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iv



Abstract

We study certain spectral properties of some fundamental matrix functions of pairs of sym-
metric matrices. Our study includes eigenvalue inequalities and various interlacing proper-
ties of eigenvalues. We also discuss the role of interlacing in inverse eigenvalue problems for
structured matrices.

Interlacing is the main ingredient of many fundamental eigenvalue inequalities. This
thesis also recounts a historical development of the eigenvalue inequalities relating the sum
of two matrices to its summands with some recent findings motivated by problems arising
in compressed sensing.

One of the fundamental matrix functions on pairs of matrices is the Kronecker product.
It arises in many fields such as image processing, signal processing, quantum information
theory, differential equations and semidefinite optimization. Kronecker products enjoy useful
algebraic properties that have proven to be useful in applications. The less-studied symmetric
Kronecker product and skew-symmetric Kronecker product (a contribution of this thesis)
arise in semidefinite optimization. This thesis focuses on certain interlacing and eigenvalue
inequalities of structured Kronecker products in the context of semidefinite optimization.

A popular method used in semidefinite optimization is the primal-dual interior point path
following algorithms. In this framework, the Jordan-Kronecker products arise naturally in
the computation of Newton search direction. This product also appears in many linear ma-
trix equations, especially in control theory. We study the properties of this product and
present some nice algebraic relations. Then, we revisit the symmetric Kronecker product
and present its counterpart the skew-symmetric Kronecker product with its basic properties.
We settle the conjectures posed by Tunçel and Wolkowicz, in 2003, on interlacing proper-
ties of eigenvalues of the Jordan-Kronecker product and inequalities relating the extreme
eigenvalues of the Jordan-Kronecker product. We disprove these conjectures in general, but
we also identify large classes of matrices for which the interlacing properties hold. Further-
more, we present techniques to generate classes of matrices for which these conjectures fail.
In addition, we present a generalization of the Jordan-Kronecker product (by replacing the
transpose operator with an arbitrary symmetric involution operator). We study its spectral
structure in terms of eigenvalues and eigenvectors and show that the generalization enjoys
similar properties of the Jordan-Kronecker product. Lastly, we propose a related structure,
namely Lie-Kronecker products and characterize their eigenvectors.
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Tunçel. It has been a great honour to be his Ph.D. student. I would like to thank him for his
invaluable academic guidance, support and encouragement throughout my graduate studies.
I feel extremely lucky to have such a supportive advisor who cared so much about my work,
and responded to my questions with great enthusiasm and patience. The joy and passion he
has for his research were contagious and motivational for me.

I would also like to thank my committee members, namely Dr. Maryam Fazel, Dr. Chris
Godsil, Dr. Henry Wolkowicz and Dr. Yaoliang Yu, for reading my thesis and providing
detailed comments. Especially, I would like to express my gratitude to Dr. Henry Wolkowicz,
for his valuable feedback and his kind attitude; it has been an honour and pleasure to have
met him during my studies at University of Waterloo.

I would like to thank my friends for their kindness and support. I would also like to
thank my sisters for their continued support and encouragement. Finally, I would like to
express my deepest gratitude to my parents, for their generous support and unconditional
love.

The material in this thesis is based upon research supported in part by NSERC Discovery
Grants, International Doctoral Student Award (IDSA), Provost Doctoral Entrance Award for
Women, Math Faculty Graduate Award, Mathematics Graduate Experience Award, William
Tutte Postgraduate Scholarship, Sinclair Graduate Scholarship, U.S. Office of Naval Research
under award numbers: N00014-15-1-2171 and N00014-18-1-2078. This financial support is
gratefully acknowledged.

vi



Table of Contents

List of Figures ix

1 Introduction 1

1.1 Convex sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Some Special Structured Matrices . . . . . . . . . . . . . . . . . . . . 6

1.3 Interlacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline and contributions of the thesis . . . . . . . . . . . . . . . . . . . . . 10

2 Compressed Sensing 11

2.0.1 Null Space Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.0.2 Restricted Isometry Property . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Compressed Sensing in Structured Matrices . . . . . . . . . . . . . . . . . . 23

2.2 Recovery of Low Rank Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Null-space Based Recovery Results with Schatten-q Quasi Norm Min-
imization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Eigenvalue Inequalities 32

3.1 Eigenvalue Inequalities for a Sum of Two Hermitian Matrices . . . . . . . . . 32

3.2 Mirsky’s Inequality and Its Generalizations . . . . . . . . . . . . . . . . . . 35

4 Kronecker Products, Schur Products and Interlacing 44

4.1 The Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Properties of the Kronecker Product . . . . . . . . . . . . . . . . . . 45

4.2 Sylvester Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



4.3 The Schur Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Structured Eigenvectors and Interlacing . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Even and Odd Factorization of Eigenvectors . . . . . . . . . . . . . . 52

4.4.2 Centrosymmetric Matrices and Related Matrices . . . . . . . . . . . . 53

4.4.3 Real Symmetric Toeplitz Matrices . . . . . . . . . . . . . . . . . . . . 55

4.4.4 Tridiagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.5 Symmetric Perfect Shuffle Invariant Matrices . . . . . . . . . . . . . . 56

5 Jordan-Kronecker Products and Interlacing 59

5.1 The Symmetric Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Properties of Symmetric Kronecker Product . . . . . . . . . . . . . . 61

5.2 The Skew-Symmetric Kronecker Product . . . . . . . . . . . . . . . . . . . . 62

5.3 Jordan-Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Cases when interlacing properties hold . . . . . . . . . . . . . . . . . 71

5.3.3 Cases when interlacing conjectures fail . . . . . . . . . . . . . . . . . 77

5.3.4 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 A Generalization of Jordan-Kronecker Product . . . . . . . . . . . . . . . . . 83

5.5 Lie-Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Applications of Jordan-Kronecker Products and Open Problems 87

6.1 Matrix Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Generalized Lyapunov Matrix Equations . . . . . . . . . . . . . . . . . . . . 88

6.3 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 94

A APPENDICES 104

APPENDICES 104

A.1 Vector Spaces and Inner Product Spaces . . . . . . . . . . . . . . . . . . . . 104

A.2 Normed Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Index 108

viii



List of Figures

2.1 Convex hull of B0 = {x : ‖x‖0 ≤ 1} is B1 := {x : ‖x‖1 ≤ 1}. . . . . . . . . . 14

ix



Chapter 1

Introduction

The main themes of this thesis are eigenvalue inequalities, interlacing and Kronecker products
of some fundamental matrix functions of pairs of symmetric matrices. These concepts arise
in many research and application areas in mathematical sciences and engineering in general,
and in combinatorics and optimization in particular.

Eigenvalue inequalities on sums of Hermitian matrices have a long history and have been
studied extensively in theory [85, 139, 66]. These inequalities play a major role in pertur-
bation theory. Furthermore, these eigenvalue inequalities have been important in applica-
tions in statistics and engineering problems [39, 34], and in particular in signal processing
[107, 143]. Horn established a certain set of inequalities relating the eigenvalues of the sum
of two Hermitian matrices to its summands, and conjectured that they describe exactly the
attainable set of eigenvalues of the summands and the sum [66]. The eigenvalue inequali-
ties of sums of Hermitian matrices have gained an interest in the last two decades by the
settlement of the Horn’s conjecture by Klyachko [77], and Knutson and Tao [78]. A com-
prehensive survey of these results can be found in [49]. In addition, many such eigenvalue
inequalities such as Lidskii inequalities [13] and Horn inequalities [55] can be extended for
the characteristic roots of hyperbolic polynomials.

Interlacing is the main ingredient in many eigenvalue inequalities. One of the well-
known results in perturbation theory states that the eigenvalues of a rank one Hermitian
perturbation of a Hermitian matrix interlace the eigenvalues of the unperturbed matrix.
Eigenvalue inequalities and interlacing has many applications in algebraic graph theory.
In particular, they are useful in obtaining inequalities on the eigenvalues of the adjacency
matrix or the Laplacian matrix of the graph. These turn out to be useful in bounding some
parameters of a graph such as the size of a maximal independent set, the chromatic number,
the diameter and the bandwidth, the edge connectivity and the isoperimetric number. For
a more detailed account of this topic, see Haemers’ survey paper [56] and also [1]. Recently,
interlacing has gained more popularity by the work of Markus, Spielman and Srivastava,
in which they developed the method of interlacing polynomials and proved the existence of
infinite families of regular bipartite Ramanujan graphs of every degree greater than 2 [89].
Also, they solved the long standing Kadison-Singer problem [90].

One of the main concepts studied in this thesis is one of the fundamental matrix functions
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on pairs of matrices: the Kronecker product. It arises in many fields such as image process-
ing, signal processing, quantum information theory, differential equations and semidefinite
optimization. Kronecker products enjoy useful algebraic properties that have proven to be
useful in applications. The less-studied symmmetric Kronecker product and skew-symmetric
Kronecker product (a contribution of this thesis) arise in semidefinite optimization. This the-
sis focuses on certain interlacing and eigenvalue inequalities of structured Kronecker products
in the context of semidefinite optimization.

In the remainder of this chapter, we present some background material on convex sets
and functions, matrix theory, interlacing and the notation used throughout this thesis. We
put some elementary definitions and notations on the vector spaces and normed linear spaces
to Appendix A.1-A.2. We finish this section by providing the outline and the contribution
of this thesis in Section 1.4.

1.1 Convex sets and functions

The definitions and the concepts covered here can also be found in [64].

Definition 1.1.1 (Convex set). A set C ⊆ Rn is convex if αx + (1− α)y is in C whenever
x,y ∈ C and α ∈ (0, 1).

Definition 1.1.2 (Convex hull). Given a set C ⊆ Rn, the convex hull of C is defined as

conv(C) :=

{
n∑
i=0

αixi : xi ∈ C, αi ≥ 0,
n∑
i=0

αi = 1

}
,

which is the set of all convex combinations of the points of C.

Theorem 1.1.1. For every C ⊆ Rn, conv(C) is the intersection of all convex sets containing
C.

Definition 1.1.3 (Extreme point). Given a convex set C ⊆ Rn, a point x ∈ C is an
extreme point of C if there are no two distinct points x1,x2 ∈ C and α ∈ (0, 1) such that
x = αx1 + (1− α)x2.

Definition 1.1.4 (Cone). A set K ⊆ Rn is said to be a cone if 0 ∈ K and λx ∈ K for every
x ∈ K and λ ≥ 0.

Definition 1.1.5 (Polar cone). Let K be a convex cone. The polar cone of K is defined as

K◦ := {y ∈ Rn : 〈y,x〉 ≤ 0 for every x ∈ K} .

Definition 1.1.6 (Tangent cone). Given a nonempty set S ⊆ Rn, d ∈ Rn is a direction
tangent to S at x ∈ S if there exists sequences {xk} ⊂ S and {tk} such that tk > 0 and
when k →∞

xk → x, tk → 0,
xk − x

tk
→ d.

for every x ∈ K. The set of all such directions is called the tangent cone to S at x (or the
contingent cone), and is denoted by TS(x).
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Proposition 1.1.2. Given a closed convex set C ⊂ Rn, the tangent cone of C at x ∈ C is
the closure of the cone generated by C \ {x}:

TK(x) = cl{α(y − x) : α ≥ 0,y ∈ C}.

Definition 1.1.7 (Convex function). Let C ⊆ Rn be a convex set. A function f : C → R is
said to be convex on C if for every x,y ∈ C and α ∈ (0, 1),

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

Definition 1.1.8 (Gauge). Given a closed, convex set C ⊂ Rn containing the origin, the
gauge of C (or Minkowski functional of C) is defined as

γC(x) := inf{t > 0 : x ∈ tC},

where γC(x) := +∞ if x ∈ tC for no t > 0.

Theorem 1.1.3. Let C ⊆ Rn be a closed, convex set containing the origin. Then the gauge
of C, γC is

(i) nonnegative and positively homogenous,

(ii) subadditive, i.e., for every x,y ∈ C, γC(x + y) ≤ γC(x) + γC(y).

1.2 Matrices

We provide basic definitions and notations from linear algebra here. Most of these definitions
and results can be found in [67].

Throughout this thesis, we reserved bold lower-case letters to denote vectors and bold
upper-case letters to denote matrices. All vectors are column vectors. Rn denotes the n-
dimensional vector space over real numbers. R+ and R++ denote nonnegative and positive
real numbers, respectively. The set of all m-by-n matrices over R is denoted by Rm×n. (·)>
and (·)H denote transpose and conjugate transpose, respectively.

Definition 1.2.1 (Trace). Given an n-by-n matrix A := [aij]
n
i,j=1, the trace of A is denoted

by tr (A) and is defined as the sum of its diagonal elements

tr (A) :=
n∑
i=1

aii.

The vector space Rm×n is an inner product space (see Appendix A.2) with the inner
product

〈A,B〉 :=
m∑
i=1

n∑
j=1

aijbij = tr
(
A>B

)
.

For every matrix A,B ∈ Rm×n

3



• tr
(
A>
)

= tr (A) (given A is a square matrix),

• tr
(
A>B

)
= tr

(
BA>

)
,

Definition 1.2.2 (Eigenvalue, eigenvector). We say that λ is the eigenvalue of a matrix A
corresponding to the eigenvector x 6= 0 if

Ax = λx.

For a given matrix A ∈ Rm×n, we define |A| := (A>A)1/2. The eigenvalues of |A|,
σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) are called as the singular values of A. Whenever
convenient we may write σi to represent the corresponding singular value. A[1:k] denotes the
matrix formed by the first k terms of the singular value decomposition of A. A(i : j; p : q)
denotes the submatrix of A formed from the intersection of rows i to j and columns p to q,
or A(I; J) denotes the submatrix of A formed from the intersection of rows indexed by I

and columns indexed by J . For a vector x :=
[
x1 . . . xn

]> ∈ Rn, xi denotes the ith entry
of x, unless defined otherwise.

Definition 1.2.3 (vec). For an m-by-n matrix X := [xij], we define the linear transformation
vec : Rm×n → Rmn

vec(X) :=
[
x11 x21 · · · xm1 x12 x22 · · · xm2 · · · xmn

]>
,

where vec(X) is an mn-by-1 vector formed by stacking the columns of X consecutively.

Definition 1.2.4 (Mat). We define Mat : Rn2 → Rn×n as the linear map which reshapes
n2-dimensional vector and maps it into an n-by-n matrix, by assigning the first n entry of
the vector x as the first column of the matrix X := Mat(x), the second n entries of x as its
second column and so on.

1.2.1 Matrix Norms

Definition 1.2.5 (Matrix norm). A matrix norm ‖ · ‖ is function from the set of all m-by-n
matrices to R that satisfies the following properties:

(i) ‖A‖ ≥ 0,

(ii) ‖A‖ = 0⇔ A = 0,

(iii) ‖αA‖ = |α|‖A‖,

(iv) ‖A + B‖ ≤ ‖A‖+ ‖B‖, (where A,B ∈ Rm×n),

(v) ‖AB‖ ≤ ‖A‖‖B‖, if m = n.

We list the definitions of commonly used matrix norms.
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(i) (Frobenius norm) The Frobenius norm of A := [aij] ∈ Rm×n is defined as

‖A‖F =

√∑
i,j

|aij|2.

Note that ‖A‖F = ‖ vec(A)‖2.

(ii) (Spectral norm) The spectral norm of A := [aij] ∈ Rm×n is defined as

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σ1(A),

where σ1(A) is the largest singular value of A.

(iii) (Schatten-p norm) The Schatten-p norm of X is defined as

|||X|||p := ‖σ(X)‖p, p ≥ 1, (1.1)

where σ : Rm×n → Rmin{m,n}is defined by

σ(X) :=
[
σ1(X) · · · σmin{m,n}(X)

]>
.

When p = 1, this norm is called the nuclear norm or the trace norm. When p = 2,
|||·|||p corresponds to the Frobenius norm.

In the case of p ∈ (0, 1), (1.1) does not define a norm; it defines a quasi-norm, and
called the Schatten-p quasi-norm [67].

Definition 1.2.6 (Unitarily invariant matrix norm). A matrix norm |||·||| on Rm×n is unitarily
invariant if |||UAV||| = |||A|||, for all unitary matrices U ∈ Rm×m and V ∈ Rn×n, and for all
A ∈ Rm×n.

Schatten-p norm is one of the typical examples of unitarily invariant norms.

Definition 1.2.7 (Symmetric gauge function). A function φ : Rn → R+ is a symmetric
gauge function if it satisfies the following:

(i) φ(·) is a norm on Rn,

(ii) φ(x) = φ(|x|), ∀x ∈ Rn (where |·| is taken elementwise), and

(iii) φ(x) = φ(Px), ∀x ∈ Rn, for all permutation matrices P ∈ {0, 1}n×n.

Let A have the following singular value decomposition A = UΣV>. Let |||·||| be a
unitarily invariant norm. Since U and V are unitary matrices,

|||A||| = |||Σ|||.

This shows that every unitarily invariant norm is a symmetric gauge function of the singular
values of its argument.
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1.2.2 Some Special Structured Matrices

In control theory, signal processing, machine learning and differential equations, one often
makes certain assumptions when solving certain systems of linear equations. These include
stationarity, time-invariance, homogeneity and sparsity. Such assumptions lead to certain
structured matrices. Solving linear systems of structured matrices has more advantages, as
they accommodate more possibilities to exploit their structure and various fast algorithms
have been studied for structured matrices [74]. A recent work on the fast algorithms for
structured matrices can be found in [142], which in particular studies the design of fast
algorithms in terms of the bilinear complexity for various bilinear operations.

In this section, we define some matrices of special structure, as we refer to them in the
subsequent chapters.

Definition 1.2.8 (Diagonal matrices). The matrix D := [dij]
n
i,j=1 ∈ Rn×n is called a diagonal

matrix if for every i 6= j ∈ {1, 2, . . . , n}, dij = 0. We will use the notation Diag(d1, d2, . . . , dn)
to denote the n-by-n diagonal matrix D with diagonal entries dii := di, i ∈ {1, 2, . . . , n}.
The identity matrix IIIn ∈ Rn×n is an example of a diagonal matrix whose diagonal entries are
equal to one. We will omit the subscript and use III to denote the identity matrix whenever
its dimension can be understood from the context.

Definition 1.2.9 (Tridiagonal matrices). The matrix A := [aij]
n
i,j=1 ∈ Rn×n is called a

tridiagonal matrix if for every i, j ∈ {1, 2, . . . , n}

aij = 0, whenever |i− j| > 1.

Definition 1.2.10 (Permutation matrices). A permutation matrix is a square matrix each
of whose row and column contains exactly one element equal to 1 and 0s elsewhere.

Definition 1.2.11 (Doubly stochastic matrices). A doubly stochastic matrix is a square
matrix with non-negative entries such that each row and column sums to one.

Definition 1.2.12 (Hankel matrices). The matrix A := [aij]
n
i,j=1 ∈ Rn×n is called a Hankel

matrix if for every i, j ∈ {1, 2, . . . , n}

aij = a|i−j|,

for some numbers a0, . . . , an−2, an−1 ∈ R.

Definition 1.2.13 (Toeplitz matrices). The matrix A := [aij]
n
i,j=1 ∈ Rn×n is a Toeplitz

matrix if the entries are constant on the diagonals, i.e., for every i, j ∈ {1, 2, . . . , n}

aij = aj−i,

for some (2n− 1) numbers a−(n−1), a−(n−2), . . . , a0, . . . , an−2, an−1 ∈ R.

Toeplitz matrices are ubiquitous and arise in many applications in areas such as signal
processing, compressed sensing and differential equations. In addition, Toeplitz matrices are
computationally desirable as one can solve a Toeplitz system of linear equations in O(n log2 n)
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time [15]. The inversion, determinant computation and LU and QR decompositions can be
computed in O(n2) time compared to arbitrary matrices which usually take O(n3) time.
Even though the multiplication of two Toeplitz matrices are not necessarily Toeplitz, still
the multiplication of two Toeplitz matrices harbor some nice properties as they have low
displacement rank which reduces the computational complexity of solving a system of linear
equations [73]. Furthermore, a recent study showed that every n-by-n matrix is a product
of at most 2n+ 5 Toeplitz matrices [141].

Theorem 1.2.1. [51] Two Toeplitz matrices commute if and only if one of the matrices is
the value of a linear function at the other one, or both matrices belong to the same algebra
of generalized circulant matrices.

Definition 1.2.14 (Circulant matrices). The matrix A := [aij]
n
i,j=1 ∈ Rn×n is a circulant

matrix if for every i, j ∈ {1, 2, . . . , n}

aij = a((j−i) mod n),

for some numbers a0, a1 . . . , an−1 ∈ R.

Definition 1.2.15 (Centrosymmetric matrices). The matrix A := [aij]
n
i,j=1 ∈ Rn×n is a

centrosymmetric matrix if
A = JAJ,

where J is a special permutation matrix with ones on the secondary diagonal (from bottom
left to the upper right corner) and zeros elsewhere. Centrosymmetric matrices are symmetric
about their diagonal and secondary diagonal, e.g.,

A =


a b c d e
b f g f d
c g i g c
d f g f b
e d c b a



1.3 Interlacing

Definition 1.3.1 (Interlace). Given two sequences of real numbers a1 ≥ a2 ≥ · · · ≥ as and
b1 ≥ b2 ≥ · · · ≥ bt, where t ≤ s. The sequence {bi}ti=1 is said to interlace {ai}si=1, if for every
i ∈ {1, 2, . . . , t},

ai ≥ bi ≥ ai+s−t.

Interlacing has been studied extensively in the literature and recently has gained more
popularity when Markus, Spielman and Srivastava developed the method of interlacing poly-
nomials and proved the existence of infinite families of regular bipartite Ramanujan graphs
of every degree greater than 2 [89]. It has many applications in matrix theory, real stable
polynomials and spectral graph theory [56, 1].
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The most well-known interlacing result follows from Rolle’s theorem. If p : R → R is a
polynomial of degree n with all real roots r1 ≥ r2 ≥ · · · ≥ rn then each interval (ri, ri+1),
i ∈ {1, . . . , n− 1} contains at least one root of its derivative, p′. This result was generalized
by Gauss.

Theorem 1.3.1 (Gauss-Lucas). Given a polynomial p ∈ C[x] (with complex coefficients),
the roots of p′ are in the convex hull of the roots of p.

The following well-known theorems provide a characterization of the interlacing polyno-
mials.

Theorem 1.3.2 (Theorem 6.3.4, [110]). Let p, q ∈ R[x] be non-constant polynomials such
that their degrees are equal or differ by one. p and q have strictly interlacing zeros if and
only if the polynomial r := p+ iq has all its roots either in the upper half plane HU := {z ∈
C : Im(z) > 0} or in the lower half plane HL := {z ∈ C : Im(z) < 0}.

Theorem 1.3.3 (Theorem 6.3.8, [110]). Let p, q ∈ R[x] be non-constant polynomials such
that their degrees are equal or differ by one. p and q have strictly interlacing roots if and
only if for every λ, µ ∈ R such that λ2 + µ2 6= 0, the polynomial r := λp + µq has distinct
and real roots.

Definition 1.3.2 (Bezout matrix). Let p, q be polynomials, each of degree at most n. The
Bezout matrix of p and q is the symmetric matrix B := [bij] such that

B(p, q;x, y) :=
p(x)q(y)− p(y)q(x)

x− y
=

n∑
i,j=1

bijx
i−1yj−1, (1.2)

where B(p, q;x, y), the polynomial in x and y, is called the Bezoutiant .

The following result provides the relation between positive definiteness of the Bezout
matrix of two polynomials and the interlacement of the roots of these polynomials. The
proof can be also found in [105].

Theorem 1.3.4. Let p, q be two real polynomials of the same degree that have no common
roots. If the Bezout matrix defined by (1.2) of p, q is positive definite then the roots of p and
q are distinct, real numbers. Furthermore, the roots of q and p interlace.

If a symmetric (or Hermitian) matrix A is perturbed by a rank one positive semidefinite
matrix B, then the eigenvalues of the matrix A and the perturbed matrix C := A + B
alternate, the largest belonging to C. There is a close relationship between this result and
the interlacement of the eigenvalues of a real symmetric (or Hermitian) matrix or oder n
and its leading principal matrix of order n − 1 in the sense that one can be derived from
the other. The latter result is generally known as Cauchy’s interlacing theorem [40]. The
following well-known interlacing theorem, a generalization of Cauchy’s interlacing theorem
can be found in [56, Theorem 2.1].
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Theorem 1.3.5 (Cauchy’s interlacing theorem). Let A ∈ Sn be a symmetric matrix with
eigenvalues λ1 ≥ · · · ≥ λn, and let Q ∈ Rn×m be such that Q>Q = III. If B := Q>AQ with
eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µm, then

λi ≥ µi ≥ λn−m+i

for all i ∈ {1, . . . ,m}.

The basic inequalities between singular values and eigenvalues of real square matrices are
consequences of the interlacing property given in Cauchy’s theorem. Some well-known ex-
amples are Thompson-Freede inequalities [127], Lidskii inequalities and Mirsky’s inequality.

Interlacing theorems also shed light on many inequalities and regularity results concern-
ing the structure of graphs in terms of eigenvalues of the adjacency matrix. For example,
Cauchy’s interlacing theorem can be employed to find a bound on the size of the largest
independent set of G as well as the bounds on the chromatic number, the diameter and the
bandwidth of graphs [56].

Our interest in interlacing is based on the work of Tunçel and Wolkowicz. In [131], Tunçel
and Wolkowicz conjectured interesting interlacing relations on the roots of the characteristic
polynomials of certain structured matrices arising from the Jordan-Kronecker products of
real symmetric matrices, namely (A ⊗ B + B ⊗ A). We restate the conjectures below for
the convenience of the reader.

Let Sn denote the set of n-by-n real symmetric matrices and Kn denote the set of n-
by-n real skew-symmetric matrices. Define a transpose operator T : Rn2 → Rn2

such that
Mat(T x) = (Mat(x))> (see Definition 1.2.4). Let T be the n2-by-n2 matrix representation of
the transpose operator T . This matrix will be defined in more detail later in Chapter 4.4.5.

Conjecture 1.3.6. [131] Let A,B ∈ Sn. Then

min
Tu=u

u>(A⊗B)u

u>u
≤ min

Tw=−w

w>(A⊗B)w

w>w
, (1.3)

max
Tw=−w

w>(A⊗B)w

w>w
≤ max

Tu=u

u>(A⊗B)u

u>u
. (1.4)

Equivalently,
min

U∈Sn,‖U‖F=1
tr (AUBU) ≤ min

W∈Kn,‖W‖F=1
tr
(
AWBW>) , (1.5)

max
U∈Sn,‖U‖F=1

tr (AUBU) ≥ max
W∈Kn,‖W‖F=1

tr
(
AWBW>) . (1.6)

Conjecture 1.3.7. [131] Let A,B ∈ Sn. Also, let w ∈ Rn2
such that Tw = −w and w is

the eigenvector of (A⊗B + B⊗A) corresponding to its kth largest eigenvalue. Then λk−1
and λk+1 of the matrix are well-defined and they are determined by some u,v ∈ Rn2

such
that Tu = u and Tv = v.
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1.4 Outline and contributions of the thesis

• In Chapter 2, we present a survey of convex optimization in compressed sensing with
a focus on matrix and eigenvalue inequalities.

• In Chapter 3, we give a historical exposition of the eigenvalue inequalities relating
the sum of matrices to its summands with some recent developments on Mirsky type
inequalities which have applications in compressed sensing.

• In Chapter 4, we cover the ubiquitous Kronecker products in general. We also introduce
skew-symmetric Kronecker products and their properties. We also discuss the role of
interlacing in various inverse eigenvalue problems for structured matrices.

• In Chapter 5, we settle the conjectures posed by Tunçel and Wolkowicz. We introduce
Jordan-Kronecker products and provide some algebraic results and inequalities. We
disprove these conjectures in general, but we also identify large classes of matrices for
which the interlacing properties hold. Furthermore, we present techniques to generate
classes of matrices for which these conjectures fail. In addition, we present a general-
ization of the Jordan-Kronecker product (by replacing the transpose operator with an
arbitrary symmetric involution operator). We study its spectral structure in terms of
eigenvalues and eigenvectors and show that the generalization enjoys similar proper-
ties of the Jordan-Kronecker product. Lastly, we propose a related structure, namely
Lie-Kronecker products and characterize their eigenvectors.

