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Abstract 

Extensive pipeline and railway corridors crossing Canadian peatlands make them vulnerable 

to hydrocarbon spills, potentially impairing ecosystem health, so it is important to be able to 

forecast hydrocarbon fate and transport within and beyond the peatland. The redistribution of 

hydrocarbon liquids in groundwater systems are controlled by the multiphase flow characteristics 

of the aquifer material including capillary pressure-saturation-relative permeability (Pc-S-kr) 

relations. However, these relations have never been characterized for the hydrocarbon-water 

phases in peat. To address this, the flow and transport of diesel and water in peat soils were 

examined through a number of one dimensional vertical immiscible displacement tests, in which 

diesel was percolated into peat pore space displacing peat water, leading to a two-phase flow 

regime. Inverse modelling simulations using both Brooks and Corey’s and power law relative 

permeability models, matched the data of the immiscible displacement tests well. Irreducible water 

saturation (Swirr) and the curvature of water relative permeability relation increased with peat bulk 

density. The residual diesel saturation (SNr) ranged between 0.3-17% and increased with bulk 

density of peat. In a given peat, SNr was a function of saturation history and increased with 

increasing maximum diesel saturation. The receding contact angles of water in water-air systems 

and diesel in diesel-air systems, respectively, were 51.7° and 61.2°, showing that the wetting 

tendency of peat in the air imbibition condition is toward the draining liquid. These experiments 
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advance our knowledge on the behavior of hydrocarbons in peat, and can improve numerical 

modelling of hydrocarbon transport after a spill. 

Keywords: NAPL spill; multiphase flow; residual NAPL saturation; peat; relative 

permeability; contact angle 

 

1. Introduction 

After a hydrocarbon spill onto a peatland, the hydrocarbon as a light non-aqueous phase liquid 

(NAPL) will spread in the aquifer and contaminate the down-gradient ecosystem. NAPL spreading 

velocity and extent in the contaminated aquifer will be controlled by multiphase flow properties 

of the aquifer material, including capillary pressure-saturation-relative permeability relations (Pc-

S-kr). The spatial distribution of the NAPL plume controls the rate of volatilization, as well as 

dissolution of organic molecules in water, and determines the spatial distributions and temporal 

variations of dissolved contaminants down-gradient of the spill zone. Ideally, environmental 

scientists could forecast the distribution of the NAPL plume, but given the poor understanding of 

multiphase flow in peat, and the absence of parameters characterizing it, this cannot currently be 

done.  

The Pc-S-kr relation has been characterized for glass beads (e.g. Johnson et al. 1959), 

unconsolidated sand (e.g. Leverett and Lewis 1941) and sandstones (e.g. Caudle et al. 1951), but 

not for peat soils. Among the parameters of Pc-S-kr relations, residual NAPL saturation (SNr) 

dominantly controls the extent of the free-phase plume. SNr is the NAPL saturation in which the 

relative permeability of NAPL, and consequently its mobility, tends to zero and NAPL stops 

moving. For a given volume of spilled NAPL, the higher the SNr, the smaller will be the final extent 

of a free-phase plume. In downward percolation of spilled NAPL, the magnitude of SNr determines 

the mass of NAPL left in the vadose zone and whether free NAPL reaches water table or not. This 

parameter has not been characterized in peat soils. 
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After reaching the water table (WT), Light NAPL (LNAPL) spreads above the water table and 

moves laterally down-gradient. In addition, WT fluctuations can displace the LNAPL (Oostrom et 

al. 2006) and enhance the lateral extent of the free-phase plume. The WT fluctuations could be 

frequent in peatlands due to the shallow WT in these aquifers where the thin unsaturated zone has 

little capacity to buffer against atmospheric water fluxes. Related observations on the magnitude 

of the lateral migration of LNAPL above the WT and the effect of WT fluctuations on NAPL 

redistribution have thus far not been documented for peatlands. 

Although Pc-S-kr relations have not been characterized for NAPL-water system in peat, they 

have been measured frequently for air-water system (e.g., Price et al. 2008; Price and Whittington 

2010; McCarter and Price 2014). Due to the lower complexity of air-water measurements 

compared to NAPL-water measurements, as well as availability of Pc-S-kr data of air-water 

systems, using air-water measurements to estimate NAPL-water relations could reduce the cost 

and characterization time. Notwithstanding the lack of a comparison between air-water and NAPL-

water relations in peat soils, a comparison could indicate the similarities and differences and if air-

water data are a reasonable proxy for NAPL-water simulations.  

The aim of this study is 1) to characterize Pc-S-kr relations and the residual NAPL saturation 

in peat soils in varying spill scenarios; 2) to observe the magnitude of the downward and lateral 

migration of LNAPL above the WT, and to examine the effect of WT fluctuations on NAPL 

redistribution; and 3) to compare Pc-S-kr data of a water-NAPL system to those available for air-

water systems, and to assess if air-water data provide reasonable estimates of NAPL-water 

relations. To fit this purpose, one-dimensional and two-dimensional peat column experiments were 

carried out. In these experiments, diesel was used as the NAPL, since it is a common petroleum 

product that is transported via pipelines and railroads. In the case of a diesel spill onto a peatland, 

in addition to release of free-phase and dissolved-phase hydrocarbon contaminants, it might 

remobilize non-organic contaminants such as lead, in peatlands (Deiss et al. 2004). The results of 

this study will help groundwater modellers and environmental scientists evaluate the behavior of 

petroleum hydrocarbon contaminants in peatlands and assess the risk of contamination. 
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2. Methods 

2.1. Contact angle and scaling capillary pressure relations 

Air-water capillary pressure-saturation (Pc-S) relations have frequently been characterized and 

reported for different types of peat soils (Schwärzel et al. 2006; Price et al. 2008; McCarter et al. 

2014) and could be used for a NAPL-contaminated peatland if they can be scaled to NAPL-air and 

NAPL-water systems. Several studies have scaled Pc-S data between liquid-liquid and liquid-gas 

systems (e.g., Parker et al. 1987; Lenhard and Parker 1988). Scaling these data and relations 

requires knowledge of the interfacial tensions and contact angles of fluids present in the pore space 

(Demond and Roberts 1991; Bradford and Leij 1995a). To investigate the validity of scaling in 

peat, corresponding Pc-S data and contact angles for different fluid combinations were measured. 

To measure the contact angles, air bubbles were released onto a peat surface in water or diesel 

saturated conditions, then the geometry of the bubbles (Figure 1) were analyzed to determine the 

contact angles. Details are available in Gharedaghloo and Price (2017), who showed contact angle 

of water-NAPL system in water drainage and NAPL drainage conditions. Here, we report the 

contact angles of water-air, and NAPL-air (diesel-air) systems, for the condition of air imbibition 

(water drainage and diesel drainage).  

 
Figure 1: Air bubble on peat in the water saturated condition (a), and diesel saturated 

condition (b), illustrating the water-air and diesel-air contact angles in gas imbibition, 

respectively. 

 

(a) (b) 
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To obtain the capillary pressure-saturation relations in peat soil in a controlled and reproducible 

condition, gravity drainage column tests were carried out using milled peat. Milled peat was 

screened with 1 mm sieve to decrease the heterogeneities and to ascertain that peat particles are of 

similar size, so the pore size distributions between columns were similar. A column (Figure 2a) 

with separable segments was filled with milled peat. The dimensions of each segment were 5 cm 

length and 10 cm internal diameter. The peat in each segment was packed individually and with a 

given dry peat weight, before inserting into the column; this was done to seek homogeneous bulk 

density, porosity, and pore size distribution along each column and between replicates. The packed 

peat column then was saturated with the desired liquid (water or diesel) in the upward direction 

through the bottom of the column to minimize air trapping. After saturation, the column was 

drained by opening its bottom valve leading to liquid drainage through bottom of the soil column 

and air imbibition through the top (Figure 2a). After 48 hours of drainage when the outflowing 

rate was zero the column was separated into segments starting from the top. The weight of a 

drained segment and the original dry weight of milled peat then were used to calculate the volume 

and the saturation of the liquid (water or diesel) in the segment. Repeating this for all segments, 

the variation of liquid saturation with height (Figure 2b) was obtained. The procedure was repeated 

in 3 replicates for water drainage and in 2 replicates for diesel drainage.  

