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Abstract

In recent years we have witnessed many successes of neural networks in the information
retrieval community with lots of labeled data. Yet it remains unknown whether the same
techniques can be easily adapted to search social media posts where the text is much
shorter. In addition, we find that most neural information retrieval models are compared
against weak baselines. In this thesis, we build an end-to-end neural information retrieval
system using two toolkits: Anserini and MatchZoo. In addition, we also propose a novel
neural model to capture the relevance of short and varied tweet text, named MP-HCNN.

With the information retrieval toolkit Anserini, we build a reranking architecture based
on various traditional information retrieval models (QL, QL+RM3, BM25, BM25+RM3),
including a strong pseudo-relevance feedback baseline: RM3. With the neural network
toolkit MatchZoo, we offer an empirical study of a number of popular neural network
ranking models (DSSM, CDSSM, KNRM, DUET, DRMM). Experiments on datasets from
the TREC Microblog Tracks and the TREC Robust Retrieval Track show that most
existing neural network models cannot beat a simple language model baseline. How-
ever, DRMM provides significant improvement over the pseudo-relevance feedback baseline
(BM25+RM3) on the Robust04 dataset and DUET, DRMM and MP-HCNN can provide
significant improvements over the baseline (QL+RM3) on the microblog datasets. Further
detailed analyses suggest that searching social media and searching news articles exhibit
several different characteristics that require customized model design, shedding light on
future directions.
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Chapter 1

Introduction

Text matching is one of the most important problems in natural language processing. Given
two texts (which could be sentences, paragraphs or passages), the target of text matching
is to compute the similarity of these two texts. Many natural language processing prob-
lems can be modeled as or transformed into a text matching problem such as information
retrieval, question answering and so on. The main challenge of text matching comes from:

• Hierarchical matching signals at different levels: Word matching, phrase
matching, and sentence matching are all important in query-document matching
and it is difficult to define the weights of each matching signal. Document matching
is the highest level matching, which requires the matching algorithm to summarize
the main idea of the whole paragraph or passage. Although it has been researched
for many decades, it still remains unclear how much matching signal in the lower
granularities (word matching, phrase matching, and sentence matching) document
matching requires.

• The trade-off between exact matching and semantic matching: exact match-
ing requires matching algorithms to find the text pairs that share the most common
words, while semantic matching considers the semantics of the words, phrases, and
sentences. The target of these two requirements are similar, but not exactly the same
and sometimes we need to sacrifice one to maximize the other. For example, it has
been shown in previous work [21] that information retrieval prefers exact matching
and question answering needs more semantic matching.

The traditional text matching problem is solved by a large amount of hard-coded feature
engineering based on bag-of-words and bag-of-phrases models. Most feature-based methods
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have few learnable parameters. For example, Bing or Google has thousands of features,
which means we need to design domain-specific features for each task and dataset. Then,
applying these domain-specific features to a new or general domain is difficult. However,
these bag-of-words based methods cannot leverage all information required by the text
matching task. For example, rich text semantics at the sentence level is ignored by the
traditional bag-of-words and bag-of-phrases methods. On the other hand, in short text
matching, the length is relatively small (<100) compared to long documents such as news.
Since there are very few terms after tokenization and stop word removal, bag-of-words based
models are not satisfying because they cannot leverage the meaning behind the terms. To
address this issue and extract more matching signals, latent semantic models were proposed
such as LSA, PLAS, LDA, which largely attracted NLP researchers’ attention. Recently,
neural network models (especially deep learning models) have been applied to learn the
semantic representation and matching of two texts.

With the popularity of neural network models and their application in natural language
processing, a number of neural text matching models have been proposed. These neural
text matching methods can automatically learn features from the text and the target.
Furthermore, most deep neural text matching methods start encoding the sentence using
word embeddings, which can be pretrained by unsupervised methods such as word2vec
[53] or Glove [63]. These word embeddings (vectors) are a low-dimension representation
of words and often contain rich semantic information. In addition, there is representation
learning at multiple levels using deep neural network models, which successfully leverages
hierarchical matching signals in text matching.

In comparison, the breakthrough of neural networks is not as great in the information
retrieval (IR) community. Although distributed word representations offer an opportunity
to overcome the classic vocabulary mismatch problem in IR [16], there are still some fun-
damental challenges to be solved. Guo et al. [21] first pointed out three key differences
between a relevance matching problem in IR and semantic matching in NLP: exact match-
ing signals, term importance weighting, and diverse matching requirements. Essentially,
IR problems still rely on exact matching signals between query and document as a strong
relevance indicator. In addition, because queries are short, it is ineffective to treat each
query word/phrase equally, and hence, query term weighting can be important. To over-
come these problems, many neural network models [89, 55] have been proposed recently
that perform well on ad hoc retrieval tasks on Web documents.
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1.1 Problem Definition

A typical search-based question answering system follows the pipeline: (1) build the index
on all candidates offline, (2) receive queries online and search the index to get the first
batch of candidate replies, (3) apply matching models to rerank the candidates and return
the top K. To bridge the gap between information retrieval and text matching, the target
of our thesis work is to build an end-to-end retrieval system based on four popular open
source projects: Anserini, MatchZoo, MP-HCNN and BERT. In this work, we integrate
Anserini (a state-of-the-art IR toolkit) with two different neural retrieval frameworks for
end-to-end neural IR: (1) MatchZoo, using existing neural models, and (2) MP-HCNN, a
model we developed.

Anserini is an open source information retrieval toolkit for replicable information re-
trieval research built on Lucene.1 Anserini helps simplify ad hoc experimentation and
allow researchers to easily reproduce results with modern bag-of-words ranking models on
diverse test collections. It contains experiments on 13 test collections with regression tests
in version 0.3.0, which is built on Lucene 7.6.

MatchZoo is a toolkit for text matching. It implements 11 popular deep text matching
models in version 1.0. Although some of these models are not designed for information
retrieval, we can apply them to estimate the relevance between the query and document.
For example, ARC-I, ARC-II, and MV-LSTM are targeted for short text semantic match-
ing. The model structure does not limit the application on the short text pairs only, and
similarity scores in semantic matching can be treated as relevance scores in information
retrieval.

MP-HCNN is a neural text matching model co-developed by the author of this thesis
and Jinfeng Rao, and is specifically designed for ranking short social media posts. Experi-
ments in the MP-HCNN paper on the Microblog dataset show that our model significantly
outperforms prior feature-based methods, as well, and existing neural ranking models.

Through combining Anserini and MatchZoo/MP-HCNN, the goal of our thesis is to
build an open source end-to-end system for neural information retrieval and share the
baseline’ results. Beyond that, we also try to survey recent work on end-to-end neural
information retrieval. By comparing previous results with our results, we show the im-
portance of robust engineering work, which can enhance the effectiveness of the whole
system.

1http://anserini.io
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1.2 Contributions

We summarize our contributions in this thesis as follows:

• We build an end-to-end retrieval and reranking system to allow the researchers to
select different retrieval models and neural reranking models on a specific dataset.
This work bridges the gap between information retrieval and text matching. We
report the hyper-parameters in both steps to make sure the results are replicable. In
addition, neural IR baselines provided throughout this work will be publicly available
and provide the standard for future neural IR research.

• By combining traditional IR methods (QL, QL+RM3, BM25, BM25+RM3) and
neural text matching models (DSSM, CDSSM, DUET, KNRM, DRMM, MP-HCNN,
and BERT), we present detailed experimental results on datasets from two domains:
newswire articles and microblog, representing two types of documents in IR. We build
strong baselines using our system and show the importance of a strong baseline that
a neural network model should build on.

• We achieve state-of-the-art effectiveness on two benchmark datasets using existing
methods. This results from employing effective term-based IR methods in neural IR
research and a novel neural network model we propose. Furthermore, we provide
analyses based on these results comparing the performance of different models on
different datasets.

1.3 Thesis Organization

Chapter 2 introduces related work in neural information retrieval and text matching mod-
els, including most models used in this thesis. Chapter 3 introduces all toolkits used and
describes how we integrate them into a pipeline toolkit. We will also introduce a simple but
useful interpolation method to combine the scores from both retrieval models and neural
text matching models. Chapter 4 describe how we conduct the experiments and shows all
of our experimental results on two datasets: Robust04 and Microblog. Chapter 5 concludes
and summarizes our work and discusses some interesting future research directions.
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Chapter 2

Related Work

2.1 Unsupervised Retrieval Methods

As introduced in Chapter 1, the information toolkit Anserini provides basic and traditional
retrieval models such as Query likelihood (QL), BM25, and RM3, where RM3 is a query
expansion method and can be combined with QL or BM25. We will use QL+RM3 and
BM25+RM3 to represent the combination in this paper.