• In Chapter 6, we provide a brief discussion on the areas where Jordan-Kronecker prod-
ucts appear and we conclude the thesis with open problems.

As a general rule, throughout the thesis we labelled new results as “(new)”. Whenever
the result is not strong or the contribution is negligible, we tried to avoid putting the label
and presented without any reference.
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Chapter 2

Compressed Sensing

The classical Nyquist-Shannon Theorem states that a band-limited signal (i.e., a signal whose
Fourier transform is zero outside of some bounded frequency interval) can be reconstructed
exactly from its samples taken at points separated by twice its maximum frequency com-
ponent [119]. Although Nyquist-Shannon condition guarantees the exact recovery, it is not
a necessary condition for it. It is now well-known that some sparse signals can be recov-
ered from fewer samples than required by the Nyquist-Shannon theorem. In particular, an
unknown signal from Rn with support S ⊆ [n] can be recovered by solving a linear program-
ming problem from almost every set of frequencies of size O(|S| log(n)) with high probability
[21].

In signal processing, it is common to model the output b ∈ Rm of a system as a linear
function of the input signal x ∈ Rn

b = Ax.

Recovering the signal x from b is an inverse linear problem. In general, the dimension of the
output signal, or the number of measurements must be larger than or equal the dimension of
the input signal to recover it. However, if the unknown signal can be represented with a linear
combination of a few basis vectors from some basis then the recovery of the unknown signal
is possible even if the number of measurements are far fewer than unknowns. Compressed
sensing is a method of reconstructing signals using as few measurements as possible. The
main idea is to find the sparsest representation of the signal via solving an underdetermined
linear system.

In this chapter, we introduce the basic mathematical tools of compressed sensing, the
notion of sparsity, null-space property, coherence, restricted isometry property and their
relation to sparse recovery of signals from structured matrices.

Definition 2.0.1 (s-sparse). A signal x ∈ Rn is called s-sparse if the number of nonzero
entries of x is at most s.

Definition 2.0.2 (`0-“norm”). Let ‖·‖0 : Rn → N be such that for every x ∈ Rn

‖x‖0 := |{i : xi 6= 0}|,

is the number of non-zero entries of x.
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Note that ‖·‖0 is neither a norm nor a quasi-norm (see Definition A.2.4) as ‖αx‖0 6= |α|‖x‖0
for some α ∈ R and x ∈ Rn.

Consider an underdetermined system of linear equations

b = Ax + w,

where b ∈ Rm is a measurement vector, A ∈ Rm×n is a measurement matrix with m < n,
x is an unknown vector and w is a noise vector. This system has infinitely many solutions
provided there exists at least one solution. Among the infinitely many solutions, a common
preference is the sparsest one for several reasons. First of all, a sparse signal enables fast
computation and easier analysis especially when it has a certain structure. Many signals
used in practice such as audio and image signals have sparse representations with respect
to bases such as Fourier and Wavelet [88]. Furthermore, there are many efficient algorithms
available based on convex optimization to compute such representations [35, 22, 21]. In
this line of work, the central interest has been on the necessary and sufficient conditions
for the existence and uniqueness of sparse solutions that can be computed with efficient
(polynomial-time) algorithms.

Finding the sparsest signal satisfying an underdetermined system of linear equations can
be formulated by minimizing the number of non-zero entries over all the feasible points:

minimize
x∈Rn

‖x‖0 (P0)

subject to Ax = b.
(2.1)

A more general formulation for a given ε ≥ 0 is

minimize
x∈Rn

‖x‖0 (P(0,ε))

subject to ‖Ax− b‖ ≤ ε.
(2.2)

The optimization problems in (2.1) and (2.2) are NP hard, as the instance of the exact
cover by 3-sets problem can be reduced in polynomial time to (2.2) [102]. Although there
are some approximation algorithms and heuristics to attack this problem, we will focus on
approaches considering the “convex relaxations” of such problems [21].

The `1-norm unit ball B1 := {x : ‖x‖1 ≤ 1} is the convex hull of B0 := {x : ‖x‖0 ≤ 1},
i.e., the smallest convex set containing B0. See Figure 2.1 on page 14 for the illustration on
R2. In addition, for every x ∈ Rn

‖x‖1 ≤ ‖x‖∞‖x‖0.

Assuming the minimizer of (P0) is contained in B∞(R) = {x : ‖x‖∞ ≤ R} where R > 0
is a large number, instead of (2.1) one can solve

minimize
x∈Rn

‖x‖0

subject to x ∈ C ∩B∞(R),
(2.3)
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where C := {x : Ax = b}. Since ‖x‖0 ≥ 1
R
‖x‖1 for every x ∈ C ∩ B∞(R), 1

R
‖·‖1 is a

convex relaxation of ‖·‖0 over the set C ∩ B∞(R). Multiplying the objective function by a
positive constant does not change the set of minimizers, therefore, a convex relaxation of the
cardinality minimization problem in (2.3) can be written as `1-norm minimization problem:

minimize
x∈Rn

‖x‖1

subject to x ∈ C ∩B∞(R).
(2.4)

In fact, ‖·‖1 is the lower semi-continuous convex envelope of ‖·‖0 over the unit `∞-ball.

Definition 2.0.3 (Convex envelope). The convex envelope of a function f : Ω → R is the
supremum of all possible convex functions g : Ω → R such that g(x) ≤ f(x) for every x ∈ Ω.

Given a convex feasible region Ω, the `1-norm minimization problem min{‖x‖1 : x ∈ Ω}
finds a minimizer (or minimizers) by expanding the `1-ball of radius r, i.e., B1(r) := {x :∑n

i=1|xi| = r} from radius 0 until B1(r) hits a point in the feasible region Ω for the first
time. Because the `1-norm unit ball has a lot of extreme points in Rn, in practice it often hits
a point (or points) with a lot of coordinates being zero, especially when the feasible region
is a polyhedron. However in some cases, this point (or points) may not be the sparsest
one. In fact, since the `1-norm is not strictly convex, the solution may not even be unique.
Therefore, (2.4) is not necessarily the best convex relaxation for (2.3) in the sense that it
may not always provide the sparsest solution. The following illustrates this discussion.

Example 2.0.1. Consider
minimize

x∈Rn
‖x‖0

subject to x1 + 5x2 = 2

2x1 − 5x3 = 4.

The `1-norm relaxation of this problem yields the solution (x∗1, x
∗
2, x
∗
3) := (0, 0.4,−0.8). Note

that this is the first point that B1(r) hits the feasible region when expanding from radius
r = 0. However, this is clearly not the sparsest solution as (2, 0, 0) is also a feasible solution.

In the `1-norm minimization, the coefficients of the unknown vector is penalized equally.
This results in penalization of large coefficients more than smaller coefficients. To address
this issue and to promote more sparsity, in her thesis [43], Fazel suggested to replace the
`1 norm in the objective by the following concave function:

∑n
i=1 log(|xi| + ε), where ε > 0

is a small number. As log(·) is a concave function, a common approach is to minimize its
linearization [43]. This led to the development of weighted `1-norm minimization algorithms
[43, 86, 23]. The weighted `1-norm minimization is an iterative algorithm where the solution
of the weighted linear program is used to calculate the weights which are fed back to the
weighted linear program (where the initial weights are all equal). We refer the reader to
[145] for a summary of different weights used in iterative reweighted `1-norm minimization
approaches.

Although the `1-norm relaxation of the objective may not always give the sparsest solu-
tion(s), a body of research shows that under certain conditions, it can give the exact solution
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Figure 2.1: Convex hull of B0 = {x : ‖x‖0 ≤ 1} is B1 := {x : ‖x‖1 ≤ 1}.

or the approximation to the solution(s) of the optimization problem in (2.1). We formulate
a relaxation of (2.1) in which the objective is replaced by the `1-norm of x as follows:

minimize
x∈Rn

‖x‖1 (P1)

subject to Ax = b.
(2.5)

Since (P1) can be formulated as a linear programming problem, (2.5) can be solved using
efficient methods such as the simplex method or interior point methods [16, 104].

It is now well known that an unknown signal from Rn with support S ⊆ [n] can be
recovered from its discrete Fourier transform samples chosen uniformly at random of size
O(|S| log(n)) with high probability by solving a linear programming problem. Even if the
unknown signal is not s-sparse, under certain conditions depending on the restricted isometry
property of the measurement matrix (which will be discussed later in this chapter), the stable
recovery, i.e.,

‖x− x̂‖qq ≤ cmin
x′

{
‖x− x′‖qq : x′ is s-sparse

}
,

via `q-minimization (0 < q ≤ 1) is possible [46]. Here x̂ is the estimated vector via `q-
minimization and c is a positive constant depending on the restricted isometry property of
the measurement matrix. An interesting observation made in [46] states that the number of
minimum measurements required to allow a stable recovery (independent of the algorithm
recovering the unknown vector) is O(s log(n)). In particular, for a given vector x if an
algorithm outputs x̂ ∈ Rn from the observations b = Ax such that

‖x− x̂‖qq ≤ cmin
x′

{
‖x− x′‖qq : x′ is an s-sparse vector

}
,
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where c > 0 and 0 < q ≤ 1, then the number of the rows of A must satisfy

m ≥ D(c)(s log(n/s)),

where D(c) > 0 is a constant number that depends on c [46].

Although the `1-norm minimization approach works in many situations to recover the
sparsest signals, it does not give a general recipe to solve similar natured minimization
problems containing different feasible sets and different non-convex objectives which are hard
to solve. This problem is targeted in [25] by Chandrasekaran, Recht, Parrilo, and Willsky.
The authors propose a new framework in which the cardinality function in the objective
is relaxed by the notion of atomic norm. Minimizing this function over the solutions to
the set of underdetermined system of linear equations allows generalizing many results on
well-known sparse and low rank recovery problems.

Definition 2.0.4 (Atomic norm). Let F ⊆ Rn be a compact set of atoms which constitute
simple building blocks of a signal. Assume that F is centrally symmetric about the origin
(a set F is called centrally symmetric if for every f ∈ F ⇔ −f ∈ F) and the elements of F
are the extreme points of conv(F). The atomic norm induced by F is defined as

‖x‖F := inf{t > 0 : x ∈ t conv(F)}.

Since F is centrally symmetric, ‖·‖F is a norm. If not, then ‖·‖F is a semi-norm. Atomic
norm of a point x induced by the set F is basically the Minkowski function of conv(F) at x.

For example, if the set of atoms is E = {±e1, . . . ,±en} then the atomic norm induced by
E is the `1-norm. If M = {M ∈ Rm×n : rank(M) = 1, ‖M‖F = 1} then the atomic norm
induced by M is the nuclear norm.

In [25], the authors assume that the unknown vector (signal) is of the form

x =
s∑
i=1

αivi, vi ∈ F , αi ≥ 0,

where s is relatively small. Although the model may seem restricted, it encompasses many
structured mathematical objects encountered frequently in compressed sensing.

Lemma 2.0.1. If C is a closed convex, centrally symmetric set in Rn with 0 ∈ int(C), then
the gauge (see Definition 1.1.8) of C, γC, defines a norm. Furthermore, C is the unit ball
for this norm.

Proof. We refer the reader to [116, Theorem 1.35] to show γC is a seminorm. Since 0 ∈ int(C),
it follows that γC is a norm. The proof of the second part can be found in [64, p.129-130].

The atomic norm minimization problem is formulated as

minimize
x∈Rn

‖x‖F (PF)

subject to Ax = b.
(2.6)
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In the case of noisy measurements Ax + w = b, the linear constraint can be replaced by
the relaxed constraint ‖b −Ax‖ ≤ ε, where ε is an upper bound on the norm of the noise
w:

minimize
x∈Rn

‖x‖F (PFn)

subject to ‖b−Ax‖ ≤ δ.
(2.7)

The recovery of sparse signals have been studied immensely so it is impossible to include
all the references (see [19, 22, 23, 46, 25] and the references therein for a start). The majority
of the focus has been on the necessary and sufficient conditions to recover the signal exactly
or robustly (i.e., when the observation contains noise/error, i.r., b = Ax+n, n is the noise).
For this, many approaches exist such as the null-space property, restricted isometry property
and coherence.

2.0.1 Null Space Property

In this section, we collect some necessary and sufficient conditions for the recovery of sparse
signals using convex optimization techniques which are based on the null-space of the mea-
surement matrix A.

Definition 2.0.5 (Null-space property of order s). A matrix A ∈ Rm×n has the null-space
property of order s (with respect to the `1-norm) if for every subset S ⊆ [n] with |S| ≤ s

2
∑
i∈S

|xi| <
∑
j∈[n]

|xj| for every x ∈ Null(A) \ {0}.

The null-space property is a necessary and sufficient condition for the exact recovery of
s-sparse vectors through the `1-norm minimization problem [36, 35].

Theorem 2.0.2. Let A ∈ Rm×n. Then an s-sparse vector x0 ∈ Rn with b = Ax0 is the
unique solution of the `1-norm minimization problem

minimize
x∈Rn

‖x‖1 (P1)

subject to Ax = b
(2.8)

if and only if A satisfies the null space property of order s.

It is also well known that when the objective is a weighted `1-norm, i.e.,
∑n

i=1wi|xi| for
some positive weight vector w, then

2
∑
i∈S

wi|xi| <
∑
j∈[n]

wj|xj| for every x ∈ Null(A) \ {0}

is a necessary and sufficient condition for the recovery through the weighted `1-norm mini-
mization [76].
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The following optimization problem is equivalent to (2.8)

minimize
x∈Rn

‖x0 + d‖1 (P ′1)

subject to d ∈ Null(A),

where Ax0 = b. Here, x0 is the unique optimal solution if and only if 0 is the unique solution
of (P ′1). Note that in (P ′1), the set of feasible points can be restricted to the points from null-
space of A that decreases the objective, i.e., to the set {d : d ∈ Null(A) and ‖x0 + d‖1 < ‖x0‖1}.

The condition in Theorem 2.0.2 can be written in terms of atomic norms. Before intro-
ducing the general condition, we define the following cone

TF(x0) := cone {x− x0 : ‖x‖F ≤ ‖x0‖F , x ∈ C} , (2.9)

where C := ‖x0‖F conv(F). Note that for every x ∈ C, ‖x‖F ≤ ‖x0‖ by the definition of
C. In particular, TF(x0) is the cone of descent directions with respect to ‖·‖F at a point x0

over the set C. We would like to emphasize that this is, in general, not equal to the tangent
cone to ‖x0‖F conv(F) at x0. For example, take F as the points on the Euclidean unit ball.
Then the tangent cone at x0 to the scaled unit ball ‖x0‖F conv(F) is not equal to (2.9). By
the definition of the tangent cone for closed convex sets one needs to take the closure of the
cone consisting of the directions x − x0 where x ∈ ‖x0‖F conv(F) (which is equal to the
closure of TF(x0)).

The following is now well known in convex optimization, giving a necessary and sufficient
condition for the uniqueness of the solution to the general problem (2.6).

Theorem 2.0.3. [25] Let A ∈ Rm×n and b = Ax0. Then x̂ = x0 is the unique solution to
(2.6) if and only if Null(A) ∩ TF(x0) = {0}, where TF(x0) is defined as in (2.9).

The result in Theorem 2.0.3 gives a characterization of exact recovery based on the
condition that the null space of linear measurement matrix A has zero intersection with the
cone TF(x0). Observe that

Null(A) ∩ TF(x0) = {0}

if and only if

∃ε > 0 such that ‖Az‖2 ≥ ε, ∀z ∈ TF(x0) ∩ Sn−1.

In some sense, assuming A is a random matrx (i.e., a matrix whose entries are random
variables), we are interested in bounding its restricted spectral norm.

For a random measurement matrix A with b = Ax0, the uniqueness of the solution x0

can be characterized from

P

[
min
z∈Ω
‖Az‖2 ≥ ε

]
, (2.10)

where Ω := TF(x0) ∩ Sn−1 and P denotes a probability measure. Using concentration
inequalities it is possible to find a lower bound for (2.10).
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Lemma 2.0.4. [84, Section 1.1] Let f : RN → R be Lipschitz continuous on RN with
Lipschitz constant L and let w ∈ RN be a Gaussian vector with zero mean and identity
variance. Then, for every t > 0,

P [f(w) > E [f(w)]− t] ≥ 1− exp

(
− t2

2L2

)
. (2.11)

A critical step in applying (2.11) is to find a good lower bound for E[f(w)]. Before
introducing a lower bound, we find it useful to provide a notation for the expected norm of
a Gaussian vector. For a given Gaussian vector w ∼ N (0, III) of dimension m, we denote

am := E

( m∑
i=1

w2
i

) 1
2

 =

√
2Γ
(
m+1
2

)
Γ
(
m
2

) ,

where Γ (·) is the gamma function. Then we have [53]

m√
m+ 1

≤ am ≤
√
m. (2.12)

Lemma 2.0.5. ([53, Corollary 1.2]) Let Ω ⊆ Sn−1 be a closed set. Let A : Rn → Rm be a
map with independent and identically distributed (i.i.d.) zero-mean, unit variance Gaussian
entries and g ∈ Rn be a vector with i.i.d. zero-mean, unit variance Gaussian entries. Then

E
[
min
z∈Ω
‖Az‖2

]
≥ am − E

[
max
z∈Ω

g>z

]
,

where am := E [‖w‖2] is the expected value of the norm of the Gaussian vector w ∈ Rm.

Definition 2.0.6 (Gaussian width). The Gaussian width of a set C ⊆ Rn is

w(C) := E
[
max
x∈C

g>x

]
,

where g ∼ N (0, III) is a Gaussian vector with independent identically distributed coordinates
that has zero mean and unit variance.

The following result and its proof from [25] provide a recipe to find the number of mea-
surements required to recover sparse objects from linear measurements with high probability
in the atomic norm framework.

Proposition 2.0.6. [25, Corollary 3.3] Let A : Rn → Rm be a random linear map with
i.i.d. zero mean Gaussian entries having variance 1/m. Let Ω := TF(x0) ∩ Sn−1. Suppose
b = Ax0. Then, x0 is the unique solution of (P1) in (2.5) with probability at least

1− exp

(
−1

2
(am − w(Ω)−

√
mε)2

)
,

provided m ≥ w(Ω)2 + 3/2

(1− ε)2
. Here, am is the expected norm of a Gaussian vector (∼ N (0, III))

of dimension m.
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Proof. For any closed subset Ω ⊆ Sn−1, the unit sphere in n dimension, the function

A 7→ min
z∈Ω
‖Az‖2

is Lipschitz continuous with constant 1 (with respect to the Frobenius norm). Since each
entry of A has variance 1/m, by Lemma 2.0.5 we have

E
[
min
z∈Ω
‖
√
mAz‖2

]
≥ am − E

[
max
z∈Ω

g>z

]
.

Also,

P

[
min
z∈Ω
‖Az‖2 ≥ ε

]
= P

[
min
z∈Ω

∥∥√mAz
∥∥
2
≥
√
mε

]
.

Then, by Lemma 2.0.4 we get

P

[
min
z∈Ω

∥∥√mAz
∥∥
2
≥
√
mε

]
≥ 1− exp

(
−1

2

(
am − w(Ω)−

√
mε
)2)

provided that am − w(Ω) −
√
mε ≥ 0. We show that this condition indeed holds. By the

assumption on m, we have

w(Ω)2 + 3/2

(1− ε)2
≤ m =⇒ w(Ω)2 + 1 ≤ m(1− ε)2 − 1/2

≤ m(1− ε)2 − 2ε(1− ε) + ε2/m

≤
(√

m(1− ε− ε/
√
m
)2

the last inequality follows since ε(1− ε) ≤ 1/4 for every ε ∈ (0, 1). By (2.12) and the above
result, we have

am −
√
mε ≥ m√

m+ 1
−
√
m+ 1ε ≥ m− (m+ 1)ε√

m+ 1
≥ w(Ω).

Hence, the result follows.

In [53], Gordon provided a sufficient and necessary condition for the existence of a k-
dimensional subspace having a zero intersection with a subset of Rn. Using a result from
[53], the authors [115, 25] provided upper bounds on the Gaussian width of some convex
sets.

Proposition 2.0.7. [25, Proposition 3.6] Let C be a nonempty convex cone in Rn and let
g ∼ N (0, III) be a random Gaussian vector. Then,

w(C ∩ Sn−1) ≤ E [dist(g, C◦)] ,

where C◦ is the polar cone of C, Sn−1 ⊂ Rn is the unit norm sphere, and dist denotes the
Euclidean distance between a point and a set.
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The recovery of an s-sparse signal x0 from its measurements Ax0 has been studied ex-
tensively, and the exact reconstruction from these measurements is possible if the number of
measurements is of order O(s log(n/s)) [115]. In a previous work [115], the method used to
recover the s-sparse signal also exploits the concept of Gaussian width and follows similar
lines to the result in [25].

Theorem 2.0.8. [25, Proposition 3.10] Let x̂ ∈ Rn be an s-sparse vector. Let F :=
{±e1, . . . ,±en}. Then ‖·‖F is the `1-norm and

w(TF(x̂) ∩ Sn−1)2 ≤ 2s log(
n

s
) +

11

8
s.

Thus, 2s log(n/s) + 11s/8 random Gaussian measurements suffice to recover x̂ by `1-norm
minimization with high probability.

Note that in [25], it is stated that 2s log(n/s) + 5s/4 random measurements suffice,
however the second term contains an insignificant calculation error. Some other results
in [25] using the bounds on the Gaussian width and Proposition 2.0.6 include low rank
recovery via nuclear norm minimization, recovery of orthogonal matrices via spectral norm
minimization and recovery of permutation matrices via the norm induced by the Birkhoff
polytope of doubly stochastic matrices.

Null-space based recovery with quasi-norm minimization

Definition 2.0.7 (`q quasi-norm). Let x ∈ Rn and q ∈ (0, 1). The `q quasi-norm of x is
defined as

‖x‖q :=

(
n∑
i=1

|xi|q
)1/q

.

Consider the unit balls for `q-quasi norm and and `0-“norm”. As q → 0, the unit ball for
`q quasi-norm approaches to that of `0-“norm”. Motivated by this `q quasi-norm has been
used as a surrogate function for the cardinality function or added as a penalty function to
a convex objective to induce more sparsity even though it is a concave function. There is a
similar null-space property for recovering s-sparse signals with `q quasi-norm minimization.
In fact, a generalization of this holds [54].

minimize
x∈Rn

‖x‖q (Pq)

subject to Ax = b,
(2.13)

where 0 < q < 1 has a unique s-sparse solution. It turns out that under an analogous
nullspace property condition uniqueness can be guaranteed for a class of functions including
`q quasi-norm with q ∈ (0, 1].
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Theorem 2.0.9. [54, Theorem 2] Let A ∈ Rm×n and let f be a nondecreasing function
f : R+ → R+ , not identically zero, with f(0) = 0 and such that x 7→ f(x)/x is non-
increasing on R++. Then every s-sparse vector x can be uniquely recovered by solving

minimize
x∈Rn

n∑
i=1

f(‖xi‖) (Pf )

subject to Ax = b,

if and only if for every subset S ⊆ [n] with |S| ≤ s∑
i∈S

f(|xi|) <
∑

j∈[n]\S

f(|xj|) for every x ∈ Null(A) \ {0}.

Note that any concave function f : R+ → R+ with f(0) = 0 is nondecreasing. In addition,
the condition f(0) = 0 implies f(αx) ≥ αf(x) for every α ∈ (0, 1) which in turn implies that
1
αx
f(αx) ≥ 1

x
f(x). This shows that Theorem 2.0.9 applies to an important class of functions

including f(x) := |x|q, where q ∈ (0, 1].

Corollary 2.0.10. Let A ∈ Rm×n and q ∈ (0, 1]. Then every s-sparse vector x can be
uniquely recovered by solving (Pq) in (2.13) if and only if for every subset S ⊆ [n] with
|S| ≤ s ∑

i∈S

|xi|q <
∑

j∈[n]\S

|xj|q for every x ∈ Null(A) \ {0}.

Furthermore it follows from [54] that the exact recovery by `r-minimization implies exact
recovery by `q-minimization whenever 0 < q < r ≤ 1.

Theorem 2.0.11. Let A ∈ Rm×n, and 0 < q < r ≤ 1. If every s-sparse vector x can be
uniquely recovered from the measurements b = Ax by solving `r-quasi-norm minimization
problem as in (2.13), then every s-sparse vector x can be uniquely recovered from the same
measurements b = Ax by solving `q-quasi-norm minimization problem (2.13).

This theorem is important in the sense that it also gives a sufficient condition for a linear
programming problem to solve an instance of NP-hard nonconvex programs.

Next, we provide the definition of coherence in the context of compressed sensing.

Definition 2.0.8 (Coherence). Let A ∈ Rm×n and let a1, a2, . . . , an be the columns of A.
The coherence of A is the largest absolute value of the inner product between the different
normalized columns of A

µ(A) := max
i 6=j

|a>i aj|
‖ai‖2‖aj‖2

.
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2.0.2 Restricted Isometry Property

The restricted isometry property is another fundamental concept and one of the most pop-
ular tools for studying the recovery of sparse signals using linear programming [22]. The
restricted isometry property of a matrix requires the distance between some sparse vectors
to be “approximately” preserved. Our aim here is just to give a brief overview of the main
results rather than opening Pandora’s box and list all of the works in this field. In particular,
we are interested in the results related to structured matrices.

Definition 2.0.9 (Restricted Isometry Property (RIP)). Let A be an m × n matrix with
m ≤ n. For every integer s where 1 ≤ s ≤ n; we define the s-restricted isometry constant δs
to be the smallest real number in (0, 1) such that

(1− δs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δs)‖v‖22 (2.14)

for all v ∈ Rn with at most s nonzero entries.

Suppose that we want to recover an s-sparse signal x from linear measurements y = Ax
and also suppose δ2s is sufficiently smaller than 1. Then RIP implies that

(1− δ2s)‖x1 − x2‖22 ≤ ‖A(x1 − x2)‖22 ≤ (1 + δ2s)‖x1 − x2‖22 (2.15)

pairwise distances between s-sparse signals must be well preserved. Furthermore, (2.15)
implies that two s-sparse signals have the same image under A i.e., satisfy Ax1 = Ax2 if
and only if x1 = x2 as 0 < δ2s < 1.

Let S ⊆ [n] and AS be the matrix formed from the columns of A indexed by S, then the
RIP property is equivalent to ∥∥A>SAS − III

∥∥
2
≤ δs,

for each S ⊆ [n] with |S| ≤ s. The number δs measures how close the columns of A are to
behave like an orthonormal system when restricted to the linear combination of at most s
many vectors.

A lot of work in compressed sensing that analyzed RIP has focused on the equivalence
condition between `1-norm minimization and `0-“norm”. In [19], it was shown that δs+δ2s+
δ3s < 1 is a sufficient condition for the recovery of s-sparse signals using (P1). Later in [20],
Candes gave a sufficient condition for robust recovery as well as the equivalence of (P0) and
(P1) in the sense that both programs have the same unique optimal solution whenever there
is an s-sparse solution to the linear system.

Theorem 2.0.12 (Theorem 1.2, [20]). If δ2s <
√

2− 1, then there exists a positive number
C such that every solution x∗ of (P1) satisfies

‖x− x∗‖1 ≤ C‖x− x(s)‖1
and

‖x− x∗‖2 ≤ Cs−1/2‖x− x(s)‖1,
where x(s) ∈ Rn is the vector of all zeros except the first s entries are composed of the absolute
wise s largest entries of x. Furthermore, if there exists an s-sparse x solution to (P1) then
the recovery is exact.
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This result has been extended to the case where the observations are corrupted by some
noise. Suppose b = Ax + w and consider the following

min
x∈Rn
‖x‖1 subject to ‖b−Ax‖2 ≤ ε. (P̃1) (2.16)

Theorem 2.0.13 (Theorem 1.3, [20] ). If δ2s <
√

2 − 1 and ‖w‖ ≤ ε, then there exist
positive numbers C̃ and C̃1 such that every solution x∗ of (P̃1) satisfies

‖x− x∗‖2 ≤ C̃s−1/2‖x− x(s)‖1 + C̃1ε,

where x(s) ∈ Rn is the vector of all zeros except the first s entries are composed of the absolute
wise s largest entries of x.