Next, the diesel-air data were scaled and compared to water-air data using Equation 1, where 

σaw is air-water interfacial tension, σad is air-diesel interfacial tension, θaw is water contact angle at 

the air-water interface on peat surface, θad is diesel contact angle at air-diesel interface on peat 

surface, Pcad is capillary pressure in the diesel-air system at diesel saturation of Sd, and Pcaw is 

capillary pressure in the water-air system at water saturation of Sw. In scaling, σda and σwa, 

respectively, were considered as 23.8 mN/m (Environment Canada 2018) and 72.0 mN/m (Lide 

2012); the median diesel-air and water-air contact angles obtained in contact angle measurements 

were used in the scaling. 

 
 

cos
( ) ( )

cos

aw aw

caw w cad d

ad ad

P S P S
 

 


 
Equation 1 
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Figure 2: Air inflow through top and liquid outflow through bottom of the separable 

column causing liquid drainage and air imbibition along the soil column (a); idealized 

vertical distributions of liquid and air saturation along the column at the end of the 

experiment (b). 

 

2.2. Unsteady state displacement column test 

One dimensional studies of NAPL percolation into vertical soil columns (e.g. Lenhard et al. 

1988; Thomson et al. 1992) have been carried out to assess the behavior of NAPL during 

imbibition into the soil pore. In addition, such vertical columns have been used to determine the 

relative permeability relations (Sahni et al. 1998; DiCarlo et al. 2000) and NAPL recovery (e.g. 

Kantzas et al. 1988) under gravity drainage conditions. Such vertical displacement tests could be 

representative of the condition of NAPL spilled on a water saturated soil surface (e.g. in a train 

derailment), after which NAPL spreads above the peat surface and percolates downward into the 

soil profile due to water table drawdown. This mimics the conditions of a spill accident following 

snowmelt or other wet periods of the year, when the water table is at or above the ground surface. 

Unsteady-state immiscible displacement tests were carried out in (unsegmented) vertical peat 

(a) (b) 

Air 

Liquid 
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columns. The aim was to simulate the percolation of NAPL into the peat profile, to indicate the 

effects of peat properties on NAPL percolation rate and NAPL trapping, and to quantify kr of the 

diesel phase in peat columns under the gravity drainage condition. 

Two types of peat (A and B) with different physical properties were used in these experiments. 

Peat A was extracted from a bog peatland in Quebec (47° 58' N, 69° 26' W) and peat B was from 

a bog peatland in Southern Ontario (43° 55' N, 80° 25' W), and the extracted peat monoliths were 

frozen after extraction. The top of each peat monolith was at the ground surface (top of surface 

moss layer) and the lengths of the monoliths were ~40 cm, providing a peat profile between the 

ground surface down to ~40 cm below ground surface. From each frozen peat monolith (peat A 

and B) three columns (A1, A2, A3, B1, B2, B3) with diameter of 5.1 cm and length between 30-

36 cm were cut; one compacted peat column (A4) was also made using residue of peat A. The aim 

of using a compacted column was to compare the results of a highly disturbed (compacted) column 

and the intact columns. Each column was first saturated from the bottom with deionized water to 

minimize air trapping. Constant head permeability tests were carried out with deionized water on 

the columns to obtain their hydraulic conductivity and absolute permeability.  

Next, a 17.6-25.3 cm diesel column (varying between columns) was placed at the surface of 

water-saturated peat (Figure 3a). The bottom valve of the column was then opened allowing water 

to flow out the column and diesel to imbibe into it due to gravity (Figure 3b). Through diesel 

imbibition, diesel head above the peat surface declined continuously and equaled zero when the 

diesel-table was at the peat surface (Figure 3c) after which two-phase flow of diesel-water ended 

and air started imbibing into the pore space, forming a three-phase flow regime along the soil 

column. During the experiment the cumulative produced volumes of water and diesel were 

recorded for the two phase flow period and a part of the three-phase flow period (Figure 3d) to be 

used in relative permeability calculations. Gravity drainage continued for ~48 hours until water 

and diesel outflow ceased. No change in the height of compressible peat columns was observed 

during the experiment. 

In all columns of peat A, diesel breakthrough occurred before the two-phase flow period ended. 

However, diesel breakthrough at the outflow did not occur in column B1 at the end of the two-

phase flow period, thus the diesel production trend was not recorded for this core. Again, for 
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column B2, the initial height of diesel column was not sufficient to cause diesel breakthrough by 

the time the diesel level declined to the peat surface; so in this column, diesel was added gradually 

to the peat surface to maintain the diesel head at the peat surface and delay air imbibition until 

diesel production at the outflow started and continued for few minutes. To avoid such 

discrepancies, in column B3, the initial height of diesel column was increased to 25.3 cm to 

ascertain diesel breakthrough and its production at the end of two-phase flow period of the 

experiment.  

At the end of the gravity drainage process, to determine the final distributions of water and 

diesel along the columns, each column was cut into ~5 cm segments, and the segments were 

squeezed with a hydraulic press (~120 atm) to extract the water and diesel. The deformable peat 

matrix provided good water and NAPL recovery from its pore spaces. However, since not all fluids 

were recovered by pressing, in-situ residual volumes and saturations of water and diesel were 

estimated (Appendix A) based on the extracted volumes of water and diesel and the air-dried 

weight of the peat. The air-dried weight was also used to calculate bulk density and porosity. 

Finally, the balance of residual diesel volume in peat columns was checked (Appendix B) to 

ascertain that no significant error was imposed.  

The relative permeability of peat to diesel (krD) was estimated using the cumulative diesel 

percolation and production data. Diesel breakthrough at the column outflow indicated a continuous 

diesel phase along the column, which means the average relative permeability of diesel in the 

column could be calculated using diesel head data and its outflow rate. If at two times, t1 and t2 [T] 

diesel heads are h1 and h2 [L], respectively, and the average diesel outflow rate between t1 and t2 

is QD [L3T-1], the average effective hydraulic conductivity of diesel (KeffD) between t1 and t2 is 

estimated using Darcy’s law (Equation 2) for diesel such that  

D
effD

Q L
K

A h


  

Equation 2 

 

where A is cross sectional area of the peat column [L2], L is the length of the column [L], and Δh 

is the head difference between up-gradient (top of peat column) and down-gradient (bottom of peat 
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column) [L], which is equal to (h1+h2)/2. Next, effective permeability of peat to diesel (keffD) was 

obtained using 

effD D

effD

D

K
k

g






 

Equation 3 

 

where µD is diesel viscosity [MT-1L-1], ρD is diesel density [ML-3], and g is acceleration constant 

[LT-2]. Finally, krD was calculated as the ratio of keffD and absolute permeability (k) of the peat 

column. The average water saturation (Sw) along the column between t1 and t2 was obtained using 

the cumulative water production data. If cumulative produced water volumes at t1 and t2 are Vw1 

and Vw2, the average cumulative water production between t1 and t2 ((Vw1+Vw2)/2) demonstrates 

the drained volume, thus the drained porosity. Using the drained porosity and the total porosity of 

column, the average water saturation between t1 and t2 was calculated. Repeating these for every 

two adjacent measurements, the variations of diesel relative permeability with water saturation 

were obtained for each tested column. This relative permeability of diesel is for the water drainage 

condition.  
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Figure 3: (a) peat column is saturated with water and a diesel head is placed above the peat 

surface; (b) outflow valve is opened, diesel imbibes into the soil column and water flows out 

through column bottom due to gravity drainage; (c) three-phase flow begins when no diesel 

head is left above soil surface; (d) idealized variations of cumulative produced water and 

diesel through the two-phase flow period of the experiment 

 

2.3. Inverse modelling and estimating Pc-S-kr functions 

Capillary pressure and relative permeability functions have been estimated through inverse 

modelling in NAPL-water and air-water system (Chardaire-Riviere et al. 1992; Sigmund and 

(a) (b) (c) 

(d) 
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McCaffery 1979; O'Carroll et al. 2005; Parker et al. 1985; Crescimanno and Iovino 1995). In these 

studies, Pc-S-kr functions of porous media were treated as fitting parameters and were adjusted to 

match observed data with numerical simulation results. In a similar approach, here, the two-phase 

flow periods of the immiscible displacement tests were used to estimate Pc-S-kr functions of peat. 

