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Abstract

A relay attack is a potentially devastating form of a man-in-the-middle attack, that

can circumvent any challenge-response authentication protcol. A relay attack also has no

known cryptographic solution. This thesis proposes the usage of reciprocal channel state

information in a wireless system to detect the presence of a relay attack. Through the

usage of an open source channel state information tool, a challenge-response authentication

Channel Based Relay Attack Detection Protocol is designed and implemented using IEEE

802.11n (WiFi) in detail. The proposed protocol adapts ideas from solutions to other

problems, to create a novel solution to the relay attack problem. Preliminary results are

done to show the practicality of using channel state information for randomness extraction.

As well, two novel attacks are proposed that could be used to defeat the protocol and other

similar protocols. To handle these attacks, two modifications are given that only work with

the Channel Based Relay Attack Detection Protocol.
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Chapter 1

Introduction

Since the turn of the twentieth century, wireless communications has increasingly become

pervasive in the lives of almost every human. The GSM Association reports that 66%

of all people on the planet have a unique mobile phone subscription, with continuing

growth projected [1]. Radio Frequency Identification (RFID) is already ubiquitous in many

areas of our lives. Beyond established technology, the burgeoning field of the Internet of

Things (IoT) will see the addition of low powered computation and wireless communication

capabilities in almost all facets of our lives. From thermostats, security cameras, door locks,

and even fridges, these colloquially titled smart devices will be communicating primarily

by wireless means. Ensuring that these means of communications are secure is paramount

to their abilities to function seamlessly in our everyday lives. Without this, confidence

in these means of communications for handling delicate information will not be possible.

Secure wireless communications should assure confidentiality, authenticity, identity, and

accessibility through the use of cryptographic primitives and communication protocols.

Unfortunately, due to the nature of wireless communications being broadcasted on a

channel, the vulnerability of these modes of communications makes it difficult to rely on

typical cryptographic methods to provide security. One such vulnerability is known as a re-

lay attack. A relay attack is a passive man-in-the-middle attack that immediately transfers

messages between legitimate communicating parties via malicious parties. A relay attack

can be thought of as a simple range extension or repeater with the intent of breaking au-
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thentication without proximity. Typical cryptographic methods to provide authentication

and identification are easily overcome as the legitimate parties believe they are talking to

one another via unaltered messages. While the methods of attack is innocuous, the reper-

cussions are grand. On September 24 2017 in Solihull, England two thieves were recorded

performing a relay attack to unlock a new Mercedes-Benz in the car owner’s parking lot.

Researchers in Switzerland’s ETH have shown that a relay attack can be used to unlock

and start many high-end automobiles [2] . Relay attacks can also be utilized to abuse

RFID systems, like tap-to-pay payment systems and key-less entry systems.

To deal with this extraordinary form of attack, the paradigms utilized to provide se-

curity to typical communications systems cannot be used. When we consider the Open

System Interconnection (OSI) model that is used to define communications, we find that

most cryptographic solutions appear in the upper layers of communications. Protocols

such as Transport Layer Security (TLS), Internet Protocol Security (IPSec), and WiFi

Protected Access (WPA), are some of the most widespread cryptographic protocols, and

they all exist in the upper layers of the OSI model. The lowest layer in the OSI model is

the physical layer and it sees few security features, especially for non-military purposes.

The paradigm for the physical layer has been only to handle the transmitting and receiving

of upper layer data on to the physical communication channel.

The physical layer typically also has to provide capabilities to deal with channel state

effects. Additive white Gaussian noise (AWGN), multipath fading, path-loss, shadowing,

and signal interference are all effects that exist on the channel that negatively impact the

ability of communicating parties to receive coherent messages at high data rates. While

error detection and correction is typically done in the upper layers of communication, the

direct combating of these effects takes place on the physical layer. Taking advantage of

these statistical characteristics of the channel can potentially provide us with a solution

to many of these cryptographic problems that upper layer solutions might not be able to

deal with. In 1975, AD. Wyner had first shown that under certain conditions, information

theoretic security was achievable by taking advantage of channel capacity [4]. The use

of channel effects to provide secret key agreement, device authentication, and message

encryption have been shown as realistic physical-layer based solutions. Taking advantage

of these effects, in combination with typical cryptographic primitives, can be utilized to
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provide a protocol that can potentially defeat relay attacks.

The Channel Based Relay Attack Detection Protocol is a proposed solution to relay

attacks. The protocol utilizes the unique channel state that exists between reciprocal chan-

nels to provide authentication against relay attacks. The protocol aims to guarantee that

two parties that have pre-shared secret keys are directly communicating between themselves

and not via a man-in-the-middle. The protocol is an extension of the typical challenge-

response authentication protocols used in many communication security protocols. The

channel based relay attack detection protocol allows passive usage of symmetric-key based

challenge-response authentication, without the worry of a relay attack. As well, the identi-

fication of two new attacks on other physical-layer systems are discussed, with some unique

solutions proposed.

The contributions of this thesis are:

1. The design of the Channel Based Relay Attack Detection Protocol that uses measured

channel state information to derive a quantized channel. The quantized channel will

allow communicating parties to tell if a relay attack is occurring.

2. A design for the preliminary implementation of the Channel Based Relay Attack

Detection Protocol on top of the link layer IEEE 802.11 protocol (WiFi),

3. Preliminary analysis of the randomness properties of the Channel Based Relay Attack

Detection Protocol,

4. The proposal of a Forged Channel Attack and Analog Relay attack, and the discussion

of possible preventions.

This work is organized into six chapters: Chapter 2 covers the background information

in wireless communications and other related works in research; Chapter 3 gives an overview

of the design; Chapter 4 deals with the set-up of the protocol in software and hardware

(Section 4.1), and a preliminary implementation of the channel based relay attack detection

protocol (Section 4.2); Chapter 5 looks at preliminary experimental results; Chapter 6

identifies the two new attacks, and their possible solutions; Chapter 7 ends with a discussion
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of the conclusion and future works. The background material discussed in Chapter 2 begins

with a look at the relay attack and how it is able to circumvent upper layer cryptographic

methods, and what the repercussions of this are (Section 2.1). An overview is done on

the communication channel, including statistical multipath models for channels using real

baseband signals, and OFDM systems (Section 2.2). An in-depth look into IEEE 802.11n

at the physical layer is done to understand how it can be used for implementing the channel

based relay attack detection protocol. Related works in the field of physical layer security,

as well as other solutions to the relay attack are reviewed (Section 2.4). Chapter 3 will look

at the design for the protocol as an adaptation of the challenge-response authentication

protocol. Each of the six major steps in the protocol will be explained (Section 3.1).

The chapter will also look at proposed performance metrics for the protocol (Section 3.2).

Chapter 4 will take a closer look at the open source tools and libraries used to implement

the protocol in a specific instance. This includes: an open source 802.11 CSI Tool, Loss

of Radio Connectivity (LORCON), Packet Capture (PCAP), and Libgcrypt (Section 4.1).

The chapter will also look at how these packages can be used to implement the protocol

(Section 4.2). Chapter 5 focuses on the analysis of the preliminary protocol in a quantitative

observation. Some tests from the National Institute of Standards and Technology (NIST)

randomness suite are used to generate preliminary randomness results (Section 5.1). In

Chapter 6, two potential attacks of different feasibility are discussed, as well as possible

solutions. Chapter 7 will end with a conclusion of the thesis, and possible future work for

expanding the prevention of relay attacks into other communication protocols and robust

experimentation.
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Chapter 2

Background and Related Works

2.1 The Relay Attack

To understand the relay attack, we must take a look at the generalized man-in-the-middle

attack (MITM). The MITM attack is a form of threat, where an attacker exists in the

middle of the communication link between legitimate communicating parties. Typically,

the attacker’s goal in a MITM attack is to immitate or convince each party that they

are the other and intercept messages between them before relaying the message to the

intended recipient. MITM attacks can also be used to setup the communications between

legitimate parties in an advantageous way to the attacker, that makes the protocol no

longer semantically secure or breaking security. We can see a model of the generalized

MITM attack in Figure 2.1. The attacker can have two different roles: an active role,

known as an active MITM attack, or a passive role, known as a passive MITM attack.
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MITMA B

Figure 2.1: A man-in-the-middle attack

In the active scenario the attacker can forge, edit, delay and block messages being sent

between the legitimate parties. Active MITM attacks are popular avenues for discover-

ing vulnerabilities in security protocols that make them unsecure. In literature, the lack

authentication of cryptographic key agreement is often given as an example of a protocol

vulnerable to an active MITM attack. If either communicating party is not authenticated,

a MITM could establish fraudulent keys with each party, and forward intercepted messages

after decrypting and re-encrypting the messages. Attacks of this type are common on the

internet with pages that do not utilize secure socket layer (SSL) or transport layer security

(TLS). Even then, without proper certification of a user’s identity, attacks can still oc-

cur. Typically, active MITM attacks that target cryptographic protocols can be prevented

through the proper use of authentication, nonce generation, and the non-reuse of critical

components (such as nonces).

In contrast to the active attacker, a passive MITM attacker can simply relays mes-

sages between the communicating parties. Before relaying, they can attempt to read the

messages, which is referred to as “snooping”. If data is encrypted and authenticated, com-

munications remain confidential against passive relay attacks; messages cannot be read, if a

proper protocol is used. In a cryptographic context, passive MITM attacks are innocuous.

The relay attack in early literature is a form of passive MITM attack that acts as a

signal repeater. The attack’s first description in literature was by John Conway in his book

On Number and Games [6] . In the book Conway describes what has been called the Chess

Grandmaster Problem. The problem describes a young girl playing simultaneous chess
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games against legendary chess Grandmasters Bobby Fischer and Boris Spassky. Against

Spassky she is playing white and against Fischer she is black. Once Fischer makes the first

move, the girl will repeat that move to Spassky and vice-versa. Of course, the girl will

guarantee a win against one of the two Grandmasters as they are effectively playing each

other. This example of a relay attack has many variants, such as a Mafia Attack, where

criminals utilize the same sort of relay to fake transactions.

Given the relay attack described, we can generalize to a communication model with

parties, tag T and reader R. The attacker can have two modes of operation in implementing

the relay attack. The first is defined as a digital relay attack, and the second is defined

as an analog relay attack. If the parties are being targeted by a digital relay attack, the

attacker utilizes proxies to communicate directly between the parties. These proxies can

be considered as a proxy tag PT and proxy reader PR. PR directly communicates with

T and PT communicates with R. The two proxies share a link between each other to

forward messages they receive. The direct link between the proxies and the legitimate

communicating parties utilizes whatever communication methods are established in the

protocol being attacked. Before the proxies forward communications between themselves,

they would have to demodulate and decode the signals before encoding and remodulating

for relaying. Since the signal is being remodulated in the link between the proxies, it is

not necessarily the same mode of communication used in the protocol. Furthermore, once

the second proxy receives the relay digital information, it would demodulate and decode,

before further encoding and remodulating the signal towards the final target. The proxy-

to-proxy link utilized by the attacker can effectively increase the range of the protocol to

a length much beyond the intended use case. This allows the attacker to vary how the

attack is being done. The attack is then called a digital relay attack, because the digital

information is what is being directly relayed between each link. We can see the model for

this relay attack in Figure 2.2:
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PRT RPT

Attacker

Figure 2.2: Digital relay attack in a two party communication system

In contrast, an analog relay attack is more akin to a radio repeater. A series of analog

circuits with antennas or reflectors, are utilized by the attacker to re-transmit the exact

received signal towards the legitimate reader or tag. The signal would mostly be kept

unaltered; no demoduation and modulation would occur, and only the analog information

is relayed. Compared to a digital relay attack, there are not necessarily any proxies being

utilized by the attacker. As well, an analog relay attack would mostly be limited by range,

since it would happen purely over the wireless channel, and would have to have a chain

of relays to get an effect distance. It is possible to quantize the signal and forward it

to another device for re-transmission, but there would be a loss in precision. With this

in mind, a digital relay attack can comfortably have a proxy link that is over a wired

connection, dramatically increasing the potential range. For example, a coordinated pair

of attackers could implement a digital relay attack, where the reader and tag are many

kilometers away from each other. Regardless of the mode of operation to implement the

relay attack, the results are the same. The attacker manages to get the reader and the

tag to communicate with one another without the typical expectation of communicating

in the instance or environment.