In addition, Foucart and Lai showed that δ2s < 2(3−
√

2)/7 is sufficient for the recovery
of s-sparse signals by `1-minimization [45]. Other sufficient conditions for the signal recovery
include δ2s < 0.4931 in [97], δs < 0.307 in [17]. In addition, the recovery of certain s-sparse
signals are impossible when δ2s is arbitrarily close to 1√

2
[31] or when δs = s−1

2s−1 < 0.5 [17].
To the best of our knowledge, the most recent result about RIP related to the recovery of
s-sparse signals using (P1) is provided by Cai and Zhang [18]. The authors showed that the
sufficient condition δs < 1/3 for the recovery of s-sparse signals using `1-norm minimization
is sharp, i.e., in general it is not possible to recover every s-sparse signal if δs ≥ 1/3.

2.1 Compressed Sensing in Structured Matrices

In signal processing and machine learning, structured matrices are ubiquitous and arise in
many areas. Therefore, in this section we find it useful to provide a small survey of recent
works on the recovery of structured matrices.

Toeplitz and Hankel matrices are one of the most commonly used structure in signal
processing as they arise naturally from the convolutional structure inherent to linear time
invariant systems.

In [58], a restricted isometry property has been established for m-by-n Toeplitz matrices
with bounded or Gaussian i.i.d entries. Using the Gersgorin’s Theorem and some variants of
Hoeffding’s theorem, they established that the number of measurements m required for RIP
property with constant δs to be satisfied with probability 1− ε is of order O(Cs2 log(n2/ε)),
where C is a constant that is inversely proportional to δ2s . Later, in [58], using the coherence
for Toeplitz matrices with entries that are Rademacher random variables (i.e., each random
variable takes value +1 with probability 0.5, and −1 with probability 0.5), the number of
necessary measurements were established as O(Cs2 log2(n2/ε)).

In [111], Rauhut studied the recovery of partial random circulant and Toeplitz matrices
in the context of `1-minization. Utilizing a new version of the non-commutative Khintchine
inequality, it is shown that the necessary number of observations to guarantee sparse re-
construction by `1-minimization is linearly proportional to the sparsity up to a log-factor
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in the input size which is an improvement over previous recovery results for such matrices
[58]. Using a recovery theorem for `1-minimization which is based on KKT complementary
slackness conditions and a new version of Khintchine inequalities, the following results are
established [111].

Theorem 2.1.1. [111, Theorem 2.1] Let A be an m×n partial circulant matrix or a Toeplitz
matrix with its entries being ±1 Bernoulli variables. Assume that the sign of the nonzero
entries of the unknown s-sparse vector are Bernoulli random variables. Then the exact
recovery the unknown vector with `1 minimization (P1) with probability at least 1−ε requires
at least

Cs log3(n/ε),

many measurements.

Proposition 2.1.2. [111, Proposition 3.2] Let µ be the coherence of the random partial
circulant matrix or Toeplitz matrix 1√

n
A, where A is an n × N partial circulant matrix

with its entries being ±1 Bernoulli variables. Then with with probability at least 1 − ε, the
coherence satisfies

µ ≤ 4
log(2N2/ε)√

n

Although the method followed in atomic norm exploits a min-max inequality due to
Gordon [53, Corollary 1.2] in which the underlying matrix is a Gaussian matrix, we would
like to know if this inequality can be modified to serve a purpose for the Gaussian Toeplitz
matrices and reproduce or obtain better results in terms of number of measurements to
recover the unknown sparse signal with high probability.

It is still an open question whether it is possible for these structured matrices to satisfy
RIP with constant δs when the number of measurements is O(s log(n)).

Partial circulant matrices are also commonly studied in compressed sensing. Romberg
showed that the restricted isometry property holds for the partial random circulant matri-
ces with random sampling sets and random generators when the number of observations is
O(Cs log6 n) [114]. On the other hand, if the condition for random sampling is replaced by
a fixed sampling then O(s log2 s log2 n) many measurements is sufficient for the RIP to hold.
[80]. In addition, it is possible to recover the s-sparse signal in a given orthonormal repre-
sentation from O(s log n) samples from its convolution with a pulse whose Fourier transform
has unit magnitude and random phase at all frequencies [114].

Furthermore, a recent work established that if s ≤ D
√
n/ log(n), then O(Cs log(en/s))

measurements are sufficient for the robust recovery of s-sparse vector from b = Ax + e,
where A is a Gaussian partial circulant matrix and e is a noise vector [95]. If s is larger
than D

√
n/ log(n) then m ≥ Cs log2(s) log(log(S)) log(n) measurements are sufficient for

the robust recovery.

In 2011, Oymak et al. studied the relations between sparse signal recovery and low
rank matrix recovery. They proposed a simple and transparent way to extend the recovery
conditions given for vectors to matrices [107]. In the next section, we analyze the recovery
of low rank matrices.
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2.2 Recovery of Low Rank Matrices

A famous problem known as the Netflix problem was to suggest movie ratings to users based
on their previous ratings. In 2009, Netflix provided a training data set of 100, 480, 507 ratings
that 480, 189 users gave to 17, 770 movies. The challenge was to predict 2, 817, 131 entries
of the matrix whose columns where indexed by movies and rows indexed by users. In this
problem, one may assume that there is a high correlation between certain columns. For
example, if a user rates the movie “The Matrix” with grade 1, she will probably rate the
movie “The Matrix Reloaded” with grade 1 as well. Such possible linear dependence between
the columns of the users versus movie ratings matrix suggests that the big matrix is rank
deficient. When the underlying measurement matrix has a low rank, it is often possible to
exploit its structure and recover it using computationally efficient algorithms. Therefore,
one can pose the prediction of incomplete entries as a rank minimization problem subject to
given linear measurements. Such problems also arise in machine learning, signal processing,
image recognition and in finance.

The problem of low rank matrix recovery subject to linear constraints can be formulated
as

minimize
X∈Rn×n

rank(X) (P )

subject to A(X) = y.
(2.17)

Although one can find the best rank-k approximation of a matrix with respect to Frobenius
norm by singular value decomposition, the rank minimization problem (2.17) is NP-hard.
The heuristic approaches have been used to attack the problem [43]. In her seminal work
[43], Fazel proposed the nuclear norm of the matrix and log det of the regularized matrix as
surrogate functions for the rank of a matrix. The former can be posed as an SDP problem
[136, 43] and the second can be approximated by using some linearization and solved as an
SDP problem efficiently in polynomial time. Note that in the rank minimization problem
above, if the rank one matrices with unit Frobenius norm is defined as the atomic set, then
the convex hull of this atomic set is the nuclear norm ball. Relaxing the objective of (2.17)
by the nuclear norm which is its largest lower convex envelope aligns with the general setting
proposed in [25].

The null-space property of order s can be generalized for the nuclear norm minimization
and it is sufficient and necessary condition for the unique recovery of rank-k matrices.

Proposition 2.2.1. [107] Let A : Rm×n → R` be a linear mapping. All matrices X ∈ Rm×n

with rank (X) ≤ k can be recovered from

minimize
X∈Rm×n

min‖X‖∗ (P∗)

subject to A(X) = y.
(2.18)

if and only if for every W ∈ Null(A)

2
k∑
i=1

σi(W ) <
n∑

j=k+1

σj(W ).
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A similar statement (when replacing the nuclear norm with positively weighted nuclear
norm) also holds for the low rank recovery of the weighted nuclear norm minimization.

In [107], Oymak et. al. showed how to extend several known results for sparse vector
recovery to matrices, including the restricted isometry and null-space conditions to low rank
matrix recovery.

In [108], the authors also established a list of matrix robustness conditions for the nuclear
norm and Frobenius norm. Here, we state some generalizations of these matrix noise robust-
ness results. We generalize the necessary and sufficient conditions and replace the nuclear
norm with unitarily invariant norm and the `2-norm for measuring the error by a general
norm whenever it is possible.

Here, we consider the problem of recovering a low rank matrix X0 ∈ Rm×n, with m ≤ n
from the corrupted measurements y = A(X0) + z, with ‖z‖ ≤ ε, where ε denotes the noise
level, and A : Rm×n → R` is a linear operator.

Lemma 2.2.2. Let X0 ∈ Rm×n, m ≤ n, such that rank(X0) ≤ k and ‖A(X0)−y‖ ≤ ε. Let
X̂ ∈ Rm×n be such that ‖X̂‖∗ ≤ ‖X0‖∗ and ‖A(X̂)− y‖ ≤ ε. Then for every C > 0,∣∣∣∣∣∣∣∣∣X0 − X̂

∣∣∣∣∣∣∣∣∣ < Cε (2.19)

if and only if for all W with
∑k

i=1 σi(W) ≥
∑n

i=k+1 σi(W),

|||W||| < C

2
‖A(W)‖. (2.20)

Lemma 2.2.2 differs from the result in [107]. We used unitarily invariant norm, |||·|||, for
matrices and a general norm, ‖·‖ for vectors in conditions (2.19)-(2.20).

Proof. Assume that for every W with
∑k

i=1 σi(W) ≥
∑n

i=k+1 σi(W),

|||W||| < C

2
‖A(W)‖.

Let X0 ∈ Rm×n such that rank(X0) ≤ k and ‖X̂‖∗ ≤ ‖X0‖∗ and ‖A(X̂)− y‖ ≤ ε. Then

k∑
i=1

σi(X0 − X̂) ≥
k∑
i=1

σi(X0)−
k∑
i=1

σi(X̂) (2.21)

≥
n∑
i=1

σi(X̂)−
k∑
i=1

σi(X̂) (2.22)

≥
n∑

i=k+1

σi(X̂)−
n∑

i=k+1

σi(X0) (2.23)

≥
n∑

i=k+1

σi(X̂−X0). (2.24)
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Here, (2.21) and (2.22) follow by Mirsky’s singular value inequalities (which will be
discussed in Chapter 3 in more detail, but we give below for completeness), i.e., for every
k ∈ {1, 2, . . . ,m}

k∑
i=1

σi(X0 − X̂) ≥
k∑
i=1

∣∣∣σi(X0)− σi(X̂)
∣∣∣,

and by the assumption on X0 and X̂, respectively. In addition, (2.24) follows from the
triangle inequality (given below) combined with the trace equality. Note that by triangle
inequality

k∑
i=1

σi(X̂) ≤
k∑
i=1

σi(X̂−X0) +
k∑
i=1

σi(X0).

Also, by the trace equality

n∑
i=1

σi(X̂) =
n∑
i=1

σi(X̂−X0) +
n∑
i=1

σi(X0).

Multiplying the trace inequality by −1 and adding to the triangle inequality above gives

−
n∑

i=k+1

σi(X̂) ≤ −
n∑

i=k+1

σi(X̂−X0)−
n∑

i=k+1

σi(X0).

Hence,
n∑

i=k+1

σi(X̂) ≥
n∑

i=k+1

σi(X̂−X0) +
n∑

i=k+1

σi(X0).

Then (2.20) holds for W = X0 − X̂, i.e.,∣∣∣∣∣∣∣∣∣X0 − X̂
∣∣∣∣∣∣∣∣∣ < C

2
‖A(X0 − X̂)‖. (2.25)

Since ‖A(X0) − y‖ ≤ ε and ‖A(X̂) − y‖ ≤ ε, by triangle inequality we have ‖A(X0) −
A(X∗)‖ ≤ 2ε. This and (2.25) imply

2

C
‖X0 − X̂‖ < ‖A(X0 − X̂)‖ = ‖A(X0)−A(X̂)‖ ≤ 2ε, (2.26)

where the equality is due to the linearity of the A.

To prove the converse, suppose that (2.20) does not hold. Then there exists W such that
‖W[1:k]‖∗ ≥ ‖W −W[1:k]‖∗, but

|||W||| ≥ C

2
‖A(W)‖. (2.27)
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Choose X0 := 2
ε

η
W[1:k], and X̂ := −2

ε

η

(
W −W[1:k]

)
, where η := ‖A (W)‖, and y :=

A(X0) +A(X̂)

2
. Then, ‖A(X0)− y‖ = ‖A(X̂)− y‖ ≤ ε. However,

∣∣∣∣∣∣∣∣∣X0 − X̂
∣∣∣∣∣∣∣∣∣ =

2ε

η
|||W|||

≥ 2ε

η

C

2
‖A(W)‖ = Cε.

This completes the proof.

Lemma 2.2.3. Let X0, X̂ ∈ Rm×n such that ‖X̂‖∗ ≤ ‖X0‖∗ and A(X̂) = A(X0). Then, for
C > 0 large enough, ∣∣∣∣∣∣∣∣∣X0 − X̂

∣∣∣∣∣∣∣∣∣ < C√
k
‖X0 −X0[1:k]‖∗ (2.28)

if and only if for all W ∈ Null(A),

‖W −W[1:k]‖∗ − ‖W[1:k]‖∗ >
2
√
k

C
|||W|||. (2.29)

This lemma differs from [107] as the Frobenius norm is replaced by unitarily invariant
norm in (2.28) and (2.29).

Proof. Suppose that for every W ∈ Null(A), (2.29) holds.
Let X0, X̂ be as in the assumption and let W = X0 − X̂. Then W ∈ Null(A). We have

‖X0 −X0[1:k]‖∗ = ‖X0 −W + W −X0[1:k]‖∗
≥ ‖W −X0[1:k]‖∗ − ‖X0 −W‖∗

≥
m∑
`=1

∣∣σ`(W)− σ`(X0[1:k])
∣∣− ‖X0 −W‖∗

=
k∑
`=1

∣∣σ`(W)− σ`(X0[1:k])
∣∣+ ‖W[k+1:n]‖∗ − ‖X̂‖∗

≥ ‖X0[1:k]‖∗ − ‖W[1:k]‖∗ + ‖W‖∗ − ‖W[1:k]‖∗ − ‖X̂‖
= ‖X0[1:k]‖∗ − ‖W[1:k]‖∗ + ‖W −W[1:k]‖∗ − ‖X̂‖
≥ ‖X0[1:k]‖∗ − ‖X0‖∗ + ‖W −W[1:k]‖∗ − ‖W[1:k]‖∗

> ‖X0[1:k]‖∗ − ‖X0‖∗ +
2
√
k

C

∣∣∣∣∣∣∣∣∣X0 − X̂
∣∣∣∣∣∣∣∣∣

≥ −‖X0[1:k] −X0‖∗ +
2
√
k

C

∣∣∣∣∣∣∣∣∣X0 − X̂
∣∣∣∣∣∣∣∣∣.

This implies
∣∣∣∣∣∣∣∣∣X0 − X̂

∣∣∣∣∣∣∣∣∣ < C√
k
‖X0 −X0[1:k]‖∗.
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To prove the converse, suppose (2.29) does not hold. After some algebraic manipulations
and using the equivalence of norms, we get

(C − α)‖W −W[1:k]‖∗ ≤ (C + α)‖W[1:k]‖∗,

for some α > 0. Here α := 2
√
kα′, where α′ is a fixed number depending on the equivalence

of |||·||| and ‖·‖∗. We choose C large enough so that C − α > 0.

Let X0 := −(C + α)W[1:k] and X̂ := (C − α)W + X0. Then ‖X̂‖∗ ≤ (C − α)‖W −
W[1:k]‖∗−2α‖W[1:k]‖∗ ≤ (C+α)‖W[1:k]‖∗ = ‖X0‖∗. So, ‖X̂‖∗ ≤ ‖X0‖∗ and ‖A(X̂)−y‖ ≤ ε,

but
∣∣∣∣∣∣∣∣∣X0 − X̂

∣∣∣∣∣∣∣∣∣ ≥ C√
k
‖X0 −X0[1:k]‖∗.

Lemma 2.2.4. [107, Lemma 1] Let C > 1 be a constant. Let X0, X̂ ∈ Rm×n such that
‖X̂‖∗ ≤ ‖X0‖∗ and A(X0) = A(X̂). Then

‖X0 − X̂‖∗ < 2C‖X0 −X0[1:k]‖∗ (2.30)

if and only if for all W ∈ Null(A),

‖W[1:k]‖∗ <
C − 1

C + 1
‖W −W[1:k]‖∗ (2.31)

In the following remark, we make a minor observation about the above lemma.

Remark 2.2.5. If the nuclear norm in the above lemma is replaced by ‖.‖p, where p ≥ 2,
p ∈ N, then the above lemma does not hold. We show this by giving a set of counterexamples.

Suppose Null(A) = {αDiag(e) : α ∈ R}. Let p ∈ N, p ≥ 2, n ∈ N, n ≥ 2, C = (1 + 1/(n −
1)1/p)/(1 − 1/(n − 1)1/p) + 0.02, and k = 1. For all W ∈ Null(A) (2.31) holds. However
for X0 = Diag[p (1/2p)× ones(1, n− 1)] and X̂ = [(p− 1) (−1 + (1/2p))× ones(1, n− 1)],
(2.30) does not hold.

Proof. To see this, let p ≥ 2 and n ≥ 2 be arbitrarily chosen. Note that ‖X0 − X̂‖p = n
1
p

and ‖X0 −Xk
0‖p =

(n− 1

2p2
)1/p

.

Let C∗ := 2
p2−p

p

(
n1/2

n− 1

) 1
p

. Since 2
p2−p

p

(
n1/2

n− 1

) 1
p

< 2
p2−p

p

(
n

n− 1

) 1
p

.

As (2C∗)p‖X0 −Xk
0‖pp = (2C∗)p

(
n− 1

2p2

)
= n1/2 < n = ‖X0 − X̂‖pp for n ≥ 2, we conclude

(2.30) does not hold.

2.2.1 Null-space Based Recovery Results with Schatten-q Quasi
Norm Minimization

Definition 2.2.1 (Schatten-q Quasi Norm). Let x ∈ Rn and q ∈ (0, 1). The `q quasi-norm
of x is defined as

‖x‖q :=

(
n∑
i=1

|xi|q
)1/q

.
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Define σ : Rm×n → Rmin{m,n} by

σ(X) :=
[
σ1(X) · · · σmin{m,n}(X)

]>
.

Then, for every X ∈ Rm×n, `q quasi-norm is defined as

‖X‖q := ‖σ(X)‖q.

Consider the following minimization problems:

min ||X||∗
s. tA(X) = y (P∗),

and

min ||X||q
s. tA(X) = y, (Pq)

where q ∈ (0, 1).

`q quasi-norm has been considered as a sparseness measure and been used to recover
sparse vectors [54]. Although `q norm is concave, many numerical algorithms exist to ap-
proximately solve (Pq) (see for example [45]). Experimentally, it has been shown that `q
quasi-norm based minimization algorithms may give better recovery performance compared
to some `1-norm based minimization algorithms [45].

Below we provide a similar matrix robustness result for Schatten-q quasi norm.

Lemma 2.2.6. Let C > 1 and q ∈ (0, 1). For every pair X0, X̂ ∈ Rm×n with ‖X̂‖q ≤ ‖X0‖q
such that A(X̂) = A(X0),

‖X0 − X̂‖q < (2C)1/q‖X0 −X0[1:k]‖q (2.32)

if for every W ∈ Null(A)

‖W[1:k]‖q < (
C − 1

2C
)1/q‖W‖q. (2.33)

Proof. Suppose that for all W ∈ Null(A), (2.33) holds. Let X0, X̂ be as in the assumption,
and let W = X0 − X̂. Then W ∈ Null(A).

‖X0 −X0[1:k]‖qq ≥ ‖X0[1:k] −W‖qq − ‖X0 −W‖qq (2.34)

≥
n∑
i=1

|σqi (X0[1:k])− σqi (W)| − ‖X∗‖qq (2.35)

≥
k∑
i=1

(σqi (X0[1:k])− σqi (W)) +
n∑

i=k+1

σqi (W)− ‖X0‖qq (2.36)

≥ ‖X0[1:k]‖qq − ‖X0‖qq +
n∑
i=1

σqi (W)− 2
k∑
i=1

σqi (W) (2.37)

≥ −‖X0 −X0[1:k]‖qq + ‖W‖qq −
1

C
‖W‖qq +

1

C
‖W‖qq − 2‖W[1:k]‖qq (2.38)

≥ −‖X0 −X0[1:k]‖qq +
1

C
‖W‖qq (2.39)
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Here, (2.34) follows since (·)q, where q ∈ (0, 1) is subadditive on R+. (2.35) follows by
the generalization of Mirsky’s inequality for f := (·)q, which will be discussed later in
Theorem 2.2.8. The last inequality (2.38) holds since W satisfies (2.33). The last inequality
implies (2.32).

In addition, it follows immediately from Theorem 2.0.11 that if every k-rank matrix can
be uniquely recovered from (Pr), then every k-rank matrix can be uniquely recovered from
(Pq) whenever 0 < q < r ≤ 1.

In [107], Oymak et al. gave a necessary condition for the exact recovery of low rank
matrices by solving (Pq) [107]. Their result attracted a lot of interest because the sufficiency
of the condition depended on a well-known conjecture in linear algebra [9, Conjecture 6].

Theorem 2.2.7 (Theorem 3, [107]). Let rank(X0) = k and let X̄ denote the global minimizer
of (Pq). For every W ∈ Null(A),

k∑
i=1

σqi (W) <
m∑

i=k+1

σqi (W), (2.40)

if every matrix X0 with rank(X0) ≤ k can be exactly recovered by solving (Pq).

Note that (2.40) with p = 1 implies (2.40) for p ∈ (0, 1). In fact the unique minimizer of
(P∗) is the rank k solution of A(X) = y, which is also the unique minimizer of (Pq).

The authors conjectured that this condition is also sufficient [107]. The proof of their
conjecture (now a theorem) depends on the validity of a special version of the conjecture
which was posed by W. Miao and appears in [9, Conjecture 6]. For the convenience of the
reader, we restate this below.

Theorem 2.2.8. ([9, Conjecture 6],[8]) Let A,B ∈ Rm×n, and let f : R+ → R+ be a
concave function satisfying f(0) = 0. Also, let {i1, . . . , ik} be an increasing subsequence of
{1, . . . ,min{m,n}}. Then

min{m,n}∑
k=1

|f(σik(A))− f(σik(B))| ≤
min{m,n}∑
k=1

f(σi(A−B)). (2.41)

The inequality (2.41) corresponds to the well-known Mirsky’s inequalities on singular
values [96, Theorem 5] if we choose f(x) = |x|. A version of this inequality without the
absolute values on the left hand side was proved in [132, Corollary 4.5]. The generalization of
the Mirsky’s signular value inequalities (2.41) was proved by Audenaert in 2014 [8] (although
the result has not been published yet) utilizing the Thompson-Freede inequalites [127].

The perturbation inequalities such as (2.41) arise in many areas such as perturbation the-
ory and compressed sensing. In the next chapter, we study such eigenvalue based inequalities
including the generalized Mirsky’s inequality.
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Chapter 3

Eigenvalue Inequalities

In this chapter, we study inequalities relating the eigenvalues of a sum of two Hermitian
matrices to the eigenvalues of its summands. In addition, we look into some singular value
inequalities which has applications to compressed sensing.

3.1 Eigenvalue Inequalities for a Sum of Two Hermi-

tian Matrices

Throughout this chapter we will assume that the eigenvalues of Hermitian matrices are
indexed in nonincreasing order. For example, if λ1(A), . . . , λn(A) are the eigenvalues of an
n-by-n Hermitian matrix A then

λ1(A) ≥ · · · ≥ λn(A).

Whenever the dependence is obvious we will only use λi to denote the ith eigenvalue. Also,
we will denote the vector formed by these eigenvalues as

λ(A) :=
[
λ(A)1 · · · λn(A)

]>
so that λ : Hn → Rn.

Characterization of the eigenvalues of a Hermitian matrix sum is an old problem: Given
two Hermitian matrices A and B what can be said about the spectrum of their sum A + B?
If the second matrix has very small entries then the problem can also be viewed as finding
the spectrum of the perturbation of A in terms of A and the perturbation.

This problem has been studied by many well-known mathematicians [85, 139, 14, 66].
In 1950, Lidskĭı who was a student of Gelfand showed that the vector formed from the
eigenvalues of the sum of two Hermitian matrices say λ(A + B) is in the convex hull of
λ(A) + Pλ(B) where P varies over all n-by-n permutation matrices [85]. As pointed out by
Fulton [48], in 1956 in [14], Berezin and Gelfand, also proved the same result. As opposed to
Lidskĭı’s proof which uses more elementary techniques [85], the proof in [14] is more advanced
and is based on the techniques from the representation theory of Lie groups and Lie algebras.
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Theorem 3.1.1 (Lidskĭı). Let A,B be n-by-n Hermitian matrices. Then the vector

λ(A + B) :=
[
λ(A + B)1 · · · λn(A + B)

]>
is in the convex hull of

{λ(A) + λ(B)P : P is an n-by-n permutation matrix} .

Later in 1955, Wielandt showed that this geometric condition given in Theorem 3.1.1 is
equivalent to the following set of inequalities

∑
i∈J

λi(A + B) ≤
∑
i∈J

λi(A) +
k∑
r=1

λr(B),

for every subset J of {1, . . . , n} with cardinality r [139, Theorem 2]. Wielandt’s proof is
based on a minmax principle.

Theorem 3.1.2 (Wielandt, [139]). Let Rk denote a k-dimensional inner product space over
the field of complex numbers, and let 1 ≤ i1 < · · · < ik ≤ n. Then

λi1(A) + · · ·+ λik(A) = max
Ri1 ⊆ · · · ⊆ Rik

dim(Rij) = ij

min
xj ∈ Rij ,

xHj x` = δj`

k∑
j=1

xHj Axj,

where δj` :=

{
1, if j = `,

0, otherwise
.

Theorem 3.1.3 (Wielandt). Let A and B be n-by-n Hermitian matrices. If 1 ≤ i1 < · · · <
ik ≤ n, then

k∑
r=1

λir(A + B) ≤
k∑
r=1

λir(A) +
k∑
r=1

λr(B). (3.1)

Thompson and Freede generalized Wielandt-Lidskiii inequalities (3.1) [127], which will
be discussed in the next section in more detail.

In his famous paper [66], Horn raised the following question: For which nonincreasing
sequences {αi}ni=1,{βi}ni=1 and {γi}ni=1 do there exist Hermitian matrices A and B such that
and A,B and A + B have {αi}ni=1, {βi}ni=1 and {γi}ni=1 as their respective eigenvalues? He
conjectured the following.

Theorem 3.1.4 (Horn’s Conjecture). Sequences {αi}ni=1,{βi}ni=1 and {γi}ni=1 occur as eigen-
values of Hermitian n-by-n matrices A,B and A + B respectively, if and only if

n∑
i=1

γi =
n∑
i=1

αi +
n∑
i=1

βi,
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and the inequalities ∑
k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj

hold for every (I, J,K) ∈ T nr and for every r < n, where I := {i1 < · · · < ir}, J := {j1 <
· · · < jr} and K := {k1 < · · · < kr}. The set T nr is defined by the following inductive
procedure. Define

Un
r :=

{
(I, J,K) :

∑
i∈I

i+
∑
j∈J

j =
r(r + 1)

2
+
∑
k∈K

k

}
.

For r = 1 set T n1 = Un
1 . If n ≥ 2,

T nr :=

{
(I, J,K) ∈ Un

r : for all p < r and (F,G,H) ∈ T rp ,
∑
f∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh +
p(p+ 1)

2

}
.

Horn proved his conjecture for n ∈ {3, 4} [66]. For general n, Horn’s conjecture was
proved by Knutson and Tao in [78] following the result of Klyachko [77].