The aim was to match the measured water and diesel cumulative outflows with a numerical model 

through adjusting peat Pc-S-kr functions. Two different forms of Pc-S-kr relations were used: 1) the 

Brooks and Corey’s (1964) model, and 2) power law model (PLM) with no capillary pressure. 

Equation 4 to Equation 7 describe the Pc-S-kr functions of Brooks and Corey’s model (BCM) 

where Pcth is the threshold capillary pressure at which water drainage begins and diesel starts 

imbibing into the largest pore sizes corresponding to Pcth, Se is the normalized water saturation, Sw 

is water saturation, Swirr is the irreducible water saturation and is the water saturation at which 

water ceases flowing, λ is pore size distribution factor of the porous medium, krw is water relative 

permeability and krN is diesel (NAPL) relative permeability. λ controls the curvature of the kr-S 

curves. 

1/

c cth eP P S 
 

Equation 4 

1

w wirr
e

wirr

S S
S

S




  

Equation 5 

 

2 3

rw ek S







 

Equation 6 

 

   
22

1 1rN e ek S S





  
 

Equation 7 

 

 

Equation 8 and Equation 9 describe the power law relative permeability relations, in which nN 

and nw, respectively, are the powers of diesel relative permeability and water relative permeability 

relations and determine the curvature of the relative permeability relations. 

wn

rw ek S  
Equation 8 

 

 1 Nn

rN ek S   
Equation 9 
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To model the two-phase flow of water and NAPL in peat columns, the open-source MATLAB 

Reservoir Simulation Toolbox (MRST, 2017a) (Lie, 2016) was used. MRST solves the two-phase 

flow equation (Equation 10) simultaneously for water and diesel, and calculates spatial distribution 

and temporal variations of saturations and fluxes along the peat columns. 

f rf f

f f f f

f

S kk p
g q

t z z
  



   
         

 

Equation 10 

In Equation 10, f is a pore fluid and represents water and diesel phases, Sf is the saturation of 

the fluid, pf is the pressure of the fluid [ML-1T-2], krf is the relative permeability of the fluid, k is 

absolute permeability of peat [L2], ϕ is porosity, ρf is density of the fluid [ML-3], g is gravitational 

constant [LT-2], z is the elevation [L] and qf is a sink/source term [ML-3T-1]. A one-dimensional 

vertical model of each column with its corresponding permeability and porosity values was built 

in MRST. The upper boundary condition of the column was controlled by an imaginary diesel 

injection well in which the diesel injection rate (as the diesel percolation rate) varied with time. 

Having the variations of diesel head with time, the temporal variations of diesel rate in the injection 

cell was obtained.. The boundary condition at the bottom of the column was a production well 

which operated with atmospheric bottom hole pressure (BHP) and was open to produce both water 

and diesel. Using the model the outflowing rates of water and diesel at each column’s outflow 

were simulated. The density of diesel was measured as 0.83 g/cm3 and was used as input in the 

numerical models. Water density was assumed as 1g/cm3 and its dynamic viscosity was assigned 

as 1 mPa.s. The dynamic viscosity of diesel was assumed as 2 mPa.s at the laboratory condition 

(Environment Canada, 2018). 

Two sets of estimating simulations, one with BCM and the other with PLM, were run for each 

column. In the estimating simulations with BCM, λ, Swirr, and Pcth parameters were treated as the 

unknown parameters, and in the simulations with PLM, Swirr, nw, and nN were the unknown 

parameters. For each column, MRST simulated the downward percolation of diesel into the peat 

column and calculated the variations water and diesel outflowing rates with time. Next the root-

mean-square-error (RMSE) of diesel cumulative outflowing volume was calculated with 
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 
2

1

n measured simulated

i ii
y y

RMSE
n







 
Equation 11 

where n is number of observed points, yi
measured is a value of observed cumulative diesel volume 

and yi
simulated is the corresponding value at in the simulated case. FMINCON minimizing function 

of MATLAB was used to minimize RMSE through adjusting and calibrating the unknown 

parameters. Finally, the realization with the lowest RMSE was selected as the model with 

representative model parameters. 

Studies have raised concerns regarding uniqueness of the results obtained by this method (Kool et 

al. 1985; Eching and Hopmans 1993) meaning that there is a possibility that two or more sets of 

Pc-S-kr data result in similar minimum objective functions. Eching and Hopmans (1993) 

recommended measuring pressure in the core to resolve the non-uniqueness issue; however there 

are other arguments that the including tensiometer data in inverse modelling are not necessary 

(O'Carroll et al. 2005). To avoid the possible problem of non-uniqueness, the calculated kr-S data 

of diesel (discussed in previous section) was another check-point for the estimated diesel kr-S 

relations. 

2.4. Diesel spill in a two dimensional peat box model 

Two-dimensional experimental soil boxes have been used to study the redistribution of NAPL 

in porous material (Høst-Madsen and Jensen 1992), the effect of water table variations on the 

behavior of NAPL (Oostrom et al. 2006), the effect of soil heterogeneity on NAPL redistribution 

(Illangasekare et al. 1995), and the recovery of petroleum contaminants through flooding them 

(Palomino and Grubb 2004). These 2-D box models allow control of the environmental condition 

and release of hydrocarbon between field-scale and core-scale studies. Using these box models, 

the redistribution of NAPLs can be studied where releasing a field-scale spill is not an option. 

Here, the peat box model was used to observe the redistribution of diesel in vadose zone of peat 

and to evaluate the effect of water table fluctuations on its remobilization. This experiment mimics 

the condition where the water table is deep and diesel is spilled on the surface of peat vadose zone. 
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An intact peat sample (50 cm x 50cm x 10 cm) was extracted from peatland B. Extraction was 

done in winter when the top 30 cm of the soil was frozen to minimize monolith disturbance. The 

top of the extracted peat monolith was the ground surface, and it covered the peat profile down to 

50 cm below ground surface. The peat monolith was placed in the main chamber of a peat box 

(Figure 4). A “well” at each side of the box connected to the main chamber with screens allowed 

adjustment of the water table (WT) and visual monitoring of WT and free diesel thickness in the 

peat box during the experiment. At the field scale the wells could represent ditches excavated 

around the spill area to collect spilled liquids. 

Monitoring NAPL percolation and spreading in pore spaces in laboratory-scale studies has 

been done visually (e.g. Van Geel and Sykes 1994; Darnault et al. 1998; Palomino and Grubb 

2004; Conrad et al. 2002), using X-ray (e.g. Fagerlund and 2007; Goldstein et al. 2007), dual 

gamma attenuation (e.g. Høst-Madsen and Jensen 1992), and electrical resistance (e.g. Pantazidou 

and Sitar 1993). Measuring the electrical resistance of porous media has been a tool for 

characterizing the variations of aqueous phase saturations in pore space in other earlier studies 

(e.g. Leverett 1939; Leverett and Lewis 1941; Morgan and Pirson 1964). The peat box was 

equipped with electrical resistivity sensors intended to monitor NAPL percolation during and 

following the diesel spill. To accomplish this the peat column was flushed with 50 litres of 100 

mg/L sodium chloride solution for 2 weeks before the spill to place an electrically conductive 

aqueous fluid in peat pore space. A network of electrodes were embedded at the front and back of 

the 2D column (Figure 4). At the end of brine flushing, the WT level was set at 9.5 cm above the 

bottom of the peat (~40 cm below ground surface). The WT then was monitored over the following 

4 days to ascertain physical equilibrium established between air and water phases before the spill.  