2.1.1 Query likelihood with Dirichlet smoothing

QL (short for Query likelihood) is a simple model in information retrieval, which maximizes
the likelihood of the document given the query terms. Dirichlet smoothing method is
typically used to handle the unseen term during the computation of scores. [94]

2.1.2 Okapi BM25

BM25 (short for Okapi BM25) is a ranking function to estimate the query-document rele-
vance. This algorithm is not affected by word semantic types such as whether the word is
a noun or a verb, and the meaning of each word. It is only sensitive to which are common
words and which are rare words, and the document length. If one query contains both
common words and rare words, this method puts more weight on the rare words and re-
turns documents with more rare words in the query. Besides, a term saturation mechanism
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is applied to descrease the matching signal when a matched word appears too frequently
in the document.

There are two parameters in BM25, k1 and b, representing term frequency saturation
and field-length normalization respectively. However, neural IR researchers often forget to
report their parameters of BM25 when they use it.

Note that both QL and BM25 are exact match based approaches. Word matching
between queries and documents is simply counted. This might not be the most effective
choice in information retrieval. Thus, some word embedding based methods have been
introduced to enhance the two baselines in recent years. [93, 16]

2.1.3 RM3

RM3 [37] is a query expansion based model combining the QL score with a relevance
model using pseudo-relevance feedback. RM3 is an effective method in traditional IR
methods. However, neural IR researchers in recent years often ignore this method as a
baseline. Instead, weaker retrieval models like QL and BM25 are commonly used. We will
show RM3 can effectively boost the performance of neural text matching models in the
experiments in Section 4.

2.2 Learning to Rank Methods

Before the surge of neural networks, learning to rank (L2R) was a field that took advantage
of recent advances in machine learning to improve ranking effectiveness. Existing work on
L2R can be summarized into three main categories: pointwise, pairwise and listwise. The
main difference lies in the problem formulations with different assumptions, input/output
spaces, and loss functions. Pointwise methods, focus on learning a relevance score for
each query-document pair represented in a feature space, while pairwise approaches, such
as LambdaMART [5] and RankSVM [32], aim to learn the preference between a pair of
documents to a query. Listwise approaches, such as ListNet [6], directly optimize the input
list of documents to a query to find the best-ranked list. The major drawback of L2R is
that it requires manual feature engineering, which can be time-consuming, incomplete, and
difficult to generalize to other problems.
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2.3 Neural Information Retrieval Methods

2.3.1 Neural Network Basics

Convolution Neural Networks (CNN) can efficiently capture local features. Ever since
LeCun et al. [39] first applied backpropagation and gradient-based learning to train CNNs
and succeeded in document recognition, CNNs have become one of the most widely used
neural networks in various areas such as image recognition [35], speech recognition [1] and
natural language processing [15]. In a traditional feedforward neural network, we connect
each input neuron to each output neuron in the next layer. That is also called a fully
connected layer, or affine layer. In CNNs, we do not do that. Instead, we use convolutions
over the input layer to compute the output. This results in local connections, where each
region of the input is connected to a neuron in the output. Thus, CNN can preserve the
spatial structure of the input matrix (e.g., image) or sequence (e.g., text).

Recurrent Neural Networks (RNN) have shown promising effectiveness on processing
sequencial data. RNNs have been applied to image generation [20], sequence-to-sequence
learning [82], language modeling [81] and many NLP tasks [87]. The key to why RNNs
can learn a good representation for sequential data is that every time an input is fed to
the RNN cell, the RNN cell will compute and update its hidden state which will be fed
back into the model the next time a new input is fed. Of all RNN structures proposed,
long short-term memory networks (LSTM) are one of the most popular types introduced
by Hochreiter et al. [27]. In LSTM, a sigmoid layer called the “forget gate” is employed
to avoid useless history information, which is the origin of its name.

Recently, as neural network models have achieved success in multiple areas such as
computer vision and speech recognition, they have been widely applied in natural language
processing, too. The advantages of applying neural network models to natural language
processing problems are:

• Neural network models can represent words in low-dimensional semantic space. In
this semantic space, the distance of word vectors can represent the similarity between
words.

• There are thousands of variations in neural networks, which can model complex
natural language knowledge flexibly.

• The neural network itself is hierarchical, making it easy to leverage hierarchical se-
mantic information in a sentence or document.

7



Tasks Text 1 Text 2 Objective
Paraphrase Indentification string 1 string 2 C

Textual Entailment text hypothesis C
Question Answering question answer C/R

Conversation dialog response C/R
Information Retrieval query document R

Table 2.1: Typical text matching tasks (C: classification; R: ranking)

• Hardware developments, especially the development of GPUs for parallel training of
neural network models, greatly boost the ability to learn from a huge amount of data
in real life and make it possible to train complex models within days or even hours.

In summary, according to previous work on neural network models on natural language
processing tasks such as POS tagging, semantic analysis, sentiment analysis, and relation
classification, CNN-based networks tend to learn local semantics through the convolutional
layer, making it easier to model hierarchical semantic information. In contrast, RNN based
networks tend to learn sequential information by compressing the history text into a vector.

2.3.2 Text Matching and Information Retrieval

Natural language processing (NLP) tasks can be divided into several groups according to
the input and output type: sentence classification, sentence pair classification (ranking),
sequence labeling, and sequence-to-sequence generation [82]. Each group has various sub-
problems. For example, in sentence pair classification (ranking), which is also known as
text matching, we have subtasks such as question answering [66, 75], paraphrase identi-
fication [80], and sentence similarity [24]. Correspondingly, there have been a series of
models for modeling sentence pair similarity or relevance [75]. Detailed information for
text matching tasks is shown in Table 2.1.

According to Lan et al. [36], there are two kinds of neural text matching models
in terms of the model architecture: sentence encoding models (SEM) and sentence pair
interaction models (SPIM). SEM models come from Siamese architecture [9] and vector
representations of individual sentences are learned, and then the semantic relationship
between sentences based on vector distance is calculated. SPIM uses some types of word
alignment mechanisms (e.g., attention) and then aggregates inter-sentence interactions.
Compared to SEM, SPIM directly models the matching signals and intersects the two texts
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as early as possible. This has been shown to be a stable advantage and has become more
popular in text matching. Currently, the published popular SEMs are DSSM, CDSSM,
ARC-I, CNTN, and so on. The published popular SPIMs are MVLSTM, DeepMatch, ARC-
II, MatchPyramid, Match-SRNN, DRMM, KNRM, among others. In our experiments, we
try both kinds of network and show the performance difference.

As a sub-problem of text matching, the current neural approaches for information
retrieval can also be divided into two types: representation-based approaches [28, 77, 75]
and interaction-based approaches [21, 89, 55]. The early attempts on neural IR mainly
focus on representation-based modeling between query and document, such as DSSM [28]
and C-DSSM [77]. DSSM [28] is early popular NN architecture for Web search that maps
word sequence to character-level trigrams by using a word hashing layer, and then feeds
the dense hashed features to a multi-layer perceptron (MLP) for similarity learning. C-
DSSM [77] extends this idea by replacing the MLP in DSSM with a convolutional neural
network-based (CNN) layer to capture local contextual signals from neighboring character
trigrams. SM-CNN can be viewed as a hybrid approach with the main component of a
convolutional layer for learning discriminative representations of query and document and
a feature layer that exploits hand-crafted features.

In contrast, interaction-based approaches [21, 89, 55] model the similarity matrix of
word pairs from the query and document directly. The similarity matrix is usually com-
puted through word embeddings, such as word2vec [53], which solves the sparsity issue of
count-based approaches. The DRMM approach [21] introduces a pyramid pooling tech-
nique to convert the similarity matrix to histogram representations, on top of which a term
gating network aggregates weighted matching signals from different query terms. Inspired
by DRMM, Xiong et al. [89] propose K-NRM that introduces a differentiable kernel-based
pooling technique to capture matching signals at different strength levels. The DUET
model [55] combines the representation-based and interaction-based models and proposes
an idea with both a global component for the semantic match and a distributed component
for the exact match. However, there are still problems to be solved in current neural IR
research.

• Various lengths [22]: the matched document will be either very long or very short,
while most deep learning based models are good at dealing with short documents.
For a long document, deep learning based methods fail because: 1) it takes a long
time and a large amount of resources for deep learning based methods to train and
test; 2) exact matching is still the most effective factor in long document retrieval,
but most deep learning based methods put too much weight on semantic matching.
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• External knowledge: in recent NLP research, it has been shown that the pretrained
language models, especially the contextual embeddings [64], greatly boost the effec-
tiveness of the down-stream NLP task. When pretrained embeddings or external
knowledge are employed into the information retrieval area, care should be taken to
make sure the representations are suitable for transferring into this domain [91].