Example 3.1.1. Let α1 ≥ α2 ≥ α3, β1 ≥ β2 ≥ β3 and γ1 ≥ γ2 ≥ γ3 be the eigenvalues
of Hermitian 3-by-3 matrices A,B and C := A + B, respectively. Then Horn’s inequalities
consist of 13 inequalities:

γ1 ≤ α1 + β1 (3.2)

γ2 ≤ α1 + β2 (3.3)

γ2 ≤ α2 + β1 (3.4)

γ3 ≤ α1 + β3 (3.5)

γ3 ≤ α3 + β1 (3.6)

γ3 ≤ α2 + β2 (3.7)

γ1 + γ2 ≤ α1 + α2 + β1 + β2 (3.8)

γ1 + γ3 ≤ α1 + α2 + β1 + β3 (3.9)

γ1 + γ3 ≤ α1 + α3 + β1 + β2 (3.10)

γ2 + γ3 ≤ α1 + α2 + β2 + β3 (3.11)

γ2 + γ3 ≤ α1 + α3 + β1 + β3 (3.12)

γ2 + γ3 ≤ α2 + α3 + β1 + β2 (3.13)
3∑
i=1

γi =
3∑
i=1

αi +
3∑
i=1

βi (3.14)

When the eigenvalues of B is a permutation of the eigenvalues of A then βi = αi for every
i, and since (3.4), (3.6), (3.10) and (3.13) are redundant, the Horn inequalities reduce to the
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following system:

γ1 ≤ 2α1

γ2 ≤ α1 + α2

γ3 ≤ α1 + α3

γ3 ≤ 2α2

γ1 + γ2 ≤ 2α1 + 2α2

γ1 + γ3 ≤ 2α1 + α2 + α3

γ2 + γ3 ≤ α1 + 2α2 + α3

γ2 + γ3 ≤ 2α1 + 2α3

3∑
i=1

γi = 2
3∑
i=1

αi.

One way to check whether one of the above inequalities, LHS ≤ RHS, is redundant is to
solve the linear program where the objective is to maximize LHS−RHS subject to the rest
of the inequalities. If the optimum value is nonpositive, this implies that the inequality
is redundant, otherwise it is not. However, checking each inequality one by one with this
approach may not be efficient when n is large.

It is well-known that for large n ≥ 6, Horn inequalities are not minimal and as n increases
so does the number of redundant inequalities. In some problems, the eigenvalues of A are a
permutation of the eigenvalues of B. An interesting direction here is to investigate the set of
minimal Horn inequalities and understand how the number of redundant Horn inequalities
change as n increases.

3.2 Mirsky’s Inequality and Its Generalizations

The purpose of this section is to study Mirsky’s inequalities and some of its recent general-
izations. First, we present some basic concepts and results. Some of the classical eigenvalue
inequalities like Weilandt and Mirsky can be explained more elegantly through majorization.
We refer the reader to the book [93] by Marshall, Olkin and Arnold for a comprehensive ref-
erence on majorization and its applications.

Definition 3.2.1 (Majorization). For x,y ∈ Rn, we say that x is majorized by y (or y
majorizes x), and denote by x ≺ y, if

k∑
i=1

x[i] ≤
k∑
i=1

y[i], k ∈ {1, . . . , n− 1},

n∑
i=1

x[i] =
n∑
i=1

y[i].
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Theorem 3.2.1 (Hardy-Littlewood-Polya). Let x,y ∈ Rm satisfy x1 ≥ · · · ≥ xm, and
y1 ≥ · · · ≥ ym. Then, there exists a doubly stochastic matrix S with y = Sx if and only if
y ≺ x.

One of the well-known results on majorization is due to Schur. In 1923, Schur showed
that the eigenvalues of a Hermitian matrix A ∈ Hn, say λ, majorizes its diagonal elements

d :=
[
a11 · · · ann

]>
, i.e., d ≺ λ. By the spectral decomposition of A := UΛUH , one can

show that aii =
∑n

j=1 λj|uij|2, where uij is the ijth entry of the unitary matrix U. Then,
the result follows from Hardy-Littlewood-Polya Theorem.

Definition 3.2.2 (Symmetric gauge function). A function φ : Rn → R+ is a symmetric
gauge function if

(i) φ is a norm on Rn,

(ii) φ(|x1|, . . . , |xn|) = φ(x1, . . . , xn).

(iii) φ(x) = φ(Px), ∀x ∈ Rn, for all permutation matrices P ∈ {0, 1}n×n.

Definition 3.2.3 (Schur-convexity). A real valued function f on Rn is called Schur-convex
or S-convex, if x ≺ y implies f(x) ≤ f(y).

Lemma 3.2.2 (Fan’s Lemma, [122]). Let x,y ∈ Rn
+ satisfy

x1 ≥ · · · ≥ xn,

and
y1 ≥ · · · ≥ yn.

Then
k∑
i=1

xi ≥
k∑
i=1

yi, ∀k ∈ {1, . . . , n}

if and only if
φ(x) ≥ φ(y)

for all symmetric gauge functions φ on Rn.

By Fan’s Lemma one can observe that every symmetric gauge function is also Schur-
convex. In 1953, Wielandt and Hoffman showed that for n-by-n normal matrices∑

i=1

|λi(A)− λi(B)|2 ≤ ‖A−B‖2F .

Later, in 1960, Mirsky generalized this to unitarily invariant norms for Hermitian matrices,
i.e., he showed

|||Diag(λ1(A)− λ1(B), . . . , λn(A)− λn(B)||| ≤ |||A−B|||.

He also showed the following for the singular values of complex matrices. Here, we provide it
for real valued matrices, however the technique used below is the same provided for complex
matrices in [96].
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Theorem 3.2.3 (Mirsky, [96]). Let A,B ∈ Rm×n be matrices with singular values σ1(A) ≥
· · · ≥ σr(A) and σ1(B) ≥ · · · ≥ σr(B), respectively, where r := min{m,n}. Then for every
unitarily invariant norm |||·|||,

|||ΣA −ΣB||| ≤ |||A−B|||.

As the unitarily invariant norms play an important role in Mirsky’s theorem, it is impor-
tant to understand which matrix norms are unitarily invariant. A famous result due to von
Neumann characterizes all unitarily invariant norms as symmetric gauge functions of singu-
lar values. Therefore, Mirsky’s theorem can be equivalently stated in terms of a symmetric
gauge function.

Theorem 3.2.4. Let A,B ∈ Rm×n be matrices with singular values σ1(A) ≥ σ2(A) ≥ · · · ≥
σr(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σr(B), respectively, where r := min{m,n}. Then for
every symmetric gauge function φ, we have

φ(|σ(B)− σ(A)|) ≤ φ(σ(B−A)). (3.15)

Proof. The proof below is based on techniques from a paper by L. Mirsky [96] which borrows
ideas from [139].

It is well known that the eigenvalues of Ã :=

[
0 A

A> 0

]
and B̃ :=

[
0 B

B> 0

]
are

σ1(A) ≥ · · · ≥ σr(A) ≥ −σr(A) ≥ · · · ≥ −σ1(A),

σ1(B) ≥ · · · ≥ σr(B) ≥ −σr(B) ≥ · · · ≥ −σ1(B)

respectively. This observation is originally due to Camille Jordan (1838-1922) [67, p. 135].

Let Rji be the space spanned by the eigenvectors of B̃ corresponding to the eigenvalues
λj1(B̃), . . . , λji(B̃). Then for every unit norm vector x ∈ Rji , x>Ax ≥ λji(A). This implies
that for every pairwise orthonormal vectors {xj1 , . . . ,xjk} such that xji ∈ Rji , λji(B̃) ≤
x>jiB̃xji . Hence,

k∑
i=1

λji(B̃) ≤
k∑
i=1

x>jiB̃xji

In addition, by Theorem 3.1.2, for the given subspaces Rj1 ⊆ · · · ⊆ Rjk , there exists an
orthonormal matrix Q :=

[
q1 · · · qk

]
such that qi ∈ Rji and

k∑
i=1

q>i Ãxqi
= tr

(
Q>ÃQ

)
≤

k∑
i=1

λji(Ã).
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Then

k∑
i=1

λji(B̃) ≤ tr
(
Q>B̃Q

)
(3.16)

= tr
(
Q>ÃQ

)
+ tr

(
Q>(B̃− Ã)Q

)
(3.17)

≤
k∑
i=1

λji(Ã) + tr
(
Q>(B̃− Ã)Q

)
(3.18)

≤
k∑
i=1

λji(Ã) +
k∑
i=1

σi(B−A) (3.19)

Here, (3.19) follows from Cauchy’s interlacing theorem (see e.g., Theorem 9.1.1 in[52]). The
inequality in (3.19) holds for every subsequence 1 ≤ j1 < · · · < jk ≤ m. Therefore, we can
choose ji := i whenever σi(B) ≥ σi(A) and ji := i+ r whenever σi(B) < σi(A). Then (3.19)
reduces to

k∑
i=1

|σi(B)− σi(A)| ≤
k∑
i=1

σi(B−A).

The result then follows by Fan’s Lemma (see Lemma 3.2.2).

Corollary 3.2.5. Theorem 3.2.3 (Mirsky’s Theorem) follows from Theorem 3.2.4.

Proof. Let |||·||| be a given unitarily invariant norm on Rm×n. Define φ(x) := |||X|||, where
Xii := xi, and Xij := 0, if i 6= j. Clearly φ(·) is a norm on Rm. Since |||·||| is unitarily
invariant,

φ(x) = |||X||| = |||−X||| = φ(|x|), ∀x ∈ Rm, (here absolute norm is taken elementwise)

and
φ(x) = |||X||| = |||PX||| = φ(Px),

for every permutation matrix P. Therefore, for every unitarily invariant norm one can find
a symmetric gauge function φ such that |||A||| = φ(σ1(A), . . . , σm(A)). Since Theorem 3.2.3
holds for all symmetric gauge functions, and since there is a symmetric gauge function for
every unitarily invariant norm, the result follows.

The following theorem due to Lidskii can be proved using Theorem 3.1.2.

Theorem 3.2.6 (Lidskii’s Inequality). Let A and B be n-by-n real symmetric matrices. If
1 ≤ i1 < i2 < · · · < im ≤ n, then

m∑
k=1

λik(A + B) ≤
m∑
k=1

λik(A) +
m∑
k=1

λk(B).

Note that one can prove Mirsky’s Theorem (Theorem 3.2.3) using Lidskii’s Inequality
(Theorem 3.2.6). We will state this as a corollary to Theorem 3.2.6.

38



Corollary 3.2.7. Let A,B ∈ Rm×n be matrices with singular values σ1(A) ≥ σ2(A) ≥ · · · ≥
σr(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σr(B), respectively, where r := min{m,n} and m ≤ n.
Then, for every ` ∈ {1, 2, . . . , r},

∑̀
i=1

|σi(A)− σi(B)| ≤
∑̀
i=1

|σi(A−B)|. (3.20)

Proof. Define Ã :=

[
0 A

A> 0

]
and B̃ :=

[
0 B

B> 0

]
. The eigenvalues of Ã and B̃ are

±σ1(A), . . . ,±σr(A) and ±σ1(B), . . . ,±σr(B), respectively. Furthermore, the eigenvalues
of (Ã − B̃) are ±σ1(A − B), . . . ,±σr(A − B). If λ(A) denotes the vector whose entries
are eigenvalues of A sorted in nonincreasing order, then the entries of λ(Ã) − λ(B̃) are
±(σ1(A)− σ1(B)), . . . ,±(σr(A)− σr(B)). Let

ik :=

{
k, if σk(A) ≥ σk(B),

k + r, otherwise.
(3.21)

By Lidskii’s Inequality, we have

∑̀
k=1

λik(A) ≤
∑̀
k=1

λik(B) +
∑̀
k=1

λk(A−B). (3.22)

For all k ≤ `, λk(A − B) = σk(A − B). Moreover, λik(A) − λik(B) = |σk(A) − σk(B)| by
the choice of ik. Substitution of these into (3.22) yields the result.

Next, we introduce Amir-Moéz inequalities. Let i1 ≤ · · · ≤ ik ≤ n, and j1 ≤ · · · ≤ jk ≤ n
be sequences of positive integers, where i` + j` ≤ n − k + ` + 1, ` ∈ {1, . . . , k} and k ≤ n.
Let A,B be n-by-n Hermitian matrices, λ1 ≥ · · · ≥ λn, β1 ≥ · · · ≥ βn and γ1 ≥ · · · ≥ γn be
the eigenvalues of A,B and A + B, respectively. Then the following inequalities, which are
called as Amir-Moéz inequalities , hold:

λi′1 + · · ·+ λi′k + βj′1 + · · ·+ βj′k ≥ γi′1+j′1−1 + · · ·+ γi′k+j′k−k, (3.23)

where {i′1, . . . , i′k} and and {j′1, . . . , j′k} are strictly increasing subsequences of {i1, . . . , ik}
and {j1, . . . , jk}, respectively [4].

Theorem 3.2.8 (Thomspon - Freede Inequalities, [127]). Let A,B and C := A + B be
n-by-n Hermitian matrices. Then

m∑
k=1

λik+jk−k(C) ≤
m∑
k=1

λik(A) +
m∑
k=1

λjk(B) (3.24)

whenever 1 ≤ i1 < i2 < · · · < im ≤ n, 1 ≤ j1 < j2 < · · · < jm ≤ n and im + jm ≤ m+ n.
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Thompson-Freede inequalities are a family of eigenvalue inequalities that are a gener-
alization of the Lidskii inequalities. This can be easily observed from Theorem 3.2.8 by
substituting jk = k. These inequalities relating the eigenvalues of A,B, and A + B (see
Theorem 3.2.8) also hold when the eigenvalues of the respective matrices are replaced by
their the singular values [127, Theorem 3]. Furthermore, Thompson-Freede inequalities are
at least as strong as the Amir-Moez inequalities [127].

In the following, we present a generalization of Mirsky’s theorem. As discussed in Chapter
2, this theorem was originally posed as a conjecture by W. Miao and appears in [9, Conjecture
6].

Theorem 3.2.9. Let f : R+ → R+ be a concave, non-decreasing function such that f(0) = 0.
Consider

k∑
i=1

|f(σi(A))− f(σi(B))| ≤
k∑
i=1

f(σi(A−B)), ∀k ∈ {1, . . . ,min{m,n}}. (3.25)

Note that replacing f(x) := x reduces (3.25) to the well known Mirsky inequalities.

The above inequality (3.25) with k := min{m,n} and f(x) = xq, where q ∈ (0, 1) was
of particular interest in a low-rank recovery problem [107]. The confirmation of this case,
under the nullspace condition give in (2.40) implies the exact recovery of every matrix of
rank at most k from linear measurements AX = y by minimizing ‖X‖q, as in (Pq) in (2.13).
A special case was reproved in [82], for positive semidefinite matrices when f(x) = xq,
q ∈ (0, 1), which was previously proved in the work of Ando [5]. In [143], the authors
attempted to prove the inequality (3.25) when k = min{m,n} to remove of the gap between
the sufficient and necessary conditions for the recovery of low rank matrices by the Schatten-
q quasi norm heuristic [107], however the proof is erroneous, see the discussion in [44, p. 1].
The generalization of (3.25) was proved by Audenaert in [8] where the core of the proof
relied on Thompson-Freede inequalities [127]. Audenart’s idea originates from the fact that
every non-decreasing concave function f : R+ → R+ with f(0) = 0 can be represented
as a finite or infinite sum of positive linear combinations of “hook” functions h : R → R,
ht(x) := min{t, x} for some t > 0. Then the author reduces the problem to showing (3.25)
for f := ht. The rest of the argument follows from application of the Thompson-Freede
inequalities [127] for singular values. Recently, Foucart presented a shorter proof for k :=
min{m,n}, following the idea of Audenaert. The key result that shortened his proof was
to show the sufficiency of proving the Thompson-Freede inequalities for A and B such that
A−B is of rank one [44].

In the following, we state a generalized version of Thompson-Freede inequalities.

Theorem 3.2.10. [8, Theorem 2] Let {α(i)}ni=1, {β(i)}ni=1 and {γ(i)}ni=1 be nonnegative
sequences sorted in non-increasing order and satisfy Thompson-Freede inequalities. If f :
R+ → R+ is concave, non-decreasing, and f(0) = 0, then for every 1 ≤ m ≤ n

m∑
k=1

f(γ(ik + jk − k)) ≤
m∑
k=1

f(α(ik)) +
m∑
k=1

f(β(jk)), (3.26)

whenever i1 < · · · < im, j1 < · · · < jm and im + jm ≤ m+ n.
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The ideas of this proof are useful in the proof of generalized Mirsky’s inequality for
singular values. Therefore we include it here.

Proof. The proof is due to Audenaert [8]. Any function f that is concave, non-decreasing
and nonnegative on R+ can be expressed as a finite or infinite positive linear combination of
functions ht(x) := min{t, x} i.e., f(x) =

∫∞
0
ht(x)dt. By linearity of the integral and since

multiplying an inequality by a positive number does not change the sign of the inequality, it
suffices to prove the inequality (3.26) when f(x) := h(x) = min{1, x}. In the rest we show
that for a given m, i1 < · · · < im, j1 < · · · < jm and im + jm ≤ m+ n

m∑
k=1

h(γ(ik + jk − k)) ≤
m∑
k=1

h(α(ik)) +
m∑
k=1

h(β(jk)). (3.27)

Suppose α(ik) ≥ 1 for every k, then the RHS of (3.27) becomes m+
∑m

k=1 h(β(jk)). Since∑m
k=1 h(γ(ik + jk − k)) ≤

∑m
k=1 1 = m and

∑m
k=1 h(β(jk)) ≥ 0, LHS ≤ RHS. So without

loss of generality we may assume both sequences {α(ik)} and {β(jk)} have entries less than
1. If we suppose that all entries of α(ik) < 1 and β(jk) < 1 for every k then the result follows,
since by assumption {α(i)}ni=1, {β(i)}ni=1, {γ(i)}ni=1 satisfy the Thompson-Freede inequalities
and by the definition, h(γ(ik + jk − k) ≤ γ(ik + jk − k).

Now, assume α(is) < 1 ≤ α(is) and β(jt+1) < 1 ≤ β(jt) for some indices s and t. By the
definition of h(x) = 1 if x ≥ 1 and h(x) = x, otherwise. Then

RHS :=
m∑
k=1

h(α(ik)) +
m∑
k=1

h(β(jk)) = (s− 1) +
m∑
k=s

α(ik) + (t− 1) +
m∑
k=t

β(jk).

Since h(x) ≤ 1 for every x, we also have

s+t−2∑
k=1

h(γ(ik + jk − k) ≤ s+ t− 2. (3.28)

By assumption {α(i)}ni=1, {β(i)}ni=1 and {γ(i)}ni=1 satisfies the Thompson-Freede inequal-
ities. Then we have

m−(s−1)+(t−1)∑
k=1

γ(ik+s−1 + jk+t−1 − k) ≤
m−(s−1)+(t−1)∑

k=1

α(ik+s−1) +

m−(s−1)+(t−1)∑
k=1

β(jk+t−1),

where we assume s+ t− 1 ≤ m. If s+ t− 1 > m, the above inequality holds trivially.

Furthermore, by assumption the index subsequences are strictly increasing. Therefore

ik+s−1 ≥ ik+s−1+(t−1) − (t− 1)

jk+t−1 ≥ jk+t−1+(s−1) − (s− 1).
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Summing up the above inequalities up and adding −k to the both sides yield ik+s−1+jk+t−1−
k ≥ ik+s−1+(t−1) + jk+t−1+(s−1) − (s− 1)− (t− 1). Therefore

m−(s−1)+(t−1)∑
k=1

γ(ik+s−1 + jk+t−1 − k) ≥ γ(ik+s+t−2 + jk+s+t−2 − (k + s+ t− 2))

=
m∑

k=s+t−1

γ(ik + jk − k),

Then by combining the two inequalities above we get

m∑
k=s+t−1

γ(ik + jk − k) ≤
m−(a−1)+(b−1)∑

k=1

α(ik+s−1) +

m−(a−1)+(b−1)∑
k=1

β(ik+t−1)

=
m−t+1∑
k=s

α(ik) +
m−s+1∑
k=t

β(jk). (3.29)

This yields ∑
k=s+t−1m

h(γ(ik + jk − k)) ≤ γ(ik + jk − k)

≤
m−t+1∑
k=s

α(ik) +
m−s+1∑
k=t

β(jk)

≤
m∑
k=s

α(ik) +
m∑
k=t

β(jk).

Here, the first inequality follows since h(x) ≤ x for every x, the second inequality is by (3.29)
and the last inequality follows since both α(ik) and β(jk) are nonnegative. Adding the last
inequality and (3.28) gives the Thompson-Freede inequality for h as desired.

If α(is) < 1 ≤ α(is) for some s and β(jk) < 1 for every k. Then the proof given above
still applies by replacing t = 1.

The following is a useful lemma that will be used in the proof of the generalization of
Mirsky’s inequality.

Lemma 3.2.11. Let A,B be n-by-n matrices such that rank(A−B) = 1. Then

n∑
i=1

|min{1, σi(A)} −min{1, σi(B)}| ≤ 1.

Proof. The proof follows similar lines with the one in [44]. Because rank(A − B) = 1 by
[126, Theorem 1] it follows that

σ1(A) ≥ σ2(B) ≥ σ3(A) ≥ · · · ≥ σn−1(B) ≥ σn(A) (3.30)

σ1(B) ≥ σ2(A) ≥ σ3(B) ≥ · · · ≥ σn−1(A) ≥ σn(B). (3.31)
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Suppose σi∗(A) < 1 ≤ σi∗−1(A) for some i∗ and σj∗(B) < 1 ≤ σj∗−1(B) for some j∗. Without
loss of generality we may assume i∗ ≤ j∗, otherwise the roles of A and B can be swapped.
Then σi∗(A) < 1 ≤ σi∗−1(A) ≤ σi∗−2(B). In addition by (3.30)-(3.31), for every 1 ≤ i ≤ n
(assigning σn+1(A) = 0)

σi(A)− σi(B) ≥ σi(A)− σi+1(A).

As a result, we get

n∑
i=1

|min{1, σi(A)} −min{1, σi(B)}| = 1−min{1, σi∗−1(B)}+
n∑

i=i∗

|σi(A)− σi(B)|

≤ (1−min{1, σi∗−1(B)}) +
n∑
i=i

(σi(A)− σi+1(A))

= σi∗(A) + 1−min{1, σi∗−1(B)}
≤ 1.

Note that if min{1, σi∗−1(B)} = 1, the result follows since σi∗(A) ≤ 1, if not then the result
follows because σi∗−1(B) ≥ σi∗(A).

Finally, we present a sketch of the proof of the generalization of Mirsky’s theorem (3.25)
following the proof presented in [44].

Proof. As in the proof of Theorem 3.2.10, it suffices to prove the inequality (3.25) when f
is the hook function. In particular, we show

m∑
i=1

|h(σi(A))− h(σi(B))| ≤
m∑
i=1

h(σi(A−B)). (3.32)

• Let A ∈ Rm×n where m ≤ n. Since the singular values of
[
A 0

]
∈ Rn×n is the same

as of A, one may assume that the matrices are n-by-n.

• It suffices to prove (3.32) when A is a rank one perturbation of B, i.e.,under the
assumption rank(A−B) = 1 it suffices to prove

n∑
i=1

|h(σi(A))− h(σi(A))| ≤ h(σ1(A−B)). (3.33)

• Since the hook function is Lipschitz continuous with constant 1 and by Mirsky’s theo-
rem, it follows that

n∑
i=1

|h(σi(A))− h(σi(A))| ≤
n∑
i=1

|σi(A)− σi(B)| ≤
n∑
i=1

|σi(A−B)|.

This together with Lemma 3.2.11 completes the proof of (3.33).
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Chapter 4

Kronecker Products, Schur Products
and Interlacing

4.1 The Kronecker Product

Given two matrices of arbitrary dimensions A and B such that f := Ax and g := By, how
can the product figj be represented? The answer to this question entails the concept of
Kronecker products.

Definition 4.1.1 (Kronecker product). Given an m-by-n matrix A and a p-by-q matrix B,
the Kronecker product of A and B is denoted by A⊗B and is the mp-by-nq matrix

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 .

According to [60], the first result on the Kronecker product of two matrices was published
in 1858 by Johann Georg Zehfuss. Zehfuss showed that

det(A⊗B) = det(A)m det(B)n,

whenever A is an m-by-m and B is an n-by-n matrix. The operation ⊗ was originally named
after Leopold Kronecker by his student Kurt Hensel, however in some references this product
is named as Zehfuss matrix [60]. Later, Hurwitz denotes the Kronecker product by × and
uses the terminology Producttransformationen (product transformation) of matrices [69].

Kronecker products have many applications in signal processing [112], semi-definite pro-
gramming [3, 123], and quantum computing. They have also been used extensively in the
theory and applications of linear matrix equations such as Sylvester equations and Lya-
punov problem [133], in some compressed sensing applications using sparsification [137], in
constructing convex relaxations of non-convex sets [7]. Tensor product preconditioners used
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in conjugate gradient method [134] and image restoration [113], low rank tensor approxima-
tions arising in the context of certain quantum chemistry systems [135], quantum many-body
systems [81], and high dimensional partial differential equations [10, 11] are among many
other applications which utilize the rich properties of tensor products that can transfer the
structure of the individual elements to the product itself.

There are several operations that we will use in the context of Kronecker products. One
of them is the vector valued function vec : Rm×n → Rmn which takes an m-by-n matrix and
returns an mn dimensional vector which is formed by stacking the columns of the matrix by
taking the columns in order from first to last.

Definition 4.1.2 (vec). For an m-by-n matrix X := [xij], we define the linear transformation
vec : Rm×n → Rmn as

vec(X) :=
[
x11 x21 · · · xm1 x12 x22 · · · xm2 · · · xmn

]>
,

where vec(X) is an mn-by-1 vector formed by stacking the columns of the matrix X consec-
utively.

For matrices A,B and X of appropriate dimensions, the following identity holds

vec(BXA>) = (A⊗B) vec(X). (4.1)

As pointed out in [60], the study of equation BXA> appears in the Lectures on the theory of
determinants of Kronecker in 1903 which is edited by his student Hensel. However, Kronecker
only studies this for 2-by-2 matrices and then derives the determinant of the product as the
product of the determinants of the constituent matrices.

Definition 4.1.3 (Mat). For a vector v ∈ Rn2
, Mat : Rn2 → Rn×n is a matrix valued function

mapping an n2-by-1 vector into an n-by-n matrix whose ith column is
[
v(i−1)·n+1 · · · vi·n

]>
.

Definition 4.1.4 (Kronecker sum). Given an n-by-n matrix A and an m-by-m matrix B,
their Kronecker sum, denoted by A⊕B, is defined as

A⊕B := A⊗ IIIm + IIIn⊗B.

4.1.1 Properties of the Kronecker Product

Some important properties that Kronecker product satisfies are given below.

(a) If A ∈ Rm×n, B ∈ Rp×q, then

(A⊗B)> = A> ⊗B>.

(b) If A ∈ Rm×n, B ∈ Rp×q and C ∈ Rs×t then

A⊗ (B⊗C) = (A⊗B)⊗C.
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(c) Let A ∈ Rm×n, B ∈ Rp×q, X ∈ Rn×r and Y ∈ Rq×s be real matrices. Then

(A⊗B)(X⊗Y) = (AX)⊗ (BY).

(d) If A,B are square invertible matrices, then

(A⊗B)−1 = A−1 ⊗B−1.

The above three properties were initially established by Hurwitz in 1894 [69, Section 6].

(d) tr (A⊗B) = tr (A) tr (B), when m = n and p = q

(e) Let {λi} be the eigenvalues of A corresponding to the eigenvectors {ui} and let {µj}
be the eigenvalues of B corresponding to the eigenvectors {vj}. Then {λiµj} are the
eigenvalues of A⊗B corresponding to the eigenvectors {ui⊗vj}. According to [60], this
result was first formulated by Cyparissos Stephanos in 1898 [60], although it can also be
attributed to Hurwitz due to the property (c). In the same work, Stephanos also states
the determinant result (originally due to Zehfuss) as a corollary of his proposition [121].

Proof. Since

(A⊗B)(ui ⊗ vj) = (Aui)⊗ (Bvj)

= (λiui)⊗ (µjvj)

= λiµj(ui ⊗ vj),

the result follows.