A network of 8 hydrophilic and 8 hydrophobic pressure transducers were embedded at the front 

face of the peat box (Figure 4) to measure water and diesel pressures, respectively, during the 

experiment. Preparation and treatment of the transducers are discussed in Appendix C. Primary 

measurements showed that the response time of a transducer was ~10 minutes which was not short 

enough to allow fluid pressures measurement with sufficient frequency during and following the 

spill. However, the transducers allowed monitoring of the temporal variations of water pressure 

before the spill, and water and diesel pressures after the spill. This helped us to decide whether 
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physical equilibrium was established between pore fluids, before and after spill, and following the 

rainfall events and water table fluctuations. Before and after each event, the pressure values were 

monitored; the absence of temporal variations of pressure during these periods in all the 

transducers was assumed to imply physical equilibrium.  

To simulate the spill, diesel was released via a mesh of tubes that were uniformly distributing 

the diesel at a constant rate of 17.7 mL/min over the central 20 cm of the peat box (area of 200 

cm2). The diesel spill continued for 105 minutes, cumulatively releasing 1858 mL of diesel to the 

peat surface. The thickness of free NAPL above the WT at the side well and within the peat box 

was monitored following the spill. Starting 7 days after the spill, diesel was pumped out from the 

side wells. This was to simulate the lateral redistribution of NAPL in a field condition, to the 

surrounding area or to excavated ditches. NAPL was collected over the next 2 weeks until no free 

NAPL was evident at the side wells. The aim was to encourage lateral migration until the 

remaining free-phase diesel in pore spaces reached residual saturation, thus no further movement. 

Next, two heavy rainfall events were simulated by releasing drips of deionized water across 

the peat surface via a network of tubes with 2.5 cm spacing. The aim of the simulated rainfall was 

to raise WT in the peat box so we could observe the effect of WT fluctuations on diesel 

redistribution. For the first event the rate of water release was 34.7 mL/min, simulating a rainfall 

event with intensity of 4.2 cm/hour. WT level rose after the rainfall, and the system equilibrated 

in 24 hours, after which water was removed from the side wells to return WT to the pre-rainfall 

level. Another rainfall simulation with an intensity of 33.4 mL/min was done, and after 24 h WT 

was again returned to the pre-rainfall level. NAPL released after each rainfall event was collected 

from side wells. After the second rainfall the system was monitored for 1 week for possible flow 

of NAPL to the side wells and to ensure that the system had reached equilibrium. The simulated 

diesel spill and heavy rainfalls did not impose physical deformations to the compressible peat 

block of the experiment. The spilled and collected volumes of NAPL and water in the 

abovementioned events were different. Also, the outflow rates of water and NAPL from the peat 

column were not similar between the events. That is, the equilibrium time between events was 

variable.  
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To determine the spatial distributions of NAPL after these experiments, the peat monolith was 

cut into segments. To avoid fluid loss during cutting, WT was lowered to the bottom of the peat 

prior to its removal, so that the fluids were under capillary pressure and would not leak out. The 

peat monolith was segmented into 25 10×10×10 cm cubes, which were then squeezed with a 

hydraulic press to collect the remaining diesel and water.  

 

Figure 4: 2D peat box after the diesel spill; side well with diesel and water levels are 

evident; water and diesel pressure transducers with 10 cm spacing labelled N (for diesel) 

and W (for water). Hexagonal ports held electrodes enabling electrical resistance 

measurements through the experiment.  

3. Results 

3.1. Contact angle and air-liquid column tests 

Respectively, 22 and 19 images were processed for water-air and diesel-air contact angles on 

peat. Water-air contact angles ranged from 39.7°-59.8° with a median of 51.7° (Mean ± St. 
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dev.=51.6° ± 4.5°). The diesel-air contact angles ranged from 45.9°-73.7° with a median of 61.2° 

(Mean ± St. dev.=60.2° ± 7.6°). The measured contact angles are specific to saturated conditions 

and the angle for peat that is partially saturated with water or diesel might be different. 

The median values of water and diesel contact angles were used in Equation 1 and in scaling 

the height-saturation data of the diesel to water-air system. Figure 5a illustrates the elevation-

saturation data for the diesel-air and water-air (segmented) column tests, showing that at a given 

height above the water table or diesel table (pressure=1 atm) the saturation of diesel is evidently 

less than water saturation (in the presence of air, hydrocarbon retention is less than water 

retention). In Figure 5b, capillary pressure-saturation data are calculated by converting the 

elevation to capillary pressure. Then, the capillary pressure-saturation data of the diesel-air system 

is scaled to that of the water-air system using Equation 1 (Figure 5c). 
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Figure 5: (a) unscaled height-saturation data for diesel-air and water-air column tests using 

milled peat; (b) unscaled capillary pressure-saturation relations for diesel-air and water-air 

drainage condition; (c) scaled diesel-air capillary pressure-saturation data (using Equation 

1) compared to water-air capillary pressure-saturation data.  

 

3.2. Vertical distributions of diesel and water 

The bulk density of the replicates of peat A were between 0.066 to 0.090 g/cm3, while the bulk 

for peat B were between 0.026 to 0.035 g/cm3. Accordingly, the porosity of peat A was less than 
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that of peat B in the 1D immiscible displacement columns (Table 1). The saturated hydraulic 

conductivity of peat A ranged from 5.6×10-5 m/s to 1.1×10-4 m/s (Table 1). The saturated hydraulic 

conductivity of peat B in this study ranged from 3.5×10-4 m/s to 6.4×10-4 m/s (Table 1). The 

average hydraulic conductivity of column A1 to A3 was 8.9×10-5 m/s (with standard deviation of 

2.9×10-5 m/s). On the other hand, the average hydraulic conductivity of columns B1 to B3 was 

4.6×10-4 m/s (with standard deviation of 1.6×10-4 m/s). Thus, the average hydraulic conductivity 

of peat B was 5.2 times of that of peat A.  

The spatial variations of water and liquid (water+diesel) saturations along the columns at the 

end of immiscible displacement column experiments (Figure 6) show that due to capillarity, liquid 

and water saturations generally decreased with elevation above bottom of the columns; the increase 

is more evident in columns of peat A. The average water saturation remaining in columns of peat 

A is more than the average water saturation of the columns of peat B. In Figure 6, the area between 

water and liquid saturation curves corresponds to the diesel saturation, showing that average diesel 

saturation along peat B is less than half that in peat A (Table 1). This shows that residual diesel 

saturation in peat pore space is inversely correlated with its porosity and hydraulic conductivity 

and increases with peat bulk density. The results also show that although the peat column was 

compacted and highly disturbed in A4, its porosity, permeability, and residual diesel saturation 

were similar to those of A2 and A3. 

 

Table 1: Physical properties of peat columns in unsteady state immiscible transport 

experiments; *porosity of A1 is the average of A2 and A3 

column 
Porosity 

(%) 

Hydraulic Conductivity 

(m/s) 

Absolute 

Permeability 

(m2) 

Residual diesel 

saturation (SNr) 

A1 93%* 1.0×10-4 1.0×10-11 - 

A2 93% 1.1×10-4 1.1×10-11 17% 

A3 93% 5.6×10-5 5.6×10-12 17% 

A4 90% 3.4×10-5 3.3×10-12 12% 

B1 97% 3.5×10-4 3.4×10-11 4% 

B2 97% 4.0×10-4 3.9×10-11 5% 

B3 96% 6.4×10-4 6.3×10-11 7% 
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Figure 6: Variations of liquid saturation and water saturation with depth below ground 

surface (bgs) (top of each column) in the experimented columns of core A and core B;SNr is 

residual NAPL (diesel) saturation in the column. 

