L(ri) =

©­­­­­­«

N∑
j=1

x ji
∂Wi j

∂xi

m j

ρ j

N∑
j=1

x ji
∂Wi j

∂yi

m j

ρ j

N∑
j=1

y ji
∂Wi j

∂xi

m j

ρ j

N∑
j=1

y ji
∂Wi j

∂yi

m j

ρ j

ª®®®®®®¬

−1

. (B.7)

The employment of the corrected kernel gradient in Eq. (B.7) ensures the C1 consistency
in the SPH method. The L(xi) for 3D problems can be derived in the same manner.
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Appendix C

Essentials of continuum mechanics

The deformation can be presented by giving the path of every particle X .

x = x(X, t) . (C.1)

The velocity can be represented in terms of spatial coordinates and the time.

vi = vi(x1, x2, x3, t) . (C.2)

Figure C.1 The relative velocity of particle Q at point q to particle P at point p.

As can be seen from Fig. C1, the relative velocity at particle P relative to particle Q are
given by

dvi =
∂vi

∂x j
dx j . (C.3)

Therefore,
dv = L · dx , (C.4)
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in which L is termed as the spatial gradients of velocity.

L =D +W , (C.5)

D =
1
2
(L +LT ) , (C.6)

W =
1
2
(L −LT ) . (C.7)

Lkm = vk,m can be divided into two parts: a symmetric tensor D called the rate of
deformation tensor or the stretching tensor, a skew-symmetric tensor W called the spin
tensor or vorticity tensor.
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Appendix D

Incremental plastic strain derivation

The incremental plastic strain can be obtained by subtracting the deviatoric part of the
elastic strain increment 1

2G (S
n+1
i j − SRn

i j ) from the total deviatoric increment ∆ε′i j , i.e.,

∆ε
p
i j = ∆ε

′

i j −
1

2G
(Sn+1

i j − SRn

i j ) , (D.1)

∆ε
′

i j =

∗Sn+1
i j − SRn

i j

2G
, (D.2)

where ∗ denotes a trial stress value. Substituting Eq. (D.1) to Eq. (D.2), we can obtain

∆ε
p
i j =

∗Sn+1
i j − Sn+1

i j

2G
. (D.3)

S∗ =
(

3
2
∗Sn+1

i j
∗Sn+1

i j

) 1
2 is defined as the effective trial stress. Substituting the following

equation
Sn+1

i j =
σy

S∗
∗Sn+1

i j = m∗Sn+1
i j (D.4)

into Eq. (D.3) gives

∆ε
p
i j =

(
1 − m

2G

)
∗Sn+1

i j =

(
1 − m
2Gm

)
Sn+1

i j = dλSn+1
i j . (D.5)

The definition of an increment in the effective plastic strain is

∆εp =

(
2
3
∆ε

p
i j∆ε

p
i j

) 1
2

. (D.6)

Squaring both sides of Eq. (D.5) leads to

∆ε
p
i j∆ε

p
i j =

(
1 − m

2G

)2
∗Sn+1

i j
∗Sn+1

i j . (D.7)
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From Eq. (D.6)
3
2
(∆εp)2 =

(
1 − m

2G

)2 2
3
(S∗)2 , (D.8)

we can obtain that
∆εp =

1 − m
3G

S∗ =
S∗ − σy

3G
. (D.9)

Therefore, the incremental plastic strain can be calculated through Eq. (D.9) conveniently.
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Appendix E

The derivation of the proportionality
factor

In order to use the Eq. (3.10), the change rate of the plastic multiplier Ûλi must be determined.
During plastic deformation, f (σαβ) = 0 is satisfied. Therefore, the total derivative of
function f is

df =
∂ f
∂σαβ

dσαβ = 0 . (E.1)

This is known as the consistent condition for the perfectly plastic material. Then we can get
the following equation based on Eq. (E.1),

f (σαβ + dσαβ) = f (σαβ) + df = f (σαβ) . (E.2)

The premise of perfectly plastic constitutive relations assumes that thematerials can undergo
small plastic as well as elastic strains at each loading increment. Then the total strain
increment tensor can be obtained by combining elastic with plastic strain.