(f) Let {λi} be the eigenvalues of A corresponding to the eigenvectors {ui} and let {µj}
be the eigenvalues of B corresponding to the eigenvectors {vj}. Then {λi + µj} are the
eigenvalues of A⊕B corresponding to the eigenvectors {ui ⊗ vj}.

Proof. Since

(A⊕B)(ui ⊗ vj) = (A⊗ IIIm + IIIn⊗B) (ui ⊗ vj)

= (Aui ⊗ IIIm vj) + (IIIn ui ⊗Bvj)

= (λiui)⊗ vj + ui ⊗ (µjvj)

= (λi + µj)(ui ⊗ vj),

the result follows.

For a more detailed account of the history of the Kronecker products, we refer the reader to
[60].

The Kronecker product of two structured matrices usually maintains the structure [133].
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Theorem 4.1.1. Let A and B be given matrices.

If A and B are



symmetric

diagonal

unitary

positive definite

permutation

Toeplitz

doubly stochastic

, then A⊗B is a



symmetric

diagonal

unitary

positive definite

permutation

block Toeplitz

doubly stochastic

.

Furthermore, some well-known compressed sensing properties such as coherence (see Def-
inition 2.0.8), restricted isometry property (see Definition 2.0.9) of the Kronecker product of
two matrices can be expressed in terms of individual matrices.

Theorem 4.1.2. [71, Theorem 3.5] Given real matrices A1, . . . ,Am of arbitrary dimensions,
the coherence of the Kronecker product of these matrices

µ(A1 ⊗ · · · ⊗Am) = max
i∈{1,...,m}

µ(Ai).

Theorem 4.1.3. [71, Theorem 3.7] Let Ai ∈ Rki×`i, i ∈ {1, . . . ,m} and let C := A1⊗· · ·⊗
Am, then the restricted isometry constant of C denoted by δs(C) satisfies

δs(C) ≥ max
i∈{1,...,m}

δs(Ai).

Some results on the sums of Kronecker products are also established in [71]. The following
is useful in building a bound for the coherence of the sums of Kronecker products.

Theorem 4.1.4. [71, Theorem 4.4] Let A,B ∈ Rm×n have normalized columns and let
ai,bj denote the ith and jth column of A and B respectively. Then the following holds for
the coherence of the sum of A and B:

µ(A + B) ≤ µ(A) + µ(B) + maxi 6=j |〈ai,bj〉|
2− 2 maxj |〈aj,bj〉|

,

provided maxj |〈aj,bj〉| 6= 1.

The authors showed that the bound given in Theorem 4.1.4 is sharp, meaning it attains
the upper bound for some matrices. This result can also be applied to the sums of Kronecker
products. Application of this bound for a common sum of Kronecker products is given below.

Example 4.1.1. Let X ∈ Rn×n, Y ∈ Rn×n, A := X ⊗ Y and B := Y ⊗ X, where the
columns of X and Y are normalized. Since

max
k
|〈ak,bk〉| : = max

i,j∈[n]
|〈xi ⊗ yj,yi ⊗ xj〉|

= max
i,j∈[n]

|〈xi,yi〉〈yj,xj〉|

= max
j∈[n]
|〈xj,yj〉|2,
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max
r 6=s
|〈ar,bs〉| := max {|〈xi ⊗ yj,yk ⊗ x`〉| : i, j, k, l ∈ [n] s.t. i = k ⇒ j 6= ` or j = `⇒ i 6= k}

= max {|〈xi,yk〉〈x`,yj〉| : i, j, k, l ∈ [n] s.t. i = k ⇒ j 6= ` or j = `⇒ i 6= k}
= max

r 6=s
{|cr · cs| : cr, cs ∈ {〈xi,yj〉 : i, j ∈ [n]}} ,

by Theorem 4.1.2 and Theorem 4.1.4 we have

µ(A + B) ≤ 2µ(X⊗Y) + maxi 6=j |〈ai,bj〉|
2− 2 maxj |〈aj,bj〉|

=
2 max{µ(X), µ(Y)}+ maxr 6=s {|cr · cs| : cr, cs ∈ {〈xi,yj〉 : i, j ∈ [n]}}

2− 2 maxj∈[n] |〈xj,yj〉|2
,

provided maxj∈[n] |〈xj,yj〉| 6= 1.

For the null-space property, it can be easily verified that whenever one of the matrices
A,B has null-space property of order s with respect to `1-norm and the other has full rank,
then A ⊗B also has the null-space property of order s. This naturally raises the following
question. Given both A and B satisfy null-space property order s, does A ⊗ B have the
null-space property order s? We do not have an answer to this question. However, in [47],
the authors proposed a method which involves a series of `1 minimization to uniquely recover
s-sparse vectors x from y = (A⊗B)x, when both A and B satisfy the null-space property
of order s.

4.2 Sylvester Equations

Definition 4.2.1. The Sylvester equation, named after the English mathematician James
Joseph Sylvester (1814-1897), is the linear matrix equation

AX−XB = C, (4.2)

where A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m are given, and X is an unknown n×m matrix.

As pointed out in Higham’s article [63] on Sylvester’s contribution on applied mathemat-
ics, Sylvester considered the homogeneous version of (4.2), i.e., when C = 0. He showed
that the homogeneous Sylvester equation has a unique solution if A and B have no common
eigenvalues. To show this, we write the Sylvester equation equivalently as the Kronecker
sum of B> and A. Since

AX−XB = C⇔ (IIIm⊗A−B> ⊗ IIIn) vec(X) = vec(C) ⇔
(
(−B)> ⊕A

)
vec(X) = vec(C),

AX−XB = C has a unique solution if and only if
(
(−B)> ⊕A

)
has all nonzero eigenvalues,

i.e., if {λi} and {µj} are the eigenvalues of A and B respectively, then λi− µj 6= 0 for every
i, j.
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Sylvester equation arises in various areas such as control systems, discretization of partial
differential equations, and linear matrix equations. Consider the function F : Rn×n → Rn×n,
F (X) := X2. The Fréchet derivative of the quadratic function F at X in the direction U is

XU + UX,

where U ∈ Rn×n, since

F (X + U) = F (X) + XU + UX + o(‖U‖).

A special case of Sylvester equation is Lyapunov equation in which B = −A> and C = C>

in (4.2). Lyapunov type equations arise in control theory, in particular in the study of the
stability of solutions of systems of linear differential equations [124]. Lyapunov showed that
the linear system of ordinary differential equations

dx

dt
= Ax

is asymptotically stable if and only if for every symmetric positive-definite matrix S the
solution of

A>X + XA = −S

is positive definite.

Several numerical algorithms based on Galerkin methods are developed for computing
low-rank approximate solutions to the Sylvester type equations [68] and Lyapunov equations
[120, 70, 37]. In Chapter 6, we provide a discussion on the generalizations of these equations
as well.

4.3 The Schur Product

Definition 4.3.1 (Schur product). Given A,B ∈ Rm×n, the Schur product of A and B is
the m-by-n matrix which is defined by

A ◦B :=


a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n
...

...
. . .

...
am1bm1 am2bm2 · · · amnbmn

 .
The Schur product is named after Issai Schur. It is also called the Hadamard product.

The Schur product A ◦B is a principal submatrix of the Kronecker product A⊗B.

Lemma 4.3.1. Given A,B ∈ Rm×n,

A ◦B = (A⊗B)(I, J),

where I := {1,m+ 2, 2m+ 3, . . . ,m2} and J := {1, n+ 2, 2n+ 3, . . . , n2}.
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This lemma basically states that A ◦B = Q>(A⊗B)Q, where Q is an n2-by-n matrix
defined by

Q(i, j) :=

{
1, if i ∈ {1, n+ 2, 2n+ 3, . . . , n2}
0, otherwise,

where j ∈ {1, 2, . . . , n}. Note that Q>Q = III. An immediate conclusion of this result with
Cauchy’s interlacing theorem (see Theorem 1.3.5) states that the eigenvalues of the Schur
product A ◦ B interlace the eigenvalues of A ⊗ B, whenever A,B are n-by-n Hermitian
matrices.

The following is a well-known result.

Theorem 4.3.2 (Schur Product Theorem). Let A,B ∈ Sn be positive semidefinite, then so
is A ◦B. In addition, if B is positive definite and A has no diagonal entry equal to 0, then
A ◦ B is positive definite. In particular, if both A and B are positive definite, then so is
A ◦B.

Lemma 4.3.1 enables derivation of new inequalities on the Schur product by applying
some inequalities on matrices to the Kronecker products and utilizing the properties of the
Kronecker product. A well-known inequality on matrix convex function f is

f(QHAQ) � QHf(A)Q. (4.3)

Lemma 4.3.1 and (4.3) gives

(A ◦B)2 = (J>(A⊗B)J)2 � (J>(A⊗B)2J) = (J>(A2 ⊗B2)J) = A2 ◦B2,

where J is n2-by-n and J>J = III. Similarly, assuming A and B are invertible matrices, one
can show

(A ◦B)−1 � A−1 ◦B−1,

by taking f(t) as t2 and t−1, respectively [100]. Mond and Pečarić used a number of in-
equalities on positive definite matrices [92, 98, 99] to derive similar inequalities on the Schur
product, by using the properties of Kronecker product as described in the above example.
We summarize their results in the following theorem.

Theorem 4.3.3. [100] Let A and B be n-by-n positive definite Hermitian matrices. Then
the following hold.

1. Let r, s ∈ R, s > r such that M is the largest eigenvalue and m is the smallest
eigenvalue of A⊗B. Then,

r(Ar ◦Br − αAs ◦Bs − β III) � 0,

where α := (M r −mr)/(M s −ms), and β := (M smr −M rms)/(M s −ms).

2. Let r, s ∈ R \ (−1, 1) such that s > r. Then,

(As ◦Bs)1/s � (Ar ◦Br)1/r.
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3. Let r, s ∈ R \ {0} such that s > r and

γ := max
α∈[0,1]

(αM s + (1− α)ms)1/s − (αM r + (1− α)mr)1/r.

Then, (As ◦Bs)1/s − (Ar ◦Br)1/r � γ III.

4. Let r, s ∈ R \ (−1, 1) such that s > r and

γ′ :=
r1/s((M/m)s − (M/m)r)

(s− r)1/s((M/s)r − 1)1/s
(r − s)1/r((M/s)s − 1)1/r

s1/r((M/m)r − (M/m)s)1/r
.

Then,
γ′(Ar ◦Br)1/r − (As ◦Bs)1/s � 0.

The following are some results from Schur’s famous paper [118].

Theorem 4.3.4. Let A := [aij],B ∈ Rn×n.

1. If A and B are positive semidefinite, then

min
1≤i≤n

aiiλmin(B) ≤ λmin(A ◦B) ≤ λmax(A ◦B) ≤ max
1≤i≤n

aiiλmax(B).

2. If A is positive semidefinite, then

σ1(A ◦B) ≤ max
1≤i≤n

aiiσ1(B).

3.
σ1(A ◦B) ≤ σ1(A)σ1(B).

Some other well-known results on the Schur product are given below.

Lemma 4.3.5. [12] Let A,B ∈ Rn×n and x ∈ Rn. Then,

diag(A Diag(x)B) = (A ◦B>)x.

In particular, the vector formed by the diagonal entries of AB) is the vector of row sums of
A ◦B>.

The next result can be proved by applying the above lemma and Hardy-Littlewood-Polya
Theorem (see Theorem 3.2.1).

Proposition 4.3.6. [12] Let A,S1,S2, . . . ,Sm ∈ Rn×n such that A is symmetric and

m∑
i=1

S>i Si =
m∑
i=1

SiS
>
i = III .

If X =
∑m

i=1 SiAS>i , then eigenvalues of A majorize eigenvalues of X, i.e., λ(X) ≺ λ(A).
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In [106], Oppenheim established the following inequality relating the determinant of the
Schur product of two matrices to the determinant of individual ones.

Theorem 4.3.7 (Oppenheim inequality). Let A,B ∈ Rn×n be positive semidefinite. Then

det(A ◦B) ≥ (det A)(det B).

Some other results on the Schur product are given below.

Theorem 4.3.8 (Oppenheim-Schur inequalities). Let A,B ∈ Rn×n be positive semidefinite.
Then

max

{
(
n∏
i=1

aii) det(B), (
n∏
i=1

bii) det(A)

}
≤ det(A ◦B)

and

(
n∏
i=1

aii) det(B) + (
n∏
i=1

bii) det(A) ≤ det(A ◦B) + det(AB).

Theorem 4.3.9. [5, 138] Let A,B ∈ Rn×n be positive semidefinite, r ∈ [0, 1] and k ∈
{1, 2, . . . , n}. Then

n∏
i=k

λi(A ◦B) ≥
n∏
i=k

(λi(A
r ◦Br))1/r ≥

n∏
i=k

(λi(A
rBr))1/r ≥

n∏
i=k

λi(AB).

In [91], it was shown that

per(A) ≥
n∏
i=1

aii.

Later in [26], Chollet posed a conjecture (which is still open) asking if an analog of Oppen-
heim’s inequality can be proven for permanent.

Conjecture 4.3.10. [26] Let A,B ∈ Sn be positive semidefinite. Then

per(A ◦B) ≤ (per A)(per B).

4.4 Structured Eigenvectors and Interlacing

4.4.1 Even and Odd Factorization of Eigenvectors

In many eigenvalue problems, special structure and symmetry give rise to structure in eigen-
functions. In such problems, often the characteristic polynomial factorizes into two poly-
nomials one whose roots that corresponds “even” eigenvectors and the other corresponds
to “odd” eigenvectors. In many applications, the largest or the smallest eigenvalue or the
eigenvector corresponding to these eigenvalues are required [72]. When the eigenvectors de-
compose in such manners, it may suffice to find the roots of a polynomial whose degree is
half of the original polynomial. In this section, we investigate such cases where eigenvectors
decompose into symmetric and skew-symmetric vectors.
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Definition 4.4.1 (Symmetric vector, Skew-symmetric vector). Let P ∈ Rn×n be a real
symmetric, involutory matrix (i.e., P2 = III). A vector x ∈ Rn is a symmetric vector if

Px = x,

and a skew-symmetric vector if
Px = −x.

In some literature, symmetric and skew-symmetric vectors are named as reciprocal and
anti-reciprocal vectors [33]. In special cases of P e.g., when P := J (a permutation matrix
with ones on the secondary diagonal), as described in [6, 24], the symmetric centrosymmetric
matrices of order n can be decomposed such that the eigenvectors can be classified into

n−bn
2
c even and bn

2
c odd vectors. Under some circumstances, the eigenvalues corresponding

to even and odd eigenvectors interlace. This interlacing has implications for the inverse
eigenvalue problem for symmetric Toeplitz matrices [33, 28, 83]. For a detailed overview of
the results on the inverse eigenvalue problems for structured matrices, we refer the reader to
[29].

Given some scalars λ1, λ2, . . . , λn ∈ R, an inverse eigenvalue problem aims to find a
matrix that belongs to a set of special structured matrices with the spectrum consisting of
these real numbers. The structural constraint is usually enforced to satisfy requirements of
the underlying physical system.

4.4.2 Centrosymmetric Matrices and Related Matrices

An n-by-n real matrix A = [ai,j] is centrosymmetric if A = JAJ, i.e.,

ai,j = an−i+1,n−j+1 for 1 ≤ i, j ≤ n.

A well known class of matrices that are subsets of centrosymmetric matrices are Toeplitz
matrices. Centrosymmetric matrices arise in LTI (linear time invariant) systems as a repre-
senting matrix for convolution operation, as a transition matrix of a Markov process and it
appears in numerical solution of certain differential equations.

A subclass of centrosymmetric matrices are symmetric centrosymmetric matrices. These
matrices possess nice algebraic structure. It is well known that symmetric centrosymmetric
matrices form an Abelian group under addition and the nonsingular ones form a non-Abelian
group under multiplication. Due to their structure, every such matrix can be characterized
by certain partitions based on whether the size of the matrix is even or odd. This is demon-
strated in [24] and we state it here for completeness.

Lemma 4.4.1. [24, Lemma 2, Theorem 2] Every symmetric n-by-n centrosymmetric matrix
can be represented as

Ceven :=

[
A B>

B JAJ

]
(4.4)
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if n is even,

Codd :=

A x B>

x> q x>J
B Jx JAJ


if n is odd, where A,B are bn

2
c × bn

2
c matrices with A> = A, B> = JBJ. If n is even, the

n/2 skew symmetric orthonormal eigenvectors vi corresponding to eigenvalues λi of Ceven

can be determined from the solution of the equation

(A− JB)ui = λ̃iui,

where i ∈ I(n/2), ui form an orthonormal set and vi = (1/
√

2)
[
ui −Jui

]>
. Also, the

n/2 symmetric orthonormal eigenvectors wi corresponding to eigenvalues λ̃i of Ceven can be
determined from the solution of the equation

(A + JB)yi = λiyi,

where i ∈ I(n/2), wi = (1/
√

2)
[
yi Jyi

]>
form an orthonormal set and wi = (1/

√
2)
[
yi Jyi

]>
.

Moreover, the set of skew symmetric and symmetric eigenvectors of Ceven forms an orthonor-
mal set which therefore spans the eigenspace of Ceven.

If n is odd, the skew symmetric orthonormal eigenvectors vi corresponding to eigenvalues
λi of Codd can be determined from the solution of the equation

(A− JB)ui = λiui,

where i ∈ I(n/2), ui form an orthonormal set and vi = (1/
√

2)
[
ui 0 −Jui

]>
. Also,

the symmetric orthonormal eigenvectors wi corresponding to eigenvalues λ̃i of Codd can be
determined from the solution of the equation[

A + JC
√

2x√
2x> q

] [
yi
αi

]
= λ̃i

[
yi
αi

]
where i ∈

{
1, 2, . . . , n

2

}
,

[
yi
αi

]
form an orthonormal set and wi = (1/

√
2)
[
yi 2αi Jyi

]>
.

Moreover, the set of skew symmetric and symmetric eigenvectors of C form an orthonormal
set which therefore spans the eigenspace of Codd.

The symmetric centrosymmetric matrices exhibit certain interlacing properties under
certain structure restrictions.

Theorem 4.4.2. [24, Theorem 5] Let n be an odd number and let C ∈ Rn×n be such that

C :=

A x 0
x> q x>J
0 Jx JAJ

 .
If the eigenvalues of C are distinct and sorted in ascending order, then the corresponding
eigenvectors are alternately symmetric and skew symmetric, starting with symmetric.

In the same work [24], Cantoni also established that when n is even and B in (4.4) is
of rank one, then the even and odd eigenvalues of the symmetric centrosymmetric matrices
alternate [24]. Furthermore, the largest eigenvalue corresponds to a symmetric eigenvector
if B is positive semidefinite, and skew symmetric eigenvector, otherwise.
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4.4.3 Real Symmetric Toeplitz Matrices

The set of real symmetric Toeplitz matrices is a subset of symmetric centrosymmetric matri-
ces. The even and odd spectra of Toeplitz matrices can be exploited for efficient computation
of eigenvectors and its extreme eigenvalues[6, 94].

An interest in the interlacement of the odd and even eigenvalues of real symmetric
Toeplitz matrices arise from the inverse eigenvalue problem. The goal here is to recon-
struct a real symmetric Toeplitz matrix from a prescribed spectrum. In [33], it is showed
that for every n ≤ 4, the inverse eigenvalue problem always has a solution, if its prescribed
eigenvalues when sorted in ascending order alternate in parity, i.e., if the even and odd spec-
tra are interlaced with the largest being even. In addition, if the two prescribed spectra are
not interlaced, then the inverse eigenvalue problem fails to have a solution for some choices
of prescribed eigenvalues. The next result gives a sufficient condition for the interlacement
of the eigenvalues of certain Toeplitz matrices.

Theorem 4.4.3. [129, Theorem 4] Let f be nonincreasing and f(0) = M > m = f(π). Let
Tr,s = tr−s, 1 ≤ r, s ≤ n be a Toeplitz matrix such that tk = 1

π

∫ π
0
f(θ) cos θdθ. Then for

every n the matrix Tn has n distinct eigenvalues in (m,M), its even and odd spectra are
interlaced, and its eigenvector corresponding to its largest eigenvalue is even.

For a general n, the existence of an n-by-n real symmetric Toeplitz matrix with prescribed
eigenvalues was solved by Landau [83]. He showed that for the set of symmetric Toeplitz
matrices that are regular i.e., for which every principal submatrix has distinct eigenvalues
whose eigenvalues alternate parity with the largest determined by an even eigenvector, the
inverse eigenvalue problem is always solvable.

4.4.4 Tridiagonal Matrices

One of the most studied problems in the area of inverse eigenvalue problem stems from
Sturm-Liouville problem. For numerical solutions, this problem was discretized. Let T0 be a
tridiagonal matrix whose main diagonal entries are equal to 2 and super and subdiagonal en-
tries are equal to −1. Given h > 0, and a set of negative numbers λ1, . . . , λn, the discretized
Sturm-Liouville problem seeks to find a positive diagonal matrix Q such that − 1

h
T0 + Q has

the prescribed eigenvalues. Although the Sturm-Liouville problem has infinitely many eigen-
values, the eigenvalues of the discretized problem imitate the first few smallest eigenvalues
of the (continuous) Sturm-Liouville problem [29].

Definition 4.4.2 (Jacobi matrix). A square matrix with real entries is a Jacobi matrix if it
is a symmetric tridiagonal matrix with positive super and subdiagonal entries.

This structure arises in many applications in physics especially in Sturm-Liouville prob-
lem. The eigenvalues of a Jacobi matrix are real and distinct. In [65], Hochstadt showed that
a real symmetric Jacobi matrix with positive subdiagonal elements is uniquely determined
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by its eigenvalues and those of (n− 1)-by-(n− 1) leading principal submatrix. Later, in [57],
Hald showed that given

λ1 < µ1 < λ2 < µ2 < · · · < µn−1 < λn,

a unique n-by-n Jacobi matrix exists with the prescribed eigenvalues {λi}, where {µi} are
the eigenvalues of the leading principal submatrix of order (n− 1).

For a comprehensive survey on the structured inverse eigenvalue problems, including the
Jacobi matrices, we refer the reader to [28].

4.4.5 Symmetric Perfect Shuffle Invariant Matrices

Define a transpose operator T : Rn2 → Rn2
, such that Mat(T x) = Mat(x)>. Let T be the

n2-by-n2 matrix representation of the transpose operator T which we call as the transposition
matrix. More specifically, T is an n2-by-n2 permutation matrix such that if the columns of
T are in the order of (1, 1), . . . , (1, n), (2, 1), . . . , (2, n),. . .,(n, 1), . . . , (n, n), then the (i, j)th
column of T is

T(i,j) := ej ⊗ ei, for i, j ∈ {1, 2, . . . , n}. (4.5)

Note that T is a symmetric involutory matrix. In some literature, the permutation matrix
T is named as the commutation matrix [87].

Definition 4.4.3 (Perfect shuffle invariant). A matrix A ∈ Rn2×n2
is perfect shuffle invariant

if
A = TAT.

Definition 4.4.4 (Perfect shuffle symmetric matrix (PS-symmetric)). A matrix A ∈ Rn2×n2

is perfect shuffle symmetric (PS-symmetric) if it is both perfect shuffle invariant and sym-
metric.

Define an n2-by-n(n+1)
2

orthogonal matrix Q whose columns form a basis for n2-by-
n2 symmetric matrices. If we label the columns of Q in the order (1, 1), (1, 2), . . . , (1, n),
(2, 2), (2, 3), . . . , (2, n), . . ., (n− 1, n− 1), (n− 1, n), (n, n), then

Q(i,j) :=


1√
2

(ei ⊗ ej + ej ⊗ ei), if 1 ≤ i < j ≤ n,

ei ⊗ ei, if 1 ≤ i = j ≤ n,
(4.6)

where ei is an n dimensional vector with all components equal to zero, except ith component
which is equal to one. Note that Q>Q = III, where III is an identity matrix of appropriate
dimension and QQ> is the orthogonal projector mapping every point in Rn2

onto the set of
symmetric vectors in Rn2

[131].

Similarly, we define an orthogonal matrix Q̃ ∈ Rn2×n(n−1)
2 whose columns form a basis

for n2-by-n2 symmetric matrices. If we label the columns of Q̃ in the order (1, 2), . . . , (1, n),
(2, 3), . . . , (2, n), . . ., (n− 1, n), then

Q̃(i,j) :=
1√
2

(ei ⊗ ej − ej ⊗ ei), for 1 ≤ i < j ≤ n. (4.7)
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Note that Q̃>Q̃ = III and Q̃Q̃> is the orthogonal projector, mapping Rn2
onto the set of

skew-symmetric vectors in Rn2
.

Proposition 4.4.4. [135, Theorem 2.1] Let A ∈ Rn2×n2
be a PS-symmetric matrix and

Qnn :=
[
Q Q̃

]
. Then, Qnn is orthogonal and block diagonalizes A as

Q>nnAQnn =

[
Asym 0

0 Askew

]
,

where Asym is n(n+1)
2

-by-n(n+1)
2

and Askew is n(n−1)
2

-by-n(n−1)
2

.

Proof. The proof is taken from [135].
Observe that

Q>nnAQnn =

[
Q>AQ Q>AQ̃

Q̃>AQ Q̃>AQ̃

]
. (4.8)

By the definition of Q and Q̃, we have TQ = Q and TQ̃ = −Q̃. This implies that
Q>AQ̃ = 0, as

Q>AQ̃ = QTATQ̃ = −Q>AQ̃ = 0.

Assigning Asym := Q>AQ and Askew := Q̃>AQ̃ yields the result.

Using the above result one can show that the eigenvectors of PS-symmetric matrix can
be decomposed into symmetric and skew-symmetric vectors [135]. Let A ∈ Rn2×n2

be a
PS-symmetric matrix. Let

Asym = UDU>, and

Askew = WD̃W>

be the spectral decompositions of the diagonal blocks as given in Proposition 4.4.4. Then

R := Qnn

[
U 0
0 V

]
=
[
QU Q̃V

]
diagonalizes A as follows:

A = R

[
D 0

0 D̃

]
R>.

By the definition of Qnn, the eigenvectors corresponding to D are the columns of QU. Since
TQU = QU as TQ = Q, each column of QU is a symmetric vector, i.e., when reshaped to
n-by-n matrix it is a symmetric matrix. In addition, the eigenvectors corresponding to D̃
are the columns of Q̃V are skew-symmetric.

Remark 4.4.5. Let A,B ∈ Rn×n. Then

T(A⊗B)T = B⊗A.

This implies that T(A⊗B + B⊗A)T = (A⊗B + B⊗A). Therefore, it is a perfect shuffle
matrix.
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Although one can always create a perfect shuffle matrix with a prescribed set of scalars as
its eigenvalues (see Proposition 4.4.4), we raise the following inverse eigenvalue problem for
a subclass of perfect shuffle matrices: Given a prescribed set of eigenvalues λ1, λ2, . . . , λn2 ,
under what conditions do there exist n-by-n real symmetric matrices A and B such that
these eigenvalues belong to A⊗B + B⊗A?
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Chapter 5

Jordan-Kronecker Products and
Interlacing

This chapter contains the main contributions of this thesis. We study Jordan-Kronecker
products which have many applications in semidefinite programming, control theory, and so-
lutions of differential matrix equations. First, we introduce special Kronecker products that
are essential ingredients and connect to the structure of Jordan-Kronecker products. We
study basic properties of these special Kronecker products. Then we study the spectral struc-
ture of Jordan-Kronecker products. We also provide a generalization of Jordan-Kronecker
product based on replacing the transpose matrix by an arbitrary symmetric involutary ma-
trix. We study its spectral structure in terms of eigenvalues and eigenvectors and show that
the generalization enjoys similar properties of the Jordan-Kronecker product. We then study
the conjectures posed by Tunçel and Wolkowicz in [131] on the interlacing properties and
the extreme eigenvalues of the Jordan-Kronecker product. We disprove these conjectures
in general, but we also provide a number of structured matrices and classes of matrices for
which these conjectures hold. Furthermore, we present techniques to generate classes of
matrices for which these conjectures fail. Lastly, we propose a related structure, namely
Lie-Kronecker products and characterize their eigenstructure.