 

3.1. Measured and estimated Pc-S-kr relations 

Each 1D immiscible displacement column test had a two-phase flow period, which started with 

diesel percolation into the pore space and ended when declining diesel head reached the peat 

surface, following which a three-phase flow period occurred as air imbibed into the peat column. 

The cumulative water and diesel production trends in the two-phase flow period of the immiscible 

displacement experiments were used in inverse modeling simulations. The boundaries imposed on 
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the unknown parameters in the inverse modelling simulations are presented in Table 2. Figure 7 

illustrates the variations of measured and simulated cumulative production of water and diesel. 

The rate of diesel percolation into the pore space, which is the sum of the slopes (sum of first 

derivatives) of water and diesel cumulative production curves (in Figure 7), is larger in peat B than 

in peat A. The higher diesel percolation rate in peat B corresponded with the higher hydraulic 

conductivity in peat B columns. 

 

Table 2: Ranges of uncertain/unknown parameters in random search simulations 

 Brooks and Corey’s Model 

(BCM) 

Power Law Model (PLM) 

column Swirr Pcth (Pa) λ Swirr nw nN 

A1 10-30% 20-100 0.1-7 45-55% 5-7 5-7 

A2 10-70% 20-100 0.1-7 10-70% 2-7 2-7 

A3 10-70% 20-100 0.1-7 10-70% 0.8-7 0.8-7 

A4 60-75% 20-100 0.1-7 10-70% 0.8-7 0.8-7 

B2 10-70% 20-100 0.1-7 25-50% 2-7 2-7 

B3 10-70% 20-100 0.1-7 35-70% 2-7 2-7 

 

The RMSE of all columns are less than 6.1 mL (Table 3). The error factor, expressed as the 

ratio of RMSE to the total produced diesel volume during the two-phase flow period (Vdiesel), is 

less than 3.2% for BCM and less than 3.1% for PLM, showing that both BCM and PLM relations 

can accurately describe diesel percolation and outflow rates. Also, the water relative permeability 

curves obtained for a column by calibrating BCM (black lines in Figure 8), are in good agreement 

with the corresponding curve estimated using PLM (black dashed lines in Figure 8). 

The estimated BCM parameters show that for intact peat cores the estimated irreducible water 

saturation (Swirr) ranges between 29.9-47.5% for peat A and between 10.6%-26.0% for peat B. In 

PLM model estimations, Swirr ranges between 46.7-55.8% for peat A and between 25.1-35.0% for 

peat B. Independent of the Pc-S-kr model used, Swirr in peat A is higher than that in peat B. The 

curvature of water relative permeability (nw) using the PLM had a narrow range between replicates 

of peat A (5.07-5.83), and a narrow (but lower) range between replicates of peat B (2.01-2.52). 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

Table 3: estimated parameters of Pc-S-kr relations 

Brooks and Corey’s Model (BCM) 

column Swirr Pcth λ RMSE (mL) 
Error (%) 

(RMSE/Vdiesel) 

A1 29.9% 50.0 0.382 1.86 1.6% 

A2 45.8% 29.9 0.705 3.28 2.4% 

A3 47.5% 20.7 0.488 6.09 3.2% 

A4 61.2% 30.4 3.39 0.84 0.5% 

B2 10.6% 30.3 5.88 1.26 1.4% 

B3 26.0% 21.1 7.00 1.76 1.1% 

Power Law Model (PLM) 

column Swirr nw nN RMSE (mL) 
Error (%) 

(RMSE/Vdiesel) 

A1 50.0% 5.83 5.46 3.71 3.1% 

A2 46.7% 5.61 2.00 3.04 2.2% 

A3 55.8% 5.07 2.00 5.83 3.1% 

A4 61.8% 3.39 2.30 0.79 0.4% 

B2 25.1% 2.01 2.82 1.39 1.5% 

B3 35.0% 2.52 4.59 0.738 0.5% 

 

Generally, in a given column, Swirr obtained from BCM and PLM simulations (Table 3) are 

similar, thought they differ A1 and B2 columns. For example, for A2, Swirr determined from BCM 

and PLM simulations are respectively 45.8% and 46.7% which are almost identical. However, in 

A1, the Swirr values are 29.9% and 50.0% from BCM and PLM, respectively. The difference is 

likely due to the limitations of BCM, which is unable to describe water and NAPL relative 

permeability curves with low curvatures (note the generally poor fit between BCM derived NAPL 

relative permeability curves and data, in Figure 8). Details on the cause of differences are provided 

in Appendix D. 
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Figure 7: Measured and simulated cumulative production curves of water (black curves 

and circles) and diesel (grey curves and squares) during the two-phase flow period in the 

experimental peat columns; note the different scales in the x- and y-axes for the different 

peat types.  
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Figure 8: estimated water relative permeability (krw), diesel relative permeability (krN) and 

capillary pressure (Pc) curves using Brooks and Corey’s model (BCM), and power-law 

model (PLM); grey circles illustrate diesel relative permeability measured using diesel 

outflow data.  
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3.2. Peat box 

Twenty minutes after the spill started, traces of diesel were observed (visually) accumulating 

at the center of the peat box above the WT. Forty minutes after the spill began, diesel accumulation 

above the WT and across the chamber (not just in center) was observed. Approximately 4.7 hours 

after the spill began, the apparent diesel thickness above WT was ~6.5 cm uniformly distributed 

across the main chamber, and through the diesel migration to the left side well via the screens, 1.5 

cm diesel was at the left well. Approximately 7.7 hours after the spill, the diesel thickness at the 

left side well was 5.7 cm, and the apparent thickness of diesel layer within peat was 5.8 cm. The 

rate of change of diesel layer thickness slowed down after this time. After 21.7 hours the thickness 

of the diesel layer in the left well and within the peat box both were 6.1 cm. Two days after spill, 

the thicknesses of diesel were 6.2 cm and 6.1 cm in the left well and in peat, respectively. One 

week after the spill the thicknesses were, respectively, 6.2 cm and 6.4 cm in the left well and in 

the peat box.  

During this one-week period diesel did not flow into the right well due to a clogged screen, so 

the clogging was removed allowing redistribution of diesel to a similar thickness in both side wells 

and in the main chamber. After 8 days the diesel that had collected above the WT in the side wells 

was pumped out. This simulates lateral redistribution of diesel in a natural peatland, or pumping 

diesel in collection ditches excavated around a spill zone. Approximately 1525 mL of diesel were 

pumped out during the following two weeks period, representing ~82% of the 1858 mL of the 

spilled diesel, which had migrated laterally to the side wells after reaching the water table. 

The first infiltration event, equivalent to ~5 cm of water over 1.3 hours, caused a WT rise of 6 

cm. As the WT returned to its pre-rainfall level, 5 mL of diesel was released from the pore spaces 

to the side wells. The second rainfall was equivalent of 4.8 cm of water over 1.3 hours, causing a 

WT rise of 6.7 cm. No additional diesel flowed out as the WT returned to its pre-rainfall condition. 

At the end of experiment, dropping the WT to the bottom of the sample released 12 mL of diesel.  

Figure 9 illustrates the spatial distributions of porosity, diesel saturation, and water saturation 

in the peat box at the end of the experiment. The porosity ranged from 92.4% to 98.0, and although 
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scattered horizontally within a layer, generally declined with increasing depth down the peat 

profile. On average the porosity in the right side of the chamber was less than in the center and left 

side of the monolith. Water retained by capillary forces was higher on the right side and with depth.  

 

Figure 9: Spatial distribution of porosity in the peat box; value in each segment is (a) the 

porosity, (b) diesel saturation, and (c) water saturation of the segment; higher values in 

each figure are illustrated with more intense color. 