The focus of the relay attack in this paper will be done on the passive authentication

system. These systems typically utilize the challenge-response authentication protocol in

many real world scenarios. Examples include passive key-less entry system (PKES) and

tap payment services. The challenge-response protocol authenticates by showing a proof

of knowledge with a verifiable response. This can be done publicly or symmetrically,

but involves the utilization of a private key. When both parties already share keys (i.e.

symmetric-keys), a response to a random challenge can be done with a tag generated by a

message authentication code (MAC). The parties authenticate each other by verifying the

MAC on the challenge. For example, if a owner wanted to unlock their car as they got
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near it, a PKES would have a key fob send a request for the car to generate a challenge.

The key fob and the car would both already share a symmetric-key, so the key fob would

respond to the challenge with a MAC. If the MAC verifies with the challenge, the car would

unlock itself. All this would occur without any input from the owner, for their convenience.

This form of PKES is used in many other RFID and higher frequency authentication sys-

tems. Symmetric-key challenge-response protocols can also provide mutual authentication

as shown in Figure 2.3:

T R

Ch = Nonce1

Resp = (Nonce2, MAC(Nonce1))

Ack1 = (Verify, MAC(Verify, Nonce2))

Req

Ack2 = (Nonce1, Nonce2, MAC(Nonce1, Nonce2))

Figure 2.3: Mutual symmetric-key Challenge-Response authentication protocol

If we were to inject a MITM performing a digital relay attack in the challenge-response

protocol, the protocol would proceed as if T and R were communicating directly with

each other. If we consider the example of unlocking a car with a PKES, the car would be

unlocking itself by not directly communicating with the key fob, but by communicating to

the proxy key fob (i.e. the attacker). We can see the model for the relay attack on the

mutual challenge-response protocol in Figure 2.4. This relay attack allows the challenge-

response protocol to extend the range to whatever distance the proxy link is.

9



T R

Ch

Resp

Ack1

Req

PTPR

Req
Req

Ch
Ch

Resp
Resp

Ack1
Ack1

Ack2
Ack2

Ack2

Figure 2.4: Relay attack on mutual symmetric-key Challenge-Response authentication

protocol

Regardless of the strength of the cryptographic protocols being used in the challenge-

response protocol (i.e. key bit-size, MAC protocol, nonce bit-size), the relay attack will

always extend the communication. Whatever challenge is generated will just be relayed

between the parties, with a response generated and relayed back. We can imagine a

scenario where the legitimate owner of a parked car is roaming in the public. A pair of

collaborating attackers acting as the proxies are coordinating an attack on the owner and

his car. One attacker stands next to the owner, while the other attacker stands next to the

car. The attackers then initiate the authentication protocol between the car and the key

in the owner’s pocket. Once the attackers finish relaying the exchange, the car will think

it has authenticated with the key and will unlock itself to be stolen. This happens without

the owner’s knowledge.

A limiting factor is that both parties have to expect the protocol to be occurring or be in
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a mode where the challenge-response occurs automatically (like a PKES). This means the

attacker would have to get the proxies to trigger the start of the protocol. As well, being

able to insert a MITM to such protocol requires access to the channel, such that the MITM

receives the messages before the intended parties. In practice, a relay attack is typically

limited to wireless communication channels. Particularly, where the communications used

are limited in range and the devices are passively powered. Examples include RFID, near-

field communication (NFC), BlueTooth, and ZigBee systems. These systems are especially

vulnerable to relay attacks, as what they authenticate is typically tied to the real world

(i.e., a cyber-physical system). For example, the success of authentication leads to a door

being unlocked, or a physical transaction completing.

2.2 The Wireless Communication Channel

The wireless communications channel characterizes the statistical properties and effects

of the physical environment used to transmit and receive messages. This includes phe-

nomenon such as: path loss, shadowing, multi-path effects, inter-symbol interference (ISI),

and thermal noise. Real channels are changing in time due to relative movements of re-

ceivers, transmitters, and reflectors. Reciprocity can also exists in the channels between

the transmitter and receiver, and between the receiver and transmitter. Reciprocity means

that transmissions from the transmitter to the receiver and vice-versa, travel through chan-

nels that have a high correlation with one another. Reciprocity can exist between different

channels depending on time, frequency, and distance. In this section a review of signals and

the characterization of a wireless communication channels is given to understand how reci-

procity can be utilized to prevent the relay attack, and how to use correlation to improve

the performance from other solutions in literature. As a reference, most of the derivations

and theory comes from Wireless Communications, a textbook by A. Goldsmith [3]. More

detail on the derivations can be found in the textbook.
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2.2.1 Signal Representation

When we discuss the transmitted and received signals, we need to have a proper mathe-

matical representation that allows us to capture all of the possible effects that can occur.

In this context, a signal is a function in time with a dependent variable that is some phys-

ical quantity, such as voltage or current. The standard in literature is to utilize a low

frequency signal to represent higher bandwidth components. This representation is called

baseband equivalent representation. Signals that occupy a frequency around zero are called

baseband signals, while signals that occupy a frequency far from zero are called bandpass

signals. In the baseband equivalent representation, a bandpass signal for transmission is

represented by a combination of a low frequency signal that carries information and a high

frequency carrier signal used to modulate the information signal. The frequency at which

a transmission occurs is important factor in the transmission. For example, the frequency

dictates the size of the antennas needed for communications, the rate at which information

can be transmitted, as well as the effectiveness of the signal to propagate over different

mediums and distances.

In the wireless communication system, we represent signals to be transmitted as a

vector on an orthonormal basis (signal constellation). The digital bit-stream in the base-

band environment is encoded to a vector on this plane. Given the vector, the coefficients

are parallelized before being modulated into a bandpass signal for transmission with the

orthonormal basis. The receiver performs the inverse operations by demodulating the re-

ceived signal into a vector and decodes this received vector into a digital bit-stream. We

can view this generic communication system in the Figure 2.5:
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Figure 2.5: Typical Wireless Communication System Block Diagram

How each of these subsystems are implemented depends on the communication protocol

being used. This includes the modulation schemes, channel model and message sources.

For the system modeled, we can consider a signal, x(t), between t ∈ [0, Ts] with band-

width Bs. The signal is carrying the digital information in an analog form. An antenna

functions in the real world, so only real analog signals can be produced and transmitted.

The signal is also a baseband signal, and can have a form dictacted by the transmission

that represents digital information. We can call x(t) the real baseband signal. To modulate

x(t) to some carrier frequency fc, based on the properties of the Fourier Transform:

s(t) = x(t) cos(2πfct)

where s(t) is the modulated signal for transmission, as shown in Figure 2.5, and is a band-

pass signal. In this case the orthonormal set used as the basis is simply {cos(2πfct)}. For

IEEE 802.11n, which is the communication scheme of focus in this thesis, the digital mod-

ulation techniques utilized are M-ary Phase Shift Keying (MPSK) and M-ary Quadrature

Amplitude Modulation (MQAM). For both techniques, the basis used is:

φ = {cos(2πfct),− sin(2πfct)}
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For MPSK, the coefficients are given by:

si1 = A cos(θi), si2 = A sin(θi)

θi = cos(2π(i− 1)/M)

where i ∈ {Z|1 ≤ i ≤ M} and is dictated by the symbol encoding. M is the number of

symbols to be represented in the system. For example, in quadrature phase shift keying

(QPSK), M = 4 and symbol 00 can be coded to i = 1. The Coding is typically chosen to

minimize the bit error rate.

For MQAM, the coefficients are given by:

si1, si2 = (2i− 1− L)d

where i and M are defined the same as for the MPSK technique, and d is a chosen equi-

distance between signal constellations. This distance is constrained by the transmission

energy of the transmitter. The larger the energy, the bigger the distance.

In both of these digital modulation techniques we can generalize the signal coefficients

as the real baseband signals. We can then represent the transmitted signal as:

s(t) = x(t) cos(2πfct)− y(t) sin(2πfct)

where x(t) and y(t) are the real baseband signals (or signal constellation coefficients). The

signals, x(t) and y(t), are referred to as the in-phase component and quadrature compo-

nent respectively. We can also represent the transmitted signal in a complex bandpass

representation:

s(t) = <{[x(t)− jy(t)]ej2πfct}

This representation makes it easy to capture all of the channel effects that can occur.

All signals also have a frequency response. This allows us to characterize the frequency

components of a signal. By utilizing the Fourier Transform and Inverse Fourier Transform,

we can convert back and forth between the time and frequency domain. We represent the

Fourier Transform on the signal as shown:

S(f) = F{s(t)}
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s(t) = F−1{S(f)}

The frequency response of a signal also reveals the bandwidth and power spectral density

of a signal. This information is important to quantify how a signal interacts with a channel.

2.2.2 Time-Invariant Channel

With a model for a transmitted signal, we need a reciprocal representation for a received

signal. A transmitted signal travels through a channel that has many effects on the sig-

nals. The most basic interaction involves thermal noise, which manifests as additive white

Gaussian Noise (AWGN) on the channel. More complex effects include multipaths. A

multipath channel results in different paths being traveled by the same transmission to the

receiver. These components have different angles of arrival and distances traveled. Relative

movements can also cause fading due to Doppler’s effects and delay paths, resulting in a

phase change. These different phase changes result in a destructive superposition of the

multipath signals. As well, there are long distance effects, such as path loss of transmission

energy and shadowing caused by environmental qualities. When we look at a channel, we

can consider it to be a system (filter) in which the transmitted signal is going through.

The most basic channel is a linear time-invariant (LTI) channel. An LTI channel has has

both the linearity properties and time-invariance mathematical properties.

Basic signals and systems theory tells us that the output of an LTI system is the linear

convolution (in time) between the input and the impulse response of the system. The

impulse response is the output signal when the impulse signal is input into the system.

We represent the impulse response with the signal h(t). We can then represent the output

signal by the following operation:

r(t) = h(t) ∗ s(t) + z(t)

We note that the function z(t) is the AWGN which maintains its Gaussian distribution.

We can also perform these operations in the frequency domain to simplify the math, as

multiplication is happening instead of convolution:

R(f) = S(f)H(f) + Z(f)

15



Since the transmitted signal is a bandpass signal, only the portion of the impulse frequency

response around the carrier frequency is considered. The impulse response is the bandpass

response. The area of consideration is the bandwidth B of the transmitted signal around

the carrier frequency. This impulse response can also be expressed by a baseband com-

ponent that is filtered around B and modulated to the carrier frequency. This baseband

component of the impulse response is convoluted with the baseband component of the

transmission. The received signal can be expressed as the modulation of this result:

r(t) = <{r`(t)ej2πfct}+ z(t)

Where r`(t) is the resulting equivalent baseband signal of the received transmission.

2.2.3 Time-Variant Channel

A channel that has the time invariance property is not common in real systems. Movements

of transmitters, receivers, and reflectors causes the environment of the channel to change

with time. This affects the many delay paths a signal travels and produces a Doppler’s

frequency shift. As mentioned, these effects result in phase changes that cause the con-

structive or deconstructive superposition of the different multipath signals, and can result

in fading in the received signal. Fading means that the received signal is attenuated, to a

point where it cannot be reliably decoded. Multipath delays can also result in inter-symbol

interference (ISI) if the maximum delay in the multipath component is longer than the sym-

bol time of the original transmission. If symbols are transmitted successively, then a signal

delayed by the symbol time would appear when the next symbol also arrives. To represent

the multipath effects, the impulse response becomes h(t, τ). The variable t represents the

time at which the response is received, while τ represents the delay in transmission. If a

path exists resulting in a delay τ and arrival t, then the impulse was sent at time t − τ .

The time of transmission of an impulse is based on τ . To further capture the time variant

effects on the received signal we have an expanded expression for it:

r(t) = <{
N∑
n=1

αn(t)r`(t− τn(t))ej2πfc[t−τn(t)]+φDn (t)}+ z(t)
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The summation captures each of the resolvable multipaths for the received signals that

superimpose. Unresolveability describes the multipaths that are sampled at a given short

interval, such that they are indistinguishable from one another. In this equation, there

are N ∈ N resolvable paths (for the unresolvable groups), but this may change in time

with the addition or removal of reflectors in the relative environment. For each resolvable

path there is a varying gain, delay, and Doppler shift. The function α(t) captures the

time varying attenuation that occurs due to path loss or other effects. The time varying

delay is represented by τn(t), which occurs due to the different lengths traveled by each

multipath to the receiver. The final effect captured is the Doppler shift φDn(t), which is

a phase shift resulting from the frequency shift caused by Doppler’s effect. We note that

the phase changes can have a significant effect over a short time-frame, when compared

to the effects of path loss or the delays themselves. Other than ISI, a delay only has a

large effect because the carrier frequency is multiple magnitudes larger. If the phase is

represented in the units of radians, and the carrier frequency is in kilohertz (at the very

least), the resulting phase due to the multiplication of the two can be large enough to

change the signal. The effects on the channel can be considered to be random variables

in time (random processes). Furthermore, under the assumption that each resolvable path

is independent from the other resolvable paths, the received signal can be considered as

the sum of N independent samples. If N is large enough, then we can invoke the Central

Limit Theorem to express the received signal as a Gaussian random process, as noise is also

Gaussian distributed. If each path is considered to be independent from one another, then

we know that they must also be uncorrelated. This is defined as uncorrelated scattering,

which is another assumption we can make on the channel.