2.3.3 Neural Information Retrieval Models

As introduced above, MatchZoo contains the implementations of 11 neural network mod-
els. The basic information for each model in MatchZoo is listed in Table 2.2. As mentioned
in Section 2, existing deep text matching models can be divided into composition-focused
methods and interaction-focused methods. Composition-focused methods compose each
sentence into one embedding and then measure the similarity between the two embeddings.
In interaction-focused methods, two sentences meet before their own high-level representa-
tions mature, which can capture complex matching patterns. In our experiments, DSSM
and CDSSM are representives of composition-focused methods, while DUET, KNRM and
DRMM are representives of interaction-focused methods. Due to space constraints, for
more details on each NN model, we refer the readers to the original papers. We will
present a brief introduction to each model’s main features and give some analysis in this
section.

DSSM

DSSM is the first neural semantic matching model applied to Web search. It splits a
sentence into letter-trigrams and combines the query and document representation into
a similarity matrix through dot product and softmax layers. It claims state-of-the-art
performance on the search log dataset. However, as pointed out by later researchers such
as Guo et al. [21] and Pang et al. [61], DSSM suffers from the following problems:

• DSSM needs a huge amount of data for training. So, it is difficult to obtain a well-
trained model on a small dataset in another domain. Thus, most researchers have to
directly use the released models (trained on raw large click-through dataset described
in the paper). However, the weakness of leveraging domain-specific matching signals
without fine-tuning the model will be magnified as a result.

• A character-based model can address the matching of words that share similar sub-
words (e.g., architecture and architect). However, it still cannot leverage the match-
ing of words that share the meaning, but have totally different character composition
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Model Task Dataset
NN Architecture

Encoding Hidden Combination

DSSM
(2013)

Web search
clickthrough

data
Word Hashing of
Letter-Trigram

MLP Dot + softmax

CDSSM
(2014)

Web search
clickthrough

data
Word Hashing of
Letter-Trigram

Conv1D +
MLP

Dot + softmax +
Max Pooling

ARC-I
(2015)

Semantic
matching

Reuters,
Weibo

Word Embedding Conv1D Concatenation

ARC-II
(2015)

Semantic
matching

Reuters,
Weibo

Word Embedding

Conv1D +
Conv2D +
MaxPool-

ing2D

Concatenation

MV-
LSTM
(2015)

Semantic
matching

Yahoo!
Answers

Word Embedding BiLSTM
Cosine / Bilinear

/ Tensor +
k-Max Pooling

DRMM
(2016)

Ad-hoc
Retrieval

Robust04 and
ClueWeb09B

Query: Word
Embedding; Doc:

local interac-
tion+matching

histogram

MLP Dot

DRMMTKS

(2016)

Ad-hoc
Retrieval

Robust04 and
ClueWeb09B

Word Embedding MLP
Cosine+k-Max

Pooling

aNMM
(2016)

QA TREC QA

Query: Word
Embedding; Doc:

local interac-
tion+matching

bin sums

MLP Dot

Match-
Pyramid

(2016)

Paraphrase
Identifica-
tion, Paper

Citation
Matching

MSRP, a large
academic
dataset

(commercial)

Word embedding Conv2D
Indicator / Dot /
Cosine + k-max

pooling

DUET
(2017)

Web search
Bings search

logs

LM: one-hot
vector; DM: word

embedding
Conv1D

LM: intersection;
DM: entrywise

product

K-NRM
(2017)

Ad-hoc
Retrieval

search logs
from

Sogou.com
Word embedding

Kernel
pooling

Cosine

Table 2.2: Model details
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(e.g., architecture and construction). It also cannot distinguish different words that
share similar character composition, but express different (sometimes even opposite)
meanings (e.g., angle and angel).

CDSSM

CDSSM is a CNN version of DSSM. There is one more Conv1D layer to leverage the infor-
mation of letter-trigram matching, which represents local contextual features as described
in Shen et al. [77]. In addition, a max pooling layer is added to collect these local contex-
tual features and form a global feature vector. Both local and global contextual features
have been shown to be effective in semantic matching for Web search.

CDSSM improves over DSSM by replacing the fully-connected layer in DSSM with
a convolutional neural network (CNN) to capture local context signals from neighboring
trigrams. However, CDSSM still cannot avoid the two weaknesses of DSSM discussed
above.

DUET

DUET is a combined model for local and distributed representations proposed by Mitra et
al. [55]. DUET is also a model for Web search. However, unlike DSSM and CDSSM, DUET
applies a one-hot representation and word embeddings to leverage both exact matching and
semantic match signals.

According to Mitra et al. [55], for exact matching by local models, query term matches
in relevant documents are observed to be more clustered, and more localized near the be-
ginning of the document. This also matches our intuition for query-document matching in
information retrieval. As for semantic matching by the distributed model, after learning
the word and phrase representations of the query and the document, the distributed model
performs query-document matching by computing element-wise or Hadamard product be-
tween the embedded document matrix and the extended or broadcasted query embedding.
This matching method has been shown to provide outstanding results on Web search-
ing, with training data from clickthrough logs. However, little work after DUET follows
DUET and applies the element-wise product as the intersection method. So, it is unknown
whether this module has an effective contribution to document matching.

Interestingly, the distributed model in DUET shows better effectiveness than the local
model, which means the distributed model can somewhat leverage the exact matching
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signals. On the other hand, the local model can reach the effectiveness of the previous non-
neural baselines and neural baselines, meaning exact matching is still the most important
matching signal in Web search.

DRMM

The Deep Relevance Matching Model (DRMM) [21] is an interaction-based approach that
converts the query-document similarity matrix to a histogram representation, on top of
which a term gating network is introduced to aggregate matching signals from different
query terms with term weightings being incorporated. In other words, DRMM contains
three major components, the matching histogram mapping, a feed forward matching net-
work, and a term gating network.

DRMM was shown to outperform strong IR baselines and other recent deep learning
methods. In the DRMM paper, the authors pointed out that many existing deep matching
models are designed for semantic matching, and thus may not be appropriate for ad-hoc
retrieval. The authors argued that DRMM was designed for ad-hoc retrieval and could
significantly outperform traditional retrieval models (BM25, QL), as well as state-of-the-art
deep matching models.

KNRM

KNRM [89] is an end-to-end neural ranking model that introduces a differentiable kernel-
based layer to capture multi-level granularities of soft-matching signals from the input sim-
ilarity matrix. The novel part of KNRM is its kernel pooling method. First, soft matches
from query-document word interactions are used to rank the documents and the relevance
preference encoding are achieved by the kernels. Kernel pooling is a novel method to con-
vert word-word interactions in the similarity matrix to query-document ranking features.
Then k-max pooling is applied to transform the features into a K-dimensional feature vec-
tor for each word in the query. According to Xiong et al. [89], KNRM significantly beats
the effectiveness of traditional ranking methods and neural ranking methods like DSSM,
CDSSM, and DRMM. However, this advantage is only shown using the search logs from
Sogou.com, which is not a publicly available dataset. To the best of this thesis’s author’s
knowledge, the performance of KNRM on other datasets, specially for long documents, is
still unknown.
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BERT

BERT is a pretrained language model proposed by Devlin et al. [11] that has been proven
effective in many natural language processing tasks [92, 57], ranging from sentence clas-
sification to question answering to sequence labeling. The effectiveness of BERT mainly
results from the heavy use of pretraining for the language model. BERT is pretrained
on the concatenation of the BooksCorpus (800M words) and English Wikipedia (2,500M
words). Another major contribution of BERT from the model perspective is that BERT is
novel deep bidirectional architecture, allowing the same pre-trained model to successfully
tackle a broad set of natural language processing tasks.

2.4 Evaluation Metrics

There are two evaluation perspectives for text matching tasks: classification and ranking.
The difference is how we build the datasets and what the final target is. So, in general, all
text matching models can be treated as both a classification model and a ranking model.
The datasets are built for specific purposes so they have their own evaluation metrics. Even
the models themselves can be used for both classification or ranking, standard benchmark
datasets define a specific evaluation methodology. Table 2.3 shows the popular datasets in
the text matching task and their evaluation metrics:

Dataset Type Task Evaluation Metrics
SNLI C Natural Language Inference Accuracy

Multi-NLI C Natural Language Inference Accuracy
Quora C Paraphrase Identification Accuracy

Twitter-URL C Paraphrase Identification Precision, Recall, F1
PIT-2015 C Paraphrase Identification Precision, Recall, F1
STS-2014 C Semantic Textual Similarity Pearson’s correlation
TrecQA R Question Answering MAP, MRR
WikiQA R Question Answering MAP, MRR
Robust04 R Information retrieval MAP, P@20, NDCG@20
Microblog R Information retrieval MAP, P@30

Table 2.3: Datasets and their evaluation metrics (C: classification; R: ranking)

For the information retrieval task, we usually treat it as a ranking problem because
we care about the entire rank list returned by the retrieval model or system. Thus, MAP
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(short for Mean Average Precision), P@K (short for precision at K), and NDCG@K (short
for Normalized Discounted Cumulative Gain at K [31]) are used for evaluation.