 

The residual diesel saturation in the contaminated peat in the peat box experiment varied 

between 0.3% and 2.6%, with higher residual saturation in the central segments (0.7%-2.6%), 

reflecting the placement of the spill over the central 20 cm of the peat. No lateral dispersion of 

diesel into the side blocks at the top 30 cm of the peat occurred. The volume of diesel removed 

from the system due to lateral migration over the first 7 days, both simulated infiltration events, 

and final drainage was 1525, 5, and 12 mL, respectively. The volume of residual diesel in the 

drained monolith was 241 mL. Hence, of the 1860 mL spilled volume, 77 mL (~4% of initial spill 

volume) of diesel was unaccounted for, representing the mass balance error. The measured 

resistance values were inconsistent, experienced drift and a distinct diurnal oscillation and 

displayed no relation to diesel presence in pore space. Consequently, resistance values were 

considered spurious, and were rejected. 
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4. Discussion 

Previous studies have quantified water contact angle on soils with different organic carbon 

content. Bradford and Leij (1995a, 1995b) and Ramírez-Flores et al. (2010) reported the contact 

angle of water in a water-air system on sand and silt as 0°. With respect to organic soils, Michel et 

al. (2001) reported water contact angles on moderately decomposed peat at different matric 

potentials ranged from 69.0° at a partially saturated condition (water potential of -32 kPa) to 106.4° 

at a dry condition (water potential -100 MPa). Although Michel et al. (2001) did not characterize 

water contact angle in the water potential of ~0 kPa (when air is imbibing into a saturated peat 

sample), the inverse relation of water contact angle with water potential in their study suggests that 

the contact angle at the saturated condition would be less than 69.0°, which compares to the value 

obtained here (51.7°). Regarding NAPL contact angle in NAPL-air systems, Ethington (1990) 

measured contact angle of benzene, toluene, and several other organic liquids on the surface of 

quartz and calcite, using the sessile drop method. Based on their study, contact angles of benzene 

and toluene on quartz in the presence of air was 11°-12° and 9°, respectively. The contact angles 

of NAPLs in the presence of air and on organic surfaces (61.2°) have not been reported elsewhere 

in literature. 

Scaling measured diesel-air Pc-S data to the water-air system successfully matched measured 

water-air Pc-S relations. This suggests water retention data available for different types of 

Canadian peat soils could be scaled to other fluid-fluid systems using representative interfacial 

tensions and contact angles. In the case of a diesel spill onto a peatland, diesel-water and diesel-

air capillary pressure data might be estimated using corresponding contact angles and the available 

water retention curves of the contaminated peat. In this study, diesel-air and water-air contact 

angles on peat were measured as 51.7° and 61.2° for the liquid drainage conditions. Gharedaghloo 

and Price (2017) have reported water contact angles on peat in the presence of diesel during water 

drainage and water imbibition. If a hydrocarbon liquid other than diesel is spilled on a peatland, 

similar methodology could be applied to determine corresponding contact angles and to scale the 

capillary pressure data using appropriate interfacial tensions. 
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The saturated hydraulic conductivity of peat A and peat B in the 1D column test were in 

agreement with the literature. McCarter and Price (2014) reported the hydraulic conductivity of 

peat A ranging between 6.9×10-5 m/s to 5.2×10-4 m/s between surface and 27.5 cm below ground 

surface (bgs). The harmonic mean of the values reported in their study is ~ 1.9×10-4 m/s which is 

similar to the values of this study in the 1D columns of peat A (Table 1). In the regards of peat B, 

Price et al. (2008) reported the variation of saturated hydraulic conductivity of the peat B ranging 

from 1.8×10-3 m/s at 5cm bgs to 2.4×10-4 m/s at 25 cm bgs with a harmonic mean of 3.3×10-4 m/s; 

as a comparison, the saturated hydraulic conductivity of peat B ranged from 3.5×10-4 m/s to 

6.4×10-4 m/s (Table 1) which are similar to harmonic mean from value from Price et al. (2008). 

In columns A1 and A4 the global minimum for a wide range of parameters uncertainty did not 

match the calculated diesel kr data. Therefore, the upper and lower bounds of the uncertainty ranges 

of the parameters were limited to ensure kr-S curve of diesel (grey lines in Figure 8) were close to 

the measured points (grey circles in Figure 8). The agreement between the measured points and 

the kr-S curves of diesel (Figure 8) and the acceptable match between measured and simulated 

production curves of water and diesel (Figure 7), which is reflected in low RMSE and error factors 

(Table 3), show that the Brooks and Corey’s (1964) model (Equation 4 to Equation 7) and the 

power law model (Equation 8 and Equation 9) can be used to model diesel flow and production in 

the column tests. We note, however, that the result of PLM had less inconsistency with the 

measurements, showing the relative accuracy of this model compared to BCM. While there are 

other relative permeability models (e.g. Chierici 1984; Huang et al. 1997), they have more 

parameters, which increases the risk of uncertainty and non-uniqueness in model parameterization.  

In addition to the mentioned models, the Pc-S-kr model of Van Genuchten (1980) (VG), which 

has been shown to efficiently describe the flow and retention of water in the presence of air in 

unsaturated peat (e.g., Schwärzel et al. 2006; Price et al. 2008), was also excluded from the inverse 

modeling simulations. It is well known that the water kr-S relation in peat is a convex curve (e.g., 

Price et al. 2008; McCarter et al. 2014), and a convex curve of water kr-S in VG model is associated 

with concave trend of NAPL kr-S (e.g., Fig 5 of Luckner et al. 1989). This means using the VG 

model results in a concave curve for the NAPL kr-S relation in the inverse modelling calculations. 

However, the directly calculated NAPL relative permeability data (grey circles in Figure 8) 
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demonstrates that kr-S relations of NAPL in the experimented peats have convex trends (in linear 

axes), which causes VG to be not useful in this particular study and be excluded from inverse 

modelling simulations. 

Peat columns comprising peat from the same source had similar water relative permeability 

curves (Figure 10). The water relative permeability curves of peat A (black curves) and peat B 

(grey curves) form separate clusters illustrating their distinct water relative permeability trends. 

This similarity was reflected in similarity of relative permeability model parameters; for example 

the estimated nw parameter of PLM ranged between 5.07-5.83 in A1-A3 columns of peat A and 

between 2.01-2.52 in columns of peat B (Table 3). In another example, the irreducible water 

saturation (Swirr) of PLM ranged between 46.7-55.8% in A1-A3 columns of peat A and between 

25.1-35.0% in B2-B3 columns of peat B showing similarities within a type of peat and differences 

between two different peat types. The results showed that both Swirr and nw increased with bulk 

density of peat. Price at al. (2008) presented unsaturated hydraulic conductivity (Kunsat) of water 

in peat B (i.e., extracted from the same site) taken between 0-25 cm below ground surface (bgs). 

The calculated krw data from their study (grey circles in Figure 10) reasonably compare with krw of 

peat B obtained in our study (grey lines in Figure 10). This suggests that in the absence of water 

relative permeability data for NAPL imbibition conditions, the unsaturated hydraulic conductivity 

of peat could be used to determine a reasonable estimate of the krw-S relation. 

At a given water saturation, peat B has higher krw compared to peat A (Figure 8, Figure 10). 

The physical properties of the tested columns (Table 1) shows that peat A was more compacted 

and had smaller pore sizes compared to peat B. The amount of diesel saturation that reduces water 

relative permeability to krw≤0.01 is ~30% in peat A, while it is ~60-70% in peat B. This is likely 

due to a higher frequency of macro-pores and active pores in peat B compared to peat A, so that 

during diesel imbibition, a given saturation of diesel occupies a smaller fraction of active porosity 

of peat B compared to that of peat A. Consequently water flow is diminished less in peat B and 

the degree of krw reduction with increasing NAPL saturation is greater in peat A (Figure 10). 

Irreducible water saturation (Swirr) of peat A (46.7-61.8%) was higher than that of peat B (25.1-

35.0%) (Table 3). This is similar to the variations of residual water content in water-air system 

where reduction of peat hydraulic conductivity, which takes place typically down the peat profile 
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due to peat compaction and decomposition, is associated with increasing residual water content 

(Price and Whittington 2010; Goetz and Price 2015).  