An extra effect on the received signal that needs consideration is the differences in physi-

cal hardware. Hardware, in wireless communications, includes components such as: clocks,

antennas, converters, mixers, modulators, etc. The physical differences in these compo-

nents can cause changes in timing and frequency synchronization between the transmitter

and receiver. These differences add another phase change, that causes a constant effect on

each received signal. To derive this phase:

r(t) = <{
N∑
n=1

αn(t)r`(t− τn(t))ej2π(fc+fhdw)[t+thdw−τn(t)]+φDn (t)}+ z(t)
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where thdw is the hardware difference in the clocks, and fhdw is the frequency difference.

As mentioned, the small difference in timing is amplified by the large carrier frequency. In

general, we condense these differences into a constant phase term φhdw:

r(t) = <{
N∑
n=1

αn(t)r`(t− τn(t))ej2πfc[t−τn(t)]+φDn (t)+φhdw}+ z(t) (2.1)

We will make the assumption that this phase is relatively constant in time, but varies with

the frequency.

For a time-variant impulse response, the received signal can still be evaluated by the

convolution with the transmitted signal:

r(t) = h(t, τ) ∗ s(t) + z(t)

In the frequency domain, we note that the response also changes with time. Since τ

captures the behavior of the impulse response, we can get the frequency response by taking

the Fourier Transform of the impulse response in respect to τ :

H(f, t) =

∫ +∞

−∞
h(τ, t)e−j2πfτdτ

We can use the frequency response of the time-variant channel and the frequency response

of the transmitted signal to express the received signal:

R(f) = H(f, t)S(f) + Z(f)

The impulse response h(t, τ) can be expressed as a complex function, with both a phase

and a magnitude. Since the received signal and noise are Gaussian random processes, and

the transmitted signal is deterministic, the channel impulse response is also Gaussian dis-

tributed by the central limit theorem. How the different random processes (noise, phase,

amplitude) are distributed depends on the model used to represent the channel and its en-

vironment. For example, the phases will have different distributions based on the existence

of a line-of-sight (LOS) and the positioning of the reflectors.
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2.2.4 Delay Spread and Coherence Bandwidth

The different delays of the many multipath signals allow us to characterize effects in the

channel. For example, as mentioned in subsection 2.2.3, the existence of a multipath

signal with a long delay can interfere with subsequent transmissions (ISI). To express the

effective delays in the channel, the delay spread (Tm) is used. The delay spread is typically

defined as the difference in the delay from the first received signal and the last. This can

be calculated by taking the first signal as the reference, and comparing it last multipath

received. Of course, there may be infinite delayed multipath signals in theory, but if the

power of noise is considered the floor of acceptance, then interference below this level can

be discarded.

Given that h(t, τ) can be expressed as a Gaussian process and under the assumption it

is wide-sense stationary and the multipaths are independent, we can use its autocorrelation

to characterize it:

A(τ1, τ2; t1, t2) = A(τ1, τ2; t, t+ ∆t)

= A(τ, τ + ∆τ ; ∆t)

= E[h∗(τ, t)h(τ + ∆τ, t+ ∆t)]

= A(τ ; ∆t)δ(∆τ)

, A(τ ; ∆t)

The movement from the first line to the second line in the above equation comes from the

wide-sense stationary property. The third line to the fourth line comes from uncorrelated

scattering. Since different delays are uncorrelated, we only get correlation when ∆τ = 0.

If we further take ∆t = 0 for the autocorrelation, then we get what is referred to as the

power delay profile:

A(τ ; ∆t)|∆t=0 , A(τ)

The power delay profile gives us the amount of power at different delays. We can use this

function to calculate the statistical delay spread. Typically, the root-mean-squared delay

spread is used as an accurate estimation of the delay spread in the channel.

The coherence bandwidth is the bandwidth of the channel, where different frequency

components have high correlation with one another. Given that h(t, τ) has a Gaussian
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distribution, the frequency response H(f, t) also has a Gaussian distribution. We can then

take its autocorrelation to characterize it and the coherence bandwidth:

A(f1, f2; t1, t2) = E[

∫ +∞

−∞
h∗(τ1, t)e

j2πf1τ1dτ1

∫ +∞

−∞
h(τ2, t+ ∆t)e−j2πf2τ2dτ2]

= E[

∫ +∞

−∞
h∗(τ, t)h(τ, t+ ∆t)e−j2π(∆f)τdτ ]

=

∫ +∞

−∞
A(τ ; ∆t)e−j2π∆fτdτ

, A(∆f ; ∆t)

We go from the first line to the second line due to uncorrelated scattering, which allows

us to factor τ from the exponential. The result ends up being the Fourier transform of

the autocorrelation of the impulse response. If we take ∆t = 0, then the result is the

autocorrelation in respect to the frequency difference ∆f . This function allows us to

determine when different frequency components decorrelate. We can define the coherence

bandwidth (Bc) as the smallest positive root of A(∆f). The relationship between the

delay spread and the coherence bandwidth comes from the fact that A(∆f) is the Fourier

transform of A(τ). If we consider A(τ) to have low power components beyond the delay

spread (Tm), then Bc ∝ 1
Tm

.

For transmission signals that have bandwidths larger than the coherence bandwidth,

their frequency components outside of the coherence bandwidth become uncorrelated, and

can potentially superimpose destructively. This fading is defined as frequency-selective

fading. If the signal’s bandwidth is within the coherence bandwidth, we define this as

flat-fading.

2.2.5 Coherence Time and Uncorrelated Distances

If we notice the autocorrelation in respect to ∆τ and ∆t, we can derive the correlation in

terms of the difference in observation time by setting ∆τ = 0:

A(∆τ,∆t)|∆τ=0 = A(∆t)
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Similar to the coherence bandwidth, we define the coherence time (Tc) to be the lowest

positive root of A(∆t). The coherence time of a time-variant channel is the amount of time

that has to pass before the channel becomes uncorrelated. At a high level, the coherence

time can be thought of as the rate at which the channel is changing. Any observation of

the channel is only representative for the coherence time. This means that a transmission

in time must be completed within the coherence time to ensure there is no fading. If

fading caused by a changing channel occurs, we define the channel as a fast-fading channel.

Similarly, if the coherence time is large relative to the transmission time, it does not affect

fading. The channel is considered to be a slow-fading channel in this circumstance.

Given the difference in time between channel correlation, we also want to establish a

distance for which the channel becomes uncorrelated. Let us consider two receivers seper-

ated by some distance d. The two receivers receive the signals r1(t) and r2(t) respectively.

We define r1(t) to be the arrival at the first receiver, and r2(t) the arrival at the other one.

As well, we make the assumption that the two receivers are in the same environment; the

scattering for each multipath comes from the same reflectors. If the receivers were not in

the same environment, then the number of multipaths and delays would be uncorrelated.

Another assumption is that the receivers exist in a dense scattering envrionment. This

means that they are equally likely to receive a multipath from every possible angle of ar-

rival (0, 2π]. Under these assumptions we can evaluate the cross-correlation of between the

two received signals. In Goldsmith’s book [3], the relation to the uncorrelated distance is

a Bessel function of the 0th order. This distribution tells us that after a distance of several

wavelengths the channels are fully decorrelated.

2.2.6 Orthogonal Frequency Division Multiplexing

As shown in subsection 2.2.4, the multipath channel has a delay spread, which if large

enough can cause frequency-selective fading and ISI. To defeat these effects, the transmitted

symbols must have a symbol duration (Ts) that is significantly greater than the delay spread

(Ts >> Tm). This can also be interpreted as the bandwidth of the signal being significantly

smaller than the coherence bandwidth (B << Bc). If we consider a single frequency being

utilized, by increasing the symbol duration of the transmission (decreasing bandwidth), we

21



are simultaneously reducing the rate of the transmission (by Shannon-Hartley Theorem).

Orthogonal Frequency Division Multiplexing (OFDM), intends to defeat this phenomenon

by parallelizing a single stream transmission, into many smaller transmissions that will

ideally utilize the same full bandwidth when combined. Each of these parallel frequencies

must be orthogonal from one another to prevent interference. The orthogonality also allows

the subcarriers to overlap to achieve high spectral efficiency.

For a channel with a set coherence bandwidth (Bc), we want to take a single frequency

transmission with a set bandwidth (B), and split its bandwidth into N parallel transmis-

sions on different “subcarrier” frequencies, as opposed to a single carrier frequency, such

that each of the N transmissions has a bandwidth << Bc. We set the subcarrier band-

width to be BN = B
N

, such that BN << Bc. To implement OFDM in practical systems,

the Inverse Fast Fourier Transform (IFFT) algorithm is used to minimize the hardware

requirements for transmitting, and the Fast Fourier Transform (FFT) is used for receiving.

For transmitting, a modulated symbol stream is parallelized into the N substreams. A

set of N of these symbols are used as the input to the IFFT to generate N subcarrier

transmissions.

2.2.7 Channel Reciprocity

In subsection 2.2.4 and subsection 2.2.5, we defined three aspects in which the channel be-

comes uncorrelated: changes in frequency, time, and distance. If we consider a transmitter

and receiver that are communicating, under the assumption that the channel is wide-sense

stationary and has independent scattering, we have high correlation under the following

simultaneous conditions:

1. The respective carrier frequencies and corresponding transmission bandwidth are

within the same coherence bandwidth of the channel,

2. The round-trip (including signal processing time, transmission rate, and time-of-

flight) is within the coherence time of the channel,

3. The individual movements of the transmitter, receiver and reflectors in the effective

environment is less than the wavelength of the carrier frequency.
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All current practical wireless communication systems are half-duplex; communications only

occur from a single device over a given frequency and time instance. Under the above con-

ditions, the half-duplex channel will appear reciprocal (highly correlated) between the

transmissions of both parties. Specifically, the impulse response, H12 (seen from the trans-

mitter to receiver) and response H21 (seen from receiver to transmitter), are relatively equal

under the conditions. Furthermore, for any other device that exists in the wiretap channel,

if it does not satisfy these correlation conditions between one or both of the communicating

parties, it will have an impulse response that is uncorrelated with the others. An example

of a reciprocal exchange in a half-duplex wireless system can be seen in Figure 2.6:

Device 1 Device 2

Device 3

H12

H21

H32

H23

H13

H31

H12 = H21

H23 = H32

H13 = H31

H12≠ H23 ≠ H13

Under Correlated 
Conditions:

Figure 2.6: A 3-Device Half-Duplex System with a Reciprocal Exchange

If we can make the assumption that the exchanges between the devices are occuring

within the correlation parameters, and that the devices are seperated from one another by

at least a few wavelengths, then we find the following relation between the channel states

Hij:

H12 = H21

H13 = H31

H23 = H32

H12 6= H13 6= H23
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When an attacker exists on the wireless wiretap channel and is attempting to relay mes-

sages, as long as the devices are seperated by a multiple of the wavelength, the channel

measurements between each hop will be different. This is similar to the observation seen

in Figure 2.6. This phenomenon is the motivation for detecting relay attacks.

2.3 IEEE 802.11n

The Institution of Electrical and Electronic Engineers (IEEE) first released the 802.11 pro-

tocol in 1997 to take advantage of the newly deregulated 2.4 GHz frequency band. Their

aim was to create a standard that would allow fast, reliable, and ubiquitous access for

devices trying to communicate on a wireless area network (WAN). The implementation

of the protocol on devices is colloquially known as Wireless Fidelity (WiFi), and has be-

come widespread over the last decade, appearing in billions of consumer devices. Since the

original standard was released, several standard amendments have been released to im-

prove performance, accessibility, flexibility, and other performance criterion. Technologies

such as modulation schemes, frequency bands, antenna arrays, and multiplexing have all

been modified in newer 802.11 amendments to help improve the performance and usage of

the protocol in different scenarios. Anecdotally, the most utilized 802.11 standard is the

802.11n amendment released in 2009. It introduced key technologies into the 802.11 stan-

dard such as multiple-input multiple-output (MIMO) diversity, the utilization of both the

2.4 GHz and 5 Ghz frequency bands, orthogonal frequency division multiplexing (OFDM),

frame aggregation, and beam-forming. IEEE 802.11n allows user devices to achieve high

throughput (HT) transmissions to meet growing consumer demands. If we consider the

International Organization for Standardization (ISO) five layer networking model in Fig-

ure 2.7:
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Figure 2.7: Five Layer Networking Model

IEEE 802.11 exists across the link and physical layers. In this section an overview of

the link and physical layers for IEEE 802.11n are given. Detail is also given on the OFDM

implementation in 802.11n, and how channel estimation is utilized with it.