Ûεαβ = Ûε
αβ
e + Ûε

αβ
p =

ÛSαβ

2G
+

1 − 2µ
3E

Ûσγγδαβ + Ûλ
∂g

∂σαβ
. (E.3)

E is the Young’s modulus, K is the elastic bulk modulus, and G is the elastic shear modulus.

K =
E

3(1 − 2µ)
, (E.4)

G =
E

2(1 + µ)
. (E.5)

The equation above can be rewritten by replacing ÛI1 = Ûσ
γγ.

Ûεαβ =
ÛSαβ

2G
+
ÛI1

9K
δαβ + Ûλ

∂g

∂σαβ
. (E.6)
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Substituting Ûσαβ = ÛSαβ + 1
3 Ûσ

γγδαβ to Eq. (E.6), the stress-strain relationship can be
obtained as

Ûεαβ =

(
Ûσαβ − 1

3 Ûσ
γγδαβ

2G
+
ÛI1

9K
δαβ

)
+ Ûλ

∂g

∂σαβ
. (E.7)

Rearrange the above equation,

Ûσαβ = 2G Ûεαβ − 2G Ûλ
∂g

∂σαβ
+

3K − 2G
9K

ÛI1δ
αβ . (E.8)

Multiply both sides of Eq. (E.8) by δαβ yields(
Ûεαβ − Ûλ

∂g

∂σαβ

)
δαβ =

(
Ûσαβ − ( ÛI1/3)δαβ

)
δαβ

2G
+
ÛI1

3K
δαβδαβ . (E.9)

Therefore,
ÛI1 = 3K

(
Ûεγγ − Ûλ

∂g

∂σαβ
δαβ

)
. (E.10)

The substitution of Eq. (E.10) into Eq. (E.8) gives

Ûσαβ = 2G Ûeαβ + K Ûεγγδαβ − Ûλ
((

K −
2G
3

)
∂g

∂σmn δ
mnδαβ + 2G

∂g

∂σαβ

)
. (E.11)

If the material is isotropic, the yield function can be expressed as: f (I0,
√

J2, (J3)
1/3) = 0.

For Drucker-Prager model, the yielding and plastic potential relations are generally given
by the following equations.

f (σαβ) = F(I1,
√

J2) − K = 0 , (E.12)

g(σαβ) = G(I1,
√

J2) − K = 0 . (E.13)

The derivative of these functions with respect to the stress tensor can be obtained as follows:

∂ f
∂σαβ

=
∂ f
∂I1

∂I1

∂σαβ
+

∂ f
∂
√

J2

∂
√

J2

∂σαβ
=
∂ f
∂I1

δαβ +
1

2
√

J2

∂ f
∂
√

J2
Sαβ , (E.14)

∂g

∂σαβ
=
∂g

∂I1

∂I1

∂σαβ
+

∂g

∂
√

J2

∂
√

J2

∂σαβ
=
∂g

∂I1
δαβ +

1
2
√

J2

∂g

∂
√

J2
Sαβ . (E.15)

Substituting Eq. (E.14) and Eq. (E.15) into Eq. (E.11) leads to

Ûσαβ = 2G Ûeαβ + K Ûεγγδαβ − Ûλ
(
3K

∂g

∂I1
δαβ +

G
√

J2

∂g

∂
√

J2
Sαβ

)
, (E.16)

The Ûλ can also be obtained through substituting Eq. (E.11) into Eq. (E.1).

Ûλ =
3K Ûεγγ ∂ f

∂I1
+ G√

J2

∂ f
∂
√

J2
Smn Ûεmn

9K ∂ f
∂I1

∂g
∂I1
+ G ∂ f

∂
√

J2

∂g

∂
√

J2

. (E.17)
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E. The derivation of the proportionality factor

The yield function in soil model of the thesis is expressed based on the modified Von Mises
criterion,

f (I1, J2) =
√

J2 + αI1 − kc . (E.18)

If the plastic flow rule is associated, then the plastic potential function of Drucker-Prager
model is the same as yield function form.

g(I1, J2) =
√

J2 + αI1 − kc . (E.19)

Substituting equation Eq. (E.18) and Eq. (E.19) into Eq. (E.17), then we can get the change
rate of the plastic multiplier,

Ûλ =
3αφK Ûεγγ + (G/

√
J2)Sαβ Ûεαβ

9α2
φK + G

. (E.20)
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