 

Figure 10: Estimated relative permeability curves from two-phase diesel-water flow 

(curves) for core A (black curves) (A1, A2, and A3 columns) and core B (grey curves) (B2 

and B3 columns), and measured water relative permeability in water-air system (grey 

circles) from Price et al. (2008), taken from the same peatland. 

  

The A1 to A3 and B1 to B3 columns in the 1D column tests were cut out of undisturbed peat 

blocks; the similarities in the results of replicates within each peat type suggests that if peat is 

sampled with care to preserve its pore structure, a consistent parameter set can be derived, at least 

for a local scale. The similarity between the relative permeability relations and residual diesel 

saturation between intact columns of peat A (A1, A2, A3) and the compacted column (A4), may 

be due to their similar porosity and hydraulic conductivity. This suggests using disturbed peat 

samples might be more representative than using intact peat from a different peatland with different 

porosity and permeability.  

In one dimensional immiscible displacement column tests, the residual saturation was higher 

in peat A compared to that in less dense peat B (Figure 6). Furthermore, the diesel percolation rate 

varied between peat types and was proportional to hydraulic conductivity. This, in association with 

the increase of residual diesel saturation with peat density, leads to faster percolation and higher 

risk of lateral diesel migration in peatlands with less dense peat. The results also suggest that, due 

Peat A 

Peat B 
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to variation of peat density and hydraulic conductivity between hummocks and hollows (Baird et 

al, 2016), diesel percolation rate and the residual diesel saturation could vary substantially within 

a peatland. Due to shallower water table depth in hollows compared to hummocks, diesel 

percolation to the water table will likely happen earlier in hollows. This might lead to continuous 

NAPL phases and NAPL movement in the connected hollows, which is similar to that found for 

dissolved contaminants in the connected hollows of a bog peatland (Balliston 2017).  

In the 1D column experiments, before air imbibition, macro-pores of the peat columns were 

drained and diesel replaced water in those pores. However, in the peat box experiment and during 

the spill, due to the rapid infiltration of diesel and limited rate of diesel spill, the vadose zone of 

the peat stayed unsaturated containing all three phases of water, diesel and air. Consequently, the 

maximum diesel saturations in 1D columns were higher than that in the vadose zone of the peat 

box. The residual NAPL saturation is positively correlated with maximum NAPL saturation before 

air imbibition (Van Geel and Roy 2002), which means higher residual saturation of diesel in the 

column experiments. This explains why the residual diesel saturation in peat B in the column 

experiments (4-7%) was higher than that in the same peat in the peat box experiment (0.3-2.6%.). 

In the 2-D experiment, nearly 77 mL of diesel was unaccounted for based on the mass balance 

calculations. The mass balance error could be due to retention of liquid hydrocarbons in the peat 

matrix even after air-drying and volatilization (Jarsjö et al. 1994). Furthermore, some 

methodological error associated with estimating the residual volume could have contributed to the 

difference. The predictability of the compression technique and estimation of the residual diesel 

volume has been demonstrated (Appendix A and Figure A.1); the error associated with this method 

is insignificant (Appendix B and Table B.1). Nevertheless, the error of estimation might be 

proportionately high with very low volumes of NAPL, because NAPL’s constituents can be 

absorbed to the organic matter in peat matrix (Jarsjö et al. 1994), thus not become remobilized via 

compression. 

At diesel saturation of 1-Swirr, diesel relative permeability tends to 1, meaning that diesel 

effective permeability becomes equal to the absolute permeability of the peat column. Due to the 

large capillary pressure threshold of micro-pores, diesel does not percolate into the dead-end pores 

and the inactive porosity of peat (Gharedaghloo and Price, 2017), occupying only active porosity 
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including macro-pores. Thus, if the diesel effective permeability equals the absolute permeability, 

1-Swirr is the portion of the porosity in which fluid flow takes places. This means 1-Swirr corresponds 

to the active porosity, suggesting that the flooding of saturated peat with diesel might be a dynamic 

and flow-based method for characterizing active and inactive porosities of peat; so far the active 

porosity has been characterized with static and non-flow based methods (e.g. Hoag and Price 1997; 

Quinton et al. 2009; McCarter and Price, 2017; Rezanezhad et al. 2009, 2012).  

In cases where spilled liquid is compositionally similar to diesel, the sum of water-NAPL (σwN) 

interfacial tension (28.9 mN/m for diesel-water; Environment Canada 2018) and NAPL-air (σNa) 

interfacial tension (23.8 mN/m for diesel-air; Environment Canada 2018) is less than water-air 

(σwa) interfacial tension (i.e. σwa>σwN+σNa). Physically this means a thin film of NAPL remains 

between the air and water phases in the contaminated pores, minimizing the surface energy of the 

system. Based on Chatzis et al. (1988) and Kantzas et al. (1988) the NAPL film spreading between 

water and air enhances NAPL drainage and reduces its retention. Sohrabi et al. (2000) 

demonstrated that in such condition an iterative imbibition of the water phase and a gas phase (e.g. 

air) could reduce the NAPL retention and enhance its recovery from pore space. In a contaminated 

peatland, the iterative imbibition of water and air could take place due to frequent rainfall events 

and the consequent water and air invasions to the NAPL contaminated zone. In the peat box 

experiment, 5 mL of diesel were released after the first rainfall and during the WT drawdown, 

which could be due to the iterative water and gas invasion. In a field condition the iterative invasion 

of water and air could potentially remobilize residual NAPL from the contaminated zone. This 

suggests that manipulated fluctuations of the water table might be an appropriate strategy for 

reducing residual NAPL in the spill zone of a contaminated peatland.  

 

5. Conclusion 

For the first time, relative permeability of a NAPL in peat pore space was estimated and Pc-S-

kr model parameters were characterized. The relative permeability of water determined through 

inverse modelling was in good agreement with measured data of Price et al. (2008); this suggests 
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that if the relative permeability relations of water in peat in the two-phase NAPL-water system are 

not available, measured unsaturated hydraulic conductivity data could be a close estimate of them.. 

The relative permeability relations of diesel obtained via inverse modelling were in good 

agreement with those relations that were obtained via direct calculations (Figure 8). The water and 

NAPL relative permeability relations are needed by environmental scientists and groundwater 

modellers in predicting the NAPL migration in contaminated peatlands after a NAPL spill 

accident. However, it must be noted that to be able to make a reasonable numerical prediction of 

the behavior of NAPL in a peatland, a larger number of samples, accounting for spatial variability 

including from different layers of peat, are required. Having a larger sample of experimental results 

would lead to more representative Pc-S-kr relations for the contaminated peat, which is essential 

when trying to upscale numerical simulations with cells or elements larger than the scale of 

laboratory experiments. 

The diesel percolation rate and its retardation in the vadose zone of the peat layer was shown 

to be a function of peat pore structure. The percolation rate increased in peat with lower bulk 

density, while residual diesel saturation increased with bulk density. The residual diesel saturation 

in peat varied between 0.3-17% depending on the spill scenario and physical properties of the peat. 

The variation of residual diesel saturation with water table depth in a given peat implies that the 

residual diesel saturation depends on moisture regime and thus potentially on the time of year in 

which the spill occurs. In the case of a hydrocarbon spill onto a peatland, these results could be 

used to determine if the downward percolating free-phase NAPL will be retained by peat in the 

vadose zone, or if the volume of free-phase hydrocarbon is large enough to pass the vadose zone 

and arrive at the water table.  