2.3.1 Link Layer

The link layer is typically thought to be split into two sublayers: medium access control

(MAC) and logical link control (LLC) sublayers. The MAC layer intends to deal with

the problems of data encapsulation and media access management [34]. Data encapsu-

lation includes tasks such as: data frame delimitation (framing), synchronization, device

addressing, and error detection capabilities. Media access management includes the tasks

of medium allocation for the transmitter, and contention resolution if a collision (multiple

transmitters at the same time) occurs in the half-duplex channel. The functionalities of

the MAC layer can be managed by many different standards, such as the IEEE 802.11

standard. The LLC primarily acts as the interface from the upper network layer to the

MAC layer. When data from the upper layers of communications are ready to be trans-

mitted across a channel to the next hop device, the LLC sublayer provides the data to the

MAC layer for encapsulation and transmission to meet the requirements of the standard.

Similarly, when data is received on the MAC layer, the LLC transfers the data to the
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network layer [35]. A figure of this arrangement can be seen below:

Layer 3: Network

Sublayer: LLC

Sublayer: MAC

Layer 4: Link

IEEE 802.11

ISO/IEC 8802-2 

LLC PDU/MSDU

Network Data

Figure 2.8: Link Sublayers

As shown in Figure 2.8, the newest LLC standard established by the IEEE is ISO/IEC

8802-2 (International Electrotechnical Commission). ISO/IEC 8802-2 has a protocol data

unit (PDU) that encapsulates the upper layer data. The LLC PDU adds a header which

includes a service access point (SAP) field from the source and destination. The SAP

communicates the protocol that the upper layers of the source and destination utilize. An

example of such a protocols is the Internet Protocol (IP). The LLC PDU is further encap-

sulated into a MAC protocol data unit (MPDU), where the LLC PDU is becomes referred

to as the MAC Service Protocol Data Unit (MSDU). For IEEE 802.11, the MSDU is encap-

sulate by the header and a frame checking sequence (FCS), which is automatically added

based on the preceding bytes. The format for the IEEE 802.11n header is in Figure 2.9:

Frame Control Duration\ID Address 1 Address 2 Address 3 Sequence Ctrl Address 4 QoS Ctrl HT Ctrl
2 Bytes 2 Bytes 6 Bytes 6 Bytes 6 Bytes 2 Bytes 6 Bytes 2 Bytes 4 Bytes

Figure 2.9: IEEE 802.11n MAC Frame Header Format

The Duration and ID field either has an identifier for the station on a WAN, a duration

based on the frame subtype, or a fixed indicator value. The addresses are all long term
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identifiers for a station, known as the MAC address. Address 1 and Address 2 indicate the

transmitter and receiver respectively in the wireless communication. Address 3 indicates

the AP (if one exists in the WAN), otherwise it is the same address as the transmitter.

Address 4 is used if the MPDU is going to be translated into another standard, such as

IEEE 802.3 (Ethernet), to follow the next hop communication. The Sequence Control

field identifies the sequence number of an MPDU (12 bits) and identifies the fragment (4

bits). The quality of service (QoS) field provides control information when a QoS frame

with a data subtype is transmitted. The High Throughput (HT) Control field is utilized

in certain control, QoS, and management frames to provide control information for the

HT functionality. The Frame Control provides information on the type of frame being

transferred. Frame control has the following expanded fields:

Protcol Version Type Subtype To DS From DS More Fragmentations Retry Power
2 Bits 2 Bits 4 Bits 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit

Protected Ordered
1 Bit 1 Bit

More Data
1 Bit

Figure 2.10: IEEE 802.11 Frame Control Format

The protocol version identifies the version of IEEE 802.11 being used. By default it is

set to ‘00’, since there is only one protocol version in the standard at the moment. The type

identifies one of four MPDU types: control (01), management (00), data (10), and QoS

(11). The subtype identifies several different subtypes of the MPDU for each of the main

types. For example, for type data, subtype ‘0000’ indicates a pure data frame. A detailed

table of all the possible subtypes can be found in this CISCO guide [7]. To Distribution

System (DS) and From DS indicate if a station is playing the role of an access point (AP)

or a client. If they are a DS (From DS = 0), then the station plays a role as an AP. If

neither devices communicating are an AP (To DS = 0, From DS = 0), the stations will

operate in an adhoc network. Similarly, if both devices are an AP (To DS = 1, From DS

= 1), then the stations will operate in a mesh network. The more fragmentation fields

indicates if the MSDU contains a fragmentment packet from the network layer. The retry

field indicates if the current PDU is a retransmission. The Power field communicates to

the receiver if the transmitter is changing to a low powered state after the transmission

occurs. If a station indicates changes into a low powered state after a transmission, another
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station communicating with it may use the More Data field to prevent the station from

entering a low powered state. The Protected field indicates that the MSDU is encrypted

and authenticated with the security scheme established in the system. The Ordered field

indicates if a data frame must be processed in order or arrival [8].

2.3.2 Physical Layer

The physical layer contains two sublayers that handle its functionalities: the Physical Layer

Convergence Procedure (PLCP) and Physical Medium Dependent (PMD) sublayers [37].

The PLCP is a translational sublayer similar to the LLC in subsection 2.3.1, where it must

manage the MPDU, through encapsulation and extraction. The PMD sublayer deals with

the coding, modulation, and transceiving of the data frames. Once an MPDU is ready for

transmission on a wireless channel, it becomes a PLCP Service Data Unit (PSDU) and is

moved on to the PLCP from the link layer. Similarly, when a wireless frame is received,

it is sent by the PMD to PLCP to be interpreted and parsed into an PSDU. The PLCP

prepares the PSDU for transmission on the PMD, as established by the communication

standard (e.g. IEEE 802.11) [35]. A model of the layers can be seen in the Figure 2.11

Layer 4: Link

Sublayer: PLCP

Sublayer: PMD

Layer 5: PHY

IEEE 802.11

PPDU

MPDU/PSDU

IEEE 802.11

Figure 2.11: Physical Sublayers

For IEEE 802.11n, the PLCP encapsulates the PSDU by adding a preamble and header
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to it. The result is a PLCP Protocol Data Unit (PPDU), which is sent to the PMD. The

purpose of the preamble is intended to provide time and frequency synchronicity, and

channel estimation for equalization. The header provides information about the format

and transmission information of the frame. This includes information such as: how many

antennas are being utilized, the modulation scheme, whether or not HT is occuring, how

large the guard interval (GI) is, the expected rate of transmission, and the bandwidth

utilized for each transmission. IEEE 802.11n was designed to be backwards compatible

between the older version standards, which allows for three possible PLCP modes for

creating a PPDU. The modes are: Non-HT PPDU, HT-mixed format PPDU, and HT-

greenfield format PPDU [35]. Below, Figure 2.12 and Table 2.1 (from the IEEE 802.11-

2012 Standard [9]) show the format for the PLCP modes and the subsequent data:

Figure 2.12: Different Formats for the PLCP
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Table 2.1: Elements in PLCP

For the proposed implementation of the relay attack detection, HT-greenfield format is

utilized for the PLCP format. The transmission is read in big-endianness, where HT-STF

is transmitted and received first. In the PPDU, the preamble consists of HT-STF and

the HT-LTFs. The header is the HT-SIG. HT-STF is used for the intial timing of the

transmission, coarse-grained timing and frequency synchronization, and automatic gain

control. The HT-STF is transmitted using 10 tones over 2 OFDM symbols, with only 16

subcarriers. HT-LTF is used to provide fine-grained timing and frequency synchronization,

and it is used to estimate channel state information (CSI) for the forthcoming data. The

HT-LTF1 is mandatory, but the extra HT-LTFs can be used to improve the fine-grained

synchronization. The HT-LTF1 is twice as long as the HT-LTF, and transmits 2 symbols

over all the subcarriers data is transmitted on. Each HT-LTF subcarrier will provide a

CSI for each of the subchannels. Due to the coherence bandwidth, not all the subcarriers

will be correlated, so individual estimations are needed from the CSI results. The HT-SIG

provides detailed information for the receiver so they know how to frame the incoming data.

The format for the 2 HT-SIG symbols from the IEEE 802.11-2012 Standard is shown in

Figure 2.13:
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Figure 2.13: Format for HT-SIG in HT-Greenfield PLCP Format

HT-SIG is modulated using the lowest rate BPSK (for resilience) and OFDM with all

52 subcarriers. The Modulation and Coding Scheme (MCS) is specifcally used to signal

to the receiver how the data is going to be modulated and coded. Depending on the

HT MCS index, the bandwidth of the channel, and the guard interval duration, different

transmission rates are possible. For example, if the MCS index was set to ‘1000000’ and

the was set to 800 ns with a total bandwidth of 20 MHz, the transmission speed would

be 13 Mb/s with BPSK. As mentioned in subsection 2.2.1, the options range from BPSK

to 64-QAM.

The PMD consists of the physical hardware necessary to transmit and receive the

PPDU. IEEE 802.11n in North America (Canada & USA) allows 11 carrier (numbered

1 through 11) around the 2.4 GHz frequency: 2.412, 2.417, 2.422, 2.427, 2.432, 2.437,

2.442, 2.447, 2.452, 2.457, 2.462 GHz. There is also a second set of channels around the

5 GHz frequency, but the usage is heavily regulated due to priority for government and
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commericial radar. The bandwidth allocated for the transmission is 20 MHz or 40 MHz

at both frequencies and for all modulation and coding schemes. IEEE 802.11n also utilizes

OFDM with all its transmissions, where the modulation and coding is dictated by the MCS

from the PPDU. With a 20 MHz bandwidth, there are a total of 64 OFDM subcarriers,

with the following distribution: 8 subcarriers are used for the cyclic prefix and guard

intervals, 4 subcarriers are utilized for further pilot signals, and 52 subcarriers are utilized

for the data. With a 40 MHz bandwidth, there are 128 subcarriers, with the following

distribution: 14 subcarriers are used for the cyclic prefix and guard intervals, 6 subcarriers

are utilized for further pilot signals, and 108 subcarriers are utilized for data. IEEE 802.11n

also allows up to 4 antennas to achieve diversity. The cyclic prefix can occupy either 0.8

µs of the 4 µs OFDM symbol duration, or 0.4 µs of the 3.6 µs OFDM symbol duration.

The view of the transmitter in the PMD can be observed in the Figure 2.14:
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Figure 2.14: PMD Transmission module

We can model the receiver to function in a reciprocal manner to the transmitter. The

functionality of the PLCP and PMD have to follow the standard of IEEE 802.11ln, but

the implementation (hardware and software) can be done at the discretion of the engineer.

For example, Intel and Qualcomm may choose to implement the management of the PSDU

and PPDU between the different sublayers and subcomponents in their own way.

IEEE 802.11 utilizes carrier sensing multiple access system with collision avoidance

(CSMA/CA) to provide half-duplex multiple access to the wireless channel. CSMA/CA is

the standard protocol for all variations of the IEEE 802.11 standard. At a high level, the

protocol has devices wait to transmit until the WAN appears silent (i.e. no transmissions
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are occurring). This is known as carrier sensing. If it appears silent for a certain amount

of time, the waiting device will transmit. Since wireless communications is half-duplex,

the transmitting device cannot tell if a collision occurs (multiple transmissions), so it waits

for an acknowledgement from its target. If no acknowledgement is received after a time,

the device assumes their was a collision and backs off for a random time, before trying the

whole process again. This is known as collision avoidance. If the WAN has a high amount

of devices trying to communicate, there may be a large delay before a transmission can

occur, as all the devices compete for access. This can affect the ability to have a reciprocal

exchange that is correlated, as the delay can be larger than the coherence time.

2.3.3 Channel Estimation

As mentioned in subsection 2.3.2, the CSI is estimated from the HT-LTF in the preamble

preceding a PPDU. At the 20 MHz band, HT-LTF utilizes all 52 subcarriers that the

data is also transmitted on, so channel estimation can be done for all the data on the

different subcarriers. Depending on how the estimation is done, a complex measurement

that captures the impulse response is found.