Precision compute the fraction of relevant documents retrieved for a query q with
respect to the total number of documents in the retrieved set Rq:

Precisionq =

∑
〈i,d〉∈Rq

relq(d)

|Rq|
(2.1)

The definition of average precision is as follows:

APq =

∑
〈i,d〉∈Rq

Precisionq,i × relq(d)∑
d∈D relq(d)

(2.2)

where, Precisionq,i is the precision computed at rank i for the query q.

NDCG [31] calculates the Discounted Cumulative Gain (DCG) over the relevance labels
rel(r[i]) for each document in the top K of a ranking and then is normalized by the maximal
DCG possible for a query (iDCG). The definition of NDCG is shown as follows:

NDCGq =
DCGq

IDCGq

(2.3)

where IDCGq is the ideal DCG (iDCG), which is the DCG for the perfect ranking and
the DCGq is defined as follows:

DCGq =
∑
〈i,d〉∈Rq

2relq(d) − 1

log2(i+ 1)
(2.4)

The ideal DCG (IDCGq) is computed the same way but by assuming an ideal rank order
for the documents up to rank K. Note both P@K and MAP metrics assume that the
relevance labels are binaIniformationry but NDCG@K does not have such an assumption.

In summary, IR metrics focus on rank-based evaluation of retrieved results using ground
truth information, as determined by manual judgments or implicit feedback from user
behaviour data. However, this is also one of the drawbacks of IR evaluation. Humans
cannot manually label all possible relevant documents, and all documents not labeled are
treated as irrelevant, which might not be always true.
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Chapter 3

End-to-End Information Retrieval
Architecture

3.1 Architecture

The integration between traditional information retrieval methods and reranking models is
straightforward. After building indexes with a search engine, we search the candidates given
a query with traditional IR methods. Different from the Java native implementation, we
implement this retrieval-rerank pipeline using Python API with Pyjnius,1 a Python library
for accessing Java classes. The candidate output are connected with the input of reranking
models directly. The framework of the retrieval-rerank system is shown in Figure 3.1.
First, we select K1 candidate documents using a traditional IR baseline. Then we rerank
the K1 documents using the reranking models and aggreate the matching scores from the
neural models and the relevance scores from the IR baselines using a linear interpolation
(See Section 3.6 for details). Finally, we select K2 candidate with the interpolated scores
as the output. In our experiments, we choose K1=K2=1000 for both the Microblog and
the Robust04 datasets.

For the retrieval models, we use the implementation from the Anserini toolkit intro-
duced in the Chapter 1. We use four IR methods (QL, QL+RM3, BM25, BM25+RM3)
and apply neural reranking models in the MatchZoo toolkit introduced in the Chapter 1.
In addition, in this thesis, we also integrate MP-HCNN and BERT with the open-source
Anserini toolkit to create an end-to-end information retrieval system. We will introduce
the details of Anserini, MatchZoo, MP-HCNN and BERT in the following sections.

1https://pyjnius.readthedocs.io/en/latest/
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 Anserini

Inverted
Index

Query

top k1 documents

Top k2 documents
Trained 
model +

Reranker

retrieval score

rerank
score

Raw model 

Indexing Train reranker

Corpus

Figure 3.1: The Architecture of the Retrieval-rerank framework.

Note that in our framework, only the indexing part is written and executed using Java.
Once after indexing, all other modules are written in Python and executed in a list of
Python scripts, so we achieve retrieval and reranking in one shell script. All neural network
models in MatchZoo are implemented using Keras.2 Similar to MatchZoo, MP-HCNN is
implemented in Keras. We use almost the same interface as the Anserini+MatchZoo and
tweak the data file format to match the input of MP-HCNN and BERT model.

3.2 Anserini

It is known that Lucene can handle heterogeneous web collections at scale. However,
Lucene lacks systematic support for evaluation over standard test collections, which is ex-
actly the intuition behind the development Anserini,3 an open source information retrieval
system for reproducible information retrieval research built on Lucene [90]. In addition,
Anserini is also aimed at efficiently indexing large web collections, and supporting low-
latency query evaluation to facilitate rapid experimentation.

Anserini provides wrappers and extensions on top of core Lucene libraries that allow
researchers to use more intuitive APIs to accomplish common research tasks. As of January
1st, 2019, Anserini has included 13 standard IR experiments with regression tests for

2https://keras.io/
3http://anserini.io/
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replicability across various domains such as news, microblogs, and Wikipedia. On the other
hand, Anserini also provides some features such as multi-threaded indexing and relevance
feedback algorithms like RM3 and axiomatic reranking. These reranking methods actually
work well in most IR retrieval tasks.

3.3 MatchZoo

MatchZoo4 is a text matching toolkit that aims at facilitating the design, comparison and
sharing of deep text matching models. Figure 3.2 shows the three components of MatchZoo
toolkit:

• Data processing module: this module contains general text processing functions such
as word tokenization, low-frequency word removal, word stemming, and so on. Then,
this module transfers different types of text matching task into the same format. In
addition, this module provides different data generator for training including the
single document generator, document pair generator, and document list generator.
Different data generators are suitable for different text processing tasks such as ques-
tion answering, dialogue system, and text ranking.

• Model construction module: this module contains widely used layers in deep learning
such as a convolutional layer, pooling layer, and fully connection layer. Also, this
module designs specific layer for text matching task such as dynamic k-max pooling
layer and term gating layer.

• Train and evaluation module: this module provides target functions and evaluation
metrics for classification, regression and ranking problems. Users can choose the
target function according to the task.

MatchZoo has been under active development since it was built in 2017. In the re-
leased version 1.0, MatchZoo contains 11 deep matching methods for text matching:
DRMM, MatchPyramid, MV-LSTM, aNMM, DUET, ARC-I, ARC-II, DSSM, CDSSM,
CONV-KNRM, and DUET. There are models under development such as Match-SRNN
and DeepRank, which might be released in the future version. Initially, these models
were proposed for different subtasks of text matching: paraphrase identification, textual
entailment, question answering, information retrieval.

4https://github.com/NTMC-Community/MatchZoo
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Figure 3.2: The Architecture of the MatchZoo toolkit.

3.4 MP-HCNN

MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) [71] is a novel
neural ranking model specifically designed for ad hoc retrieval over short social media posts,
which is co-authored by the author of this thesis. Basically MP-HCNN is composed of two
parts: hierarchical convolutional layers and similarity aggregation.

3.4.1 Hierarchical Convolutional Layers

Given a query q and a document d, the textual matching component aims to learn a rele-
vance score f(q, d) using the query terms {wq

1, w
q
2, ..., w

q
n} and document terms {wd

1, w
d
2, ..., w

d
m},

where n and m are the number of terms in q and d, respectively. To be clear, “document”
can either refer to a social media post or an URL, and “term” refers to either words or
character trigrams. One important novel aspect of our model is relevance modeling from
multiple perspectives, and our architecture exhibits symmetry in the word- and character-
level modeling. Thus, for expository convenience, we use “document” and “term” in the
generic sense above. We first employ an embedding layer to convert each term into a
L-dimensional vector representation, generating a matrix representation for the query Q
and document D, where Q ∈ Rn×L and D ∈ Rm×L. In the following, we introduce our
representation learning method with hierarchical convolutional neural networks.

A convolutional layer applies convolutional filters to the text, which is represented by
an embedding matrix M (Q or D). Each filter is moved through the input embedding
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incrementally as a sliding window (with window size k) to capture the compositional rep-
resentation of k neighboring terms. Assuming a convolution layer has F filters, then this
CNN layer produces output matrix Mo ∈ R‖M‖×F with O(F × k × L) parameters.

We then stack multiple convolutional layers in a hierarchical manner to obtain higher-
level k-gram representations. For notational simplicity, we drop the superscript o from all
output matrices and add a superscript h to denote the output of the h-th convolutional
layer. Stacking N CNN layers therefore corresponds to obtaining the output matrix of the
h-th layer Mh ∈ R‖M‖×Fh

via:

Mh = CNNh(Mh−1), h = 1, . . . , N,

where Mh−1 is the output matrix of the (h−1)-th convolutional layer. Note that M0 = M
denotes the input matrix (Q or D) obtained directly from the word embedding layer, and
the parameters of each CNN layer are shared by the query and document inputs.