5.1 The Symmetric Kronecker Product

In primal-dual interior-point path following methods, a sequence of primal and dual vari-
ables, converging to the primal and dual solutions of SDP, are generated to approximate the
central path. The points representing the central path satisfy the primal and dual feasibility
conditions and the centering condition. The iteration is usually carried out by Newton’s
method. However, solving these equations in the space of square matrices, in general does
not produce symmetric primal variables. Alizadeh, Haeberly and Overton proposed the
XZ + ZX method in [3] to deal with this issue. The symmetric Kronecker product (for
symmetric matrices) was introduced in this work to represent the centering condition for the
XZ + ZX method [3]. We discuss this concept in more detail in Chapter 6.
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Recall Sn denotes the set of n-by-n real symmetric matrices and let sym(n) := n(n+1)/2
denote its dimension. Define the mapping s2vec : Sn → Rsym(n) as the isometry between Sn
and Rsym(n) such that for every n-by-n real symmetric matrix X = [xij],

s2vec(X) :=
[
x11

√
2x21 · · ·

√
2xn1 x22

√
2x32 · · ·

√
2xn2 · · · xnn

]>
.

The usual trace inner-product in Sn can be expressed as

〈A,B〉 = s2vec(A)> s2vec(B),

for every A,B ∈ Sn.

Definition 5.1.1 (Symmetric Kronecker product). Let A and B be two arbitrary n-by-n
real matrices. The symmetric Kronecker product of A and B is defined by its action on an
n-by-n symmetric matrix X as

(A
s
⊗B) s2vec(X) :=

1

2
s2vec(BXA> + AXB>).

Let Q be the n2-by-n(n+1)
2

orthogonal matrix as defined in 4.4.5 (see (4.6)). For the
convenience of the reader, we rewrite its definition and some others here.

Definition 5.1.2. Let the columns be labelled in the order (1, 1), (1, 2), . . . , (1, n), (2, 2),
(2, 3), . . . , (2, n), . . ., (n− 1, n− 1), (n− 1, n), (n, n), and define

Q(i,j) :=


1√
2

(ei ⊗ ej + ej ⊗ ei), if 1 ≤ i < j ≤ n,

ei ⊗ ei, if 1 ≤ i = j ≤ n,
(5.1)

where ei is an n dimensional vector with all components equal to zero, except ith component
which is equal to one.

As can be observed Q is a sparse matrix, it has only n2 nonzero entries out of n3(n+1)/2
entries. Since the columns of Q form a basis (when matricized to n-by-n matrix) for n-by-n
real symmetric matrices, Q>Q = III. Furthermore, QQ> is the orthogonal projector mapping
every point in Rn2

onto the set of symmetric vectors in Rn2
[131].

Define a transpose operator T : Rn2 → Rn2
such that Mat(T x) = (Mat(x))>. Let T be

the n2-by-n2 matrix representation of the transpose operator T (see (4.5)). More specifically,
T is an n2-by-n2 permutation matrix with kth column Tk, where k ∈ {1, 2, . . . , n2} such
that

Ti+(j−1)n := ei ⊗ ej, for i, j ∈ {1, 2, . . . , n}. (5.2)

Definition 5.1.3 (Symmetric/skew-symmetric vector). We call a vector x ∈ Rn2
a symmet-

ric vector if Tx = x. It is called a skew-symmetric vector if Tx = −x.

We note here that this definition aligns with Definition 4.4.1 as T is also a symmetric,
involutory matrix.

For a symmetric vector v ∈ Rn2
, the following identities hold:

Q>v = s2vec(Mat(v)), and Q s2vec(Mat(v)) = v.
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Theorem 5.1.1. Let Q be the orthogonal sym(n)-by-n matrix defined as in (5.1). For every
A,B ∈ Rn×n,

(A
s
⊗B) =

1

2
Q>(A⊗B + B⊗A)Q = Q>(A⊗B)Q.

Proof. The proof can be found in [32, Appendix E].

Although the eigenstructure of Kronecker products is well known, the eigenstructure of
symmetric Kronecker products seems much more complicated and so far, much less under-
stood.

5.1.1 Properties of Symmetric Kronecker Product

In this section, we list some properties of symmetric Kronecker products.

Theorem 5.1.2. Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r and D ∈ Rq×s. Then

(i) (A
s
⊗B)> = (A>

s
⊗B>),

(ii) (A
s
⊗B) = (B

s
⊗A),

(iii) (A
s
⊗B)(C

s
⊗D) =

1

2

(
(AC

s
⊗BD) + (AD

s
⊗BC)

)
(iv)

(A
s
⊗B) � 0 ⇐⇒ (A⊗B) � 0

(A
s
⊗B) � 0 ⇐⇒ (A⊗B) � 0.

(v) Let A,B ∈ Sn be positive definite and let p, q ∈ R \ (−1, 1) such that q > p. Then,

(Aq
s
⊗Bq)1/q � (Ap

s
⊗Bp)1/p.

(vi) Let Let A,B ∈ Sn be positive definite. Then (A
s
⊗B)−1 � A−1

s
⊗B−1.

(vii) Let A,B ∈ Sn be positive definite. Then (A
s
⊗B)2 � A2

s
⊗B2.

Proof. See [32, Appendix E] for the proof of Theorem 5.1.2.(i)-(iii), and [131, Theorem
2.8] for the proof of Theorem 5.1.2.(iv).

(v) The proof follows from similar arguments given in Chapter 4.3. For the sake of com-
pleteness, we provide it here. In [98], Mond and Pečarić proved the following. Given a
positive definite matrix A,

(GHAqG)1/q � (GHApG)1/p, (5.3)
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where G is an n-by-` matrix such that GHG = III, p, q ∈ R \ (−1, 1) such that q > p.

Since Q given in (5.1) satisfies Q>Q = III, then applying (5.3) to A⊗B, gives

(Q>(A⊗B)qQ)1/q � (Q>(A⊗B)pQ)1/p.

Since (A⊗B)p = Ap ⊗Bp, and Q>(Ap ⊗Bp)Q = Ap
s
⊗Bp, the result follows.

(vi)− (vii) Note that (vi) is a special case of (v). Also, as mentioned in Chapter 4.3, for a given
convex function f , and a positive definite matrix A

f(QHAV) � QHf(A)Q. (5.4)

Applying this for f(t) = t−1 and f(t) = t2 and using the definition of symmetric
Kronecker product yield the results.

The symmetric Kronecker product differs in a number of properties compared to the
Kronecker product. For example, unlike the Kronecker product, the symmetric Kronecker
product is commutative. Also, although the Kronecker product satisfies the associativity
property, the symmetric Kronecker product does not satisfy it in general. In addition if A

and B are arbitrary nonsingular matrices, (A
s
⊗B)−1 does not in general equal to A−1

s
⊗B−1.

For an example of this, we refer the reader to [117, p. 22].

5.2 The Skew-Symmetric Kronecker Product

Similar to the symmetric Kronecker product, we define a skew-symmetric Kronecker product.
Let Kn denote the set of n-by-n real skew-symmetric matrices, following the notation from
[3]. Then the dimension of this space is skew(n) := n(n − 1)/2. Note that Kn is a linear
subspace in Rn2

. In this subspace, Sn and Kn are orthogonal complements of each other.
Define the mapping kvec : Kn → Rskew(n) as the isometry between Kn and Rskew(n) such that
for every X ∈ Kn,

kvec(X) :=
[√

2x21 · · ·
√

2xn1
√

2x32
√

2xn2 · · ·
√

2xn(n−1)
]>
.

kvec(X) is a sym(n) dimensional vector formed by stacking the columns of the lower trian-
gular part of X and by multiplying the off-diagonal elements by

√
2 (to preserve the inner

product).

Definition 5.2.1. Let Q̃ ∈ Rn2×skew(n) the columns of Q̃ form a basis for n2-by-n2 skew-
symmetric matrices and defined by

Q̃(i,j) :=
1√
2

(ei ⊗ ej − ej ⊗ ei), for 1 ≤ i < j ≤ n, (5.5)

where the columns of Q̃ are labeled in the order (1, 2), . . . , (1, n), (2, 3), . . . , (2, n), . . ., (n−
1, n).
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By the definition, Q̃>Q̃ = III and Q̃Q̃> is the orthogonal projector, mapping Rn2
onto the

set of skew-symmetric vectors in Rn2
. Then for a skew-symmetric vector w ∈ Rn2

,

Q̃>w = kvec(Mat(w)), and Q̃ kvec(Mat(w)) = w.

Definition 5.2.2 (Skew-symmetric Kronecker product). The symmetric Kronecker product
of any two n-by-n matrices A And B is defined implicitly by its action on an n-by-n skew-
symmetric matrix W as

(A
s̃
⊗B) kvec(W) :=

1

2
kvec(BWA> + AWB>).

Theorem 5.2.1. Let Q̃ be the orthogonal skew(n)-by-n matrix defined as in Definition 5.5.
For every A,B ∈ Rn×n

(A
s̃
⊗B) =

1

2
Q̃>(A⊗B + B⊗A)Q̃ = Q̃>(A⊗B)Q̃.

Analogous to the symmetric Kronecker product, the following properties hold for the
skew-symmetric product. We skip the proofs as they are elementary.

Theorem 5.2.2 (new). Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r and D ∈ Rq×s. Then

(i) (A
s̃
⊗B)> = (A>

s̃
⊗B>),

(ii) (A
s̃
⊗B) = (B

s̃
⊗A),

(iii) (A
s̃
⊗B)(C

s̃
⊗D) =

1

2

(
(AC

s̃
⊗BD) + (AD

s̃
⊗BC)

)
(iv)

(A⊗B) � 0 =⇒ (A
s̃
⊗B) � 0,

(A⊗B) � 0 =⇒ (A
s̃
⊗B) � 0.

(v) Let A,B ∈ Sn be positive definite and let p, q ∈ R \ (−1, 1) such that q > p. Then,

(Aq
s̃
⊗Bq)1/q � (Ap

s̃
⊗Bp)1/p.

(vi) Let Let A,B ∈ Sn be positive definite. Then (A
s̃
⊗B)−1 � A−1

s̃
⊗B−1.

(vii) Let A,B ∈ Sn be positive definite. Then (A
s̃
⊗B)2 � A2

s̃
⊗B2.

These properties differ in the item (iv) compared to the properties of the symmetric

Kronecker product. Unlike in Theorem 5.1.2-(iv), (A
s̃
⊗ B) � 0 does not necessarily imply

that (A⊗B) � 0. To see this, consider the following example.
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Example 5.2.1. Let

A :=

44 2 −1
2 31 −6
−1 −6 7

 and B :=

 3 2 −2
2 3 0
−2 0 0

 .
Although

(A
s̃
⊗B) =

108.5 −6 −26.5
−6 8.5 1
26.5 1 10.5

 � 0,

the matrix A⊗B has negative eigenvalues, taking

v :=
[
−5 2 −8 −1 0 −1 0 0 0

]>
,

gives v>(A⊗B)v = −5063 < 0.

In the vast research area of semidefinite programming, there has been an increased
amount of interest in systems of linear equations involving symmetric Kronecker prod-
ucts which arise when computing search directions in primal-dual interior-point methods
[128, 131]. Given the applications of these equations, seeking a better understanding of the
eigenvector/eigenvalue structure of the generalized Lyapunov operators constituting these
equations seems valuable.

5.3 Jordan-Kronecker Product

Definition 5.3.1 (Jordan-Kronecker Product). Given matrices A, B, the Jordan-Kronecker
product of A and B is defined as

(A⊗B + B⊗A).

Indeed, this is the Jordan product of A and B [41], where the matrix multiplication is
replaced by the Kronecker product. This is also related to the notion of Jordan triple product
[42] since

(A⊗B + B⊗A) vec(X) = vec(AXB) + vec(BXA), ∀A,B ∈ Sn.

Consider the eigenvalue/eigenvector structure of the Jordan-Kronecker product of A and B.
A nice characterization for the eigenstructure of the Jordan-Kronecker product of n-by-n
matrices A and B is provided in [131, Section 2] which shows that the eigenvectors of
(A⊗B + B⊗A) can be chosen so that they form an orthonormal basis where each eigenvector
is either a symmetric vector or a skew-symmetric vector. We restate it below.

Proposition 5.3.1 (Theorem 2.9 in [131]). Let A,B ∈ Sn. For every u ∈ R 1
2
n(n+1), we have

the eigenpair relationship (A
s
⊗B)u = λu⇒ 1

2
(A⊗B + B⊗A)(Q>u) = λ(Q>u).
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Henceforth, we say that an eigenvalue of (A⊗B + B⊗A) belongs to its odd spectrum
if it corresponds to a skew-symmetric eigenvector and even spectrum if it corresponds to
a symmetric eigenvector. Furthermore, we call an eigenvalue of (A⊗B + B⊗A) an odd
eigenvalue if it belongs to its odd spectrum and an even eigenvalue if it belongs to its even
spectrum.

The characterization of structured matrices by a symmetry property of their eigenvectors
is not a new concept. We give a number of such examples in Chapter 4.4. There are
various structured matrices other than Jordan-Kronecker products such that for a special
involutory matrix J, an eigenvector is called even if Jx = x and called odd if Jx = −x. This
terminology has been used for centrosymmetric matrices [6] in which J is the matrix with ones
on the secondary diagonal (from the top right corner to the bottom left corner), and zeros
elsewhere and also has been used with a general involutary matrix in [140]. Utilization of
this structure leads to efficient solution for the eigenvalue problem (with complexity 1

4
of the

original one) and helps understanding of the properties of the solution preserved through
some standard methods to solve Sturm-Liouville problem [6]. Some sufficient conditions
on the interlacement of odd and even eigenvalues are provided in [24, Theorem 5, 6] for
centrosymmetric matrices, and in [129] for some real symmetric matrices. The interlacement
property, alone, is algebraically interesting itself but it also plays an important role in real
symmetric Toeplitz matrices in answering the inverse eigenvalue problem [129, 83]. Such
structured eigenvectors also arise in perfect shuffle symmetric matrices (e.g. matrices A ∈ Sn2

such that TAT = A, see for instance [30]) which are used in certain quantum chemistry
applications [135]. As we remarked in Chapter 4.4.5, the Jordan-Kronecker product of two
matrices is an example of a perfect shuffle invariant matrix, since T(A⊗B)T = B⊗A and
T(A⊗B + B⊗A)T = A⊗B + B⊗A.

In [131], Tunçel and Wolkowicz conjectured interesting interlacing relations on the roots
of the characteristic polynomials of certain structured matrices arising from the Jordan-
Kronecker products of real symmetric matrices. In this chapter, we investigate these inter-
lacing relationships.

We define a number of interlacing properties which will be used throughout this chapter.

The following property is defined to indicate when the odd spectrum of the Jordan-
Kronecker product interlaces its even spectrum in the sense of Definition 1.3.1.

Definition 5.3.2 (Interlacing Property). Let A and B be both n-by-n symmetric matrices
(or skew-symmetric matrices). Denote the even eigenvalues and the odd eigenvalues of
C := (A⊗B + B⊗A) in non-increasing order by λ1 ≥ · · · ≥ λs and β1 ≥ · · · ≥ βt,
respectively, where s := sym(n) and t := skew(n). We say that the odd eigenvalues of C
interlace its even eigenvalues if for an eigenvalue βi belonging to the odd spectrum of C,
there are even eigenvalues of C such that

λs−t+i ≤ βi ≤ λi, for i ∈ {1, . . . , t}.

Definition 5.3.3 (Weak-Interlacing Property). Let A,B ∈ Sn. We say that (A⊗B+B⊗A)
satisfies weak-interlacing if

min
Tu=u

u>(A⊗B)u

u>u
≤ min

Tw=−w

w>(A⊗B)w

w>w
, (5.6)
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max
Tw=−w

w>(A⊗B)w

w>w
≤ max

Tu=u

u>(A⊗B)u

u>u
. (5.7)

or equivalently,

min
U∈Sn,‖U‖F=1

tr (AUBU) ≤ min
W∈Kn,‖W‖F=1

tr
(
AWBW>) , (5.8)

max
U∈Sn,‖U‖F=1

tr (AUBU) ≥ max
W∈Kn,‖W‖F=1

tr
(
AWBW>) . (5.9)

The weak-interlacing property is introduced to avoid repeating the claim of Conjec-
ture 1.3.6. Instead of saying A,B ∈ Sn satisfy the Conjecture 1.3.6, we will say they satisfy
the weak interlacing property.

Definition 5.3.4 (Strong Interlacing Property). Let A,B ∈ Sn. We say that there is strong
interlacing between the odd and even eigenvalues of (A ⊗ B + B ⊗A) if for each kth odd
eigenvalue, where k ∈ {2, . . . , n− 1}, the (k + 1)th and (k − 1)th eigenvalues are associated
with even eigenvectors.

Similarly, instead of saying A,B ∈ Sn satisfy the Conjecture 1.3.7, we will say they
satisfy the strong interlacing property. Note that this property implies the weak-interlacing
property.

Proposition 5.3.2. Let A,B ∈ Sn. Regarding the conjectures, without loss of generality,
we may assume B is a diagonal matrix with diagonal entries sorted in descending order.

Proof. Let B ∈ Sn have the spectral decomposition B = VDV>, where D ∈ Sn is the
diagonal matrix whose diagonal entries are the eigenvalues of B sorted in descending order,
and V>V = VV> = III. For a given X ∈ Sn with ‖X‖F = 1, we define U := V>XV and
Ā := V>AV. Then U> = U and ‖U‖2F = 1. Using the commutativity of the trace operator
and the orthogonality of V, we get

tr (AXBX) = tr
(
AVV>XVV>BVV>XVV>

)
= tr

((
V>AV

) (
V>XV

) (
V>BV

) (
V>XV

))
= tr

(
ĀUDU

)
.

Therefore, instead of solving
min

U∈Sn,‖U‖F=1
tr (AUDU)

one may equivalently solve
min

U∈Sn,‖U‖F=1
tr
(
ĀUDU

)
The proofs for the “max” case and for the case when U is a skew-symmetric matrix follow
along similar lines and are omitted.
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The transformation D 7→ PDP> permutes the rows and columns of D in the same order.
Assume P sorts the diagonal entries of D so that PDP> is sorted in descending order. Since

tr
(
ĀUDU

)
= tr

(
P>PĀP>PUP>PDP>PU

)
= tr

((
PĀP>

) (
PUP>

) (
PDP>

) (
PUP>

))
= tr (A′U′D′U) ,

where A′ := PĀP>, U′ := PUP> and D = PDP> whose diagonal entries are sorted in
descending order.

Hence, in investigating the conjectures, without loss of generality we may assume B is a
diagonal matrix with diagonal entries sorted in descending order.

5.3.1 Preliminaries

In this section, we provide some algebraic results related to the Jordan-Kronecker product
and the conjectures.

Lemma 5.3.3. Let A,B ∈ Sn. If every eigenvalue of A⊗B has multiplicity one, then any
vector satisfying Tw = −w cannot be an eigenvector of A⊗B.

Proof. For the sake of contradiction, suppose w ∈ Rn2−{0} with ‖w‖2 = 1 is an eigenvector
of A⊗B such that Tw = −w. By the assumption on the multiplicity of the eigenvalues, w
has the following structure

w :=



α1β1
...

α1βn
...

αnβ1
...

αnβn


,

for some αi, βi ∈ R, i ∈ {1, . . . , n}. However, Tw = −w implies αiβi = 0,∀i ∈ {1, . . . , n}, as
w is skew symmetric. If αiβi = 0, either αi = 0 or βi = 0. Suppose αi = 0. Then αiβj = 0
for all j ∈ {1, 2, . . . , n}. But this implies that

0 =αiβ1 = −α1βi,

0 =αiβ2 = −α2βi,

...

0 =αiβn = −αnβi.

From the above equalities, we get that either βi = 0 or α1 = · · · = αn = 0. The latter implies
w = 0, so assume βi = 0 must hold. Then αjβi = 0 for all j ∈ {1, 2, . . . , n}. Similarly this
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implies that

0 =βiα1 = −αiβ1,
0 =βiα2 = −αiβ2,
...

0 =βiαn = −αiβn.

Then either β1 = β2 = . . . = βn = 0 or αi = 0. The first implies that w = 0, which
is a contradiction, so as a result we get that αi = 0 = βi. Since this holds for each i ∈
{1, 2, . . . , n}, we get w = 0, which is a contradiction. Therefore, we conclude that an
eigenvector of A⊗B cannot be skew-symmetric.

The following are some interesting algebraic results on the projection of the extreme
eigenvectors of A⊗B onto symmetric vectors and skew symmetric vectors in Rn2

.

Proposition 5.3.4 (new). Let A,B ∈ Sn. Assume every eigenvalue of A⊗B has multiplicity
one and v be an eigenvector of A⊗B. If

v̄ := arg min
Tu=u
‖u− v‖2 and ṽ := arg min

Tw=−w
‖w − v‖2,

for every i, j ∈ {1, 2, . . . , n}

v̄(i−1)n+j = v̄(j−1)n+i =
v(i−1)n+j + v(j−1)n+i

2
,

ṽ(i−1)n+j = −ṽ(j−1)n+i =
v(i−1)n+j − v(j−1)n+i

2
.

Furthermore, ||v̄||2 ≥ ||ṽ||2.

Proof. Let v :=
[
v1 v2 · · · vn2

]>
be an eigenvector of A⊗B. It is easy to show that for

every i, j ∈ {1, 2, . . . , n}

v̄(i−1)n+j = v̄(j−1)n+i =
v(i−1)n+j + v(j−1)n+i

2
,

ṽ(i−1)n+j = −ṽ(j−1)n+i =
v(i−1)n+j − v(j−1)n+i

2
.

Since v is an eigenvector of A⊗B corresponding to an eigenvalue of multiplicity one, it has
the following form

v =
[
α1β1 α1β2 · · · α1βn · · · αnβn

]>
,

where α :=
[
α1 · · ·αn

]>
is an eigenvector of A and β :=

[
β1 · · · βn

]>
is an eigenvector of B,
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and αi, βj ∈ R, i, j ∈ {1, . . . , n}. Then

‖v̄‖22 − ‖ṽ‖22 =

(
Tv + v

2

)>(
Tv + v

2

)
−
(

Tv − v

2

)>(
Tv + v

2

)
= v>Tv

=
n∑
i=1

v2i + 2
∑
i<j

vivj

= (
n∑
i=1

αiβi)
2

= ‖α� β‖22 ≥ 0.

Proposition 5.3.5 (new). Let A,B ∈ Sn. Assume the largest and the smallest eigenvalues
have multiplicity one and v1 and vn be the unit-norm eigenvectors corresponding to the
largest and smallest eigenvalues of A⊗B, respectively. Let

ui := arg min
Tu=u
‖u− vi‖2, wi := arg min

Tw=−w
‖w − vi‖2,

and let

ρui
:=

u>i (A⊗B)ui
u>i ui

, ρwi
:=

w>i (A⊗B)wi

w>i wi

,

where i ∈ {1, n}. Then ρu1 ≥ ρw1 and ρun ≤ ρwn.

Proof. First, we note that ui = (vi + Tvi)/2 and wi = (vi − Tvi)/2 by Proposition 5.3.4.
Substituting these expressions into corresponding Rayleigh quotients, we get the following
for i = 1:

ρu1 =
(v1 + Tv1)

>(A⊗B)(v1 + Tv1)

(v1 + Tv1)>(v1 + Tv1)

=
λ1 + 2λ1v

>
1 Tv1 + v>1 T>(A⊗B)Tv1

2 + 2v>1 Tv1

= λ1 −
λ1 − v>1 T>(A⊗B)Tv1

2 + 2v>1 Tv1

, (5.10)

ρw1 =
(v1 −Tv1)

>(A⊗B)(v1 −Tv1)

(v1 −Tv1)>(v1 −Tv1)

= λ1 −
λ1 − v>1 T>(A⊗B)Tv1

2− 2v>1 Tv1

. (5.11)

Note that λ1 − v>1 T>(A ⊗ B)Tv1 ≥ 0 since ‖Tv1‖2 = 1 and λ1 is the largest eigenvalue
of A ⊗ B. Due to the assumption on the multiplicity of the largest eigenvalue, v>1 Tv1 =
‖α � β‖22 ≥ 0, for some α, β. Then 2 + 2v>1 Tv1 > 2 − 2v>1 Tv1. Hence, from (5.10) and
(5.11), we conclude that ρu1 ≥ ρw1 .
The proof of ρun ≤ ρwn follows similar lines to the above, therefore it is omitted.
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Under certain multiplicity conditions, Proposition 5.3.4 states that the distance (with
respect to `2-norm) between the eigenvectors of A ⊗B and the set of symmetric vectors is
shorter than their distance to the skew-symmetric vectors. In addition, Proposition 5.3.5
gives orderings between the Rayleigh quotients of A⊗B for the projected eigenvectors (to the
set of symmetric vectors and skew-symmetric vectors). We emphasize that Proposition 5.3.5
does not directly give an answer to the Conjecture 1.3.6.

Lemma 5.3.6. Let A ∈ Sn. Then

max
U∈Sn,‖U‖F=1

tr (UAU) = λ1(A)

and
min

U∈Sn,‖U‖F=1
tr (UAU) = λn(A), (5.12)

where λ1(A) is the largest eigenvalue and λn(A) is the smallest eigenvalue of A.

Proof. We have

max
U∈Sn,
‖U‖F=1

tr (UAU) = max
U∈Sn

vec(U)> (III⊗A) vec(U)

vec(U)> vec(U)

≤ λ1(III⊗A)

= λ1(A).

The first line follows from tr (UAU) = vec(U>)> vec(AU III) and the identity (4.1). The
second line follows since the maximization of the Rayleigh quotient of (III⊗A) is carried over
a subset of Rn2

. If Û := v1v
>
1 , where v1 is an eigenvector of A corresponding to λ1(A), then

Û ∈ Sn with ‖Û‖F = v>1 v1 = 1 and

tr
(
ÛAÛ

)
= λ1(A).

Since the upper bound of maxU∈Sn,‖U‖F=1 tr (UAU) is achieved by Û, the first result follows.
The proof of the second result (5.12) is similar to the first one and is omitted here.

Next, we give a useful result that sheds light on the interlacing relation between the
“odd” and “even” eigenvalues of (A⊗B + B⊗A) (the ones corresponding to the odd and
even eigenvectors).

Proposition 5.3.7. Let A and B be both n-by-n symmetric (or skew-symmetric) matrices.

If G(A
s̃
⊗B)G> is a principal submatrix of A

s
⊗B for some skew(n)-by-skew(n) orthogonal

matrix G, then the odd eigenvalues of C := (A⊗B + B⊗A) interlace its even eigenvalues.

Proof. This proof is based on the factorization of the symmetric perfect shuffle invariant
matrices provided in [135, Theorem 2.1]. Let Q′ :=

[
Q Q̃

]
, where Q and Q̃ are defined in
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Definition 5.1.2 and Definition 5.5. Then

Q′
>
CQ′ =

[
Q>CQ Q>CQ̃

Q̃>CQ Q̃>CQ̃

]
=

[
Q>CQ 0

0 Q̃>CQ̃

]
=

[
2(A

s
⊗B) 0

0 2(A
s̃
⊗B)

]
.

The off diagonal blocks are zero since

Q>CQ̃ = Q>TCTQ̃ = −Q>TCTQ̃ = −Q>CQ̃.

Let (A
s
⊗B) = UΛeU

> and (A
s̃
⊗B) = VΛoV

> be the spectral decomposition of (A
s
⊗B)

and (A
s̃
⊗B), respectively. Then

C =
[
QU Q̃V

] [2Λe 0
0 2Λo

] [
QU Q̃V

]>
.