2.4 Related Works

As mentioned in section 2.1, the first formal proposal of the relay attack in literature was

in John Conways’ On Numbers and Games [6] in 1976. From this point many papers have

looked at creating practical relay attacks in many different environments.

One of the major proposed solution for detecting the relay attack in wireless systems

was by David Chaum and Stefan Brand in their 1993 paper Distance-bounding protocols

[5]. Their paper focused on mafia-attacks, which are a form of relay attack, but their

solution extends to all forms of relay attacks. Distance-bounding measures the delay of

the signals being transmitted to get a coarse measurement of the end-to-end and round-

trip distances. If the distance is within some expected upper bound, the measurement is

accepted. One of the limiting factors with distance-bounding is that it is latency limited.
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If the measurements are based on using the round-trip time (T ) and the speed of light

(C = 3 × 108 m/s) to estimate the distance, any small difference in synchronization or

processing time (latency) can add some small delay (τ). If this delay is in the range of

nanoseconds or more, then the added distance can be significant (derr = τ ×C). For short

distance communications (PKES, payment systems, etc.), any small latency can cause

there to be false-positive, as the derr can added several metres to the round-trip time (i.e.

T < τ). Specifically, The addition of this error in the distance can cause the round-trip

time to surpass the upper-bound, making this system think a relay attack is extending

the distance. In more modern literature, different distance-bounding protocols have been

implemented for different devices, such as RFID [10]. Unfortunately, the latency issue will

always be a problem [11], and most proposed solutions lack practical implementations.

Similar “Time-of-Flight” solutions exist. For example, measuring the RF signal strength

was proposed in one paper [12], but the solution in this paper was under the assumption

that the response to the challenge can be directly measured at the reader (which might

not always be the case). The use of time-of-flight, based solutions also does not deal with

attacks that are within the threshold of acceptance.

In general, solutions to the relay attack attmept to take advantage or introduce an

unrelayable channel. Proposed in the paper Multichannel protocols to prevent relay attacks

[13], the theoretical unrelayable channel has the properties of weak unclonability, strong

unclonability, unsimulability, and untransportability. The unclonability should make it

prohibitively difficult to copy the source. Unsimulability should make it prohibitively

difficult to copy the response. Untransportability should make it prohibitively difficult to

transfer the unrelayable information to another location. This unrelayable channel should

be used to exchange unique information. The result of the exchange should make it so

a failed response is detected as a relay attack. Distance-bounding is such an example of

information exchanged on an unrelayable channel. It is impossible for the relays to alter

the physical distance needed for the response to travel for verification. Since the response

has to come from the legitimate parties, it should be impossible for the relays to clone

or simulate the response. Since the transportation is limited by the speed of light, even

if transportability was possible, it would not improve any performance, so the channel is

untransportable as well. Of course, the issue with distance-bounding is in its practicality,
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not its design.

To utilize this unrelayable concept, we look at the physical layer. A seminal work in

the field of physical layer security was done in the paper On the effectiveness of secret key

extraction from wireless signal strength in real environments, in 2009 by Suman Jana et al

[15]. The paper discusses the utilization of the received signal strength information (RSSI)

between reciprocal pilot signals to establish a unique secret key. Due to the reciprocal

channel (discussed in subsection 2.2.7), two parties could extract a key from the RSSI

measurements. The paper introduced a new secret key extraction protocol and looked at

other major protocols by Aono et al. [17] , Tope et al. [18] ,Mathur et. al [16] , and

Azimi-Sadjadi et al.[19]. The paper explains the idea of a Lossy and Lossless exchange

of information through channel information, and the trade off between entropy and bit

generation rate. The paper’s major contribution was through the quantization protocol

called Adaptive Secret Bit Generation (ASBG), which several other papers would later

adapt. Other physical layer solutions attempt to utilize reciprocal information such as the

phase. One paper, Cooperative Secret Key Generation from Phase Estimation in Narrow-

band Fading Channels from 2011 [21], suggested the use of the reciprocal phase change

(due to doppler effects and delay) in a narrowband rayleigh channel to extract a secret

key. Since the phase in this channel is theoretically uniformly distributed over [−π, π],

this would give a theoretically perfect distribution for generating a key. Unfortunately,

the solution has the same timing problems that exist with distance-bounding that make it

impractical. Synchronicity and hardware difference make it impractical to implement such

a system as unrelayable information. Finally, a seminal paper proposed the utilization of

channel state information (CSI) as reciprocal information for key extraction. A Fast and

Practical Secret Key Extraction by Exploiting Channel Response by H. Liu et al., proposed

the usage of channel state information in the IEEE 802.11n standard to drastically improve

the performance of the key extraction [21]. The addition of many OFDM subcarriers and

MIMO antennas, allows many uncorrelated pilots to be utilized for high thoughput key

generation. They implemented their protocol with an Intel network interface card (NIC),

and compared it to the other RSSI key extraction protocols, with vast improvements in per-

formances. The paper also introduces Channel Gain Complement (CGC), which is method

to remove non-reciprocal components in a transmission to increase correlation. This proto-
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col is utilized in the protocol proposed in this thesis. Several papers adapted this protocol,

such as in KEEP: Fast secret key extraction protocol for D2D communication [22]. Funda-

mentally, all the key extractions protocols (RSSI, phase, and CSI) utilize the unrelayable

reciprocal channel, which can be used to identify relay attacks with a challenge-response

protocol.

A Mobile Adhoc Network (MANET) must have all its nodes periodically update the

graph of the network to find the shortest distance to other nodes. If the weight is based

off of a distance measured from RSSI, then a relay attack could trick a node in to making

a fraudulent graph of the network. This form of relay attack is reffered to as a wormhole

attack. Solutions for wormhole attacks are equivalent to solutions for relay attacks. One

such solution to the wormhole attack was explored in the paper Preventing Wormhole

Attacks Using Physical Layer Authentication [25]. Further development to generalize a

solution was done in the paper Preventing Relay Attacks and Providing Perfect Forward

Secrecy using PHYSEC on 8-bit µC in 2018 [26]. The paper looks at creating a practical

solution to relay attacks (and wormhole attacks). Similar to the RSSI secret key generation

that dominates physical layer security, this paper proposes the usages of the reciprocal

channel as an unrelayable channel. RSSI is exhanged on the unrelayable channel, and is

used to check if a relay attack is occuring. The short paper did not discuss the protocol

in detail, but did do a practical implementation in IEEE 802.15.4 (ZigBee) to show the

practicality of the solution for solving relay attacks. Another solution added noise to a

channel to keep track of the amount of hops occuring in the transmission [14]. This solution

is not feasible for wireless communications since it required full-duplex communications.
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Chapter 3

The Usage of Channel State

Information To Detect Relay Attacks

The relay attack has been shown in section 2.1 to be a simple and potentially devastating

attack on many cyber-physical systems that rely on challenge-response authentication.

Being able to detect the occurrence of a MITM can be used to identify a relay attack

(or other forms of MITM attacks), when a relay is not expected in the system. In this

chapter, a protocol is proposed that uses the reciprocity of channel state information to

detect a digital relay attack during a modified channel-response authentication protocol.

Specifically, a full description of the protocol is discussed, as well as the motivations in

literature for the aspects of the protocol.

3.1 The Protocol

The usage of a digital relay attack is most prevalent in circumventing challenge-response

based protocols. Particularly because the hardware requirements are very low. For exam-

ple, many relay attacks can be implemented on smartphones, with only upper layer imple-

mentations. For this reason a modified one-way challenge-response authentication protocol

is used as the base in the relay attack detection protocol. In this protocol a symmetric-key
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based system is used to provide authentication, similar to the mutual-authentication proto-

col described in Figure 2.3. These keys are assumed to be installed on the communicating

devices prior to the execution of the authentication protocol. We can observe the general

steps in the relay detection protocol in the table below:

Table 3.1: Relay Attack Detection Protocol

Step Description

1. Initiation Request: A tag (T ), that wants access to a system,

makes a request to authoritative reader.

2. Request Acknowledgement: The reader acknowledges the tag’s request

by responding with an explicit ACK,

and a challenge (nonce).

3. Pilot Exchange: The tag begins an equal exchange of pilot

signals between itself and reader.

4. Channel Gain Complement: The tag encrypts and transmits its CSI

from the pilot to the reader to allow the

reader to adjust for discrepencies.

5. Authentication: The tag transmits a MAC on the challenge

and of its quantized CSI.

6. Verification: The reader verifies the tag’s response.

If the MAC and the quantized CSI match,

then the tag is authorized, otherwise it is

rejected.

The protocol and the messages can be further visualized in Figure 3.1:
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Figure 3.1: Relay Attack Detection Protocol

3.1.1 Initiation Request

For a PKES, the Initiation Request is a passive communication dependent on the standard

being used. For example, in a Bluetooth or WiFi system, the request may be established

by constantly listening for broadcasts from the reader. When a tag hears a broadcast with

an identifier, it can make a request. Other standards such as passive RFID/NFC, will wait

for the tag to be powered by the reader to initiate. Once the request is received by the

reader, a 128-bit nonce is generated for usage as the challenge. The nonce must be stored

in memory on the reader for authentication. An acknowledgement and the nonce are sent

to the tag to continue the authentication protocol.

3.1.2 Request Acknowledgment

When the acknowledgement is received by the tag, it is verified before the nonce is stored in

memory for future authentication. If the nonce is not long enough or the acknowledgement

has not been received for a time-out period (ToP ), the tag resets the protocol.
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3.1.3 Pilot Exchange

The tag begins a reciprocal exchange with the reader with pilot messages. A single exchange

occurs for fixed pilot time up to ToP , at a pilot exchange rate Rp in units of pilots/second.

When a pilot message is received it is stored in memory, with a time-stamp of when it was

received. Each received pilot message is used to calculate an estimation of the CSI in the

reciprocal channel. The channel estimation is considered to be the complex gain and phase

represented by hp. Each CSI measurement can be quantized into a single bit, which is

utilized to detect the presence of a MITM.

3.1.4 Channel Gain Complement

The phase difference, φhdw, described in subsection 2.2.2 and Equation 2.1, expresses the

difference that is caused by frequency and timing synchronization. The reciprocity in the

pilot signals is a requirement for the authentication between the reader and tag. While the

channel components can be reciprocal, the hardware phase may result in discrepencies be-

tween the measured channel transfer functions. To help compensate for these differences, a

method known as Channel Gain Complement (CGC) is used to compensate. The method

was first designed in Fast and Practical Secret Key Extraction by Exploiting Channel Re-

sponse [21], to eliminate channel differences for secret-key generation. The implementation

follows the description of the protocol provided in the paper. To perform CGC, the tag

transmits its encrypted CSI measurements to the reader. The messages are encrypted so a

MITM does not have the ability to modify the measurements to influence the CGC process.

For a single pilot measurement, we can observe the frequency response of both the reader

and the tag respectively:

hp,R = hp + nR + hhdw,R

hp,T = hp + nT + hhdw,T
(3.1)

where the assumption is that hp is the reciprocal complex channel effect if the pilots are

exchanged within the same coherence time. The addition of random AWGN, nR and nT , is

different for each measured response. As well, there is the physical hardware term, which

manifests in an additive term hhdw,R and hhdw,T for the reader and tag respectively. We
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should note that in this method, they made an assumption that there is an additive hard-

ware difference. Typically, many of the hardware changes affect the timing or frequency,

which would add a phase change. A phase change is multiplicative change in the transmit-

ted signal, but the CGC method assumes there is also an additive hardware effect. The

additive effects are what is removed.

If the two measurements are close enough in time to each other, then their quantization

should result in a bit symbol that is close to equal. The CGC method utilizes the mean of

the difference between the shared measurements to estimate hhdw,R. Another assumption

is that for a given exchange in the protocol, the additive hardware differences are constant

over the many instances of communication hhdw = ρhdw,R. For N pairs of reciprocal

exchange measurements we define the mean difference:

µdiff =
1

N

N∑
i=1

hip,R − hip,T

=
1

N

N∑
i=1

hip + niR + hhdw,R − (hip + niT + hhdw,T )

=
1

N

N∑
i=1

(niR − niT ) + (ρhdw,R − ρhdw,T )

The noise is AWGN with some gaussian distribution ∼ N(µnoise, σ
2). The difference,

hp,R − hp,T , has a statistical mean:

µ = µnoise − µnoise + ρp,R − ρp,T
= ρp,R − ρp,T

The Weak Law of Large Numbers and Chebyshev’s Inequality tell us that µdiff → µ as

N →∞. The encrypted CSI measurements sent to the reader in the CGC stage are used

with its own reciprocal CSI measurements to calculate the average difference µdiff . Once

the reader has µdiff , it can subtract the measurement from all its measurements:

h′p,R(t) = hp,R − µdiff
= hp + nR + ρp,R − ρp,R + ρp,T

= hp + nR + ρp,T

(3.2)
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Compared to the measurement from the tag, hp,T , the reader’s complemented measurement,

h′p,R, only differs in the noise, though the distribution is the same.