Intuitively, consecutive convolutional layers allow us to obtain higher-level abstractions
of the text, starting from character-level or word-level to phrase-level and eventually to
sentence-level. A single CNN layer is able to capture the k-gram semantics from the input
embeddings, and two CNN layers together allow us to expand the context window to up
to 2k − 1 terms. Generally speaking, the deeper the convolutional layers, the wider the
context considered for relevance matching. Empirically, we found that a filter size k = 2
for word-level inputs and k = 4 for character-level inputs work well. The number of
convolutional layers N was set to 4. This setting is reasonable as it enables us to gradually
learn the representations of word-level and character-level n-grams of up to O(N × k)
length. Since most queries and documents in the social media domain are either shorter
or not much longer than this length, we can regard the output from the last CNN layer as
an approximation of sentence representations.

An alternative to our deep hierarchical design is a wide architecture, which reduces
the depth but expands the width of the network by concatenating multiple convolutional
layers with different filter sizes k in parallel to learn variable-sized phrase representations.
However, such a design will require quadratically more parameters and be more difficult
to learn than our approach. More specifically, our deep model comprises O(N × F × kL)
parameters with N CNN layers, while a wide architecture with the same representation
window will need O(F×(kL+2kL+...+NkL)) = O(N2×F×kL) parameters. The reduced
parameters in our approach mainly come from representation reuse at each CNN layer,
which also generalizes the learning process by sharing representations between successive
layers.
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3.4.2 Similarity Aggregation

To measure the similarity between the query and the document, we match the query with
the document at each convolutional layer by taking the dot product between the query
representation matrix Mq and the document representation matrix Md:

S = MqMd
T ,S ∈ Rn×m,

S̃i,j = softmax(Si,j) =
eSi,j∑m
k=1 e

Si,k

where Si,j can be considered the similarity score by matching the query phrase vector Mq[i]
with the document phrase vector Md[j]. Since the query and document share the same
convolutional layers, similar phrases will be placed closer together in a high-dimensional
embedding space and their product will produce larger scores. The similarity matrix S is
further normalized to S̃ with range [0, 1] through a document-side softmax function.

We then apply max and mean pooling to the similarity matrix to obtain discriminative
feature vectors:

Max(S̃) = [max(S̃1,:), ...,max(S̃n,:)],Max(S̃) ∈ Rn;

Mean(S̃) = [mean(S̃1,:), ...,mean(S̃n,:)],Mean(S̃) ∈ Rn;

Each score generated from pooling can be viewed as one piece of matching evidence for a
specific query term or phrase to the document, and its value denotes the importance of the
relevance signal.

To measure the relative importance of different query terms and phrases, we inject
external weights as prior information by multiplying the score after pooling with the weight
of that specific query term or phrase. These are provided as feature inputs to the subsequent
learning-to-rank layer, denoted by Φ:

Φ = {weights(q)�Max(S̃), weights(q)�Mean(S̃)},

where � is an element-wise product between the weights of query terms or phrases with
the pooling scores and weights(q)[i] denotes the weight of the i-th term or phrase in the
query. We choose inverse document frequency (IDF) as our weighting measure; a higher
IDF weight implies rarer occurrence in the collection and thus larger discriminative power.
This weighting method also reduces the impact of high matching scores from common
words like stopwords.
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Our similarity measurement layer has two important properties. First, all the layers,
including matching, softmax, pooling, and weights, have no learnable parameters. Second,
the parameter-free nature enables our model to be more interpretable and to be more robust
from overfitting. By matching query phrases with document phrases in a joint manner,
we can easily track which matches contribute more to the final prediction. This greatly
increases the interpretability of our model, an important benefit as this issue has become a
prevalent concern given the complexity of neural models for IR and NLP applications [41].

Given similarity features learned from word-level Φw and character-level Φc, we employ
a multi-layer perceptron (MLP) with a ReLU activation in between as our learning-to-rank
module:

o = softmax (MLP(Φw t Φc))

where t is a concatenation operation and the softmax function normalizes the final predic-
tion to a similarity vector o with its values between 0 and 1. The training goal is to minimize
the negative log likelihood loss L summed over all samples (oi, yi): L = −

∑
(oi,yi)

log oi[yi],
where yi is the annotation label of sample i.

Since MP-HCNN is claimed to be able to leverage the domain-specific information in
the microblog matching task, it has been shown to reach state-of-the-art performce on the
Microblog dataset. We will apply MP-HCNN to experiments on the Microblog dataset.
Instead of trying it on a single QL baseline, we will show we can achieve even better
performance with the stronger RM3 baseline.

3.5 BERT

We use the base version of the pretrain BERT model of the PyTorch implementation.5

We use BERT as a sentence pair classification model as demostrated in Figure 3.4. In our
experiments, sentence 1 is the query and sentence 2 is the document. Then we fine tune
the BERT model in our datasets and we extract the probability of the class label as the
relevance of the two sentences during the inference stage.

5https://github.com/huggingface/pytorch-pretrained-BERT
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Figure 3.3: Overview of our Multi-Perspective Hierarchical Convolutional Neural Network
(MP-HCNN), which consists of two parallel components for word-level and character-level
modeling between queries, social media posts, and URLs. The two parallel components
share the same architecture (with different parameters), which comprises hierarchical con-
volutional layers for representation learning and a semantic similarity layer for multi-level
matching. Finally, all relevance signals are integrated using a fully-connected layer to
produce the final relevance score.
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Figure 3.4: The Architecture of the BERT model for sentence pair classification.

3.6 Interpolation between Retrieval Models and Rerank-

ing Models

The above described NN models are good at modeling semantic similarities between queries
and documents, yet we know exact matching signals can also substantially contribute to
relevance ranking [21, 55]. Thus, we adopt a simple linear interpolation method to combine
the evidence from above NN models with the classical retrieval model (QL, BM25, RM3)
method below:

rel(q, d) = λ ∗ Reranker(q, d) + (1− λ) ∗ Retriever(q, d) (3.1)

The best hyper-parameter α is tuned on the validation set considering all values in tenth
increments from 0 to 1, and applied to the test set.
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Chapter 4

Evaluation

4.1 Experimental Setup

We design our experiments as follows. All experiments are performed using Anserini (the
backend Lucene version: 7.6), MatchZoo of the released version 1.0 and the released code
of MP-HCNN and BERT. Word vectors are pre-trained on the Google news corpus (3
billion running words).1 All the hyper-parameters in the experiments can be viewed in
Table 4.1 and Table 4.4. In our experiments, we select four information retrieval methods
from Anserini (QL, QL+RM3, BM25, BM25+RM3), five models for information retrieval
only in MatchZoo (DSSM, CDSSM, DUET, KNRM, DRMM), MP-HCNN and BERT,
and apply them into two datasets: Microblog and Robust04. In order to make our results
comparable and consistent to the previous results, we report the MAP, MRR, P@20, P@30,
and NDCG@20 scores as the evaluation metrics for the IR baselines. For the neural
reranking results, we report MAP, P@20 and NDCG@20 scores for the Robust04 dataset
and report MAP and P@30 scores for the Microblog dataset.

Generally, there are two ways to generate the training data. First, we can train the
neural network models using relevant judgment from ‘qrels’ files, which are the results
submitted by all participants in TREC Robust IR 2004. We test the neural network
models on the candidates generated by different traditional information retrieval methods
on the test topics. The second way is to use the base run from the retrieval models as
the training set, which is the same process of test set generation. We did not find a
significant difference between these two methods in our experiments. So we applied the

1https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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second method, which we believe is the more common method in the neural IR community,
to generate the training set.

Model Parameter Value
Unsupervised methods

QL mu 1000

BM25
k1 0.9
b 0.4

Shared MatchZoo parameters

MatchZoo

Embedding size 300
text1 maxlen 10
text2 maxlen 500/68

Optimizer Adam
Learning rate 0.001

Batch size 100
Specific models

CDSSM

kernel count 50
kernel size 3

hidden sizes [10]
dropout rate 0.1

DSSM
hidden sizes [300]
dropout rate 0.1

DUET

lm kernel count 32
lm hidden sizes [30]
dm kernel count 32
dm kernel size 3

KNRM kernel num 21
sigma 0.1

exact sigma 0.001

DRMM
Histogram size 20

hidden sizes [30, 10, 1]
MP-HCNN # of convolutional layers 5

BERT
Learning rate 1e-5

Epochs 5
Batch size 16

Table 4.1: Hyper-parameters of all models except RM3 in the experiments
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4.2 Datasets

4.2.1 Microblog

We conduct experiments on two corpora: Microblog and Robust04. The Microblog corpus
is provided by TREC Microblog Track in 2011 and 2013,2 which is the live stream of
tweets. The corpus statistics are shown in Table 4.2. We train the NN models using the
golden labeled data from ‘run’ files from MB2011, MB2012, and MB2013 and test the NN
models on the ‘run’ file generated by QL on MB2014. Each year’ data contains the queries
from the users and the target to find the most recent and relavant tweets in the corpus
[58, 79, 46, 48]. A sample query is shown belew:

• ID: MB051

• Query: British Government cuts

• Querytime: Tue Feb 08 23:56:46 +0000 2011

• Querytweettime: 35124912364457984

We sample 10% of the training queries to form the validation set. In practice, we did
not observe significant differences with different validation set selection. The relevance
judgments are made in a three-point scale (“not relevant”, “relevant”, “highly relevant”),
but in this work, we treat both higher grades as relevant. For the RM3 baseline, we use
the hyperparameters fbTerms=10, fbDocs=10, and originalQueryWeight=0.5.