By the definition of Q and Q̃, the columns of QU are symmetric and the columns of QV are

skew-symmetric. Therefore, the even spectrum of C consists of the eigenvalues of 2(A
s
⊗B)

and the odd spectrum of C consists of the eigenvalues of 2(A
s̃
⊗B). Since G is an orthogonal

matrix, the eigenvalues of G(A
s̃
⊗ B)G> is the same as the eigenvalues of (A

s̃
⊗ B). Then

the result follows by Theorem 1.3.5.

Proposition 5.3.8. Let A,B ∈ S3 where A := [aij] and B := Diag(b1, b2, b3). Then, for ev-
ery W ∈ K3, there exists U ∈ S3 such that Tr(AUBU) ≤ Tr(AWBW>) if b1b2b3a21a31a32 ≤
0.

5.3.2 Cases when interlacing properties hold

We show that the odd spectrum of the Jordan-Kronecker product interlaces its even spectrum
for a number of structured matrices.

Theorem 5.3.9 (new). Let A,B ∈ Sn such that min {rank(A), rank(B)} ≤ 2. Then the
odd eigenvalues of (A⊗B + B⊗A) interlace its even eigenvalues.

Proof. Assume A,B ∈ Sn. Without loss of generality, we may assume rank(B) ≤ 2. So, we
let A :=

∑n
i=1 αiaia

>
i and B := β1e1e

>
1 + β2e2e

>
2 , where ei is a vector of all zeros except its

ith term is 1. (We used Proposition 5.3.2.)

Denote the last n − 2 entries of ai by ai :=
[
ai3 ai4 · · · ain

]>
and the jth entry

of ai by aij. Let W := [wij] ∈ Kn with ‖W‖F = 1. Define w := vec(W) and wi :=
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[
w3i w4i · · · wni

]>
, which consists of the last n − 2 entries of W(:, i), where i ∈ {1, 2}.

Then

w>(B⊗A)w = β1

(
α1

(
W (:, 1)>a1

)2
+ · · ·+ αn

(
W(:, 1)>an

)2)
+ β2

(
α1

(
W(:, 2)>a1

)2
+ · · ·+ αn

(
W(:, 2)>an

)2)
= β1

n∑
i=1

αi
(
w2

21a
2
i2 + (w>1 ai)

2 + 2w21ai2
(
w>1 ai

))
+ β2

n∑
i=1

αi
(
w2

21a
2
i1 + (w>2 ai)

2 − 2w21ai1
(
w>2 ai

))
.

Let U := [uij] ∈ Sn such that all of its diagonal elements are zeros. Define u := vec(U) and

ui :=
[
u3i u4i · · · uni

]>
, for i ∈ {1, 2}. Choosing u21 := −w21, u1 := −w1 and assigning

the upper triangular part of W(2 : n, 2 : n) to the upper triangular part of U(2 : n, 2 : n)
gives ‖U‖F = ‖W‖F = 1. Then

u>(B⊗A)u = β1

(
α1

(
U(:, 1)>a1

)2
+ · · ·+ αn

(
U(:, 1)>an

)2)
+ β2

(
α1

(
U(:, 2)>a1

)2
+ · · ·+ αn

(
U(:, 2)>an

)2)
= β1

n∑
i=1

αi
(
u221a

2
i2 + (u>1 ai)

2 + 2u21ai2
(
u>1 ai

))
+ β2

n∑
i=1

αi
(
u221a

2
i1 + (u>2 ai)

2 + 2u21ai1
(
u>2 ai

))
= w>(B⊗A)w.

This shows that for a given W ∈ Kn with ‖W‖F = 1, one can find U ∈ Sn with ‖U‖F = 1
such that

tr
(
AWBW>) = tr (AUBU) .

Therefore, the weak interlacing property holds. Note that the claim of this theorem is
stronger than the weak interlacing. Define the diagonal matrix Φ := [φij] ∈ Sskew(n) by

φkk :=

{
−1, if k ∈ {1, 2, . . . , n− 1},
1, otherwise.

Then Φ(A
s̃
⊗B)Φ is a principal submatrix of A

s
⊗B.

To see this, observe that if we define u := vec(U), where U := [uij] ∈ Sn, then QQ>u =
u. Then

u>(B⊗A)u = u>Q
(
Q>(B⊗A)Q

)
Q>u = u>Q

(
A

s
⊗B

)
Q>u.

Let W := [bij] ∈ Kn be such that the upper triangular part of W is the same as U. Let
w̄ = vec(W̄), where W̄ := [w̄ij] ∈ Kn be such that its first row (exlcuding the first entry)
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is the negative of the first row exlcuding the first entry) of U. Let the rest of the upper
triangular part of W̄ be the same as of U. Note that if one removes the entries of s2vec(U) :=
Q>u corresponding to the diagonal entries then we get exactly kvec(W) = Q̃>w. Let the
diagonals of U be all zero. Then,

u>Q(A
s
⊗B)Q>u = u>Q

(
Q>(B⊗A)Q

)
Q>u

= w̄>Q̃
(
Q̃>(B⊗A)Q̃

)
Q̃>w̄

= w>Q̃Φ
(
Q̃>(B⊗A)Q̃

)
ΦQ̃>w

= w>Q̃Φ(A
s̃
⊗B)ΦQ̃>w.

Since this holds for every U ∈ Sn with zero diagonals, Φ(A
s̃
⊗B)Φ is a principal submatrix

of A
s
⊗B.

Therefore, by Theorem 1.3.5 and Proposition 5.3.7, the odd eigenvalues of (A⊗B + B⊗A)
interlace its even eigenvalues, i.e., the interlacing property holds.

Corollary 5.3.10. If A,B ∈ S2, then the interlacing property and the strong interlacing
property hold.

Although the weak interlacing property [131, Conjecture 2.10] is stated for real symmetric
matrices, we show that it holds for certain real skew-symmetric matrices as well. Real
skew-symmetric matrices have purely imaginary eigenvalues; on the other hand, the Jordan-
Kronecker product of two skew-symmetric matrices are symmetric and therefore have real
eigenvalues. In the following, we show that the odd eigenvalues of the Jordan-Kronecker
product of two skew-symmetric matrices (for which one of the matrices has rank at most
two) interlace its even eigenvalues.

Theorem 5.3.11 (new). Let A,B ∈ Kn such that min {rank(A), rank(B)} ≤ 2. Then the
odd eigenvalues of (A⊗B + B⊗A) interlace its even eigenvalues.

Proof. Without loss of generality, we may assume rank(B) ≤ 2. By the block diagonalization
of skew-symmetric matrices, we may write B as

B :=


0 λ1 0 · · · 0
−λ1 0 0 · · · 0

0 0 · · · · · ·
...

...
...

...
...

...
0 0 · · · · · · 0

 ,

where λ1 ∈ R. Let W̄ ∈ Kn be given. Then

tr
(
AW̄BW̄>) = λ1W̄(:, 2)>AW̄(:, 1)− λ1W̄(:, 1)>AW̄(:, 2).
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We construct a symmetric matrix Ū ∈ Sn as follows. Here U(i, j) means the ijth entry of
the matrix U.
Ū(1, 1) = W̄(2, 1) Ū(2, 2) = W̄(2, 1), Ū(2, 1) = 0, Ū(3 : n, 1) = W̄(3 : n, 2), Ū(3 : n, 2) =
−W̄(3 : n, 1), and we assign the upper triangular part of
W̄(3 : n, 3 : n) (including its main diagonal) to the upper triangular part of Ū(3 : n, 3 : n)
which results in ‖Ū‖F = ‖W̄‖F = 1. Then

tr
(
AW̄BW̄>) = tr

(
AŪBŪ

)
.

Hence, Conjecture 1.3.6 holds. The proof of interlacing is very similar to the proof in
Theorem 5.3.9. Therefore, it is omitted.

Corollary 5.3.12. Let A,B ∈ K2. Then the interlacing property and the strong interlacing
property hold.

Consider mutually diagonalizable matrices. Some examples of this class are diagonal
matrices and circulant matrices which are used extensively in signal processing and statistics.
A result from [131] shows that the strong interlacing (which implies the weak interlacing)
property holds for pair of mutually diagonalizable matrices. We restate it below.

Lemma 5.3.13. [131, Corollary 2.5] Let A,B ∈ Sn be commuting matrices. Let λi, µj denote
the eigenvalues and vi,vj be the corresponding eigenvectors of A and B, respectively. Then,
for 1 ≤ i ≤ j ≤ n, we get 1

2
(λiµj + λjµi) as the eigenvalues and s2vec(viv

>
j + vjv

>
i ) as the

corresponding eigenvectors of A
s
⊗B.

Lemma 5.3.13 also applies to a symmetrized similarity operator [144] as follows. For
every nonsingular matrix P ∈ Rn×n, [144] defines HP : Rn×n → Sn by

HP (X) := PXP−1 + P−>X>P>.

Let us restrict the domain of HP to Sn and restrict P to symmetric matrices. Then the
resulting operator HP is representable by a Jordan-Kronecker product of symmetric matrices
P and P−1. Since P,P−1 commute, Lemma 5.3.13 applies. We discuss the role of this
operator in Chapter 6.3.

Given the result for mutually diagonalizable matrices, an interesting direction to explore
is to determine how one can perturb A or B so that the weak (or the strong) interlacing
property will still be preserved. We provide some results which are based on perturbing one
of the matrices.

The next two propositions can be proved using the proof technique given for Theo-
rem 5.3.9. So, proofs of Propositions 5.3.14 and 5.3.15 are omitted.

Proposition 5.3.14 (new). Let A,B ∈ Sn be diagonal matrices, where Akk = ak, for every
k ∈ {1, 2, . . . , n}. Let

Ã := A +

bk/2c∑
i=1

α
(k)
i (Ei(k−i+1) + E>i(k−i+1)),
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i.e.,

Ã :=



a1 0 · · · · · · · · · 0 α
(k)
1 0 · · · 0

0 a2 0 · · · 0 α
(k)
2 0

... · · · 0
... 0

. . . . .
.

0
... · · · 0

...
...

... . .
.
. .
. ...

...
...

...
... 0 . .

.
. .
. . . . 0

...

0 α
(k)
2 0 · · · 0 ak−1 0

...
...

α
(k)
1 0

...
... 0 ak 0

0
...

...
...

... 0
. . .

. . .
...

...
...

...
...

...
...

. . .
. . . 0

0 0 0 · · · 0 0 0 · · · 0 an



,

where Eik is an n-by-n matrix with all entries zero except E(i, k) = 1, and α
(k)
i ∈ R, i ∈

{1, 2, . . . , bk/2c}. Then, the weak interlacing property holds for the pair Ã,B.

Proposition 5.3.15. Let A be an n-by-n symmetric tridiagonal matrix and B be an n-
by-n diagonal matrix. Then the odd eigenvalues of (A⊗B + B⊗A) interlace its even
eigenvalues. Furthermore, define Ā ∈ Sn such that Āij = Aij for all i, j ∈ {1, . . . , n}
except Ars 6= 0, (r > s + 1), and A(s+1)s = 0 for some r, s. Then the odd eigenvalues of(
Ā⊗B + B⊗ Ā

)
interlace its even eigenvalues.

Proposition 5.3.15 gives another sufficient condition for the weak interlacing property.
For every pair of matrices A,B ∈ Sn where B is diagonal and A is formed by perturbing a
diagonal matrix where each row of the upper triangular matrix of A has at most one nonzero
entry, the odd eigenvalues of (A⊗B + B⊗A) interlace its even eigenvalues.

Some minor results for A,B ∈ S3 are given below.

Proposition 5.3.16. Let A,B ∈ S3, where A := [aij] and B := Diag(b1, b2, b3) is a diagonal
matrix. Then, the odd eigenvalues of (A⊗B + B⊗A) interlace the even eigenvalues when
b1b2b3a21a31a32 = 0.

Proposition 5.3.17. Let A,B ∈ S3, where B is a diagonal unimodular matrix. (Recall,
a unimodular matrix is a square matrix whose determinant is either +1 or −1.) Then the
interlacing property holds for A,B if one of the followings holds:

1. a11 = a22,

2. a31 = ±a32,

3. one of the non-diagonal entries of A is zero.
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Proof. Without loss of generality we may assume B := Diag(1, 1,−1). Let U ∈ S3 and
W ∈ K3. Since

tr (AUBU) = u221(b1a22 + b2a11) + u231(b1a33 + b3a11) + u232(b2a33 + b3a22)

+ u211(b1a11) + u222(b2a22) + u233(b3a33)

+ 2a21(b1u11u21 + b2u21u22 + b3u31u32)

+ 2a31(b1u11u31 + b3u31u33 + b2u21u32)

+ 2a32(b2u22u32 + b3u32u33 + b1u21u31)

the eigenvalues corresponding to the symmetric eigenvectors of C are the eigenvalues of

C̄sym :=



a11 0 0 a21√
2

a31√
2

0

0 a22 0 a21√
2

0 a32√
2

0 0 a33 0 −a31√
2

−a32√
2

a21√
2

a21√
2

0 a11+a22
2

a32
2

a31
2

a31√
2

0 −a31√
2

a32
2

a33−a11
2

−a21
2

0 a32√
2
−a32√

2
a31
2

−a21
2

a33−a22
2


.

Also,

tr
(
AWBW>) = (a11 + a22)w

2
21 + (a33 − a11)w2

31 + (a33 − a22)w2
32

+ 2(w21w31a32 − w21w32a31 − w31w32a21).

Therefore, the eigenvalues corresponding to the skew-symmetric eigenvectors of C := A ⊗
B + B⊗A are the eigenvalues of

C̄skew :=
1

2

(a11 + a22) a32 a31
a32 (a33 − a11) a21
a31 a21 (a33 − a22)

 .
1. First, we assume a11 = a22. Choosing

Q1 :=

 1√
2
− 1√

2
0 0 0 0

0 0 0 0 0 −1
0 0 0 0 1 0

 ,
we see that C̄skew = Q1C̄symQ>1 since a11 = a22. Therefore, by Interlacing Theorem
(Theorem 1.3.5), the eigenvalues of C corresponding to the symmetric eigenvectors
interlace its eigenvalues corresponding to the skew symmetric eigenvectors.

2. Next, we assume a31 = sa32, where s ∈ {+1,−1}. Choosing

Qs :=

s 1√
2
−s 1√

2
0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 −1


gives C̄skew = QsC̄symQ>s when a31 = sa32.
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3. Finally, we assume that one of the non-diagonal entries of A is zero.
If a21 = 0, choosing

Q2 :=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


gives C̄skew = Q2C̄symQ>2 .
If a31 = 0, choosing

Q3 :=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


gives C̄skew = Q3C̄symQ>3 .
If a32 = 0, choosing

Q4 :=

0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


gives C̄skew = Q4C̄symQ>4 . Therefore, the result follows by Theorem 1.3.5.

Although we provided some results regarding the interlacing properties of A,B ∈ S3, we
still do not have any counterexamples or a proof whether the interlacing properties hold in
general.

5.3.3 Cases when interlacing conjectures fail

Proposition 5.3.18 (new). For every integer k ≥ 3 and for every integer n ≥ max{4, k},
there exist symmetric matrices A,B ∈ Sn such that min{rank(A), rank(B)} = k,
max{rank(A), rank(B)} = n and the weak interlacing property fails for the pair A,B.

Proof. We prove this using Theorem 5.3.9.

• Consider the following 4-by-4 symmetric matrices

A0 :=


−2 −1 −4 2
−1 1 −4 −3
−4 −4 1 0
2 −3 0 2

 and B0 :=


3 0 0 0
0 2 0 0
0 0 0 0
0 0 0 −2

 (5.13)

Here, min{rank(A0), rank(B0)} = 3. For the following skew-symmetric matrix

W0 :=


0 9 −6 −10
−9 0 4 −5
6 −4 0 −5
10 5 5 0

 ,
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define w0 := vec(W0). Then

ρw0(A0,B0) :=
w0
>(A0 ⊗B0)w0

w0
>w0

=
6311

566
≥ 11.

If we show that for every symmetric vector u,

∆u := u>(A0 ⊗B0)u− 11u>u < 0,

then that will imply the maximum eigenvalue of C0 := (A0⊗B0+B0⊗A0) corresponds
to a skew-symmetric vector. Note that we can get a lower dimensional quadratic
representation of ∆u by gathering the terms for each distinct entry uij.

∆u = u>(A0 ⊗B0)u− 11u>u

=



u11
u21
u31
u41
u22
u32
u42
u33
u43
u44



> 

−17 −3 −12 6 0 0 0 0 0 0
−3 −23 −12 −9 −2 −8 4 0 0 0
−12 −12 −19 0 0 0 0 0 0 0

6 −9 0 −12 0 0 2 0 8 −4
0 −2 0 0 −9 −8 −6 0 0 0
0 −8 0 0 −8 −20 0 0 0 0
0 4 0 2 −6 0 −20 0 8 6
0 0 0 0 0 0 0 −11 0 0
0 0 0 8 0 0 8 0 −24 0
0 0 0 −4 0 0 6 0 0 −15





u11
u21
u31
u41
u22
u32
u42
u33
u43
u44


.

It suffices to show that the above 10-by-10 matrix, which we denote by Cs, is negative
definite, or its negative is positive definite. We show that −Cs is positive definite.

We observe that it is sufficient to show the matrix Cs obtained by removing the 8th
row and column of −Cs is positive definite, as the 8th row and column of −Cs has
only a positive diagonal entry and the other entries are zero. Furthermore,

20 0 0 0
0 20 −8 −6
0 −8 24 0
0 −6 0 15


is positive definite, since it is a symmetric strictly diagonally-dominant matrix. In
order to show 

9 8 6 0 0
8 20 0 0 0
6 0 20 −8 −6
0 0 −8 24 0
0 0 −6 0 15


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is positive definite, we use Schur Complement Lemma (see, for instance, [130]), and
compute

9−
[
8 6 0 0

] 
20 0 0 0
0 20 −8 −6
0 −8 24 0
0 −6 0 15


−1 

8
6
0
0



= 9− 1

840

[
4 3 0 0

] 
168 0 0 0
0 225 75 90
0 75 165 30
0 90 30 260




4
3
0
0


=

949

280
> 0.

Since Cs(4 : 9, 4 : 9) is diagonally dominant, it is positive semidefinite. Also, the
columns are linearly independent, therefore it is positive definite.

Let W :=

17 3 12
3 23 12
12 12 19

, Y :=


12 0 0 −2 −8 −4
0 9 8 6 0 0
0 8 20 0 0 0
−2 6 0 20 −8 −6
−8 0 0 −8 24 0
−4 0 0 −6 0 15

 and

S :=

−6 0 0 0 0 0
9 2 8 −4 0 0
0 0 0 0 0 0

.

To show that Cs is positive definite, we show that

M := W − SY−1S>

is positive definite. (In the previous part, we have already shown Y is positive definite).
Here,

Y−1 :=
1

163736


22776 −8280 3312 8004 10260, −2872
−8280 51320 −20528 −22320 −10200 −6720
3312 −20528 16398 8928 4080 2688
8004 −22320 8928 21576 9860 6496
10260 −10200 4080 9860 13529 1208
−2872 −6720 2688 6496 1208 14280

 .

Then M =
1

20467

245447 198579 245604
198579 198714 245604
245604 245604 388873

.

We show that 20467M is positive definite by using Schur Complement Lemma. For
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this, we compute [
245447 198579
198579 198714

]
− 2456042

388873

[
1 1
1 1

]
=

1

19

[
1716245 825753
825753 828318

]
.

Even though the numbers are large in the resulting 2-by-2 matrix, it is not hard to
observe that the above matrix is symmetric row diagonally-dominant with positive
diagonal entries. Hence it is positive definite. Therefore −Cs is positive definite. We
have shown that

tr (A0UB0U)− ρw0(A0,B0) < 0 for every U ∈ Sn, with ‖U‖F = 1.

This completes the proof for k = 3.

• Using the counterexample for k = 3, given in (5.13), we show that the weak interlacing
property fails when n = 4, k = 4. Construct A1 := A0, B1 := B0 + ε III, where ε is a
very small number such that rank(B1) = 4. Since rank(A1) = rank(B1) = 4, k = 4 for
this pair. Let W1 := W0/‖W0‖F . Then

tr (A1UB1U)− ρw1(A1,B1) := tr (A1UB1U)− tr
(
A1W1B1W

>
1

)
= Tr(A0UB0U)− Tr(A0W1B0W

>
1 )

+ ε
(
tr (A0UU)− tr

(
A0W1W

>
1

))
= tr (A0UB0U)− ρw0(A0,B0)

+ ε
(
tr (A0UU)− tr

(
A0W1W

>
1

))
.

Since tr (A0UB0U)−ρw0(A0,B0) < 0, choosing ε small enough, we get tr (A1UB1U)−
ρw1(A1,B1) < 0 for every U ∈ Sn with ‖U‖F = 1. This implies that for the pair A1,B1

the weak interlacing property fails.

• Now, we show that the weak interlacing property fails for k = 4 and arbitrarily chosen
n > 4. Let

A2 :=

[
A1 0
0 ε III

]
∈ Sn and B2 :=

[
B1 0
0 0

]
∈ Sn,

where ε is a very small number. Let W2 :=

[
W1 0
0 0

]
∈ S̃n, then ‖W2‖F = 1. Suppose

U2 := arg maxU2∈Sn,‖U‖F=1 tr (A2UB2U), and U2 =

[
U11 U21

U21 U22

]
, such that the size of

U11 is the same as the size of W1. Then

tr (A2U2B2U2)− ρw2(A2,B2) := tr (A2U2B2U2)− tr
(
A2W2B2W

>
2

)
= tr (A1U11B1U11) + ε tr (U21B1U21)

− tr
(
A1W1B1W

>
1

)
= ‖U11‖2F tr

(
A1

U11

‖U11‖F
B1

U11

‖U11‖F

)
+ ε tr (U21B1U21)− ρw1(A1,B1).
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For every every unit norm matrix U ∈ Sn (by the counterexample constructed for the
proof for n = 4, k = 4),

tr (A1UB1U) < ρw1(A1,B1). (5.14)

Recall that

ρw1(A1,B1) = tr
(
A0W1(B0 + ε III)W>

1

)
= ρw0(A0,B0) + ε tr

(
A0W1W

>
1

)
.

Without loss of generality, we may assume that ρw1(A1,B1) > 0 as ρw0(A0,B0) > 0
and ε is chosen to be very small number. Note that if ‖U11‖F = 0 the result follows,
so assume ‖U11‖F 6= 0. Hence scaling the left hand side of (5.14) by ‖U11‖2F < 1, gives

‖U11‖2F tr

(
A1

U11

‖U11‖F
B1

U11

‖U11‖F

)
< ρw1(A1,B1).

By choosing ε small enough, we get tr (A2U2B2U2)−ρw2(A2,B2) < 0, which completes
the proof for k = 4 and arbitrary n > 4.

• The proof for arbitrary k follows along similar lines as the proof of the case n = k = 4
(i.e., one can choose A3 := A2 and B3 := B2 + ε III, where ε is a small number), and is
omitted here.

By Perron-Frobenius theorem, for nonnegative symmetric matrices A,B ∈ Sn, (1.4)
always holds; however, we constructed examples of such nonnegative symmetric matrices
where (1.3) fails. In addition, we constructed examples where for a pair of full rank 6-by-6
real skew-symmetric matrices for which the weak interlacing property fails.

5.3.4 Asymptotic behavior

Lastly, we consider a number of different perturbations to arbitrary pairs of symmetric
matrices A,B ∈ Sn where the perturbed pair is guaranteed to satisfy the weak interlacing
property. The following theorem provides a set of perturbations which allows constructing
nontrivial pairs of matrices satisfying the weak interlacing property. Furthermore, it helps
improve our understanding of the spectral properties of (A ⊗ B + B ⊗A) in terms of the
spectral properties of A and B.

Theorem 5.3.19 (new). Let A,B ∈ Sn. Then

1. (A + µ III,B) satisfies the weak interlacing property for µ > 0 large enough, if B is
indefinite and the multiplicity of the smallest and largest eigenvalues of B is 1.

2. (A +βµ III,B +µ III) satisfies the weak interlacing property for µ > 0 large enough where
β > 0 is a constant, if A + βB is indefinite and the geometric multiplicity of the
smallest and largest eigenvalues of A + βB is 1.
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3. (A + βB,B + αA) satisfies the weak interlacing property for α > 0 large enough and
β > 0 small enough such that αβ is constant, if A is indefinite and the geometric
multiplicity of the smallest and largest eigenvalues of A is 1.

4. (A + µD,B) satisfies the weak interlacing property for µ > 0 large enough where B
and D are diagonal matrices, if B ⊗D is indefinite and the geometric multiplicity of
the smallest and largest eigenvalues of B⊗D is 1.

5. (A + µD,B + µ III) satisfies the weak interlacing property for µ > 0 large enough, if D
is indefinite and the geometric multiplicity of the smallest and largest eigenvalues of D
is 1.

6. (A + µD1,B + µD2) satisfies the weak interlacing property for µ > 0 large enough,
if D1 ⊗D2 is indefinite and the geometric multiplicity of the smallest and the largest
eigenvalues of D1 ⊗D2 is 1.

Proof. 1. Let B be an indefinite symmetric matrix and µ > 0. Since

tr ((A + µ III)UBU) = Tr(AUBU) + µ tr (UBU)

tr
(
(A + µ III)WBW>) = tr

(
AWBW>)+ µ tr

(
WBW>)

By Lemma 5.3.6, we have maxU∈Sn,‖U‖F=1 tr (UBU) = λ1(B) and
minU∈Sn,‖U‖F=1 tr (UBU) = λn(B). If the eigenspaces of the largest and the smallest
eigenvalues of B both have dimension 1, then

max
U∈Sn,‖U‖F=1

tr (UBU) > max
W∈Kn,‖W‖F=1

tr
(
WBW>) ,

and
min

U∈Sn,‖U‖F=1
tr (UBU) < min

W∈Kn,‖W‖F=1
tr
(
WBW>) .

Then, for µ large enough,

max
U∈Sn,‖U‖F=1

tr ((A + µ III) UBU) ≥ max
W∈Kn,‖W‖F=1

tr
(
(A + µ III) WBW>) ,

and

min
U∈Sn,‖U‖F=1

tr ((A + µ III) UBU) ≤ min
W∈Kn,‖W‖F=1

tr
(
(A + µ III) WBW>) .

The proofs for parts 2 − 6 of Theorem 5.3.19 are along similar lines with the proof of
part 1 above and are omitted.

Using a similar construction given as in Theorem 5.3.19, it is possible to generate infinitely
many pairs of matrix pencils formed by perturbing A and B for which the weak interlacing
property fails.
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Theorem 5.3.20 (new). Let Ā, B̄ ∈ Sn, (where n ≥ 4) such that the weak interlacing
property does not hold. Then for every A,B ∈ Sn, the weak interlacing property fails for the
pairs

1. (A+µĀ, B̄) and (A+βµĀ,B+µB̄) for µ > 0 large enough, where β > 0 is a constant,
and

2. (A + βB̄,B + αĀ) for α, β > 0 large enough.

Proof of Theorem 5.3.20 is elementary (similar to the above proof of Theorem 5.3.19)
and is omitted.

5.4 A Generalization of Jordan-Kronecker Product

We construct a generalization1 of the Jordan-Kronecker product with similar eigenvalue,
eigenvector structure to the Jordan-Kronecker product. Let T be an n2-by-n2 symmetric
involutory matrix (i.e., T> = T and T2 = III). Given A,B ∈ Rn×n, we define the generalized
Jordan-Kronecker product as

C := A⊗B + T(A⊗B)T.

Recall, that in the Jordan-Kronecker product the symmetric involutory matrix is the n2-by-
n2 commutation matrix.

Similar to the Jordan-Kronecker product, TCT = C. Since T2 = III,

TCT = T(A⊗B)T + T2(A⊗B)T2

= T(A⊗B)T + (A⊗B)

= C.

Define the spaces

Rsym := {x ∈ Rn2

: Tx = x},
Rskew := {x ∈ Rn2

: Tx = −x}.