After the reader transmits the last pilot signal, it will wait for ToP before it resets the

authentication.

3.1.5 Authentication

Following the transmission of the tag’s CSI measurements, the tag generates the response

to the challenge, and its quantized CSI measurements. With the symmetric-key, the MAC

used can be a Hash-MAC (HMAC), or any other MAC primitive, as long as the reader

follows the same standard.

To quantize the CSI measurements, a method known as Adaptive Secret Bit Generation

(ASBG) is used. A form of this method was proposed by Mathur et al. for quantization

[20], but their method did not account for long-term fading effects. The ASBG by name

and final design, was created by Suman Jana et al [19]. The protocol vastly improved the

bit generation rate, without compromising the entropy, compared to the other RSSI key

generation methods at the time. ASBG requires four parameters: the block-size m, symbol

size n, quantizer threshold modifier α, and the acceptance threshold d. These parameters

would be established by the reader and tag prior to the occurrence of quantization. Given a

set of N measurements in time, the measurements are grouped by chronological order into

blocks of size m. For each block, the mean and variance is calculated on the magnitudes

of the CSI measurements. The mean and variance for each block is used to calculate the

upper and lower adaptive thresholds, q+ and q− respectively:

q+ = mean+ α
√
variance

q− = mean− α
√
variance

where α ≥ 0, and is chosen experimentally to maximize performance. Furthermore, to

increase the bit-generation rate, n can be chosen as any integer:

2 ≤ n ≤ blog2(max(hi)−min(hi))c
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where the minimum and maximum are chosen from within the measurements in a block.

Each region above and below the thresholds is further separated in to 2n−1 quantization

bins. Measurements are encoded based on the quantization bin they fall within. Each

bin is encoded into a n-bit symbol based on Gray-coding, to minimize the error. If a

measurement falls within the region between q+ and q−, it is discarded. The quantization

of the CSI measurements results in a bit-stream with a maximum size of N ×n. To add on

to this protocol, we further increase entropy with a deterministic method. The symmetric-

key is hashed with the nonce to generate an output sequence. This sequence is grouped

into indices, which are use to randomly select k bits from the CSI generated bit stream.

The k-bits are used as authentication against the relay attack with the challenge-response.

Since n can be chosen to increase the amount of bits extracted from a single measurement,

we would expect the overall entropy to decrease. By separating the measurements into

blocks, long-term and slow fading effects (such as path-loss and shadowing) are better

accounted for, which provides an increase in entropy.

It is important to recognize that the generated response does not need to be kept a

secret. Since the response is only transmitted once with a nonce and the MAC, it is unique,

and only useful for the single instance of verification. Replay attacks would be ineffective

due to the nonce, and the response would be rejected if it was modified, due to the MAC.

3.1.6 Verification

To verify the response from the tag, the reader performs ASBG on all its modified CSI

measurements, h′p,R(t). The reader must also perform ASBG on the tag’s values received in

the CGC phase, and must drop the measurements that the tag dropped. Since the reader

cannot drop measurements the tag did not drop, if a measurement would otherwise fall

within the threshold of q+ and q−, the reader selects the measurement to be encoded to

a 0 or 1 with equal distribution. This must be done to ensure that they both have the

same output length k. To compare the results, the reader checks if the hamming distance

between the reader’s quantized measurements and the tag’s response are less than or equal

to d. If they are, then the response is accepted by the reader to have come from the

tag, otherwise it is rejected. Due to channel reciprocity and correlation, if a MITM was
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performing a digital relay attack, then the CSI measurements would be different between

the tag, MITM, and the reader. We can visualize this exchange in Figure 3.2:
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Figure 3.2: Digital Relay Attack against Protocol

If the channels between the proxies and the legitimate parties are uncorrelated, then

the CSI measurements in each channel will be different from one another. Under a digital

relay attack, the forwarding between the proxies would not carry over the channel effects

in the proxy link, resulting in an unrelayable measurement from the channel at the reader

and tag.

While N needs to be large for CGC result to be precise, the amount of bits needed to be

quantized and compared does not need to be large. Since a unique MAC is generated for

the challenge and the quantized CSI, a MITM cannot alter the response. If the uncorrelated

results are truly random (i.e. seemingly uniform), then the attacker would require roughly√
22k = 2k attempts (by the birthday problem), for the two CSI measurements to match.

For any challenge-response system, the reader could have a threshold of maximum attempts

to try to provide authentication. For example, if a key attempts and fails to unlock a car

after 1000 tries, the car can set off its alarm, or send an alert to the owner that an

unauthorized access is being attempted. Thus, k can be in the low double digit bits (e.g.

10 bits).

The benefit of the usage of CSI for relay attack detection, is that a high exchange rate
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of pilots can occur to allow for a large N for CGC estimation in a short period of time.

The coherence time acts as a minimum distance to extract a k. Since k is small in size,

only a few coherence times are necessary to generate the output. In retrospect, N is large

(i.e. many occurrences in a coherence bandwidths), because it is only needed for CGC.

Once the reader has verified the response, it generates an acknowledgement to let the

tag know it has been authenticated. The acknowledgement can also be provided through

the allowance of access to the system (e.g. a car, door, payment system, etc.)

3.2 Performance Metrics

In the area of physical layer key-generation, the typical performance metrics utilized are the

bit-generation rate, randomness, and mismatch rate. The key-generation rate quantifies

how fast the system and protocol are able to generate random bits. The randomness of

the generated bit stream can be quantified via a pseudorandomness test. The mismatch

rate quantifies how likely legitimate communicating parties are to have different results.

For key-exchange protocols, a mismatch would result in the devices having different keys,

thus unable to communicate. For the relay attack detection, a mismatch would result in a

false-positive detection of an attacker.

3.2.1 Key-Generation Rate

The key-generation rate in the protocol, Rk (in units of bits/second), has a minimum

performance:

Rk =
1

1 + 2N × ToP
Rp × pilot size

2k
(3.3)

In this calculation, the processing time is considered to be neglible for quantization. In

the worst case, each of the N reciprocal exchanges that occur can take a maximum of

ToP seconds each. Furthermore, each pilot consists of pilot size amount of bits, but only

k of the bits of the output stream are used, and half the rate is utilized for transfering

duplicates in the pilot exchange.
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3.2.2 Randomness

The basic necessity for the protocol to prevail, is that the quantized output is uniformly

distributed. As mentioned in subsection 3.1.6, if it is uniformly distributed, then it is

unlikely that when a relay attack is occurring, that the reader and tag will have the same

output. If there is a bias for a certain result, then the system may have a false-negative;

the devices authenticates, despite the existence of a MITM. To evaluate the randomness

properties, it is necessary that the system passes basic pseudorandomness test, such as:

entropy, 0-1 distribution (frequency), run length, etc.

3.2.3 Mismatch Performance

As mentioned in subsection 3.1.4, a mismatch may occur due to the difference in the noise

for a pair of measurements, and due to the phase differences caused by hardware (only

additive differences are removed with CGC). In Equation 3.2, the noise of the modified CSI

measurement at the reader comes from nR, while the noise at the tag is nT . The mismatch

performance is given by the probability that a mismatch (false-positive) occurs for a single

measurement. The probability of a mismatch can be approximated to the difference of a

Rayleigh (non-LOS) or Rician (LOS) channel with the subtraction of a noise component.

For the particular implementation in this thesis, we are able to make this approximation

due to the fact that OFDM turns a wideband signal into many narrowband signals. The

narrowband model allows us to categorize the channel effects into a Rayleigh or Rician

distribution.
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Chapter 4

Implementation of The Relay Attack

Detection Protocol

Compared to many of the proposed solutions for the relay attack, this chapter will de-

scribe an easy and open implementation. The implementation is done using open source

tools, packages, drivers, and cheap consumer products that can be utilized in any modern

computer. The main communication standard utilized for the challenge-response protocol

is IEEE 802.11n. The implementation helps provide a proof-of-concept that the protocol

is feasible to implement. In this chapter a guide is given to set-up the implementation,

followed by an overview the implementation.

4.1 Set-up Guide

This section focuses on setting up the tools, packages, and other software necessary to

recreate this instance of the protocol implementation.

47



4.1.1 Operating System

Based on testing and per the recommendations of the creators of the Linux 802.11n CSI

Tool, the most up to date operating system (OS) that can be used is Ubuntu 14.04.1 LTS.

A link to the old Ubuntu releases that contain the OS can be found in [30]. The OS cannot

be ran on a virtual machine, but can be dual booted. The OS should be updated before

installation. This can be done by running the follow command in the terminal:

sudo apt-get install update

sudo apt-get upgrade

The update will change the kernel, but there should not be any problem with any of the

software packages used. The rest of the installation should happen within this OS. It is

recommended that the build-tools be installed prior to the loss of internet connectivity in

the other steps.

4.1.2 Network Interface Card

The 802.11n CSI Tool used can only be installed with the Intel 5300 NIC. You cannot use

the tool with any other NIC from Intel. This includes newer models such as Intel 6300,

Intel 7260, Intel 8260, Intel 9260, etc. While the NIC was released in 2012, it should still

work in any modern desktop or laptop. As of April 2019, the NIC can still be purchased

through the American or Canadian Amazon website [31].

The Intel 5300 NIC uses a half-sized mini-peripheral component interconnect express

(mini PCIe) interface. Most laptops have a mini-PCIe slot that can be used. If a laptop

does not have this slot or if it is inaccessible, then the laptop cannot be used with the CSI

tool used here. Other open source tools exist, which may be capatible. For a desktop that

does not have a mini-PCIe slot, a PCIe ×1 to mini-PCIe adapter can be used. It is also

recommended that if an adapter is used, it has a cut-out to fit an antenna. A mini-PCIe

to USB adapter will not work due to the scheduling and low bandwidth. The NIC requires

an antenna to have a decent range. For the implementation a single omni-directional 5 dBi

rubber ducky antennas was used for each NIC (no MIMO). The connection between the
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NIC and antennas use a copper 50 ohm impedance U.FL to female SMA interface. Both of

these components can be found at any electronics store. Due to the CGC method described

in subsection 3.1.4, the possible performance losses due to having different antennas should

be slightly reduced.

4.1.3 Linux CSI Tool

The Linux 802.11n CSI Tool is a combination of a custom firmware for the Intel 5300 NIC,

as well as custom Linux drivers for iwlwifi. The project was created with the collaboration

of a group of researchers, Daniel Halpern et. al, with a team of engineers from Intel [25].

The tool provides an easily accessible method to extract the CSI estimations used for

equalization during WiFi communications. Typically, the only data that is accessible is

upper layer data (Link and above), with no option to access the PPDU header that contains

the pilot results. The tool provides access to this information that is typically unaccessible.

Detailed instructions to install the tool can be found through the team’s guide [25], but is

also detailed below to keep the thesis self-contained. All of these instructions are in the

Ubuntu command terminal:

Installation Instructions:

1. Download the Tool from the repository:

sudo git clone https://github.com/dhalperi/\

linux-80211n-csitool.git

2. Navigate to the repository in the terminal.

3. Install the build-tools, development headers, and git-core:

sudo apt-get install gcc make linux-headers-$(uname -r) git-core

4. Obtain the CSI Tool’s source tree for the drivers and check out the repository

for your upstream kernel version:
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CSITOOL_Kernel_TAG=csitool-$(uname -r | cut -d . -f 1-2)

git clone https://github.com/dhalperi/linux-80211n-csitool.git

cd linux-80211n-csitool

git checkout ${CSITOOL_Kernel_TAG}

5. Establish the kernel tag for the version of Ubuntu. If the previous instructions

were followed, then it should be Ubuntu-3.13.0-164.214. If you are using a

different OS, then the kernel version be found by running the following in the

terminal:

sudo /proc/version_signature

6. Once the kernel version is found, the tag value can be found through online

searches. Once found, set the variable:

UBUNTU_Kernel_TAG= #Kernel_TAG

7. Merge the Linux kernel versions:

. /etc/lsb-release

git remote add ubuntu git://Kernel.ubuntu.com/ubuntu/\

ubuntu-${DISTRIB_CODENAME}.git

git pull --no-edit ubuntu ${UBUNTU_Kernel_TAG}

8. Build the modified driver for the existing kernel:

make -C /lib/modules/$(uname -r)/build\

M=$(pwd)/drivers/net/wireless/iwlwifi modules

9. Install the modified drivers into the updates directory:

sudo make -C /lib/modules/$(uname -r)/build M=$(pwd)\

/drivers/net/wireless/iwlwifi INSTALL_MOD_DIR=updates \

modules_install

sudo depmod

cd ..