To enable fair comparisons across the NN models, we adopt the same tuning strategies
and report the best performance. we use the 300-dimension word vectors3 pre-trained from
the Common Crawl Dataset with 840B tokens for word-based models (e.g., DRMM) with
GloVe [63] and standard one-hot vector representations for character-based models (e.g.,
DSSM). The statistics of vocabulary sizes for each dataset and out-of-vocabulary (OOV)
words can be found in Table 4.2. Out-of-vocabulary words’ vectors are sampled from the
uniform distribution U(−0.25, 0.25). The same padding strategy is used across the four
datasets by setting to the largest query/document length, where each query is padded to
10 words and 51 characters and each document is padded to 68 words and 140 characters,
respectively. For each model, we select the best optimizer from the set [SGD, Adam,
Adadelta] and the best initial learning rate from the set [0.1, 0.01, 0.001, 0.0001].

2https://trec.nist.gov/data/microblog.html
3https://nlp.stanford.edu/projects/glove/
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Test Set 2011 2012 2013 2014

# query topics 49 60 60 55
# query-doc pairs 49,000 60,000 60,000 55,000
% relevant docs 4.9 8.6 7.4 16.4
% URLs 51.2 50.9 50.0 50.2
% hashtags 17.1 16.1 17.0 17.7

Table 4.2: Statistics of the TREC Microblog Track datasets.

Figure 4.1: Distribution of documents’ length in Microblog dataset

Figure 4.1 shows the documents’ length distribution in tokens of the Microblog corpus.
We can see that the lengths of most tweets are in the range [0, 40], making it easy for neural
text matching models to handle the varied length problem in the Microblog dataset.

4.2.2 Robust04

The Robust04 corpus is provided by TREC Robust Track in 2004, which is the set of
documents on both TREC Disks 4 and 5 minus the Congressional Record on disk 4. The
corpus statistics are shown in Table 4.3. There are 250 topics in the query set and one of
the queries was subsequently dropped due to having no relevant documents.

Figure 4.2 shows the document length distribution in tokens of the Robust04 corpus.
We can see that the lengths of news documents are highly biased. It makes it hard for
neural text matching models to headle the varied length problem in Robust04 dataset. To
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Source # Docs Size (MB)

Financial Times 210,158 564
Federal Register 94 55,630 395
FBIS, disk 5 130,471 470
LA Times 131,896 475
Total 528,155 1904

Table 4.3: Statistics of the Robust04 corpus

Figure 4.2: Distribution of documents’ length in the Robust04 dataset
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Parameter 1 2 3 4 5

fbTerms 45 45 50 50 45
fbDocs 8 6 10 12 8

originalQueryWeight 0.2 0.3 0.2 0.2 0.2

Table 4.4: Hyper-parameters of RM3 method on Microblog dataset and five data splits of
Robust04 in the experiments

deal with the long text problem, most text matching models in our experiments (except
DRMM) truncates the first K (text2 maxlen) words and take it as input. This truncation
method often loses information in a global view and also might cause mismatch if the
matching terms do not appear in the first K words. In our experiments, to ensure that
neural text matching models can capture information and are trained within a reasonable
time cost, we set K=500 for all models. Note DRMM computes the similarity between each
term in the query and each term in the documents. Then DRMM compresses this large
similarity matrix in the small matrix using a histogram mapping trick. Each similarity
score becomes a count in the histogram vector. This might be the reason that DRMM
performs well on the long document text matching with varied lengths.

Following recent work on the Robust04 dataset [85, 21, 51], we used 5-fold cross-
validation on 250 topics in the Robust04 corpus and split them into train/dev/test sets
by the ratio 3:1:1 following Lin [45] (3 folds for training, one fold for dev and one fold for
test).4 The tuned hyper-parameters for each split in the Robust04 dataset are shown in
Table 4.4. We use the pretrain embedding from the Google news corpus.5 We also try to
use the embedding from other two sources: Glove6 and pretrained from the Robust04 raw
corpus. However, in both ways in our experiements, the performance cannot beat those
with the pretrain embedding from the Google news corpus. The results of the reranking
are in Section 4.3.
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QL QL+RM3 BM25 BM25+RM3
AP 0.4181 0.4676+ 0.3931 0.4374+

MRR 0.8581 0.8181 0.8366 0.8282
P@20 0.6709 0.6927+ 0.6682 0.6827+

P@30 0.6430 0.6533 0.6212 0.6442+

NDCG@20 0.6385 0.6479 0.6307 0.6407

Table 4.5: Results of retrieval models on Microblog datasets. Significant improvement of
RM3 with respect to the baseline retrieval model (QL/BM25) is indicated (+) (p-value ≤
0.05).

QL QL+RM3 BM25 BM25+RM3
AP 0.2465 0.2743+ 0.2515 0.3033+

MRR 0.6817 0.6405 0.6842 0.6523
P@20 0.3508 0.3639+ 0.3612 0.3973+

P@30 0.3076 0.3229+ 0.3112 0.3493+

NDCG@20 0.4109 0.4172 0.4225 0.4514+

Table 4.6: Results of retrieval models on the Robust04 dataset. Significant improvement
of RM3 with respect to the baseline retrieval model (QL/BM25) is indicated (+) (p-value
≤ 0.05).

4.3 Results

4.3.1 Retrieval Baselines

Results of the retrieval models on the Robust04 dataset are shown in Table 4.6 and results
of the retrieval models on the Microblog dataset are shown in Table 4.5. Lin et al. [45],
point out most neural network models for information retrieval compared with weak IR
baselines. Thus, we tried RM3 in our experiments, and we can see it provides a significant
improvement on the effectiveness.

Among the five evaluation metrics, MRR metric is only affected by the single highest-
ranked relevant item. So MRR is appropriate to judge a system where either (a) there is

4The query IDs of each split can be found in https://github.com/castorini/Anserini/tree/

master/src/main/resources/fine_tuning/drr_folds.
5https://github.com/mmihaltz/word2vec-GoogleNews-vectors
6https://nlp.stanford.edu/projects/glove/
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only one relevant result, or (b) researcher only really care about the highest-ranked one.
In the two datasets in our experiments, we can see that the MRR metric may not follow
the same increasing or decreasing trend as other metrics because other metrics are affected
by the rank of most relevant items.

From the results in Table 4.6 and Table 4.5, we can see that QL performs better
than BM25 on the Microblog dataset but worse on the Robust04 dataset. RM3 rerank-
ing achieves consistent improvement over the baseline ranking models, demonstrating its
superior effectiveness. Note that RM3 requires an additional round of retrieval to select
terms for query expansion, and thus is substantially slower. However, if we rerank the
candidates from RM3 method using neural text matching models, the time complexity of
RM3 method can be ignored since the time cost of the neural network models becomes the
bottleneck.

4.3.2 Reranking

Microblog

The baseline results on Microblog datasets are shown in Table 4.7 and all of them are from
Rao et al. [71] including QL and QL+RM3. Note that these results are different from
Anserinit results in Table 4.7. Row 3, 4, 5, 6 are from a competitive ranking algorithm,
LambdaMART [5], that won the Yahoo! Learning to Rank Challenge [4] with different
features. The details of L2R and MP-HCNN are introduced by Rao et al. [71]. We can
see that our QL and QL+RM3 results in Table 4.5 are higher than the QL and QL+RM3
results in Table 4.7, as well as other baselines’ results. This provides a good candidate set
for neural text matching models.

The results on the Microblog dataset are shown in Table 4.8. Note NN+ (NN =
[DSSM, CDSSM, DUET, KNRM, DRMM]) means the interpolation result between the
NN model and QL baseline. From this table, we can see that if we do not consider the
BERT model which learn knowledge from external data, we can achieve the state-of-the-
art results using QL+RM3 retrieval model and MP-HCNN text matching model with the
interpolation method. Among all neural text matching methods in the MatchZoo toolkit,
DRMM performs the best. But after interpolation, KNRM+, DRMM+, DUET+, and
MP-HCNN perform at a similar level. This means that these neural methods capture
similar matching information that contributes to the base retrieval model.