Let s denote the dimension of Rsym and t denote the dimension of Rskew. As it is the
convention, we call vectors in Rsym symmetric and the ones in Rskew as skew-symmetric.
Another similar observation is that both Rsym and Rskew are linear subspaces of Rn2

and
Rn2

= Rsym⊕Rskew. In addition Rsym is the orthogonal complement of Rskew in Rn2
. These

observations can be justified by simple algebra. Every x ∈ Rn2
can be written as

x =

(
x + Tx

2

)
+

(
x−Tx

2

)
.

1We thank Chris Godsil for suggesting this generalization.
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In addition, for every x ∈ Rsym \ {0} and y ∈ Rskew \ {0},

〈x,y〉 = 〈Tx,y〉 = 〈x,T>y〉 = 〈x,Ty〉 = −〈x,y〉.

Then 〈x,y〉 = 0. This shows that Rsym ⊥ Rskew.

Now, let Q be an n2-by-s orthogonal matrix such that TQ = Q and let Q̃ be a n2-
by-t matrix such that TQ̃ = −Q̃. The following gives a characterization of the eigen-
value/eigenvector structure of the generalized Jordan-Kronecker product.

Proposition 5.4.1. Let A,B ∈ Sn (or both in Kn). Let T ∈ Rn2×n2
be an arbitrary

symmetric involutory matrix and C := A ⊗B + T(A ⊗B)T. Then, the eigenvectors of C
can be decomposed into symmetric and skew-symmetric vectors. Furthermore, the eigenvalues
corresponding to the symmetric eigenvectors are the eigenvalues of 2Q>(A ⊗ B)Q and the
ones corresponding to the skew-symmetric eigenvectors are the eigenvalues of 2Q̃>(A⊗B)Q̃.

Proof. The proof is very similar to the proof of Theorem 5.3.7. We provide it here just for
the sake of completeness.

Let Q′ :=
[
Q Q̃

]
, where Q is the n2-by-s orthogonal matrix such that TQ = Q and Q̃

is the n2-by-t matrix such that TQ̃ = −Q̃, as described above. Then

Q′
>
CQ′ =

[
Q>CQ Q>CQ̃

Q̃>CQ Q̃>CQ̃

]
=

[
Q>CQ 0

0 Q̃>CQ̃

]
.

The off diagonal blocks are zero since

Q>CQ̃ = Q>TCTQ̃ = −Q>CQ̃.

Note that Q>(A⊗B)Q is symmetric, since

(Q>(A⊗B)Q)> = Q>(A⊗B)>Q = Q>(A>⊗B>)Q = Q>(A⊗B)Q.

Similarly, one can show that Q̃>(A⊗B)Q̃ is symmetric. Let Q>(A ⊗B)Q = UΛeU
> and

Q̃>(A⊗B)Q̃ = VΛoV
> be the spectral decomposition of Q>(A ⊗ B)Q and Q̃>(A⊗B)Q̃,

respectively. Then,

C =
[
QU Q̃V

] [2Λe 0
0 2Λo

] [
QU Q̃V

]>
.

By the definition of Q and Q̃, the columns of QU are symmetric and the columns of QV are
skew-symmetric. Therefore, the even spectrum of C consists of the eigenvalues of 2(Q>(A⊗
B)Q) and the odd spectrum of C consists of the eigenvalues of 2(Q̃>(A⊗B)Q̃).

Finally, we remark that a sufficient condition for the interlacement of skew-symmetric
and symmetric eigenvectors of the generalized Jordan-Kronecker product can be stated in
the same spirit of Theorem 5.3.7.
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5.5 Lie-Kronecker Product

We exposed some nice characteristics of eigenspaces of Jordan-Kronecker products of pairs
of symmetric matrices and skew-symmetric matrices. One may also wonder if similar char-
acterizations can be established for matrices of the form (A⊗B−B⊗A). For A,B ∈ Rn×n,
we define (A⊗B−B⊗A) as the Lie-Kronecker product of A and B. Note that for every
pair of symmetric matrices A,B (or skew-symmetric matrices A,B), A⊗B is symmetric.

The following proposition characterizes the eigenvector/eigenvalue structure of the Lie-
Kronecker product of symmetric matrices and skew-symmetric matrices.

Proposition 5.5.1 (new). Let A,B ∈ Sn (or both in Kn). Then the following properties
hold.

1. If λ 6= 0 is an eigenvalue of (A⊗B−B⊗A) corresponding to the eigenvector v, then
−λ is also an eigenvalue corresponding to the eigenvector Tv.

2. rank (A⊗B−B⊗A) ≤ n2 − n.

3. Let t := n(n− 1)/2. Then, the eigenvectors of (A⊗B−B⊗A) can be chosen in the
following form

{v1,v2, . . . ,vt,Tv1,Tv2, . . . ,Tvt,u1,u2, . . . ,un},

such that Tui = ui for every i ∈ {1, 2, . . . , n}, where T is the commutation matrix
(see Definition 4.5). Furthermore, the symmetric eigenvectors {u1,u2, . . . ,un} belong
to the null space of (A⊗B−B⊗A).

Proof. 1. Suppose that λ is an eigenvalue of (A⊗B−B⊗A) corresponding to the eigen-
vector v. Then

(A⊗B−B⊗A) v = λv.

Note that

T (A⊗B−B⊗A) Tv = − (A⊗B−B⊗A) v = −λv

implies

T (T (A⊗B−B⊗A) Tv)) = −λTv =⇒ (A⊗B−B⊗A) Tv = −λTv.

2. From the previous part we know that if v is an eigenvector corresponding to a nonzero
eigenvalue λ then Tv is an eigenvector corresponding to −λ. Since the nonzero eigen-
vectors of (A⊗B−B⊗A) of are orthonormal, the cardinality of the set

{(vi,Tvi) : i = 1, . . . , `}

may not exceed t := n2−n
2

. If it does then the vector vt+1 must be a symmetric vector
in which case (vt+1,Tvt+1) is not an an orthogonal pair of vectors.
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3. Suppose that we have orthonormal vectors

{v1,v2, . . . ,v`−1,Tv1,Tv2, . . . ,Tv`−1},

where ` − 1 < t which are eigenvectors of (A⊗B−B⊗A) corresponding to the
nonzero eigenvalues. Denote E := span{v1,v2, . . . ,v`−1,Tv1,Tv2, . . . ,Tv`−1}. Let
E⊥ be the orthogonal complement of E.

Note that if v ∈ E, then v =
∑`−1

i=1(αivi + βTvi) for some αi, βi’s. Then Tv =∑`−1
i=1(αiTvi + βivi) ∈ E.

Also, if w ∈ E⊥, then Tw ∈ E⊥. Suppose that w ∈ E⊥, then w =
∑n

i=` αiwi for
some orthonormal basis vectors wi in S⊥. Then Tw =

∑n
i=` αiTwi. Then

〈v,Tw〉 = 〈
`−1∑
k=1

(αiTvi + βivi),
n∑
i=`

αiwi〉 = 0.

Therefore Tw ∈ E⊥.

Define
Mskew := {m̃i := vi −Tvi : i = 1, . . . , `− 1}.

The elements of Mskew are linearly independent, orthogonal and skew-symmetric. Since
|Mskew| < t, one can complete the set {m̃1, m̃2, . . . , m̃`−1} such that they form an
orthogonal basis for the set of skew vectors of dimension n2. Suppose that m̃` is
formed in this way and m̃` ⊥ {m̃1, m̃2, . . . , m̃`−1}.
One can write m̃` = m̃u−m̃>u such that Mat(m̃u) is upper triangular matrix with zero
main diagonal.

Suppose m̃u = v + w where v ∈ E,w ∈ E⊥. Then

〈(m̃u −Tm̃u), m̃i〉 = 〈(v + w − (Tv + Tw)), m̃i〉
= 〈(w −Tw), m̃i〉+ 〈(v −Tv), m̃i〉
= 〈(v −Tv), m̃i〉

For some i, 〈(v−Tv), m̃i〉 6= 0 since v ∈ E. Therefore if v 6= 0 then m̃` is not orthogo-
nal to {m̃1, m̃2, . . . , m̃`−1}. Hence we conclude that m̃u ∈ E. By the definition of m̃u, it
is easy to see that 〈m̃u,Tm̃u〉 = 0. Using this construction we can construct vk := m̃u,
for k ∈ {`, ` + 1, . . . , t} such that 〈vk,Tvk〉 = 0. Since the set of all skew symmetric
vectors has rank t, any other vector orthogonal to {v1,v2, . . . ,vt,Tv1,Tv2, . . . ,Tvt}
will be symmetric. Therefore the remaining n vectors belonging to the null space can
be decomposed into symmetric orthogonal vectors.
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Chapter 6

Applications of Jordan-Kronecker
Products and Open Problems

Jordan-Kronecker products arise mainly in linear matrix equations which have vast applica-
tions in control theory, differential equations, and optimization theory. In this section, we
briefly mention some of these areas along with the role of the structure in this field.

6.1 Matrix Differentiation

The Jordan-Kronecker product may arise in many equations as a result of “differentiation”.

The Frechet derivative of a matrix function f : Cn×n → Cn×n is a linear mapping U 7→
Lf (X,U) such that for every U ∈ Cn×n,

f(X + U)− f(X)− Lf (X,U) = o(‖U‖).

If the Frechet derivative exists, it is unique [62]. Since Lf is linear in U

vec(Lf (X,U)) = K(X) vec(U),

where K(X) is referred as the Kronecker form of Frechet derivative.

For example, if p(x) :=
∑m

k=0 akx
k, then

Lp(X,U) =
m∑
k=1

ak

k∑
j=1

Xj−1UXk−j,

and therefore

K(X) =
m∑
k=1

ak

k∑
j=1

(Xj−1)> ⊗Xk−j.

For the derivation, we refer the reader to [62, Section 3.2]. Note that at a real symmetric
matrix X the above expression is the summation of Jordan-Kronecker products of the powers
of X.
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In [103], Neudecker studied the partial derivatives of the elements of a matrix function
with respect to the elements of the argument matrix. He introduced some definitions for
partial derivatives of different matrix functions (the ones in the form of Kronecker product
and ordinary product). One form of matrix differentiation defined by Neudecker in [103] is
dX := [dxij]. Then, for matrices X,Y of appropriate dimensions the following holds for the
differential of the product of two matrices [103]

d(XY) = (dX)Y + X(dY).

Some examples of the instance the form of Jordan-Kronecker product appear in the matrix
differentiation are listed below. For n-by-n square matrices A,X,B, the followings hold
[103].

• If f(X) := X⊗X, then
df(X) = dX⊗X + X⊗ dX.

• Let d2f := tr
(
AdX>BdX

)
+ tr

(
BdX>AdX

)
, where A and B are real matrices of

appropriate dimensions. By definition d2f = vec(dX)>(∇2
vec(X)f) vec(dX). Since

d2f =
1

2
vec(dX)>

(
A> ⊗B + A⊗B> + B> ⊗A + B⊗A>

)
vec(dX),

the Hessian of the scalar function f with respect to vec(X) is

∇2
vec(X)f =

1

2

(
A> ⊗B + A⊗B> + B> ⊗A + B⊗A>

)
.

When A,B ∈ Sn, the Hessian reduces to the Jordan-Kronecker product of A and B.

6.2 Generalized Lyapunov Matrix Equations

Let A,B,Y ∈ Cn×n. The generalized continuous-time algebraic Lyapunov equations (GCALE)
are defined as

AHXB + BHXA = −Y, (6.1)

where X ∈ Cn×n is an unknown matrix. When B = III, it reduces to the well-known Lya-
punov equation. These equations arise in the stability analysis of differential equations and
control theory. As discussed in Chapter 4, Lyapunov equations are special cases of Sylvester
equations. Similarly, the GCALE equations are the special case of the generalized Sylvester
equation

AXB−CXD = −Y. (6.2)

By using Kronecker product, (6.2) can be equivalently written as

(B> ⊗A−D> ⊗C) vec(X) = − vec(Y).

The uniqueness of the solution depends on the nonsingularity of (B>⊗A−D>⊗C). In 1987,
Chu proved that necessary and sufficient conditions for the existence of a unique solution of
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(6.2) are (i) the pencils A−αC and D−αB are regular (a matrix pencil αA−βB is called
regular if A and B are square, and det(αA − βB) 6= 0 for some α, β ∈ C) and (ii) these
pencils have no common eigenvalues. For the GCALE, this result was restated as a special
case of Chu’s result in [109]. Later, Stykel generalized the condition for the stability of the
GCALE in [124].

Theorem 6.2.1. [124] If αB−A is a regular pencil and all eigenvalues of αB−A are finite
and lie in the open left half-plane, then for every Hermitian, positive (semi)definite matrix
Y, the (6.1) has a unique Hermitian, positive (semi)definite solution X. Conversely, if there
exist Hermitian, positive definite matrices X and Y satisfying (6.1), then all eigenvalues of
the pencil αB−A are finite and lie in the open left half-plane.

There is a vast literature on the solutions and numerical algorithms for the solutions of
generalized Sylvester equations and the GCALE, see [27, 61, 50, 68] and [109, 120, 37, 125]
and the references therein.

6.3 Interior-Point Methods

Consider a semidefinite programming problem (SDP)

min 〈C,X〉 (P )

subject to 〈Ai,X〉 = bi, i = 1, . . . ,m

X � 0,

and its dual

max b>y (D)

subject to
m∑
i=1

yiAi + Z = C

Z � 0,

where C ∈ Sn, b ∈ Rm and Ai ∈ Sn for every i ∈ {1, . . . ,m} are all data. The set of strictly
feasible solutions of (P ) and (D) are

Fo(P ) := {X ∈ Sn : 〈Ai,X〉 = bi i = 1, . . . ,m, X � 0},

Fo(D) := {(Z,y) ∈ Sn × Rm :
m∑
i=1

yiAi + Z = C, Z � 0}.

Under strict feasibility conditions, i.e., when Fo(P ) 6= ∅ and Fo(D) 6= ∅, both (P ) and (D)
attain their optimal values (i.e., there exist solutions X∗ and (Z∗,y∗)) and the optimal values
are equal, i.e., 〈C,X∗〉 = b>y∗.
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Barrier method for semidefinite programming approximates (P ) by replacing the objec-
tive with f(X) := 〈C,X〉 + µF (X) and removing the X � 0 constraint, where µ ≥ 0 is a
paramater, F : Sn → R ∪ {+∞},

F (X) :=

{
− log det(X), if X � 0,

+∞, otherwise.

For each µ ≥ 0, let us denote the resulting convex optimization problem by (Pµ). Under
the strict feasibility conditions for both (P ) and (D), (Xµ,yµ,Zµ) are primal and dual
optimal solutions of (Pµ) if and only if they solve the following system of equations:

〈Ai,X〉 = bi i = 1, . . . ,m (6.3)
m∑
i=1

yiAi + Z = C (6.4)

XZ = µ III (6.5)

X � 0,Z � 0. (6.6)

The family of solutions {(Xµ,yµ,Zµ) : µ ≥ 0} is called the central path. Maintaining the
last two conditions (6.5)-(6.6) is difficult. Different linearization techniques which deal with
the nonlinearity of (6.5) lead to different search directions.

In [59], the following linearization was proposed

XZ + (∆X)Z + X(∆Z) = µ III . (6.7)

However, this does not provide a symmetric solution for ∆X. A lot of different approaches
were considered to overcome this issue.

Recall the symmetrized similarity operator, the linear map HP : Rn×n → Sn such that

HP (X) = PXP−1 + P−>X>P>,

where P is an n-by-n nonsingular matrix.

In his paper [144], Zhang points out that if (∆X, ∆Z) satisfies

HP ((XZ + (∆X)Z + X(∆Z)) = µ III,

then it also satisfies (6.7). This operator also serves useful in unifying the other approaches
proposed to deal with the symmetry issue.

Restricting the domain of HP to Sn enables HP to represented by a Jordan-Kronecker
product:

vec(HP (W)) =
(
(P⊗P−>) + (P−> ⊗P)

)
vec(W). (6.8)

If W̄ := X(∆Z) + Z(∆X), then

vec(HP (W̄)) =
(
(P⊗P−>) + (P−> ⊗P)

)
((III⊗X) vec(∆Z) + (Z⊗ III) vec(∆X)) .
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A generic primal dual interior point method solves the following system of equations to
find a new direction:

〈Ai, ∆X〉 = 0 i = 1, . . . ,m, (6.9)
m∑
i=1

∆yiAi +∆Z = 0, (6.10)

HP (X(∆Z) + (∆X)Z) = HP (σµ III−XZ) := R, (6.11)

where σ ∈ (0, 1] is a centrality parameter and µ := 1
n
〈X,Z〉 > 0 is the barrier parameter. If

P = III, then the direction is called Alizadeh-Haeberly-Overton (AHO) search direction [2], if
P = Z1/2 this gives HKM direction [59], [79], [101].

Let W̄ := X(∆Z) + Z(∆X). Multiplying (6.11) from left and right by Z−1/2 gives
(assuming Z ∈ Fo(D))

Z−1/2RZ−1/2 := Z−1/2
(
PW̄P−1 + P−>W̄>P>

)
Z−1/2

If we substitute P = Z1/2 (which gives the HKM direction), then the above equation reduces
to

Z−1/2RZ−1/2 = W̄Z−1 + Z−1W̄

= 2∆X + X(∆Z)Z−1 + Z−1(∆Z)X,

This can be written equivalently as

vec(Z−1/2RZ−1/2) =
(
X⊗ Z−1 + Z−1 ⊗X

)
vec(∆Z). (6.12)

Denote M := X⊗Z−1+Z−1⊗X, ∆x := vec(∆X), ∆z := vec(∆Z), h := vec(Z−1/2RZ−1/2)

and A :=

vec(A1)
>

...
vec(Am)>

. Then the system of equations (6.9)-(6.11) are equivalent to

A∆x = 0 (6.13)

A>∆y +∆z = 0 (6.14)

M∆z + 2∆x = h. (6.15)

The solution of (6.13)- (6.15) requires solving the normal equations (implicitly or explicitly):

AMA>∆y = h,

which is the main computational work in solving SDPs with this type of interior point
methods [123]. A common approach is to compute the Cholesky factorization of AMA>.
Given the fact that M is the Jordan-Kronecker product of X and Z−1, can we find more
efficient factorization techniques to solve this system of linear equations? Also, spectral
information on M should be helpful in the design and analysis of underlying algorithms.
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6.4 Open Problems

In this section, we list some open problems and conjectures arising from the work of this
thesis.

In Chapter 2, we presented a number convex optimization problems in compressed sensing
with a focus on matrix and eigenvalue inequalities. In particular, we looked into the recovery
problems when the measurement matrix is structured, such as a Toeplitz matrix or a Hankel
matrix. It is still an open question whether it is possible for these structured random matrices
to satisfy (with high probability) the restricted isometry property with constant δs when the
number of measurements is O(s log(n)).

Conjecture 6.4.1. The weak interlacing property holds for every A,B ∈ S3.

Conjecture 6.4.2. Let A,B ∈ Sn, where A := P + P> and B := P′ + P′>, P,P′ are
permutation matrices of order n. Then

min
Tu=u

u>(A⊗B)u

u>u
≤ min

Tw=−w

w>(A⊗B)w

w>w
. (6.16)

We remark here that by Perron-Frobenius theorem, for nonnegative symmetric matrices
A,B ∈ Sn, (1.4) always holds.

The eigenvalues of the Jordan-Kronecker product corresponding to the even eigenvectors

are the same as the eigenvalues of A
s
⊗B. From Theorem 5.1.2.(iv) (due to [131]), one can

easily obtain the following

(A
s
⊗B) � 0 ⇐⇒ (A⊗B + B⊗A) � 0,

In addition, as discussed in Example 5.2.1, (A
s̃
⊗B) � 0 does not necessarily imply (A⊗B) �

0. Furthermore, based on a lot of numerical experiments, we have a strong belief that
the minimum eigenvalue of the Jordan-Kronecker product of positive semidefinite matrices
A,B ∈ Sn corresponds to a symmetric eigenvector. We state this formally below.

Conjecture 6.4.3. Let A,B ∈ Sn+. Then

min
Tu=u

u>(A⊗B)u

u>u
≤ min

Tw=−w

w>(A⊗B)w

w>w
. (6.17)

If the minimum eigenvalue of a real symmetric (or Hermitian) matrix is nonnegative then
this matrix is positive semidefinite. In primal-dual interior-point methods for semidefinite
optimization, the new iterates are computed by adding the search directions to the current
primal and dual points using a line search to make sure the new iterates are feasible. Usu-
ally the feasibility condition requires positive semidefiniteness of certain matrices, which is
determined by the minimum eigenvalue of those matrices. In this respect, we believe the
study of this conjecture may be useful.
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It would also be interesting to find classes of structured matrices other than commutative
matrices, and 2-by-2 matrices for which the strong interlacing property holds.

As discussed in Chapter 4, one can always create a perfect shuffle matrix with a pre-
scribed set of scalars as its eigenvalues (see Proposition 4.4.4), we raise the following inverse
eigenvalue problem for a subclass of perfect shuffle matrices: Given a prescribed set of eigen-
values λ1, . . . , λn2 , under what conditions do there exist n-by-n real symmetric matrices A
and B such that these eigenvalues belong to A⊗B + B⊗A?

Another potential application of the Jordan-Kronecker products can be the estimation
of a quantum channel (if it exists) which sends a given set of quantum states to another
set of quantum states, see [38] and the references therein. This problem can be stated as
follows. Given some positive semidefinite Hermitian matrices {A1, . . . ,A`} of order n and
{B1, . . . ,B`} of order m, with trace one, find a positive linear map A:

A(X) :=
r∑

k=1

FkXFH
k ,

such that
∑r

k=1 FH
k Fk = III and A(Ai) = Bi for every i ∈ {1, 2, . . . , `}.

Finally, as a future work we would like to investigate how much Horn’s eigenvalue in-
equalities simplify for general n, when the summands are A⊗B and B⊗A, where A and
B are n-by-n real symmetric matrices.
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Appendix A

APPENDICES

A.1 Vector Spaces and Inner Product Spaces

In this section, we provide some basic notations and elementary concepts as a reference.

Definition A.1.1 (Vector Spaces). A vector space over a field F is a nonempty set V
equipped with two binary operations: vector addition on V×V → V defined as (u,v) 7→ u+v
and scalar multiplication F× V → V defined as (α,v)→ αv, satisfying

1. (Associativity of vector addition) For every u,v,w ∈ V , (u + v) + w = u + (v + w),

2. (Commutativity of vector addition) For every u,v ∈ V , u + v = v + u,

3. (talk element of vector addition) There exists a zero vector 0 ∈ V such that for every
u ∈ V , u + 0 = u,

4. (Inverse elements of vector addition) For every u ∈ V there exists an inverse element
−u ∈ V such that u + (−u) = 0,

5. (Associativity of scalar multiplication) For every α, β ∈ F and u ∈ V , (αβ)u = α(βu),

6. (Identity element of scalar multiplication) For every u ∈ V , 1u = u, where 1 ∈ F is
the identity element of F,

7. (Distributivity of scalar multiplication with respect to vector addition) For every α ∈ F
and u,v ∈ V , α(u + v) = αu + αv,

8. (Distributivity of scalar multiplication with respect to field addition) For every α, β ∈ F
and u ∈ V , (α + β)u = αu + βu.

For a given field F and positive integer n, the set Fn of n-tuples with components from F
forms a vector space over F under the (componentwise) addition and scalar multiplication.

Definition A.1.2. A subspace U of a vector space W is a subset of W that is a vector space
over the same field.
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Definition A.1.3 (Inner product space). An inner product space is a vector space V with
an inner product defined on V , with an inner product on V is a mapping of V × V into the
scalar field F of V ; that is, with every pair of vectors u, v there is associated a scalar which
is written

〈u,v〉,

and is called the inner product of u and v, such that for every u,v,w ∈ V and α ∈ F

1. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉,

2. 〈αu,v〉 = α〈u,v〉,

3. 〈u,v〉 = 〈v,u〉∗, (here ∗ denotes the complex conjugation)

4. 〈u,u〉 ≥ 0, 〈u,u〉 = 0 if and only if u = 0.

Definition A.1.4 (Minkowski sum). Given two subsets U, V of a vector space W , the
Minkowski sum of U and V is defined as

U + V := {u + v : u ∈ U,v ∈ V }.

Definition A.1.5 (Internal direct sum). Let U, V be two subspaces of a vector space W
with U ∩ V = {0}. We say U � V is the (internal) direct sum of U and V if every vector
x ∈ (U � V ) has a unique representation of the form x = u + v, where u ∈ U and v ∈ V .

The internal direct sum requires uniqueness in the representation compared to the Minkowski
sum. Also, note that Minkowski sum applies to every pair of sets in W ; on the other hand,
� is only given for subspaces.

Definition A.1.6 ((External) direct sum). Let U, V be two vector spaces over the filed F .
We define the (external) direct sum of U and V as

U ⊕ V := {(u,v) : u ∈ U,v ∈ V } ,

with addition given by

(u1,v1) + (u2,v2) = (u1 + u2,v1 + v2)

and scalar multiplication given by

α(u,v) = (αu, αv).

Note that U ⊕ V is also a vector space. If U, V are subspaces of a vector space W with
U ∩ V = {0} then U ⊕ V is isomorphic to U � V .
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A.2 Normed Linear Spaces

Definition A.2.1 (Seminorm and norm). A seminorm on a real vector space V is a real-
valued function on V whose value at a v ∈ V is denoted by ‖v‖ has the properties

(i) ‖v‖ ≥ 0,

(ii) ‖αv‖ = |α|‖v‖,

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖,

where v,w are arbitrary vectors in V and α is a scalar. A norm on V is a seminorm which
also satisfies

(vi) ‖v‖ = 0⇔ v = 0,

An inner product on V defines a norm on V given by

‖u‖ =
√
〈u,u〉.

Definition A.2.2 (Normed linear space). A normed linear space V is a vector space with
a norm defined on it.

Definition A.2.3 (Equivalent norms). A norm ‖ · ‖a on a vector space V is said to be
equivalent to a norm ‖ · ‖b on V if there are positive numbers β > α > 0 such that for every
v ∈ V we have

α‖v‖b ≤ ‖v‖a ≤ β‖v‖b.

Theorem A.2.1. Given two norms ‖ · ‖a and ‖ · ‖b on a finite dimensional vector space V ,
‖ · ‖a is equivalent to ‖ · ‖b.

Some Commonly Used Norms

In this section, we list a number of norms that are of primary interest to us. Let x :=[
x1 x2 · · · xn

]>
be a vector in n-dimensional Euclidean space Rn.

(i) (Euclidean norm) The Euclidean norm on Rn is defined as

‖x‖2 :=

√√√√ n∑
i=1

|xi|2.

(ii) (`p-norm) The `p-norm on Rn is defined as

‖x‖p :=

(
n∑
i=1

|xi|p
) 1

p

, p ≥ 1.
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(iii) (`∞-norm) The `∞-norm (or max norm) on Rn is defined as

‖x‖∞ := max {|x1|, |x2|, . . . , |xn|} .

Definition A.2.4 (Quasi-norm). A quasi-norm on a real vector space V is a real-valued
function on V whose value at a v ∈ V is denoted by ‖v‖ has the properties

(i) ‖v‖ ≥ 0,

(ii) ‖v‖ = 0⇔ v = 0,

(iii) ‖αv‖ = |α|‖v‖,

(iv) there is a constant C such that

‖v + w‖ ≤ C (‖v‖+ ‖w‖) . (A.1)

where v,w are arbitrary vectors in V and α is a scalar.

Note that ‖·‖p is not a norm when p ∈ (0, 1), as the triangle inequality fails. However, when

it defines a quasi-norm and the constant satisfying (A.1) is C = 2
1
p
−1.
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Schatten-p norm, 5
Schatten-q Quasi Norm, 29
Schatten-p-norm, 5
Schur product, 49
Schur Product Theorem, 50
singular value, 4
skew-symmetric Kronecker product, 63
skew-symmetric vector, 53
spectral norm, 5
strong interlacing property, 66
Sylvester equation, 48
symmetric gauge function, 5
symmetric Kronecker product, 60
symmetric vector, 53
symmetrized similarity operator, 74, 90

tangent cone, 2
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unitarily invariant, 5

vec, 4

weak-interlacing property, 65
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