10. Obtain supplementary material. This includes programs and scripts to test the

tool:
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git clone https://github.com/dhalperi/\

linux-80211n-csitool-supplementary.git

11. Relocate the existing Intel firmware:

for file in /lib/firmware/iwlwifi-5000-*.ucode;\

do sudo mv $file $file.orig; done

12. Install the firmware:

sudo cp linux-80211n-csitool-supplementary/firmware/\

iwlwifi-5000-2.ucode.sigcomm2010 /lib/firmware/

sudo ln -s iwlwifi-5000-2.ucode.sigcomm2010 /\

lib/firmware/iwlwifi-5000-2.ucode

13. Build the logging tool:

make -C linux-80211n-csitool-supplementary/netlink

After the firmware and drivers have been installed, whenever the tool is required to log

CSI measurements (e.g., during the relay attack detection), the tool must be initiated for

2-way communications:

Tool Initiation:

1. Unload the device drivers:

sudo modprobe -r iwldvm iwlwifi mac80211

Once the custom firmware is installed, there will no longer be any support

for authentication and encryption (WPA2, WEP, etc.), so connections to most

access points (APs) will not be possible (and not recommended). If internet

connectivity is needed on the device, then it is recommended to use a ethernet

connection, not another WiFi NIC. The ethernet connection can be done using

a USB adapter if an adapter is lacking on newer laptops.

2. Load the drivers with the logging enabled, and force the transmission mode:
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sudo modprobe iwlwifi debug=0x40000 connector_log=0x1

echo 0x4101 | sudo tee /sys/Kernel/debug/ieee80211/phy0/iwlwifi\

/iwldvm/debug/monitor_tx_rate

Note: 0x4101 sets the HT-SIG symbols (Figure 2.13) in the PLCP. This pa-

rameter follows the format shown in Table 4.1:

Table 4.1: HT-SIG Control Parameters
Bit Position Control Description

B16: Use the third antenna for transmission

B15: Use the second antenna for transmission

B14: Use the first antenna for transmission

B13: Sets the guard internal; ‘0’ = 0.8 µs, ‘1’ = 0.4 µs

B12: Duplicate transmission on two 20 MHz channels

B11: Select the total bandwidth for transmission;

‘0’ = 20 MHz, ‘1’ = 40 MHz

B10: Preamble selection ‘0’ = Legacy, ‘1’ = Greenfield

B9: Modulation Type; ‘0’ = OFDM, ‘1’ = CCK

B8: Transmission Rates; ‘0’ = Legacy, ‘1’ = HT

B7: Set to 0

B6:

B5:

B4: Diversity Selection; ‘00’ = SISO, ‘01’ = MIMO-2,

B3: ‘11’ = MIMO-3

B2: Used for MCS selection

B1:

B0:

3. Once the drivers are loaded, the NIC needs to put in monitor mode to read

arbitrary broadcasted frames:

52



ifconfig wlp4s0 down

iwconfig wlp4s0 mode monitor

ifconfig wlp4s0 up

iw dev wlp4s0 set channel CHANNEL HT20

Note: wlp4s0 is the device ID, and may vary from machine. To find the

device ID use the ifconfig command. The parameter CHANNEL is the channel

in which experimenting is being done. Set this to the channel to be used.

Acceptable channels will vary from country as mentioned in subsection 2.3.2.

Any other parameter for the NIC, including power mode can be set via iwconfig.

These parameters should be consistent between communicating parties in this

implementation.

4. Once the CSI tool is setup, you can begin logging any received MPDUs to dat

file:

sudo linux-80211n-csitool-supplementary/netlink/\

log_to_file csi.dat

Any logged data will be written to the csi.dat file in the computers user folder.

The only MPDUs that can be logged are 802.11n data units sent in HT mode at the

channel being monitored. As well, the MPDUs must have the following MAC addresses to

be logged:

Address 1 = 00:16:ea:12:34:56

Address 2 = 00:16:ea:12:34:56

where addresses 3 and 4 can be any arbitrary address.

Since the CSI tool is working on IEEE 802.11n, the tool saves 30 out of 52 of the CSI

estimates from the HT-LTF from a received PPDU at the 20 MHz bandwidth. The subcar-

riers that are chosen come from the CSI Report Field defined in the IEEE 802.11n standard

[23]. Specifically, the subcarriers are: {28,26,24,22,20,18,16,14,12,10,8,6,4,2,1,1,3,5,7,9,11,

13,15,17,19, 21,23,25,27,2}. For the protocol used a single subcarrier is extracted to emu-

late a non-OFDM system.

53



4.1.4 Loss of Radio Connectivity

Loss Of Radio CONectivity (LORCON), is an open source network analyzing package. It

can be used for the injection of custom MPDU on to a wireless channel. It has built-in

capatability with many of the major NIC drivers that are on Linux such as Intel (iwlwifi),

Qualcomm Atheros (ath9k), and others. It is possible that other tools and packages (such

as Scapy [26]) function with the CSI Tool, but LORCON was chosen due to the recommen-

dations by the creators of the CSI tool. The LORCON application programming interface

(API) is in the C-programming language, but a rudimentary implementation exists in the

Python programming language. The version of LORCON used can be pulled from the

following repository:

sudo git clone https://github.com/dhalperi/lorcon-old.git

The package can be built with the following commands:

./configure

make build

sudo make

The format of the LORCON MPDU follows the basic IEEE 802.11n in subsection 2.3.1.

Particularly, the MAC Frame Header Format in Figure 2.9. The packet format is defined

by a C structure that matches the MPDU. When instantiating the structure, each field

represents each of the fields in the header portion of the MPDU.

4.1.5 Library Packet Capture

LORCON provides the capability to inject forged frames, but does not give the option to

capture frames. To capture frames from different mediums (ethernet, WiFi), the package

Library Packet Capture (libpcap) is used. The API for pcap is also in the C-programming

language, so it is a convenient compliment to LORCON. The version of libpcap used can

be pulled from the Ubuntu default packages through the terminal:
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sudo apt-get install libpcap-dev

Due to the low-level implementation of libpcap, it is able to filter out received frames at the

kernel level through the use of a bandpass filter (BPF). For example, all packets that do

not match a given address (e.g. Address 1 = 00:16:ea:12:34:56), can be filtered before being

passed up to the OS, saving valuable resources. Since timing is important for reciprocal

exchanges, libpcap is an ideal tool for capturing compared to other options due to these

efficiencies.

4.1.6 Library Gcrypt

All the cryptographic primitives used in the implementation are from the Library Gcrypt

(libgrypt) package [32]. Libgcrypt is reputable C-library, that is most recognized for its

use in GNU Privacy Guard (GPG). The primitives used in the implementation include:

MAC, hashing, symmetric-key encryption, and pseudorandom generation. Specifically, for

the implementation of the relay attack detection, SHA256 is used for hashing and for the

HMAC, while the ChaCha20 streamcipher with an 128-bit key is used for the symmetric-

key encryption. A detailed reference manual for all the primitives and how to use them is

provided [27].

The libgcrypt package also requires the Library GPG Error (libgpg-error [33]) package

to handle errors. To install libgpg-error run the following commands in the libgpg-error

directory:

./configure --prefix=/usr &&

make

sudo make install &&

sudo install -v -m644 -D README /usr/share/doc/libgpg-error-1.36/README

Then to install libgcrypt run the following commands in the libgcrypt director:

./configure --prefix=/usr &&

make
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sudo make install &&

sudo install -v -dm755 /usr/share/doc/libgcrypt-1.8.4 &&

sudo install -v -m644 README doc/{README.apichanges,fips*,libgcrypt*} \

/usr/share/doc/libgcrypt-1.8.4

4.2 Preliminary Protocol Implementation

As mentioned, the protocol is implemented utilizing IEEE 802.11n (WiFi), due to its ease

of use and accessibility compared to many other wireless communication standards. While

WiFi may not be the standard that is typically used for challenge-response PKES, it still

has some practicality. Other standards were not used due to the lack of access to CSI,

without customizing the standards. This would require significant work compared with

WiFi, which has relatively easy access to its CSI. Furthermore, the frequency channels

that WiFi operates in overlap with channels utilized by standards such as Bluetooth,

which is also used for PKES [24]. This lends credence to WiFi being a decent platform for

testing the feasibility of the protocol, as the results are generated in similar conditions to

more appropriate standards (i.e., Bluetooth). In this section an overview is given of the

implementation of the channel based relay attack detection protocol using WiFi, in both

C and MATLAB programming languages.

We can consider the protocol described in Figure 3.1 as the baseline for the implemen-

tation. All of the WiFi communications occur on the 64th channel, which has a carrier

frequency of 5.320 GHz and a bandwidth of 20 Mhz (5.310 - 5.330 GHz). This frequency

was chosen to minimize collisions with other users in the WAN. The transmission speed for

the reader and the tag is set to 13 Mbps using QPSK. Both the reader and the tag have

a pre-installed 128-bit symmetric-key. All the data for the communications are stored in

the MSDU portion of the MPDU instead of an upper layer frame. The protocol can be

effectively implemented in three components: The pilot exchange phase, CGC phase, and

verification component.
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4.2.1 Pilot Exchange

This portion of the protcol is primarily implemented in C using the LORCON, libgcrypt,

and libpcap packages. For the protocol to begin, the reader uses libpcap to constantly

listen to the channel for a request, with the option for filtering for the MAC address of the

tag. The assumption is that the tag will automatically broadcast a request periodically,

by injecting frames into the channel using LORCON. Once the reader receives the request

over the WiFi channel it will generate and store an 128-bit nonce using libgcrypt, before

transmitting it over the channel with an acknowledgement using LORCON. When the tag

receives the acknowledgement and the challenge, it will begin the CSI exchange with the

reader. When the exchange occurs, the data portion of the MPDU is left blank to minimize

the transmission size, which ultimately decreases the time within an exchange. For each

pilot Rp = 36 bytes, which comes from the MAC frame header (36 Bytes). Though, we

should also consider the preamble in the PPDU. In total, the exchange period must occur

for atleast 2 seconds, to allow for enough coherence times to occur. The coherence time for

an indoor system is typically around 100 ms, which would give roughly 20 coherence times

over a 2 second period. This should allow for up to 20 highly uncorrelated measurements.

Given this period, the minimum number of packets exchanged to occur to be:

N =
13e6× 2

36× 8× 2

≈ 4500

(4.1)

It is important to note that due the exponential back-off nature of the CSMA protocol

in IEEE 802.11n, that it could take longer than 2 seconds to have a 4500 exchanges. In

contrast, a strict 2 second exchange may not have 4500 exchanges. In the worst case each

exchange takes up to 2 × ToP , which can be significantly larger than 2 seconds. Ideally,

the usage of the 5 GHz band should reduce the chance of a collision. Collisions can cause

the exchange to exceed the ToP , and the premature ending of the protocol. It also worth

noting that different environments could have different coherence times (larger or smaller),

and this is a physical limitation.

Since the CSI tool is able to leverage IEEE 802.11n to extract 30 measurements per

pilot (N × 30), the extra measurements could be used to increase the key-generation rate
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by up to a theoretical 30 times. All the results are stored in the csi.dat output file.

Due to the coherence time, some of these measurements (and thus quantized bits) can

be correlated with one another. To minimize this loss in entropy, the random selection

of k-bits described in subsection 3.1.5 should decrease the amount of measurements that

correlate in the output. Similarly, if all subcarrier measurements were used, some would

correlate within a coherence bandwidth, so a similar random selection would have to be

used.

4.2.2 Channel Gain Compliment

Once the exchange is complete, the tag will encrypt its csi.dat records using chacha20 and

the symmetric-key, before transmitting to the reader. The reader will then perform CGC

in a MATLAB/Octave environment use this CSI.

4.2.3 Verification

Following the transmission of its CSI measurements, the tag performs ASBG in MAT-

LAB/Octave, and writes the output to a binary file that can be read by the C packages.

The parameters for ASBG and the ToP can be chosen to meet performance requirements.