In the peat box experiment and when water table was ~40 cm below ground surface, more than 

80% of the spilled diesel reached water table and migrated laterally to the side wells. In a shallower 

water table condition, the total volume of residual diesel left in the narrower vadose zone would 

be less compared to deep water table conditions, so the fraction of spilled diesel migrating to the 

side wells would be greater. In a natural peatland setting, excavating ditches at the down-gradient 

face of the free-phase plume’s edge might be an efficient option for recovering spilled LNAPL. If 

the volume of spilled NAPL is large enough for it to pass through the vadose zone and reach the 
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water table, the ditches could collect the mobile portion of the spilled NAPL. The results also 

suggest that water table fluctuations could remobilize NAPL present in peat vadose zone meaning 

that artificially fluctuating the water table in the source zone could reduce the residual NAPL in 

the vadose zone.  
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Appendix A: Estimating diesel and water volumes in contaminated peat 

A traditional method of obtaining residual NAPL saturation (SNr) is retort distillation in which 

the NAPL-containing soil (or rock) sample is placed in a chamber, and the temperature is raised 

above 500°C to evaporate water and NAPL from the sample. Then, the released vapors are 

condensed giving the original water and NAPL mass in the soil sample (API, 1998). However, this 

method cannot be employed for peat soils since at the temperatures of ~ 500°C the contaminated 

peat would burn away. A potential alternative method would be to place the NAPL contaminated 

sample in a Dean-Stark apparatus from which the water is removed by distillation and the NAPL 

is extracted with a solvent (e.g. toluene) (API, 1998). However, this method would dissolve the 

natural hydrocarbons and waxes present in the peat matrix and cause errors.  

A method that was sufficiently simple and could be repeated for heavy masses of NAPL-

containing peat and a large number of peat samples was in need. A cylindrical apparatus with an 

outflow was constructed in which by using a hydraulic press contaminated peat samples are 

compacted and the liquids present in peat pore space are released and collected from the outflow 

valve. To determine diesel and water volumes remaining in peat pore space, peat was squeezed 
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with the hydraulic press up to pressure of ~120 atm. Compacting peat removed in average 73% of 

pore fluids in each column test; the rest of the liquids remained in the compacted peat, which could 

cause error in the estimations. To overcome this issue, it was assumed that the volumetric ratio of 

liquids that were squeezed out of the contaminated peat sample during the pressing was the same 

as the ratio of their in-situ saturations. Using the primary weight of the peat (containing water and 

diesel), the dry weight of peat after drying the compacted peat for 7 days, and the volumetric ratios 

of liquids in the sample (from the pressing), in-situ volumes and saturations of water and diesel 

were estimated for the contaminated peat sample.  

To test the accuracy of this method, 20 grams of milled peat were mixed with known volumes 

of diesel and water at varying ratios. The mixtures were then pressed, and then using the approach 

noted above the volumes of diesel and water in the mixture were estimated. Figure A. 1 compares 

the actual and estimated volumes of liquids in the evaluation tests showing that the estimating 

method does not overestimate or underestimate the water and diesel volumes in peat samples, and 

the error associated with estimations is negligible. It should be noted that this method is specific 

to peat soils and for the conditions that NAPL saturation is high enough and NAPL can mobilize 

and flow out of the pore space by pressing. The advantage of this method is its simplicity and its 

potential for use in the field. The disadvantage is that it might perform poorly at low and non-

mobile ranges of NAPL concentrations.  

 

Figure A. 1: Actual and estimated volumes of water and diesel in peat pressing tests 
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Appendix B: mass balance in one dimensional peat column experiments 

Using the assumption discussed in Appendix A, peat segments from column tests were pressed 

and the extracted volumes of each phase and the total liquid weight of each segment were used to 

estimate in-situ volumes of water and diesel along each column. Table B.1 shows the error in diesel 

mass balance is under 5 mL (up to 1.3% of spilled diesel volume). This means the estimated 

volumes of diesel inside columns are similar to actual values and the estimations did not introduce 

large errors in estimated diesel volumes of each column. 

 

Table B.1: summary of mass balance of diesel in the peat column experiments; where Vspilled 

is volume of diesel initially placed above the water saturated peat column, Voutflow is volume 

of diesel that flowed out of the column bottom by the end of the experiment, Vcolumn is the 

estimated volume of diesel remaining inside the column; Errorvolume is the volumetric error 

of diesel mass that is missing due to assumptions, and Error is the percentage of missing to 

total volume.  

Column Vspilled 

(mL) 

Voutflow 

(mL) 

Vcolumn 

(mL) 

Errorvolume (mL) 

(Vspilled-Voutflow-Vcolumn ) 

Error 

(Errorvolume/Vspilled)×100% 

A2 367 256 112 -1 -0.3% 

A3 395 283 107 5 +1.3% 

A4 368 297 75 -4 -0.9% 

B1 356 329 26 1 +0.3% 

B2 578 536 37 5 +0.9% 

B3 513 475 40 2 +0.4% 

 

Appendix C. Preparing pressure transducers 

Hydrophobic porous ceramic are required to measure NAPL pressures in the system. Several 

studies have chemically treated porous ceramics to change their wetting tendency and to obtain 

hydrophobic ceramics facilitating measurement of NAPL pressure with transducers. Lenhard and 

Parker (1988) used chlorotrimethysila and Ahmed and Van Geel (2009) used 

octadecyltrichlorosilane as the chemicals for treating the porous ceramics. A similar chemical, 

Dichlorodimethylsilane (Sigma-Aldrich) was used in this study. Clean dry porous ceramic cups 

(Soilmoisture Equipment Corp, USA) were placed in 50:50 (vol/vol) mixture of 
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Dichlorodimethylsilane and benzene (EMD Millipore, GR grade, purity>99%) for 1 week. The 

bottle containing mixture and the porous cups was shaken once every 24 hours to promote the 

chemical reaction between Dichlorodimethylsilane and ceramic cups. After 1 week the ceramics 

were dried in the fume hood for 24 hours, and then were placed in kerosene for 24 hours to remove 

residual free Dichlorodimethylsilane from the ceramic cups (suggested by Ahmed and Van Geel 

2009). Then, the treated ceramic cups were used in assembling the NAPL pressure transducers. 

Untreated porous ceramic cups were used in assembling water pressure transducers. The NAPL 

and water transducers were filled respectively with diesel and water; the filling process and air 

removal process was done iteratively to leave no air bubbles in the main chambers of the 

transducers. Finally, the transducers were inserted into the peat body in a way that each porous 

cup was 5 cm within the peat body. Out of 8 NAPL (diesel) and 8 water pressure transducers, 6 

NAPL and 6 water pressure transducers were above the initial water table, and two of each type 

were below the initial water table.  

 

Appendix D: Causes of the differences in the estimated Swirr between BCM and 

PLM models 

For λ ranging between 0.1-7 the power of krw curve varies in 3.3-23; therefore, if the power of krw 

relation of the media is less than 3.3 (i.e. the krw curve has low curvature), the BCM model will 

fail to describe the kr-S relation of water in the medium. In this case, the optimization function that 

is minimizing the error between observed and simulated production curves cannot match the 

production curves by adjusting λ, and instead, will adjust Swirr (to less realistic values) to produce 

required krw values in mid ranges of water saturations. On the other hand, PLM does not contain 

the curvature limitation and can describe and produce low curvature kr-S relations with power less 

than 3.3. In addition, water and NAPL relative permeability relations in BCM are correlated by λ. 

Based on the equation of krN in BCM (Equation 7), the curvature of krN relation has a higher and a 

lower limit, which can add to the risk of unrealistic Swirr in the BCM model in the optimization 

process. The ability of the PLM model in producing kr-S curvatures that are out of the bounds of 

BCM could explain why the RMSE from PLM simulations is generally less that of BCM results 
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(Table 3). The inability of BCM model in producing low curvatures in relative permeability curves 

and the co-dependence of water and NAPL kr-S relations in this model could be the reasons that 

Swirr determined from BCM is less than that from the PLM. It must be noted that irrespective of 

the difference between values of Swirr in these models, the kr-S curves obtained from PLM and 

BCM simulations, especially those of water, are very similar graphically (Figure 8). In summary, 

BCM limitations in producing low curvatures in the relative permeability relation may render it 

less accurate than PLM. 
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Highlights 

 Water-NAPL relative permeability relations obtained for the first time in peat soil 

 Water- & NAPL-air contact angle used to scale pressure-saturation relation in peat 

 Peat bulk density increases residual NAPL/water saturation, decreases permeability 

 Excavating ditches around the NAPL plume could effectively recover spilled NAPL 
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