Comparing the results of original NN models without interpolation, we find that character-
based approaches (DSSM, C-DSSM, DUET) tend to perform worse than word-based ap-
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ID Method AP P@30
1 QL 0.3924 0.6182
2 QL+RM3 0.4480 0.6339
3 L2R (all) 0.3943 0.6200
4 L2R (text) 0.3824 0.6091
5 L2R (text+URL) 0.3974 0.6206
6 L2R (text+hashtag) 0.3815 0.5939
7 MP-HCNN 0.4304 0.6297
8 Interpolated MP-HCNN 0.4420 0.6394

Table 4.7: Previous results on Microblog datasets by Rao et al. [71]

proaches (MatchPyramid, DRMM, K-NRM) in general. This is likely basecause that all
word-based NN models use pre-trained word vectors that encode more semantic meaning
than one-hot vector representations as used in character-based approaches, suggesting that
the Twitter datasets are not sufficient to support the learning of character-based represen-
tations from scratch. C-DSSM suffers more than DSSM, showing that a more complicated
model tend to have worse effectiveness in a data-poor setting. DUET is generally compa-
rable to DSSM in all metrics, even though it has an additional local component to capture
exact matching signals.

Comparing the methods with and without interpolation, we observe that simple inter-
polation with QL boosts the effectiveness of all neural baselines dramatically, showing that
exact match signals are complementary to the soft match signals captured by NN methods.
This observation also holds for the proposed model: interpolated MP-HCNN, although the
margin of improvement is smaller due to the effectiveness of MP-HCNN alone.

Comparing all word-based NN models with interpolation, we find that MP-HCNN
seems to be the most effective approach while CDSSM is the worst. Considering that
the three models share many similarities at the input level (all based on an embedding-
level similarity matrix), the large performance difference between DRMM/K-NRM and
MatchPyramid suggests that term weighting is crucial for tweet search. Moreover, we
find that the kernel-based manipulations of the input similarity matrix in KNRM do not
lead to any improvement over simple histogram representations in DRMM. Overall, all
the NN models perform much worse than a simple QL baseline, suggesting that these
well-performing Web ranking models fail to adapt to tweet search.

Comparing the interpolation results, we observe that the performance difference be-
tween NN models still holds in most settings. For example, word-based approaches remain
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RM NRM AP P@30

QL

- 0.4184 0.6424
DRMM 0.3778− 0.5588−
KNRM 0.2984− 0.4570−
DUET 0.2658− 0.3879−
DSSM 0.2481− 0.3921−

CDSSM 0.1914− 0.2655−
MP-HCNN 0.4310 0.6362

BERT 0.4314 0.6376
Interpolated DRMM 0.4475+ 0.6448
Interpolated KNRM 0.4389+ 0.6564
Interpolated DUET 0.4476+ 0.6606

Interpolated CDSSM 0.4229 0.6442
Interpolated DSSM 0.4184 0.6424

Interpolated MP-HCNN 0.4533+ 0.6610+
Interpolated BERT 0.4748+ 0.6800+

QL
+RM3

- 0.4676 0.6533
DRMM 0.4477− 0.6127−
KNRM 0.3432− 0.5121−
DUET 0.2713− 0.3533−
DSSM 0.2634− 0.3836−

CDSSM 0.1936− 0.2636−
MP-HCNN 0.4497 0.6219

BERT 0.4646 0.6509
Interpolated DRMM 0.4862+ 0.6703
Interpolated KNRM 0.4848+ 0.6624
Interpolated DUET 0.4844+ 0.6594
Interpolated DSSM 0.4666 0.6539

Interpolated CDSSM 0.4703 0.6624
Interpolated MP-HCNN 0.4902+ 0.6712

Interpolated BERT 0.5011+ 0.6842+

Table 4.8: Result of retrieval and text matching on Microblog datasets. RM: retrieval
model. NRM: neural re-ranking model. Significant improvement or degradation with
respect to the retrieval model is indicated (+/-) (p-value ≤ 0.05).
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Model AP P@20 NDCG@20

QL (Guo et al.)[21] 0.253 0.369 0.415
BM25 (Guo et al.)[21] 0.255 0.370 0.418

DRMM (Guo et al.)[21] 0.279 0.382 0.431

QL (Pang et al.)[60] 0.253 0.369 0.415
BM25 (Pang et al.)[60] 0.255 0.370 0.418

MatchPyramid (Pang et al.)[60] 0.232 0.327 0.411

BM25 (Mcdonald et al.)[51] 0.238 0.354 0.425
PACRR (Mcdonald et al.)[51] 0.258 0.372 0.443

POSIT-DRMM+MV (Mcdonald et al.)[51] 0.272 0.386 0.461

Table 4.9: Previous results on the Robust04 dataset

to be slightly better than character-based models after interpolation. Note that interpola-
tion scores can be lower than the QL-only scores because the model can learn a non-zero
weight for the NN component from the training data, which is less effective than QL on the
test data. The most robust models are DUET and KNRM with interpolations, which con-
sistently or even significantly outperform the QL baseline in some datasets. This suggests
that these two methods do capture relevance signals that are complementary to an exact
matching method like QL. It is also worth noting that we cannot conclude one method is
better than another by only comparing their interpolation performance, such as DSSM and
C-DSSM. The better interpolation performance of C-DSSM merely is because its predic-
tion scores are mostly dominated by QL scores (i.e., its interpolation weights are close to
zero across all datasets). Overall, our finding is consistent in the original and interpolation
setup – all existing NN models suffer in tweet search, while some are marginally effective
when interpolated with the QL baseline results.

Robust04

There are many researchers working on the Robust04 dataset, and these previous results
are shown in Table 4.9. Similar to the Microblog dataset, our QL and BM25 results in Table
4.6 are higher than the QL and BM25 results in Table 4.9 due to better implementation.
As far as our knowledge goes, there are no known published results of neural information
retrieval to rerank the results of the RM3 retrieval method. We can see that BM25+RM3
in Table 4.6 can beat all neural information retrieval methods in recent years.

The results in our experiments on the Robust04 corpus is shown in Table 4.10 using

35



RM NRM AP P@20 NDCG@20

BM25

- 0.2515 0.3611 0.4226
DRMM 0.2508 0.3453 0.4078
KNRM 0.1016− 0.1425− 0.1461−

DUET 0.1313− 0.1531 − 0.1841−

DSSM 0.0978− 0.1318− 0.1421−

CDSSM 0.0625− 0.0841− 0.0781−

Interpolated DRMM 0.2775+ 0.3886+ 0.4517+

Interpolated KNRM 0.2546 0.3681 0.4320
Interpolated DUET 0.2556 0.3653 0.4221
Interpolated DSSM 0.2483 0.3922 0.4189

Interpolated CDSSM 0.2482 0.3918 0.4198

BM25
+RM3

- 0.3493 0.3973 0.4514
DRMM 0.2543− 0.3405− 0.4025−

KNRM 0.1145− 0.1480− 0.1512−

DUET 0.1426− 0.1561− 0.1946−

DSSM 0.0982− 0.1331− 0.1551−

CDSSM 0.0641− 0.0842− 0.0772−

Interpolated DRMM 0.3151+ 0.4147+ 0.4717+

Interpolated KNRM 0.3036 0.3928 0.4441
Interpolated DUET 0.3051 0.3986 0.4502
Interpolated DSSM 0.3026 0.3946 0.4491

Interpolated CDSSM 0.2995 0.3944 0.4468

Table 4.10: Result of retrieval and reranking on the Robust04 dataset. RM: retrieval model.
NRM: neural re-ranking model. Significant improvement or degradation with respect to
the retrieval model is indicated (+/-) (p-value ≤ 0.05).
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the base retrieval method: QL, BM25, BM25+RM3 respectively. From the results, we can
see that DRMM performs significantly better on the Robust04 dataset compared to the
Microblog dataset. The reason has been analyzed by many researchers [30, 40] and the
consensus is the DRMM captures more exact term matching instead of semantic matching
and this property is similar to a retrieval model like BM25. The visualization figure by
Bhaskar et al. [54] shows that DRMM and BM25 are both lexical matching models. This
might also explain DRMM is the only method in our experiments that achieves close
performance to BM25.

From Table 4.10 we can see that we achieve state-of-the-art effectiveness on the Ro-
bust04 dataset using interpolated DRMM. Note all these methods and tricks have been
proposed for at least two years (RM3, DRMM, and interpolation). The performance is
much better DRMM when it was proposed in Table 4.9.