The resultant quantized information is then used to transmit over the channel with the

challenge-response. The HMAC is performed using libgcrypt. When the reader receives

the response, it performs ASBG on its modified CSI measurements and also writes the

output to a binary file. The reader will use libgcrypt to verify the authenticity before

providing the tag with an acknowledgement.
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Chapter 5

Preliminary Experimental Results

In this chapter a brief set of experiments and their results are discussed on the preliminary

implementation. As a proof of concept design, these experiments provide evidence that

this protocol has the potential to detect relay attacks. The experiments will look at some of

the pseudorandomness properties from the NIST testing suite. For the preliminary experi-

mentation, two environments are tested under two modes of operations. The environments

are a LOS and NLOS setting. The modes of operation are with a stationary and mobile

transceiver.

5.1 NIST Randomness Testing

When using a pseudorandom sequence generator for cryptographic purposes, NIST requires

a set of 15 tests that must be passed for the sequence to be considered pseudorandom.

These tests are documented in detail in the SP 800-22 test suite document [35]. Other

randomness tests exist, such as Golomb’s randomness postulates, but the NIST test is

considered to be the de-facto test for professional and research purposes. To run the test,

an open source GitHub project by S. Ang was utilized [36]. The only edit to the code was

setting the pattern length (M) to 2 for the entropy test, since only 100 bit sequences are

tested.
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5.1.1 Experiment

The quantized measurements of the channel are put under evaluation by the randomness

test. Only 5 out of the 15 tests were put under experiment. The reason for this is that

many of the experiments require a sequence of ≥ 10, 000, 000. Due to the coherence time of

the channel, the rate to get randomness is extremely limited. In a typical wireless channel,

we can expect a coherence time in the hundreds of milliseconds, thus the amount of time

necessary to get a 10 Mb sequence would take a significant amount of transmission time

at a minimum. For example, With a Tc = 100 ms and with each measurement needing to

occur after a coherence time:

T ≥ 10000000× 100

Where T is in units of milliseconds and is the amount of time required to generate

10, 000, 000 bits. The minimum amount of time would be 12 days. With 5 different

experiments it would have taken nearly 7 weeks to get results, while locking up the devices

used for the experiments. If the experiment needed to ran again, even more time would be

needed.

The experiment was done in a walled work space. The LOS test had the devices several

meters away from each other, while the NLOS test was roughly the same distance, but with

a wall in between. To simulate a moving channel, the antennas were oscillated back and

forth at roughly 2λ
second

. For the NLOS results, the ASBG parameters are: blocksize = 10

and α = 0.55. No keys or nonces are used for the experiments to make the bit selections,

instead 100 random indexes (bits) are selected to emulate the key and nonce.

5.1.2 Results

The results of the LOS and NLOS experiments can be seen in the tables below:

We notice that all of tests pass, except for the DFT test for the NLOS stable reader

test. These preliminary results are promising for showcasing the ability of the protocol at

extracting random information from the channel.
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Table 5.1: Line-of-Sight NIST Randomness P-values

Test Tag Stable Tag Move Reader Stable Reader Move

1. Mono-bit: 0.841 0.162 0.110 0.841

2. Runs: 0.686 0.104 0.501 0.160

3. Entropy: 0.200 0.124 0.466 0.655

4. CFS: 0.629 0.144 0.071 0.959

5. CRS: 0.629 0.144 0.071 0.959

Table 5.2: Non-Line-of-Sight NIST Randomness P-values

Test Tag Stable Tag Move Reader Stable Reader Move

1. Mono-bit: 0.424 0.028 0.317 0.689

2. Runs: 0.459 0.353 0.614 0.701

3. Entropy: 0.704 0.022 0.115 0.737

4. CFS: 0.541 0.025 0.387 0.722

5. CRS: 0.541 0.025 0.387 0.722
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Chapter 6

Proposed Attacks and Potential

Solutions

In this chapter two active MITM attacks will be introduced. These attacks are not just

effective against the proposed relay attack detection protocol, but they should theoretically

be able to effect all of the channel based physical-layer protocols observed [18, 19, 20, 21,

22]. The first attack abuses the ordering of the pilot exchanges to filter the channel.

The second attack uses an analog relay to creating a single channel, from the two linear

channels, despite the existence of a MITM. Fundamentally, both attacks attempt to prevent

the channel from maintaining its unrelayability as described in section 2.4. This happens

due to the nature of the weakness of the transportability property in a wireless channel.

Two modifications to the relay attack detection protocol are also proposed in this

chapter, to prevent each of the attacks respectively.
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6.1 Forged Channel Attack

6.1.1 The Attack

In the paper by Suman Jana et al [19], an attack that attempts to influences the physical

channel is proposed. The example given is an object that can prevent LOS (or cause LOS)

in a controlled manner. When LOS is lost the signal strength would decrease, indicating a

‘0’, and when it is gained it would result in a ‘1’. This object would be controlled by the

attacker so a reliable estimate on the quantization can be made. Similar forged channel

attacks are proposed for the RSS based relay attack detection [26]. Due to the effect of

phase, this phenomenon is not as prominent when looking at the CSI when compared to

the RSS.

In the forged channel attack proposed, instead a filter (or an amplifier) is used to

influence the channel to either the reader or the tag. When we think about the procedure

in most of these physical-layer protocols, the MITM will always receive the pilot signals

before the intended party. For example, in a digital relay attack, the first pilot signal that

leaves the tag is received at the proxy tag before being forwarded. Since pilot signals are

known, the proxy tag could find the channel, H1, between it and the tag. Similarly, when

the reader responds, the proxy tag can discover the channel H2. Now, at this point, the

attacker has both channel states, before both of the legitimate parties. The attacker could

simply filter the pilot signal, such that the channel derived by the tag looks like H2, instead

of H1. As mentioned, this attack is possible due to the a posteriori knowledge that the

attacker gains of both channels, that comes from the a priori knowledge of the pilots. A

representation of this attack can be seen Figure 6.1:
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Figure 6.1: Forged Channel Attack in a Digital Relay

From the perspective of the tag, the channel it sees is now H2, despite the real channel

being H1. The ramifications of the attack is that the quantization now looks the same,

despite the existence of the MITM. This would effectively nullify the ability to use CSI to

detect the MITM.

This forged channel attack can also be extended to protocols that use RSS. A similar

manner to the method described can be used. Once the attacker makes an RSS measure-

ment for each channel, it can simply boost or reduce the signal strength so both channels

match.

The attack can also be extended to discover the key for physical-layer based key ex-
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changes. Normally, the existence of a relay would cause the legitimate parties to have

different keys. Through the usage of the forged channel attack, both parties would end up

having the same key, and this key would be known to the attacker.

6.1.2 Proposed Solution

To prevent the attack, the a priori knowledge must be removed. Typically, a pilot signal,

like the HT-LTF and HT-STF used in IEEE 802.11n, is publicly available information.

A possible solution is to make the pilot signal a random sequence, and only reveal what

the original pilot values are after the exchange is complete. Both the tag and the reader

would generate their own random sequence for the pilots that only they would know. By

preventing the a priori knowledge of the pilot, the attacker will not be able to estimate

the channel, thus being unable to filter the channel. Until the pilots are revealed, the

communication parties could store the pilot measurements for future analysis.

This proposed solution is not possible for an RSS based system since there is no pilot,

and thus no a priori knowledge. This makes the solution for the RSS detection proposed

in other works potentially vulnerable to a forged channel attack [26].

6.2 Linear Analog Relay Attack

6.2.1 The Attack

The focus of the proposed solution in the preceding work was on a digital relay attack. As

mentioned in section 2.1, the analog version of the relay attack simply forwards the received

signal. In retrospect a digital relay attack demodulates and re-modulates the information.

In a analog relay attack we can consider a transmitted signal as through a cascading of

linear channels. A representation of this attack can be seen in Figure 6.2:
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Figure 6.2: Analog Relay Attack

Despite the existence of a MITM, the channel in both direction looks the same due

to the symmetry property of linear systems. Under this circumstance the other proposed

solutions would not be effective. The attack is not as robust as the digital relay attack;

both the required hardware and the signal processing create a high barrier of entry for an

attacker.

6.2.2 Proposed Solution

A proposed solution to this problem requires significant signal processing capabilities of

at least one legitimate communication party (e.g. the reader or the tag). The solution

builds off the mathematics used in the CGC method described in subsection 3.1.4, that

was proposed H Liu et al. [22]. From Equation 3.2, we may also consider the existence of

an attacker:

hR,E = hpR,E
+ nR + hhdw,R

hE,T = hpE,T
(hpR,E

+ nR + hhdw,R) + nE + hhdw,E

hT,E = hpT,E
+ nT + hhdw,T

hE,R = hpE,R
(hpT,E

+ nT + hhdw,T ) + nE + hhdw,E

where R, T, and E represent the reader, tag, and attacker respectively. The subscripts

represent the direction in which the communications are occurring. Similar to the CGC

method, we make the assumption that hardware differences exist, and that some portion
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of the are a constant additive component. We also make the assumption that there is

reciprocity; the same subscripts give an equivalent result. By taking the difference of these

channel measurements through CGC:

hE,T − hE,R = hpE,T
hpR,E

+ hpE,T
hhdw,R + hpE,T

nR + nE + hhdw,E

− (hpE,R
hpT,E

+ hpE,R
hhdw,T + hpE,R

nT + nE + hhdw,E)

= hpE,T
hhdw,R + hpE,T

nR − hpE,R
hhdw,T − hpE,R

nT

If we consider that each component is independent, then variance of this result:

V ar(hE,T − hE,R) = V ar(hpE,T
hhdw,R) + V ar(hpE,T

nR)

− V ar(hpE,R
hhdw,T )− V ar(hpE,R

nT )

We note that if hpE,R
= hpE,T

, there is no attacker and the variance will result in 0 as the

number of measurements increases. If there is an MITM in the system, then hpE,R
6= hpE,T

,

and the variance will be some none 0 results.

The limiting factor in this solution is that hhdw,R, hhdw,T , nr, and nT may have small

distributions (i.e., mean and variance), which can make the measurements insignificant.

This theoretical solution would require significant signal processing capabilities.
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Chapter 7

Conclusions and Future Works

In this thesis, significant work was done in designing and providing the preliminary imple-

mentation for a practical solution against the relay attack. While several other solutions

have been proposed, many of them are impractical or are vulnerable to attacks introduced

in this thesis [10, 11, 14, 20]. Through the usage of open source packages and utilities, an

implementation of the protocol was proposed. This implementation shows the practical-

ity of the protocol. Preliminary experiments were also done in these works. The results

show that the channel and the quantization method designed, allow for seemingly enough

randomness to create an effective block with the channel based relay attack detection

protocol.

In regards to future works, the main focus would be on expanding the experimental

results and the scope of the implementation for the protocol. There are many different en-

vironments and use cases that have not been tested that are of interest. Such environments

include crowded areas, open fields, large in-door structures, and an-echoic environments.

As well, realistic scenarios, such as with cars and other PKES settings, would help show

the practicality of the solution. Modes of operations for consideration include different

relative movements of the transceivers, reflectors, and attackers. As a part of these exper-

iments, a more expansive model would also be desired. This includes creating an attacker

under the proxy model of the digital relay attack, and having the attacker see if they can

defeat the detection protocol. Results on false positive rate would also need to be gathered,
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which is a crucial statistic for measuring the practical capabilities of the protocol and its

implementation. Based on this feedback, it is possible that the protocol and the proposed

implementation may need some design changes to better improve performance.

More work also needs to be done to improve the coded implementation in this thesis.

The code exists over MATLAB and C as described. This splits the functionality between

multiple programs. Ideally a single seamless application would be used. As other aspects of

the project are expanded upon and refined, it is also likely the code will change dramatically

as well.

The relay attack detection protocol in these works was implemented in IEEE 802.11n,

which is not the ideal wireless standard for challenge-response authentication. As men-

tioned, Bluetooth, NFC, RFID, ZigBee, and other communication standards, would be

more apt for preventing a relay attack. Unfortunately, the ability to gather channel state

information from these standards is not as straightforward as IEEE 802.11. Most of these

standards do not have built in channel estimation capabilities, so custom implemented

protocols and devices would have to be utilized. This would require extensive work with

software defined radios, or other design capable hardware. If this idea was to be commer-

cialized into an actual product this would be a requirement. Understandably, this work

would be of a much larger scope than in these brief designs.

As a separate project, the relay attacks introduced in these papers should be expanded

upon and implemented. Experiments on utilizing the attacks on other physical-layer cryp-

tographic protocols can be explored. As well, the solutions proposed should be implemented

and tested in conjunction with the proposed attacks, to determine their viability. Both

the attacks and their proposed solutions are unique, and could present a new avenue in

physical-layer research. It is possible that further work could elaborate on the attacks and

possible solutions that are more rigorous than the ones described.
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