Another interesting finding is that individual neural network models especially DRMM
cannot achieve much improvement based on the good performance of the base retrieval
model BM25+RM3. Take the MAP score as an example, compared to the base model
BM25 and QL, DRMM alone achieves comparable performance. After interpolation, the
AP result increases around 3 points. However, in Table 4.10, single DRMM’s performance
is lower than the base model by 4.4 points. After interpolation, the increase based on
BM25+RM3 is just 1.7 points. This might due to:

• RM3 rerank method does not contribute a lot to the recall of returned documents
but increases the precision score. The recall rate is actually the key point that affects
the performance of neural text matching models.

• RM3 captures similar information to DRMM model, thus the combination does not
contribute a lot.

In addition, we find DUET and KNRM are good at modeling short text such as the
microblog text. However, they perform terribly on the long documents such as the news
corpus (Robust04). We think the reason is these models cannot deal variant length prob-
lems in long documents. For short text the length variance is short, and it is easy for
neural network models to learn a pattern for matching at different length scales. But for a
long document, it is hard for CNN or RNN based methods to capture the information in
the similarity matrix generated from the query and document directly. DRMM avoids this
by transforming this similarity matrix into histograms, thus mostly relieving the dimen-
sion problem without losing much information. This allows DRMM captures more exact
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matching information, which is more important in long document retrieval than short text
retrieval.

From the results, we can see that without interpolation, all NN methods in this ex-
periment cannot beat the retrieval model baseline (BM25 and BM25+RM3) significantly,
and even worse compared to the BM25+RM3 baseline. This shows that although lots of
complex supervised neural network models are proposed in recent years, traditional unsu-
pervised retrieval methods are still one of the most stable and robust ways to solve the
IR problems. In our experiments, traditional retrieval methods are much faster even the
input (the whole corpus) is larger, since we build an index to accelerate searching before
retrieval. This is another point we need to consider when we choose IR and text matching
algorithms, especially in the industry environment.

I: irrelevant; R: relevant

ID Query Sample Tweet Label
Rank

QL DUET KNRM

1 164:
social media

as educational
tool

without social media the internet is an
education tool

I 1 475 254

2

social media what use is social media
in education : in view of the growing

demand for social media skills st
http://punchng.com/i-punch/what-

use-is-social-media-in-education

R 11 3 1

3

should law schools be making better
use of social media as a teaching tool
http://canadianlawyermag.com/4537/
Time-to-tweet.html #education #law

R 110 419 77

4 159:
circular

econoour
initiatives

mof issues financial circular for the
general federal budget

http://wam.ae/ar/servlet/Satellite
I 256 7 14

5

what is a circular econoour
https://www.ellenmacarthurfoundation

.org/circular-econoour via
#circulareconoour

R 3 17 16

Table 4.11: Sample Analysis
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4.3.3 Error Analysis

So far, we have shown the performances of different neural information retrieval models on
different datasets. However, we still lack knowledge about the following two questions: (1)
What are the common characteristics of well-performing topics, and how do the different
components contribute to overall effectiveness? (2) When does our model fail, and how
can we further improve the model? To answer these questions, we provide additional
qualitative and quantitative analyses over the per-query performance and sample tweets
from poor-performing topics and models.

Microblog

To gain further insight into how NN models perform across different query topics, we
conduct a per-topic analysis on the Microblog dataset as shown in Figure 4.4, and Figure
4.5. Each bar in the figure means the difference of the MAP scores between a neural
reranking model and a retrieval baseline on a query. we select the two best-performing NN
models (DUET and K-NRM), and show their MAP scores w.r.t QL baseline on the TREC
2014 dataset. Other methods without interpolation exhibit a similar pattern here.

First, form we find that both DUET and K-NRM suffer in most topics, affirming the
ineffectiveness of existing NN models on tweet search. It is also interesting to see that the
two models tend to perform well on a range of similar topics, suggesting that NN models
are learning some shared representations that help with the search. To further understand
this, we select some sample tweets for the best-performing topic 164 (“social media as
educational tool”) and the worst-performing topic 159 (“circular econoour initiatives”)
and present them in Table 4.11. The column “Rank” denotes the ranked position of the
sample tweet in the returned list. Comparing sample 1 and 2, we can clearly see the
benefits of NN models over QL baseline: NN methods tend to be less sensitive to exact
matching signals and more semantic-oriented. Also, K-NRM produces a higher rank for
sample 3 likely due to the semantic matches between the query word “educational” and
the document words “schools”, “teaching”. In addition, we observe that the hashtags and
URLs in sample 2, 3 and 5 contain strong relevance signals, which represent a unique
characteristic of Microblog text that can be leveraged by character-level modeling.

Furthermore, from Figure 4.3, we can see that MP-HCNN models can achieve much
better performance with interpolation. Combining MP-HCNN and the QL+RM3 baseline
largely helps the topics on which the single MP-HCNN model performs relatively poor.
From Figure 4.5, we can see that the base BERT model’s performance on each topic has
more difference to the base retrieval methods than other neural network methods. Thus,
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with interpolation, BERT can achieve higher performance gain by considering two models
capturing different match information.

Robust04

The per-topic analysis on the Robust04 dataset is shown in Figure 4.6 . Similar to the
effect of interpolation in the Microblog dataset, we can see interpolation between DRMM
and the BM25+RM3 baseline largely helps the topics on which the single DRMM model
performs relatively poor. Although we can notice that the MAP scores decrease after
interpolation for some topics on whic the single DRMM model performs well, the advantage
of interpolation is still much larger than the disadvantage. This shows the effectiveness of
the simple interpolation method in end-to-end information retrieval.
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Figure 4.3: Per-topic differences of MAP scores between MP-HCNN and QL+RM3 on the
Microblog dataset
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Figure 4.4: Per-topic differences of MAP scores between DUET/KNRM and QL+RM3 on
the Microblog dataset
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Figure 4.5: Per-topic differences of MAP scores between BERT and QL+RM3 on the
Microblog dataset
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Figure 4.6: Per-topic differences of MAP scores between DRMM and BM25+RM3 on the
Robust04 dataset
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Chapter 5

Conclusions and Future Work

In our thesis, we work on the end-to-end neural information retrieval problem, which
includes the retrieval step and the text matching step. For efficiency purposes, traditional
methods like QL and BM25 retrieve candidate documents given a query in a rough but hard
to beat way. Then complicated neural information retrieval models are applied to compute
the similarity between the query and each candidate document. Then these candidate
documents are ranked again by neural models, and the top K documents are returned
to the user. The work in this thesis is based on four open-source toolkits and models:
Anserini, MatchZoo, MP-HCNN, and BERT, which provides the models for traditional
IR methods and the neural text matching. Through a straightforward combination, we
construct an end-to-end system for neural information retrieval.

In our work we find researchers working on neural IR report different results of tradi-
tional IR methods (QL, BM25) on a single dataset. This is because they did not report
the hyper-parameters of traditional IR methods in detail but just briefly mentioned ‘we
apply QL/BM25 in our work...’. Furthermore, RM3 is also an important relevance feed-
back based traditional IR method, and it performs better than QL and BM25. However,
few neural IR researchers nowadays report the RM3 score in their work. In addition, we
introduce a simple but effective interpolation method to combine the relevance score from
traditional IR methods and the similarity score from the neural text matching models,
and this method is rarely used in the neural IR papers in recent years, either. By fixing
the problems mentioned above and make further improvements, we can obtain state-of-
the-art performance on two datasets (Robust04 and Microblog) for end-to-end information
retrieval using existed models.

However, since deep learning models have many parameters to learn, it is likely that
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deep text matching models end up with overfitting the data. This means that most deep
text matching models are purely data-driven. In the future, we hope to add prior infor-
mation (e.g., large scale knowledge base and other information) which should be generally
helpful for all downstream NLP tasks. On the other hand, for a specific downstream ap-
plication, domain-specific matching models are required. Current matching models are
designed for a general goal (relevance). However, different applications have a different
matching goals. For example, in information retrieval, relevance does not strictly equal to
the similarity. How to balance between exact matching and semantic matching is still an
unsolved problem.
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[31] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[32] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142. ACM, 2002.

[33] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[34] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the Advances in Neural Infor-
mation Processing Systems, pages 1097–1105, 2012.

[36] Wuwei Lan and Wei Xu. Neural network models for paraphrase identification, semantic
textual similarity, natural language inference, and question answering. arXiv preprint
arXiv:1806.04330, 2018.

[37] Victor Lavrenko and W Bruce Croft. Relevance based language models. In Proceed-
ings of the International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 120–127, 2001.

[38] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition:
A convolutional neural-network approach. IEEE transactions on neural networks,
8(1):98–113, 1997.
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